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Abstract

The specific field of inverse problems, where the unknown obtains apart from its spatial
dimensions at least one additional dimension, is of major interest for many applications
in imaging, natural sciences and medicine. Enforcing certain sparsity priors on such
unknowns, which can be written as a matrix, has thus become current state of research.
This thesis deals with a special type of sparsity prior, which enforces a certain structure
on the unknown matrix. Furthermore, we consider the asymptotics of spatial sparsity
priors. Therefore, this thesis can be roughly divided into two parts accordingly.

In the first part we present and analyze a novel regularization technique promoting
so-called local sparsity by minimizing the �1,∞-norm as a regularization functional in
a variational approach. This regularization can be used for dictionary based matrix
completion problems, where the unknown dynamic image can be written as a product of
a certain known dictionary and a coefficient matrix, which we would like to reconstruct.
Typical areas of application are for instance in dynamic positron emission tomography
or spectral imaging. In this context we have the a-priori knowledge that every pixel of
the dynamic image should consist of a linear combination of the basis vectors with as
few nonzero components as possible. This can be realized by using the above-mentioned
regularization functional. Due to the rather involved mathematical structure of this
regularization functional, we provide an equivalent formulation, which facilitates its
analysis and simplifies its computation. We not only analyze these different formulations,
but also present algorithms for the solution of this variational model on the basis of the
alternating direction method of multipliers (cf. Rockafellar 1976). Our numerical
results, gained by applying these algorithms to synthetic data, validate our method and
illustrate its potential.

The second part of this thesis is concerned with the theoretical analysis of the asymptotics
of certain sparsity priors. We consider discrete sparsity promoting functionals and
analyze their behavior as the discretization becomes finer. In so doing, we are able
to compute some Γ-limits. We not only consider usual �p-norms for p ≥ 1, but also
analyze the asymptotics of the �0-“norm”. On the basis of these insights, we moreover
deduce some Γ-limits for certain types of mixed norms. In order to verify our results
numerically, we furthermore consider the deconvolution of a sparse spike pattern for
different discretizations as the step size of the grid becomes smaller.



Keywords: Local Sparsity, �1,∞-Regularization, Sparsity, �1-Regularization, Com-
pressed Sensing, Mixed Norms, Augmented Lagrangian, Inverse Problems, Regular-
ization Theory, Imaging, Image Processing, Image Reconstruction, Dynamic Positron
Emission Tomography, Asymptotic Sparsity, Super-Resolution, Radon Measures
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1 Introduction 21

1
INTRODUCTION

In the course of this thesis, we will propose a new model for dictionary-based matrix
completion problems, which promotes local sparsity. Furthermore, we will discuss the
asymptotics of spatial sparsity priors.
Before going into the details, we firstly want to motivate our principal topic. Afterwards,
we give an introduction to inverse problems and their method of resolution, namely
variational models. Finally, we state our contributions and summarize the organization
of this work.

1.1. Motivation

First of all, let us motivate our work by introducing applications we have in mind and
explaining the general problem, which emerges from these applications.
For a moment let us put ourselves into the position of one of the poor human beings
trapped in the cave of Plato’s Allegory of the Cave, (cf. for instance Plato 2010),
which the Greek philosopher presented in his work “The Republic (514a-520a)” around
380 BC. We have lived our whole lives chained to the wall of a cave facing a blank wall.
We can only watch shadows projected onto the wall by things passing in between a fire
and ourselves behind us, cf. Figure 1.1.
Now let us assume there is an elephant standing between the fire and our backs. We
have never seen an elephant before and have no idea what this object could be, which
is projected onto the wall in front of us. We are not able to identify the object by only
having the information of its shadow. However, there is one fellow prisoner, who has
been outside the cave before and has seen an elephant in real life. Due to his prior
knowledge about the shape of an elephant, he is able to directly identify the object as
such.
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Figure 1.1.: Detail of the allegory of the cave by Gothika (2008)

Luckily, we are not captive in a cave facing the shadows on the wall. However, many
real life problems are not solvable without prior knowledge of the subject. Humans
usually intuitively include their prior knowledge into their decisions and problem solving.
In order to teach a computer reasonable problem solving, we thus have to offer a way of
including a-priori knowledge to the model.
As a real life application, let us consider medical imaging and as an example thereof
computerized tomography (CT). In order to obtain an image of the inside of a human
body, the patient is x-ray scanned from different angles. Then a 3-dimensional image of
the inside of the body is reconstructed by using these 2-dimensional x-ray images. The
more images from different angles we have, the better is the quality of the reconstructed
image. Unfortunately, in this case the patient would be exposed to a lot of x-ray
radiation, which is a danger to his health. Thus it is desirable to use fewer angles to
preserve the health of the patient. These types of problems are called inverse problems
and are usually hard to solve.
In order to still be able to solve certain problems, we include a-priori knowledge about
the application. For instance we could incorporate that the edges in the images should
be sharp and the area in between should be homogeneous. Another type of including
a-priori knowledge is to provide a so called dictionary for the reconstruction process.
The reconstructed image is supposed to be a linear combination of these dictionary
elements using as few elements as possible. This signal or image processing technique
is called compressed sensing and promotes sparse solutions, i.e. solutions with few
nonzero entries.
Let us now mathematically introduce inverse problems and variational models, i.e.
methods for the solution of these problems.
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1.2. Inverse Problems

Applications in imaging, natural sciences and medicine frequently tend to result in
so called inverse problems, that is determining an unknown cause ẑ ∈ U(Ω) only by
measuring its effect ŵ ∈ V(Σ). In the mathematical modelling behind these problems
U(Ω) and V(Σ) denote Banach spaces of functions on bounded and compact sets Ω,
respectively Σ. In the attempt of solving such an inverse problem, the cause ẑ and its
effect ŵ, i.e. the ideally measured data, have to be connected by a mathematical model
A. Thus solving an inverse problem yields solving the operator equation

Aẑ = ŵ , (1.1)

where A : U(Ω) −→ V(Σ) denotes a linear and compact operator.
Inverse problems usually do not fulfill Hadamard’s postulates of well-posedness and thus
are called ill-posed. This characterization of a problem, which we present subsequently,
traces back to the French mathematician Jacques Hadamard (1902).

Definition 1.1.
A problem is called well-posed, if

• there exists a solution of the problem,

• the solution is unique,

• the solution depends continuously on the input data.

If a problem is not well-posed, it is called ill-posed.

Since the operator A is compact, it usually cannot be inverted continuously (cf. Engl

et al. (1996)). Thus in the majority of the cases the third point is violated, i.e. the
solution does not depend continuously on the input data. In addition, we usually
encounter the difficulty that the exact data ŵ are not available in real life. This
condition complicates the problem even further. Thus considering (1.1) might not even
be possible, since we face measurement errors. In practice we more often encounter the
inverse problem

Az = w , (1.2)

with z ∈ U(Ω) and w ∈ V(Σ). Here w are the actually measured data, which differ to
some extent from ŵ = Aẑ, which could be derived if the exact cause ẑ was known. This
difference between the ideal data ŵ and the real data w is termed noise. Thus (1.2) is
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an approximation of the exact inverse problem (1.1). In the discrete and linear case the
inverse problem (1.2) reduces to a linear system

Az = w ,

where z ∈ RM and w ∈ RL are vectors and A ∈ RL×M is a matrix, often referred to
as the observation matrix. Including an additional dimension such as time or spectral
information, we can even consider the matrix equation

AZ = W , (1.3)

with A ∈ RL×M , Z ∈ RM×T and W ∈ RL×T , where Z again is unknown. This is
the case in many applications, for instance dynamic positron emission tomography or
spectral imaging.
Since in (1.2) the operator A is often not invertible, one seeks for an approximate
solution z̃ close to the true solution ẑ. In order to work with problems like (1.2), the
variational approach

z̃ = argmin
z∈domR

{Dw(Az) + αR(z)} (1.4)

is quite convenient. Since it is easier to claim the distance of Az and w being minimal,
instead of asking for equality in (1.2), Dw should be a suitable distance measure. In
order to include problem dependent a-priori information and to promote solutions
with certain properties, the regularization functional R should be small, in case the
solution fits best to the a-priori knowledge and it should be highly increasing, if the
solution deviates from the prior. In (1.4) α is called regularization parameter and acts
as weighting between the data fidelity term Dw and the prior R. It should be chosen
depending on the noise level.
When it comes to choosing a suitable data term Dw the quadratic L2 data fidelity term

Dw(Az) =
1

2
‖Az − w‖2L2(Ω) (1.5)

is quite common, especially in the presence of additive Gaussian noise. Depending on
the type of noise, different data terms can be derived by using a statistical approach
often referred to as Bayesian modeling. Apart from (1.5) the following exemplary data
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fidelity terms can be derived:

additive Laplacian noise � Dw(Az) = ‖Az − w‖L1(Ω)

Poisson noise � Dw(Az) =

∫
Ω

(
w log

w

Az
+Az − w

)
dx

The latter is also known as Kullback-Leibler divergence. The interested reader may
find further information on the derivation of these data fidelity terms in Heins (2011,
Section 2.2), Brune (2010, Section 2.2) or in Benning (2011, Section 2.3).
In (1.4) convex regularization terms are typically quadratic functionals of the form
R(z) = ‖Γz‖2L2(Ω) with a linear operator Γ. This regularization term in combination
with (1.5) yields the classical Tikhonov regularization, which traces back to the
Russian mathematician Andrey Tikhonov (1943). In case the solution is expected
to be smooth, using ‖Γz‖2L2(Ω) with Γ = ∇ seems to be a reasonable choice.
However, this is certainly not always the case. Especially in imaging or image processing
the solutions are rather expected to have sharp edges. Thus R(z) = ‖∇z‖2L2(Ω) would
be a disadvantageous choice.
In contrast to R(z) = ‖∇z‖2L2(Ω), the total variation semi-norm

TV(z) := sup
p∈C∞

0 (Ω)

‖p‖L∞(Ω)≤1

∫
Ω

z ∇· p dx ≈ ‖∇z‖L1(Ω) (1.6)

promotes the recovery of functions with discontinuities, i.e. sharp edges. Nowadays it is
very common to use the so-called Rudin-Osher-Fatemi (ROF) model for denoising, i.e.

ROF(z) :=
1

2
‖z − w‖2L2(Ω) + TV(z) ,

cf. Rudin, Osher and Fatemi (1992). The idea of total variation minimization makes
use of the fact that the L1-norm itself promotes sparse solutions, i.e. solutions with
only a few nonzero entries. Taking the L1-norm of the gradient of a function promotes
solutions with derivatives, which have only a few nonzero entries. Hence regularizing
with (1.6) favors solutions with sharp edges and constant parts between the edges.

1.3. Contributions

In signal and image processing sparse reconstruction using standard �1-minimization is
a very useful and versatile tool and by now it is quite well understood. The basic idea
behind this is the knowledge of the �1-norm being the convex relaxation of the �0-“norm”
(cf. Donoho and Elad (2003)). Recent research went further in this direction by
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adapting this concept to problems with unknowns being matrices. The outcome of this
were even more advanced sparsity promoting methods.

Instead of considering usual sparsity regularizations componentwise on the unknown
matrix such as minimizing the �1,1-norm, Yuan and Lin (2006) considered for instance
a generalization of the lasso method (cf. Tibshirani (1996)), which they call group lasso.
The original lasso method (cf. also the review Tibshirani (2011)) is a shrinkage and
selection method for linear regression, i.e. it basically minimizes the sum of a squared
�2 data term and an �1-regularization term. The group lasso, however, generalizes
this method by using a slightly different regularization term, i.e. it minimizes the
�1-norm of a weighted �2-norm. Later this �2,1-regularization was further generalized
by Fornasier and Rauhut (2008) and Teschke and Ramlau (2007), which then
became known under the term joint sparsity. This method mainly consists of minimizing
�p,1-norms, which are used to include even more prior knowledge about the unknown
such as additional structures like block sparsity (or collaborative sparsity).

However, for many applications, such as dynamic positron emission tomography or
unmixing problems, it turns out to be useful to incorporate another type of sparsity.
Enhancing the idea of usual �1-sparsity to what we call local sparsity is one of the main
contributions of this thesis. Local sparsity turns out to be beneficial when working on
problems including inversion with some spatial dimensions and at least one additional
dimension such as time or spectral information.
In order to incorporate the idea of local sparsity, we motivate the use of the �1,∞-norm as
regularization functional in a variational framework for dictionary based reconstruction
of matrix completion problems. Working with the �1,∞-norm turns out to be rather
difficult, which is why we additionally propose alternative formulations of the problem.
By accompanying the �1,∞-regularization with total variation minimization, we include
even more prior knowledge and thus improve the results even further.
Besides this, we discuss basic properties of the �1,∞-functional and potential exact
recovery. In addition, we propose different algorithms for the solution of �1,∞-regularized
problems and show computational results for synthetic examples.

Sparsity promoting regularizations are usually finite-dimensional and therefore highly
dependent on their discretization. Due to this reason, the solutions of corresponding
variational problems rely on the same discretization and may therefore not even be
stable for different grid sizes. Moreover, in many applications an infinite-dimensional
modeling seems to be more reasonable and thus it would be disadvantageous to consider
its discrete counterpart instead.
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The establishment of an appropriate asymptotic theory behind these discrete approaches
is thus of particular importance. Having an underlying asymptotic theory permits the
analysis of variational problems independent of their discretization and thus yields
robustness. In order to analyze sparsity regularizations in an infinite dimensional
setting, recent research investigates approaches in the space of finite Radon measures,
cf. for instance Bredies and Pikkarainen (2013), Duval and Peyré (2013) and
Scherzer and Walch (2009).

This thesis contributes to this topic by analyzing the asymptotics of regularization
methods applicable for instance to spatial sparsity. By working in the space of finite
Radon measures and utilizing Γ-convergence, we aim to make variational problems
independent of their discretization. This analysis can be performed by considering the
priors only. We not only investigate �p-norms for p ≥ 1 and p = 0, but also examine
mixed �p,q-norms as the step size of the grid vanishes.
Furthermore, we consider the deconvolution of a sparse spike pattern and investigate
the structure of a solution in case the exact spikes are located at the nodes as well as in
between the grid points. We verify our results by numerically computing a deconvolution
of a few sparse spikes for different discretizations as the grid becomes finer.

1.4. Organization of this Work

In the last sections we motivated this work, briefly introduced the field of inverse
problems and emphasized our contributions to this topic. In order to complete this
introductory chapter, we now give an overview on how this work is organized.

Chapter 2 will provide the mathematical background needed for the sequel of this thesis.
We will start by recalling some basic calculus of variations and some fundamentals
about Γ-convergence, before we will introduce important function and sequence spaces
such as the Lebesgue spaces Lp(Ω), the sequence spaces �p(Ω) and the Sobolev spaces
W k,p(Ω). Furthermore, we will introduce the space of functions with bounded variation
BV(Ω), which is fundamental in imaging. The space BV(Ω) will be relevant for Chapter
5 and 6, since total variation regularization will be used as an additional regularization
on the main problem, in order to promote sharp edges in the reconstructed images.
Moreover, we will introduce the space of finite Radon measures, which will be of
particular importance for a theoretical investigation about the asymptotics of spatial
sparsity regularizations, which can be found in Chapter 7. Afterwards, we will review
some basic convex analysis and recall the concept of subdifferential calculus and the
Legendre-Fenchel duality. We will end this chapter of mathematical preliminaries by
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giving an introduction to sparsity regularization, which builds the basis for other sparsity
promoting regularization techniques, c.f. for instance Chapters 3 and 4. Starting with
the �0-“norm”, which is not a norm in the classical sense, we will afterwards continue
with its convex relaxation, which will lead us to the well known sparsity-promoting �1-
regularization. Furthermore, we will shortly discuss regularization with Radon measures,
which will become relevant for Chapter 7.

After this fundamental chapter, we will introduce mixed �p,q-norms in Chapter 3. We
will motivate the use of mixed norms to promote sparsity for matrices, which builds
the basis for our analysis in Chapter 4. We will see that not only classical sparsity,
such as using the �1,1-regularization, is possible. Mixed norms can moreover be used to
promote some kinds of structured sparsity. In particular, we will consider joint sparsity
via �p,1-norms and local sparsity via �1,q-norms.

The latter one yields the local sparsity promoting �1,∞-regularization, which will be
the main subject of Chapter 4. We will discuss basic properties of this regularization
such as different problem formulations, existence and uniqueness. Moreover, we will
give attention to subdifferentials and source conditions for these different formulations.
After showing the equivalence of those formulations, we will analyze the asymptotics
in case that the regularization parameter tends to infinity. Another section shall be
devoted to the analysis of exact recovery of locally 1-sparse solutions, where we will
introduce certain conditions for exact recovery. We will end this chapter by including an
additional regularization, which shall further improve the numerical results presented
in Chapter 6, namely total variation regularization.

In Chapter 5 we will propose algorithms for the reconstruction with local sparsity, which
are based upon the alternating direction method of multipliers (ADMM). Computational
experiments using these algorithms can be found later in Chapter 6. First we will
propose an algorithm for the reconstruction including �1,∞- and �1,1-regularization.
Then we will state another two algorithms for the reconstruction including �1,∞- and
�1,1-regularization and an additional total variation regularization, both on the images
in every time step as well as on the coefficient matrices for every basis function.

On the basis of the previous chapters, we will apply our model proposed in Chapter 4
to dynamic positron emission tomography, which will be used to visualize myocardial
perfusion, in Chapter 6. We will firstly motivate, why the knowledge about the perfusion
of the heart muscle is of particular importance and give a short introduction to the
medical and technical background of dynamic positron emission tomography. We will
briefly discuss a model for blood flow and tracer exchange, i.e. kinetic modeling, which
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will then yield the same inverse problem, which we will aspire to solve in Chapter
4. Afterwards, we will apply the algorithms, which will be deduced in Chapter 5, to
artificial data in order to verify our model and illustrate its potential. Moreover, we
will discuss the quality of the proposed algorithms and show some examples.

Chapter 7 is devoted to the analysis of the asymptotics of sparsity promoting regular-
ization functionals. We will motivate the establishment of an appropriate asymptotic
theory behind commonly used sparsity priors. This theory could improve the solution
of inverse problems in applications, where an infinite-dimensional modeling is more
reasonable. Moreover, we aim to make regularization functionals independent of their
discretization. We will discuss spatial sparsity under Γ-convergence and consider the
cases of different �p-norms for p ≥ 1 as well as for p = 0. Furthermore, we will discuss the
asymptotics for certain types of mixed �p,q-norms, which will thus establish a connection
to the previously examined functionals.

As an application for the theory of Chapter 7, we will examine the deconvolution of a
sparse spike pattern in Chapter 8. We will theoretically investigate the structure of the
discrete deconvolved solutions as the positions of the exact spikes are located firstly
on the nodes and secondly in between the grid points. In order to support our theory
numerically, we will consider a standard variational problem including the sparsity
promoting �1-regularization, which we will implement via the alternating direction
method of multipliers (ADMM). Previously to the reconstruction, we will convolve the
exact δ-spikes analytically with a Gaussian kernel and then discretize the convolved
data for different grid sizes. On the basis of this, we will test our algorithm for different
discretizations as the step size of the grid becomes smaller. We will indeed obtain a
certain limit, which will be consistent with our theoretical considerations as well as with
the literature.

Finally we will summarize the content of this thesis in Chapter 9, which will be divided
into two sections, accordingly to the main topics of this thesis. First we will summarize
our work on local sparsity and draw conclusions. We will moreover present questions
and ideas, which still remain to be examined. Afterwards, we will discuss conclusions
for our analysis of the asymptotics of sparsity priors and give an outlook on possible
future work.

In addition to this summary, Figure 1.2 illustrates, how this thesis is organized.
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Figure 1.2.: Overview of the organization of this thesis
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2
MATHEMATICAL PRELIMINARIES

In this chapter we provide the mathematical background, which is needed in the course
of this thesis.
Starting by summarizing some basic principles of calculus of variations, we proceed with
a section about essential function and sequence spaces. This section not only contains
the definitions of Lebesgue spaces and the sequence spaces �p, but also the definition of
Sobolev spaces. The latter ones are then utilized to motivate the usage of the space of
functions with bounded variation. We end this section by introducing the space of finite
Radon measures, which will be important for the analysis of asymptotic sparsity. The
next section gives a short summary of basic convex analysis including subdifferential
calculus and the concept of Legendre-Fenchel duality. Finally we end this chapter with
a short introduction to sparsity regularization.

2.1. Variational Calculus

In this section we give an introduction to the calculus of variations. We start by
recalling basic definitions and state important theorems. Afterwards, we introduce
convergence for functionals, namely Γ-convergence, which will be of importance during
our asymptotic analysis of sparsity regularizations in Chapter 7.

2.1.1. Introduction

Since the minimization of functionals like (1.4) is related to the calculus of variations,
we are going to recall some definitions and results of this subject, which are needed in
this thesis. For the sake of compactness we refer to Dacorogna (2004), Ekeland

and Témam (1999) or Zeidler (1985) for a more detailed introduction on this subject.
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Before getting more into the details, we would like to remind the reader of the difference
between operators and functionals.

Definition 2.1 (Operators & Functionals).
Let U and V denote two Banach spaces with topology τ1, τ2 respectively. A mapping
J : (U , τ1) −→ (V , τ2) between those Banach spaces is called operator.
In the special case that V is a field, J is called functional.

We consider functionals J :U −→ R with a nonempty domain. Therefore, we recall the
definition of a proper functional.

Definition 2.2 (Proper Functional).
Let U be a Banach space. A functional J :U −→ R is called proper if J(u) �= −∞ for
all u ∈ U and if there exists at least one u ∈ U with J(u) �= +∞. In this setting

domJ := {u ∈ U|J(u) < ∞}

is called effective domain of the functional J .

After recalling these basic definitions we now introduce generalized derivatives in Banach
spaces.

Definition 2.3 (Directional Derivative).
Let J :U ⊂ U −→ V denote an operator between Banach spaces and let U be a non
empty subset. Then the directional derivative at the point u ∈ U in direction v ∈ U is
defined as

dJ(u, v) = lim
t↘0

J(u+ tv)− J(u)

t
,

if the limit exists. In case the directional derivative exists for all v ∈ U , J is called
directionally differentiable.

Definition 2.4 (Gâteaux Differentiability).
An operator J with preconditions as in Definition 2.3 is called Gâteaux differentiable, in
case the directional derivative J ′(u) :U −→ V with v �→ dJ(u, v) is linear and bounded.

Definition 2.5 (Fréchet Differentiability).
Let for a Gâteaux differentiable operator J hold

‖J(u+ v)− J(u)− J ′(u)v‖V = o(‖v‖U) for ‖v‖U → 0 .

Then J is called Fréchet differentiable.
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Remark 2.1.
In the case that J is Gâteaux differentiable in a neighborhood of u and J ′(u) is continuous
at u, J is Fréchet differentiable at u as well.

In order to state some results about the existence of a minimizer of variational problems
like (1.4), we will first recall some definitions, which will then lead us to the fundamental
theorem of optimization.

Definition 2.6 (Lower semi-continuity).
Let J : (U , τ) −→ R ∪ {∞} be a functional on a Banach space U with metric topology
τ . J is called lower semi-continuous at u ∈ U if

J(u) ≤ lim inf
k→∞

J(uk) (2.1)

holds for all sequences (uk)k∈N with uk → u in the topology τ .

Definition 2.7 (Compactness of Sublevel Sets).
Let J : (U , τ) −→ R ∪ {∞} be a functional on a Banach space U with topology τ .
For a ξ ∈ R the corresponding sublevel set of J is defined as

Sξ := {u ∈ U | J(u) ≤ ξ} . (2.2)

Moreover, we call Sξ compact if it is not empty and compact in the topology τ .

An illustration of different sublevel sets can be found in Figure 2.1.

ξ

J(u)

u

(a) This function does not have compact
sublevel sets

ξ

J(u)

u

(b) This function has compact sublevel sets

Figure 2.1.: Illustration of sublevel sets (red) of two different functions

By using these two definitions, we can now state the fundamental theorem of optimization
(cf. Zeidler (1985) or Aubert and Kornprobst (2002)).
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Theorem 2.1 (Fundamental Theorem of Optimization).
Let U be a Banach space with topology τ . Furthermore, let J : (U , τ) −→ R ∪ {∞} be
a lower semi-continuous functional. In addition, let there exist a ξ ∈ R such that the
corresponding sublevel set Sξ of J is compact.
Then there exists a global minimum û ∈ U , i.e.

J(û) = inf
u∈U

J(u) .

Proof.
Let (uk)k∈N be a minimizing sequence, i.e. J(uk) → inf

u∈U
J(u). We have uk ∈ Sξ for

k ≥ k0 sufficiently large and hence (uk)k≥k0 is contained in a compact set. Thus it has
a convergent subsequence, which we again denote with (uk). Furthermore, let its limit
be û. Due to the lower semi-continuity (2.1) of J , it follows that

inf
u∈U

J(u) ≤ J(û) ≤ lim inf
k→∞

J(uk) = inf
u∈U

J(u)

holds. Therefore, û is a global minimum of J .

Since boundedness causes compactness in finite dimensions, this theorem easily leads
to a proof of existence in finite-dimensional optimization. However, this does not hold
in function spaces due to their infinite dimension. In order to still be able to conclude
compactness from boundedness, we have to define weak and weak-*topologies.

Definition 2.8 (Weak Topology and Weak-*Topology).
Let U be a Banach space with dual space U∗. Let (uk)k∈N and (vk)k∈N be two sequences
in U and U∗ respectively. Let be u ∈ U and v ∈ U∗. Then the weak topology on U is
defined by

uk ⇀ u :⇐⇒ 〈v, uk〉 → 〈v, u〉 ∀ v ∈ U∗ .

Furthermore, the weak-*topology on U∗ is defined by

vk ⇀
∗ v :⇐⇒ 〈vk, u〉 → 〈v, u〉 ∀ u ∈ U .

Because we have U ⊂ U∗∗ the weak-*topology on U∗ is even weaker than the weak
topology on U . Note that the weak and weak-*topology coincide in reflexive Banach
spaces (i.e. U = U∗∗).
We now want to propose the theorem of Banach-Alaoglu. This theorem allows us to
deduce compactness from boundedness at least in the weak-*topology and is therefore
a central result concerning compactness.
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Theorem 2.2 (Theorem of Banach-Alaoglu).
Let U be a Banach space and U∗ its dual space.
Then the set

{v ∈ U∗ | ‖v‖U∗ ≤ C}

for C > 0 is compact in the weak-*topology.

A proof can for instance be found in Rudin (1973, p. 66-68, Chapter 3, Theorem 3.15).
In case we can prove lower semi-continuity in the weak-*topology, we are able to prove
existence of a global minimum for a given infinite dimensional optimization problem
by using Theorem 2.2 of Banach-Alaoglu. Then we could obtain the minimum by
computing the Fréchet-derivative, however, normally proving lower semi-continuity in
the weak-*topology is not that easy.

2.1.2. Γ-Convergence

In order to facilitate the transition from discrete to continuum models, we introduce a
special convergence for functionals, namely Γ-convergence. The following definitions
and properties can be found amongst others in Braides (2002) and Maso (1993).

Definition 2.9 (Γ-Convergence).
Let U be a topological space. Furthermore, let Jk : U −→ [0,∞] be a sequence of
functionals on U . The sequence (Jk)k∈N converges in the sense of Γ-convergence to the
Γ-limit J :U −→ [0,∞] in the case that the following conditions hold:

• Lower bound inequality: For every sequence (uk)k∈N with uk ∈ U such that uk → u

for k → ∞ holds
J(u) ≤ lim inf

k→∞
Jk(uk) .

• Upper bound inequality: For all u ∈ U exists a sequence (uk)k∈N with uk → u for
k → ∞ such that

J(u) ≥ lim sup
k→∞

Jk(uk) .

Note that the meaning of the first condition is that J provides an asymptotic common
lower bound for (Jk)k∈N . The second condition, however, yields the fact that this lower
bound is optimal.
In case that (Jk)k∈N Γ-converges to J we write

Jk
Γ→ J .
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In order to facilitate the proof of the upper bound inequality, one may use the following
density argument, which we cite from Braides (2002, Remark 1.29, p. 32).

Theorem 2.3 (Upper Bound Inequality by Density).
Let d′ be a distance on the metric space (U , d) with stronger topology than the one
induced by d, i.e. for every sequence uk → u in U holds that

d′(uk, u) → 0 ⇒ d(uk, u) → 0 .

Furthermore, let Jk : U −→ [0,∞] be a sequence of functionals on U and let the
functional J :U −→ [0,∞] be continuous with respect to d. Moreover, let D be a dense
subset of U for d′ and let for every u ∈ U exist a sequence uk → u for k → ∞ such that

lim sup
k→∞

Jk(uk) ≤ J(u) (2.3)

holds on D. Then (2.3) holds on U as well.

In order to obtain convergence of minimizers, we need equi-coercivity of a sequence of
functionals.

Definition 2.10 (Coerciveness Conditions).
Let U be a topological space. A functional J :U −→ R is called

• coercive if for every c ∈ R holds that the set {J(u) ≤ c} is pre-compact,

• mildly coercive if there exists a set K ⊂ U , which is non-empty and compact and
it holds

inf
u∈U

J(u) = inf
u∈K

J(u) .

Furthermore, a sequence (Jk)k∈N of functionals Jk :U −→ R is called equi-mildly coercive
or equi-coercive if there exists a set K ⊂ U , which is non-empty and compact and for
all k ∈ N holds

inf
u∈U

Jk(u) = inf
u∈K

Jk(u) .

Cicalese et al. (2009) state an equivalent definition of equi-coercivity for the L2-setting,
which we cite for the general case.

Definition 2.11 (Equi-Coercivity).
Let U be a Banach space. A sequence (Jk)k∈N of functionals Jk : U −→ R is called
equi-coercive if for all sequences (uk)k∈N ⊂ U with

sup
k∈N

Jk(uk) < ∞ ,

up to subsequences, holds that uk → u in U for k → ∞ and u ∈ U .
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Let us now state a fundamental result about the convergence of minimizers under
Γ-convergence.

Theorem 2.4 (Convergence of Minimizers).
Let (U , d) be a metric space. Moreover, let (Jk)k∈N be a sequence of equi-coercive
functionals and let Jk

Γ→ J for k → ∞.
Then there exists a minimizer of J with

min
u∈U

J(u) = lim
k→∞

inf
u∈U

Jk(u) .

Furthermore, in case that (uk)k∈N is a pre-compact sequence with

lim
k→∞

Jk(uk) = lim
k→∞

inf
u∈U

Jk(u) ,

every limit of a subsequence of (uk)k∈N is a minimizer of J .

A proof can be found in Braides (2002, Section 1.5).
Finally, we give a summary of some properties of Γ-convergence.

Remark 2.2 (Properties of Γ-Convergence).

• Minimizers converge to minimizers: In case we have Jk
Γ→ J and uk minimizes Jk

for every k ∈ N, every cluster point of (uk)k∈N is a minimizer of J .

• Γ-limits are always lower semi-continuous.

• Γ-convergence is stable under continuous perturbations: Let Jk
Γ→ J and let

H :U −→ [0,∞] be a continuous functional. Then Jk +H Γ-converges to J +H.

• Let us consider a constant sequence of functionals, i.e. Jk = J for all k ∈ N. Then
Jk does not necessarily Γ-converge to J . However, it Γ-converges to the relaxation
of J , i.e. the largest lower semi-continuous functional below J .

2.2. Function Spaces and Sequence Spaces

This section summarizes basic definitions concerning function and sequence spaces,
which are needed for the course of this thesis. For the definition of most of these spaces,
basic measure theory is necessary, which we recall in the first subsection. Subsequently
we shortly give a reminder of Lebesgue spaces and the sequence spaces �p, afterwards
we recall Sobolev spaces. Since neither Lebesgue nor Sobolev spaces are appropriate
for images, we introduce the space of functions with bounded variation. Furthermore,
the space of finite Radon measures will be of particular importance for the analysis of
asymptotic sparsity, whose introduction will end this section.
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2.2.1. Basic Measure Theory

Let us now recall some basic definitions from measure theory. The content of this
subsection is mainly based upon Elstrodt (2004).

Definition 2.12 (σ-Algebra).
Let Ω be a set and P(Ω) its power set. A collection A of subsets of P(Ω) is called
σ-algebra if the following conditions hold:

1. Non-emptiness: Ω ∈ A.

2. Closure under complementation: If A ∈ A holds, then we have Ac ∈ A, where
Ac := Ω\A.

3. Closure under countable unions : If (An)n∈N ∈ A holds, then we have
⋃
n∈N

An ∈ A.

Example 2.1 (Borel σ-Algebra).
An important example is the Borel σ-algebra B(X), which builds a bridge between
measure theory and topology. Every topological space X can be endowed with the
unique Borel σ-algebra, which is defined as the smallest σ-algebra containing all open
sets of X. The elements of the Borel σ-algebra are called Borel sets.
This σ-algebra is named after Émile Borel (1950, Chapter 3), who implicitly intro-
duced Borel subsets of the unit interval. For these sets he suggested a concept of length,
which complies with the property of σ-additivity.

Definition 2.13 (Measure).
Let A be a σ-algebra over a non-empty set Ω. A function μ :A −→ R is called a measure
if it satisfies the following conditions:

1. Non-negativity: For all sets A ∈ A holds μ(A) ≥ 0.

2. Null empty set: μ(∅) = 0.

3. σ-additivity: For all countable collections (An)n∈N of pairwise disjoint sets in A
holds that

μ

( ∞⋃
n=1

An

)
=

∞∑
n=1

μ (An) .

Note that a measure is always monotonic, i.e. in case that A ⊂ B, we have μ(A) ≤ μ(B),
cf. Figure 2.2.
The function μ is called a signed measure in the case that only the second and third
conditions hold and μ takes on at most one of the values ±∞.
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∞0

Figure 2.2.: Monotonicity of a measure

Definition 2.14 (Measurable Space & Measure Space).
Let Ω be a non-empty set and A be a σ-algebra on Ω. We call the pair (Ω,A) a
measurable space. The members of A are called measurable sets.
Let in addition μ :A −→ R be a measure. Then the triple (Ω,A, μ) is called measure
space.

Example 2.2.

1. Let (Ω,A) be a measurable space, x ∈ Ω and A ∈ A. Then the Dirac measure,
named after the English theoretical physicist Paul Dirac (1958), is defined as

δx(A) :=

⎧⎨⎩1, if x ∈ A ,

0, else.

2. Consider the measurable space (Rn,B(Rn)). The Lebesgue measure on the Borel
σ-algebra B(Rn) relates an geometric object to its content (length, area, volume,
. . . ). It is the unique measure λ, which meets the following property:

λ ([a1, b1]× . . .× [an, bn]) = (b1 − a1) · · · (bn − an) ,

i.e. it relates an n-dimensional hyperrectangle to its volume. The French mathe-
matician Henri Lebesgue (1902) published this measure as part of his disserta-
tion.

Definition 2.15 (Measurable Function).
Let (Ω1,A1) and (Ω2,A2) be measurable spaces. A function u : Ω1 −→ Ω2 is called
measurable if the pre-image of every set A ∈ A2 under the function u is in A1, i.e.

u−1(A) = {x ∈ Ω1 | u(x) ∈ A} ∈ A1 ∀ A ∈ A2 .
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2.2.2. Lebesgue Spaces

We now shortly review the definition of Lebesgue spaces and their norms, namely
Lp-norms. For the sake of compactness, we do not recall most of the measure theory
and take the knowledge about Lebesgue integration for granted. We refer the reader to
standard books on measure theory and analysis such as Rudin (1987) in case further
information should be necessary.

Definition 2.16 (The Lebesgue Spaces Lp(Ω) and L∞(Ω)).
Let be p ∈ R+. The space Lp(Ω) is defined as the set of all measurable functions
u :Ω −→ C on the domain Ω, for which holds∫

Ω

|u(x)|pdx < ∞ .

In case that we have p = ∞, L∞(Ω) is considered to be the space of all measurable
functions u :Ω −→ C, for which there exists a constant α > 0 with

λ ({x ∈ Ω | |u(x)| ≥ α}) = 0 ,

where λ denotes the Lebesgue measure.

For the case that p ≥ 1 holds, those spaces are naturally Banach spaces with the
following norms:

Theorem 2.5 (Lp(Ω) and L∞(Ω) are Banach Spaces).
Let be 1 ≤ p < +∞. The space Lp(Ω) is a Banach space with norm

‖u‖p =
(∫

Ω

|u(x)|p dx
) 1

p

.

Furthermore, the space L∞(Ω) is a Banach space with norm

‖u‖∞ = ess sup
x∈Ω

|u(x)| := inf {α > 0 | λ ({x ∈ Ω | |u(x)| ≥ α}) = 0} .

Remark 2.3.
In the special case of p = 2 the Lebesgue space L2(Ω) is even a Hilbert space with scalar
product

〈u, v〉L2(Ω) :=

∫
Ω

〈u(x), v(x)〉 dx . (2.4)
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2.2.3. Sequence Spaces �p

In the course of this thesis sequence spaces are elementary, thus we recall their definitions
in this subsection. We concentrate on �p-spaces for p ∈ R+ ∪ {+∞}, since those are
essential for our further results.

Definition 2.17 (Sequence Spaces �p(Ω) and �∞(Ω)).
Let Ω be a field and let u = (un)n∈N be a sequence with un ∈ Ω for all n ∈ N. Let be
0 < p < ∞. Then the subspace �p(Ω) of the sequence space ΩN is defined as

�p(Ω) :=

{
u ∈ ΩN

∣∣∣∣∣
∞∑
n=1

|un|p < ∞
}

.

Furthermore, �∞(Ω) denotes the space of bounded sequences, i.e.

�∞(Ω) :=
{
u ∈ ΩN

∣∣∣∣ sup
n∈N

|un| < ∞
}

.

Note that we obviously obtain the following relation:

�p(Ω) ⊆ �∞(Ω) .

Similar to the case of Lp-spaces, the sequence spaces �p(Ω) for p ≥ 1 and �∞(Ω) are
Banach spaces.

Theorem 2.6 (�p(Ω) and �∞(Ω) are Banach Spaces).
Let be 1 ≤ p < +∞. The sequence space �p(Ω) is a Banach space with norm

‖u‖p =
( ∞∑

n=1

|un|p
) 1

p

.

Note that �2(Ω) is even a Hilbert space. Furthermore, �∞(Ω) is a Banach space with
norm

‖u‖∞ = sup
n∈N

|un| .

In Figure 2.3 we see unit circles for different �p-norms. Since the unit circles for
�p-“norms” with 0 < p < 1 are not convex, we especially learn from this illustration
that �p-“norms” with 0 < p < 1 satisfy all of the norm axioms except for the triangle
inequality. However, they fulfill the weaker inequality

‖x+ y‖p ≤ k
(
‖x‖p + ‖y‖p

)
for k > 1

instead and thus are at least quasi-norms.
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Figure 2.3.: Illustration of unit circles in different �p-norms and quasi-norms

2.2.4. Sobolev Spaces

The Lebesgue spaces Lp(Ω) contain many different functions including highly oscillating
functions. In application to inverse problems (cp. Section 1.2) functions with high
oscillation usually mean noise and thus are not desirable. As an alternative one might
search for functions, whose derivatives are additionally Lebesgue integrable. This idea
leads us to so-called Sobolev spaces, which we recall in this chapter. In order to do so,
we first introduce the concept of weak derivatives.

Definition 2.18 (Weak Derivative).
Let Ω ⊂ RN be an open set and let α ∈ NN

0 be a multiindex. Let u be locally
L1-integrable, i.e. u ∈ L1

loc(Ω). A function w ∈ L1
loc(Ω) with∫

Ω

wϕ dx = (−1)|α|
∫
Ω

uDαϕ dx ∀ ϕ ∈ C∞
0 (Ω)

is called weak partial derivative of order |α| of u. In this context we have |α| =
N∑
i=1

αi

and Dα = ∂|α|
∂α1x1...∂

αN xN
. The weak derivative is often denoted by w = Dαu.

Note that a weak derivative does not have to exist.
Since the space L1

loc(Ω) is not quite convenient, we rather consider functions with weak
derivatives in Lebesgue spaces. This brings us to the definition of so-called Sobolev
spaces.



2.2 Function Spaces and Sequence Spaces 43

Definition 2.19 (Sobolev Spaces).
Let be 1 ≤ p ≤ ∞, k ∈ N and Ω be an open set. The Sobolev space W k,p(Ω) is defined
as

W k,p(Ω) := {u ∈ Lp(Ω) | Dαu ∈ Lp(Ω) for all |α| ≤ k}

and is naturally a Banach spaces with Sobolev norm

‖u‖Wk,p(Ω) :=

⎛⎝∑
|α|≤k

‖Dαu‖pLp(Ω)

⎞⎠ 1
p

for 1 ≤ p < ∞ and
‖u‖Wk,∞(Ω) := max

|α|≤k
‖Dαu‖L∞(Ω) .

Remark 2.4.
By using the scalar product (2.4) of L2(Ω), we obtain a scalar product in W k,2(Ω) by

〈u, v〉Wk,2(Ω) :=
∑
|α|≤k

〈Dαu,Dαv〉L2(Ω) .

Thus we see that W k,2(Ω) is a Hilbert space, which is often denoted by

Hk(Ω) := W k,2(Ω) ∀ k ∈ N .

2.2.5. Space of Functions with Bounded Variation

Let us now introduce the space of functions with bounded variation, which will be
used in the course of this thesis. This function space is used for images with certain
properties. One could ask, why either the Lebesgue spaces L1(Ω) and L2(Ω) or the
Sobolev space W 1,1(Ω) are not appropriate for this assignment. The problem is, however,
that L1(Ω) and L2(Ω) contain not only the images we have in mind, but also the noise,
which is not desirable. Considering W 1,1(Ω) instead is neither advantageous, since
W 1,1(Ω) does not contain functions with discontinuities. This property, however, would
be recommendable in order to examine reasonable images, which naturally come with
discontinuities, i.e. sharp edges.
In this subsection we only give a short summary of functions with bounded variation.
However, we refer the interested reader to Burger et al. (2013) and Ambrosio et al.
(2000) for further details on this subject.
In this subsection we assume Ω ⊂ RN to be sufficiently regular and open. We begin by
recalling the definition of the total variation of a function u.
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Definition 2.20 (Total Variation).
The total variation TV(u) of a function u ∈ L1(Ω) is defined as

TV(u) := sup
p∈C∞

0 (Ω)

‖p‖L∞(Ω)≤1

∫
Ω

u ∇· p dx . (2.5)

In Figures 2.4 and 2.5 we see examples for functions with bounded and unbounded total
variation.

(a) f(x) = sin(αx) (b) g(x) = x2 sin
(
1
x

)
Figure 2.4.: Functions with bounded total variation

(a) h(x) = sin( 1x ) (b) k(x) = x sin( 1x )

Figure 2.5.: Functions with unbounded total variation

By using this definition, we are able to define the space of functions with bounded
variation.

Definition 2.21 (The Space BV(Ω)).
The space of functions with bounded variation BV(Ω) is defined as the space of all
functions u ∈ L1(Ω) with finite total variation TV(u), i.e.

BV(Ω) :=
{
u ∈ L1(Ω) | TV(u) < ∞}

.
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BV(Ω) is a Banach space equipped with the norm

‖u‖BV(Ω) := TV(u) + ‖u‖L1(Ω) ,

as we can see in Giusti (1984).

Remark 2.5.
In case the function of interest is sufficiently smooth, i.e. u ∈ W 1,1(Ω), the definition of
TV(u) can be written in a primal setting as

TV(u) =
∫
Ω

|∇u| dx . (2.6)

In an informal setting this definition is often used for general u ∈ BV(Ω).
Furthermore, we see that the Sobolev space W 1,1(Ω) is contained in BV(Ω). However,
the Heaviside function

H(x) :=

⎧⎨⎩1, if x ≥ 0 ,

0, else,

which is contained in BV(Ω), can be indicative for the fact that this is a strict inclusion,
since its distributional derivative, i.e. the Dirac delta distribution δ(x), is singular with
respect to the Lebesgue measure, cf. Figure 2.6.

0

1
H(x)

(a) Heaviside function

0

δ(x)

(b) Dirac delta distribution

Figure 2.6.: The Heaviside function H(x) and its weak derivative δ(x)

In addition BV(Ω) can be nicely embedded in Lp(Ω), which we see in the following
Lemma. This property is especially useful for N ≤ 2.

Lemma 2.1 (Embedding of BV(Ω)).
Let be Ω ⊂ RN . If p

p−1
≥ N , then we have

BV(Ω) ↪→ Lp(Ω) .

In case that p
p−1

> N , the embedding is compact.

A proof can be found in Giusti (1984).
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In order to make working with the total variation easier, it is important to note that
TV(u) is lower semi-continuous in BV(Ω) with respect to the strong topology in L1

loc(Ω)

(c.f. Ambrosio et al. (2000, Proposition 3.6)). If we want to give the optimality
condition in terms of subgradients, we additionally need convexity of the total variation.
However, this can be seen rather easily.

Lemma 2.2 (Convexity of the Total Variation).
The total variation TV(u) with its definition in (2.5) is convex.

Proof.
Let be u, v ∈ L1(Ω) and let α ∈ [0, 1] hold. Then we have

TV(αu+ (1− α)v) = sup
‖p‖L∞(Ω)≤1

∫
Ω

(αu+ (1− α)v) ∇· p dx

≤ α sup
‖p‖L∞(Ω)≤1

∫
Ω

u ∇· p dx+ (1− α) sup
‖p‖L∞(Ω)≤1

∫
Ω

v ∇· p dx

= αTV(u) + (1− α)TV(v) .

2.2.6. Space of Finite Radon Measures

In the course of this thesis we will amongst others work with linear functionals with
compact support. In order to examine these functionals in a more theoretical way, we
introduce the space of finite Radon measures. For its definition we previously recall
Radon measures and important representation theorems.
The content of this subsection is mainly based upon Elstrodt (2004). However, many
of the results can be found in Schwartz (1973) and Rudin (1987) as well.
In order to introduce Radon measures, we first need some further definitions.

Definition 2.22 ((Locally) Finite Measure).
Let (X, τ) be a topological Hausdorff space and let A ⊃ B(X) be a σ-algebra on X,
which contains the topology τ . The (signed) measure μ :A −→ R on the measurable
space (X,A) is called

• finite if |μ(X)| < ∞,

• σ-finite if X is the countable union of measurable sets with finite measure,

• locally finite if for every point x ∈ X exists an open neighbourhood N of x such
that |μ(N)| < ∞.
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Definition 2.23 (Regular Measure).
Let (X, τ) be a topological Hausdorff space and let A ⊃ B(X) be a σ-algebra on X,
which contains the topology τ . The measure μ :A −→ R on the measurable space
(X,A) is called

1. inner regular if for every set A ∈ A holds that

μ(A) = sup {μ(K) | K ⊂ A, K compact} ,

2. outer regular if for every set A ∈ A holds that

μ(A) = inf{μ(U) | U ⊃ A, U open} ,

3. regular if μ is inner and outer regular.

Now we have everything that is required for the definition of Radon measures.

Definition 2.24 (Radon Measure).
Let (X, τ) be a topological Hausdorff space and let B(X) be the Borel σ-algebra on
X. A Radon measure is a (signed) measure μ :B(X) −→ R on the measurable space
(X,B(X)), which is locally finite and inner regular.

Let us now introduce total variation for signed measures. For this purpose we first
need a decomposition theorem, which traces back the to Austrian mathematician Hans

Hahn (1921).

Theorem 2.7 (Hahn Decomposition Theorem).
Let (Ω,A) be a measurable space and let μ :A −→ R be a signed measure. Then there
exists a positive measurable set P and a negative measurable set N in A such that
P ∪N = Ω and P ∩N = ∅. P and N are unique except for μ-empty sets.
Furthermore, Ω = P ∪N is called Hahn decomposition.

Definition 2.25 (Variation of Measures).
Let (Ω,A) be a measurable space and let μ :A −→ R be a signed measure with Hahn
decomposition Ω = P ∪N . For A ∈ A we call

1. μ+ :A −→ R with
μ+(A) := μ(A ∩ P )

positive variation,

2. μ− :A −→ R with
μ−(A) := −μ(A ∩N)

negative variation and
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3. ‖μ(A)‖TV :A −→ R with

‖μ(A)‖TV := μ+(A) + μ−(A)

total variation of μ.

Definition 2.26 (Regular Signed Measure).
Let X be a locally compact Hausdorff space and B(X) the Borel σ-algebra on X. A
signed measure μ :B(X) −→ R is called regular if for all A ∈ B(X) and ε > 0 exists a
compact set K and an open set U such that K ⊂ A ⊂ U and ‖μ(U\K)‖TV < ε.
Furthermore, we define M(X) as the set of finite regular signed measures μ :B(X) −→ R.

Remark 2.6.
M(X) is even a Banach space with norm ‖μ‖TV(X) := ‖μ(X)‖TV.
Note that a finite regular signed measure is the same as a finite signed Radon measure,
since a finite Radon measure is always regular in case that X is locally compact. In the
literature these terms are used interchangeably. However, we act in accordance with
the literature used in the ongoing chapters and call M(X) the space of finite Radon
measures.
In a more general setting we could consider the space M(X,Rm) of finite vector-valued
Radon measures μ :B(X) −→ Rm, however, in this chapter it is sufficient to use M(X).

Definition 2.27 (Absolutely Continuous Measure).
Let μ and ν be two measures on the measurable space (Ω,A). Then we call μ absolutely
continuous with respect to ν if for every set A ∈ A holds

ν(A) = 0 ⇒ μ(A) = 0 .

Absolute continuity of measures is a preorder and we write μ � ν. The measures μ

and ν are said to be equivalent if it holds μ � ν and ν � μ.

Note that if we consider the case of signed measures, μ is absolutely continuous with
respect to ν if its total variation ‖μ‖TV(Ω) satisfies ‖μ‖TV(Ω) � ν.

Another important term in measure theory is the concept of density functions of
measures. Thus in order to shortly introduce density functions for measures, we recall
the Radon-Nikodym theorem, which the Polish mathematician Otto Nikodym (1930)
proofed in its general version.
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Theorem 2.8 (Radon-Nikodym Theorem).
Let μ and ν be two σ-finite measures on the measurable space (Ω,A). Let μ be absolutely
continuous with respect to ν. Then there exists a measurable function ρ :Ω −→ [0,∞)

such that for any measurable subset A ∈ A holds

μ(A) =

∫
A

ρ dν .

The function ρ is called Radon-Nikodym derivative or density function and is also
denoted by dμ

dν .
Note that ρ is uniquely defined up to a ν-null set.

Let us now consider Radon measures on locally compact spaces. The idea is to consider
a locally compact topological space X as underlying measure space. By doing so Radon
measures can be expressed in terms of continuous linear functionals on the space of
continuous functions with compact support, i.e Cc(X). This approach, which has
amongst others been taken by Bourbaki (2004), allows the development of measure
and integration theory in terms of functional analysis. However, in order to identify
continuous linear functionals on Cc(X) with Radon measures, we recall an essential
result. The following theorem traces back to the Hungarian mathematician Frigyes

Riesz (1909), who stated the theorem for continuous functions on the unit interval.
Then Andrey Markov (1938) extended the result to some non-compact spaces.
Finally, Shizuo Kakutani (1941) further extended the assertion to compact Hausdorff
spaces.

Theorem 2.9 (Riesz-Markov-Kakutani Representation Theorem).
Let X be a locally compact Hausdorff space and B(X) the Borel σ-algebra on X. Let
furthermore I :Cc(X) −→ R be a non-negative linear functional. Then there exists a
unique Radon measure μ :B(X) −→ [0,∞] such that

I(ψ) =

∫
X

ψ dμ

for all ψ ∈ Cc(X) with

μ(K) = inf{I(ψ) | ψ ∈ Cc(X), ψ ≥ χK , K compact} ,

μ(A) = sup{μ(K) | K ⊂ A, K compact, A ∈ B(X)} .

This theorem can be extended in several ways. We just want to give a brief summary
about representations of non-negative linear functionals.
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Lemma 2.3 (Summary Representation Theorems).
Let X be a locally compact Hausdorff space and B(X) the Borel σ-algebra on X. Then
we have equivalence between the non-negative linear functionals on

1. Cc(X) and Radon measures on B(X),

2. C0(X) and finite Radon measures on B(X),

3. C(X) and Radon measures with compact support in case that X is σ-compact.

By using Banach spaces of finite signed Radon measures, these representation theorems
allow the description of certain Banach spaces of continuous functions. However, the
general introduction to the theory using signed or complex Radon measures is quite
challenging. For lack of space further details shall be omitted and we concentrate on
(C0(X), ‖·‖∞). The interested reader may find further information in Schwartz (1973).
For our purposes it shall be sufficient to consider Theorem 2.9 for finite signed Radon
measures. In so doing, we will determine the dual space of C0(X), where X is a locally
compact Hausdorff space.

Theorem 2.10 (Representation Theorem for the Dual of C0(X)).
Let X be a locally compact Hausdorff space. Then

Φ:M(X) −→ C∗
0(X) with

Φ(μ) :=

∫
X

ψ dμ ∀ ψ ∈ C0(X) ,

is a monotonic isometric isomorphism, for which holds

‖Φ(μ)‖ = ‖μ‖TV(X) .

For lack of space, we omit further deductions and proofs of this subsection and refer
again to Elstrodt (2004) and Schwartz (1973).

Remark 2.7.
Concluding, we note that the total variation of a measure may equivalently be defined
as

‖μ‖TV(X) := sup

{∫
X

ψ dμ | ψ ∈ C0(X), ‖ψ‖∞ ≤ 1

}
.
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2.3. Convex Analysis

In this section we recall some results from convex analysis needed in this thesis. For
the sake of brevity, we will only discuss some subdifferential calculus and end with the
concept of Legendre-Fenchel duality. The reader may find further and more detailed
information on convex analysis in Boyd and Vandenberghe (2004), Ekeland and

Témam (1999), Rockafellar (1970) or Hiriart-Urruty and Lemaréchal (1993,
Chapter 4).
We start by recalling the definitions of a convex set and subsequently a convex functional.

Definition 2.28 (Convex Set).
Let U be a Banach space. A subset U ⊂ U is called convex if for all u, v ∈ U holds

λu+ (1− λ)v ∈ U ∀ λ ∈ [0, 1] .

Definition 2.29 (Convex Functional).
Let U be a convex set. A functional J : U −→ R ∪ {∞} is called convex if for all
u, v ∈ U holds

J(λu+ (1− λ)v) ≤ λJ(u) + (1− λ)J(v) ∀ λ ∈ [0, 1] . (2.7)

J is called strictly convex if (2.7) is a strict inequality for all λ ∈ (0, 1) and u �= v. In
the case that J and U are convex, the optimization problem (1.4) is also called convex.

In Figure 2.7 we see the illustration of Definition 2.29 for J being a strictly convex
function.

J(v)

λJ(u) + (1− λ)J(v)

J(λu+ (1− λ)v)

J(u)

u λu+ (1− λ)v v

Figure 2.7.: Strictly convex function
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2.3.1. Subdifferential Calculus

In order to include functionals, which are not Fréchet-differentiable, into our consid-
erations, a generalized concept of differentiability is necessary. Thus we introduce
the subdifferential of a convex functional to gain some insight about the solution of a
variational problem.

Definition 2.30 (Subdifferential).
Let U be a Banach space with dual space U∗. Furthermore, let J :U −→ R ∪ {∞} be a
proper convex functional.

Then J is called subdifferentiable at u ∈ U in case there exists an element p ∈ U∗ such
that

J(v)− J(u)− 〈p, v − u〉U ≥ 0 ∀ v ∈ U . (2.8)

Moreover, p is called subgradient at position u.

The collection of all subgradients at position u, i.e.

∂J(u) := {p ∈ U∗|J(v)− J(u)− 〈p, v − u〉U ≥ 0, ∀ v ∈ U} ⊂ U∗ ,

is called subdifferential of J at u.

In the special case that J is Fréchet-differentiable the subdifferential coincides with the
classical definition, i.e. ∂J(u) = {J ′(u)}.

Example 2.3 (Subdifferential of the �1-Norm).
Let J : R −→ R+ be the absolute value function, i.e. J(u) = |u|. Since J(u) is
differentiable for u �= 0 the subdifferential of the absolute value function in this case is
obviously given by

∂J(u) =

⎧⎨⎩{1} , for u > 0

{−1} , for u < 0
.

By using Definition 2.30, we see that ∂|0| = [−1, 1] holds. Therefore, the subdifferential
of the �1-norm can be characterized componentwise like the absolute value function, i.e.

p ∈ ∂ ‖u‖1 ⇔
⎧⎨⎩|pi| ≤ 1, if ui = 0 ,

pi = sign(ui), else .

A subgradient of the absolute value function is displayed in Figure 2.8.
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|u|

u

| · |

v

|v|

〈p, ·〉 with
p ∈ [−1, 1]〈p, v〉

0

Figure 2.8.: Visualization of a subgradient p ∈ ∂|0| of the absolute value function.

In variational methods the functionals, which shall be minimized, usually consist of
the sum of a data fidelity term and at least one regularization functional. Computing
the subdifferential of such functionals is not always straight forward. To simplify the
work with those types of minimization problems, we additionally recall the following
properties of the subdifferential:

Lemma 2.4 (Additivity of the Subdifferential).
Let U be a real Banach space and let J1, J2 :U −→ R∪{∞} be proper convex functionals,
which are furthermore lower semi-continuous. If there exists a point ū ∈ domJ1∩domJ2,
where J1 is continuous, it holds that

∂ (J1 + J2) (u) = ∂J1(u) + ∂J2(u) ∀ u ∈ U .

A proof can be found in Ekeland and Témam (1999, Chapter 1, Proposition 5.6).
Since we are quite often confronted with 1-homogeneous functionals, we characterize
their subdifferential at this point.

Lemma 2.5 (Subdifferential of 1-Homogeneous Functionals).
Let U be a real Banach space with dual space U∗ and let the proper convex functional
J : U −→ R ∪ {∞} be 1-homogeneous, i.e. J(αu) = αJ(u), ∀ α > 0. Then the
subdifferential of J reads as follows:

∂J(u) = {p ∈ U∗| 〈p, u〉U = J(u), 〈p, v〉U ≤ J(v) ∀ v ∈ U} .
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Proof.
Using the definition of the subgradient (2.8) yields

〈p, v − u〉U ≤ J(v)− J(u) ∀ v ∈ U .

If we choose v = 0, we obtain

〈p, u〉U ≥ J(u) .

By choosing v = 2u and using the one-homogenity of J , we furthermore obtain

〈p, u〉U ≤ J(2u)− J(u) = 2J(u)− J(u) = J(u) .

Hence we have 〈p, u〉U = J(u). Inserting this into the definition of the subgradient (2.8)
we finally obtain

〈p, v〉U ≤ J(v) ∀ v ∈ U .

The subdifferential is very useful to compute optimality conditions for general convex
variational problems like (1.4). We gain some insight about its optimal solution by
using the following theorem.

Theorem 2.11 (Subdifferential and Optimality).
Let U be a Banach space and let J :U −→ R ∪ {∞} be a proper convex functional.
An element u ∈ U is a minimizer of J if and only if 0 ∈ ∂J(u).

Proof.
By Definition 2.30 of the subdifferential we have

0 = 〈0, v − u〉U ≤ J(v)− J(u) ∀ v ∈ U

for 0 ∈ ∂J(u). Therefore, u is a global minimizer of J .
In case that 0 /∈ ∂J(u) holds, there exists at least one v ∈ U with

J(v)− J(u) < 〈0, v − u〉U = 0 .

Hence u cannot be a minimizer of J .

Since our functionals are convex, the first-order optimality condition is not only necessary,
but also sufficient.
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2.3.2. Legendre-Fenchel Duality

In the analysis of variational problems like (1.4) the concept of duality, which we will
recall shortly in this subsection, is very useful. More details on this subject can be
found in Rockafellar (1970), Rockafellar and Wets (1997, Chapter 11) or
Boyd and Vandenberghe (2004, Section 3.3 and 5).
After primarily introducing the concept of the convex conjugate, we are going to give
some results and examples. Finally we end this subsection by stating Fenchel’s duality
theorem, which is one of the main results in convex analysis.

Definition 2.31 (Convex Conjugate).
Let U be a Banach space with dual space U∗. The convex conjugate J∗ :U∗ −→ R of a
functional J :U −→ R is defined by

J∗(p) := sup
u∈U

{〈p, u〉U − J(u)} .

The biconjugate J∗∗ :U −→ R of J is defined as

J∗∗(u) := sup
p∈U∗

{〈u, p〉U∗ − J∗(p)} .

Note that the convex conjugate is also known as Legendre-Fenchel transform, which
was named after Adrien-Marie Legendre and Werner Fenchel.
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J(u)〈p,u〉

〈p,u〉 − J(u)

sup
u

{〈p,u〉 − J(u)}

(a) In this example hp(u) = 〈p, u〉−J(u) is plotted
for p = −2. To obtain the convex conjugate, we
have to vary p (red). The green dots indicate
the maxima of hp(u) for different values of p,
however, they are are still plotted against u.
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(b) In green we see the maxima of hp(u) as a func-
tion of p, which is equal to the convex conjugate
J∗(p).

Figure 2.9.: Construction of the convex conjugate J∗(p) of a function J(u)
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In Figure 2.9 we see how the convex conjugate can be constructed. We especially see
that the distance to the y-axis of min

u
J(u) as well as of min

p
J∗(p) is equal except for

the sign. Furthermore, the negative y-value of the minimum of J∗(p) equals the value,
where J(u) intersects the y-axis.
Note that the biconjugate J∗∗ is also the closed convex hull of J (cf. Figure 2.10), i.e.
the largest lower semi-continuous convex functional with J∗∗ ≤ J . Furthermore, the
Fenchel-Moreau theorem (cf. Ioffe and Tihomirov (1979, Section 3.3)) states that for
proper functionals J holds J = J∗∗ if and only if J is convex and lower semi-continuous.

Figure 2.10.: A nonconvex function can be seen in black and green, whereas its convex
hull consists of the black and red parts

The following theorem, which can be found in Rockafellar (1970, Theorem 31.1, p.
327), is a very important result in convex analysis, since it allows the reformulation of a
minimization problem into an equivalent dual formulation, which might in some cases
be easier to handle than the original primal problem.

Theorem 2.12 (Fenchel’s Duality Theorem).
Let J1 :V −→ R and J2 :W ⊂ U −→ R be proper, lower semi-continuous and convex
functionals for reflexive Banach spaces U , V and W, such that domJ1 ∩ domJ2 �= ∅.
Furthermore, let A :U −→ V be a continuous linear operator. Moreover, let be α ∈ R

and w ∈ V .
Then the following equality holds:

inf
z∈W

{
1

α
J1(Az − w) + J2(z)

}
= sup

p∈V∗

{
− 1

α
J∗
1 (αp)− J∗

2 (−A∗p)− 〈p, w〉V
}

. (2.9)
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Proof.
In this thesis we only want to sketch the proof like it was done in Benning (2011). For
a detailed proof see Ekeland and Témam (1999, Chapter 3, Sections 1-4).
Starting with

inf
z∈W

{
1

α
J1(Az − w) + J2(z)

}
,

we can rewrite this expression in terms of a Lagrange functional to

inf
z∈W,v∈V

sup
p∈V∗

{
1

α
J1(v) + J2(z) + 〈p,Az − w − v〉V

}
.

Due to the assumptions made above, we can exchange infimum and supremum and
obtain

sup
p∈V∗

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩inf
v∈V

{
1

α
(J1(v)− 〈αp, v〉V)

}
︸ ︷︷ ︸

− 1
α
J∗
1 (αp)

+ inf
z∈W

{J2(z)− 〈−A∗p, z〉W}︸ ︷︷ ︸
−J∗

2 (−A∗p)

−〈p, w〉V

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭ .

Thus (2.9) holds.

For further illustration of the concept of duality, we cite an interesting example, which
can be found in Möller (2012, Section 2.1, Example 2.1.6).

Example 2.4.
Consider U = Rn, V = Rm, A ∈ Rm×n, z ∈ U and data w ∈ V. Let the characteristic
function of the corresponding set be denoted by χ‖·‖≤α. In Table 2.1 we display some
examples of primal minimization problems with their corresponding dual problems.

Primal Problem Dual Problem
1
2
‖Az − w‖22 + α‖z‖1 1

2
‖p− w‖22 + χ‖·‖∞≤α(A

Tp)

1
2
‖Az − w‖22 + χ‖·‖1≤α(z)

1
2
‖p− w‖22 + α‖ATp‖∞

1
2
‖Az − w‖22 + α‖z‖∞ 1

2
‖p− w‖22 + χ‖·‖1≤α(A

Tp)

1
2
‖Az − w‖22 + χ‖·‖∞≤α(z)

1
2
‖p− w‖22 + α‖ATp‖1

1
2
‖z − w‖22 + α‖Az‖1 1

2
‖ATp− w‖22 + χ‖·‖∞≤α(p)

χAz=w(z) +R(z) −〈w, p〉+R∗(ATp)

Table 2.1.: Examples of minimization problems and their corresponding duals
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2.4. Introduction to Sparsity

In variational methods such as the one proposed in (1.4), �p-norms can be used as
regularization functionals in order to favor solutions with certain properties.
There are many applications, in which the solution may be expressed by only a few
basis vectors. The advantage of this property is that their solution can be recovered
with only few information. On these grounds, algorithms may be accelerated, data can
be highly compressed and thus less storage is needed. For these reasons, we motivate
the usage of certain �p-norms as regularization functionals, which promote solutions
with only few nonzero entries, i.e. sparse solutions. The general theory behind this idea
is called compressed sensing or compressive sensing, see for instance Donoho (2006).
Recovering sparse solutions has been a widely researched topic over the last years and
found many real life applications, such as the image compression format JPEG-2000 and
the audio compression format MP3, cf. Mallat (2008). These formats use the fact that
images or audio signals can often be well approximated by using sparse representations
of a suitable dictionary.
In this section we introduce sparsity-promoting functionals. We start by presenting the
so-called �0-“norm”, which on the one hand enforces sparsity, but on the other hand it is
highly nonconvex. In order to avoid problems with non-convexity, we moreover propose
the convex relaxation of the �0-“norm”, namely the �1-norm. Finally we end this section
by introducing regularization with Radon measures, which results from considering the
�1-regularization in a continuous manner.

2.4.1. �0-Regularization

The basic idea behind promoting sparsity in reconstruction problems is to consider the
so-called �0-norm of a vector z ∈ RM , i.e.

‖z‖0 :=
M∑
i=1

|zi|0 (2.10)

with the convention 00 := 0, which is not a norm in the classical sense and not even a
quasi-norm. Nevertheless, since (2.10) can be interpreted as the limit of the �p-norm
for p → 0, it has been named “norm” anyway. The �0-norm is a measure for sparsity,
since it counts the number of nonzero entries of a signal z. Thus it promotes solutions
with only few nonzero entries, in case that it is used as a penalty term. In this context
we consider the following property of a signal:
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Definition 2.32 (s-Sparsity).
A signal z is called s-sparse if it holds

‖z‖0 = s .

Ideally we would like to consider problems like

min
z

‖z‖0 s. t. Az = w (2.11)

or formulated in an unconstrained way as

min
z

1

2
‖Az − w‖22 + α ‖z‖0 . (2.12)

By case differentiation we can see that for problem (2.12) with A being the identity
the optimal solution is the hard shrinkage of w with threshold

√
2α, i.e. it can be

characterized componentwise as

ẑi =

⎧⎨⎩wi, if |wi| ≥
√
2α ,

0, else.

An illustration of the hard shrinkage operator can be seen in Figure 2.11.

−√
2α

√
2α

ẑi

wi0

Figure 2.11.: Visualization of the hard shrinkage operator as a function of wi with
fixed regularization parameter α

Unfortunately it turns out that the �0-norm is extremely non-convex and hence the
computation of global minima for an arbitrary matrix A is very difficult. In fact the
solution of problems (2.11) and (2.12) is even NP-hard (cf. Natarajan (1995) and
Davis et al. (1997)) and thus this approach is not really applicable in real life.
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2.4.2. �1-Regularization

In the last subsection we have seen that the minimization of problems (2.11) and (2.12)
raises difficulties due to the nonconvexity of the �0-norm.
Basically there are two ways to overcome this problem, either one has to use greedy
algorithms (cf. Donoho et al. 2006, Gilbert and Tropp 2007, Kunis and Rauhut

2008, Needell and Vershynin 2009, Rauhut 2008, Tropp 2004) or convex relax-
ation (cf. Ekeland and Témam 1999) of (2.11), which results in the �1-minimization
problem

min
z

‖z‖1 s. t. Az = w . (2.13)

We concentrate on convex relaxation and develop some regularizations, which are based
upon the fact that the �1-norm is the convex relaxation of the �0-norm.
There can be found several sufficient conditions for a solution of (2.11) being the unique
minimizer of (2.13), such as the nullspace property (NSP) (cf. Cohen et al. 2009,
Donoho and Huo 2001), the restricted isometry property (RIP) (cf. Candès and

Tao 2005), the mutual incoherence property (MIP) (cf. Donoho and Huo 2001),
the exact recovery condition (ERC) (cf. Tropp 2004) and the property based on the
characteristic γk(A) (cf. Juditsky and Nemirovski 2011). We will not go into the
details of these properties for exact recovery and refer the reader to Fornasier (2010)
for further information.

Comparing the �1-norm with the �2-norm of a signal, one can discover signals with
similar values of the �2-norm, even if the structure of the signals differs considerably.
For instance a sparse signal can have the same �2-norm as a dense signal. However,
the �1-norm of a sparse and a dense signal differs significantly. This provides another
indication for the usage of the �1-norm in case sparse signals can be expected.
A widely-used variational scheme in compressed sensing consists of an �2-data fidelity
and an �1-regularization term, i.e.

min
z

1

2
‖Az − w‖22 + α ‖z‖1 , (2.14)

which is an unconstrained version of the constrained problem (2.13). Let us again
consider the case where A is the identity. Fortunately in this case the solution of (2.14)
can be easily computed componentwise via the soft shrinkage operator, i.e.

ẑi = shrink(wi, α) := sign (wi)max(|wi| − α, 0) , (2.15)

which can be seen in Figure 2.12.
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−α
α

ẑi

wi0

Figure 2.12.: Visualization of the soft shrinkage operator as a function of wi with
fixed regularization parameter α

2.4.3. Regularization with Radon Measures

In this subsection we introduce another important type of regularization method. Recent
research makes significant progress in analyzing the asymptotics of certain regularization
energies. In so doing, Radon measures (as proposed in Subsection 2.2.6) prove to be a
useful and versatile tool.
In order to contemplate the �1-regularization in a continuous manner, one might first
approach this problem by using the L1-norm as a continuous counterpart to the �1-norm,
i.e.

R(u) = ‖u‖L1(Ω) ,

for a function u :Ω −→ R with Ω ⊂ Rd and d ∈ N. One might also want to consider the
L1-norm not only of a signal itself, but also of a certain operator applied to the signal
such as

R(u) = ‖Au‖L1(Θ) ,

with A : U(Ω) −→ L1(Θ) for a suitable Banach space U(Ω) and suitable sets Ω and
Θ. However, in Subsection 2.2.5 we observed that the space L1(Ω) might be too
restrictive for certain applications. Choosing A = ∇ for instance permits only solutions
u ∈ W 1,1(Ω), which has not proved satisfactory, since W 1,1(Ω) does not contain functions
with discontinuities.
In order to overcome this difficulties Bredies and Pikkarainen (2013) studied inverse
problems in the space of finite Radon measures. They consider linear inverse problems
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of the type

Kμ = ŵ , (2.16)

where the exact data ŵ is contained in a Hilbert space H and μ is an element of
M(Ω,Rm), which denotes the space of finite vector-valued Radon measures. K is
supposed to map continuously from M(Ω,Rm) into H. Note that the set Ω is allowed
to be a continuum. Due to the representation proposed in Theorem 2.10, it turns out
to be useful to consider linear mappings, which are adjoints of linear and continuous
maps A :H −→ C0(Ω,R

m), i.e. K = A∗. The usage of finite Radon measures proved to
be a decisive advantage, since M(Ω,Rm) allows for finite linear combinations of delta
peaks. With respect to the possibly continuous index set Ω, this fact can be interpreted
as continuous counterpart to discrete sparsity. Therefore, Bredies and Pikkarainen

analyze the variational scheme

min
μ∈M(Ω,Rm)

1

2
‖Kμ− w‖2H + α ‖μ‖M(Ω,Rm) (2.17)

with K = A∗ for noisy data w.
There exists a minimizer for this variational model as we can see in the following
theorem, which we cite from Bredies and Pikkarainen (2013, Proposition 3.1).

Theorem 2.13 (Existence of a Minimizer).
Let A :H −→ C0(Ω,R

m) be linear and continuous and let w ∈ H and α > 0 hold.
Moreover, let be K = A∗. Then there exists a solution μ∗ ∈ M(Ω,Rm) for the
minimization problem (2.17). In case that K is injective, μ∗ is the unique solution of
the problem.

Due to compactness we omit the proof, which can be found in the above-mentioned
paper.
On the basis of this entire approach we will analyze the asymptotics of spatial sparsity
priors in Chapter 7.
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3
MIXED NORMS AND THEIR ABILITY TO

PROMOTE STRUCTURED SPARSITY

In this chapter we introduce mixed �p,q-norms as a generalization of usual �p-norms (cf.
Subsection 2.2.3). By using mixed norms as regularization functionals for variational
methods, where the unknown is considered to be a matrix, various structures of the
minimizer can be promoted by considering different values for p and q. Therefore, using
mixed norms as regularization functional for the solution of inverse problems can be a
useful tool.

In the first section we give a general introduction to the topic of mixed norms and
emphasize their relationship to operator norms, which are already well established in
literature. We not only state their similarities, but also explain some differences between
these two matrix norms. Afterwards, we demonstrate how mixed norms can be used to
promote sparsity for matrices. Certainly, promoting usual sparsity by choosing p and
q equal to one is an option. However, the versatility of mixed norms rather emerges
from choosing p unequal to q. In particular, choosing either p or q to be equal to one
and its corresponding other as larger than one turns out to be beneficial, since those
regularizations promote differently structured sparsities. As an example thereof we
shortly explain the idea of joint sparsity. Subsequently, we introduce local sparsity via
the �1,∞-norm, which shall be further analyzed in the course of this thesis.
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3.1. Introduction to Mixed �p,q-Norms

The concept of �p-norms as proposed in Subsection 2.2.3 can be generalized to �p,q-norms,
where we shall consider finite and infinite matrices (i.e. two dimensional sequences)
instead of one dimensional sequences. There are mainly two different definitions of
mixed norms. We shall give a brief introduction of both of them and show some relations
between these two definitions in conclusion.
First we go along the lines of Rakbud and Ong (2011, Section 1) in order to introduce
operators between �p(Ω) and �q(Ω). This will yield the first definition of mixed �p,q-
norms based on the operator norm. Afterwards, we will introduce mixed norms as a
composition of �p- and �q-norms, which shall be used throughout this thesis.

Definition 3.1 (Infinite Matrix).
Let Ω be a field. We call A an infinite matrix if A :=

{{amn}m∈N
}
n∈N is a sequence of

sequences with amn ∈ Ω for all m,n ∈ N, i.e.

A = {amn}m,n∈N =

⎛⎜⎜⎜⎜⎝
a11 a12 a13 . . .

a21 a22 a23 . . .

a31 a32 a33 . . .
...

...
... . . .

⎞⎟⎟⎟⎟⎠ .

In the course of this thesis we work with sequences in �q(Ω) of sequences in �p(Ω). Thus
we concentrate on these sequence spaces and their resulting infinite matrices. In order
to do so, we first present some further definitions.

Definition 3.2 (Linear Operator between �p(Ω) and �q(Ω)).
Let be p, q ∈ [1,∞) and let A = {amn}m,n∈N be an infinite matrix. A defines a linear
operator from �p(Ω) to �q(Ω) if

∞∑
n=1

amnxn < ∞ ∀ m ∈ N

holds for all {xn}n∈N ∈ �p(Ω) and we have

Ax =

{ ∞∑
n=1

amnxn

}
m∈N

∈ �q(Ω) i.e.
∞∑

m=1

∣∣∣∣∣
∞∑
n=1

amnxn

∣∣∣∣∣
q

< ∞ .

Then we call A :�p(Ω) −→ �q(Ω) with x �→ Ax the linear operator defined by A.
Note that the cases p = ∞ and q = ∞ can be obtained by replacing the corresponding
norm by the supremum.
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Definition 3.3 (Space of Infinite Matrices � � p,q(Ω)).
Let Ω be a field and let �p(Ω) and �q(Ω) be two sequence spaces as defined in Definition
2.17 for p, q > 1. We define � � p,q(Ω) as the vector space of all infinite matrices defining
continuous linear operators from �p(Ω) into �q(Ω). We see that � � p,q(Ω) is naturally a
normed vector space with the operator norm

‖A‖�p,q := sup
x∈�p(Ω)

‖Ax‖q
‖x‖p

= sup
‖x‖p=1

‖Ax‖q . (3.1)

Since �p(Ω) and �q(Ω) are Banach spaces, � � p,q(Ω) is also a Banach space.

There exist several different definitions of �p,q-norms in literature (cf. for instance
Kowalski 2009, Tropp 2006a), especially in combination with finite matrices. For
our purposes we consider �p,q(Ω) with another type of mixed norms, mainly the one
defined in Kowalski (2009, Definition 1), which can also be found in Samarah

et al. (2005, Definition 2). It is consistent with the composition of two �p-norms, i.e.
‖·‖p,q = ‖·‖q ◦ ‖·‖p =

∥∥∥‖·‖p∥∥∥
q
, cf. also Kowalski and Torrésani (2009).

Before going into further details, it might be interesting to know that there exists
a general theory about mixed norms as composition of several Lp-norms, �p-norms
respectively. The interested reader might gain further information on this topic in
Benedek and Panzone (1961), where also many properties of mixed norms are
proven.
However, for our purposes we restrict this introduction to the case of composing an
�q-norm with an �p-norm.

Definition 3.4 (Mixed �p,q-Norms).
Let the infinite matrix w with entries wmn ∈ R+\{0} for all m,n ∈ N be a weight
matrix. Furthermore, let A be an infinite matrix and let be p ≥ 1 and q ≥ 1.
Then the mixed �p,q-norm is defined as

‖A‖w;p,q :=

⎛⎝ ∞∑
m=1

( ∞∑
n=1

wmn |amn|p
) q

p

⎞⎠ 1
q

. (3.2)

For the sake of simplicity, we define ‖·‖p,q := ‖·‖12;p,q, where 12 denotes the corresponding
infinite matrix of ones.
The cases where we have p = ∞ and q = ∞ may again be obtained by replacing the
corresponding norm by the supremum. Note that the above mentioned definition holds
for finite matrices as well.
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Lemma 3.1.
The mixed �p,q-norm as defined in Definition 3.4 is truly a norm.

This property can be seen rather easily, since the mixed �p,q-norm is obviously a
composition of �p- and �q-norms.

Proof.
Let A and B be two infinite matrices and let be α ∈ C. Then we obtain the following
properties of a norm:

1. Definiteness:
‖A‖p,q = 0 ⇒ A ≡ 0

2. Absolute homogeneity:

‖αA‖p,q =
∥∥∥‖αA‖p∥∥∥

q
=

∥∥∥|α| ‖A‖p∥∥∥
q
= |α|

∥∥∥‖A‖p∥∥∥
q
= |α| ‖A‖p,q

3. Triangle inequality:

‖A+ B‖p,q =
∥∥∥‖A+ B‖p

∥∥∥
q
≤

∥∥∥‖A‖p + ‖B‖p
∥∥∥
q

≤
∥∥∥‖A‖p∥∥∥

q
+

∥∥∥‖B‖p
∥∥∥
q
= ‖A‖p,q + ‖B‖p,q

Now we can define another space of infinite matrices using the norm (3.2), cf. Samarah

et al. (2005, Definition 2).

Definition 3.5 (Weighted mixed-norm space �p,qw (Ω)).
Let the infinite matrix w with wmn ∈ R+\{0} for all m,n ∈ N be a weight matrix.
The space �p,qw (Ω) with 0 < p, q ≤ ∞ consists of all infinite matrices A = {amn}, for
which the �p,q-norm as defined in (3.2) is finite.
Again we simplify the notation if w = 12, i.e. we define �p,q(Ω) := �p,q

12 (Ω).

Note that from now on we refer to Definition 3.4 when we use the terms �p,q-norm or
mixed norms if not stated otherwise.

Remark 3.1.
For finite matrices, the norm ‖·‖�p,q given by (3.1) and the norm ‖·‖p,q defined by (3.2)
are equivalent.

Similarly to the definition of �p,q(Ω), one can define mixed Lebesgue spaces on the basis
of usual Lebesgue spaces, cf. Subsection 2.2.2.
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Definition 3.6 (Mixed Lebesgue Spaces Lp,q(Ω)).
Let be p, q ≥ 1 and let Ω and Ω̃ be two fields. The space Lp,q(Ω× Ω̃) is defined as the
set of all measurable functions u :Ω× Ω̃ −→ R, for which the Lp,q-norm

‖u‖Lp,q(Ω×Ω̃) :=

(∫
Ω̃

(∫
Ω

|u(x, y)|p dx
) q

p

dy

) 1
q

is finite. Note that the Lp,q-norm is the composition of the Lp- and the Lq-norm, i.e.
‖u‖Lp,q(Ω×Ω̃) = ‖·‖Lq(Ω̃) ◦ ‖·‖Lp(Ω) =

∥∥∥‖·‖Lp(Ω)

∥∥∥
Lq(Ω̃)

.

However, in this thesis we will predominantly use their discrete counterparts. In the
following we therefore present some properties of �p,q-norms.
Some special types of �p,q-norms can be represented by operator norms (cf. Definition
3.3). As an example we consider the �1,∞-norm, which will be of particular importance
in the course of this thesis. Further representations of mixed norms as operator norms
can be found in Table 3.1. However, not every mixed �p,q-norm has a representation as
operator norm as we shall see in Example 3.2.

Example 3.1 (Operator Norm Representation of the Mixed �1,∞-Norm).
Let A be an infinite matrix. Then we have

‖A‖�∞,∞ = sup
‖x‖∞=1

‖Ax‖∞ = sup
‖x‖∞=1

sup
i∈N

∣∣∣∣∣
∞∑
j=1

aijxj

∣∣∣∣∣ = sup
i∈N

sup
‖x‖∞=1

∣∣∣∣∣
∞∑
j=1

aijxj

∣∣∣∣∣
= sup

i∈N

∞∑
j=1

|aij| = ‖A‖1,∞ ,

which uses the fact that the sum over j becomes maximal in case that xj = sgn(aij)
holds.

Thus we see that a matrix with finite �1,∞-norm induces an operator between �∞(Ω)

and �∞(Ω).

Mixed Norm Operator Norm

‖A‖1,∞ ‖A‖�∞,∞

‖A‖∞,∞ ‖A‖�1,∞
‖A‖1,1 ‖A‖�∞,1

‖A‖∞,1 ‖A‖�1,1
Table 3.1.: Equalities of the mixed norms (3.1) and (3.2).
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Example 3.2 (Spectral Norm & Frobenius Norm).
Let A ∈ RM×N be a finite matrix.

Then the spectral norm ‖A‖�2,2 , which is the largest singular value of A, and the
Frobenius norm ‖A‖F := ‖A‖2,2 are equivalent, i.e.

‖A‖�2,2 ≤ ‖A‖2,2 ≤
√
min {M,N} ‖A‖�2,2 .

These inequalities are consequences of the representation of the Frobenius norm via its
singular value decomposition, i.e.

‖A‖� 2
2,2 = σ2

max ≤ σ2
1 + . . .+ σ2

r︸ ︷︷ ︸
‖A‖22,2

≤ rσ2
max = r ‖A‖� 2

2,2 ,

where σ1, . . . , σr are the singular values of A with r ≤ min{M,N} and σmax their
maximum. Obviously for infinite matrices this is no longer true, since in this case r can
go to infinity.
Moreover, every operator norm has to fulfill

‖IM×N‖�p,q = 1 .

However, for the Frobenius norm we obtain

‖IM×N‖2,2 =
√
min{M,N} > 1 .

Thus we have found a mixed �p,q-norm, which can not be represented by an operator
norm.

3.2. Sparsity and Mixed Norms

Promoting “usual” sparse solutions as proposed in Section 2.4 is not the only kind of
prior information available in practice. Strong recent directions of research are related
to unknowns being matrices i.e. inverse problems like (1.3). In this context mixed
norms become a useful and versatile tool. One may consider minimization problems like

min
Z

‖Z‖p,q s. t. AZ = W

for specific p > 0 and q > 0, where A ∈ RL×M , Z ∈ RM×T and W ∈ RL×T . Depending
on the choice of p and q these minimization problems may be used to incorporate
structured sparsity.
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Example 3.3 (Usual Sparsity on Matrices).
Let for instance p = q = 1 holds. By considering the optimization problem

min
Z

‖Z‖1,1 s. t. AZ = W ,

we promote usual sparsity as proposed in Subsection 2.4.2 on the vectorized matrix
vec(Z), since we obviously have

‖Z‖1,1 = ‖vec(Z)‖1 .

Thus we see that we should consider either p �= 1 or q �= 1 in order to incorporate more
prior information concerning structured sparsity.

3.2.1. Joint Sparsity via �p,1-Regularizations

By presenting sparsity-related mixed norms, we now shortly introduce the idea of joint
sparsity, which has been studied for instance by Fornasier and Rauhut (2008) and
Teschke and Ramlau (2007). Afterwards, we continue with the motivation of local
sparsity, which shall be examined in detail during the course of this thesis.

Multi-channel signals as proposed in (1.3) frequently appear in real life applications.
These signals often permit the usage of sparse frame expansions for each channel individ-
ually. Furthermore, the different channels may also possess common sparsity patterns.
By expanding this idea, Baron et al. (2005), Gilbert et al. (2006) and Tropp (2006a)
introduced new sparsity measures, which promote such coupling of the non-vanishing
components through different channels. Usually these measures are weighted �1-norms
of �p-norms of the channels with p > 1, i.e.

‖Z‖w;p,1 :=
∞∑

m=1

wm

( ∞∑
n=1

|zmn|p
) 1

p

. (3.3)

Note that in this case the weights only belong to the �1-norm. The cases, which are of
particular interest, are given by p = 2 or p = ∞. This is reasonable, since (3.3) reduces
to the usual weighted �1-norm for p = 1 and on the other hand for 2 < p < ∞ the
expression becomes too complicated. Minimizing (3.3) favors that in the “interchannel”
vector zm all entries may become significant in case that at least one of the components
|zmn| is large.
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As an example for a real life application, we can consider color image reconstruction,
for instance art restoration. Color images are indeed non-trivial multivariate and
multi-channel signals. Motivated by the idea that discontinuities may appear in all
channels at the same locations, one may want to search for a solution with small total
variation in each channel and moreover demand from the channels to possess a common
subgradient and thus a common edge set (cf. Moeller et al. 2014). In our context
this could also be interpreted as joint gradient sparsity.

3.2.2. Local Sparsity via �1,q-Regularizations

In imaging sciences inverse problems frequently appear with some spatial dimensions
and at least one additional dimension such as time or spectral information. These
applications motivate the usage of local sparsity, which promotes that for instance every
pixel should be a sparse representation with respect to a certain dictionary including
the local behaviour in the additional dimension. Considering such a known dictionary
B ∈ RT×N and an unknown coefficient matrix U ∈ RM×N the desired matrix Z ∈ RM×T

can be written as

Z = UBT .

Inserting this into the matrix equation (1.3) yields the new inverse problem

AUBT = W , (3.4)

with A ∈ RL×M and W ∈ RL×T .
Thus the challenge is to incorporate usual sparsity on every row vector ui· of the
unknown coefficient matrix U , which means ideally we would like to minimize

‖U‖0,∞ = max
i

‖ui·‖0

subject to (3.4). Considering the fact that the �1-norm is the convex relaxation of the
�0-norm (cf. Section 2.4), a natural relaxation is to consider the minimization problem

min
U

‖U‖1,∞ s. t. AUBT = W . (3.5)

We shall analyze problem (3.5) and other �1,∞-related formulations extensively in Chap-
ter 4.
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Instead of minimizing the �1,∞-norm one may also consider minimizing �1,q-norms with
1 < q < ∞, which can be seen as a relaxation of the �1,∞-norm. However, choosing q > 2

rather complicates the problem. Thus the remaining case, which may be considered
as an alternative to �1,∞-minimization, is the one, where q = 2 holds. This case has
indeed been studied extensively in literature. Kowalski and Torrésani (2009) for
instance compare the �1,2-norm with the �2,1-norm. Furthermore, the solution of the
�1,2-regularized problem is deduced in Kowalski (2009) as a part of a more general
result.
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4
ANALYSIS OF �1,∞- RELATED

FORMULATIONS

In Subsection 3.2.2 of the previous chapter we have motivated the usage of the �1,∞-norm
as regularization functional. This chapter engages further in this topic and largely
consists of the theoretical part of our preprint Heins et al. (2014).

Unfortunately the minimization of the �1,∞-norm

‖U‖1,∞ := max
i∈{1,...,M}

N∑
j=1

|uij|

over the unknown matrix U ∈ RM×N in combination with the data constraint (3.4) is not
quite trivial. While attempting to examine this regularization functional, we perceive
that the analysis and the computational realization of the �1,∞-minimization problem
proves to be rather difficult. Therefore, we derive and analyze different formulations
of this functional in order to make the analysis and especially the computation of the
�1,∞-regularization better realizable. Moreover, we investigate some basic properties.
In this new setting we additionally analyze what happens in the special case, where
the regularization parameter tends to infinity and obtain a very simple representation
of the solution. Furthermore, we shall investigate the potential to exactly reconstruct
locally one-sparse signals by convex optimization techniques.

This analysis concerning exact recovery, cf. Section 4.2, is essential for the idea that it
may be beneficial to consider a combination of minimizing the �1,∞-norm with classical
sparsity. For A ∈ RL×M , U ∈ RM×N , B ∈ RT×N , W ∈ RL×T and α, β ∈ R+ we



74 4 Analysis of �1,∞- Related Formulations

therefore also investigate the more general problem

min
U∈RM×N

α‖U‖1,∞ + β‖U‖1,1 s.t. AUBT = W , (4.1)

which neither is a restriction for the further analysis nor complicates the computa-
tional realization. Besides the constrained model (4.1), we shall also investigate the
unconstrained variational model

min
U∈RM×N

1

2
‖AUBT −W‖2F + α‖U‖1,∞ + β‖U‖1,1 , (4.2)

which is suited to deal with noisy data as well. Here we use the Frobenius norm for
the data fidelity term, i.e. the �2,2-norm. Due to the fact that in nearly every practical
application one only looks for positive combinations of dictionary elements, we shall
put a particular emphasis on the case of an additional nonnegativity constraint on U in
(4.1), respectively (4.2).

After substantially analyzing the �1,∞-regularization, we examine the potential for further
improvements. Since in many applications we can expect images to contain sharp edges,
we discuss the possibility of including an additional regularization, which promotes
sharp edges in the image, namely total variation (TV) minimization. We consider
TV-regularization on the image itself as well as on the coefficient matrices in separate
cases. The latter results from the assumption that sharp edges in the image yield sharp
edges in the visualized coefficient matrices. However, adding another regularization to
the main problem complicates the choice of the regularization parameters.

4.1. Basic Properties and Formulations

In this section we introduce some equivalent formulations of the main problems (4.1)
and (4.2), which we use for the analysis later on. Additionally we point out some basic
properties like convexity, existence and potential uniqueness. Furthermore, we propose
the subdifferential and discuss a source condition. Moreover, we prove the equivalence
of another reformulation, which improves the accessibility of the problem for numerical
computation. Finally we investigate the limit for α → ∞ and observe what happens to
the optimal solution in that case.
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4.1.1. Problem Formulations

Since in most applications a nonnegativity constraint is reasonable, we first restrict
(4.1) and (4.2) to this case. For the sake of simplicity, we define

G :=
{
U ∈ RM×N | uij ≥ 0 ∀ i ∈ {1, . . .M} , j ∈ {1, . . . N}} .

Hence we have

min
U∈G

(
α max

i∈{1,...,M}

N∑
j=1

uij + β
M∑
i=1

N∑
j=1

uij

)
s.t. AUBT = W (4.3)

for the constrained problem and

min
U∈G

(
1

2

∥∥AUBT −W
∥∥2

F
+ α max

i∈{1,...,M}

N∑
j=1

uij + β
M∑
i=1

N∑
j=1

uij

)
(4.4)

for the unconstrained problem.
In order to make these problems more easily accessible, we reformulate the �1,∞-term in
(4.3) and (4.4) via a linear constraint.

Theorem 4.1 (Non-Negative �1,∞-Regularization).
Let F :RM×N −→ R ∪ {+∞} be a convex functional. Then

min
U∈G

(
F (U) + αmax

i

N∑
j=1

uij

)
(4.5)

is equivalent to

min
U∈G, v∈R+

F (U) + v s.t. α

N∑
j=1

uij ≤ v . (4.6)

Proof.

Introducing the constraint v = αmax
i

N∑
j=1

uij we obtain the equivalence

min
U∈G

F (U) + αmax
i

N∑
j=1

uij ,

⇔ min
U∈G

F (U) + v s.t. αmax
i

N∑
j=1

uij = v .
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Now consider the inequality-constrained problem

min
U∈G, v∈R+

F (U) + v s.t. α

N∑
j=1

uij ≤ v .

If αmax
i

N∑
j=1

uij < v holds, then (U, v) is not a minimizer, since we can choose v̄ < v,

which is still feasible and reduces the objective. Thus in the optimal case the inequality
constraint yields the equality constraint and the problems (4.5) and (4.6) coincide.

Using Proposition 4.1 and defining F as the sum of the characteristic function for the
data constraint and the non-negative �1,1-term, we are able to reformulate problem (4.3)
as

min
U∈G, v∈R+

β
M∑
i=1

N∑
j=1

uij + v s.t. α
N∑
j=1

uij ≤ v, AUBT = W . (4.7)

Likewise we obtain the unconstrained problem from (4.4) as

min
U∈G, v∈R+

1

2

∥∥AUBT −W
∥∥2

F
+ β

M∑
i=1

N∑
j=1

uij + v s.t. α
N∑
j=1

uij ≤ v (4.8)

by using the sum of the data fidelity and the non-negative �1,1-term as functional F .
In order to understand the potential exactness of sparse reconstructions, we focus on
the analysis of (4.7) in Section 4.2, however, (4.8) is clearly more useful in practical
situations when the data are not exact. Thus it builds the basis for most of the further
analysis and in particular for computational investigations.

However, we first propose another formulation, which shall make the problem more
easily accessible for the numerical solution. For this reformulation we show in Subsection

4.1.4 that max
i=1,...,M

N∑
j=1

uij(α) depends continuously on the regularization parameter α in

problem (4.5). Then we prove that α �→ max
i=1,...,M

N∑
j=1

uij(α) is monotonically decreasing

and finally we analyze its limits for α going to zero and infinity. We can then show that
under certain circumstances the support of the minimizers of (4.5) and

min
U∈G

F (U) s.t.
N∑
j=1

uij ≤ ṽ (4.9)

coincide for a certain fixed ṽ. Thus instead of regularizing with α we can now use ṽ as
a regularization parameter.
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4.1.2. Existence and Uniqueness

Let us now discuss some basic properties of �1,∞-regularized variational problems. We
show that there exists a minimizer for these problems and discuss potential uniqueness.

Existence

Since the �1,∞-regularization functional is a norm it is also convex. We want to show
that this holds for the non-negative formulation (4.10) as well.

Lemma 4.1 (Convexity of the Non-Negative �1,∞-Functional).
Let be U ∈ RM×N . The functional

R(U) :=

⎧⎪⎨⎪⎩
max

i

N∑
j=1

uij, if uij ≥ 0,

∞, else,
(4.10)

is convex.

Proof.
Let be U �= V ∈ RM×N and ω ∈ (0, 1). Then we have

R(ωU + (1− ω)V )

= max
i

N∑
j=1

(ωuij + (1− ω) vij) + χ{U,V ∈RM×N |ωuij +(1−ω)vij ≥ 0}

≤ ωmax
i

N∑
j=1

uij + (1− ω)max
i

N∑
j=1

vij + χ{U∈RM×N |ωuij ≥ 0} + χ{V ∈RM×N | (1−ω)vij ≥ 0}

= ω

(
max

i

N∑
j=1

uij + χ{U∈RM×N |uij ≥ 0}

)
+ (1− ω)

(
max

i

N∑
j=1

vij + χ{V ∈RM×N | vij≥0}

)
= ωR(U) + (1− ω)R(V )

Thus the functional (4.10) is convex.

Lemma 4.2 (Lower Semi-Continuity).
Let F :RM×N −→ R ∪ {+∞} be a convex functional. Then (4.5) and (4.6) are lower
semi-continuous.

Proof.
Since F (U) is convex, we can conclude that (4.5) is convex by using Proposition 4.1.
Due to Theorem 4.1 we deduce that (4.6) is convex as well.
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Our problem is finite dimensional and hence all norms are equivalent. In addition
it contains only linear inequalities. Therefore, we can deduce lower semi-continuity
directly from convexity, which we already have.

Let us now analyze the existence of minimizers of the different problems.

Theorem 4.2 (Existence of a Minimizer of the Constrained Problem).
Let there be at least one Ũ ∈ G that satisfies AŨBT = W . Then there exists a
minimizer of the constrained problems (4.3) and (4.7).

Proof.
Since we only have linear parts, we see that

F (U) := β

M∑
i=1

N∑
j=1

uij + C(U) with C(U) :=

⎧⎨⎩0, if AUBT = W,

∞, else,

is convex. Then Proposition 4.2 leads to lower semi-continuity of (4.3) and (4.7).
We still need to show that there exists a ξ such that the sublevel set

Sξ =

{
U ∈ G

∣∣∣∣∣ β
M∑
i=1

N∑
j=1

uij + α max
i∈{1,...,M}

N∑
j=1

uij + C(U) ≤ ξ

}

is compact and not empty.
With Ũ we have a feasible element and we can define

ξ := β

M∑
i=1

N∑
j=1

ũij + α max
i∈{1,...,M}

N∑
j=1

ũij .

Due to Ũ ∈ Sξ we see that Sξ is not empty and since for every U ∈ Sξ holds that

‖U‖1,∞ ≤ ξ

α
, if α �= 0 or ‖U‖1,1 ≤

ξ

β
, if β �= 0

and uij ≥ 0 for all i ∈ {1, . . . ,M} and j ∈ {1, . . . , N} the sublevel set Sξ is bounded.
Our functional is finite dimensional, hence Sξ is bounded in all norms. Furthermore,
boundedness of Sξ in combination with lower semi-continuity of (4.3) and (4.7) yields
compactness of Sξ. Finally we obtain the existence of a minimizer of the constrained
problems (4.3) and (4.7).

Theorem 4.3 (Existence of a Minimizer of the Unconstrained Problem).
Let be α > 0. Then there exists a minimizer of (4.4) and (4.8).



4.1 Basic Properties and Formulations 79

Proof.
Obviously

F (U) :=
1

2

∥∥AUBT −W
∥∥2

F
+ β

M∑
i=1

N∑
j=1

uij

is convex. Using Proposition 4.2 we obtain that (4.4) and (4.8) are lower semi-continuous.
The sublevel set

Sξ =

{
U ∈ G

∣∣∣∣∣ 12 ∥∥AUBT −W
∥∥2

F
+ β

M∑
i=1

N∑
j=1

uij + α max
i∈{1,...,M}

N∑
j=1

uij ≤ ξ

}

with
ξ :=

1

2
‖W‖2F

is not empty, since we obviously have 0 ∈ Sξ.
Analogously to the proof of Theorem 4.2, we see that Sξ is bounded. Due to the finite
dimensionality of the problem, we have compactness of the bounded sublevel set Sξ.
Together with semi-continuity we obtain existence of a minimizer of the unconstrained
problems (4.4) and (4.8).

Uniqueness

Let us now shortly discuss potential uniqueness of the solutions of (4.7) and (4.8).

Theorem 4.4 (Restriction of the Solution Set).
There exists a solution

(
Ū , v̄

)
of (4.7) and (4.8) with v̄ minimal, i.e. v̄ ≤ v for all

minimizers (U, v). Furthermore, v̄ is unique.

Proof.
Obviously v̄ can be defined as

v̄ := inf {v | (U, v) is a minimizer of (4.6)}

with F as in (4.7), (4.8) respectively. Due to Theorem 4.2 and 4.3, we know that v̄ < ∞
has to hold. We proof the assumption via contradiction.
Assume there exists no Ū with (Ū , v̄) being a minimizer of (4.7), (4.8) respectively. We
can find a sequence of minimizers (Uk, vk) with vk → v̄. Uk is bounded, since Uk ∈ Sξ

for all k. Thus there exists a subsequence (Ukl , vkl). Finally lower semi-continuity
provides us with the limit (Ū , v̄) being a minimizer, which is a contradiction to the
assumption. Furthermore, since we have v̄ ∈ R+, it is obviously unique.
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In Theorem 4.4 we have seen that we can reduce the solution set to those solutions with
optimal v, i.e.

S :=
{
(Ū , v̄) ∈ G× R+ is a minimizer of (4.6) | v̄ minimal

}
,

with F as in (4.7), (4.8) respectively. There always exists a unique v̄ ∈ R+, however, in
general we are not able to deduce uniqueness for (U, v̄) ∈ G× R+.

4.1.3. Subdifferentials and Source Conditions

In this subsection we characterize the subdifferentials of the �1,∞-norm and its nonnega-
tive counterpart. Furthermore, we discuss what kind of solutions Û to AÛBT = W are
likely to meet a source condition for the �1,∞-regularization.

The Subdifferential of �1,∞

We start by computing the subdifferential of the �1,∞-norm.

Theorem 4.5 (Subdifferential of the �1,∞-Functional).
Let be U, P ∈ RM×N . The subdifferential of ‖U‖1,∞ can be characterized as follows:
Let I be the set of indices, where U attains its maximum row-�1-norm, i.e.

I =

{
i ∈ {1, . . . ,M}

∣∣∣∣∣
N∑
j=1

|uij| = max
m∈{1,...,M}

N∑
j=1

|umj|
}
.

Then the following equivalence holds:

P ∈ ∂‖U‖1,∞ ⇔
⎧⎨⎩pij = wi sign(uij), if i ∈ I,

pij = 0, if i /∈ I,
(4.11)

with weights wi ≥ 0 such that
∑
i∈I

wi = 1 holds if u �= 0 and
∑
i∈I

wi ≤ 1 holds if u ≡ 0.

Proof.
First let P be chosen according to the characterization on the right hand side of (4.11).
Since ‖U‖1,∞ is 1-homogeneous, it is sufficient to verify the following two conditions (cf.
Lemma 2.5):

1.
M∑
i=1

N∑
j=1

pijuij = ‖U‖1,∞ ,

2.
M∑
i=1

N∑
j=1

pijvij ≤ ‖V ‖1,∞ for all V ∈ RM×N .
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Regarding 1., we have

M∑
i=1

N∑
j=1

pijuij =
∑
i∈I

N∑
j=1

wi sign(uij)uij =
∑
i∈I

wi

N∑
j=1

|uij| = ‖U‖1,∞
∑
i∈I

wi = ‖U‖1,∞ .

Regarding 2., we have

M∑
i=1

N∑
j=1

pijvij ≤
∣∣∣∣∣

M∑
i=1

N∑
j=1

pijvij

∣∣∣∣∣ ≤ ∑
i∈I

N∑
j=1

|pijvij| ≤
∑
i∈I

wi

N∑
j=1

|vij|

≤
∑
i∈I

wimax
m

N∑
j=1

|vmj| ≤ max
m

N∑
j=1

|vmj| = ‖V ‖1,∞ .

Thus we see that P chosen in this way belongs to the subdifferential of ‖U‖1,∞.

Now let P ∈ ∂‖U‖1,∞, such that conditions 1. and 2. hold.
We will prove the characterization of the subdifferential in five steps:

1. We show that pmn = 0 holds for all m /∈ I.
Let be m /∈ I and let n be arbitrary. Consider V with vij = uij for all (i, j) except
for vmn = umn + εsign(pmn). Since we have m /∈ I, we can choose ε > 0 small
enough such that ‖U‖1,∞ = ‖V ‖1,∞ holds. Thus we have

‖V ‖1,∞ −
M∑
i=1

N∑
j=1

pijvij =
M∑
i=1

N∑
j=1

pijuij −
M∑
i=1

N∑
j=1

pijvij

= pmn(umn − vmn) = −ε|pmn| .

Since ‖V ‖1,∞−
M∑
i=1

N∑
j=1

pijvij ≥ 0 holds by condition 2., we have shown that pmn = 0

for all m /∈ I.

2. Furthermore, we show that umnpmn ≥ 0 for m ∈ I and umn �= 0.
Let V be an element with vij = uij for all (i, j) �= (m,n) and vmn = −umn for
an arbitrary (m,n) with m ∈ I and umn �= 0. Clearly we have ‖U‖1,∞ = ‖V ‖1,∞,
which yields

‖U‖1,∞ = ‖V ‖1,∞ ≥
M∑
i=1

N∑
j=1

pijvij =
M∑
i=1

N∑
j=1

pijuij − 2umnpmn

= ‖U‖1,∞ − 2umnpmn

and hence we obtain umnpmn ≥ 0.
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3. Now we prove that for m ∈ I we have |pmn| = |pmd| = const for all (m,n) and
(m, d) with umn �= 0 and umd �= 0.
Let V be an element with vij = uij for all (i, j) /∈ {(m,n), (m, d)} and vmn =

umn− sign(umn)ε, vmd = umd+ sign(umd)ε. Let ε �= 0 be chosen small enough such
that sign(umn) = sign(vmn) and sign(umd) = sign(vmd). Clearly ‖U‖1,∞ = ‖V ‖1,∞
holds such that we have

‖U‖1,∞ = ‖V ‖1,∞ ≥
M∑
i=1

N∑
j=1

pijvij

=
M∑
i=1

N∑
j=1

pijuij + (sign(umd)pmd − sign(umn)pmn)ε

= ‖U‖1,∞ + (sign(umd)pmd − sign(umn)pmn)ε .

Thus we obtain (sign(umd)pmd−sign(umn)pmn)ε ≤ 0. Since the sign of ε is arbitrary,
the reverse inequality holds as well and we obtain sign(umn)pmn = sign(umd)pmd.
Since umn �= 0 and umd �= 0 holds, we have |sign(umn)| = |sign(umd)| = 1. Hence
we obtain |pmn| = |pmd| = const.
In the following we will denote this constant (depending on k) as

wm := |pmn| ∀ n ∈ {1, . . . , N}, m ∈ I .

4. Let us now show that
M∑
i=1

wi = 1 has to hold if we have u �= 0.

For this purpose we compute

‖U‖1,∞ =
M∑
i=1

N∑
j=1

uijpij =
∑
i∈I

∑
{j|uij 
=0}

uijpij =
∑
i∈I

∑
{j|uij 
=0}

wiuijsign(uij)

=
∑
i∈I

wi max
m∈{1,...,M}

N∑
j=1

|umj| = ‖U‖1,∞
∑
i∈I

wi

in order to see that the above claim holds.
Note that from 2. we obtain sign(umn) = sign(pmn) and thus we have pmn =

wmsign(umn) for m ∈ I.

5. Finally we show that
M∑
i=1

wi ≤ 1 holds in case we have U = 0.

In case that we have U ≡ 0, let V be such that vij = sign(pij) holds at exactly
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one index j per row i, where |pij| = max
n∈{1,...,N}

|pin| and vij = 0 else. We have

1 = ‖V ‖1,∞ ≥
M∑
i=1

N∑
j=1

vijpij =
M∑
i=1

max
n∈{1,...,N}

|pin|.

This shows that
M∑
i=1

max
n∈{1,...,N}

|pin| ≤ 1 has to be true and we can again denote

wi = max
n∈{1,...,N}

|pin|.

We can see that the collection of these five results show that P indeed meets all
requirements on the right hand side of (4.11).

One particular thing we can see from the proof of Theorem 4.5 is that P ∈ ∂‖U‖1,∞ for
an arbitrary U meets

‖P‖∞,1 =
M∑
i=1

max
j∈{1,...,N}

|pij| ≤ 1

and

‖P‖∞,1 =
M∑
i=1

max
j∈{1,...,N}

|pij| = 1 for u �= 0 .

Thus we see that the �∞,1-norm is the dual norm to the �1,∞-norm, which has already
been observed by Tropp (2006a).

The Subdifferential of the Nonnegative �1,∞-Formulation

Let us now consider the nonnegative �1,∞-functional (4.10).

Theorem 4.6 (Subdifferential of the Nonnegative �1,∞-Functional).
Let P 1,∞ ∈ RM×N be the subdifferential of the �1,∞-norm characterized as before in
(4.11) and let p1,∞ij be its entries for i ∈ {1, . . . ,M} and j ∈ {1, . . . , N}. Then the
subdifferential of the nonnegative �1,∞-functional

R(U) :=

⎧⎪⎨⎪⎩
max

i

N∑
j=1

uij, if uij ≥ 0,

∞, else,

can be characterized as

P ∈ ∂R(U) ⇔ pij = p1,∞ij + μij ,
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where μij for all i ∈ {1, . . . ,M}, j ∈ {1, . . . , N} are the Lagrange parameters with

μij

⎧⎨⎩= 0, if uij �= 0,

≤ 0, if uij = 0.

Proof.
R(U) can be written using the characteristic function, i.e.

R(U) = ‖U‖1,∞ + χ{U∈RM×N |uij ≥ 0 ∀ i, j} .

In case that the subdifferential is additive, we have

∂R(U) = ∂ ‖U‖1,∞ + ∂χ{U∈RM×N |uij ≥ 0 ∀ i, j}

and directly obtain

P ∈ ∂R(U) ⇔ pij = p1,∞ij + μij .

In order to prove that in this case the subdifferential is additive, we have to show that
the following conditions hold (cf. Lemma 2.4):

1. ‖U‖1,∞ and χ{U∈RM×N |uij≥0 ∀ i, j} are proper, convex and lower semi-continuous,

2. there exists a Ū ∈ dom ‖U‖1,∞ ∩ domχ{U∈RM×N |uij≥0 ∀ i, j}, where one of the two
functionals is continuous.

This is quite easy to see:

1. Since ‖U‖1,∞ is a norm, it is obviously proper and convex. Furthermore, we
see that χ{U∈RM×N |uij≥0 ∀ i, j} is obviously proper. It is also convex, because the
characteristic function of a convex set is also convex. Both functionals are lower
semi-continuous, since we are in a finite dimensional setting.

2. Let ūij > 0 for all i ∈ {1, . . . ,M} and j ∈ {1, . . . , N}. Then we have

Ū ∈ dom ‖U‖1,∞ ∩ domχ{U∈RM×N |uij≥0 ∀ i, j} .

Furthermore, both functionals are continuous at Ū .

Thus we see that the subdifferential is additive and we obtain the assumption.
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Remark 4.1.
Obviously P ∈ ∂R(U) can be characterized as follows:

pij

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

= 0, if i /∈ I and uij > 0,

≤ 0, if i /∈ I and uij = 0,

= wi, if i ∈ I and uij > 0,

≤ wi, if i ∈ I and uij = 0.

Source Conditions

Knowing the characterization of the subgradient, we can state a condition, which allows
us to determine whether a certain solution to AUBT = W is �1,∞-minimizing. We will
call this condition a source condition as used in the inverse problem and error estimate
literature e.g. in Burger and Osher (2004), Engl et al. (1996), Schuster et al.
(2012). However, we would like to point out that similar conditions have been called
dual certificate in the compressed sensing literature (c.f. Candès et al. (2011), Candès

and Plan (2010), Hsu et al. (2011), Zhang and Zhang (2012)).

Definition 4.1.
We say that a solution Û of AÛBT = W meets a source condition with respect to a
proper, convex regularization functional J if there exists a Q such that P = ATQB ∈
∂J(Û).

The source condition of some Û with respect to J is nothing but the optimality condition
for Û being a J-minimizing solution to AÛBT = W .

Lemma 4.3 (cf. Burger and Osher (2004)).
Let Û with AÛBT = W meet a source condition with respect to J . Then Û is a
J-minimizing solution.

Considering this, the next question naturally emerges for our characterization of the
subdifferential, i.e what kind of solutions Û to AÛBT = W are likely to meet a source
condition for �1,∞-regularization. Particularly, we are interested in investigating how
likely �0,∞-minimizing solutions are to meet a source condition.
Due to the similarity between the subgradient of the �1-norm and the subgradient of
�1,∞-norm at rows with index i ∈ I, we can make the following simple observation:

Lemma 4.4.
Let Û be an �1-minimizing solution to AÛBT = W for which

∑N
j=1 |ûij| =

∑N
j=1 |ûmj|

for all i,m ∈ {1, . . . ,M}, then Û also is an �1,∞-minimizing solution.
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Proof.
The �1-subgradient divided by the number of rows is an �1,∞-subgradient.

The above lemma particularly shows that exact recovery criteria for the properties of
the sensing matrix kron(B,A) (like the Restricted Isometry Property, the Null Space
Property, or the Mutual Incoherence Property), are sufficient for the exact recovery of
sparse solutions with the same �1-norm in each row.
Of course, we do expect to recover more �0,∞-minimizing solutions than just the ones
with the same �1-row-norm. Looking at the characterization of the subdifferential (cf.
Remark 4.1), we can observe that there are two cases that pose much more severe
restrictions, i.e. the equality constraints, than the two other cases (which only lead
to inequality constraints). Thus we generally expect solutions, which require only a
few of the equality constraints to be more likely to meet a source condition. As we
can see equality constraints need to be met for nonzero elements, such that the �1,∞-
regularization prefers sparse solutions. Additionally the constraints are less restrictive
if the corresponding row has maximal �1-norm. Thus we expect those solutions to be
likely to meet a source condition that reach a maximal �1-norm in as many rows as
possible while being sparse. Naturally, these solutions will be row-sparse, which further
justifies the idea that the �1,∞-norm can be used as a convex approximation of the
�0,∞-problem.

4.1.4. Equivalence of Formulations

In this subsection we want to show that the minimizers of (4.5) and (4.9) coincide
under certain circumstances. In order to do so, we examine how the regularization
parameter α > 0 is connected to the minimizer of (4.5). For this purpose we first prove
the continuity and monotonicity of

α �→ max
i=1,...,M

N∑
j=1

uij(α) . (4.12)

Afterwards, we shall investigate the meaning of ṽ in (4.9) and its connection to the
minimizer of F (U) with minimal �1,∞-norm. Analyzing the limits of (4.12) leads us to
the main result of this subsection and the connection between the two problems (4.5)
and (4.9).



4.1 Basic Properties and Formulations 87

Remark 4.2.
For most of the proofs in this subsection we require F (U) to be continuous. Thus most
of the results are not useful for the constrained problem (4.3), since

F (U) =

⎧⎨⎩0, if AUBT = W,

∞, else,

is not continuous. Nevertheless, in reality we have to deal with noisy data anyway and
thus we only want to implement the unconstrained problem (4.4). This will become
easier, since we can simply use its reformulation (4.9), which we will summarize in
Theorem 4.7.

For this subsection we define the functional Jα :G −→ R+ via

Jα (U) := F (U) + α max
i∈{1,...,M}

N∑
j=1

uij . (4.13)

Lemma 4.5 (Continuity of (4.12)).
Let F :RM×N −→ R+ be a convex continuous functional with bounded sublevel sets.
Let U(α) ∈ G be a minimizer of Jα with ‖U(α)‖1,∞ minimal.

Then α �→ max
i∈{1,...,M}

N∑
j=1

uij(α) is a continuous function.

Proof.
Let Uk be a minimizer of Jαk

and let αk → α be a sequence of regularization parameters.
Due to boundedness, we are able to find subsequences Ukl → U . Because of the
convergence of the subsequences, the limits of all subsequences are equal and we obtain
convergence of the whole sequence Uk → U . We prove by contradiction and claim that
U is not a minimizer of Jα. In this case there would exist a Ũ with

Jα(Ũ) < Jα (U) . (4.14)

By defining U † := αk

α
Ũ , we obtain

Jα(U
†) = F (U †) + α max

i∈{1,...,M}

N∑
j=1

u†
ij

= F
(αk

α
Ũ
)
+ αk max

i∈{1,...,M}

N∑
j=1

ũij

= Jαk
(Ũ) + F

(αk

α
Ũ
)
− F (Ũ) .
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The continuity of F yields

F
(αk

α
Ũ
)
− F (Ũ) → 0

for k → ∞ and thus we obtain

Jα(U
†) = Jαk

(Ũ) .

Since J is continuous, we obtain for k → ∞ that

Jαk
(Ũ) → Jα(Ũ) and

Jαk
(Uk) → Jα(U)

hold. By using (4.14), we see that the inequality

Jαk
(Ũ) < Jαk

(Uk)

has to hold as well. This is a contradiction to the assumption that Uk is a minimizer of

Jαk
. Hence U has to be a minimizer of Jα and we see that α �→ α max

i∈{1,...,M}

N∑
j=1

uij(α) is

continuous. Thus we also now that (4.12) is continuous on (0,∞).

Lemma 4.6 (Monotonicity of (4.12)).
Let F :RM×N −→ R+ be a convex continuous functional with bounded sublevel sets.
Let U(α) ∈ G be a minimizer of Jα with ‖U(α)‖1,∞ minimal.

Then α �→ max
i∈{1,...,M}

N∑
j=1

uij(α) is a monotonically decreasing function.

Proof.
Let be 0 < α < β. U(β) is feasible for Jα, i.e. uij(β) ≥ 0. Thus we obtain

F (U (α)) + α max
i∈{1,...,M}

N∑
j=1

uij(α)

≤ F (U (β)) + α max
i∈{1,...,M}

N∑
j=1

uij(β)

= F (U (β)) + β max
i∈{1,...,M}

N∑
j=1

uij(β) + (α− β) max
i∈{1,...,M}

N∑
j=1

uij(β) . (4.15)

On the other hand we have

F (U(β)) + β max
i∈{1,...,M}

N∑
j=1

uij(β) ≤ F (U(α)) + β max
i∈{1,...,M}

N∑
j=1

uij(α) ,
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since U(α) is feasible for Jβ. Inserting this in (4.15) yields

F (U(α)) + α max
i∈{1,...,M}

N∑
j=1

uij(α) ≤ F (U(α)) + β max
i∈{1,...,M}

N∑
j=1

uij(α)

+ (α− β) max
i∈{1,...,M}

N∑
j=1

uij(β) ,

⇔ (α− β) max
i∈{1,...,M}

N∑
j=1

uij(α) ≤ (α− β) max
i∈{1,...,M}

N∑
j=1

uij(β) ,

⇔ max
i∈{1,...,M}

N∑
j=1

uij(α) ≥ max
i∈{1,...,M}

N∑
j=1

uij(β) ,

since we have α < β. We conclude that α → max
i∈{1,...,M}

N∑
j=1

uij(α) is monotonically

decreasing.

Lemma 4.7.
Let F :RM×N −→ R+ be a convex continuous functional with bounded sublevel sets.

Let Ū ∈ G be a solution of (4.9) such that
N∑
j=1

ūij < ṽ holds for all i ∈ [1, . . . ,M ].

Then we have ṽ > ‖Û‖1,∞, where Û ∈ G is a minimizer of F (U) with ‖U‖1,∞ minimal
and vice versa.

Proof.
Let be ṽ > ‖Û‖1,∞, then Û is feasible for (4.9) and obviously a minimizer as well.

Let be ṽ ≤ ‖Û‖1,∞. Then in case that
N∑
j=1

ūij < ṽ holds for all i, we obviously have

Ū �= Û and thus we obtain

F (Ū) > F (Û) ,

since Û is a minimizer of F with ‖Û‖1,∞ minimal. Due to convexity, we obtain

F (εÛ + (1− ε)Ū) ≤ εF (Û) + (1− ε)F (Ū) < F (Ū)

and for small ε we have

ε

N∑
j=1

ûij + (1− ε)
N∑
j=1

ūij ≤ ṽ .

Thus we have found an element with smaller value of F as the minimizer Ū , which is a
contradiction.
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Lemma 4.8 (Limits of (4.12)).
Let F :RM×N −→ R+ be a convex continuous functional with bounded sublevel sets.
Then we have

max
i∈{1,...,M}

N∑
j=1

uij(α) → 0 for α → ∞ and

max
i∈{1,...,M}

N∑
j=1

uij(α) → ‖Û‖1,∞ for α → 0

with Û ∈ G being a minimizer of F with ‖U‖1,∞ minimal.

Proof.
Let U(α) be a minimizer of Jα as proposed in (4.13).

1. Consider the case of α → ∞. U = 0 is feasible for Jα, thus we obtain

F (U(α)) + α max
i∈{1,...,M}

N∑
j=1

uij(α) ≤ F (0) .

Therefore, α max
i∈{1,...,M}

N∑
j=1

uij(α) is bounded by F (0) and we have

max
i∈{1,...,M}

N∑
j=1

uij(α) → 0 for α → ∞ .

2. Now consider the case of α → 0. We can find a subsequence αk → 0 such that

U (αk) → Û

holds, where Û is a minimizer of F with ‖U‖1,∞ minimal. Obviously Û is feasible
for Jαk

. Hence we obtain

F (U(αk)) + αk max
i∈{1,...,M}

N∑
j=1

uij(αk) ≤ F (Û) + αk‖Û‖1,∞ .

Since Û is a minimizer of F , it has to hold that F (U(αk)) ≥ F (Û) and thus we
obtain

max
i∈{1,...,M}

N∑
j=1

uij(αk) ≤ ‖Û‖1,∞ .

Obviously U(α) is feasible for (4.9) with



4.1 Basic Properties and Formulations 91

ṽ = max
i∈{1,...,M}

N∑
j=1

uij(αk) .

Then Lemma 4.7 yields

N∑
j=1

uij(αk) = max
i∈{1,...,M}

N∑
j=1

uij(αk) = ‖U(αk)‖1,∞ for some i ∈ {1, . . . ,M} .

Due to the lower semi-continuity of the norm, we obtain

lim inf
αk→0

max
i∈{1,...,M}

N∑
j=1

uij(αk) = lim inf
αk→0

‖U(αk)‖1,∞ ≥ ‖Û‖1,∞

and finally we have

max
i∈{1,...,M}

N∑
j=1

uij(α) → ‖Û‖1,∞ for α → 0 .

In Figure 4.1 we see an example on how the function

v(α) := max
i∈{1,...,M}

N∑
j=1

uij(α)

could look, where U(α) ∈ G is a minimizer of Jα with ‖U(α)‖1,∞ minimal.

0

v(α)

α

‖Û‖1,∞

Figure 4.1.: Illustration of the relation between the regularization parameter α and
the nonnegative �1,∞-norm v(α) of the corresponding minimizer as defined above
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Remark 4.3.
In case that ∂F (0) �= ∅ holds, we have

max
i∈{1,...,M}

N∑
j=1

uij(α) = 0

already for α < ∞, but large enough.
We see this by considering p0 ∈ ∂F (0) and then selecting p = − 1

α
p0. Here we choose α

large enough that we have ‖p‖∞,1 < 1 and obtain

〈p, v〉 ≤ ‖p‖∞,1 J(v) ≤ J(v) .

Thus p is a subgradient at U(α) = 0 and we see that the optimality condition is fulfilled.

Finally we can conclude the following essential statement:

Theorem 4.7 (Connection of the Solutions of (4.6) and (4.9)).
Let F :RM×N −→ R+ be a convex continuous functional with bounded sublevel sets.
Let be ṽ ∈ (0, ‖Û‖1,∞), where Û is a minimizer of F (U) with ‖U‖1,∞ minimal. Let
Ū ∈ G be a solution of

min
U∈G

F (U) s. t.
N∑
j=1

uij ≤ ṽ . (4.9)

Then there exists an α > 0 such that Ū is a solution of

min
U∈G

F (U) + α max
i∈{1,...,M}

N∑
j=1

uij . (4.5)

Remark 4.4.
If U is a solution of (4.9), we can directly decide, whether there exists an α for this
problem, i.e. in the case of

ṽ = ‖U‖1,∞ .

Theorem 4.8 (Existence of a Solution of (4.9)).
Let F :RM×N −→ R+ be a convex continuous functional with bounded sublevel sets.
Then there exists a minimizer of (4.9).
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Proof.
We can write (4.9) using the characteristic function, i.e.

min
U∈G

F (U) + χ{U∈RM×N | ∑N
j=1 uij ≤ ṽ ∀ i∈{1,...,M}} .

For ξ ∈ R we consider the sublevel set

Sξ =
{
U ∈ G |F (U) + χ{U∈RM×N | ∑N

j=1 uij ≤ ṽ ∀ i∈{1,...,M}} ≤ ξ
}

.

Since F is continuous and χ(0) = 0 holds, we have 0 ∈ Sξ and thus Sξ is not empty.
Furthermore, Sξ is bounded, since the norm of U is bounded. Additionally the functional
stays lower semicontinuous and we obtain the existence of a minimizer of (4.9).

Using Theorem 4.7 for problem (4.8), we obtain

min
U∈G

1

2

∥∥AUBT −W
∥∥2

F
+ β

M∑
i=1

N∑
j=1

uij s.t.
N∑
j=1

uij ≤ ṽ . (4.16)

Note that we need to look for a suitable regularization parameter in the implementation
anyway. Thus we can instead determine a suitable ṽ and obtain an easier optimization
problem.

4.1.5. Asymptotic 1-Sparsity

Let us now consider the case of (4.16) with β = 0, i.e.

min
U∈G

1

2

∥∥AUBT −W
∥∥2

F
s. t.

N∑
j=1

uij ≤ ṽ . (4.17)

We observe that we indeed obtain a special kind of sparsity in every row in the case
that the regularizing parameter ṽ becomes sufficiently small.
In order to analyze Problem (4.17) asymptotically, we consider the rescaling X :=

ṽ−1U ⇔ U = ṽX and obtain the new variational problem

min
X∈G

1

2

∥∥ṽAXBT −W
∥∥2

F
s. t.

N∑
j=1

xij ≤ 1 . (4.18)

Let us now analyze the structure of a solution of (4.18) for ṽ → 0.
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Theorem 4.9.
Let ki be the number of maxima in the ith row of G := ATWB and let X(ṽ) be a
minimizer of (4.18). Then the ith row of

X̄ := lim
ṽ→0

X(ṽ)

is at most ki-sparse.

Proof.
After simplifying the norm and dividing by ṽ in (4.18), we can equivalently consider

min
X∈G

ṽ

2

∥∥AXBT
∥∥2

F
− 〈

AXBT ,W
〉

s. t.
N∑
j=1

xij ≤ 1 .

For the case that we have ṽ → 0, the first summand tends to zero and thus

max
X∈G

〈
X,ATWB

〉
s. t.

N∑
j=1

xij ≤ 1 (4.19)

holds. With the above definition of G we shall now consider

max
X∈G

M∑
i=1

N∑
j=1

gijxij s. t.
N∑
j=1

xij ≤ 1 .

Let Ji be the column index set at which the maximum of the ith row of G is reached,
i.e.

Ji = {n ∈ {1, . . . , N} | gin ≥ gij ∀ j ∈ {1, . . . , N}}

for every i ∈ {1, . . . ,M}. Since we have the constraint that the row sum of X should
not exceed 1, it has to hold that

N∑
j=1

gijxij ≤ gin ∀ n ∈ Ji

for every i ∈ {1, . . . ,M}. Hence we see that for a solution of (4.19) has to hold∑
n∈Ji

xin = 1 and xij = 0 ∀ j /∈ Ji .

This means that the ith row of the solution of (4.19) has at most ki nonzero entries.
Thus the ith row of X̄ is at most ki-sparse, maybe even sparser.
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Remark 4.5.
In case that the ith row of X̄ is ki-sparse, the asymptotic solution X̄ has nonzero entries
at the same positions as G = ATWB has its maxima in each row.
Note that the row-maxima are not necessarily unique. However, in the case that for
every i ∈ {1, . . . ,M} the index set Ji contains only one element, the rows of X̄ are
1-sparse.

Theorem 4.9 raises the question, whether there exists a small regularization parameter
ṽ, for which X(ṽ) is already ki-sparse. In this case we could apply this knowledge to the
original problem (4.17), which is not possible in the limit case, since then Ū := lim

ṽ→0
U(ṽ)

would be equal to zero.

Theorem 4.10.
Let the �2-norm of the columns of A ∈ RL×M and B ∈ RT×N be nonzero, i.e.

‖a·i‖2 > 0 ∀ i ∈ {1, . . . ,M} and ‖b·j‖2 > 0 ∀ j ∈ {1, . . . , N} .

Then there exists a regularization parameter ṽ > 0 such that the solution of (4.17) has
nonzero entries at the same positions as G := ATWB has row-maxima.

Proof.
Consider the rescaled problem (4.18). After simplifying the norm and dividing by ṽ, we
consider equivalently

min
X∈G

ṽ

2

∥∥AXBT
∥∥2

F
− 〈

X,ATWB
〉

s. t.
N∑
j=1

xij ≤ 1

and thus

min
X∈G

ṽ

2

L∑
l=1

T∑
k=1

(
M∑
i=1

N∑
j=1

alixijbkj

)2

−
M∑
i=1

N∑
j=1

xijgij s. t.
N∑
j=1

xij ≤ 1 ,

where we use again G := ATWB. The Lagrange functional reads as follows:

L(X;λ, μ) =
ṽ

2

L∑
l=1

T∑
k=1

(
M∑
i=1

N∑
j=1

alixijbkj

)2

−
M∑
i=1

N∑
j=1

xijgij

+
M∑
i=1

λi

(
N∑
j=1

xij − 1

)
−

M∑
i=1

N∑
j=1

μijxij
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with

λi ≥ 0 and λi

(
N∑
j=1

xij − 1

)
= 0 ,

μij ≥ 0 and μijxij = 0 .

Let us now consider the optimality condition

0 = ∂xij
L = ṽxij ‖a·i‖22 ‖b·j‖22 + ṽhij − gij + λi − μij

⇔ ṽxij ‖a·i‖22 ‖b·j‖22 = gij − λi + μij − ṽhij ,

where hij denotes the sum of the mixed terms resulting from the data term, which are
independent from xij, i.e.

hij :=
∑
m 
=i

∑
n 
=j

〈a·i, a·m〉 xmn 〈b·n, b·j〉+ ‖b·j‖22
∑
m 
=i

〈a·i, a·m〉 xmj + ‖a·i‖22
∑
n 
=j

xin 〈b·n, b·j〉 .

Let now ṽ > 0 hold and let Ji be the index set for which the entries of the ith row of
the solution of (4.17) are nonzero. We show that gij > gin holds for all j ∈ Ji and for
all n /∈ Ji. In order to do so, we consider

0 = ∂xij
L − ∂xin

L ∀ j ∈ Ji, ∀ n /∈ Ji .

We have xij > 0 and μij = 0, since it is j ∈ Ji. Furthermore, it holds that xin = 0 and
μin ≥ 0, since we have n /∈ Ji. Thus we obtain

0 ≤ μin = gij − gin + ṽ (hin − hij)− ṽxij ‖a·i‖22 ‖b·j‖22

and further

0 < ṽxij ‖a·i‖22 ‖b·j‖22 ≤ gij − gin + ṽ (hin − hij) ,

due to the fact that ṽ, xij, ‖a·i‖22 and ‖b·j‖22 are positive. Hence it is left to show that

gij > gin + ṽdijn (4.20)

holds, where we define dijn := hij − hin. This statement is obvious for dijn ≥ 0. Let
now dijn < 0 hold.
For n /∈ Ji we assume that gin = max

ν∈{1,...,N}
giν holds. In addition let be gin ≥ gij+2ṽ|dijn|

for all j ∈ Ji. This is always possible, since we can choose ṽ > 0 small enough. With
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(4.20) we have

gij > gin − ṽ|dijn|

and thus we obtain

gij + ṽ|dijn| > gin ≥ gij + 2ṽ|dijn| ∀ j ∈ Ji ,

which is a contradiction. Hence we finally obtain that

gij > gin ∀ j ∈ Ji, ∀ n /∈ Ji

has to hold and we see that the solution X has nonzero entries at the same positions
like ATWB has row-maxima, even for ṽ > 0 but small enough. Then obviously the
same holds for the solution of (4.17).

4.2. Exact Recovery of Locally 1-Sparse Solutions

In this section we discuss the question of exact recovery for our model.
There already exist several conditions, which provide information about exact recon-
struction using linearly independent subdictionaries, see for instance Fuchs (2004)
and Tropp (2006b). Unlike the case, where the basis vectors are linearly independent,
we consider the operator to be coherent, i.e. the mutual incoherence parameter (cf.
Juditsky and Nemirovski 2011, p. 3)

μ(B) := max
i 
=j

|〈bi, bj〉|
‖bi‖22

for bi, bj being distant basis vectors, is large. In other words, the vectors are very similar.
This is a reasonable assumption for many applications, see for instance Section 6.1.

In Appendix D we gain some understanding of necessary scaling conditions recovering
locally 1-sparse solutions considering only one spacial dimension plus one additional
dimension using problem (4.2). We learn that if the solution is 1-sparse in one spacial
dimension plus the additional dimension, the matrix B ∈ RT×N has to meet the scaling
condition

‖bn‖�2 = 1 and |〈bn, bm〉| ≤ 1 for n �= m (4.21)

in order to recover 1-sparse solutions.
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4.2.1. Lagrange Functional and Optimality Conditions

In this subsection we introduce the Lagrange functional and optimality conditions of
problem (4.7), which we will need in the further analysis.
We equivalently rewrite problem (4.7) by writing the data constraint for every l and k,
i.e.

min
U∈G, v∈R

β

M∑
i=1

N∑
j=1

uij + v s.t. α

N∑
j=1

uij ≤ v,

M∑
i=1

N∑
j=1

aliuijbkj = wlk (4.22)

with l ∈ {1, . . . , L} and k ∈ {1, . . . , T}. For this problem the Lagrange functional reads
as follows:

L(v, uij;λ, μ, η) = β

M∑
i=1

N∑
j=1

uij + v +
M∑
i=1

λi

(
α

N∑
j=1

uij − v

)
−

M∑
i=1

N∑
j=1

μijuij

+
L∑
l=1

T∑
k=1

ηlk

(
wlk −

M∑
i=1

N∑
j=1

aliuijbkj

)
,

(4.23)

where λ, μ and η are Lagrange parameters. Now we are able to state the optimality
conditions

0 = ∂vL = 1−
M∑
i=1

λi , (OPT1)

0 = ∂uij
L = β + αλi − μij −

L∑
l=1

T∑
k=1

ηlkalibkj , (OPT2)

with the complementary conditions (cf. Hiriart-Urruty and Lemaréchal 1993,
p. 305-306, Theorem 2.1.4)

λi ≥ 0 and λi

(
v − α

N∑
j=1

uij

)
= 0 , (4.24)

μij ≥ 0 and μijuij = 0 . (4.25)

4.2.2. Scaling Conditions for Exact Recovery of the Constrained Problem

On the basis of this, we examine under which assumptions a 1-sparse solution of
the constrained �0,∞-problem can be reconstructed exactly by using the constrained
�1,∞-�1,1-minimization (4.22).
We will see that the scaling condition (4.21) in a slightly reformulated way is a sufficient
condition for exact recovery.
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Theorem 4.11 (Recovery of Locally 1-Sparse Data).
Let be ci ∈ R+ and let J :{1, ...,M} −→ {1, ..., N} with i �−→ J(i) be the function that
maps every index i to the index of the corresponding basis vector, where the coefficient
is unequal to zero. Let

ûij =

⎧⎨⎩ci, if j = J(i) ,

0, if j �= J(i) ,

be the exact solution of the constrained non-negative �0,∞-problem

min
U∈G

(
max

i∈{1,...,M}

N∑
j=1

u0
ij

)
s. t. AUBT = W . (4.26)

Let AT be surjective and let the scaling condition

∥∥bJ(i)∥∥2
= 1 and

∣∣〈bJ(i), bj〉∣∣ ≤ 1 ∀ j ∈ {1, . . . , N} (4.27)

hold for all i ∈ {1, . . . ,M}. Then
(
Û , αmax

p
cp

)
is a solution of (4.22).

Proof.
In order to proof Theorem 4.11, we have to show that there exist Lagrange parameters
λ ∈ RM , μ ∈ RM×N and η ∈ RL×T such that Û fulfills the optimality conditions (OPT1)
and (OPT2) with respect to the complimentary conditions (4.24) and (4.25).
We choose the Lagrange parameters for all i ∈ {1, . . . ,M} as follows:

λi =

⎧⎨⎩ 1
m
, if ci =

v
α
,

0, if ci <
v
α
,

with v
α
= max

p
cp and m being the number of indices, for which holds ci =

v
α
,

μij =

⎧⎪⎨⎪⎩
0, if j = J(i) ,

(αλi + β)

(
1−

T∑
k=1

bkJ(i)bkj

)
, if j �= J(i) ,

and η as solution of

L∑
l=1

aliηlk = (αλi + β) bkJ(i) ∀ i ∈ {1, . . . ,M} , ∀ k ∈ {1, . . . , T} . (4.28)

Note that (4.28) is solvable, since AT is surjective.
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1. Let us show that (OPT1) and (4.24) hold for Û :

a) Obviously we have

M∑
i=1

λi =
∑

i∈{1,...,M |
ci=

v
α}

1

m
= m

1

m
= 1 .

Thus (OPT1) is fulfilled.

b) In case that ci <
v
α

holds, we see that (4.24) is trivially fulfilled. Hence let
be ci =

v
α
. We consider

λi

(
v − α

N∑
j=1

ûij

)
=

1

m
(v − αci) =

1

m
(v − α

v

α
) = 0

and observe that (4.24) is fulfilled as well.

2. Let us now show that (OPT2) and (4.25) hold for Û :

a) In case that j = J(i) holds, we obtain ûij = ci and μiJ(i) = 0. Thus
(4.25) is obviously fulfilled. The other case, i.e. j �= J(i), yields ûij = 0

and μij = (αλi + β)

(
1−

T∑
k=1

bkJ(i)bkj

)
. Since (4.27) has to hold, we obtain

μij ≥ 0 and we observe that in this case (4.25) is fulfilled as well.

b) Let again be j = J(i). Then we obtain

αλi + β −
L∑
l=1

T∑
k=1

ηlkalibkJ(i) =

(
1−

T∑
k=1

b2kJ(i)

)
(αλi + β) = 0

by using the definitions of η and μ and the scaling condition (4.27). In this
case (OPT2) is fulfilled.
Let us now consider j �= J(i). Then we have

αλi + β −
L∑
l=1

T∑
k=1

ηlkalibkJ(i) − μij

= αλi + β −
L∑
l=1

T∑
k=1

ηlkalibkJ(i) − (αλi + β)

(
1−

T∑
k=1

bkJ(i)bkj

)
= 0 ,

where we used the definition of μ. Thus we see that in this case (OPT2) is
fulfilled as well.
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In summary we see that there exist Lagrange parameters such that Û fulfills the
optimality conditions and complementary conditions of (4.22). Thus we obtain the
assertion.

All in all we found a condition for exact recovery of solutions of the constrained �0,∞-
problem, which contain 1-sparse rows, using the constrained problem (4.22) for the
reconstruction, i.e. (4.27) has to hold.

Remark 4.6.
We need to assume that AT is injective in order to solve (4.28). Unfortunately, if AT is
injective, then A is surjective and thus we could easier consider UBT = A†W instead,
where A† is the pseudoinverse of A.

Let us now consider an example of the extremest under-determined case, i.e. where we
have L = 1.

Theorem 4.12.
Let be β = 0 and A ∈ R1×M with M > 1 and ai �= 0 for every i ∈ {1, . . . ,M}. Let

ûij =

⎧⎨⎩ci, if j = J(i) ,

0, if j �= J(i) ,

be the exact solution of the nonnegative �0,∞-problem (4.26) with J : {1, ...,M} −→
{1, ..., N}, i �−→ J(i) mapping again every index i to the index of the corresponding
basis vector, where the coefficient is unequal to zero. Furthermore, let m ∈ {1, . . . ,M}
be a row-index, where Û reaches its maximum, i.e. we have cm = max

p
cp =

v
α
.

In case the exact solution Û contains a row-vector ui, which has its nonzero entry at
the same position as um, i.e. J(i) = J(m), but their entries differ, i.e. ci < cm, then
exact recovery of Û using the nonnegative �1,∞-problem (4.22) for the reconstruction is
not possible.

Proof.
Let us suppose exact recovery were possible. Then there exist a λ, which fulfills (OPT1)
and (4.24), a μ, which fulfills (4.25) and an η such that (OPT2) is fulfilled.
Considering the complementary condition (4.24) for i ∈ {1, . . . ,M | ci < max

p
cp}, we

have

0 = λi

(
v − α

N∑
j=1

uij

)
= λi

(
v − αuiJ(i)

)
= λi (v − αci)︸ ︷︷ ︸


=0

,
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since it is ci <
v
α
. Thus λi = 0 holds for every i ∈ {1, . . . ,M | ci < max

p
cp}. On the

other hand with (OPT1) we have

1 =
M∑
i=1

λi =
∑

m∈{1,...,M |
cm=maxp cp}

λm ,

which yields λm > 0 for every m ∈ {1, . . . ,M | cm = max
p

cp}.
Now let us consider (OPT2) for j = J(i) and j = J(m), which then reads as follows:

T∑
k=1

ηkbkJ(m) = α
λi

ai
and

T∑
k=1

ηkbkJ(m) = α
λm

am
,

since we have J(i) = J(m). Therefore, we obtain

amλi = aiλm .

This is a contradiction, since we have λi = 0, λm > 0 and ai and am are unequal to zero.
Thus we observe that the 1-sparse �0,∞-solution ûij can not be the solution of the
�1,∞-problem (4.22) and in this case exact recovery is not possible.

Remark 4.7.
In the case of Theorem 4.12 there always exists a solution of (4.22) and (4.26), which
has a nonzero element in just one row, i.e. Û itself is 1-sparse.

Note that Theorem 4.12 does not state that the reconstructed support is wrong. Hence
we could still obtain important information from the nonnegative �1,∞-reconstruction.
Furthermore, Theorem 4.12 does not apply for the case where we have β > 0, since in
this case we obtain

(αλi + β)am = (αλm + β)ai

and thus we do not obtain a contradiction in the last step of the proof. Thus Theorem
4.12 suggests the usage of β > 0.
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4.3. Further Improvement of the Results by Including Total

Variation

In order to further improve the results and incorporate even more prior knowledge,
we include an additional TV-regularization in space (cf. Subsection 2.2.5). The
regularization with total variation promotes sharp edges in the resulting images and
thus is a reasonable assumption for many applications. Incorporating this knowledge
can either be done by additionally minimizing the total variation of the images in every
time step, i.e.

min
U

1

2

∥∥AUBT −W
∥∥2

F
+ α ‖U‖1,∞ + β ‖U‖1,1 + γ

T∑
k=1

TV
(
UbTk

)
, (4.29)

or by minimizing the total variation of the coefficient matrices corresponding to every
basis vector, i.e.

min
U

1

2

∥∥AUBT −W
∥∥2

F
+ α ‖U‖1,∞ + β ‖U‖1,1 + γ

N∑
j=1

TV(uj) . (4.30)

The latter can be justified by the fact that sharp edges in the image should result in
sharp edges in the visualized coefficient matrices.
In Section 5.2 we extend the previously deduced �1,∞-algorithm by including this
advanced approach using total variation. We will see in Section 6.3 that problem
(4.30) works very well. However, we face the fact that choosing the right regularization
parameters for these problems is challenging.
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5
ALGORITHMS PROMOTING

LOCAL SPARSITY

This chapter contains algorithms for the implementation of different problems proposed
in Chapter 4.
In order to solve these problems numerically, we use the alternating direction method
of multipliers (ADMM), which can be found for instance in Rockafellar (1976).
ADMM traces back to works of Glowinski and Marrocco (1975) and Gabay and

Mercier (1976). It was furthermore subject of many other books and papers, including
Fortin and Glowinski (1983a), especially its chapters by Fortin and Glowinski

(1983b) and Gabay (1983), as well as Glowinski and Tallec (1987), Tseng (1991),
Fukushima (1992), Eckstein and Fukushima (1993) and Chen and Teboulle

(1994).
However, in this chapter we base upon the deduction by Boyd et al. (2010). We first
derive an algorithm for the �1,∞-�1,1-regularized problem. Then we give an extension for
an additional TV-regularization. This can be done by either including total variation
regularization on the image or on the coefficient matrices.

5.1. Algorithm for �1,∞-�1,1-Regularized Problems

In this section, which is based on our preprint Heins et al. (2014), we propose an
algorithm for the solution of �1,∞-�1,1-regularized problems and develop it on the basis
of the reformulation proposed in Subsection 4.1.4. Instead of solving problem (4.2), we
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develop an algorithm for the numerical solution of its reformulated problem (4.16), i.e.

min
U

1

2

∥∥AUBT −W
∥∥2

F
+ β

M∑
i=1

N∑
j=1

uij s. t.
N∑
j=1

uij ≤ ṽ, ∀ i, uij ≥ 0 ∀ i, j , (4.16)

where i ∈ {1, . . . ,M} and j ∈ {1, . . . , N}. As already indicated at the beginning of
this chapter, we use ADMM to solve this problem numerically. For the computation of
reasonably simple sub-steps, we split the problem twice. In doing so, we obtain

min
U, Z, D

1

2
‖AZ −W‖2F + β

M∑
i=1

N∑
j=1

dij + J(D) s. t. D = U, Z = UBT ,

where we define

J(D) :=

⎧⎪⎨⎪⎩
0, if

N∑
j=1

dij ≤ ṽ ∀i, dij ≥ 0 ∀i, j ,

∞, else ,

(5.1)

with i ∈ {1, . . . ,M} and j ∈ {1, . . . , N}. By using the Lagrange functional, which reads
as

L
(
U,D,Z; P̃ , Q̃

)
=
1

2
‖AZ −W‖2F + β

M∑
i=1

N∑
j=1

dij + J(D)

+
〈
P̃ , U −D

〉
+

〈
Q̃, UBT − Z

〉
,

we obtain the unscaled augmented Lagrangian

Lλ,μ
un

(
U,D,Z; P̃ , Q̃

)
=
1

2
‖AZ −W‖2F + β

M∑
i=1

N∑
j=1

dij + J(D) +
〈
P̃ , U −D

〉
+

λ

2
‖U −D‖2F +

〈
Q̃, UBT − Z

〉
+

μ

2

∥∥UBT − Z
∥∥2

F

(5.2)

with Lagrange parameters λ, μ and dual variables P̃ and Q̃. Since its handling is much
easier, we also state the scaled augmented Lagrangian, i.e.

Lλ,μ
sc (U,D,Z;P,Q) =

1

2
‖AZ −W‖2F + β

M∑
i=1

N∑
j=1

dij + J(D)

+
λ

2
‖U −D + P‖2F +

μ

2

∥∥UBT − Z +Q
∥∥2

F
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with the new scaled dual variables P := P̃
λ

and Q := Q̃
μ
. By using ADMM (cf.

Rockafellar 1976), we obtain the following algorithm:

Uk+1 = argmin
U

Lλ,μ
sc (U,D

k, Zk;P k, Qk) ,

Dk+1 = argmin
D

Lλ,μ
sc (U

k+1, D, Zk;P k, Qk) ,

Zk+1 = argmin
Z

Lλ,μ
sc (U

k+1, Dk+1, Z;P k, Qk) ,

P k+1 = P k − (
Dk+1 − Uk+1

)
,

Qk+1 = Qk − (
Zk+1 − Uk+1BT

)
.

For faster convergence we use a standard extension of ADMM in Subsection 5.1.3,
i.e. an adaptive parameter choice as proposed in Boyd et al. (2010, Subsection 3.4.1)
with its derivation in Boyd et al. (2010, Section 3.3), which we adapt to our problem.
Another advantage of this extension is that the performance becomes less dependent
on the initial choice of the penalty parameter. In order to do so, we first propose the
optimality conditions.

5.1.1. Optimality Conditions

We obtain the following primal feasibility conditions:

0 = ∂PL = U −D , (5.3)

0 = ∂QL = UBT − Z . (5.4)

Moreover, the following dual feasibility conditions can be derived:

0 = ∂UL = λP + μQB , (5.5)

0 ∈ ∂DL = β1M×N + ∂J(D)− λP , (5.6)

0 = ∂ZL = AT (AZ −W )− μQ . (5.7)

Since Uk+1 minimizes Lλ,μ
sc (U,D

k, Zk;P k, Qk) by definition, we obtain

0 ∈ ∂ULλ,μ
sc = λ

(
Uk+1 −Dk + P k

)
+ μ

(
Uk+1BT − Zk +Qk

)
B

= λ
(
P k − (

Dk+1 − Uk+1
)
+Dk+1 −Dk

)
+ μ

(
Qk − (

Zk+1 − Uk+1BT
)
+ Zk+1 − Zk

)
B

= λP k+1 + λ
(
Dk+1 −Dk

)
+ μQk+1B + μ

(
Zk+1 − Zk

)
B
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by using the definitions of P k+1 and Qk+1. This is equivalent to

λ
(
Dk −Dk+1

)
+ μ

(
Zk − Zk+1

)
B ∈ λP k+1 + μQk+1B ,

where the right hand side is the first dual feasibility condition (5.5). Therefore,

Sk+1 := λ
(
Dk −Dk+1

)
+ μ

(
Zk − Zk+1

)
B (5.8)

can be seen as a dual residual for (5.5). Equivalently we consider

0 ∈ ∂DLλ,μ
sc = β1m×n + ∂J

(
Dk+1

)− λ
(
Uk+1 −Dk+1 + P k

)
= β1m×n + ∂J

(
Dk+1

)− λP k+1 ,

which means that P k+1 and Dk+1 always satisfy (5.6). The same applies for Qk+1 and
Zk+1, where we have

0 ∈ ∂ZLλ,μ
sc = AT

(
AZk+1 −W

)− μ
(
Uk+1BT − Zk+1 +Qk

)
= AT

(
AZk+1 −W

)− μ
(
Qk − Zk+1 + Uk+1BT

)
= AT

(
AZk+1 −W

)− μQk+1

and thus (5.7) is always satisfied as well. In addition we refer to

Rk+1
1 := Dk+1 − Uk+1 and (5.9)

Rk+1
2 := Zk+1 − Uk+1BT (5.10)

as the primal residuals at iteration k + 1.

Obviously we obtain five optimality conditions (5.3) - (5.7). We see that (5.6) and (5.7)
are always satisfied. The other three, i.e. (5.3) - (5.5), lead to the primal residuals (5.9)
and (5.10) and to the dual residual (5.8), which all converge to zero as ADMM proceeds
(cf. Boyd et al. 2010, Appendix A, p. 106 et seqq.).

5.1.2. Stopping Criteria

In an analogous way to Boyd et al. (2010, Section 3.3.1) we derive the stopping criteria
for the algorithm. As shown in Appendix B the primal and dual residuals can be related
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to a bound on the objective suboptimality of the current point κ∗. Hence we obtain

1

2
‖AZ −W‖2F + β

M∑
i=1

N∑
j=1

dij + J(D)− κ∗

≤ 〈
P k, Rk

1

〉
+

〈
Qk, Rk

2

〉
+

〈
Uk − U∗, Sk

〉
.

(5.11)

We see that the residuals should be small in order to obtain small objective suboptimality.
Since we want to obtain a stopping criterion but the exact solution U∗ is unknown, we
estimate that ‖Uk − U∗‖F ≤ ν holds. Thus we obtain

1

2
‖AZ −W‖2F + β

M∑
i=1

N∑
j=1

dij + J(D)− κ∗

≤ ‖P k‖F‖Rk
1‖F + ‖Qk‖F‖Rk

2‖F + ν‖Sk‖F .

It stands to reason that the primal and dual residual must be small, i.e.

‖Rk
1‖F ≤ εpri

1 , ‖Rk
2‖F ≤ εpri

2 , ‖Sk‖F ≤ εdual ,

with tolerances εpri
1,2 > 0 and εdual > 0 for the feasibility conditions (5.3 - 5.5), respectively.

Boyd et al. suggest that these can be chosen via an absolute and relative criterion, i.e.

εpri
1 =

√
MN εabs + εrelmax

{‖Uk‖F , ‖Dk‖F , 0
}

,

εpri
2 =

√
MT εabs + εrelmax

{‖UkBT‖F , ‖Zk‖F , 0
}

,

εdual =
√
MN εabs + εrel‖λP k + μQkB‖F ,

where εrel = 10−3 or 10−4 is a relative tolerance and the absolute tolerance εabs depends
on the scale of the typical variable values. Note that the factors

√
MN and

√
MT

result from the fact that the Frobenius norms are in RM×N and RM×T , respectively.

5.1.3. Adaptive Parameter Choice

In order to extend the standard ADMM and to improve its convergence rate, we vary
the penalty parameters λk and μk in each iteration as proposed in Boyd et al. (2010,
Section 3.4.1). This extension has been analyzed in Rockafellar (1976) in the context
of the method of multipliers. There it has been shown that if the penalty parameters go
to infinity, superlinear convergence may be reached. If we consider λ and μ to become
fixed after a finite number of iterations, the fixed penalty parameter theory still applies,
i.e. we obtain convergence of the ADMM.
The following scheme is proposed in He et al. (2000),Wang and Liao (2001) and
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others and often works well:

λk+1 =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
τ incr
1 λk, if ‖Rk

1‖F > η1‖Sk‖F ,
λk

τdecr
1

, if ‖Sk‖F > η1‖Rk
1‖F ,

λk, otherwise,

and P k+1 =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
Pk

τ incr
1

, if ‖Rk
1‖F > η1‖Sk‖F ,

P kτdecr
1 , if ‖Sk‖F > η1‖Rk

1‖F ,
P k, otherwise,

as well as

μk+1 =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
τ incr
2 μk, if ‖Rk

2‖F > η2‖Sk‖F ,
μk

τdecr
2

, if ‖Sk‖F > η2‖Rk
1‖F ,

μk, otherwise,

and Qk+1 =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
Qk

τ incr
2

, if ‖Rk
2‖F > η2‖Sk‖F ,

Qkτdecr
2 , if ‖Sk‖F > η2‖Rk

2‖F ,
Qk, otherwise,

where η1,2 > 1, τ incr
1,2 > 1, τdecr

1,2 > 1. Typical choices are η1,2 = 10 and τ incr
1,2 = τdecr

1,2 = 2.
Note that the dual variables P k and Qk only have to be updated in the scaled form.
In Figure 5.1 we see a schema of the previously deduced algorithm, which we subsume
in the next section.

Alternating Direction Method of Multipliers

Solve Subproblems

Update Primal Residuals

Update Dual Residuals

Lagrange Updates

Vary Penalty Parameters

Calculate New Stopping Criteria

Return
Result

Check Stopping Criteria
Criteria

fulfilled

Cr
it
er
ia
no
t
fu
lfi
lle
d

Figure 5.1.: Overview of the alternating direction method of multipliers (ADMM)
including the adaptive parameter choice as proposed in Boyd et al. (2010)
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5.1.4. Solving the �1,∞-�1,1-Regularized Problem

Let us now state the whole algorithm for the solution of problem (4.16).

Algorithm 1 �1,∞-�1,1-regularized problem via ADMM with double splitting
1: Parameters: v, β > 0, λ, μ > 0, A ∈ RL×M , B ∈ RT×N ,W ∈ RL×T , η1,2 > 1,

τ incr
1,2 > 1, τdecr

1,2 > 1, εrel = 10−3 or 10−4, εabs > 0

2: Initialization: U,Z,D, P,Q, S,R1, R2 = 0, εpri
1 =

√
MN εabs, εpri

2 =
√
MT εabs,

εdual =
√
MN εabs

3: while ‖R1‖F > εpri
1 & ‖R2‖F > εpri

2 & ‖S‖F > εdual do
4: Dold = D;
5: Zold = Z;

� Solve Subproblems
6: U = (λ (D − P ) + μ (Z −Q)B)

(
λI + μBTB

)−1;

7: D = argmin
D∈G

λ
2
‖D − U + P‖2F + β

M∑
i=1

N∑
j=1

dij s.t.
N∑
j=1

dij ≤ v; � see Appendix A

8: Z =
(
ATA+ μI

)−1 (
ATW + μ

(
UBT +Q

))
;

� Update Primal Residuals
9: R1 = D − U ;

10: R2 = Z − UBT ;
� Update Dual Residual

11: S = λ
(
Dold −D

)
+ μ

(
Zold − Z

)
B;

� Lagrange Updates
12: P = P − (D − U);
13: Q = Q− (

Z − UBT
)
;

� Varying Penalty/Lagrange Parameters
14: if ‖R1‖F > η1‖S‖F then
15: λ = λτ incr

1 ;
16: P = P

τ incr
1

;
17: else if ‖S‖F > η1‖R1‖F then
18: λ = λ

τdecr
1

;
19: P = Pτdecr

1 ;
20: end if
21: if ‖R2‖F > η2‖S‖F then
22: μ = μτ incr

2 ;
23: Q = Q

τ incr
2

;
24: else if ‖S‖F > η2‖R2‖F then
25: μ = μ

τdecr
2

;
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26: Q = Qτdecr
2 ;

27: end if
� Stopping Criteria

28: εpri
1 =

√
MN εabs + εrelmax

{‖Uk‖F , ‖Dk‖F , 0
}
;

29: εpri
2 =

√
MT εabs + εrelmax

{‖UkBT‖F , ‖Zk‖F , 0
}
;

30: εdual =
√
MN εabs + εrel‖λP k + μQkB‖F ;

31: end while
32: return U � Solution of (4.16)

5.2. Algorithms for �1,∞-�1,1-TV-Regularized Problems

In Section 5.1 we proposed an algorithm for the solution of �1,∞-�1,1-regularized problems.
As we will see in Section 6.2 the results are very nice, however, they still offer room for
improvement. In order to do so, we include further a-priori knowledge, i.e. we suppose
the images to have sharp edges for every time step. This is a reasonable assumption
especially in imaging and image processing. On this account we included an additional
TV-regularization in Section 4.3.
In this section we first deduce an algorithm for solving �1,∞-�1,1-regularized problems
including an additional total variation minimization on the images in every time step.
However, since sharp edges in the images are reflected in their corresponding coefficient
matrices, they usually result in sharp edges of the visualized coefficient matrices as
well. Thus we also want to propose an algorithm for the solution of �1,∞-�1,1-regularized
problems including TV-regularization on the coefficient matrices.

5.2.1. Additional TV-Regularization on the Image

Let us now include an additional TV-regularization on the image for every time step
independently. Similarly to Section 5.1 we deduce the algorithm on the basis of the
reformulation proposed in Subsection 4.1.4, i.e. we want to solve

min
U

1

2

∥∥AUBT −W
∥∥2

F
+ β

M∑
i=1

N∑
j=1

uij + γ

T∑
t=1

∥∥∇ (
UbTt

)∥∥
1

s. t.
N∑
j=1

uij ≤ ṽ ∀ i and uij ≥ 0 ∀ i, j ,

(5.12)

where i ∈ {1, . . . ,M} and j ∈ {1, . . . , N}. Analogously to the previous section we use
ADMM for the solution of the problem. Note that we have to include TV-regularization
in (5.12) for each time step t ∈ {1, . . . , T} separately, since we want total variation
minimization to be active in the spatial dimension but not in time. Thus we include
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the sum over all TV-regularizations for every time step.
In order to compute reasonably simple sub-steps, we now have to split the problem
three times, i.e.

min
U, D, Z, G

1

2
‖AZ −W‖2F + β

M∑
i=1

N∑
j=1

dij + γ

T∑
t=1

‖gt‖1 + J(D)

s. t. D = U, Z = UBT , gt = ∇zt ∀ t ∈ {1, . . . , T},

with J as defined in (5.1). The Lagrange functional for this case reads as follows:

L
(
U,D,Z,G; P̃ , Q̃, R̃

)
=
1

2
‖AZ −W‖2F + β

M∑
i=1

N∑
j=1

dij + γ

T∑
t=1

‖gt‖1

+ J(D) +
〈
P̃ , U −D

〉
+

〈
Q̃, UBT − Z

〉
+

T∑
t=1

〈r̃t,∇zt − gt〉 .

(5.13)

Then we obtain the unscaled augmented Lagrangian

Lλ,μ,η
un

(
U,D,Z,G; P̃ , Q̃, R̃

)
=
1

2
‖AZ −W‖2F + β

M∑
i=1

N∑
j=1

dij + γ
T∑
t=1

‖gt‖1 + J(D)

+
〈
P̃ , U −D

〉
+

λ

2
‖U −D‖2F

+
〈
Q̃, UBT − Z

〉
+

μ

2

∥∥UBT − Z
∥∥2

F

+
T∑
t=1

〈r̃t,∇zt − gt〉+
T∑
t=1

ηt
2
‖∇zt − gt‖22

with Lagrange parameters λ, μ, η and dual variables P̃ , Q̃ and R̃.
We have seen in Section 5.1 that the usage of the scaled augmented Lagrangian offers
the advantage of easier handling. Therefore, we will use this approach again, i.e. we
consider

Lλ,μ,η
sc (U,D,Z,G;P,Q,R) =

1

2
‖AZ −W‖2F + β

M∑
i=1

N∑
j=1

dij + γ

T∑
t=1

‖gt‖1 + J(D)

+
λ

2
‖U −D + P‖2F +

μ

2

∥∥UBT − Z +Q
∥∥2

F

+
T∑
t=1

ηt
2
‖∇zt − gt + rt‖22
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with the scaled dual variables P := P̃
λ
, Q := Q̃

μ
and rt :=

r̃t
ηt

for every t ∈ {1, . . . , T}.
We now obtain an algorithm, which is a little bit more complex, i.e.

Uk+1 = argmin
U

Lλ,μ,η
sc (U,Dk, Zk, Gk;P k, Qk, Rk) ,

Dk+1 = argmin
D

Lλ,μ,η
sc (Uk+1, D, Zk, Gk;P k, Qk, Rk) ,

zk+1
t = argmin

zt

Lλ,μ,ηt
sc (Uk+1, Dk+1, zt, g

k
t ;P

k, Qk, rkt ) ∀ t ∈ {1, . . . , T} ,

gk+1
t = argmin

gt

Lλ,μ,ηt
sc (Uk+1, Dk+1, zk+1

t , gt;P
k, Qk, rkt ) ∀ t ∈ {1, . . . , T} ,

P k+1 = P k − (
Dk+1 − Uk+1

)
,

Qk+1 = Qk − (
Zk+1 − Uk+1BT

)
,

rk+1
t = rkt −

(
gk+1
t −∇zk+1

t

) ∀ t ∈ {1, . . . , T} .

In analogy to the previous section we use again the adaptive parameter choice as
proposed in Boyd et al. (2010, Subsection 3.4.1). For this purpose we start once more
by proposing the optimality conditions.

Optimality Conditions

By deriving the partial derivatives of the Lagrange functional (5.13), we obtain the
following primal feasibility conditions:

0 = ∂PL = U −D , (5.14)

0 = ∂QL = UBT − Z , (5.15)

0 = ∂rtL = ∇zt − gt ∀ t ∈ {1, . . . , T} , (5.16)

and the dual feasibility conditions

0 = ∂UL = λP + μQB , (5.17)

0 ∈ ∂DL = β1M×N + ∂J(D)− λP , (5.18)

0 = ∂ztL = AT (Azt − wt)B − μqt − ηt∇· rt ∀ t ∈ {1, . . . , T} , (5.19)

0 ∈ ∂gtL = γ∂ ‖gt‖1 − ηtrt ∀ t ∈ {1, . . . , T} . (5.20)

Since Uk+1 minimizes Lλ,μ,η
sc (U,Dk, Zk, Gk;P k, Qk, Rk) by definition, we obtain in anal-

ogy to Section 5.1

0 ∈ ∂ULλ,μ,η
sc = λP k+1 + λ

(
Dk+1 −Dk

)
+ μQk+1B + μ

(
Zk+1 − Zk

)
B
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by using the definitions of P k+1 and Qk+1. This is equivalent to

λ
(
Dk −Dk+1

)
+ μ

(
Zk − Zk+1

)
B ∈ λP k+1 + μQk+1B ,

where the right hand side of this statement is the first dual feasibility condition (5.17).
Thus we see that

Sk+1 := λ
(
Dk −Dk+1

)
+ μ

(
Zk − Zk+1

)
B (5.21)

serves as a first dual residual for (5.17). In an analogous manner we consider

0 ∈ ∂DLλ,μ,η
sc = β1M×N + ∂J

(
Dk+1

)− λP k+1

and observe that P k+1 and Dk+1 always satisfy (5.18).
Computing the derivative for zt, i.e.

0 ∈ ∂ztLλ,μ,ηt
sc = AT

(
Azk+1

t − wt

)− μqk+1
t − ηt∇· rk+1

t − ηt∇· (gk+1
t − gkt ) ,

which is equivalent to

ηt∇· (gk+1
t − gkt ) ∈ AT

(
Azk+1

t − wt

)− μqk+1
t − ηt∇· rk+1

t ,

we see that the right hand side matches the third dual feasibility condition (5.33). Thus
we obtain another dual residual, i.e.

ck+1
t := ηt∇· (gk+1

t − gkt ) , (5.22)

to which we refer as second dual residual.
Last but not least we see that rk+1

t and gk+1
t always satisfy (5.20) for all t ∈ {1, . . . , T}

by computing

0 ∈ ∂gtLλ,μ,ηt
sc = γ∂

∥∥gk+1
t

∥∥
1
− ηtr

k+1
t .

Additionally we refer to

Xk+1
1 := Dk+1 − Uk+1 , (5.23)

Xk+1
2 := Zk+1 − Uk+1BT and (5.24)

yk+1
t := gk+1

t −∇zk+1
t ∀ t ∈ {1, . . . , T} (5.25)

as the primal residuals at iteration k + 1.
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With (5.14) - (5.20) we now have seven optimality conditions, where we have seen that
(5.18) and (5.20) are always satisfied. The remaining five optimality conditions (5.14) -
(5.17) and (5.19) yield the primal residuals (5.23) - (5.25) and the dual residuals (5.21)
and (5.22), which converge to zero as ADMM proceeds (cf. Boyd et al. 2010, Appendix
A, p. 106 et seqq.).

Stopping Criteria

Once more we derive the stopping criteria in analogy to Boyd et al. (2010, Section
3.3.1).

Similarly to Subsection 5.1.2 the primal and dual residuals can be related to a bound
on the objective suboptimality of the current point κ∗. By estimating ‖Uk − U∗‖F ≤ ν

we obtain

1

2
‖AZ −W‖2F + β

M∑
i=1

N∑
j=1

dij + γ
T∑
t=1

‖gt‖1 + J(D)− κ∗

≤ ‖P k‖F‖Xk
1 ‖F + ‖Qk‖F‖Xk

2 ‖F +
T∑
t=1

∥∥rkt ∥∥2

∥∥ykt ∥∥2
+ ν

∥∥Sk
∥∥
F
+ ν

T∑
t=1

∥∥ckt ∥∥2
.

Thus we see that the primal and dual residuals must be small, i.e.

‖Xk
1 ‖F ≤ εpri

1 , ‖Xk
2 ‖F ≤ εpri

2 , ‖ykt ‖2 ≤ ζpri
t ∀ t, ‖Sk‖F ≤ εdual,

∥∥ckt ∥∥2
≤ ζdual

t ∀ t,

with positive tolerances εpri
1 , εpri

2 , ζpri
t , εdual and ζdual

t for the feasibility conditions (5.28 -
5.31) and (5.33), respectively. We choose these tolerances in the same way as it was
done in Boyd et al. (2010) via an absolute and relative criterion, i.e.

εpri
1 =

√
MN εabs + εrelmax

{‖Uk‖F , ‖Dk‖F , 0
}
,

εpri
2 =

√
MT εabs + εrelmax

{‖UkBT‖F , ‖Zk‖F , 0
}
,

ζpri
t =

√
M εabs + εrelmax

{‖∇zkt ‖2, ‖gkt ‖2, 0
} ∀ t ∈ {1, . . . , T} ,

εdual =
√
MN εabs + εrel‖λP k + μQkB‖2 ,

ζdual
t =

√
M εabs + εrel

∥∥μqkt + ηt∇· rkt
∥∥
2

∀ t ∈ {1, . . . , T} ,

where εrel = 10−3 or 10−4 is a relative tolerance. Moreover, the absolute tolerance εabs

depends on the scale of the typical variable values. Note that the square roots once
more result from the dimensions of the matrices used in the respective second part of
the sums.
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Adaptive Parameter Choice

Once again we use the adaptive parameter choice proposed in Boyd et al. (2010, Section
3.4.1) and vary the penalty parameters λk, μk and ηk in each iteration.
Similar to the previous section we make use of the following scheme:

λk+1 =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
ωincrλk, if ‖Xk

1 ‖F > δ‖Sk‖F ,
λk

ωdecr , if ‖Sk‖F > δ‖Xk
1 ‖F ,

λk, otherwise,

and P k+1 =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
Pk

ωincr , if ‖Xk
1 ‖F > δ‖Sk‖F ,

P kωdecr, if ‖Sk‖F > δ‖Xk
2 ‖F ,

P k, otherwise,

μk+1 =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
τ incrμk, if ‖Xk

2 ‖F > ϑ‖Sk‖F ,
μk

τdecr , if ‖Sk‖F > ϑ‖Xk
2 ‖F ,

μk, otherwise,

and Qk+1 =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
Qk

τ incr , if ‖Xk
2 ‖F > ϑ‖Sk‖F ,

Qkτdecr, if ‖Sk‖F > ϑ‖Xk
2 ‖F ,

Qk, otherwise,

ηk+1
t =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
σincrηkt , if ‖ykt ‖2 > ρ‖ckt ‖2,
ηkt

σdecr , if ‖ckt ‖2 > ρ‖ykt ‖2,
ηkt , otherwise,

and rk+1
t =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
rkt

σincr , if ‖ykt ‖2 > ρ‖ckt ‖2,
rkt σ

decr, if ‖ckt ‖2 > ρ‖ykt ‖2,
rkt , otherwise,

for all t ∈ {1, . . . , T}, where δ, ϑ, ρ > 1 and ω, τ, σ > 1. Typical choices are
δ, ϑ, ρ = 10 and ω, τ, σ = 2. Note that once more the dual variables P k, Qk and Rk

have to be updated, since we are using the scaled form.

Solving the �1,∞-�1,1-TV-Regularized Problem Including TV on the Image

Algorithm 2 �1,∞-�1,1-TV
(
UBT

)
-regularized problem via ADMM with triple splitting

1: Parameters: v > 0, β > 0, γ > 0, A ∈ RL×M , B ∈ RT×N ,W ∈ RL×T ,
δ, ϑ, ρ > 1, ω, τ, σ > 1, εrel = 10−3 or 10−4, εabs > 0

2: Initialization: U,D,Z,G, P,Q,R, S, C,X1, X2, Y = 0, εpri
1 =

√
MNεabs,

εpri
2 =

√
MTεabs, ζpri

t =
√
Mεabs, εdual =

√
MNεabs, ζdual

t =
√
Mεabs

3: while ‖X1‖F >εpri
1 & ‖X2‖F >εpri

2 & ‖yt‖2>ζpri
t ∀t& ‖S‖F >εdual& ‖ct‖2>ζdual

t ∀t
do

4: Dold = D;
5: Zold = Z;
6: Gold = G;

� Solve Subproblems I
7: U = (λ(P −D) + μ(Q− Z)B)

(
λI + μBTB

)−1;

8: D = argmin
D∈G

λ
2
‖D − U + P‖2F + β

M∑
i=1

N∑
j=1

dij s.t.
N∑
j=1

dij ≤ v; � see Appendix A
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� Update Primal Residual I
9: X1 = D − U ;

� Lagrange Update I
10: P = P − (D − U);

� Stopping Criteria I
11: εpri

1 =
√
MN εabs + εrelmax {‖U‖F , ‖D‖F , 0};

12: for all t ∈ {1, . . . , T} do
� Solve Subproblem II

13: zt =
(
ATA+ μI − ηtΔ

)−1(
ATwt + μ

(
qt + UbTt

)
+ ηt∇· (rt − gt)

)
;

14: if ηt �= 0 then
15: gt = sign (∇zt + rt)max

(
|∇zt + rt| − γ

ηt
, 0

)
;

16: end if
� Update Primal Residual II

17: yt = gt −∇zt;
� Lagrange Update II

18: rt = rt − (gt −∇zt);
� Update Dual Residual I

19: ct = ηt∇· (gt − gold
t );

� Stopping Criteria II
20: ζpri

t =
√
M εabs + εrelmax {‖∇zt‖2, ‖gt‖2, 0};

21: end for
� Update Primal Residual III

22: X2 = Z − UBT ;
� Lagrange Update III

23: Q = Q− (
Z − UBT

)
;

� Update Dual Residual II
24: S = λ(Dold −D) + μ(Zold − Z)B;

� Stopping Criteria III
25: εpri

2 =
√
MT εabs + εrelmax

{‖UBT‖F , ‖Z‖F , 0
}
;

� Varying Penalty/Lagrange Parameters I
26: if ‖X1‖F > δ‖S‖F then
27: λ = λωincr;
28: P = P

ωincr ;
29: else if ‖S‖F > δ‖X1‖F then
30: λ = λ

ωdecr ;
31: P = Pωdecr;
32: end if
33: if ‖X2‖F > ϑ‖S‖F then
34: μ = μτ incr;
35: Q = Q

τ incr ;
36: else if ‖S‖F > ϑ‖X2‖F then
37: μ = μ

τdecr ;
38: Q = Qτdecr;
39: end if

� Stopping Criteria IV
40: εdual =

√
MN εabs + εrel‖λP + μQB‖F ;
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41: for all t ∈ {1, . . . , T} do
� Varying Penalty/Lagrange Parameters II

42: if ‖yt‖2 > ρ‖ct‖2 then
43: ηt = ηtσ

incr;
44: rt =

rt
σincr ;

45: else if ‖ct‖2 > ρ‖yt‖2 then
46: ηt =

ηt
σdecr ;

47: rt = rtσ
decr;

48: end if
� Stopping Criteria V

49: ζdual
t =

√
M εabs + εrel‖μqt + ηt∇· rt‖2;

50: end for
51: end while
52: return U � Solution of (5.12)

5.2.2. Additional TV-Regularization on the Coefficient Matrices

Let us now consider TV-minimization on the coefficient vectors for every basis function.
As before we will develop an algorithm using ADMM. However, we will shorten this
subsection a little bit, since the derivation of the algorithm works analogously to the
derivations before.

We consider again the reformulation from Subsection 4.1.4, i.e.

min
U

1

2

∥∥AUBT −W
∥∥2

F
+ β

M∑
i=1

N∑
j=1

uij + γ

N∑
j=1

‖∇uj‖1

s. t.
N∑
j=1

uij ≤ ṽ ∀ i and uij ≥ 0 ∀ i, j ,

(5.26)

where i ∈ {1, . . . ,M} and j ∈ {1, . . . , N}. Note that we have to include TV-
regularization in (5.26) for each basis vector j ∈ {1, . . . , N} separately in order to
use total variation only on the coefficient matrices for every basis vector and not as well
on the additional dimension. Thus we include the sum over all TV-regularizations for
every basis vector.
In order to compute reasonably simple sub-steps, we split the problem three times.
However, we cannot split the way we have done it before, since that would leave us with
an optimality condition, in which the variable has an operator on both sides. Hence it
would not be easily possible to separate the variable from the operators. On account
of this we propose another splitting. Instead of splitting Z = UBT in the data fidelity
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term, we rather split Z = AU . This yields the following optimization problem:

min
U, D, Z, G

1

2

∥∥ZBT −W
∥∥2

F
+ β

M∑
i=1

N∑
j=1

dij + γ

N∑
j=1

‖gj‖1 + J(D)

s. t. D = U, Z = AU, gj = ∇uj ∀ j ∈ {1, . . . , N},

where we use J as defined in (5.1). Then we have the Lagrange functional

L
(
U,D,Z,G; P̃ , Q̃, R̃

)
=
1

2

∥∥ZBT −W
∥∥2

F
+ β

M∑
i=1

N∑
j=1

dij + γ

N∑
j=1

‖gj‖1

+ J(D) +
〈
P̃ , U −D

〉
+

〈
Q̃, AU − Z

〉
+

N∑
j=1

〈r̃j,∇uj − gj〉 ,

(5.27)

the unscaled augmented Lagrangian

Lλ,μ,η
un

(
U,D,Z,G; P̃ , Q̃, R̃

)
=
1

2

∥∥ZBT −W
∥∥2

F
+ β

M∑
i=1

N∑
j=1

dij + γ
N∑
j=1

‖gj‖1 + J(D)

+
〈
P̃ , U −D

〉
+

λ

2
‖U −D‖2F

+
〈
Q̃, AU − Z

〉
+

μ

2
‖AU − Z‖2F

+
N∑
j=1

〈r̃j,∇uj − gj〉+
N∑
j=1

ηj
2
‖∇uj − gj‖22 ,

with Lagrange parameters λ, μ, η and dual variables P̃ , Q̃ and R̃ and the scaled
augmented Lagrangian

Lλ,μ,η
sc (U,D,Z,G;P,Q,R) =

1

2

∥∥ZBT −W
∥∥2

F
+ β

M∑
i=1

N∑
j=1

dij + γ

N∑
j=1

‖gj‖1 + J(D)

+
λ

2
‖U −D + P‖2F +

μ

2
‖AU − Z +Q‖2F

+
N∑
j=1

ηj
2
‖∇uj − gj + rj‖22 ,

with the scaled dual variables P := P̃
λ
, Q := Q̃

μ
and rj :=

r̃j
ηj

for every j ∈ {1, . . . , N}.
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We now obtain the algorithm as follows:

uk+1
j = argmin

uj

Lλ,μ,ηj
sc (uj, D

k, Zk, gkj ;P
k, Qk, rkj ) ∀ j ∈ {1, . . . , N} ,

Dk+1 = argmin
D

Lλ,μ,η
sc (Uk+1, D, Zk, Gk;P k, Qk, Rk) ,

Zk+1 = argmin
Z

Lλ,μ,η
sc (Uk+1, Dk+1, Z,Gk;P k, Qk, Rk) ,

gk+1
j = argmin

gj

Lλ,μ,ηj
sc (uk+1

j , Dk+1, Zk+1, gj;P
k, Qk, rkj ) ∀ j ∈ {1, . . . , N} ,

P k+1 = P k − (
Dk+1 − Uk+1

)
,

Qk+1 = Qk − (
Zk+1 − Uk+1BT

)
,

rk+1
j = rkj −

(
gk+1
j −∇uk+1

j

) ∀ j ∈ {1, . . . , N} .

We use the adaptive parameter choice from Boyd et al. (2010, Subsection 3.4.1) just like
in the previous section. For this purpose we start once more by stating the optimality
conditions.

Optimality Conditions

By deriving the partial derivatives of the Lagrange functional (5.27), we obtain the
following primal feasibility conditions:

0 = ∂PL = U −D , (5.28)

0 = ∂QL = AU − Z , (5.29)

0 = ∂rjL = ∇uj − gj ∀ j ∈ {1, . . . , N} . (5.30)

In addition we obtain the dual feasibility conditions

0 = ∂uj
L = λpj + μAT qj − ηj∇· rj ∀ j ∈ {1, . . . , N} , (5.31)

0 ∈ ∂DL = β1M×N + ∂J(D)− λP , (5.32)

0 = ∂ZL =
(
ZBT −W

)
B − μQ , (5.33)

0 ∈ ∂gjL = γ∂ ‖gj‖1 − ηjrj ∀ j ∈ {1, . . . , N} . (5.34)

In analogy to Section 5.1 and the previous subsection we obtain

λ
(
dkj − dk+1

j

)
+ μAT

(
zkj − zk+1

j

)− ηj∇·(gkj − gk+1
j

) ∈ λpk+1
j + μAT qk+1

j − ηj∇· rk+1
j
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for all j ∈ {1, . . . , N}, where the right hand side of this expression is the first dual
feasibility condition (5.31). Thus we obtain the dual residual

sk+1
j := λ

(
dkj − dk+1

j

)
+ μAT

(
zkj − zk+1

j

)− ηj∇·(gkj − gk+1
j

) ∀ j ∈ {1, . . . , N} (5.35)

for (5.31). In addition P k+1 and Dk+1 always satisfy (5.32). The same applies for Qk+1

and Zk+1, where (5.33) is also always satisfied. Furthermore, for all j ∈ {1, . . . , N} we
see that rk+1

j and gk+1
j always satisfy (5.34). Additionally we refer to

Ck+1 := Dk+1 − Uk+1 , (5.36)

Xk+1 := Zk+1 − AUk+1 and (5.37)

yk+1
j := gk+1

j −∇uk+1
j ∀ j ∈ {1, . . . , N} (5.38)

as the primal residuals at iteration k + 1.

With (5.28) - (5.34) we have seven optimality conditions, where we have seen that (5.32)
- (5.34) are always satisfied. The remaining four optimality conditions (5.28) - (5.31)
yield the primal residuals (5.36) - (5.38) and the dual residual (5.35), which converge
to zero as ADMM proceeds (cf. Boyd et al. 2010, Appendix A, p. 106 et seqq.).

Stopping Criteria

Once more we derive the stopping criteria in analogy to Boyd et al. (2010, Section
3.3.1).
The primal and dual residuals can again be related to a bound on the objective
suboptimality of the current point κ∗. By estimating ‖Uk − U∗‖F ≤ ν we obtain

1

2

∥∥ZBT −W
∥∥2

F
+ β

M∑
i=1

N∑
j=1

dij + γ

N∑
j=1

‖gj‖1 + J(D)− κ∗

≤ ‖P k‖F‖Ck‖F + ‖Qk‖F‖Xk‖F +
N∑
j=1

∥∥rkj ∥∥2

∥∥ykj ∥∥2
+ ν

N∑
j=1

‖skj‖2 .

Hence we have to limit the primal and dual residuals again, i.e.

‖Ck‖F ≤ εpri , ‖Xk‖F ≤ ξpri , ‖ykj ‖2 ≤ ζpri
j ∀ j , ‖skj‖2 ≤ εdual

j ∀ j ,
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with positive tolerances εpri, ξpri, ζpri
j and εdual

j for the feasibility conditions (5.28) -
(5.31), respectively. Once more we choose these tolerances as

εpri =
√
MN εabs + εrelmax

{‖Uk‖F , ‖Dk‖F , 0
}
,

ξpri =
√
LN εabs + εrelmax

{‖AUk‖F , ‖Zk‖F , 0
}
,

ζpri
j =

√
M εabs + εrelmax

{‖∇uk
j‖2, ‖gkj ‖2, 0

} ∀ j ∈ {1, . . . , N} ,
εdual
j =

√
M εabs + εrel‖λpkj + μAT qkj − ηj∇· rkj ‖2 ∀ j ∈ {1, . . . , N} ,

where εrel = 10−3 or 10−4 is a relative tolerance and the absolute tolerance εabs depends
on the scale of the typical variable values.

Adaptive Parameter Choice

The adaptive parameter choice from Boyd et al. (2010, Section 3.4.1) reads as follows:

λk+1 =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
ωincrλk, if ‖Ck‖F > δ‖Sk‖F ,
λk

ωdecr , if ‖Sk‖F > δ‖Ck‖F ,
λk, otherwise,

and P k+1 =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
Pk

ωincr , if ‖Ck‖F > δ‖Sk‖F ,
P kωdecr, if ‖Sk‖F > δ‖Ck‖F ,
P k, otherwise,

μk+1 =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
τ incrμk, if ‖Xk‖F > ϑ‖Sk‖F ,
μk

τdecr , if ‖Sk‖F > ϑ‖Xk‖F ,
μk, otherwise,

and Qk+1 =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
Qk

τ incr , if ‖Xk‖F > ϑ‖Sk‖F ,
Qkτdecr, if ‖Sk‖F > ϑ‖Xk‖F ,
Qk, otherwise,

ηk+1
j =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
σincrηkj , if ‖ykj ‖2 > ρ‖skj‖2,
ηkj

σdecr , if ‖skj‖2 > ρ‖ykj ‖2,
ηkj , otherwise,

and rk+1
j =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
rkj

σincr , if ‖ykj ‖2 > ρ‖skj‖2,
rkj σ

decr, if ‖skj‖2 > ρ‖ykj ‖2,
rkj , otherwise,

for all j ∈ {1, . . . , N}, where δ, ϑ, ρ > 1 and ω, τ, σ > 1 holds. Typical choices are
δ, ϑ, ρ = 10 and ω, τ, σ = 2.



124 5 Algorithms Promoting Local Sparsity

Solving the �1,∞-�1,1-TV-Regularized Problem Including TV on the Coefficient Matrices

Let us now state the complete algorithm for the solution of problem (5.26).

Algorithm 3 �1,∞-�1,1-TV(U)-regularized problem via ADMM with triple splitting

1: Parameters: v > 0, β > 0, γ > 0, A ∈ RL×M , B ∈ RT×N ,W ∈ RL×T ,
δ, ϑ, ρ > 1, ω, τ, σ > 1, εrel = 10−3 or 10−4, εabs > 0

2: Initialization: U,D,Z,G, P,Q,R, S, C,X, Y = 0, εpri =
√
MN εabs,

ξpri =
√
LN εabs, ζpri

j =
√
M εabs, εdual

j =
√
M εabs

3: while ‖C‖F > εpri & ‖X‖F > ξpri & ‖yj‖2 > ζpri
j ∀ j & ‖sj‖2 > εdual

j ∀ j do
4: Dold = D;
5: Zold = Z;
6: Gold = G;
7: for all j ∈ {1, . . . , N} do

� Solve Subproblems I
8: uj =

(
λI + μATA− ηjΔ

)−1(
λ (dj − pj) + μAT (zj − qj)− ηj∇· (gj − rj)

)
;

9: if ηj �= 0 then
10: gj = sign (∇uj + rj)max

(
|∇uj + rj| − γ

ηj
, 0

)
11: end if

� Update Primal Residual I
12: yj = gj −∇uj;

� Lagrange Updates I
13: rj = rj − (gj −∇uj);

� Stopping Criteria I
14: ζpri

j =
√
M εabs + εrelmax {‖∇uj‖2, ‖gj‖2, 0};

15: end for
� Solve Subproblems II

16: D = argmin
D∈G

λ
2
‖D − U + P‖2F + β

M∑
i=1

N∑
j=1

dij s.t.
N∑
j=1

dij ≤ v; � see Appendix A

17: Z = (WB + μ (AU +Q))
(
BTB + μI

)−1;
� Update Primal Residuals II

18: C = D − U ;
19: X = Z − AU ;

� Lagrange Updates II
20: P = P − (D − U);
21: Q = Q− (Z − AU);
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� Stopping Criteria II
22: εpri =

√
MN εabs + εrelmax {‖U‖F , ‖D‖F , 0};

23: ξpri =
√
LN εabs + εrelmax {‖AU‖F , ‖Z‖F , 0};

� Update Dual Residual
24: for all j ∈ {1, . . . , N} do
25: sj = λ

(
dold
j − dj

)
+ μAT

(
zold
j − zj

)− ηj∇·(gold
j − gj

)
;
� Stopping Criteria III

26: εdual
j =

√
M εabs + εrel‖λpj + μAT qj − ηj∇· rj‖2;

� Varying Penalty/Lagrange Parameters I
27: if ‖yj‖2 > ρ‖sj‖2 then
28: ηj = ηjσ

incr;
29: rj =

rj
σincr ;

30: else if ‖sj‖2 > ρ‖yj‖2 then
31: ηj =

ηj
σdecr ;

32: rj = rjσ
decr;

33: end if
34: end for

� Varying Penalty/Lagrange Parameters II
35: if ‖C‖F > δ‖S‖F then
36: λ = λωincr;
37: P = P

ωincr ;
38: else if ‖S‖F > δ‖C‖F then
39: λ = λ

ωdecr ;
40: P = Pωdecr;
41: end if
42: if ‖X‖F > ϑ‖S‖F then
43: μ = μτ incr;
44: Q = Q

τ incr ;
45: else if ‖S‖F > ϑ‖X‖F then
46: μ = μ

τdecr ;
47: Q = Qτdecr;
48: end if
49: end while
50: return U � Solution of (5.26)
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6
COMPUTATIONAL EXPERIMENTS

In the last chapters we have analyzed �1,∞-regularized variational models and its
reformulations. Moreover, we have deduced different algorithms for the computation of
a solution for the �1,∞-regularized minimization problem.
In this chapter we propose dynamic positron emission tomography for the visualization
of myocardial perfusion as a possible application. To incorporate knowledge about this
application, we include kinetic modeling in order to model the blood flow and tracer
exchange in the heart muscle. After an introduction to the corresponding medical and
mathematical background, we show some results for synthetic examples and discuss the
quality of our approach. Afterwards, we present some results using total variation as
proposed before in Sections 4.3 and 5.2. We distinguish between applying total variation
to the image in every time step and to the coefficient matrices for every basis vector.

6.1. Application to Dynamic Positron Emission Tomography

Coronary heart disease (CHD), also known as atherosclerosis, is the most common form
of heart disease. It often leads to heart attacks, which are life-threatening and in many
cases deathly. In 2012 most cases of death in the world resulted from CHD, cf. for
instance Finegold et al. (2013). It was even the major cause of hospital admissions.
The slow buildup of plaque (cf. Figure 6.1) along the inner walls of the arteries of the
heart is usually overlooked in the initial stage, since the perceivable symptoms arise not
until an advanced state of the disease is reached. Many people with CHD do not exhibit
symptoms for a long time. As the disease progresses, often a sudden heart attack arises
and the patient is caught by surprise. Thus it is challenging to medicate the patient in
time.
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(a) The buildup of plaque limits the flow of
oxygen-rich blood through the artery.

(b) Heart with a blocked artery, which caused
a heart attack. We see the resulting muscle
damage.

Figure 6.1.: U. S. National Heart, Lung and Blood Institute (2012)

In order to make a diagnosis and administer the right therapy, the medical doctors
need to know how well the cardiac muscle is perfused and where exactly the problems
are located. Thus it is necessary to visualize the perfusion of the cardiac muscle and
to locate damaged areas after a heart attack. Apart from this, it would be a great
advantage to find problematic arteries, to even prevent an infarction.
One way to visualize the myocardial perfusion is dynamic positron emission tomography.
Positron Emission Tomography (PET) is an imaging technique used in nuclear medicine
that visualizes the distribution of a radioactive tracer, which was applied to the patient,
see for instance Bailey et al. (2005) and Vardi et al. (1985). Compared to computer
tomography (CT), PET has the advantage of being a functional rather than a mor-
phological imaging technique. Figure 6.2 demonstrates a schema of the reconstruction
process of PET.

Figure 6.2.: Schema showing the different processing steps of PET by Langner
(2003)
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By using radioactive water (H15
2 O) as a tracer, it is possible to visualize blood flow.

H15
2 O has the advantage of being highly diffusible and the radiation exposure is low.

Even dynamic images are possible. On the other hand the reconstructed images have
poor quality due to the short radioactive half-life of H15

2 O.
Now let us consider the inverse problem of dynamic PET, i.e.

AZ = W , (6.1)

where the operator A linking the dynamic image Z with the measured data W is usually
the Radon operator, but could also be another operator depending on the application.
Using kinetic modeling (cf. Wernick and Aarsvold 2004, Chapter 23, p. 499 et
seqq.) we are able to describe the unknown image Z as the tracer concentration in the
tissue CT , i.e.

CT (x, t) = F (x)

t∫
0

CA(τ)e
−F (x)

λ
(t−τ) dτ , (6.2)

where CA(τ) is the arterial tracer concentration, also called input curve, F (x) refers
to the perfusion and λ is the ratio between the tracer concentration in tissue and the
venous tracer concentration resulting from Fick’s principle.

(a) Capillary microcirculation, U. S. Na-
tional Cancer Institute (2006)

Tissue CT

Blood
CA CV

F

JT

(b) Illustration of kinetic modeling

Figure 6.3.: Capillary microcirculation and kinetic modeling

Kinetic modelling describes the tracer exchange with the tissue in the capillaries. The
tracer is injected and flows from the arteries with concentration CA to the veins with
concentration CV . While passing the capillaries between arteries and veins, a part of it
moves across the vascular wall with flux JT into the tissue, cf. Figure 6.3.
Expression (6.2) is an integral equation including the exponential factor e−

F (x)
λ

(t−τ),
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which depends on both input arguments, i.e. time t and space x. This expression is
highly nonlinear and thus not easy to handle, especially in combination with inverse
problems. Due to the fact that we have prior knowledge about F (x)

λ
, we are able to

provide a big pool of given perfusion values for this expression. Subsequently, we can
consider a linearization, i.e.

B(u, CA) :=
N∑
j=1

uj(x)

t∫
0

CA(τ)e
−b̃j(t−τ) dτ

︸ ︷︷ ︸
bj(t)

, (6.3)

in which b̃j are the prior known perfusion values and the integral is now independent of
space. Expression (6.3) is reasonable if there is at most one uj �= 0 for j ∈ {1, ..., N},
i.e. the coefficient uj corresponding to the correct perfusion value b̃j. In order to
further simplify the work with this operator, we assume that the input curve CA is
predetermined.
Hereby we obtain the linear kinetic modeling operator

B(u) =
N∑
j=1

uj(x)bj(t) , (6.4)

which we use to describe the unknown image Z. The advantage of (6.4) over (6.2)
is that we are able to compute the basis functions bj(t) in advance and thus we can
provide many of those for the reconstruction process. Note that there exists another
deduction of (6.4) by Reader (2007).
By considering a discretization of (6.4), we obtain

UBT =
N∑
j=1

uijbkj , (6.5)

where i denotes the pixel and k the time step. After discretizing A as well, we can
insert (6.5) for the image Z in (6.1) and obtain

AUBT = W . (6.6)

Hence (4.8) can be used for the reconstruction of the discretized coefficients uij.
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6.2. Results for Synthetic Examples

In this section we present some numerical results. We are going to work on synthetic
data to investigate the effectiveness of our approach. In order to do so, we use a
simple 3D matrix Û containing the exact coefficients as ground truth, i.e. two spatial
dimensions and one extra dimension referring to the number of basis vectors.
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Figure 6.4.: Ground truth Û ∈ R200×200×8 with 2002 pixels and 8 basis vectors

Defining two regions, where the coefficients are nonzero for only one basis vector,
yields the fact that the corresponding coefficients for most of the basis vectors are zero.
Obviously our ground truth fulfills the prior knowledge, which we would like to promote
in the reconstruction, i.e. there is only one coefficient per pixel, which is unequal to zero.
In Figure 6.4 we see that the exact coefficients for the most basis vectors are zero. Only
some coefficients corresponding to the second and seventh basis vectors are nonzero.
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Figure 6.5.: Discretized kinetic modeling basis functions BT plotted on a fine grid



132 6 Computational Experiments

In order to obtain the artificial data W ∈ RL×T , we have to apply the matrices
A ∈ RL×M and BT ∈ RN×T to the ground truth Û ∈ RM×N . As an example for B

we use kinetic modeling basis vectors as they are used in dynamic positron emission
tomography (cf. Section 6.1 and Wernick and Aarsvold (2004, Chapter 23)), which
are basically exponential functions with different parameters, cf. also Appendix C. In
Figure 6.5 we see that those basis vectors are very similar, i.e. they are very coherent.
For the verification of our model, we use as matrix A a simple 2D convolution in space.
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Figure 6.6.: 2nd, 6th and 7th reconstructed coefficient matrices using ṽ = 0.01 and
β = 0.1

By using Algorithm 1 on the so computed data W and including a strong �1,∞-
regularization, i.e. ṽ = 0.01, we obtain a very good reconstruction of the support.
Figure 6.6 only shows the coefficient matrices to those basis vectors, which include
reconstructed nonzero coefficients. For the sake of simplicity, we do not show the other
reconstructed coefficient matrices, which are completely zero. Obviously we obtain
a very good reconstruction of the support. Only a few coefficients, which actually
correspond to the seventh basis vector, are reconstructed wrongly and show up in the
sixth basis vector. This is due to the coherence of the basis vectors, i.e. the sixth and
the seventh basis vector are very similar, compare for instance Figure 6.5.
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Figure 6.7.: 2nd, 6th and 7th reconstructed coefficient matrix using ṽ = 0.01 and
β = 0.1 including a second run only on the previously computed support; the other
coefficient matrices are completely zero

However, we observe that in Figure 6.6 every value larger than ṽ is projected down to ṽ

and we make a systematic error. This is due to the inequality constraint in problem
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(4.16) and because of the fact that we chose ṽ smaller than the maximal value of the
exact data Û (compare for instance Subsection 4.1.4 and especially Theorem 4.7). Thus
we are not really close to the exact data. In order to overcome this problem, we first
reconstruct the support including the �1,∞- and �1,1-regularization and then perform a
second run without regularization only on the known support to reduce the distance to
the exact data.
In Figure 6.7 we see that this approach leads to very good results. We additionally
reconstructed an example including some Gaussian noise. In Figure 6.8 we observe that
the algorithm performs quite nicely, especially if we chose ṽ lower than before. For
the example in Figure 6.8 we used ṽ = 10−5, which led to the best results. However,
choosing ṽ = 10−3 already yields very similar results and needs less iterations, cf. Table
6.2.
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Figure 6.8.: Reconstruction using ṽ = 10−5 and β = 0.1 including Gaussian noise with
standard deviation σ = 0.01

Let us now evaluate Algorithm 1 with respect to the quality of the reconstructed support.
In order to do so, we compare the reconstructed support after the first run (including
both regularizations) with the support of our ground truth and state how much percent
of the true support is reconstructed wrongly depending on the �1,∞-regularization
parameter ṽ. We also include the distance of the wrongly picked basis vector in each
pixel, for instance if the support of the ground truth picks basis vector number 7 and
the reconstructed support picks basis vector number 5 instead, we double the influence
of the error in this pixel if the reconstructed support picks basis vector number 4 instead
of the correct number 7 we triple it and so on.
In Table 6.1 we see the evaluation of Algorithm 1 applied to the noiseless data W .
When ṽ becomes smaller than 0.01 we observe that there is no further improvement.
As we have seen in Figure 6.6 the boundary of the region is reconstructed wrongly and
the algorithm selects the sixth instead of the seventh basis vector. However, the prior
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Percentage of Number of
ṽ wrong pixel iterations

10−1 0.6722 % 261
10−2 0.1772 % 349
10−3 0.1772 % 430
10−4 0.1772 % 511
10−5 0.1772 % 591
10−6 0.1772 % 662
10−7 0.1772 % 671

Table 6.1.: Evaluation of Algorithm 1 with β = 0.1

knowledge is already fulfilled, i.e. in every pixel there is only one basis vector active.
This is the reason why there are still 0.1772% wrong pixel and we do not obtain further
improvement.

Percentage of Number of
ṽ wrong pixel iterations

10−1 3.7016 % 261
10−2 0.2591 % 349
10−3 0.1956 % 430
10−4 0.1913 % 511
10−5 0.1909 % 591
10−6 0.1925 % 662
10−7 0.1928 % 671

Table 6.2.: Evaluation of Algorithm 1 with β = 0.1 including Gaussian noise with
standard deviation σ = 0.01

Percentage of Number of
ṽ wrong pixel iterations

10−1 6.4450 % 260
10−2 1.4628 % 349
10−3 1.0153 % 430
10−4 1.0078 % 511
10−5 1.0172 % 591
10−6 0.9694 % 662
10−7 0.9834 % 671

Table 6.3.: Evaluation of Algorithm 1 with β = 0.1 including Gaussian noise with
standard deviation σ = 0.05

In Table 6.2 and 6.3 we see the error measures for the same values of ṽ as in Table
6.1. But this time we included Gaussian noise on the data W with standard deviation
0.01 and 0.05, respectively. At first the error drops quickly. However, when ṽ becomes
smaller, the error stagnates in a certain range similar to the noise free case.
In order to smartly choose ṽ, we have to find a good tradeoff between a small error and
a small number of iterations. Choosing ṽ ∈ [10−4, . . . , 10−3] seems to be a good choice.
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6.3. Reconstruction Including Total Variation

In this section we include total variation into the reconstruction process. Using an
additional total variation regularization should improve the results. However, it also
complicates the process, since it becomes quite difficult to choose the right combination
of regularization parameters. Furthermore, the algorithms become a bit slower than
without using total variation, since the new methods are more complex than our first
approach.
In order to validate Algorithms 2 and 3 we consider problems (5.12) and (5.26). For
the reconstruction we use the same data W ∈ RL×T as in the previous Section 6.2.
Moreover, we use the same discretized operators, i.e. A ∈ RL×M is a 2D-convolution in
space for every basis vector and B ∈ RT×N is the discretized kinetic modeling operator
as deduced in Section 6.1.
For both algorithms deduced in Section 5.2, we first of all want to obtain an overview,
in which order of magnitude we should seek for a good combination of regularization
parameters. Afterwards, we refine our search, in order to obtain the parameter combi-
nation, which yields the lowest percentage of wrongly reconstructed coefficients. Once
more we use the same error measure as proposed before in Section 6.2, i.e. we compute
the percentage of wrongly reconstructed pixels of the support in consideration of the
distance of the wrongly picked basis vector to the true coefficient.

6.3.1. Additional Total Variation on the Image

Let us first discuss the results of Algorithm 2 for problem (5.12). In order to obtain
an overview of the regularization parameters and in which combination and order of
magnitude they should be chosen, we display the percentage of wrongly reconstructed
coefficients for different regularization parameters in Table 6.4. The highlighted cells
show the lowest and thus most interesting results. They indicate in which range of
parameters we should search for the optimal parameter combination.

ṽ γ 10−3 10−4 10−5 10−6

10−2 4.8025 % 0.6203 % 0.2116 % 0.1772 %
10−3 6.6056 % 0.3378 % 0.1825 % 0.1772 %
10−4 2.9175 % 1.2641 % 0.1825 % 0.1772 %
10−5 1.8956 % 7.9172 % 0.2266 % 0.2119 %

Table 6.4.: Rough overview about the wrongly reconstructed coefficients for different
regularization parameters ṽ and γ. The highlighted cells indicate the smallest errors in
this table.

Let us now present some examples for differently strong TV-regularizations.
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(a) Reconstructed support with too large TV-regularization; ṽ = 10−3 and γ = 10−3

1. basis

 

 

100 200

50

100

150

200 0

0.5

1
2. basis

 

 

100 200

50

100

150

200 0

0.5

1
3. basis

 

 

100 200

50

100

150

200 0

0.5

1
4. basis

 

 

100 200

50

100

150

200 0

0.5

1

5. basis

 

 

100 200

50

100

150

200 0

0.5

1
6. basis

 

 

100 200

50

100

150

200 0

0.5

1
7. basis

 

 

100 200

50

100

150

200 0

0.5

1
8. basis

 

 

100 200

50

100

150

200 0

0.5

1

(b) Reconstructed support with too low TV-regularization; ṽ = 10−3 and γ = 10−6
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(c) Reconstructed support with medium TV-regularization; ṽ = 10−3 and γ = 5× 10−4

Figure 6.9.: Examples of differently strong influences of the total variation
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Obviously the results for γ = 10−3 are not satisfying at all, cf. Subfigure 6.9(a). In this
cases the total variation regularization is too strong and most of the nonzero values
appear in the coefficient matrices for the former basis vectors. The latter coefficient
matrices are completely zero. By choosing γ = 10−6, cf. Subfigure 6.9(b), we indeed
obtain the same percentage of wrongly reconstructed coefficients as without using total
variation. However, in this case the TV-regularization has no influence at all on the
reconstruction. We especially see this in the reconstructed coefficients for the sixth basis
vector. They still do not differ from those obtained without using TV-regularization.
Choosing γ in between those values, i.e. γ = 5× 10−4, neither yields satisfying results,
cf. Subfigure 6.9(c). It rather deteriorates them by completely ignoring the nonzero
values of the coefficient matrices for the 7th basis vector. Instead those nonzero values
predominantly appear in the coefficient matrix for the 5th basis vector, which should
actually be zero.
Nevertheless, let us analyze some results for ṽ = 10−3 for different values of γ, since
this seems to be the most promising choice for the �1,∞-regularization, cf. Table 6.4.
We observe in Figure 6.10 that the error of the support descends as γ becomes smaller.
This indicates that we will indeed obtain the smallest error by choosing γ so small that
the total variation regularization has no influence on the reconstruction. The same
happens if we choose ṽ even smaller than that.
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(a) ṽ = 10−3 and γ ∈ [1, 9]× 10−5
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(b) ṽ = 10−3 and γ ∈ [1, 9]× 10−4

Figure 6.10.: Wrongly reconstructed coefficients of the support in percent for ṽ in the
order of magnitude 10−3 and γ in the order of magnitude 10−4 and 10−5

In our attempt to find the reason for this behaviour, we observed that the conjugate
gradient method, which we use in every substep to solve a system of linear equations, for
some reason does not converge to a desired tolerance. Moreover, the deduced stopping
criteria do not abort the algorithm. However, even if we manually abort the algorithm
earlier, the results are worse than our results from Section 6.2.
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In conclusion, we have to observe that including an additional total variation regular-
ization on the image in every time step yields worse results than without using total
variation. Furthermore, having to choose two regularization parameters complicates
the process and we receive the impression that in this case both regularizations conflict
each other.

6.3.2. Additional Total Variation on the Coefficient Matrices

Let us now evaluate Algorithm 3 for problem (5.26). In Table 6.5 we compare the results
for regularization parameters in different orders of magnitude. The highlighted cells
display the lowest percentage of wrongly reconstructed coefficients within this table.

ṽ γ 1× 10−3 5× 10−4 1× 10−4 5× 10−5 1× 10−5

1× 10−2 11.7078 % 0.0247 % 0.0025 % 0 % 0.4594 %
5× 10−3 9.2963 % 0.0253 % 0.0025 % 0 % 0.0075 %
1× 10−3 10.0231 % 10.0231 % 8.7916 % 0.9866 % 0.0075 %

Table 6.5.: Rough overview about the error for different regularization parameters ṽ
and γ. The highlighted cells indicate the smallest errors in this table.

The best result without including total variation into our method was 0.1772 % of wrongly
reconstructed coefficients. We observe that there are several parameter combinations in
Table 6.5, which yield better results than the best results from our first attempt without
using total variation, cf. Section 6.2. There even exist two parameter combinations,
for which the coefficients are reconstructed exactly, i.e. γ = 5× 10−5 in combination
with ṽ = 10−2 and ṽ = 5 × 10−3, cf. the highlighted cells in Table 6.5. In Figure
6.11 we present the result for ṽ = 5× 10−3 and γ = 5× 10−5, which was computed in
less iterations than the other exactly reconstructed result, i.e. 314. We show only the
coefficient matrices to those basis vectors, which contain nonzero coefficients.
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(a) Reconstructed support
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(b) Reconstruction on the previously computed
support

Figure 6.11.: 2nd and 7th coefficient matrices of the reconstructed support with
ṽ = 5×10−3 and γ = 5×10−5 and the result, which was computed on it. The coefficient
matrices to every other basis vector are completely zero.
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Motivated by these superior results, we tested the algorithm with noisy data as well.
Similarly to Section 6.2 we included additive Gaussian noise on the data W with
standard deviation σ = 0.01 and σ = 0.05.
In Table 6.6(a) we see the results for σ = 0.01, where ṽ and γ are chosen in different
orders of magnitude. Even in the presence of low Gaussian noise our algorithm recon-
structs the support exactly. In contrast to Algorithm 1, which does not involve total
variation, it is not even necessary to change the regularization parameters.
In case that we have σ = 0.05, Table 6.6(b) shows that we are not anymore able to
reconstruct the support exactly. Nevertheless, the best result is still much better than
the best result we could obtain by using Algorithm 1, which reconstructed at best
0.9694 % of the coefficients falsely for σ = 0.05. By using Algorithm 3, however, we
obtain an almost exact reconstruction of the support, i.e. only 0.01 % of the coefficients
are reconstructed wrongly.

(a) Standard deviation σ = 0.01

ṽ γ 1× 10−3 5× 10−4 1× 10−4 5× 10−5 1× 10−5

1× 10−2 0.7403 % 0.0247 % 0.0025 % 0 % 0.39 %
5× 10−3 9.3662 % 0.0247 % 0.0025 % 0 % 0.2616 %
1× 10−3 10.0244 % 10.0231 % 8.3759 % 0.1225 % 0.0075 %

(b) Standard deviation σ = 0.05

ṽ γ 1× 10−3 5× 10−4 1× 10−4 5× 10−5 1× 10−5

1× 10−2 0.8188 % 0.0547 % 0.0172 % 0.01 % 2.4431 %
5× 10−3 10.4631 % 0.1119 % 0.0344 % 0.0131 % 0.4834 %
1× 10−3 8.5144 % 10.0231 % 2.4806 % 1.0144 % 0.1850 %

Table 6.6.: Rough overview about the error for different regularization parameters ṽ
and γ for noisy data. The highlighted cells indicate the smallest errors in these tables.

For standard deviation σ = 0.01 we see in Subfigure 6.12(a) the nonzero coefficient
matrices of the reconstruction computed on the previously recovered support for ṽ = 0.01

and γ = 5 × 10−5. This result was reconstructed in 392 iterations. We observe that
the algorithm needed slightly more iterations for σ = 0.01 than in the noise-free case.
Subfigure 6.12(b) shows the reconstruction on the previously computed support for
ṽ = 0.01 and γ = 5× 10−5. This time the data was corrupted by Gaussian noise with
standard deviation σ = 0.05. We observe that the support is still reconstructed almost
exactly. For the recovery of the support the algorithm needed the same number of
iterations as before, i.e. 392.
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Note that, unless stated otherwise, all the figures of the reconstructions in this subsection
involve also the second run, which solves the nonnegative least squares problem only on
the previously computed support.
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(a) Reconstruction including Gaussian noise with standard deviation
σ = 0.01
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(b) Reconstruction including Gaussian noise with standard deviation
σ = 0.05

Figure 6.12.: 2nd and 7th reconstructed coefficient matrices, which were reconstructed
on the previously recovered support including Gaussian noise. In both cases we used
ṽ = 10−2 and γ = 5 × 10−5. The coefficient matrices to every other basis vector are
completely zero.

Since the reconstruction of the support is still almost perfect, we challenge the algorithm
even more and add Gaussian noise with higher standard deviation, i.e. σ = 0.1 and
σ = 0.2, to the data. For the first case we see in Table 6.7(a) the percentage of
wrongly reconstructed coefficients. The best result still contains only 0.0891% of falsely
reconstructed coefficients, which is less than without using total variation and even
without including noise in Algorithm 1.
Table 6.7(b) on the other hand shows the percentage of wrongly recovered coefficients
for the reconstructions based on noisy data with standard deviation σ = 0.2. This
time the result is to a greater extent corrupted by the noise. The best result now
contains 0.5456% of wrongly reconstructed coefficients. Moreover, we had to increase
the influence of the total variation regularization to obtain a reasonable good result.



6.3 Reconstruction Including Total Variation 141

(a) Standard deviation σ = 0.1

ṽ γ 1× 10−3 5× 10−4 1× 10−4 5× 10−5 1× 10−5

1× 10−2 1.0006 % 0.1681 % 0.0891 % 0.1138 % 8.6659 %
5× 10−3 16.2275 % 0.6063 % 0.1691 % 0.1519 % 7.8075 %
1× 10−3 9.2931 % 10.0181 % 2.5769 % 1.3253 % 2.8644 %

(b) Standard deviation σ = 0.2

ṽ γ 1× 10−3 5× 10−4 1× 10−4 5× 10−5 1× 10−5

1× 10−2 1.3691 % 0.5456 % 3.7209 % 6.9472 % 10.3841 %
5× 10−3 13.5228 % 5.1825 % 5.4438 % 6.1172 % 10.0744 %
1× 10−3 10.0144 % 8.7988 % 6.8419 % 5.7063 % 8.2309 %

Table 6.7.: Rough overview about the error for different regularization parameters ṽ
and γ for noisy data with higher standard deviation. The highlighted cells indicate the
smallest errors in these tables.

For Gaussian noise with a standard deviation of σ = 0.1 we see the result in Subfigure
6.13(a). On the other hand, Subfigure 6.13(b) shows the reconstruction involving
Gaussian noise with standard deviation σ = 0.2. In both cases the coefficient matrices
corresponding to those basis vectors, which should be completely zero, are truly zero
and thus are not included in the figures. Hence we notice that the support is indeed
recovered very well for these two examples.
However, in case we include Gaussian noise with standard deviation σ = 0.2, we can
directly observe that the edges of the nonzero regions are not recovered correctly. We
are able to observe the same behaviour for σ = 0.1 and σ = 0.05, although not to this
extent. In some cases the falsely recovered coefficients, which should be in the coefficient
matrix corresponding to the second basis vector, can be found in the coefficient matrix,
which belongs to the seventh basis vector, and vice versa. This indicates that the total
variation regularization has indeed the desired effect. It keeps the nonzero regions
connected and prevents that due to the noise the nonzero coefficients get fragmented
over all the other basis vectors. In other cases, however, the falsely recovered coefficients
get split up between the second and the seventh basis vector and thus the corresponding
pixel consists of a sum of those two weighted basis vectors. For these reasons, the
percentage of wrongly reconstructed coefficients can be bigger than zero, even though
every coefficient matrix, which should be zero, is indeed completely zero.
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(a) Standard deviation σ = 0.1, regularization parameters ṽ = 10−2 and
γ = 10−4
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(b) Standard deviation σ = 0.2, regularization parameters ṽ = 10−2 and
γ = 5× 10−4

Figure 6.13.: 2nd and 7th reconstructed coefficient matrices, which were reconstructed
on the previously recovered support including Gaussian noise. The coefficient matrices
to every other basis vector are completely zero.

Note that in all the results there is no further regularization included in the second run
except for the previously computed support. Therefore, the nonzero regions are indeed
very noisy. This might be improved by including another regularization in the second
run. These considerations, however, are not realized in this thesis and left open for
future work.
In summary, Algorithm 1 already computes very satisfactory results, however, the
reconstructions improve a lot when we combine the �1,∞-regularization with an additional
total variation regularization on the coefficient matrices for every basis vector. Even
in the presence of additive Gaussian noise Algorithm 3 performs very well. Thus we
conclude that total variation regularization makes the �1,∞-problem more robust to
noise.
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7
ASYMPTOTICS OF SPATIAL SPARSITY

PRIORS

In the previous chapters we have seen that sparsity regularization in inverse problems
is an important and versatile tool and can even be extended to realize more advanced
a-priori information such as local sparsity or joint sparsity. In this chapter we analyze
the limits of such discrete approaches to develop a suitable asymptotic theory. First
we motivate and introduce this new approach. In the subsequent section we consider
spatial sparsity priors under Γ-convergence, which we divide into the convex case, i.e.
�p-regularization for p ≥ 1, and the special nonconvex case, where p = 0 holds. Moreover,
we consider the asymptotics of mixed �p,q-norms.

7.1. Introduction

Regularization functionals, which promote sparse solutions, are usually finite-dimensional.
However, in many applications an infinite-dimensional modeling especially in the pre-
image space seems to be more reasonable. Nevertheless, due to computational rather
than application-related reasons, spatial sparsity is usually imposed on some spatial grid.
Therefore, the establishment of an appropriate asymptotic theory behind these discrete
approaches is of particular importance. An underlying asymptotic theory moreover
permits an analysis independent of discretization and thus yields robustness.
This chapter is devoted to the asymptotics of regularization methods applicable for
instance to spatial sparsity regularization. We are interested in recovering continuum
limits such as total variation regularization or recent approaches in the space of Radon
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measures, cf. for instance Scherzer and Walch (2009), Bredies and Pikkarainen

(2013) and Duval and Peyré (2013). Thereby, we will also obtain continuum limits,
which were not understood up to now. In order to study the asymptotics of regulariza-
tion functionals, we utilize Γ-convergence, which is a useful and reasonable framework
for this purpose.
We investigate the standard variational regularization of a linear inverse problem

Kμ = w , (7.1)

where the operator K : U −→ H maps a Banach space U into a Hilbert space H.
Here w is the noisy version of the exact data ŵ = Kμ̂. Forthermore, we consider the
Tikhonov-type regularization

min
μ∈U

1

2
‖Kμ− w‖2H + αR(μ)

and its noise-free counterpart

min
μ∈U

R(μ) s. t. Kμ = w .

Since Γ-convergence is stable under continuous perturbations (cf. Subsection 2.1.2)
and the data fidelity terms are usually continuous, it is sufficient to only consider the
asymptotics of the regularization functional R in order to asymptotically analyze such
variational problems regarding their discretizations. Thus we consider a sequence of
regularization functionals RN , which may also take the value +∞, Γ-converging to its
limit R. By this means, we attempt to understand both, the basic convergence and
finer properties of the regularized solutions as N tends to infinity.

7.2. Spatial Sparsity under Γ-Convergence

Let us now consider Γ-limits of functionals that promote spatial sparsity. In order to
do so, we consider a set Ω ⊂ Rd, which shall be partitioned into a union of N disjoint
subsets, i.e.

Ω =
N⋃
j=1

ΩN
j .
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Before going into the details, we want to agree on some notations. By |ΩN
j | we denote

the volume of an element in the partition. Moreover,

hN := max
j∈{1,...,N}

diam(ΩN
j )

denotes the diameter, which tends to zero as N goes to infinity.
Usually spatial sparsity is applied to a vector uN ∈ RN , which is, however, not suitable
for examining the asymptotic behaviour of regularization functionals. Due to this
reason, we identify a vector uN ∈ RN with a finite Radon measure μN ∈ M(Ω). For
this purpose, μN has to be absolutely continuous with respect to the Lebesgue measure
λ, i.e. every Borel set A ∈ B(Ω) with λ(A) = 0 is supposed to be μN -null. Furthermore,
μN has the density function

ρN =
N∑
j=1

uN
j χΩN

j
.

Remark 7.1.
We can easily see that

μN(Ω) =
N∑
j=1

uN
j |ΩN

j | and μN(ΩN
j ) = uN

j |ΩN
j |

holds, since we have

μN(Ω) =

∫
Ω

ρN dλ =
∫
Ω

N∑
j=1

uN
j χΩN

j
dλ =

N∑
j=1

uN
j

∫
ΩN

j

dλ =
N∑
j=1

uN
j |ΩN

j | .

In (7.1) we now use U = M(Ω) and hence consider the operator K :M(Ω) −→ H,
which shall satisfy K = A∗ as it was done by Bredies and Pikkarainen (2013). Here
A :H −→ C0(Ω) is a compact operator and thus K is compact from the weak-*topology
to the strong topology of H, cf. also Subsection 2.4.3. Therefore, we redefine all
functionals on the subset

MC := {μ ∈ M(Ω) | ‖μ‖TV(Ω) ≤ C}

to avoid technical difficulties of the weak-*convergence. However, this is not a crucial
restriction, since an upper bound on the total variation of the measure is natural
in inverse problems. In doing so, we are able to use the metrizability of the weak-
*convergence on bounded sets. Furthermore, we obtain weak-*compactness.
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Let us now concentrate on the asymptotics of regularization functionals promoting
spatial sparsity.
For p > 0 we define the weighted p-norms as

RN
p (μ) :=

⎧⎪⎪⎨⎪⎪⎩
∥∥uN

∥∥
p
=

(
N∑
j=1

ωN
j |uN

j |p
)1

p

, if μ =
N∑
j=1

uN
j |ΩN

j | ,

∞ , else,

(7.2)

with a positive weight vector ωN ∈ RN . In an analogous manner we define

RN
0 (μ) :=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
∑

j∈{1,...,N|
uN
j

�=0}

ωN
j , if μ =

N∑
j=1

uN
j |ΩN

j | ,

∞ , else.

(7.3)

The weight vector ωN ∈ RN introduces a scaling of the functional and should depend
on |ΩN

j | in order to obtain reasonable limits of (7.2) and (7.3).

7.2.1. Convergence for the Convex Case p ≥ 1

Let us begin the analysis of asymptotic behavior of spatial sparsity by considering the
convex case. For appropriate scaling we obtain a rather intuitive limit.

Theorem 7.1.
Let be p ≥ 1 and ωN

j := |ΩN
j | for every j ∈ {1, . . . , N}. Then RN

p Γ-converges with
respect to the weak-*topology of M(Ω) to

R∞
1 (μ) = ‖μ‖TV(Ω) (7.4)

if we have p = 1 and to

R∞
p (μ) =

⎧⎨⎩‖u‖Lp(Ω) , if μ = λ(u), u ∈ Lp(Ω),

∞, else,
(7.5)

in case that p > 1 holds.
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Proof.
Equi-coercivity:

By construction, equi-coercivity holds in M(Ω) as well as in the weak topology of
Lp(Ω) for p > 1.

Lower bound inequality:
R∞

p is lower semi-continuous in the weak-*topology, i.e. it holds that

R∞
p (μ) ≤ lim inf

N→∞
R∞

p (μ
N) ∀ μN ⇀∗ μ .

Let us now show that

lim inf
N→∞

R∞
p (μ

N) ≤ lim inf
N→∞

RN
p (μ

N)

holds. By definition we have

RN
p (μ

N) =

(
N∑
j=1

|ΩN
j ||uN

j |p
)1

p

,

which already equals R∞
p (μ

N). Thus we obtain

R∞
p (μ) ≤ lim inf

N→∞
RN

p (μ
N) ∀ μN ⇀∗ μ .

Upper bound inequality:
Due to Theorem 2.3 it is sufficient to restrict ourselves to the case of a dense
subspace of M(Ω) with a stronger topology, where we only consider measures
with total variation bounded by C. On account of this, we choose the subspace of
measures with continuous densities u ∈ Lp(Ω). Hence we are able to construct
the following approximation

uN
j ≈

∫
ΩN

j
u dλ∫

ΩN
j

dλ
=

μ̃N(ΩN
j )

|ΩN
j |

, (7.6)

where μ̃N belongs to the considered dense subspace. Thus we have μN ≈ μ̃N .
Since u ∈ Lp(Ω) holds, we have strong Lp-convergence of the piecewise constant
approximations. Due to the fact that RN

p (μ̃
N) = R∞

p (μ̃
N) holds, we obtain the

assertion by utilizing the strong continuity of R∞
p in Lp(Ω), i.e.

lim sup
N→∞

RN
p (μ̃

N) = lim sup
N→∞

R∞
p (μ̃

N) ≤ R∞
p (μ̃)

for all measures μ̃ ∈ M(Ω) with densities u ∈ Lp(Ω) and μ̃N ⇀∗ μ̃.
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Let us now consider each case with a faster and slower scaling of the weights. We will
see that this already yields trivial limits.

Theorem 7.2.
Let p ≥ 1 hold.

a) For the weight vector ωN ∈ RN the following shall be true:

lim
N→∞

max
j∈{1,...,N}

ωN
j

|ΩN
j |

= 0 . (7.7)

Then RN
p Γ-converges to

R∞
p (μ) ≡ 0

with respect to the weak-*topology of M(Ω).

b) Let now for the weight vector ωN
j ∈ RN hold that

lim
N→∞

max
j∈{1,...,N}

|ΩN
j |

ωN
j

= 0 . (7.8)

Then we obtain Γ-convergence of RN
p to

R∞
p (μ) =

⎧⎨⎩0, if μ = 0,

∞, else,

with respect to the weak-*topology of M(Ω).

Proof.
a) Faster scaling:

Equi-coercivity:
holds by construction.

Lower bound inequality:
Since the weight vector ωN is always positive by definition, it holds for all
converging sequences μN ⇀∗ μ in M(Ω) that

0 ≡ R∞
p (μ) ≤ lim inf

N→∞
RN

p (μ
N) .

Upper bound inequality:
For measures with bounded total variation, we restrict ourselves to a dense
subspace of M(Ω) with a stronger topology, cf. Theorem 2.3. We choose
the subspace of measures with continuous densities u ∈ Lp(Ω) and consider
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again the approximation (7.6).
Since μN =

∑N
j=1 u

N
j |ΩN

j | holds, we have

lim sup
N→∞

RN
p (μ

N) = lim sup
N→∞

(
N∑
j=1

ωN
j |uN

j |p
)1

p

≈ lim sup
N→∞

(
N∑
j=1

ωN
j

∣∣∣∣∣ μ̃N(ΩN
j )

|ΩN
j |

∣∣∣∣∣
p)1

p

= lim sup
N→∞

(
N∑
j=1

ωN
j

|ΩN
j |p

∣∣∣∣∣
∫
ΩN

j

u dλ

∣∣∣∣∣
p)1

p

.

By using Hölder’s inequality with 1
p
+ 1

p∗ = 1, we obtain

lim sup
N→∞

RN
p (μ

N) � lim sup
N→∞

⎛⎝ N∑
j=1

ωN
j

|ΩN
j |p

(∫
ΩN

j

up dλ

)(∫
ΩN

j

dλ

) p
p∗
⎞⎠1

p

= lim sup
N→∞

(
N∑
j=1

ωN
j

|ΩN
j |

∫
ΩN

j

up dλ

)1
p

,

since we have p
p∗ = p− 1 and the latter integral is equal to the volume of ΩN

j .
Note that for p = 1 Hölder’s inequality is indeed not applicable, however, in
that case this step is unnecessary. Finally, we have

lim sup
N→∞

RN
p (μ

N) � lim sup
N→∞

(
max

j∈{1,...,N}
ωN
j

|ΩN
j |

N∑
j=1

∫
ΩN

j

up dλ

)1
p

= 0 ,

due to the faster scaling (7.7) of the weight vectors and since it is u ∈ Lp(Ω).

b) Slower scaling:

Equi-coercivity:
holds by construction.

Lower bound inequality:
For μ = 0 the case is trivial. Let thus R∞

p (μ) = ∞ hold. Then we have to
show that

lim inf
N→∞

RN
p (μ

N) = ∞ .

Let us assume that there exists a constant C ∈ R such that

RN
p (μ

N) =

(
N∑
j=1

ωN
j |uN

j |p
)1

p

≤ C
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holds. For all ϕ ∈ C(Ω) we can consider

∣∣∣∣∫
Ω

ϕ dμN

∣∣∣∣ =
∣∣∣∣∣

N∑
j=1

∫
ΩN

j

ϕuN
j dλ

∣∣∣∣∣ ≤ ‖ϕ‖∞
N∑
j=1

|uN
j ||ΩN

j | .

For p = 1 we obtain

∣∣∣∣∫
Ω

ϕ dμN

∣∣∣∣ ≤ ‖ϕ‖∞ max
j∈{1,...,N}

|ΩN
j |

ωN
j

N∑
j=1

ωN
j |uN

j |

≤ ‖ϕ‖∞ C max
j∈{1,...,N}

|ΩN
j |

ωN
j

,

which, due to (7.8), goes to zero as N goes to infinity. This contradicts the
weak-*convergence of μN ⇀∗ μ, since we have considered μ �= 0.
Let now p > 1 hold. Then we have

∣∣∣∣∫
Ω

ϕ dμN

∣∣∣∣ ≤ ‖ϕ‖∞
N∑
j=1

(ωN
j )

1
p |uN

j |
|ΩN

j |
(ωN

j )
1
p

≤ ‖ϕ‖∞
(

N∑
j=1

ωN
j |uN

j |p
) 1

p
(

N∑
j=1

|ΩN
j |p∗

(ωN
j )

p∗
p

) 1
p∗

by using Hölder’s inequality with 1
p
+ 1

p∗ = 1.
Due to the fact that p∗

p
= p∗ − 1 holds, we obtain

∣∣∣∣∫
Ω

ϕ dμN

∣∣∣∣ ≤ ‖ϕ‖∞ C

(
N∑
j=1

|ΩN
j |p∗−1

(ωN
j )

p∗−1
|ΩN

j |
) 1

p∗

≤ ‖ϕ‖∞ C

⎛⎝(
max

j∈{1,...,N}
|ΩN

j |
ωN
j

)p∗−1 N∑
j=1

|ΩN
j |

⎞⎠ 1
p∗

≤ ‖ϕ‖∞ C|Ω| 1
p∗

(
max

j∈{1,...,N}
|ΩN

j |
ωN
j

) 1
p

,

which goes to zero as well as N goes to infinity due to (7.8). Thus we obtain
again a contradiction to the weak-*convergence of μN ⇀∗ μ. Therefore,
RN

p (μ
N) is not bounded, which yields the assertion.
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Upper bound inequality:
It trivially holds that for every μ ∈ M(Ω) there exists a sequence (μN)N∈N
with μN ⇀∗ μ such that

∞ ≡ R∞
p (μ) ≥ lim sup

N→∞
RN

p (μ
N) .

7.2.2. Convergence for the Nonconvex Case p = 0

Let us now consider a special case, where the functional is nonconvex, i.e. we assume
that p = 0 holds. Let us analyze the functional RN

0 without any weighting, i.e. in case
that ωN = 1N holds for the weight vector.

Theorem 7.3.
Let ωN

j = 1 hold for every j ∈ {1, . . . , N}. Then RN
0 Γ-converges to

R∞
0 (μ) =

⎧⎪⎨⎪⎩M, if μ =
M∑
i=1

ciδXi
for c ∈ RM , X ∈ ΩM with pairwise different entries,

∞, else,

with respect to the weak-*topology of M(Ω), where M is the number of nonzero spikes
Xi with height ci.

Proof.
Equi-coercivity:

Due to the fact that all minimizers of RN
0 are in MC , we are able to deduce

equi-coercivity in the weak-*topology by applying the Banach-Alaoglu Theorem
2.2.

Lower bound inequality:

• Let us first consider the case, where we have μ =
M∑
i=1

ciδXi
with pairwise

different entries Xi and
M∑
i=1

|ci| ≤ C holds, i.e. we have R∞
0 (μ) =M . Then

we have to show that

lim inf
N→∞

RN
0 (μ

N) ≥ M for μN ⇀∗ μ .

Let us assume that there exists a sequence in MC with μN ⇀∗ μ and

lim inf
N→∞

RN
0 (μ

N) < M .
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Due to the fact that the values of RN
0 are discrete, there exists an N∗ ∈ N

such that

RN
0 (μ

N) ≤ M − 1 for N > N∗ (7.9)

holds. Now let ε be less than half the distance between two spikes, i.e.

ε <
1

2
|Xi −Xj| .

In addition choose ϕi ∈ C0(Ω) with support in Bε(Xi) and ϕ(Xi) = sign (ci),
cf. Figure 7.1.

Xi Xj|Xi −Xj|

ε εBε(Xi) Bε(Xj)

supp(ϕi) supp(ϕj)

Figure 7.1.: Illustration of a part of the proof for the convergence of the �0-functional

Since we can choose N sufficiently large, we obtain hN < ε and thus each Xi

is located in a different cell ΩN
j(i;N). Due to this argument and the fact that

(7.9) holds, we deduce that there exists an i(N) such that we obtain

〈
μN , ϕi(N)

〉
= 0

for N sufficiently large. Moreover, we are able to choose a subsequence Nk

such that I = i(Nk) is constant, since we only have a finite number of indices.
Hence we obtain 〈

μNk , ϕI

〉
= 0 �= |cI | = 〈μ, ϕI〉 ,

which is a contradiction to the weak-*convergence of μN .

• Let us now consider R∞
0 (μ) =∞, i.e. μ shall not be concentrated on a set

of finite points. We have to show that

lim inf
N→∞

RN
0 (μ

N) = ∞

holds. Let us assume there exists a sequence μN ⇀∗ μ such that RN
0 (μ

N)
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has a bounded subsequence, i.e.

RNk
0 (μNk) ≤ M (7.10)

for M ∈ N. Due to the fact that the support of μ is not concentrated on a
finite number of points, there exist M + 1 continuous functions ϕi ∈ C0(Ω),
i ∈ {1, . . . ,M + 1}, with disjoint support such that

〈μ, ϕi〉 > 0

for all i ∈ {1, . . . ,M + 1}. Since (7.10) holds, we see that there exists an
index i(Nk) ∈ {1, . . . ,M + 1} such that

〈
μNk , ϕi(Nk)

〉
= 0

holds for Nk sufficiently large. For this reason there exists an index i ∈
{1, . . . ,M + 1} and a subsequence N ′

k, for which we have〈
μN ′

k , ϕi

〉
= 0 .

As before, this is a contradiction to the weak-*convergence of μN ′
k .

Upper bound inequality:
We have to show that for all μ ∈ M(Ω) there exists a sequence (μN)N∈N such
that

lim sup
N→∞

RN
0 (μ

N) ≤ R∞
0 (μ) with μN ⇀∗ μ .

• Let μ =
M∑
i=1

ciδXi
hold, i.e. we have R∞

0 (μ) =M . Let us assume that there

exists a sequence μN ⇀∗ μ for N → ∞ with

lim sup
N→∞

RN
0 (μ

N) > M .

Since the values of RN
0 are discrete, there exists an N∗ ∈ N such that

RN
0 (μ

N) ≥ M + 1 for N > N∗ . (7.11)

holds. Thus the discrete functional RN
0 has at least one nonzero element more

than the continuous functional R∞
0 has nonzero spikes. For N sufficiently

large we consider again the previous construction and use the cells ΩN
j(i;N) as
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defined above. Additionally we define

uN
j :=

⎧⎨⎩μ(ΩN
j(i;N)), if j = j(i;N),

0, else,

which yields μN =
∑

j=j(i;N) μ(Ω
N
j(i;N)). Let us again consider a function

ϕ ∈ C0(Ω) with Xi ∈ supp(ϕi) ⊂ Bε(Xi) and ϕ(Xi) = sign (ci). Due to
(7.11), we can find an index i(N) such that Xi(N) is nonzero in the discrete
version, but zero in the continuous setting. Then we obtain

〈
μN , ϕi(N)

〉
= μ(ΩN

j(i(N);N)) = 0 ,

which contradicts the fact that Xi(N) was supposed to be nonzero in the
discrete setting.

• For the case that μ is not concentrated on a set of finite points, i.e. R∞
0 (μ) =

∞, the construction follows directly from the lower bound inequality.

7.3. Asymptotics of Mixed Norms

In the last section we considered different regularization functionals for vectors, namely
�p-norms for p ≥ 1 and p = 0, and analyzed their behaviour for the case that the
discretization becomes finer and finer, until we discovered asymptotic limits.
In this section we consider matrices instead of vectors and thus analyze the asymptotics
of mixed norms (cf. Chapter 3). For this purpose, we consider two disjoint partitions of
sets Ω̃, Ω ⊂ Rd, i.e.

Ω̃ =
M⋃
i=1

Ω̃M
i and Ω =

N⋃
j=1

ΩN
j ,

and the measurable space
(
Ω× Ω̃, B(Ω)⊗ B(Ω̃)

)
.

In this setting we can identify every matrix UMN ∈ RM×N with a finite Radon measure
μMN ∈ M(Ω× Ω̃), which has the density function

ρMN :=
M∑
i=1

N∑
j=1

uMN
ij χΩN

j
χΩ̃M

i
.
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Remark 7.2.
We can see that the following identification is true:

μMN(Ω× Ω̃) =
M∑
i=1

N∑
j=1

uMN
ij |ΩN

j ||Ω̃M
i | and μMN(ΩN

j × Ω̃M
i ) = uij|ΩN

j ||Ω̃M
i | .

The first identity is obtained by computing:

μMN(Ω× Ω̃) =

∫
Ω̃

∫
Ω

ρMN dλΩ dλΩ̃

=

∫
Ω̃

∫
Ω

M∑
i=1

N∑
j=1

uMN
ij χΩN

j
χΩ̃M

i
dλΩ dλΩ̃

=

∫
Ω̃

M∑
i=1

N∑
j=1

uMN
ij χΩ̃M

i

∫
ΩN

j

dλΩ dλΩ̃

=
M∑
i=1

N∑
j=1

uMN
ij |ΩN

j |
∫
Ω̃M

i

dλΩ̃

=
M∑
i=1

N∑
j=1

uMN
ij |ΩN

j ||Ω̃M
i | .

The second identity can be computed in a similar way.

By using this identification, we are now able to work on the space M(Ω× Ω̃). Let us
thus consider the inverse problem

Kμ = w ,

where the operator K :M(Ω× Ω̃) −→ H shall satisfy K = A∗ and A :H −→ C0(Ω× Ω̃)

is assumed to be a compact operator. As before, we will redefine all functionals on

M′
C :=

{
μ ∈ M(Ω× Ω̃)

∣∣∣ ‖μ‖TV(Ω×Ω̃) ≤ C
}

in order to avoid technical difficulties of the weak-*convergence.

Let us now analyze the following regularization functional:

RMN
p,q (μ) :=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
⎛⎝ M∑

i=1

(
N∑
j=1

wMN
ij

∣∣uMN
ij

∣∣p) q
p

⎞⎠ 1
q

, if μ =
M∑
i=1

N∑
j=1

uMN
ij |ΩN

j ||Ω̃M
i |,

∞ , else.

(7.12)
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7.3.1. Convergence for the General Convex Case p > 1 and q > 1

Let us start by examining the convex case, where p and q are larger than one. Afterwards,
we separately consider the special case of local sparsity, i.e. where p is equal to one.

Theorem 7.4.
Let be p, q > 1 and define ωMN

ij := |ΩN
j ||Ω̃M

i | pq for all i ∈ {1, . . . ,M} and j ∈ {1, . . . , N}.
Then RMN

p,q Γ-converges with respect to the weak-*topology of M(Ω×Ω̃) for M,N → ∞
to

R∞
p,q(μ) =

⎧⎨⎩‖u‖Lp,q(Ω×Ω̃) , if μ = λΩ×Ω̃(u), u ∈ Lp,q(Ω× Ω̃),

∞, else.
(7.13)

The proof works similarly to the proof of Theorem 7.1.

Proof.

Equi-coercivity:
holds by construction.

Lower bound inequality:
Since in the nontrivial case R∞

p,q is the composition of the Lp- and the Lq-norm, it
is lower semi-continuous, i.e. it holds that

R∞
p,q(μ) ≤ lim inf

M,N→∞
R∞

p,q(μ
MN) ∀ μMN ⇀∗ μ .

We still need to show that

lim inf
M,N→∞

R∞
p,q(μ

MN) ≤ lim inf
M,N→∞

RMN
p,q (μMN)

holds. The case, where we have

μMN �=
M∑
i=1

N∑
j=1

uMN
ij |ΩN

j ||Ω̃M
i | ,

is trivial, since then RMN
p,q (μMN) is already infinity. In the other case, however,

we have by definition

RMN
p,q (μMN) =

⎛⎝ M∑
i=1

|Ω̃M
i |

(
N∑
j=1

|ΩN
j |

∣∣uMN
ij

∣∣p) q
p

⎞⎠
1
q

,
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which already equals R∞
p,q(μ

MN). Hence we obtain

R∞
p,q(μ) ≤ lim inf

M,N→∞
RMN

p,q (μMN) ∀ μMN ⇀∗ μ .

Upper bound inequality:
On the basis of Theorem 2.3, we restrict ourselves to the case of a dense subspace
of M(Ω× Ω̃) with a stronger topology. In this context let us consider the subspace
of measures with continuous densities u ∈ Lp,q(Ω × Ω̃). In so doing, we shall
consider the approximation

uMN
ij ≈

∫
Ω̃M

i

∫
ΩN

j
u dλΩdλΩ̃∫

Ω̃M
i

∫
ΩN

j
dλΩdλΩ̃

=
μ̃MN(Ω̃M

i × ΩN
j )

|Ω̃M
i ||ΩN

j |
, (7.14)

where μ̃MN is an element of the considered dense subspace. Hence we obtain
the approximation μMN ≈ μ̃MN . Since u belongs to Lp,q(Ω × Ω̃), we observe
that the piecewise constant approximations converge strongly with respect to the
Lp,q-norm. By using the fact that we have RMN

p,q (μ̃MN) = R∞
p,q(μ̃

MN) and R∞
p,q is

strongly continuous in Lp,q(Ω× Ω̃), we obtain

lim sup
M,N→∞

RMN
p,q (μ̃MN) = lim sup

M,N→∞
R∞

p,q(μ̃
MN) ≤ R∞

p,q(μ̃)

for all measures μ̃ ∈ M(Ω× Ω̃) with densities u ∈ Lp,q(Ω× Ω̃) and μ̃MN ⇀∗ μ̃.

7.3.2. Asymptotic Local Sparsity

Let us now consider the case, where p is equal to one. First we consider the Γ-limit in
the semi-continuous case.

Theorem 7.5 (Semi-Continuous Local Sparsity).
Let be p = 1 and q > 1. Let the weights be defined as ωMN

ij := |ΩN
j ||Ω̃M

i | 1q for
i ∈ {1, . . . ,M} and j ∈ {1, . . . , N}. Then RMN

1,q Γ-converges with respect to the
weak-*topology of MN(Ω̃) for M → ∞ to

R∞N
1,q (μ) =

⎧⎪⎪⎨⎪⎪⎩
∥∥∥∥∥ N∑
j=1

|ΩN
j ||uN

j |
∥∥∥∥∥
Lq(Ω̃)

, if μ =
N∑
j=1

|ΩN
j |λΩ̃(u

N
j ), u

N
j ∈ Lq(Ω̃) ∀ j,

∞, else.
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Proof.
We begin by making the following definition:

zMN
i :=

N∑
j=1

|ΩN
j ||uMN

ij |

for every N ∈ N. By inserting this in the definition of RMN
1,q , we obtain for every N ∈ N

that

RMN
1,q =

⎧⎪⎨⎪⎩
(

M∑
i=1

|Ω̃M
i ||zMN

i |q
) 1

q

, if μ =
M∑
i=1

zMN
i |Ω̃M

i |

∞, else,
(7.15)

holds. Now we can apply Theorem 7.1, which states that (7.15) Γ-converges with respect
to the weak-*topology of MN(Ω̃) to

R∞N
1,q =

⎧⎨⎩
∥∥zN∥∥

Lq(Ω̃)
, if μ = λΩ̃(z

N), zN ∈ Lq(Ω̃),

∞, else.

By replacing zN again, we obtain the semi-continuous Γ-limit

R∞N
1,q (μ) =

⎧⎪⎪⎨⎪⎪⎩
∥∥∥∥∥ N∑
j=1

|ΩN
j ||uN

j |
∥∥∥∥∥
Lq(Ω̃)

, if μ =
N∑
j=1

|ΩN
j |λΩ̃(u

N
j ), u

N
j ∈ Lq(Ω̃) ∀ j,

∞, else.

Now let us analyze the continuous case.

Theorem 7.6 (Continuous Local Sparsity).
Let be p = 1 and q > 1. Furthermore, let the weights be defined as ωMN

ij := |ΩN
j ||Ω̃M

i | 1q
for i ∈ {1, . . . ,M} and j ∈ {1, . . . , N}. Then RMN

1,q Γ-converges with respect to the
weak-*topology of M(Ω× Ω̃) for M,N → ∞ to

R∞
1,q(μ) =

⎧⎨⎩
(∫

Ω̃
‖μ(y)‖qTV(Ω) dy

) 1
q
, if μ ∈ Lq(Ω̃,M(Ω)),

∞, else.

The proof works analogously to the proof of Theorem 7.4.
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Proof.

Equi-coercivity:
holds by construction.

Lower bound inequality:
Since in the nontrivial case R∞

1,q is the composition of the TV- and the Lq-norm,
R∞

1,q is lower semi-continuous in the weak-*topology of M(Ω× Ω̃), i.e.

R∞
1,q(μ) ≤ lim inf

M,N→∞
R∞

1,q(μ
MN) ∀ μMN ⇀∗ μ

holds for all sequences (μMN)M,N∈N with μMN ∈ M(Ω× Ω̃) and μMN ⇀∗ μ for
M,N → ∞. It is left to show that

lim inf
M,N→∞

R∞
1,q(μ

MN) ≤ lim inf
M,N→∞

RMN
1,q (μMN)

holds. In the case that

μMN �=
M∑
i=1

N∑
j=1

uMN
ij |ΩN

j ||Ω̃M
i | ,

holds, the inequality is trivially fulfilled, since then RMN
1,q (μMN ) is equal to infinity.

Thus let us consider

μMN =
M∑
i=1

N∑
j=1

uMN
ij |ΩN

j ||Ω̃M
i | .

Then we have by definition

RMN
1,q (μMN) =

(
M∑
i=1

|Ω̃M
i |

(
N∑
j=1

|ΩN
j |

∣∣uMN
ij

∣∣)q)1
q

,

which already equals R∞
1,q(μ

MN). Therefore, we obtain

R∞
1,q(μ) ≤ lim inf

M,N→∞
RMN

1,q (μMN) ∀ μMN ⇀∗ μ .

Upper bound inequality:
Due to Theorem 2.3 it is sufficient to consider the dense subspace of M(Ω× Ω̃),
which contains absolutely continuous measures with respect to Lebesgue densities
u ∈ L1,q(Ω × Ω̃). In this context, let us consider once more the approximation
(7.14). Due to the fact that u belongs to L1,q(Ω × Ω̃), the piecewise constant
approximations μ̃MN converge strongly with respect to the L1,q-norm. Since
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the equality RMN
1,q (μ̃MN) = R∞

1,q(μ̃
MN) holds and R∞

1,q is strongly continuous in
L1,q(Ω× Ω̃), we obtain

lim sup
M,N→∞

RMN
1,q (μ̃MN) = lim sup

M,N→∞
R∞

1,q(μ̃
MN) ≤ R∞

1,q(μ̃)

for all measures μ̃ ∈ M(Ω × Ω̃) with densities u ∈ L1,q(Ω × Ω̃) and μ̃MN ⇀∗ μ̃.
Thus the upper bound inequality holds as well.
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8
DECONVOLUTION OF SPARSE SPIKES

In this chapter we want to verify our analytic results from Chapter 7. In order to do
so, we consider the deconvolution of sparse spikes on a discrete grid as the step size of
the grid becomes smaller. Predominantly in a continuous setting the deconvolution of
sparse δ-spikes has for instance already been considered by Duval and Peyré (2013).
In their paper they show that if the so-called Non Degenerate Source Condition holds
and the signal-to-noise ratio is large enough, total variation regularization recovers
the exact number of Dirac spikes. However, in the discretized setting on a grid this is
usually not the case. Duval and Peyré show furthermore for the discrete setting
that in case the support of the exact measure is contained in the grid and the non
degenerate source condition is fulfilled, the support of the recovered solution contains
the support of the exact measure and in addition possibly one immediate neighboring
grid point if the step size is small enough.
In our considerations we use a different approach and validate our analysis numerically.
First we consider the deconvolution of sparse δ-spikes, which are located at the grid points.
Analytically as well as numerically we observe that the support can be reconstructed
exactly, if the regularization parameter is chosen small enough. Furthermore, we are
especially interested in the case, where the spikes are located in between the grid points.
Analytically we show that if a spike is close enough to a grid point and the step size is
small enough, we are able to recover a solution, which consists of the same number of
peaks as the exact signal and the reconstructed peak is located at the grid point, which
is closest to the position of the exact δ-spike. However, if the location of a spike is not
close enough to a grid point, then it cannot be represented by a single reconstructed
peak. Numerically we observe that as the step size of the grid becomes smaller, at most
twice as many peaks are reconstructed as there are exact spikes.
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8.1. Introduction

Let us consider the continuous inverse problem

Kμ = w , (8.1)

where K is a convolution operator with a symmetric kernel G̃ ∈ C3(Ω). In this context
G̃ shall have its maximum at 0 and G̃(|x|) shall be strictly monotonically decreasing for
x ∈ Ω. We are interested in the scenario, where the exact solution μ̂ only consists of a
few spikes at the points ξi for i ∈ {1, . . . , S} and is zero otherwise, i.e.

μ̂ =
S∑

i=1

ρiδξi ,

with S > 0 small, ρ ∈ RS and δξi being the Dirac delta distribution, which is infinity at
the point ξi and zero otherwise. For the solution of (8.1), we consider the variational
model

min
μN∈RN

1

2

∥∥AμN − w
∥∥2

2
+ α

∥∥μN
∥∥
1

(8.2)

with A ∈ RL×N being the discrete version of K, w ∈ RL and N ≥ S, which builds the
discrete counterpart to the continuous variational problem

min
μ∈M(Ω)

1

2
‖Kμ− w‖2L2(Ω) + α ‖μ‖TV(Ω) .

A minimizer of (8.2) can be written as

μN =
N∑
i=1

ciδxi
,

with c ∈ RN . Note that in the discrete setting δxi
denotes the Kronecker delta, which

is equal to one at the grid point xi and zero otherwise. Naturally, we would like to
reconstruct a solution μN , where c ∈ RN is close to being S-sparse. Moreover, we are
interested in the distance between the positions of the reconstructed peaks and the
positions of the spikes in the exact solution. Therefore, we define for this chapter xk as
the grid point, which is closest to an exact spike at position ξi, i.e.

xk = min
xn∈R

n∈{1,...,N}
|xn − ξi| .
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We would like to understand, under which conditions the reconstructed solution μN

contains a nonzero peak at the position xk, while it is zero at the second closest grid
point. In order to do so, we consider the easiest case, where the exact solution contains
only one nonzero spike and is zero everywhere else, i.e.

μ̂ = δξ .

8.2. Deconvolution of a Single δ-Spike

In this section we analyze the different positions of a continuous δ-spike at and between
two grid points of a certain discretization, i.e. ξ ∈ [xk, xk+1] with k ∈ {1, . . . , N − 1}.
Before going into the details, we state some prior computations and definitions. First
let us compute the optimality condition of (8.2):

0 =
(
A∗ (AμN − w

))
j
+ αpj

⇔ αpj = (A∗w)j − (A∗AμN)j ,
(8.3)

where p ∈ RN is contained in the subdifferential of
∥∥μN

∥∥
1
, which can be computed

componentwise, i.e. we have pj ∈ ∂|μN
j | for every j ∈ {1, . . . , N}. Since G̃ is symmetric

and the convolution is associative, we know that

A∗Aμ = G̃ ∗
(
G̃ ∗ μ

)
=

(
G̃ ∗ G̃

)
∗ μ

holds. For the sake of simplicity, we define

G := G̃ ∗ G̃

in the whole section. Moreover, we have the equality

wj = (Aμ̂)j =
(
G̃ ∗ δξ

)
j
= G̃ (xj − ξ)

for every j ∈ {1, . . . , N}, which yields that

(A∗w)j = G(xj − ξ)

holds for every j ∈ {1, . . . , N}.
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In order to prevent the reconstruction of the trivial solution μN ≡ 0, let us first cite a
result from Burger et al. (2013), which we state for our context.

Theorem 8.1.
Let 1

α
‖A∗w‖∞ ≤ 1 hold. Then μN ≡ 0 is a solution of (8.2).

Proof.
Let us consider the optimality condition (8.3). By inserting μN ≡ 0 we obtain

p =
1

α
A∗w ,

which is due to our assumptions less or equal to 1. Thus we obtain that p ∈ ∂ ‖0‖1
holds and the optimality condition is fulfilled. Hence μN ≡ 0 is a solution of (8.2).

From this theorem we learn that we have to choose α < ‖A∗w‖∞ in order to reconstruct
nontrivial solutions. In our setting we have

‖A∗w‖∞ = ‖G̃ ∗ w‖∞ = ‖G ∗ μ̂‖∞ = max
j∈{1,...,N}

G(xj − ξ) .

Thus we always have to consider regularisation parameters, for which

α < max
j∈{1,...,N}

G(xj − ξ)

holds.

Let us now analyze the case, where the position of the exact spike ξ coincides with a
grid point.

Theorem 8.2.
Let be ξ = xk for one k ∈ {1, . . . , N} and let α < G(0) hold in (8.2). Then there exists
a 1-sparse solution μN of (8.2), which is nonzero at xk and can be written as μN = cδxk

with c = G(0)−α
G(0)

∈ (0, 1).

Proof.
In order to proof the assertion, we have to check whether the optimality condition of
(8.2) holds under the assumptions mentioned above. Due to our prior computations,
the optimality condition (8.3) reduces to

αpj = G(xj − ξ)− cG(xj − xk) (8.4)

= (1− c)G(xj − xk) .
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We have to differentiate between the cases, where we have j = k and j �= k.
Thus let j = k hold. In this case the optimality condition (8.4) reads as follows:

pk = (1− c)
G(0)

α
.

Due to the definition of c, we obtain that pk = 1 holds and the optimality condition is
fulfilled.
Let now be j �= k. Then we have

pj =
1− c

α
G(xj − xk) < (1− c)

G(0)

α
,

due to the fact that G(0) is the maximum of G. By inserting c, we obtain that |pj| < 1

has to be true.
Hence in both cases the optimality condition is fulfilled and we obtain the assertion.

From this theorem we learn that we are indeed able to reconstruct the support of a delta
spike exactly if the position of the spike coincides with a grid point of our discretization
and the regularization parameter is small enough. However, this is rarely the case. Thus
let us consider the more frequent case, where ξ is located in between two grid points,
i.e. ξ ∈ (xk, xk+1) holds. For the following consideration, the interval length h will be
defined as

h := |xk+1 − xk| .
Theorem 8.3.
Let be ξ ∈ (xk, xk+

h
2
) for k ∈ {1, . . . , N − 1} and let α < G(xk − ξ) hold. Furthermore,

h shall be sufficiently small.
In case that we have ξ ∈ (xk, xk +

αh
2G(0)

), there exists a 1-sparse solution of (8.2), which
can be written as μN = cδxk

with c = G(xk−ξ)−α
G(0)

∈ (0, 1).
Moreover, if we have ξ ∈ (xk +

αh
2G(0)

, xk +
h
2
), then μN = cδxk

is not a solution of (8.2)
for any c ∈ R.

Figure 8.1 illustrates the assertion of Theorem 8.3. Note that due to the symmetry of
G, the same claim holds for the other half of the interval.

Proof.
Once more we have to check the optimality condition (8.4).
Let us first consider the case, where j = k holds. Since pk ∈ ∂|μN

k | = ∂|c| and c > 0

holds, we obtain pk = 1. Then the optimality condition (8.4) reduces to

α = G(xk − ξ)− cG(0)

⇔ c =
G(xk − ξ)− α

G(0)
. (8.5)
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xk xk+1

h

xk+
h
2

xk+
αh

2G(0)
ξ

Figure 8.1.: If ξ is in the green interval, the reconstructed solution μN consists of
only one peak. In the case that ξ is located in the red interval, then one peak is not
sufficient.

Thus the optimality condition is fulfilled.
Now let us consider the case, where j = k + 1 holds. Then the optimality condition
reads as follows:

αpk+1 = G(xk+1 − ξ)− cG(xk+1 − xk) . (8.6)

Inserting (8.5) into (8.6) yields

αpk+1 = G(xk+1 − ξ)− G(xk − ξ)− α

G(0)
G(h) .

For this equation we consider the second order Taylor expansion of G around zero. Note
that G′(0) = 0 holds, due to the maximum of G in zero. In so doing, we obtain that

αpk+1 = G(0) +
1

2
G′′(0)(xk+1 − ξ)2

−
(
1 +

G′′(0)
2G(0)

(xk − ξ)2
)(

G(0) +
1

2
G′′(0)h2

)
+ α +

α

2G(0)
G′′(0)h2 +O(h3) ,

holds, which reduces to

pk+1 = 1− 1

2α
G′′(0)

⎛⎜⎜⎝(xk − ξ)2 − (xk+1 − ξ)2 + h2

(
1− α

G(0)

)
︸ ︷︷ ︸

J

⎞⎟⎟⎠+O(h3) .

Note that G′′(0) < 0 holds, due to the maximum of G in zero. In order to obtain the
inequality |pk+1| < 1, which would yield the assertion, J has to be negative. This is
true if and only if we have

x2
k − x2

k+1 + 2ξh < h2

(
α

G(0)
− 1

)
.
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This is equivalent to

2ξh < h2

(
α

G(0)
− 1

)
+ (xk+1 + xk)h

⇔ ξ <
h

2

(
α

G(0)
− 1

)
+
1

2
xk+1 +

1

2
xk

⇔ ξ − xk <
h

2

(
α

G(0)
− 1

)
+

h

2
.

Thus we obtain

ξ − xk <
αh

2G(0)
<
1

2
h ,

since we have α < G(xk − ξ) and G(xk − ξ) < G(0). This yields the assertion.

8.3. Algorithm for Sparse Spikes Deconvolution

We want to validate our results numerically and solve the variational problem (8.2) for
different grid sizes. Therefore, we need an algorithm for the reconstruction of μN , which
we present in this section.

Similarly to Chapter 5, we base this algorithm on Boyd et al. (2010). However, since
we elaborated on the deduction of similar algorithms in Chapter 5, we keep this section
as concise as possible.

After splitting in the following way:

min
μN, zN∈RN

1

2

∥∥AμN − w
∥∥2

2
+ α

∥∥zN∥∥
1

s. t. zN = μN ,

we consider the Lagrange functional

L(μN , zN ; p̃N) =
1

2

∥∥AμN − w
∥∥2

2
+ α

∥∥zN∥∥
1
+

〈
p̃N , μN − zN

〉
and by defining pN := p̃N

λ
we obtain the scaled augmented Lagrangian

Lλ
sc(μ

N , zN ; pN) =
1

2

∥∥AμN − w
∥∥2

2
+ α

∥∥zN∥∥
1
+

λ

2

∥∥μN − zN + pN
∥∥2

2
.

We have the following optimality conditions:

1. primal feasibility condition

0 = ∂pNL = μN − zN ,
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2. dual feasibility conditions

0 = ∂μNL = AT(AμN − w) + λpN , (8.7)

0 ∈ ∂zNL = α∂
∥∥zN∥∥

1
− λpN . (8.8)

By definition μN
k+1 minimizes Lλ

sc, i.e.

0 ∈ ∂μNLλ
sc = AT(AμN

k+1 − w) + λ(μN
k+1 − zNk + pNk ) ,

which is equivalent to

λ(zNk − zNk+1) ∈ AT(AμN
k+1 − w) + λpNk+1 .

Since this fulfills the first dual feasibility condition (8.7), we can consider the dual
residual

sNk+1 = λ(zNk − zNk+1) .

An analogous derivation for zNk+1 yields that pNk+1 always satisfies the second dual
feasibility condition (8.8). Furthermore, we define the primal residual as

rNk+1 := zNk+1 − μN
k+1 .

By using a bound for the objective suboptimality of the current point κ∗, we obtain

1

2

∥∥AμN − w
∥∥2

2
+ α

∥∥zN∥∥
1
− κ∗ ≤ ∥∥pNk ∥∥

2

∥∥rNk ∥∥
2
+ ν

∥∥sNk ∥∥
2

by estimating
∥∥μN

k − μ̂
∥∥
2
≤ ν, where μ̂ is the unknown exact solution. Thus the primal

and dual residuals must be small, i.e.

∥∥rNk ∥∥
2
≤ εpri and

∥∥sNk ∥∥
2
≤ εdual .

Here εpri and εdual can be chosen via an absolute and relative criterion:

εpri =
√
Nεabs + εrelmax{∥∥μN

k

∥∥
2
,
∥∥zNk ∥∥

2
, 0} ,

εdual =
√
Nεabs + εrel

∥∥λpNk ∥∥
2
.
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Moreover, we use the following adaptive parameter choice:

λk+1 =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
τ incrλk, if

∥∥rNk ∥∥
2
> η

∥∥sNk ∥∥
2
,

λk

τdecr , if
∥∥sNk ∥∥

2
> η

∥∥rNk ∥∥
2
,

λk, else,

pNk+1 =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
pNk
τ incr , if

∥∥rNk ∥∥
2
> η

∥∥sNk ∥∥
2
,

τdecrpNk , if
∥∥sNk ∥∥

2
> η

∥∥rNk ∥∥
2
,

pNk , else.

Finally the algorithm reads as follows:

Algorithm 4 �1-regularized problem via ADMM

1: Parameters: α > 0, λ > 0, A ∈ RL×N , w ∈ RL, η > 1, τ incr > 1, τdecr > 1,
εrel = 10−3 or 10−4, εabs > 0

2: Initialization: μN , zN , rN , sN , pN = 0, εpri =
√
N εabs, εdual =

√
N εabs

3: while
∥∥rN∥∥

2
> εpri and

∥∥sN∥∥
2
> εdual do

4: zNold = zN ;
� Solve Subproblems

5: μN =
(
ATA+ λI

)−1 (
ATw + λ

(
zN − pN

))
;

6: zN = sign
(
μN + pN

)
max

(|μN + pN | − α
λ
, 0

)
;

7: rN = zN − μN ; � Update Primal Residual
8: sN = λ

(
zNold − zN

)
; � Update Dual Residual

9: pN = pN − (
zN − μN

)
; � Lagrange Updates

� Varying Penalty/Lagrange Parameters
10: if

∥∥rN∥∥
2
> η

∥∥sN∥∥
2
then

11: λ = λτ incr;
12: pN = pN

τ incr ;
13: else if

∥∥sN∥∥
2
> η

∥∥rN∥∥
2
then

14: λ = λ
τdecr ;

15: pN = pNτdecr;
16: end if

� Stopping Criteria
17: εpri =

√
N εabs + εrelmax

{∥∥μN
∥∥
2
,
∥∥zN∥∥

2
, 0

}
;

18: εdual =
√
N εabs + εrel

∥∥λpN∥∥
2
;

19: end while
20: return μN � Solution of (8.2)
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8.4. Numerical Deconvolution of Three δ-Spikes as the Grid

Becomes Finer

In this section we present some results for the solution of the variational problem
(8.2) for different discretizations. We consider the deconvolution of three δ-spikes with
weights ρ1, ρ2 and ρ3 at the positions ξ1, ξ2 and ξ3. Thus the exact continuous solution
reads as follows:

μ̂ = ρ1δξ1 + ρ2δξ2 + ρ3δξ3 .

Moreover, we choose a Gaussian convolution kernel G̃ with standard deviation σ = 0.05.
The continuous convolved data can be computed analytically as

w(y) = Kμ̂(y) = ρ1G̃(y − ξ1) + ρ2G̃(y − ξ2) + ρ3G̃(y − ξ3)

and shall be discretized for different grid sizes.

In accordance with Theorem 8.2, let us first consider discretizations, which include ξ1,
ξ2 and ξ3 as supporting points. As an exact solution μ̂ we choose spikes at the positions
ξ1 = −0.5, ξ2 = 0 and ξ3 = 0.5 and weights ρ1 = 0.5, ρ2 = 0.9 and ρ3 = 0.7. In these
cases we should be able to recover the exact positions of the spikes.
As an example, we choose discretizations with 5 and 129 grid points. In both cases every
point ξ1, ξ2 and ξ3 coincides with a grid point. In Figure 8.2 we observe that we are
indeed able to exactly recover the positions of the spikes. This meets our expectations.
Other discretizations, which include the point ξ1, ξ2 and ξ3, lead to the same results.

μ

(a) Reconstruction μN involving N = 5 grid
points

μ

(b) Reconstruction μN involving N = 129 grid
points

Figure 8.2.: If the positions of the spikes are part of the grid, we are able to exactly
reconstruct the support
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Let us now consider the case of Theorem 8.3. As an example, we consider an exact
solution μ̂, which again shall consist of three delta spikes. However, this time the
spikes shall be located in between the grid points. In order to guarantee that the
exact positions are indeed always located between the grid points, we choose irrational
locations, i.e. ξ1 = −π

6
, ξ2 = π

300
and ξ3 =

e
5

with the same weights ρ1, ρ2 and ρ3 as
before.
Subfigure 8.3(a) illustrates the exact solution μ̂. Subfigure 8.3(b) shows the exact
convolved data w = Kμ̂ plotted by using a very fine discretization.

μ

(a) Three spikes at the positions ξ1 = −π
6 , ξ2 =

π
300 and ξ3 = e

5 . Note that this plot is for
demonstration only. Clearly, the heights of
the spikes are actually +∞.

μ μ

(b) Continuous convolution w = Kμ̂ of the ex-
act data μ̂ with kernel G̃

Figure 8.3.: Three spikes at irrational positions and their continuous convolution

As an example for the reconstructions via Algorithm 4, Figure 8.4 visualizes the
reconstruction for 50 and for 100 grid points with regularization parameter α = 0.1. We
observe that in most of the cases we reconstruct two peaks in a small region around the
location of the exact spike. In some cases on the other hand, we obtain only one peak
located very closely to the position of the exact spike.
In order to verify our prior analysis, let us now consider the results as the step size of
the grid becomes smaller. Therefore, we let Algorithm 4 run for different discretizations,
where we start from N = 10 and increment N by one until we reach N = 100.
In Figure 8.5 we can see the results for these different discretizations. Subfigure
8.5(a) indicates that the reconstructed peaks draw nearer to the positions of the exact
spikes. Furthermore, Subfigure 8.5(b) illustrates the number of reconstructed peaks. We
especially see that for discretizations with at least 41 nodes, the number of reconstructed
peaks does not exceed 6, which is twice the number of exact spikes. This yields the
supposition that, in case ξ ∈ (xk +

αh
2G(0)

, xk +
h
2
) holds in the formulation of Theorem
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μ

(a) Deconvolved data μN for N = 50 and
α = 0.1

μ

(b) Deconvolved data μN for N = 100 and
α = 0.1

Figure 8.4.: Deconvolution of three spikes with locations in between the grid points

8.3, the solution of (8.2) consists of two peaks, which are located at the two grid points
closest to ξ, i.e. xk and xk+1. These results are consistent with the observations made
by Duval and Peyré.

e/5

(a) Minimal distances of the reconstructed spikes
to the exact spikes
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(b) Number of reconstructed peaks

Figure 8.5.: Results for different discretizations; α = 0.1
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9
CONCLUSIONS AND OUTLOOK

Throughout this thesis we have not only engaged in the analysis and implementation of
a novel, local sparsity promoting regularization type, namely �1,∞-regularization, but
also in the analysis of the asymptotics of certain sparsity priors. In order to conclude,
we shall divide this chapter into two sections accordingly.

9.1. Local Sparsity

For the solution of inverse problems, where the unknown is considered to be a matrix,
mixed �p,q-norms can be used as regularization functionals in order to promote certain
structures in the reconstructed matrix. Joint sparsity via �p,1-regularization for instance
has already been examined in the literature, c.f. Teschke and Ramlau (2007) and
Fornasier and Rauhut (2008).
Motivated by dynamic positron emission tomography for myocardial perfusion, we
proposed a novel variational model for a dictionary based matrix completion problem
incorporating local sparsity via �1,∞-regularization as an alternative to the more com-
monly considered joint sparsity model. We not only analyzed the existence and potential
uniqueness of a solution, but also investigated the subdifferential of the �1,∞-functional
and a source condition. One of the main results of this thesis consists of the deduction
of an equivalent formulation, which not only simplifies the analysis of the problem, but
also facilitates its numerical implementation. Moreover, we discussed exact recovery for
locally 1-sparse solutions by analyzing the noise-free case, in which we considered the
minimization of the nonnegative �1,∞-functional with an equality constraint in the data
fidelity term. As a result of this analysis, we discovered that the dictionary matrix has
to be normalized in a certain way in order to exactly reconstruct locally 1-sparse data
under simplified conditions.
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In our prior research (cf. Heins 2011), the numerical implementation of the �1,∞-
regularized variational problem relied on the usage of the Kronecker product. Due
to this, however, the matrix of a linear system, which had to been solved, became
extremely large and we could not reconstruct reasonably large data. Thus this approach
did not yield satisfactory results. In this work, a novel implementation of the problem
was developed that relies on a double splitting via the alternating direction method
of multipliers (ADMM). The algorithm yields superior results, in particular an almost
exact recovery of the true support of the solution. Nevertheless, one drawback of the
reformulation of the problem we introduced is that the results are not very close to the
true solution. However, having a good estimate of the support of the solution allows
us to refine our first result by solving the inverse problem restricted to the previously
recovered support with no further regularization. This second result shows promising
features, even in the presence of Gaussian noise.
However, for some coefficients at the boundary of the exact nonzero region the algorithm
still picked the wrong basis vector. In order to overcome this problem and to further
improve the results, we added a total variation term to the variational regularization
scheme. This could either be done by incorporating total variation on the images in
every time step or on the coefficient matrices for every basis vector. We proposed two
supplemental algorithms, which compute a solution to exactly those problems. Once
again we used ADMM, however, this time we had to split thrice due to the additional
total variation minimization. Since we now have two regularizations, the choice of the
right combination of regularization parameters becomes challenging.
We first tested the algorithm, which includes total variation on the image in every time
step. In the case that total variation regularization had a strong influence during the
reconstruction, the results were unsatisfactory. On the other hand, when we chose
the TV-regularization parameter low, total variation had no effect during the recovery
process and the algorithm computed the same results as without using total variation.
Unfortunately, choosing the TV-regularization parameter somewhere in between neither
led to better results than without using total variation. The reason for this unsatisfac-
tory results might be the fact that the conjugate gradient method, which we used to
solve a linear system during ADMM, did not always converge. However, we did not
further engage in the improvement of this approach, since the original method already
yielded satisfactory results and by including total variation on the coefficient matrices
instead, the reconstructions improved and even better results could be recovered.
Afterwards, we examined the algorithm, which includes total variation on the coef-
ficient matrices for every basis vector. Once again choosing a good combination of
regularization parameters was challenging, however, the results were promising. We
found combinations of regularization parameters, which led to a smaller percentage of
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wrongly reconstructed coefficients than we could obtain without incorporating total
variation regularization. The coefficients at the boundary of the nonzero region were
now reconstructed correctly and for a few parameter combinations we were even able to
reconstruct the support exactly. Even in the presence of Gaussian noise, the algorithm
performed outstandingly. Indeed, some of the results, which were computed on noisy
data, yielded even better results than our first algorithm was able to compute on
noiseless data. However, the challenge of finding the right parameter combination
remains and at the moment this can only be done by visual inspection. Therefore, it
would be advantageous to develop a rule for the parameter choice.
In summary, the results obtained by our first approach without using total variation
were very satisfactory and could be even improved by incorporating an additional total
variation regularization on the coefficient matrices. For some parameter combinations,
we even recovered the support exactly. Moreover, by including an additional total
variation regularization, the algorithm became more robust to noise. All in all, these
results motivate to investigate the interplay between the parameters to develop parame-
ter choice rules, which eventually turn the approach including total variation into an
effective reconstruction scheme for practical applications.

9.2. Sparsity Asymptotics

In many applications of inverse problems, sparsity-enforcing regularizations have become
indispensable tools. Unfortunately, most of these methods crucially rely on the way they
are discretized and are thus rather difficult to analyze in a more general way. Moreover,
an infinite rather than a finite-dimensional modeling would be advantageous in many
applications. For these reasons, we analyzed the Γ-limits of such discrete approaches in
order to develop a suitable asymptotic theory.
By utilizing Γ-convergence, we analyzed the asymptotic behaviour of the �p-norm for
differently scaled weights. Afterwards, we deduced a Γ-limit for the non-weighted
�0-“norm”, which states that in case the solution consists of a sum of δ-spikes, the
�0-“norm” Γ-converges to the exact number of these spikes. This result stimulated the
numerical experiments presented in the subsequent chapter. Moreover, we examined the
asymptotics of mixed norms. The results were consistent with the expectations we had
based on our previous analysis. For the general case and a reasonable scaling, we were
able to deduce, that the continuous Lp,q-norm is indeed the Γ-limit of the �p,q-norm.
Besides this, we investigated the local sparsity promoting �1,∞-norm, which built the
bridge to the first part of this thesis.
As a numerical scenario to validate our asymptotic results, we examined the deconvolu-
tion of a sparse spike pattern. We provided a continuous exact solution, which could be
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represented as a linear combination of a few δ-spikes. By analytically convolving these
spikes with a Gaussian kernel and discretizing it for different grid sizes, we obtained
the data, which we used for the reconstruction. In order to observe the asymptotic
behaviour of the �1-norm for such a sparse spike pattern, we computed �1-regularized
deconvolutions as the step size of the grid became smaller. For the solution of this
variational problem we used again ADMM. As the grid became finer, we indeed observed,
that at most twice as many discrete peaks are reconstructed as there are continuous
δ-spikes. In our corresponding theoretical considerations we drew the conclusion that
the support of one δ-spike can be reconstructed exactly if the spike is at the same
position as a grid point. More interestingly, we furthermore discovered, that one discrete
delta peak can only be the solution for this problem if the exact δ-spike is close enough
to a supporting point. Our numerical results, however, give reason to the assumption
that as the grid becomes finer no more than two peaks for every exact δ-spike will be
reconstructed and the reconstructed peaks are located at the two grid points, which are
closest to the exact δ-spike. The theoretical verification of this hypothesis is still open
and subject to future work.
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A
SOLVING THE POSITIVE

�1,∞ − �1,1-PROJECTION-PROBLEM

Let us now solve the following problem:

min
D∈G

λ

2
‖D − U + P‖2F + β

M∑
i=1

N∑
j=1

dij s.t.
N∑
j=1

dij ≤ ṽ . (A.1)

In order to do so, we reformulate the first part of the problem, i.e.

λ

2
‖D − U + P‖2F + β

M∑
i=1

N∑
j=1

dij

=
M∑
i=1

N∑
j=1

(
λ

2
(dij − uij + pij)

2 + βdij

)

=
M∑
i=1

N∑
j=1

λ

2

(
d2ij − 2dij (uij + pij) + (uij + pij)

2 +
2β

λ
dij

)

=
M∑
i=1

N∑
j=1

λ

2

(
d2ij − 2dij

(
uij + pij − β

λ

)
+ (uij + pij)

2

)

=
M∑
i=1

N∑
j=1

λ

2

(
dij −

(
uij + pij − β

λ

))2

− λ

2

((
uij + pij − β

λ

)2

+ (uij + pij)
2

)
.



178 A Solving the Positive �1,∞ − �1,1-Projection-Problem

Since the last part of the sum is independent of dij, we can consider

min
D∈G

λ

2

∥∥∥∥D − U + P − β

λ
1M×N

∥∥∥∥2

F

s.t.
N∑
j=1

dij ≤ ṽ

instead. We can minimize this expression with respect to every row independently, i.e.

min
D∈RM×N

λ

2

∥∥∥∥d(i) − u(i) + p(i) − β

λ
1N

∥∥∥∥2

2

, (A.2)

with the constraints

(
d(i)

)
j
≥ 0 ∀ j ∈ {1, . . . , N} , (Constr1)

N∑
j=1

(
d(i)

)
j
≤ ṽ , (Constr2)

where d(i) denotes the ith transposed row of D, respectively u(i), p(i).
In order to minimize this problem, we first consider (A.2) under (Constr1) only. In this
case the solution is given by

d̃(i) = max

{
u(i) + p(i) − β

λ
1N , 0

}
. (A.3)

In order to include (Constr2), we have to do a case-by-case-analysis:

Case a:

Let (A.3) satisfy (Constr2). In this case the solution of (A.2) under (Constr1) and
(Constr2) is given by

d(i) = d̃(i) .

Case b:

Let (A.3) not satisfy (Constr2), i.e.
N∑
j=1

(
d̃(i)

)
j
> ṽ holds. Then the solution of

(A.2) under (Constr1) and (Constr2) has to fulfill

N∑
j=1

(
d(i)

)
j
= ṽ . (Constr3)

Thus we have to solve (A.2) under (Constr1) and (Constr3). For this purpose we
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propose the corresponding Lagrange functional as

Lλ(d(i), μ(i), ϑ) = min
D∈RM×N

λ

2

∥∥∥∥d(i) − u(i) + p(i) − β

λ
1N

∥∥∥∥2

2

+ ϑ

(
N∑
j=1

(
d(i)

)
j
− ṽ

)
−

N∑
j=1

(
d(i)

)
j

(
μ(i)

)
j
.

(A.4)

Once we know ϑ, we can compute the optimal d(i) as

d(i) = shrink+
(
u(i) + p(i) − β

λ
1N ,

ϑ

λ
1N

)
:= max

{
u(i) + p(i) − β

λ
1N − ϑ

λ
1N , 0

}
.

(A.5)

We can see this by computing the optimality condition of (A.4)

0 = ∂d(i)Lλ(d(i), μ(i), ϑ)

= λ

(
d(i) − u(i) + p(i) − β

λ
1N

)
+ ϑ1N − μ(i) ,

(A.6)

with the complementary conditions

(
μ(i)

)
j
≥ 0 and

(
μ(i)

)
j

(
d(i)

)
j
= 0 ∀ j ∈ {1, . . . , N}.

If
(
d(i)

)
j
�= 0 holds, then we have

(
μ(i)

)
j
= 0 and thus we obtain from (A.6) that

0 = λ

(
d(i) − u(i) + p(i) − β

λ
1N

)
+ ϑ1N

⇔ d(i) = u(i) − p(i) +
β − ϑ

λ
1N

holds. On the other hand if we have
(
d(i)

)
j
= 0, then

(
μ(i)

)
j
≥ 0 has to hold. Hence

we obtain

(
μ(i)

)
j
= λ

(
p(i) − u(i)

)
j
− β + ϑ ≥ 0

⇔ (
u(i) − p(i)

)
j
+

β − ϑ

λ
≤ 0 .

by using (A.6). The Lagrange parameter ϑ should be chosen such that (Constr3)
holds. Therefore, we investigate

∑
j∈I

((
u(i) − p(i)

)
j
+

β − ϑ

λ

)
= v ,
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where the set I contains all indices, for which

(
u(i) − p(i)

)
j
+

β − ϑ

λ
≥ 0 (A.7)

holds. This is reasonable, since for all other indices j /∈ I the term
(
u(i) − p(i)

)
j
+ β−ϑ

λ

is projected to zero, which is true due to (A.5).
Hence we obtain

ϑ =
λ

|I|

(∑
j∈I

(
u(i) − p(i)

)
j
+

β

λ
− ṽ

)
.

Now we have to compute I. Since we are able to sort the vectors according to value,
it is sufficient to find |I|. Then we obtain

ϑ =
λ

|I|

⎛⎝ |I|∑
r=1

̂(
u(i) − p(i)

)
r
+

β

λ
− ṽ

⎞⎠ ,

where ·̂ denotes the respective vector sorted according to value.
In order to obtain |I|, we use the following result:

Theorem A.1 (Duchi et al. (2008, p. 3)).
Let ̂u(i) − p(i) denote the vector obtained by sorting u(i) − p(i) in a descending order.
Then the number of indices, for which (A.7) holds, is

|I| = max

{
j ∈ {1, . . . , N}

∣∣∣∣ λ ̂(
u(i) − p(i)

)
j
+ β

− λ

j

( j∑
r=1

̂(
u(i) − p(i)

)
r
+

β

λ
− ṽ

)
> 0

}
.

Now we are able to propose the algorithm for the solution of (A.1).
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Algorithm 5 Positive �1,∞-�1,1-projection
1: Parameters: U ∈ RM×N , P ∈ RM×N , ṽ > 0, β > 0, λ > 0, M,N ∈ N

2: Initialization: D = 0, |I| = 0, ϑ = 0
3: for all i ∈ {1, ...,M} do

4: d̃(i) = max
{
u(i) + p(i) − β

λ
1N , 0

}
;

5: if
N∑
j=1

d̃ij ≤ ṽ then � Solve with (Constr1) and (Constr2)

6: d(i) = d̃(i);
7: else � Solve with (Constr1) and (Constr3)
8:

|I| = max

{
j ∈ {1, . . . , N}

∣∣∣∣∣λ ̂(
u(i) − p(i)

)
j

+ β

− λ

j

(
j∑

r=1

̂(
u(i) − p(i)

)
r

+
β

λ
− ṽ

)
> 0

}
;

9: ϑ = λ
|I|

(
|I|∑
r=1

̂(
u(i) − p(i)

)
r
+ β

λ
− ṽ

)
;

10: d(i) = shrink+
(
u(i) + p(i) − β

λ
1N ,

ϑ
λ
1N

)
;

11: end if

12: end for
13: return D � Solution of (A.1)
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B
INEQUALITY FOR STOPPING CRITERIA

In order to proof the inequality

1

2
‖AZ −W‖2F + β

M∑
i=1

N∑
j=1

dij + J(D)− κ∗

≤ 〈
P k, Rk

1

〉
+

〈
Qk, Rk

2

〉
+

〈
Uk − U∗, Sk

〉
,

(5.11)

which is needed in Subsection 5.1.2, we consider the unscaled augmented Lagrangian
(5.2).
By definition Uk+1 minimizes

Lλ,μ
un

(
U,Dk, Zk; P̃ k, Q̃k

)
,

Dk+1 minimizes
Lλ,μ

un

(
Uk+1, D, Zk; P̃ k, Q̃k

)
and Zk+1 minimizes

Lλ,μ
un

(
Uk+1, Dk+1, Z; P̃ k, Q̃k

)
.

We now have to examine the optimality conditions.

OPT1:

Starting with

0 ∈ ∂ULλ,μ
un

(
Uk+1, Dk, Zk; P̃ k, Q̃k

)
= P̃ k + λ(Uk+1 −Dk) + Q̃kB + μ(Uk+1BT − Zk)B
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we insert the Lagrange updates

P̃ k = P̃ k+1 + λ(Dk+1 − Uk+1) , Q̃k = Q̃k+1 + μ(Zk+1 − Uk+1BT ) (B.1)

and obtain

0 ∈ P̃ k+1 + Q̃k+1B + λ(Dk+1 −Dk) + μ(Zk+1 − Zk)B .

Thus we see that Uk+1 minimizes〈
P̃ k+1 + Q̃k+1B,U

〉
+ λ

〈
Dk+1 −Dk, U

〉
+ μ

〈
Zk+1 − Zk, UBT

〉
.

OPT2:

Now we have

0 ∈ ∂DLλ,μ
un

(
Uk+1, Dk+1, Zk; P̃ k, Q̃k

)
= β1M×N − P̃ k − λ(Uk+1 −Dk+1) + ∂J(Dk+1) ,

with J as defined in (5.1). Inserting P̃ k from (B.1) yields

0 ∈ β1M×N − P̃ k+1 + ∂J(Dk+1) .

Hence we see that Dk+1 minimizes

β

M∑
i=1

N∑
j=1

dij −
〈
P̃ k+1, D

〉
s.t.

N∑
j=1

dij ≤ ṽ, dij ≥ 0 .

OPT3:

In this case the optimality condition reads as follows:

0 ∈ ∂ZLλ,μ
un

(
Uk+1, Dk+1, Zk+1; P̃ k, Q̃k

)
= AT (AZk+1 −W )− Q̃k − μ(Uk+1BT − Zk+1) .

Inserting Q̃k from (B.1) yields

0 ∈ AT (AZk+1 −W )− Q̃k+1 .
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Therefore, Zk+1 minimizes

1

2
‖AZ −W‖2F −

〈
Q̃k+1, Z

〉
.

All in all, we obtain that the following inequalities have to hold:〈
P̃ k+1 + Q̃k+1B,Uk+1

〉
+ λ

〈
Dk+1 −Dk, Uk+1

〉
+ μ

〈
Zk+1 − Zk, Uk+1BT

〉
≤

〈
P̃ k+1 + Q̃k+1B,U∗

〉
+ λ

〈
Dk+1 −Dk, U∗〉+ μ

〈
Zk+1 − Zk, U∗BT

〉
,

(B.2)

β

M∑
i=1

N∑
j=1

dk+1
ij −

〈
P̃ k+1, Dk+1

〉
+ J(Dk+1)

≤ β

M∑
i=1

N∑
j=1

d∗ij −
〈
P̃ k+1, D∗

〉
+ J(D∗)

(B.3)

and

1

2

∥∥AZk+1 −W
∥∥2

F
−

〈
Q̃k+1, Zk+1

〉
≤ 1

2
‖AZ∗ −W‖2F −

〈
Q̃k+1, Z∗

〉
. (B.4)

Adding equations (B.2), (B.3) and (B.4) together yields

1

2

∥∥AZk+1 −W
∥∥2

F
+ β

M∑
i=1

N∑
j=1

dk+1
ij + J(Dk+1)

− 1

2
‖AZ∗ −W‖2F − β

M∑
i=1

N∑
j=1

d∗ij − J(D∗)

≤
〈
P̃ k+1, Dk+1 − Uk+1

〉
+

〈
Q̃k+1, Zk+1 − Uk+1BT

〉
+ λ

〈
Dk+1 −Dk, U∗ − Uk+1

〉
+ μ

〈
Zk+1 − Zk, (U∗ − Uk+1)BT

〉
+

〈
P̃ k+1, U∗ −D∗

〉
+

〈
Q̃k+1, U∗BT − Z∗

〉
.

By using the definitions of Rk+1
1,2 and Sk+1 (see for instance (5.9),(5.10) and (5.8)) and

the fact that we have U∗ = D∗ and U∗BT = Z∗, we finally obtain

1

2

∥∥AZk+1 −W
∥∥2

F
+ β

M∑
i=1

N∑
j=1

dk+1
ij + J(Dk+1)− κ∗

≤ 〈
P,Rk

1

〉
+

〈
Q,Rk

2

〉
+

〈
Uk − U∗, Sk

〉
.

(5.11)
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C
COMPUTATION OF THE

KINETIC MODELING MATRIX

In order to compute a solution to the inverse problem (6.6) in Chapter 6, we need the
matrix B, which contains the kinetic modeling basis vectors as proposed in Section 6.1.
For this reason we want to outline the computation of the kinetic modeling matrix B,
which we used in the numerical experiments.
Due to the linearization in (6.3), we want to compute

bj(t) =

t∫
0

CA(τ)e
−b̃j(t−τ) dτ

for every j ∈ {1, ..., N}. For this purpose we consider the corresponding linear ordinary
differential equation

b′j(t) = CA(t)− b̃jbj(t) .

In order to solve this differential equation via Euler method (cf. Hairer et al. 1993,
p. 204), the coefficients b̃j, which describe the blood flow, are necessary. However, as
we have mentioned in Section 6.1, these are indeed known. We have seen that they
equal the perfusion F divided by the ratio λ = CT (t)

CV (t)
between the tracer concentration

in tissue CT and the venous tracer concentration CV , i.e. F (x)
λ

. Note that due to the
fact that we have set radioactive water (H15

2 O) as the default tracer, we can use its
property as being highly diffusible and thus the concentrations CT and CV reach an
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equilibrium very quickly. For this reason we are able to assume the ratio λ = CT

CV
to be

constant.
Furthermore we require a vector containing typical measure times for dynamic PET and
the input curve CA(t), which consists of the tracer concentration in blood dependent
on time. Now in order to obtain the basis vectors bj, Euler method is applied to every
known b̃j. Due to the results in Section 4.2, we afterwards normalize the basis vectors.
Thus, we obtain the following algorithm:

Algorithm 6 Euler method for kinetic modeling

1: Parameters: b̃ ∈ RN , time ∈ RT , CA ∈ RT , h ∈ R

2: Initialization: bt,j = 0 ∀ t, j

3: Interpolate CA with step size h � initially CA depends on time

4: for j = {1, ..., N} do
5: for t =

{
1, ..., T̃

}
do

6: bt+1,j = bt,j + h
(
CAt − b̃jbt,j

)
;

7: end for
8: end for

9: Interpolate B to make it dependent on time again

10: for j = {1, ..., N} do � normalize B

11: b:,j =
b:,j

‖b:,j‖2
;

12: end for

13: return B

Note that in order to obtain better accuracy, we had to interpolate the input curve.
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D
EXACT �1-RECONSTRUCTION OF

1-SPARSE SIGNALS IN 1D

In order to gain some understanding into suitable and necessary scaling conditions for
the recovery of locally 1-sparse solutions, we first consider the simplest case, namely
M = 1, when the problem reduces to standard �1-minimization.

Theorem D.1 (Exact Reconstruction of a 1-Sparse Signal in 1D).
Let the vector w := eTj B

T = bTj be the jth basis vector and c = 1 − (α + β) for
(α + β) ∈ (0, 1).

If û = ceTj is the solution of (4.2), then the matrix B has to meet the scaling condition

‖bn‖�2 = 1 and |〈bn, bm〉| ≤ 1 for n �= m . (4.21)

Proof.
We first calculate the optimality condition of (4.2) as

0 =
((
uBT − w

)
B
)
n
+ (α + β) pn with pn ∈ ∂|un| .

Then it follows that

pn =
1

α + β

((
w − uBT

)
B
)
n
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holds. Subsequently we insert û = ceTj and w = eTj B
T to obtain

pn =
1

α + β

((
eTj B

T − ceTj B
T
)
B
)
n

=
1− c

α + β

(
eTj B

TB
)
n

=
1− c

α + β

(
bTj B

)
n

=
1− c

α + β

T∑
t=1

btjbtn

=
1− c

α + β
〈bj, bn〉 .

Since pn ∈ ∂ |ûn| has to be satisfied, we need to ensure that

pj = 1 and pi ∈ [−1, 1] for i �= j

holds, which is true under the assumptions mentioned above.

For this reason we know that we have to normalize our basis vectors with respect to the
�2-norm in order to reconstruct at least a δ-peak exactly in one dimension. Note that
in the one-dimensional case the �1,∞-regularization and the �1,1-regularization reduce to
a single �1-regularization with regularization parameter α + β.
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