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Abstract

The optimal transportation network problem consists in constructing a pathway intercon-
necting two measures µ+, µ− to the lowest possible costs. The structure of the optimal
network depends on the definition of the cost functional. Within this work, we want to
consider functionals which promote branching structures in the desired solution, where
the grade of ramification is controlled by a branching parameter ε > 0 and whose most
famous representatives are the branched transport and the urban planning problem. Typi-
cally, the corresponding energy landscape is highly non-convex and as a consequence, the
identification and construction of a global minimizer is a challenging task.
Despite these difficulties, the aim for numerical optimization methods for branched trans-
portation problems is beyond all question, since there exists a variety of interesting
applications such as the development of a blood vessel system or the construction of a
public transportation network. In recent years, researchers came up with several ideas
successfully tackling the problem of numerically finding an optimal transportation path,
however, most of these methods suffer from certain drawbacks of practical or theoretical
nature.
In this work, we present two novel numerical treatments based on different formulations of
the branched transport and urban planning problem. The first one is based on a convex
relaxation achieved via an image-based Mumford–Shah-type reformulation and subsequent
functional lifting of the energy. The resulting convex optimization problem can be solved
efficiently via an adaptive finite element approach, where a specific class of finite elements
is designed to efficiently handle the particular problem structure. The second approach
exploits the ideas of Ambrosio and Tortorelli to formulate a phase field approximation of
the generalized urban planning model featuring multiple phase fields and a possible diffuse
component allowing additional transport outside of the desired network.
This thesis deals with the numerical treatment of the previously mentioned relaxed en-
ergy functionals, discusses the numerical challenges, designs an appropriate discretization
framework and presents simulation results.
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ε and Ea,b,µ+,µ−

ε . . . . . . . . . . . 106
5.2 Optimal transportation networks from a single source to a number of identical

sinks at the corners of a regular polygon. . . . . . . . . . . . . . . . . . . . . 116
5.3 Optimal transportation networks from a single source to a number of identical

sinks at the corners of a regular polygon. . . . . . . . . . . . . . . . . . . . . 117
5.4 Numerically computed mass flux and phase field for transport from four to four

mass points and from one source point in the middle of a circle to 16 mass
points on the circle boundaries with only one phase field. . . . . . . . . . . . . 118

5.5 Numerically computed mass flux and phase field for transport from four to four
mass points and from one source point in the middle of a circle to 16 mass
points on the circle boundaries with several phase fields. . . . . . . . . . . . . 119

5.6 Numerically computed mass flux and phase field for transport from four to four
mass points and from one source point in the middle of a circle to 16 mass
points on the circle boundaries with several phase fields including a diffuse part. 119

5.7 Numerically computed mass flux and phase field for transport from a single
source in the middle to a spatially uniform sink on the boundary of a circle. . . 120

5.8 Numerically computed mass flux and phase field for transport between two
points located on a horizontal line with ε = 0.05 for different grid resolutions. . 121



List of Figures v

5.9 Numerically computed mass flux and phase field for transport between two
points located on a horizontal line with ε = 0.1 for different grid resolutions. . 121

A.1 Construction of the function v on the domain [1
4 ,

3
4 ]× [0, 1

2 ]. . . . . . . . . . . 129
A.2 Comparison between the constructed image v and corresponding vector field ϕ1

and a numerically computed counterpart vN and ϕN1 . . . . . . . . . . . . . . . 134





1 Introduction 1

1
Introduction

The concept of optimal transport dates back to the very beginnings of the human civilization.
In every phase of historical development, people were confronted with various kinds of
transportation issues, whether in travelling, trade or construction, just to name some
examples. Here, the term transport can be related to different questions, such as an optimal
assignment of measurable objects or the design of an optimal travelling path. Moreover,
the term optimal refers to a specific definition of the transport costs, which is usually
related to the amount of transported mass as well as the length of the transport path.
In this thesis, we aim at investigating a specific class of transportation problems, where
the object of interest is a transportation network interconnecting two prescribed measures
under the assumption that mass is preferably transported in bulks instead of each particle
travelling individually, causing the occurrence of a branching structure. The cost function
of this network penalizes the length of each network segment as well as the amount of
mass flowing along this segment. There exists a variety of practical examples where
branching networks occur. Plenty of natural transportation paths such as the blood vessel
distribution or the water supply system in plants admit a ramified structure. A public
transportation system is typically designed to interconnect most city districts while being
as short as possible to reduce the maintenance costs.
In mathematical terms, one way to describe such a network in a discrete setting is via a
weighted directed graph G consisting of a set of vertices V (G) and edges E(G). Denoting
by l(e) the length of an edge e ∈ E(G) and by w(e) the amount of mass flowing through e,
the cost of the graph is then defined as

E(G) =
∑

e∈E(G)
l(e)c(w(e)),
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which is to be minimized over graphs which connect a given initial and final measure. The
function c : [0,∞)→ [0,∞) is continuous, non-decreasing, concave and satisfies c(0) = 0.
The essential property demanded in this work is the concavity, which is the very factor
enforcing a branching structure in the desired network. For a mass w ∈ R, the function c
typically satisfies c(2w) < 2c(w), which essentially means that transporting twice as much
mass along one network edge is cheaper than transporting two times the mass w along
two different edges.
Since the optimal network problem has a quite practical background, the aim for suitable
numerical optimization approaches stands to reason. Unfortunately, the problem typically
does not clearly suggest a straightforward discretization, such as a restriction to any simple
finite-dimensional function space describing the network. In addition, the energy functional
turns out to be highly non-convex, possibly comprising several local minima which cause
any numerical treatment to be a challenging task. This makes it commonly impossible to
derive the truly optimal network, but limits most simulations to the construction of an
almost optimal path.
Despite the mentioned difficulties, there exist several numerical optimization approaches
in the literature, surmounting the obstacles in quite different ways. While some of them
restrict themselves to a kind of manual construction of an almost optimal transportation
path in a discrete setting, others aim at relaxing the problem by representing the network
by a smooth function in the manner of the Ambrosio–Tortorelli [4] or Modica–Mortola
[47] approximation of the Mumford–Shah functional [50]. Although all approaches admit
interesting and well applicable features and lead to nice approximation results, the research
on numerical methods for transportation network is still far from being complete. On the
one hand, many numerical solutions cannot be rigorously proven to represent a global
optimum due to the lack of convexity. On the other hand, some variants of the problem
above, such as the urban planning problem, where particles are allowed to travel outside
of the network as well, have never been treated numerically to the best of our knowledge.
This work aims at providing some solutions to the problems mentioned in the last paragraph
and is focussing on the production of satisfactory numerical simulation results. In this
sense, the main contributions of this thesis are

• two different numerical discretization approaches for a convex image-based reformula-
tion of the branched transport and urban planning energy introduced by [19], where
the first one is based on a simple finite difference scheme and the second one consists
of a more efficient adaptive finite element implementation specifically designed for
functional lifting problems including non-local constraints,

• a novel numerical optimization strategy for a phase field approximation of the
generalized urban planning energy functional introduced by [33], including a diffuse
component corresponding to transport outside of the network.

The rest of this work is organized as follows. In Chapter 2, we start with some basic
notation and a selection of relevant definitions and mathematical concepts. This includes
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a short review of functions of bounded variations, the main idea of Γ-convergence and
a brief review of the Mumford–Shah image segmentation problem, which is related in
slightly different ways to both main chapters of this thesis. Furthermore, we present a
construction of a suitable finite element space for three-dimensional imaging problems
arising from a functional lifting approach of the latter. In Chapter 3, we provide an
overview of the relevant models and concepts of optimal transport and transport network
problems. We also review some of the existing numerical methods introduced in the
literature. The following two chapters contain the main contributions as stated above.
Chapter 4 starts with a description of an image-based reformulation of the branched
transport and urban planning energy and a convex relaxation of the latter. After an
investigation of the differences between the original energy and its relaxed counterpart,
we describe in detail two different optimization approaches, solve them with a suitable
algorithmic framework and present some simulation results. For the second approach
based on adaptive finite elements, we discuss the challenges arising from the involved
non-local constraint set, perform some runtime efficiency tests to prove the benefit of
adaptivity and compare different refinement strategies. Thereafter, Chapter 5 addresses
a phase field approximation of the generalized urban planning energy. Starting with a
short model description, we cite some analytical results such as existence of a solution and
Γ-convergence of the relaxation, followed by a presentation of the numerical optimization
strategy and several simulation results. We complete this work by a short summary of the
main results and an outlook to possible future projects in Chapter 6.
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2
Mathematical preliminaries

Before we present the results of this work, we want to introduce some basic notation
and review some mathematical concepts the following chapters are based on. Starting
with a review of the space of functions of bounded variation, we will establish the notion
of Γ-convergence and equi-coercivity. Furthermore, we will explain and investigate the
Mumford–Shah image-segmentation functional as a representative of an interesting class
of problems which are going to play a major role in this thesis. Finally, we review the
concepts of the finite element method and present a novel class of custom-designed finite
elements for a special type of discretization problems.

2.1. Basic notation
In the following, if not specified otherwise, let n,N ∈ N be positive integers, N ≥ 1 and
Ω ⊂ Rn an open bounded subset. Throughout this thesis, we make use of the following
standard notation.

• Euclidean norm and scalar product. For x, y ∈ Rn, we denote by |x| the
standard Euclidean norm and by 〈x, y〉 the Euclidean scalar product.

• Scalar product on Hilbert space. For a Hilbert space X, we denote for x, y ∈ X
the scalar product of x and y by 〈x, y〉X .

• Borel subsets. Let B(Ω) be the family of all Borel subsets of Ω.

• Finite Radon measures. We denote byM(Ω,RN) the space of finite RN -valued
Radon measures on Ω. For N = 1, we writeM(Ω) and defineM+(Ω) as the set
of non-negative finite Radon measures on Ω. For a measure µ ∈ M(Ω,RN), the
corresponding total-variation norm is denoted by |µ|.
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• Lebesgue, Hausdorff and Dirac measure. By Ln we denote the Lebesgue mea-
sure in Rn and by Hk the k-dimensional Hausdorff measure for k ∈ N. Additionally,
we define

δx(B) :=
1 if x ∈ B

0 otherwise

for all B ∈ B(Ω) as the Dirac measure for a point x ∈ Ω.

• Discrete measure. A measure µ is called discrete, if µ is a (possibly infinite) sum
of Dirac measures, i.e. there exists a sequence of points (xi) ⊂ Rn and weights
(ai) ⊂ R such that µ = ∑

i aiδxi .

• Support of a measure. The support of a measure µ ∈ M(Ω) is defined as
spt µ := {x ∈ Ω : µ(B) > 0 for every open neighbourhood B ∈ B(Ω) of x}.

• Spaces of continuously differentiable functions. We set C(Ω,RN) as the
space of RN -valued continuous functions and Ck(Ω,RN) as the space of RN -valued
continuous functions which are k-times continuously differentiable for k ∈ N. For
N = 1, we write C(Ω) and Ck(Ω). By Ck

0 (Ω), we denote all functions in Ck(Ω) with
compact support in Ω.

• Lp spaces. By Lp(Ω,RN ), we denote the space of RN -valued p-integrable functions
with respect to the Lebesgue measure for p ∈ N. For N = 1, we write Lp(Ω). Lp(Ω)
is a Banach space and we denote the corresponding Lp-norm by ‖ · ‖Lp . L2(Ω) is
a Hilbert space with the scalar product denoted by 〈·, ·〉L2 . In the special case of
p =∞, we define ‖f‖L∞ := ess sup

x∈Ω
|f(x)| <∞ for f ∈ L∞(Ω,RN). By Lploc(Ω,RN)

we denote the space of Lebesgue-measurable functions f such that for every compact
V ⊂ Ω, f ∈ Lp(V,RN).

• Sobolev spaces. We define W k,p(Ω) as the space of functions in Lp(Ω) with p-
integrable weak derivative up to order k for k, p ∈ N. For p = 2, W k,2(Ω) is a
Hilbert space with the scalar product denoted by 〈·, ·〉Wk,2 . By W k,p

loc (Ω) we denote
the space of functions f ∈ Lp(Ω) such that for every compact V ⊂ Ω, f ∈ W k,p(V ).
By W k,p

0 (Ω), we denote all functions in W k,p(Ω) with compact support in Ω.

• Lipschitz-continuous functions. We define the space of Lipschitz-continuous
functions on Ω as

C0,1(Ω) := {u ∈ C(Ω) : ∃ L ≥ 0 s.t. |u(x1)− u(x2)| ≤ L|x1 − x2| ∀ x1, x2 ∈ Ω}.

• Unit ball. We define Br(x0) := {x ∈ Rn : |x− x0| < r} as the open unit ball with
radius r and midpoint x0 ∈ Rn.

• Unit sphere. We define Sn−1 := {x ∈ Rn : |x| = 1} as the unit sphere in Rn.
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• Characteristic/indicator function. For a set A ⊂ Ω, we define

χA(x) :=
1 if x ∈ A,

0 otherwise,
ιA(x) :=

0 if x ∈ A,
∞ otherwise.

χA is called the characteristic function of the set A, ιA is called indicator function of
A. Note that if A is a convex set, ιA is a convex function.

• Restriction of a measure. For a measure space (X,A, µ) and some Y ⊂ X
with Y ∈ A, the restriction of the measure µ onto Y is a measure defined as
µxY (A) := µ(A ∩ Y ) for every A ∈ A.

• Pushforward measure. For a measure space (X,A, µ), a measurable space (Y,N )
and a mapping T : X → Y , the pushforward measure of µ is defined as T#µ(B) :=
µ(T−1(B)) for all B ∈ N .

• Weak-* convergence. The weak-* convergence on the spaceM(Ω,RN ) is denoted
by ⇀∗.

• Subdifferential. For a convex function f : Ω → R, the subdifferential of f in a
point x0 ∈ Ω is defined as the set ∂f(x0) := {g ∈ Rn : f(x) ≥ f(x0) + 〈g, x− x0〉}.

• Orthogonal projection. For a convex set C ⊂ Rn and x ∈ Rn we define the
orthogonal projection of x onto C as PC(x) := argmin

y∈C
|x− y|.

• Volume of a set. For a set A ∈ B(Ω), we denote the n-dimensional volume of A
by |A| := Ln(A).

• Convex hull. For a finite set X = {x1, . . . , xm} ⊂ Ω, m ∈ N, we define the convex
hull of X as

convX :=
{ m∑
i=1

αixi

∣∣∣∣ m∑
i=1

αi = 1, αi ≥ 0 ∀ i = 1, . . . ,m
}
.

2.2. Functions of bounded variation
In this section, we will introduce the basic concepts of functions of bounded variations and
state some important properties. We start with the definition of the space BV (Ω) for an
open bounded set Ω ⊂ Rn based on the Radon measure representation of the distributional
derivative. For more details, we refer the reader to [3].

Definition 2.2.1 (The space BV (Ω)). A function u ∈ L1(Ω) is called a function of
bounded variation, if its distributional derivative is a finite vector-valued Radon measure,
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i.e. there exists Du = (D1u, . . . , Dnu)T ∈M(Ω,Rn) such that∫
Ω
u
∂φ

∂xi
dx = −

∫
Ω
φ dDiu ∀ φ ∈ C∞0 (Ω), i = 1, . . . , n.

The space of all functions of bounded variation on Ω is denoted by BV (Ω).

BV (Ω) equipped with the norm

‖u‖BV := ‖u‖L1 + |Du|(Ω)

is a Banach space. Furthermore, the following standard result shows the density of smooth
functions in BV (Ω) ([3], Theorem 3.9).

Theorem 2.2.2 (Density of smooth functions). Let u ∈ L1(Ω). Then, u ∈ BV (Ω) if and
only if there exists a sequence (uk) ⊂ C∞(Ω) with uk → u in L1(Ω) and lim

k→∞
‖∇uk‖L1 <∞.

In particular, this means that any function of bounded variation can be approximated by
a sequence of smooth functions whose gradient is uniformly bounded in L1.
An interesting property of BV -functions is the characterization of their distributional
derivative. Let us first investigate some properties and introduce some notation. For more
details, we refer the reader to [3], Chapter 3.

Definition 2.2.3 (Approximate discontinuity set). A function u ∈ L1
loc(Ω) is approximately

continuous in a point x ∈ Ω, if there exists z ∈ R such that

lim
ε→0

1
|Bε(x)|

∫
Bε(x)

|u(y)− z|dy = 0. (2.1)

We define the set Su of all points where u is not approximately continuous as the approximate
discontinuity set.

The value z ∈ R from the previous definition is uniquely determined by equation (2.1),
thus z will be denoted by ũ(x) and called the approximate limit of u in x. For a function
u ∈ L1

loc(Ω), one can show (see for instance [3], Proposition 3.64) that Ln(Su) = 0, i.e.
Su is a Lebesgue-negligible Borel set and thus, u is approximately continuous in Ln-a.e.
x ∈ Ω. Those points belonging to Su can be further distinguished by their affiliation to
the set of approximate jump points defined in the following.

Definition 2.2.4 (Approximate jump set). Let u ∈ L1
loc(Ω). A point x ∈ Ω is an

approximate jump point of u if there exist a, b ∈ R, a 6= b and ν ∈ Sn−1 such that

lim
ε→0

1
|B+

ε (x, ν)|

∫
B+
ε (x,ν)

|u(y)− a|dy = 0, lim
ε→0

1
|B−ε (x, ν)|

∫
B−ε (x,ν)

|u(y)− b|dy = 0,

where B±ε := {y ∈ Bε(x) : 〈y − x, ν〉 >< 0}. The set of approximate jump points of u is
denoted by Ju.
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Obviously, if x ∈ Ω is an approximate jump point, x is also an approximate discontinuity
point, hence we have Ju ⊂ Su and Ju is a Borel set. Moreover, the triplet (a, b, ν) is
uniquely determined for every x by the definition (up to a permutation of a and b and
the sign of ν) and admits a quite graphical intuition: If x ∈ Ju, then u has a jump in
function value from a to b in the direction of ν, which can be shown to equal the direction
of the unit normal on Su in x. Therefore, for x ∈ Ju, we denote the triplet (a, b, ν) by
(u+(x), u−(x), νu(x)).
Outside of the set Su, we can further define the set of approximate differentiability as in
[3], Definition 3.70.

Definition 2.2.5 (Approximate differentiability). Let u ∈ L1
loc(Ω). u is called approxi-

mately differentiable at a point x ∈ Ω \ Su, if there exists a vector L ∈ Rn such that

lim
ε→0

1
|Bε(x)|

∫
Bε(x)

|u(y)− ũ(x)− 〈L, y − x〉|
ε

dy = 0. (2.2)

If u is approximately differentiable at x, the vector L is uniquely determined by (2.2) and
denoted by ∇u(x), which is called the approximate gradient of u in x.

Now we can employ the previous definitions in order to characterize the distributional
gradient of a BV -function. From the Radon–Nikodym theorem (see for instance [3],
Theorem 1.28), we obtain that Du can be decomposed into an absolutely continuous part
vLn and a singular part Dsu with respect to the Lebesgue measure such that

Du = vLn +Dsu,

where v ∈ L1(Ω,Rn) is the density of Du with respect to Ln. By the Calderón–Zygmund
theorem (see [3], Theorem 3.83), u ∈ BV (Ω) is approximately differentiable almost
everywhere in Ω and v = ∇u. Furthermore, the remaining part Dsu can be decomposed
into a so-called jump part Dju and a Cantor part Dcu, which are defined as (see [3],
Definition 3.91)

Dju := DsuxJu, Dcu := Dsux(Ω \ Su).
Let us have a closer look at the first part. By the Federer–Vol’pert theorem (see [3],
Theorem 3.78), Ju is a countably Hn−1-rectifiable set, which yields by [3], Theorem 3.77,
that

Dju(B) =
∫
B∩Ju

(u+(x)− u−(x))νu(x) dHn−1 =
∫
B∩Su

(u+(x)− u−(x))νu(x) dHn−1

for all B ∈ B(Ω), where the second equality comes from the fact that Hn−1(Su \ Ju) = 0
for u ∈ BV (Ω). In other words, we have Dju = (u+ − u−)νuHn−1xSu. Altogether, we
obtain the decomposition

Du = ∇uLn + (u+ − u−)νuHn−1xSu +Dcu.
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The space of functions of bounded variation seems to be practical for investigating problems
involving piecewise differentiable functions with a certain discontinuity set such as the
Mumford–Shah problem, which will be further introduced in Section 2.4. Unfortunately,
the distributional derivative still involves the less intuitive Cantor part Dcu. To overcome
this problem, De Giorgi and Ambrosio introduced the space of so-called special functions
of bounded variation.

Definition 2.2.6 (Special functions of bounded variation). A function u ∈ BV (Ω) is a
special function of bounded variation, if the Cantor part Dcu of the derivative vanishes, i.e.

Du = ∇uLn + (u+ − u−)νuHn−1xSu
by the above decomposition. The space of special functions of bounded variation is denoted
by SBV (Ω).

2.3. Γ-convergence and equi-coercivity
For several numerical or analytical purposes, it might be of interest to consider a relaxation
of a certain energy guided by a parameter ε in order to obtain more practical properties
such as smoothness or convexity. Instead of an energy functional F , which might be
somehow difficult to handle, one can introduce a family of relaxations Fε to perform
simulations or investigate features of the problem. A famous example is the Ambrosio–
Tortorelli approximation of the Mumford–Shah functional, which will be further introduced
in Section 2.4. Mathematically, one is interested in analysing the limit behaviour of Fε for
ε→ 0 in order to verify that Fε is in some sense a good approximation of the functional F .
Such a verification is provided by the notion of Γ-convergence as first introduced in [37].
In the following, we want to formulate the definition of Γ-convergence and state some
fundamental properties. For more details, we refer the reader to [16] or [43].

Definition 2.3.1 (Γ-convergence). Let (X, d) be a metric space. A family of functions
Fε : X → R∪{−∞,∞} for a parameter ε > 0 Γ-converges with respect to d to a functional
F : X → R ∪ {−∞,∞}, if for every u ∈ X the following two properties are satisfied:

(1) (Γ-lim inf inequality.) For every sequence (uε) ⊂ X with d(uε, u)→ 0 if ε→ 0,

F (u) ≤ lim inf
ε→0

Fε(uε).

(2) (Γ-lim sup inequality.) There exists a sequence (uε) ⊂ X with d(uε, u)→ 0 if ε→ 0
such that

lim sup
ε→0

Fε(uε) ≤ F (u).

We then write Fε Γ→ F and F is called Γ-limit of Fε.
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With the definition of Γ-convergence, we obtain a useful tool for approximating functionals.
A point which has not been taken care of so far is the question whether minimizers of Fε
also approximate minimizers of F . Suppose that (uε) ⊂ X is a minimizing sequence for Fε
in the sense that

lim
ε→0

(
Fε(uε)− inf

u∈X
Fε(u)

)
= 0.

If uε converges to some ū ∈ X, then we easily see that

lim sup
ε→0

inf
u∈X

Fε(u) ≤ inf
u∈X

F (u) ≤ F (ū) ≤ lim inf
ε→0

Fε(uε) ≤ lim inf
ε→0

inf
u∈X

Fε(u),

thus it follows that
F (ū) = min

u∈X
F (u) = lim

ε→0
inf
u∈X

Fε(u).

The crucial part is the verification that the minimizing sequence (uε) converges in X (at
least up to subsequences). This requires some compactness of the functionals Fε, which
directly leads to the definition of equi-coercivity.

Definition 2.3.2 (Equi-coercivity). A sequence of functionals (Fε) is called equi-coercive,
if for every t ∈ R, there exists a compact Kt such that {Fε < t} ⊂ Kt for every ε.

The equi-coercivity of (Fε) leads to the fundamental property of Γ-convergence, as stated
in [16], Theorem 1.21.

Theorem 2.3.3. Let (X, d) be a metric space, (Fε) with Fε : X → R ∪ {−∞,∞} a
sequence of equi-coercive functionals and Fε Γ→ F for a functional F : X → R∪ {−∞,∞}.
Then

min
u∈X

F (u) = lim
ε→0

inf
u∈X

Fε(u)

and if (uε) ⊂ X is a minimizing sequence for Fε, then uε converges (up to subsequences)
to a minimizer of F .

2.4. The Mumford–Shah image segmentation problem
An interesting problem in the field of mathematical imaging and a famous example for a
free-discontinuity problem is the so-called Mumford–Shah image segmentation problem,
presented by D. Mumford and J. Shah in [50]. Given an image f ∈ L∞(Ω) on some
image domain Ω ⊂ Rn, one aims at finding a piecewise smooth approximation u of f ,
which involves an unknown discontinuity set K. The Mumford–Shah energy functional
M̃S : D → [0,∞] is defined by

M̃S(K, u) =
∫

Ω\K
α(u− f)2 + |∇u|2dx+ βHn−1(K ∩ Ω), (2.3)
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with D = {(K, u) : K ⊂ Ω closed, u ∈ W 1,2
loc (Ω \K)} and parameters α, β > 0. The first

term of the functional guarantees that u is close to the original input f and smooth outside
of K by the second term, while the length of the discontinuity set K is penalized on the
other hand.
Existence of a minimizer was first shown in [36]. The proof requires some work since the
direct method of calculus of variations fails due to the fact that the mapping K 7→ Hn−1(K)
in general is not lower semi-continuous with respect to the Hausdorff metric

d(K1, K2) = inf{r > 0 : K1 ⊂ Br(K2), K2 ⊂ Br(K1)}.

Instead, the authors choose a relaxation of the original energy, which is also referred to as the
Mumford–Shah problem in the literature, by defining a functional MS : SBV (Ω)→ [0,∞],

MS(u) =
∫

Ω
α(u− f)2 + |∇u|2dx+ βHn−1(Su).

The existence result is then obtained by showing that inf
u∈SBV (Ω)

MS(u) = inf
(K,u)∈D

M̃S(K, u)
(see [36] or [3], Chapter 6, for a detailed proof), since MS has a minimizer in SBV (Ω)
thanks to a general compactness result in SBV (Ω) [3].
Note that this relaxation approach gives a natural justification for the definition of the
space of special functions of bounded variation. Intuitively, one would look for a minimizer
in BV (Ω), but this space turns out to be too large: By defining the set of Cantor-like
BV -functions BV c(Ω) := {u ∈ BV (Ω) : Du = Dcu}, meaning those functions whose
gradient only consists of the Cantor part, one can see that

inf
u∈BV (Ω)

MS(u) ≤ inf
u∈BV c(Ω)

MS(u) = inf
u∈BV c(Ω)

α
∫

Ω
(u− f)2dx = 0,

where the last equation comes from the fact that BV c(Ω) is dense in L2(Ω).
Although the existence of minimizers of MS is assured, identifying them remains the more
complicated task due to the non-convexity of the energy [2] (except some situations where
the problem can be reduced to one space dimension [3]). This is especially a crucial issue
for all numerical purposes and automatically raises the question for any kind of relaxation,
which in the optimal case should yield a convex reformulation.
The Mumford–Shah functional defined on SBV -functions is often seen as a model for a
more general class of free-discontinuity problems. Since other functionals belonging to this
group share the same behaviour in some aspects, it can be useful to investigate so-called
Mumford–Shah-type functionals.

Definition 2.4.1 (Mumford–Shah-type functionals). Let Ω ⊂ Rn, g : Ω×R×Rn → [0,∞],
h : Ω× R× R× Sn−1 → [0,∞]. The functional F : SBV (Ω)→ [0,∞] defined as

F (u) =
∫

Ω
g (x, u(x),∇u(x)) dx+

∫
Su
h
(
x, u+, u−, νu

)
dHn−1(x)
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is called Mumford–Shah-type functional, where u+, u−, νu are defined as in Definition 2.2.4
and the subsequent paragraph.

One can easily see that MS is a special case of F with g(x, u(x),∇u(x)) = α(u(x) −
f(x))2 + |∇u(x)|2 and h(x, u+, u−, νu) = β.

2.4.1. Phase field approximation of the Mumford–Shah functional
Since the difficulty of computing an optimal pair (K, u) of the original Mumford–Shah
functional (2.3) lies mainly in the non-regularity of the discontinuity term, a natural idea
is to approximate K by something more regular. This idea has been implemented by the
Modica–Mortola theorem [47]: Given a set E ⊂ Ω, the perimeter of E can be approximated
in the sense of Γ-convergence via the sequence of functionals MMε : L2(Ω)→ [0,∞],

MMε(v) =

∫

Ω ε|∇v|2 + 1
ε
W (v) dx if v ∈ W 1,2(Ω),

∞ if v ∈ L2(Ω) \W 1,2(Ω),
(2.4)

where W is a so-called double well potential, a continuous non-negative function vanishing
only at two points, such as W (t) = t2(t− 1)2 for instance. The result of Modica–Mortola
is stated in the following theorem [47].

Theorem 2.4.2 (Modica–Mortola). The sequence MMε in (2.4) Γ-converges in L2(Ω) to
the functional

F (v) =
cPer(E,Ω) if v = χE for some E ∈ B(Ω),
∞ otherwise,

where c = 2
∫ 1

0

√
W (s)ds and Per(E,Ω) is the perimeter of the set E in Ω.

Proof. See for instance [17], Theorem 7.3.

Graphically, v provides for some kind of phase transition: While the first term in MMε

guarantees the smoothness of v, the second term causes v to preferentially stay in its
two “phases” specified by the minima of the double well. However, without an additional
constraint, the minimizer of the functional (2.4) obviously satisfies v ≡ 0 or v ≡ 1 almost
everywhere. The connection to the discontinuity set of a piecewise smooth image is drawn
by some additional linker terms between the phase field v and the image u by the so-called
Ambrosio–Tortorelli functional ATε : L2(Ω)× L2(Ω)→ [0,∞] defined as

ATε(u, v) =


∫

Ω α(u− g)2 + v2|∇u|2 + β/2
(
ε|∇v|2 + 1

ε
(v − 1)2

)
dx if (u, v) ∈ D,

∞ otherwise.
(2.5)
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where D = {(u, v) : u, v ∈ W 1,2(Ω), 0 ≤ v ≤ 1}. Note that the double well potential W
in the Modica–Mortola functionals has been replaced by a single well (v − 1)2, however,
the role of the second well is assumed by the term v2|∇u|2. The following Γ-convergence
result was proved by Ambrosio and Tortorelli in [4] (see also [3]).
Theorem 2.4.3 (Ambrosio–Tortorelli). The sequence of functionals (2.5) Γ-converges in
L2(Ω)× L2(Ω) to the functional

F (u, v) =

∫

Ω α(u− g)2 + |∇u|2dx+ βHn−1(Su) if u ∈ SBV (Ω), v ≡ 1 a.e.,
∞ otherwise.

Proof. See [4].

Via a heuristic explanation of the terms in (2.5), it becomes clear that v can indeed be
interpreted as a smooth representation of the discontinuity set Su: The factor v2 in front
of the gradient term of u must tend to zero very close to the discontinuity set of u to
ensure the boundedness of the terms. On the other hand, if ε→ 0, the factor 1

ε
in front of

the term (v − 1)2 becomes very large, thus v has to go to 1, the only point where (v − 1)2

vanishes. As a consequence, v has to admit some kind of phase transition, which becomes
sharper for ε→ 0. Figure 2.1 shows an example for a piecewise smooth approximation of
an image obtained via minimization of the Ambrosio–Tortorelli functional.

Figure 2.1.: Numerical simulation of the Ambrosio–Tortorelli approximation of the
Mumford–Shah functional. Left: Original image f . Middle: Piecewise smooth approxima-
tion u of f . Right: Approximation v of the discontinuity set Su.

The Ambrosio–Tortorelli functional naturally finds sustainable use in numerical applications.
From Theorem 2.4.3, for small ε, one can expect a minimizer uε of ATε to yield a good
approximation of the minimizer u of the Mumford–Shah functional. Additionally, one can
prove that under certain conditions on the lattice size of a discretization, the Γ-convergence
result still holds on a discrete version of the functionals (see for instance [8] for a finite
element approximation or [6] for finite differences). However, the Ambrosio–Tortorelli
functional remains non-convex in the pair (u, v), which raises the problem of finding a
suitable minimization algorithm.
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2.4.2. Functional lifting of Mumford–Shah-type problems
In a series of articles [1],[2] the authors introduced a new representation for the non-convex
functional

J(u) =
∫

Ω
|∇u|2dx+ βHn−1 (Su) .

By defining the characteristic function of the subgraph of u ∈ SBV (Ω),

1u : Ω× R→ {0, 1}, 1u (x, t) :=
1 if u (x) > t,

0 otherwise,

they show that for every u ∈ SBV (Ω),

J(u) = sup
φ∈K

∫
Ω×R

φ · dD1u

with

K =
{
φ = (φx, φs) ∈ C∞0 (Ω× R,Rn × R) :

|φx (x, s) |2 ≤ 4φs (x, s) ∀(x, s) ∈ Ω× R,
∣∣∣∣∫ s2

s1
φx (x, s) ds

∣∣∣∣ ≤ 1 ∀x ∈ Ω, s1, s2 ∈ R
}
.

x

f(x)

x

s

0

1

Figure 2.2.: Illustration of functional lifting from a scalar to a two-dimensional function.
Left: Graph of a function u, right: Lifted function 1u.

This idea can be extended to more general functionals of the form

F (u) =
∫

Ω
g (x, u(x),∇u(x)) dx+

∫
Su
h
(
x, u+, u−, ν

)
dHn−1(x) (2.6)

as defined in Definition 2.4.1 for u ∈ SBV (Ω). The main result from [1],[2] is stated in
the following theorem. We will give a sketch of the proof here, for more details we refer
the reader to [2].
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Fi g u r e 2. 3.: Ill ustr ati o n of f u n cti o n al lifti n g fr o m a t w o- di m e nsi o n al t o a t hr e e- di m e nsi o n al
f u n cti o n. L eft: I m a g e u , ri g ht: Lift e d f u n cti o n 1 u . T h e h ei g ht of t h e lift e d f u n cti o n 1 u i n a
p oi nt x ∈ Ω c orr es p o n ds t o t h e v al u e u (x ).

T h e o r e m 2. 4. 4. L et Ω ⊂ R n , F : S B V ( Ω) → [ 0, ∞ ] a n d S u , u
+ , u− b e d e fi n e d a s a b o v e.

T h e n
F (u ) ≥ s u p

φ ∈ K Ω × R
φ · d D 1 u ( 2. 7)

wit h

K = φ = ( φ x , φs ) ∈ C ∞0 ( Ω × R ; R
n × R ) :

φ s (x, s ) ≥ g ∗ (x, s, φ x (x, s )) ∀ (x, s ) ∈ Ω × R ,
s 2

s 1
φ x (x, s ) ds ≤ h (x, s 1 , s2 , ν) ∀ x ∈ Ω , s1 < s 2 , ν ∈ S

n − 1 . ( 2. 8)

P r o of. L et Γ u b e t h e gr a p h of u , i. e. t h e si n g ul ar s et of t h e lift e d f u n cti o n al 1 u (Γ u is
w ell- d e fi n e d si n c e t h e s u b gr a p h of u h as fi nit e p eri m et er i n Ω × R , cf. [2 ], D e fi niti o n
2. 7). Si n c e t h e c h ar a ct eristi c f u n cti o n 1 u is pi e c e wis e c o nst a nt f or u i n S B V ( Ω), its
distri b uti o n al gr a di e nt D 1 u h as n o L e b es g u e a n d C a nt or p art, h e n c e

D 1 u = ν Γ u · H
n Γ u ,

w h er e

ν Γ u (x, s ) =






1√
| ∇u ( x ) |2 + 1

(∇ u (x ), − 1) T f or x ∈ Ω \ S u ,

(ν u (x ), 0)
T f or x ∈ S u

is t h e i n n er u nit n or m al of t h e s u b gr a p h of u ( e xt e n d e d t o Ω × R ) a n d ν u is t h e u nit
n or m al o n S u p oi nti n g fr o m u

− t o u + . As a c o ns e q u e n c e, w e c a n writ e t h e ri g ht- h a n d si d e
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of the inequality (2.7) as∫
Ω×R

φ (x, s) · dD1u (x, s) =
∫

Γu
φ (x, u(x)) · νΓu (x) dHn (x)

=
∫

Ω\Su
φ (x, u (x)) · νΓu (x) dx+

∫
Su

(∫ u+(x)

u−(x)
φx (x, s) ds

)
· νu (x) dHn−1 (x)

=
∫

Ω\Su
φx (x, u (x)) · ∇u (x)− φs (x, u (x)) dx+

∫
Su

(∫ u+(x)

u−(x)
φx (x, s) ds

)
· νu (x) dHn−1 (x)

Now let us regard the two parts separately and compare with the original functional J .
From the constraint set K we obtain

φs (x, s) ≥ g∗ (x, s, φx (x, s)) = sup
ψ∈Rn

(φx (x, s) · ψ − g (x, s, ψ)) ∀ (x, s) ∈ Ω× R

⇒ φs (x, u (x)) ≥ φx (x, u (x)) · ∇u (x)− g (x, u (x) ,∇u (x))
⇔ φx (x, u (x)) · ∇u (x)− φs (x, u (x)) ≤ g (x, u (x) ,∇u (x)) . (2.9)

For the second part we have∣∣∣∣∫ s2

s1
φx (x, s) ds

∣∣∣∣ ≤ h (x, s1, s2, ν) ∀ x ∈ Ω, ν ∈ Sn−1, s1 < s2

⇒ h
(
x, u+, u−, νu

)
≥
∣∣∣∣∣
∫ u+

u−
φx (x, s) ds

∣∣∣∣∣ ≥
∫ u+

u−
φx (x, s) ds · νu. (2.10)

The inequalities (2.9) and (2.10) together result in (2.7).

For a given u ∈ SBV (Ω), one can easily derive conditions for equality in (2.7) (cf. [2]).

Corollary 2.4.5. For a given u ∈ SBV (Ω), let φ = (φx, φs) ∈ C∞0 (Ω× R,Rn × R) be a
vector field which satisfies the following assumptions:

• φs(x, u(x)) = g∗(x, u(x), φx(x, u(x))) ∀ x ∈ Ω,

• φx(x, u(x)) ∈ ∂g(x, u(x),∇u(x)) ∀ x ∈ Ω, where ∂g denotes the subdifferential of g
with respect to the last variable,

•
(∫ u+(x)
u−(x) φ

x(x, s)ds
)
· νu = h(x, u−(x), u+(x), νu(x)) ∀ x ∈ Su.

Then we have
F (u) =

∫
Ω×R

φ · dD1u.

Remark 2.4.6. The existence of such a vector field satisfying the conditions in Corollary
2.4.5 is a crucial issue in the general case. In [2], Remark 3.3, the authors state that for the
Mumford–Shah functional, one can construct a vector field φ such that (2.9) and (2.10)
are almost equalities up to an arbitrarily small error, such that one obtains equality in
(2.7).
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Based on this idea, in [54] and [55] the authors develop an algorithmic framework to handle
the non-convexity of the Mumford–Shah functional. Although the lifted problem (2.7) is
still non-convex due to the binary function 1u, it is straightforward to find a convexification
by substituting 1u by a function v : Ω× R→ [0, 1]. To this end, we introduce the set

C = {v ∈ SBV (Ω× R, [0, 1]) : lim
t→−∞

v (x, t) = 1, lim
t→∞

v (x, t) = 0}

and define the functional F : SBV (Ω× R)→ [0,∞] as

F(v) = sup
φ∈K

∫
Ω×R

φ · dDv.

The set C can be seen as an extension of the set containing all binary functions v = 1u for
some u ∈ SBV (Ω). With this relaxation, the original problem can be rewritten as

inf
u∈SBV (Ω)

F (u) ≥ inf
u∈SBV (Ω)

sup
φ∈K

∫
Ω×R

φ · dD1u ≥ inf
v∈C
F(v), (2.11)

where the right-hand side is a convex problem in v.

Definition 2.4.7 (Functional lifting problem). The saddle point problem

inf
v∈C

sup
φ∈K

∫
Ω×R

φ · dDv

with C,K defined above is referred to as a functional lifting problem.

The inequality in (2.11) states that the convex relaxation might come along with some
“loss” of accuracy concerning the original problem of minimizing F . This raises the question
whether under certain conditions the inequality can be turned into an equality such that
the minima of F and F coincide. As shown by the following result, this question is closely
related to the existence of a divergence-free vector field φ realizing the supremum in (2.7).

Theorem 2.4.8 (Equality of the minima). Let û ∈ SBV (Ω) be a minimizer of F . If there
exists a divergence-free vector field φ̂ ∈ K such that

F (û) = sup
φ∈K

∫
Ω×R

φ · dD1û =
∫

Ω×R
φ̂ · dD1û,

then we have
min

u∈SBV (Ω)
F (u) = inf

v∈C̃
F(v),

where

C̃ = {v ∈ SBV (Ω× R, [0, 1]) : lim
t→−∞

v (x, t) = 1, lim
t→∞

v (x, t) = 0, v = 1û on ∂Ω× R}.
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Proof. From 1û ∈ C̃, we obtain

F(1û) = sup
φ∈K

∫
Ω×R

φ · dD1û =
∫

Ω×R
φ̂ · dD1û = F (û) = min

u∈SBV (Ω)
F (u) ≥ inf

v∈C̃
F(v)

= inf
v∈C̃

sup
φ∈K

∫
Ω×R

φ · dDv ≥ sup
φ∈K

inf
v∈C̃

∫
Ω×R

φ · dDv ≥ inf
v∈C̃

∫
Ω×R

φ̂ · dDv. (2.12)

By the divergence theorem and due to the fact that φ̂ is divergence-free, we obtain∫
Ω×R

φ̂ · dDv =
∫
∂Ω×R

v φ̂ · ν dHn−1 −
∫

Ω×R
v div(φ̂) dxds︸ ︷︷ ︸

=0

=
∫
∂Ω×R

v φ̂ · ν dHn−1

where ν is the outer unit normal to ∂Ω×R. Since every v ∈ C̃ coincides with 1û on ∂Ω×R,
we have

inf
v∈C̃

∫
Ω×R

φ̂ · dDv = inf
v∈C̃

∫
∂Ω×R

1û φ̂ · ν dHn−1 = F(1û). (2.13)

Hence by combining (2.12) and (2.13), we conclude

min
u∈SBV (Ω)

F (u) = inf
v∈C̃
F(v).

2.5. Adaptive finite elements for functional lifting
problems

In this section, we want to introduce some basic definitions and concepts of adaptive finite
elements for problems arising from functional lifting, i.e. on a three-dimensional domain
Ω× R, where the additional dimension potentially requires a special treatment. We will
restrict ourselves for the sake of simplicity to [0, 1]2 = Ω ⊂ R2 and a three-dimensional
domain G = [0, 1]3.
In the past years, adaptive grid refinement of simplicial n-dimensional grids has been
extensively studied (e.g. [64], [62], [45], [63]). In three space dimensions, a finite element
grid typically consists of tetrahedrons, which can be locally divided into two subelements
by bisection. These grids form a suitable basis for numerically solving partial differential
equations which require a different resolution in different parts of the domain. Tetrahedron
elements are practical due to several reasons. On the one hand, one can easily define
piecewise polynomial, for instance piecewise linear, basis functions which are globally
continuous and only have very local support. On the other hand, simplicial grids allow for
local refinement without necessarily creating so-called hanging nodes.
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However, a severe disadvantage that does not play a role in most applications, but does
in case of a problem domain created by functional lifting, is the fact that all spatial
dimensions are treated in a similar way. In other words, thinking of a two-dimensional
image domain lifted to the three-dimensional space, a projection of an adaptive grid onto
the xy-plane would in general not provide a two-dimensional simplicial grid, which makes
the process of functional lifting and delifting more difficult. From Theorem 2.4.4 we obtain
that a method dealing with the lifted saddle point problem needs to handle line integrals
along the lifted dimension, which requires simple communication between consecutive
points in this direction. Summarizing, a proper finite element grid for functional lifting
problems should provide two discretizations for the original image domain Ω as well as for
the lifted domain Ω× R together with a straightforward way of communication between
both.

2.5.1. Triangular prism finite elements
In order to include the desired properties as described above, we propose a novel discretiza-
tion class consisting of a simplicial grid for the image domain Ω = [0, 1]2 coupled with an
additional partition of the image range [0, 1]. The resulting three-dimensional grid contains
triangular prism-shaped elements and admits a suitable refinement technique which allows
for inheritance of some useful properties. For a more detailed understanding, we want
to introduce the basic concepts of triangular prism finite elements within this section.
Throughout the rest of this thesis, we will make use of a special notation concerning
the coordinates related to the three-dimensional domain arising from functional lifting
of a two-dimensional function. To emphasize the difference between the original image
domain and the image range, for a point x ∈ R3, we denote its first two coordinates as
xy-coordinates and the third one as s-coordinate with respect to the standard basis of
R3. In the same way, we will use the notation of xy and s when speaking of any relating
concept.
We start by recalling the definition of a two-dimensional simplicial grid (see [63]).

Definition 2.5.1 (Simplex, simplicial grid in 2D). A two-dimensional simplex (x0, x1, x2)
is a 3-tuple with nodes x0, x1, x2 ∈ R2, which do not lie on a one-dimensional hyperplane.
The convex hull conv{x0, x1, x2} is also denoted as a simplex. A two-dimensional simplicial
grid is a connected set of two-dimensional simplices with pairwise disjoint interior.

Based on a two-dimensional simplicial grid for the image domain Ω, we define a lifted
counterpart consisting of triangular prism-shaped elements.

Definition 2.5.2 (Triangular prism element). A triangular prism element (x0, . . . , x5)
is a 6-tuple with nodes x0, . . . , x5 ∈ R3, such that (PHxy(x0),PHxy(x1),PHxy(x2)) =
(PHxy(x3),PHxy(x4),PHxy(x5)) is a two-dimensional simplex and h(x0) = h(x1) = h(x2),
h(x3) = h(x4) = h(x5), h(x0) < h(x3), where Hxy denotes the set of all points in R3 whose
s-coordinate equals zero and h(xi) denotes the s-coordinate of a point xi ∈ R3. For a
triangular prism element T , we define
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• N (T ) := {x0, . . . , x5} is the set of nodes

• Eh(T ) := {conv{x0, x1}, conv{x1, x2}, conv{x0, x2}, conv{x3, x4},
conv{x4, x5}, conv{x3, x5}} is the set of horizontal edges

• Ev(T ) := {conv{x0, x3}, conv{x1, x4}, conv{x2, x5}} is the set of vertical edges

• E(T ) := Eh(T ) ∪ Ev(T ) is the set of edges

• Fh(T ) := {conv{x0, x1, x2}, conv{x3, x4, x5}} is the set of horizontal faces

• Fv(T ) := {conv{x0, x1, x3, x4}, conv{x1, x2, x4, x5}, conv{x0, x2, x3, x5}} is the set of
vertical faces

• F(T ) := Fh(T ) ∪ Fv(T ) is the set of faces.

The domain of a triangular prism element T = (x0, . . . , x5) is also denoted as T , as far as
ambiguity is beyond question. T can be written as T = Txy × Ts for a two-dimensional
simplex Txy = conv{x0, x1, x2} and an interval Ts = [h(x0), h(x3)].

Proposition 2.5.3. The nodes x0, . . . , x5 of a triangular prism element T are listed in an
ascending order by their s-coordinate first (where the secondary ordering does not play a
role). Each pair (x0, x3), (x1, x4) and (x2, x5) has the same xy-coordinates. h(T ) := |x3−x0|
(= |x4 − x1| = |x5 − x2|) defines the height of an element.

Next, we define a regular grid partition of the three-dimensional domain consisting of
triangular prism elements.

Definition 2.5.4 (Regular triangular prism grid). A regular triangular prism grid T is
a set of triangular prism elements such that G ⊆ ⋃{T : T ∈ T } and for every pair of
elements T, S ∈ T , one of the following relations holds:

• T ∩ S = ∅

• T ∩ S ∈ N (T ) and T ∩ S ∈ N (S)

• T ∩ S ∈ E(T ) and T ∩ S ∈ E(S)

• T ∩ S ∈ F(T ) and T ∩ S ∈ F(S)

• T = S.

The conditions above are denoted as regularity conditions. The set of nodes of T is denoted
by

N (T ) =
⋃
T∈T
N (T ).
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Figure 2.4.: Possible neighbouring relations of two elements in a regular triangular prism
grid.

Figure 2.5.: Examples for neighbouring relations that are not allowed in a regular
triangular prism grid.

Definition 2.5.4 introduces conditions about the neighbouring relations of two elements
in a regular grid. In particular, these conditions prohibit elements with partially shared
edges or faces (see Figure 2.4 and 2.5) and thus prevent the occurrence of so-called hanging
nodes.

Definition 2.5.5 (Hanging node). For an element T ∈ T , a node N ∈ N (T ) is called
hanging node, if there exists an element S ∈ T with N ∈ S and N /∈ N (S). A hanging
node N is called xy-hanging, if N ∈ Eh(S), and s-hanging, if N ∈ Ev(S). The set of hanging
nodes of T is denoted by H(T ).

Note that one can easily show that a regular triangular prism grid cannot contain any
hanging node, as stated by the following lemma.

Lemma 2.5.6. A regular triangular prism grid T does not contain any hanging node.

Proof. Let T, S ∈ T with N ∈ N (T ), N ∈ S and N /∈ N (S). Then T ∩S 6= ∅, T 6= S and
obviously T∩S /∈ N (S). Additionally, if T∩S ∈ E(T ), then there exist xi1 , xi2 ∈ N (T ) such
that T ∩S = conv{xi1 , xi2}, hence N = xi1 or N = xi2 . If also T ∩S ∈ E(S), with the same
argument there exist xj1 , xj2 ∈ N (S) such that T ∩S = conv{xj1 , xj2} = conv{xi1 , xi2}. It
follows that w.l.o.g. xi1 = xj1 and xi2 = xj2 , thus N ∈ N (S), which gives a contradiction.
The statement follows with the same argument for the fourth condition in Definition
2.5.4.

We now want to introduce an appropriate refinement routine preserving the regularity
of a triangular prism grid. The routine can be derived as a direct consequence from the
standard bisection method of a two-dimensional simplicial grid (see for instance [63]) with
some additional steps concerning the third dimension.
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Proposition 2.5.7 (Local refinement). Let T = (x0, . . . , x5) ∈ T and let w.l.o.g. E =
conv{x1, x2} ∈ Eh(T ) be the longest horizontal edge. Then T can be subdivided in xy-
direction (also called xy-refined) along the edge E, called the refinement edge, into two
subelements

T xy1 := (x0, x1,
x1 + x2

2 , x3, x4,
x4 + x5

2 ),

T xy2 := (x0, x2,
x1 + x2

2 , x3, x5,
x4 + x5

2 ).

Furthermore, T can be subdivided in s-direction (also called s-refined) into two subelements

T s1 := (x0, x1, x2,
x0 + x3

2 ,
x1 + x4

2 ,
x2 + x5

2 ),

T s2 := (x0 + x3

2 ,
x1 + x4

2 ,
x2 + x5

2 , x3, x4, x5).

x0 x1

x2

x3 x4

x5

Elower

Eupper

x0 x1

x2

x3 x4

x5

Figure 2.6.: Left: Subdivision of an element T in xy-direction into T xy1 and T xy2 (xy-
refinement). The refinement edge Elower (Eupper respectively) equals the longest horizontal
edge. Right: Subdivision of an element T in s-direction into T s1 and T s2 (s-refinement).

In order to prevent degenerating prism elements, the refinement edge for xy-refinement is
fixed as the longest horizontal edge of an element. Note that if T is subdivided along an
edge E = conv{x1, x2} ∈ Eh(T ), T is also subdivided along the corresponding upper edge
Ẽ = conv{x4, x5}. Thus, there exist actually two interrelated refinement edges E = Elower
and Ẽ = Eupper with the same length (cf. Figure 2.6).
Before we introduce the proposed refinement routine, we need to give a definition of the
neighbours of an element.

Definition 2.5.8 (Neighbours of an element). Let T be a regular triangular prism grid.
An element S ∈ T is an edge neighbour of another element t ∈ T along an edge E ∈ E(T ),
if E ∈ E(S). S is called face neighbour of T along a face F ∈ F(T ), if F ∈ F(T ).

We now have the tools to introduce the proposed refinement routine. The routine refines
a number of elements without violating the regularity conditions from Definition 2.5.4,
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which can be achieved by refinement of the corresponding neighbour elements.

Algorithm 1 Local refinement routine (xy)
function REFINE_XY(T )

Find longest edges Elower, Eupper ∈ Eh(T )
Subdivide T along edges Elower and Eupper
for all neighbours S ∈ T along edge Elower and Eupper do

Find longest edges Ẽlower, Ẽupper ∈ Eh(S)
if Ẽlower = Elower then

REFINE_XY(S)
else

REFINE_XY(S)
Find subelement Si of S that contains Elower or Eupper
REFINE_XY(Si)

end if
end for

end function

Algorithm 2 Local refinement routine (s) for a regular triangular prism grid
function REFINE_S(T )

Subdivide T in s-direction
for all neighbours S ∈ T sharing a vertical face with T do

REFINE_S(S)
end for

end function

Theorem 2.5.9. Let T0 be a regular triangular prism grid, and T ∈ T0. Then REFINE_XY(T )
yields the minimal regular triangular prism grid, where T is refined in xy-direction. The
same holds for REFINE_S.

Proof. The minimality follows directly from the definition of the refinement routine, since
only those elements are refined, which share the refinement edge with T . Thus, it is
sufficient to show that each pair of elements T, S ∈ T1 satisfies the regularity conditions.
We distinguish between the following cases:

(1) T, S ∈ T0 (nothing to show).

(2) T ∈ T0, S ∈ T1 \ T0: There exists Ŝ ∈ T0 such that S ⊂ Ŝ, i.e. S is a child of Ŝ. We
assume w.l.o.g. that T ∩ S 6= ∅, thus T ∩ Ŝ 6= ∅. For T ∩ Ŝ we have the following
possibilities:
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(a) If T ∩ Ŝ ∈ N (T ) and T ∩ Ŝ ∈ N (S), there is nothing to show.
(b) If T ∩ Ŝ ∈ E(T ) and T ∩ Ŝ ∈ E(S), then T and Ŝ can share a vertical or a

horizontal edge. If T and Ŝ share a vertical edge, so do T and S. If T and Ŝ
share a horizontal edge, then this cannot be the refinement edge (since otherwise,
T would have been refined), thus T and S share the same edge as T and Ŝ.

(c) The case T ∩ Ŝ ∈ F(T ) T ∩ Ŝ ∈ F(S) follows with the same argument.

(3) T, S ∈ T1 \ T0: There exist T̂ , Ŝ ∈ T0 such that T ⊂ T̂ and S ⊂ Ŝ. The proof then
follows with the argument by regarding all possible relations for T̂ ∩ Ŝ.

The result for REFINE_S can be obtained with a similar argumentation.

Graphically, Algorithm 1 simply subdivides all neighbours of an element T which share
the refinement edge E (or its lower or upper counterpart). Consequently, some elements
are refined twice due to the fact that the shared edge is not necessarily the longest edge
for all neighbouring elements. Note moreover that all elements which share a horizontal
face with T stringently contain the lower or upper refinement edge and thus need to be
refined subsequently.
While the xy-refinement satisfies the requirements to an adaptive refinement routine
by only locally increasing the grid resolution, the s-refinement needs to be performed
globally (meaning that every other element with the same s-coordinates needs to be refined)
to preserve regularity. However, in some cases it might be more practical to relax the
regularity conditions to be able to perform local s-refinement, accepting possible s-hanging
nodes. To this end, we introduce the concept of a semi-regular triangular prism grid.

Definition 2.5.10 (Semi-regular triangular prism grid). A semi-regular triangular prism
grid T is a set of triangular prism elements such that G ⊆ ⋃{T : T ∈ T } and for every
pair of elements T, S ∈ T with T = (x0, . . . , x5), S = (y0, . . . , y5), one of the following
relations holds:

• T ∩ S satisfies the regularity conditions

• ∃ i ∈ {0, 1, 2} s.t. T ∩ S = conv{xi, xi+xi+3
2 } ∈ Ev(S) or

T ∩ S = conv{xi+xi+3
2 , xi+3} ∈ Ev(S) (or with exchanged x, y, respectively)

• ∃ i1, i2 ∈ {0, 1, 2}, i1 6= i2 s.t. T ∩ S = conv{xi1 ,
xi1+xi1+3

2 , xi2 ,
xi2+xi2+3

2 } ∈ Fv(S)
or T ∩ S = conv{xi1+xi1+3

2 , xi1+3,
xi2+xi2+3

2 , xi2+3} ∈ Fv(S) (or with exchanged x, y,
respectively).

It is straightforward to check that every regular triangular prism grid is also semi-regular.
The definition allows, in addition to the regular neighbouring relations, that the intersection
of two elements consist of a half-edge or half-face of one element in vertical direction (see
Figure 2.7). As a consequence, the occurrence of one s-hanging node per vertical edge is
possible, while xy-hanging nodes are still permitted. Note that the limitation of s-hanging
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nodes to one per edge is a natural convention to prevent too many successive hanging
nodes, which are typically not treated as degrees of freedom (see Section 2.5.2).

Lemma 2.5.11. A semi-regular triangular prism grid T does not contain xy-hanging
nodes.

Proof. Let T, S ∈ T with N ∈ N (T ), N ∈ S, N /∈ N (S). In addition, assume that there
exists E ∈ Eh(S) with N ∈ E, i.e. N is a xy-hanging node. From Lemma 2.5.6 we obtain
that T ∩ S does not satisfy the regularity conditions, so one of the additional conditions
has to hold.

(1) Assume that there exists i ∈ {0, 1, 2} such that T ∩ S = conv{xi, xi+xi+3
2 } ∈ Ev(S).

Then xi, xi+xi+3
2 ∈ N (S), and since N ∈ T ∩S and N ∈ N (T ), it follows that N = xi,

which gives a contradiction.

(2) Assume that there exists j ∈ {0, 1, 2} such that T ∩ S = conv{yj, yj+yj+3
2 } ∈ Ev(T ).

Since N ∈ N (T ) and N ∈ T ∩ S, it follows N = yj+yj+3
2 (N = yj would be a

contradiction to N /∈ N (S)). Consequently, there is no E ∈ Eh(S) with N ∈ E,
which is a contradiction to the initial assumption.

All other semi-regularity conditions can be handled in a similar way.

If an element is refined in s-direction, only neighbours which are larger in the sense of a
their height (the difference between the s-coordinates of upper and lower nodes) need to
be refined subsequently in order to prevent more than one hanging node per edge.

� × � × ×
Figure 2.7.: Examples for allowed and permitted neighbouring relations in a semi-regular
triangular prism grid.

As in case of a semi-regular triangular prism grid, the semi-regularity is preserved by the
refinement routine, which is stated by the following result.

Theorem 2.5.12. Let T0 be a semi-regular triangular prism grid and T ∈ T0. Then
REFINE_XY(T ) yields the minimal semi-regular triangular prism grid, where T is refined
in xy-direction. The same holds for REFINE_Sloc(T ).

Proof. The proof follows the same strategy as for the regular case, therefore we will not
provide any details here.
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Algorithm 3 Local refinement routine (s) for a semi-regular triangular prism grid
function REFINE_Sloc(T )

Subdivide T in s-direction
for all neighbours S ∈ T with h(S) > h(T ) do

REFINE_S(S)
end for

end function

Remark 2.5.13. The xy-refinement routine for a regular and a semi-regular grid is basically
the same method. The only difference lies in the execution of the neighbour refinement.
While in a regular grid, only one element is allowed to share a vertical face with the
element to be refined, there can be two smaller elements (in the sense of their height) on
top of each other, which both will be refined consecutively by REFINE_XY.
Finally, we note that the projection of a semi-regular triangular prism grid onto the
xy-hyperplane Hxy naturally yields a two-dimensional simplicial grid by construction, so
does every horizontal slice of the grid.

2.5.2. Finite element function spaces
In the previous section, we have introduced a suitable spatial discretization for the
three-dimensional domain G = [0, 1]3. In order to obtain a finite element formulation of a
functional lifting problem as defined in Definition 2.4.7, we can now think of a discretization
of the underlying function spaces. A typical and practical choice on a two-dimensional
simplicial grid is the space of piecewise linear functions, where the degrees of freedom
correspond to the set of nodes of each simplex and thus the dimension of the discrete
function space equals the number of grid nodes. We take up this idea and adapt it to the
case of a triangular prism grid T by introducing the spaces

S1(T ) := {w ∈ C(G) : w|T (·, ·, s) ∈ P1(Txy) ∀ s ∈ Ts,
w|T (x, y, ·) ∈ P1(Ts) ∀ (x, y) ∈ Txy ∀ T = Txy × Ts ∈ T }.

S1(T ) is the space of bilinear polynomials on each prism element T ∈ T with dim(S1(T )) =
|N (T ) \H(T )|. Thus, the degrees of freedom in the finite element formulation correspond
to the set of all non-hanging nodes of each prism element.
For some problems, it might be practical to further simplify the discrete function space by
considering piecewise constant functions in the lifted dimension. To this end, we introduce
the space

S1,0(T ) := {w : G→ R : w|T (·, ·, s) ∈ P1(Txy) ∀ s ∈ Ts,
w|T (x, y, ·) ∈ P0(Ts) ∀ (x, y) ∈ Txy ∀ T = Txy × Ts ∈ T ,
w(·, ·, s) ∈ C([0, 1]2) ∀ s ∈ [0, 1]}
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of functions which are piecewise linear in (x, y) and piecewise constant in s.
Remark 2.5.14. In order to guarantee well-posedness of the definition of S1,0(T ), one would
have to define every T ∈ T as half-open in s-direction, otherwise every w ∈ S1,0(T ) must
automatically be constant along s. However, since any two-dimensional hyperplane is a
null set with respect to the three-dimensional Lebesgue measure, we neglect this problem
here and associate the lower three nodes x0, x1, x2 with the local degrees of freedom of an
element T = (x0, . . . , x5) in case of functions defined on S1,0(T ) (cf. Proposition 2.5.15).
The constancy assumption in the context of functional lifting problems basically has two
reasons: On the one hand side, piecewise constant (and especially not overall continuous)
functions in s-direction are a natural choice to represent the binary piecewise constant
characteristic functions of the subgraph of an image. Although in our case, the basis
functions are still continuous in xy-direction in order to allow for differentiability in the
classical sense, the s-constancy makes the representation more natural and the lack of
differentiability can be tackled by a finite difference interpretation. On the other hand
side, any discretization should preferably reduce the number of constraints in the set K
as defined in (2.8) to a finite count, namely those where the values s1, s2 correspond to
the degrees of freedom of the system. For some particular cases, one can easily construct
an example with piecewise linear basis functions which violates this desirable property
(Remark 4.2.4), while piecewise constant functions still work (Theorem 4.2.3).
While for S1(T ), the dimension equals the total number of non-hanging nodes in the grid
T , for S1,0(T ) we have dim(S1,0(T )) < |N (T ) \ H(T )|. The following proposition fixes
the degrees of freedom to equal the lower nodes of an element T ∈ T .

Proposition 2.5.15 (Degrees of freedom for S1,0(T )). The local degrees of freedom of an
element T = (x0, . . . , x5) ∈ T for a triangular prism grid T correspond to the lower nodes
x0, x1, x2. Hence, the number of degrees of freedom (i.e. the dimension of S1,0(T )) equals
the number of lower nodes in T minus the number of hanging nodes. The set of degrees of
freedom associated with a grid T is denoted as D(T ). Note that D(T ) ⊂ (N (T ) \ H(T )).

A simple set of basis functions for the space S1,0(T ) can be constructed in a similar way as
for the standard Lagrange finite element case: For each Ni ∈ D(T ), we define a function
ψi ∈ S1,0(T ) as

ψi(P ) :=
1 if P = Ni,

0 otherwise

for all P ∈ D(T ). Then, (ψ1, . . . , ψq) for q = |D(T )| being the total number of degrees of
freedom is obviously a basis of the space S1,0(T ) and dim(S1,0(T )) = q.
The concept of a (semi-)regular triangular prism grid T in combination with S1,0(T )
functions admits another useful property in the context of functional lifting problems.
Any numerical treatment of the underlying saddle point problem (2.4.7) involves some
kind of constraint handling concerning the set K (cf. (2.8)), consisting of a set of integral
inequalities for every point x ∈ [0, 1]2. In the absence of xy-hanging nodes, the sets for
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x0 x1

x2

x3 x4

x5

x/y

s

Figure 2.8.: Left: Local degrees of freedom (marked by •) for an element T in the space
S1,0(T ). Right: Global degrees of freedom for a two-dimensional grid assuming piecewise
constant basis functions in s-direction.

different x can be treated independently, which simplifies a constraint projection and
increases its efficiency. More precisely, we fix the following definition.

Definition 2.5.16 (Ground node, s-line). A node N = (N1, N2, N3) ∈ N (T ) for a
triangular prism grid T is called ground node, if N3 = 0. For a ground node N ∈ N (T ),
define

LN := {P = (P1, P2, P3) ∈ N (T ) : P1 = N1, P2 = N2}.

LN is denoted as s-line.

Remark 2.5.17. One can easily show that for every node P ∈ N (T ) in a semi-regular grid
T , there exists a ground node N such that P ∈ LN , thus the set of all s-lines contains
every node in the grid.
The main property of a semi-regular grid concerning s-lines is their independence in the
sense of horizontal interpolation. Since LN does not contain any xy-hanging node, changing
the values of nodes (including hanging nodes) within one s-line does not directly affect the
neighbouring s-lines. For some special examples of constraint sets K (as those regarded in
the later course of this work, see Chapter 4), this property is essential for an improved
efficiency of the projection onto K (cf. Section 4.4).
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3
Review of methods for

transportation network problems

In order to understand the tasks and challenges concerning a numerical treatment of
transportation problems, in this chapter we would like to introduce the concepts of
optimal transport and optimal network problems. Starting with the original famous model
formulations by Monge and Kantorovich, we lead over to the fundamental definitions of
branched transport, urban planning and some related versions, concluding with a brief
summary of the existing numerical approaches.

3.1. Optimal transport and transport networks - A brief
overview

Optimal transport or optimal transportation problems arise naturally in several fields of
application. What is the most effective way to transport a pile of sand into a hole in the
ground? Which path should a travelling merchant follow to deliver his goods? How to
establish a public transportation network connecting people’s homes with their workplaces?
Across all different formulations and practical backgrounds, the main question asked in this
context is: How to move mass from some initial distribution to a desired final distribution
such that the costs (associated with a certain cost functional) become as low as possible?
Here, different choices of the cost functional accompanied by different solution spaces lead
to various optimization problems, comprising all prior knowledge about the structure of
the desired solution.
The history of mathematical formulations that nowadays are referred to as “optimal
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transport problems” started in 1781 with a famous paper by Monge [48], [65]. He was
motivated by the task of transporting a certain amount of soil to a specified area for
construction purposes. The problem can be reformulated in an economic fashion: Given a
number of bakeries in the area of Paris that produce a certain amount of bread every day,
assume that the bread has to be transported to a number of cafés. If the exact number
of bread consumed in each café is known, how to determine which bread unit should go
to which place such that the transport costs become minimal? In a general framework,
Monge formulated the problem as follows [66], [60].

Definition 3.1.1 (Monge’s problem). Let Ω ⊂ Rn, µ+, µ− ∈M+(Ω) be two non-negative
finite Borel measures on Ω, c : Ω×Ω→ [0,∞] a cost functional and T : Ω→ Ω a transport
map. Then the Monge problem is defined as

inf
T

∫
Ω
c(x, T (x))dµ+(x) s.t. T#µ+ = µ−.

In the bakery setting, Ω represents the area of Paris, µ+ and µ− the distribution of bakeries
and cafés, respectively. The functional c(x, y) defines the cost of transporting one unit
of bread from a bakery at position x to a café at position y. A typical choice of the cost
function is c(x, y) = |x− y|p for some p ≥ 0, which simply penalizes the distance between
the two locations.
Several questions concerning Monge’s problem remained unsolved for a long time. It is
unclear if a solution exists a priori. Furthermore, a transport map T is not able to model
all conceivable situations, in particular, mass cannot be split up. In other words, it is
impossible to describe the transport of bread from one bakery to two different cafés (which,
in a more general setting, would be desirable). This problem was addressed by Kantorovich
in 1942 [39]. He changed the point of view by looking for a transport plan on the space
Ω× Ω instead of a transport map T [60].

Definition 3.1.2 (Kantorovich problem). Define the set of transport plans between µ+
and µ− as

Π(µ+, µ−) := {γ ∈M+(Ω× Ω) : π0#γ = µ+, π1#γ = µ−}

where π0, π1 : Ω × Ω → Ω denote the projection onto the first and, respectively, second
component. Then the Kantorovich problem is defined as

inf
γ∈Π(µ+,µ−)

∫
Ω×Ω

c(x, y)dγ(x, y).

In contrast to the Monge problem, the Kantorovich formulation does not ask for a map
specifying which particle goes where, but gives a plan γ such that γ(x, y) indicates how
much mass is transported from x to y. As a consequence, mass can be split up easily and
the model is able to display more general mass rearrangements.
Although the Kantorovich model is more flexible than the one introduced by Monge, it
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still cannot handle transportation problems where branching structures play an important
role. The transport map c(x, y) only encodes the travelling distance between two points
x and y, thus the Kantorovich cost functional is linear in the amount of transported
mass. Consider the situation where a single Dirac measure with mass 1 is transported
to two Dirac measures with mass 1

2 and define the function c(x, y) as the distance of
two points x, y along a one-dimensional network Σ (for x, y ∈ Σ). Then the Kantorovich
costs related to a “V-shaped” network would be cheaper than those related to a “Y-
shaped” network, although in many cases, the latter would be desirable. In order to
address this problem, researchers introduced the so-called Branched Transport problem
in 2003: Xia [68] developed a model based on transport of atomic measures (which can
also approximate more general measures) via weighted directed graphs. At the same time,
a similar model was introduced by Maddalena, Solimini and Morel [42], which follows a
Lagrangian formulation where paths are represented by trajectories of particles. Since
these models form a part of the basis of this work, we will present both in detail in Section
3.2.
Another model belonging to the family of optimal transportation network problems was
first studied in 2005 by Brancolini and Buttazzo [18]. Here, the optimal path has the
interpretation of a public transportation network: People can either choose to travel on
the network or, for a higher cost, on their own expense outside of the network. This leads
to a cost functional whose general structure is comparable to the branched transport case,
but where the cost functional takes into account the costs associated with the network as
well as the costs of passengers travelling on their own. We will outline the details of this
model in Section 3.3.
The main focus of this work lies on the numerical treatment of the branched transport
and urban planning problem. Nevertheless, note that both models can be regarded as the
most common representatives of a larger family of problems, namely those which aim at
minimizing a cost functional which is sublinear in the amount of transported mass. There
exist other examples belonging to this general class of problems, for example the classical
Steiner tree problem [56], where only the length of the graph is penalized. This can either
be seen as a limit case of the branched transport problem (see Section 3.2) or as a special
variant of the urban planning model (see Section 3.3). Furthermore, one can easily extend
the urban planning costs for transported mass by a more general minimum of piecewise
affine functions.

3.2. Branched transport
In this section, we present two different formulations of the branched transport problem.
Like in the mathematical characterization of a flow field, the two variants can be regarded
as a flux-based Eulerian and a particle-based Lagrangian formulation [20]. Note that there
exist even more ways to describe the problem (also in case of urban planning), such as a
formulation via flat 1-chains (see [21]). Throughout the rest of this chapter, we consider a
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region Ω ⊂ Rn and two measures µ+, µ− ∈M+(Ω).

3.2.1. Eulerian formulation
The Eulerian formulation from [68] starts with the definition of a mass flux and the
associated cost functional between discrete finite measures. Hence, let µ+, µ− be given by

µ+ =
k∑
i=1

aiδxi , µ− =
l∑

j=1
bjδyj

for a given set of pairwise distinct points xi, yj ∈ Rn, ai, bj ≥ 0, i = 1, . . . , k, j = 1, . . . , l,
where µ+ and µ− have the same mass,

k∑
i=1

ai =
l∑

j=1
bj.

A discrete mass flux between µ+ and µ− can be defined as follows.

Definition 3.2.1 (Discrete mass flux between µ+ and µ−). A discrete mass flux between
µ+ and µ− is a weighted directed graph G, consisting of a set of vertices V (G), a set
of edges E(G) and a weight function w : E(G) → [0,∞), satisfying the following mass
preserving conditions:

• ai = ∑
e∈E(G),e−=xi w(e)−∑e∈E(G),e+=xi w(e) for i = 1, . . . k

• bj = ∑
e∈E(G),e+=yj w(e)−∑e∈E(G),e−=yj w(e) for j = 1, . . . l

• 0 = ∑
e∈E(G),e+=v w(e)−∑e∈E(G),e−=v w(e) for every v ∈ V (G)\{x1, . . . , xk, y1, . . . , yl}.

Here, e− and e+ denote the initial and final point of the edge e ∈ E(G).

y1 y2 y3 y4

x1 x2 x3

y1 y2 y3 y4

x1 x2 x3

Figure 3.1.: Two possible transport paths between discrete measures µ+ = ∑3
i=1 aiδxi

and µ− = ∑4
j=1 bjδyj .

In other words, the transport path between the two measure can be identified with a set of
edges and vertices, where w(e) indicates the amount of mass flowing through an edge e ∈
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E(G) and no mass is created or lost at any interior vertex v ∈ V (G)\{x1, . . . , xk, y1, . . . , yl}.
The cost of such a graph associated to branched transport is given by the following
definition.

Definition 3.2.2 (Discrete branched transport cost). Given a discrete mass flux G between
two discrete measures µ+ and µ−, the discrete branched transport cost for a given branching
parameter α ∈ (0, 1) is given by

Mα(G) =
∑

e∈E(G)
w(e)αl(e),

where l(e) denotes the length (associated with the one-dimensional Hausdorff measure
H1xe) of the edge e.

The parameter α is responsible for controlling the grade of ramification or branching.
The branched transport cost functional directly ties on the fact that a “Y-shaped” or a
“V-shaped” path from one Dirac measure to two Dirac measures with half of the mass have
the same costs related to the Kantorovich model. As opposed to this, one can easily verify
that for a parameter α = 1

2 , the “Y-shaped” graph is preferred by the branched transport
cost functional, as shown by the following example.

Example 3.2.3. Let Ω ⊂ R2 and x1, y1, y2 ∈ Ω three points with equal distance d > 0,
α = 1

2 and µ+ = δx1 , µ− = 1
2δy1 + 1

2δy2 . Let v = 1
3(x1 + y1 + y2) be the midpoint of the

triangle with vertices x1, y1, y2. We define two graphs G1 and G2 by

• V (G1) = {x1, y1, y2}, E(G1) = {ex1,y1 , ex1,y2}, w(ex1,y1) = w(ex1,y2) = 1
2

• V (G2) = {x1, y1, y2, v}, E(G2) = {ex1,v, ev,y1 , ev,y2}, w(ex1,v) = 1, w(ev,y1) = w(ev,y2) =
1
2

where ex,y denotes the edge with starting point x and ending point y. G1 corresponds
to a “V-shaped” and G2 to a “Y-shaped” graph with a branching point located at the
arithmetic mean of the three points (cf. Figure 3.2). Then the costs of the two graphs can
be computed as

• Mα(G1) = 2d(1
2)α =

√
2d

• Mα(G2) =
√

3
3 d1α + 2

√
3

3 d(1
2)α =

√
3

3 d(1 +
√

2).

One can easily verify thatMα(G2) <Mα(G1) for the particular choice of α, although the
point v was chosen manually and G2 is not necessarily the minimizer ofMα.

In order to proceed to a more general formulation of the branched transport cost for a
general class of measures, let us replace the graph by a vector-valued measure indicating
the mass flux.
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y1 y2

x1

G1
d

y1 y2

x1

v

G2

√
3

3 d

Figure 3.2.: Two graphs representing a possible transport path between µ+ = δx1 ,
µ− = 1

2δy1 + 1
2δy2 .

Definition 3.2.4 (Mass flux associated with graphs). Let G be a weighted directed graph
with a set of vertices V (G) and a set of edges E(G) and let ê = e+−e−

|e+−e−| denote the direction
of the edge e ∈ E(G). Then the mass flux associated with the graph G is a vector-valued
measure

FG =
∑

e∈E(G)
w(e)(H1xe)ê.

FG is a mass flux between µ+ and µ−, if divFG = µ+ − µ− (in the distributional sense).

Here, all mass-preserving conditions from Definition 3.2.1 summarize to divFG = µ+ − µ−.
Using this representation of a mass flux, we can formulate the cost functional in the case
of µ+, µ− being general (non-discrete) finite Borel measures.

Definition 3.2.5 (Continuous mass flux between µ+ and µ−). Let µ+, µ− ∈M+(Ω) be
two non-negative finite Borel measures of equal mass. A vector measure F ∈M(Ω,Rn)
is a mass flux between µ+ and µ−, if there exist two sequences of discrete measures
(µk+), (µk−) ⊂M+(Ω) with

µk+ ⇀∗ µ+, µ
k
− ⇀

∗ µ−,

and a sequence of discrete mass fluxes FGk between µk+ and µk− with divFGk = µk+ − µk−
and

FGk ⇀∗ F .

One can easily verify that indeed, F satisfies the mass-preserving condition divF = µ+−µ−,
following by continuity with respect to the weak-* topology. As a consequence, the cost
functional of a mass flux between general measures is defined as follows, finally leading to
the definition of the general branched transport problem.

Definition 3.2.6 (Continuous branched transport cost). Let F be a mass flux between
two measures µ+, µ− ∈M+(Ω) with equal mass. Then the continuous branched transport
cost functional is defined as

Mα(F) = inf
{
lim inf
k→∞

Mα(Gk) : (µk+, µk−,FGk) ⇀∗ (µ+, µ−,F)
}
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with µk+, µk−, Gk as in Definition 3.2.5.

Definition 3.2.7 (Branched transport problem). Let µ+, µ− ∈M+(Ω) be two measures
with equal mass, and set

Mα,µ+,µ−(F) =
Mα(F) if divF = µ+ − µ−,
∞ otherwise.

Then the branched transport problem is defined as

inf
F
Mα,µ+,µ−(F).

It can be shown that a minimizer of the branched transport cost functional exists [68].
Furthermore, if a mass flux F has finite costs, it can be written as

F = F̃ ê(H1xΣ),

where Σ ⊂ Ω is a rectifiable one-dimensional set, F̃ : Σ→ [0,∞) a weight function encoding
the amount of mass flowing through Σ and ê : Σ→ Rn with |ê| = 1 the orientation of the
network (see for instance [68]). Then the continuous cost functional reads

Mα(F) =
∫

Σ
F̃ αdH1, (3.1)

which gives a natural continuous extension to the discrete cost functional as in Definition
3.2.2.

Remark 3.2.8. The term “branched transport” sometimes refers to a more general class of
problems in the literature. Instead of fixing the cost per transported mass as c(m) = mα,
the branched transport problem is often defined via any cost functional c, where c is a
continuous concave function with c(0) = 0, leading to a branching structure of the optimal
network. Note that the chosen formulation with a specific c(m) = mα is still practical,
since it is a common representative of the more general formulation and also covers some
well-known transportation problems as its limit cases. For α = 1, the problem becomes
linear in the transported mass and therefore equivalent to the Kantorovich problem as
in Definition 3.1.2 for a choice of the Kantorovich cost function c(x, y) = |x − y|. The
problem of minimizing (3.1) for α = 1 is also known as Beckmann’s problem [60]. On the
other hand, if α = 0, only the length of the network is penalized, with no regard for the
amount of transported mass. This problem is referred to as the Steiner tree problem.
Remark 3.2.9. The branched transport cost functional in general is highly non-convex.
Although a global minimum is known to exist, the minimizer does not even have to
be unique (as in case of transportation between two measures µ+ = 1

2(δx1 + δx2) and
µ− = 1

2(δy1 + δy2) for some specific choice of the parameter α, as shown in Section 4.2.1)
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and any approach to computationally obtain a solution might easily get stuck in local
minima. Additionally, the optimal network can involve quite complicated ramification
structures. Hence, the numerical treatment of this type of problems requires some careful
considerations, which will form the main focus of this work.

3.2.2. Lagrangian formulation
The branched transport problem has been derived from a different point of view in [42]
and in a slightly more general setting in [11]. Instead of describing the network via a graph
or a corresponding vector measure, this formulation considers trajectories of particles as
so-called irrigation patterns. The two corresponding cost functionals were shown to be
equivalent in [12]. Since we will further focus on the formulation by Xia given in the
previous section, we will only briefly describe the idea of the Lagrangian Ansatz at this
point.
In the Lagrangian formulation, the network is represented by a measurable function
indicating the position of each particle that has to be transported from a measure µ+ to
µ− at each time point. This function is called an irrigation pattern.

Definition 3.2.10 (Irrigation pattern). Let Γ be a separable uncountable metric space
together with the Borel σ-algebra B(Γ) and a positive finite Borel measure P ∈M+(Γ)
(containing no atoms) and let I = [0, 1]. Then, a measurable function χ : Γ × I → Rn

with χp = χ(p, ·) : I → Rn absolutely continuous on I for almost every p ∈ Γ is called an
irrigation pattern.

The space Γ represents the set of transported particles and χp can be seen as the trajectory
of the particle p as a function in time. The Borel measure P indicates the amount
of transported mass, which becomes clear with the following definition, leading to a
formulation of the branched transport cost functional with respect to irrigation patterns,
following the notation of [20].

Definition 3.2.11 (Branched transport cost (Lagrangian formulation)). Let χ be an
irrigation pattern. For any point x ∈ Rn we define

[x]χ := {q ∈ Γ : x ∈ χq(I)}

as the set of all particles flowing through x. The total mass of all those particles is denoted
by mχ(x) = P ([x]χ). Let α ∈ (0, 1). Then the Lagrangian formulation of the branched
transport cost functional is defined as

Mα(χ) =
∫

Γ×I
sχα(χp(t))|χ̇p(t)|dP (p)dt,

where sχα(x) = [mχ(x)]α−1 and sχα(x) =∞ if mχ(x) = 0.

The branched transport problem in its Lagrangian setting is then defined as follows.
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Definition 3.2.12 (Branched transport problem (Lagrangian formulation)). Let µ+, µ− ∈
M+(Ω) and χ be an irrigation pattern. Define i0, i1 : Γ → Rn as i0(p) = χp(0) and
i1(p) = χp(1). Then the Lagrangian formulation of the branched transport problem is
defined as

inf
{
Mα(χ) : i0#P = µ+, i1#P = µ−

}
.

The existence of a solution of this problem was shown in [41], while a proof of the
equivalence to the previously introduced Eulerian formulation as stated in the following
result was provided by [12].

Theorem 3.2.13 (Equivalence of the minimization problems). Set

Mα,µ+,µ−(χ) =
Mα(χ) if i0#P = µ+, i1#P = µ−,

∞ otherwise.
(3.2)

Then the Eulerian and Lagrangian minimization problems are equivalent in the sense that

min
F
Mα,µ+,µ−(F) = min

χ
Mα,µ+,µ−(χ).

Proof. The proof has been given in [12].

3.3. Urban planning
In this section, we want to provide more details about the urban planning problem, which
was first introduced in a rather general setting in [18]. Similar to the branched transport
case, the urban planning problem aims at finding an optimal path transporting mass from
µ+ to µ−. The major difference lies in the fact that the urban planning cost is divided into
two components: Particles are allowed to travel along a network as well as outside of the
network at higher costs. As a consequence, the minimizer has the common interpretation
as a public transportation network in a city area, where people can choose to travel on their
own or on the network to reach their destination. We will start with a general introduction
to the urban planning problem, which was first formulated via a Wasserstein distance
[18]. We will discuss this formulation in more detail in Section 3.3.1 and afterwards show
that the functional admits a flux-based (Section 3.3.2) and a pattern-based formulation
(Section 3.3.3) similar to the branched transport problem [20].

3.3.1. Wasserstein formulation
Let µ+, µ− ∈M+(Ω) be two non-negative finite Borel measures representing the population
density and the workplace density, respectively, and let the transport network be given
by a one-dimensional set Σ ⊂ Ω with finite length. Now each person can choose to travel
outside of the network Σ at a cost a > 0 per travelling distance, or on the network at
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a cost b > 0 with b < a, such that the latter is cheaper. If a person’s travelling path is
denoted by a curve γ : [0, 1]→ Rn, the costs of γ consist of the two parts

aH1(γ \ Σ) + bH1(γ ∩ Σ).

This definition induces a metric (associated with a given transport network Σ) describing
the minimal transportation costs to travel from a point x ∈ Ω to y ∈ Ω via

dΣ(x, y) = inf{aH1(γ \ Σ) + bH1(γ ∩ Σ) : γ ∈ Cx,y},

where
Cx,y =

{
γ : [0, 1]→ Rn : γ is Lipschitz, γ(0) = x, γ(1) = y

}
represents the set of admissible travelling paths. In order to reduce the number of
parameters, one typically chooses b = 1 and introduces the additional requirement a > 1.
The metric dΣ induces a Wasserstein distance between the measures µ+ and µ−,

WdΣ(µ+, µ−) = inf
µ∈Π(µ+,µ−)

∫
Rn×Rn

dΣ(x, y)dµ(x, y),

where the infimum is taken over all transport plans connecting µ+ and µ− given by

Π(µ+, µ−) =
{
µ ∈M+(Ω× Ω) : π0#µ = µ+, π1#µ = µ−

}
,

where πi : Ω× Ω→ Ω denotes the projection onto the i-th component. We now define the
urban planning problem in its formulation given by [18], which involves the Wasserstein
distance induced by the metric dΣ as well as an additional penalization of the total network
length, associated with some maintenance cost ε > 0.

Definition 3.3.1 (Urban planning cost (Wasserstein formulation)). Let Σ ⊂ Ω be a
one-dimensional subset, µ+, µ− ∈ M+(Ω) be two measures with equal mass. Then the
urban planning cost functional is defined as

Ea,ε(Σ) = WdΣ(µ+, µ−) + εH1(Σ).

Definition 3.3.2 (Urban planning problem (Wasserstein formulation)). Let µ+, µ− ∈
M+(Ω) be two measures with equal mass, the urban planning problem is defined as

inf
{
Ea,ε(Σ) : Σ admissible network

}
.

Σ is called admissible network, if Σ ⊂ Ω is a closed one-dimensional subset with finite
length.

Remark 3.3.3. Definition 3.3.2 does not require an admissible network Σ to be connected.
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Two proofs of existence of a minimizer have been stated in [22], where only one requires
connectedness of the network.

Similar to the case of branched transport, the urban planning cost can be reformulated
in an Eulerian and a Lagrangian fashion equivalent to the previous definition. In order
to obtain a unified setting for this work, we will again focus on the flux-based Eulerian
framework in Section 3.3.2, only briefly describing the idea of the pattern-based approach
(see Section 3.3.3).

3.3.2. Eulerian formulation
As for the branched transport model, we start with µ+, µ− being discrete measures and
formulate the discrete urban planning problem with respect to graphs, following the course
of [20]. Let G be a discrete mass flux between µ+ and µ− (cf. Definition 3.2.1) and
Σ ⊂ G a subgraph. Since travelling outside of the network Σ is allowed, the discrete urban
planning cost functional is defined with respect to both G and Σ, with G \ Σ representing
the travelling path outside of the network.

Definition 3.3.4 (Discrete urban planning cost (1)). Given a discrete mass flux G between
two discrete measures µ+, µ− and a subgraph Σ ⊂ G, the discrete urban planning cost for
given parameters a > 1 and ε > 0 is given by

Ea,ε(G,Σ) =
∑

e∈E(G)\E(Σ)
aw(e)l(e) +

∑
e∈E(Σ)

(w(e) + ε)l(e),

where l(e) denotes the length (associated with the one-dimensional Hausdorff measure
H1xe) of the edge e.

One can easily express the above cost functional with respect to the discrete mass flux G
only. Since a is associated with the cost for travelling outside of the network (on G \ Σ)
and b = 1 on Σ, any optimal pair (G,Σ) must satisfy

aw(e) ≤ w(e) + ε if e ∈ E(G) \ E(Σ),
aw(e) ≥ w(e) + ε if e ∈ E(Σ),

since otherwise one can find another pair which has lower costs than (G,Σ). Consequently,
the cost for an edge e ∈ E(G) summarizes to ca,ε(w(e)) = min{aw(e), w(e) + ε}, leading
to a reduced definition of the discrete urban planning cost.

Definition 3.3.5 (Discrete urban planning cost (2)). For G, a, ε as before, the discrete
urban planning cost with respect to G is given by

Ea,ε(G) =
∑

e∈E(G)
min{aw(e), w(e) + ε}l(e).
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Note that for a finite optimal mass flux G, one can recover the edges belonging to the
public transportation network Σ as the set of edges whose cost is associated with w(e) + ε,
that is

E(Σ) =
{
e ∈ E(G) : aw(e) > w(e) + ε

}
.

Furthermore, the function ca,ε is subadditive in the transported mass w(e), similar to the
function c(m) = mα in the branched transport case. Thus the urban planning model
promotes branching structures in the optimal network as well, though in a slightly weaker
form.

Example 3.3.6. The relation between the parameters a and ε determines the branching
structure as well as the range of the corresponding network. Let Ω ⊂ R2 and x1, x2, y1, y2 ∈
Ω be four points defined as the vertices of a rectangle with side lengths 1 and d, i.e.

x1 = (0, d), x2 = (1, d), y1 = (0, 0), y2 = (1, 0),

and let µ+ = 1
2δx1 + 1

2δx2 and µ− = 1
2δy1 + 1

2δy2 . We fix a = 2 and compare the
optimal network structure for different values of ε and d. For every edge e ∈ E(G) of a
minimizing graph G we have w(e) ∈ {1

2 , 1}. Hence, G can either transport each particle
independently (case A) or gather all the mass by admitting two branching points (case B).
The transportation network Σ can adopt the following configurations, depending on the
general structure of the minimizer G:

• Case A: Σ = ∅ (case A1) or Σ = G (case A2),

• Case B: Σ ( G (case B1) or Σ = G (case B2).

Figure 3.3 shows the possible network structures depending on the choice of ε and d for
fixed a = 2.

In order to obtain a definition for general (non-discrete) measures µ+, µ−, we follow the
same pathway as in the branched transport case, defining a mass flux as a vector-valued
measure F associated with a graph G (cf. Definition 3.2.4) and approximating a finite
Borel measure by a sequence of discrete measures. For the sake of completeness, the
corresponding definitions are given in the following.

Definition 3.3.7 (Continuous urban planning cost). Let F be a mass flux between two
finite Borel measures µ+, µ− ∈ M+(Ω) with equal mass. Then the continuous urban
planning cost functional is defined as

Ea,ε(F) = inf
{
lim inf
k→∞

Ea,ε(Gk) : (µk+, µk−,FGk) ⇀∗ (µ+, µ−,F)
}
.

with µk+, µk−, Gk,FGk as in Definition 3.2.5.
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Figure 3.3.: Optimal network structures for the urban planning problem defined in
Example 3.3.6 for a = 2. Left: Graphical illustration of the optimal network structures
depending on the choice of ε (x-axis) and d (y-axis). Right: Structure of the optimal
graph G for d = 3 and ε = 0.8 (a1), ε = 0.1 (a2), ε = 0.55 (b1), ε = 0.4 (b2). The network
Σ is displayed in red.

Definition 3.3.8 (Urban planning problem). Let µ+, µ− ∈M+(Ω) be two measures with
equal mass, and set

Ea,ε,µ+,µ−(F) =
Ea,ε(F) if divF = µ+ − µ−,
∞ otherwise.

Then the urban planning problem is defined as

inf
F
Ea,ε,µ+,µ−(F).

Existence of a solution of the urban planning problem has been shown in [20]. As in case
of branched transport, it is known that an optimal mass flux decomposes to

F = F ê(H1xΣ) + F⊥

for a weight function F̃ : Σ → [0,∞), an orientation ê : Σ → Rn and a H1-diffuse part
F⊥, which consists of a Lebesgue-continuous and a Cantor part. Then the urban planning
cost functional can be written as

Ea,ε(F) =
∫

Σ
min{aF̃ , F̃ + ε}dH1 + a|F⊥|(Ω).

Remark 3.3.9. Since a part of F might correspond to a mass flux outside of a transportation
network, a minimizer F can be locally continuous with respect to the Lebesgue measure
Ln and thus does not necessarily coincide with a finite graph. As an example, consider
µ+ = L1x[0, 1]× {0} and µ− = L1x[0, 1]× {1} in a two-dimensional space. Then, for a
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suitable choice of the parameters a and ε such that 1 + ε < a (in other words, transport
of mass 1 is cheaper on the network instead of outside), the minimizer is expected to be
locally Lebesgue-continuous near the source and sink terms and contain a network of finite
length in between (Figure 3.4, cf. [20]).

µ+

µ−

Σ

Figure 3.4.: Mass flux between two Lebesgue-continuous measures µ+ and µ−.

3.3.3. Lagrangian formulation
We want to briefly introduce the urban planning problem in its pattern-based notation. We
make use of the same principles as in the corresponding branched transport formulation
with respect to an irrigation pattern χ : Γ× I → Rn (see Definition 3.2.10).

Definition 3.3.10 (Urban planning cost (Lagrangian formulation)). Let χ be an irrigation
pattern. The Lagrangian formulation of the urban planning cost functional is defined as

Ea,ε(χ) =
∫

Γ×I
rχa,ε(χp(t))|χ̇p(t)|dP (p)dt,

where

rχa,ε(x) =
min{1 + ε

mχ(x) , a} if mχ(x) > 0,
a if mχ(x) = 0.

Definition 3.3.11 (Urban planning problem (Lagrangian formulation)). Let µ+, µ− ∈
M+(Ω) and χ be an irrigation pattern. Then the Lagrangian formulation of the urban
planning problem is defined as

inf
{
Ea,ε(χ) : i0#P = µ+, i1#P = µ−

}
.

For completeness, we state the equivalence between Wasserstein, the flux-based and the
pattern-based formulations in the following theorem.
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Theorem 3.3.12 (Equivalence of the minimization problems). Set

Ea,ε,µ+,µ−(Σ) =
Ea,ε(Σ) if Σ admissible network,
∞ otherwise,

Ea,ε,µ+,µ−(χ) =
Ea,ε(χ) if i0#P = µ+, i1#P = µ−,

∞ otherwise.

Then the Wasserstein, the Eulerian and the Lagrangian minimization problems are equiv-
alent in the sense that for measures µ+, µ− of equal mass and with bounded support we
have

min
Σ
Ea,ε,µ+,µ−(Σ) = min

F
Ea,ε,µ+,µ−(F) = min

χ
Ea,ε,µ+,µ−(χ).

Proof. A proof can be found in [20].

3.3.4. Generalized urban planning
The urban planning problem is commonly associated with a cost function c : [0,∞)→ [0,∞)
for the amount of transported mass given by c(w) = min{aw,w+ ε} for parameters a > 1,
ε > 0. However, one can extend this cost functional in a straightforward way to a more
general class of functions c(w) = min{a0w, a1w+ b1, . . . , aNw+ bN} for values a0, ai, bi > 0
for i = 1, . . . , N . This covers the urban planning problem as a special case and moreover
entails another subdivision of the optimal network Σ into parts Σ1, . . . ,ΣN corresponding
to the single terms of the cost function c. Since we will study numerical methods for
this generalized urban planning problem within this work, we want to state the discrete
and continuous generalized urban planning functional (in its Eulerian formulation) at this
point.

Definition 3.3.13 (Discrete generalized urban planning cost). For a discrete mass flux G
between two discrete measures µ+ and µ− and parameters a0, ai, bi > 0 for i = 1, . . . , N ,
the discrete generalized urban planning cost is given by

Ea,bg (G) =
∑

e∈E(G)
min{a0w(e), a1w(e) + b1, . . . , aNw(e) + bN}l(e).

Definition 3.3.14 (Continuous generalized urban planning cost). Let F be a mass flux
between two finite Borel measures µ+, µ− ∈M+(Ω) with equal mass. Then the continuous
generalized urban planning cost functional is defined as

Ea,bg (F) = inf
{
lim inf
k→∞

Ea,bg (Gk) : (µk+, µk−,FGk) ⇀∗ (µ+, µ−,F)
}

with µk+, µk−, Gk,FGk as in Definition 3.2.5.
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As before, we obtain with F = F̃ ê(H1xΣ) + F⊥

Ea,εg (F) =
∫

Σ
c(F̃ )dH1 + c′(0)|F⊥|(Ω),

where c′(0) = a0. For completeness, the generalized urban planning problem is defined in
the following.
Definition 3.3.15 (Generalized urban planning problem). Let µ+, µ− ∈M+(Ω) be two
measures with equal mass, and set

Ea,b,µ+,µ−
g (F) =

Ea,bg (F) if divF = µ+ − µ−,
∞ otherwise.

Then the generalized urban planning problem is defined as

inf
F
Ea,b,µ+,µ−
g (F).

3.4. Existence and properties of minimizers
The branched transport and urban planning model are common representatives of a wide
class of problems involving a cost functional for the amount of transported mass of the
form τ : [0,∞)→ [0,∞) such that τ(0) = 0, τ is non-decreasing, subadditive and lower
semi-continuous. Given these requirements, in [21] the authors proved that for µ+, µ−
with compact support, either a minimizer of the corresponding problem exists or the cost
functional is infinite everywhere ([21], Theorem 2.10). In addition, every discrete mass
flux has to satisfy some interesting properties:

• Acyclicity of discrete mass fluxes: For any discrete mass flux G there exists a
discrete mass flux Ḡ which contains no cycles and has lower or equal costs ([21],
Lemma 2.5).

• Tree structure of discrete mass fluxes: For any discrete mass flux G, there
exists a discrete mass flux Ḡ which admits a tree structure and has lower or equal
costs ([21], Lemma 2.6).

• Boundedness of transported mass: Any acyclic discrete mass flux G satisfies
w(e) ≤ µ+(Ω) = µ−(Ω) for all edges e ∈ E(G) ([21], Lemma 2.9).

Finally, although existence of a minimizing transportation network is guaranteed, unique-
ness cannot be achieved in the general setting due to a lack of convexity of the minimization
problem. To the contrary, it is straightforward to construct examples where a problem
admits several minimizers with a completely different topology but with exactly the same
costs. Among others, this aspect causes the numerical treatment of optimal network
problems to become a challenging task.
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3.5. Numerical approaches
The main focus of this thesis will be a detailed study of numerical approaches suitable
for the branched transport and urban planning problem introduced in Sections 3.2 and
3.3. Since both models are originally motivated by several applications, it is obvious that
one is interested in solving the problems in some numerical framework in order to obtain
transport paths for specific examples. Therefore, the models have not only been studied
theoretically, but there also exist some considerations about how to computationally
address the problem of finding an optimal path.
Every numerical treatment needs to face some technical difficulties arising from the non-
convexity of the cost functional and the general structure of the problem in its different
formulations. The first fundamental question one has to ask in this context is which
formulation is suited best for a numerical treatment and how to represent and discretize
the problem variables. For instance, taking in account the flux-based formulation, the
flux variable could be represented explicitly as a discrete graph in terms of vertices and
edges. While in case of small numbers of sources and sinks, the possible topologies of an
optimal network for different parameters can be easily constructed by hand, for larger
numbers this structure is not clear a priori and neither is the exact number of vertices.
Hence, it is hard to verify if an obtained graph yields the global optimum or is only an
approximation of unknown precision. Generally, the non-convexity of the cost function
makes the application of several standard numerical methods challenging, which naturally
brings up the question if there exists a suitable convexification.
In this section, we want to outline some existing numerical approaches to the branched
transport and the Steiner tree problem. Note that to the best of our knowledge, we were
the first to address the urban planning and generalized urban planning problem numerically
in [19] and [33]. These approaches will be presented in Chapter 4 and Chapter 5. There
exists a wide variety of numerical approaches to the branched transport problem and the
Steiner tree problem in particular. Since a detailed presentation of each of these would be
beyond the scope of this thesis, in the following we confine ourselves to a brief overview of
the different strategies.

3.5.1. Branching point optimization
In case of discrete measures µ+, µ− as a given set of n points in total, the optimal network
Σ simply consists of a set of vertices and edges. Thus, a straightforward minimization
approach is the optimization of the vertex positions, provided that the topology of the
minimizer and thus the number of vertices is known in advance. Since for very small n,
the number of possible topologies is reasonable, this approach often leads to the exact
global minimum by computing the optimal vertices for each topology independently and
choosing the one with the minimal costs afterwards. However, for large n this strategy
would involve a large number of non-linear equations for the vertex positions and the
number of possible topologies becomes vast.
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In the context of presenting the branched transport model in its flux-based formulation,
the authors introduced an initial approach for numerically finding an optimal path between
two measures [68],[70]. This local optimization technique was extended to a minimization
algorithm in [69], which in some numerical examples seem to yield almost optimal networks
in case of transport between a single source point and a fixed number of N sinks. The
method makes use of the fact that the optimal network can be decomposed into several
smaller transport network problems, which can be solved directly by a branching point
optimization as described above. It was shown in [69],[70] that, although not necessarily
leading to a global minimizer ofMα, this optimization algorithm provides an approximately
optimal transport path which comprises a natural structure and is applicable even in case
of a large number of sinks (N ≈ 400). However, the algorithm does not necessarily provide
the global optimal network, hence it cannot be shown that the method converges to a
minimizer of the cost functional. Two heuristic approaches based on stochastic optimization
techniques on graphs were presented in [44] and [53]. As before, these method are capable
of providing almost optimal network structures, but cannot guarantee global optimality
either.
The limit case of the Steiner tree problem in two space dimensions was treated more
extensively in the literature. Due to the independence of the cost functional of the
transported mass, there exist very efficient algorithms providing a globally optimal Steiner
tree (see for instance the GeoSteiner method [38] or Melzak’s full Steiner tree algorithm
[46]). These methods are often restricted to the planar case, for a dimension greater than
two, there exist fewer approaches which are less efficient. [31] provides an overview of
some methods concerning the Steiner tree problem in n dimensions, where the main listed
approaches trace back to [35], [61], [40], [34].
Since a more general cost functional such as in the branched transport case is concave in
the transported mass, these methods commonly cannot be extended easily.

3.5.2. Phase field approximations

A widely used approach to tackle the branched transport problem numerically was inspired
by elliptic approximations of free discontinuity problems. These problems typically consist
in finding an optimal function (in the sense of some energy functional) which is smooth
outside of a discontinuity set Σ, which is unknown as well. Common examples are the
Modica–Mortola approximation of the perimeter of a set or the Ambrosio–Tortorelli model
as an approximation of the Mumford–Shah functional (see Section 2.4.1). These methods
minimize with respect to a smoothed version of the desired output, where the grade of
smoothness is governed by a parameter ε, such that the relaxed functional Γ-converges to
the original formulation as ε→ 0.
A similar approach can be applied to the branched transport problem as shown in [51] and
[49]. In the following, we briefly repeat the main ideas presented by the authors. Recalling
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the explicit formulation of the continuous branched transport cost functional, we define

Mα
0 (F) =


∫

Σ F̃
αdH1 if F = F̃ ê(H1xΣ) and F has finite divergence,

∞ otherwise

as in equation (3.1). The vector measure F is concentrated on a one-dimensional rectifiable
set Σ ⊂ Rn. Let n = 2 and Ω ⊂ R2 be an open set containing the support of µ+ and µ−
such that Ω is compact. The main results of [51] are given by the following two theorems.

Theorem 3.5.1 (Γ-convergence for branched transport for α ∈ (1
2 , 1)). Let α ∈ (1

2 , 1) and
n = 2. Define a functionalMα

ε : L1(Ω)→ [0,∞] as

Mα
ε (u) =


∫

Ω ε
α−1|u(x)|β + εα+1|∇u(x)|2dx if u ∈ W 1,2(Ω),

∞ otherwise,

where β = 4α−2
α+1 . Then we have

Mα
ε

Γ→ cMα
0 for ε→ 0,

with c = α−1(4c0α
1−α )1−α, c0 =

∫ 1
0
√
tβ − tdt.

Theorem 3.5.2 (Γ-convergence for branched transport for α ∈ (0, 1
2)). Let α ∈ (0, 1

2) and
n = 2. Define a functionalMα,B

ε : L1(Ω)→ [0,∞] as

Mα,B
ε (u) =


∫

Ω ε
α−1B(|u(x)|) + εα+1|∇u(x)|2dx if u ∈ W 1,2

0 (Ω),
∞ otherwise,

where β = 2α−1
α+1 and a continuous function B : [0,∞)→ [0,∞) with B(0) = 0, B(x) > 0

for all x > 0, lim
t→∞

B(t)
tβ

= 1 and B′(0) > 0. Then we have

Mα,B
ε

Γ→ cMα
0 for ε→ 0,

with c = α−1(4c0α
1−α )1−α, c0 =

∫ 1
0
√
tβ − tdt.

Proof. The proofs of Theorem 3.5.1 and 3.5.2 can be found in [51].

Remark 3.5.3. The difference between Theorem 3.5.1 and 3.5.2 comes from the fact that
the construction and proof of the first result only work for α > 1− 1

n
. If α < 1

2 , the integral
involves the term |u(x)|β with β < 0, which causes the minimization of the functional to
become more challenging. Some additional work is required in order to prove the second
theorem, where α is allowed to be smaller than 1

2 .
Remark 3.5.4. Theorems 3.5.1 and 3.5.2 do not include the constraint divF = µ+ − µ−,
sinceMα

0 only enforces F to have finite divergence. The extension was provided by [49]
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via introducing a relaxed constraint version, where the measure µ+ − µ− is smoothed by
convolution with a kernel ρε(x) = ε−2γρ(ε−γx) for some ρ ∈ C1

0 (Ω,R+) and
∫

Ω ρ(x)dx = 1
and γ = α+1

3 . Hence, setting fε = ρε ∗ (µ+ − µ−), the author shows that

Mα
ε + ιdiv u=fε

Γ→ cMα
0 + ιdivF=µ+−µ− for ε→ 0

for some constant c.

Remark 3.5.5. The intuition behind Theorem 3.5.1 becomes clearer by considering the
idea of the Modica–Mortola approximations [47]: Let us regard the functional

Fε(u) =
∫

Ω

1
ε
W (u(x)) + ε|∇u(x)|2dx

for u ∈ W 1,2(Ω) and W being a double well potential with W (0) = W (1) = 0. By
minimizing this functional, the first term will enforce u to take either values in {0, 1},
the so-called two phases, while the second term will prefer smooth functions. Together
with some constraint forcing u not to be a constant function, the minimizer will most
likely admit a phase transition from one phase to the other, where the smoothness of this
transition depends on the parameter ε. If ε tends to zero, the transition will become sharper
until it converges to a piecewise constant function (cf. Section 2.4.1). Now returning to
our functional defined in Theorem 3.5.1, the first term |u(x)|β plays the role of the double
well potential with wells at 0 and ∞ (from α < 1 we obtain β < 1, hence the first term is
a concave function). Thus, |u| wants to be either equal to 0 or as large as possible, being
bounded by the finite divergence constraint.

Similar to the case of Γ-convergence for the Mumford–Shah functional, this result can be
exploited for numerical purposes. Instead of minimizing the original branched transport
energy functional, one can solve the relaxed functional with a small parameter ε. Roughly
spoken, the minimizer now has the structure of a smooth grey value image and is not
restricted to a one-dimensional set Σ, but lives on the whole image domain Ω. As
a consequence, the functional can be treated with standard numerical differentiation
approaches such as finite differences in combination with some minimization algorithm. In
[51], the authors also observe that for large ε, the functional is even close to being convex,
hence starting with a large value and then slowly decreasing ε, in each iteration starting
with the solution from the previous step, reduces the chances of getting stuck in local
minima. For small ε, the solution u should then yield a good approximation of the vector
measure F .
The phase field approximation presented by [51] and [49] is just one example for a bunch
of related problems, such as [52],[13],[14]. An example of special interest is a comparable
numerical treatment of the Steiner tree problem (which acts as a limit case of the branched
transport problem for α→ 0) presented in [24]. On the basis of [14], the authors present a
slightly different phase field approach, where the phase field is introduced as an additional
variable coexisting with a relaxed version of the vector-valued measure F . More precisely,
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the authors define a functional Sα :M(Ω,R2)× L1(Ω)→ [0,∞] as

Sα(σ, ϕ) =

∫

Σ(1 + αF̃ )dH1 if ϕ ≡ 1, σ = F̃ ê(H1xΣ), div σ = µ+ − µ−,
∞ otherwise

and state their main Γ-convergence result as follows:

Theorem 3.5.6 (Γ-convergence for the Steiner tree problem). Define a functional Fε :
M(Ω,R2)× L1(Ω)→ [0,∞] as

Fε(σ, ϕ) =

∫

Ω
1
2εϕ

2|σ|2 + ε
2 |∇ϕ|

2 + 1
2ε(1− ϕ)2dx if (σ, ϕ) ∈ Vε(Ω)×Wε(Ω),

∞ otherwise

with

Vε(Ω) = {σ ∈ L2(Ω,R2) : div σ = (µ+ − µ−) ∗ ρε},
Wε(Ω) = {ϕ ∈ W 1,2(Ω) : η ≤ ϕ ≤ 1 in Ω, ϕ ≡ 1 on ∂Ω}.

Then we have
Fε

Γ→ Sα on M(Ω,R2)× L1(Ω),
in the sense of the weak-* topology onM(Ω,R2) and the classical strong topology on L1(Ω).

Proof. The proof can be found in [24].

Remark 3.5.7. Note that the cost functional Sα is not exactly the Steiner tree problem,
but is linear in the transported mass (instead of constant). Numerical simulations in [24]
are obtained for a small parameter α, such that the results approximate the Steiner case
quite well.

Remark 3.5.8. The approximating functional Fε seems even more intuitive at this point
having a closer look at the single terms. The second and third part of the functional
correspond to a Modica–Mortola-type component, while the first part acts as a linker
between phase field ϕ and vector field σ. For σ = 0 (or very small values of σ), ϕ is
drawn to 1, since the first part does not play a role and the second and third part prefer
constant functions ϕ ≡ 1. For σ larger, hence at those points where the (relaxed) transport
network has support, the first part draws ϕ to 0. The second part provides for a smooth
transition between the values 0 and 1 of ϕ, while the grade of smoothness is governed by
the parameter ε: Roughly spoken, for smaller ε, the gradient term becomes less important
and thus the transition between the two phases becomes sharper.

We use the approach presented by [24] to develop a phase field approximation of the
generalized urban planning model, which covers a larger class of problems including the
Steiner tree case. The method will be described in more details in Chapter 5.
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3.5.3. Time-dependent PDE-based methods
In [28], the authors propose a PDE-based formulation of the classical Kantorovich problem
as in Definition 3.1.2 with c being the Euclidean distance. In some recent works [29],
[30], this idea has been seized in order to define a time-dependent system of equations
whose long-time solution is conjectured to yield a solution to the Kantorovich problem.
The resulting partial differential equations have been further extended by a branching
parameter α > 0 in [9]. Therein, the authors introduce the system

−∇ · (ξ(t, x)∇u(t, x)) = µ+(x)− µ−(x)
∂tξ(t, x) = (ξ(t, x)|∇u(t, x)|)α − ξ(t, x)
ξ(0, x) = µ+(x) (3.3)

equipped with zero Neumann boundary conditions. Here, ξ denotes the density of trans-
ported mass and u corresponds to the transport potential, i.e. the optimal u for α = 1
maximizes the Kantorovich dual problem [66], [28]. The system of equations (3.3) is then
solved in two space dimensions via a finite element triangulation combined with an explicit
Euler discretization in time.
By presenting some numerical simulation results, the authors experimentally show that
for α > 1, the obtained transport density admits a branching structure and thus resembles
a solution to the branched transport problem.

3.5.4. Discussion
Although there exists a variety of promising numerical approaches to the branched transport
problem and some extensions, the complexity of the methods shows that the problems
do not admit a straightforward computational treatment. One reason certainly is the
non-convexity of the cost functional (in the general case), which causes many common
numerical methods to get stuck in local minima easily. Another reason is the rising
complexity of the underlying network topology as the number of sources and sinks (in
case of atomic measures) increases. This can be seen exemplarily by studying the method
proposed by [69]. Although the algorithm provides a high quality result and skilfully
exploits several facts about the network structure, it could not be shown that it converges
to a global minimizer. In addition, the method does not work in case of a source consisting
of more than one point. As shown by [71], the exact construction method for an optimal
network can be extended to this case, but requires some knowledge about the possible
network topologies. As a consequence, such methods easily become computationally
inefficient.
In order to avoid the incorporation of prior knowledge about the network structure, phase
field approximation methods are a promising tool. The constructed energy functionals
usually allow a simple numerical treatment and are even close to being convex (as shown
by [51], for instance). However, the method still bears some disadvantages, such as a
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possible strong dependence on the choice of the initial values and the parameters. As
shown in [6], the Γ-convergence of a finite difference discretization of the energy functional
depends strongly on the choice of the discretization step size.
Since the existing methods, although admitting promising results, do not cover the whole
class of problems involving a concave cost functional in a satisfactory way, this work
is devoted to the investigation of some novel aspects about the numerical treatment of
transportation networks. We introduce a completely new approach making use of the
principles of functional lifting in order to obtain a novel numerical framework in Chapter
4. Additionally, based on past works, we extend the phase field approximation approach
to the case of a generalized urban planning problem, both methods also admitting one of
the first numerical treatments of the urban planning problem to the best of our knowledge
(see Chapter 5).
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4
Numerical optimization of

transportation networks via
functional lifting

Although the branched transport and urban planning energy functionals have been ex-
tensively studied and analysed, it still remains a challenging task to compute optimal
networks numerically. After reviewing some properties such as the non-convexity of the
energy (see Chapter 3) as well as some existing numerical approaches (cf. Section 3.5), we
have learned that one still lacks a simple mathematical model allowing to apply iterative
methods leading to a global minimizer.
In this chapter, we present an approach that ascribes the task of finding an optimal
transportation network to a mathematical imaging problem, which was first introduced in
[19]. The method reformulates the energy functionals in terms of functions of bounded
variation, which opens the door for some well-studied mathematical imaging techniques.
Precisely, the new energy admits a convex reformulation via so-called functional lifting
(see Section 2.4.2), where the original model is lifted to a higher-dimensional space. In
the course of this chapter, we will derive and analyse the resulting imaging problem in
respect of its numerical implementation. We review some straightforward discretization
methods and suggest a novel general treatment of problems arising from functional lifting
via special adaptive finite elements.
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4.1. Model
First, we want to provide a detailed description of the functional lifting approach as
introduced in Section 2.4.2 applied to the branched transport and urban planning model
and the resulting convex minimization problems.

4.1.1. Reformulation as image inpainting problems in two dimensions
Let us recall the definitions of the branched transport and urban planning energy derived
in Chapter 3 with respect to the continuous mass flux F ∈M (Rn,Rn),

Mα,µ+,µ−(F) =

∫

Σ F̃
αdH1 + ι0(|F⊥|) if F is a mass flux between µ+ and µ−,

∞ otherwise,

Ea,ε,µ+,µ−(F) =

∫

Σ min{aF̃ , F̃ + ε}dH1 + a|F⊥|(Ω) if F is a mass flux between µ+ and µ−,
∞ otherwise,

where F = F̃ ê (H1xΣ) + F⊥ with a real multiplicity F̃ : Σ → (0,∞), an orientation
ê : Σ→ Rn, |ê| = 1, a diffuse part F⊥ and

ι0 (x) =
0 if x = 0,
∞ otherwise.

Following the course of [19], Chapter 3, we show that in two dimensions the energy admits
a reformulation as a Mumford–Shah-type imaging problem and hence the task of finding
an optimal network can be regarded as an image inpainting problem.
In the following, we set n = 2 and Ω ⊂ R2, V ⊂ R2 be an open bounded convex domain
with Ω ⊂⊂ V . For simplicity, we shall assume that Ω = (0, l)× (0, 1), V = B1 (Ω) and

sptµ+ ⊂ ∂Ω, sptµ− ⊂ ∂Ω.

Note that a generalization of the image domain as well as of the restriction of initial and
final measure to the region boundaries is possible (see examples in Section 4.3.4), however,
for the clearer understanding we restrict ourselves to the simpler case of initial and final
measure on the domain boundaries. Let u ∈ BV (V ) be a grey value image. As seen in
Section 2.2, the derivative of u can be decomposed into a Lebesgue-continuous part, a
discontinuous jump part on a set Su and a Cantor part Dcu

Du = ∇uL2xV + [u]νH1xSu +Dcu,

where [u] = u+ − u− denotes the height of the jump across Su. Via this gradient
decomposition, we can define a mass flux Fu associated to u as the rotated gradient of the
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µ+

µ−
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u− u+

µ+
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Fu

Figure 4.1.: Comparison between a grey value image u (left) and the mass flux Fu
associated with u (right) on a domain Ω. The discontinuity set Su can be regarded as the
transportation network, the jump in function value across Su encodes the amount of mass
flowing through the corresponding network segment.

image, which then points to the direction of the network orientation (cf. [19], Definition
3.1.1):

Definition 4.1.1 (Mass flux associated with an image). For an image u ∈ BV (V ), we
define the mass flux associated with u Fu ∈M(V,R2) as

Fu = Du⊥ = ∇u⊥L2xV + [u]ν⊥H1xSu +Dcu⊥,

where superscript ⊥ denotes the counterclockwise rotation by π
2 .

The optimal network associated with the mass flux Fu can be interpreted as the discon-
tinuity set Su and the height of the jump across Su in some point x ∈ V indicates the
amount of mass flowing through x (cf. Figure 4.1). Note that, as we will see shortly,
in case of branched transport, the image has to be piecewise constant, while in urban
planning, the diffuse component of the cost functional admits regions with a non-zero
Lebesgue-continuous gradient ∇u.

Remark 4.1.2. For Fu representing a mass flux on the domain V one requires that no
mass is created or lost within the transport region. Indeed, Fu is divergence-free in the
distributional sense: Let ϕ ∈ C∞0 (V ) be a smooth test function, then we have (cf. [19])∫

V
ϕ d(divFu) = −

∫
V
∇ϕ · dFu =

∫
V
∇ϕ⊥ · dDu = −

∫
V

div(∇ϕ⊥)u dx = 0.
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Similar to the definition of the set of admissible fluxes

AF (µ+, µ−) = {F ∈ M
(
V,R2

)
: sptF ⊂ Ω, divF = µ+ − µ−},

we want to define the set of admissible images. To this end, we need to reformulate the
divergence constraint for the mass flux in the sense of images. As mentioned before, we
restrict ourselves to µ+, µ− with support on ∂Ω, which without loss of generality can be
assumed to lie in the right halfplane of R2. Then we can define a parameterization of ∂Ω
by

γ : [0,H1 (∂Ω))→ ∂Ω
with γ(0) = 0 and ∂Ωt := γ ([0, t)). Furthermore, we define the orthogonal projection of a
point x ∈ R2 onto ∂Ω via

π∂Ω : R2 → ∂Ω, x 7→ argmin{|x− y| : y ∈ ∂Ω}.

Note that the closest point might not be unique since Ω is not strictly convex in many
applications; in this case, we pick the lexicographically first point (in the sense of the
parameterization γ). Even for convex regions Ω, it happens that for x ∈ Ω, π∂Ω(x) is not
unique. Note that for the optimization problem, only the definition of u(µ+, µ−) outside
of Ω is important, since Ω takes the role of the inpainting region.

Definition 4.1.3 (Admissible image). Given finite Borel measures µ+, µ−, we define the
function

u (µ+, µ−) : R2 → R, x 7→ (µ+ − µ−)
(
∂Ωγ−1(π∂Ω(x))

)
.

Then the set of admissible images is given as

Au (µ+, µ−) := {u ∈ BV (V ) : u = u (µ+, µ−) on V \ Ω}.

Before we can translate the branched transport and urban planning cost functional to
the image setting, we have to make sure that the relation between images and fluxes is
one-to-one, which implicates that every admissible mass flux can indeed be identified with
a unique grey value image and vice versa. Hence we state the following result [19].

Theorem 4.1.4 (Bijection between admissible fluxes and images). The mapping u 7→
FuxΩ from Au (µ+, µ−) to AF (µ+, µ−) is one-to-one.

Proof. The proof can be found in [19], Lemma 3.1.4.

Remark 4.1.5. The reason why this method only works in two spatial dimensions is that a
mass flux on a higher-dimensional domain does not admit an interpretation as an image
gradient [19]. In other words, the gradient of a higher-dimensional grey value image is not
a one-dimensional set, as required for the interpretation as a mass flux.
Now we have the tools for reformulating the energy functionalsMα and Ea,ε with respect
to u within the following definition.
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Figure 4.2.: Sketch of u (µ+, µ−) for µ+ = 1
2(δx1 + δx2) and µ− = 1

3(δy1 + δy2 + δy3).
u (µ+, µ−) is a grey value image taking values in {0, 1

3 ,
1
2 ,

2
3 , 1}. Note that u (µ+, µ−) is also

defined in the interior of Ω, but the set of admissible images Au(µ+, µ−) only requires a
definition of u (µ+, µ−) on V \ Ω.

Definition 4.1.6 (Image cost functionals). We define the functionals M̃α, Ẽa,ε : BV (Ω)→
[0,∞] as

M̃α(u) =
∫
Su∩Ω

[u]αdH1(x) + ι0
((
∇uL2 +Dcu

)
xΩ

)
,

Ẽa,ε(u) = a
∫

Ω\Su
|Du|dx+

∫
Su∩Ω

min{a[u], [u] + ε}dH1 (x) ,

where

ι0 (µ) =
0 if µ = 0,
∞ otherwise.

Furthermore, for two measures µ+, µ− ∈ M+(Ω) of equal mass with support on ∂Ω we
define M̃α,µ+,µ− , Ẽa,ε,µ+,µ− : BV (V )→ [0,∞] as

M̃α,µ+,µ−(u) =
M̃α(u) if u ∈ Au (µ+, µ−) ,
∞ otherwise,

Ẽa,ε,µ+,µ−(u) =
Ẽa,ε(u) if u ∈ Au (µ+, µ−) ,
∞ otherwise.

The following results expresses the relation between the flux-related and the image-related
cost functionals.
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Theorem 4.1.7 (Lower bound on transport energy). For any flux F ∈ AF (µ+, µ−) and
the corresponding image uF ∈ Au (µ+, µ−), we have

Mα,µ+,µ−(F) ≥ M̃α,µ+,µ−(uF), Ea,ε,µ+,µ−(F) ≥ Ẽa,ε,µ+,µ−(uF).

Proof. The proof can be found in [19]. It follows from a few preliminary results (also
shown in [19], namely the bijection between fluxes and images, the sequentially weak-*
lower semi-continuity of M̃α and Ẽa,ε, the equivalence for discrete measures (see Theorem
4.1.9) and

Mα(F) = inf
{

lim inf
k→∞

Mα(Gk) : (µk+, µk−,FGk) ⇀∗ (µ+, µ−,F), spt µ+, spt µ− ⊂ ∂Ω
}

for an approximating graph sequence Gk as in Definition 3.2.5 (the same result holds for
Ea,ε(F)).

Remark 4.1.8. The authors believe, but so far could not prove, that the opposite inequality
holds as well. This would imply that both energy functionals are equal and the branched
transport and urban planning energy can indeed be reformulated as Mumford–Shah-type
image inpainting problems. So far, it has only been shown that the original flux-related
energy is bounded from below by the Mumford–Shah-type energy, which can still be used
for numerical issues. The proof would require that the functionals M̃α,µ+,µ− and Ẽa,ε,µ+,µ−

are the sequentially weakly-* lower semi-continuous envelopes of their discrete versions
with respect to graphs.

In the case of discrete measures, one can show that equality in Theorem 4.1.7 holds true
(cf. [19], Lemma A.0.2).

Theorem 4.1.9. Let µ+, µ− ∈ M+(Ω) two measures of equal mass with spt µ+ ⊂
∂Ω, spt µ− ⊂ ∂Ω and let G be a transport path between µ+ and µ−. Let FG =∑
e∈E(G) w(e)(H1xe)ê. Then we have

Mα(G) = M̃α(uFG), Ea,ε(G) = Ẽa,ε(uFG).

Proof. For the sake of readability, we set u := uFG . Since the mapping u 7→ FuxΩ from
Au(µ+, µ−) to AF(µ+, µ−) is a bijection (Theorem 4.1.4), u ∈ Au(µ+, µ−) and

FG =
∑

e∈E(G)
w(e)(H1xe)ê = Du⊥xΩ ⇒ DuxΩ =

∑
e∈E(G)

w(e)(H1xe)ê⊥.

Thus, u is a piecewise constant constant function with discontinuity set

Su ∩ Ω =
⋃

e∈E(G)
e
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with jump height [u] = w(e). By inserting this into the definition of the image-related
energies for branched transport and urban planning, we obtain

M̃α(u) =
∫
Su∩Ω

[u]αdH1(x) =
∑

e∈E(G)
w(e)αl(e) =Mα(G),

Ẽa,ε(u) =
∫
Su∩Ω

min{a[u], [u] + ε}dH1(x) =
∑

e∈E(G)
l(e)min{aw(e), w(e) + ε} = Ea,ε(G).

The image-related energy functionals defined in Definition 4.1.6 for branched transport
and urban planning admit an interpretation as image inpainting problems: The image
u is prescribed on V \ Ω and unknown inside Ω and has to be reconstructed such that
the energy becomes minimal. This minimization problem is comparable to the task of
image inpainting via total variation regularization (see for instance [27]), where the cost
functional is linear in the height of the jump along the discontinuity set. In our cases,
the integrand of the jump set Su is subadditive, while the part away from Su is convex,
which is similar to the behaviour of the Mumford–Shah image segmentation problem.
This is the key observation for the numerical treatment presented in the following: It was
shown (cf. Section 2.4.2) that the Mumford–Shah energy functional, although non-convex,
admits a convex higher-dimensional reformulation, which can be used as a starting point
for numerical simulations.

4.1.2. Functional lifting of the branched transport and urban
planning energy

We want to apply the functional lifting approach introduced in Section 2.4.2 to the image-
related branched transport and urban planning energy. For given initial and final measures
µ+, µ− ∈M+ (R2) we define 1u(µ+,µ−) as the characteristic function of the subgraph of the
function u (µ+, µ−) defined in Definition 4.1.3. Note that both M̃α,µ+,µ− and Ẽa,ε,µ+,µ−

can be written in the general framework of (2.6) (after restricting the image-related energy
functionals to the slightly smaller space SBV (V ), which does not severely affect their
behaviour) with the specific choice of g and h as

g (x, u, p) = ι0 (p) , h
(
x, u+, u−, ν

)
= |u+ − u−|α

in case of branched transport and

g (x, u, p) = ap, h
(
x, u+, u−, ν

)
= min{a|u+ − u−|, |u+ − u−|+ ε}
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for the urban planning energy. Consequently, the sets C and K for the lifted saddle point
problem become in our case

C = {v ∈ SBV (V × R, [0, 1]) :
lim
t→−∞

v (x, t) = 1, lim
t→∞

v (x, t) = 0, v = 1u(µ+,µ−) on (V \ Ω)× R} (4.1)

K1 = {φ = (φx, φs) ∈ C∞0
(
V × R,R2 × R

)
: φs ≥ 0,∣∣∣∣∫ s2

s1
φx (x, s) ds

∣∣∣∣ ≤ |s2 − s1|α ∀x ∈ V, s1, s2 ∈ R} (4.2)

K2 = {φ = (φx, φs) ∈ C∞0
(
V × R,R2 × R

)
: φs ≥ 0,

|φx| ≤ a,
∣∣∣∣∫ s2

s1
φx (x, s) ds

∣∣∣∣ ≤ min{|s2 − s1|+ ε, a|s2 − s1|} ∀x ∈ V, s1, s2 ∈ R}

(4.3)

and the optimization problem for branched transport and urban planning reads

inf
v∈C

sup
φ∈K

∫
Ω×R

φ · dDv (4.4)

with K = K1 for branched transport and K = K2 for urban planning respectively. Both
cases yield convex optimization problems in v. Although v is allowed to take values in
between 0 and 1, in some cases the optimal v still satisfies v = 1u for some u ∈ SBV (V );
however, some numerical examples show the discrepancy between the original image-related
formulation and its convex relaxation (cf. Section 4.2). We will further investigate the
behaviour of the relaxation and its impact on the optimal network in Section 4.2.1.

4.2. Analysis

In this section, we aim at pointing out some analytical aspects regarding the numerical
treatment of the previously described model. In particular, we investigate the tightness
of the convexification by reference to a particular example in order to obtain a better
understanding of the involved energies. Furthermore, we show that the convex set K only
contains a finite number of constraints in case of discrete functions.

4.2.1. Original formulation versus convexification

We have shown that the original flux-based formulation of the branched transport and
urban planning problem admits a convex reformulation as an image inpainting problem
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via functional lifting. Putting together all the exhibited inequalities, we obtain

min
F∈AF (µ+,µ−)

Mα,µ+,µ−(F) ≥ min
uF∈Au(µ+,µ−)

M̃α,µ+,µ−(uF)

≥ min
uF∈Au(µ+,µ−)

sup
φ∈K1

∫
Ω×R

φ · dD1uF ≥ inf
v∈C

sup
φ∈K1

∫
Ω×R

φ · dDv,

min
F∈AF (µ+,µ−)

Ea,ε,µ+,µ−(F) ≥ min
uF∈Au(µ+,µ−)

Ẽa,ε,µ+,µ−(uF)

≥ min
uF∈Au(µ+,µ−)

sup
φ∈K2

∫
Ω×R

φ · dD1uF ≥ inf
v∈C

sup
φ∈K2

∫
Ω×R

φ · dDv.

This correlation naturally raises the question whether some of the inequalities can be
replaced by an equality under certain conditions.
The first inequality was shown in [19] as stated in Theorem 4.1.7. As mentioned, the
authors were not able to prove the opposite inequality, but believe that it holds as well.
However, for the special case of discrete mass fluxes, equality is obtained by some simple
calculations (cf. Theorem 4.1.9).
The second inequality arises from the functional lifting approach. Equality can be achieved
if one is able to construct a vector field φ ∈ K such that the value of the functional on the
right-hand side of the second inequality equals the one of the left-hand side. While for
some special cases, such as the Mumford–Shah functional, the existence of such a vector
field is well established (see for instance [54]), the explicit construction remains a quite
technical issue and depends on the particular choice of the integrands. In [2], this subject
is revised in more details, additionally an exemplary construction of φ for the minimal
partition problem is provided.
The most interesting case for numerical purposes is the last inequality, arising from the
convex relaxation of the binary characteristic function 1u to functions which are allowed to
take values in between 0 and 1. On the one hand, we have already observed in Section 2.4,
Theorem 2.4.8, that the existence of a divergence-free vector field φ guarantees equality of
the minima of the original and the relaxed minimization problem (note that in our case,
the convex set C naturally contains the necessary conditions of v being prescribed on the
boundaries on ∂Ω× R). On the other hand, it still remains an open question whether a
minimizer of the relaxed functional also admits a minimizer of the branched transport or
urban planning energy.
In case of the one-dimensional Mumford–Shah functional, in [23] it was shown that there
exists a an equivalent convex representation consisting of a slightly more precise version
of the functional lifting approach. However, this idea could not be extended to higher
dimensions so far [23], so that in particular it cannot be applied to the branched transport
and urban planning energies. Hence, we will investigate the tightness of the convex
relaxation for these problems within this section.
The question of equality of the minima is related to the task of finding an optimal
divergence-free φ ∈ K which realizes the supremum on the right-hand side of the inequality.
In order to gain a better understanding of the problem structure, in the following we want
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Figure 4.3.: Transport from two to two mass points in R2 as described in Example 4.2.1.
Left: Topology of the graph G1. Right: Topology of the graph G2.

to restrict ourselves to the branched transport case and investigate the particular example
of transport from two source points to two sinks of equal mass.

Example 4.2.1 (Branched transport cost for transport from two to two mass points). Let
Ω = [0, 1]2, V = B1(Ω) and P1, P2, Q1, Q2 ∈ ∂Ω be the four vertices of a rectangle with
side lengths 1 and d ≤ 1 (see Figure 4.3). Let µ+ = m(δP1 + δP2), µ− = m(δQ1 + δQ2) for
some m > 0. Depending on α ∈ (0, 1), there exist two possible topologies for the optimal
graph G minimizing the branched transport costMα(G) (Figure 4.3). Denoting G1 as the
graph consisting of two straight lines and G2 as the single tree and F1 (F2 respectively)
the discrete mass flux associated with the graph G1 (G2 respectively), then we have

Mα(F1) = 2mα, Mα(F2) = 2αmαl1 + 4mαl2,

where l1, l2 are the lengths as shown in Figure 4.3, depending on the positions of the
branching points. For α small, the single tree has the lower costs, whereas for α close to
1, the two straight lines will be preferred. Thus, there exists a bifurcation point α̂ where
both topologies have equal costs (depending on the distance d between the mass points).
In the following, for fixed m and d, let α = α̂ be chosen such that

min
F∈AF

Mα(F) =Mα(F1) =Mα(F2)

and F1,F2 (where the exact structure of F2 depends on α) be the two optimal fluxes
related to the two topologies (indeed, one can easily verify that such an α exists). Due to
Theorem 4.1.9, we have

min
u∈Au

M̃α(u) = M̃α(u1) = M̃α(u2),
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where u1, u2 denote the images related to the mass fluxes F1,F2.
Now we define a functional J : SBV (V × R)→ [0,∞] as

J(v) = sup
φ∈K1

∫
Ω×R

φ · dDv + ιC(v)

and set v = λ1u1 + (1 − λ)1u2 for some λ ∈ [0, 1]. Under the assumption that we can
achieve

M̃α(u1) = sup
φ∈K1

∫
Ω×R

φ · dD1u1 , (4.5)

if u1 and u2 are minimizers of M̃α, 1u1 and 1u2 are minimizers of the right-hand side.
Since J is convex, it follows that

J(v) ≤ J(1u1) = J(1u2).

If now we were able to construct a φ̂ ∈ K1 which satisfies equation (4.5) and is additionally
divergence-free, then Theorem 2.4.8 would yield

min
v∈C

J(v) = min
u∈Au

M̃α(u),

and as a consequence, v = λ1u1 + (1− λ)1u2 for every λ ∈ [0, 1] would be a minimizer of J .
Unfortunately, the task of finding such an optimal vector field φ̂ that incorporates the
desired properties is a crucial issue which results in a rather technical construction. One
approach, leading to an almost optimal vector field is deferred to Appendix A. Although
we were not able to determine a truly optimal φ̂, we believe that it is nevertheless possible
and as a consequence, the relaxed minimization problem in some cases yields the convex
envelope (at least in some subset of the domain of J) of the original image-related problem.
On the other hand J is not necessarily strictly convex, which is also reflected by some
numerical examples (cf. Figure 4.4).

If the construction of an optimal φ̂ could be achieved, Example 4.2.1 would suggest that in
a discrete setting, there exist at least some cases where the relaxed energy corresponds to
the convex envelope of the original branched transport functional. Although still lacking a
rigorous proof, by transferring the construction strategy locally to all (at least discrete)
transportation networks, one might be able to extend this result to the more general
setting. However, a further investigation of this issue goes beyond the scope of this thesis
and might be a subject of future work.
Remark 4.2.2. In [23], the author investigates the addressed problem in a very general
framework and is able to prove that in one space dimension and under certain assumptions,
the Mumford–Shah-type functional admits an equivalent convex representation in the
sense that the relaxed functional indeed equals the convex lower semi-continuous envelope
of the original functional. As a consequence, if u is a minimizer of the latter, then 1u is a
minimizer of the relaxed problem. Unfortunately, the proof could so far not be extended
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Figure 4.4.: Numerical examples for transport from two to two mass points as defined
in Example 4.2.1. Left: Plot of the manually computed minimal energy for different
ε = 1 − α. The line type indicates the optimal network topology. Right: Numerically
computed optimal fluxes for three different values of α. Example 2O corresponds to the
critical value of α, whereMα has two minimizers. The numerical result corresponds to a
linear combination of both minimizers.

to the case of non-scalar functions u such that it does not provide a solution for our case.

4.2.2. Reduction of the set K for piecewise constant functions

With regard to the numerical realization, the projection onto the convex set K is challenging.
On the one hand, both sets contain for every ground point x ∈ V an infinite number
of inequality constraints. On the other hand, at first there exists an infinite number of
ground points for which the sets of inequality constraints do not necessarily have to be
independent. The following theorem shows that in case of piecewise constant functions
along the lifted dimension, the number of inequality constraints for a fixed x ∈ V is finite.

Theorem 4.2.3. For any function φ : V × [0, 1] → R2 × R which is piecewise constant
in the third variable, i.e. φ(x1, x2, s) = Ci(x1, x2) for all (x1, x2) ∈ V , s ∈ [ihs, (i+ 1)hs),
p ∈ N, hs = 1

p
, i = 0, . . . , p− 1, we define

K̃1 =
{
φ = (φx, φs) ∈ L∞(V × [0, 1],R2 × R) : φs ≥ 0,∣∣∣∣∫ s2

s1
φx (x, s) ds

∣∣∣∣ ≤ |s2 − s1|α ∀x ∈ V, s1, s2 ∈ {0, hs, . . . , phs}
}
,

K̃2 =
{
φ = (φx, φs) ∈ L∞(V × [0, 1],R2 × R) : φs ≥ 0, |φx| ≤ a,∣∣∣∣∫ s2

s1
φx (x, s) ds

∣∣∣∣ ≤ min{|s2 − s1|+ ε, a|s2 − s1|} ∀x ∈ V, s1, s2 ∈ {0, hs, . . . , phs}
}
.
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Then we have

φ ∈ K̃1 ⇒ φ ∈ K̂1,

φ ∈ K̃2 ⇒ φ ∈ K̂2,

where we define

K̂1 =
{
φ = (φx, φs) ∈ L∞(V × [0, 1],R2 × R) : φs ≥ 0,∣∣∣∣∫ s2

s1
φx (x, s) ds

∣∣∣∣ ≤ |s2 − s1|α ∀x ∈ V, s1, s2 ∈ [0, 1]
}
,

K̂2 =
{
φ = (φx, φs) ∈ L∞(V × [0, 1],R2 × R) : φs ≥ 0, |φx| ≤ a,∣∣∣∣∫ s2

s1
φx (x, s) ds

∣∣∣∣ ≤ min{|s2 − s1|+ ε, a|s2 − s1|} ∀x ∈ V, s1, s2 ∈ [0, 1]
}
.

as the spaces K1,K2 without the smoothness requirement.

Proof. We denote by ti := ihs for i = 0, . . . , p the limit points of every constant region of
φ in s-direction. Since φ ∈ K̃1, respectively φ ∈ K̃2, and φ(x1, x2, s) = Ci(x1, x2), we have

∣∣∣∣∫ tj

ti
φx (x, s) ds

∣∣∣∣ =
∣∣∣∣∣∣hs

j−1∑
k=i

Ck(x1, x2)
∣∣∣∣∣∣ ≤

|hs(j − i)|
α for (BT),

min{hs(j − i) + ε, ahs(j − i)} for (UP)

for all ti < tj for all x = (x1, x2). Due to the independence of the sets with respect to x,
we need to show for a fixed x = (x1, x2)

∣∣∣∣∫ s2

s1
φx(x, s)ds

∣∣∣∣ ≤
|s2 − s1|α for (BT),

min{|s2 − s1|+ ε, a |s2 − s1|} for (UP)

for arbitrary s1, s2 ∈ [0, 1]. We will apply the following notation (cf. Figure 4.5):

• Ci = Ci(x1, x2) ∈ R2 for s ∈ [ti, ti+1), i = 0, . . . , p− 1,

• ti ≤ s1 ≤ ti+1, ti+q−1 ≤ s2 ≤ ti+q for q ≤ p,

• h1 = ti+1 − s1, h2 = s2 − ti+q−1.

Let us now consider the branched transport and urban planning case separately.

Proof for branched transport:
We want to show

∣∣∣h1Ci + hs

i+q−2∑
k=i+1

Ck + h2Ci+q−1
∣∣∣ ≤ (h1 + hs(q − 2) + h2)α (4.6)
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s

φx(x, s)

t0 tpti ti+qti+1 ti+q−1s1 s2

h1 h2

Ci

Ci+1

Ci+q−2

Ci+q−1

Figure 4.5.: Sketch of the profile of φx(x, s) for a fixed x as a one-dimensional function
(note that Ck ∈ R2 for all k).

for 0 ≤ h1, h2 ≤ hs. We define

f(h1, h2) :=
∣∣∣h1Ci + hs

i+q−2∑
k=i+1

Ck + h2Ci+q−1
∣∣∣, g(h1, h2) := −(h1 + hs(q − 2) + h2)α,

and show equivalently that f(h1, h2) + g(h1, h2) ≤ 0 for all 0 ≤ h1, h2 ≤ hs. Set h =
(h1, h2)T , then f has the form f(h) = F (Ah+b) with F (x) = |x|, a matrix A = (Ci, Ci+q−1)
and a vector b = hs

∑i+q−2
k=i+1 Ck. The function F is twice differentiable almost everywhere,

thus we compute the Hessian of f as

D2f(h) = AD2F (Ah+ b)AT .

Since F is convex, D2F (Ah + b) is positive semi-definite, thus D2f(h) is positive semi-
definite and as a consequence, f is convex in h. Additionally, one can easily verify that
g is twice differentiable and its Hessian has the form D2g(h) = ( c cc c ) for a c ≥ 0, thus
g is convex as well. Consequently, the function f(h1, h2) + g(h1, h2) is convex on the
domain defined by [0, hs]× [0, hs]. Additionally, from the given constraints we have that
f(h1, h2) + g(h1, h2) ≤ 0 for the domain vertices (h1, h2) ∈ {(0, 0), (hs, 0), (0, hs), (hs, hs)},
which proves the desired statement.

Proof for urban planning:
Similar as before, we want to show

∣∣∣h1Ci + hs

i+q−2∑
k=i+1

Ck + h2Ci+q−1
∣∣∣ ≤ min{h1 + hs(q − 2) + h2 + ε, a(h1 + hs(q − 2) + h2)}

for 0 ≤ h1, h2 ≤ hs. Defining f as before and g(h1, h2) = −min{h1 + hs(q − 2) + h2 +
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ε, a(h1 +hs(q−2) +h2)}, it remains to show that g is convex on the domain [0, hs]× [0, hs],
which can be achieved easily by applying the definition of convexity and some technical
computation and case analysis. The proof then follows with the same argument as in the
branched transport case.

As a consequence, a piecewise constant approximation of the variables in the lifted direction
makes sense and is easy to handle. Additionally, Theorem 4.2.3 does not hold for piecewise
linear functions in s-direction, which can be shown by constructing a counterexample.

s

φx(x, s)

t0 t1 t2 t3

−C

C

Figure 4.6.: Sketch of the function φx(x1, x2, s) for a fixed (x1, x2) ∈ V as defined in
Remark 4.2.4, C = C(x1, x2).

Remark 4.2.4. Let p ∈ N, hs = 1
p
and ti := ihs for all i = 0, . . . , p. We define a function

φ ∈ C(V × [0, 1],R2 × R) as

φx(x1, x2, s) =


2C(x1,x2)
hs

(s− ti)− C(x1, x2) if i even,
2C(x1,x2)

hs
(ti − s) + C(x1, x2) if i odd

for all s ∈ [ti, ti+1], (x1, x2) ∈ V for C(x1, x2) independent of s (see Figure 4.6). Then it
follows that ∣∣∣∣∫ ti+1

ti
φx(x1, x2, s) ds

∣∣∣∣ =
∣∣∣12hs(C(x1, x2)− C(x1, x2))

∣∣∣ = 0

and therefore∣∣∣∣∣
∫ tl

tj
φx(x1, x2, s) ds

∣∣∣∣∣ =
∣∣∣∣∣
∫ tj+1

tj
φx(x1, x2, s) ds+ . . .+

∫ tl

tl−1
φx(x1, x2, s) ds

∣∣∣∣∣ = 0

for all j ≤ l, thus, all constraints between points tj and tl are satisfied. On the other hand,
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we have for s̃ = ti+ti+1
2 ∈ [ti, ti+1]∣∣∣∣∫ s̃

ti
φx(x1, x2, s) ds

∣∣∣∣ = hs
4 |C(x1, x2)| ,

and the right-hand side can become arbitrarily large.

4.3. Numerical optimization with finite differences

In this section, we describe and discuss a finite difference discretization approach to the
three-dimensional problem (4.4). This method comes along with several advantages: On
the one hand, the interpretation of the variables as three-dimensional matrices makes the
arising operators easy to handle, which keeps the implementation clear and simple. On the
other hand, the problem naturally involves only a finite number of inequality constraints,
since all variables are piecewise constant on voxels by definition (cf. Theorem 4.2.3). This
also enables a straightforward communication between the two-dimensional image and its
lifted counterpart.

4.3.1. Discretization

Let us for the sake of simplicity and without loss of generality assume V ⊂ R2 to be a
rectangular domain with bottom left corner at the origin. Then we can discretize the
domain V × R by a finite three-dimensional (n+ 1)× (m+ 1)× (p+ 1) grid

G = {(ih1, jh2, lhs) : i = 0, . . . , n, j = 0, . . . ,m, l = 0, . . . p} ,

where h1, h2, hs > 0 denote the grid size in each direction. Then we can define the
discrete counterparts of the variables v ∈ SBV (V × R, [0, 1]) and φ ∈ C∞0 (V × R,R2 × R)
as vh : G → [0, 1] and φh : G → R2 × R. For every (ih1, jh2, lhs) ∈ G, we write
vhijl = vh (ih1, jh2, lhs) and φhijl = φh (ih1, jh2, lhs). We discretize the gradient operator by
forward finite differences,

(
D1v

h
)
ijl

=
vhi+1,j,l − vhi,j,l

h1
,
(
D2v

h
)
ijl

=
vhi,j+1,l − vhi,j,l

h2
,
(
Dsv

h
)
ijl

=
vhi,j,l+1 − vhi,j,l

hs

and set D = (D1, D2, Ds)T . Hence, the discrete form of the saddle point problem for
branched transport and urban planning defined in (4.4) reads

min
vh∈Ch

max
φh∈Kh

∑
i,j,l

φhijl
(
Dvh

)
ijl

= 〈φh, Dvh〉
 (4.7)
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where the discrete versions of the convex sets C, K1 and K2 are given by

Ch =
{
vh : G → [0, 1] : vhij0 = 1, vhijp = 0 ∀i, j, vh = 1hu(µ+,µ−) on G \

(
Ω× R

)}
Kh1 =

{
φh = (φhx, φhs ) : G → R2 × R : φhs ≥ 0,

|hs
∑s2
l=s1(φhx)ijl| ≤ hαs |s2 − s1 + 1|α ∀i, j, s1 ≤ s2

}
,

Kh2 =
{
φh = (φhx, φhs ) : G → R2 × R : φhs ≥ 0, |φhx| ≤ a,

|hs
∑s2
l=s1(φhx)ijl| ≤ min{hs|s2 − s1 + 1|+ ε, ahs|s2 − s1 + 1|} ∀i, j, s1 ≤ s2

}
.

Above, 1hu(µ+,µ−) denotes the discretization of the function 1u(µ+,µ−) with respect to the
grid G. Note that in Kh1 and Kh2 the infinite number of constraints has now reduced to a
finite number of inequalities, which was shown by exploiting the piecewise constancy in
Theorem 4.2.3.

4.3.2. Algorithm

Since the optimization problem already has a classical saddle point form, a straightforward
choice is the well-known first order primal-dual algorithm for convex problems initially
introduced in [54] and further investigated in [26]. To this end, we write problem (4.7) as

min
v

max
φ

[
L(v, φ) = 〈φ,Dv〉+ ιCh (v)− ιKh (φ)

]
, (4.8)

where we dropped the superscript h in the variables for the sake of readability. The
proposed algorithm then alternatingly performs a gradient descent step in v and a gradient
ascent step in φ, with an additional overrelaxation and step sizes τ and σ. Denoting by vk
and φk the kth approximation of v and φ, the next iterates vk+1 and φk+1 are computed as

φk+1 = PKh
(
φk + σDv̄k

)
,

vk+1 = PCh
(
vk − τD∗φk

)
,

v̄k+1 = vk+1 + θ
(
vk+1 − vk

)
,

starting with an initial approximation (v0, φ0), v̄0 = v0. Here, PCh (and PKh , respectively)
denotes the orthogonal projection onto the convex set.
While the projection onto the set Ch is straightforward to implement, the projection onto
Kh remains more challenging since it involves a large set of non-local constraints. We
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rewrite the convex sets Kh1 and Kh2 as

Kh1 =
⋂

s1≤s2
Kh,s1,s21 , Kh2 =

 ⋂
s1≤s2

Kh,s1,s22

 ∩ Kh,a2

with

Kh,s1,s21 :=
{
φ = (φx, φs) : G → R2 × R : φs ≥ 0, |hs

s2∑
l=s1

(φx)ijl | ≤ hαs |s2 − s1 + 1|α ∀i, j
}
,

Kh,a2 :=
{
φ = (φx, φs) : G → R2 × R : φs ≥ 0, |φx| ≤ a

}
Kh,s1,s22 :=

{
φ = (φx, φs) : G → R2 × R : φs ≥ 0,

|hs
∑s2
l=s1 (φx)ijl | ≤ min{hs|s2 − s1 + 1|+ ε, ahs|s2 − s1 + 1|} ∀i, j

}
.

The orthogonal projection onto each Kh,s1,s2 can be computed directly. Since the integral
inequality constraints are independent for each i, j, we can compute the projection for a
fixed (i, j). For l /∈ {s1, . . . , s2}, we set

(PKh,s1,s2 (φx))ijl = (φx)ijl .

Now let q := s2 − s1 + 1 ≥ 1 and define vectors ψ1, ψ2, θ1, θ2 ∈ Rq with

ψ1 =
(
φ1
ijl

)
l=s1,...,s2

, ψ2 =
(
φ2
ijl

)
l=s1,...,s2

, (θ1, θ2) = (PKh,s1,s2 (φx)ijl)l=s1,...,s2 .

Then we can write
(θ1, θ2) = PK̃(ψ1, ψ2) = argmin

w∈K̃
|w − ψ|2

with ψ = (ψ1, ψ2) and

K̃ := {w ∈ (Rq)2 : |hs
q∑
l=1

wl|2 ≤ C2}

for C = hαs |q|α for Kh,s1,s21 and C = min{hs|q|+ ε, ahs|q|} for Kh,s1,s22 . The corresponding
optimality conditions for the minimization problem read

0 = θrk − ψrk + µhs

q∑
l=1

θrl , 0 = µ

(
|hs

q∑
l=1

θl|2 − C2
)
, µ ≥ 0, µ ∈ R
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for r = 1, 2. Summing up the first condition over all k yields
q∑

k=1
θrk = 1

1 + qµhs

q∑
k=1

ψrk,

which leads to an explicit formula for the θrk as

θrk = ψrk −
µhs

1 + qµhs

q∑
l=1

ψrl .

For µ, we have µ = 0 if |hs
∑l
l=1 θl|2 < C2 or

|hs
l∑
l=1

θl|2 − C2 = 0 ⇒ µ = hs|
∑q
l=1 ψl| − C
Chsq

.

Together, we obtain
µ = min

{
0,
hs|

∑s2
l=s1 ψl| − C
Chsq

}
. (4.9)

Consequently, the projection of φx onto Kh,s1,s2 can be computed component-wise as

(PKh,s1,s2 (φx))ijl = φxijl −

 µhs
1 + µhs (s2 − s1 + 1)

s2∑
k=s1

φxijk

χl∈{s1,...,s2},
(PKh,s1,s2 (φs))ijl = max{0, φsijl}

with µij as in (4.9) (depending on i, j).

For the projection onto the whole set Kh1 , Kh2 respectively, we make use of an iterative
approach known as Dykstra’s projection method [15], which employs the fact that the set
can be decomposed as described above. Suppose that we have a convex set C = C1∩. . .∩Cr,
where each Cl is closed and convex. Consider the sequence (xkl) for any 0 ≤ k ≤ r, 0 ≤ l ≤ r
defined by the following iteration process:

Set x0,r = x̃, d0,1 = . . . = d0,r = 0
for k = 1, 2, 3, . . .

xk,0 = xk−1,r
for l = 1, . . . , r
xkl = PCl (xk,l−1 − dk−1,l)
dkl = xkl − xk,l−1 + dk−1,l

end
end

Then, the authors have shown that for any 1 ≤ k ≤ r, the sequence converges strongly to
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x∗ = PC (x̃), i.e.
|xkl − x∗| → 0 for k →∞.

Roughly spoken, Dykstra’s projection method alternatingly projects onto all single sets
containing only one integral inequality independently, after removing the previous increment
from the last projection round.
Summarizing, the full primal-dual algorithm is given in Algorithm 4.

Algorithm 4 Primal-dual algorithm for urban planning and branched transport
function OptimalTransportNetworkFD(u0,τ ,σ,θ)

Set v0 = 1u0 , v̄0 = v0, φ0 = (φ0
1, φ

0
2, φ

0
s) = 0

while Not converged do
φk+1 = PKh(φk + σDv̄k)
vk+1 = PCh(vk − τD∗φk+1)
v̄k+1 = vk+1 + θ(vk+1 − vk)
k ← k + 1

end while
end function
return vend, φend

4.3.3. Convergence of the algorithm
In [26], the authors prove convergence of the primal-dual algorithm for τσ|D|2 < 1 and
θ = 1, where |D| denotes the operator norm. However, the proof assumes that the single
updating steps are computed exactly, which as a consequence requires convergence of
the Dykstra subroutine for the projection onto Kh in our case. Since this projection is
computationally expensive, we would like to restrict ourselves to only a few subiteration
steps and briefly investigate the convergence behaviour of the primal-dual method in case
of an inexact projection of φ.
This problem was handled in [58] in a rather general setting for different types of errors in
the proximal updates. Picking up the notation introduced in their article, we define

y ≈δ PKh(x) :⇔ |y − y∗| ≤ δ

for a δ > 0 and y∗ = PKh(x) being the exact projection, where we allow that the computed
projection lies within a δ-ball around the exact value. Note that this includes the case of
an infeasible solution y, which does not necessarily lie in Kh. We consider the following
algorithm

φk+1 ≈δk PKh(φk + σD(2vk − vk−1))
vk+1 = PCh(vk − τD∗φk+1), (4.10)
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which corresponds to a choice of θ = 1 in the general method and set v−1 = v0. In the
following we briefly apply the method introduced in [58] to our saddle point problem and
state their convergence result for this special case.
Since allowing an error within the first projection step implies that the iterate is not
necessarily feasible, an explicit convergence rate in the sense of an upper bound on the
primal-dual gap in each iteration cannot be achieved easily [58]. Instead, the authors
suggest to shift the error in the first step to a slightly simpler error in the second update,
resulting in a an estimate on the exact projection. Precisely, we let

φ∗,k+1 = P(φk + σD(2vk − vk−1))

be the true projection, which gives

|φk+1 − φ∗,k+1| ≤ δk

by definition. Setting ψk+1 := φk+1 − φ∗,k+1, for the second update we obtain

vk+1 = PCh(vk − τD∗φk+1)
= PCh(vk − τD∗(φ∗,k+1 + ψk+1))
= PCh(vk − τD∗φ∗,k+1 − τD∗ψk+1).

Set dk+1 = τD∗ψk+1, then dk+1 satisfies

|dk+1| = |τD∗ψk+1| ≤ τ |D∗| |ψk+1| ≤ τLδk

with L = |D|. By defining

y ≈̂δ PCh(x) :⇔ y = PCh(x+ d) for a |d| ≤ δ,

we can replace the algorithm in (4.10) by

φ∗,k+1 = PKh(φ∗,k + σD(2vk − vk−1))
vk+1 ≈̂τLδk PCh(vk − τD∗φ∗,k+1).

Finally, we obtain the following result for L(v, φ) = 〈φ,Dv〉+ ιCh(v)− ιKh(φ).

Theorem 4.3.1. Let L = |D|, τ, σ > 0 such that στL2 + τβL < 1 for β � 1 and set
V N := 1

N

∑N
k=1 v

k, Φ∗,N := 1
N

∑N
k=1 φ

∗,k. Let (v∗, φ∗) be a saddle point of (4.8), then we
have

L(V N , φ∗)− L(v∗,Φ∗,N) ≤ 1
2τN

(
|v∗ − v0|+

√
τ

σ
|φ∗ − φ∗,0|+ 2τL

N∑
k=1

δk

)2

.

Proof. The proof is a simple application of [58], Theorem 4.9 and Corollary 4.27.
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4.3.4. Results

We implemented the algorithm described above in MATLAB© and simulated the trans-
portation networks for different sets of sources and sinks. In a first test, we defined a simple
geometric setting with four evenly-spaced sources of equal mass at the top of a rectangular
domain Ω and four evenly-spaced sinks at the bottom. In order to test the reliability of the
proposed method, we computed the resulting optimal network for different parameters α
(a, ε respectively) by hand. Then we compared the numerical results with the true global
minimizers. Figures 4.7 and 4.8 show that in almost every case, the algorithm converged
to the correct solution, except for some boundary cases, where the energy gap between
two different topologies is very small. This discrepancy might be caused by the vertical
alignment in the grid, which slightly prefers vertical network structures over others.
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Figure 4.7.: Parameter study for branched transport. Top: Plot of the manually computed
minimal energy for different values of ε = 1 − α. The line type indicates the optimal
network topology. Bottom: Numerically computed optimal fluxes for evenly spaced values
of α in the same range. The numerically obtained network topologies match the predicted
ones except for example 3O.
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Figure 4.8.: Parameter study for urban planning. Top: Plot of the manually computed
minimal energy for different values of ε and fixed a = 5. The line type indicates the optimal
network topology. Bottom: Numerically computed optimal fluxes for evenly spaced values
of ε in the same range. The numerically obtained network topologies match the predicted
ones except for example 9O. Note that the fifth topology is never optimal for this choice of
a = 5, but can be for different values of a.

If the parameters are chosen such that the global optimal network lies very close to a
bifurcation point, where the topology suddenly changes, the resulting variable v might not
be binary. Figure 4.9 shows an example where v takes values in {0, 0.5, 1}. This behaviour
probably results from the convex relaxation as shown in Section 4.2.1. If the optimal
network is not unique for some choice of parameters, the optimal network obtained via
the functional lifting approach might consist of a combination of two network topologies.
Indeed, one can easily check that the non-binary solution in the example in Figure 4.9
consists of a convex combination of two topologies with equal costs (also shown in Figure
4.9).
In a second test, we simulated more complex branching structures in a test with 16
evenly-spaced sources and sinks respectively, where all points have equal mass. Since in
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Figure 4.9.: Example of a numerical optimization for urban planning, resulting in a
non-binary solution v (the images show different cross-sections). This indicates the effect of
the convex relaxation for the chosen parameters (a = 2.13 and ε = 0.5). Bottom: Optimal
topologies with exactly the same costs for the chosen parameters. The non-binary result is
a convex combination of the two minimizers.

case of branched transport, the degree of branching is governed by the parameter α, one
would expect more bifurcations in case of a small α and less for α being close to one. In
urban planning, a small value of ε is expected to result in a higher number of single trees,
whereas for increasing ε, the degree of branching should increase likewise. This effect is
reflected by the numerical simulations in Figure 4.10.
For the functional lifting approach, we assumed for simplicity a rectangular image domain
Ω. However, one can easily extend the approach to more general cases such as a circular
shape. Figure 4.11 shows an example with some sources and sinks of different mass on
the boundaries of a circle. Furthermore, the transport from a single source in the middle
to 32 almost evenly-spaced points on the boundaries is displayed in Figure 4.12. Here,
one has to face the additional difficulty that the initial and final measure have to satisfy
spt µ+, spt µ− ⊂ ∂Ω. This can be achieved by setting the image domain Ω = B1(0) \ {0}
and assuming the image u to take values in S1. Here, we used a periodic colour coding to
visualize the image range of u.

4.3.5. Discussion
In this section, we presented a finite difference discretization approach to tackle the
transportation problem arising from functional lifting of the branched transport and urban
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Branched
Transport

α = 0.93 α = 0.8 α = 0.6 α = 0.2

Urban
Planning

ε = 0.015 ε = 0.2 ε = 0.8 ε = 1.5

Figure 4.10.: Numerical optimization results for transport from 16 more or less evenly
spaced point sources of same mass at the top to 16 evenly spaced point sinks (of same
mass as well) at the bottom (a = 5 in case of urban planning). Instead of the optimal flux
we show the corresponding optimal image u.

planning energies. We presented a simple algorithmic framework based on the well-known
primal-dual method by [26] and, according to their proof, state convergence of the method
even in case of an inexact projection. Finally, we presented some results obtained on
different image domains.
A finite difference approximation is in most cases easy to handle and seems to be a natural
choice in mathematical imaging since an image usually appears in the form of a matrix.
This has the advantage, among others, that neighbouring relations of image pixels are
directly obtained by the matrix form, which is a useful feature for the inequality constraint
handling.
On the other hand, the matrix representation does not tackle the problem of the high-
dimensionality arising from the functional lifting. Regarding the structure of the primal
solution to the saddle point problem naturally suggests to adopt a locally varying image
resolution, which is higher close to jump parts in order to define clear network pipes, and
lower in constant regions. Compared to a uniform high resolution, this approach would
decrease the number of degrees of freedom and, as a consequence, the runtime of the
algorithm. Hence, we want to dissociate from the matrix form of the image and instead
implement the ideas of adaptive finite elements.
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Figure 4.11.: Numerical optimization results for branched transport and urban planning
with different parameters (a = 5 in case of urban planning). In the left column, the
prescribed masses are +1
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Transport

α = 0.99 α = 0.95 α = 0.75 α = 0.6
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Planning

ε = 0.05 ε = 0.2 ε = 0.4 ε = 1.5

Figure 4.12.: Numerical optimization results for branched transport and urban planning
for a single point source at the centre of the circular domain to 32 point sinks on the
boundary (a = 5 in case of urban planning). The discontinuity set of the image corresponds
to the optimal network. For this geometry, the image u takes values in S1, which is here
indicated by the periodic colour scale.
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4.4. Numerical optimization with finite elements on
adaptive triangular prism grids

In this section, we will describe and analyse in detail another approach where the dis-
cretization relies on a finite element scheme defined on an adaptive triangular prism grid as
designed in Section 2.5 for the purpose of optimizing functional lifting problems. The basic
idea is to overcome the disadvantages of functional lifting, like the high-dimensionality
and the large number of inequality constraints, by a local grid refinement in image and
lifted dimension independently. Hence, on the one hand, one can keep a low resolution
in regions where the image is constant and a higher resolution at edges or affine parts.
On the other hand, one hopes to reduce the large number of constraints to a minimum
without violating those involving “non-grid points” (cf. Theorem 4.2.3).
Whereas the idea of adaptive finite element methods in general bears the possibility to
vastly decrease the programme’s runtime, it also entails some difficulties in our case. As
mentioned before, a triangulation of the whole three-dimensional domain into tetrahedrons
is not suitable due to the structure of the integral inequality constraints. In case of an
adaptive discretization, a separation into rectangular elements automatically leads to the
appearance of so-called hanging nodes, which (especially with regard to the constraint set)
have to be treated carefully. In the second place, one has to think of a suitable refinement
criterion which guarantees the convergence of the method to the same solution as in the
non-adaptive case.
In the course of this section, we present a discretization of the lifted branched transport
and urban planning formulations based on triangular prism elements as introduced in
Section 2.5. We describe the algorithmic framework including the projection onto the
convex set Kh and discuss different refinement criteria. Furthermore, we present some
promising simulation results and discuss the advantages and drawbacks coming along with
this type of discretization.

4.4.1. Discretization

In the following, we want to restrict ourselves to a three-dimensional image domain [0, 1]3.
This implies that V = [0, 1]2 and the original image u ∈ SBV (Ω) only takes values in [0, 1]
(note that this can be achieved for any real-valued image with bounded range by simple
rescaling). In order to reuse the result of Theorem 4.2.3, we decide for piecewise constant
Ansatz functions in the lifted dimension. Thus, we chose a semi-regular triangular prism
grid T and a function space S1,0(T ) (cf. Section 2.5).
For a basis (ψ1, . . . , ψq) as defined in Section 2.5.2, the discrete solutions vh, φh can be
written in terms of basis functions as

vh(x, s) =
q∑

k=1
ṽhkψk(x, s),
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φh1 , φ
h
2 , φ

h
s respectively, for a coefficient vector ṽh ∈ Rq (φ̃h1 , φ̃h2 , φ̃hs ∈ Rq), and where q

denotes the total number of degrees of freedom. Hence we have ṽ(Pk) = ṽhk for all
Pk ∈ D(T ).
Based on this finite element discretization, we can now reformulate the convex saddle point
problem (4.4) in terms of the coefficient vectors ṽh, φ̃h:

min
ṽh∈Ch

max
φ̃h∈Kh

〈φ̃h,Mṽh〉, (4.11)

where M = (M1,M2,M s)T denotes the mixed mass-stiffness matrix, i.e.

M1
kr =

∫
[0,1]3

ψk · ∇x1ψr dxds, M2
kr =

∫
[0,1]3

ψk · ∇x2ψr dxds, M s
kr =

∫
[0,1]3

ψk ·Dsψr dxds.

The gradient in s-direction Ds is interpreted in a finite difference sense, i.e.

Dsψr(x, s) = ψr(x, s+ hxs)− ψr(x, s)
hxs

(4.12)

with hxs := {h(T ) : (x, s) ∈ T} being the height of the corresponding triangular prism
element that contains (x, s).
In order to define the discrete constraint sets Ch and Kh, we recall the definition of an
s-line LN for a ground node N = (N1, N2, N s) ∈ N (T ) (cf. Definition 2.5.16)

LN = {P = (P 1, P 2, P s) ∈ N (T ) : P 1 = N1, P 2 = N2}

and set additionally

LN LN \ H(T ) L̄N L̄s1,s2N

−s1

−s2

Figure 4.13.: Comparison between an s-line LN (all nodes with the same xy-coordinates
as the ground node N), LN \ H(T ) (s-line without hanging nodes), L̄N (all degrees of
freedom along LN) and L̄s1,s2N (all degrees of freedom along LN which lie in the interval
[s1, s2)).
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L̄N := LN ∩ D(T ), L̄s1,s2N := L̄N ∩ [s1, s2)

and for every P = (P 1, P 2, P s) ∈ L̄N , we define hP := min
P̃∈LN\H(T ), P̃ s>P s

|P̃ −P | (see Figure

4.13). Then the constraint set Ch, Kh1 and Kh2 can be defined as

Ch =
{
ṽh ∈ Rq : ṽhk ∈ [0, 1], ṽhk = 1 if P s

k = 0, ṽhk = 0 if P s
k = 1,

ṽhk = 1hu(µ+,µ−) if Pk ∈ D(T ) ∩ ∂
(
[0, 1]2

)
× [0, 1]

}
,

Kh1 =
{
φ̃h = (φ̃hx, φ̃hs ) ∈ (Rq)3 : φ̃hs ≥ 0,∣∣∣ ∑
Pk∈L̄

s1,s2
N

hPk(φ̃hx)k
∣∣∣ ≤ |s2 − s1|α ∀ ground nodes N ∈ N (T ) ∀ s1 < s2

}
,

Kh2 =
{
φ̃h = (φ̃hx, φ̃hs ) ∈ (Rq)3 : φ̃hs ≥ 0, |φ̃hx| ≤ a,∣∣∣ ∑
Pk∈L̄

s1,s2
N

hPk(φ̃hx)k
∣∣∣ ≤ min{|s2 − s1|+ ε, a|s2 − s1|}

∀ ground nodes N ∈ N (T ) ∀ s1 < s2
}
,

where, as before, (φ̃hx)k = φ̃hx(Pk) for a Pk ∈ D(T ).
Remark 4.4.1. In Section 2.5.2, we stated the independence of s-lines in the absence of
xy-hanging nodes. Now that we defined the constraint sets Kh1 and Kh2 in terms of s-lines,
we can benefit of this property: By setting

Kh,s1,s21 :=
{
φ̃h = (φ̃hx, φ̃hs ) ∈ (Rq)3 : φ̃hs ≥ 0,∣∣∣ ∑
Pk∈L̄

s1,s2
N

hPk(φ̃hx)k
∣∣∣ ≤ |s2 − s1|α ∀ ground nodes N ∈ N (T )

}
,

Kh,s1,s22 :=
{
φ̃h = (φ̃hx, φ̃hs ) ∈ (Rq)3 : φ̃hs ≥ 0,∣∣∣ ∑
Pk∈L̄

s1,s2
N

hPk(φ̃hx)k
∣∣∣ ≤ min{|s2 − s1|+ ε, a|s2 − s1|} ∀ ground nodes N ∈ N (T )

}
,

Kh,a2 :=
{
φ̃h = (φ̃hx, φ̃hs ) ∈ (Rq)3 : |φ̃hx| ≤ a

}
,

we obtain

Kh1 =
⋂

s1<s2

Kh,s1,s21 , Kh2 =
( ⋂
s1<s2

Kh,s1,s22

)
∩ Kh,a2 ,

thus, the projection onto the sets can be performed independently from each other, resulting
in an increased efficiency of the overall method.
Remark 4.4.2. If the triangular prism grid is designed as a partition of the image domain
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[0, 1]3, the set of degrees of freedom as defined in Section 2.5.2 does not contain any point
with s-coordinate equal to 1, due to the fact that triangular prism elements must be
formally defined as half-open in order to guarantee well-posedness of the function space
S1,0(T ). However, to include nodes with s-coordinate 1 in D(T ), one can simply add
another horizontal “slice” of prism elements such that the full grid contains the region
[0, 1]3 as a proper subset.

4.4.2. Algorithm
Similar to the case of a finite difference discretization, we apply a primal-dual algorithm
[26] to the discrete saddle point problem and perform the projection onto the convex set
Kh via an iterative Dykstra routine [15].
Starting on a uniform low-resolution grid T0, we iterate until a certain convergence criterion
is satisfied. Afterwards, some selected grid elements are refined with respect to a specified
refinement criterion (which will be further discussed in Section 4.4.4) to obtain T1 and
the solution (vh, φh) is interpolated to the new set of degrees of freedom in T1. Starting
with the result from the first round, we repeat the iteration on the new adaptive grid.
For the sake of simplicity, in the following we will denote the coefficient vector with vh, if
ambiguity is beyond question.
The whole procedure is presented in Algorithm 5. The crucial difficulties of this method
appear in the projection onto the convex set Kh.

4.4.3. Projection onto Kh

Let us have a closer look at the projection in the update of φ within Algorithm 5. In case
of a full uniform grid T0, the projection routine stays the same as in case of the finite
difference discretization (cf. Section 4.3). Since we maintained the piecewise constancy of
the variables along s-direction, it is straightforward to show that, as before, it is sufficient to
consider constraints between degrees of freedom (Theorem 4.2.3, with the simple extension
that within one element the finite element function is linear in x, and one can easily show
that for any x ∈ [0, 1]2 which does not coincide with a degree of freedom, the corresponding
constraints are satisfied).
In case of an adaptive refinement Tt, the situation is slightly changed by the occurrence of
s-hanging nodes (we refer to Section 2.5 for a clear definition of a hanging node in case of
a semi-regular triangular prism grid). As mentioned before, these nodes are not treated
as degrees of freedom, but are interpolated from the finite element function within the
corresponding element. Thus, these nodes are simply not considered within the discrete
version of the constraint sets Kh1 ,Kh2 . As a consequence, the projection routine roughly
stays the same as in case of finite differences, where only the space between consecutive
degrees of freedom within one s-line might vary (cf. Figure 4.14).
Remark 4.4.3. Note that the projection method would change significantly in the presence
of xy-hanging nodes. On the one hand side, the independence of different s-lines is lost,
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Algorithm 5 Adaptive primal-dual algorithm for urban planning and branched transport
function OptimalTransportNetworkFE(ustart,τ ,σ,θ,numRefinements)

Set vstart = 1hustart , φstart = (φstart1 , φstart2 , φstarts ) = 0
for run = 0, . . . , numRefinements do

Set matrix M = (M1,M2,M s)T
if run=0 then

v0 = vstart, φ0 = φstart

else
Interpolate results: v0 = Int(vlastRun), φ0 = Int(φlastRun), v̄0 = v0

end if
while Not converged do

φk+1 = PKh(φk + σMv̄k)
vk+1 = PCh(vk − τM∗φk+1)
v̄k+1 = vk+1 + θ(vk+1 − vk)
k ← k + 1

end while
vlastRun = vend, φlastRun = φend

v = vend, φ = φend

if run < numRefinements then
Refine grid

end if
end for

end function
return v, φ

s

xL4,0

φhx
on L4,0

sLN

Figure 4.14.: Left: Two-dimensional adaptive grid with s-hanging nodes. All s-lines are
independent of each other. Right: Possible values of φhx on s-line LN in the grid on the
left. Hanging nodes are interpolated from the node below.
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which causes the refinement routine to become much more inefficient since s-lines cannot
be treated separately. On the other hand side, the function φhx might have jumps in
s-direction at points which are neither a degree of freedom nor a hanging node. Thus, it is
no longer sufficient to test the integral inequality constraints between degrees of freedom
only (not even if hanging nodes are included).

4.4.4. Refinement criteria
In the last step of Algorithm 5, certain elements of the current grid are refined. The goal
of any adaptive refinement technique naturally is to achieve the same solution as computed
on a fully uniform grid on the finest desired resolution. Hence, the choice of a suitable
refinement criterion is crucial.
For different classes of partial differential equations, there have been several suggestions
of local error estimates which admit lower and upper bounds for the true error under
the assumption that the true solution is known (see for instance [64]). In the context of
variational problems, a posteriori error estimates for uniformly convex energy functionals
were introduced ([59], [10], among others). Unfortunately, the requirements for these error
estimates do not hold in the case of the lifted branched transport and urban planning
functionals.
Another natural and intuitive idea is to refine elements where the local gradient of the
three-dimensional solution is high, in other words, where the solution is not close to being
constant. Restricting ourselves to the variable vh, we define

ηT (vh) := 1
|T |

∫
T
|Dhvh| dx ds

with the operator Dh = (∇x1 ,∇x2 , Ds)T as in (4.12) and refine elements T where

ηT (vh) ≥ λ max
S∈T

ηS(vh)

for a λ ∈ [0, 1]. Although this strategy is computationally cheap and easy to handle,
gradient refinement only takes the current grid structure into account and neglects any
information about proximate steps (possibly leading to redundantly refined elements).
In order to obtain the same result as on a fully uniform high resolution grid T̄ , one would
need to compare the result on a locally refined grid Tt with the solution on T̄ and identify
those regions where the local refinement needs to be improved. This strategy indeed would
annihilate the advantages taken from grid adaptivity. In order to relax this approach, one
can take one step backward and approximate a solution on a grid T̃t+1, which arises from
Tt by refinement of every element in every direction. Instead of performing a complete
primal-dual algorithm on T̃t+1, we want to exploit a local version of the primal-dual gap in
order to identify elements which have to be refined.
To this end, we recall the definition of the primal-dual gap and afterwards define a localized
version. Let X, Y be two Hilbert spaces andM be a continuous linear operatorM : X → Y .
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Then we consider a general saddle point problem

inf
x∈X

sup
y∈Y
〈Mx, y〉Y +G(x)− F ∗(y), (4.13)

where G : X → R and F : Y → R are two convex, lower semi-continuous functions and
F ∗ denotes the convex conjugate of F ,

F ∗(ỹ) = sup
y∈Y

(
〈ỹ, y〉Y − F (ỹ)

)
.

The primal-dual gap for the saddle point problem (4.13) is given by

∆(x, y) := G(x) + F (Mx) + F ∗(y) +G∗(−M ∗y).

We can rewrite ∆(x, y) by inserting the definition of the convex conjugate and F = F ∗∗

(since F is convex and lower semi-continuous) and obtain

∆(x, y) = G(x) + F ∗∗(Mx) + F ∗(y) +G∗(−M ∗y)

= G(x) + sup
ỹ∈Y

(
〈ỹ,Mx〉Y − F ∗(ỹ)

)
+ sup

x̃∈X

(
〈x̃,−M∗y〉X −G(x̃)

)
= sup

ỹ∈Y

(
〈ỹ,Mx〉Y − F ∗(ỹ) +G(x)

)
− inf

x̃∈X

(
〈y,Mx̃〉Y +G(x̃)− F ∗(y)

)
.

For a primal-dual optimal pair (x∗, y∗), the primal-dual gap equals zero. Thus, the discrete
primal-dual gap can be used as a stopping criterion for the convergence of a primal-dual
algorithm. If the algorithm converged, the discrete solution (xh, yh) ∈ Xh × Y h satisfies

∆h(xh, yh) = sup
ỹ∈Y h

(
〈ỹ,Mxh〉Y h−F ∗(ỹ)+G(xh)

)
− inf
x̃∈Xh

(
〈yh,Mx̃〉Y h+G(x̃)−F ∗(yh)

)
= 0.

Here, Xh ⊂ X and Y h ⊂ Y are finite-dimensional spaces, for instance the spaces of
piecewise polynomial continuous functions as in the standard finite element case. Note that
the occurring supremum (and the infimum, respectively) is taken in yh (xh) by definition
of (xh, yh).
The idea is now to replace the function spaces Xh and Y h in the occurring infimum and
supremum term by larger function spaces X̃h and Ỹ h with Xh ⊂ X̃h, Y h ⊂ Ỹ h. By this
we obtain

sup
ỹ∈Ỹ h

(
〈ỹ,Mxh〉Ỹ h − F ∗(ỹ) +G(xh)

)
− inf

x̃∈X̃h

(
〈yh,Mx̃〉Ỹ h +G(x̃)− F ∗(yh)

)
≥ 0. (4.14)

Since the subproblems are solved on a larger space, the variables x̃ and ỹ have more degrees
of freedom and thus might yield a better result than xh and yh. In terms of adaptive
finite element spaces, if all terms involved can be evaluated locally (i.e. on each element
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independently) and if X̃h and Ỹ h are chosen such that the underlying grid is a uniform
refinement of the one from Xh and Y h, (4.14) might be used to decide whether a finer
element leads to a better solution in some sense.
To be more precise, let us go back to the saddle point problem (4.11). Let (v, φ) ∈
S1,0(Tt)× (S1,0(Tt))3 be the discrete primal-dual optimal pair on an adaptive grid Tt. If
Tt+1 is a refinement of Tt, then obviously S1,0(Tt) ⊂ S1,0(Tt+1). For the sake of readability,
we set St := S1,0(Tt). Then, by (4.14) we have

sup
φ̃∈S3

t+1

(
〈φ̃, Dhv〉S3

t+1
+ ιCh(v)︸ ︷︷ ︸

=0

−ιKh(φ̃)
)
− inf

ṽ∈St+1

(
〈φ,Dhṽ〉S3

t+1
+ ιCh(ṽ)− ιKh(φ)︸ ︷︷ ︸

=0

)
≥ 0,

where the second and last term vanish because of (v, φ) being an optimal pair. Assume
that the supremum (the infimum, respectively) is taken in φopt (vopt). Thus we obtain

sup
φ̃∈S3

t+1

(
〈φ̃, Dhv〉S3

t+1
− ιKh(φ̃)

)
− inf

ṽ∈St+1

(
〈φ,Dhṽ〉S3

t+1
+ ιCh(ṽ)

)
= 〈φopt, Dhv〉S3

t+1
− 〈Dh∗φ, vopt〉St+1 + 〈φ,Dhv〉S3

t
− 〈φ,Dhv〉S3

t

= 〈φopt − φ,Dhv〉S3
t+1
− 〈Dh∗φ, vopt − v〉St+1

=
∫

Ω×R
(φopt − φ) ·Dhv −Dh∗φ · (vopt − v) dxds

=
∑
T∈Tt

∫
T

(φopt − φ) ·Dhv −Dh∗φ · (vopt − v) dxds

where we added zero in the second line. Let us fix the following definition.

Definition 4.4.4 (Local primal-dual gap). Let (v, φ), Tt and Tt+1 as above, then for every
element T ∈ Tt we define

∆T (v, φ) :=
∫
T

(φopt − φ) ·Dhv −Dh∗φ · (vopt − v) dxds,

with

vopt = argmin
ṽ∈St+1

(
〈φ,Dhṽ〉S3

t+1
+ ιCh(ṽ)

)
φopt = argmax

φ̃∈S3
t+1

(
〈φ̃, Dhv〉S3

t+1
− ιKh(φ̃)

)
.

∆T (v, φ) is called local primal-dual gap.

Note that vopt and φopt live on a finer grid than v and φ.
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Figure 4.15.: Optimal network for branched transport from one mass point at the top
to two mass points at the bottom of the domain. Left: Profile of the three-dimensional
solution v. Middle: Two-dimensional solution obtained by delifting of v. Right: Optimal
network structure.

4.4.5. Results

We implemented the algorithm described above in C++, where the grid and corresponding
finite element classes are based on the QuocMesh library [57], where we added some
additional features such as the adaptive prism grid and the corresponding operators. As in
the case of finite differences, we simulated different network structures for both branched
transport and urban planning problems. For all the results which will be presented in the
following, we chose θ = 1 and σ = τ = 1

|M |2 with |M | denoting the Frobenius norm of the
finite element matrix M . Furthermore, the applied refinement criterion is a combination
of large gradient and local primal-dual gap refinement as explained in Section 4.4.4.
In order to illustrate the adaptive grid structure in both three-dimensional and two-
dimensional image, we created a simple example with one mass point at the top and
two mass points at the bottom of the domain Ω and computed the optimal branched
transportation network. Here, one can clearly see that the algorithm keeps a coarse
resolution in regions where the lifted image remains constant and refines adaptively close
to the edge set (see Figure 4.15).
To compare the results obtained on an adaptive triangular prism grid with the finite
difference approach introduced in Section 4.3, we repeated the study of transport between
four evenly-spaced points at the top and bottom of the domain (cf. Figures 4.7 and 4.8)
for different parameter sets. The optimal networks are shown in Figures 4.16 and 4.17. As
expected, most of the results equal the finite difference solutions except for example 3O
in the branched transport experiments, where the parameter α lies close to a bifurcation
point, where the topology of the optimal network changes. While the finite difference
algorithm preferred four straight lines over the true optimal network, the method based on
triangular prism grids converges to a three-dimensional solution which contains values of
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0.5 and so does not correspond to a characteristic function of the subgraph of a piecewise
constant two-dimensional image. This behaviour suggests that the minimizer of the relaxed
energy functional can indeed be non-binary (cf. Section 4.2) and the discretization might
suffer from some kind of grid bias.
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Figure 4.16.: Parameter study for branched transport. Top: Plot of the manually
computed minimal energy for different values of ε = 1− α. The line type indicates the
optimal network topology. Bottom: Numerically computed optimal fluxes for evenly
spaced values of α in the same range. The numerically obtained network topologies match
the predicted ones except for example 3O, where the three-dimensional solution is not
binary, but a convex combination of the binary solutions to the topologies consisting of
four straight lines and three trees, where the latter possibly represents a local minimizer.

In order to simulate more complex branching structures, we repeated the test with 16
evenly-spaced sources and sinks respectively as well as the transport from a single source in
the middle to 32 sinks on the boundaries of a circular domain (Figures 4.18 and 4.19). The
higher complexity of the network structures requires a relatively high spatial resolution,
which is a very crucial issue in case of the previously introduced uniform finite difference
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Figure 4.17.: Parameter study for urban planning. Top: Plot of the manually computed
minimal energy for different values of ε and fixed a = 5. The line type indicates the optimal
network topology. Bottom: Numerically computed optimal fluxes for evenly spaced values
of ε in the same range. The numerically obtained network topologies match the predicted
ones. Note that the fifth topology is never optimal for this choice of a = 5, but can be for
different values of a.

discretization (cf. Figures 4.10 and 4.12). Due to the adaptive grid refinement, one can now
easily achieve a local resolution of (210)2 grid nodes in two dimensions without drastically
extending the overall computation time. We will discuss the impact of adaptivity in more
details in Section 4.4.6.
A disadvantage of the functional lifting approach lies in the fact that the given measures
µ+, µ− need to have support on the boundaries of the image domain. In case of transport
from a single source in the middle to sinks on the boundaries of a circle, this can be overcome
by additionally defining some parts of Ω \ ∂Ω as “boundaries” and, as a consequence,
reducing the inpainting region by fixing the image values in some elements. A similar trick
can be applied in order to handle examples where both the given initial and final measure



92 4 Numerical optimization of transportation networks via functional lifting

Branched
Transport

q q q q q q q q q q q q q q q q

q q q q q q q q q q q q q q q q

α = 0.93
q q q q q q q q q q q q q q q q

q q q q q q q q q q q q q q q q

α = 0.8
q q q q q q q q q q q q q q q q

q q q q q q q q q q q q q q q q

α = 0.6
q q q q q q q q q q q q q q q q

q q q q q q q q q q q q q q q q

α = 0.2

Urban
Planning

q q q q q q q q q q q q q q q q

q q q q q q q q q q q q q q q q

ε = 0.015
q q q q q q q q q q q q q q q q

q q q q q q q q q q q q q q q q

ε = 0.2
q q q q q q q q q q q q q q q q

q q q q q q q q q q q q q q q q

ε = 0.8
q q q q q q q q q q q q q q q q

q q q q q q q q q q q q q q q q

ε = 1.5

Figure 4.18.: Numerical optimization results for transport from 16 almost evenly spaced
point sources to 16 point sinks of the same mass. For the urban planning results, we chose
a = 5.

live in the interior of the image domain. In [13], the authors propose a method where
an initial backwards transport path from µ− to µ+ is predefined and fixed during the
iteration process. In terms of the functional lifting approach, this is equivalent to fixing
some parts of the interior of Ω which correspond to the backwards path Σ̃ as “boundaries”.
This procedure allows an interpretation of the desired transport network as a circular
flow, where only the forward part is optimized. We made use of the approach in order to
simulate the transport form one source to two, three, four or five evenly distributed sinks,
respectively. We approximated the Steiner tree problem by choosing a value of α close
to zero in case of branched transport and compared the results with the urban planning
network structure for a cost functional which is affine in the transported mass (see Figure
4.20). In the later course of this work, we repeat this experiment making use of a phase
field approximation approach described in Chapter 5.

4.4.6. Uniform versus adaptive grid
In the course of this chapter, we introduced an adaptive grid approach to tackle the
functional lifting problem arising from the branched transport and urban planning problem.
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Figure 4.19.: Numerical optimization results for transport from one source in the middle
of a circle to 32 almost evenly spaced point sinks of the same mass on the boundaries. For
the urban planning results, we chose a = 5. The two-dimensional results are displayed
using a periodic colour coding, the discontinuity set corresponds to the transportation
network.
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Figure 4.20.: Numerical optimization results from one point source to two, three, four or
five point sinks respectively. The result for branched transport correspond to the parameter
α = 0.001 and for the urban planning results we chose a = 1010, ε = 1.

It thus remains to accumulate evidence that the presented ideas are suitable in some sense,
that is

(a) the obtained adaptive grid solution should qualitatively equal the solutions obtained
on a fully uniform grid with the same resolution,

(b) the programme runtime is severely decreased by adaptivity depending on the problem
size.

Concerning equality of the solutions, a comparison of the result in Section 4.3.4 using the
finite difference method on a uniform grid with those presented in Section 4.4.5 already
suggests that there is only a minor grid structure effect on the qualitative behaviour of the
optimal network.
In order to reduce the comparison to local grid size effects (and thus exclude any effect
arising from the discretization method), we performed some additional numerical examples
using finite elements on triangular prism grids for both adaptive and uniform experiments.
Figure 4.21 displays the results for two different branching parameters. As expected,
although the grid structure is significantly different in some regions, it roughly coincides
along the transportation network edges and as a consequence, the resulting solutions look
very much alike.
In order to compare the efficiency of the adaptive grid approach, we performed numerical
experiments for a particular example on multiple different problem sizes. As a test case,
we used the example of branched transport from four to four mass points with a branching
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Figure 4.21.: Comparison between between an optimal network obtained on an adaptive
and a uniform grid for branched transport from four to four mass points with different
branching parameters. Columns one to three show the result on an adaptive grid after a
certain number of refinement steps, columns four and five compare the result (without
showing the grid) on the resulting adaptive grid and the corresponding uniform grid with
the same final resolution.

parameter α = 0.5, such that a transportation network consisting of a single tree is clearly
favoured (cf. Figure 4.16). In order to decrease the runtime even further, we additionally
applied a preconditioning step in each refinement round by adjusting the finite element
operators with locally varying step sizes as described in [25]. In the adaptive case, after
every iteration round we computed the absolute value of the local gradient of the primal
variable and refined all elements where the value is higher than 15% of the overall maximum.
The number of iterations in each round was fixed to 10000 in the primary rounds and
100000 in the last adaptive round and in the uniform case respectively. The maximal
number of projection iterations was set to 100, where the projection stops if the dual
solution satisfies every constraint. In order to quantify the final results, we computed the
primal-dual gap after the iteration process was completed and compared the resulting
transport network with the underlying ground truth.
We tested the result obtained on a fully uniform grid on different resolutions with the
corresponding adaptive result, where we distinguish between refinement of the image
domain (xy) only, the image range (s) only and both at the same time. The grid resolution
is described by its level, where a uniform grid of xy-level l1 ∈ N and s-level l2 ∈ N consists
of 22l1+1 · 2l2 prism elements in total. In case of adaptivity, we started with a fixed low
resolution and performed as many refinement rounds as necessary to obtain the same
minimal element size as in the uniform case (note that two refinement rounds are necessary
to proceed from a xy-level l1 grid to an adaptive xy-level l1 + 1 grid, since xy-refinement
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Uniform Adaptive
xy numEls numDofs time error runs numEls numDofs %Els %Dofs time error
4 4096 2601 26 sec. 0.0225 0 4096 2601 100 100 26 sec. 0.0225
5 16384 9801 96 sec. 0.0192 2 8400 5112 51.3 52.2 53 sec. 0.0096
6 65536 38025 375 sec. 0.0165 4 15856 9486 24.2 24.9 101 sec. 0.0048
7 262144 149769 1333 sec. 0.0017 6 32904 19431 12.6 12.9 211 sec. 0.0022
8 1048576 594441 7769 sec. 0.0009 8 70096 40914 6.7 6.9 441 sec. 0.0012
9 4194304 2368521 28042 sec. 0.0007 10 142976 82881 3.4 3.5 987 sec. 0.0007
10 - - - - 12 347800 200025 2.1 2.1 2448 sec. 0.0003

Table 4.1.: Comparison between uniform and adaptive grid iteration for a fixed s-resolution
of level 3, where only the image domain (xy) is refined. For each adaptive experiment, the
initial xy-level is 4. The first column refers to the xy-level of the uniform grid and highest
local xy-resolution of the final adaptive grid respectively. The computed error equals the
primal-dual gap in the last iteration. The experiment on a uniform grid of xy-level 10
resolution is omitted due to its high runtime and memory consumption.

is accomplished via bisection of an element). For all results, we stated the number of
elements, the number of degrees of freedom (dofs), the overall runtime and the final error
corresponding to a numerically computed primal-dual gap using the MOSEK optimization
software [5]. All experiments were executed on an Intel Core i7 6× 3.60 GHz CPU with
hyper-threading, where the projection onto the convex constraint set K1 is parallelized.
The results are displayed in Tables 4.1 to 4.3. Figures 4.22 to 4.24 visualize the overall
runtime for different problem sizes on a logarithmic scale.
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Figure 4.22.: Left: Runtime comparison between a uniform grid and an adaptive refine-
ment for a fixed s-resolution on a logarithmic scale. Right: Percentage of the number of
elements in each adaptive experiment compared to the total number of elements in a fully
uniform grid of the same level. The values correspond to the numbers in Table 4.1.

The results clearly prove the superiority of the adaptive refinement approach compared to
the iteration on a uniform grid in this particular example. While the resulting optimal
network looks similar, the adaptive iteration is significantly faster and, referring to very
high xy- or s-resolutions, allows for a suitable solution in the first place. Especially in the
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Uniform Adaptive
s numEls numDofs time error runs numEls numDofs %Els %Dofs time error
2 8192 5445 50 sec. 0.0021 0 8192 5445 100 100 50 sec. 0.0021
3 16384 9801 96 sec. 0.0192 1 10453 6743 63.8 68.8 63 sec. 0.0067
4 32768 18513 230 sec. 0.0192 2 12983 8296 39.6 44.8 81 sec. 0.0239
5 65536 35937 756 sec. 0.0175 3 15912 10066 24.3 17.0 104 sec. 0.0091
6 131072 70785 3893 sec. 0.1529 4 19202 12049 14.7 17.0 148 sec. 0.0590
7 262144 140481 54715 sec. 0.0238 5 22969 14301 8.8 10.2 166 sec. 0.0084
8 - - - - 6 27290 16892 5.2 6.0 218 sec. 5.1695

Table 4.2.: Comparison between uniform and adaptive grid iteration for a fixed xy-
resolution of level 5, where only the image range (s) is refined. For each adaptive
experiment, the initial s-level is 2. The first column refers to the s-level of the uniform
grid and highest local s-resolution of the final adaptive grid respectively. The computed
error equals the primal-dual gap in the last iteration. The experiment on a uniform grid of
s-level 8 resolution is omitted due to its high runtime and memory consumption. Note that
the very last adaptive experiment did not seem to converge as stated by a relatively high
primal-dual gap, which we believe is caused by a slow convergence of the dual problem,
however the result looks as expected.
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Figure 4.23.: Left: Runtime comparison between a uniform grid and an adaptive refine-
ment for a fixed xy-resolution on a logarithmic scale. Right: Percentage of the number of
elements in each adaptive experiment compared to the total number of elements in a fully
uniform grid of the same level. The values correspond to the numbers in Table 4.2.

case of an adaptive s-refinement, the runtime increases linearly instead of exponentially,
which is probably due to the scaling of the number of constraints of order O(n2) for n
nodes in one s-line. The acceleration is explained by the decreasing percentage of the total
number of elements and degrees of freedom compared to the uniform grid of the same
level, which falls below one percent in some examples. Note also that in most experiments
the primal-dual gap is roughly of the same order in the uniform and adaptive case after a
fixed number of iterations.
Naturally the displayed results depend on the structure of the given initial and final
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Uniform Adaptive
xy/s numEls numDofs time error runs numEls numDofs %Els %Dofs time error
4/2 2048 1445 14 sec. 0.0069 0 2048 1445 100 100 14 sec. 0.0069
5/3 16384 9801 96 sec. 0.0192 2 7111 4576 43.4 46.7 44 sec. 0.0101
6/4 131072 71825 855 sec. 0.0165 4 30961 18800 23.6 26.2 184 sec. 0.0431
7/5 1048576 549153 20014 sec. 0.0013 6 91391 53596 8.7 9.8 632 sec. 0.0027
8/6 8388608 4293185 224221 sec. 0.0047 8 146825 84749 1.7 2.0 1405 sec. 0.0019
9/7 - - - - 10 295227 167030 0.4 0.5 3438 sec. 0.0008
10/8 - - - - 12 667289 370570 0.1 0.1 9767 sec. 0.0003

Table 4.3.: Comparison between uniform and adaptive grid iteration. For each adaptive
experiment, the initial xy/s-level is 4/2. The first column refers to the xy/s-level of the
uniform grid and highest local xy/s-resolution of the final adaptive grid respectively. The
computed error equals the primal-dual gap in the last iteration. The experiments on a
uniform grid of xy/s-level 9/7 or higher are omitted due to their high runtime and memory
consumption.

measures. A higher network complexity such as in case of transport from 16 to 16 mass
points requires a higher number of refined elements in each round and as a consequence,
the runtime of the adaptive algorithm deviates less from the uniform iteration. However,
even for more complex examples there always exists a level threshold from which the
adaptive approach starts to pay off eventually.
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Figure 4.24.: Left: Runtime comparison between a uniform grid and an adaptive refine-
ment on a logarithmic scale. Right: Percentage of the number of elements in each adaptive
experiment compared to the total number of elements in a fully uniform grid of the same
level. The values correspond to the numbers in Table 4.3.

4.4.7. Comparison of different refinement strategies
In order to obtain the results presented in Section 4.4.5, we employed a combined gradient
and local primal-dual gap refinement strategy. However, since both methods come along
with certain advantages and drawbacks, we want to investigate the impact of both
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approaches separately.
The first aspect which comes to mind considering the differences of the two strategies is the
fact that the gradient refinement is static, meaning that it can only incorporate information
from the current state of the primal variable, neglecting information concerning the dual
variable as well as any future perceptions. In general, if the primal variable does not
admit a large gradient within one element, this element will not be refined although it
might contain some parts of the exact transportation network. Thus, there is no guarantee
that a successive gradient refinement yields the optimal solution on a fully uniform high
resolution grid. Additionally, gradient refinement certainly leads to redundantly refined
elements especially concerning the lifted dimension, since any element containing a jump
from 1 to 0 in s-direction will be refined regardless of the necessity of an additional grid
layer.
On the other hand, the local primal-dual gap by definition is unable to look more than one
refinement step ahead. As a consequence, one can explicitly construct examples depending
on the underlying grid structure where the gradient refinement is of certain advantage
for obtaining sharp edges in the primal variable. In Figure 4.25, we display an example
where the primal-dual gap fails to refine any element. Note that since the refinement is
performed via element bisection, refinement of the initial grid does not provide any new
node on the region boundaries. Therefore, the primal variable v (being prescribed on the
boundaries) does not change on a higher resolution grid, thus the local primal-dual gap
equals zero everywhere and no element is refined. In contrast to this, starting with a grid
which is already refined once and thus symmetric, by the next refinement new boundary
nodes are introduced, thus the gap is non-zero at least in some elements.
Another drawback of the gap refinement lies in the lack of a criterion for distinguishing
between refinement in xy- or s-direction. While this criterion is naturally implemented in
the gradient refinement, it would require an independent local gap computation on both a
xy-refined and a s-refined grid, coming along with an additional runtime increase. Just as
in case of gradient refinement, this might lead to some redundantly refined elements.
Although both methods admit different desirable features, we observe that the qualitative
variations in comparison to the fully uniform grid solution are scarcely perceptible. In
Figure 4.26, we juxtapose the numerical solutions obtained on an adaptive grid via gradient
refinement, local primal-dual gap refinement (where we additionally refine the upper and
lower boundary elements to prevent the boundary problems explained before) and on a
fully uniform grid. Both methods refine the relevant regions where the network establishes,
while the gradient method seems to be slightly advantageous since the refined elements
remain closer to the network edges.

4.4.8. Discussion
We have discussed a novel adaptive finite element approach for numerical simulations of the
lifted branched transport and urban planning problems. The presented approach tackles
the main difficulties arising from functional lifting such as higher dimensionality and a
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Gradient, after run 0 Gradient, after run 2 Gradient, after run 4

Local gap, after run 0 Local gap, after run 2 Local gap, after run 4

Local gap, after run 0 Local gap, after run 2 Local gap, after run 4

Figure 4.25.: Comparison between gradient (first row) and local primal-dual gap refine-
ment (second and third row). In the second row, refining all elements of the leftmost image
does not provide any new node on the boundaries, thus according to the local gap, no
element needs to be refined. In contrast, by starting from a refined grid in the third row,
the boundary elements are refined by the local gap criterion.

possibly infinite number of non-local constraints and is therefore most likely also applicable
to more general problems of this form. We developed an algorithmic framework for the
saddle point problem based on [26] as well as the projection onto the non-local constraint
set, discussed some refinement criteria and presented numerical simulation results. The
latter yield good approximations of the optimal transportation networks and prove to be
clearly beneficial for higher network complexities and higher image resolutions.
The adaptive grid approach promises to be a useful tool for functional lifting problems,
however it comes along with several difficulties. In order to exploit the full potential of
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Figure 4.26.: Comparison between different refinement strategies on the example of
branched transport from two to two mass points for α = 0.01.

adaptivity, one would need to carefully study the effects of optimal refinement criteria
and rigorously prove that a refinement strategy yields the same solution as on a uniform
grid. Besides, an additional element coarsening could eliminate the overhead caused by
redundantly refined elements. Finally, the runtime discrepancy between uniform and
adaptive iterations might be further increased by a more efficient implementation of the
refinement routine, which we do not claim to be optimized in every detail.
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5
A phase field approximation

approach

Inspired by elliptic approximations of free-discontinuity problems, where a part of the
desired output of a model consists of some kind of lower-dimensional set, phase field
approximations have proven to be a practical tool for numerical purposes. Similar to the
approach of Ambrosio–Tortorelli (see Section 2.4.1) in approximating the Mumford–Shah
problem, there have been several successful attempts to make use of this idea in the context
of finding optimal transportation networks. For the branched transport cost, in [51] the
authors introduce the functional

Mα
ε (v) =

∫
Ω
εα−1|v(x)|β + εα+1|∇v(x)|2dx

on the space W 1,2(Ω) and prove Γ-convergence to cMα in dimension two for some constant
c (cf. Theorem 3.5.1 and 3.5.2). The underlying idea, similar to the Ambrosio–Tortorelli
approach, is to approximate the measure F concentrated on a one-dimensional set by a
“smoothed” version v, where the smoothness is governed by a parameter ε. A comparable
result has been provided, for instance, by [24] for the Steiner tree problem, a special case
of both the branched transport and the urban planning model. The authors introduce the
energy

Sαε (σ, ϕ) =
∫

Ω

1
2εϕ

2|σ|2dx+
∫

Ω

ε

2 |∇ϕ|
2 + 1

2ε(1− ϕ)2dx

for div σ = (µ+ − µ−) ∗ ρε and η ≤ ϕ ≤ 1 for some smoothing kernel ρε and η
ε
→ α for

ε → 0. Here, the one-dimensional measure F is represented by a smooth vector-valued
measure σ, which is forced to be non-zero on the desired one-dimensional set Σ. The
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phase field ϕ is close to 1 away from this set. Thus, a similar Γ-convergence result can be
achieved, stating that Sαε Γ-converges to the functional

Sα(σ, ϕ) =
∫

Σ
(1 + αF̃ )dH1

if ϕ ≡ 1 and σ = F̃ ê(H1xΣ) (see Theorem 3.5.6).
While both the branched transport and the Steiner tree problem have already been
investigated using a phase field approximation, the urban planning problem (and thus,
the generalized urban planning problem as a superordinate case) have only been tackled
in a theoretical manner by a general framework to approximate transportation network
problems via phase field energy potentials in [67]. In this chapter we propose a more
specific phase field model which was developed in [33] based on the one introduced by [24].
It covers the class of generalized urban planning problems as defined in Section 3.3.4. We
start with a description of the model in detail, cite some analytical results and provide a
description of the numerical optimization procedure used to produce the computational
results. We conclude with a short discussion about the advantages and disadvantages of
the proposed method.

5.1. Model

Following the course of [33], we aim at investigating a piecewise affine transportation cost
function

c(m) = min
i=1,...,N

{a0m, a1m+ b1, . . . , aNm+ bN}

with a0 > a1 > . . . > aN , b1 < . . . < bN <∞. In order to cover the case where no diffuse
part is allowed, we make the additional assumption that for a0 =∞,

c(m) =
0 if m = 0,

min
i=1,...,N

{a0m, a1m+ b1, . . . , aNm+ bN} otherwise.

The generalized urban planning cost functional (as defined in Section 3.3.4) is then given
by

Ea,bg (F) =
∫

Σ
c(F̃ (x))dH1(x) + c′(0)|F⊥|(Ω)

for a0 <∞ and

Ea,bg (F) =

∫

Σ c(F̃ (x))dH1(x) if F⊥ = 0,
∞ otherwise

for a0 = ∞, where F = F̃ êH1xΣ + F⊥ with a rectifiable set Σ ⊂ Ω, a multiplicity
F̃ : Σ→ [0,∞), an orientation ê : Σ→ S1 and a H1-diffuse part F⊥, which consists of a
Lebesgue-continuous and a Cantor part (cf. Section 2.2).
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By seizing the intuitive approach of [24], we define a functional Ẽa,b,µ+,µ−
ε : L2(Ω,R2) ×

W 1,2(Ω)N → [0,∞] by

Ẽa,b,µ+,µ−
ε (σ, ϕ1, . . . , ϕN)

=


∫

Ω min
{
a0|σ(x)|, min

i=1,...,N
{ϕi(x)2 + a2

i ε
2

bi
} |σ(x)|2

2ε

}
+∑N

i=1
bi
2

[
ε|∇ϕi(x)|2 + (ϕi(x)−1)2

ε

]
dx

if div σ = µε+ − µε−,
∞ otherwise,

where µε+, µε− are smoothed versions of µ+, µ−. Here, the vector measure σ approximates
the mass flux F , while the phase fields ϕ1, . . . , ϕN take value 1 away from Σ and are
equal to 1 in the limit ε → 0. Moreover, ϕj approaching 0 indicates the parts of the
network where the j-th term in the cost functional is cheapest, in other words where
ajm + bj = min{a0m, a1m + b1, . . . , aNm + bN}. In those parts where the linear term
has minimal costs, no phase field is active (meaning equal to 0), which corresponds to
transport outside of the network Σ.
The functional Ẽa,b,µ+,µ−

ε , though quite intuitive, involves a minimum term which is non-
convex with respect to σ. To ensure existence of a minimizer and simplify the numerical
handling, we define the following relaxed version of the cost functional [33].
Definition 5.1.1 (Phase field cost functional). Let ε > 0 and ρ : R2 → [0,∞) be a
smoothing kernel with support on the unit ball and

∫
R2 ρ dx = 1. Given the initial and

final measures µ+, µ− ∈ P(Ω), we set µε± = ρε ∗ µ± with ρε = 1
ε2
ρ( ·

ε
). Moreover, we define

the set of admissible functions as

Xµ+,µ−
ε = {(σ, ϕ1, . . . , ϕN) ∈ L2(Ω,R2)×W 1,2(Ω)N :

div σ = µε+ − µε−, ϕ1 = . . . = ϕN = 1 on ∂Ω}.

Then, the phase field cost functional is given by Ea,b,µ+,µ−
ε : Xµ+,µ−

ε → [0,∞),

Ea,b,µ+,µ−
ε (σ, ϕ1, . . . , ϕN) =

∫
Ω
ωε

(
a0,

γε(x)
ε

, |σ(x)|
)

dx+
N∑
i=1

biLε(ϕi), (5.1)

where

Lε(ϕ) = 1
2

∫
Ω
ε|∇ϕ(x)|2 + (ϕ(x)− 1)2

ε
dx ,

γε(x) = min
i=1,...,N

{
ϕi(x)2 + a2

i ε
2/bi

}
,

ωε

(
α0,

γε(x)
ε

, |σ(x)|
)

=

γε(x)
ε
|σ(x)|2

2 if |σ(x)| ≤ a0ε
γε(x)

a0(|σ(x)| − a0ε
2γε(x)) if |σ(x)| > α0ε

γε(x)

+ εp|σ(x)|2 for a0 <∞ ,

ωε

(
a0,

γε(x)
ε

, |σ(x)|
)

= γε(x)
ε

|σ|2

2 for a0 =∞
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for some p > 1.

For fixed ϕ1, . . . , ϕN and ignoring the term εp|σ(x)|2, the term ωε
(
a0,

γε(x)
ε
, |σ(x)|

)
is the

lower semi-continuous envelope with respect to σ of the original minimum term in the
functional Ẽa,b,µ+,µ−

ε (see Figure 5.1). Taking the convex envelope does not affect the
Γ-convergence result, but ensures existence of a minimizer (see Section 5.2).

|σ|

a0|σ|γε
|σ|2
2ε

ωε

Figure 5.1.: Difference between the functionals Ẽa,b,µ+,µ−
ε and Ea,b,µ+,µ−

ε . Black curve:
Sketch of the function f(|σ|) := min{a0|σ|, γε |σ|

2

2ε } for fixed γε. f is non-convex with respect
to |σ|. Red curve: Sketch of the function g(|σ|) := ωε(a0,

γε
ε
, |σ|) for fixed γε, which is the

lower semi-continuous envelope of f .

Remark 5.1.2 (Regularization term εp|σ(x)|2). For a0 < ∞, the term εp|σ(x)|2 ensures
L2(Ω,R2)-coercivity in σ, which is necessary for sequentially weak compactness of subsets
of Xµ+,µ−

ε with finite cost and thus ensures existence of a minimizer (again, see Section 5.2).
Besides, the term has no other purpose and is especially not essential for the numerical
treatment.

5.2. Analysis
Before we describe the numerical treatment of the phase field cost functional, we want
to prove existence of a minimizer in Section 5.2.1 and state the Γ-convergence and equi-
coercivity result justifying its usability as an approximation of the generalized urban
planning functional in Section 5.2.2.

5.2.1. Existence of a minimizer
As a preliminary result, we state existence of a minimizer of the phase field cost functional
[33].

Theorem 5.2.1 (Existence of a minimizer). The phase field cost functional Ea,b,µ+,µ−
ε has

a minimizer (σ, ϕ1, . . . , ϕN) ∈ Xµ+,µ−
ε .
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Proof. The functional is bounded below by 0. Moreover, choose ϕ̂1 ≡ . . . ≡ ϕ̂N ≡ 1 and
σ̂ = ∇ψ for a function ψ which solves the equation ∆ψ = µε+ − µε− on Ω with Neumann
boundary conditions ∇ψ · ν∂Ω = 0 (where ν∂Ω is the outward unit normal on ∂Ω). One
can easily show that the solution to the Poisson problem exists since

∫
Ω µ

ε
+ − µε−dx = 0

and satisfies ψ ∈ W 2,2(Ω). With this we obtain that (σ̂, ϕ̂1, . . . , ϕ̂N) ∈ Xµ+,µ−
ε and

Ea,b,µ+,µ−
ε (σ̂, ϕ̂1, . . . , ϕ̂N) <∞. Thus, the functional has a non-empty domain.

Let (σk, ϕk1, . . . , ϕkN) ∈ Xµ+,µ−
ε be a minimizing sequence with

Ea,b,µ+,µ−
ε (σk, ϕk1, . . . , ϕkN)→ inf Ea,b,µ+,µ−

ε

monotonically for k →∞. Since Ea,b,µ+,µ−
ε is coercive with respect to L2(Ω,R2)×W 1,2(Ω)N ,

the sequence (σk, ϕk1, . . . , ϕkN ) is uniformly bounded. Thus, there exists a weakly converging
subsequence (which is still indexed with k for the sake of simplicity) (σk, ϕk1, . . . , ϕkN) ⇀
(σ, ϕ1, . . . , ϕN) ∈ Xµ+,µ−

ε due to the closedness of Xµ+,µ−
ε with respect to weak con-

vergence in L2(Ω,R2) × W 1,2(Ω)N . Now consider a subsequence along which each
term Lε(ϕki ) converges and the ϕki converge pointwise almost everywhere such that
γkε (x) = min

i=1,...,N
{ϕki (x)2 + a2

i ε
2/bi} converges for almost every x ∈ Ω. In addition, from

Mazur’s lemma, a sequence of convex combinations ∑mk
j=k λ

k
jσ

j of the σk converges strongly.
Thus, up to another subsequence, pointwise and we can apply Fatou’s lemma. Hence we
have

inf Ea,b,µ+,µ−
ε = lim

k→∞
Ea,b,µ+,µ−
ε (σk, ϕk1, . . . , ϕkN)

= lim
k→∞

∫
Ω
ωε

(
a0,

γkε (x)
ε

, |σk(x)|
)

dx+
N∑
i=1

bi lim
k→∞

Lε(ϕki )

≥ lim
k→∞

mk∑
j=k

λkj

∫
Ω
ωε

(
a0,

γjε(x)
ε

, |σj(x)|
)

dx+
N∑
i=1

biLε(ϕi)

≥
∫

Ω
lim inf
k→∞

mk∑
j=k

λkjωε

(
a0,

γjε(x)
ε

, |σj(x)|
)

dx+
N∑
i=1

biLε(ϕi)

≥
∫

Ω
lim inf
k→∞

mk∑
j=k

λkjωε

(
a0, inf

i=k,...,mk

γiε(x)
ε

, |σj(x)|
)

dx+
N∑
i=1

biLε(ϕi)

≥
∫

Ω
lim inf
k→∞

ωε

a0, inf
i=k,...,mk

γiε(x)
ε

,
mk∑
j=k

λkj |σj(x)|
 dx+

N∑
i=1

biLε(ϕi)

= Ea,b,µ+,µ−
ε (σ, ϕ1, . . . , ϕN).

Remark 5.2.2. The phase field cost functional is convex in σ for fixed phase fields ϕ1, . . . , ϕN ,
but strongly non-convex in ϕ1, . . . , ϕN due to the minimum term in γε. Thus, the energy
might admit some local minima and uniqueness of a minimizer cannot be guaranteed.
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5.2.2. Γ-convergence and equi-coercivity
As in the case of the phase field approximation of the Steiner tree problem [24], the
functional Ea,b,µ+,µ−

ε Γ-converges to the generalized urban planning energy. The result is
stated in the following, for a detailed proof, we refer the reader to [33].

Theorem 5.2.3 (Γ-convergence of the phase field cost functional). Let Xµ+,µ− = {F ∈
M(Ω,R2) : div F = µ+ − µ−}. We define the functionals

Ea,b,µ+,µ−(σ, ϕ1, . . . , ϕN) =
Ea,b,µ+,µ−(σ) if σ ∈ Xµ+,µ− , ϕ1 = . . . = ϕN = 1 a.e.,
∞ otherwise,

Ea,b,µ+,µ−
ε (σ, ϕ1, . . . , ϕN) =

Ea,b,µ+,µ−
ε (σ, ϕ1, . . . , ϕN) if (σ, ϕ1, . . . , ϕN) ∈ Xµ+,µ−

ε ,

∞ otherwise.

Then, for admissible µ+, µ− ∈M+(Ω), we have

Ea,b,µ+,µ−
ε

Γ→ Ea,b,µ+,µ− ,

where the Γ-limit is with respect to the weak-* convergence in M(Ω,R2) and strong
convergence in L1(Ω)N .

Proof. See [33].

By Theorem 5.2.3, the generalized urban planning functional can indeed be approximated
by the relaxed phase field cost functional. The following result from [33] states that
the minimizers of the functional Ea,b,µ+,µ−

ε indeed approximate minimizers of the original
functional Ea,b,µ+,µ− as well.

Theorem 5.2.4 (Equi-coercivity of the phase field cost functional). For ε → 0 let
(σε, ϕε1, . . . , ϕεN) be a sequence with uniformly bounded phase field cost functional
Ea,b,µ+,µ−
ε (σε, ϕε1, . . . , ϕεN) < C < ∞. Then, along a subsequence, σε ⇀∗ σ in M(Ω,R2)

for some σ ∈M(Ω,R2) and ϕεi → 1 in L1(Ω), i = 1, . . . , N .
As a consequence, if µ+, µ− ∈ M+(Ω) are admissible and such that there exists F ∈
Xµ+,µ− with Ea,b,µ+,µ−(F) <∞, then any sequence of minimizers of Ea,b,µ+,µ−

ε contains a
subsequence converging to a minimizer of Ea,b,µ+,µ− as ε→ 0.

Proof. See [33].

For numerical purposes, Theorem 5.2.4 yields an essential result. Keeping ε fixed, one
can minimize Ea,b,µ+,µ−

ε instead of Ea,b,µ+,µ− and the minimizers of the phase field cost
functional indeed approximate the true optimal network with respect to the generalized
urban planning energy.
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Remark 5.2.5 (Discrete Γ-convergence). Note that it is not straightforward to show that
the Γ-convergence result from Theorem 5.2.3 also holds for a discretized version of the
involved functionals. This requires some additional assumptions on the relation of the
Γ-convergence parameter ε and a discrete mesh size. Such a result in case of a discrete
Ambrosio–Tortorelli approximation of the Mumford–Shah functional with finite differences
has been stated by [6].

5.3. Numerical optimization

In this section, we describe the numerical discretization using finite elements on a simple
triangular grid, present a suitable optimization scheme and show some computational
results.

5.3.1. Discretization

As before, we consider the energy functional

Ea,b,µ+,µ−
ε (σ, ϕ1, . . . , ϕN) =

∫
Ω
ωε

(
a0,

γε(x)
ε

, |σ(x)|
)

dx+
N∑
i=1

biLε(ϕi).

The proposed phase field approximation allows a simple numerical treatment with piecewise
constant and piecewise linear finite elements for the variables σ and ϕ1, . . . , ϕN , respectively.
To this end, we introduce a triangulation Th of the space Ω = (0, 1)2 with minimal mesh
size h, such that Ω = ⋃

T∈Th T̄ . For the variables, we use the finite element function spaces

X0
h = {vh ∈ L∞(Ω) : vh|T ∈ P0 ∀ T ∈ Th},

X1
h = {vh ∈ C(Ω) : vh|T ∈ P1 ∀ T ∈ Th},

where Pm denotes the space of polynomials of degree m. Hence, for a given basis of
the spaces X0

h, X
1
h, we can write the discrete counterparts of σ, ϕ1, . . . , ϕN as a linear

combination of basis functions. Then the discrete version of the phase field energy
functional reads

min
(σ,ϕ1,...,ϕN )∈X0

h×(X1
h)N

ϕ1|∂Ω=...=ϕN |∂Ω=1

Ea,b,µ+,µ−
ε (σ, ϕ1, . . . , ϕN)

under the constraint ∫
Ω
−σ · ∇λ dx =

∫
Ω
fεvh dx ∀λ ∈ X1

h,

where we abbreviated fε = ρε ∗ (µ+ − µ−) and the divergence constraint is enforced in
its weak formulation. The integrals reduce to integration over the finite element basis
functions and can be evaluated using midpoint quadrature.
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5.3.2. Optimization

Here we describe the numerical optimization strategy used to find a minimizer of the
phase field energy. Depending on the chosen parameter values, the problem requires a very
careful treatment. Due to the minimum term in γε, the problem is strongly non-convex
even for larger values of ε, and any algorithm tends to get stuck in local minima. In
the following, we distinguish between three different choices of parameters, which require
different numerical treatments.

Single phase field and no diffuse mass flux (N = 1, a0 =∞)

In case of a single phase field and a0 =∞, the phase field cost functional reads

Ea,b,µ+,µ−
ε (σ, ϕ) =

∫
Ω

γε(x)
ε

|σ(x)|2
2 + b1

2

(
ε|∇ϕ(x)|2 + (ϕ(x)− 1)2

ε

)
dx

with γε(x) = ϕ(x)2 + a2
1ε

2/b1. This energy functional is similar to the Steiner tree problem
as presented in [24], hence the employed optimization method is the same as well.
We update the variables σ and ϕ alternatingly. For the minimization with respect to σ,
we turn to an unconstrained formulation applying a dual variable λ ∈ X1

h, such that

min
σ∈X0

h∫
Ω σ·∇λ+λfε dx=0 ∀λ∈X1

h

∫
Ω

γε
ε

|σ|2

2 dx = min
σ∈X0

h

max
λ∈X1

h

∫
Ω

γε
ε

|σ|2

2 − σ · ∇λ− λfε dx

= max
λ∈X1

h

min
σ∈X0

h

∫
Ω

γε
ε

|σ|2

2 − σ · ∇λ− λfε dx,

where in the last step, we are allowed to exchange the maximum and minimum due to
standard convex duality arguments. For fixed λ, the inner minimization problem with
respect to σ can be performed explicitly by computing the optimality condition∫

Ω

γε
ε
σ · θ − θ · ∇λ dx = 0 ∀ θ ∈ X0

h,

which yields σ = ε∇λ
γε

. Inserting this into the maximization problem with respect to λ
leads to

max
λ∈X1

h

∫
Ω
−ε|∇λ|

2

2γε
− λfε dx = min

λ∈X1
h

∫
Ω

ε|∇λ|2

2γε
+ λfε dx.

The optimality condition reads∫
Ω

ε∇λ · ∇µ
γε

dx = −
∫

Ω
µfε dx ∀ µ ∈ X1

h. (5.2)
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Given the piecewise linear basis functions, this conditions reduces to a linear system of
equations for the coefficient vector of λ. Subsequently, for given λ, the optimal σ can be
computed from the above equation.
The minimization with respect to ϕ can be performed in a similar way. For fixed σ, we
can compute the optimality condition for ϕ as

∫
Ω

|σ|2ϕψ
ε

+ b1ε∇ϕ · ∇ψ + b1

ε
(ϕ− 1)ψ dx = 0 ∀ ψ ∈ X1

h with ψ|∂Ω = 0. (5.3)

Again, this reduces to a linear system of equations for the coefficient vector of ϕ, such that
the optimal ϕ can be obtained via a linear system solver.
In order to obtain a good approximation of the original generalized urban planning energy,
we start the alternating minimization process with a relatively large value of εstart and
decrease the phase field parameter up to the desired accuracy. Note that for larger ε, the
energy landscape is closer to being convex, hence the optimization process is less likely to
get stuck in local minima. The complete method is summarized in Algorithm 6.

Algorithm 6 Minimization for N = 1, a0 =∞
function SPFS(εstart, εend, Niter, a1, b1, µ+, µ−, ρεend)

Set fε = (µ+ − µ−) ∗ ρεend , σ0 = 0
for j = 1, . . . , Niter do

Set εj = εstart − (j − 1) εstart−εend
Niter−1

Set ϕj as the solution of (5.3) for given fixed σ = σj−1

Set γjε = (ϕj)2 + a2
1ε

2
j/b1

Set λj as the solution of (5.2) for given fixed γε = γjε
Set σj = εj∇λj

2γjε
end for

end function
return σNiter , ϕNiter , λNiter

Multiple phase fields and no diffuse mass flux (N > 1, a0 =∞)

In case of multiple phase fields, the minimization step with respect to σ does not change,
since only γε is different. However, the minimization with respect to ϕ1, . . . , ϕN becomes
more challenging due to the lack of convexity of the minimum term in γε. Therefore, this
part requires a more careful treatment and a suitable initialization to prevent the method
from getting stuck in local minima.
In order to avoid minimization of γε with respect to ϕi, we replace the term by a slightly
simpler version. First, we define the regions

Rε
i = {x ∈ Ω : γε(x) = ϕi(x)2 + α2

i ε
2/βi} , i = 1, . . . , N, (5.4)
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specifying those parts of Ω, where the i-th part of γε is the minimum. Assuming that each
region Rε

i is fixed, we replace the energy Ea,b,µ+,µ−
ε by the functional

Êa,b,µ+,µ−
ε (σ, ϕ1, . . . , ϕN) =

N∑
i=1

∫
Ω

ϕi(x)2 + a2
i ε

2/bi
ε

|σ(x)|2
2 χRεi (x) + bi

2 ε|∇ϕi(x)|2

+ bi
2

(ϕi(x)− 1)2

ε
dx,

where χRεi is the characteristic function of the region Rε
i . Minimizing with respect to every

ϕi separately gives the optimality conditions∫
Ω

ϕiψ

ε
|σ|2χRεi + biε∇ϕi · ∇ψ + bi

ε
(ϕi − 1)ψ dx = 0 ∀ψ ∈ X1

h with ψ|∂Ω = 0 (5.5)

with ϕi|∂Ω = 1, which as in the case of N = 1 can be solved by some linear system solver.
Since in each iteration step, the regions Rε

i are fixed, the performance of the algorithm
strongly depends on the quality of the initial guess for the ϕ1, . . . , ϕN . Although the
regions are allowed to change in between the iteration steps, if for example Rε

1 = Ω and
Rε

2 = . . . = Rε
N = ∅, in the next step ϕ2 = . . . = ϕN will be equal to 1, such that the

regions Rε
i will not change throughout the whole minimization process.

To avoid this, we apply an additional method to produce a suitable initial guess for all
phase fields. First, we construct an initial network σ0 (not necessarily the optimal one)
which performs the transport between the given measures µ+ and µ−. In simple examples,
this can be done by hand, however, in our experiments we simply compute the optimal
σ as if only phase field ϕ1 was active via Algorithm 6, ignoring the ϕ2, . . . , ϕN . Having
an initial guess for σ0, we can compute the mass m(x) flowing through each point of the
optimal network. To this end, we consider(

χBr(0) ∗ |σ0|
)

(x) =
∫
Br(x)

|σ0|(y) dy ≈ 2rm(x) (5.6)

if r is sufficiently large compared to the width of the support of σ0. Hence, we can compute
the regions Rε

i via
Rε
i = {x ∈ Ω | i = argmin

j=1,...,N
(ajm(x) + bj)} (5.7)

and the initial phase fields are defined as

ϕ0
i (x) =

0 if x ∈ Rε
i ,

1 otherwise.

Note that the width of the support of the optimal measure σ does not only depend on the
transported mass m(x), but also on the parameters ai, bi of the phase field i which is active
in the point x (for a detailed investigation of, see the construction of a recovery sequence
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for the Γ-convergence proof in [33]). This problem can be bypassed by a simple energy
rescaling. Instead of one phase field parameter ε, we set εi = biε/ai to be the parameter
associated with the phase field ϕi, thus we replace the original energy functional by a
rescaled version

Êa,b,µ+,µ−
ε (σ, ϕ1, . . . , ϕN) =

∫
Ω
ωε

(
a0,

γ̂ε(x)
ε

, |σ(x)|
)

dx+
N∑
i=1

biLεi(ϕi) (5.8)

with γ̂ε(x) = min
i=1,...,N

{ϕi(x)2 +a2
i εεi/bi} = min

i=1,...,N
{ϕi(x)2 +aiε

2}. By doing so, one obtains
that the support of σ becomes mε instead of aimε/bi, thus the mass flowing through a
segment can be readily computed via (5.6). Note that in the original formulation, the
phase field width depended on the parameters ai, bi, while the profile of the phase field,
namely the steepness of the gradient, was independent of them. The rescaling reverts this
relation, thus the slope of ϕi now depends on the choice of the corresponding ai, bi, which
will affect the numerical solution slightly. Beyond that, the rescaling does not affect any
of the previous analytical results and is accomplished for numerical purposes only. The
whole method is summarized in Algorithm 7.

Algorithm 7 Minimization for N > 1, a0 =∞
function MPFS(εstart, εend, Niter, a1, . . . , aN , b1, . . . , bN , µ+, µ−, ρεend)

Set fε = (µ+ − µ−) ∗ ρεend

Set (σ0, ·, ·) = SPFS(εstart, εend, Niter, a1, b1, µ+, µ−, ρεend)
Compute regions Rε

1, . . . , R
ε
N via (5.7)

for j = 1, . . . , Niter do
Set εj = εstart − (j − 1) εstart−εend

Niter−1
Set ϕji as the solution of (5.5) for given fixed σ = σj−1, i = 1, . . . , N
Update regions Rε

1, . . . , R
ε
N via (5.4)

Set γjε = mini=1,...,N
(
(ϕji )2 + a2

i ε
2/bi

)
Set λj as the solution of (5.2) for given fixed γε = γjε
Set σj = εj∇λj

2γjε
end for

end function
return σNiter , ϕNiter

1 , . . . , ϕNiter
N

Multiple phase fields and diffuse mass flux (N > 1, a0 <∞)

The difference to the previously handled case is the possible occurrence of a diffuse mass
flux, accompanied by a region where no phase field is active. The energy functional changes
slightly, since ωε consists of two parts depending on the mass flowing. This means that we
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may introduce, in addition to the regions Rε
i , a set

Rε
0 =

{
x ∈ Ω : |σ(x)| > a0

γε/ε

}
,

where no phase field is active and ωε attains its second part. Since there might be regions
where γε(x) = ϕi(x)2 + a2

i ε
2/bi but also |σ(x)| > a0

γε/ε
(hence Rε

i ∩Rε
0 for some i), we define

R̃ε
i = Rε

i \Rε
0 (5.9)

to separate the active regions from each other.
The optimal phase fields ϕi, as before, are obtained by minimizing the energy

N∑
i=1

∫
Ω

ϕi(x)2 + a2
i ε

2/bi
ε

|σ(x)|2
2 χR̃εi (x) + bi

2 ε|∇ϕi(x)|2 + bi
2ε(1− ϕi(x))2 dx. (5.10)

The minimization with respect to σ requires a little more care due to the changes in the
term ωε. The optimization problem in σ reads

min
σ∈X0

h∫
Ω σ·∇λ+λfε dx=0 ∀λ∈X1

h

∫
Ω
ωε

(
a0,

γε(x)
ε

, |σ(x)|
)

dx .

The optimality conditions read

0 =
∫

Ω

ξ(|σ|)
|σ|

σ · ψ −∇λ · ψ dx ∀ ψ ∈ X0
h,

0 =
∫

Ω
σ · ∇µ+ µfε dx ∀ µ ∈ X1

h,

where ξ(|σ|) denotes the partial derivative of ωε with respect to the third component,
namely

ξ(|σ|) = ∂3ωε

(
a0,

γε
ε
, |σ|

)
= min

{
γε
ε
|σ|, a0

}
+ 2εp|σ|.

Due to the non-linearity, the optimality conditions do not reduce to a linear system as
before. Instead, by introducing basis functions {b0

i }i of the space X0
h and {b1

i }i of X1
h,

the optimality conditions with respect to the coefficient vectors σ̂, λ̂ of the corresponding
variables can be written as

0 = R(σ̂, λ̂) =
(
M
[
ξ(|σ|)
|σ|

]
B

BT 0

)(
σ̂

λ̂

)
+
(

0
F

)
,
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where M
[
ξ(|σ|)
|σ|

]
, B are the finite element matrices and F is a vector defined by

M

[
ξ(σ|)
|σ|

]
ij

=
∫

Ω

ξ(|σ|)
|σ|

b0
i b

0
j dx, Bij =

∫
Ω
b0
i · ∇b1

j dx, Fi =
∫

Ω
b1
i fε dx.

The task of finding an optimal σ reduces now to solving the non-linear system R(σ̂, λ̂) = 0.
Since the solution of this equation is computationally expensive, we perform one step of
Newton’s method in each alternating iteration.
As before, the definition of the active regions Rε

i requires a suitable initial guess for the
active phase fields in each point. To this end, we apply the same routine as before,
precomputing an initial mass flux σ0 and defining the initial regions via (5.9). The
procedure is summarized in Algorithm 8.

Algorithm 8 Minimization for N > 1, a0 <∞
function MPFSD(εstart, εend, Niter, a1, . . . , aN , b1, . . . , bN , µ+, µ−, ρεend)

Set fε = (µ+ − µ−) ∗ ρεend

Set (σ0, ·, λ0) = SPFS(εstart, εend, Niter, a1, b1, µ+, µ−, ρεend)
Compute regions Rε

0, R̃
ε
1, . . . , R̃

ε
N via (5.9)

for j = 1, . . . , Niter do
Set εj = εstart − (j − 1) εstart−εend

Niter−1
Set ϕji as the minimizer of (5.10) for given fixed σ = σj−1, i = 1, . . . , N
Update regions Rε

0, R̃
ε
1, . . . , R̃

ε
N via (5.4) and (5.9)

Set γjε = mini=1,...,N
(
(ϕji )2 + a2

i ε
2/bi

)
Set (σ̂j, λ̂j) = (σ̂j−1, λ̂j−1)−DR(σ̂j−1, λ̂j−1)−1R(σ̂j−1, λ̂j−1) for γε = γj−1

ε

end for
end function
return σNiter , ϕNiter

1 , . . . , ϕNiter
N

5.3.3. Discrete Γ-convergence
By employing the phase field model (5.1) in order to gain an approximation of the branched
transport and urban planning functional, we have indirectly assumed that the proposed
Γ-convergence result also holds for the discretized energy. However, this is not clear a priori.
It is a well-known fact that the Γ-limit of the Ambrosio–Tortorelli functional depends on
the choice of the discrete grid size. Even more, in [6] the authors developed a quantitative
result for the asymptotic behaviour of a finite difference discretization of the latter, if both
the Γ-convergence parameter ε and the mesh size δ tend to zero. Roughly spoken, their
main result states that the Γ-convergence result can be maintained if and only if δ(ε)

ε
→ 0

if ε→ 0, where δ(ε) describes the mesh size as a function of ε with δ(ε)→ 0 if ε→ 0. By
replacing the regular grid by a discretization on random point sets, in [7] the authors could
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extend the Γ-convergence result of Ambrosio–Tortorelli to the Mumford–Shah functional
even in the case δ(ε)

ε
→ C > 0 for ε → 0. For the case of finite elements with piecewise

linear basis functions, a similar result has been proposed in [8].

5.3.4. Results
All algorithms were implemented in MATLAB©. We first computed a triangulation Th of
Ω by defining a quadrilateral grid with mesh size h and subdividing every square into two
triangles. Then we tested the proposed methods for different parameter sets (where we
used the rescaled version (5.8) of the phase field energy).
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Figure 5.2.: Optimal transportation networks from a single source to a number of identical
sinks at the corners of a regular polygon for parameters N = 1, a1 = 0.05, b1 = 1, ε = 0.005.
Top row: Exact solutions obtained via optimization of the branching points. Middle row:
Support of the numerically computed mass flux σ. Bottom row: Numerically computed
phase field ϕ.

In order to compare the method with the one previously described in [24] for the Steiner
case, as a first test we computed the optimal network in case of N = 1 and a0 =∞ for
a number of three, four, five or six evenly distributed points on a circle. In this case,
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the applied method should yield the same results as presented in [24]. Figure 5.2 shows
that the results match the exact solutions of the minimal Steiner tree problem in case
of a1 = 0.05 and b = 1. For larger values of a1, the network costs depend more on the
amount of transported mass, thus the results become more asymmetric, which is shown in
Figure 5.3. Notice that due to the energy rescaling, the slope of the optimal phase field ϕ
does now depend on the choice of ai and bi, which describes the difference between the
obtained phase fields for a1 = 0.05 and a1 = 1.
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Figure 5.3.: Optimal transportation networks from a single source to a number of identical
sinks at the corners of a regular polygon for parameters N = 1, a1 = 1, b1 = 1, ε = 0.005.
Top row: Exact solutions obtained via optimization of the branching points. Middle row:
Support of the numerically computed mass flux σ. Bottom row: Numerically computed
phase field ϕ.

Next, we tested two more complex settings, where different phase fields can be active. The
first one consists of four evenly spaced sources and four evenly spaced sinks, such that
the optimal network topology may vary between four straight lines and one single tree
(compare the results of the functional lifting approach from Section 4.3.4). The second
one approximates the transport from a single source in the middle and a number of evenly
distributed sinks on the boundary of a circle. We first computed the optimal network in
case of N = 1 (Figure 5.4). Afterwards, we set N = 3 and allowed three different phase
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Figure 5.4.: Numerically computed mass flux and phase field for parameters N = 1,
a1 = 0.05, b1 = 1, ε = 0.005. Left column: Transport from 4 sources to 4 sinks with equal
distance. Right column: Transport from a single source in the middle to 16 evenly spaced
sinks on the boundary of a circle.

fields to be active along the network (Figure 5.5).
The same settings can be applied to the case a0 < ∞ such that in some parts of the
network, no phase field will be active. We tested the case N = 2 and a0 < ∞ with the
same sources and sinks as before. The result is shown in Figure 5.6.
Finally, we simulated the situation where a0 < ∞ and the sources and sinks are not
concentrated on a finite number of points, but include a continuous part. In our example,
the transport takes place between a single source in the middle and a spatially uniform
sink on the boundary of a circle. Figure 5.7 shows that indeed only a part of the transport
network is covered by a phase field, whereas the rest is transported off-network by travelling
expenses of a0 per unit mass.

5.3.5. Phase field locking
As pointed out in the description of the optimization strategy, for small ε the energy
functional is quite far from being convex and as a consequence, the numerical method
easily gets stuck in local minima. Additionally, the ability of the phase field to “move”
within the image domain is influenced also by the relation between the Γ-convergence
parameter ε and the mesh size δ. Roughly spoken, for ε too small compared to δ, the
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Figure 5.5.: Numerically computed mass flux and phase fields for µ+, µ− as in Figure
5.4 for N = 3, ε = 0.005 and for the cost functions shown on the right. Left column:
Optimal mass flux σ, where the colour indicates which phase field is active. Columns 2
to 4: Optimal phase fields ϕ1, ϕ2, ϕ3. Right column: Cost function associated with the
displayed mass flux.
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Figure 5.6.: Numerically computed mass flux and phase fields for µ+, µ− as in Figure
5.4 for N = 2, a0 < ∞, ε = 0.005 and for the cost functions shown on the right. Left
column: Optimal mass flux σ, where the colour indicates which phase field is active (green
corresponds to the region where no phase field is active). Columns 2 to 3: Optimal phase
fields ϕ1, ϕ2. Right column: Cost function associated with the displayed mass flux.
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Figure 5.7.: Numerically computed mass flux and phase field for transport from a single
source in the middle to a spatially uniform sink on the boundary of a circle for N = 1,
a0 <∞, ε = 0.005 and the cost function shown on the right. Left: Optimal mass flux σ.
The circle indicates the local of the sink. Middle: Optimal phase field ϕ. Right: Cost
function associated with the displayed mass flux.

n 50 100 150 200
iterations 27 2438 3414 4915
energy diff. 3.65 · 10−9 9.52 · 10−9 8.88 · 10−9 4.18 · 10−9

Table 5.1.: Number of iterations and energy difference for transport between two points
for ε = 0.05, where the iteration was stopped after the energy difference fell below 10−8.

algorithm terminates at a point where ϕ is far from being optimal. This behaviour is
denoted as phase field locking: The phase field is unable to relocate on the underlying grid
and therefore “locked” to its current position.
In order to investigate this problem numerically, we performed some tests simulating
transport between two adjacent points with the same mass located on a horizontal line
with N = 1 and a0 = ∞. Obviously, the optimal transport network consists of a single
line segment connecting the two points, consequently, for a fixed ε, the global minimizer is
represented by a smoothed approximation of this line. Instead, we initialize the iteration
process with a phase field and corresponding mass flux satisfying div σ = fε and consisting
of a smoothed half-circle in the upper half of the image domain. With this as a starting
point, we performed simulations with fixed ε = 0.05 and ε = 0.1 respectively as well as
different image resolutions by creating a regular triangulation of the image domain (0, 1)2

containing n2 grid nodes with n = 50, 100, 150, 200. The results are displayed in Figures
5.8 and 5.9.
In the above experiment, the iteration process was stopped if the energy difference between
two consecutive iterations fell below 10−8, such that as a consequence, the energy and the
corresponding variables did not change any more. Tables 5.1 and 5.2 show the number of
iterations up to this point as well as the final energy difference. The results clearly show
the effect of a different relation between ε and the grid size δ = 1

n−1 . While for a small ε,
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n = 50 n = 100 n = 150 n = 200

Figure 5.8.: Numerically computed mass flux and phase field for transport between two
points located on a horizontal line with ε = 0.05 for different grid resolutions. The initial
phase field was set to a half circle in the upper half of the image domain.

n = 50 n = 100 n = 150 n = 200

Figure 5.9.: Numerically computed mass flux and phase field for transport between two
points located on a horizontal line with ε = 0.1 for different grid resolutions. The initial
phase field was set to a half circle in the upper half of the image domain.

a smaller grid size is needed to prevent phase field locking, a relatively larger ε allows for
simulations on a coarser grid. This effect could be largely avoided in various ways: By
starting with a large ε and slowly decreasing its value during the iterations process, one
can slightly relax the problem and still benefit from a sharp phase transition in the final
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n 50 100 150 200
iterations 865 389 553 579
energy diff. 1.67 · 10−9 7.76 · 10−9 8.09 · 10−9 8.41 · 10−9

Table 5.2.: Number of iterations and energy difference for transport between two points
for ε = 0.1, where the iteration was stopped after the energy difference fell below 10−8.

result. Other approaches could be an adaptive grid refinement of regions where at least
one phase field is away from 1 or the construction of a suitable initialization. Note that the
problem of phase field locking is also present in the Ambrosio–Tortorelli approximation of
the Mumford–Shah image segmentation functional. However, its effect is mostly prevented
by initializing the phase field with the gradient of the given image, which makes too much
“movement” most commonly unnecessary.

5.3.6. Discussion and outlook
We have proposed a phase field approximation of the generalized urban planning functional,
which admits some useful properties such as a Γ-convergence result and is therefore of
sustainable use for numerically computing optimal network structures. The functional does
not only cover the classical urban planning case (and thus represents one of the first methods
capable of providing optimal urban planning networks to the best of our knowledge), by
approximating any other concave cost functional by piecewise linear functions one could
also tackle more general optimal network problems.
Although phase field models are known to get stuck in local minima due to the non-
convexity of the energy landscape, for large ε, the phase field energy is closer to being
convex. Thus, by a slow decrease of the relaxation parameter ε, the algorithm hopefully
avoids most of them and finally reaches the global optimum, provided that the grid size
is small enough in the limit. This automatically suggests the usage of an adaptive grid
refinement, which would ensure the maintenance of the Γ-convergence result in the discrete
case.
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6
Conclusion and outlook

The major task of this work was to help establish a deeper understanding of the different
features and challenges of numerical methods for optimal transportation network problems
as well as to provide some novel approaches. Starting with a short review of a variety of
existing methods from the literature, we described and discussed two different treatments
which both proved to be of practical use for numerical simulations.
In Chapter 4, we investigated an image-based reformulation of the branched transport and
urban planning energies. As a preliminary step, we analysed the effect of a convex relaxation
approach via functional lifting of the Mumford–Shah-type functionals. Afterwards we
presented two different discretization approaches. A straightforward initial concept was
built on a finite difference discretization scheme of the convex saddle point problem. To
simulate the transport in a variety of settings, we implemented a primal-dual algorithm
combined with an intrinsic iterative projection to handle the large set of involved non-local
constraints. In most cases, the results were able to recover the optimal transportation
network, which was shown by a study of the influence of the branching parameters on the
network topology. However, the simple implementation comes along with the drawback of
computational inefficiency, which in particular becomes noticeable in the simulation of
complex network structures. For this reason, we developed a novel advanced discretization
scheme based on adaptive finite elements of triangular prism grid. While the adaptivity was
capable of handling the high dimensionality of the problem, the triangular grid structure
enabled an efficient treatment of the non-local constraint set. The benefit was underlined
by the simulations, where a high grid resolution could be achieved without an unsustainable
increase of the computation time.
Another numerical concept covering the generalized urban planning problem was presented
in Chapter 5 as an extension to the phase field approximations of the branched transport
as well as the Steiner tree problem. The approach enhances the existing models by
introducing multiple phase fields corresponding to each affine segment of the generalized
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urban planning cost. We developed three different algorithmic frameworks distinguishing
between the cases of a single phase field, multiple phase fields as well as the appearance
of a diffuse component. The simulations yielded adequate approximations of the optimal
network structures. To finalize the chapter, we discussed some problematic aspects of a
phase field relaxation approach in the context of numerical simulations.
Although the results of this thesis prove that there exists a multitude of suitable numerical
treatments of transportation network problems, all existing methods certainly leave some
room for improvement. The handling of real data sets such as a population and workplace
density of a city for the purpose of designing a public transportation network is still far from
being satisfactory. Furthermore, most methods, although providing a good approximation,
cannot claim to end up with the globally optimal solution. Due to a lack of convexity of
the investigated models, any numerical method necessarily either suffers from a variety
of local minimizers or from a loss of accuracy by a convex relaxation. For this reason,
the research concerning numerical methods for transportation networks is still of high
relevance. As part of this ongoing research, the ideas presented in this thesis could be
further improved in several points. In the following, we want to outline some topics which
seem to be of particular importance to us.
An interesting aspect of the functional lifting approach is given by the loss of accuracy
of the convex relaxation, which we investigated within this work. In order to answer the
question whether the relaxation yields the convex envelope of the original non-convex
energy, a rigorous proof of certain necessary criteria is still a subject of future work.
Another improvement would be a fully optimized, efficiency-based implementation of the
adaptive grid approach in order to maximally exploit the benefits of adaptivity. In this
spirit, one could also consider a GPU-based implementation within the CUDA framework,
which could further decrease the runtime and therefore enable even more complex network
situations.
The presented phase field approximation result comes along with similar problems as
other methods of this type. Here, an interesting feature also present in case of the
famous Ambrosio–Tortorelli model is the dependency on the relation between the grid
size and the Γ-convergence parameter. While we broached the problem of the numerically
computed phase field being “locked” at some local minimum within the iteration process,
the development of a criterion for the relation between the involved parameters is still
missing. Besides, a more efficient implementation could be achieved by applying an
adaptive refinement approach. Finally, a more elaborate algorithmic framework capable
of avoiding local minima combined with a rigorous proof of convergence could possibly
advance the numerical results.
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A
Construction of a vector field

In this chapter, we aim at completing the considerations concerning the tightness of the
convex relaxation of the lifted branched transport problem in Section 4.2.1, Example 4.2.1,
by constructing an almost optimal divergence-free vector field φ̂ ∈ K1. To be precise, let
us fix some notation and values for this particular example.
Let Ω = [0, 1]2 be the image domain and set the initial and final measures as µ+ =
1
2(δP1 + δP2), µ− = 1

2(δQ1 + δQ2) with

P1 = (1
4 , 0)T , P2 = (3

4 , 0)T , Q1 = (1
4 , 1)T , Q2 = (3

4 , 1)T .

We recall the definition of the image-related cost functional as well as the relaxed version
as

M̃α(u) =
∫
Su∩Ω

[u]αdH1(x) + ι0((∇uL2 +Dcu)xΩ), J(v) = sup
φ∈K1

∫
Ω×R

φ · dDv + ιC(v)

with C,K1 as in (4.1), (4.2) respectively. Now let α̂ be chosen such that

min
u∈Au(µ+,µ−)

M̃α̂(u) = M̃α̂(u1) = M̃α̂(uα̂2 )

for u1, u
α̂
2 ∈ Au(µ+, µ−) as constructed in Example 4.2.1 (note that uα̂2 depends on the

branching parameter α̂). The aim of this chapter is to construct a divergence-free φ̂α̂ ∈ Kα̂1
such that

sup
φ∈Kα̂1

∫
Ω×R

φ · dD1u1 =
∫

Ω×R
φ̂α̂ · dD1u1 , (A.1)

where we added the branching parameter α̂ to the definitions of K1, φ̂ and u2 to emphasize
their dependence on α̂. For the sake of readability, we set 1α̂u2 as the characteristic function
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of the subgraph of uα̂2 . In the following, we are going to drop the requirement of smoothness
in the constraint set Kα1 and define

Kα1 = {φ = (φx, φs) ∈ L∞(Ω× R,R2 × R) : div φ ∈ L∞(Ω× R,R2 × R), φs ≥ 0,∣∣∣∫ s2

s1
φx ds

∣∣∣ ≤ |s2 − s1|α ∀ x ∈ Ω, s1, s2 ∈ R, s1 < s2}. (A.2)

Since the functional F (φ) :=
∫

Ω×R φ · dD1u1 is continuous with respect to the norm
‖φ‖L∞ + ‖div φ‖L∞ , the supremum is not changed by replacing the definition of Kα1 in
(4.2) by (A.2). Let us first state a preliminary result.

Lemma A.0.1. The divergence-free φ̂α̂ ∈ Kα̂1 satisfying equation (A.1) also satisfies

sup
φ∈Kα̂1

∫
Ω×R

φ · dD1α̂u2 =
∫

Ω×R
φ̂α̂ · dD1α̂u2 .

Proof. By abbreviating φ̂ = φ̂α̂, u2 = uα̂2 and 1u2 = 1α̂u2 , we have∫
Ω×R

φ̂ · dD1u2 =
∫
R2
φ̂ · ν dH2 −

∫
Ω×R

1u2 divφ̂ dxds︸ ︷︷ ︸
=0

=
∫
R2
φ̂ · ν dH2 =

∫
R1
φ̂ · ν dH2

=
∫
R1
φ̂ · ν dH2 −

∫
Ω×R

1u1 divφ̂ dxds︸ ︷︷ ︸
=0

=
∫

Ω×R
φ̂ · dD1u1 = sup

φ∈K1

∫
Ω×R

φ · dD1u1

= J(1u1) = J(1u2) = sup
φ∈K1

∫
Ω×R

φ · dD1u2 ,

where

R1 = {(x, s) ∈ ∂Ω× R : 1u1(x, s) = 1} = {(x, s) ∈ ∂Ω× R : 1u2(x, s) = 1} = R2

and ν denotes the outer unit normal to R1 = R2.

In other words, Lemma A.0.1 states that the constructed φ̂α̂ also realizes the supremum
with respect to 1α̂u2 . As a consequence, φ̂α̂ needs to “fit” both topologies given by the
discontinuity sets of the minimizing images u1 and uα̂2 .
Let us investigate the structure of an optimal φ. For the particular example of µ+ and µ−
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as defined above, we have

u(µ+, µ−)(x1, x2) =


1 if x1 ≤ 1

4 ,
1
2 if x1 >

1
4 , x1 ≤ 3

4 ,

0 otherwise

for (x1, x2) ∈ Ω and u1(x1, x2) = u(µ+, µ−)(x1, x2). Noticing that u1 and 1u1 are piecewise
constant and in particular 1u1 ∈ SBV (Ω× R), we have

D1u1 = νΓu1
· H2xΓu1 , νΓu1

(x, s) =
(0,−1)T for x ∈ Ω \ Su1 ,

(νu1(x), 0)T for x ∈ Su1 ,

where Γu1 is the singular set of 1u1 and νΓu1
its outer unit normal (extended to Ω×R). In

addition, we have Su1 =
(
{1

4} × [0, 1]
)
∪
(
{3

4} × [0, 1]
)
and νu1 = (−1, 0)T on Su1 , thus we

obtain for φ = (φx, φs)T∫
Ω×R

φ(x, s) · dD1u1(x, s) =
∫

Γu1

φ(x, u1(x)) · νΓu1
(x)dH2(x)

=
∫

Ω\Su1

−φs(x, u1(x)) dx+
∫
Su1

(∫ u+
1 (x)

u−1 (x)
φx(x, s) ds

)
· νu1(x) dH1(x)

=
∫

Ω\Su1

−φs(x, u1(x)) dx+
∫ 1

0

(
−
∫ 1

1
2

φx1(1
4 , x2, s) ds−

∫ 1
2

0
φx1(3

4 , x2, s) ds
)

dx2 (A.3)

with φx = (φx1 , φx2)T . The remaining task is now to find a divergence-free φ̂α̂ ∈ Kα̂1 which
maximizes the last expression in (A.3). Unfortunately, we were not able to construct this
φ̂α̂ explicitly, in particular, we could not find any φ which satisfies all constraints and
yields the correct value of (A.3) at the same time. Instead, in the following we are going
to construct a φ which leads to the correct value of (A.3) and incorporates all necessary
information about the optimal φ as derived above, but slightly violates the constraints in
Kα̂1 . Although this φ is not the truly optimal choice, it can nevertheless be used to obtain
an estimate on the quality of the solutions u1 and uα̂2 . On the one hand, it can be shown
to satisfy the constraints in Kα1 for a slightly different α = α̂ + δ (which will be specified
later). On the other hand, it is still close to the truly optimal φ̂α̂ and therefore allows an
estimate on the primal-dual gap for the solutions 1u1 and 1α̂u2 .
Let α = α̂ + δ for some δ > 0. We aim at constructing φ̂α = (φ̂xα, φ̂sα) which maximizes
(A.3) and satisfies all inequality constraints in Kα1 . To this end, we set φ̂sα = 0. φ̂xα is
bounded by the convex constraints |

∫ s2
s1
φ̂xα ds| ≤ |s2 − s1|α for all s1 < s2 and x ∈ Ω. We
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define

φ̂xα(x1, x2, s) =


0 if s /∈ [0, 1],
ϕ1(x1, x2) if s ∈ [1

2 , 1],
ϕ2(x1, x2) if s ∈ [0, 1

2)

for two functions ϕ1, ϕ2 : Ω→ R2. For symmetry reasons, we can restrict ourselves to the
construction of ϕ1 and set ϕ2(x1, x2) = ( 1 0

0 −1 )ϕ1(1− x1, x2). The additional constraint of
ϕ1 being divergence-free can be achieved by applying a trick: Instead of constructing ϕ1
directly, we define v ∈ C0,1(Ω) and set ϕ1 = Dv⊥. Then by Rademacher’s theorem (see
for instance [32], Theorem 3.1.6) v is differentiable almost everywhere and we have

div ϕ1 = div
(
Dv⊥

)
= div

(
− ∂v
∂x2
∂v
∂x1

)
= 0

and φ̂α ∈ Kα1 as requested.
We can isolate the region where v needs to be constructed explicitly even further by
the following considerations. Again, due to symmetry reasons, we set ϕ1(x1, x2) =
( 1 0

0 −1 )ϕ1(x1, 1− x2) for all x ∈ [0, 1]× (1
2 , 1]. Additionally, we define

ϕ1(x1, x2) =
( 1 0

0 −1 )ϕ1(1
2 − x1, x2) if x1 <

1
4 ,

( 1 0
0 −1 )ϕ1(3

4 − x1, x2) if x1 >
3
4

and thus restrict ourselves to the subregion Ω̃ = [ 1
4 ,

3
4 ]× [0, 1

2 ]. Now let x̂α = (1
2 , x̂

α
2 )T be

the lower branching point in the graph Gα
2 (also depending on the branching parameter

α). Although Gα
2 is not the optimal topology for the given α, one can compute x̂α such

that the cost of Gα
2 become minimal with respect to x̂α2 . This leads to

x̂α2 = 2α−1
√

16− 22α+2
.

Let R =
√

1
16 + (x̂α2 )2 be the distance between the leftmost point P1 of the initial measure

µ+ and x̂α (see Figure A.1).

To maximize (A.3) under the given constraints, ϕ1 must be orthogonal to the line given
by x1 = 1

4 . Additionally, for φ̂α to fit the topology given by uα2 , ϕ1 necessarily needs to be
orthogonal to the connection between the points P1 and x̂α. Thus, we define

v(x1, x2) =

β
√(

x1 − 1
4

)2
+ x2

2 if
√(

x1 − 1
4

)2
+ x2

2 ≤ R,

βb(x1, x2) otherwise,

for all (x1, x2) ∈ Ω̃, where β = (1
2)α−1 is chosen such that the constraints for φ̂α ∈ Kα1 are

satisfied with equality along the lines x1 = 1
4 and between P1 and x̂α. Outside of the circle,
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x1

x2

P1 P2

R

L1

L2

x̂α

0

1
2

1

Figure A.1.: Construction of the function v on the domain [1
4 ,

3
4 ]× [0, 1

2 ].

we define v to be constant along ellipses with increasing semi-minor and semi-major axis
b→ 1, a→∞ as x2 → 1

2 , which will be specified in the following. For every point (x1, x2)
with

√
(x1 − 1

4)2 + x2
2 > R, we define a(x1, x2), b(x1, x2) such that

(x1 − 1
4)2

a(x1, x2)2 + x2
2

b(x1, x2)2 = 1. (A.4)

Moreover, the amount of mass flowing through the line L1 needs to be uniformly distributed
along the line L2 in order to maximize

∫
Ω×R φ · dD1αu2 under the constraint set (which can

be seen by repeating the computations in equation (A.3) with uα2 instead of u1). In other
words, if µ (λ respectively) denotes the x2-coordinate of the intersection of an ellipse with
the line L1 (L2 respectively), the proportion of l([0, µ] ∩ L1)/l(L1) must be the same as
l([0, λ] ∩ L2)/l(L2), where l(·) denotes the length of a line segment. With µ = b(x1, x2)
and λ given by the equation

1
16a(x1, x2)2 + λ2

b(x1, x2)2 = 1,

this leads to the condition

b(x1, x2)−R
1
2 −R

= λ− x̂α2
1
2 − x̂

α
2
⇔ λ = x̂α2 +

1
2 − x̂

α
2

1
2 −R

(b(x1, x2)−R) .

Together, this implies

a(x1, x2)2 = 1
16 ·

b(x1, x2)2

b(x1, x2)2 − (x̂α2 + C (b(x1, x2)−R))2 ,
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where we abbreviated C = 1/2−x̂α2
1/2−R . Inserting this into equation (A.4) yields a formula for

b(x1, x2),

b(x1, x2)2 = x2
2 + 16(x1 − 1

4)2
(
b(x1, x2)2 − (x̂α2 + C(b(x1, x2)−R))2

)
.

Solving the quadratic equation for b leads to

b(x1, x2) = − p(x1)
2c(x1) +

√√√√( p(x1)
2c(x1)

)2

− q(x1, x2)
c(x1) , (A.5)

where

c(x1) = 16(1− C2)(x1 − 1
4)2 − 1,

p(x1) = 16C(C − 1)(x1 − 1
4)2,

q(x1, x2) = −4(C − 1)2(x1 − 1
4)2 + x2

2.

It is straightforward to verify that v is continuous. Additionally, ϕ1 is divergence-free by
definition and maximizes (A.3) under the given constraints. Thus it remains to check
whether φ̂α satisfies all constraints in Kα1 . To this end, we prove the following result.

Theorem A.0.2. Let α̃ > 0 be the real root of the function f(α) := (6− 2α+1 − 22−α + 2−2α)2−
22−4α + 2−2α. Then φ̂α ∈ Kα1 for all α ≥ α̃.

Proof. The proof consists in evaluating the inequality constraints for the constructed φ̂α,
which leads to a condition for α. For the inequality constraints, due to Theorem 4.2.3 it
suffices to verify

1
2 |ϕ1(x1, x2)| ≤

(
1
2

)α
∀ (x1, x2) ∈ [1

4 ,
3
4 ]× [0, 1

2 ], (A.6)
1
2 |ϕ1(x1, x2) + ϕ2(x1, x2)| ≤ 1 ∀ (x1, x2) ∈ [1

4 ,
1
2 ]× [0, 1

2 ]. (A.7)

The constraint evaluation involves several technical but straightforward computations,
thus we only provide the main ideas of the proof. We define the region B := {(x1, x2) ∈
[1
4 ,

3
4 ]× [0, 1

2 ] :
√

(x1 − 1
4)2 + x2

2 ≤ R}. Let us regard the two constraint sets separately.

First constraint (A.6):
We distinguish between the following cases according to the definition of v:

(a) (x1, x2) ∈ B, (b) (x1, x2) /∈ B.

For (x1, x2) ∈ B, the constraint (A.6) is satisfied with equality by construction. For
(x1, x2) /∈ B, one can easily verify that the left-hand side attains its maximum in x1 = 1

4 ,
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thus we have

|ϕ1(x1, x2)| ≤ |ϕ1(1
4 , x2)| = β

√(
∂b
∂x1

(1
4 , x2)

)2
+
(
∂b
∂x2

(1
4 , x2)

)2
= β =

(1
2

)α−1
,

thus (A.6) is satisfied for all α ∈ (0, 1).

Second constraint (A.7):
From the definition of ϕ1, ϕ2 in the construction above, we obtain

1
2 |ϕ1(x1, x2) + ϕ2(x1, x2)| ≤ 1

⇔
√(

∂v
∂x2

(x1, x2) + ∂v
∂x2

(1− x1, x2)
)2

+
(
∂v
∂x1

(x1, x2)− ∂v
∂x1

(1− x1, x2)
)2
≤ 2 (A.8)

As before, we distinguish between the following cases:

(a) (x1, x2), (1−x1, x2) ∈ B, (b) (x1, x2) ∈ B, (1−x1, x2) /∈ B, (c) (x1, x2), (1−x1, x2) /∈ B

It is easy to verify that in case (a), (A.8) is satisfied for every α ∈ (0, 1). Moreover, one
can show that for α relatively close to α̂ (in particular, for α̂ ≤ α ≤ α̃), the left-hand side
of (A.8) attains its maximum within the region defined in (c). Thus, it remains to derive
a condition for α from the constraint for all (x1, x2), (1− x1, x2) /∈ B. In this region, we
have v(x1, x2) = βb(x1, x2) (same holds for (1− x1, x2)), thus by inserting the definition of
b, we obtain the constraint

β

√(
∂b
∂x2

(x1, x2) + ∂b
∂x2

(1− x1, x2)
)2

+
(
∂b
∂x1

(x1, x2)− ∂b
∂x1

(1− x1, x2)
)2
≤ 2. (A.9)

The left-hand side attains its maximum in x2 = 1
2 , where

∂b
∂x1

(x1,
1
2) = ∂b

∂x1
(1− x1,

1
2), thus

(A.9) is equivalent to

β
(
∂b
∂x2

(x1,
1
2) + ∂b

∂x2
(1− x1,

1
2)
)

= −β
 16(1− C)

(
(x1 − 1

4)2 + (x1 − 3
4)2
)
− 2

256(1− C)2(x1 − 1
4)2(x1 − 3

4)2 − 16(1− C)
(
(x1 − 1

4)2 + (x1 − 3
4)2
)

+ 1

 ≤ 2,

(A.10)

where we again abbreviated C = (1
2 − x̂

α
2 )/(1

2 − R), R =
√

1
16 + (x̂α2 )2. Again, one can

derive that the left-hand side of (A.10) attains its maximum in

x1 = −

√
C
4 −

C2

4 + 1
2

√
C(C − 1)3 − C + 1

2(C − 1) ,
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and inserting this into (A.10) yields√
C(C − 1)(√

C(C − 1)− C
)

(1− C)
≤ 4
β
⇔ 0 ≤

(
6− 2α+1 − 22−α + 2−2α

)2
− 22−4α + 2−2α = f(α).

(A.11)

One can additionally show that the function f admits only complex roots except for one.
Consequently, the constraints are satisfied if α ≥ α̃ for α̃ being the real root of f .

Remark A.0.3. One can compute the approximate value of α̃ ≈ 0.366006 numerically. The
value of the critical α̂ can be obtained (by settingMα̂(G1) =Mα̂(Gα̂

2 )) as the real root of
the function g(α) := 24−2α − 26−2α + 26−α + 22α − 2α+4 + 22α+2 − 8 in the interval (0, 1),
which approximately satisfies α̂ ≈ 0.263034. Setting α = α̂ + δ, this means that we have
a minimal approximate error of δ ≈ 0.102971, which is also reflected by the numerical
experiments.

The constructed image and corresponding vector field as well as a numerically obtained
solution are shown in Figure A.2. Furthermore, for the critical α̂ we obtain an upper
bound on the primal-dual gap for the M̃α̂-minimizers u1 and uα̂2 .

Theorem A.0.4. Let ∆α denote the primal-dual gap for the branched transport functional
lifting problem, i.e.

∆α(ṽ, φ̃) := sup
φ∈Kα1

∫
Ω×R

φ · dDṽ − inf
v∈C

∫
Ω×R

φ̃ · dDv + ιC(ṽ) + ιKα1 (φ̃).

For φ̂α as constructed above and u1, u
α̂
2 , u

α
2 , we have

∆α(1u1 , φ̂α) = 0,

∆α(1α̂u2 , φ̂α) ≤ 1− 21−α + 22−α − 2α̂

4
√

1− 22α̂−2
,

∆α(1αu2 , φ̂α) ≤ 1− 21−α + 22−α − 2α

4
√

1− 22α−2

for α = α̂ + δ for some δ > 0.

Proof. The proof requires the evaluation of the first two parts of ∆α for the given variables
1u1 , 1α̂u2 , 1αu2 and φ̂α (the third and fourth part vanish due to 1u1 , 1α̂u2 , 1αu2 ∈ C and φ̂α ∈ Kα1 ).
Let us start with the infimum, for which we have

inf
v∈C

∫
Ω×R

φ̂α · dDv = inf
v∈C

∫
S
φ̂α · ν dH2 −

∫
Ω×R

v divφ̂α dxds︸ ︷︷ ︸
=0
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with S = {(x, s) ∈ ∂Ω× R : 1u(µ+,µ−) = 1, φ̂α 6= 0}, where the second part vanishes due
to φ̂α being divergence-free by construction. For the remaining part, we have

inf
v∈C

∫
S
φ̂α · ν dH2 = 2

∫ 1
2

0

∫
S1
φ̂xα · n dH1ds+

∫ 1

1
2

∫
S2
φ̂xα · n dH1ds


=
∫
S1
ϕ2 · n dH1 +

∫
S2
ϕ1 · n dH1

=
∫ 3

4

0
ϕ2(x1, 0) · (0,−1)T dx1 +

∫ 1
2

0
ϕ2(0, x2) · (−1, 0)T dx2

+
∫ 1

4

0
ϕ1(x1, 0) · (0,−1)T dx1 +

∫ 1
2

0
ϕ1(0, x2) · (−1, 0)T dx2

=
∫ 1

1
4
ϕ12(x1, 0) dx1 −

∫ 1
2

0
ϕ11(1, x2) dx2

−
∫ 1

4

0
ϕ12(x1, 0) dx1 −

∫ 1
2

0
ϕ11(0, x2) dx2, (A.12)

where S = (S1 × [0, 1
2 ]) ∪ (S2 × (1

2 , 1]) and

S1 = {x ∈ ∂Ω : x1 ≤ 3
4 , x2 ≤ 1

2},
S2 = {x ∈ ∂Ω : x1 ≤ 1

4 , x2 ≤ 1
2}.

In the last equation in (A.12) we inserted ϕ2(x1, x2) = ( 1 0
0 −1 )ϕ1(1 − x1, x2) and denote

by ϕ1 = (ϕ11, ϕ12)T the two components of ϕ1. Further, with ϕ1 = Dv⊥, we obtain
ϕ11 = − ∂v

∂x2
and ϕ12 = ∂v

∂x1
, consequently with the definition of v as above

inf
v∈C

∫
Ω×R

φ̂α · dDv = β
(
b(1, 1

2) + b(0, 1
2)
)

= β =
(

1
2

)α−1
. (A.13)

For the first part of ∆α, we have

sup
φ∈Kα1

∫
Ω×R

φ · dD1u1 ≤ M̃α(u1) =
(

1
2

)α−1
, (A.14)

sup
φ∈Kα1

∫
Ω×R

φ · dD1α̂u2 ≤ M̃
α(uα̂2 ) = 1 + 22−α − 2α̂

4
√

1− 22α̂−2
, (A.15)

sup
φ∈Kα1

∫
Ω×R

φ · dD1αu2 ≤ M̃
α(uα2 ) = 1 + 22−α − 2α

4
√

1− 22α−2
. (A.16)

For the primal-dual gap for uα̂2 and uα2 , we have used that uα̂2 (uα2 respectively) was chosen
to be the optimal topology for α̂ (α respectively), thus the optimal branching point is x̂α̂
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v

vN

ϕ1

ϕN1

Figure A.2.: Comparison between the constructed image v and corresponding vector
field ϕ1 (upper row) and a numerically computed counterpart vN and ϕN1 (lower row).
The constructed v fits quite well to the numerical solution within the left circle and the
upper left side of the image domain, whereas in the right part, one can see the differences
leading to a violation of the constraints in Kα̂1 . To obtain the numerical image vN , we
solved the branched transport problem numerically and extracted the image from the
computed vector field via solving the Poisson equation.

(x̂α respectively). Subtracting (A.13) from (A.14), (A.15) and (A.16), we finally obtain

∆α(1u1 , φ̂α) ≤
(

1
2

)α−1
−
(

1
2

)α−1
= 0,

∆α(1α̂u2 , φ̂α) ≤ 1 + 22−α − 2α̂

4
√

1− 22α̂−2
− 21−α,

∆α(1αu2 , φ̂α) ≤ 1 + 22−α − 2α

4
√

1− 22α−2
− 21−α.

Remark A.0.5. With the numerically computed values of α̂ and α from Remark A.0.3, we
obtain

∆α(1α̂u2 , φ̂α) ≤ C1 ≈ 0.043054, ∆α(1αu2 , φ̂α) ≤ C2 ≈ 0.041494.
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