SIMON KUBERSKI

STANDARD MODEL PARAMETERS IN THE HEAVY
QUARK SECTOR FROM THREE-FLAVOR LATTICE
QCD

2020






Theoretische Physik

STANDARD MODEL PARAMETERS IN THE HEAVY QUARK
SECTOR FROM THREE-FLAVOR LATTICE QCD

Inauguraldissertation zur Erlangung des Doktorgrades
der Naturwissenschaften im Fachbereich Physik
der Mathematisch-Naturwissenschaftlichen Fakultat
der Westfilischen Wilhelms-Universitat Miinster

vorgelegt von
SIMON KUBERSKI
aus Bielefeld
— 2020 —



DEKAN:

ERSTER GUTACHTER:

EZWEITER GUTACHTER:

TAG DER MUNDLICHEN PRUFUNG:

TAG DEE PEOMOTION:

Prof. Dr. Gerhard Wilde
Prof. Dr. Jochen Heitger
Priv.-Doz. Dr. Georg Bergner
28.09.2020

28.09.2020



ABSTRACT

Despite its great success, the Standard Model of particle physics fails
to explain experimental observations as the baryon asymmetry of
the universe or the existence of dark matter. Since the comparison
of theoretical predictions and experimental findings does not reveal
deviations that are statistically significant, many corrections to the
Standard Model that incorporate so-far unexplained phenomena have
been ruled out.

The flavor physics sector is tested in indirect searches for new
physics beyond the Standard Model. To constrain theoretical predic-
tions in this sector, the contributions of low-energy Quantum Chromo-
dynamics (QCD) have to be determined to high precision. Lattice QCD
provides the framework to determine Standard Model parameters ab
initio with controlled systematics and without model-dependent as-
sumptions.

The large spread of energy scales which are present in observables
involving charm and bottom quarks leads to theoretical and numerical
challenges in lattice calculations. In our work, we lay the foundations
to determine Standard Model parameters in the heavy quark sector of
three-flavor QCD. We perform a non-perturbative improvement of the
discretized theory to minimize systematic uncertainties in the deter-
mination of the mass of the charm quark from lattice simulations with
2+ 1 dynamical flavors. In the b quark sector, we use Heavy Quark
Effective Theory (HQET) to describe strong interactions involving the
heavy quark. We prepare the renormalization of the effective theory to
next-to-leading order via a non-perturbative finite-volume matching
with QCD and extract low-energy couplings of Heavy Meson Chiral
Perturbation Theory, an effective theory describing the physics of
heavy-light mesons.

The findings of our work will help to improve theoretical predictions
in the heavy quark sector of the Standard Model based on results from
lattice calculations with carefully controlled systematic effects.



ZUSAMMENFASS5UNG

Trotz seines grofien Erfolges kann das Standardmodell der Teilchen-
physik nicht dazu verwendet werden, experimentelle Beobachtungen
wie die Baryonenasymmetrie des Universums oder die Existenz dunk-
ler Materie zu erkliren. Da der Vergleich theoretischer Vorhersagen
und experimenteller Befunde keine statistisch signifikanten Abwei-
chungen offenbart, wurden viele Korrekturen des Standardmodells,
welche bisher nicht erklirte Phinomene beinhalten, ausgeschlossen.

Der Flavorsektor wird durch indirekte Suchen nach neuer Physik
jenseits des Standardmodells getestet. Um die theoretischen Vorher-
sagen in diesem Bereich einzuschrinken, miissen niederenergetische
Beitriige der QCD mit hoher Prizision bestimmt werden. Quanten-
chromodynamik (QCD) auf dem Gitter schafft die Voraussetzungen
um Parameter des Standardmodells ab initio mit kontrollierten sys-
tematischen Unsicherheiten und ohne modellabhingige Annahmen
bestimmen zu kénnen.

Die groffe Bandbreite an Energieskalen, welche in Observablen die
Charm- und Bottom-Quarks beinhalten vorhanden sind, fiithrt zu theo-
retischen und numerischen Herausforderungen in Gitterrechnungen.
In unserer Arbeit legen wir die Grundlagen um Standardmodellpara-
meter im Sektor schwerer Quarks der Drei-Flavor QCD zu bestimmen.
Wir verbessern die diskretisierte Theorie nichtperturbativ um syste-
matische Unsicherheiten in der Bestimmung der Charm-Quarkmasse
auf Grundlage von Gitterrechnungen mit 2 4+ 1 dynamischen Quark-
flavors zu minimieren. Im b-Quarksektor verwenden wir die effektive
Theorie schwerer Quarks (HQET) um starke Wechselwirkungen mit
schweren Quarks zu beschreiben. Wir bereiten die Renormierung der
effektiven Theorie zur ersten Ordnung mittels eines Matchings mit
QCD in kleinem Volumen vor und extrahieren niederenergetische
Kopplungskonstanten der chiralen Stérungstheorie schwerer Meso-
nen, welche eine effektive Theorie der Physik der schwer-leichten
Mesonen darstellt.

Die Ergebnisse unserer Arbeit werden dabei helfen theoretische
Vorhersagen des Standardmodells im Bereich schwerer Quarks auf
der Grundlage der Resultate aus Gitterrechnungen mit gewissenhaft
kontrollierten systematischen Effekten zu verbessern.
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INTRODUCTION

Four fundamental forces are sufficient to describe the laws of physics,
namely the long ranged gravitational and electromagnetic forces and
the short ranged weak and strong forces. The strong, weak and elec-
tromagnetic forces can be embedded in the Standard Model of particle
physics where quantum field theories are used to describe elementary
particles and the fundamental interactions among them.

Since the Standard Model has been developed, it has been con-
firmed experimentally by the discovery of the underlying particles:
quarks, leptons, gauge bosons and, most prominently, the higgs bo-
son. Numerous high precision tests did not reveal deviations between
theoretical predictions and experimental findings. Whereas the devel-
opment of this model might be the greatest achievement of modern
physics, its accuracy leads to conceptual challenges regarding the
construction of new theories.

Some experimental observations in particle physics cannot be ex-
plained within the Standard Model. The Standard Model describes
baryonic matter which contributes about 5% to the energy content
of the universe. It does not explain the origin of dark matter or dark
energy which amount to the remaining 95%. Furthermore it fails to
explain the baryon asymmetry of the universe and the experimentally
confirmed non-vanishing neutrino masses. Since every model that is
developed to explain one or more of these phenomena has implica-
tions on the interactions within the Standard Model, the agreement of
Standard Model predictions and observations to high precision has
ruled out a large number of such models.

The search for new physics beyond the Standard Model is performed
in two different regimes. Direct searches for new particles are the main
approach of high-energy experiments as the Large Hadron Collider.
An upper bound on the energies in reach is given by the immense cost
and technological constraints that are connected with the construction
of new particle colliders. Therefore, the indirect search for new physics
might lead to the first evidence of physics beyond the Standard Model.
Here, low-energy processes are investigated to high precision to hunt
for deviations from theoretical predictions.

The calculation of such predictions poses theoretical and numerical
challenges. The perturbative treatment of Quantum Chromodynamics
(QCD), which is the theory of strong interactions, fails at low energies
due to the strength of the interactions in this regime. Lattice QCD is the

natural ab initio method to perform computations in the low-energy
sector of QCD. The formulation and regularization of the theory on



In the lattice
regularization of the
QCD Lagrangian, L
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the infrared and
ultraviolet cut-off.
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a finite space-time grid allows to describe the interactions between
hadrons which, due to confinement [1], are the particles that take part
in physical processes at low energies.

The flavor physics sector of low-energy QCD is believed to be a
promising field for the search for new physics. For example, fla-
vor-changing neutral currents are highly suppressed in the Standard
Model and therefore sensitive to contributions from beyond the Stan-
dard Model theories. Currently, there are a few quantities in the sector
of heavy quarks where discrepancies at the 3o level are found. An ex-
ample is given by the element [V, of the Cabbibo-Kobayashi-Maskawa
(CKM) matrix. The determination of |V | from inclusive semi-leptonic
b — c decays, an overview is given in [2], does not coincide with the
determination from exclusive semi-leptonic B — D{v decays, e.g., by
the Belle collaboration [3]. To compute the latter, the experimentally
determined decay rates are combined with lattice QCD computations
of hadronic matrix elements.

The calculation of hadronic quantities involving bottom quarks
poses severe challenges for lattice QCD. These have their origin in
the hierarchy of scales involved in the computation. To control all
systematic effects, the requirement

L& m, ~140MeV < mg ~5GeV < a !, (1.1)

where L is the physical extent of the lattice and a is the lattice spacing,
has to be fulfilled. This is not possible on modern computers. To
circumvent this fundamental issue, we resort to an effective theory,
namely Heavy Quark Effective Theory (HQET), to describe strong
interactions involving bottom quarks.

HQET allows us to integrate out the heavy degrees of freedom and
to subsequently perform an expansion of the Lagrange density in the
inverse of the heavy quark mass my,. The treatment of the light degrees
of freedom remains unchanged. The non-perturbative matching of
the effective theory with QCD allows us to renormalize quantities
of interest such that the continuum limit of the lattice results can be
taken. To conserve the predictive power of the theory, this matching
is performed in finite-volume at L ~ (0.5 fm where relativistic bottom
quarks can be included in the simulation of QCD.

To describe physics at the scale of the bottom quark, we take the
next-to-leading order of HQET, i.e., terms of O(1/my,) into account. To
decouple the effects of the next-to-leading order from discretization
effects, we have to remove all effects of Ofa) from the discretized
theory. The controlled removal of such effects goes under the name of
Symanzik improvement [4, 5] and we apply it to the Lagrangian and all
observables included in our calculations. Based on the renormalized
effective theory, we are able to determine physical observables in the
b quark sector such as the bottom quark mass, decay constants of B
mesons and form factors of semi-leptonic B decays.
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We will also use HQET to determine the leading order coupling
constant of Heavy Meson Chiral Perturbation Theory (HMyFT). This
effective theory describes heavy-light mesons in the limit of massless
light and infinitely heavy quarks. An expansion in this theory guides
chiral extrapolations of observables that have been determined on
the lattice at unphysically large quark masses. Therefore, the precise
knowledge of the leading order coupling helps to reduce the error on
heavy quark observables from lattice QCD.

In contrast to bottom quarks, relativistic charm quarks can be simu-
lated in large-volume lattice QCD. However, mass dependent cut-off
effects of O{am?) lead to systematic uncertainties in the continuum
extrapolation of lattice results obtained from Wilson quarks. The im-
provement of the theory a la Symanzik allows to cancel the leading
order cut-off effects and to improve the scaling towards the continuum
limit. This enables us to determine the charm quark mass in 2+ 1 flavor
lattice QCD. The knowledge of bottom and charm quark mass is per
se of interest since both are parameters of the Standard Model. Their
precise knowledge is also important for the search for new physics
since they enter theoretical predictions such as Higgs branching ratios
to charm and bottom quarks and the inclusive semi-leptonic decay rate
of B mesons [6]. The hopping parameters for physical charm quark
masses on the CLS ensembles will be employed for the computation
of heavy-charm correlation functions in our HQET calculations.

This work is structured as follows. In the first part we will give
an introduction to the theoretical and computational foundations of
our work. We will describe the discretized action that we use to sim-
ulate three-flavor QCD, explain its formulation in the Schrodinger
functional and the Symanzik improvement of the theory. Afterwards
we will introduce algorithmic techniques that enable us to perform
our calculations and outline how they are used to optimize the per-
formance of lattice calculations. Subsequently we will introduce a
number of observables which are determined at different stages of our
analysis and present their definition in our setup. We conclude this
part with an introduction to HQET, the formulation of the effective
theory on the lattice and an outline of the non-perturbative matching
in finite-volume.

In the second part we will describe the simulation of gauge ensem-
bles for the non-perturbative matching of QCD and HQET. We will
explain the tuning that was done to perform the simulations along a
line of constant physics and we will extract information on the run-
ning of the strong coupling constant and quark masses in the weakly
coupled regime of non-perturbative QCD. In a separate chapter we
will present some of the algorithmic experiences that we have made
in our simulations of large lattices in finite volume. These can be used
as a guideline for future simulations in the Schrédinger functional.
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Afterwards we will turn to the operator improvement and renor-
malization that is necessary to determine heavy quark observables.
We will outline our strategy to determine the improvement coefficients
by — bp and b, as well as the renormalization constant Z. This strat-
egy is first applied in the coupling region of large-volume simulations,
where the parameters can be used to renormalize and improve quark
masses. We then employ our strategy in the region of the finite-volume
matching and use the improvement coefficients and renormalization
constants to tune to fixed renormalized heavy quark masses for the
matching procedure. To ensure the validity of our results, we per-
form checks by a large number of variations in the definitions of our
observables. We conclude this part by testing the removal of cut-off
effects by the parameters by, and Z in the matching region.

The determination of the charm quark mass is performed on large-
volume ensembles generated by members of the CLS5 effort. We de-
scribe these ensembles and detail our strategy to compute the renor-
malization group invariant charm quark mass. Afterwards we explain
in detail how we extracted the bare quantities from measurements
on a large set of ensembles and present the results. This is followed
by a discussion on different techniques that have been used to obtain
the results with high precision. The chiral-continuum extrapolation
of the charm quark mass is presented and a preliminary result at the
physical point is given.

In the last part of this work, we discuss the computation of HQET
observables on large-volume CLS ensembles. We present our inves-
tigations of the properties of these observables on lattices with open
boundary conditions and describe our computations of the correlation
functions that will be combined with the matching parameters to ob-
tain renormalized observables in the effective theory. Afterwards we
will introduce the coupling § of HMyPT and explain how we extract
it on the CLS ensembles. We will conclude with a chiral-continuum
extrapolation of §, quote a result for the coupling in the chiral limit
and give an outlook on future improvements of this calculation.
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QCD ON THE LATTICE

QCD is the theory of strongly interacting particles. In the continuum,
its Lagrange density is given by

Locp = Lym + Ly (2.1)
1 - .
= 3T Fun P14 3 e (iyuD¥ —me) e, (2.2)
f

where the Yang-Mills Lagrangian Lyy describes the interaction of
gauge fields via the field strength tensor F,, and the fermion fields 1
of flavor f couple to the gauge fields via the covariant derivative D*.

There are many different ways to discretize the QCD action in order
to simulate the theory on the lattice. In the following discussion, we
split the action of QCD into the gauge action 5; and the fermion action
St Discretizing the gauge action is done straight-forwardly and does
not pose many problems. This is different in the case of the fermionic
action. All of the currently used fermion discretizations have advan-
tages and disadvantages and the choice of a specific setup has to be
adapted to the problems under investigation and the available com-
puting resources. One shortcoming is common to all discretizations:
They cannot circumvent the Nielsen-Ninomiya no-go theorem [8-10]
which states that actions with the discretized Dirac operator D in even
dimensions cannot at the same fulfill all of the following criteria [11]:

1. Locality of D.
2. Correct continuum limit as a — Q.

3. No fermion doublers, i.e., the Fourier transformed operator D(p)
is invertible everywhere except p, = 0.

4. Respect chiral symmetry on the lattice, i.e., the relation {ys, D} =
( holds.

The so-called overlap fermions come as close as possible to satisfy
these criteria. The corresponding Dirac operator fulfills a lattice version
of chirality, the Ginsparg-Wilson equation [12], namely

{ys, D} = aDysD. (2:3)

Unfortunately, the cost of the simulation of overlap fermions is magni-
tudes larger than for other discretizations and therefore not practical
for many applications. This is opposed to the widely used Wilson
fermions which are cheap to simulate, but break chiral symmetry
explicitly at finite lattice spacing.

For a derivation of
the QCD Lagrangian
we refer to textbooks
on quantum field
theory, e.g., [7].



QCD ON THE LATTICE

In this chapter, we do not give an overiew of all popular discretiza-
tions, but focus on the action which is used in all simulations related
to our work. We start with the gauge action and explain the idea of
Symanzik improved theories, before we discuss Wilson fermions.

In the following we assume that the reader is familiar with the
basics of lattice simulations as they are taught in Master’s courses
on lattice field theory. Therefore, we do not explain the path integral
formalism, the Wick rotation of the path integral to Euclidean time and
the correspondence of lattice field theories and statistical mechanics.
We also assume that the definition of ensemble averages that are
defined from a sampling of gauge configurations according to the
Boltzmann weight given by the lattice action and that approach the
quantum mechanical expectation values for large sample sizes is
known. Excellent introductions to these topics can be found in [13-17]

2.1 GAUGE ACTION

As a first step towards a discretized action of QCD, we like to express
the gauge part of the theory, i.e., the action of Yang-Mills theory
[18], on the lattice. Following [19], we start with a smooth continuum
gauge field A, (x), x € R and superimpose a lattice with lattice sites
x = an,n € Z*, where the small distance a between two lattice sites
is called lattice spacing. In order to approximate A, (x) by a lattice
gauge field U, (n), we define the latter as the parallel transporter from
an + afi to an via the path ordered exponential

Uy(n) = Texp (uJ dtAy(an+afi— taﬁ.]) . (24)

]

For small values of a, this lattice gauge field locally approximates
Ay(x). If we now define the plaquette as closed loop of four lattice
gauge fields

Uyv(n) = Up(n)Uy(n+ afi)Ugu(n+ a¥) Uy (n) 7', (2.5)

which is a gauge invariant object, we have the ingredients to formulate
the Wilson gauge action [1]

SW[U}=%Z > ReTrli—Ugy(n)]

9 W 1guevga

= gl% Y Trl—U(p)l (2.6)
P

for the group SU(N) with the bare coupling gﬁ. In the second line of
eg. (2.6), we infroduced the sum Zp over all oriented plaquettes Li(p).
An expansion of the plaquette operator at small values of a yields

4
Tr [1 — U[P]] = —ELT ZTT [Fp'vFu'\r] + D[ '15] [2'?}
[T
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with the field strength tensor
F|.w = auA'v — a'\rﬁku + [A-u: A—v] (23}

and we see that we, to first order, restore the Yang-Mills action in the
continuum limit. A detailed derivation with a similar formalism can
be found in [13].

2.1.1  On-shell improvement

Symanzik [4, 5, 20] introduced the concept of improvement of lattice
theories. The main idea is to consider the discretized theories as
effective theories for the continuum one. In the limit of a vanishing
lattice spacing a, full and effective theory coincide but at finite lattice
spacing there are many different effective theories. The construction
of an effective, ie., discretized theory proceeds similar to a Taylor
expansion in the lattice spacing and if the leading coefficients are
known, they can be explicitly subtracted from the theory. The action
of such an effective theory can be expressed by

Seff = Id“x [Colx)+ ali(x)+a’La(x) +...], (2.9)

where Ly is the continuum Lagrange density and the higher order
terms £y, include operators of dimension 4 + k.

Following Liischer and Weisz [19, 21, 22], we can expand a lat-
tice operator O(n) in polynomials of the gauge field A, (x) and its
derivatives to obtain

0(0) ~ i a®0y(0). (2.10)
k=0

We have seen the leading order of this expansion for the plaquette
operator in eq. (2.7), where the dimension of the operator, ie., the
smallest k for which Oy # 0, is four. Taking into account that O(n)
transforms as a scalar field under the symmetry groups of the lattice,
we see that all odd orders of a have to vanish and the next-to-leading
operators are of dimension six [19].

For a generic gauge action, the approximate scaling of a physical
quantity m towards the continuum limit a — 0 is

a-Sma,3(a)) = O(a?), (2.11)

where the function g(a) can be calibrated such that m matches the

value of an external input thy which, e.g., can be obtained from
experiment. For a spectral quantity mg we set

mo(a, gla)) = thy. (2.12)
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From universality, we expect that a large class of actions has the
identical continuum limit and all of these actions differ by O(a?)
effects [19]. Spectral quantities, e.g., meson masses are unaffected by a
local gauge transformation of the lattice gauge fields.

A non-perturbatively improved gauge action is constructed such
that the error term in eq. (2.11) is reduced to O a*) and the scaling
towards the continuum limit is faster compared to the unimproved
theory. Using perturbative improvement up to k loops, the leading

remaining terms are of order U[gﬁ'[k-"l }-:12}.

2.1.2 Lilscher-Weisz gauge action

S N P

Figure 2.1: Gauge loops contributing to the improved gauge action. The
loops in the first line are planar, the other two extend in three
dimensions. Dots correspond to lattice sites and the dashed lines
are drawn to guide the eye. Based on [1g].

An on-shell improved gauge action can be constructed by a pertur-
bative analysis of the coefficients of the next-to-leading order operators
of the expansion of the plaquette operator which are of dimension six
[19, 23] In principle, three different six-link loops have to be consid-
ered, in addition to the simple plaquette of the Wilson gauge action.
Their form is shown in figure 2.1. As it can be seen, a planar rectangle
and two further three dimensional structures are added as elementary
structures L;. The action is constructed as extension of (2.6) via

1 3
oW == cilgg) ) U (2.13)

9 i lel;

S
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where we replaced the sum over all plaquettes by a sum over all loops
within the four elementary structures. Every structure is multiplied
by a weight and their normalization is chosen to be

co(g3) +8c1(g3) + 8ca(gd) + 16ca(gd) =1. (2.14)

The derivation of the coefficients, as it is done in [24] up to corrections
of order O(g3a?), leads to
5 1
colg) =3 +0.2370g3, c1(gd) = —75— 00252193,  (25)
c2(g3) = —0.00441g3, c3(g3) =0. (2.16)

Taking only the tree-level values, ¢; = c¢;i(0), we can construct a
tree-level improved action from plaquettes and planar rectangles,
since the weights of the non-planar loops vanish. We choose tree-level
improvement over full O(a) improvement since a full Ofa?) improve-
ment becomes too expensive and complicated as soon as we include
quarks in the theory. Nevertheless, we expect an improved scaling by
the inclusion of the tree-level values. We can rewrite eq. (2.13) to look
similar to the Wilson action, eq. (2.6), by adding the weighted sum
over the rectangles,

Stw(l) = % (cn Y Trh-Up)l4c ) Trh- L.[{T]]) .
P T

(2.17)

We have introduced the bare inverse gauge coupling p = 2N /g3 for an
SU(N) gauge group. In the case of QCD which is under investigation
in our work, the gauge fields live in the group SU(3). This so-called
Liischer-Weisz action defined by eq. (2.17) is chosen in all of our
simulations within the bulk of the lattice. We will come back to the
boundaries at a later stage.

The positivity of the Wilson gauge action has been shown in the
transfer matrix formalism [26]. The theory satisfies the Osterwal-
der-Schrader axioms [27, 28]. This is not the case for theories including
operators of dimension six, where the violation of positivity is a lattice
artifact [29, 30]. As long as distances significantly larger than a are
considered the effect can be ignored. The violation of positivity is
expected to vanish in the continuum limit. Special care has to be taken,
when the variational method, which is introduced in section 6.2, is
used at short distances.

2.2 FEEMION ACTION

Having set up the gluonic part of the QCD action, we now turn to the
fermionic action. We will introduce Wilson fermions and discuss their
properties, especially their influence on the chiral symmetry of the
Dirac operator. Afterwards we will apply the concept of improvement
to the fermion action.

11
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QCD ON THE LATTICE

2.2.1  Wilson fermions

Wilson [1] introduced the discretized Dirac operator
1 3
Diys = 3 Z {T”{?; +Vu)— u?:l?u] +mys, (2.18)
u=0

with the covariant forward and backward derivatives V, and V}, and
the gamma matrices y,, defined in appendix A. The bare quark mass
mg ¢ of a fermion flavor f can be expressed in terms of the hopping
parameter kg via

1 /1
mos= 25 (%) (219)
and we will frequently use this form. After an appropriate re-scaling
of the fields we can parametrize the Dirac operator by the hopping
parameter and write

3

Diye=1—x ) |[(1 =1 Un(m)bmian +8nnaall +¥u)ULM)| -
p=0

(2.20)

In this way, we see explicitly that the Dirac operator only includes self-
and nearest-neighbor interactions. The discretized fermionic action
can now be constructed from the Dirac operator and the spinors 1,
via

Swie= a* Z Pp(n) Dy ab(n). (2.21)

We briefly introduced the Nielsen-Ninomiya no-go theorem at the
beginning of this chapter and can now discuss its implications on Dy,,.
In principle, only the first term of eq. (2.18) alone is a straight-forward
lattice version of the continuum Dirac operator of a massless quark.
A Dirac operator which consists only of this term is local, shows the
correct continuum limit and respects chiral symmetry which is a fun-
damental symmetry of QCD with massless quarks. An investigation
of the Fourier transform of the free Dirac operator constructed from
the first term shows that lj{,v in four dimensions vanishes at the 24
corners of the Brillouin zone [11]. A discretized theory defined from
this Dirac operator has 2* flavors of Dirac fermions in the continuum
limit.

Wilson circumvented this problem by the introduction of the second
term which is an irrelevant operator since it vanishes in the continuum.
It adds a term of order O(a ') to the Fourier transform which vanishes
for p,, = 0, but is non-vanishing for ap,, = . The unphysical doublers
receive an infinitely large contribution in the continuum limit and
decouple from the theory.
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The restoration of the correct continuum limit using Wilsons formu-
lation of the Dirac operator has a downside. At finite lattice spacing,
the action including —aV';V, is not invariant under the SU(N¢) chiral
symmetry of massless QCD. We will discuss consequences of the bro-
ken chiral symmetry concerning the renormalization of quark masses
in chapter 4.

2.2.2 Improved Wilson fermions

The inclusion of the Wilson term in the Dirac operator adds an ex-
plicit term of order O(a) to the fermion action. In contrast to pure
Yang-Mills theory, we are faced with discretization errors that vanish
only linearly towards the continuum limit. As in the case of the gluon
action, it is possible to determine all operators which belong to the
next-to-leading Langrangian in eq. (2.9).

Since this next-to-leading term is of order Ofa), we search for
operators of order five which are gauge invariant and respect all
symmetries of the lattice theory. It turns out that the Lagrangian L
has to be a linear combination of the following five operators [31]

E}l = -q}{ruv]:uvll-'
02 = PpDu Db + 'I'dﬁuﬁull“

Oz = mTr [FuvFuvl (2.22)
O4=m (Jn"u[}u'-l’ - JJEHTH¢)
05 = m* P

which are based on the gauge and spinor fields. This set can be
reduced to three operators. We want to achieve on-shell improvement
and this means that correlation functions, in which all arguments are
separated by physical distances, are improved. In this case we can use
the field equations (y, Dy + m) = 0, to show that the operators in
eq. (2.22) are linearly dependent. Using the relations

O —024+205 =0 (2.23)
{‘_]4 +2@'5 =0 {224}

we can eliminate 0; and 04 from the set of operators [32]. The O(a)
Lagrangian of the effective theory is therefore a linear combination of
04, 03 and 05, with appropriately chosen coefficients ci{gﬁ]. When
we recall the form of the gauge action in eq. (2.7), we see that a term
proportional to 03 is already present in an action including quarks and
gluons. The same is true for 05, where the corresponding term is part
of the Wilson Dirac operator. The introduction of these two operators
can therefore be done by a redefinition of the bare parameters g5 and
mg which anyway undergo renormalization.

We are left with 0 as the only operator that we have to add to the
action with the appropriate parameter, in order to obtain an action
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QCD ON THE LATTICE

with leading corrections of order O(a?). This was first derived by
Sheikholeslami and Wohlert [33]. The modified Dirac operator reads

3
1
Dw,s =5 ) (Yu(Vi+ Vi) —aViVy) +mo;
u=>0

3 .
1 ~
+ acsw Z Egquuv I {2'25}
o

V=

where the definition of the discretized gluon field strength tensor Fuv
is chosen as in [31], to be

1
Fuv(n) = 32 [Quv(m) —Qvp(n]] (2.26)
with the so-called clover plaquethes

Quv(n) = UuMm)Uy (n+af)Uu(n+ a¥)"'Uym) ™"
+ Uy (MU (n—afi+ a¥)~"Uy (n— afi) " Uy (n— afi)

+Uu(m—ap)""U,(m—afi—a¥)" U, (n— afi— a¥)U, (n— a¥)

—1

(2.27)

+ Uy (n— tﬁr}_1 Uy(n—a¥)Uy(n+app—av)Uy(n)

The coefficient csw has first been determined perturbatively by Sheik-
holeslami and Wohlert [33]. In our simulations in the three-flavor
theory, we use the non-perturbative determination of [34] which is
parametrized by

~ 1-0.1921g5 — 0.1378g3 + 0.0717g§

2.28
1—0.3881g; (2.28)

csw(g3)

By using the non-perturbative determination, we achieve an improve-
ment from leading discretization effects of order O(a) to O(a?).
With this definition of the Dirac operator, we can now specify the

action of 2 + 1 flavor QCD which is used in our simulations. The
fermion action is written

3
Sw=a"') } b(n)Dwb(n).

=1 n

(2.29)

where we now included a sum over the three flavors up, down and
strange. We take the masses of the light quarks, up and down, degen-
erate

Mou = Mod = Mol (2.30)

in all considered simulations. It has been shown [35] that the effects of
the isospin mass splitting between physical up and down quark are of
the order of QED effects. As long, as these QED effects are not taken
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into account, mass degenerate light quarks are a good approximation
to QCD. As we will see in chapter 5, it is cheaper to simulate a pair of
mass degenerate quarks than single quarks. On top, we reduce the
number of parameters that have to be tuned, in order to obtain the
correct results in the continuum limit.

The full action for N¢ = 2 4+ 1 flavors of Ofa) improved quarks and
tree-level improved gluons is then defined by

S=51w4Sw (2.31)

with the actions from egs. (2.17) and (2.29). The only thing left to do
is to specify the boundary conditions and we will do this in the next
chapter.

15






THE SCHRODINGER FUNCTIONAL

The use of the Schridinger representation in quantum field theory was
brought forward by Symanzik [36], who studied the two-dimensional
¢* theory and showed that the wave functionals which result from the
use of the Schrodinger picture can be renormalized to all orders. An
introduction to his paper can be found in [37]. Symanziks conclusion,
translated to the language of lattice field theory, implies that the
Schridinger functional converges in the continuum limit.

In our work, we use the Schrédinger functional representation
of lattice QCD for finite-volume simulations. Cur introduction of
the general setup of non-abelian gauge theories in the Schrodinger
functional will be along the lines of [38]. The introduction of quarks to
the Schridinger functional was done in [39]. Pedagogical introductions
can be found in [40, 41].

The Schrodinger functional is utilized for finite-volume simulations
of QCD since its boundary conditions are well suited for perturba-
tive calculations and Monte Carlo simulations. As we will see later
when we introduce quark fields in the Schridinger functional, the
boundary conditions also offer the possibility to perform simulations
at vanishing renormalized quark masses making it the perfect ba-
sis for the determination of renormalization constant in a massless
renormalization scheme.

3.1 CONTINUUM FORMULATION

Before we specify the discretized theory that has been used in our
simulations, we introduce the Schrédinger functional in the contin-
uum.

3.1 Gluon action

We express the matrix elements of the Euclidean time evolution op-
erator e T, where H is the Hamilton operator, between two gauge
invariant states via a functional integral over all gauge fields A, (x) in
four dimensions T x [2 with 0 < xg < T. In the spatial directions, we
assume periodic boundary conditions. In the temporal direction, we
impose Dirichlet boundary conditions for the vector potentials,

A —
Ar(x) = {Ck o et =8 ’ (3.1)
Cilx), atxpg=T

17
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where C,C’ are classical gauge potentials. From these boundary
conditions, we can see that we formulate our theory on a four-di-
mensional cylinder in space-time. In eq. (3.1), A denotes the gauge
transformation of A which is defined by

AL (x) = AX)AR(X)A T (x) + A(x) A7 (x), A eSU(N).
(3-2)

We can now define the Echrﬁdinger functional as the Euclidean parl:i—
tion function

z[C’,C] = ID[A]ID[A]e—SGW (3-3)

with the boundary conditions as stated above. S¢ is the Yang-Mills
gauge action and the integral measures are defined by

DAl = [] dAs(x), DAIT]dAR). (3-4)

%pa

With these functional integrals, we integrate over all components of
the Euclidean field and all gauge transformations. Z is invariant under
gauge transformations of the boundary fields.

So far, we have not defined how to choose the boundary fields C, C’.
A proper choice of these fields allows to induce a color background
field. In this case, constant Abelian fields are chosen at the boundaries.
In our simulations, we only consider the case of vanishing background
fields. This is achieved by setting the boundary fields to zero, ie,

Ax(0,x) = Ax(T,x) = 0. (3-5)

Symanzik [36] has shown to all orders in perturbation theory that
the Schrédinger functional is finite after standard renormalization
of the field theory and the addition of boundary counter-terms of
dimension d < 3. Since no gauge invariant local field with d < 3
exists in Yang-Mills theory, no additional counter term is necessary
when the theory is formulated in the Schrodinger functional. A proof
to all orders for Yang-Mills theory and QCD is missing, but from
one-loop results and various numerical studies it is believed that
Symanziks statement is also true in this case [41].

3.1.2  Quarks in the Schridinger functional
To study QCD in the Schrédinger functional, we have to formulate the

boundary conditions for quark fields. This was done in [39] and we
collect the results here. With the definition of the projector

Py = 2(10) 66
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which projects onto the upper or lower components of a spinor field,
we can formulate the Dirichlet boundary conditions for quark 1 and
anti-quark 1 fields,

P+l|"[ﬂrx} =P, lIJ[ﬂ,X}P_ = |j r
P—ll’[T,X} = PFI 1_|’{T,X}P+ ﬁhr' (3?}

Since the Dirac operator is a first order differential operator, the speci-
fication of boundary conditions for half of the components is sufficient.
The partition sum of the Schrédinger functional now includes integrals
over the quark and anti-quark fields,

2[C",0",5",C, p,7] = JD[A] mem IDEpleSAEP  (38)

and the action has been extended by the fermion action Sg,

S[A, b, ] =S [A] + SF[A, b, 1] (3-9)
SEIA, b, ] =Jd“fmx1 fyuDy + ml(x)

— [ @x [B0Pp (] bome
— [ @x [P0 (] e (3.10)

Compared to the usual formulation of this action, we have added
two terms with integrations over the spatial components at the time
boundaries. From this form we see that Schrodinger functional bound-
ary conditions affect the action only directly at the boundaries. The
bulk is unchanged compared to (anti-) periodic boundary conditions
in the time direction. The dependence of the Schrédinger functional
on the boundary conditions is implicit in the last two terms of the
fermion action.

As for the pure Yang-Mills action, we have to ask ourselves, whether
the boundaries change the renormalization pattern. With the inclusion
of quark and anti-quark fields, it is now possible to construct gauge
invariant counter terms with dimension d = 3. The inclusion of
these counter terms amounts to a multiplicative renormalization of
the boundary fields p, p’, p, p' and if we choose to set all of them to
zero, no further renormalization has to be done in addition to the case
without boundaries [3g9].

Another, maybe even more important, feature of the Schridinger
functional was derived in [39]. In small volume, the boundaries effect
the spectrum of the Dirac operator and induce a gap below the small-
est eigenvalue. This leads to a significantly reduced condition number
of the Dirac operator and allows to simulate quarks with vanishing
mass. If one has in mind that the simulation of masses as small as
the physical light quark masses is very expensive in large volume,
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massless quarks are an astonishing feature of the Schridinger func-
tional. Setting the quark masses to zero, after an appropriate tuning
of the hopping parameter, allows to investigate mass-independent
renormalization patterns on the lattice.

So far, we have not specified the boundary conditions of the (anti-)
quark fields in the space directions. We can choose them to be periodic,
as we did it for the gauge fields, but the most general choice for the
spinors includes the phase angles 0, ,k =1,2,3 via

Yix+Lk) =e®p(x),  Px+Lk) =e O P(x), (3.11)

where k is the unit vector in direction k. Periodic boundary conditions
are recovered from 0y = (. We take all three theta angles to be the
same, 0 = 0. It was shown to one-loop in [43] that setting 0 = 7/5
increases the spectral gap in the Dirac operator by about a factor of
two. A similar behavior is expected in our simulations.

32 LATTICE FORMULATION

When we formulate the Schrédinger functional on the lattice, we can
use the results derived in chapter 2 for the bulk and only have to
define how we proceed at and beyond the boundaries. It is convenient
to extend the fields formally beyond the boundaries and to set the
spinor fields in this region to zero, i.e.,

P(x) =0=1P(x) ifxo<Oorxp>T, (3.12)
and

P_'l.lﬂ{ﬂ_,X] =0= P+1I’{T,X}, {313’}

P(0,x)PL =0 =P(T,x)P_. (3.14)

The gauge field variables beyond the boundary are set to unity. In this
way it is possible to write the action as sum over all space-time points
without any constraint for the time coordinate [41].

In the previous section we have argued that the renormalization
pattern does not change, when boundaries are included. If we for-
mulate the theory on lattice, we are faced with O{a) effects near the
boundaries and, as in the bulk, we like to improve the leading cut-off
effects [38]. For the gauge fields, there are different ways to handle
the loops at the boundaries and the specific choice decides, how the
improvement has to be done. In our work, we stick to choice B of [44]
which we summarize here.

We add weights to the loops in the Liischer-Weisz gauge action,
eg. (2.17), and write

Stw () = % (co Y wolp)Trli —U(p)l+c1 ) wi(rTrli— U{T]]) .
P T
(3.15)
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Within option B, we take over the notation of [45] and define the
weights to be

1/2, all links in p are on the time boundary
wo(p) = ct(g3), p has one link on the time boundary

1, otherwise
(3.16)

and

1/2, all links in T are on the time boundary
wi(r) = 4 3/2, r has two links on the time boundary - (3-17)

1, otherwise

In this way, we have one free coefficient, ct[ggl which has to be tuned,
to achieve O(a) improvement. Unfortunately, no non-perturbative
determination of this coefficient exists and we have to stick to tree-level
or one-loop perturbative improvement. For the one-loop improvement,
we use formula (3.6) of [45],

ce(gd) =1+ci'g3+0(gd). (3.18)

In the following we document how this one-loop coefficient has been
derived from the literature. From [43], we get the decomposition of
the one-loop coefficient into a gauge and a fermion part,

) 10) | e 1D) (3.19)
and from [43] and [46], we find

C,ELO] =A1/2 with A, =-0.005940(2) (3-20)
etV = 0.0191410(1). (3.21)

This one-loop coefficient is the correct one, if a corresponding one-loop

coefficient for the rectangles cff” = Icf” is included in the weight

in eq.(3.17), for r with two links on the time boundary. Since we set
w1 (7] to the tree-level weight 3/2 and therefore choose cf[” =0, we
use the first equation in (3.13) of [46] to obtain

L O )

g =—4— =" N (3.22)
co co co

which was used together with N¢ = 3 to derive eq. (3.18).

A similar boundary improvement has to be performed for the spinor
fields. The inclusion of the corresponding operators [31], effectively
amounts to adding a term to the O(a} improved Wilson Dirac opera-
tor (2.25),

Dﬁ = Dw ¢+ 08Dbnd (3.23)
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and its action on a quark field is defined as [45]

8Dpngtb(x) = (E¢ — 1]%{610,‘1 + Bxp, T—a) W(x]. (3-29)

As it can be seen the addition of the term in eq. (3.24) only affects

the time slices at the boundary. In the bulk of the lattice, the action
remains the same. For &;, we use the formula from eq. (3.6) in [45],

ge=1+2e{"g3+0(gd), &' =-001505 (3.25)

which is valid for our action and independent of the number of flavors.

The discussion in this section applies to the formulation of the
Schrodinger functional using Abelian boundary fields. If the fields
are chosen differently, another set of improvement coefficients, the
space-like coefficients c; and &, has to be included. The operators
which have to be multiplied by these coefficients are defined in [31,
44]. Since we set the boundary fields to zero in our simulations, we
do not have to consider them.

33 SCHRODINGER FUNCTIONAL CORRELATION FUNCTIONS

One of the features of simulations in the Schridinger functional is the
possibility to construct sources which are not placed in the bulk of the
lattice but directly on the boundaries. These allow for new types of
correlation functions.

3.3-1 Boundary sources

We will define a set of sources 0 as in [48] by differentiating the
Schrodinger functional with respect to the boundary values of the
quark fields given in eq. (3.7). The boundary (anti-) quark fields are
defined via functional derivatives of the Boltzmann factor, by [31]

b - b
0 By TRy
r — f!l r _ IS
E. [X] = W: Z; [X]' = _W {325}

Inside the Schrédinger functional, these derivatives which are taken
before the boundary fields are set to zero have the effect of inserting
(anti-) quark fields close to the boundaries. The operators 0% are then
defined by

L
0° = [ dyaz Uyhvsyeil) (3.27)
0

and due to the integrals in the three space directions (which become
sums on the lattice), these boundary fields are projected onto their
zero momentum components. The Pauli matrices T are defined in

Appendix A
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3.3.2 Expeciation values

The expectaticln value of any Pmduct of fields O in the Sch:ﬁdjnger
functional on the lattice is defined by [31]

(0) = {1 [ D[uwtwmmﬂﬂe—s[“w}} (3-28)
Z p=p'=p=p'=0
and we see how the derivatives in the boundary operators, eq. (3.26),
act on the exponential before the boundary values are set to zero.

3.3.3 Correlation functions

Based on the boundary fields and operator insertions in the bulk of the
lattice, we are now able to construct three different types of correlation
functions:

s boundary-to-boundary correlation functions, where a state is
created at xo = 0 and propagates to the other boundary atxp = T
where it is annihilated,

s forward boundary-to-bulk correlation functions, where the state
is created at xp = 0 and is annihilated in the bulk,

s backwards boundary-to-bulk correlation functions, where the
state is created at xy = T and is annihilated in the bulk.

We define the lattice boundary operators
& 1 & 1
0° =33 Uyhvsytll@), 0 =53 ) Uyhsytt(),
¥z ¥

a ﬂE F I a Jia ﬂE ¥ 1 axr
of = T3 Zg{ym? Uz), Of =13 I Yyl (2),
V£ ¥E
(3-29)

where the sums are taken over all sites on the boundary time slice,
k=1,2 3. In combinations with the bulk operators

X2(x) = HLIF 3T b0 (330)

we can construct Schrodinger functional correlation functions. In
the definition of bulk operators in eq. (3.30) X is a symbol for the
scalar, vector, tensor, pseudo-scalar or axial-vector currents and the
corresponding '-combinations are

5:T=1, Vi:T=vu Tyuv :T=vuvv,
P:T=1ys, Au:T=v,ys. (331)
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We now introduce the two-point correlation functions used in our
projects with conventions based on [50]. We start with the boundary-
to-boundary correlation functions

1 Jia a I S a
f1 = —E{ﬂ 0%, k= _E(Dk 0%}, (3-32)

continue with the forward boundary-to-bulk functions

3

falxo) =—5 )_(A§(x)0°), (3:33)
{13 '

fe(xo) = =5 3 (P*(x)0%), (334)
{13 '

kv(xo) =—— 3 (VE()O), (335)
{13 '

krlxo) = ——= 3 (TRo(x)0%), (3:36)

and conclude with the backwards boundary-to-bulk functions

ga(T—xo) = —“—; 2 (0°A§ (), (337)
gp(T—x0) = —“—; 2 (0P(x)), (338)
by (T—xo) = —u—; D {0EVEX), (3-39)
l2(T—xo) = —“—; 2_ (0T (x)). (3-40)

In all cases, the sum over isospin indices a and spatial indices k
is implied. To smooth out statistical fluctuations, we can use the
time-reversal symmetry and average over forward and backward
boundary-to-bulk correlation functions with the same I-structure.
For the computation of the renormalization constant Z,, we also
need four-point boundary-to-boundary correlation functions with two
These functions have insertions in the bulk. We define them for general -structures X, Y as

been introduced in

[51]. a® a a
Fxv(xo,yo) = — )~ e®™ e (0 X ()Y (y)0%),  (3.41)
=¥

with the totally antisymmetric tensor e*P<.

Most computations of Schrodinger functional correlation functions
in this work have been done with the sfcf program [52], some with a
meodified version of openQCD [53].
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3.3.4 Flavor off-diagonal bilinears

In many applications, we consider off-diagonal bilinears when we
work with currents based on different quark flavors. In this case we
switch to the basis T+, 7, 1° of the flavor SU(2) symmetry which is
defined in eq. (A.5).

We consider quarks of different flavors 1,j = 1, 2, ... which only dif-
fer by their mass. If we write the bispinors as (x) = (Pi(x), Pi(x))T,
we can use eq. (3.30) to define the operators

X+ =X'+ix? (3.42)
and express them in terms of the components Pt via

X+ = )M (x) = X9, (343)

X~ = ()i (x) = Xt (3.44)

The same construction applies for the boundary operators and the
correlation functions which we have defined above. We will explicitly
indicate the use of this basis by using the corresponding indices as

superscript. We do not consider flavor diagonal bilinears in this work.

3.4 ADDENDUM: OPEN BEOUNDARY CONDITIONS

Closely connected to Schrédinger functional boundary conditions, in
the sense that the theoretical and practical setup is done similarly, are
the so-called open boundary conditions. Since these are used in the
large-volume simulations which we use to extract physical observables
as the mass of the charm quark, we introduce them in this section.

3.4.1 Motivation

With the advance of simulations with dynamical quarks towards
smaller and smaller lattice spacings, a problem became apparent
which is connected to the topological properties of QCD ona T x 3
torus. In the continuum theory, disconnected topological sectors
emerge. On the lattice, with non-zero lattice spacing, there is a finite
probability to tunnel between these sectors. Since we want to sample
all sectors according to their weight in the path integral this tunneling
is a necessary feature. Towards the continuum limit, the probability
to change the topological sector, i.e., to pass the topological barrier, is
rapidly decreasing [54-57]

This is problematic for two reasons. If we are not able to sample
all sectors appropriately in a finite simulation time, we loose the

theoretical control over the predicticlns made from our simulations.

In addition, the suppression of changes of the topological charge, the
so-called freezing, leads to extremely long-ranged autocorrelations

25

Sometimes, we also
consider quarks of

different flavor but

equal mass.

We will look at the
statistical analysis of
autocorrelation times
in section 5.4



THE SCHRODINGER FUNCTIONAL

of the charge. These correlations can also influence and increase the
autocorrelation times of other observables.

The freezing of the topological charge is overcome by the introduc-
tion of open boundary conditions which allow the charge to “flow
out of the lattice”. It was shown that the theory with open boundary
conditions is equivalent to other setups since the transfer matrix is
unchanged, when the open boundary conditions are introduced [58,
59]. The corresponding Wilson-Dirac operator is ys-hermitian.

3.4-2 Setup

As in the Schrodinger functional, we have to specify boundary con-
ditions for the gauge, quark and antiquark fields at the boundaries
at xp = 0 and xp = T. All fields satisfy periodic boundary conditions
in the space directions. Formally, the open boundary conditions are
defined by

For(0,x) = For(T,x) =0 forall k=1,23 (3.45)

with the gauge—ﬁeld tensor

Fuv(x) = 0,Ay — 0 AL +[A L AL (3.46)
for the gauge fields and

PLp(0,x) = P_(T,x) = 0 (3.47)

B(0,x)P_ = (T, x)Ps = 0 (3.48)

for the quark and anti-quark fields [58]. The latter are the same as
for the Schridinger functional with vanishing background field. For
the gauge fields, we switch from Dirichlet to Neumann boundary
conditions, compared to the Schridinger functional. All statements
regarding the renormalizability of the theory in the treatment of the
Schrodinger functional hold for open boundary conditions.

Open boundary conditions emerge in the continuum limit, if we
simply set all links that stick out of the lattice to zero [58]. These are
the links in negative time direction at xp = 0 and in positive time
direction at xp = T.

3.4.3 Boundary improvement

The boundary improvement with open boundary conditions is sim-
ilar to the case of Schrodinger functional boundary conditions and
proceeds via the same sets of operators that have to be added at the
boundaries. The improvement coefficients themselves differ from the
ones in the Schrodinger functional, since the boundaries are set up
differently.
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For the CLS simulations, the weights in the Liischer-Weisz action
defined in eq. (2.17) are chosen to be

1 . . .
scg, all links in p are on the time bounda
wolp) = {2 P ry )

1, otherwise
(3-49)
and
e, all links i the time bound
Wg[r} _ TCG 1n T™are on O Ell'}l’ .
1, otherwise
(3-50)

The improvement coefficient is set to its tree-level value cg = 1, since

higher orders or nDn—perhlrbative determinations are not available.

This choice amounts to a weight of 1/2 for all spatial loops on the time
boundaries.

The improvement coefficient for the quark fields with open bound-
ary conditions which is called cg, enters as € in eq. (3.24). Itis set to
its tree-level value cg = 1 in the CLS5 simulations [60]. The perturbative

improvement at tree-level leaves us with boundary effects of order
Q[ ug%}.
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OPERATOR IMPEOVEMENT AND
RENORMALIZATION

We looked at the Symanzik improvement program [36] and its implica-
tions on our setup of discretized gluon and fermion actions in chapter
2. In this chapter, we will consider the implications of improvement
on lattice operators and investigate how improvement is connected
with renormalization.

The basis for our discussion was laid in [31, 48, 61, 62]. A detailed
analysis of the three-flavor theory has been done in [63]. Everything
that is stated in this chapter is explained in great detail in the these
references and we try to focus on the key points which will be most
important in the context of this work.

Within this chapter, we work to order O(a). This means that we
neglect all higher order terms starting at O( a?) without further notice.

4.1 IMPROVEMENT OF THE ACTION: REVISITED

We begin this chapter with a discussion of some implications of the
discretization of the action according to egs. (2.17) and (2.29) on the
improvement of operators.

4.1.1  Mass renormalization

In the continuum theory, chiral symmetry is restored if all bare quark
masses vanish. Based on a discussion of chiral Ward identities one can
infer that quark masses only have to be renormalized multiplicatively
and not additively. Therefore, the renormalized quark mass has to
vanish when the bare quark mass vanishes and we can write

mg = LmMo. (4.1)

As explained when we introduced the Wilson Dirac operator, chiral
symmetry is broken explicitly by the introduction of the Wilson term,
even at vanishing bare quark mass. This leads to a finite renormalized
quark mass at vanishing bare mass. To restore the definition of a
multiplicatively renormalized quark mass, the bare subtracted quark
mass

B 1 1 1 (1.2)
nl‘q.f_mﬂ_,f_mﬂ'=ﬁ K—f—a 4.

is introduced. The critical quark mass m., parametrizes the shift
of the chiral point by the introduction of the Wilson term. Since

We suppress the
explicit dependence
of Mer on g3
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this critical quark mass is not known a priori, the breaking of chiral
symmetry introduces the need for an extensive tuning procedure in
order to simulate massless quarks. As apparent from eq. (4.2), we
can also parameterize the bare subtracted quark mass by the hopping
parameter k¢ and the critical hopping parameter k.

For the more general case of N flavors of quarks with non-degen-
erate masses, we define the quark mass matrix via

M, = diag(mg,1, mg2, ..., MgN;] - (43)

The renormalization pattern is even more involved in this case. We
will come back to the full pattern later in this dwpten

4.1.2  Improvement of the coupling

When we introduced improved Wilson fermions in section 2.2.2, we
have seen that the inclusion of the operators 03 and 05 amounts to
a redefinition of the bare mass and coupling. This does not pose
any problem, as long as a mass-dependent renormalization scheme
is used. In this work, as it is done in the references stated at the
beginning of this chapter, we use a mass-independent scheme. As
a result, a re-parametrization of the bare theory has an impact on
the improvement. Instead of the bare coupling g3, we consider the
effective bare coupling

. Tr[Mg]
95 = 95 (1 +aby qu ) (4-4)

which is then used to define a renormalized coupling via [31]

gk = Zg(§5, an)dp - (4.5)

Here, we introduced the renormalization constant for the coupling
£y which depends on the effective coupling and the scale p. The
parameter bg vanishes at tree-level and the one-loop coefficient is
known from [31]. If the bare coupling is held fixed and Tr[Mg] is
varied, the effective coupling and the lattice spacing change. We take
different approaches to circumvent this behavior, depending on the
simulation setup. Therefore, we do not have to further specify bg(g3).

4.2 OPERATOR IMPROVEMENT

When we improve local operators on the lattice, we proceed as in the
improvement of the action. For order Ofa) improvement, we have to
search for gauge invariant dimension five operators with the same
quantum numbers as the original operator 0 which are not canceled
by the field equations. These operators can be split into two classes.
Operators that amount to a redefinition of the bare local operator are
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handled in the next subsection. Operators P that are not present in the
unimproved definition are explicitly included. In general, we write

0f = 09 + acaPY (4.6)

and introduce a parameter cp that has to be determined non-pertur-
batively in order to achieve full Oa) improvement.

4.2.1 Renormalization of improved operators

In [63] the complete pattern for the renormalization of improved oper-
ators based on the gamma structures of eq. (3.31) is given. There, the
cases of flavor diagonal, flavor off-diagonal and flavor singlet opera-
tors are treated separately. In this work, we only consider non-singlet,
flavor off-diagonal operators and the general renormalization pattern
of these operators is given by

Op = Zo [1 4+ abomgi; + abo Te[Mg]] 0, (47)

with definition (4.6) for the improved operator and

1
mgij = 5 (Mgi+mg;) - (4.8)

In eq. (4.7) we introduced another pair of improvement coefficients.
Corresponding formulas for egs. (4.6) and (4.7) with parameters
€o,de, dg and Zg exist for singlet operators. To achieve a full Ofa)
improvement of the theory, a large amount of work and computer
time has to be invested to determine all of the necessary coefficients.
The renormalization pattern simplifies significantly in the chiral limit.

4.2.2  Improvement of local currents

Since we will need them in our work, we specify the improvement of
the local currents, defined in eq. (3.31). Following [31], we arrive at

P = PP 49
(Al = Al +acad,PY (4.10)
S;i =8y (4.11)
{VI]'E' = V:lj + acydy Ty (4.12)
(M) = T +acr [0,V -0, V] . (4.13)

We now give an overview of the status of the non-perturbative determi-
nations of the necessary improvement coefficients and renormalization
constants in QCD with three quark flavors. The scale dependent renor-
malization constant ?_p[g%, 1) has been determined for the hadronic
scale of the CLS ensembles in [64]. For Z, there exist two differ-
ent determinations. The first one was performed in the Schridinger

31
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functional [65], the second one in the chirally rotated Schrodinger func-
tional [66], where a significantly better precision could be achieved. In
[66], values for the renormalization constant are provided at the bare
coupling values of the CLS5 simulations. An interpolation formula is
given in eq. (C.5) of that reference. The improvement factor c, has
been determined in [67] and its parametrization is given by

ca = —0.006033 g2 [1 +exp (‘Fvo + %)] , (4.14)
[V]

with  po=9.2056, p; =—13.9847

The vector current renormalization constant Zy and the improvement
coefficient cy have been determined on the CLS ensembles in [68] and
a determination in the Schrédinger functional is in progress [69]. The
same is true for Z—p[g%, u) and cy [70].

As given by eq. (4.7), the renormalization of operators in the im-
proved theory requires the determination of the b and b coefficients.
A preliminary account of the non-perturbative determination of many
of these coefficients using the coordinate space method on CLS ensem-
bles has been given in [71, 72]. The vector improvement coefficients
have also been determined in [68] and [73]. In our work, we have
determined bs and the combination by — bp non-perturbatively [74].
We will see later why this particular combination is useful.

In principle, all of these coefficients depend on §3 rather than on g3.
Since the redefinition of the coupling affects the b-terms at O(a?), we
do not have to differentiate between the different definitions. However,
this is different in the determination of renormalization constants.

4.3 IMPROVED QUARK MASSES

Our main objective is not the calculation of currents but rather the
determination of physical observables built from them. The renormal-
ization and improvement pattern from this section can then be applied
to the observable constructed from the currents. This applies, e.g., to
current quark masses which we will introduce in the next section.

4.3-1  Renormalization of the bare subtracted quark mass

When we introduced the bare subtracted quark masses in eq. (4.2), we
did not specify the renormalization pattern. Following [63], we start
with the renormalization of non-singlet mass combinations

Tr AWMy = Zam [ (1 + QB TrMg]) Tr [AMg] + abmTr [AMZ]] .
(4.15)
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The notation Tr[Al)] where the trace is taken over all flavor indices and

A 1s one of the Gell-Mann matrices includes all nnn—singlet bilinears.

The corresponding formula for the singlet mass combinations is

Tr [Mgly = ZanTn [ (1 + @8 TeMg]) Tr [Mg] + adanTe [M2]]
(4.16)

where we expressed the singlet renormalization constant by v, =
Z/Zm. The renormalization constant Z, is scale dependent but the
ratio r, is not.

With these two formulas and the condition of a diagonal mass-
maftrix, we can express the renormalized subtracted quark mass via

[63],

Tr [Mq]
MiR =Zm { [ Mgi+ (Tm—1) N; +aBi o,

Bi =bmm; + bmmgiTr [Mg] (317)
Tr [M2 2
+ (i —bm}% A, UL

The term B; vanishes in the chiral limit but the term proportional to

the ratio of singlet to nnn—singlet renormalization constant remains.

This means that the chiral point where the renormalized quark mass
vanishes receives an additional shift. The origins and physical inter-
pretations of the different terms in eq. (4.17) are explained in detail in
section 2 of our publication [74].

4.3.2 The PCAC relation

The Lagrange density of continuum QCD is invariant under a number
of symmetry transformations. Some symmetries hold only approxi-
mately or in a certain limit of the theory. In this section, we consider

the variation of the theory under a chiral rotation of the quark fields

dp(x) = wu{x}%Tu’}’SﬂJ[K]; dip(x) = w“[x]lL[x]TS%T“,
(4.18)

where we assume to have an isospin doublet of quarks with equal
mass m. In these variations, w® is a smooth function which vanishes
outside some bounded region R. We can use this transformation to
define a renormalized quark mass on the lattice. In this derivation, we
follow the pedagogical introduction in [32].

Since the integration measure in the path integral is invariant under
the transformation in eq. (4.18), we can derive the equation

(850) = (O) (4.19)
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and with the explicit form of the variation of the action,
bS = Jd4xw“ [—auag +2mpP?], (4.20)

which includes the axial current A, and the pseudo-scalar density P,
we are able to derive the relation

(BuAZ(x)0) = 2m(P(x)0). (4.21)

This relation holds if the operator () has no support on the region R.
If this was not the case, additional contact terms would appear. As
we can see from eq. (4.21), the axial current is conserved for massless
quarks. Therefore, this relation is called the partially conserved axial
current (PCAC) relation. In this relation, we see the explicit breaking
of the chiral symmetry by quark masses.

A corresponding relation can be derived on the lattice [75, 76] which
is more difficult, because the Wilson term breaks chiral symmetry
even at vanishing bare quark mass. With the properly renormalized
but non-improved axial current (Ag);} and density Pg, we can write
eg. (4.21) on the lattice as

(0u(Ag)3(x)0) = 2mg (P (x)0) +O(a). (4-22)

Here, d,, is one of the lattice derivatives defined in Appendix A. On
the lattice, chiral symmetry is broken by the quark mass and by lattice
effects. The size of these effects is a measure for the violation of chiral
symmetry. If we improve the currents (Ag); and P§ we expect the
discretization effects to be of order O(a?) and in fact relation (4.22) is
used to determine cgw and ca such that linear effects in a are absent
[31, 49, 62].

The so-called chiral Ward identities which have been used to define
a renormalized quark mass via eq. (4.22) have many applications in
lattice QCD. Especially in the field of non-perturbative renormalization
and improvement, axial and vector variations can be used to derive
a number of important identities. One of these applications is the
determination of the critical hopping parameter k; which has to be
tuned to restore the chiral symmetry of the Wilson Dirac operator. If
the mass in eq. (4.22) vanishes k, is tuned correctly.

Going into all details would be beyond the scope of this work.
Nevertheless, we stress an important point. Since the PCAC relation
is derived locally, we expect boundary affects to be absent in the bulk
of the lattice. The PCAC relation is an operator relation and valid on
every time slice separately.

4.3-3 Current quark masses

Since the renormalized quark mass is present in eq. (4.22), we can
use this equation to determine a renormalized and improved quark
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mass from the axial current and the pseudoscalar density. If we switch
to the basis 1%, T3 of the current algebra, we can rewrite the PCAC
relation to

(8,.(AR)T (x)OY) = (mgs +mg;)(PH(x)0Y) + O(a?),  (4.23)

where we have used the renormalized operators according to eq. (4.7).

From this relation, we can define the quark mass to be

Mg i + MEg;
MR = % (4.24)
z
= z_imﬁ [14 (ba —bplamgs; + (ba — bp)aTr [Mg]]
(4.25)
with the bare improved current quark mass
3 gii + iiymii
. _ {(B0Ag +acad;d,P7)0") (4.26)

™ 2(PI0Y)

In principle, the operator 0 can be chosen freely, as long as it is
defined in a different region as A and P. In the Schrédinger functional,
we can use the boundary sources and define a quark mass from the
correlation functions f, and fp.

4.3-4 Relations between renormalized quark masses

We now have two different definitions of improved and renormalized
quark masses. One is the definition from the subtracted quark masses,
eg. (4.17) and the other is the definition from the current quark masses,
eq- (4.25). For full O(a) improvement, a number of improvement
coefficients needs to be known. Both definitions have to coincide in

the continuum limit but on the lattice they differ in their cut-off effects.

Therefore, one or the other definition might be beneficial, depending
on the context.

If we work with (larger than) physical quark masses, the definition
from the subtracted quark mass might be inferior for two reasons. The
critical hopping parameter might be known to insufficient precision
and the leading order term proportional to the average quark mass
has to be taken into account. On the other hand, if these parameters
are known, the hopping parameter for a fixed renormalized quark
mass can be determined without further measurements.
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Since we have two expressions for the renormalized quark mass, we
can equate both and derive

T
myy =22 { [mqij 4 (Nt Q?q]] +uBij}, 427)

2 2
mo. +me .
Eij =b|:n 3 =2 +{b_ﬂ. _bF]rn"élj

2
+ (Em — (ba —bP]{rmN: D_ (ba —EP]) mg,i; Tr [Mg]

]Tr [hflﬁ]
N

+ {dem — bIII
Tr [Mg)°
+{Tmam—5m_[rm_1][EA_BP]‘ -
Nt
When we introduce the renormalization constant

Z.Zp
z="2 (4.28)

and solve eq. (4.27) for the bare subtracted quark mass, we arrive at

Mij Tr (M
rnq,ij = TJ_ T — ]} Lf 'El] — ﬂEii . {429}

This expression can be used to eliminate the bare subtracted quark
mass in eq. (4.25),

Zz by—b
TR ij =Z_im~ij [1 4 (a—br) 7 P}ﬂmij (4-30)

v ({EA ~By)— (ba— bp) = ”) Tt [Mq]] ,

f

where we, as always, ignored all higher order terms. In exchange
for the elimination of mg;; we have introduced the parameter rr,. In
order to completely remove the dependence on k., we use eq. (4.29)
to rewrite the quark mass matrix [77] and obtain

MR i =%m~ij [1 + (ba — bp)amy; (4.31)
with
ba—bp= [b‘ﬂ‘—gbp} (4.32)

Msum = Ma2 + M2z + -+ Mn, 1N, + TN
= ZrmTr [Mg] 4 O(a). (4.33)
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In eq. (4.31), all dependence on the critical hopping parameter has
been removed.

So far we have not specified the improvement of valence quarks, ie.,
quarks that are not part of the action and therefore not included in
dynamical fermion loops. In Appendix A of [74] it was shown that
the discussion of this chapter can be extended to a theory with N¢
sea and Ny valence quarks. The quark matrix contributions remain
unchanged when partially quenched valence quarks are introduced
and the critical hopping parameter is defined by the point where all
N¢ sea quark masses vanish.

4.3.5 The ratio-difference method

We can combine the two definitions for renormalized quark masses,
eg- (4.17) and eq. (4.25), in order to construct a third definition with
different cut-off effects. We refer to the construction in this section as
ratio-difference method [78].

We define a ratio of current quark masses r and a difference of
subtracted quark masses d via

m;
T = dij = amg; —amg;, (4-34)

where we introduced
mi = My (4-35)

as a shorthand for a current quark mass defined from two quarks
of different flavor i and i’ but equal mass. In this way, we stick to
non-singlet, non-diagonal entries of the quark matrix. This setup is
chosen such that the multiplicative renormalization of the current
quark masses cancels, while the additive renormalization of the bare
subtracted quark masses via the critical hopping parameter and the
leading order dependence on Tr [Mq] is canceled in the difference.

Taking into account the mass—dependent i.mprcwement coefficients,
we define the improved ratios and differences by

mij = Tij [1+ (ba —bp)dyj] , (436)
541
dyi; = dyj [I +bmd;; :_? i : +abnTr [Mq]] : (4.37)
'I.J -
From these definitions we construct the renormalized quark mass via
71,35 diij
MRi = £m , (4.38)
i — 1

and we can express the mass renormalization factor Zy, via

= SAF (4-39)

7
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The simulation of full QCD, even when the top quark is considered as
decoupled from the theory, is currently prohibitively expensive and
can not be accomplished just by an increase in computing power. Our
ability to simulate QCD with up to four distinct flavors, in boxes which
are large enough to have finite size effects under control and with
lattice spacings that allow for a safe extrapolation to the continuum
limit, is based on significant algorithmic improvements in the field
during the last years. Some of these will be highlighted in this chapter.
Especially the simulation of quarks with physical masses seemed to
be prohibitively expensive at the beginning of this century [79]. This
problem has been overcome by the development of new, quark mass
independent solvers [80-86]. As all simulations considered in this
thesis have been done using the openQCD package [53, 59], we focus on
the algorithms implemented in this program. Some of the techniques
are summarized in [87]. The details of the implementations can be
found in the documentation of openQCD [53].

51 SIMULATION ALGORITHMS

The calculation of the path integral of QCD cannot be done analytically
due to the complexity of the non-linear equations. Even the discretized
version cannot be determined analytically, due to the large number
of integrations in the path integral. Therefore, the numerical solution
is determined using importance sampling and Markov Chain Monte
Carlo (MCMC). The distribution of the representative ensemble of
fields is determined from the action of QCD. We assume that the reader
is familiar with the basics of this technique, pedagogical introductions
can be found in [13, 14, 88].

We note that the simulation via MCMC leads to configurations of
gauge fields which are correlated in the simulation time, since each
configuration is based on its predecessor. The transition probability
from one configuration U to another U’, denoted by T(U — U'),
satisfies the so-called detailed balance property

P(U)T(U—=U")=PUT(U" = U), (5.1)
when a Metropolis accept/reject step [89] is used. In this equation,

P(U) is the probability weight of configuration U in the probability
distribution.
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5.1.1  Hybrid Monte Carlo

The simulation of quark loops is non ftrivial since the Grassmann-val-
ued fields cannot be represented straightforwardly in the computer. It
can be achieved using the Hybrid Monte Carlo (HMC) [g0—92] algo-
rithm. An excellent introduction is given in [87] and in the following
we briefly recall the basics of the algorithm. We start with the def-
inition of the HMC algorithm for the gauge action and afterwards
describe the inclusion of quark loops.

The partition sum of the theory is extended by momenta m(x, u) =
(%, w) T such that

Z= J]::-[u]e—smj — JD[?I]D[U]E_%[“*”)_S{U], (5.2)
with
(mm) = Y (), i (x) (53)
x|

Here, 5(U) is a the gauge action defined from the fields L. This change
in the definition of the partition sum does not alter the expectation
values of observables since it amounts to a multiplication of the orig-

inal sum with a constant factor. The exponent in the i.ntegral is the
Hamiltonian

H(m, W) = 2 (m, )+ S(U). (5.4)

The system now obeys Hamilton's equations of motion

Oy (x) = —T907 ,S(u) = —Fu(x), (5.5)
0¢ Uy (x) = 7, (x)Uy (x) (5.6)

in terms of a fictitious Monte Carlo time t, not to be confused with
the Euclidean time. F is the molecular-dynamics force. From the
classical equations of motion and Liouville’s theorem we know that
the Hamiltonian and the phase space volume are conserved. If the
equations of motions were solved exactly, the HMC algorithm would
be exact in the sense that

dH=0 & AH=H(mU)—Hx",U)=0 (5.7)

for some configuration (n/, U’) based on (m, U). In practice, we can-
not integrate exactly but have to resort to numerical methods. The
algorithm becomes exact again when the evolution is combined with a
Metropolis step with the acceptance probability exp(—AH). The HMC
algorithm then comprises three steps which are repeated for a number
of trajectories:

1. Generate random momenta with a probability density propor-
tional to exp{—1 (r, 7)}.
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2. Integrate the equations of motion from time t = 0 to some time
t = 7, called trajectory length, and determine U’ from U and m.

3. Accept the new configuration with Puec = min[1,exp(—AH]].
The trajectory length is given in molecular dynamics units (MDU).

5.1.2 Integration schemes

The numerical integration of the molecular-dynamics equations (5.6)
can be done according to different integration schemes. They differ
in their associated integration error which is compensated by the
accept/reject step.

We divide the integration interval [0, T] in N steps of size €3 and
determine the elementary update steps via Taylor expansion to be

Jnlep) : m— m— epF (5.8)
Ju(eo) : U — exp(epm)U. (5.9)

In the so-called leapfrog integrator, the update steps are connected via
LPFR(eo) = T ($€0) Tu(€o)Ix (o) (5.10)

and Ny such steps can be combined to integrate from 0 to 7. Omelyan,

Mryglod, and Folk [95] introduced O(100) different integration schemes,
of which two are used in our simulations. For the second order in-

tegrator, a redundant parameter A is introduced. The update scheme

is

OMFz2(eo) = I (€0A) Ju(e0)I= (eo(1— 2A)) Ju(Leo)Tx (eod)) .
(5.11)

Since the force has to be evaluated twice as often as with the leapfrog
method when this update step is used we could think that this integra-
tor performs worse. It turns out that the norm of the error coefficients
is ten times smaller which allows using longer step sizes [96] when
OMF2 instead of LPFR is used. This leads to a performance gain by
about 50% [g7]. Values of A between 1/6 and (.2 have been shown
to give a good performance [96, g7]. The leapfrog integrator and the
OMF2 integrator yield violations of the Hamiltonian conservation of
0(e2).

In our simulations we also use the fourth order integrator OMF4
which has 5 tunable update steps and reduces the integration error
to O {ef{,) thus allowing even smaller step sizes. In openQCD, these are
given by egs. (63) and (71) of [95]. The violation of the Hamiltonian
conservation as a function of the step-size for the integrators LPFR,
OMF2 and OMF;4 is investigated in figure 4 of [98].

41

A trajectory length
of T= 2MDU has
been shoum to be a
good choice
considering the
stability and cost of
QCD simulations

[a4].

Weuse A=1/6in
our simulations.



42 ALGORITHMIC TECHNIQUES

5.1.3 HMC with dynamical quarks

Until now, we considered HMC only for an unspecified action. Now,
we look at the application to dynamical fermions. For QCD with a

The approximation of ~ doublet of mass-degenerate sea quarks, we can express the action as
mass-degenerate up

and down quarks is S(U) = 59 (U)—In (det[D*D]) . (5.12)

valid, as long as

QED effects which . .
have a similar As stated before, the numeric representation of the Grassmann-valued

impact on physical quark fields is non-trivial. We can circumvent this issue by using
 observables as the pseudo-fermion fields ¢(x) [99]. These fields carry a Dirac and a
1s0spin br;“:';g} r"; color index, but their components are complex numbers rather than
B Grassmann numbers. We can use the pseudo-fermion fields to express
the quark determinant. Using the transformation ¢ = Dn, we can

write

JD[“]D[U+]E_[“’“} — JD[¢]D[¢+]me_[D_1 $,D 1 d) .

(5.13)

It can be seen that the determinant of DD is the Jacobian of this
transformation. This property can be used to express this determinant
via

det(D'D) = zLe—[MDTDJ-‘m = ) suue) (5.14)
&

1
Ly
where Z¢, is the partiticln sum indud.ing the pseudo—fernﬂnn fields.
We can now write the effective action as

Serr(U) = Sq(U) + Spe(U, ) (5.15)
and revisit the steps in the HMC a]gurithm:

1. Generate random momenta with probability density propor-
tional to exp{—3 (m, 7t)} and generate pseudo-fermion fields according
to the probability density exp(—Sg¢). This can be done via a normally
distributed field n and ¢ = Dn.

2. Integrate the equations of motion from time t =0 to t = T and
determine U’ from U and 7 based on S.g&. & remains unchanged.

Huy = 3. Accept the new configuration with P,.. = min[l, exp(—AH]].
-l.-['n, ) + Seg
The force F in the molecular-dynamics integration can be split up
into a gauge force Fy and a quark force Fy. It requires two inversions of
the Dirac operator to determine Fy which takes most of the computing

time in the HMC algorithm [87].
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5.1.4 Rational Hybrid Monte Carlo

The inclusion of further quarks to the sea cannot be done straightfor-
wardly with the HMC algorithm. Adding another mass-degenerate
pair of heavier quarks can be done (see, e.g., [100]), but this is not
even close to an approximation of the strange and charm quark in
QCD. Therefore, it is highly desirable to simulate single quark flavors.
The simulation of single quark flavors via HMC does not work, since
the positivity of D cannot be guaranteed. The determinant of the
strange-quark Dirac operator

det(Ds) = = |det(Ds) (5.16)

is only guaranteed to be positive, if chiral symmetry is exactly pre-
served on the lattice [87]. The Dirac operator can then be replaced by
the non-negative and hermitian operator
Q= (Q2)'%,
and its determinant can be expressed by pseudo-fermion fields. Chiral
symmetry is not preserved when Wilson fermions are used, as it is
the case in our simulations. Nevertheless, since the strange quark is
comparably heavy one can assume that the spectral gap of the Dirac
operator is large enough such that the configurations with a negative
determinant have a negligible weight in the partition sum [101]. In a
recent publication [102] it was pointed out that this assumption may
not hold under certain circumstances and a correction via reweighting
has to be performed in this case.
The calculation of the integral for the strange determinant can be
performed with the Polynomial Hybrid Monte Carlo (PHMC) [103-
105] or the Rational Hybrid Monte Carlo (RHMC) [106, 107] algorithm.

In our simulations, we use the latter.
RHMC relies on the rational function

Qs =¥sDs (5.17)

_A{H‘FQI}[H‘FQS]---[];I'l'ﬂ-zn—l]'

=AY )Y _as) ... (y—az) (5.18)

Rn,e(y)

with degree [n, n] which approximates 1/,/y in the interval [e, 1] with
the smallest possible relative deviation

5=I[r£lzﬁcl1—¢'§Rn,E{y]|- (5.19)

The ratio in eq. (5.18) is called the optimal rational approximation
or Zolotarev approximation. The coefficients A > 0 and a1 > a2 >
<os = 2n > 0 that minimize §, as well as & itself can be determined
analytically [108]. R can then be used to represent the strange quark
determinant via

det(Ds) = WR™! (5.20)
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where R = R{D;r D) is appropriately scaled to approximate the inverse
in the complete spectral range of DID, denoted by [rq, T1]. The factor

W, = det(DsR) (5.21)

is the so-called reweighting factor, needed to correct for the approxi-
mation error &.

The determinant can now, similar to eq. (5.14), be represented via
two pseudo-fermion fields ¢4, ¢, via

det(Q,) o jD[qn]D[q:gle—Sﬂ[“mz} (5.22)
Spe = (&1, (1QsIR)™! &1) + (b2, Rb2). (5.23)

Since the first term is constant up to deviation of size 6 and therefore
nearly independent of the gauge field, it does not have to be included
in the molecular-dynamics Hamilton function, as long it is included
in the final accept/reject step [87]. Apart from this modification, the
molecular-dynamics evolution can proceed as in the HMC algorithm.

5.1.5 Reweighting

When the gauge field evolution is performed with the RHMC algo-
rithm, the simulated action deviates from the action of the theory by
the approximation error of the Zolotarev approximation. This error is
corrected with the reweighting factor from eq. (5.21). When reweight-
ing is applied, the expectation value of an observable 0 is defined as

[109]

_ (W)
Ohw = (5:24)

where (.} is the usual expectation value and W is the reweighting
factor. From now on, we assume that this replacement is done for all
expectation values if it is necessary and omit the subscript w.

The reweighting factor W from eq. (5.21) can be determined via
stochastic estimation. With the random noise fields n;, the factor Wi
on a single configuration is given by

™
W.=) exp {— (m, (1+ 1]‘”211;.) } , (5.25)
j=1
where
Z=DDrR?2-1. (5.26)

If the number of poles is chosen appropriately, the fluctuations in the
reweighting factor are guaranteed to be small and one noise field is
sufficient to determine W, precisely [108].
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The inclusion of the strange quark adds a third force to the molec-
ular-dynamics equations which has to be determined with iterative
methods. The step size €j, the strength of the forces and the accep-
tance rate are closely connected. If the force is larger in magnitude,
it requires smaller step sizes in order to achieve the same acceptance
rate.

It turns out that the quark forces are an order of magnitude smaller
than the force deriving from the gauge field [59]. This lead to the idea
of using different integration step sizes for different forces [110, 111].

If we consider the gauge force Fy, a quark force Fy with step sizes

T T
T NNy PTG
and the leapfrog integrator (5.10), we can construct a so-called hierar-
chical integration scheme:

LPFRo(e0) = Jr0 (3€0) Ju(€0)Imo0 (F€0) (5.28)

LPFRy(e1) = 1 (3€0) [LPFRy (o)™ T 0 (1), (5.29)
where the notation of the step I, introduced in eq. (5.8) has been
replaced by

Tnkler) =m— m— e Fy. (5-30)
This scheme can be generalized to any number of forces, using dif-
ferent integration schemes for every level. Hierarchical integration

schemes can lead to even larger performance gains, if frequency split-
ting of the quark determinant is used.

(5.27)

5.2.1  Hasenbusch splitting

The so-called Hasenbusch frequency splitting [112] is used to split up
the determinant of the mass-degenerate pair of light quarks via

DDf
|det(D)|” = det (DD + p.“) det ( o P-%)

n—1
DD® 4 pu?
det | ——— .
x [ ] de (DD++H§+1 (5.31)
with tunable parameters pun, < pn_1 < --- < p1. In the HMC algo-

rithm, the factorized determinants are again represented by pseu-
do-fermions with the action

Sp(U, &) = (¢n, (DD +12) 60
n—1

+ 3 (1 (D' + 02, )(DD! + 1))

i=1

+ (o, o+ w1 (DDY) ~apg ) . (5:32)
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It was found for n = 2 that the fluctuation of the force is reduced
such that the step-size can be increased by a factor of two to achieve
a similar acceptance rate [113]. Later it was found that the dominant
contribution comes from the first factor in eq. (5.31) [114]. The different
forces deriving from the factorization can be integrated on different
time scales to further increase the performance.

Tuning the parameters y; is non-trivial. If several factors are used,
a hierarchy according to the scheme p,, =1 and TE_ =10leadsto a
good performance [59]. From the shadow Hamiltonian approach, it
was found that the cost do not scale with AH, but with its variance
[115, 116]. The shadow Hamiltonian can be used to optimize the
parameters p; beyond the simple rule given above [117, 118].

5.2.2 Splitting the rational determinant

Frequency splitting can also be introduced for the rational determi-
nant [107]. In this case, the rational function R given by eq. (5.18) is
factorized in several terms

k
Y+ azji—1
P = e ———— -
k1 i|=k| Y+ az (5-33)

leading to

det (R L) oc det (P ) det (P}, ) -+ det (Pl ) - (5:34)

As in the other cases, this factorization can be simulated using an
according number of pseudo-fermion fields in the molecular-dynamics
evolution. The action involved in the integration can be expressed by

1, 1.k m+1,n
SRAMC _ gU1A) 4 sUHIR) oy glpttom) (535)

where the single terms are given by

st = (657, Pisel ) . (5.36)

Here, we only look at the part of the action that is taken into account
in the integration as described in eq. (5.23). As it is the case for
Hasenbusch frequency splitting, this the factorization of the rational
determinant allows to separate forces with different scales in the

molecular-dynamics evolution. These forces can be integrated on
different time scales and treated with different solvers.

5.2.3 Twisted mass reweighting

The Wilson Dirac operator is not protected against eigenvalues smaller
than the bare quark mass, since chiral symmetry is broken. Therefore,
the field space is divided by surfaces of zero eigenvalues which are
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barriers of infinite action. If the molecular-dynamics evolution was
done exactly, these barriers could not be crossed [60]. This problem
can be overcome by adding a small twisted-mass term pg in the action
which has to be compensated for by another reweighting factor W)
[59, 109]. Effectively, this amounts to applying the transformation

mo — mo + iMoYs (5.37)

to the Dirac operator of the pair of light quarks.
Equation (5.31) is then changed to

DD + 12
det(D)? = det (DD* + uﬁ) det ( nal )

DDt + Ep.ﬁ
n—1
DD 4 2 )
*® det| ——— | . (5.38)
H.D (D[ﬁ + ""i2+1
A larger value of py tends to stabilize the algorithm, but it also in-
creases the fluctuation of the reweighting factor. It is desirable to have

little fluctuations because otherwise the precision for observables with
small correlation to W} is reduced [60, 119].

5.3 SOLVER

The Dirac equation on the lattice is a coupled system of non-linear
equations which cannot be solved analytically. Numerical methods
have to be used to invert the Dirac matrix. During the integration of
the molecular-dynamics equations, we have to perform this inversion
for every pseudo-fermion field. While this looks like a giant overhead,
the use of appropriate solvers can lead to a significant speedup and
thereby enable us to simulate light quarks on fine lattices.

We illustrate the challenge in this parameter region by an investi-
gation of the condition number k(D) of the Dirac operator which is
defined by

k(D) = [D|IID~)|, (5-39)

where ||.|| is an appropriate norm for D. We can express k via [87]

1/2
k(D) = (%) o< (am)~! (5-40)
where we denote the extremal eigenvalues of DD ny r, and 7.
The accuracy of the solution is limited by this condition number.
Many algorithmic improvements in iterative solvers are achieved a
transformation of D such that the condition number of the inverted
operator is reduced.
In the HMC algorithm, a performance gain for subsequent solves
can be achieved by the chronological inversion method [121]. Here,
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the solution from the last n solves is extrapolated to the current Monte
Carlo time and used as starting point for the new solve. With this
setup, the solution can be found using less iterations.

In the following we will describe the solvers that are part of the
openQCD package, since these have been used in the course of our
simulations. From the technical point of view, the solvers implemented
in this package are state-of-the-art.

5.3.1 Conjugate Gradient solver

The Conjugate Gradient (CG) [122] solver is one variant of many
so-called Krylov subspace solvers. Derivations of the algorithm can
be found in [123, 124] and its use for lattice field theory is described
in [14, 88].

The main idea of the algorithm is to solve the equation

A-x=b (5.41)

by minimizing the function

f{x]=:—!x~ﬂ-x—b~x (5.42)

which is minimal, when its gradient
Vi=A-x—b (5.43)

vanishes. The minimization is obtained by an iterative construction of
vectors py. which minimize f(x, + a;py) where

Xk = Xk—1+ Ok—1Pk—1 - (5.44)

The vectors py are orthogonal to A - p; with 1 # k and build up a
vector space, the so-called Krylov subspace

K* =(pg, ..., ). (5-45)

As a result, x;., 1 minimizes f over the whole space K* [124]. Since
the matrix A in eq. (5.41) has to be positive definite and symmetric for
this procedure to work, the conjugate gradient solver can be used to
solve

DDy =n. (5-46)
5.3.2 Multi-shift Conjugate Gradient solver

The Multi-Shift Conjugate Gradient (M5CG) solver [125, 126] is an
extension to the CG solver. It allows to solve n + 1 equations

A-x=b (A+si)-x=b, ie[l,n] (5.47)
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at once [127]. This can be used for the determination of valence quark
propagators with different quark masses and (even more important)
in the RHMC algorithm. Here, the solver can be used in the de-
termination of the forces from (5.36), based on the factors in (5.33)
[108].

5.3.3 Even-odd preconditioning

As mentioned In the introduction of this section, a decrease of the
condition number of the Dirac matrix leads to an increase of the
performance of inversions. The reduction of k(D) can be achieved
by a transformation of the Dirac matrix. This technique is called
preconditioning. Nowadays, there exist a number of preconditioning
algorithms which use information on the system of equations to
transform them in a profitable manner.

Even-odd preconditioning [120] is inspired by the structure of the
Wilson Dirac operator. It is based on the fact that only nearest-neigh-
bor interactions are present in the Dirac operator. A lattice point is
classified odd or even based on the parity of the sum of its coordinates
xp + %1 +x2 +x3. Afterwards, every quark field 1 can be split up into
two parts

b =1ebo, where e(x)lioada =0 Wo(x)lx even =0 (548)

and if the lattice points are labeled such that the even points come
first, the Dirac operator can be written in the block form

D, Do
D= (D“ DE ) i (5.49)
(=153 oo

Here, the first column acts on the even points and the second column
on the odd ones. We can solve the two equations in the system

oz 22) ()= ()
to arrive at the equation

(Dee — DeoDgoDoelthe = ne — DeaDsotio (5:51)
for Ve. The solution of this equation can be used to determine s, via

Yo = D5 (Mo — Doebe). (5:52)

The operator

D= Dee - DeuDu_;Daer {5-53}
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which is the Schur complement of D [88], is called the even-odd
preconditioned Dirac operator and we can factorize the determinant
of the original operator into

det(D) = det(Do,) det(D). (5:54)

As a consequence of even odd-preconditioning, only Dy, has to be
inverted. The complexity reduces even further since det(D,) can be
factorized into a product of determinants on the odd sites of the lattice
[120].

Even-odd preconditioning can be combined with the algorithmic
techniques for solvers presented above. The change of the definition
of the Dirac operator then has to be translated into the presented
formulae.

5.3.4 Block preconditioning

The idea of even-odd preconditioning can be extended to blocks of
lattice points. The Schwarz alternating procedure can be used for such
preconditioning [128, 129].

Here, the lattice is divided into equal sized blocks A;. For every
single block, we can define A; as the set of points within the block
and A} as the set of points outside the block. We denote with dA; the
boundary points inside the block and with dA? the boundary points
outside the block. The Dirac matrix can then, similar to eq. (5.49), be
written in the block form

D= (f”“ ﬁa"i) ) (5.55)

Following [129], we can define matrices acting on the whole lattice as

Da, 0 o 0
Da, = | , Dar= I PR (5.56)
0 0 0 Da

in order to write the Dirac operator as
D=DA1+DA{+DHA1+DHA;- {55’}"}

The algorithm of the Schwarz alternating procedure now finds a global
solution by iteratively solving the equation
D’ (x)lxea; = n(x), P (x)liga: = W(x) (5.58)

block by block. Here, the field ¥(x) which is defined on the whole
lattice is the solution before block A; has been visited and 1\'(x) the
solution afterwards. For the start of the procedure, 1(x) = 0 can be
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chosen. We can now divide the blocks into the subset of even blocks
() and the subset of all odd blocks (*,

A e Wiodd (5.59)
A; € O* ieven. (5.60)

The process of solving (5.58) leaves the field outside of A; unchanged.
This change affects the following solution on A; and on the neigh-
boring blocks. All other blocks in the same set Q*) are unaffected.
Therefore, it is possible to update all blocks in () or (}* simultaneously.
An update on (), followed by an update on ()* is called a Schwarz
cycle.

The rate of convergence of this algorithm is not good enough to
compete with other algorithms, but it can be chosen as preconditioning
procedure for a Krylov solver. In contrast to even-odd preconditioning,
we do not precondition the Dirac matrix but rather compute an ap-
proximate solution for the Dirac equation. Therefore, it is sufficient to
use a small number of Schwarz cycles ny and inside these cycles only
a small number of solver iterations npy,, for eq. (5.58). The speed can
be further enhanced by the use of single precision instead of double
precision for this “sloppy” solve. Afterwards, a Krylov solver can be
used to compute the precise solution. This can be done with signif-
icantly less effort than in the non-preconditioned case. In openQCD,
the minimal residual algorithm is used for the sloppy and the GCR
algorithm for the precise solve. The latter is described in full detail in
[129] and guarantees the correct solution, even if the preconditioning
is done inexactly.

In addition to n and Ny, the block size is another tunable param-
eter. Larger blocks lead to a better preconditioning but also consume
more time in the block solve. If the blocks fit on the local lattices
on single CPU cores, a lot of communication can be avoided, since
only the boundaries of the blocks have to be communicated. This is
especially important for large lattices which are split in many local
lattices.

Block preconditioning can be combined with even-odd precondi-
tioning for the block solves given by eq. (5.58). In this case, the Dirac
operator has to be adjusted appropriately.

5.3.5 Deflation acceleration

The most recently developed technique used in our simulations is the
so-called deflation acceleration [80, 81]. The general idea is to project
the source on a subspace which is orthogonal to the eigenvectors of
the smallest eigenvalues of the Dirac operator in order to decrease the
condition number of the system. Information on these eigenvectors is
required to perform the projection.

1

Ny = 4 and
Ny = 3 are
exemplary oalues,

For the formulation
of an
SAP-preconditioned
HMC algorithm see
[130].
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If one uses the projection in large volume, one encounters a problem
which is connected to a property of the Dirac operator of QCD. The
Banks-Casher relation states that the density of eigenvalues Ay of the
massless Dirac operator at the origin is proportional to the quark
condensate in the chiral limit [131]. In finite space-time, this leads
to an increase of the number of low modes which is proportional to
the volume V. With the term low modes we describe modes with
eigenvalues below some boundary M. The computational effort for
an exact projection increases with O(v2) [87].

The eigenvalues of the massive operator DD are given by oy =
m? 4+ Af. A decrease in the quark mass thus results in lower eigen-
values, an increased condition number and therefore in a higher
computational effort. Inexact, domain-decomposed deflation removes
the strong dependence of the computational effort on the quark mass
and at the same time avoids the O(V?) scaling.

The general idea of deflation is outlined in [87] and the exact proce-
dure which is used in our simulations, is described in Appendix A of
[81]. Here, we collect the basic ingredients.

The projection of the Dirac equation onto the eigenvalues oy is
defined by

™
Pp =D wilvie)), (5.61)

k=1

where vi. denote the eigenvectors. The calculation of these eigenvectors
becomes very expensive for large volumina. Therefore, the so-called
inexact deflation is used. Here, a projection onto an orthonormal set
of N fields ¢ via

™
Ph =) bbb (5:62)

k=1
is considered. This projector is used to define the left and right
projectors
PL=1—DP(PDP)'P (5.63)
Pr = 1—P(PDP)"'PD (5-64)

which are employed to decouple the Dirac equation into a “little”
system

& D{—Pplb=(1—-Pn (5.65)
Dy =mny (5.66)

and a deflated system
< DPrd =Prn (5.67)

Dy =n1. (5.68)



5.3 SOLVEER

The solution of the little system is easy to compute and the condition
number of the deflated system is significantly smaller, if the low modes
are efficiently projected out.

The process is refined by dividing the lattice into non-overlapping
blocks A, as it was done in section 5.3.4 With the orthonormal fields
q:;‘ . .q:-’,:;s on the blocks A, the projection

™
P=Y Pr,  Pab=) of(oi0) (5-69)
A

k=1

is used. Since the dimension of the blocks is proportional to the
volume, the computational effort is lowered from O(N V2) to O(N,V).

The first step when solving the Dirac equation with a deflated
solver is the generation of the deflation subspace. This is achieved by
iteratively constructing low-precision solutions of ¢y ; = D—‘q:-h_h
where the global fields ¢ ; are chosen to be random fields. Within
this step, the small Dirac equation has to be solved a number of times.
The block fields q:ﬂ can be built by projecting the global fields to the
blocks followed by an orthonormalization process on the single blocks.

After the generation of the deflation subspace, the deflated system
can be solved with the GCR solver. In openQCD, the deflated system
is block-preconditioned using the methods of section 5.3.4, before it
is solved. Whereas deflation projects away the low modes, the SAP
preconditioning reduces the high-mode components [8o0].

Deflation only leads to a performance gain, if all low modes are
sufficiently well approximated by the projection subspace. Since
the number of low modes is significantly larger than the number
of deflation fields N,, this is not guaranteed a priori. Liischer [80]
investigated numerically the so-called property of local coherence of
the low modes. He found that all low modes, when projected to the
blocks, are contained in the relatively small deflation subspaces, up to
small deficits that depend on the block size.

The performance of the deflated solver depends on many different
parameters and their interplay may differ, based on the problem
at hand. Therefore, an extensive parameter tuning may lead to a
significant gain in the performance. In chapter g, we detail some of
the experiences that we have made in the parameter tuning.

If the deflated solver is used in the HMC algorithm, the deflation
subspace does not have to be generated from scratch for every solve.
Instead, it can be used for some time AT, before it looses its efficiency.
An update of the fields q:ﬂ restores the quality of the subspace [81].
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5.3.6 Distance preconditioning

If an iterative solver is used to obtain a solution for the Dirac equation,
the stopping criterion relies on a global residuum Tg- The iterative
procedure is stopped as soon as the condition

<71 with D =D[U]4+m,,
v

TEI =

Z Dx,z, SLTL] _rl':[c.y}
(5.70)

is fulfilled for some fixed bound r*. Here, I]LH} is a source which is
non-zero on time-slice yp and SL“j is the solution after n iterations.
D is the Dirac operator for a valence quark with bare mass mg. The
norm is determined on the volume V = T x 3.

This definition of the stopping criterion can lead to problems when
heavy bare masses m; are considered. The norm of the quark propaga-

tor obtained in the solution of the Dirac equation decays exponentially
such that

S(x0)| = exp (—% Ixo —ynl) (5.71)

where my is the mass of the pseudoscalar meson from the (valence)
quark propagator. When this mass is large, the norm decays rapidly
such that deviations [DS —n| at large source-sink separations xp —yo
are too small to have any influence on eq. (5.70). The residuum is not
sensitive to changes of O(100%) at large source-sink separations [132].

If the value of Tyl 15 lowered, the number of time slices that have an
influence on the stopping criterion in increased. However, machine
precision sets a bound on the minimal solver residuum and for lattices
with large time extent, a large part of the time slices cannot be used
for the calculation of physical observables.

This problem can be cured by the use of distance preconditioning
[133]. In the implementation of [134], the Dirac equation is altered to
a preconditioned one. The preconditioning matrix P is a unit matrix
in spin, color and spatial coordinates. In the time coordinates, it is a
diagonal matrix and we define it via

P=diag(pi), Pi=exp(alyo—x'l), xp'/a=i. (572)

We transform the Dirac equation by the multiplication of P from the
left and insert a factor of P—!P. This leads to

(PDP~1)(PS) = Pn (:73)

& PS = (PD~'P~")(Pn) G:74)

which is solved instead of the original Dirac equation. Subsequently,

the solution of the original problem is obtained from (PS) by a multi-
plication with P,



.4 ERRORS IN MONTE CARLO DATA

The use of an appropriate choice for the parameter o counteracts
the exponential decrease of the norm of the propagator. This leads to
an increased cost of the inversion. Therefore, we monitor the quality
of the solution under a variation of o. We define the local residuum
via

‘Zz Dx,z S.{z.n] _rla[cy}
5(“-]'

x

LJ-

Tloe[X0, Yyo) = , (5.75)

L3

where the norm is taken on each time slice separately. We use the local
residuum to judge the quality of the solution on single time slices. The
dependence on the source position yg is made explicit in eq. (5.75).

By tuning « to an appropriate value, we obtain a solution which
fulfills vy < v and mc(xp, yo) < 7 for xg < t*. Since we have to
discard a number of time slices close to the boundary due to cut-off
effects, we choose t* = %T in our measurements on CLS ensembles.
The tuning of « such that the condition for m, is fulfilled can be
done for a single source on one configuration for each ensemble. In
principle different bounds for 1 and 7y, can be chosen. In this case,
the bound on 7}, determines the range of time slices that can be used
for computations of physical observables.

5.4 ERRORS IN MONTE CARLO DATA

The results obtained from our simulation converge to the true values
in the limit of infinitely large statistics. For the realistic case of a
finite number of gauge configurations and measurements, we have to
quantify the statistical error on our ensemble averages. Depending
on approximations, theoretical or numerical constraints, we have to
assign an additional systematic error to our results. By definition, we
cannot know the size of this systematic error, but we will carefully
estimate its size.

In this section, we will discuss the determination of the statistical
errors of our data. We will take a look at characteristic features of data
from Markov chain Monte Carlo and our tools to determine the errors
as reliable as possible.

5.4.1 Correlations

Since the gauge configurations used to calculate physical observables
are generated in a Markov chain, subsequent configurations are corre-
lated and this correlation is also present for observables determined
on the configurations. We have to take these correlations into account,
when we determine the statistical errors of ensemble averages.
Assuming that our configurations are thermalized and have been
generated in a finite number of Monte Carlo steps to sample the
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distribution according to the weight from the path integral, we define
the ensemble average of an observable O, via

L
Da = ﬁZDa_,i.r

i=1

(O4) =04, +580,, (5.76)
where N is the number of configurations and O, ; is the observable
on configuration i. The statistical error 50, has to determined based
on an investigation of the autocorrelation function of the observables.
In the following, we will present the results of [56, 135-138]. In these
references a Taylor expansion of functions of primary observables O
has been used to derive the methods to determine the statistical
error and the error of the error of Monte Carlo observables. The
autocorrelation function of two observables O, Og is defined by

and it can be determined from the results in the Monte Carlo chain.
Upper values for K and t are given by N.

In most cases, we are not interested in the determination of primary
observables O but in the calculation of complicated functions of

primary observables. The autocorrelation function of these derived
observables F(O ] can be defined from I, g via

oF

«=303° 6™

Mf(t) = ¥ Falap(t)Fg,
o, B

The partial derivatives F, can be determined numerically or, more
accurately, via automatic differentiation as described in [138].

From It we can define the naive variance o and the normalized
autocorrelation function pg(t) via

Me(t)
Te(0)

o = T§(0), pE(t) = (5.79)

If no correlation is present in the data, the statistical error can be
determined directly from of and N. As measure for the strength of
the autocorrelation we introduce the integrated autocorrelation time

-I o0
Tm(F) = 5+ pr(t), (5.80)
t=1

which can be employed to determine the Monte Carlo error of the
derived observable F via

_ ol
OF =4/ 214 (Fl—.
Tln.t{]N

In the presence of autocorrelations, the statistics is therefore effectively
reduced by a factor of 1/ 27in(F).

(5.81)
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We are limited to finite statistics, and therefore we cannot perform
the sum pr(t) to infinity as given in eq. (5.80). Since the absolute size
of pr decreases exponentially with t while its error remains roughly
constant, we have to truncate the sum at some value W [137]. In [135],
the summation window W is chosen such that the systematic error
due to the truncation and the statistical error are balanced and the
recipe for the automatic windowing procedure is given in eqs. (50-52)
of that reference.

We will refer to the above method for the error estimation as I’
method. Other methods as the Jackknife and the Bootstrap procedure
together with binning [137, 139, 140] which are shown to perform
inferior [135, 138] in the presence of slow modes are not considered in
this thesis.

5.4.2 Slow modes

The autocorrelation function I'xp can be shown to have the spectral
decomposition [56, 58]

raﬂ(t}=iRe{cmcﬂnth'}, An| =/ (5.82)
n=0

with the so-called exponential autocorrelation times 15 = 11 = ...
which are properties of the algorithm. Based on this representation,
we can give an upper limit for the integrated autocorrelation time
which is given by

Tint[Ox) < To . (5.83)

The couplings can of an observable to the modes A,, are not known
a priori. If an observable couples to a slow mode, i.e., a mode with a
large value T; and the window for the determination of Tyt is not of
the order of T;, the determination of the statistical error is not save. In
[56] a strategy to estimate the statistical error in the presence of slow
modes has been derived.

Henceforth, we will refer to the exponential autocorrelation time
of the slowest mode Tp as Texp. The size of Texp can be estimated
using prior information on the Monte Carlo chain. For this task, we
investigate the integrated autocorrelation times of observables which
are known to couple strongly to the slow MC modes. Examples are
the squared topological charge Q? and the gradient flow coupling aip.
For observables determined on the large-volume CLS simulations, we
use information from detailed analyses on large statistics to estimate

Texp [561 6'D]
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Using this prior knowledge, we can add an exponential tail to the
integrated autocorrelation time and redefine it by [56, 138]

w

TlF) = 3+ Y P+ Terpor(W A1), (584)
t=1

where W is determined by the point where pf is compatible with zero
within one standard deviation. Even when using this formula to esti-
mate the error, the length of a Monte Carlo run has to be significantly
larger than the exponential autocorrelation time, to provide a save
error estimation.



EXTREACTION OF PHYSICAL OBSERVABLES

In the last chapter we have described the techniques that are used in
our work to generate a set of gauge configurations according to the
probability weight given by the Boltzmann factor in the Wick rotated
path integral. We have also described the solvers that are used to
numerically solve the Dirac equation. In this chapter we will explain
how we define certain physical observables on the lattice and discuss
the techniques that are used for the extraction based on the gauge
configurations. A special focus is laid on techniques that suppress
systematic effects and improve the statistical precision such as the
generalized eigenvalue problem or smearing techniques.

6.1 MES0ON MASSES

In large-volume simulations hadron masses are used to calibrate
the discretized theory, ie., to eliminate the bare parameters of the
Lagrangian in favor of physical observables. Since most meson masses
can be extracted to a high precision and are relatively easy to compute,
they are well suited for this task. The basis for the extraction of
energies of physical states of the Hamiltonian is given by the spectral
decomposition of two-point correlation functions.

6.1.1 The spectral decomposition of correlation functions

Denoling the expectal:iun value of a two—point Green function as
C(t) = {010(t + )0 (1:)[0) = (O(t +t:)O' (1)), (6.1)

where a state is created at time t; and annihilated at time t + t;, we
can deduce its spectral decomposition by the insertion of a complete
set of eigenstates of the corresponding Hamiltonian H with a proper
normalization [141],
_ 2am)n|
1= W . (6.2}
Here E,, are the energies of the eigenstates of Hwith E; < E; < ...
and L2 is the spatial volume. This leads to

. eEat 0l0my|[*
C(t) = Y_(00n) 55 (niOM0) = 3~ % et
=) ICaffe Ert, (6.3)
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where O is the operator acting in Hilbert space which corresponds
to the interpolator O. For large times t — oo, all states with E, > E;
are ne)c[::u:lrma-nl:ia]l].-r suppressed and we can appruxi.mate the correlation

function by
Clt) =|CiPe 't +O(e™®Y),  An=E.—FE1. (6.4)

For the extraction of the ground state energy, the correlator can be
fitted to a single exponential function at large times or to a sum
of exponentials, when a range including shorter time distances t is
considered.

If we are only interested in the ground state energies and not in
the matrix elements |1'C,1|2,r we can also consider the so-called effective
mass which approximates the energy Ey. One possible definition for
the effective mass based on the correlation function on two subsequent
time slices is determined via

e
meg(t) = In (m) . 6.5)

From the effective mass, an estimate for the energy E; can be extracted
by a one-parameter fit to a constant at large times t. For fits including
relatively small source-sink separations, we have to take the systematic
effects due to excited states into account. We can derive these effects by
rewriting eq. (6.4), using the Taylor expansion of the natural logarithm
and the observation that eq. (6.5) represents a discretized derivative of
the logarithm of the correlation function. We arrive at

d
meg(t) = —-In (C(1)) (66)
— i 2 —Eit |C2|2 —Azt —Aat
_—dt]I‘i(|C'|| e 1+WE +0[e )
(6.7)
_ [ N
= E‘| +ﬂz||:—|2e +O {e ] " [6.3}
1

where we just write the first order correction explicitly. We see that the
effective mass forms a plateau with exponential corrections at small
times.

6.1.2 Correlation functions and open boundary conditions

If periodic boundary conditions in the time direction are used, as it is
a common choice for lattice simulations, the spectral decomposition in
eg. (6.3) has to be extended by the backward-propagating counterpart
C(T —t). Origin of these terms are the so-called wrappers, i.e., expo-
nentially decaying contributions which wrap around the boundaries.
If the source-sink separation is of the order of T/2, both contributions
are of equal size.



6.2 THE GENERALIZED EIGENVALUE PROBLEM

The simulations considered in our work feature open or Schriédinger
functional boundary conditions in the time direction and therefore
no wrappers are present in our data. Nevertheless, the analysis of
correlation functions from lattices with these boundary conditions is
non-trivial since effects of the boundaries are encountered. Before we
extract meson and quark masses on configurations with open bound-
ary conditions, we have to think about the impact of the boundaries
on these observables.

The effects of the boundaries do not only manifest themselves as
cut-off effects, but also as physical ones: Since the boundaries have
the quantum numbers of the vacuum, states with vacuum quantum
numbers contribute to correlation functions, if source or sink are
close to the boundaries and the contractions are non-vanishing [142,
143]. They have to be considered in spectral quantities as the effective
mass in eq. (6.8). Additionally, cut-off effects that scale with O(a) are
expected at the boundaries. As explained in section 3.4, these can be
cured with the proper counter terms [58].

In contrast to effective masses, quark masses from the PCAC relation
do not suffer from exponential corrections. They are local operator
identities and valid on every time slice, differing by O(a) from the
continuum value [31, 144]. Considering the boundaries introduce
additional cut-off effects, we expect significant deviations from a
plateau close to the boundaries.

Since translational invariance in the time direction is broken by the
boundaries, some thought has to be spent to fix the absolute location
of the source of correlation functions on lattices with open boundary
conditions. If correlation functions from sources on different time
slices are to be combined, e.g., by an average over these sources,
special care has to be taken.

6.2 THE GENERALIZED EIGENVALUE PROELEM

If the extraction of energies of higher states in the spectral decomposi-
tion (6.3) is desired, a two or three state fit to the correlation function
does not lead to satisfying results in most cases. In this case the
exponential contributions cannot be safely extracted before the signal
gets lost in the noise or energy levels are too close to each other to
discriminate between them in the presence of statistical fluctuations.

Variational methods can be used to overcome this problems. We
start by introducing the N x N correlation matrix C(t) which is defined

by
Cs;(t) = (0:(t)OF(0)), (6.9)
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and has the speci‘ra] decumpﬂsitiun

C‘J{t] = Ze_Entu’niu’;if 1:] = I:-- -N; {ﬁ.lﬂ}

i=1

Yni = (Pa)i = {ﬂlﬁ'ln}, (6.11)
where the states [n) are eigenstates of the Hamiltonian ,
Hin) = E,n) En < Engr. (6.12)

It was shown [145, 146] that the eigenvalues A, (t,to), A1 > A2 > ...
of the generalized eigenvalue problem (GEVP)

C(t)vn(t, to) = An(t to)Clto)va(t, to), n=1,...,N, t>1o
(6.13)

are given by
An(t to) =e - 1IEr [1 L O(e )], A, = n'in [En —Emnl.
(6.14)

The solution of the GEVP therefore allows to extract the energies of
higher states from the time dependence of the eigenvalues A, (t, t).
The number of states that can be extracted depends on the dimen-
sion of the correlation matrix C(t). At most N energy levels can be
determined from a N x N correlation matrix.

The operators which are used to build the correlation matrix, have
to have the correct quantum numbers to project on the desired states.
At the same time, they have to be linearly independent to ensure the
positive definiteness of C(tg). The interpolators can be constructed
explicitly by different lattice definitions of the continuum operator or
by an iterative smearing procedure applied to one definition of the
lattice interpolator.

It was suggested in [146] to extract the energy levels at fixed tp < t

by
off An(t, to)
Ef —In (m) , (6.15)

which is similar to the definition of the effective mass from correlation
functions in eq. (6.5). Since the exponentially decaying contributions
of higher states disappear with an increasing source-sink separation,
the energies can in principle be extracted at this point. Unfortunately,
if different energy levels are close to each other, the decay of excited
states is slow and large source-sink separations have to be considered.
At the same time, the absolute size of the systematic error due to
hidden excited states remains unknown.

An explicit calculation of the exponential corrections to energies
and matrix elements constructed from the GEVP [147] revealed that



6.3 FITTING

these can be further suppressed. If the condition t; = t/2 is satisfied,
the eigenvalues are given by

An(t, to) =e 1 RIER[1 L Qe t¥8N+in)] - AL L =En—En.
(6.16)

We can see that the exponential corrections now vanish much faster
and that the extraction of nearby states does not pose a problem
anymore. By fitting the energy levels E,,n=1,..., N and the energy
level Enyq with an enlarged correlation matrix, a determination of
the size of the systematic effects due to the excited state contributions
is possible. In practice, choosing a sufficiently large value for t; might
be difficult since large statistical fluctuations can violate the positivity
of C(tp) at late source-sink separations.

In our work, we choose the normalization of the states such that the

relations

(vm(t, to), Clto)va(t, to)) = dmn (6.17)

and
(va(t, to), Cltvn(t, to)) = An(t, to) (6.18)

hold.
If we define the operators

Anlto +1/2,t5)
1,2 0 0 6
An(to+t,ta) * (6.19)

Q"I!'LE = Rn {Gr Vn [t: tt}]) ’ {6.20}

as it was done in [147], we can calculate matrix elements of the local

Rnp = [vn[t:tﬂ]r C[t}‘-'n{t;to]]_

operators P from

(0|Qsfe—iepei (et 0) = (QeF20P(QE(0))  (621)
= (n|Pn’) 4+ O(e—4n+into),
(6.22)

provided ty = t/2 holds. We do not go into more detail concerning
the extraction of matrix elements from the GEVP at this point. We
will do this with a special focus on HQET, when we define the matrix
elements considered in the effective theory in chapter 17.

6.3 FITTING

In many applications we like to determine the parameters of a model,
based on our numerical data. The quality of the final results depends
on the statistical accuracy and the consideration of all sources of
systematic effects. The determination of our best estimators for the
model parameters is done via fitting, the minimization of the difference
between the model and the data. Pedagogical introductions can be
found in [124, 140].
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6.3.1 Fitting correlated data

Lattice data are not only correlated between subsequent configurations,
but also between different lattice sites on single configurations. When
correlation functions are fitted to a model function, this correlation
has to be taken into account. This is done using the covariance matrix
C between the data points.

If we consider a model ¢(x, A) with N4 many parameters A; and
a variable x, e.g., ¢(x,A) = A; +xA; and we measure data §; at
Ny many values x;, then we expect them to be normally distributed
according to the distribution [140, 149]

P(g) = (det(2nC)) ™" *exp (—'Each—mg) . (6.23)

Here 8§ = §— Y is the deviation of the measured values from the
correct ones and the covariance matrix is defined by C;; = (55;01;).
When we perform a fit to measured data, we like to determine the
best I::-Dssible estimators a for the parameters A;, based on the data
points §j; and their covariance. This is done via a minimization of

xa) =1t"Wr, 15 =17;—djla) (6.24)

with a weight matrix W. In order to exploit all data and correlations, it
seems to be the best way to choose the inverse of the covariance matrix
C~! as weight matrix. We will call this procedure correlated fitting.
Unfortunately, the covariance matrix itself can only be extracted with
errors. Fluctuation in the data may lead to a large condition number
of the matrix. In addition, if the number of data points is larger than
the number of independent configurations, C has eigenvalues which
are zero. In the latter case, an inversion is not possible. In the first
(more frequent) case, the determination of the smallest eigenvalues
which have the larges weight, is imprecise.

There are several studies which indicate that correlated fitting may
introduce a bias or give worse results than uncorrelated fitting [150-153].
In the case of uncorrelated fitting, is is common to use the inverse
of the diagonal of C as weight matrix W. Effectively, each value is
weighted with the inverse of its variance and the correlation between
the data is neglected.

If we know the underlying model, we expect the best estimators a
to be found for the minimal 2. If we do not know the model, the
situation is more complicated. For uncorrelated data and a model
which is linear in the fit parameters, we expect [140]

anin _
NDF

If the ratio is significantly larger than unity, the model is not able to
describe the data sufficiently. If it is significantly smaller, we have

1, where NDF=Ny;—Na. (6.25)
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too much freedom in our model, not all parameters are constrained
sufficiently by the data.

In the case of correlated data, this rule of thumb is not valid any-
more, since the effective number of degrees of freedom is smaller than
My — M 4. Therefore, a model selection may become difficult. This
problem is overcome by the introduction of an effective x? [149, 154]
which is the expected value of x2... for data with correlation according
to C. The formula for its determination can be derived based on an
expansion of the estimated model parameters and the model function

a=A+bda (6.26)
la) = d(A) + )Ni: Sadio+.., b= (62)

and its final form read_s.
Xaxp(@) = Tr [[1 —Pg) W‘”CW‘”-] : (6.28)

Here, W is the weight matrix which is used in the fit and C is the
covariance matrix derived from the data. The projector (1 —Pg) is

orthogonal to the projector Py and Py projects onto the subspace
spanned by the N, x N, matrix

Ad(x;, A)
_wli2 A
Q=W"V,  Vy=— A, (6.29)
We can determine it via
Po=Q(Q'Q)'Q". (6.30)
We now expect
X (@)
Smme - 6.
X2p(@ (©31

if the data are described by the model. Using xep, we can test a model
function in the presence of correlations without the need to perform
the potentially problematic inversion of the covariance matrix.

5.4. GEADIENT FLOW OBSERVAEBLES

Strongly coupled gauge fields show large fluctuations. In lattice QCD,
this can lead to undesired effects since ultra violet (UV) modes of the
fields can reduce the overlap of lattice interpolators with the ground
state or complicate the definition of topological observables. These UV
fluctuations can even be unphyiscal. In this case, they are removed by
the ensemble average.

For a long time, smearing techniques have been used to improve
the overlap of lattice interpolators with physical wave functions and
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we will come back to these techniques in section 6.5. A rather recent
development is the introduction of the Wilson or Gradient flow [155,
156] which solves the problems described above and offers more
theoretical control than smearing.

6.4.1  The Wilson flow

The Yang-Mills gradient flow is defined by the evolution of the gauge
fields in a fictitious time t = 0. It is given by the partial differential
equation [157]

w =DyGyulx, t) = —%, Bu(x,0) = Au(x)
(6.32)
with the covariant derivative
Dy =0u+ By, (633)
and the field strength
G,y =[D,D,]=28,B,—-3d,B,+[B,B,]. (6.34)

The fields B, depend on the four dimensional space-time coordinate
x and the flow time t which is not to be confused with the Euclidean
time xp or the Monte Carlo time. The initial field configurations are
given by the gauge fields. The evolution of B,, according to D, G,
leads to a smoothing of the gauge fields along the negative gradient
of the Yang-Mills action towards the minimum of the action [158].
Effectively, this leads to a smoothing of the fields over a region with
radius /8t in all four dimensions [156].

In [157, 159] it was shown to all orders of perturbation theory that
gluonic observables built from the gauge fields B, are automatically
finite after the removal of the cut-off, ie., they do not need any
additional renormalization when the four dimensional theory has
been renormalized.

The Wilson flow [156, 160, 161] is a lattice version of the Yang-Mills
gradient flow and it is defined by

d
0 V(%) = g3 P uSw(Va I Va3, 1) - Vi(x,0) = Uy ()
(6.35)
with the Lie-algebra valued derivative of the action, as we have seen it
in the HMC algorithm, eq. (5.5). Here, this derivative is taken with

respect to the flowed gauge links V), (x, t). If the numerical solution is
determined by the Euler method, we can write the evolution of the

gauge link for a step size € as

Vulx, t+€) = exp (—egj dx,uSw) Vulx, 1) (6.36)
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and and this form allows us to gain insight in the evolution. In practice,
we use the Runge-Kutta-Fehlberg method [158, 162-164] to solve the
partial differential equation.

6.4.2 The Zeuthen flow

Unfortunately, the Wilson flow has rather large cut-off effects. There
exist different approaches to improve the scaling towards the con-
tinuum limit, see e.g. [165-167]. As we have seen it for many other
discretized quantities, the systematic improvement of the Wilson flow
4 la Symanzik can be achieved such that no Of a?) cut-off effects are
introduced by the flow itself [168]. The so-called Zeuthen flow is
defined by

al

12

d
uza‘v’“[x,t] =—g3 (1 +

v:vu) B wStw (Vi) Vu(x, 1)

(6.37)

with the same initial condition as the Wilson flow, the lattice forward
and backward derivatives and the Liischer-Weisz action, eg. (2.17). All
observables which we will define from the gradient flow, can be based
on the Wilson and the Zeuthen flow and the different definitions differ
in their cut-off effects.

6.4.3 Setting a scale from the flow

It is possible to define a renormalized coupling from the flow and this
coupling can be employed to set the scale in lattice simulations [156,
157, 169]. In the continuum, the Yang-Mills action density from flowed
fields can be defined from the field strength tensor via

E= —%Tr [GyvGuv] . (6.38)

This definition can be directly translated to a discretized form of the
action density by constructing the field strength tensor from clover

plaquettes. Another definition is defined analogously to the Wilson
action (2.6) by

E=2) ReTr[1-V(pt)], (6.39)
'P‘pr

where we take the sum over all unoriented plaquettes. Both definitions
differ by their cut-off effects and can be used to define a reference
scale ty by the implicit equation

{(E)},y, =03 (6.40)

Of course, other values than 0.3 could be chosen on the right hand
side. The alternative scale wg which is based on the derivative of t2E
has been constructed to reduce cut-off effects [165].

In the Schradinger
functional, the term
proportional to a? is
set to 0if p= 0 and
one of the endpoints
is at a time boundary
at 0or T [45].

The definition for tg
based on clover
plaguettes has been
used to set the scale
for the CLS
ensembles,



The investigation of
the coupling in a
finite box with
periodic boundary
condit ions has been
done in [170].
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In [156], the connection between t?(E) in infinite volume and the
renormalized coupling ggg(p) in the MS scheme at the scale p =
1/4/8t was shown to be

3(N*—1)g° L _
2 _ 2 4
(E(t) = ~55 {1+&a15°+0(g")}, (6.41)
for the gauge group SU(N) with the numerical constant €1. From this
relation it is apparent that we can define a renormalized coupling
from the flow.

6.4.4 The gradient flow coupling in the Schridinger functional

We will use the definition of the renormalized gradient flow coupling
gcr from the flow in our matching procedure in the Schrédinger func-
tional. The coupling for Schrédinger functional boundary conditions
has been defined and studied in [158]. It is defined for an arbitrary
SU(N) gauge field by

ger = N7 (E(1)) = g5+ O(3is) (6-42)

with the normalization constant N. The second equation shows the
connection between the gradient flow coupling and a renormalized
coupling defined in the MS scheme. If we set the scale by the box size

L, we can write

1 1
by (6.43)

where c is a dimensionless constant that represents the fraction of the
smoothing range over the total box size [158]. In order to fully specify
the coupling in the Schrédinger functional with boundary fields and
broken translational invariance in the time direction, we have to define
the value of the boundary fields p and the time-slice x, where we
evaluate the action density. Explicitly writing out all the dependencies,
we arrive at

g&e(L) = N~(c, p,x0/ T2 (E(t, x0))|¢_c212/8 - (6.44)

as the definition of the coupling. The normalization constant N in the
continuum limit was determined in [158] to ensure

g&r = 9o +Olgp) - (6.45)

Based on the investigations in [158], a number of choices were made
in [45] in order to fix the definition of the coupling. In our work, we
stick to these choices and define in the following the gradient flow
coupling as we use it in our work.

It was found that the cut-off effects induced by the boundaries in the
Schrodinger functional are reduced if only the spatial (or magnetic)
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Table 6.1: Normalization constant N(c, a/L) for ¢ = 0.3 and %y = T/2, the
tree-level improved Liischer-Weisz gauge action, zero boundary
fields and the gradient flow coupling defined from the Zeuthen
flow [171].

Lo/a Nle,a/L) Lg/a Nle,a/L)

0.012341170468270 20  0.008575350627103
0.010162691462430 24  0.008569387847540
8 0.0000316148079731 32 0.008565541650006
10 0.008744966371393 40  0.008564480684062
12 0.008650917856809 48  0.008564098025073
16 0.008591758449508 64  0.008563853943383

components of the action density are used. The statistical precision is
not impaired by neglecting the time component. The normalization
constant N has been determined in eq. (3.1) of [158]. In the same
reference, a normalization constant with explicitly removed cut-off
effects has been introduced. The values of this constant N{c, a/L) for
all relevant values of L /a in this work are given in table 6.1. The use
of Nfc,a/L) is expected reduce cut-off effects in the coupling. The
constant ¢ was fixed to (0.3 in our project on HQET. Following [45], we
therefore define

g&r = 953(L1) (6.46)
with
_2 21 (Emag(t, x)3(Q))
g:(L) = t"N""(c,a/L) (6.47)
(6(Q) VBt=cLxo=T/2
and
Emaﬁ{t,x]=%[G;1jG5;]Lw, i,j=123. (6.48)

If we do not specify it explicitly, the use of the Zeuthen flow is assumed.
With the definition of the Liischer-Weisz gauge action from eq. (2.17),
we can express the magnetic component of the action density by

5 1
where we denote the spatial plaquettes with P;; and the spatial 2 x 1

rectangles with Rij. In the Schrédinger functional with dynamical
quarks, the choices made for the boundary fields and the phase angles

In the determination
of the improvement
coefficients in the
CLS coupling region,
we diose ¢ = 0.35.
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explained in section
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This statement is
only true, if the
Dirac operator
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8 are of importance for the precise definition of the coupling. The
choices made in our work have been specified in chapter 3.

In the definition of the coupling in eq. (6.47) we included a reweight-
ing with the reweighting factor 5(Q) which we did not yet explain.
We define the reweighting factor by

8(Q) =

i {1, Q<05 650

0, otherwise

where () denotes the topological charge. This procedure was intro-
duced and motivated in [172]. In the next section, we introduce a
discretized definition of the topological charge. Afterwards we moti-
vate the reweighting of eq. (6.50) which effectively projects onto the
sector of vanishing topological charge.

6.4.5 The topological charge from the gradient flow

The topological charge is used to distinguish different topological
sectors which emerge in the theory. In the continuum, these different
topological sectors are disconnected in field space and it is not possible
to tunnel between them. Two fields belonging to different homotopy
classes cannot be continuously deformed into another. There exist
infinitely many such classes which are characterized by their integer
topological charge Q. This charge can be defined from the field
strength tensor via [173]

1
Q — —@ Jd4xE“vpgTr [F“vaD’] . {6.51}

From the Atiyah-Singer index theorem [174] it is known that the
topological charge can also be determined from the left handed n_
and right handed n, zero modes of the Euclidean Dirac equation via
[11]

Q= - ln-—n). (652)

The topological charge therefore connects gauge and fermionic prop-
erties of the theory.

When we simulate the field theory with Monte Carlo methods, we
have to ensure that all topological sectors are sampled according to
their weight in the path integral in the continuum limit. In order to
monitor the sampling, we have to have a definition of the topological
charge on the lattice. Since Wilson’s formulation of quarks on the
lattice breaks chiral symmetry explicitly, we cannot express () in terms
of the zero modes of the Dirac operators but have to determine the
charge from the field strength tensor.
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It was shown [156, 175-177] that () can be defined from the lat-
tice version of the field strength tensor such that it reduces to the
topological charge in the continuum limit, if the smoothness condition

sp = ReTr [1 - U(p)], h= max sp , h < 0.067 (6.53)

is satisfied by the plaquettes p on the lattice. Towards the contin-
uum limit, the gauge configurations with h = 0.067 have a quickly
decreasing weight and therefore, the disconnected sectors emerge
naturally.

The gradient flow can be used to smooth the fields at larger values
of a and therefore allow the gauge configurations to pass the con-
dition in eq. (6.53). Since the flow transformation is invertible, all
physical properties of the theory are conserved and the definition of
the topological charge from the gauge fields becomes unambiguous
[156].

In our work, we define the topological charge density by [178]

1
q(xt) = _ﬁeuvpuTr [Guv(x,t)Gpo(x, t)] (6.54)

with the field strength tensors from the flowed clover plaquettes. The
topological charge is then defined by

Q=a*) qlxc), (6.55)

where c is chosen as for the gradient flow coupling and the Zeuthen
flow is used. This definition does not lead to integer values, but values
which are distributed around integers. Towards the continuum limit,
the width of these distributions shrinks and in the continuum limit
the integer valued topological charge is restored.

In section 3.4 we motivated the use of open boundary conditions
for large volume simulations with the ability to properly sample all
topological sectors when going to the continuum limit. This is not
possible, when using Schriodinger functional boundary conditions and
we have to live with ensembles where () is stuck in single sectors for
large fractions of the affordable Monte Carlo time. Fortunately, the
probability of topological sectors with non-zero charge is suppressed
in small volumes.

In [172], the projection onto the sector of vanishing topological
charge according to eq. (6.50) was introduced. Since () is non-integer
on the lattice, this sector is defined by nearest-integer rounding. If
observables explicitly depend on the topological sector and it is not
possible to sample all sectors on some ensembles, a bias is introduced
in the continuum extrapolation. For some observables, this bias can be
removed when the quantity is projected onto the sector of vanishing
topological charge on all ensembles. For large lattice spacings, this
amounts effectively to a reduction of the statistics up to 70%. At the
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At the same time, all
possible values of h
are present in the
functional integral.

We will inspect this
behravior more closely
when we look at
measuraments of Q)
on our ensembles,

There has been a
suggestion to use
open-5F boundary
conditions for certain
applications [179].
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same time, critical slowing down towards the continuum limit might
be avoided.

In the case of the gradient flow coupling, the projection onto the
sector of vanishing topological charge is mandatory since it is part of
our definition. For other observables, we have to be more careful. If
we want to determine physical observables on large volumes, we have
to include all topological sectors to sample the path integral. This is
different when we look at observables defined from Ward identities,
e.g., current quark masses. The operator identities hold within each
sector and therefore our results are still valid if we only consider one
topological sector. A projection to the sector of vanishing topological
charge just changes the cut-off effects [74]. We will indicate the use of
this projection in the Schrédinger functional, when applied to other
observables than the coupling.

6.5 SMEARING

As indicated in the last section, smearing techlﬁques are widely used
to increase the overlap of the discretized interpolators with physical
wave functions and to eliminate unphysically high modes of the gauge
fields. In general, we can distinguish between gauge smearing, where
the gauge fields are altered, and quark smearing which is applied to
the quark fields. In this section, we want to introduce the smearing
techniques used in our work.

6.5.1 APE smearing

APE smearing [180] is iteratively applied to the spatial gauge links.
One step of spatial APE smearing replaces the original gauge link
according to

U;(n) — Pgygay [ (1— a)Ui(m)

+3
+% Y Um)Uin+af)Un+1)"
j=241,5#1
(6.56)

In this replacement, the contributions of three-link paths of neighbor-
ing gauge links are added to each spatial link. Thereby, its spatial
extent is enlarged. High modes are suppressed if we choose the smear-
ing parameter « in the range 0 < « < 0.75 [181]. If APE smearing is
performed including the links in the time direction, the normalization
of the sum changes to o/6.

After the replacement by the sum of gauge links, the new gauge
links are not elements of the gauge group SU(3) anymore. Therefore,
we project the components of the gauge links onto the group. In
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equation (6.56), this projection is indicated by Pgy3;. We project
the complex 3 x 3 matrices W according to the procedure given in
reference [182]. We carry out the replacement

W — (6.57)

and proceed with four iterations of

WX (1 _ %[m [det[)(]]) i (6.58)
h X=W 3 1w*w
where = 2 — 2 .

The iterative smearing in eq. (6.56) is applied a number of times
and the gauge links get smeared out more and more during this
procedure. Operators based on different number of smearing steps
can be combined in the variational method, cf. section 6.2

6.5.2 HYP smearing

The spatial extent of the smearing procedure is limited, when hyper-
cubic blocking (HYP) smearing [183, 184] is applied. In this method,
the extent of the smeared links is limited to the hypercubes attached
to the original link. The smearing is performed via three smearing
steps which we will specify in the following.

The final HYP smeared links V|, (n) which are used later on in the
extraction of physical quantities, are defined by

Vun) = Psyay [ (1 — @1 )Up(n)

+a—£ Z VoMV (n+ a¥) Vo u(n40a)= 1|,
v
(6.59)

where we introduced so-called decorated links V. In the notation of
[183], Vy:v(n) is a decorated link in direction p at the lattice point n
which is constructed without staples extending in direction v. These
links are defined by

Vur(n) = Pgygzy | (1— a2)Uy(n)

+% Z ?F’;Vu[“]?u;pv[“‘Fﬂlﬁ]?ﬂ;vu[“"'ﬁ-]'_1 .
+p#Ev,p
(6.60)
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where the notation V), ,(n) is similar to the one above; the link is
extended by staples which do not extend in directions v or . Finally,
the links V are defined by a modified APE smearing step via

Vv p(n) = Psyga) [(1— az)Uy(n)

.|_% Z Uy (mjUy(n+ afj)Uq(n+ Fl]_1

tn#Ep v,
(6.61)

In this step, only two staples in the direction orthogonal to p, v and p
are added.

The procedure defined above achieves a smeared, fat link that
consists of unsmeared, thin links inside the hypercube attached to the
original link. The parameter set & = (a1, a2, x3) has to be optimized
to achieve a good performance for the problem at hand. In our work,
we consider two sets of these parameters. We define

HYP1: o = (0.75,0.6,0.3), (6.62)
which is the set of parameters introduced in [183] and
HYP2: a=(1.0,1.005), (6.63)

motivated in [182].

We will use both versions of HYP smearing in the context of HQET
in chapter 16. It was found in [185] that an exponentially improved
statistical precision can be achieved for observables including static
quarks if HYP smearing is used. Since we do not know a priori which
version performs better, we will always consider HYP1 and HYP2. In
a comparison of the final results, we will investigate which the set of
parameters leads to smaller cut-off effects or an enhanced statistical
precision.

6.5.3 Gaussian smearing

Up to now we have considered modifications of the gauge links. We
will now look at smearing techniques which are used to enlarge the
spatial extent of quark fields. The construction of extended inter-
polators which are contracted to form quark propagators, aims at
increasing the overlap with physical wave functions.

One possibility to construct such extended sources is Gaussian
smearing [186]. Here, the new field is constructed iteratively by the
replacement

W(x) = $'(x) = (1+xkca’A)p(x), (6.64)
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where we use the three dimensional lattice Laplace operator A =
—V.V?*. The parameter kg denotes the coupling strength of the
nearest neighbor interactions. The extent of the new field depends on
the number of iterations n;. The relation between n;. and the physical
extent is not known a priori, but approximately it is given by

T 7= 2ay/kgny. (6.65)
We can also define the square of the smearing radius via
r2Tr [Pt
(1) = e [ b ()] P=xdixded (666)

T L Tt (xwx)]

and determine it on the lattice. Measured values of (r?) can be used
to tune to constant smearing radii across different lattice spacings.
If we express the smearing procedure by the operator Sy, defined by

S = (1+kga?A)™, (6.67)

we can build interpolating fields with gamma structure I via
O =a® Y $(x)SkMp(x). (6.68)

When Gaussian smearing is applied, we use APE smeared gauge
fields in the Laplace operator With this construction, unphysical
fluctuations of the gauge fields have been smoothed out and do not
propagate into the quark fields [187].

6.5.4 Smearing from three-dimensional fermions

In [188] the creation of extended interpolating operators from quark
fields and additional three-dimensional spinor fields has been intro-
duced. The implementation requires the inversion of a three-dimen-
sional Dirac operator.

We start our discussion with the definition of smeared sources from
spinor fields ¢(x). The corresponding action on a single time slice is
given by

Sip = 0* 3 600 | 3 05V + V1) — aViVi) 4 ma | 00,

(6.69)

and no propagation in time is allowed for the spinor fields ¢(x). They
are quenched but couple to the spatial parts of the gauge field and
therefore receive quantum corrections. The extended quark field is
defined from the spinor fields ¢ and the unsmeared quark fields 1
via

Pp(x) =a® Y d(x)dy)Tzpd(xo,y), (6.70)

yeA(xg)

75

We use kg = 0.1

Alxp) denotes the
set of spatial sites on
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where we sum over all sites on time slice x5. The Dirac structure 3
is chosen appropriately to obtain the correct quantum numbers.

When two such extended quark fields are contracted, we obtain the
propagation of a three-dimensional fermion in space, the standard
propagation in space-time to a different time slice and subsequently
another three-dimensional propagation. Therefore an extended inter-
polator has been constructed from the above definition.

Spinor fields have been chosen for the construction of this smearing
method since they lower the canonical dimension of the extended
quark fields and have nice renormalization properties. They are auto-
matically renormalized if the quark fields 1 are properly renormalized
and due to the improved short distance behavior which can be de-
duced from the operator product expansion we expect an improved
overlap with the physical ground state.

Similarly to quark hopping parameters, we can define the hopping
parameter for the spinor fields by

amzp = % (L —5) , (6.71)
KiD

and the critical hﬂpping parameter can be obtained from the pnint

where the mass of a currespunding three-dimensional pion vanishes.

6.5.5 Smearing from three-dimensional bosons

The construction of extended quark fields from quenched, three-di-
mensional fields can also be defined from scalar fields [188]. In this
case, we use the scalar fields ¢ (x) with the lattice action

2
S = o 1 (3680700 + 5201 (00 (x) ) 672

on the time slice xg with the 3D Laplace operator as it is used in
Gaussian smearing. The extended quark field is then defined by

Voscx)=a® 3 o(x)d(y)balxo y), (6.73)

yeA(xp]

where we denoted the spinor index with o In this case, we need
four inversions of the scalar operator to determine all four spinor
components of the extended quark field.

The 3D hopping parameter is defined as for the spinor fields,
eg. (6.71). In contrast to the three-dimensional fermions, the the-
ory with quenched three-dimensional bosons is not renormalizable
and the theoretical control over the smearing across different lattice
spacings is lost [188]. Nevertheless, we can use the bosons to define
a valid smearing procedure if we are not interested in the renormal-
ization properties. The canonical dimension of an interpolator built
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from 1 o is still lower than in the unsmeared case and we expect the
short distance properties to be improved. The tuning of the hopping
parameter has to be performed via explicit measurements of the radius
defined in eq. (6.66). This radius can also be used to compare interpo-
lators based on different smearing techniques with similar smearing
radii.
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Since we are not able to cover all energy scales that contribute to phys-
ical observables including bottom quarks in large-volume simulations,
we have to resort to an effective theory to describe QCD observables
including one heavy quark. Our theory of choice is Heavy Quark
Effective Theory (HQET) which is constructed from an expansion of
the QCD Lagrangian in inverse powers of the heavy quark mass my,.
In the static limit, i.e., for one infinitely heavy quark, HQET allows
us to deduce underlying features of the Lagrangian. At the same
time, the expansion in powers of 1/my, is fast to enough to be able to
describe physics at the scale of the b quark to high precision using
the next-to-leading terms in the expansion. This makes HQET an
extremely useful tool to incorporate b quarks in lattice simulations

In this chapter we will sketch the derivation of the HOET La-
grangian, describe its symmetries and explain the implications on
physical observables. Afterwards we will formulate the theory on the
lattice and describe our strategy to renormalize the effective theory
via a non-perturbative finite-volume matching with QCD.

7.1 CONTINUUM HOQET

Sometimes, instead of trying to describe all features of a theory, it
makes sense to focus on specific properties and to describe these by an
effective theory which is valid in a well defined limit of the full theory.
In our case, we are not able to describe the low energy properties of
QCD while taking into account the effects of heavy quarks.

It is known that the impact of very heavy particles is small or even
irrelevant at low energies. Fermi's theory of the Weak interactions
[189] is an example for an effective theory which works very well if
we restrict ourselves to the description of low energy processes [190].
The structure of the weak interaction cannot be resolved, if energies at
the scale of hadrons are considered.

In the construction of an effective theory for heavy quarks, three
steps are necessary [191]. We have to integrate out the heavy degrees
of freedom in the generating functional of the full theory which is
possible because the heavy particles do not appear as external states
at low energies. The result of this procedure is a Lagrangian which
is non-local because of the virtual particles of the full theory which
are able to travel over a distance oc 1/my,. Therefore, an expansion
of the effective theory in 1/my, is done to disentangle short and long
distance effects. In the last step which is called matching, we have
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to renormalize the coefficients of the effective theory in order to
incorporate the quantum corrections of the full theory.

Before we look at the implementation of HQET and the non-pertur-
bative matching procedure on the lattice, we investigate the effective
theory and its properties in the continuum.

7.1.1  Derivation of the HQET Lagrangian

We summarize the basic steps of the derivation of the HQET Lagrange
density based on [192-194]. We start with the QCD Lagrangian with
a single heavy quark (Q and an unspecified number of light quarks.
The heavy quark, although based on the same theoretical footing,
differs from the light quarks just by its mass which we consider to
be significantly larger than Agcp. We now want to separate the light
from the heavy degree of freedoms and to reflect this separation in
the Lagrange density.

We start with the standard QCD Lagrangian and split it into a heavy
and a light part to obtain

Lacp = Lheavy + Liight = QP — mq) Q + Lyighe - (7.1)

Lheavy contains the heavy quark fields Q and Q, the mass of the
heavy quark mg and the standard covariant derivative. From now on,
we will not consider Lj;g, anymore which is just the standard QCD
Lagrange density for the light quarks.

We proceed by splitting up the heavy quark field into an up-
per/large component ¢ and a lower/small component x via

1
¢, = E“ +}‘}Q = P‘+Q:r Yo, = &, (7.2)
1
Xv=5(1-¥Q=P_Q, ¥xv=—Xv (7-3)
where we introduced the projection operators P with the properties
1
Py =501 +y), PiPy =Py,
P,P_ =P P, =0, P,+P_=1. (7.4)

These project onto the hadron’s velocity v. The hadron’s momentum
can be written as

Pg = mQv* + k¥, (7.5)

where the residual momentum k is much smaller than the heavy quark
mass mg and we normalize the velocity as

veov=1. (7.6)

In this way, we can consider the heavy quark as almost static in the
reference frame of the hadron. All interactions with light quarks are
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small compared to the heavy quark mass and the heavy quark is
almost on-shell.

We now decompose the covariant derivative into a time (||) and a
spatial (L) component,

D* =D} +Df, (7:7)

Dﬁ‘ =vH(v-D), DY = (g"¥ —v"v)D,,.

In the next step we need the relations

(D=0 (7.8)

and

Piyp =tvu+vuPx (7-9)

which can be derived using the definition of the projectors and the
velocity of the heavy quark.

We can now rewrite the heavy part of the Lagrangian and separate
the small and large components. Since mixed terms vanish, we end
up with

Cheary = By +30) (D) +iD, —mg) &y +x)

= I:T}u {][‘J . D] — I'I'I,Q) d., + &]vin_X‘u
—Xv (i(v- D)+ mq) Xv + XiD |, v (7.10)

In order to decompose the momentum of the heavy quark into a large
and a residual piece, we multiply the quark fields with a phase factor,

'¢'\.:l — e—imq f\.:hxllhvt Xo = e_jmq f*.,:u}l’.:le|I {?.11}
and with

10"y (x) = e ™R (mgv 4 i3 )h, (7.12)

04y (x) = e ™V (magyt 4 id%)H, (7.13)
and

&]viDJ_Xv = ﬁ-'v]DJ_Hv {?14}

Xvil b, = H,iD | h, (7.15)

we arrive at

Lheavy = Myi(v-D)h, — A, (i(v- D)+ 2mg) H,
+hyil | Hy + HyiD By (7.16)

From this representation of the Lagrange density we can see that the
field H,, corresponds to the mass 2mg but h,, is massless. The mixed
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terms couple the heavy and the light degrees of freedom and describe
the pair creation or annihilation of heavy quarks and antiquarks.

In the next step, we like to integrate out the heavy degrees of
freedom. In this sketch of the derivation we do this to tree-level, i.e.,
we solve the equations of motion in order to express H,, in terms of
h,. From the field equation

(i(v-D)+2mg)H, =i  h, (7.17)
we derive
1 .
M= gD +2mq}‘wlh‘“ (7-18)

and use this relation to obtain

-'E'I'Ean.-}r = ﬁv I:l{"’;I : D]‘ + ]wJ_ IDJ_:l h, . {?19}

(i(v- D) +2mq)

As we can see from eq. (7.19), a non-local term is present in the La-
grangian as the result of integrating out the heavy degrees of freedom.
Since (v-D) < 2Zmg holds, we can use the expansion

1 1 o0 —i(v-D)\™

in the Lagrangian in eq. (7.19) and write

_ifv-D)\"™
S ) puh.
(7.21)

We call the first term of this Lagrangian the static part and the accuracy
of the effective theory increases with the number of terms considered

Cromy = iy D= R0, Y (
n=0

in the expansion in the second term. In our work, we will consider
the static theory, as well as the theory including the leading term of
the expansion in 1/(2mg). Therefore we explicitly write out the first
two terms,

Lheavy = L% 4 £ 10O m{ (7.22)
Mg

_— 1T - Agep
= hvl[\' . D]h-v — mh‘uDJ_Dlhv . +O ( m% ) ¥

(7.23)

and with a few lines of algebra, we can express the leading correction
L™ by [195],

1 - 1 .
Mm__ ' v o2 (9 wv
£ = 5 R iDL hy — Ry (JowP ) G29)

= — Win Okin — WspinOspin - (7.25)
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At the classical level, the pre-factors are given by wyy = Wgpin =
1/(2mg) but at the quantum level, both coefficients receive corrections.
In Euclidean space and in the rest frame of the heavy quark, we write

-‘E'hea\.l}r = ﬁ-vDﬂh-v — wkmﬂkm — wS'meSpm ’ {?26}
with the kinetic and spin operators

E}kj.n = ﬁvnzhu E'Spin = ﬁ-v'gﬁ . E‘h-v: c-B= _Tlﬁii FIJ . {?2?}
The kinetic operator describes the kinetic energy from the off-shell
residual motion of the heavy quark. The spin term describes the
interaction of the gluon field with the spin of the heavy quark. It
contains the non-Abelian analogue of the Pauli term. Based on this
Lagrangian, we can now discuss the properties of the effective theory,
before we formulate it on the lattice.

7.1.2 Heavy Quark Symmetry

The static Lagrangian has more symmetries as the Lagrange density of
QCD and they are subsumed under the term heavy quark symmetry
[191]. We see that no Dirac matrices are present in L5 and therefore
interactions of the heavy quark with gluons leave its spin unchanged
[196]. The Lagrangian is invariant under the SU(2) symmetry group
of spin rotations. Since the heavy quark mass is not present in the
static Lagrangian, it is also invariant under rotations in the flavor
space of N}, heavy quark flavors [197]. Therefore, the symmetry group
of this combined spin-flavor symmetry is SU(2Ny). In the limit of
infinitely heavy quarks, the strong interaction becomes independent
of the quark’s mass and spin. It is important to note that these
symmetries are symmetries of the effective theory and not of the QCD
Lagrangian, even when the limit of heavy quarks is considered. The
terms in £'!) break heavy quark symmetry explicitly. Therefore, we
expect symmetry violations to increase when the heavy quark mass
decreases.

Heavy quark symmetry has implications on the spectroscopy of
states containing heavy quarks. We can expand the mass of a meson
with one heavy quark in the inverse heavy quark mass and obtain

[198]

A Am?
TI'LH=1TI.Q—|- +21TLQ

+0(1/m), (7.28)

where all contributions without dependence on the heavy quark are
collected in A [199]. From the factor of 1/ mq, we see that all contri-
butions stemming from the next-to-leading order terms are collected
in Am? . We can express this term by [199, 200]

Am? = Ay +2 [J[J+1]—%] Az, (7.29)
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where | is the total spin of the meson. The term A; parametrizes the
kinetic energy of the heavy quark inside the meson and the second
term describes the interaction of the gluon field with the heavy quark
spin [194]. The values of A, Ay and A, are properties of the light
constituents of the meson and therefore independent of the heavy
quark mass. We see that the spin interaction induces a hyperfine
splitting of states with same light quark spin j but different total
angular momentum | = j+ % which are degenerate in the limit of
infinitely heavy quarks.

The symmetries of HQET allow a so-called residual mass term dm
for the heavy quark which is of order O(Agcp). If it is not included in
the static Lagrangian, it will be induced by quantum corrections [199].
If &m = 0 is chosen the heavy quark mass coincides with the pole
mass in perturbation theory. From this choice, the binding energy

A= lim (mp—mg) (7.30)

can be defined. If dm # 0 is chosen, the binding energy changes such
that the physical observables remain unchanged under this change.

7.2 HOQET ON THE LATTICE

Having discussed the derivation of the continuum Lagrangian of
HQET and the symmetry properties of the effective theory, we now
turn to the regularization on the lattice. The two light quarks and the
strange quark are unaffected by this discussion and they are still de-
scribed by the actions defined in chapter 2. Pedagogical introductions
concerning the implementation of HQET on the lattice can be found
in [41, 201, 202] and we have used them as basis for the discussion in
this section.

7.2.1  Lattice action

If we choose the rest frame of the B-meson as our reference frame, the
static part of the Lagrangian is given by the first term in eq. (7.26).
If we name the quark fields by 1, 1, to match the notation of the
literature and replace the covariant derivative by the lattice version of
the backward covariant derivative given by

500 = — [$(x) — U (x— ad)p(x— ad)] 7.31)

we arrive at the so-called Eichten-Hill action [195, 203, 204]. In this ac-
tion, no doublers are present and the leading discretization effects are
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of order O(a?) [205]. We can express the lattice action corresponding
to eq. (7.26) via [206]

Suger=a*}_ {Lm{xl +y L[ﬂm} , with (732)
x w=1

Latat = Pu(x) V5 +dmlYn, (7-33)

L=y wMM (), (734)

where we have included a mass counter-term dm which has mass-di-
mension one. This counter-term is needed to cancel a linear divergence
in the self-energy of the static quark [204]. In our calculations we will
set it to zero in the lattice action and absorb its effect in the redefinition
of the b-quark mass. The 1/m corrections £ () are given by the second
and third term of eq. (7.26) with discretized versions of the products
o-B and D2

In practice, we will replace the naive lattice derivative by the more
general version

() = T [0x) — Wi (x— adlblx—a0)] 7:35)

Here W, is a time-like transporter which differs from U since it is
based on a HYP smeared gauge field. In [185] it has been shown that
an exponentially improved statistical precision can be gained by this
choice of the derivative. In our work, we will consider HYP1 and
HYP2 smearing as introduced in section 6.5.2.

The heavy quark propagator to static order can be obtained from
the solution of [202]

DoGh[X—:H] = E‘{x.ry}P+ . {?36}

Since the covariant derivative is given in terms of gauge fields, no
inversion of the Dirac matrix is necessary and we can compute the
propagator analytically via

Ghl(x,y) = B(x0 —y0)8 (x — y)P(y, x) P, (7.37)
In this equation we have used the Wilson line from x to y which is
defined by
Plx,x)=1,
Plx, x+NA) = Wa(x)Wyulx+afi) --- Wy (x+ Nafi). (7.38)
We can see from this definition that the static heavy quark propagates
only forward in time. This is expected since we choose the rest frame

of the B-meson as reference frame. Accordingly, a heavy anti-quark
propagates backward in time.
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7.2.2  Expectation values at next-to-leading order

We cannot define the path integral from the HQET action at order
1/m since the action contains the dimension five operators Oy, and
Ogpin- The path integral is not renormalizable when these operators are
included in the action. To circumvent this issue, we take an approach
that is similar to Symanzik's idea of an effective lattice theory that we
have used in the context of improved lattice actions.

We can expand the Boltzmann factor in the path integral in powers
of the inverse heavy quark mass 1/my,

o | Stignt+Snger) _ exp {— (S|ight+a4zﬁstat[‘-‘f-])}
« |:I _a4§L{l]{x]+Eﬂ4 (gﬁf”[x])

—a* Y LD (x)+.. ] (7.39)

and see that only one term in the expansion contributes at order
O(1/my,). Based on this expansion we can determine the expectation
value of an operator O via

() ~ lzfﬂjq: 0 (1 +a* ¥ [wiinOgan(x)

+ wspmﬂsmn[ﬂ]) e [ Stght-+Siiger)
= () gat + Wigna® Z(Dﬂm}sm + Wepina® Z (00pin) stat -

(7-40)

The expectation value {.)stat is determined from the path integral
including the light action and the static part of the heavy Lagrangian.
As shorthand notation for eq. (7.40) we will write

(0) = (O)stat + Wiin {O)xin + Wspin(O)spin - (7.41)

At this point we like to note that the O(a) improvement of the
action, as we have done it in chapter 2 for the light part of the action,
is crucial for a determination of observables at next-to-leading order
of HQET. Since terms of Ofa) and terms of O[1/my) are both of mass
dimension minus one they will mix on the lattice. If operators of O(a)
are present, we cannot disentangle their contributions from those of
the terms belonging to O(1/my,). With the improved relativistic action
as we have introduced it in chapter 2 and the static part of the HQET
Lagrangian which has leading discretization effects of Of a?), we are
in the position to include next-to-leading terms of HQET. The leading
corrections present in our theory are then of order O(a?, a/my,).
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7-3 NON-FPERTUREBATIVE MATCHING WITH QCD

We have introduced the matching parameters wy;, and wspin in the
classical derivation of the HQET Lagrangian. At the quantum level,
these parameters receive corrections and we have to properly renor-
malized them to take into account all loop effects of the dynamical
theory. On the lattice, the HQET parameters have an explicit depen-
dence on the lattice spacing and the heavy quark mass.

A perturbative determination of the matching coefficients can only
be done up to some order gﬁl and the mixing of operators differing in
dimensions by p translates into coefficients diverging as a™F. After
the perturbative determination of a coefficient c) we are left with the
remainder [206]

Acy, ~ oV a P ~ aP In(aA)] "1 °30 oo (7-42)

Therefore, the continuum limit of the discretized theory does not exist
if the matching coefficients are determined perturbatively.

7.3-1  Matching in finite volume

We will renormalize the HQET parameters by the requirement that
the effective theory describes the same physics as QCD including the
relativistic heavy quark. For each free parameter of the effective theory
we have to define a so-called matching condition. In principle we could
determine physical observables and match them with experimental
input. With this approach the predictive power of the effective theory
is quickly lost, even at leading order, since we do not only have to
fix the parameters of the Lagrangian, but also the renormalization
parameters of composite operators. Therefore, we have to take a
different path.

We like to fix the HQET parameters by results gained from sim-
ulations of full QCD on the lattice. If we tried to do this in large
volume, we had the same problems which led to the consideration of
the effective theory: We are not able to compute large volume quanti-
ties involving bottom quarks since we are not able to choose lattice
spacings that are small enough to sufficiently suppress discretization
effects.

As pioneered in [206], this unpleasant situation can be resolved if
we consider observables defined in small volumes, provided that both
QCD and HQET are well-defined in this volume and the parameters
in the Lagrangians are volume-independent.

We define the matching equations to fix HQET parameters IIIE}QET
in finite volume to be

@' (L, M, a) = FP(L, M, 0) (7-43)
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with
®FP(L, M, 0) = lim ®FP(L, M, a), (7-44)
a—+

ie., we fix the parameters of HQET at finite lattice spacing and in finite
volume by the continuum limit of the corresponding QCD observables
in the same volume. We have made the dependence of the matching
parameters on the matching volume L, the renormalized heavy quark
mass M and the lattice spacing a explicit.

The simulations to perform this matching have to satisfy some
constraints. The lattice spacing of the simulations which are used to
determine the continuum limit in eq. (7.44) has to be small enough to
ensure a & my, to control all discretization effects. At the same time,
the spatial volume L? has to be large enough to allow for a reliable
expansion in 1/m. This leads to the constraint 1/L < mp. Due to
the limitation in computing resources, we are limited to lattices with
L/a = O[10). The combination of these constraints leads to the choice
of a volume of about L = 0.5fm and lattice spacings of the QCD
ensembles in the range 0.02fm > a > 0.008 fm.

In contrast to the matching observables, physical observables have to
be computed in large volume and the main objective of the matching
procedure is to determine the HQET parameters in the region of
large volume and lattice spacings in the region 0.1 fm > a > 0.04 fm.
Therefore, we will use a step scaling of the parameters from the
matching region to the region of large volume simulations.

Before we detail the process of the matching in finite volume and the
step scaling procedure we like to mention how to constrain the light
parameters of the theory. Since the action of the light quarks remains
the same when switching from QCD to HQET, we can trivially fulfill
the matching condition of eq. (7.43) for the light degrees of freedom.
We will fix the volume of the lattices and the light quark masses from
the conditions

O¥N(L) = g%(L) = const, and ®YFT(L) = Lmy = 0.
(7.45)

These parameters are independent of the heavy quark mass and by
fixing them we obtain parameter triples (L/a, B, k1) which allow us to
take the continuum limit.

7.3.2 Determination of the matching parameters

We now explain the full matching procedure along the lines of [207]
and figure 7.1 which is taken from this reference. We denote the
spatial extent of the matching volume by [y and obtain the matching
equation

@11, M, a) = @P (L1, M,0). (7.46)
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Figure 7.1: ALPHA's strategy for B-physics via a non-perturbative finite-
volume matching of QCD and HQET. Taken from [207].

As a first step, we have to set up ensembles with small lattice spac-
ings to obtain the continuum limit of the matching observables with
relativistic heavy quarks d)iQCD[L1, M, 0), as depicted as 51 in fig. 7.1.

In the next step, we determine the corresponding observables in the
effective theory on a set of ensembles with the same spatial extent L,
but coarse lattice spacings. We formally split the HQET observables
into two parts

@M, a) =n(L, a) + d(L, a)w(M,a) + O(1/mi)  (7.47)

such that the dependence on the heavy quark mass M is contained
in the factor w(M, a) and we include effects of order O[1/my,). Based
on this representation, we can solve eq. (7.46) to obtain the matching
parameters in the matching volume L which we call @ from

®(M, a) = ¢35, (L1, a) [@FP(L;, M,0) —ns,(Ly,a)] . (7.48)

With this procedure, we have combined steps 51 and $> from 7.1 to
determine the matching parameters in finite volume.

In the next step 53, we determine the matching parameters on
lattices with a spatial extent L, = 2L, via a step scaling procedure. We
therefore have to generate another set of ensembles. These ensembles
have the same bare parameters as the HQET ensembles in the matching
volume but twice the number of lattice points in each direction. Since
the lattice spacing remains the same, the physical extent is scaled by a
factor of two.
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The HQET parameters in L, are determined via
5, (L2, M, 0) = lim [ns, (L2, @) + ¢s, (L2, a)®(M, a)} (7.49)

using 1s;(L2,a) and ¢s,(L2,a) determined on the ensembles with
L = L; and @(M, a) from the matching volume. Since the range of
lattice spacings in this step has only a small overlap with the lattice
spacings of the large-volume CLS simulations, we have to include
another step in the procedure.

The final matching parameters w; for the renormalization in large
volume (S5) are determined using additional simulations in the vol-
ume [3 but with coarser lattice spacings than in 53. This set of
ensembles is called 54 in figure 7.1. The resolutions of the ensem-
bles in this set cover the range of resolutions of the large-volume
simulations.

The final matching parameters for the renormalization of the effec-
tive theory in large volume are then determined via

w(M, @) = 45 (Ly, ) [OLFT (L5, M,0) —ns, Ly, @) . (7:50)

We indicate explicitly by the subscript s, that q:gj (Lz,a)andns,(Lz, a)
have been determined at the resolutions of 55 which are different from
the ones in eq. (7.49).

Depending on the chosen set of matching observables, the matching
equations can be defined in a different way to improve the precision of
the calculation. Therefore, the strategy described above only gives an
introduction in the general setup of the matching. A full description
of the strategy as it is used in the two flavor theory is given in [208].

The setup of the line of constant physics and the generation of the
four groups of ensembles is independent of the specific choice of the
matching observables. Since the tuning towards the LCP and the
generation of the O(25) ensembles is the main part of this work, we
do not go into more detail concerning the matching conditions.

7.3.3 Quark mass dependence

As indicated in the matching condition in eq. (7.43), the parameters of
the effective theory have an explicit dependence on the mass of the
heavy quark in the QCD simulations. To map out this dependence
and to be able to interpolate the matching parameters to the point
where the heavy quark mass has the physical value of the bottom
quark mass, we scan a range of renormalized quark masses around
the bottom quark mass.

We will parametrize the dependence in terms of the dimensionless
quantity z = 1M, where L, is spatial extent of the matching volume
and M is the Renormalization Group Invariant (RGI) mass. In order
to fix the hopping parameters for the determination of the matching
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parameters at fixed renormalized quark mass across all ensembles in
the matching volume, we will use eq. (4.17) in a situation with heavy
valence and massless sea quarks. Therefore, we have to determine the
coefficients Z, and by, in the coupling region of the matching. This
task will be done in chapter 12.

We can employ the value of My, = 6.874(66) GeV from [209] based
on [210] for N = 24 1 flavor QCD to get an estimate for z in the
matching region. With the conversion factor 197.326980 MeV fm from
[2] we can convert the RGI value to M, = 34.8(34) fm~' and with
Ly = 0.5 fm we determine z = 17.4 for the RGI bottom quark mass in
the matching volume.

Based on this argument, we will determine the matching param-
eters for a range of values of z around 17.4 and parametrize them
in z. A dedicated measurement in large volume will allow us to de-
termine the bottom quark mass on the CLS ensembles based on our
non-perturbative matching a posteriori.

74 HOQET OBSERVABLES

Whereas the matching is done in finite volume, the physical observ-
ables which we want to determine in the effective theory, will be
evaluated on large-volume ensembles. In the context of this work, we
began to measure some of the correlation functions to determine basic
observables as the mass of the bottom quark and the B-meson decay
constant. Both observables can only be determined properly when the
measurements in the effective theory are combined with the HQET
parameters obtained in the matching procedure. Since both observ-
ables are based on the axial current, we introduce its representation in
the effective theory.

7.4.1 The axial current in HQET

As stated in the last section, renormalization, iInPrﬂvement and the
inclusion of next-to-leading terms in the HQET expansion are closely
intertwined. The time component of the renormalized and improved

axial current in HQET is given by [205, 211]
AGYT = ZyOT (1 b amy) (A5 + acy"5AG" + acsATY)
(7.51)

where the coefficients E;}QET, biat, c_L” and ::_L‘Zj depend on the cou-
pling but not on the quark mass. The currents are given by

A (x) = Wq(x)yoysn(x) (7.52)
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and
5AS () = Byx) 375 ve (V5 — T8 () 753)
SAZ (x) = Bgx)3v5i(VE + TEn () 7549

where the light quark fields are labeled by the subscript q. The
symmetrized spatial derivatives are given by
1 1
V= 2(Vi+ Vi) V=34V, @sm)

The current EAE{?'} vanishes for correlation functions defined at van-
ishing momentum. Therefore we do not have to consider it in the
determination of the b quark mass and decay constants.

7.4.2 The B meson mass

The correlation function corresponding to the axial current is now

given by [201]
2
Caa = e m=x0a3 (ZOT) (1 4 bfetam,)?

x [CHR0x0) + i) C3A (x0) + wkinCR (x0) + wepinCEA (o)

(7.56)
with the correlation functions
Ciilxo) = a® ¥ (AT (x) (AF(0))star (7.57)
Ckalxo) = a® ¥ (AT (x) (AF(0)) )in (7.58)
CPMxo) = a® Y (A5 (x) (AF(0)) ")spin (7.59)
Cifta (o) = @ Y (A3#0x) (A" 0)) e
+a® Y (AT () (AFH(0)) ot - (7.60)

The exponential factor is included to compensate for a power diver-
gence. From this correlation function, we can determine the B-meson
mass via

mg = — lim log Ca(t) = Mpare + E + wiin B + wepin P
t—oo

(7.61)
with the HQET matrix elements
. dp+ 0%
B = — lim == log [CRA(1)] (7.62)
- ) Ao + 0% C'I,-"m{t]l ) )
EV/m - 0T "0 AA 1/m € [spinkin].  (7.63)

t—oo 2 C;T{t] !
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The contribution of C%‘;‘A vanishes for the meson mass and the bare
mass

Mpare = My, + &M (7.64)

is given by the b quark mass and a counter term. To determine the
B-meson mass, we therefore have to calculate mp.e as one of the
matching parameters.

7-4.3 The GEVPin HQET

As already indicated in section 6.2, we can use the GEVP method to
suppress excited state contributions in context of large-volume HQET
observables. The method to include terms of next-to-leading order
has been developed in [147]. In the derivation, the 1/m corrections are
considered as small perturbations of the static correlation functions.

Instead of simple correlation functions, we now use matrices of
correlation functions, based on N different interpolating operators, as
given in eq. (6.9), and solve the GEVP (6.13) for the static correlation
matrix

CH (v, 1) = ASH(t, 1) O™ (10 VS (1, 1o) - (7.65)

The genera].ized eigemfalues and eigenvectors from this solution can
then be used to compute the energy levels via

Eeffstat(t, 1) = —% (log [A™(t+a, to)] —log [AT*(t, to)])

(7.66)

A ™Mt t0) AN ™(t+ a,to) (7.67)
ASEt(L, tg) | ASRE(t+ q to) 7-67

EST/™ (g, 10) =

for 1/m £ [spin, kin] and the ratio of eigenvalues is given by

Ax ™ (t, to)
Astt(t t5)
(7.68)

Based on these formulas for the effective energies, we are able to
compute the B meson mass with reduced systematic errors compared

to egs. (7.62-7.63).
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THE LINE OF CONSTANT PHYSICS FOR A
NON-PERTURBATIVE MATCHING OF HQET
AND QCD






SIMULATIONS ALONG A LINE OF CONSTANT
PHYSICS

In section 7.3 we have described our matching strategy and specified
how we translate the finite-volume results to parameters of the ef-
fective theory in large volume, where we like to compute physical
observables.

In this chapter, we explain how we set up the line of constant
physics and how the tuning of the bare parameters of the theory has
been performed. We will also discuss results concerning the step
scaling functions for the renormalized coupling and the renormalized
quark mass and compare them with the results from [45, 64]. We
will focus on the physics in this chapter and discuss the technical and
algorithmic challenges in the ensemble generation in chapter 9.

We perform the finite-volume simulations in the Schrodinger func-
tional and use the tree-level Symanzik improved gauge action. Rela-
tivistic sea and valence quarks are represented via clover improved
Wilson quarks. All details concerning the setup of simulations in the
Schridinger functional and the discretized action have been given in
the chapters 2 and 3. In all simulations connected to the matching we
set ¢y and &; to their one-loop values according to egs. (3.18-3.25) and
the boundary 0 angles to 0.5. Therefore, our setup matches the one

given in [45].
8.1 THE LINE OF CONSTANT FPHYSICS: QCD

The line of constant physics in finite volume is defined by the volume,
the masses of the light quarks and the mass of the heavy quark. Since
heavy quarks are only included as valence quarks, we do not have to
consider this part of the LCP definition at the level of the ensemble
generation.

To simulate relativistic heavy quarks with our computing resources,
we aim at a lattice extent of ~ 0.5fm. In line with our strategy of
mass-independent renormalization schemes, we will include three
massless quark flavors in our simulations. Therefore, the definition of
the light part of the line of constant physics is given by

gee(l1/2) =g, m=0 (8.1)

where the gradient flow coupling used to fix the spatial extent is
defined in eq. (6.46) and m; denotes the mass of the three mass-de-
generate quark flavors.

As it can be seen from eq. (8.1), we do not define our line of constant
physics in the matching volume L but in the volume Ly = L4 /2. This
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is done for technical reasons. We will fix the exact value of g2 by the
simulation with the finest resolution, i.e., the lattice with the largest
value of L/a. For all coarser lattice spacings, we will have to do a
series of simulations in order to tune the bare parameters such that
eq. (8.1) is fulfilled on every ensemble.

If the tuning was done in the matching volume, we would have
to simulate multiple ensembles with up to 48 lattice points in all
four dimensions. This is not feasible with our computing resources.
Therefore, we fix the line of constant physics in the volume L;. In
the matching volume, the LCP will be violated by cut-off effects of
order O(a?), but we will recover a correct result in the continuum
limit which is taken before the matching is done, cf. eq. (7.43).

In the tuning volume L;, we generate ensembles at five different
resolutions corresponding to Lp/a € {12, 16, 20, 24, 32]. We will choose
T =L for all ensembles such that the volume is given by V = Lg3. With
this setup we are able to perform a reliable continuum extrapolation
on five lattices in the volume L = 2Ly. We will fix g2 based on the
measured value on the ensemble with Ly/a = 32 to save the cost for
any tuning at this most expensive ensemble in L.

8.1.1  The running of the coupling

We like to achieve L = (.25 fm, but the exact value is irrelevant as long
as the physical extent remains constant on all ensembles. An initial
guess for the bare coupling gg for our simulation with Ly = 32a can
be inferred from the investigations in [45, 212]. There, the evolution of
the renormalized coupling in the range L € [0.05 fm, 1.0 fm] has been
determined using a large set of Schridinger functional ensembles with
the same setup as we have described it in chapter 3.

The scale at the upper end of this range is denoted by 1/L.g and
since Lj.q =~ 1fm, we know that we can reach L =~ 0.25fm by two
steps in a step scaling, where the lattice extent is divided by two. The
corresponding step scaling function o(u) [213] is given by

ofu) = g>(2L)| (8.2)

§2(L)=u

and can be considered as discrete version of the renormalization group
p function [45]. From this p function o(u) is implicitly defined via

Vo) dx
log(2) = —
og(2) Lq B

with

(8.3)

B@) =-L29 ~ —bog? —big®+.. (8.4)
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where the two leading coefficients are independent of the renormal-
ization scheme and given by

e — 1]—%”{ by — 102—%7\& .
H—WI 1—W- (8.5)

This expansion of the i function in the coupling is only applicable in
the perturbative regime of QCD. Using the non-perturbative results
from [45], the running can be done in the strongly-coupled region of
our simulations.

When o(u) is know, we are able to perform the inverse step scaling
from Lj,q4 down to Ly. In [45] the non-perturbative § function is
paramefrized by a polynomial via

3

Blg) = —P[‘qu] P(g®) = po+p1a” +p2g* +... (8.6)

and the mrresponding form of the step 5ca]ing function reads

oo [V e (VT pd)
o8 "‘Lq B[xl_Lq 3
_ _pof 1 T p olu)
=5 o) * e
£ 3 Pt onu) un. 7)

The parameters pg, p1 and p; have been determined in [45] and their
values and covariances are given in egs. (4.15—4.16) of that reference.

Starting from Qép'[l—had] = 11.31, we can perform two steps of the
inverse step scaling function to arrive at

o~ (07" (gr(Lhaa))) = 3.95(18), (8.8)

for the approximate target of the coupling in Lp.

8.1.2 Interpolation of the coupling at fixed L/a

In tables 1 and 8 of [45] the gradient flow couplings which have
been determined from a large set of ensembles that was used for the
calculation of the step scaling function are listed. We can employ these
results to perform interpolations at fixed L /a to determine the bare
coupling g3 which results in a fixed renormalized coupling §Z;. The
available data can be extended by the numbers in table IV of [214].

A similar procedure has been performed in [45]. As described in
A2 of that reference, a Padé ansatz has been used to fit

1

L 8.
VB = e ©.9)

The final fits in [45]

are polynomials of
degree three and four.
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Figure 8.1: Interpolation of gép in B for Ly/a = 12 similar to fig. 11 of [45].
Since we performed a number of simulations around B = 4.3, sin-
gle data points overlap in this region. We show the interpolating
curve by the red band and our goal on the precision by the gray
curve. The dashed line denotes gZ.

and we can use the same approach to determine a value of § for the
tentative goal from eq. (8.8). In our interpolations, we did not see a
benefit in using a Padé ansatz versus a quadratic ansatz in a region
localized around the target value. Since the error estimation from a
linear fit is more reliable and the fit is more likely to converge, we
use a quadratic interpolation. Using the available data, we arrive at
B = 4.9 for our simulation at Ly/a = 32

The value of g? is determined from the measured gradient flow
coupling on the ensemble with Lp/a = 32 and p = 4.9. Based on
approximately 5000 configurations which have been separated by 20
molecular dynamics units, we determine the target value

gip(Lo/a = 32) = 3.949(11), — g% =3.949. (8.10)

Based on this target, we generate the ensembles with smaller lattices.

For Ly/a € {12, 16} we employ the interpolation of v(f) to determine
a first guess for the bare coupling g5 which is needed to achieve
gep(Lo/a) = g2. The data points for the interpolation and the curve
from a quadratic fit ansatz for Ly/a = 12 are shown in figure 8.1.

In both cases, we are not able to match g? to the required precision
with the first ensemble. After we have generated enough statistics
to safely determine the gradient flow coupling, we perform a new
interpolation including the newly determined data point.

We tabulate all ensembles generated in the tuning procedure in
table B.1. This table includes the bare parameters of the action, the
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Figure 8.2: Interpolation of B for Q%F = 3.949 as determined from the interpo-
lations at fixed Lp/a to Ly/a = 20. The blue star depicts the result
for B at Lp/a = 20 as determined from the tuning procedure. It
is not included interpolation.

number of replica, the separation of the ensembles in Monte Carlo
time, the gradient flow coupling and the mass of the sea quarks. In
some cases, the mass of the sea quark has not been determined, since
it had been clear from the coupling that another simulation at the
same lattice spacing had to be performed.

For the tuning at L /a = 24, we use the information provided in [45].
As it is the case for Ly /a = 32, the ensembles in the interpolation differ
from the LCP by cut-off effects, since they have been generated as
step scaling ensembles from ensembles with L/a = 12. Nevertheless,
using the existing data together with our own tuning runs enables us
to perform a reliable interpolation.

For Lo/a = 20, no data points for an interpolation have been avail-
able in the target region. Therefore, we follow a two-step procedure
in this case. First, we perform the interpolations in Lo/a € {12, 16, 24}
and determine the corresponding values of (5 at these lattice spacings.
In the second step we combine the values of B with the pair (32,4.9)
and perform a quadratic interpolation of § to Ly/a = 20. After the
generation of two ensembles with Lp/a = 20 in the target region, the
measured values of g% have been used to perform local interpola-
tions. We show the interpolation in Ly /a together with the value for
f obtained on the final ensemble in fig. 8.2.
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Figure 8.3: Gradient flow couplings at the five different lattice spacings in Lo
after the tuning procedure together with the target gf—.

8.1.3 Target precision

As it can be seen from table B.1, we have generated four to six ensem-
bles for every lattice spacing. The number of runs has been dictated
by the target precision of the gradient flow coupling which we will
derive in this section.

Based on the work in the two-flavor theory [215], we like to achieve
a tuning that is more precise by about a factor of three. This amounts
to a relative precision of

AL = 0.01. (8.11)
Lo

Since the tuning is done via the gradient flow coupling, we have to
translate this target into a relative precision of the coupling. If we
expand g?(L+AL) and use eq. (8.4) for the derivative of g with respect
to L, we can derive the relation

AL Ag? —g | Ag?
s N =[ ] = (8.12)
L 2gB(g) [2B(3)] g
which connects the relative error of the cnupl'mg with the relative
error of the lattice extent. Using the mn—perhlrbative determination

of the § function from [45], we can determine the target precision of
the coupling to be

Ag? g? AL
=T (8.13)
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Figure 8.4: Extrapolation of the critical hopping parameters obtained from
[216] for B = 4.7165 based on different fit intervals. The dashed
line denotes L/a = 24.

and at the target coupling g2 we arrive at

- =2
% = 0.0047, % = 0.0012, ﬂgz = 0.0187. (8.14)

From the values in table B.1 we can see that we have surpassed
this goal on the relative precision for the simulation at Lp/a = 32,
where we arrive at a relative error of AL/L = 0.6%. For all other lattice
spacings we have reached an even higher precision. In figure 8.3, we
show the couplings determined on all five ensembles. It is apparent
that they have an excellent overlap with each other and g2.

8.1.4 Tuning towards the critical hopping parameter

The line of constant physics in eq. (8.1) consists of two requirements
and to fulfill both, we have to tune the bare parameters of the La-
grange density. Whereas the tuning of f has been described in the
former section, we will now describe how we have tuned the sea quark
hopping parameter k; such that the three sea quarks are massless. We
note in passing that both tuning procedures have to be performed
simultaneously since there is a dependence of the gradient flow cou-
pling on the sea quark masses and the critical hopping parameter k.
depends on f.

The determination of the critical hopping parameter in dependence
of g% and L/a has been performed in [216] for L/a € {8,10,12, 16} and
the resulting interpolation formulae have been provided in [45]. The
parametrization given by eq. (A.3) and table 7 of [45] guarantee the
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condition Lmy < 0.005 to hold. We will use this criterion as boundary
for the tuning, i.e., we will consider quarks as massless if they fulfill
Lmy < 0.005. This bound is more restrictive by an order of magnitude
compared to the two-flavor simulations in [215].

Concerning the interpolation formulas of [45] we have to keep
in mind one important point. In [45, 216] the quark mass has been
defined as average over all configurations, regardless of the topological
sector. In our work, we will consider the quark masses after the
projection to the sector of vanishing topological charge, as defined in
eg. (6.50). Since the topological charge is zero for all our configurations
in Lp, this detail is not important for the discussion in this section but
it will become important for larger physical volumes.

For our simulations with L/a € {12, 16} we are able to employ the
interpolation formula from [45] to determine k; = k. For the other
ensembles no information on ko is available. To determine a first
guess for k. at L/a € {20,24, 32}, we use the information from the
interpolation formulas for smaller values of L /a at the corresponding
value of . As shown in figure 8.4, we use these values of the critical
hopping parameter for smaller values of [ /a to perform a linear
extrapolation in (a/ L)2. To estimate systematic effects, we consider
three fits with four, three and two points and use the extrapolation
based on two points as final result. In the exemplary determination
of the critical hopping parameter for (Lo/a = 24, = 4.7165), the
extrapolations using the two and three leftmost points give the same
result.

In our tuning procedure, we have made the experience that the
value determined from the extrapolation is determined well enough
to achieve a sea quark mass close to the bound of Lm; < 0.005. In
many cases, a shift of O(2-10~¢) in the hopping parameter leads
to a sea quark mass that is zero within errors. We have also tried
extrapolations in (a/ L)? which is the leading behavior in perturbation
theory [62]. In many cases, this extrapolation leads to even larger
quark masses.

In general, the extrapolation leads to a good first guess for the
hopping parameter. Since the autocorrelation time of the sea quark
mass is rather short, it is possible to monitor the quark mass at the
beginning of the simulations and, if necessary, shift the hopping
parameter such that the absolute value of the quark mass is reduced.
If new ensembles had to be generated because the gradient flow
coupling had not been matched g? to the required precision, we have
used our experiences to adjust k| from the extrapolation by small
shifts. The determination of current quark masses on our ensembles
is described in chapter 12.

We have been able to generate ensembles with vanishing quark
masses for nearly all resolutions. The ensemble with Lp/a = 32 which
has been used to set g2 has a quark mass which is slightly larger than
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our bound. Since the violation is small, we believe that this does not
pose a problem for the matching procedure.

8.1.5 Step scaling to the matching volume

We have gathered the gradient flow couplings and sea quark masses
of all ensembles which have been generated in the tuning procedure
in Ly, in table B.1. We have written the coupling f in a bold font for
those ensembles where the LCP condition (8.1) is satisfied.

These five ensemble are the basis for the ensemble generation in
the matching volume L;. We generate five ensembles with the same
bare parameters of the Lagrangian, p and «;, but double the number
of lattice sites in every direction. These ensembles with the physical
volume Ly = 2L are listed in table 8.1 together with the measured
gradient flow couplings and quark masses.

Table 8.1: QCD ensembles for the matching with HQET in L;. Nyp is the
number of replica runs, while Npys gives the number of configura-
tions, separated by T, molecular dynamics units. The trajectory
length is = = 2 throughout.

Li/a B K Neep ;TS Nms 33 L,m,

24 43030 0.1359947 2 10 12000 G.592(11) +0.00860(19)
32 44662 0.1355985 3 i0 13500 G5.689(14) +0.00761(13)
40 46017 01352848 10 10 8825  g5755(22) +o0.00802(13)
48 47165 o.1350181 6 30 3190  577o(26) +o0.00610(16)
64 490 01345991 4 40 2035 5.848(34) +0.01486(15)

We have for the first time generated an ensemble with Schriodinger
functional boundary conditions and 64 lattice points all four dimen-
sions. The tuning of the algorithmic parameters to optimize the
performance for this demanding ensemble is described in chapter 9.
For every ensemble we have aimed at statistics of about 100 000 MDU
to be able to map out the matching parameters at order 1,/my,.

From experiences in the two-flavor theory [215] we know that the
matching observables show a noticeable autocorrelation that increases
towards the continuum limit. Therefore, we have increased the dis-
tance in Monte Carlo time between two configurations for the two
finest ensembles. With this procedure we are able to reduce the mem-
ory consumption of our project and at the same time we do not lower
the effective statistics.
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Figure 8.5: Gradient flow couplings gp(L/a) in (a/Lp)? together with a
linear extrapolation to the continuum limit. We show the result
from o(u) and the parametrization of L{u, a/L) from [45, 217] for
comparison.

From table 8.1, we can see that the sea quark masses are significantly
larger than on the ensembles in L. This can be explained by cut-off
effects. The difference

Lolmi1(2Lo) — mq1(Lo)] (8.15)

is expected to vanish with O(a?) in the continuum limit. The valida-
tion of this behavior fails and we rather see a scaling proportional to
a/L. Since O(a) improvement of PCAC masses is obtained from the
tuning of ca, we suspect that the value of cs from the interpolation
formula provided in [67] that has been used for the calculation of
PCAC masses in this study might be incorrect in our coupling region.
It has been extracted for couplings in the range B € [3.3,3.81] and
the interpolation formula has been constrained to the perturbative
one-loop behavior for small couplings. In the region of the matching
ensembles, the interpolation formula of [67] is not constrained by data.
Therefore, we have to expect remnant O(a) effects for observables that
include ca.

The cut-off effects in the gradient flow coupling can be compared
with predictions of [45] where the step scaling function of the cou-
pling o(u) has been determined. In this study, ensembles with
L/a € {8,12,16} and the corresponding ensembles with the same
bare parameters and 2L /a lattice points have been used to determine
the discretized step scaling function L(u, a/L). Afterwards, the func-
tion o(u) has been obtained from the continuum limit of L(u, a/L) in
a global fit in u and a/L. The continuum limit has been published in
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[45] and the parametrization of the cut-off effects is documented in

[217].
We show our data togel:har with the confinuum step scali.ng function

o(u) and the parametrization of L(u, a/L) for u = 3.949 in figure 8.5.

It can be seen that our data points fall exactly onto the parametrization
of the cut-off effects. Since the autocorrelation time of the gradient
flow coupling increases towards the continuum limit, the statistical
precision is reduced. Nevertheless, our data provides an excellent
check for the results of [45]. From these results, we compute

(3.949) = 5.867(29). (8.16)

for the continuum limit of the discretized step scaling function. From
a linear fit to the five data points obtained from the ensembles in Lo
and 2Lp, we extract the continuum limit

(3.949) = 5.843(16) (8.17)

and we show the corresponding curve in figure 8.5. If we exclude the
rightmost data point, we obtain

(3.949) = 5.871(22). (8.18)

Since the integrated autorcorrelation time of the gradient flow coupling
increases towards the continuum limit, our continuum extrapolation
is not tightly constrained by the finest ensembles. The systematic
effect due to the variations of the fit range is of the same size as the
statistical error. Therefore, we cannot increase the relative precision of
L from the use of our extrapolation.

However, our results provide a valuable test of the continuum
extrapolation performed in [45] which was the basis for the determi-
nation of the strong coupling constant o in [214]. An improvement of
the precision of o(u) could be reached, if our results were included in
the global continuum extrapolation of [45].

The set of ensembles listed in table 8.1 will be used to determine the
matching observables in the full theory, i.e,, QCD with three flavors of
massless quarks and one relativistic heavy quark with a mass around
the bottom quark mass. In the next steps, we will specify the light line
of constant physics for the effective theory.

8.1.6 The matching volume

Before we proceed to the generation of the HQET ensembles in the
matching volume, we like to determine the physical size of the match-
ing volume and its relative error. We perform the conversion from

lattice units to physical units using the information from [142, 214].

There, a reference scale has been defined on the CLS ensembles [60] at
Los = 478(7) MeV (8.19)
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and this reference scale is connected to the hadronic scale via

Mt _7428(18). (8.20)
Whad, 1
We now turn around the arguments of section 8.1.1 and determine the
scale factor s = L},,4/Lo based on the measured coupling gZ. Using
eg. (8.7), we can determine this scale factor from two couplings g1 and
gz via

92 2
infs (o3,03)] = | x5
L]

=P ﬂ+P1h\(3—f)+E[9§—gﬁ- (8.21)

x3

297 293 2
With
93 = 9¢r(Lhaa), 97 = o(g3) (8.22)
and
Lhad = L 2.14:28 (8.23)
Hhad Horef

we determine the physical extent of the tuning volume to
Ly = 0.4998(35) fm, (8.249)

where we have used cr[gf] of eq. (8.16). We have thus been able to
generate our ensembles such that the matching volume has an extent
of (.5 fm and we have fixed this physical extent with a relative error of
AL /L1 = 0.7%. If we take into account the error on QéF[Lm‘ﬂ = 32)
in the determination of the physical size, we obtain a relative error of
0.9% which is still below our initial target of 1%.

Based on eq. (8.24), we are able to determine the range of lattice
spacings on the QCD side of the matching. It is given by

a € [0.0078 fm, 0.021 fm] ~ [(9.5GeV) ™', (25.3GeV)~']. (8.25)

Based on these values, we are confident that we are able to perform a
controlled continuum limit of observables at the scale of the bottom
quark mass.

8.2 THE LINE OF CONSTANT PHYSICS: HQET

The light part of the action remains unchanged, when we switch
from QCD to HQET. The only difference, in terms of the ensemble
generation, is that we will generate ensembles with much coarser
lattice spacings. Since we will match the continuum limit of the QCD
observables with the HQET observables at finite lattice spacing, the
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Figure 8.6: Gradient flow couplings at the five different lattice spacings in L,
after the tuning procedure together with the target ﬁ[g%].

line of constant physics for the HOET ensembles in the volume L; is
defined by

g&e(L1) = ofg?), my=0. (8.26)

We use the continuum step scaling function of [45] to define the
LCP. This is done for practical reasons. The generation of the QCD
ensembles in L is computationally demanding and is a task on the
time scale of many months. The continuum limit of the measured
gradient flow couplings can only be obtained as soon as all ensembles
have been generated. To speed up the ensemble generation in the
HOQET sector, we rely on the step scaling function of [45]. In hindsight,
the agreement of egs.(8.16) and (8.17) justifies this approach.

8.2.1 Tuning in the matching volume

On the HQET side of the matching procedure, we generate five en-
sembles with Ly /a € {8,12, 16,20, 24}. From the determination of the
physical lattice extent, we deduce that we perform our simulations in

the range
a € [0.021 fm, 0.062 fm] ~ [(3.2GeV)™", (95GeV)™ '],  (8.27)

which would be clearly inappropriate for relativistic bottom quarks.

Since we consider the heavy quarks in the effective theory, we do not
face significant discretization effects and we will be able to perform a
reliable continuum extrapolation of the matching parameters.

The tuning to the line of constant physics of eq. (8.26) is performed
as it was done for the QCD ensembles and we list all ensembles
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generated in the tuning procedure in table B.2. The ensembles where
the coupling is written in a bold font are the ones to be used in the
matching procedure. Due to the small volume, all configurations are
in the sector of vanishing topological charge.

Based on investigations in the two-flavor theory [215] we know that
heavy-light observables in the effective theory are weakly correlated in
Monte Carlo time. In exchange, we face an exponential decrease of the
signal-to-noise ratio with increasing source-sink separation. Therefore,
we reduce the distance between two configurations to 4 MDU. Aiming
at statistics of 60000 MDU per ensemble, we will have to perform
measurements on O(15000) configurations per ensemble.

Since the length of the Monte Carlo runs is reduced compared to
the QCD ensembles, we observe larger uncertainties in the gradient
flow couplings. Nevertheless, we are able to tune all ensembles to a
good precision and we show the measured couplings together with
the goal from o(g?) in figure 8.6.

8.2.2 Step scaling towards large volume simulations

Table 8.2: Step scaling ensembles in 2L,;. Boundary conditions and action are
chosen exactly as in [45] and we use T = L. Npp is the number
of replica runs, while Ny gives the number of configurations,
separated by tms molecular dynamics units. N,Efs} gives the number
of configurations in the sector of vanishing topological charge. The
trajectory length is v = 2 throughout. Values marked by a star
have been obtained on short Monte Carlo histories, compared to
their integrated autocorrelation time.

2L, /a

Tms

MD

0
B K Nrep Nme NS 2. 2Lmy

16

32
40

3.6537 01370722 4 8 15000 12213 9.377(27)  0.0446(6)
38349 01369654 2 16 15000 12423 10.485(39) o0.0192(3)
4.0018 01366803 3 4 15000 13663 10.810(93) o0.0144(3)
41394 0.1363857 6 4 1457 1455  10.69(23)* 0.0124(6)
42530 01361224 4 4 5247 5244 10.84(16)" 0.0130(3)

To reach a scale that is applicable for large-volume simulations, we
have to perform another step scaling procedure. This time, we scale
from L to 2L;. We list the five ensembles generated in this volume
in table 8.2. As apparent from the table, we have not yet reached our
goal for the statistics of the two ensembles with 21 /a = 40, 48. Since
Tint[gél;] is of O(150 MDU), the determination of the gradient flow
coupling might be biased due to the comparably short Monte Carlo
histories.
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Figure 8.7: Gradient flow couplings §&z(2L1/a) in (a/L)? together with a
linear extrapolation to the continuum limit. We show the result
for o[o(u)] and the parametrization of L(u, a/L) from [45, 217]
for comparison.

In larger volumes the topological charge is not frozen to the sector
QQ = 0 anymore. At the same time, we do not observe a freely
fluctuating charge but longer periods where the charge stays within
single sectors. We show the number of configurations in the sector of
vanishing topological charge in table 8.2.

In the two-flavor project [215], the contact to large volume simula-
tions has been obtained using the continuum limit of the observables
obtained from the ensembles in the volume 214. In our work, the over-
lap of the lattice spacings in this step with the ones of the large-volume
CLS simulations is not large enough to allow for a safe interpolation
of the matching parameters. Therefore, we have to simulate another
set of ensembles with the same physical lattice extent but different
resolutions.

To tune this last set of lattices to the correct physical volume, we
look a second time at the step scaling function of [45] and compare

their results with the results obtained from the ensembles in tab. 8.2.

From two steps of the continuum step sca]ing function we obtain
m[m[gf}} = 11.27(10) (8.28)

which, for the same reasons as before, will be taken as goal for the
tuning procedure in the volume Lz = 2L;. For the reasons outlined
above, we take only the three coarsest ensembles into account for the
continuum extrapolation of our data. From a linear fit we obtain

o(gZ(L1)) = 11.35(4). (8.29)
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Figure 8.8: Gradient flow couplings at the five different lattice spac'mgs in Lz
after the tuning procedure together with the target o(c({g;]). The
measured values are listed in tab. B.3 and the value for L/a = 32
is taken from [214].

This result is compatible with the one from [45] and due to the large
amount of statistics, the extrapolated result is very precise. The
inclusion of the two data points at finer lattice spacing will help to
reduce the systematic uncertainty due to the coarse lattice spacings in
the current extrapolation.

8.2.3 Contact to the large-volume simulations

To connect the finite-volume matching parameters with the measure-
ments in the effective theory at large volume, we have to be able to
interpolate the parameters in the range of inverse couplings § given by
the CLS simulations. Therefore, we generate another set of ensembles
with L2 /a € {12, 16, 20, 24, 32} which translates into

a € [0.031 fm, 0.083 fm] =~ [(24GeV)™', (64GeV)™'],  (8.30)

and gives us an excellent overlap with the CLS5 ensembles.

We perform a third tuning procedure to achieve the generation of
all ensembles along the chosen line of constant physics. Since the
topological charge is fluctuating strongly on the coarser ensembles,
a significant fraction of the configuration is in a sector where the
topological charge is non-zero. Therefore, the interpolation formulae
of [45] for ko become less accurate and we have to devote an increased
effort on the tuning of the hopping parameter. We list all ensembles
generated at this step in table B.3.
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Figure 8.9: Gradient flow coupling in dependence of the sea quark mass at
L;/a=12and p = 3.4014.

The generation of several ensembles with the same bare coupling
and different hopping parameters k allows us to study the correlation
of the gradient flow coupling with the sea quark mass. For L2/a = 12
and p = 3.4014 we have generated four ensembles. In fig. 8.9 we show
the gradient flow couplings obtained on these ensembles depending
on the sea quark mass. Since all ensembles have been generated
during the tuning procedure, the spread of the sea quark masses is
rather small. Nevertheless, it is possible to perform a linear fit to
obtain

52

dg
_2 _ _ GF __
g&p(Lmy = 0) = 11.298(40) dar = 0.56(16) (8.31)

for the chiral limit of the grad.ient flow cnup]ing and its derivative

with respect to the sea quark mass at this Pc:rint in the parameter space.

The shift of the gradient flow coupling due to a residual quark mass
Lmy < 0.005 is therefore completely negligible.

For our measurements at L, /a = 32, we do not have to generate a
new ensemble since we are able to use an already existing one that has
been generated in [214]. This ensemble matches the line of constant
physics condition to a good precision and we are able to save the cost
of a tuning at the largest value of L;/a. We illustrate the result of
this tuning in figure 8.8, where we show the target coupling and the
measured couplings obtained on the five ensembles.

Since we do not have to perform a continuum limit at this stage of
the matching procedure, we estimate that 30 000 MDU are enough to
obtain precise results.
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33 THE EUNNING OF THE MASS

So far, we have described how we generated our ensembles such that
all of them are on the line of constant physics, defined by eq. (8.1).
What remains to be done is to fix the renormalized heavy quark mass
on the QCD side, to allow for a parametrization of the matching
coefficients in the heavy quark mass. As pointed out in section 7.3.3,
we like to fix the renormalization group invariant (RGI) quark mass
and we have not yet specified, how the running from the scale of
finite-volume simulations to RGI values is performed.

8.3.1  The step scaling function of the mass

Results for the three-flavor theory have been obtained in [64] based
on the methods of [48, 218] and these references will be the basis
of our discussion in this section. We consider the scale evolution
of quark masses, as we have done it for the coupling, and use the
renormalization group equation

d . 1
Md—umﬂ,i =T(g(pu))mg;i, i=1...,Ng, p= T (8.32)

for the N¢ quark flavors in our theory. The renormalization group
function T has the expansion

©g) ~ —dog’—d13°—d2g" +... (8.33)
g—=0
with the universal coefficient
8
do = —[4ﬂ] 3 - (8.34)

The integration of eq. (8.33), including the explicit subtraction of the
leading term, leads to the RGI mass

_4 Glu) d
M; = mg; [2bog*(u)] ™ exp {— L dg [;{{3]] — Wﬂg] } ,
(835)

which can be interpreted as integration constant of the renormal-
ization group equation (8.32). Since T is independent of the quark
flavor 1, the same holds for the ratio M; /mg;(1) and one can show
that ratios mg;(n)/mg;(p) are scale-independent. The scheme in-
dependent value M; is non-perturbatively defined if T is evaluated
non-perturbatively.

The step scaling function of the mass op is defined from the step
scaling function of the coupling in eq. (8.3) via

3 o(u) T[g}
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and since we defined o(u) by two scales that differ by a factor of two,
we can write

mgi (1)
_— . 8.
e (1/2) g2 0 ®.37)

On the lattice, the continuum step scaling function op is obtained from
the continuum limit of the discretized function Lp,

, (8.38)

u=3g(un)

op(u) =

op(w) = lim Ip(g3,ap)

where Lp is defined from the renormalization constant of the pseu-
doscalar density Zp via

Zp(gg, ap/2)

8.
Zv(g3, an) (8.39)

Ip(gp, an) =

8.3.2 Determination of RGI quark masses

The work of [64] allows us to determine RGI quark masses from
renormalized quark masses computed at the matching scales pmat0 =
1/Lo and pimat,1 = 1/L1. The scaling from the low to the high-energy
regime is split into two parts according to
Mi  mgilpo/2)

= TR (10/2) Mg (pmar) T Hmat) (540)
where the scale pp has been introduced in [64]. The first term is given
by

M;
———— =1.7505(89). (8.41)
mr:(n0/2) +

The nmm'ng in the low energy regicln is parametrized for a range of

coup].ings via

g2 Y ofad™™
FA—
2 i—oPikd**

where the parameters py. are the same as in eq. (8.21) and the param-
eters f,, together with the covariances cov(f;, f;) and cov(f;, p;) are
provided in egs.(4.6—4.8) of [64]. For the running to the volume L, we
determine based on these information

mgi(Ho/2)

MR, i (Umat,0)
and derive the total running factor from renormalized quark masses
in the tuning volume Lp to RGI quark masses to be

M;
h(lp) = ——— = 1.4744(87). (8.44)
MR ;i ( Hmat0)
The relative uncertainty of this factor is about 0.6% and we will see
that this is by far the dominant contribution to the total error of RGI

quark masses determined in the matdﬁng volume.

T(g) = — (8.42)

— 0.8423(26), (8.43)
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8.3.3 Determination of the step scaling function

With the ensembles described in this section, we are able to determine
op(u) for two values of u, just as we have done it for o{u). In principle,
the data obtained from these determinations can be used together with
the data of [64] to improve the precision of h(Lg).

To determine op(3.949) and op(5.867), we have to determine Zp on
the ensembles in the volume L; and 2L; on the QCD side and L,
and 2L on the HQET side of the matching. We will explain how to
determine Zp in section 12.4.1, where the renormalization constant is
calculated for the determination of renormalized quark masses.

In [64], ensembles with L/a = 8,12,16 and the corresponding 2L
ensembles have been generated to determine Ly for seven values of
the gradient flow coupling. The results for Zp and Lp per ensemble
are given in table 8 of that reference.

We list the values of Zp and the corresponding result for Ip in
table 8.3 and show the continuum extrapolation of the results together
with the results from [64] in fig. 8.10. We are able to cover a region
much closer to the continuum limit than it has been done in [64]. At
the same time, we see significant autocorrelation for Zp and T (Zp)
increases with decreasing lattice spacing. Therefore, the effective
statistics decreases towards the continuum limit and we are not able
to tightly constrain the continuum extrapolation with our data points.

Table 8.3: Results for Zp and Ep at the couplings gf and u'[g%]l.

g Lia B K Zp(g5.L/a) Zp(g5.2L/a) Ep(gd,L/a)
3.9461(41) 12 43030 0.1359947 0.57835(32) 0.48080(49)  0.8313({10)
3.9475(61) 16 44662 0.1355985 0.56972(45) 0.47313(79)  0.8305(16)
3.9493(63) 20 4.6017 0.1352848 0.56503(54) 0.46634(105) 0.8253(21)
3.9492(64) 24 47165 0.1350181 0.56003(48) 0.46311(126) 0.8269(24)
3.9490(110) 32 4.9000 0.1345991 0.55390{70) 0.45724(199) 0.8255(38)
5.8648(70) 8  3.6537 0.1370722 0.49386(32) 0.34707(111) 0.7028({23)
5.8697(85) 12 3.8349 0.1369654 0.47643(44) 0.31675(181) 0.6648(39)
5.8650(110) 16 4.0018 0.1366803 0.47349(49) 0.30742(387) 0.6493(82)
5.8760(140) 24 4.2530 0.1361224 0.46807(82) 0.30610(921) 0.6540(197)

The continuum limit of op(g?) shows an excellent agreement with
the data from [64]. For the three ensembles with the finest lattice
spacings we cannot see any cut-off effects within the rather large
statistical errors. The overlap of the extrapolated results at the coupling
o{g?) is not as good but still both determinations agree within error.
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Figure 8.10 Continuum limit of the step scaling functions Lp at the couplings
gf and m:gf]. The blue uncertainty band shows the fit to our
data points whereas the gray area shows the values from [64].
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However, the result for 2L /a = 48 shows significant statistical errors
and we have not included the result for 21 /a = 40 since the Monte
Carlo chain is too short, compared to the autocorrelation time of Zp.
An increase in statistics for the finest lattice spacings will improve
the quality of our extrapolation. Even without the data from the
last missing ensemble, it is save to conclude that our continuum
extrapolation of Lp provides a successful test of the results of [64].

8.4 CONCLUSIONS

After an extensive tuning of the physical and algorithmic parameters
we have simulated all ensembles that are needed to perform the
measurements for the non-perturbative finite-volume matching of
QCD and HQET and to scale the matching parameters to the coupling
region of typical large-volume simulations.

To a good precision, we have performed our simulations with mass-
less sea quarks and fixed the volume of our finite-volume QCD simu-
lations to a relative precision of 0.7% which is better by more than a
factor of three compared to the computations in the two-flavor theory.
We have performed our simulations at five different resolutions to
achieve reliable continuum extrapolations. To allow for the propaga-
tion of relativistic bottom quarks in boxes of spatial extent of (.5 fm
we have generated computationally very demanding ensembles with
48* and 644 lattice sites.

Together with the findings of chapter 12, where the heavy part of the
line of constant physics is fixed, we are now in the position to perform
the measurements for the determination of the matching parameters
at all stages of the strategy outlined in figure 7.1. As soon as these
parameters are determined, we are able to compute the bottom quark
mass and the B and B; meson decay constants at next-to-leading order
of HQET based on the measurements described in chapter 16. There,
all correlation functions that are necessary for the computation at
next-to-leading order have been determined on eight ensembles at
three different lattice spacings.

Our results for the step scaling functions of{u) and op(u) can be
incorporated in the global fits performed in [45] and [64] respectively
to increase the precision of the interpolation formulas. High precision
of o in the coupling region of our matching ensembles is needed
in the project on renormalization by decoupling [219]. An increased
precision of op reduces the uncertainty of the running factor M /mg 1.4
that is needed to evolve renormalized quark masses from the scale of
large-volume simulations to their RGI values. The relative error on
this running factor is the dominant contribution to the total error of
our result for the RGI charm quark mass determined in chapter 14.



ALGORITHMIC EXPERIENCES

In the last chapter we have described the ensembles that we have sim-
ulated for the matching procedure. In total we have generated O(60)
different ensembles with Schrodinger functional boundary conditions
in three different physical volumes with 8% to 64" lattice sites. To op-
timize the performance and to reduce the total cost of the simulations,
we have performed an extensive tuning of the algorithmic parameters.
The technical difficulties and strategies to circumvent them differed,
depending on the region in the physical parameter space.

Some technical aspects of the simulation of three-flavor QCD in
finite volume such as the scaling of the spectral range of the Dirac
operator and the scaling of autocorrelation times have already been
discussed in appendix A of [45]. We have used the information
provided in this study to set up our Monte Carlo runs and to obtain
initial parameters for the algorithmic setup. In contrast to [45], we
have been able to use the newest solvers of the openQCD package which
feature preconditioning via the Schwarz alternating procedure and
inexact deflation. Therefore, we will use this section to investigate the
performance of these solvers in finite volume. Additional information
concerning the setup of large-volume simulations with openQCD is
available in table 2 of [60] and table g of [220].

9.1 SOLVEERS

The use of the modern solvers described in section 5.3 enabled us
to simulate and measure on large lattices. The complexity of solver
algorithms and with it the number of parameters that have to be
tuned increase with the performance gain. For the optimization of the
deflated solver of the openQCD package, O(15) different parameters
have to be tuned.

We use the solvers in two different applications, namely the inver-
sion of the Dirac matrix in the computation of quark propagators and
the inversion in the (R)HMC algorithm. In the latter case, the com-
plexity of the tuning procedure is intertwined with the tuning of the
algorithmic parameters of the Monte Carlo algorithm. In this case, the
stability of the solver is of paramount importance. We do not adjust
algorithmic parameters within one Monte Carlo run, since changes in
the algorithmic parameters lead to different autocorrelations in the
data.
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Figure g.1: Comparison of three different solvers for a range of valence quark
masses on a lattice with L, fa = 24,

9.1.1  Quark mass dependence

We start our investigation of different solvers by comparing their
performance in the determination of quark propagators. We look at
the solvers that have been introduced in section 5.3. On a lattice with
L1/a = 24 we determine quark propagators in a range of valence
quark masses

1T 1
LﬂqEE(E—F)E[ﬂJZ}, (9.1)

where K is the light quark hopping parameter which is close to the
critical one. Since we perform our calculation in the Schriodinger
functional, we are able to evaluate the propagators at vanishing quark
masses. A similar analysis for physical quark masses in large volume
has been done in [Bo].

For the three different solvers, the CGNE solver, the SAP_GCR solver
and the DFL_SAP_GCR solver, the implementations of the openQCD pack-
age have been used. In figure 9.1 we show the timing for the determi-
nation of the forward and the backward propagator, since this is the
use case scenario. We also list the timings and the inversion counts
for the different solvers in table g.1.

All three solvers are quark mass dependent such that the inversion
is more expensive for smaller quark masses. We see that the CGNE
solver performs worse than the two preconditioned solvers and in the
chiral limit, the deflated solver is better by a factor of five than the CGNE.
As we would expect it, deflation leads to a less steep increase towards
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the chiral limit, since the lowest eigenvalues of the Dirac matrix have
been projected away and accordingly the condition number is smaller.

For quark masses above LAg = 2, which is above the charm quark
mass, the SAP preconditioned solver performs better than the deflated
solver. In table g.1, we can see that the iteration count is constant
for both solvers. Therefore we can conclude that the overhead of the
deflated solver becomes dominant at large quark masses, where the
solve itself is fast.

In the case under investigation, the generation of the deflation
subspace takes 5.1(2) seconds. If the two propagators are determined
for a single massless quark, the overhead from the generation of the
deflation subspace is already smaller than the difference between the
DFL_SAP_GCR and the SAP_GCR solver. If a larger number of inversions
in the light quark sector is performed, the time that is needed for the
generation of the deflation subspace becomes quickly irrelevant.

In table g.2 we list the results of the same analysis on the ensemble
with L; /a = 64. We do not compare the absolute timings between
both tables since the number of CPU cores has not been scaled with
the same factor as the number of lattice points. Therefore we focus
on the comparison of the solvers within one set of configurations.
The general statements of our investigation for L; /a = 24 hold for
Ly /a = 64 as well

The gain from the use of the deflation subspace is much larger for
Ly /a = 64. Whereas the ratio between the timings for the CGNE solver
and the SAP_GCR solver stays roughly constant when switching from
L1/a = 24 to L1 /a = &4, the ratio between the timings for the CGNE
solver and the DFL_SAP_GCR solver increases from five to 15 and the
ratio between the timings for the SAP_GCR solver and the DFL_SAP_GCR
solver scales accordingly.

Since the smallest eigenvalue of the Dirac operator in the Schrodinger
functional scales with 1/T? [39], the deflation of the Dirac matrix
becomes more important for larger lattices. For both lattices, the
generation of the deflation subspace takes about the same time as the
calculation of the propagator for a light quark.

9.1.2 Tuning of the deflated solver

In the last section we have not specified the parameters of the three
different solvers. Since we use the deflated solver whenever it is
possible, we will investigate some of the parameters that can be tuned
to achieve an optimal solver performance. During our simulations, the
starting point for the chosen parameters has been set by experiences
made in the simulation of the Schridinger functional [45] and in
large volume [60]. Starting from an initial set of parameters, we have
gradually adjusted some of the parameters during the thermalization
process.
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Table g.1: Comparison of the averaged inversion times and iteration counts
between CGNE, DFL_SAP_GCR and SAP_GCR solver for Ly /a = 24. The
generation of the deflation subspace takes 5.1(2] s.

time [s] iterations

L&q CGNE DFL_SAP_GCR  SAP_GCR | CGNE DFL_SAP_GCR SAP_GCR
o 34.5(10) 7-04(24) 13.27(37) | 924 20 50
05 222(5) 5.25(22)  7.37(22) | 595 15 28
1 14.8(3) 4.26(15)  5.02(6) | 394 12 19
1.5  10.4(2) 3.53(12)  3.B1(10) | 289 10 14
2 B.8o(6) 3.23(7)  3.25(8) | 230 9 12
4  5.01(10) 218(3) z2o03(12) | 123 6 7
3.67( 8) 1go(3) 146(2) | 86 5 5

8  285(7) 152(3)  121(1) 66 4 4
10 2.44(2) L53(8) 122(2) | 55 4 4
12 217(2) 1.52(7) 1.22( 2) 48 4 4

Table g.2: Comparison of the averaged inversion times and iteration counts
between CGNE, DFL_SAP_GCR and SAP_GCR solver for L /a = &4. The
generation of the deflation subspace takes 62.5(7) s.

time [s] iterations

L&q CGNE DFL_SAP_GCR  SAP_GCR | CGNE DFL_SAP_GCR SAP_GCR
o 964.3(31) 65.5(5) 328.8(88) | 2493 19 137
o5 2237(5) 41.0(1) 62.8(2) | 575 13 28
1 1204(3) 3131)  354(2) | 303 10 16
1.5 83.6( 2) 26.1(1) 247(1) | 209 8 11
2 64.7( 1) 22.7(1)  204(1) | 158 7 9
4 36.9( 1) 16.7(1)  11.9(1) | B4 5 5
26.4( 1) 13.4(1)  10.1( 1) 59 4 4

8 21.6( 2) 13.2(1) 10.2( 1) 46 4 4
10 19.5(2) 10.5(1) 79(1) | 39 3 3
12 19.0( 1) 10.6(1) 7.8( 1) 34 3 3
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For larger lattices, we have performed explicit scans for a range
of values for different parameters. In this section, we investigate the
performance of the determination of light and heavy propagators on
four uncorrelated configurations of the ensemble with [; /a = 24 for
O(100) different combinations of parameters of the deflated solver.

In the following, we will present the results of our parameter scans
for parameters where a clear dependence of the execution time on
the value of the parameter is visible. In some cases, fluctuations in
the execution time due to technical reasons seem to have a larger
impact than the choice of the parameter and we are not able to draw a
conclusion.

When varying one parameter, we keep all others constant. We show
the basis for the variation, i.e., the parameters without any variation,
in listing 9.1. The full documentation of all parameters can be found
in [221] and we give an introduction in section 5.3.5. In the shown
part of the input file, the parameters are split into sections for the
solver, the SAP block setup, the setup of the deflation subspace, the
parameters for the subspace generation and the parameters for the
deflation projection.

Listing g.1: Entries of the openQCD input file for the deflated solver. The
choices shown here are the basis for all varations in thas section.

[Solver @]

solver DFL_SAP_GCR
nkv 24

isolv 1

nmr 4

ncy 5

nimsx 2848

res l.08e-11
[SAP]

bs 4444

[Deflation subspace]
bs 4 4 44
Ns 20

[Deflation subspace generation]

kappa B.1359947
mu 8.8

ninwv 18

nmr 4

ncy 5

[Deflation projection]
nkv 18

FIMmx 2048

res 8.81

1323
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We have performed our analysis for a range of valence quark masses
and in most cases we do not see any qualitative difference in the
determination of the optimal parameters for different valence quark
masses. Since the inversion of the massless Dirac operator is the most
expensive operation and since this inversion is the one needed in the
HMC algorithm, we focus on the massless case in this study.

We start our investigation with the solver parameters, which are
part of the setup of the deflated DFL_SAP_GCR solver and the SAP_GCR
solver. We show scans for two parameters in figure 9.2. nmr and ncy
denote the numbers of SAP block solver iterations and SAP cycles.
We can see a clear dependence of the solver performance on these
two parameters. The overhead from the block preconditioning seems
to increase quickly. Only a few applications seem to be enough to
achieve a fast solve.

We continue our investigations with the parameters that define how
the deflation subspace is generated and show the results of the scans
for three parameters in figure 9.3. Some of the parameters, as the
number of sources Ns that is shown in the first plot, have an influence
on the effort that is needed to generate the deflation subspace. We
see, that the quality of the deflation subspace is improved when the
number of sources is increased. At some point, the time that is needed
for the solution reaches a plateau. At the same time, the cost for the
generation of the deflation subspace scales linear with Ns. For the case
under investigation, the time for the deflation subspace rises from 4s
atNs = 10 to 17s at Ns = 30. Therefore, it is only beneficial to use
a large number of sources if the Dirac equation has to be solved a
number of times.

An increase in the number of inverse iteration steps ninv for the
construction of low-precision solutions in the generation of the defla-
tion subspace also results in an increased effort for the generation of
the deflation subspace. On the other hand, we see that the quality of
the deflation subspace is improved up to ninv = 10. A further increase
of ninv does not decrease the inversion time, but increases the cost for
the generation of the deflation subspace.

The parameters u and k can be used to adjust the Dirac operator in
the generation of the deflation subspace to the physical parameters of
the simulation. In Monte Carlo runs, a small value of u can be used to
add a twist to the Dirac operator to stabilize the subspace generation.
In figure 9.3 we can see that increasing the twist beyond some small
value leads to a gradually decreasing performance of the deflation
subspace. Apparently, the low modes of the Dirac operator cannot
be efficiently projected out any more. Interestingly, the quality of the
deflation subspace does not show a clear dependence on the value of
K. In our tests, we scanned a range of

L1 1
3 (m— :I) e[0,1], (9.2)
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and did not see a negative impact on the performance when decreasing
the value of k9. In our simulations and measurements, we set kdfl
close to the value of the sea quark hopping parameter.

We do not show an explicit scan of the SAP and deflation block

In moste cases, the sizes. Based on the experiences in [80, 81, 128, 129], we set these
block size is tightly blocks to the smallest possible values of 4* for most lattices. A slight
fmjg::;:g;if:; increase of the single block sizes does not have a significant influence
lattice. on the performance. For lattices with L/a = 20,40, where due to the
implementation in openQCD only blocks of size 10* can be used, the
performance is significantly worse than for smaller block sizes on

other geometries.

We conclude this section with the observation that the local minima
in the parameter scans shift when we switch to other geometries or
different regions in the physical parameter space. Especially when in-
creasing the number of lattice sites, a scan of the performance around
the conventional values may be necessary to achieve the optimal per-
formance. For example, it is beneficial to increase the number of
sources, when larger volumes are considered. An additional com-
plication is introduced by the fact that many parameters are not
independent of each other and the optimal value of one parameter
can shift if another one is adjusted.

The above results can also be used for Monte Carlo runs using the
deflated solver. In this case, the stability of the solver along the Monte
Carlo run has to be considered as important criterion for the tuning of
the solver parameters. For example, it might be beneficial to choose a
small value of u to stabilize the inversions.

9.2 RHMC

The complexity of the setup of the HMC and the RHMC algorithm
is increased when hierarchical integration schemes and frequency
splitting are used to optimize the performance. Whereas the hierarchy
given in section 5.2.1 for the Hasenbusch frequency splitting provides
a simple rule to get a close-to-optimal performance, the parameter
space is more complex when we split the rational determinant

The number of poles in the Zolotarev approximation increases with
the volume of the lattice, if the bound on the deviation from the true
value is held constant. For our most demanding simulations with
L/a = 48,64 we use more than ten poles and we can split up the
rational determinant to integrate small residues on large time scales
using the deflated solver. The multi-shift conjugate gradient solver is
used for the first term in eq. (5.34).

In this section we will look into the performance of the RHMC al-
gorithm depending on the number of pseudofermion fields including
single poles. We do not perform a large systematic test, but rather
like to investigate the general behavior. For this test we use an en-
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Figure g.4: Time for one Monte Carlo trajectory of length 2MDU for L/a =
48 with 13 poles in the Zolotarev approximation. The rational
determinant is split into 1+ n terms, where n is the number of
terms including one single pole.

semble with [/a = 438 lattice points and 13 poles in the Zolotarev
approximation. We set up short Monte Carlo runs to judge on the
performance by looking at the time per trajectory of length 2 MDU
and the acceptance rate.

We split up the rational determinant according to (5.34) with n terms
including one single pole of the Zolotarev approximation each and
one term including (13 —n) poles. We show the times per trajectory
for n in the range [0, 9] in figure 9.4. The same initial state has been
used for all runs and we checked that the time per trajectory remained
constant within each run. Apart from the setup of the splitting of the
determinant, all algorithmic parameters remain the same for all runs.

We see that the cost for one trajectory can be drastically reduced
when we split the determinant in several terms. We also show the time
per trajectory divided by the average acceptance probability (Pac). In
this way, setups that have a negative impact on the acceptance rate are
penalized. For the first three data points, (Paec) < 0.5. In this case, we
would have to reduce the step size of the integration to obtain proper
acceptance rates. This would further increase the cost. The same is
true for the run with three single poles, where the solver failed for the
chosen step size.

Starting from four poles, the time per trajectory remains approx-
imately constant and changes in the acceptance rates due to an im-
provement of the algorithmic setup cannot be distinguished from
fluctuations due to the small statistics. As soon as the smallest contri-
butions are separated from the other poles, integrated on large time
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scales and treated with the deflated solver, the performance does not
change significantly. In the parameter tuning for our run in Ly /a = 48,
the setup using six single poles has been used to perform further
optimizations.

As soon as the rational determinant is split, we are able to integrate
the highest poles on larger time scales as the other ones. In our
simulations on large ensembles we used a hierarchical integration
scheme with three levels where the innermost level has been used to
integrate the gauge force. The outermost level included single poles
of the rational determinant and one part of the HMC determinant
which was split via Hasenbusch frequency splitting. The tuning of the

acceptance rate has been done via the step size of the outermost level.

9.3 SCALING OF AUTOCORRELATION TIMES

The scaling of autocorrelation times has already been investigated for a
range of gradient flow couplings and lattices with size [ /a = 16, 24,32
in [45]. There, the expected scaling of the autocorrelation time with
a2 [58] could be confirmed by an investigation of the integrated
autorcorrelation time T;,; of the gradient flow coupling.

We show the autocorrelation time of the gradient flow couplings of
the ensembles that will be used for the matching procedure in figure
9.5. We see the scaling of T, with a2 and observe that the absolute
value of Ty, is significantly larger for the two sets of ensembles in the
larger volume L than for the two sets of ensembles in the matching
volume. This is in line with the findings in figure 10 of [45]. Since we
determine HQET observables which show only small autocorrelation
on the L; latices we expect that the precision of the calculation will no
be impaired by the increase in Tint.

9.3.1 The topological charge in finite volume

Since we work in finite volume and with small values of the lattice

spacing, we do not see a free fluctuation of the tﬂpological charge.

For the ensembles in the volumes [ and L; the topological charge
is frozen and all ensembles are in the sector of vanishing topological
charge. For the ensembles in L2 we see topological activity which is
suppressed when the lattice spacing is reduced.

In our renormalization scheme, we define the gradient flow coupling
and the quark masses from ensemble averages in the zero topological
sector, i.e.,, we employ the projection

{08(Q))
() = —=! .
W) 3(Q) (9.3)
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Figure g.5: Integrated autocorrelation time it of the gradient flow coupling
Q%F in units of MDU for the different sets of ensembles generated
for the matching, The points are slightly displaced to improve
visibility.

using eq. (6.50). Therefore, we have to monitor the topological charge
on all configurations. We determine () from flowed gauge fields as
defined in eq. (6.55) with the Zeuthen flow and c = 0.3.

In the upper part of figure 9.6 we show the Monte Carlo history
of one replica of the ensemble with 2L /a = 16. We can see that the
topological charge is frozen to the sector zero for most of the time. In
some cases, the instantons forming on the lattice remain stable for a

We investigate this longer time and the charge is frozen in sectors with () # 0. We see
more closely in that the absolute size of () outside sector zero is shifted from integer
chapter 11. values towards zero. This is based on cut-off effects and integer values

are restored in the continuum limit.

In the middle of figure 9.6 we show the dependence of the topolog-
ical charge on the gradient flow time t for 200 configurations. During
the evolution of the gauge fields in the flow time we have evaluated

c= +/8t/L the observable up to ¢ = 0.4 in steps of ¢ = 0.01. We see that the
smoothing procedure reduces the spread of the values of () from the
whole range [—3, 3] to four distinct regions. The choice ¢ = 0.3 seems
to be just enough to be in a region where () remains constant

When we compare the determination of QQ from the Zeuthen flow
Q#N with the determination using the Wilson flow Q%, we note that
more spikes, i.e., deviations from () = 0 are present in the case of the
Zeuthen flow. In [222] it is argued, that this might be based on small
vacuum fluctuations that are promoted to instanton-like objects by the
gradient flow. In the bottom plot of figure 9.6 we show the evolution
of Q with t for the Zeuthen and the Wilson flow for three exemplary
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Figure g.6: Topological charge Q on the ensemble with 21, /a = 16. Sectors of
integer charge are visualized by horizontal dotted gray lines. We
define Q at ¢ = 0.3. Top: Part of the Monte Carlo history. Middle:
Dependence of Q on the flow time c. Bottom: Comparison of ()
determined from Zeuthen and Wilson flow for three exemplary
configurations.
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configurations where the integer topological charges determined from
both versions of the gradient flow differ at c = 0.3. We show Q) from
the Zeuthen flow in red and from the Wilson flow in blue and depict
different configurations by the linetype.

Per definition, Q“N and QW coincide at t = 0. For the solid and the
dotted lines, the curves deviate from each other starting at ¢ ~ 0.2 and
end up in two distinct topological sectors. In the case of the dashed
lines, Q“N coincides with QW at ¢ = 0.4 but not at ¢ = 0.3. In general,
the number of cases where both definitions of the flow lead to different
results is small compared to the number of gauge configurations and
the effect is suppressed in the ensemble average. In any case, we are
not able to judge which of the two definitions leads to a more reliable
result, since the determination of Q from the chiral modes of the Dirac
operator is not accessible using Wilson fermions.
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STRATEGY

When we discussed the improvement and renormalization of quark
masses in lattice simulations with Wilson quarks in section 4.3, we
have seen that a large number of improvement coefficients and renor-
malization coefficients is needed to determine renormalized quark
masses without discretization effects of Ofa). In our work, we deter-
mined the renormalization constant Z, introduced in eq. (4.28), the
improvement coefficient by, and the combination by — bp in a setup
with three massless sea quarks and Schrodinger functional boundary
conditions.

The methods we use to determine these observables have their
origin in the work of [223], where the same observables have been
determined non-perturbatively in the quenched approximation and it
was extended in [224-226]. In all of these works (anti-)periodic bound-
ary conditions have been used. The use of Schriédinger functional
boundary conditions was first done by the ALPHA collaboration in
[227] and [228] in the quenched approximation. This work has been
extended to the theory with two massless quarks in [229].

In our work, we refined the strategy which has been applied in [229].
This refined strategy has been published together with the results for
one of the two investigated parameter regions in [74] and we will
explain it thoroughly in this chapter. We will start with the setup, as
it has been used in the quenched and the two flavor case, introduce
a parametrization of the current quark masses and derive the new
strategy.

10.1 ESTIMATORS FREOM TIME SLICE AVERAGES

The determination of estimators Ry for Z, b, and by — bp is based
on two of the definitions for renormalized quark masses in section
4.3. We use the definition from bare subtracted quark masses and
from bare current quark masses. We start by introducing two quark
flavors 1 and 2 with m_; < mg, and a third flavor with the hopping
parameter chosen such that

1
Mg3 = E{mq"l + mg2) (10.1)
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holds. If we look at the definition of m;; in eq. (4.27), we can convince
ourselves that we can define the estimators based on following ratios

Roo— _ 2(2myp—myy —myy)
AP =

(m11—mzz2)(amg1 —amg:2)

= (ba—bp) {1 +O0(amgq12; aTr [Mg]) } (10.2)
R — 4(m12 — ma3)

T (myy — myy){amg; —amg,)

= bn {I +O(amg2; aTr [Mq] ]} (10.3)

Rz = L2 4 (Rup— Rpn)(amiyy + amaz)
Mg 1 — Mg
=Z{1+0(a%;aTr [Mg])} . (10.4)

Here, the three quark flavors 1,2, 3 are defined as specified above and
as in eq. (4.35), we consider quark masses m;; as defined from two
mass degenerate but distinct flavors.

We have indicated the expected cut-off effects which are present
when the estimators are defined as above. All estimators suffer from
OfaTr [Mq]] effects which disappear when we work with massless
sea quarks. If a setup with finite quark masses is chosen, a chiral
extrapolation to the point of vanishing quark masses removes these
effects.

Rap and Ry, further suffer from O(amg,;) effects. Since these co-
efficients multiply factors of a, these effects become O a?) in the
final observables. In the definition of Rz only effects of O{a?) are
present which we do not have to worry about since this is beyond
the order which is considered in the improvement. A definition of
Rz without the term proportional to (Ryp — Ry, ) would lead to Ofa)
effects. These effects would also be present in every observable which
is renormalized by Z.

Different definitions of the estimators based on a replacement of
the quark mass difference (my; — m;;) by other combinations of
current quark differences from the three flavors 1,2, 3 are possible
and a priori we do not know, how the size of the cut-off effects
is influenced by these choices. In [230], five different possibilities
have been investigated and no significant difference has been found.
Therefore, the above definitions which have been used in the former
studies in the Schrédinger functional have been chosen in our work.

So-far, we did not further specify how the current quark masses are
defined. In the derivation of current quark masses we stressed that the
PCAC relation is valid on every single time slice of the lattice. There-
fore, we can define time-dependent estimators Rx(xp), X = £, m, AP
based on local PCAC masses mi;(xo) on every time slice of the lat-
tice. We expect estimators from different time slices to be strongly
correlated and to differ only by cut-off and boundary effects. Since



10.2 QUARK MASS PARAMETRIZATION

all definitions based on different x; are equally valid, an average over
time slices in a region [t;, tf] in the center of the lattice

tr
a
Ex = m Z Ry (x0) (10.5)

xp=1t;

is chosen to eliminate fluctuations between different time slices.

10.2 QUAREK MASS PARAMETRIZATION

Due to possible numerical instabilities in the computation of the
estimators close to the unitary point and further theoretical advantages
we refine the three estimators using a different definition of the quark
masses that enter egs. (10.2-10.4). The basis of this redefinition is a
parametrization of current quark masses and we will explain it closely
along the lines of our publication [74].

10.2.1  Redefinition of the estimators

We start with the observation that the current quark masses m;; are
symmetric functions under the exchange of i and j. Therefore, we can
express them in the series

amij(amgij, algij) = Z Chkl(adgi; }Z“Eﬂmij}k, (10.6)
n, k=0
where we have introduced the dimensionless coefficients C,, and the
mass splitting

1 1 1 1
Agij = 5(Mgi—Mg;j) = 7— (K—L - K—]) : (107)

If we compare this parametrization with the definition of the renor-
malized and improved quark mass in eq. (4.27), we can identify the
coefficients Copp, Co1, Coz and Cqo with combinations of improvement
coefficients and renormalization constants. In the limit of chiral sea
quark masses, we would get Cpg = 0 and Cpy = £. Similar observa-
tions have been made in [223] and [227].

We can use the series expansion to parameterize degenerate and
non-degenerate quark masses in terms of mass-splittings. To adapt
this to our goal of the determination of the estimators Rx, we make
some specific choices. We choose mg,; to be equal to the mass of
the three degenerate sea quarks, ie, mg; =Tr [Mq] /MNg. Due to our
definition of m_ 3 in eq. (10.1), we can now employ the mass splitting

A= Ao =IE[“1q,2—mq,1]=mq,3—mq,1 (10.8)
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to parameterize the current quark masses needed in the determination
of the Rx via

amy; = Y Cox (amg)* (10.9)
k=0

amy;(A) = 3 Cox (amg; +2a4)* (10.10)
k=0

ami2(A) = 3 Cnk (aA)*™(amg1 + aA)*. (10.11)
k=0

In the unitary limit, A — 0, all three quark masses are equal. Addi-
tionally we can see from the formulae that the first derivatives are

related via
1 amgg - al'l'l,'|2 - Eim-|-|
2707 |4, OA |4, Bmgr (10.12)

We can use these observations to parameterize the quark masses in
terms of A close to the unitary point by

ami2(A) = ami1 + NiaA+ Nz(aA)? +0(aA)? (10.13)
ams>(A) = amqq + 2NjaA +4D,(aA)? +O(aA)?, (10.14)

where we introduce the the coefficients N; and D; for the non-degener-
ate and degenerate quark masses. By comparison with egs. (10.9-10.11)
we can see that these are related to the () and the sea quark mass
amg,;. Since we have chosen mg3 = mg 2, we can use the identity
m_:,;{ﬂ] = mzz{ﬂ;'(z] to write

amzz(A) = amqq + NyaA + Di(aA)? +O(ad)?. (10.15)

The term O(aA)? indicates terms of higher orders. These can be
included in the parametrization of the masses, leading to additional
coefficients. The definitions of the current quark masses mz2, my2 and
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m33 can now be used in the definitions of the Ry, egs (10.2-10.4), to
obtain continuous parametrizations in terms of (aA). We can write

Rap = Y2 o (Nes2 — 251Dy y0) (aA)k
N1+ Zg’:o 2k+1 Dy [ﬂﬂ]k

- Ng — 2D2 +O{l1£t] ."iln,rrt,:}J—]-lI]Ik

~ N;+0(ad) '

_ Y5 0(Niy2 —Dyy) (ad)*

T N1+ Y 5 25+ 1Dy (aA)k

~ N2—D2+4+0(ad) Amg =0
~ N;+0(a4)

Rz = (N1 +> ZkaH[uﬂ]k)

k=1

(10.16)

(ba —bp),

Ren (10.17)

bm,

+2 (Eam” + NjlaA) + i szk{ﬂﬂilk)
k=2

. Yo o(1—2%"")Dys2(aA)*
N1+ Zg’:o 2k+1 Dicg1 [ﬂ*’:‘-]k

ﬁ,mo‘1—}0

(10.18)

Z.

In the first step, we have included all higher orders in the sums. In
practice, we have to cut at some order of (aA).

From the above equations, we can see that we are able to define
the three estimators at the unitary point, ie., at the point where all
sea and valence quark masses are equal. Since the definitions in
eqs. (10.2-10.4) are based on finite differences of quark masses, this
has not been obvious. If we go even further and drive all masses
to the chiral point where sea and valence quark masses vanish, all
mass-dependent cut-off effects are removed from the definitions. At
this point, the coefficients myq, N1, N2 and D3 are sufficient to fully
describe the three estimators.

If we evaluate the Rx at a finite value of A, all higher orders of the
quark mass parametrizations in egs. (10.13-10.15) contribute to the
estimators. This is also the case, if they are determined from finite
differences of quark masses and time slice averages, as it has been
done in the former works [227-229].

10.2.2 Polynomial interpolations

The determination of the estimators Rap, Rm and Rz, consists of two
steps. In the first step, we have to extract the coefficients my¢, D; and
N; from current quark masses. In the second step, we can employ
these coefficients to determine the Ry.
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The extraction of the coefficients can be achieved via a polynomial
fit of fixed degree to measured degenerate and non-degenerate PCAC
masses. Hence, quark masses m12 and m3z have to be determined
for different choices of A. Quark masses m33 are indistinguishable
from m;; and lead to the same parametrization. Therefore, we do not
have to treat them separately. For the description of the masses by a
polynomial with fixed degree to be valid, we have to restrict ourselves
to a region around aA = (.

The degree of the chosen polynomials depends on the range of aA
considered in the measurements. If we consider a region close to the
origin, we are only able to resolve linear and quadratic effects in aA.
If we choose a region which extends to heavier quark masses, we have
to add more degrees of freedom to properly describe the data. The
number of fit coefficients which are needed to describe the data also
depends on the statistical errors of the data points. In general, if the
data points are more precise, we need have to consider polynomials
of higher degree.

The coefficients of the quadratic terms are necessary to determine
the estimators at the unitary point where all higher order coefficients
vanish. If the Ry are extracted at non-zero values of A, it has to
be granted that all coefficients which significantly contribute to the
estimators are taken into account. This can be checked by the quality
of the polynomial fits in terms of the ¥ and the deviation of the
current quark masses from the interpolations as well as by an explicit
comparison of the results from egs. (10.16-10.18) with the results
gained from egs. (10.2-10.4).

A simultaneous fit of the current quark masses to the forms in
eq. (10.13, 10.14) where the parameters m;; and N; are shared among
both parametrizations is performed to extract the coefficients of the
polynomials from the data. The constant term amjy can be fixed to
the value of the sea quark mass. Since the statistical error is not taken
into account in this case, it might constrain the fit too much.

The quark masses based on different valence quark propagators are
highly correlated. Therefore we would like to determine the coeffi-
cients from correlated fits. Unfortunately, as anticipated in section
6.3.1, this turns out to be highly unstable. We therefore use the sta-
tistical errors as weights in an uncorrelated fit. The coefficients of
the polynomial fit can be determined with standard methods, see e.g.

[124].
10.3 THE LINE OF CONSTANT PHYSICS

Our aim is to determine the renormalization constant Z and the im-
provement coefficients by — bp and by, for a range of couplings for the
use in the continuum extrapolation of physical observables. Therefore,
we like to achieve a smooth variation of the estimators, when the
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coupling g3 is changed. To achieve this behavior, we determine the
estimators along a line of constant physics.

This means that we keep all kinematic variables and all renormal-
ized quantities fixed in terms of L and we also fix [, when we vary
g3, thereby changing the lattice spacing. With this procedure, the
estimators become smooth functions in a/L and gﬁ [227].

When we define the line of constant physics, we have to make
certain decisions in fixing the parameters. Every variation in one of
our choices leads to a different behavior of the estimators Ry in the
coupling. As long as one set of choices is kept fixed for all couplings,
the smooth convergence to the continuum limit is preserved. Although
we will carefully motivate all of our choices, it is not clear a priori
which choice leads to the best continuum extrapolation of physical
observables. This does not pose a fundamental problem, since the
concept of O(a) improvement is asymptotic in the sense that we do
not try to make statements about the absolute size of higher order
effects but try to change the rate towards the continuum limit.

Based on these thoughts, we do not consider the spread of the
variations in the estimators based on different choices as systematic

errors, but rather define the estimators based on a fixed set of choices.

Any deviation from this definition results in an ambiguity that is
expected to vanish smoothly in the continuum limit. This approach
has been motivated in [51, 227].

In our determination of the Ry, we will motivate our choices and
check that ambiguities vanish with the expected rate which is Ofa)
for the improvement coefficients and Of a?) for the renormalization
constant.

In our calculations, we first have to fix all details of the lattice
simulations such as the improvement coefficients cx and the boundary
angles in the Schridinger functional. For many of these choices, we
already stated the exact definitions in the introductory part of this
work. All parameters that influence the generation of our ensembles
can not be changed and the inspection of the impact of changing these
parameters requires a large amount of computing time.

The next set of choices is fixed on the level of the analysis of the lat-
tice data, e.g., the definition of the discretized derivatives, the plateau
range for the current quark masses or the degree of the polynomial
in the mass parametrizations. Since these choices may be changed on
the level of the analysis, we can check that ambiguities arising from
different definitions vanish smoothly in the continuum limit.

The last set of parameters concerns physical observables that enter
the definitions of the Rx. Most importantly we have to fix L in physical
units, since we use this to fix all other quantities. For our calculation,
the choice of the masses my; and m;; is of importance, as well. While
we fix myy to be the current quark mass of the sea quark and tune
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these to be massless, we have a freedom in the choice of the valence
quark mass m22.

By working on ensembles with massless sea quarks, we are able to
remove all OfaTr [Mq]} effects that would be present in our estimators.
In the same spirit, we can choose

LAz; = L(maz(A)—myy) =0, (10.19)

as part of the definition of the line of constant physics for the partially
quenched valence quarks. This definition together with my; = 0
leads to the removal of all quark mass dependent cut-off effects in
egs. (10.2-10.4).

In [229], two valence LCP have been defined by the choices Lm; =~
0.5 and L'ma2 == 2.5. Since the estimators have been determined from
finite differences of quark masses, the massless definition of eq. (10.19)
has not been possible in this case. The scaling of the effective energy

LTps(z go) = —LdgIn [fA[Kn,M]”xﬂ:m , z=IM (10.20)

determined on a different set of ensembles than used in the compu-
tation for the Rx towards the continuum limit has been investigated
using both valence LCP. The RGI quark masses z where chosen to be
at the scale of the bottom quark mass. It was found that the estima-
tors based on the heavy LCF, i.e., Lm3; = 2.5 led to a longer regime
where a scaling proportional to (a/ L)? could be observed, compared
to the light LCP. The inclusion of mass-dependent cut-off effects in the
definition of the estimators led to a better removal of cut-off effects
for quantities based on heavy quarks. A similar observation has been
made in [228].

Based on these observations, we come to the conclusion that we can
define valence LCP by requiring LA;; to be fixed to a constant, finite
value. If this value is chosen close to to a characteristic heavy quark
scale, where the improvement coefficients are used to compute physi-
cal quantities, an improved scaling may be expected. Effectively, this
definition of the estimators at finite valence quark mass corresponds
to a resummation of all higher order terms in aA for the chosen line
of constant physics [74].

Since the connection between the current quark mass and the bare
subtracted quark masses is not known a priori, a tuning of the hop-
ping parameters of the valence quarks has been necessary to achieve
approximately constant quark masses Lmz2 in the former studies.
Since the parametrization of the current quark masses in terms of
A is the core of our strategy, we are able to evaluate the estimators
Rx at any fixed choice of LA;; at the level of the analysis and after
all measurements have been performed. Since we have a continuous
description of the quark masses in a range of values of LA;;, we are
also able to compute the estimators as smooth functions of A;;.



1.3 THE LINE OF CONSTANT FPHYSICS

We like to end this discussion with the observation that fixing LAz,
might be insufficient, if the data reaches a certain precision. In order to
correctly fix the renormalized quark masses which are used to define
the valence line of constant physics, the combination

Za(g3)
————I1A (10.21)
Zp(g3,1/0)
has to be held fixed. Since the factor Z4/Zp only slowly changes in

the considered ranges of g3, this additional factor might be left out in
the computation, as it has been done in [227-229].
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QUARK MASS5 IMPROVEMENT IN THE 5STRONGLY
COUPLED REGIME OF THREE-FLAVOR LATTICE
QCD

We have determined the renormalization constant Z and the improve-
ment coefficients by — bp and by, in two different regimes of three-fla-
vor QCD. In this chapter we describe the calculation in the strongly
coupled regime of QCD. Here, we cover the coupling regime that is
used in the large-volume CLS simulations. The results presented in
this chapter have been published in [74].

11.1 GAUGE ENSEMBLES

For our study, we employ a set of ensembles that has already been used
for the non-perturbative determination of c, [67] and Z4 [65], but has
been extended for the present study. We use the tree-level Symanzik
improved gauge action and clover improved Wilson fermions as they
have been defined in chapter 2 in the Schrédinger functional with all
choices as described in chapter 3. Based on these discussions, we only
have to specify the boundary angles which we choose to be 8 = 0
and the boundary improvement terms which we set to tree-level, i.e.,
cg =6 = 1.

The lattice extent has been set to L = 1.2fm. Since the line of
constant physics for these ensembles has been fixed before a scale
setting had been done, the evolution of the lattice spacing with the bare
coupling has been estimated from the universal two-loop -function,
starting from the pair (L/a = 12, p = 3.3). To allow for large plateaus
at moderate cost, T = 3L/2 — a has been chosen. More details on the
generation of these ensembles can be found in [65, 67] as well as [231].

Although the physical lattice extent varies by about 10% between
the different ensembles, it has been checked explicitly that these small
deviations do not influence the results obtained from Ward identities
in the bulk at the order we are interested in [232].

An overview of the ensembles is given in table 11.1. With the five
different choices of the coupling § we cover a range of lattice spacings
from a = 0.09 fm to a =~ 0.045 fm. When the line of constant physics
was set up, it was intended to cover the range of lattice spacings
used by the CLS effort. When the CLS ensembles were generated
large cut-off effects have been found at f = 3.3. Therefore, only
smaller lattice spacings have been considered and the finest ensemble
has an inverse coupling of p = 3.85 which is slightly outside the
range covered by the Schriédinger functional ensembles. Nevertheless,
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we are confident that interpolation formulae for the whole range of
CLS ensembles can be provided from our work in the Schridinger
functional.

As apparent from tab. 11.1, we have generated several ensembles per
gauge coupling, each with a different sea quark hopping parameter
k1. This is done to allow us to extrapolate the results at fixed lattice
spacing to the chiral point and therefore cancel all Tr [Mq] effects.
Since the sea quark masses in all ensembles are fairly small, we expect
linear effects in the sea quark mass and a small slope, compared to the
errors of our estimators. Since an ensemble with a small negative quark
mass exists for every lattice spacing, we can perform an interpolation
rather than an extrapolation to the chiral point.

Our strategy as follows: We determine the estimators Ry on a line
of constant physics on all gauge ensembles of tab. 11.1. Afterwards
we interpolate the results to the chiral point at each lattice spacing. In
the last step, we determine an interpolation formula to describe the
results across the covered range of couplings.

11.1.1  Topological charge

As discussed in the motivation for the use of open boundary conditions
in section 3.4 and in section 6.4 on quantities from the gradient flow
in the Schriodinger functional, we expect a severe topological freezing
when going to smaller and smaller lattice spacings. Therefore, we have
to monitor the topological charge on all ensembles. In this chapter
and in contrast to the work for the matching of QCD and HQET, we
use the Wilson flow to smooth the gauge fields for the determination
of Q.
For better visibility We show the Monte Carlo histories of the topological charge for
we show only a three representative ensembles A1ky, Bik4 and Dik4 in figure 11.1.
fraction of each run. . o can observe a strongly fluctuating charge on A1k4. For Bikq we
see that the charge remains in one sector before it changes again. At
the finest lattice spacing considered in this study, the charge is frozen
in some sectors for large fractions of the Monte Carlo history.

On the right hand side of figure 11.1, we show histograms with
the distribution of (). The gray bars are bins of width 1 centered
around integer values, according to our definition of integer topo-
logical charges on the lattice in eq. (6.50). We can see that we have
sampled a distribution around QQ = 0, but the width of the distribution
shrinks for decreasing lattice spacings. At the finest lattice spacing we
essentially only sample Q € {—1,0,1].

We also included a histogram with red bars. Here, the bin width
has been chosen to be (0.2 and with this resolution, we are able to
investigate the fine structure of the non-integer topological charge. At
the coarsest lattice spacing we observe a continuous distribution with
peaks which are shifted towards zero, compared to the integer values.
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Table 11.1: Overview of the simulation parameters of the N; = 3 ensembles
(labeled by ID) that represent our data. Subsequent columns
refer to the lattice dimensions L3T/a*, the inverse gauge coupling
B = /g3, the light (sea) quark hopping parameter k;, the number
of replica Ny, the number of configurations per replicum, both in
total (N.¢;) and in the subset of configurations with zero topologi-

cal charge {Ni%}}, and the corresponding PCAC sea quark masses.
Most ensembles have configurations separated by 8§ molecular
dynamic units (MDU), except for A1k3 and D1k4 that have 4 and
16 MDU, respectively. Compared to the data base of [65, 67], we
have generated and used the nearly chiral ensembles A1k3, Atky,
Bik4 and D1iky, and significantly increased statistics for E1k: and
Eikz. Reproduced from [74].
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With the decrease of the lattice spacing, we obtain single distributions
which are centered around integer values. As expected, we obtain
integer values of the topological charge in the continuum limit.
When we defined the gradient flow coupling in the Schridinger
functional, we introduced the projection on the sector of vanishing
We use topological charge via
c=Bt/L =035 X
in this chapter. {O} _ {DE.[Q].} . {11.1}
(8(Q))
We will use this projection for all observables obtained from Ward
identities on the ensembles listed in 11.1. We expect that results from
the ) = 0 sector are the same as in the case of the inclusion of all
sectors, if they are sampled properly. For the coarse ensembles we
have to neglect a significant part of the statistics when the projection
is applied. In exchange we do not have to worry about biased results
on the finest ensembles, where the sampling is insufficient.
In this chapter, we will focus on the projected results but also quote
the results from full statistics. This will allow us to judge our decision,
when we compare the final results.

11.2 RESULTS

In this section we will discuss our analysis and the results at all three
stages of the calculation, namely the analysis on single ensembles, the
chiral extrapolation at fixed lattice spacing and the interpolation of
the results at the chiral point in the range of considered couplings.

11.2.1  Mass parametrizations and determination of the estimators

We start our discussion of the results with the description of the
analysis on the base of single ensembles. Since the B1 ensembles are
in an intermediate coupling range, where we still see a fluctuation
of the topological charge and at the same time expect only moderate
cut-off effects, we will use them to illustrate the steps of the analysis.
Since we are interested in the chiral limit of the Ry, we try to sample
a region of aA close to the unitary point. To be able to compare our
results from the new strategy with the results from time slice averages,
we determine not only my2 and m2; for each choice of A, but also
m3z3 This means that we determine two heavy propagators per choice
We perform the of A. On each ensemble we perform measurements for O(15) choices
measurements with of A which are chosen such that 0 < LA,> < 1 holds. In addition to
the stet mﬁ,m; these measurements including partially-quenched quarks, we perform
= a measurement of at the unitary point, ie., we determine myy at mg,
which is fixed by the simulation.
We define the PCAC masses as the time slice averages in the central
third of the time extent, ie., in the region xo € [L/(2a),L/a]. The
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Figure 11.1: Beginning of the Monte Carlo histories and distributions of the
topological charge Q for decreasing lattice spacing to monitor
the topology freezing (top to bottom: ensembles A1ky4, Bikg and
D1ky). The gray histogram counts appearances of () beloging to
different integer sectors v £ Z according to 5g_~,0 of eq. (6.50).
The finer-spaced (red) histograms reveal the fine-structure of
the (non-integer) topological charge distribution with Wilson
fermions and gradient-flow smoothing ratio ¢ = 0.35. The his-
tograms have been determined on the full statistics.
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Figure 11.2: Time dependence of exemplary PCAC masses in the considered
range on Biky. Black points and red plateaus show the masses
determined with improved derivatives. Gray points and blue
plateaus depict masses from standard derivatives. The errors on
single data points are barely visible.
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values m;(xp) are calculated according to eq. (4.26) with the improved
discretized derivatives as defined in A.3 and ca from reference [67].

In figure 11.2, we show the time slice dependent PCAC masses
my32(xp) for different values of k3. The black points show the quark
masses on each time slice determined with the improved derivatives.
The red regions show the plateaus which are determined from a time
slice average. These plateaus enter the analysis. At the boundaries,
we can see considerable cut-off effects, leading to a deviation from a
straight line. Within the central region where we define our plateau,
these boundary effects are not visible anymore. Slight variations
within this plateau range are averaged out.

In gray, we show the the PCAC masses determined from the stan-
dard discretized derivatives together with the corresponding plateaus
in blue. For the lightest quark masses, we can barely see any difference
between both methods, except for the cut-off effects at the boundaries.
With increasing quark mass, the difference between both plateaus
increases. We therefore seem to observe a mass-dependent cut-off
effect. In fact, the absolute size of the difference scales with the lattice
spacing. We will investigate the influence of these cut-off effects on
our final observables in section 11.3.

From our measurements of the correlation functions f, and fp, we
have O(15) values of non-degenerate quark masses m2 and O(30)
values of degenerate quark masses which we will name m3> from now
on, unless we explicitly indicate something different. This choice leads
to a higher density of measurements of mz2 close to the unitary point.
Since we cover a range up to LA22 = 1 we are able to safely determine
results for a line of constant physics with heavy valence quarks, in
addition to the line of constant physics using massless valence quarks.
We define these two lines of constant physics by

LCP-0: L=const, Lmy1=0, LA»» =0, (11.2)
LCP-1: L=const, Lmy1=0, LA»»=1. (11.3)

Based on the measured PCAC masses, we are able to determine the
coefficients D; and N; of the parametrization formulae (10.13-10.14)
from a simultaneous fit to the data. We find that it is advantageous
to keep the parameter mj in egs. (10.13-10.14) as a free parameter
compared to constraining it to the mean value of the measured PCAC
mass at mg ;.

Since the coefficients at the order (aA)? are necessary for the de-
termination of the fit coefficients at the unitary point and we like
to absorb fluctuation in the data in higher order fit coefficients, we
choose interpolating fits of degree three.

In figure 11.3 we present as representative example the PCAC
masses and the interpolating curves from the fit on ensemble Biky.
In the lower part of the figure we show the data points and the inter-
polations. On this scale, the error bars of the data points as well as
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Figure 11.3: Lower plot: Example of a combined mass fit (ensemble Biky)
depicting the fitted data points and curves for m3; and m,;.
Error bars and bands are too small compared to the scale of
the plot. Upper plots: Differences between the measured PCAC
masses mij and the fitted curves, ﬁfmij = amy;[kz2) — ami;(A)
together with the statistical uncertainties of the data points and
the uncertainty band of the curves. Reproduced from [74].

the uncertainty bands of the curves are hidden. This underlines the
high level of precision that we achieve in the determination of PCAC
masses. To be able to judge on the quality of the interpolation formula,
we show the difference between data points and interpolation curves

Afmy; = amy;(kz) — amg;(A) (11.4)

together with the uncertainty bands of the interpolating formulas
centered around zero. It can be seen that the interpolations describe
the data very well with the chosen fit degree and we are able to
parameterize the current quark masses in the complete range.

Based on the reassuring results, we can use the coefficients in
mi2(A) and m22(A) to determine the Rx according to egs. (10.16-10.18)
for both lines of constant physics. In tables B.4 — B.7 we list the results
for the sea quark masses and the three estimators for all ensembles.
Our main results are collected in table B.4, where we gathered the
results for LCP-0 and the sector of vanishing topological charge. Table
B.6 contains the results for LCP-1 and B.5 and B.7 contain the results
based on the analysis on all topological sectors.

11.2.2  Chiral interpolations

We employ these results to perform interpolations in the sea quark
mass to the chiral point at fixed lattice spacing. As it is already
evident from the numbers, the variations of the estimators depending
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Figure 11.4: Chiral interpolation (amy; — 0) of Rz for f = 3.512 for the
two lines of constant physics defined in egs. (11.2) and (11.3)
projected onto the sector of vanishing topological charge. The

red triangles represent the resulting values in the chiral limit.

Reproduced from [74].

on different sea quark masses is rather mild, compared to the size
of the uncertainties. In figure 11.4 we exemplary show the chiral
interpolation of Rz based on the results of the B1 ensembles. From
eqg. (4-27) and egs. (10.2 — 10.4) we expect leading effects of O(aTr [M_q] )
when we vary the sea quark mass. Indeed, we observe a linear
behavior in the sea quark mass with a small slope for both LCP.

In general, the errors from the heavier line of constant physics are
smaller. The differences between both LCP are significant, also for the
results at the chiral point. We expect this difference to be an O(aA)
effect and we will investigate this in depth in section 11.3.

We collect the results for the Rx at the point of massless sea quarks in
tables 11.2 and 11.3. These could now be used for the renormalization

and improvement of quark masses at the values of 5 cited in the tables.

Since we intend to use the results on the large-volume CLS ensembles,
where slightly different couplings have been used, we proceed to the
determination of interpolating curves for the three estimators.
Before we proceed to this stage of the analysis, we want to point
out that we could have taken a different path to arrive at the result
for the estimators at the point of chiral sea quarks. Since we define
the estimators from the fit coefficients m;, D; and N;, we can turn
our analysis around and perform a chiral interpolation of the single
fit coefficients first. In the next step, we can determine the Rx at
the chiral point from egs. (10.16-10.18) and the chirally interpolated
fit parameters. In figure 11.5 we show the chiral interpolation of
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Figure 11.5: Chiral interpolation of the fit parameters amqq, Ny, N2 and D2
for the B1 ensemble group. The black crosses show the data
from the fits on the single ensembles and the red crosses mark
the chiral point.
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Table 11.2: Chirally extrapolated LCP-0 results, both for the vanishing topo-
lc[g?]cal charge sector, R;: ]', and without zero-charge projection,
Only the former are plotted in figure 11.4.
B RY R R Rzt R R
3300 —0.762(101) —0.656(55)  1.303(90) 1.244(43)  0.7462(56)  (.7463(28)
3414 —0.8312(53) —0.770(53) 0.291(53)  0.364(44)  0.8762(40)  0.8719(37)
3512 —0515(49) —0.536(36) —0.291(39) —0.177(32)  0.9764(33)  0.9672(26)
lefe —0.291(46) —0.279(37) —0.671(43) —0.583(35) 1.0588(31)  1.0536(23)
3810 —0.156(20) —0.144(17) —0.738(19) —0.700(18) 1.0882(11)  1.0866(10)
Table 11.3: Chirally extrapolated LCP-1 results, both for the vanishing topo-
lc[g?]cal charge sector, R;: ]', and without zero-charge projection,
Only the former are plotted in figure 11.4.
B RY v R Rzt Ry R
3300 —0.356(24) —0.376(10) —0.025(19) —0.002(7) 0.7896(36)  0.7846(16)
3414 —0362(13) —0363(12) —0.264(12) —0.237(10) 0.8992(26)  0.8950(24)
3512 —0.227(12) —0.244(9) —0.469(11) —0.429(9) 0.9861(23)  0.9785(18)
3676 —0.125(14) —0.133(12) —0.643(14) —0.607(12) 1.0611(23)  1.0564(17)
3810 —0.070(7) —0.071(6) —0.684(7) —0.669(6) 1.0834(8) 1.0871(8)

the fit parameters entering the estimators Ry for LCP-0. The first
interpolation shows the fit parameter am;; versus the measured
value for the sea quark masses which we also denote by amy;. Since
we did not constrain the fit to the measured values, we can check the
validity of the fit with the intercept at amy; = 0.

From the other three interpolations, we can see that linear interpo-
lations are appropriate in all cases. Since the parameters are based
on physical properties of the quark masses, namely the expansion
parameters of the renormalized masses in (aA), they do not vary
much, when Tr [Mq] is changed.

Since we decided to use the results of the chirally interpolated
estimators instead of the fit parameters to determine the estimators
at the chiral point, we do not give all results for the fit parameters
in forms of tables. In any case, the results at the chiral point match
far beyond the statistical precision. We checked for all five ensemble
groups that the behavior of the interpolations are similar to the ones
presented in fig. 11.5.
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11.2.3 Interpolation in the coupling

The determination of the correct functional form for an interpolation
of the results in table 11.2 in the bare coupling g7 is a non-trivial
task. For all three estimators, perturbative formulae to one-loop exist
[233, 234], but we have no reason to believe that these perturbative
predictions hold in the considered coupling range. Therefore, we have
to try to find the functional form that best describes the behavior of
Sometimes, an the Ry. Several fits to different classes of functions are tested to find
extensive test of  the optimal parametrizations.

cﬁ:ﬁ::::; In general, simple polynomial fits provide a good result and a
necessary to obtain a correct error estimation for the fit parameters, since they are linear
decent result.  In their coefficients. Unfortunately, we have to deal with another
complication. As stated above, the finest CLS ensembles have been
generated at an inverse coupling of = 3.85 which is slightly outside
of the considered range. We therefore try to find a functional form
that is trustworthy beyond the fit range. Due to the behavior of the

data, polynomial interpolations tend to bend strongly for p > 3.810.
We decide to constrain the interpolating functions to the perturba-
tive predictions towards the limit g — 0. With this choice and after
an extensive search for the best ansatz, we describe the functional

behavior by the following formulas:

Rar(g3) = —0.0010666 g3 x {1 +exp (po+pi/93)}, (115a)
1+4q095+919;

2y 2
Rn(99) = ~0.5 0076293363 x 2505t (1u.h)
1 2 4
Rz(g2) = 1.0+0.0703169 3 x +?”fz;j1 %, (159
0

As indicated above, the leading coefficients are set to the values pre-
dicted by perturbation theory [233, 234]. We choose the same fit forms
for both lines of constant physics since the behavior in the coupling is
not fundamentally different between both. For LCP-0, we obtain the

fit parameters

(p;) = (16.7457,—19.0475) , (11.6a)
(q5) = (3.53337,—2.48944, —0.516695) , (11.6b)
(z;) = (0.703413,—0.769835,—0.478372) , (11.6¢)
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with covariance matrices

(11.7a)

349591 —6.07560
cov [F’i.: Pi ] = ¥

—6.07560  10.5834

945681 575056  0.859064
cov(qi, q;) = | —57.5056 34.9883 —0.525367 | <1072,
0.859064 —0.525367  0.009086
(11.7b)
422703 254941 0.231607
cov(zy z;) = | —2.54941  1.537772 —0.139695 | = 1072,
0.231607 —0.139695  0.013179
(11.7c)

For LCP-1, ie., the line of constant physics including the partial-
ly-quenched heavy valence quarks, we find:

(p;) = (15.6049,—18.4592) , (11.8a)
(qj) = (2.66968,—1.93055,—-0.468542) , (11.8b)
(2;) = (0.729908, —0.780933,—0.467403) , (11.8¢)

with covariance matrices

1.50497 —2.63930
) . (11.9a)

—263930 463683

742042 444131 210959
cov(qi, qj) = | —44.4131 265860 —1.26398 | x 1072,
210959 —1.26398 0.062898

cov(pi, pj) = (

(11.9b)
294708 —1.76762  0.182059
cov(zy, z;) = | —1.76762  1.06029 —0.109193 | x1072.
0.182059 —0.109193  0.011597
(11.9¢)

The resulting curves together with the data points are presented in
figure 11.6. The numbers in the covariance matrices are inflated by
a factor of two compared to the outcome of the fits. This is done for
two reasons. First, by inflating the errors of the interpolating curves,
these errors are similar to the errors on the single data points. Since
we do not have any insight on the true functional form of the curves,
we only want to describe the data in the best possible way.

Another motivation for the inflation of the error is the prediction
of the values at § = 3.85. Since this point is outside the fit range, the
effect of choosing different ansétze for the interpolations is enhanced,
compared to the other couplings. By inflating the error, we are able to
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Table 11.4: Interpolated values of our estimators for couplings employed in
CLS simulations along the two renormalised trajectories LCP-o
and LCP-1 considered in this work. Statistical uncertainties are as
described in the text and match the confidence band in figure 11.6.

LCFP-o LCP-1
B Rap Rm Rz Rap Rm Rz
3.85 —0.155(36) —0.781(38) 1.0975(25) —0.073(12) —0.708(15) 1.0971(18)
370 —0.258(42) —0.640(31) 1.0591(23) —0.119(14) —0.630(11) 1.0612(17)
3.55 _0.432(46) —0358(47) 0.9937(42) —0.196(14) —0.498(15) 1.0015(30)
346 —0590(53) —0.044(65) 0.9320(50) —0.265(14) —0.376(17) 0.9468(35)
340 —0.726(67) +0.290(76) 0.8758(52) —0.324(17) —0.266(17) 0.8981(35)
334 —0.893(95) 40.810(98) 0.8019(68) —0.398(23) —0.124(22) 0.8355(44)

cover the spread of different curves at p = 3.85 and therefore provide
reliable numerical values within errors. We give an overview of the
values at the couplings of the CLS simulations [60, 142, 214, 235, 236]
obtained from the fits in table 11.4.

As it can be seen from figure 11.6, we achieve a good description of

the data. As cross-check, we like to compare our results with existing
In[71], by and bp determinations from the literature. For by — bp, values based on the
have been coordinate space method extracted directly on the CLS ensembles
separat j:f;;::;:?: are available from [71]. We show our results together with their data
of importance for the peints and their interpolation in fig. (11.7). It can be seen that both
improvement of determinations feature the same qualitative behavior. In [235], two
matrix elements.  yalues for Z determined on the CLS ensembles can be found. As it
can be seen in the lower part of figure 11.7, these values nicely align

with the curve, determined from our data.

Based on our determination of Z, we are able to determine the ratio
£5/Zp which is used in quark mass renormalization. Together with
the interpolation formula for £, [65, 66], the scale independent ratio
can be determined via

s 1 1

Z = 770 = 7.7 (11.10)

A comparison of the values based on Rz with the results from a
dedicated determination of Zs/Zp from Ward identities can be found
in figure 7 of [237]. There, it can be seen that the differences between
both methods scale to zero linear in a® towards the continuum limit.
Since both determinations have been performed on the same set of
ensembles, they are correlated. These correlations have not been taken
into account.
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11.2.4 Errors and correlations

Let us further comment on the use of the errors of the different estima-
tors. Since Z renormalizes the quantity of interest, taking into account
its error, e.g., in the computation of quark masses, is a necessity. The
situation might be different for b, and by —bp. As far as we can
judge from the literature, the error on bx and cx quantities is not
taken into account. For csw, ¢t and &; which enter as parameters into
simulations, the inclusion of an error would mean the generation of
ensembles with a slightly varied input parameter. For the bx param-
eters which multiply in general O(a) suppressed values, we assume
the impact of statistical errors to be fairly small.

More important for the decision to neglect the error may be our LCP
setup which we explained above. Many ambiguities which vanish in
the continuum limit, are larger than the statistical errors. Choosing a
different LCP would result in a different approach to the continuum
limit which is equally valid. With our quoted errors, we try to cover
all statistical and residual systematic uncertainties within our LCE

As soon as one chooses to include the errors on all quantities en-
tering a renormalized quark mass, one might be concerned about the
correlation of the observables Rz, Ryp and R,,. Since the estimators
are based on the same parameters N; and D; these correlations are
non-negligible. In order to further quantify this, we have investigated
the size of these correlations on our ensembles.
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Table 11.5: Correlations between the estimators Ryp, Rm and Rz for the p-
values used in our simulations after an interpolation to the chiral
point. Reproduced from [74].

B COTTAP m COTTy 7 COTTAP 7
3300  0.34(14) —0.36(10) 0.51(17)
3414 —0.4(5) —0.73(4) 0.67(8)
3512 —0.34(8) —0.82(8) 0.75(5)
3.676 —0.50(20) —0.83(11) 0.85(10)
3.810 —0.43(13) —0.85(11) 0.78(5)

In table 11.5 and figure 11.8 we give estimators for these correlations,
le.,

Cﬂi-’x}y
¥
M #CUV)(J)(CGVKY

We evaluated the correlations on the single ensembles and did in-
terpolations to the chiral point for each lattice spacing. Since the
correlations only marginally change for different LCF, we choose to
quote only the values for LCP-0 in the sector Q = 0.

From figure 11.8, we can see that the correlations are significant
and relatively large. Nevertheless, even if the values in tab. 11.5 are
used to determine the joint error of quantities like (by —bp)/Z or
bm — (ba — bp) which are common in applications, we see that the
effect of the correlations is way below the effect of the inflation of the
statistical errors by a factor of two in the interpolation formula.

Based on these observations, we argue that if one likes to use
the errors on the Rx, as they are given by the covariance matrices in
egs. (11.7, 11.9), it is safe to neglect correlations. Since other parameters
as cy and £, have been determined on the same ensembles and the
correlation with these observables is unknown, this might be the most

consistent way.

X#Ye{AP,m, Z}. (11.11)

COITY Y =

11.3 AMBIGUITY CHECKS

As discussed above, the comparison of our results with values de-
termined in other studies is reassuring. Nevertheless, we like to
investigate the ambiguities that manifest themselves in our approach
if the line of constant is chosen differently. Based on egs. (10.2-10.4)
we expect these ambiguities to scale to zero linear in a for Rap and Ry,
and linear in a? for Rz.

As explained before, we consider all choices that we have made to
fix the line of constant physics as part of the definition of the Rx on
the lattice. We will inspect the impact of three such choices in this
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Figure 11.g: O[a) ambiguities of Ryp and Ry due to different definitions of
the lattice derivative (improved vs. standard). Reproduced from
[74]-

section. To take the correlations between the determination based on
two different LCP into account properly, the differences have been
determined within the Mmethod.

We start with the definition of the discretized derivatives that enter
the PCAC masses. Since the determination of current quark masses is
the core of our analysis, it is important to check the influence of the
rather uncommon choice to use the improved derivatives. We define
the difference between the estimators that have been determined with
improved derivatives (as they enter our final results) and the ones
determined with the standard choice by

A'Rx = Rxlymp — Rxlsta - (11.12)

We show the scaling of this difference towards zero for Ryp and Ry, in
figure 11.9. For Ry,, the ambiguities are rather small. The value at the

coarsest lattice spacing might be influenced by a statistical fluctuation.

Since the lattice spacing is rather large for this data point, we also
might see higher orders in the cut-off effects.

For Rap, the differences nicely scale, but their absolute values are
large, compared to the size of the estimator. Effects of similar size
have first been observed in the quenched studies [223, 227] and in
the two-flavor study [229]. The estimator Ryp seems to be especially
sensitive to the choice of the derivative. Since all differences scale to
zero and our results match those of [71], we do not see a reason to be
concerned.

For the next check we turn to the choice of the degree in the poly-
nomial fits. We decided to use a fit of degree three to achieve a good
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The values from
standard derivatives
are also consistent
with the curve from
[71].
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description of the data, as shown in figure 11.3. The inclusion of terms
of order (aA)* should lead to similar results, provided that the physics
at low orders is still extracted correctly. In figure 11.10 we show the
difference

APRy = RI8=3) _ gldes=1] (11.13)

for Rap and Rz. For the latter, the differences seem to scale to zero
even faster than the expected rate of (a/L)?. For Ry, the effects vanish
linearly. For the coarsest lattice spacing, these effects are zero within
errors which might be due to a fluctuation or cut-off effects of higher
orders.

As last check, we investigate the ambiguities between LCP with
different valence quark masses. Since our polynomial fits cover the
range 0 < LA22 £ 1 we could have chosen to fix the quark mass to any
value within this range. Determinations of the Rx based on different
heavy quark masses are expected to differ by quark mass dependent
cut-off effects. To investigate these effects, we look at the difference

A"Rx = Rxlray,=0— Rxlra,—o (11.14)

between LCP-1 and LCP-0 in figure 11.11. We also add the comparison
with a line of constant physics, where we keep LA;; = 0.25 to visualize
the quark mass dependence of the cut-off effects.

As it can be seen for the exemplary chosen estimators Rap and
Rz, the ambiguities seem to vanish faster than the expected rates.
As expected, the cut-off effects are enhanced for larger quark mass
differences. To allow for a quantitative comparison, we add a third set
of points. The grey boxes show the differences between LAz2 = 0.25
and LCP-0 multiplied by 4 in the case of Rap and 42 for Rz. We
see that these are nearly equal to the differences between LCP-1 and
LCP-0. We therefore have numerical evidence that the cut-off effects
scale as expected from egs. (10.2-10.4).

All three LCP chosen in this comparison are equally valid. In the
case of LCP-0, quark mass dependent cut-off effects are absent due
to the definition at the unitary, chiral point. The inclusion of mass
dependent effects in the estimators as done in LCP-1 might help to
cancel higher order effects in the application. This has to be checked
numerically in separate computations.

11.4 ESTIMATORS FROM TIME SLICE AVERAGES

As extension to this chapter, we like to take a brief look at the deter-
mination of the estimators Rap, Ry and Rz from time slice averages,
as it was done in [227-229]. In figure 11.12 we show the estimators
determined from time dependent PCAC masses my;(xo), as defined
by egs. (10.2-10.4) for LAz = 0.5. We show the estimators based on
the improved derivatives in black and based on standard derivatives
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in gray. The corresponding PCAC mass m;; is shown in figure 11.2.
Since the Ward identities are valid on every single time slice, we ex-
pect plateaus for the estimators, as soon as we are far away from the
boundaries. This is approximately the case for all three estimators.
For the two time slices in the middle of the plateau, we see a strong
fluctuation and for Ry, we see an upward trend. These fluctuations
and deviations can be smoothed out by an average in the central
region.

As we have already seen it in figure 11.9, Ryp is affected rather
strong by the choice of the derivative. This is also the case for the
determination based on the time slice averages.

The major improvement of our new strategy, when it is compared
to the estimators from time slice averages, becomes apparent when
we look at the estimators towards the unitary limit. This is done in
figure 11.13, where we show the estimators from time slice averages,
based on several choices of LA. Going to smaller and smaller values of
LA, the errors of the data points grow more and more until a reliable
determination of the estimators becomes impossible.

The reason for this behavior can be found in the definition of the
estimators from ratios of differences of quark masses. When these
differences become small, statistical fluctuations lead to numerical
instabilities. Therefore, the unitary limit cannot be reached with this
method.

This is not the case, when the estimators are based on the continuous
parametrizations. The red curves in fig. 11.13 show the continuous
description of the estimators based on egs. (10.16-10.18). We can see
that the values from both methods nicely coincide at the upper end
of the considered range. Towards the unitary point, the estimators
from time slice averages begin to deviate from the continuous curves.
This happens, before the errors start to grow significantly faster than
for the continuous curve. Therefore, numerical inaccuracies might
influence the estimators already at non-vanishing quark masses.

11.5§ CONCLUSIONS

We have determined the improvement coefficients by — bp and by,
and the renormalization constant Z = £, Zp/Z 4 in finite volume sim-
ulations in the Schridinger functional in the strongly coupled region
of three-flavor QCD. Together with the results for the improvement
and renormalization of the axial current [65-67] and for the renormal-
ization factor of the pseudoscalar density [64] these results allow for
the determination of renormalized and O(a) improved quark masses
from the large-volume CLS simulations with 2+ 1 flavors.

Based on a similar work in the theory with two quark flavors [229],
we have refined the strategy of the calculation such that results could
be obtained in a fully massless setup. We complement those with
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results at finite quark mass which include higher order cut-off effects
and may lead to a better scaling of heavy quark observables.

QOur results have been obtained on a line of constant physics such
that a smooth dependence of the bare coupling is provided. We
determined interpolation formulas with carefully estimated systematic
uncertainties to allow for the use of our results within a range of bare
couplings g3. Our results are in line with the findings based on a
coordinate-space renormalization scheme [71, 72] but significantly
more precise.

Our results from LCP-0 have been employed in the determination
of the light and strange quark masses in 2+ 1 flavor lattice QCD [77]
where mass-dependent O(a) cut-off effects have been found to be
small. We will apply the the findings of this chapter in the determina-
tion of the charm quark mass in the 2+ 1 flavor QCD in chapter 14
where we face significant discretization effects.
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the unitary point obtained from the continuous curve is marked
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QUARK MASS RENORMALIZATION FOR THE
MATCHING OF QCD AND HQET

We now turn to the determination of the improvement coefficients
ba — bp and by, and the renormalization constant Z in a more weakly
coupled regime. For our matching of HQET to QCD, we need to
determine renormalized quark masses in a region around the bottom
quark mass.

The line of constant physics for the matching of QCD and HQET
consists of a light part which is fixed at the time of the ensemble
generation and a heavy part. Since all heavy quarks are treated as
partially quenched, we tune to the heavy line of constant physics after
the generation of gauge ensembles has been finished. For the determi-
nation of the matching parameters we want to fix the renormalization
group invariant heavy quark mass to the bottom quark mass,

LMy, = LM,,. (12.1)

At the same time, we like to determine the exact value of the bot-
tom quark mass from measurements in the effective theory on the
large-volume simulations. Therefore, we do not know the exact value
of LMy, when we determine the matching parameters.

To allow us to extract the matching parameters satisfying the LCP
defined by eq. (12.1) a posteriori, we determine them for several
choices of renormalized quark masses which are chosen such that they
enclose the physical b quark mass. The matching parameters at the
physical b quark mass can then be extracted via an interpolation in
z=LM;.

We define the renormalized quark masses which we require to re-
main constant along the LCP. via the subtracted quarlc mass, Le., via
eqg. (4.17). Therefore, we need to determine all renormalization factors
and improvement coefficients that enter the computation of renor-
malized quark masses from the bare subtracted quark mass. From
eqg. (4.17) we can then extract the heavy quark hopping parameters ky,
which we use to determine the matching parameters in the full theory.

Since we are well outside the range of couplings considered in
chapter 11, we do not believe the interpolation formulas of this section
to hold here. Also, since we are in a weakly coupled region, we
can expect far more precise results from a dedicated determination
in the coupling region of the matching. The same holds for the
renormalization constant Z, , where interpolation formulas for the CL5
coupling region are available from [65, 66]. Therefore, we will perform
a determination of Z4 along the lines of [65]. The renormalization
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constant of the pseudo scalar density Zp is scale dependent. Hence,
we can not use tabulated results and we determine Zp on our line of
constant physics along the lines of [64, 218].

Since our efforts to generate the matching ensembles on a line of
constant physics are described in full detail in chapter 8, we just
give a short overview of the ensembles that have been employed for
our calculations. We perform the measurements on the ensembles
generated to match the LCP condition in eq. (8.1) in the volume
Ly = 0.25fm. In this way, we keep the cost moderate and at the same
time avoid correlations with the matching parameters which will be
determined in 2Lg.

In the two-flavor project [229], dedicated ensembles with T/L = 3/2
have been generated to determine the improvement coefficients. We
decided to use the existing ensembles with T = L which have been
generated for the tuning towards the line of constant physics. For
the smallest lattices, we therefore have to check whether we are able
to sufficiently avoid boundary effects which will be present on a
significant part of the bulk time slices.

Table 12.1: Ensembles used in this chapter. All ensembles feature T =L N;
is the number of replica runs, while N, gives the total number of
configurations, separated by tms MD units, for which the coupling
and Schrisdinger functional correlation functions are evaluated to
compute the sea PCAC quark mass am,;. The trajectory length
is T = 2MDU. All configurations are in the sector of vanishing

topological charge.
Lo/a B K Ne 35 Neg 3% Lom,
12 43030 0.1359947 7 8 gbhg 3.9461(41) —0.00032(36)
16 4.4662 o0.1355085 7 10 5887 3.9475(61) +0.00043(34)
20 4.6017 01352848 18 10 B478 3.9493(63) +0.00100(21)
24 47165 oazcoiSi 3 16 7303 3.9492(ed) +0.00012(17)
32 49000 01345991 3 20 5oig4 3.949(11)  +0.00543(34)

We list the ensembles that are used for this study in table 12.1. The
five ensembles are simulated on a line of constant physics that is
defined by

Ocp = 3.949, my =0, (12.2)

which translates into a physical extent of Ly = 0.25 fm. Since we tuned
the sea quark masses to values Lgmy < 0.005, we do not perform a
chiral extrapolation but assume to be at the chiral point

Since the lattice spacing is in a range 0.0078 fm < a < 0.021 fm, and
we are in finite volume with a very small physical lattice extent, the
topological charge is frozen and all configurations are in the sector of
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vanishing topological charge. Therefore, we are able to use the full
statistics with the implicit projection on the sector of Q) = 0.

12.1 PCAC MASSES

Since we are interested in the renormalization of heavy quarks, we
do not focus on results at the unitary point but cover a range of
heavy valence quark masses up to the bottom quark mass. Thus, we
perform measurements in the range 0 < Lmg, < 5. Since we will
use the parametrization of quark masses, egs. (10.13-10.14), for the
determination of by — bp, b, and Z we do not have to determine
explicit values m33. Instead, we perform measurements to determine
m;> and m;; for eleven different hopping parameters k; such that

L(mg2—mg1) €{0,05,1.0,1.5,2.0,2.5,3.0,3.5,4.0,4.5,5.0},
(12.3)

where m_; is the sea quark mass. We obtain ten values of m;; and
m; 2 together with the PCAC mass at the unitary point amy;.

Since we changed the geometry, compared to the determination in
[74], we have to decide for a plateau range which is used to average the
current quark masses. After an extensive study of the time dependence
of the quark masses for various hopping parameters, we decide to
define the plateau region by the central quarter of the lattice, ie.,
Xp € [%L,EL]. It can be seen for the two exemplary choices in figure
12.1 that dominant boundary effects only form outside this plateau
region. As in the former study, we choose improved discretized
derivatives for the determination of the PCAC masses.

These masses are used to determine the parameters of the expan-
sions in eqs. (10.13-10.14) via a simultaneous fit. Since we do not
tightly constrain the region close to the unitary point by the measured
partially-quenched quark masses, we decide to fix the leading term of
the parametrizations to the measured value of am;;.

The small statistical errors on the quark masses together with the
large fit range leads to an insufficient quality of the parametrization,
when the series is truncated after order (aA)?. The inclusion of
terms of order (aA)* leads to a significant improvement with small
deviations between data points and interpolating curve. We decide to
include terms of O((aA)”) and obtain an excellent description of the
data. When we include terms multiplying (aA)®, the parameter Ng
and Dg cannot be determined safely anymore, but the quality of the
description of the data remains the same.

We show the differences Afm;; between the measured PCAC masses
m;y> and the interpolating curves based on different degrees of the
polynomials on the ensemble with Ly /a = 12, where the cut-off effects
are most prominent, in fig. 12.2. By construction, the curves coincide
with the data point at vanishing quark mass.
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We explain shortly,
how to determine
amy, on this LCP,

To a very good
approximation

K] 2 Ker

If mare data points
at small quark
masses are included,
the quality of the
parametrization at
large quark masses
deteriorates.
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Figure 12.1: Time dependence and plateaus of exemplary PCAC masses for
two choices of afq for the five considered ensembles.
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Figure 12.2: Differences dfmj = amy; (k3] — amy;(A) between the measured
PCAC masses mz2 and the fitted curves together with the statis-
tical uncertainties of the data points and the uncertainty band of
the curves for polynomial interpolations of degrees three to six
on the ensemble with Ly/a =12

The correctness of the fits can be checked by a comparison of the
estimators based on the fit coefficients N; and D; with the estimators
obtained by time slice averages as done in section 11.4. Based on our
choice of heavy quark hopping parameters, we are able to determine
the estimators from time slice averages for five different heavy quark
masses with Lmzz € {0.5,1.0,1.5, 20, 2.5}. The determinations of the
estimators based on both methods coincide for the chosen degree of
the fit.

12.2 ESTIMATORS

Having fixed all parameters of the mass parametrizations, we are
able to determine the estimators Rx at any value in the considered
range of PCAC masses. Since we did not cover the region close to the
unitary point densely and we perform this analysis to renormalize
heavy quark masses, we do not determine the Rx at the unitary point.

Instead, we choose a different path and evaluate the estimators at
heavy quark masses. This is motivated by a study in [22g], where
it was found that estimators defined at larger quark masses led to
an improved scaling behavior of effective energies defined at heavy
quark masses. The inclusion of mass-dependent cut-off effects into
the definition of the renormalization procedure therefore improved
the precision of the continuum limit. Since we want to optimize the
scaling of the matching parameters around the bottom quark mass,
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we consider the estimators at heavy quark masses. In the following
we will consider different choices of the line of constant physics for
the valence quarks.

Since we believe to be able to achieve a significantly better precision
than in the more strongly coupled region and we are able to determine
the renormalization constants £ and Zp in the same analysis as the
estimators Rx, we decide to fix the renormalized quark mass of the
valence quark rather than the bare one in the definition of the lines
of constant physics for the extraction of the improvement coefficients.
Owur LCP condition is

i
LCP: L=const, Lmy =0, z—ALﬂgg = const, (124)
P

and we are able to take all correlations in the combination %Lﬂzz

into account. The final value of %Lﬂzg is not defined a priori and
in the following we will carefully investigate the mass dependence of
the estimators. We postpone the description of the determination of
Zx and Zp to section 12.4. An overview of the results is given in table
12.2.

In figure 12.3 we show the continuous description of the three
estimators in the considered range of heavy quark masses. Since we
chose the same bare subtracted quark masses for all five ensembles,
the range of renormalized quark masses differs between the curves.
It can be seen that the deviations from the leading linear respectively
quadratic behavior of the curves grow with the lattice spacing. This is
based on mass-dependent cut-off effects of higher order

From the smooth descriptions of the estimators Rx, we are able
to fix the heavy quark mass in the LCP to any value in the given
range and a priori, we do not know which value suppresses best the
cut-off effects in the matching observables. An evaluation close to the
physical bottom quark mass might be most beneficial. In section 7.3.3,

For the charm quark we determined z, = Ly My, = 17.4 and we can convert this to
mass, we determine

LyAy, =~ 1.3, Za _ Lo =n

£Lo4z ZoloAss = P2 +0(a) 59 (12.5)
in the volume Ly, using the running factor h(Lp) = 1.4744(87) deter-
mined in eq. (8.44).

The best choice for the LCF, in the sense that most mass-dependent
cut-off effects of the matching parameters are subtracted, can not
be determined without performing an actual test. In the two-flavor
project [229], a scaling test using effective heavy-light energies has
been done. Before we decide for the best candidates, we investigate
the coupling dependence of the estimators in a range of heavy quark
masses.

In figure 12.4 we show the coupling dependence of the estimators
Rap, Rm and Rz determined for different choices of the renormalized
heavy quark mass. We decide to cover a range from slightly above the
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Figure 12.3: Mass dependence of the estimators Rap, R and Rz for all five
ensembles along the LCP.
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charm quark mass up to the bottom quark mass. For comparison, we
also show the one-loop result from perturbation theory [233, 234]. One set of
Compared to the results in the coupling region of the CL5 simula- parameters in
tions, fig. 11.6, we are able to achieve a remarkable statistical precision. J?f‘ﬂ;i;‘;r,:::::p;mds
Although we have no reason to believe perturbation theory to hold vertical line in
in this regime, our results fall in the same region as the curves de-  fig. 123
termined from perturbation theory. We are able to achieve a smooth
behavior of the estimators towards smaller couplings for most of the
different sets of estimators.
However, the determination of Rz at coarse lattice spacings and
large quark masses raises our attention. In the lower plot of fig. 12.4,
we can see that the dependence of the estimators evaluated at %Lgﬂgz =
6 is not as smooth as the others. This is connected to the functional
form of Rz in dependence of the valence quark mass for the coarsest
lattice spacing. In fig. 12.3 we see a bending of the curve for L/a = 12
at large quark masses. We suspect that higher order cut-off effects
become visible for amg, > 0.3 which corresponds to %Loﬂﬂ == 5
for Lp/a =12
Since this is the region where we like to determine the matching
parameters, it is possible that the inclusion of higher order effects
into the improvement coefficients is beneficial. At the same time we
can expect that the mass-dependent cut-off effects of the matching
parameters become sizable at this coarse lattice spacing and we might
have to exclude it from the continuum limit. From this perspective, it
is reassuring that these higher order effects do not manifest themselves
for Lo/a = 16, where the upper end of the interpolation range is at

amg,> =5 0.3.

12,7 AMBIGUITIES

Any redefinition of the line of constant physics is expected to result in
ambiguities of order O(a"™) which vanish in the continuum limit. We
investigate the size of these ambiguities and their behavior towards
the continuum limit to check the choices that we have made in the
definition of the LCF. Higher order cut-off effects, as they appear in
Rz at large quark masses, manifest themselves by a deviation from
the leading order behavior towards larger values of a.

We will start by the investigation of ambiguities based on choices
that have been made at the stage of the analysis, as we have done it in
chapter 11. We begin with the investigation of the impact of the choice
of derivatives on the final results. For Rap significant ambiguities have
been observed when switching from improved to standard derivatives
in the quenched and two-flavor studies [223, 227, 229] and also in the
coupling region of the CLS ensembles [74]. The same observation can
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Figure 12.5: O[a) ambiguities of Rap and Rz due to different definitions of
the lattice derivative (improved vs. standard).

be made in the coup]j.ng reginn under investigatiﬂn. We show the
differences

A'Rx = Rxlimp — Rxlsa - (12.6)

in figure 12.5. The differences for Ryp are especially large considering
that the absolute values of the coefficient are almost vanishing. To
get a more complete picture, we show the dependence of Rap deter-
mined with standard derivatives in figure 12.6. It can be seen that the
functional form differs significantly from the curves in fig. 12.3.

Despite these differences of the functional forms, we observe a linear
scaling to zero in fig. 12.5, as we would expect it from ambiguities.
Since the determination of Rap is only a byproduct of our project, we
now turn to Rz and R,,. Both are less affected by the choice of the
derivatives. We show the ambiguities in the determination of Rz for
three choices of fixed renormalized quark masses in the right panel of
fig. 12.5. It can be seen that the size of the cut-off effect increases with
the heavy quark mass. All effects scale to zero linear in (a/ L), as we
expect it for this observable from eq. (10.4).

The investigation of the choice of the degree of the polynomial fits
in the quark mass parametrization is done going from degree five, the
first one describing the data to the required precision, to degree six.
The correlated difference between the determinations of the estimators
Rx vanishes towards the continuum limit. Since the absolute size of
the deviation is significantly smaller than the size of the statistical 1o
errors of the estimators, we do not investigate this ambiguity further

We have already gained an insight into the mass dependence of the
estimators from fig. 12.3 and it has become apparent that the slope of
the the functional form decreases when going to finer lattice spacings.



12.3 AMBIGUITIES 181

T T T T T T T T T
—0.1F —
—0.2F =

[« 9
I~
—03 L/a—12sd i
L/a=16sd
—n.4F Lia=20sd i
Lia=24sd
L/a=32sd
—0.5 I I I I i i i i 0
0 1 2 3 4 5 [ 7 8
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We can investigate this behavior more systematically by looking at the
difference

.&me = RXIL.&12=TI'I.|_-,1 — RXlL-&22='m-I1.2 {12.?}

between the determinations of the estimators Rx on two different
heavy lines of constant physics.

We show A™R,, and A™Rz for a number of different combinations
in fig. 12.7. For A™Ry, we can see that the ambiguities vanish linearly
for all LCP combinations. The absolute size of the cut-off effects is
dominated by the difference of the two heavy quark masses and not
by the absolute size of one of the quark masses. Of course, this only
reflects the quasi linear dependence of Ry, on the heavy quark mass
which is visible from fig. 12.3.

For A™Rz we see significant deviations from the leading O(a?) be-
havior of the cut-off effects at coarse lattice spacings. These deviations
are enhanced if the absolute size of the heavy quark mass is large.
Nevertheless, significant deviations appear only at the coarsest lattice
spacing and a good scaling is obtained for the other four data points.

Having looked at ambiguities that are based on the definition of
the LCP at the stage of the measurements and the analysis, we now
turn to an investigation of effects introduced an the stage of the
ensemble generation. We can compare the results obtained from the
ensembles in table 12.1 with the results determined with the exact
same procedure but on a different set of ensembles.

For this task, we have generated three ensembles with Lo/a €

The shift in the {12,16,20} and T = 2L;. The gradient flow couplings and sea quark
X"’fﬁ"-’“ﬁ"w masses determined on these ensembles are listed in tab. 12.4. The
couplings when difference in the geometry results in a different setup of the line of

going from T=L to ) - . )
T = 21 matches the constant physics and we can investigate the resulting cut-off effects.

parametrization We study the difference
given in [219].

for all three estimators and different choices for the renormalized
heavy quark mass difference Zs/ZpLAz> in fig. 12.8. Except for the
geometry of the ensemble and the resulting changes in the coupling
and the sea quark mass, the setup is the same for the determination of
the Rx on both ensembles. Due to the increased computational cost,
we are limited to the three coarsest resolutions.

We observe the scaling of the ambiguities towards zero for all three
estimators. Higher order cut-off effects become visible for larger mass
differences in Ry, and Rz. As far as we can judge from three data
points, these effects appear to be present only for the coarsest lattice
spacing.

We add another check by performing the measurements to de-
termine the estimators Rx on the ensembles of table 8.1, iLe., the
ensembles that will be used for the matching with HOET. Due to the
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high cost of the inversion on these lattices and since we are only inter-

ested In a check of our determination in the volume Ly, we have not

performed the measurements on the full statistics. For the ensembles The distance between
with L /a € {24,32], we have performed the measurements on all fwo confi gurations is
configurations. On the ensemble with L, /a = 40 we have performed ;ifﬁaifig;d
measurements on 2500 configurations and on the ensembles with ’

compared to the
L1/a = 43,64 we have used 600 configurations. other thee msembles.

We show the differences

ARx = Rxly_r, — Rxli_z1, (12.9)

between the determinations on both sets of ensembles in figure 12.9.
The addition of two more data points at finer resolution does not
change the conclusions drawn in the last paragraph and we see the
expected scaling towards zero. For ARap and ARy, at the finest lat-
tice spacing, we see a small shift that is independent of the valence
quark mass. We suspect that this is an O(aTr [Mq]] effect. Since
Lymyq(Ly/a = 64) = (0.15 is significantly larger than the sea quark
masses on the other ensembles, the influence of the non-vanishing sea
quark mass is amplified for this data point. However, the absolute
size of the differences is rather small and we are confident that the
estimators determined in the volume L will be well applicable for
fixing the heavy quark mass on the matching ensembles.

We will have to expect higher order cut-off effects at the coarsest
lattice spacing. In our determination of the improvement coefficients
bs — bp and by and the renormalization constant Z, these are most
prominent for Rz at the coarsest lattice spacing. The qualitative
behavior of the mass dependence of Rz, ie., the bending of the curve
for large quark masses and coarse lattice spacings as depicted in
fig. 12.3, is the same for all three sets of ensembles. Therefore, we
can conclude that this effect is not induced by the finite extent of the
lattice but rather by large values of aA;3.

12.4 RENORMALIZATION OF THE PSEUDOSCALAR DENSITY AND
THE AXIAL CURRENT

To perform the renormalization of bare subtracted quark masses, we
further need to determine the renormalization constants Zp and Za
along the line of constant physics of the matching procedure.

12.4.1 Renormalization of the pseudoscalar density

We determine the scale dependent renormalization constant of the
pseudoscalar density ?_p[g%, u = 1/L) along the lines of [64, 218]. In
the Schridinger functional, we define Zp via

Nein
fe(L/2)

Zp(gp, L/a) = c (12.10)
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Table 12.2: Normalization constants 75 and Zp determined for the matching
of HQET and QCD.

p Lo/a Za(95) Zp(g§,1/1)

43030 12 o.8317¢8(50) o0.57835(32)
44662 16 0.838819(53) 0.56972(45)
46017 20  0.844883(25) 0.56502(53)
47165 24  0.849695(26) 0.56002(48)
49000 32 0.B57020(22) 0.55390(70)

where ¢ is chosen such that Zp = 1 at tree-level. The Schriodinger
functional correlation functions f; and fp are defined in section 3.3.3
and we will use time reversal symmetry to include data from gp. We
define the renormalization constant in a massless scheme, i1.e., we use
the sea quark hopping parameter for the quark propagators.

Numerical values for the constant ¢ in our setup have first been
given in [218] and c differs from unity by effects of order O(a/L)>.
To be able to determine £p on all ensembles used in our work, we
have calculated c for a range of values L/a. This determination has
been performed using Schrédinger functional gauge fields with gauge
links set to unity. On these non-interacting gauge fields, we have used
a code based on open(CD to calculate fp and f; and to subsequently
determine c via

L flL/2)
IET

We list these values of c in table 12.3. No further analysis is required
for the determination of Zp. We show the results of our calculation in
table 12.2. We achieve a precision at sub-per mil level which is about
the same precision as for bare PCAC masses.

(12.11)

12.4.2 Renormalization of the axial current

We also need to determine the renormalization constant of the non-
singlet axial current. This has been done in [65] in the Schridinger
functional with N¢ = 3 flavors on the ensembles of chapter 11. Since
the determination of Z4 has only been a small part of our work, we
refer to [51, 65, 238] for all derivations concerning the definition of Z,
which are based on Ward identities.
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Table 12.3: Normalization constant ¢ defined by Zp = 1 at tree-level deter-
mined from unit gauge fields in the Schrédinger functional with
T = L, vanishing boundary fields C=C’'=0and 6, =8 =0.5.

L/a c L/a c L/a c

6 0098969662 28 009952193 50  0.99985002
8  owgg417664 30 099958352 52 0.90986134
10 099626479 32 099963393 54

12 099740297 34 0099967572 56  0.99988044
14 099809059 36 o0gggyioy4 5B

16 099853742 38 o09ggg74038 60

18  0.ggBB4400 40 0.googy6RB8 62 0.99ggoz4b
20 099906343 42 099978746 64  0.99990846
22 099922584 44 0.99980634 68  0.99991891
24 0.99934941 46 099982281 72  0.99992767
26 0.99944559 48 099983727 96  0.99995931

The normalization constant Z, in a massless Schrédinger functional
renormalization scheme is defined by

-

. f,
Ly = lim = (12.12)
A7 m=0 | FL, (x0,y0) — 2m - Fb, (x0,Y0)
with the improved correlation functions
Faa = Faa(xo, o) (12.13)
t+acy [ﬁxﬂ Fpa (x0,yo) + ﬁgnFAP‘ (xo, H(}]] (12.14)
+ a®c} O, Oy, Frp(x0, Yo), (12.15)

F{?A =a Z wi(xg) [Fpa(x0,yo) + acady,Fpp(xo, yo)l  (12.16)

I
xi=Yo

with the the central difference operator d, Fxy as defined in eq. (3.41)
and the implementation of the trapezoidal rule by

. (12.17)

1/2 ifx} = -
w17 i

1 if yo < x5 < xo

The mass m is given by the PCAC mass of the sea quarks. When
the Wick contractions are performed it turns out that six diagrams

contribute to this definition of Z4. Among those, there are two dis-
connected diagrams and it has been shown in appendix A of [238]
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that these two diagrams contribute to O a?) and vanish in the limit

As in the cise of Z, of massless quarks. The inclusion of these diagrams therefore only

ambiguities for %‘t changes cut-off effects of Of a?) which is beyond the order we are

are of O(a”). considering. We do not take these two diagrams into account. This
definition of the renormalization constant is labeled Z5™ in [65].

In [65] it has been found that the dependence of Z4 on the quark
mass is very mild when the Ward identity eq. (12.12) is used. To
maximize the distance between the insertion points and keep their
physical distance fixed, we choose x; = -frT and yp = -}T. We will
check explicitly that we do not face any problems due to small dis-
tances of the insertion points on the smallest lattices. In [65] wave
functions have been used in the definition of the operators, eq (3.29),
to project onto the ground state. We do not use this procedure in our
case.

We summarize the results for our determination of 7 in table 12.2.
We see that the statistical errors are of the same order as for Z. In
figure 12.10 we show the comparison of our work with the results
from [65, 66]. We see that their data have been obtained in a different
region of the coupling. The form of the interpolation curves in the
regime of our data heavily depends on the chosen fit ansatz. In red we
show the curve as it has been provided in appendix C.2 of [66]. If one
parameter less was chosen for this polynomial fit which is constrained
to perturbation theory, it would overlap with the blue curve from [65].

From this observation we draw the conclusion that both interpola-
tion curves are not valid for our coupling range, unless a systematic
error is added. The spread of all possible curves obtained from the
data in the CLS region would give rise to a significant systematic
error of £, in our coupling region. In any case, the errors on the
interpolating curves are already rather large.

In contrast, the statistical error on our data points is too small to
see it on the chosen scale of the figure. The dedicated determination
of Z, therefore leads to a drastic reduction of the error. We do not
have to determine an interpolation formula, since our data points have
been determined at the values of the couplings which are used in
the matching procedure. It remains to check that no systematic error
has been introduced by the small distance (in units of a) between the
insertion points and the boundaries. For this task we have generated
three ensembles of sizes Lo € {12, 16, 20} with the geometry T = 2L,.
We give an overview of these ensembles together with the measured
sea quark masses and the values for the renormalization constant Z,
in table 12.4.

In figure 12.11 we show the difference

AZn = Za(T = L) — Za(T = 2L) (12.18)

together with a linear fit to the functional form AZx = 1o+ 14 (/L)% It
can be seen that the already small differences vanish with the expected
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Figure 12.10: Results from our work together with the data and interpolation
formulae from [65, 66]. In red, we show Z},“sub from the L;-
LCP of [66] (x5F) together with the fit from appendix C.2 of
the same reference. In blue we show the data points from [65]
(5F) together with the corresponding interpolation curve given
in eq. (4.1). The region around our data points is magnified in
the inset.

rate towards the continuum limit. We conclude that the small time
extent of the lattices in tab. 12.1 does not pose a problem and we do
not have to generate rather expensive ensembles with L = 24,32 and
an enlarged time extent.

12.F HOTPING PARAMETERS FOR CONSTANT RENOERMALIZED
QUAREK MASSES

The goal of our computations in this chapter is the determination
of different sets of hopping parameters such that the renormaliza-
tion group invariant heavy quark mass remains constant towards the
continuum limit. From the definition of the renormalization group
invariant quark mass from bare subtracted quark masses based on

eqf'- (4' 1?-' 8'40}1
ZZ
z=LM,; = L,h{Lg}Tﬂ;}[l +bgmamgy)amgy,, (12.19)

we can determine the heavy quark hopping parameter kj, via

-1
1 4bmZp(Lp)a
kniz, 1) = [K.:. ~ b (I - \fl +Z—L|h{L0}?_?_A)] . (12.20)
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Table 12.4: Ensembles created for an explicit check of the ambiguities in the
determinations of Zs, Z, by, and by — bp and their sea quark
mass and gradient flow coupling together with the results for the
renormalization constant £ 4.

Lofa T/a B K N: %5 N 0G5 Lomy Za

12 24 43030 0.1359947 5 8 5321 4.2024(76) +0.00676(46) 0.83393(30)
16 32 4.4662 0.1355985 2 10 3461 4.2251(99) +0.00473(42) 0.83926(46)
20 40 46017 01352848 10 10 2000 4.214{15) +0.00499(43) 0.84571(33)
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Figure 12.11: Difference A7y as defined in eq. (12.18). The uncertainty band
of the two-parameter fit to the data is depicted by the gray
region.

Assuming k,; = K for our ensembles which are close to chiral point,
we have all ingredients to determine «j, for the five ensembles used in
our matching procedure.

The final results for the heavy hopping parameters depend on
our exact definition of the line of constant physics and the choice
of the valence quark mass in the determination of by, and Z has a
significant impact. In figure 12.12 we show the functional form of
kh(z, L1 /a = 24) for different sets of parameters.

For small quark masses there is barely any difference between the

We expect z, == 17.4, curves obtained from different sets of parameters. Going to the region
of the b quark mass and beyond, we can see significant differences. The
curves stop at the point where the square root in eq. (12.20) becomes
imaginary. We can see that this point is shifted towards larger RGI
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Figure 12.12: Hopping parameters k(z, L; /a) for fixed renormalized quark
masses z = Ly My, determined from eq. (12.20) with Z4 and Zp
from tab. 12.2 and Z and by, from different heavy LCP on the
coarsest ensemble with L fa = 24.

masses if larger quark masses have been used in the determination of
bm and Z.

In the study of the two-flavor theory [215] a range of RGI masses
up to z = 21 has been used. The RGI value of the bottom quark mass
was z = 13.25(22)(13) [239] which is smaller than in our study due to
a smaller matching volume. In [215] four lattices spacings have been
used for the continuum extrapolation of the matching parameters
and the determination of ki, has not been possible for z > 18 for the
coarsest lattice spacing.

To cover the same range of RGI quark masses as in [215], we have
to determine kp, in a range up to z =~ 27. From figure 12.12 it is
visible that a determination of ky at this value of z is not possible at

the coarsest lattice spacing regardless of the set of parameters by, Z.

Nevertheless, it seems appropriate to choose a relatively large value
of %Lﬁgz to maximize the range of RGI quark masses where the
determination of z is possible.

For all other resolutions, the determination of kj, is possible in the
full range of RGI quark masses and the difference between hopping
parameters from different sets of by, Z vanishes with the lattice
spacing. In comparison to the study in [215], where four resolutions
have been used, we have set up the matching ensembles with five
different resolutions. Therefore, the exclusion of the coarsest ensemble
does not affect the validity of the continuum extrapolation.

In table 12.5 we list the values of k},(z, L /a) determined for a range of
RGI quark masses and all five resolutions using Z and by, evaluated at
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Table 12.5: Hopping parameters for fixed renormalized quark masses z =
L1 Mp determined from eq. (12.20) with Z4 and Zp from tab. 12.2

and 7 and by, evaluated at %ng =5

z ki (z,24) kn(z 32) Kn(z, 40) ki (z,48) Ky [z, 64)

0 0.1359947 0.1356071 0.1352848 0.1350181 0.1345991

6 0.1318899(24)  0.1326433(24)  0.1329742(23) 0.1331341(17) 0.1332264(18)
9 0.1297062(37)  0.1310919(37)  0.1317762(35) 0.1321636(26) 0.1325248(27)
11 0.1281830(47) 0.1300251(46)  0.1309586(43) 0.1315043(32) 0.1320509(33)
13 0.1265911(58)  0.1289277(56)  0.1301238(52) 0.1308343(38) 0.1315716(40)
15 0.1249114(70)  0.1277943(67)  0.1292698(61) 0.1301525(45) 0.1310866(46)
17 0.1231159(85)  0.1266185(78)  0.1283939(71)  0.1294577(51) 0.1305954(53)
19 0.1211585(103)  0.1253913(91)  0.1274932(81)  0.1287485(58) 0.1300977(60)
21 0.1189541(129) 0.1241007(105)  0.1265638(92)  0.1280233(66) 0.1295930(67)
23 0.1163070(175) 0.1227294(122) 0.1256011(105) 0.1272803(74) 0.1290808(74)
25 0.1124223(342) 0.1212513(143) 0.1245989(118) 0.1265171(82) 0.1285604(82)
27 0.1196226(171)  0.1235490{134) 0.1257311(91)  0.1280313(90)

%Lﬂzz = 5. Since we have determined Z,, Zp, £ and b, on the same
set of ensembles, we are able to perform a fully correlated analysis
without having to rely on tabulated values. The only external input is
the running factor h(Lp) and its error is only taken into account after
the continuum extrapolation has been performed. Therefore, it has
not been propagated into the uncertainties in tab. 12.5.

126 VERIFICATION OF IMPROVEMENT

To verify the cancellation of O(a) effects by the results of section 12.2
and to judge on the reduction of mass-dependent cut-off effects by the
determination of b, and Z at heavy valence quark masses, we have to
perform an explicit scaling test. In [228, 229] this has been done using
effective heavy-light meson energies. There, the hopping parameter of
the heavy quark has been fixed using two different sets of parameters
by, Z. In [229] the investigation of renormalized current quark masses
has been added as test for the universality of the continuum limit in
the O(a) improved theory.

We perform both of these tests with data that has been determined
on the ensembles of tab. 8.1, i.e., the matching ensembles on the QCD
side. We start with an investigation of the scaling of renormalized
quark masses and use the quark mass parametrizations to determine
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PCAC masses at given hopping parameters. As explained in sec-
tion 4.3.4, we expect renormalized quark masses determined from
bare subtracted quark masses to differ from renormalized current
quark masses by O(a?) effects if both are properly renormalized and
improved.

We proceed as follows. We determine the hopping parameters
kn(z,L/a) for fixed values of z and different sets by, £. From the
parametrization of the current quark masses, egs. (10.13-10.14), we are
able to determine the quark masses am,; and am;; for the different
values of k}, without performing dedicated measurements. From am, 2
and amz2 we determine renormalized quark masses via

Iyh = h“_olzm [1 + [bA — bp]ﬂl'l'lqh] L]‘m.zz, (12.21}

1
zig = 2h(Lo)Zm 1+{bA—bF]E[ﬂn'lq_h+ﬂmq,1} Limiz—zyq,

(12.22)

for the ensembles with Ly /a € {24, 32,40, 48, 64].

Since we are free to choose the value of z, we have a wide variety
of tests at our disposal. Further investigations can be performed by
adding another set of renormalized quark masses where the depen-
dence on the critical hopping parameter has been removed (4.31),

Zph = NLo)Zm [1+ (ba — bplamyy] Lymy,, (12.23)
Zp = 2h(Lo)Zm [1+ (ba — bplamys] Lymyy — 3. (12.24)

In the determination of the PCAC masses, we are free to choose
improved or standard derivatives. Where we define the RGI quark
masses zp; from standard derivatives, we also use these derivatives in
the determination of by, Z.

Based on the concept of Ofa) improvement, we expect the renor-
malized current quark masses to differ from the target value z by
cut-off effects of Oa?). The extrapolation of the renormalized current
quark masses in a? therefore has to match z. When performing this
test, we experience a systematic effect due to the non-vanishing sea
quark masses on the 2 ensembles. Since the light quark hopping
parameter is not exactly the critical one, we effectively determine
the hopping parameters k;, for the difference of the subtracted quark
masses Mgy — Mg). We adjust the renormalized current quark masses
accordingly via

Zy; — Zij— 2 (12.25)

in the remainder of the section. This shift is of O(0.03) in the renor-
malized quark masses. Therefore it is not significant at the scale of the
bottom quark mass. Nevertheless, we will use its size to estimate sys-
tematic effects in the matching observables due to the non-vanishing
sea quark mass.
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From all tests we hope to get information on the reduction of
mass-dependent cut-off effects based on different sets of improvement
coefficients at different RGI quark masses z. In figure 12.13 we show an
exemplary investigation of the scaling of renormalized quark masses at
the scale of the bottom quark mass, ie., z = 17.4. We show the results
for the renormalized quark masses together with an unconstrained fit
to the data points at the three finest lattice spacings.

We choose three different sets by, Z to investigate the influence
of light and heavy quark masses in the setup of the LCP and to see
whether the cut-off effects observed for Rz at large quark masses have
an influence on the scaling. In figure 12.13 we study three different
definitions of renormalized quark masses from current quark masses.

In the upper part of the plot, we show the renormalized quark mass
determined from a heavy-heavy correlation function with improved
derivatives. The determination from standard derivatives is shown
in the lower part. In the middle we show the determination from
heavy-light correlation functions. It can be seen that, as one could
expect it, the determination using improved derivatives generally
leads to smaller cut-off effects. Nevertheless, in all three cases we see
a good scaling to the continuum limit.

To judge on higher order cut-off effects, we show the result of two-
parameter fits linear in (a/L)? to the three points at L1 /a = 40,438, 64.
In all cases under investigation, we see a deviation from this leading
behavior for the data point at the coarsest lattice spacing. The data
point at L1/a = 32 seems to show enhanced deviations from the lead-
ing order behavior for the set of improvement coefficients determined
at %Lﬂgg = 1.5. In the case of the renormalized quark mass from
heavy-heavy correlation functions and improved derivatives, the sign
of the cut-off effects of higher order changes when increasing %Lﬂzz
in the determination of the improvement coefficients. To allow for a
better comparison of different renormalization procedures, we show
three variants of PCAC masses determined from improved derivatives
in figure 12.14.

Since the scale of the figures at the bottom quark mass hides de-
viations from the leading behavior, we also show the renormalized
current quark mass at the scale of the charm quark in figure 12.15.
Also in this case we see that the deviation from the leading order
behavior sets in at L1 /a = 32 but using the three points close to the
continuum, a clean extrapolation is obtained.

Despite deviations from a linear behavior in (a/L) for coarser lattice
spacings, all sets of improvement coefficients seem to effectively cancel
effects of O(a). Therefore, we have successfully checked that O(a)
improvement works as expected using our results. The reduction
of mass-dependent higher order cut-off effects differs among differ-
ent sets of parameters but also among different sets of observables.
Therefore it is hard to judge on the quality of different sets.
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Figure 12.13: Scaling of PCAC masses evaluated at k(17.4, L/a) for different
LCF. Dashed colored lines represent the unconstrained fit and
the dashed grey line denotes the target z, close to the bottom
quark mass. Top: Heavy-heavy PCAC mass. Middle: Heavy-
light PCAC mass. Boltom: Heavy-heavy PCAC mass with
standard derivatives.
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bottom quark mass.
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Figure 12.15: Scaling of PCAC masses on ensembles of tab. 8.1 evaluated at

kn(3.9,L/a) for different LCP. Dashed colored lines represent
the unconstrained fit and the dashed grey line denotes the
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If we compare the upper plot of fig. 12.13, where the scale of the
bottom quark is shown, with fig. 12.15, where the charm quark mass
is shown, we see that the slope of the continuum extrapolations is
smaller when the set of improvement coefficients has been evaluated
at the same scale. For the the scale of the bottom quark mass, this
corresponds to Z5/Zp = 5.7 and for the charm quark to Zy/Zp =
1.3. This observation supports the argument to use improvement
coefficients evaluated at the scale of the bottom quark to optimize the
scaling of the matching parameters at the same scale.

We perform another scaling test using the effective energy

L1152 go) = —L1doIn [f3*'(xo, )]

oL/ (12.26)
from the heavy-heavy and the heavy-light current. All multiplicative
renormalization factors cancel in this quantity. The same set of mea-
surements on the 2L ensembles as above is used. To allow for the
determination of I'ps at given values of z, we interpolate the energy in
the quark mass difference aA. We expect the square of the energy to
scale with the quark mass and obtain an excellent parameterization of
the data using the fit ansatz

(LyTps)? (@A) = o + c1aA + 5 (aA)? + c3(ad)?. (12.27)

Based on the parameterization of the effective energy, we are able to
evaluate L1 Ips(aA) at given values of k;, determined from eq. (12.20)
just as we have done it for the PCAC masses. Afterwards, we can
investigate the scaling of the effective energy at various mass scales.

In fig. 12.16 we show the scaling of the effective energy from the
heavy-heavy and the heavy-light current at the scale of the b quark
for different sets of improvement coefficients. In all cases we observe
a scaling in (a/L)? and can conclude that the leading order cut-off
effects are canceled. The size of higher order cut-off effects depends
on the chosen set of improvement coefficients.

At the scale of the bottom quark, where we will determine the
matching parameters, the cut-off effects are best suppressed using the
set of improvement coefficients determined at the same scale. Together

with the data [::-ui.nts we show continuum extrapulatiuns of the emrgies.

The number of point that can be included in a fit in a? depends on
the chosen set of improvement coefficients. The largest fit ranges and
therefore the most precise results of the continuum limit are achieved
using the set of improvement coefficients evaluated at Za/ZploAz2 =
6. In general, all observations made for the renormalized current quark
masses concerning the cancellation of higher order cut-off effects hold
for the effective pseudoscalar energies.
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The symmetric
derivative is defined
in app. A.
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12,7 CONCLUSIONS

We have presented the determination of all improvement coefficients
and renormalization constants that are needed to fix the renormaliza-
tion group invariant heavy quark mass in the matching of QCD and
HOQET. This calculation is an important step towards the matching in
the three-flavor theory.

We have determined the coefficients b, and Z defined in a large
range of mass scales and tested the cancellation of O(a) cut-off effects
as well as the suppression of mass-dependent higher order cut-off
effects for two observables defined in the matching volume. No
remaining O(a) effects can be observed in the test observables. Both
tests suggest that the summation of mass-dependent cut-off effects to
all orders in the definition of by, and Z from the setup with a heavy
valence quark leads to the reduction of higher order cut-off effects
and therefore allows us to include results at relatively coarse lattice
spacings in the continuum extrapolation of the matching parameters.

The careful analysis of all ambiguities in our data makes us con-
fident that no hidden systematic effects are present. Therefore, the
results of this chapter are ready to be used to determine the heavy
quark hopping parameters kj, for the determination of the match-
ing coefficients for selected values of the heavy quark mass on the
ensembles described in chapter 8.
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Part IV

THE MASS OF THE CHARM QUARK






CLS ENSEMBLES

When physical quantities (as opposed to renormalization constants)
are extracted from lattice simulations, the spatial extent of the lattices

has to be large em::rugh to accommodate all relevant deg;rees of freedom.

In the case of mesonic observables, the lattice has to be large enough
to allow mesons to propagate freely without feeling the boundaries
[240-244]. Interactions around the spatial torus of the lattice lead to
Olexp(—myL)) effects and the squeezing of the wave function leads
to effects of O(1/L™) with n = 2— 3 [14]. For QCD one can deduce
that m;L = 4 and L > 3 fm are appropriate parameters to sufficiently
suppress finite-volume effects for hadron masses.

The generation of ensembles with large physical volumes and small
quark masses is computationally demanding and is mostly performed
by larger collaborations. In our work, we are able to use the ensembles
which are generated by members of the Coordinated Lattice Simu-
lations (CLS) effort [60, 235, 236]. We work on the ensembles with
N¢ = 2+ 1 flavors of dynamical fermions. The effect of a dynamical
charm quark in low-energy observables is expected to be suppressed
below the available accuracy [245]. This is different for charmed ob-
servables [100, 246] and therefore a systematic uncertainty is present
in physical observables including a charm quark from 2 + 1 flavor
lattice QCD.

Since we perform our work on renormalization and improvement
with respect to this set of large volume simulations, the gauge and
fermion actions of the CLS ensembles coincide with those of our
Schribdinger functional ensembles. In contrast to our small-volume

simulations, open boundary conditions in the time direction are used.

These allow for a smooth variation of the topological charge. The
generated configurations are of size Ny x N2 with open boundaries at
0 and N; — 1, resulting in a physical time extent of T = [Ny —1)a.
All of the algorithmic techniques described in section 5.1 have been
used in the generation of the ensembles. The use of the rational
approximation for the strange quark and twisted mass reweighting

of the light quarks results in the necessity of two reweighting factors.

Five lattice spacings in a range from (.087 fm down to 0.04 fm allow
for a save continuum extrapolation. These small lattice spacings
in combination with O(a) improvement are needed to perform the
continuum extrapolations using Wilson quarks.

The pion masses on the CLS ensembles are mostly above the mass of
the physical pion. Physical quark masses have been simulated on two
ensembles at coarse and intermediate lattice spacing. Since simulations

In QCD, the pion is
the lightest mesonic
degree of freedom. In
other theories, a
different lightest
partide mass has to
be considered.

There exists a set of
ensembles with
M= 2

The inclusion of the
sign of the rational
determinant leads to
a third reweighting
factor, which has not
yet been included in
our results [102],
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and measurements at small quark masses are quite expensive, the
chiral extrapolation is constrained by other ensembles spanning a
range of pion masses € [180 MeV, 420 MeV].

Depending on the objective, different subsets of ensembles can be
chosen. Charm observables suffer from large cut-off effects and profit
from small lattice spacings. Their dependence on the light degrees of
freedom is small. Therefore the ensembles with pion masses below
200 MeV can be left out of the computation. For static-light quantities,
the situation is complementary. Here, it is beneficial to include small
quark masses and to leave out the finest lattice spacing. An overview
of all ensembles used in our work is given in figure 13.1.
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Figure 13.1: CLS ensembles on the Tr[My] = const. trajectory used in this
work in the landscape of lattice spacing and pion mass. The cor-
responding bare inverse coupling B is given on the top and the
kaon mass is implicitly defined by the trajectory. For some points
in the parameter space, two ensembles with the same physical
parameters and different geometries have been generated.

The Monte Carlo trajectory of each ensemble has to be long enough
to allow for the correct determination of the statistical errors. In [60]
the lower bound of O(50) x Texp is given. The exponential autocorrela-
tion time on the CLS ensembles, which we use to attach an exponential
tail according to eq. (5.84), is estimated using the formula

t
Tep = 14{3]0—‘; (13.1)
which has been given in [60] based on an analysis of the square of the

topological charge and the Yang-Mills action density from the Wilson
flow.
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13.1 THE CHIRAL TRAJECTORY

After the extraction of physical observables on a set of ensembles we
have to extrapolate the results to the physical point which is defined
by physical quark masses and vanishing lattice spacing. How this
point is approached via a combined chiral-continuum extrapolation
depends on the setup that has been chosen for the generation of the
ensembles.

When simulations with Ny = 2+ 1 or Ny = 2+ 1+ 1 flavors are
performed, most lattice collaborations use a setup where the renor-
malized strange quark mass is kept at its physical value while the
light quark masses span a range above the physical ones. Keeping the
strange quark mass constant and directly at the physical value is quite
difficult and deviations of the strange quark mass from its physical
value have to be expected for the majority of the ensembles. This can
be compensated for by a quark mass reweighting [109, 247] or by the
simulation of new ensembles with adjusted parameters.

Such setup with a constant renormalized strange quark mass exists
within the set of CLS ensembles [235] but the renormalization and
improvement pattern within this setup has further complications
compared to our discussion in chapter 4. As an example we can
consider the improved coupling g3 introduced in eqg. (4.4)- When the
strange quark mass is kept constant while the light quark masses are
decreased at fixed bare coupling g3, the renormalized coupling and
the lattice spacing change at Ofa).

It has been realized by the QCDSF collaboration [248] that it can be
beneficial to keep the sum of bare quark masses Tr [Mq] =my +mg +
mg = 2my 4+ m, constant when the light quark masses are decreased
towards their physical values. Since gluonic observables and the
central value of hadron multiplets depend strongly on Tr [Mq] and
only subdominantly on m; — m,, a smooth extrapolation without large
changes in the scale can be expected and less corrections have to be
applied. As further advantage, mass dependent cut-off effects of order
O(aTr [Mq]] do not change for a fixed value of the bare coupling.

Within the set of ensembles with a constant sum of quark masses,
which we will refer to as Tr [Mq] = const, ensembles at different
lattice spacings are matched via the dimensionless quantities

$2 =8tomZ and ¢y = th[mlzc"‘%mi} (13.2)
with tp defined from the Wilson flow as defined in eq. (6.40). To
leading order in chiral perturbation theory, these quantities are pro-
portional to the sum of the corresponding quark masses [249, 250]

b2 ox my +my, b4 o< My + Mg + M. (13.3)

The renormalized quark mass matrix has been introduced in eq. (4.16)
and if the bare sum of quark masses is held constant as definition of
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the chiral trajectory, this does not imply a constant physics condition.
Since the deviations of Tr [M] g from a constant value at constant
Tr [Mq] have turned out larger than one would expect it from O{a)
effects [77, 142], the chiral trajectory of the CL5 ensembles has been
redefined to

b4 = const. = q:-ﬁh}rs. (13.4)

The physical values of ¢4 and ¢ determined from the physical
value of tp and isospin corrected pion and kaon masses without QED
effects have been determined in [142],

q;.g“fs =1.119(21) q:.g“-*’* = 0.0804(8). (13.5)

In the our computations, the goal is to evaluate all observables at

bg = q:ﬁh}'* such that the dependence on the quark masses can be
parametrized by ¢2 and physical quark masses are reached when

phys
P2 = ¢'2 .
13.2 QUAREK MASS SHIFTS

Due to the setup of the ensembles via Tr [Mq], deviations of ¢4 from
its physical value are present and have to be corrected accordingly.
We perform this correction via a shift of the sea quark masses. The
form of this shift is given by the first term of the Taylor expansion of
the observable with respect to the quark mass m;s [142, 220],
d{0

(O g = (O, + ﬂmd(—rri . (13.6)
The total derivative of an observable O with respect to a change in the
quark mass mg is given by

S R) o)

where the partial derivative of the observable with respect to the
quark mass as well as the derivative of the action with respect to
the quark mass have to be taken into account. Reweighting can be
straightforwardly applied in the definition of the expectation values
as given by eq. (5.24).

If the expectation value is defined in terms of the fermion and
gauge fields and the observable is defined from fermion fields, it may
be necessary to consider additional Wick contractions in the second
term of eq. (13.7). However, if we consider the expectation value
after the fermions have been integrated out, observables based on
correlation functions are defined from propagators and no additional
Wick contractions have to be performed.



13.2 QUARK MASS SHIFTS

The derivative of the action with respect to the quark masses can be
determined from the trace of the quark propagator [251],

<%> = 2 _(belde(x)) == 3_(Tr[8(x, x))&8,  (138)

where the trace acts on spin and color indices and 1; and &; denote
the quark fields and the propagator of quark flavor f.

Whereas the derivative of the action with respect to the quark masses
has to be evaluated once per configuration, we have to explicitly
determine the derivatives of the propagators used in our observables
with respect to a change of the sea quark masses present in the
observables. In our project on the determination of the charm quark
mass, we perform this calculation using the mesons code [252].

Having the partial derivatives at hand, we have to determine the size

of the shift Am = Ams = Am, that is necessary to obtain ¢4 = ¢ ®,

Afterwards we shift all observables involved in our computations ac-
cordingly. This shift is performed on the level of correlation functions
and propagates into all derived observables.
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DETERMINATION OF THE CHARM QUARK MASS

Quark masses are fundamental parameters of the Standard Model.
As such, their knowledge is of general interest. Furthermore, the
masses of charm and bottom quarks are used as inputs for tests of the
Standard Model via weak decays and CKM matrix elements [253] and
therefore their precise knowledge is especially important.

However, the experimental determination of quark masses is diffi-
cult since quarks are confined in bound states and cannot be isolated.
The mass of these bound states is not just a simple sum of its parts, but
depends on an interplay of non-perturbative dynamics. QCD provides
the theoretical background to compute Standard Model parameters
but the solution of the non-linear equations is highly non-trivial. We
use lattice QCD to solve the underlying equations in order to extract
Standard Model parameters as quark masses.

As explained before, we have to live with some limitations regarding
our simulations. In our 2 4+ 1 flavor simulations, we do not take into
account the effect of charm quark loops and for observables at the
charm scale, this is the source of a significant systematic uncertainty.
In [100, 246], an upper bound of 5% for the size of this uncertainty has
been given. However, the comparison of charm quark determinations
based on 2+ 1 flavors [210, 254, 255] and 2+ 1+ 1 flavors [256-259]
given in [209] shows an excellent agreement.

We will determine the charm quark mass from bare current quark
masses and perform a non-perturbative renormalization and improve-
ment [31, 48, 218, 260]. The same strategy has been applied in works
of the ALPHA collaboration in the quenched and two-flavor theory
[261-263]. A preliminary account of our work with 2+ 1 flavors has
been presented in [264].

In this work, we will concentrate on the extraction of physical
observables on the CL5 ensembles and discuss our strategies to cir-
cumvent numerical problems. The results obtained in this work will
be the basis of a fully correlated combined chiral-continuum extrap-
olation. We will show such extrapolation and provide a preliminary
result for the charm quark mass at the physical point. A detailed
investigation of the systematic effects of this extrapolation will be
presented in [265] and in our forthcoming publication [266].

14.1 CALIBERATION OF THE MEASUREMENTS

We like to determine the mass of the charm quark on ensembles with
N¢ = 2+ 1 flavors of dynamical fermions. Therefore, we have to

The detiat ions
within the results
from24+1+1
flavars are
significantly larger
than the difference
between the averaged
values from three
and four flavor
theory.
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introduce charm observables in a partially quenched setup where no
charm quark loops are present in the path integral.

The addition of the charm quark as physical parameter to the
simulations requires to fix the hopping parameter of the heavy valence
quarks such that the renormalized valence quark masses on each
ensemble match the physical charm quark mass. As in the case of
the light quarks, we like to employ meson masses for this calibration,
since they are relatively easy to compute and provide a good signal.

Different paths to fix the physical charm quark can be taken. For
a comparison of different approaches see [267]. There, the masses of
the D, the D; and the n. meson have been investigated to fix k. and
all approaches have shown different advantages and disadvantages.
The D meson is relatively noisy and has a strong dependence on the
light quark masses which change considerably towards the chiral limit.
The signal of the D; meson is much cleaner but in the case of [267],
where the strange quark is fixed to values close to the physical one,
a correction for a slight mistuning of the strange quark mass had
to be applied. The 1. defined from the connected Wick contraction
has a very clean signal but it differs from the physical meson by
disconnected contributions. These contributions are assumed to be
smaller than the systematic corrections due to neglecting QED and
isospin effects.

Our setup is different compared to [267] since we keep the sum
of light and strange quark masses constant on the chiral trajectory.
Therefore, the mass of the D; meson changes towards the chiral limit
due to the increase in the strange quark mass. To arrive at a clean
observable with a small dependence on the sea quark masses, we will
consider the flavor averaged meson mass

_ 2 1
mp = 3MD +§mgs, (14.1)

to fix the physical charm quark mass. The physical value of this

flavor-averaged mass without QED and isospin effect is given by [2,
209, 268]

mE* = 1899.4(2) MeV (14.2)

In egs. (7.28-7.29) we have introduced the fine structure of mesons
with one heavy quark in the framework of HQET. If we assume the
charm quark to be heavy enough for HQET to be applicable, we can
use our insights to eliminate the spin contribution to the first order
corrections via the spin average

1
mﬁ=3{3mv+mpﬁl=mh+ﬁ—ms (14-3)

where my and mps are the masses of vector and pseudoscalar mesons
and my, is the mass of the heavy quark. Since the fine structure



14.1 CALIBEATION OF THE MEASUEREEMENTS

vanishes in the static limit and is sensitive to short distance effects, we
assume that we can reduce cut-off effects when the next-to-leading
order contribution is reduced.

We will combine the spin average with the flavor average and define
the spin-flavor averaged mass to be

1
Mes: = ﬁ[Emt:u +2mp +3mp; + mp, ). (14.4)

With this definition, we have to take into account the masses of the
vector mesons mp. and mp, which are comparably noisy. Therefore
it is not clear if the assumed reduction of cut-off effects compensates
the increase in the statistical error. In our analysis, we will use the
flavor averaged and the spin-flavor averaged meson mass to fix the
physical charm quark mass and we will compare both approaches in
the final chiral-continuum extrapolation.

So far we have not explained how we fix the heavy quark mass
from the meson masses. We perform measurements for two different
heavy quark masses in the region around the physical charm quark
mass. For both heavy valence quarks, we determine the flavor and
spin-flavor averaged heavy meson masses and use those to determine
the hopping parameter of the charm quark k.. Using initial values

provided by [269], we interpolate linearly to the physical quark mass.

The linear dependence of mp, on 1/ky, is visible in the results of [270],
where measurements at four different heavy quark masses have been
performed. If we are able to interpolate rather than extrapolate from
our two choices of heavy quark hopping parameters «;,, and &y, will
become clear only after the measurements have been performed. The

hopping parameters used in our measurements are listed in table 14.1.

We do not perform a third set of measurements at the extracted
value of k. but rather interpolate all physical observables based on

the two heavy quark masses to the physical point defined by k.. This
interpolation is combined with the chiral-continuum fit.

Table 14.1: Hopping parameters of the partially quenched heavy valence
quarks for the determination of k. provided by [26g].

p Kh, Kh;

340 0123147 0.124056
3.46 0.125563292 0.126983423
3.55 01274374 0.128651119
3.70 0.13018588  0.13062697
3.85 013206693  0.13242934
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14.2 THE RENOEMALIZED CHARM QUARK MASS FROM CURRENT
QUARK MASSES

We use the different types of renormalized and improved quark masses
introduced in section 4.3 to determine the physical value of the charm
quark mass. The calculation of renormalized quark masses from
subtracted quark masses according to eq. (4.17) can be performed
using the value of k. which is determined from the interpolation in
the (spin-)flavor averaged meson masses. However, this definition
has sizable systematic uncertainties, since the factor (rm, — 1), which
cancels the leading order dependence on the sea quark masses, is
unknown so far.

The critical hopping parameters that enter the subtracted quark
mass have been determined in [68]. Since the quark masses on the
Tr [Mq] = const. trajectory are far from being chiral, an additional
systematic uncertainty is added to the bare subtracted quark mass via
the uncertainty in k. Therefore, we do not consider renormalized
subtracted quark masses in this project.

Instead, we determine the renormalized quark mass from current
quark masses, according to eq. (4.31). The renormalization constants
are known from [66] for Z,, from [64] for Zp and from our work in
chapter 11 for Z. The valence mass-dependent cut-off effect of O(a)
can be canceled with by — bp and £ of chapter 11.

Remnant cut-off effects of O[aTr [Mq] ) remain in our data, but these
are suppressed by an order of magnitude compared to the effects of
the valence quarks. Nevertheless, we have to check for the existence of
these cut-off effects in the final extrapolation to the continuum limit.

We have different options to construct a renormalized charm quark
mass from valence and sea quark propagators. The obvious choice
is the construction from the current quark mass my;,’ based on two
mass-degenerate valence quark propagators. After the interpolation
of ky, to k., the quark mass m.s is obtained. We define

“11[{:2 = MRcc! (14.5)

Since current quark masses from heavy-heavy correlation functions
have a clean signal and show long plateaus, provided that distance
preconditioning is used in the solver, this mass can be determined to
high precision. The valence quark part of the mass-dependent cut-off
effects scales with m_.; and we expect rather large cut-off effects for
this definition of the charm quark mass, even though the leading order
effects are subtracted.

We hope to reduce the size of the cut-off effects by the use of heavy-
light and heavy-strange correlation functions. When we determine
light, strange and valence quark propagators, we can define the charm
quark mass via

1
m{d_ = 2mg ;. — Mg m][fl = 2MR 5. — MR gor (14.6)
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where we again use eq. (4.31) to renormalize current quark masses.
From this definition, the mass-dependent cut-off effects of O umizi]
are reduced, compared to the definition from mass-degenerate heavy
quarks. In return, we expect a stronger dependence on the light quark
masses.

We try to reduce this dependence by the definition of the flavor-av-
eraged charm quark mass
1 ()

— 1
Mg = _ml[i,i +-mg

3 MR .c (147)

Since the sum of light and strange quark masses remains constant
on our set of ensembles, we believe that this definition reduces the
dependence of the charm quark mass on the position on the chiral
trajectory.

We can construct yet another definition of the renormalized charm
quark mass from the ratio difference method, eq. (4.38), where the
first flavor is chosen to be the heavy valence quark and the second one
is one of the sea quarks. Based on the same argument as above, we

define

(rd) 2rpgdia | T rpesdys
mg _Zm(g"l,cl—1+§ﬁ,m—1)1 (14.8)
where improved ratio and difference have been defined in egs. (4.36 —
4.37). The systematic uncertainties which are present in the subtracted
quark masses are canceled in the quark mass from the ratio-difference
method.

These three definitions of the renormalized charm quark mass are
the basis for our chiral-continuum extrapolation. In principle, all

of them are valid and we expect them to lead to the same result in
the continuum, albeit with different statistical and systematic uncer-
tainties. It remains to be checked whether a combined extrapolation
stabilizes the chiral-continuum fit or if we use the different definitions
to estimate systematic uncertainties of our final result.

In principle even more variation is possible within this set of quark
masses. For example, we can use standard or improved derivatives for
the determination of the PCAC masses, we can choose between dif-
ferent sets of improvement coefficients and renormalization constants
and we can investigate quark masses from heavy-light correlation
functions without a flavor average. All of these choices can be made
at the stage of the analysis and will be studied in detail in [265, 266].

To quote renormalization group invariant values of the charm quark
mass, the running factor

M
TR, had

= 0.9148(88) (14.9)

determined in [64] is used for the scale evolution from the CL5 en-
sembles. Its relative error of about 1% will most likely dominate our

A similar result has
been obtained in
quenched QCD
[261].

We have introduced
the running of quark
masses i1 section
8.3.
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result at the physical point. The error is only added to the total error
after the chiral-continuum extrapolation.

The increase in the uncertainty due to the errors on the renormal-
ization factors and the running factor can be avoided when ratios of
quark masses are determined. A standard choice is the ratio m./m..
This might be related to the fact that the strange quark mass is held
constant in most computations and therefore the chiral extrapolation
of this ratio is very mild. In our setup of Tr [Mq] = const, where the
strange quark mass changes significantly towards the chiral limit, such
chiral-continuum extrapolation is possible, but we might face large
uncertainties due to the slope in the chiral fit. We will also test the
determination of m_/(2m; 4+ m;) where we expect the dependence on
the light quark masses to be small.

We can employ quark mass ratios to compare our result with others
while neglecting the effect of different renormalization procedures.
The final value can be translated to physical charm quark masses by
using the prior knowledge on physical light quark masses, e.g., from
[77].



LATTICE COMPUTATION

In the last chapter we have outlined our strategy for the determination
of the charm quark mass and described which quantities have to be
computed in order to calculate renormalized quark masses and to
calibrate the bare parameters of the theory. In this chapter we will
describe the calculation of correlation functions and the extraction of
the physical quantities on the large-volume CLS ensembles. We will
discuss systematic effects and how we try to estimate or circumvent
them and we will quote results for quark and meson masses on all
ensembles used in our study. An overview of the ensembles that have
been considered in this study is given in table B.8.

Together with the data for the quark mass dependence of the action
(13.8) and the set of improvement coefficients and renormalization
constants determined by the ALPHA collaboration, we have gathered
all ingredients for the extrapolations to the physical point.

15.1 CORRELATION FUNCTIONS

In order to calculate current quark masses from the PCAC relation
according to eq. (4.25), we need to determine the time component of
the axial current A; and the pseudoscalar density P on single time
slices xp. For this task, we use zero-momentum two-point correlation
functions, defined by

&
a Ts
frDE1Dz{xﬂ'yﬂ] = _F Z{Dgs [xﬂfxlo-lz-} [Hg},}']}; (15.1)
Xy

where 1 and s are the flavor indices. We only consider the case of two
distinct flavors 1 # s. yp is the time-coordinate of the source, ie., the
time slice where the source has a non-vanishing norm, and xp is the
time coordinate of the sink. The summation over the spatial indices
leads to the projection onto zero-momentum [14]. The operators O™*
are defined by

O™ (x) = P (x) Fp*(x) (15.2)

where I is a product of gamma matrices, representing the correct
quantum numbers for the problem at hand. In this section, we will
use the operators defined in table 15.1.

Using time reflection symmetry, we can average over correlation
functions at the source positions yp and T —yp. In this way, we
can increase the statistics without introducing complications due to
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Table 15.1: Operators used in the determination of the charm quark mass,
based on eq. (15.2). We restrict ourselves to the time components
of axial and tensor current.

State Operator r
Pseudoscalar prs ¥s
Vector viE ¥i

Axial vector AR® Yo¥s
Tensor Ta: YoYi

different absolute source Posiﬁons with respect to the open boundaries.
We consider the functions

TS 1 TS TS

fp° (%0, yo) = 7 [fpp(x0,yo) + fpp(T—x0, T— yo)l (15.3)
1

s (xo:yo) = 5[4, (X0, yo) — &, (T—x0, T —yo)] (15.4)

3
1
v (xo yo) = ¢ D (v (o yo) + Ry, (T—x0, T—yo)]
k=1
(15.5)

3
1
fr(xo, yo) = 2 Y [fte (X0, y0) + iy, (T—x0, T—yo)] -
=1
(15.6)

To obtain O(a) improved observables, we employ the the improved
correlation functions,

il (x0,yo) = i (xo0, yo) + acadifp’ (xo, yo) (15.7)
71 (x0,y0) = i (x0, yo) + acvdofyr(xo0,yo), (15.8)

The discretized which we use to determine the O(a) improved PCAC mass (4.26)
derivatives are .
defined in app. A.3. o (x0,Yo) + acad5d,fp° (x0, yo)

uml’i[xﬂ!ya} = ZfEs[x-ﬂ;yﬂ] {15'9}

The correlation functions which are defined in egs. (15.3-15.5) are also
used to compute the effective masses of mesons with the quark content
rs and the quantum numbers of the respective operators, according to
eg. (6.5). For the pseudoscalar mesons, we use the correlation function
fp. A simultaneous fit to fp and f,, does not improve the statistical
precision since both are highly correlated. For the vector mesons, we
average over the three components of fy.

As explained in section 6.1.2, the source position has to be chosen
with some care, in the case of open boundary conditions. We place
the source directly at the boundary, i.e., at yo = a and consider the
boundary states as excited state contributions that vanish for large
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source-sink separations. This has the advantage that possible bound-
ary cut-off effects are expected to manifest themselves in a region

which is anyway discarded for the extraction of Ph}fsical quanl:ities.

In this way the plateaus of the pseudo-goldstone bosons, which do
not suffer from an exponentially decreasing signal-to-noise ratio, are
maximized when yo = a is chosen.

We choose stochastic sources with U(1) noise and 16 noise sources
per time-slice (a and T — a). It has been found in [119] that the correla-
tion functions for light quarks computed from displaced sources in the
bulk of the lattice are fully correlated. Therefore, further source posi-
tions are not expected to decrease the statistical error of the quantities
under investigation.

The same number of sources has been used in [77, 142] for the
determination of quantities based on light quarks. A priori we do not
know whether the same number of noise sources is appropriate for
observables with heavy quarks which are not present in the sea. We
will investigate the influence of the number of noise sources on the
statistical error of quark and meson masses in section 15.5.

In our computations of heavy quark propagators we have used
distance preconditioning to obtain the required level of precision at
large source-sink separations. We describe the tuning of the parameter
a in section 15.4 where we also investigate the reduction of systematic
uncertainties.

15.2 MESON MASSES

To determine the position of an ensembles on the chiral trajectory and
and the charm quark hopping parameter k., we have to determine the
masses of pion and kaon as well as the masses of the heavy mesons
involved in the spin-flavor average in eq. (14.4).

As explained in section 6.1, the extraction of the ground state matrix
elements and energies of correlation functions is straight forward
at large time distances, since we face an exponentially suppressed
excited state contamination. If the signal-to-noise-ratio of the corre-
lation function under investigation vanishes exponentially, we have
to determine the region, where a save extraction of the ground state
energy is possible.

The extraction of the mass of the ground state mesons can be
performed using the correlation function or the effective mass built
from it and we choose the latter. We expect our fits to be more
stable when the effective mass is used, since one degree of freedom is
eliminated compared to the fit to the correlation function.

We can take different paths to determine the ground state energies
in the presence of excited state contributions. In the first approach
we perform a fit including the excited state contributions in order
to determine the source-sink-separation t where the contribution
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of all excited states is negligible compared to the statistical errors.
Afterwards, we perform a fit to the ground state and can safely neglect
all excited state contributions. In the case of the effective mass, this fit
to the ground state corresponds to a plateau average.

In the second approach, we also start with a fit including the ground
state and the first excited state. In this case, we obtain the energy of
the ground state directly from this two-state fit. The fit range has to
be chosen properly to include the region where higher order states
have decayed and the first excited state can be properly captured. It
remains to be tested numerically if one of the two approaches leads to
smaller statistical or systematic uncertainties.

The two-state fit to the effective mass has three free parameters and
is non-linear in one of the parameters such that one could expect larger
uncertainties. This can be counteracted by the fact that we can include
more data points compared to the plateau fit and that the relative
error on effective masses is smaller for shorter source-sink separations
(in the case of heavy pseudoscalar and vector mesons). In principle,
special care has to be taken in the determination of the errors on the
fit parameters in the case of non-linear fits [140]. Since we determine
these errors via resampling techniques, this complication is avoided.

Before we explain how we determine the effective masses from the
data, we like to look at the more general picture, namely the bare data
for the quantities which we use to calibrate our measurements. These
are the pion mass m_, the kaon mass mg for the chiral trajectory and
the flavor averaged mass my or the spin-flavor averaged mass M=
respectively to fix k..

We show representative effective masses of the pseudo-goldstone
bosons in figure 15.1 and of the heavy mesons which contribute to
the averages in figure 15.2. For the light mesons, we obtain plateaus
over a large fraction of the lattice, since the signal-to-noise ratio is
constant for these bound states. At large source-sink separations, the
effect of physical states propagating from the boundaries into the bulk
becomes visible.

For the heavy mesons, we show the effective masses up to the point
where the statistical errors become too large. We can see that the
mesons including the strange quark show a better signal than the
mesons including a light quark. The vector mesons suffer from large
statistical errors. From this observation, we expect the spin-flavor aver-
aged mass to have significantly larger errors than the flavor averaged
mass.

15.2.1  Fif ranges

Since we know the functional form of the exponential contribution
of excited states to the correlation functions used to determine the
ground state meson masses, we can model these corrections in our fits.
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Figure 15.1: Effective masses of the pseudo-goldstone bosons m and K on
Nzoo

The discrimination of several terms in a sum of exponential functions
is difficult without further knowledge on the size of the exponents.
Therefore we try to perform a two-state fit in a region, where all but
the lowest excited state have decayed.

The functional form of a two-state fit to effective masses is given
by eq. (6.8). Since we do not know where all higher exponential
corrections have vanished, we have to test the fit quality for a number
of different fit ranges [tmin, tmax]-

For this test, we first fix the upper end of the fit interval tma. In
the case of heavy-light mesons, this is done by setting an upper limit
on the relative size of the statistical error of the correlation functions.
By setting this limit to 2% for pseudoscalar mesons and to 7% for
vector mesons, we can exclude regions with excessively fluctuating
data points from the fit regions. Since we perform weighted fits and
data points with large statistical errors contribute less to the overall fit
result, the fit quality is stable under a variation of tma..

The signal-to-noise-ratio of light pseudoscalar mesons is constant
across the temporal extent. Therefore, we can not set t,,, by a noise
criterion. Instead, we have to exclude the region where boundary
states lead to exponential corrections of known functional form. Since
this procedure is similar to the determination of the lower bound of
the fit region, we will postpone the discussion of the boundary effects
and assume that a proper value for tmax has been found such that a
plateau of the effective mass is visible up to tmax.

To determine tmyin, we perform a number of fits. We start with a fit
in the range [5a, t;,.] and continue by increasing the lower end of the
interval in steps of a. During this process, we monitor the fit quality
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Figure 15.2: Effective masses of the heavy mesons corresponding to D, D,
D* and D7 including the heavy quark corresponding to k, on
Mz200. We exclude data points with large statistical errors.

via the value of %’ll, as explained in section 6.3.1. In this procedure,
q

the fit quality improves with every step, since higher order exponential

corrections that are not modeled by the fit decay with the increasing

temporal distance between source and sink. When the lower bound is

increased too much, the fit parameters of the exponential term cannot

be determined any more.
At the point where all but the lowest exponential correction have

decayed, we expect ﬁzﬂ = 1 and indeed this point is found for all
effective masses under c]:::rnsideraﬁon. In most cases, we find a shallow
valley around a local minimum for the values of Exzm determined from

different fit ranges. Based on this observation, ‘W‘EFEIIE able to choose
the value of tgmn such that the fit a:glu,r;'alit:,,r is cnptimized and we are
convinced that the exponential correction is modeled correctly.

The strength of the approach to use xgxp for the determination of
the fit quality becomes apparent in this fitting procedure. Since the
correlations between the effective masses on different time slices are
strong and fit ranges with a length of O(40a) are considered, the
inversion of the CDl'l.'E]ﬂﬁﬂ.l;_l matrix in a correlated fit fails in most
cases. If the naive ratio %ﬁnﬁ is used to monitor the quality of the
uncorrelated fit, values smaller than unity are reached well before the
optimal fit is found. In this case, it is not clear by the value of the ratio
when the optimal fit is found.

In the case of the pion and the kaon, the signal to noise ratio
is constant and we are able to resolve the contributions from the
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Figure 15.3: Effective mass of a heavy-strange pseudoscalar meson on Nzoo.
Data points up to tp,, are shown in black. The beginning of
the fit interval at tmin = 1la is outside the plot region. The
result of the fit is shown by the red curve. The beginning of the
plateau region is indicated by the dashed line and the result of
the plateau fit is depicted by the blue band.

boundaries. The same mesons have been considered in [142] and there
the functional form

ameg(xp) = amps(1+ cre” 1% 4 cpe~FaslT—xad L ) (45.10)

with Eaps =5 2mps where mps is the mass of the pseudoscalar meson,
has been chosen for the fits, based on the derivation in [59, 143]. The
deviation of E;ps from 2mpg has its origin in finite-volume effects.

We determine the point where the exponential corrections due to
the boundary at T have vanished with the same methods as we have
used them for the determination of t.;,, ie., we monitor the fit quality
when decreasing the upper limit of the fit range. Since we perform
the determination of t5.. before we determine tgn, we fix the lower
bound to = T/3 in this procedure. The energy Eaps is a free parameter
in our fit.

When we have determined the optimal fit range, we set tpax to the
time slice where the contribution of the exponential correction from
the boundary at xp = T is smaller than 0.25 times the statistical error
of the effective mass. With this procedure, we maximize the fit range
and use as many time slices as possible for our determination of the
effective meson mass.

An exemplary result of this procedure on the ensemble N20o0 is
depicted in figure 15.5, where we show the data points for the effective
mass of the kaon together with the fit to the boundary states. In
this case, we obtain $Eaps = 0.0919(62) for the energy of the first



222

LATTICE COMPUTATION

I I I I I
E
0.68 .
0.67
« 0.66
EN
=
0.65
0.641 it T -
plateau
063 ¥ data 17
| | | | |
20 30 40 50 60

xg/a

Figure 15.4: Effective mass of a heavy-strange vector meson on N2oo. Data
points up to tmax are shown in black. The beginning of the fit
interval at t;, = 13a is outside the plot region. The results of
the fit is shown by the red curve. The beginning of the plateau
region is indicated by the dashed line and the result of the
plateau fit is shown by the blue band.

correction from the boundary source which coincides with the pion
mass determined from the full fit, am, = 0.0924 (3).

Although this is a reassuring observation, the correspondence of
E2ps and m is not crucial for the correctness of our procedure, since
we only it to set the upper bound for the final fit. In all cases we
have checked manually that the fit procedure leads to an upper bound
where all corrections from the boundary have vanished.

15.2.2 Extraction of the effective mass

Having determined the interval [tyin, tmax], where the data is described
by the functional dependence

amug(xp) = ameﬁ-l—ce_mx"', (15.11)

we have now two possibilities to determine the value of amyg. In
the first approach, we take the fit parameter determined by the fit in
the chosen fit range. In the second approach, we extract the effective
mass from a weighted plateau fit in [tﬂm,r tmax ] We define the lower
end of the plateau range tf;m to be the time slice where the size of
the exponential correction amounts to less than one quarter of the
statistical error on amgg(xg).

We show the result of the fit on N200 in the window [tmin, tma] for
a heavy-strange pseudoscalar meson in figure 15.3 and for a heavy-s-



1h.2 MESON MASSES

0.24 T T T T T T T
fit
* data
022 =
=
0.20

QMg ff

0.18

0.16

Figure 15.5: Effective mass of the kaon on N2oo. Data points are shown in
black. The fit interval starts at the right dashed line and its result

is shown by the red curve. The upper end of the plateau region
is indicated by the left dashed line.

trange vector meson in figure 15.4. In both cases, we decide to show a
region around the plateau to allow for a comparison of both fit meth-
ods. The black data points are shown up to tma to exclude strongly
fluctuating points.

From the figures it can be seen that we have obtained an excellent
description of the data within the fit range. The plateau region, where
the exponential correction has decayed beyond statistical significance,
starts at the dashed line and the result of the weighted average in the
plateau region is shown by the blue band.

In most cases the result from the exponential fit and from the plateau
average overlap and the statistical errors of the weighted average are
larger than those of the full fit. In the case of pseudoscalar meson
this difference is only small, since we have a long plateau region with
mildly fluctuating data points. In the case of vector mesons, e.g., in
fig. 15.4 the statistical error of the plateau fit is significantly larger. This
situation would be improved by are more restrictive bound on the size
of the statistical error of the primary data points in the determination
of tmax. Unfortunately, this would lead to a situation where no plateau
region is found for mesons including light quarks on ensembles with
small statistics or small light quark masses.

To allow for a better comparison of the results based on both ap-
proaches, we show the result from the plateau fit together with the
result from the exponential fit for different choices of t.;, in figure
15.6. In this exemplary case the fit with the best quality is reached
at tmin/a = 11. We can see that a small variation of the lower limit
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Figure 15.6: Graphical representation of the optimization of the fit region for
a heavy-strange pseudoscalar meson on N200. The red crosses
show the effective mass obtained from a fit starting at xp /0. The
dashed lines indicate that the best fit was found at xp/a = 11.
The blue curve shows the corresponding plateau fit.

does not lead to a change in the fit result. Starting at significantly
smaller times leads to incorrect results, since higher states are not
modeled correctly. Increasing the lower bound leads to an increase of
the statistical error of the fit result, since less data points are taken into
account. At some point, the exponential correction cannot be modeled
anymore.

In some cases we see a = lo deviation between the results from
both methods. In these cases we observe small plateau ranges where
local fluctuation of the data have an enhanced influence on the mean
value of the plateau fit. Since the exponential fit includes more data
points with very small statistical errors, it is not as much affected by
these fluctuations as the plateau average.

To rule out systematic effects in the determination of meson masses
from the choice of the fit form, we will compare the final results for the
RGI charm quark mass after the chiral-continuum extrapolation based
on both methods. Since there is no deviation on most ensembles, we
expect the difference in the continuum limit to be vanishingly small.

We summarize our results for the light meson masses and the
averaged heavy meson masses obtained from the full fit for both
heavy quarks in table 15.2. The corresponding values for the plateau
averages can be found in tab. B.g. Since the measurements on the J501
ensemble are especially expensive, we were not able to determine the
vector correlation functions in this case. Therefore, we cannot give a
value for the spin-flavor averaged mass on this ensemble.
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From tab. 15.2 it is apparent that the dependence of the heavy meson

masses on the light and strange quark masses is very mild. Since we

consider flavor averaged quantities and the sum of light and strange
quark masses remains constant, this behavior is expected from the
construction of the chiral trajectory. The masses of all heavy mesons
are listed in tab. B.10 and tab. B.11. From these tables we can see that

a decrease in the light quark mass leads to a decrease of the D and

D* meson masses and the increase of the strange quark mass leads to

an increase of the D; and D} masses.

However, the effects of the light and strange quark masses on the
heavy mesons is very mild. This is different for the light mesons,
which are influenced by the explicit breaking of the spontaneously
broken chiral symmetry.

Table 15.2: Overview of the effective masses used in the calibration of the
chiral-continuum extrapolation. The subscript of the flavor av-
erages D and spin-flavor averages D correspond to those of the
hopping parameters in table 14.1. No vector correlation functions
have been determined for the Jgo1 ensemble. Values are deter-
mined from the full fit The corresponding values from a plateau
fit are shown in B.g.

id Mg amg amg, amg;, {].'I'I’I.ﬁ1 umﬁz
Hio1 0.18280(55) 0.18280(55) 0.85118(52) 0.82029(50) 0.8880(19) 0.8590(19)
Hioz 0.15416(75) 0.19114(62) 0.84997(59) 0.81898(59) 0.8896(17) 0.8605(18)
Hios 0.12142(155) 0.20194(95) 0.84975(74) 0.81877(73) 0.8867(30) 0.8576(29)
Cio1  0.09706(77) 020624(46) 0.84947(49) 0.81847(47) 0.8905(15) 0.8615(15)
Hqoo 0.16328(53) 0.16328(53) 0.74502(51) 0.69355(51) 0.7804(22) 0.7316(24)
Hzoo 0.13651(58) 0.13651(58) 0.64697(61) 0.60109(56) 0.6778(12) 0.6346(12)
Nzoz 0.13424(30) 0.13424(30) 0.64554(57) 0.59955(55) 0.6758(12) 0.6327(9)
N2o3 0.11229(27) 0.14395(21) 0.64379(62) 0.59796(47) 0.6761(19) 0.6329(19)
Nzoo 0.09242(32) 0.15074(26) 0.64449(52) 0.59862(47) 0.6782(10) 0.6350(11)
Dzoo  0.06473(47) 0.15635(22) 0.64353(44) 0.59774(39) 0.6763(17) 0.6331(16)
N3oo 0.10561(63) 0.10561(63) 0.49351(83) 0.47571(83) 05195(17) 0.5028(17)
N3oz 0.08750(35) 0.11442(61) 049273(67) 0.47499(59) 05161(33) 0.4994(33)
J303  0.06484(21) 0.11975(20) 0.49264(40) 0.47478(39) 0.5206(11) 0.5038(11)
Jsoo  0.08085(38) 0.08085(38) 0.37099(78) 0.35515(67) 0.3935(8)  0.3786(8)
Jsor  0.06632(29) 0.08820(25) 0.37228(41) 0.35636(38)
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15.3 CURRENT QUARK MASSES

As described in section 6.1.2, we expect D{agﬁ] boundary effect in the
PCAC masses, since the boundary improvement coefficients cg and
cf have not been determined non-perturbatively for open boundary
conditions. Additional cut-off effects are introduced from contact
terms at small source-sink separations. If the source is placed close to
the boundary, both effects overlap. In the bulk of the lattice, we expect
the masses m.s(xp) to form a plateau. In principle, any value within
this plateau, e.g., ms(T/2) could be chosen as estimator for the bare
quark mass and all differences based on different choices are expected
to scale vanish in the continuum limit.
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Figure 15.7: Current quark masses based on light and strange propagators
determined from standard derivatives.

To use as much information as possible, we like to determine the
range, where the quark masses form a plateau and perform a plateau
average. In our investigations in the Schrodinger functional, this was
mainly done to smooth out fluctuations. In large volume and for quark
masses based on heavy-light propagators, we also face a decreasing
signal-to-noise ratio with increased source-sink separation. Therefore
we are able to decrease the statistical error of our mass determination
significantly, if the plateau range is maximized.

As in our studies in the Schrédinger functional, we are free to choose
any definition of the discretized derivatives in the determination of
the PCAC masses according to eq. (15.9). We will investigate both
definitions of the discretized derivatives in app. A.3 and study the
cut-off effects. Since the mass-dependent cut-off effects can become
sizable for quarks as heavy as the charm quark, we expect significant
deviations between both definitions at finite lattice spacing.
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Before we describe the procedure to maximize the plateau region,
we have a look at the time dependence of the current quark masses
under investigation. In figure 15.7 we show the three quark masses
my 17, Mg; and m, o which have already been considered in [77, 142].
All three quark masses form long plateaus and show the expected
boundary effects. Since barely any difference is visible between the

two choices of the derivatives in this case, we show the quark masses
from the standard definition.

0.15- F  hyssd
7 hysid
& T hylsd
0.14F ¥ hylid A
J
guu— -
o
0.12F -
0.1 -

Figure 15.8 Current quark masses based on heavy and light propagators for
standard derivatives (sd) and improved derivatives (id). Only
data points with a relative error below 3% are shown. The
hopping parameter for h; is chosen according to tab. 14.1.

In fig. 15.8 we show the partially quenched heavy-light quark masses.
For these masses, the difference in the mass-dependent cut-off effects
of standard and improved derivatives is immediately visible. Masses
from the standard definition are significantly larger than from the
improved derivatives. There are also considerable differences in the
form of the cut-off effects for small source-sink separations. In general,
the plateau region is reached faster if the improved definition is chosen.
In this case, the plateau is approached from below. In the case of the
standard derivative, the plateau is approached from above. Since the
signal deteriorates with increasing source-sink separation we only
show data points up to a relative error of 3%.

To complete the picture, we show the quark mass my,},; in figure
15.9. Since the signal does not deteriorate for large source-sink sepa-
rations, we are able to see that the cut-off effects due to the boundary
seem to be similar for both definitions. We draw the conclusion that
the cut-off effects for small source-sink separations are entirely dif-
ferent between both choices. The absolute difference between the
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Figure 15.9: Current quark masses based on heavy propagators for standard
derivatives (sd) and improved derivatives (id). The hopping
parameter for h; is chosen according to tab. 14.1.

plateaus increases with the quark mass and becomes sizable at the
scale of the charm quark.

In general, we do not know which derivative leads to a better ap-
proach to the continuum in the final extrapolation. From the absolute
size of the quark masses, we can guess that the slope will be smaller
for the definition based on improved derivatives. With the improve-
ment coefficients from chapter 11 we hope to cancel O(a) effects and
we will investigate whether we are able to suppress higher order
mass-dependent cut-off effects using LCP-1.

15.3.1 Fif ranges

Since we have to determine nine quark masses on 15 ensembles,
we like to automatize the determination of the plateau region. The
functional dependence of the cut-off effects is not known a priori
and it is not clear how to model the deviations from a plateau in a
fit. In [142], the same methods as for the effective masses, ie., fits
to exponential corrections, have been used to determine the plateau
region.

Based on the experiences of [142], we employ our fit routines in the
determination of the plateau region for the PCAC masses. The final
determination of the current quark mass is done via a weighted fit
in the plateau region, since our only theoretical expectation on the
functional form of the data is a constant in the bulk of the lattice.

For the vast majority of quark masses considered in our study, the
methods used for the fits of effective masses also work to determine
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the start and end point of the plateau region. Since we do not expect a
perfect fit result, we are not as strict concerning the bound on the ratio

éz— and it suffices to require that a value = 2 is reached to obtain a
P

save determination of the plateau.
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Figure 15.10: Fit to determine the upper range of the plateau for the current
quark mass based on hz-hy using improved derivatives on
MN200. The dashed lines depict the start of the fit range and the
plateau range respectively. The hopping parameter for hs is
chosen according to tab. 14.1.

In figures 15.10 and 15.11 we show exemplary fits for the deter-
mination of the plateau range for the mass my,,;, using improved
derivatives on N200. From these figures it can be seen that the bound-
ary effects can be modeled appropriately. We define the start of the
plateau range at the time slice where the effect of the exponential cor-
rections is smaller than 0.25 times the statistical error of the data point.
In figure 15.11, the best fit starts at xp,/a = 9 and for better visibility of
the plateau region, we do not show this point in the plot. The plateau
range determined from the fit overlaps with the determination from
the weighted average but we discard the former one.

In the case under display in fig. 15.11, the plateau region is ap-
proached from below. As apparent from fig. 15.8 and 15.9, this
behavior depends on the chosen discretization of the derivatives
and the flavor combination. In figure 15.12, we show the current
quark mass amy, | for the five ensembles on the symmetric line of the
Tr [Mq] = const CLS ensembles. For the chosen flavor combination,
we can see that the form of the cut-off effects depends on the lattice
spacing.

From measurements with sources in the bulk of the lattice, it is
known that the cut-off effects due to small source-sink separations is
roughly constant in lattice units and the effect is visible for separations
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Figure 15.11: Fit to determine the lower range of the plateau for the current
quark mass based on h;-h; using improved derivatives on
Nzoo. The dashed line depicts the start of the plateau range.
The hopping parameter for hz is chosen according to tab. 14.1.

smaller than 10 a [269]. The end of this region is marked with vertical
lines in the subplots of figure 15.12. For coarser lattice spacings and
improved derivatives, the effect of a short source-sink separation
seems to dominate the cut-off effects. The boundary effects dominate
at finer lattice spacings.

On J500, the plateau for amy,;; from improved derivatives is reached
from above. On N300, the plateau is reached from above but a local
minimum forms before the plateau is reached. This behavior is also
visible for N302 and J303 have been generated with the same bare
coupling. On these two ensembles, the fit procedure does not work
since no exponential-like behavior can be seen in the data. Therefore,
we have to set the lower end of the plateau region by hand for heavy-
light and heavy-strange quark masses determined from improved
derivatives on J303 and N302. Since the boundary cut-off effects reach
further into the bulk if standard derivatives are used, the fit works
without problems.

We collect all quark masses determined in our study in table 15.3
for standard derivatives and in tab. B.12 for improved derivatives. It
can be seen that the relative statistical errors of heavy quark masses
are smaller, if improved derivatives are used. The comparison of the
bare light quark masses with the results in table 2 of [142] shows
an excellent agreement. The quark masses are ready to be used in a
chiral-continuum extrapolation. We expect both choices of derivatives
to lead to the same continuum limit. It has to be tested, if a combined
extrapolation of both definitions with a common continuum limit and
differing cut-off effects leads an improved result at the physical point.
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Figure 15.12: Current quark mass amp,] determined from standard and im-

proved derivatives along the symmetric line of the CLS en-
sembles. To allow for a better comparison, all masses have
been normalized to their plateau averages. The lattice spacing
decreases from top to bottom. Vertical lines marks xg,/a = 10.
The hopping parameter for hz has been chosen according to
tab. 14.1.
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In any case, the comparison of both extrapolations can be employed
to quantify systematic effects.

15.4 DISTANCE PRECONDITIONING

We have motivated the need for a distance preconditioning of heavy
quark propagators in section 5.3.6. In this section we will show the im-
pact of this procedure on the heavy propagators in our measurements
and explain how we tuned the preconditioning parameter o
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Figure 15.13: Local residuum r,.(x0, Yo) for yo = a with different global
residua for the heavy propagator with the hopping parameter
set to ky, from tab. 14.1. Top: Hgoo. Bottom: J5o1. The targeted
precision is depicted by the dashed line.

To illustrate the need for the preconditioning, we show the local
residuum 7y, (xp, Yyo) for heavy propagators on H400 and J501 where
the source is placed at yo = a and no preconditioning has been used in
figure 15.13. It can be seen that the size of 1, increases exponentially
and reaches values far beyond the target precision. If the global
residuum is set to Tl = 10—2, the local residuum violates this bound
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LATTICE COMPUTATION

at source-sink separations of O(20). If the global residuum is reduced,
the range of time slices where the local residuum is smaller than 108
can be extended with a moderate increase of the cost.

The lower bound on possible values of 1 is given by the machine
precision, which is O(1 0—'€) in the case of double precision. Therefore,
we cannot decrease the global residuum further than it is done in
fig. 15.13. Despite the small residuum, the fraction that is unusable
for the extraction of physical quantities grows from 40% on H400 to
50% on J500.

15.4.1 Tuning procedure

An increase in the solver precision at late time slices has to be payed
with a higher iteration count and therefore with an increased need
for computing time. We like to tune the parameter a such that the
required precision is reached with minimal cost.

We perform this tuning on one single configuration per ensemble.
On this CDIIEgl]IﬂﬁDI‘l, we scan a range of values of « by inverting a
heavy valence propagator with the hopping parameter chosen accord-
ing to table 14.1. For each propagator, we determine 1y, as defined in
eq. (5.75) for all source-sink separations.

We set the global residuum to 1y = 102 and require I‘b‘._.[%T,ﬂ] <
Tgi- With this criterion we are able to use the full plateau range of the
heavy PCAC mass and risk numerical instabilities only in the region
where boundary effects dominate.

In figure 15.14 we show the local residuum at xp = %T and the
number of iterations of the distance preconditioned SAP_GCR solver
depending on the parameter a. We see an exponential increase of the
number of iterations needed to reach the global precision given by 1
when « is increased.

Starting at a = 0.35, we can observe a fast decrease of the local
residuum at x5 = %T when ao is increased. For o > (.42 the local
residuum stays below the global one. If the global solver residuum
T is decreased, the value of « that is needed to stay below 10-8
decreases as well. Nevertheless, the cost for one inversion is nearly
independent of the pair (rg, «] if the same criterion for 1 is used.

The value for « is nearly independent of the light quark masses
but varies with the lattice spacing. In any case, the cost of the tuning
procedure is negligible and it can be performed on every ensemble
before the measurements are performed.

15.4.2 Impact on physical observables

To illustrate the impact of distance preconditioning on the physical
observables, we repeat the measurements for one heavy quark mass on
the ensemble H400 using the standard solver without preconditioning.
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Figure 15.14: Local residuum Tluc[-ET, a) on Hyoo for the heavy propagator
with the hopping parameter set to k;,, from tab. 14.1 together
with the number of iterations of the preconditioned SAP_GCR
solver. The global residuum is depicted by the dashed line.
Reproduced from [264].

Using these measurements, we are able to compare preconditioned
data with unmodified data at the same level of statistics.

We show two exemplary observables, namely the effective mass of
the pseudoscalar heavy-light meson and the current quark mass my,;
in figure 15.15. The lower end of the plateau region t::ﬁn as determined
from the fit with the preconditioned data is depicted by the dashed
lines. We can see significant deviations of the data without precon-
ditioning from the true result at source-sink separations which are
smaller than t¥ . . A reliable determination of the physical observables
is not possible from the data without preconditioning. If such setup is
used, the local residuum has to be lowered significantly to reach the
required precision at distances where excited state contributions and
cut-off effects have vanished.

We did not test the influence of a smaller value of ry on observables
at late time slices. The efficiency of this approach compared to distance
preconditioning certainly also depends on the observable under inves-
tigation. For amy,, we obtain very clean plateaus which span over the
whole bulk of the lattice. This would probably be impossible without
distance preconditioning. The signal of heavy-light observables on the
other hand gets lost in the noise at some point and it is not necessary
to solve the Dirac equation properly at late time slices.

In any case, a test similar to the one shown in figure 15.13 should
be performed if no distance preconditioning is used. Without this
explicit check it is not possible to properly estimate the systematic
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1h.F STOCHASTIC SOURCES

effects introduced by the lack of precision at large source-sink separa-
tions. Deviations from the true values could be interpreted as local
fluctuation in the data and introduce a bias in the final observable. In
our opinion, the upper end of any fit interval or plateau range has to
be dictated by a bound on the local residuum.

15.F STOCHASTIC SOURCES

Since we chose to fix the source positions on the time slicesaand T—aq,
we generated a number of random sources on each time slice to reduce
the statistical error of our observables. It would have been possible
to include sources on other time slices to avoid correlations between
random sources on the same time slice. However, this approach would
have resulted in a more complicated handling of the boundary effects.
The use of different source positions on gauge configurations with
open boundary conditions is of importance, if one is interested in
entangling boundary and excited state effects, e.g., in the computation
of decay constants [134].

We like to test whether correlations between random sources on
the same time slice limit the gain in statistical precision which is
achieved by an increase of the number of random sources. To compare
the statistical precision of physical observables based on a different
number of random sources, we determine the plateau range [tgin, o]
obtained from the analysis using the full statistics. In a second step
we perform a weighted average in this region for different numbers of
random sources. With this approach we are able to focus on the effect
of the number of sources on the statistical error and we are able to
neglect further complications based on systematic effects, e.g., when
excited state contributions are not modeled properly by a fit based on
low statistics.

In figures 15.16 and 15.17 we show the results of our analysis on the
ensemble [303. We choose this ensemble because the measurements on
J303 are among the most expensive ones and the optimization of the
number of sources is especially important in this case. Nevertheless,
the results are qualitatively the same on all ensembles. In all cases,
we use time reversal symmetry, i.e., we average the same number of
sourcesatyp =aandyo=T—a

On the left hand side of the figures we show the statistical error of
the observable depending on the number of sources N normalized
to the statistical error for N = 1. If no significant correlations are
present, we expect this normalized error to decrease with 1/ v'N and
for comparison, we show this curve in the figures. On the right hand
side we show the evolution of the mean value and its error with the
number of sources. Since we are interested in the general trend rather
than the absolute numbers, we show the observables in arbitrary units.
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From fig. 15.16 and 15.17 we can see that we achieve a perfect scaling
of the error for all observables based on heavy and light quarks. Since
we employ the heavy-light mesons in the determination of k., the
increase in statistics directly translates in a more precise estimation of
the hopping parameter.

For the heavy-heavy observable my;, we see only a small improve-
ment by the use of a higher number of sources. In contrast to the
heavy-light observables, where the signal is lost to the noise at some
point, the signal-to-noise ratio for the heavy-heavy quark mass remains
constant.

In all observables based on sea quarks we see only marginal effects
from an increase of N. In the light observables the signal-to-noise
ratio stays constant and we expect significantly larger correlations.
Both effects cannot be disentangled from this analysis. In general we
can judge on the size of the correlations using the size of Ty for the
observables at hand. The exact connection between autocorrelation in
Monte Carlo time and correlation between random sources on single
or multiple time slices would be an interesting field of study.

15.6 CHIRAL-CONTINUUM EXTRAPOLATION

The results for the meson and PCAC masses obtained in sections
15.2 and 15.3 enable us to perform a combined chiral-continuum
extrapolation to determine M_ at the physical point. As outlined in
section 14.2, we have a wide variety of different observables at our
disposal to perform the extrapolation and estimate possible systematic
effects. A thorough investigation will be described in [265, 266]. We
conclude this chapter with a first investigation of the general aspects
of the extrapolation and quote a preliminary result for the RGI charm
quark mass.

To arrive at the physical point, we have to take several dependencies
of the data into account. Since we have determined the meson and
quark masses for two different valence quark masses that differ from
the physical charm quark mass, we have to interpolate in myy or mg
respectively to arrive at the physical charm quark mass. Since we
have not determined the vector correlation functions on J501 and the
spin-flavor average shows smaller statistical uncertainties, we will use
the flavor average myy in the following.

Since we simulate at unphysically large sea quark masses, we have
to extrapolate along the chiral trajectory to physical light and strange
quark masses, as outlined in section 13.1. As soon as the mass-shifts
have been applied, we can parametrize the dependence of M. on the
light quark masses via ¢;.

We employ the results of chapter 11 to perform the non-perturbative
improvement of the PCAC masses. This enables us to perform the
continuum extrapolation in a’ rather than a. Since mass-dependent
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cut-off effects are enhanced for the charm quark mass in contrast to
light quark observables, e.g. in [77], we possibly have to take higher
order cut-off effects into account when we include ensembles at coarse
lattice spacing.

In the following we perform the chiral-continuum extrapolation for
the current quark masses based on standard derivatives as they are
tabulated in tab. 15.3. The running and renormalization are based on
the information of [64, 66] and for the mass-dependent improvement
we use the estimators of LCP-1 provided in table 11.4. We employ the
data from tab. 15.2 to interpolate to the physical value of the flavor
averaged D) meson mass.

Since the measurements of the derivative { SE} are not yet available

[i]
for some ensembles, we do not perform ﬂ'uean“':ass shifts described in
section 13.2 at this point. However, no dependence of the charm quark
mass on the light quark masses can be resolved in our chiral-contin-
uum extrapolation. Therefore, we expect the impact of the shifts to be
small.

One single parameter is sufficient to describe the dependence of
the charm quark mass on the flavor averaged meson mass across all
ensembles. What remains to be investigated is the lattice spacing
dependence of the charm quark mass. Based on the above discussion,

we choose

2

ﬂz a
M. (\.-' Htﬂm'n', E) =cCcp+C1y St;)m"D'—F sz (15.12}

as basis for the chiral-continuum extrapolation. If we take only the
results on for the three finest lattice spacings into account, we are able
to describe the data using eq. (15.12). If we include one of the two
terms

2\ 2 2\ 2
+c3 (m) ' +cq (m) ' (15.13)
to incorpurate higher order cut-off effects, we are able to Perfurm an
extrapolation using all ensembles considered in our study.

In ﬁ{g’:;'e 15.18 we show M., {mﬁ, -:1] determined from m][{c}, TR,
and Mg, defined in egs. (14.5-14.8) for all ensembles together with
combined chiral-continuum fits based on eq. (15.12) with an additional
term of O(a*). We show the quark masses in dependence of a?/8to
and /8tompy and to allow for two-dimensional representations of the
data, all other dependencies have been projected out in these plots,
based on the fit coefficients.

The dependence of the charm quark mass on the mass of the flavor
averaged pseudoscalar meson is shown in the upper part of fig. 15.18.
The plot illustrates that the initial choices for the heavy quark hopping
parameters of tab. 14.1 were tuned well enough such that a linear
scaling in the region around the physical meson mass can be observed.
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Figure 15.18: Chiral-continuum extrapolation of the charm quark mass. Top:

Dependence of the charm quark mass on mg. Botfom: Depen-
dence of the charm quark mass on the lattice spacing. To obtain
two-dimensional representations of the data, other dependen-
cies have been projected based on the fit coefficients.



15.7 PRELIMINARY RESULT AND DISCUSSION

The dependence of the charm quark mass on the lattice spacing
is shown in the lower part of fig. 15.18. As anticipated, the three
definitions of the charm quark mass show entirely different cut-off
effects. These effects are most suppressed for g ., were we observe
an almost flat behavior in the squared lattice spacing. The inclusion of
the term of O(a*) leads to coinciding results at the physical point. If a
term of O(a>) is chosen instead, the fit quality is equally good but the
mean values of the continuum results differ, albeit well within their
statistical errors.

From the interpolations in fig. 15.18, we can conclude that the en-
sembles at p = 3.70, 3.85 are vital for the determination of the correct
continuum limit. Their inclusion constrains the extrapolation close to
the continuum limit and correspondingly the deviations between dif-
ferent definitions of the quark mass and various sets of improvement
coefficients turn out to be small.

15.7 PRELIMINARY RESULT AND DISCUSSION

Since the definition of the charm quark mass based on Mg exhibits
the smallest statistical errors, we use it to determine our preliminary
result

M, = 1499(22) MeV (15.14)

for the RGI charm quark mass at the physical point. The dominant
contributions to the error are based on the = 1% relative errors of
the physical value of tp from [142] and the running factor from [64].
Since the error of the latter is only added after the chiral-continuum
extrapolation, we indicate the size of the error before the addition by
the inner pair of markers on the black cross in fig. 15.18.

The detailed analysis of systematic effects in the chiral-continuum
extrapolation will lead to the addition of a systematic error to our
final result. First investigations show that these effects are small. At
the same time, we could significantly decrease the statistical error, if
the external quantities tEh}'S and M,/mg j,,g were determined to higher
precision.

Stochastic sources and distance preconditioning allow us to deter-
mine meson and quark masses to high precision and the computation
of the renormalization constants and improvement coefficients of chap-
ter 11 allows us to cancel the leading cut-off effects, thereby reducing
the systematic uncertainties of the chiral-continuum extrapolation.
Systematic effects due to the setup of the chiral trajectory will be
canceled by the introduction of mass shifts. However, since no depen-
dence of the charm quark mass on the light quark masses is resolvable,
we believe that the effect of this procedure will be negligible.

Our preliminary result is compatible with the 2 4 1 flavor results of
[210, 254, 255] and the global average [209]. Given our statistical error
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and preliminary results for the systematic uncertainties, we will be
able to reach a similar precision as the other studies in the 2 41 flavor

theory.



Part V

HQET IN LARGE VOLUME






HEAVY QUARK EFFECTIVE THEORY WITH OPEN
BOUNDARY CONDITIONS

In chapters 8 and 12 we have described how we set up the line of
constant physics for the non-perturbative matching of QCD and HQET.
This matching is needed to renormalize the effective theory which is
then used for the extraction of physical observables on large-volume
ensembles.

Such computations in the effective theory have already been per-
formed by the ALPHA collaboration in the quenched [148, 271, 272]
and the two-flavor theory [211, 239, 273, 274]. For our computations
in the theory with N = 241 quark flavors, we will use the CL5
ensembles described in chapter 14. Since open boundary conditions
in the time direction instead of periodic ones are used for this set
of ensembles, the strategy for the computations has to be adapted
accordingly.

To perform the calculations of the static and light quark propagators
in the presence of open boundary conditions, a measurement program
based on the solvers of the openQCD package has been developed.
All types of smearing that have been introduced in section 6.5 are
implemented in openHQET and we will employ them in the following.

In this part of our thesis we will discuss some of the experiences and
test that we have made on our way to set up the calculation of heavy
quark observables such as the b quark mass, the decay constants of
the B and B; mesons and the form factors of semi-leptonic B meson
decays. For all of these observables, the input from the matching
procedure is necessary to obtain physical values in the continuum
limit.

Later on we will also discuss preliminary results for the computation
of the static B*Bm coupling, which is defined in the static theory and
can be calculated without input from the matching. We will work
closely along the lines of the determination in the quenched and
two-flavor theories [275].

16.1 SETUP OF THE MEASUREMENTS

We use the 2+ 1 flavor CLS ensembles on the Tr [Mq] = const. trajec-
tory for our measurements of matrix elements in the effective theory.
Since no relativistic heavy valence quarks are simulated, the dis-
cretization effects for heavy-light observables in HQET are known to
be rather mild. Therefore, we do not take into account the two ensem-

bles at = 3.85. With the remaining four different lattice spacings we
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are able to perform a controlled continuum extrapolation and to study
systematic effects by performing cuts on the lattice spacing.

In exchange, heavy-light observables have a relatively strong de-
pendence on the mass of the sea quarks [211, 239, 275]. To control the
chiral extrapolation, we take into account ensembles with light quarks
as light as the physical ones, i.e., m, = 134 MeV. Since the trace of the
quark mass matrix is held constant, the strange quark also approaches
its physical value in the extrapolation.

On this set of ensembles, we determine heavy-light correlation func-
tions in the effective theory. To improve the signal-to-noise ratio of the
observables, we use HYP1 and HYP2 smearing for the construction
of the static propagator Since no inversion is needed, the overhead
of considering both smearings consists of a doubled number of con-
tractions and an enlarged memory consumption. The overhead in
computing time is negligible. If one of both variants is superior in
the reduction of the statistical error, we will use it to obtain the final
results. Since observables determined from HYP1 and HYP2 differ in
their cut-off effects, a comparison between both smearings offers a test
for the absolute size of discretization effects.

Sea quark propagators are determined using the deflated solver
of the openQCD package and only the use of deflation allows us to
consider sea quarks with physical quark masses in the first place.
We use time-diluted random U(1) sources for construction of quark
propagators. On each time slice in the bulk of the lattice, we use N,
random sources to improve the statistical precision of our observables.
N, is adapted such that the optimal precision of the final result is
achieved using the available computational resources. The region
where boundary effects are absent has to be explicitly determined and
we investigate boundary effects in section 16.3.

For the construction of the variational basis of the GEVP, we con-
sider three different types of smearing, namely Gaussian smearing
and smearing using three-dimensional spinor and scalar fields, as
described in section 6.5. For the covariant derivatives used in the
smearing procedures, we use gauge links that have been triply APE
smeared in the spatial directions. From each smearing procedure, we
construct four smeared interpolators. The smearing parameters, i.e.,
the number of iterations in the case of the Gauss smearing and the
three-dimensional hopping parameters for spinor and scalar smearing
have been tuned such that the same smearing radii are obtained for
all three types of smearing.

16.2 OPTIMIZATION OF THE VARIATIONAL BASIS

We have introduced the effective energies E*t=, EEn and ESPIN ip sec-
tion 7.4 and motivated their extraction with the determination of the
bottom quark mass. Since the signal-to-noise ratio of heavy-light
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observables is exponentially decreasing, it is of great importance to
be able to determine the energies from plateau fits that start at small
source sink separations. We have introduced the use of the GEVP
to achieve an effective suppression of systematic effects from excited
state contributions.

To construct a matrix of correlation functions based on different

interpolators, we use the smearing procedures described in section 6.5.

The computational cost for the smearing is not negligible compared
to the cost for the solution of the Dirac matrix and it scales with the
spatial extent of the smearing radius. In the case of Gaussian smear-
ing, we have to apply O(100) iterations to reach r = 0.45fm at the
coarsest lattice spacing used in our study. In the case of smearing with
three-dimensional spinor and scalar fields the cost of the inversion of
the three-dimensional equations scales with the smearing radius.

The construction of correlation functions of smeared interpolators is
less expensive in HQET as it is in QCD, since an additional inversion
per smeared interpolator is necessary in the full theory. This is not
the case in the effective theory since the static propagator in the
heavy-light correlation functions is determined from the gauge field
via eq. (7.37) without an inversion of the Dirac matrix.

From four smeared interpolators per smearing procedure and one
local interpolator we can build a 13 x 13 correlation matrix for all
correlation functions introduced in section 7.4. The inversion of such
correlation matrix in the GEVP at finite ty likely fails due to the
statistical uncertainties in the data. Therefore, we have to build a

subset of operators that is well suited for the extraction of the emrgies.

In the studies in the two-flavor sector only Gaussian smearing has been
used to construct the correlation matrix. Therefore we have to test
the performance of the smearing using three-dimensional scalar and
spinor fields. In [188] the stability of the GEVP using these smearings
has been checked.

We investigate the performance of the different smearing types and
smearing radii on the ensemble H101, where the measurements are
cheap. The ensemble is on the symmetric line, ie., light and strange
quark masses are degenerate, and at the coarsest lattice spacing at
f = 3.4. Based on the experiences made on this ensemble, we set up
the measurements on the other ensembles. We have checked that the
results obtained in this section also hold on the ensemble H200, which
features a smaller lattice spacing.

16.2.1  Definition of a suitable basis

The definition of a suitable basis for the GEVP is ambiguous. In
principle, the generalized eigenvalue method is used to project the
variational basis onto the physical states. If the basis operators are
linearly dependent, the quality of the projection deteriorates. Large
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statistical fluctuations also have a negative impact on the projection.
Therefore, the quality of the results depends on the set of basis vectors.

0.971 , . | |
{  [0°,'Gaussl’, "Gauss3']
096 § [0,’Gausst’, Gausst'] -
0.05- {  ['Gaussl’, ‘Gaussd’, "scalarl’] ]
o 1 ['Gauss3, ‘spinorl’, "spinord ]
B
= 0.94 |

Bl ot v wt e 11 ]

L R T it} _
0.92} |
0.91 _
0.904 L | 1 |

t/a
—0.016 , , . |
1 ['0’, 'Gauss4’, "scalarT’)
—0.0181 I [0 'Gauss2, ‘Gauss3] |
I ['0, "Gauss1’, 'Gauss4’]
o i ['0°, "Gauss1’, "Gauss3']
£ _n.0200 |
E“.
/2
W ooz} |
wo g il it HH
—0.024f I |
—0.026 all é é 1:} 1I2 4

t/a

Figure 16.1: E'fi“ and E?’m from the variational method using the four com-
binations that yield the best plateaus. Data points have been
shifted horizontally to improve visibility.

To judge on the quality of different sets, we determine the energies
Ef_:“t, Eﬁ“, Esrlf'm for n = 1,2 from all possible 3 x 3 correlation matrices
that can be built as submatrices of the 13 x 13 correlation matrix. To
quantify the quality of one set of operators, we determine the maximal
fluctuation of the mean values of E,(t) in a range [t tmax] which is
adapted to the overall precision in the determination of the different
energy levels. We define the best combinations as the ones where the
fluctuations are minimal. For these combinations the deviations from
a plateau behavior due to excited state contributions are small and
fluctuations at larger source-sink separations are suppressed.

For simplicity we choose to = 4 for all of the following tests. This
allows us to judge on the pre-plateau behavior and at the same time
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to suppress systematic effects up to intermediate values of t/a, where
we test the quality of the plateaus. We choose HYP2 for the static
propagator.

In the following, we will show some representative results of our
investigations. In our plots, we label the 13 different interpolating
operators as follows.

¢ The local operator @

¢ Gaussian smeared operators: Gauss, i1 =1...4

¢ Operators constructed from 3D scalar fields: scalar,i=1...4
¢ Operators constructed from 3D spinor fields: spinor,i=1...4

Interpolating operators with the same value of i are tuned to have
the same smearing radius (r?) and i = 4 denotes the most smeared
operators.

The results for the best combinations are somewhat ambiguous since
they are not independent of t,;, and t.,,,. However, qualitatively our
conclusions remain the same when the plateau region is varied. For
the ground states of all energies under investigation we obtain clean
plateaus. The situation is more difficult for the excited states and more
work has to be invested to determine a reliable plateau average.

In figure 16.1 we show the time dependence of the ground states
of the effective spin and kinetic energies obtained from the four best
combinations of operators. Depending on the set of operators, differ-
ent contributions of excited state contamination seem to be present in
the data. When these have decayed, the results of all combinations
overlap. This behavior could be used for a first estimation of the point,
where systematic effects are smaller than the statistical error.

For the two energies in fig. 16.1, the combination of Gaussian
smeared interpolators together with the local interpolator seems to be
superior. In contrast, spinor and scalar smearing perform better for
the static energy. In all cases, a mixture of two types of smearing or
the inclusion of the local operator lead to the best result.

16.2.2  Reduction of the number of smearing procedures

Since measurements including all three types of smearing are costly,
we investigate whether we can neglect one of the three smearings to
save computing time. The reduction to a 9 x 9 correlation matrix also
saves a factor of two in memory consumption. We investigate the best
results obtained from the three different permutations of two types
of smearings and compare them with the best result from all three

combinations.
We indicate the different sets by their color, according to

e Gauss, scalar, spinor
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Figure 16.2: E'zd“ and E;Pm from the variational method using the four com-
binations that yield the best plateaus using only two different
types of smearing. Data points have been shifted horizontally to
improve visibility.

e scalar, spinor
e (auss, spinor
s (Gauss, scalar

and in all of these cases, the inclusion of the local operator is allowed.
We show the best combinations within these categories for the excited
states of spin and kinetic energy in figure 16.2. We note in passing
that for both excited states, the signal is lost to noise relatively soon.
For both energies, the spinor smearing does not seem to play a role
and it is not included in any combination.
Of course, this In the case of E¥™ the inclusion of scalar smearing suppresses best
suppression can the systematic effects but the statistical errors seem to be smaller if
happen by chance. Gaussian smearing is used. For E¥™ we cannot see any qualitative
& 2 ¥ q
difference between scalar and Gaussian smearing. We do not show the
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static energy, where the inclusion of spinor smearing leads to good
results, because the signal for the static energy is good for a large
number of combinations. We conclude that, although it has good
renormalization properties, spinor smearing has the worst perfor-
mance among the three different methods under investigation.

16.2.3 Variational basis from smearing method

In the last part of our study of the operator basis, we investigate the
extraction of effective energies without a mixture of smearings in the
correlation matrix to analyze whether the signal is improved when
several smearing methods are used. We look at the best combinations
using one single type of smearing and compare them with the best
combination including all operators:

e Gauss, scalar, spinor
e Gauss
e scalar
® spinor

We show the results from the best combinations for the ground state
and the first excited state of the static energy and the ground state
of the spin energy in figure 16.3. We see that the effective energies
built from spinor smeared operators alone show a slow convergence
towards the plateau region and large statistical uncertainties. The data
points obtained from Gaussian smearing have the smallest statistical
uncertainties. In all three cases, the best combination includes two or
more smearing procedures.

We can conclude that it is beneficial to construct the correlation
matrix from two different types of smeared interpolating operators for
the extraction of the energies. Since smearing from three-dimensional
spir.or fields perfurms worst, we will use Gaussian smea.ring and the
smearing from three-dimensional scalar fields for our measurements
on ensembles with larger volumes, finer resolutions and smaller quark
masses.
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Figure 16.3: E3®, E3® and E7 " from the variational method using the four
combinations that yield the best plateaus using only one type of
smearing, Data points have been shifted horizontally to improve
visibility.
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16.3 BOUNDARY EFFECTS

In the quenched and two-flavor studies, translational invariance in
time direction has been used to improve the statistical precision by
summing over the results obtained from random sources on all time
slices. The final results therefore have been determined on T/a = N,
random sources. Since we work on ensembles with open boundary
conditions, we cannot take into account all time slices for two reasons.

ts
“‘..'4 ".®.'-
* *
* "‘ * "’
. * o *
* -
* . ‘* .

L - L
.f - L *
T — U5 ta -tB
X0 X0
— ——

Figure 16.4: Two- and three-point correlation functions determined in this
work. Relativistic quark lines are dashed and the heavy quark
propagator is indicated by the double line. The source position
is denoted by t. and the positive time direction is indicated by
the arrow.

On the left side of figure 16.4 we show the schematic contraction
for the heavy-light two-point functions determined in the effective
theory. The heavy quark propagator is depicted by the double line
and the heavy quark propagates only in positive time direction. Due
to this property, the correlation function can only be evaluated on
one side of the source. In our case, as shown in 16.4, the source-sink
separation is given by t = t, —tf. Due to the boundary at x5 = 0,
the maximal source-sink separation is given by t;. Therefore, the
boundaries introduce a technical constraint on the number of time
slices.

Another constraint is introduced by the physical properties of the
boundaries, which have the quantum numbers of the vacuum. A
contamination due to boundary states can pose a problem in the
GEVP since these are present in the eigenspace of the correlation
matrix. If the GEVP is solved on each time slice, the correct states are
obtained. But since the statistical fluctuations are large in this case,
the inversion of the correlation matrix fails at relatively small values
of to. If we average the correlation functions over all time slices to
stabilize the GEVF, the correct projection is not guaranteed anymore.
Therefore we have to ensure that all contributions from the vacuum
have decayed at t, and ty.
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Since we believe that results from noise sources on different time
slices are less correlated than from two random sources on the same
time slice, we like to maximize the number of time slices included
in the measurements. In this section we will try to determine the
region where boundary effects are negligible. In the final analysis, we
will introduce additional cuts on the number of time slices which are
included in the summation to ensure that no systematic effects due to
boundary contributions are present.

16.3.1 Boundary states

We can consider the boundary as source with the quantum numbers of
the vacuum. Therefore, the spectral decomposition of the heavy-light
two-point function is given by [143, 276]

fra(te, tr) = Aexp(—Ep(ts — tr) [1 + Bexp(—En(T— t.)) +...1,
(16.1)

when the source position t; is close to the boundary and the sink
position is at tf. Ey is the energy of the heavy-light bound state
and Ey, is the lowest state with the quantum numbers of the vacuum.
Keeping t = t; —t; constant but varying the source position, we arrive
at

fra(ts) =~ Aexp(—Ep(t)) [1 + Bexp(—Ey (T — t.))] (16.2)
=C+4 Dexp(—En(T—ts5)), (16.3)

where the dependence on the fixed value of t is only implicit. We can
investigate the functional behavior for different values of t = t; — tr.
When we fix the ground state energy of the vacuum to E, = 2m,
we can perform a two parameter fit, provided that we are in a region
where all excited boundary state contributions have vanished.

In figure 16.5 we show fy(ts) constructed from the local operator
together with a fit to eq. (16.3), where we have chosen fy; = C33!. The
upper range of the fit region and t have been tuned such that a good
fit quality is obtained for a one-state fit. The pion mass has been fixed
to the value given in table 15.2. The dashed line denotes the time slice
where the relative contribution of the exponential to fi;(t,) is smaller
than one per mille.

The distance of this timeslice from the boundary at xp = T is
1.5fm for Hio1 and 1.4 fm for H200. We conclude that we have to
restrict our measurements to the region xy € [1.5fm, T — 1.5 fm]. This
translates directly to a cut on t; at the upper end of this range. For the
lower end, the minimal source position depends on the length of the
plateau region. Since the signal for the quantities under investigation
is lost relatively soon, these plateaus are rather short. We choose
ts,min = 2.5 fm for our measurements and perform cuts in the final
data to ensure that no boundary effects are present.
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Figure 16.5: Correlation function Caa(t, ts) for fixed value of t normalized
by Caa(t ts = 30a) for Hio1 and Hzoo together with the fit
to eq. (16.3). The dashed line denotes the time slice where the
exponential corrections have decayed.
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16.3.2 Asymmetry in the correlation matrix

We expect an asymmetry in the off-diagonal entries of the correlation
matrix C;;(t) when one end is affected by the boundaries, since addi-
tional states contribute. Therefore we try to estimate the effect of the
boundaries on the extraction of quantities with the GEVP from the

asymmetry
A (ts, 1) = Cyj(ts, 1) — Gilts, ). (16.9)

In figure 16.6, we show Ajy; for the correlation function C3% built from
the local operator and the Gaussian smeared operator with the largest

smearing radius. The vertical line denotes the time slice where A;;(t)
is zero within errors.
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Figure 16.6: Asymmetry A;; for C5% and i = @ and j = Gauss4 on H1o1. The
vertical line denotes the source position where A;; is zero within
errors and the source-sink separation is t = 5a.

Close to the boundary, we see significant deviations between the
corresponding correlation functions which quickly vanish when the
distance to the boundary is increased. As far as we can judge with
the statistical errors present in the data, the range of the effect of
the boundaries on the asymmetry in the correlation matrix might be
smaller than the region determined in the last section.

In conclusion, this criterion does not seem to be as conservative as
the fit to the boundary states, performed above. Nevertheless, this is
an encouraging result since the effect of the boundary on the extraction
of physical quantities seems to vanish fast, when the distance to the
boundaries is enlarged.



COMPUTATION OF THE B*Bn COUFPLING

All physical quantities that have been defined in the effective theory
need to be renormalized via the matching of HQET to QCD before
the continuum limit can be taken. Therefore, we are not able to
extract physical results from the large-volume computations before
the matching is finalized.

However, the measurement program openHQET that has been de-
veloped to calculate two- and three-point correlation functions can
be employed to extract the correlation functions that are necessary
to determine the static B*Bm coupling which is of phenomenological
importance for the chiral extrapolation of heavy-light observables.

In this chapter, we will briefly introduce the B*Bm coupling, its use
and its definition in our lattice setup. Afterwards we will present
results that have been obtained on a subset of CLS ensembles and
perform an extrapolation to the chiral limit.

As outlined in the introduction of this thesis, lattice calculations of
B meson form factors are valuable inputs to constrain CKM matrix
elements which are used to test the flavor sector of QCD. A major sys-
tematic uncertainty of these determinations comes from the difficulties
to simulate at physical light quark masses and therefore, most results
have to be extrapolated to the physical point. Theoretical insight on
the functional form of this extrapolation helps to reduce systematic
uncertainties.

The B*Bm coupling serves as external input for such extrapolation
guided by Heavy Meson Chiral Perturbation Theory (HMyFPT). The
coupling § which is closely related to the B*Bm coupling is a leading
order coefficient in the expansion of observables in HMxPT. Its knowl-
edge with high precision can improve chiral extrapolations of physical
quantities as the ones we will determine in our project on HQET.

The determination of § can be performed experimentally from D* —
D decays [277]. The theoretically more appealing decay B* — Bm
is not accessible experimentally, since it is kinematically forbidden.
Lattice calculations have been used to determine the coupling with
relativistic charm and bottom quarks [278, 279] and static heavy quarks
[275, 2B0-283]. The relative precision of the latter is limited by the
statistical uncertainties of static observables and the extrapolation of
the results to the chiral limit of massless pions leads to systematic
uncertainties for all lattice determinations.
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COMPUTATION OF THE B*Br courLING

17.1 HEAVY MESON CHIERAL PERTURBATION THEROY

HMyxPT [284-287] is constructed as effective theory for quantities
including light and heavy quarks from a combination of HQET and
Chiral Perturbation Theory (xPT). Whereas HQET describes QCD
observables in the limit of one infinitely heavy quark, xPT describes
the symmetries of QCD in the limit of massless quarks. Chiral sym-
metry is only softly broken in nature by the small masses of up, down
and strange quark and has a significant impact on phenomenological
results.

We will give a short introduction to HMPT and the coupling §
based on the reviews given in [280, 288]. Since pseudoscalar and vector
mesons are mass-degenerate in the static limit of HQET, cf. eq. (7.28),
we can express them in terms of the effective meson fields

14+ —
H= 132 (B~ Bys], H=voHivo (7.0

with the y-matrices defined in appendix A, the velocity of the heavy
meson v and the annihilation operators B and B* for particles contain-
ing a bottom quark in the initial state.

The Lagrangian of SU(3) xPT contains an octet of pseudogold-
stone bosons. In matrix notation, this octet can be expressed in the
exponentiated form

£ = exp(iM/f) (17.2)
where f is the meson decay constant and the matrix M is given by

ﬁ?‘[o + ﬁn 7T

M = T —;%n“ + EI’E“ Ke |. (17.3)

K~ x° —‘/gn

Since the strange quark is about 30 times heavier than the averaged
light quark mass, we will treat it as non-chiral and consider SU(2) xPT
where the up and down quarks are the dynamical degrees of freedom.
The matrix M is modified accordingly.

The strong interactions of B and B* mesons with pions at low
momentum are described by the effective Lagrangian of HMxPT
which is constructed by a combination of HQET and xPT. It is built
from a joint expansion in powers of the light quark mass and the
inverse of the heavy quark mass. The interaction term to lowest order

is given by [286, 287]
Lipr = 6Tr [HaHp AR y*y] (17.4)

where the trace is taken in the space of 4 x 4 Dirac matrices and the
indices a, b denote the SU(3) flavor components. The light degrees of
freedom are contained in the factor

Ay = 5 (Etore—eonel) (17.5)

— K+
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which can be expanded in the piern fields as

1
Ay = =DM+ (17.6)

As apparent from eq. (17.4), the coupling § is the only leading order
constant. This constant can be related to the B*Bm coupling which is
defined via [280]

(B(p)7* (q)IB** (p")) = —gB+8(9”)qun*(p") (2n)*8(p’ — p—q)

(17.7)

where n* is the polarization vector of the B* and the states are rela-
tivistically normalized via

(B(p)B(p")) = 2p°(2m)*8'*) (p—p"). (17.8)
The matrix element of eq. (17.7) at tree-level of HMxFT is given by

2
(BOp)nt ()B™ (p')) = = 8qun* (p)(2m)*5(p —p— )

(17.9)
and from the comparison of egs. (17.7) and (17.9) we derive
2mg .
gB*Bn = : 5 g (17.10)

to tree-level. The physical coupling is defined for on-shell pions,

gB*Bn = cl211'_1}1:'“2 ge+Br(q?). (17.11)

17.2 LATTICE COMPUTATION

The determination of § via a lattice computation is achieved by relating
the form factor of the axial current between B and B* states with the
B*Bmt coupling via Lehmann-5Symanzik—Zimmermann reduction of
the pion [280]. The matrix element of the axial current is split into
three form factors

(B(p)IAL(0)B**(p+q)) =nuFi1(q%) + (- q)(2p + q).F2(q?)
+(n-q)quF3(q%) (17.12)

and with the PCAC relation

1
mif,

m(x) =

0" A (x) (17.13)

the B*Bn ceup].ing can be expressed via

1 m2

a2
955x(47) =~ 5 [F1(%) + (mf. —mE Falq?)

+9*F3(q?)]. (17.14)
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If the computation is performed in the static limit, the second term
vanishes and the analytical continuation to g% — 0 leads to [280]

g5+5(0) = —-F1 0). (17.15)

In the static limit for the heavy quark and the chiral limit for the light
quarks, the determination of the coupling is therefore possible from
the zero-momentum form factor, when

HE‘Bn[mf:]' ~ gg+Bn(0) (17.16)

is assumed.

The determination of form factors from lattice computations in-
volves the computation of two- and three-point correlation functions
and the schematic form of the functions used in our work is given in
fig. 16.4. Since another insertion is made, compared to two-point func-
tions, two time scales are present in three-point functions. Excited state
contributions are minimized if both time scales are maximized. Since
the signal-to-noise ratio of heavy-light correlation functions decays
exponentially, we cannot extract a signal at large time separations.

In [290], different approaches have been developed to minimize the
systematic and statistic uncertainties in the determination of matrix
elements and we will present two of them for the problem at hand.
We aim to compute the matrix element [275]

= LB (A (OB (0, A= PabeIvavswbulx) (:7.17)

where we do not sum over the index k € {1,2,3} and 1, and {4
annihilate up and down quark. The normalization is such that

(B°(p)[B®(p)) = (B*(p)IB*(p)) = 2L° (17.18)
We define the correlation matrix of summed three-point functions
DiF(t) = a® Y ((BH)L(t)(Av)r(y)B;(0) (17.19)

u

with t = tg —ta according to fig. 16.4. B:i and B; are interpolating
fields for the corresponding mesons and the subsets 1j denote different
definitions of interpolating operators. The generic form of these
interpolators, neglecting any smearing that is applied to them, reads

B(xo) = a® ) bn(x)ysialx) (17.20)
txo) =a® Y} by (x)yibu(x) (17.21)
Ak (x) = Pa(x)yeysbu(x). (17.22)

In eq. (17.19), we sum over all time slices yo. The three-point function
is independent of the index k. From now one, we will work in the
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static limit, i.e,, B and B* are mass-degenerate. The renormalized axial
current according to eq. (4.7) is given by

(Ak)r = Za(g3)(1 4+ ba(gdlamg)(Ax + aca(gd)dxP).  (17.23)

At zero momentum transfer, the term proportional to ca does not
contribute [275, 201].
In combination with the two-point function

CIP' (1) = (BI(1)B;(0)) (17.24)
we can define the effective matrix element via
3PE(4)
M™t(¢) = —d,a = t“ = §+0(tAet4) (17.25)
P

(e OlealtS)

with .ﬂ=E2—E|,

where 0,f(t) = %[f[t + a) — f(t])]. The systematic corrections to this
quantity scale with the energy gap between ground state and excited
state of the B mesons.

These effects can be further suppressed if the GEVP is used. We
determine eigenvalues and eigenvectors from the solution of

CFYt)vn(t, to) = An(t, to) C*FY(tg v (L, to) (17.26)

where we use the correlation matrix ﬂf:})f of size N x N and define the
effective matrix element

(va(t, to), [D3PHE)ALT (1, to) — D3Pt {to)] va(t, o))

MSEVP (1, 1) = — 19,

2 (va(t, to), C?Pt(to)vn(t, to))
= Gnn +O(e™2nY), (17.27)
ﬂt1"‘\1',11 = EN+'| — E'I'L . (1?23}

In this case, the leading systematic correction is given by the energy
gap between the ground state and the first state that is not included
in the GEVF, provided that 2ty = t holds. We are therefore able to
effectively suppress excited state contributions and expect plateaus
already at comparably small source-sink separations. In the following,
we will consider the most conservative choice for t; which most
effectively suppresses systematic effects and define

MEEVP (1) = MEEVP (¢t —q). (17.29)

In eq. (17.27) we generalized the definition of the effective matrix
element to matrix elements between degenerate excited states. In this
notation we set § = §y1 and the definition of the matrix element in
eq. (17.17) changes accordingly for n > 2.

In [275], the
argument of CP in
the denominator is t.
We corrected this
typo to ty in this
formula.
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Table 17.1: Overview of the HOQET measurements performed on the large-
volume CLS ensembles. my is taken from [270]. Texp has been
determined according to eq. (13.1) and is given in units of the
separation between two configurations. N, gives the number of
time slices included in the analysis and N, the number of random
sources per time slice.

id my; Neg Texp N Ny

Hio: 416 2000 100 47 2
Hioz 354 1997 10,0 47 2
Nio: 282 1457 101 &0 2
Cion 221 2000 102 47 2

Sq00 351 800 129 &4 2

Hzoo 419 2000 181 47 1
N2o3 345 755 180 61 1
Nzoo 282 1306 181 61 1

17.3 SETUP

We use the setup which is described in section 16.1. To stabilize the
GEVP and to decrease the statistical error, we sum over N, random
sources per time slice and N, time slices per configuration. The range
of time slices that is used for this summation is dictated by the findings
of section 16.3. In contrast to what was done in [275], we do not sum
over all polarizations k but randomly choose a value of k € {1, 2, 3} for
each random source. Therefore, we perform N x N; x 2 inversions
of the Dirac equation per configuration. We give an overview of the
status of the measurements in table 17.1.

The GEVP is based on a 3 x 3 correlation matrix. An increase of the
number of interpolators in the matrix leads to numerical instabilities
in the inversion of C(tp) since we have to consider rather large values
of tp due to our choice tgp = t— a. An analysis of the variational basis
for the matrix elements in the spirit of section 16.2 has revealed that
the suppression of systematic effects is similar for a large number of
combinations. We will consider a combination of the local interpolator,
a Gaussian smeared interpolator with intermediate smearing radius
and a Gaussian smeared interpolator with the maximal smearing
radius in the following.
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To renormalize the matrix elements, we use the values for Z_L sub
from the L1-LCP given in table 6 of [66]. The one-loop perhlrbaﬁve
formula for by is given by [234]

ba =1+0.0881Cpg3, Cp= %. (17.30)
The estimates for k., at the coupling values of the CLS simulations for
the computation of the subtracted quark mass are taken from table III
of [68].

To determine the value of the bare matrix element from MSEVP(t),
we perform a plateau fit at large values of t. We determine the
beginning of this plateau denoted by tmin by the following procedure.
We start from t = 0.5 fm and increase t until the condition

iMEEVP'[t] _Mﬁwp{t—ﬁtﬂ < oft) with &= .-'_"».1 (17.31)

is fulfilled. oft) is the statistical error on M%f(t). For the matrix
element from the GEVP we use A4 ,,, whereas for the matrix element
from the summed ratio in eq. (17.25) we consider A3 ;. From this
condition it is ensured that the statistical errors exceed the systematic
ones by a factor of e— 1 at t = tmin. The upper end of the plateau
range denoted by tmax is given by the first time slice where the relative
error of the matrix element exceeds 30%. Since we consider plateaus
of length O(5a), we are able to perform a correlated plateau fit. The
differences to uncorrelated fits are small, compared to the statistical
errors.

At the level of statistics at our disposal, the determination of A, ;
is rather an estimation than a reliable calculation, since the static
energy for levels n > 3 has significant statistical uncertainties. We
obtain values of O(1.2GeV) which is in line with the findings in the
two-flavor theory [275].

17.4 RESULTS

With the current status of the measurements as detailed in table 17.1,
we have gathered statistic that is almost compatible to the computation
in the two-flavor theory [275], albeit at slightly larger lattice spacings.
We have performed measurements at three lattice spacings and light
quark masses down to 221 MeV. The extension to a fourth lattice
spacing and physical quark masses is planned, to further reduce
systematic uncertainties.

17.4.1 Plateaus

In figure 17.1 we show the results for §11 together with the correspond-
ing plateau fits for exemplary ensembles. To illustrate the qualitative
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differences between the determinations based on the summed ratio
and the GEVP, we show the results for both methods. In the case of
the summed ratio, we have used the local and the maximally smeared
interpolator.

It is apparent that t,;, has to be set to significantly larger values
in the case of the summed ratio due to the smaller gap in the energy
spectrum. At fixed source-sink separation, the determination from
the GEVP shows larger statistical errors and at large source-sink
separations, the inversion of C(tg) is likely to fail. However, both
plateau averages are compatible and in most cases the statistical error
on the plateau average from the GEVP is significantly smaller than the
error from the summed ratio. This nicely illustrates the superiority of
the GEVF. We will only consider the values obtained from the GEVP
for the chiral-continuum extrapolation.

Table 17.2: Renormalized couplings §17 and §22 evaluated with HYP1 and

HYP2 static quark actions.

id o™ g™ gt g™
Hion 0534(2) 0539(2) 0.444(9) 0.450(9)
Hioz 0520(6) 0524(5) 0433(28) 0453(12)
Niox 0512(4) 0517(3) 0.423(10) 0.426(10)
Cior  0503(4) 0507(4) 0406(14) 0415(14)

Sq00 0519(5) 0522(5) 0.420(29) 0.427(27)

Hzoo 0532(6) 0.534(9) 0.448(31) 0.460(30)
Nzo3 0530(8) 0.530(7) 0.416(49) 0.413(47)
Nzoo 0523(8) 0521(8) 0.431(33) 0.429(31)

An overview of the results obtained from both variants of the HYFP
smearing is provided in table 17.2. The small difference between
both sets of smearing parameters decreases towards the continuum
limit. In general, observables defined from HYP2 have slightly smaller
statistical errors. Therefore, we will consider the HYP2 smeared
observables in the chiral-continuum extrapolation.

17.4.2  Chiral-continuum extrapolation

The approach of § to the chiral limit including the next-to-leading
order of HMxPT has been derived in [283, 292]. Logarithmic mod-
ifications of the leading behavior due to the next-to-leading order
terms have been found. In the two-flavor study [275] a simple linear
approach has been investigated in addition to the analytical one, due
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Figure 17.1: Plateaus of the bare matrix element {7 computed from the
GEVP and the summed ratio for the ensembles (top to bottom)
MN1o1, Cio1 and Nzoo. The data from the ratio method has been
shifted horizontally to improve visibility.
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to the linearity in the data in the considered region of pion masses.
The two forms read

317y, a) = §x + By + Ca?, (17.32)
07y, @) = Gx [1— (1+2(3x)* ylogy)| + By +Ca®,  (17.33)

where the pien mass dependence has been pa.ramet'rized I:hruugh the
variable

ma

y = H-;r[zfz . [1?34}

For am, and af, we use the values given in [270]. In both ansitze §,,
B and C are free parameters. The term Ca? is included to model the
leading cut-off effects.

We show our results for § depending on y based on three different
lattice spacings in fig. 17.2 together with fits to egs. (17.32-17.33).
Irrespective of the fit ansatz, the constant C is zero within errors. We
therefore fix C = 0 in our fits. Terms of O(y?) are not resolvable, as
well.

A good quality of the fit is found for both ansitze and within the
currently available range of pion masses, we are not able to rule out
one of the two fit forms. Since pion masses of O(400 MeV) are far
from being chiral, we perform a cut at y = 0.1 such that we take only
ensembles with pion masses < 355 MeV into account. The linear fit is
compatible with both data points outside the fit range. For g}, the
fit and the data point for H101 are compatible within 2o.

In the chiral limit we obtain

ﬁ;m = 0.493(7) g;‘l" = 0.456(6) (17.35)

and to take into account the systematic uncertainty due to the two
different fit forms, we combine both values and their errors to the
result

gy, = 0.475(24). (17.36)

The uncertainty of this result is dominated by the systematic uncer-
tainty and changes in the fits, such as allowing for a non-zero value
of C or taking into account all pion masses, do not lead to significant
variations of this result

17.5 DISCUSSION

Owr current result has the same level of accuracy as the result § =
0.492(29) of the two-flavor study [275], which is the most precise
determination of § available by now. Both results are compatible with
each other and in both cases, no dependence on the lattice spacing
can be resolved.
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Figure 17.22 Overview of the results for §;; at three lattice spacings to-
gether with the chiral extrapolations according to egs. (17.32)
and (17.33). The error of the result at the chiral point covers both
extrapolation formulas.

We plan to improve our result in the near future by taking into
account ensembles with considerably smaller pions masses and a finer
lattice spacing. The ensembles D200, E300 and E250 will allow us
to constrain the fits in a region down to y = 0.0135 and help us to
decide between the two fit forms in egs. (17.32-17.33) or to tightly
constrain the chiral log. This will result in a drastic reduction of the
uncertainties.

As soon as we reach a relative precision of O(2%), we have to take
another source for systematic uncertainties into account that has its
origin in our approach to the chiral limit. On the chiral trajectory
where Tr [Mq] is held constant, the strange quark mass approaches its
physical value from below when the light quark masses are lowered
towards their physical values. In the chiral extrapolation of § we do
not extrapolate to the physical point but to the chiral point, ie., the
point where the light quark masses vanish.

At this point of our chiral trajectory, the strange quark mass is
larger than physical. The chiral SU(2) symmetry is preserved and the
definition of § in the limit of SU(2) HMxPT is valid. Nevertheless,
if this low-energy constant is used for extrapolations to the physical
point, we have to think about the impact of the unphysically large
strange quark mass on §. From the value of q}zh}rs in eq. (13.5) we
obtain

mX=0, m}n~503MeV (17.37)
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at the chiral point whereas the isospin and QED corrected corrected
physical value of the Kaon is m,Eh-"rS = 494.2(3) MeV.

In [279, 283] a similar deviation of the strange quark mass from
its physical value due to a miss-tuning has been translated to an
additional 1.5% systematic uncertainty on the final value of § based
on the size of the effect of quark mass reweighting on axial couplings
determined on the same set of ensembles. A similar error has to be
added to our result, when the systematic uncertainty due to the fit
forms has been reduced. Alternatively, the inclusion of ensembles on
the m; = phys trajectory of the CL5 ensembles could help to map out
the dependence of § on m..

To conclude our discussion, we also quote the value of § at physical
quark masses. From our fits we obtain

g (mEY") = 0498(5)  g™(mE™") = 0483(5)  (17.38)

and to take into account the systematic uncertainty due to the two
different fit forms, we combine both values and their errors to the
result

g(mEY®) = 0.491(12). (17.39)

which is evaluated at the physical strange quark mass.

17.6 THE MATRIX ELEMENT OF THE FIRST RADIAL EXCITATIONS

The GEVP allows us to determine the matrix element of the first radial
excitations

922 = 3(B%(0), 21 (Au)g (VB{*(0),2). (17.40)

We show exemplary plateaus for both variants of the HYP smearing
in fig. 17.3. The systematic effects due to excited state contributions
appear to be small in comparison to the statistical uncertainties. Al-
though the latter are rather large, we are able to determine a plateau
region according to the criterion in eq. (17.29) using an estimate for
Ay 2. We tabulate the results for all ensembles and both variants of
the HYP smearing in tab. 17.2. Although the statistical errors are a
little bit smaller for HYP2 smearing, significant differences between
HYP1 and HYP2 smearing are not visible.

Since the functional form of §2> towards the chiral limit including
chiral logs is not known, we use eq. (17.32) to extrapolate the matrix
element to the chiral-continuum limit. As for §,; we cannot resolve a
dependence on the lattice spacing and set C = (. From the chiral fit,
we obtain

g2z = 0.398(15) . (17.41)
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This value is compatible with the result §,; = 0.425(70) of [275], where
the spread of the two fits with and without an a? term has been used
to estimate the uncertainty of the continuum extrapolation, and the
result §,> = 0.38(4) of [293]. We are confident that we are able to
constrain our result more tightly and reduce systematic effects, that
we have not yet quantified, by the addition of further ensembles.
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Figure 17.4: Overview of the results for {5 at three lattice spacings together
with the chiral extrapolation according to eq. (17.32).
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CONCLUSIONS

In this work, we have describe our efforts to extract Standard Model
parameters in the heavy quark sector of three-flavor lattice QCD. We
have set up the line of constant physics along which we will perform
the non-perturbative matching of QCD and HQET. The resulting
matching parameters will be combined with measurements in the
effective theory on large-volume ensembles to compute observables
including bottom quarks. We have described our measurements in
the 2+ 1 flavor theory on these ensembles and calculated the coupling
§ of HMxPT. Furthermore we have performed the determination of
the charm quark mass on the same set of ensembles based on Ofa)
improved current quark masses.

The ensemble generation for the non-perturbative matching is based
on an extensive tuning procedure of the physical and algorithmic
parameters. We have described our tuning towards constant renor-
malized couplings and massless sea quarks based on preexisting
information and our own experiences. The maximal error of the gradi-
ent flow couplings in the tuning volume translates to a relative error of
0.7% in the physical lattice extent which is about a factor of three more
precise than in the corresponding project in the two-flavor theory. This
improvement in the precision will propagate into physical observables
via the matching parameters.

We have performed simulations at five different lattice spacings at
all stages of the matching procedure. This will allow us to perform
the continuum extrapolations of the matching parameters to high pre-
cision and with small systematic uncertainties. The simulation of the
most demanding ensembles with 48 and 64 lattice sites in all four di-
mensions required an extensive tuning of the algorithmic parameters
of the openQCD package. Since the deflated and SAP preconditioned
solvers had not been used in prior simulations in the Schridinger
functional, we have carefully investigated the parameter space based
on experiences from the generation of the large-volume CLS simula-
tions. The documentation of an exemplary parameter scan may allow
to speed up the tuning for future simulations and measurements in the
Schridinger functional. With the ensembles that have been generated
in our work, we are in the position to perform the measurements for
the calculation of the matching parameters at all stages of our strategy.

The second prerequisite for the determination of the matching pa-
rameters is the extraction of valence quark hopping parameters for
fixed renormalized quark masses on the matching ensembles. As
outlined in our introduction to HQET on the lattice, Symanzik im-
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provement of Ofa) is necessary to disentangle discretization effects
from terms of next-to-leading order in the HQET expansion. We have
computed the coefficients that are necessary to improve the renor-
malized quark mass from heavy-light and heavy-heavy correlation
functions in a broad range of valence quark masses. Scaling tests
confirm our assumption that the computation of these coefficients
at heavy valence quark masses improves the scaling of heavy quark
observables in the matching volume. This improvement is achieved
by the reduction of mass-dependent cut-off effects of higher orders.
To eliminate the systematic uncertainties inherent in the interpolating
formulas of the renormalization constant £, determined on different
lines of constant physics, we have performed the determination of this
constant on the matching LCP. Together with our determination of Zp
we have gathered all ingredients for the computation of renormalized
quark masses.

By combining our results with the running factor from the matching
scale to RGI values, we have performed the determination of hopping
parameters at fixed RGI quark masses and demonstrated their use
in scaling tests. Based on this calculation we are now able to fix the
hopping parameters for the determination of the matching coefficients
in a range of fixed heavy quark masses.

As soon as the matching coefficients are determined, we will use
them to renormalize large-volume observables in the effective theory.
The computation of the corresponding correlation functions has been
started using a newly developed code and we have given an overview
over the current status of the measurements and the extraction of
effective energies using the GEVP. We have tested different basis
interpolators at coarse lattice spacing to optimize the measurements
on the computationally demanding ensembles.

The correlation functions that are currently being measured can
be employed to determine the mass of the bottom quark and the
decay constants of B and B; mesons. Based on our optimization of the
variational basis, we are able to extract the corresponding energies and
matrix elements in the effective theory. For the computation of form
factors of semi-leptonic B decays, we will perform measurements of
the appropriate three-point functions with momentum insertions to
map out the momentum dependence of the form factors.

Whereas these computations will need the input from the matching,
we have used the current status of the large-volume measurements to
perform a chiral-continuum extrapolation of the coupling § of HMxPT.
We are able to reach the precision of the two-flavor result and at the
same time eliminated the systematic error due to the use of two flavors.
Since the impact of heavy quarks on low-energy quantities is strongly
suppressed, the error due to missing charm and bottom quark loops
is small. We have not yet been able to eliminate the systematic error
stemming from different approaches to the chiral point. However, the
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inclusion of measurements on ensembles with significantly smaller
pion masses into our analysis will allow us to tightly constrain the
extrapolation. At this point, the effect of an unphysically large strange

quark mass at the SU(2] chiral point may have to be taken into account.

Considering the currently existing determinations of g, our final
result will most likely be the most precise one. It will be used to
guide chiral extrapolations of B meson quantities on the lattice and
for phenomenological applications of HMyPT.

In addition to our investigations in the matching regime, we have
applied our strategy to determine the improvement coefficients for
renormalized quark masses in the coupling region of the large-vol-
ume CLS ensembles. The detailed investigation of ambiguities and
systematic uncertainties and the comparison with already existing but
less precise results obtained from other methods is reassuring. Our
results have been employed for the determination of light and strange
quark masses on the CL5 ensembles, where their impact has been
small compared to the size of the statistical error

In our determination of the charm quark mass, the removal of
these cut-off effects is vital to perform the continuum extrapolation
with leading cut-off effects of O(a?). We have detailed the extraction
of meson and quark masses on the CLS ensembles with a focus on
the boundary and cut-off effects in the presence of open boundary
conditions and investigated the impact of distance preconditioning
and noise sources on single time slices. Our results are ready to be
employed in chiral-continuum extrapolations based on several differ-
ent definitions of the charm quark mass and various improvement
conditions. Whereas a final investigation of the systematic uncer-
tainties in this extrapolation is in progress and shows little deviation
between different setups, we have quoted a preliminary result that is

compatible in its mean and relative error with the currently available
three-flavor results.
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A1 THE SPECIAL UNITARY GROUP

In this work, we consider the so-called special unitary groups of degree
N, which we abbreviate SU(N). These are defined as the Lie groups
of N x N unitary matrices with determinant 1. The corresponding
Lie algebra su(N) is the space of complex N x N anti-hermitian and
traceless matrices.

Following the notation of [31], we chooseabasis T*,a=1,2,..., M2
1 in this space such that
1

Te [TOT?] = —

25“". (A.1)

The structure constants f*°¢ are then defined by
[Te, TP] = ifabeTe (A.2)

and they are real and totally anti-symmetric under permutation of
the indices. For the group S5U(2), the generators are defined from the

three Pauli matrices
1_ 01 2 0 — 3 1 0 A

Te = —. (A.4)

The structure constants are given by the Levi-Civita symbol gabe,
Furthermore, we define the ladder operators

o =1 +ir?, T+=(D 2); T_=(ﬂ ﬂ)r (A.5)
0 0 20

For the gauge group 5U(3), the generators are defined from the Gell-
Mann matrices A® via

a '?'"ﬂ
Te= (A.6)

279



280

We choose the
conventions of [31].

CONVENTIONS

and the exp]icit form of the Gell-Mann matrices reads

0 1 0) 0 —i 0) 10 0
M=|10 0|, A=]i 0 0], M=]0 -1 0
00 0) 0 0 0) 0 0 0

(0 0 1) 00 —i) 00
M=]oo0 o], A=foo0 0], As=|0 01
\1 0 0/ i 0 0) 10
(00 0 AR
A7 = il As=— A
7=10 0 —i =501 0 (A7)
\0 i 0 00 —2

A.2 DIRAC MATRICES

The Dirac matrices in Euclidean space and in a chiral representation
are defined by

0 e,
- A8
Yu (EL ﬂ) (A8

from the 2 x 2 matrices
eg =—1, ey = —iTy (A.9)

with the Pauli matrices defined in eq. (A.3). From this definition, the
relation

TL _— Tl.l.r {Tp;Tv} = 25”'\" (A.'lﬂ}
can be derived and we define the matrix
1 0
Ys =YoY1Yz¥z = ( ) (A1)
0 —
which has the properties
Y5 = TJsr.; "r% =1. (A.12)

The Dirac matrices are used to define the hermitian matrices

i
Opv = E[’Yu:"i"v] (A.13)

and their exp]icit form reads

0 0
ook = (Tk ) , 0ij = —€ijk (Tk ) , (A.1q)
0 — Ty 0 Tk

where €351 is the totally anti-symmetric tensor with €123 = 1.
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A3 LATTICE DERIVATIVES

In this appendix, we define the discretized derivatives used in this
work. We define them as finite-difference operators. The forward and
backward lattice derivatives acting on function 1)(n) are given by

1
0ub(n) = —hb(n+ap)—pMm), (A.15)
() = < (b(m) — bin—ap)], (A.16)

and we can also formulate them via

1

El“ = E [6n+u|:l,n — ﬁnﬂ-,_] , {A'l.?}
1

o= [Brn —Bn_apn) - (A.18)

Based on these definitions, the gauge covariant derivatives are given

by

Vib(n) = ~ Uy (m)bn -+ af) —(n)], (A19)
Vi) = L [b(n) - Uu(n—af) "bin—ap)],  (A20)
$Ts = L b+ ap)Uu(m)~ —b(n)], (A.21)
B, = 1 [im)— in - al)U(n— ap)] (A22)

The symmetric derivative is defined by

Byab(n) = 3(8,+ 3L b(m) = o [b(n+af) — b(n—ai)],
(A.23)

and the covariant counterpart is given by

Vp(n) = 20 [Un(mb(n +a) — Uy (n— i)~ p(n— af)] .
(A.24)

The second derivative is defined by
95.0ub(x) = ﬂ‘—z fb(n+ aft) — 2(n) +p(n— )] (A.25)
and from this definition the Laplacian in k dimensions is defined by
Ap(x) = =V, Vib(n)
E é i [Un(n)b(n+af) — 2¥(n) + Uy (n—af) " b(n—a)] .

u=1
(A.26)
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In the determination of PCAC masses, we also consider symmetric
improved derivatives. These are constructed by an investigation of
the Taylor expansion of the derivative in orders of the lattice spac-
ing. Standard forward and backward derivatives are the continuum
ones up to terms of O(a) and the symmetric derivative approximates
the continuum one up to terms of O(a?). The improved symmetric

derivatives are exact up to terms of O(a*), when acting on smooth
functions.
The improved symmetric derivative of first order is defined by

db(n) — dp (1 — %azﬁ;ﬂu) P(n)

1 . .
= 5= (W(n—2a0) - 8(x— ap)
+8b(x-+aft) - p(n+2ap)), (A7)
and the improved symmetric derivative of second order is given by

1
95,0, W(x) — 97,9, (1 — ﬁuza;au) Pix)

= — 30z (b(n—2a8) ~ 16H(n — ap)
+300(n) — 16W(n + aft) + b(n + zum) . (A28)
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B.1 THE LINE OF CONSTANT PHYSICS FOR A NON-TERTURBATIVE
MATCHING OF HQET AND QCD
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Table B.1: Tuning runs to fix §Z(Ly) = g2 = 3.949 and m; = 0. Boundary

conditions and action are chosen exactly as in [45], and we use
T =1L. Npp is the number of replica runs, while Np,; gives the
number of configurations, separated by . molecular dynamics
units. The trajectory length is T = 2 throughout, except for the
first run with Ly/a = 12. Values of the sea quark mass Lym,
marked by a star have not been determined on the full statistics.
The ensembles where the coupling is printed in bold have been
used as basis for the matching in L;.

Lo/a P K Nep ap Nes 3 Loms
12 4.297489 0.1360085 5 125 7500 3.9596(43) -0.0012(7)*
4296368 0.136011 5 10 Booo  3.9674(45) -o.c004(7)*
43020 01359977 7 8 5Boo  3.9533(59) -0.00038(45)
43030 0.1359947 7 8 9669  3.9461(41) -0.00032(36)
16 4474541 01355870 7 10 2457 3.9136(97) -0.0009(4)*
44624 01356163 7 10 2947  3.9469(83)
4.46466  0.1356109 7 10 2726 3.9676(93)
44662 01355985 7 10 5887  3.9475(61) +0.00043(34)
20 45997  0.1352889 7 10 3130 3.9648(97) +0.0005(4)*
46066 01352731 7 10 2139 3.928(14)
46006 01352874 7 10 1519  3.982(14)

32

4.60732 o.1352812 18 10 4026 3.9337(87) +o.00053(42)*
4.6017 0.1352848 18 10 B478  3.9493(63) +o0.00100(21)
4.6024 0.1352844 18 10 7620 3.9522(6g) +o.00013(30)*

470 0.1350531 1 10 1340 3.999(19) +0.00384(71)
47141 0.1350217 1 16 200 3.943(45) +0.0023(11)

47141 0.1350230 3 16 2216 3.945(11)  +0.00098(32)
47141 0.1350237 2 16 10081 3.9582(54) +0.00022(15)
47131 0.1350260 2 16 sogb  3.9620(80) +0.00040(22)
4.7165 o.1350181 3 16 7303  3.9492(64) +o0.00012(17)
4.90 0.1345991 3 20 5014 3.949(11) +0.00543(34)
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Table B.2: Tuning runs to fix §&z(L1) = o(g2) = 5.867 and my = 0. Boundary
conditions and action are chosen exactly as in [45], and we use
T = L. Npep is the number of replica runs, while N gives the
number of configurations, separated by tms molecular dynamics
units. The trajectory length is v = 2 throughout. The ensembles
where the coupling is printed in bold will be used for the matching,

Lija P K Nrep ;dml; Nms  O&F Lim,

8 36537 01370722 4 4 15000 5.8648(70) +0.00209(80)

12 3.8349 0.1369654 4 4 15004 5.8697(85) -0.00112(49)

16 40018 01366803 4 4 17999 5.865(11)  +0.00036(33)

20 41363 01364075 20 10 5654  5.8o2(16)  -0.00858(36)
4.1408 0.1363825 20 4 21682 5.858(12) +o0.00129(22)
41394 01363857 20 4 21101 5.858(12)  +0.00149(21)

24 42511 01360984 1 10 1692 G.o01(33)  +0.02482(49)
4.2530 0.1361224 2 4 20002 G.876(14) +0.00216(20)
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Table B.3: Tuning runs to fix gp(Ly) = o(o({g?)) = 11.27 and m; = 0. Bound-

ary conditions and action are chosen exactly as in [45], and we
use T = L. Npp is the number of replica runs, while Ny, gives
the number of configurations, separated by T, molecular dynam-

ics units. NES]' gives the number of configurations in the sector

of vanishing topological charge. The trajectory length is v = 2
throughout. The ensembles where the coupling is printed in bold
will be used for the matching,

Lo/a P K Nrep ;{ED Nms NS g2, Lam,

12 3.40118 0.1368077 4 4 6q00 gozy  11.360(86) +0.0114(33)
3.4028  0.1368830 4 8 4004 2679  11.174(69) —0.0250(35)
J.4014 01368790 4 8 2504 1742 1L.046(79) —0.0328(36)
J.4014 01368690 4 8 4004 2543  11.165(70) —0.0255(33)
J.4014 01368390 4 8 4004 2733 11.240(71) —0.0095(32)
34014 (01368240 4 8 coog 3319 11.288(60) —0.0029(25)

16 355132 (01371546 4 4 4204 2974  11.37(14)  —0.0089(25)
3.5515 01371530 4 8 booo 3043  11.228(56) —0.0093(14)
3.5515 01371430 12 8 18000 11806 11.326(39) —0.0033(9)
35522 0.1371379 4 8 booo 4014  11.299(66) +0.0003(13)

20 3.6868 01371474 10 4 g7og 7434  11.397(70) +0.0006(9)
36900 (0.1371452 10 4 o000 jozy  11.25(10)  +0.0013(10)

24 3.798¢ 01370354 =2 4 2754 1568 1L62(15)  +0.0075(15)
37006 01370405 2 8 7500 4534  1146(10)  +0.0014(8)
3.8003  0.1370387 =2 8 Booo 4901 11.328(90) —0.0001(7)
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B.2 RENOEMALIZATION AND IMPROVEMENT FROM FINITE-VOLUME
SIMULATIONS

In this appendix, tables (B.4)}-(B.7) list the results for all ensembles
entering our analysis for the determination of Z, by, and by — bp in
the coupling range of large-volume CLS simulations.

Table B.4: Sea quark PCAC masses and estimators Rpp, R and Rz for LCP-0
in the sector of vanishing topological charge. Reproduced from

[74].
D m Ry R Ry
Aiki  —0.00278(80) —1.016(119)  1.344(157)  0.7463(83)
Aik3  0.00079(118) —0.866(156)  1.192(141)  0.7420(96)
Aikg —0.00110(36)  —0.744(89) 1.395(73) 0.7490(48)
Eiki  0.00262(26) —0.755(84) 0.313(66) 0.8687(63)
Eikz —0.00022(22) —0.816(57) 0.290(57) 0.8768(42)
Biki  0.00549(21) —0.352(61) —0.247(45) 0.9676(48)
Bikz  0.00444(25) —0.271(90) —0.272(73) 0.9761(67)
Biky  0.00107(20) —0.545(62) —0.241(59) 0.9701(47)
Bikgy —0.00057(19) —0.486(68) —0.316(51) 0.9798(44)
Cikz  0.00600{11) —0.222(35) —0.523(40) 1.0489(29)
Cikz —0.00109(11)  —0.304(54)  —0.698(50) 0606(36)
Dikz  0.00079(10) —0.205(103) —0.684(59) 1.0849(52)
Dikg —0.00007(3)  —0.152(20) —0.743(20) 1.0885(11)
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Table B.5: Sea quark PCAC masses and estimators Rap, Rm and Rz for LCP-0
for all topological sectors. Reproduced from [74].

1] 1l 1] 11
D R Ry

Atk —0.00166(61)  —0.876(104) 1.252(100) 0.7458(55
Aiky 0.00262(130) —0.587
Aikg 00003029
Eiki: 0.00308(22
Eikz 0.00034(18

133) 1.139(102) 0.7402(78
1.251(49) 0.7485(36
0.272(51) 0.8684(58
0.354(38) 0.8715

( (35)
( (78)
) ( (36)

) ( (58)

) ( (32)

) —0.286(31)  0.9674(29)

) —0.230(45)  0.9677(44)

Bik3  0.00164{16) —0.575(43) —0.136(42)  0.9589(35)
Biky  0.00002(14 ) ( (29)
Cik2  0.00619(7 ) ( (25)
) ( (26)

) ( (47)

) ( (11)

Ciks —0.00086(3

(
(
(29)
(22)
(18)
Biki  0.00562(14) —0.375(37
Bikz2  0.00481{19)
(16)
(14) —0.215(37)  0.9712(29
(
(
(
(

—0.498(30) 1.0461(25
—0.594({40) 1.0547(26

Dikz  0.00084(3
Daiky —0.00002(3

—0.637(79) 1.0837 (47
—0.702(18) 1.0867
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Table B.6: Sea quark PCAC masses and estimators Rap, Ry and Rz for LCP-1
in the sector of vanishing topological charge. Reproduced from

[74]-

D mdc  RY RO R
Aiki —0.00278(80) —0.443(25) 0.065(25)  0.7805(52)
Aiky  0.00079(118) —0.349(34)  0.011(28)  0.7872(60)
Aikg —0.00110(36) —0.383(13) —0.016(10)  0.7889(27)
Eiki  0.00262(26) —0.329(16) —0.264(14)  0.8971(36)
Eik2 —0.00022(22) —0.365(14) —0.264(13)  0.8994(28)
Biki  0.00549(21) —0.197(15) —0.439(12)  0.9786(30)
Bik2  0.00444(25) —0.172(21) —0457(21)  (0.9845(43)
Biky  0.00107(20) —0.249(18) —0454(17)  0.9819(33)
Bikgy —0.00057(19) —0.218(16) —0476(15)  0.9882(30)
Cikz  0.00600(11) —0.099(10) —0586(11)  1.0541(19)
Ciky —0.00109(11) —0.130(17) —0.653(16)  1.0623(27)
Dika  0.00079(10) —0.088(30) —0.670(20)  1.0862(35)
Dikgy —0.00007(3)  —0.069(7) —0.685(7) 1.0886(8)
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Table B.7: Sea quark PCAC masses and estimators Rap, R and Rz for LCP-1
for all topological sectors. Reproduced from [74].

Il 1l Il Il

Aiks —0.00166(61) —0.423(19) 18) 0.7805(34
Aiky 0.00262(130) —0.324(25) 0.014(18) 0.7822(44
Aikg  0.00030(29) —0366(9) —0.013(7) 0.7864(18
] —0.337(12) —0.251(10) 0.8929(27
] —0.360(10) —0.239(9) 0.8948(21
Bik: 0.00562(14)  —0.206(9 ) 0.9779(18
)
)
)

(6 ( 045( (34)
( ( ( (44)
( ( ( (18)
( ( ( (27)
( ( ( (21)
( ( (? (18)

Bikz  0.00481{19) —0.197(14) —0.440(13)  0.9782(28)
( ( (1 (25)
( ( ( (21)
( ( ( (15)
( ( ( (19)
( ( ( (32)
( ( ( (

Eiki: 0.00308(22
Eikz 0.00034(18

—0.445

)
4
Bik3 0.00164(16 —0.267(13) —-0415(12) 0.9730(25
Biky 0.00002(14 —0.230010) —0439(11) 0.9810(21
Cika 0.00619(7

—0.104(8 —0.570(8) 1.0512(15

)
Ciks —0.00086(8 —0.137(13) —0.613({14) 1.0571(19

Dikz  0.00084(8 —0.081(22) —0.646(22) 1.0847(32

)
)
)
) —0.070(6) —0.669(6)  1.0871

Diky —0.00002(3
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B.3 THE MASS OF THE CHAREM QUARK

Table B.8: Overview of the measurements for the determmmation of the mass
of the charm quark. We list the ensemble id and the number of

configurations, on which the measurements have been performed.

On each configuration we used 16 sources on the two time slices
at a and T — a. We also quote the value for tg/a.

B id Ng  to/a?

340 Hio:1 2016  2846(8)
Hioz 2005 2.872(12)
Hiog 1533  2.891(18)
Cio1 1055  2.907(7)

346 Hgoo 1045 3.634(13)

355 Hzo0 2000 5.149(29)
MNz2oz 8gg  5.140(21)
MN2o3 1543  5.143(7)
MN2oo 1544  5.159(8)
Dzoo 1191 5.167(10)

370 N3zoo 202y 8.564(35)
N30z 2129 8538(23)
Ja3oz 1073 8.614(20)

385 Jsoo  g7m1 14.061(66)
Jsor 1579 13.888(53)
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Table B.g: Overview of the effective masses used in the calibration of the

chiral-continuum extrapolation. The subscript of the flavor av-
erages D and spin-flavor averages D correspond to those of the
hopping parameters in table 14.1. No vector correlation functions
have been determined for the Jgo1 ensemble. Values are deter
mined from a plateau fit. The corresponding values from the full

fit are shown in 15.2.

id QM amg amey, amy, amg. amgs
Hio1 0.18287(65) 0.18287(65) 0.85235(93) 0.82186(84) 0.8876(45) 0.8586(45)
Hioz 0.15414(82) 0.19125(67) 0.85066(112) 0.81950(102) 0.8833(40) 0.8542(40)
Hios 0.12093(184) 0.20201(109) 0.85087(162) 0.81974(155) 0.8843(6%) 0.8554(68)
Ciox1  0.09724(84) 0.20601(50) 0.85002{185) 0.81900(157) 0.8931(62) 0.8641(61)
Hqoo 0.16372(66) 0.16372(66) 0.74508{100] 0.69391(97) 07795(40) 0.7313(38)
Hzoo 0.13634(60) 0.13634(60) 0.64743{106) 0.60134(92) 0.6784(30) 0.6355(30)
MNzoz 0.13403(36) 0.13403(36) 0.64413(86) 0.59824(68) 0.6725(23) 0.6297(25)
Nzo3 0.11238(28) 0.14390(23) 0.64311(78)  0.59723(63) (0.6770(35) 0.6336(37)
MNzoo 0.09215(38) 0.15053(29)  0.64373(69)  0.59794(56) O06777(27) 0.6343(27)
Dzoo  0.06482(45) 0.15649(26)  0.64495(83)  0.59887(72) 0.k6766(47) 0.6332(45)
N3oo 0.10630(55) 0.10630(55) 049369(177] 047605(157) 05198{25) 0.5036(28)
N3oz 0.08735(47) 0.01395(101) 0.49272(68)  0.47504(55) 05169(42) 0.5003(40)
Jaoz  0.06482(24)  0.11971(23)  049204(68) 0.47402(68) 0.5208(27) 0.5039(27)
Jsoo  0.08107(45)  (0.08107(45) 037118(100) 0.35534(85) 0.3%08(16) 0.375%(16)
Jso1  0.06599(42)  0.08794(35) 0.37204(67) 0.35602(62)
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Table B.11: Overview of the effective masses of the heavy mesons considered in this work for the hopping parameters given in tab. 14.1. No vector

correlation functions have been determined on Js01. Results have been obtained from the plateau fit.

id amp, amp, amp, amp, , amp; amps amp;, amp:,
Hio:1 (0.85286(93) (0.82185(84) (0.85286(93) 0.82186(84) 0.89922(e02) Q87081(592) 0.89922(602) 0.87081(592)
Hioz 0.84694(135) 0.81570(123) 0.85810(81) 082710(77) 0.88630(666) (085768(649) 0.90262(348) 0.87446(350)
Hios 0.84285(220) 0.81155(213) 0.86690(70) 0.83612(65) 0.88109(1206) 0.85303(1175) 0.90824(442) 0.87940(451)
Cioz  0.84046(237) 0.80934(225) 0.86915(50) (.83832(44) 0.89055(1246) 0.86215(1225) 0.92200(246) (.89360(255)
Hgoo 0.74508(100] 0.69391(97) 0.74508(100]  0.69391(97) 0.79098(534) 0.74373(5171  0O79098(534) 0.74373(517)
Hzoo 0.64743(106) 0.60134(92) 0.64743(106) 0.60134(92)  0.68875(404)  (064689(394) 0.68875(404) 0.64689(394)
Nzoz 0.64413(86) 0.59824(68) 0.64413(86) 0.59824(68) 0.68192(305) 0e4019(327) 0.68192(305) 0.64019(327)
Nzoy 0.63956(87)  0.59347(71)  0.65022(51) 0.60475(47) 0.68157(544)  (063891(578) 0.69458(316) 0.65196(320)
Nzoo 0.63738(90)  0.59149(79)  0.65643(46)  0.61085(40) 0.67815(478)  (063524(467) 0.69801(223) 0.65567(229)
Dzoo 0.63660(125) 0.59026(103) 066164(37) 061608(37) 0.67108(891)  (Q.62819(871) 0.70274(202) (.66045(192)
Nyoo 0.49369(177] 047605(157) 0493690177 047605(157)  0.52854(367) 0.51281(323) 052854(367) 0.51281(323)
N30z 048958(96) 0.47194(78) 0.49900(48) 0.48124(48) 0.51861(745) 0.50247(713)  053153(342) (0.51508(319)
Jaoz  048613(%4) 046796(94) 0.50388(26) 0.48814(23) 0.52084(505) 0.50408(504) 053758(145] 0.52114(153)
Jsoo  0.37118(100)  0.35534(85) 0.37118(100)  0.35534(85) 0.39730(216)  0.38276(214) 0.39730(216) 0.38276(214)
Jso1  036980(79)  035372(71)  0.37651(91)  0.36063(59)
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B.4 HQET IN LARGE VOLUME

Table B.13: Renormalized couplings {11 from the summed ratio evaluated

with HYP1 and HYP2 static quark actions.

id gl]-l']‘j"Fl g[]—I]‘j"Fz
Hio1 0514(9) 0519(7)
Hioz 0526(9) 0524(6)
Nio1 0514(22) 0.516(15)
Cior 0518(15) 0.514(12)
Sso0  0.500(9)  0.508(8)
Hzo0 0530(8) 0.530(7)
Nz2o3 0.509(10)  0.509(9)
Nz2oo 0.507(15) 0.509(12)
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