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Survey on geometric group theory

Wolfgang Lück

(Communicated by Linus Kramer)

Abstract. This article is a survey article on geometric group theory from the point of view
of a non-expert who likes geometric group theory and uses it in his own research.

Introduction

This survey article on geometric group theory is written by a non-expert
who likes geometric group theory and uses it in his own research. It is meant as
a service for people who want to receive an impression and read an introduction
about the topic and possibly will later pass to more elaborate and specialized
survey articles or to actual research articles. There will be no proofs. Except
for Theorem 7.4 all results have already appeared in the literature.

There is to the author’s knowledge no obvious definition what geometric
group theory really is. At any rate the basic idea is to pass from a finitely
generated group to the geometry underlying its Cayley graph with the word
metric. It turns out that only the large scale geometry is really an invariant
of the group itself but that this large scale or coarse geometry carries a lot
of information. This leads also to a surprising and intriguing variety of new
results and structural insights about groups.

A possible explanation for this may be that humans have a better intuition
when they think in geometric terms. Moreover, it is helpful to understand
groups in the way as they have appeared naturally in mathematics, namely,
as groups of symmetries. In other words, basic information about a group can
be obtained by studying its actions on nice spaces.

The personal interest of the author comes from questions of the type whether
a group satisfies the conjectures due to Baum-Connes, Borel, Farrell-Jones,
Kaplansky, Novikov, Hopf, Singer or yields a positive answer to Atiyah’s ques-
tion on L2-Betti numbers. They are all of the kind that one wants to know
whether for a given group G its group ring RG, its reduced group C∗-algebra
C∗

r (G), or an aspherical closed manifold with G as fundamental group satisfy
certain algebraic or geometric properties concerning their structure as rings or
C∗-algebras, their K- or L-theory, rigidity properties or the spectrum of the



74 Wolfgang Lück

Laplace operator of the universal covering. A priori these problems do not
seem to be related to questions about the geometry of the group. However,
most of the proofs for certain classes of groups contain an important part,
where one uses certain geometric properties of the groups, very often proper-
ties such as being negatively or non-positively curved in some metric sense.
For instance, there is the, on first sight purely ring theoretic, conjecture that
for a torsionfree group G and an integral domain R the group ring RG contains
no idempotents except 0 and 1. It is surprising that a proof of it can be given
for certain rather large classes of groups by exploiting their geometry, and no
algebraic proof is known in these cases.

The author has done his best to sort out interesting problems and results
and to include the relevant references, and apologizes if an important aspect
or reference is missing, it was left out because of ignorance, not on purpose.

The work was financially supported by the Sonderforschungsbereich 478
– Geometrische Strukturen in der Mathematik – and the Max-Planck-For-
schungspreis and the Leibniz-Preis of the author. The author wishes to thank
Tom Church, Jan Essert, Ralf Gramlich, Clara Löh, Sayed Roushon, Roman
Sauer and Yehuda Shalom for their useful comments and in particular the two
referees for their very valuable detailed reports.

The paper is organized as follows:

1. Classical examples
2. Basics about quasiisometry
3. Properties and invariants of groups invariant under quasiisometry
4. Rigidity
5. Hyperbolic spaces and CAT(κ)-spaces
6. The boundary of a hyperbolic space
7. Hyperbolic groups
8. CAT(0)-groups
9. Classifying spaces for proper actions
10. Measurable group theory
11. Some open problems

References

1. Classical examples

A classical example of geometric methods used in group theory is the topo-
logical proof of Schreier’s theorem.

Theorem 1.1 (Schreier’s Theorem). Let G be a free group and H ⊆ G be a
subgroup. Then H is free. If the rank rk(G) and the index [G : H ] are finite,
then the rank of H is finite and satisfies

rk(H) = [G : H ] ·
(
rk(G) − 1

)
+ 1.

Proof. Let G be a free group on the set S. Take the wedge X =
∨

S S1 of
circles, one copy for each element in S. This is a 1-dimensional CW -complex
with π1(X) ∼= G by the Seifert-van Kampen Theorem. Let p : X → X be the
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covering associated to H ⊆ G = π1(X). We have π1(X) ∼= H . Since X is a
1-dimensional CW -complex, X is a 1-dimensional CW -complex. If T ⊆ X is a
maximal tree, then X is homotopy equivalent to X/T =

∨
S S1 for some set S.

By the Seifert-van Kampen Theorem H ∼= π1(X) is the free group generated
by the set S.

Suppose that rk(G) and [G : H ] are finite. Since |S| = rk(G), the CW -
complex X is compact. Since [G : H ] is finite, the CW -complex X and hence
X/T are compact. Hence rk(H) = |S| is finite. We obtain for the Euler
characteristics

1 − |S| = χ(X) = [G : H ] · χ(X) = [G : H ] · (1 − |S|) .

Since |S| = rk(G) and |S| = rk(H), the claim follows. �

Another example of this type is the topological proof of Kurosh’s Theo-
rem, which can be found for instance in [130, Theorem 14 in I.5 on page 56].
The interpretation of amalgamated products and HNN-extensions in terms of
topological spaces by the Seifert-van Kampen Theorem or actions of groups on
trees are in the same spirit (see for instance [8],[28], [35], [91], [130]).

2. Basics about quasiisometry

A very important notion is the one of quasiisometry since it yields a bridge
between group theory and geometry by assigning to a finitely generated group
a metric space (unique up to quasiisometry), namely, its Cayley graph with the
word metric. There are many good reasons for this passage, see for instance
the discussion in [63, Item 0.3 on page 7 ff.]). At any rate this concept has
led to an interesting and overwhelming variety of new amazing results and
applications and to intriguing and stimulating activities.

Definition 2.1. Let X1 = (X1, d1) and X2 = (X2, d2) be two metric spaces. A
map f : X1 → X2 is called a quasiisometry if there exist real numbers λ, C > 0
satisfying:

(i) The inequality

λ−1 · d1(x, y) − C ≤ d2

(
f(x), f(y)

)
≤ λ · d1(x, y) + C

holds for all x, y ∈ X1;
(ii) For every x2 in X2 there exists x1 ∈ X1 with d2(f(x1), x2) < C.

We call X1 and X2 quasiisometric if there is a quasiisometry X1 → X2.

Remark 2.2 (Quasiisometry is an equivalence relation). If f : X1 → X2 is a
quasiisometry, then there exists a quasiisometry g : X2 → X1 such that both
composites g ◦ f and f ◦ g have bounded distance from the identity map. The
composite of two quasiisometries is again a quasiisometry. Hence the notion
of quasiisometry is an equivalence relation on the class of metric spaces.
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Definition 2.3 (Word-metric). Let G be a finitely generated group. Let S be
a finite set of generators. The word metric

dS : G × G → R

assigns to (g, h) the minimum over all integers n ≥ 0 such that g−1h can be
written as a product sǫ1

1 sǫ2
2 . . . sǫn

n for elements si ∈ S and ǫi ∈ {±1}.

The metric dS depends on S. The main motivation for the notion of quasi-
isometry is that the quasiisometry class of (G, dS) is independent of the choice
of S by the following elementary lemma.

Lemma 2.4. Let G be a finitely generated group. Let S1 and S2 be two finite
sets of generators. Then the identity id : (G, dS1

) → (G, dS2
) is a quasiisome-

try.

Proof. Choose λ such that for all s1 ∈ S1 we have dS2
(s1, e), dS2

(s−1
1 , e) ≤ λ

and for s2 ∈ S2 we have dS1
(s2, e), dS1

(s−1
2 , e) ≤ λ. Take C = 0. �

Definition 2.5 (Cayley graph). Let G be a finitely generated group. Consider
a finite set S of generators. The Cayley graph CayS(G) is the graph whose set
of vertices is G and there is an edge joining g1 and g2 if and only if g1 = g2s
for some s ∈ S.

A geodesic in a metric space (X, d) is an isometric embedding I → X , where
I ⊂ R is an interval equipped with the metric induced from the standard metric
on R.

Definition 2.6 (Geodesic space). A metric space (X, d) is called a geodesic
space if for two points x, y ∈ X there is a geodesic c : [0, d(x, y)] → X with
c(0) = x and c(d(x, y)) = y.

Notice that we do not require the unique existence of a geodesic joining two
given points.

Remark 2.7 (Metric on the Cayley graph). There is an obvious procedure
to define a metric on CayS(G) such that each edge is isometric to [0, 1] and
such that the distance of two points in CayS(G) is the infimum over the length
over all piecewise linear paths joining these two points. This metric restricted
to G is just the word metric dS . Obviously the inclusion (G, dS) → CayS(G)
is a quasiisometry. In particular, the quasiisometry class of the metric space
CayS(G) is independent of S.

The Cayley graph allows to translate properties of a finitely generated group
to properties of a geodesic metric space.

Lemma 2.8 (Švarc-Milnor Lemma). Let X be a geodesic space. Suppose that
G acts properly, cocompactly and isometrically on X. Choose a base point
x ∈ X. Then the map

f : G → X, g 7→ gx

is a quasiisometry.
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Proof. See [20, Proposition 8.19 in Chapter I.8 on page 140]. �

Example 2.9. Let M = (M, g) be a closed connected Riemannian manifold.

Let M̃ be its universal covering. The fundamental group π = π1(M) acts freely

on M̃ . Equip M̃ with the unique π-invariant Riemannian metric for which the

projection M̃ → M becomes a local isometry. The fundamental group π is
finitely generated. Equip it with the word metric with respect to any finite set
of generators.

Then π and M̃ are quasiisometric by the Švarc-Milnor Lemma 2.8.

Definition 2.10. Two groups G1 and G2 are commensurable if there are
subgroups H1 ⊆ G1 and H2 ⊆ G2 such that the indices [G1 : H1] and [G2 : H2]
are finite and H1 and H2 are isomorphic.

Lemma 2.11. Let G1 and G2 be finitely generated groups. Then:

(i) A group homomorphism G1 → G2 is a quasiisometry if and only if its
kernel is finite and its image has finite index in G2;

(ii) If G1 and G2 are commensurable, then they are quasiisometric.

There are quasiisometric groups that are not commensurable as the following
example shows.

Example 2.12. Consider a semi-direct product Gφ = Z2 ⋊φ Z for an isomor-
phism φ : Z2 → Z2. For these groups a classification up to commensurability
and quasiisometry has been given in [19] as explained next.

These groups act properly and cocompactly by isometries on precisely one of
the 3-dimensional simply connected geometries R3, Nil or Sol. (A geometry is
a complete locally homogeneous Riemannian manifold.) If φ has finite order,
then the geometry is R3. If φ has infinite order and the eigenvalues of the
induced C-linear map C2 → C2 have absolute value 1, then the geometry is
Nil. If φ has infinite order and one of the eigenvalues of the induced C-linear
map C2 → C2 has absolute value > 1, then the geometry is Sol.

These metric spaces given by the geometries R3, Nil or Sol are mutually
distinct under quasiisometry. By Example 2.9 two groups of the shape Gφ are
quasiisometric if and only if they belong to the same geometry.

Two groups Gφ and Gφ′ belonging to the same geometry R3 or Nil re-
spectively contain a common subgroup of finite index and hence are commen-
surable. However, suppose that Gφ and Gφ′ belong to Sol. Then they are
commensurable if and only if the eigenvalues Λ and Λ′ with absolute value
> 1 of φ and φ′, respectively, have a common power (see [19]). This obviously
yields examples of groups Gφ and Gφ′ that belong to the geometry Sol and are
quasiisometric but are not commensurable.

The classification up to quasiisometry of finitely presented non-poly-cyclic
abelian-by-cyclic groups is presented in [44, Theorem 1.1].
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3. Properties and invariants of groups invariant under
quasiisometry

Recall that, given a property (P) of groups, we call a group virtually-(P)
if it contains a subgroup of finite index having property (P). In particular a
group is virtually trivial if and only it is finite. It is virtually finitely generated
abelian if and only if it contains a normal subgroup of finite index which is
isomorphic to Zn for some integer n ≥ 0.

A finitely generated group G is nilpotent if G possesses a finite lower central
series

G = G1 ⊃ G2 ⊃ . . . ⊃ Gs = {1} Gk+1 = [G, Gk].

A group G is called amenable if there is a (left) G-invariant linear operator
µ : l∞(G, R) → R with µ(1) = 1 that satisfies for all f ∈ l∞(G, R)

inf{f(g) | g ∈ G} ≤ µ(f) ≤ sup{f(g) | g ∈ G}.

Abelian groups and more generally solvable groups are amenable. The class
of amenable groups is closed under extensions and directed unions. A group
which contains a non-abelian free group as subgroup is not amenable. A brief
survey on amenable groups and the definition and a brief survey on accessible
groups can be found for instance in [82, Section 6.4.1 on page 256 ff.] and [34,
III.15 on page 52]. The book [109] is devoted to amenability. The notion of
a hyperbolic space and a hyperbolic group will be explained in Definition 5.2
and Definition 7.1.

Theorem 3.1 (Group properties invariant under quasiisometry). The follow-
ing properties of groups are geometric properties, i.e., if the finitely generated
group G has the property, then every finitely generated group that is quasiiso-
metric to G also has this property:

(i) Finite;
(ii) Infinite virtually cyclic;
(iii) Finitely presented;
(iv) Virtually abelian;
(v) Virtually nilpotent;
(vi) Virtually free;
(vii) Amenable;
(viii) Hyperbolic;
(ix) Accessible;
(x) The existence of a model for the classifying space BG with finite n-

skeleton for given n ≥ 2;
(xi) The existence of a model for BG of finite type, i.e., all skeletons are

finite.

Proof. (i) Having bounded diameter is a quasiisometry invariant of metric
spaces.

(ii) This follows from Theorem 3.4 (iii) and Theorem 3.5 (i).

(iii) See [34, Proposition 4 In Chapter V.A on page 119].
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(iv) See [58, Chapter I].

(v) This follows from Theorem 3.5 (iv) and Theorem 3.8.

(vi) See [58, Theorem 19 in Chapter I] and Theorem 3.5(i).

(vii) This follows from [48]. See also [61, Chapter 6].

(viii) Quasiisometric groups have quasiisometric Cayley graphs and it is not
difficult to see that the property being hyperbolic is a quasiisometry invariant
of geodesic spaces.

(ix) See [133].

(x) This follows from [63, Item 1.C′
2 on page 25]. See also [3].

(xi) This follows from assertion (x). �

If S is a finite set of generators for the group G, let bS(n) be the number of
elements in G which can be written as a word in n letters of S∪S−1∪{1}, i.e.,
the number of elements in the closed ball of radius n around 1 with respect to
dS .

The following definition is indeed independent of the choice of the finite set
S of generators.

Definition 3.2 (Growth). The group G has polynomial growth of degree not
greater than d if there is C with bS(n) ≤ Cnd for all n ≥ 1.

We say that G has polynomial growth if it has polynomial growth of degree
not greater than d for some d > 0.

It has exponential growth if there exist C > 0 and α > 0 such that for n ≥ 1
we have

bS(n) ≥ C · αn.

It has subexponential growth if it has neither polynomial growth nor exponential
growth.

The free abelian group Zn of rank n has polynomial growth rate of precisely
degree n. A finitely generated non-abelian free group has exponential growth
rate.

Recall that the Hirsch rank of a solvable group G is defined to be

h(G) =
∑

i≥0

dimQ(Gi+1/Gi ⊗Z Q),

where Gi is the i-th term in the derived series of G.
A metric is called proper if every closed ball is compact. Let X be a proper

geodesic space. A proper ray is a map [0,∞) → X such that the preimage of
a compact set is compact again. Two proper rays c0, c1 : [0,∞) → X converge
to the same end if for every compact subset C ⊂ X there is R > 0 such that
c0([R,∞)) and c1([R,∞)) lie in the same component of X \C. This defines an
equivalence relation on the set of proper rays. The set of equivalence classes is
the set of ends.
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The number of ends of X is the cardinality of this set. It is a quasiisom-
etry invariant (see [20, Proposition 8.29 on page 128]). Hence the following
definition makes sense.

Definition 3.3 (Number of ends). The number of ends of a finitely generated
group G is defined to be the number of ends of the Cayley graph CayS(G) for
any choice of a finite set S of generators.

Theorem 3.4 (Ends of groups).

(i) A finitely generated group has 0, 1, 2 or infinitely many ends;
(ii) It has 0 ends precisely if it is finite;
(iii) It has two ends precisely if it is infinite and virtually cyclic.
(iv) It has infinitely many ends if and only if G can be expressed as an

amalgamated product A∗C B or as an HNN-extension A∗C with finite
C and |A/C| ≥ 3 and |B/C| ≥ 2.

Proof. See [20, Theorem 8.32 in Chapter I.8 on page 146]. �

Theorem 3.5 (Invariants under quasiisometry). Let G1 and G2 be two finitely
generated groups which are quasiisometric. Then:

(i) They have the same number of ends;
(ii) Let R be a commutative ring. Then we get

cdR(G1) = cdR(G2)

if one of the following assumptions is satisfied:
(a) The cohomological dimensions cdR(G1) and cdR(G2) are both

finite;
(b) There exist finite models for BG1 and BG2;
(c) One of the groups G1 and G2 is amenable and Q ⊆ R;

(iii) If they are solvable, then they have the same Hirsch length;
(iv) Suppose that G1 has polynomial growth of degree not greater than

d, intermediate growth,or exponential growth, respectively. Then the
same is true for G2;

(v) Let G1 and G2 be nilpotent. Then their real cohomology rings
H∗(G1; R) and H∗(G2; R) are isomorphic as graded rings. In par-
ticular the Betti numbers of G1 and G2 agree.

Proof. (i) See [18, Corollary 2.3] or [57, Corollary 1].

(ii) See [123, Theorem 1.2]. The case R = Z under condition ((ii)b) has already
been treated in [57, Corollary 2].

(iii) This follows from assertion (ii) since cdQ(G) is the Hirsch rank for a
virtually poly-cyclic group G (see [123, Corollary 1.3]).

(iv) See [34, Proposition 27 in VI.B on page 170].

(v) See [123, Theorem 1.5]. The statement about the Betti numbers was
already proved by Shalom [131, Theorem 1.2].

�
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We mention that there is an extension of the notion of quasiisometry to
groups which are not necessarily finitely generated and that some of the the
results of Theorem 3.5 are still true in this more general setting (see [123],
[131]).

Conjecture 3.6 (Folk). Let G1 and G2 be two finitely generated torsionfree
nilpotent groups. Let L1 and L2 be the simply connected nilpotent Lie groups
given by their Mal’cev completion. (These are uniquely determined by the fact
that Gi is cocompactly embedded in Li.)

If G1 and G2 are quasi-isometric, then L1 and L2 are isomorphic as Lie
groups.

Remark 3.7. Evidence for Conjecture 3.6 comes from the following facts. The
graded Lie algebra associated to the Mal’cev completion of a finitely generated
torsionfree nilpotent group G is a quasiisometry invariant of G by a result of
Pansu [104]. The result of Sauer mentioned in Theorem 3.5 (v) follows from
Conjecture 3.6 since the cohomology algebras of the Lie algebra of the Mal’cev
completion and the cohomology algebra of G itself are isomorphic (see [96,
Theorem 1]).

The following celebrated theorem due to Gromov [60] is one of the milestones
in geometric group theory. A new proof can be found in [72].

Theorem 3.8 (Virtually nilpotent groups and growth). A finitely generated
group is virtually nilpotent if and only if it has polynomial growth.

Remark 3.9 (Virtually solvable groups). This raises the question whether
solvability is a geometric property. However, there exists a finitely generated
solvable group which is quasiisometric to a finitely generated group which is
not virtually solvable (see [36]). This counterexample is not finitely presented.
It is still not known whether two finitely presented quasiisometric groups both
have to be virtually solvable if one of them is.

Remark 3.10 (Free products). Let G1, G′
1, G2 and G′

2 be finitely generated
groups. Suppose that Gi and G′

i are quasiisometric for i = 1, 2. Assume that
none of the groups G1, G′

1, G2 and G′
2 is trivial or Z/2. Then the free prod-

ucts G1 ∗ G2 and G′
1 ∗ G′

2 are quasiisometric. (They are actually Lipschitz
equivalent). See [34, 46. (ii) in IV.B on page 105] and [108, Theorem 0.1]. The
corresponding statement is false if one replaces quasiisometric by commensu-
rable (see [34, 46. (iii) in IV.B on page 106]).

Remark 3.11 (Property (T)). Kazhdan’s Property (T) is not a quasiisometry
invariant. (This is due to Furman and Monod and stated in [54, page 173]).

Remark 3.12 (The sign of the Euler characteristic). The sign of the Euler
characteristic of a group with a finite model for BG is not a quasiisometry
invariant. See [34, 46. (iii) in IV.B on page 105].
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Remark 3.13 (Minimal dimension of EG and EG). We have already men-
tioned in Theorem 3.5 (ii) that the cohomological dimension cdZ(G) is a quasi-
isometry invariant under the assumption that there exists a G-CW -model for
EG which is finite or, equivalently, cocompact.

There always exists a max{3, cdZ(G)}-dimensional model for BG (see [21,
Theorem 7.1 in Chapter VII on page 295]). Notice that the existence of a d-
dimensional CW -model for BG is equivalent to the existence of a d-dimensional
G-CW -model for EG since EG is the universal covering of BG. Hence cdZ(G)
is equal to the minimal dimension of a model for EG if cdZ(G) ≥ 3.

If H ⊂ G is a subgroup of finite index of the torsionfree group G and there
is a finite dimensional model for EG, then the cohomological dimensions of G
and H agree by a result of Serre (see [21, Theorem 3.2 in Chapter VIII.3 on
page 190], [129]) and hence also the minimal dimension for EH and EG agree
if the cohomological dimension of G is greater or equal to 3.

The corresponding statement is false if one replaces EG by the universal
space EG for proper group G-actions (see Definition 9.1). Namely, there exists
a group G with a torsionfree subgroup H of finite index such that there exists
a d-dimensional model for EH = EH but no d-dimensional model for EG
(see [78, Theorem 6]).

Hence the minimal dimension of a model for EG is not at all a quasiisometry
invariant in general.

Remark 3.14 (L2-invariants). If the finitely generated groups G1 and G2 are
quasiisometric and there exist finite models for BG1 and BG2 then

b(2)
p (G1) = 0 ⇔ b(2)

p (G2) = 0

holds (see [63, page 224], [105]). But it is general not true that in the situation

above there exists a constant C > 0 such that b
(2)
p (G1) = C · b

(2)
p (G2) holds for

all p ≥ 0 (see [82, page 313], [106]).
It is unknown whether the vanishing of the L2-torsion of appropriate groups

or the Novikov-Shubin invariants of appropriate groups are quasiisometry in-
variants. (see [82, Question 7.35 and Question 7.36 on page 313]). Partial
results in this direction have been obtained in [123, Theorem 1.6] and in [138]
for amenable respectively elementary amenable groups.

Remark 3.15 (Asymptotic cone). The notion of an asymptotic cone using
ultralimits was introduced by Van den Dries and Wilkie [136]. It assigns to
a metric space a new space after the choice of a non-principal ultrafilter on
the set of natural numbers, a scaling sequence and a sequence of observation
points. The asymptotic cone does in general depend on these extra choices.
Roughly speaking, an asymptotic cone of a metric space is what one sees when
one looks at the space from infinitely far away.

Applied to the Cayley graph of a finitely generated group an asymptotic
cone yields a complete geodesic homogeneous metric space, which captures the
coarse properties. It depends on the ultrafilter and the scaling sequence but not
on the sequence of observation points. A quasiisometry induces a bi-Lipschitz
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homeomorphism between the asymptotic cones (for the same ultrafilters and
scaling constants). So as in the case of the boundary of a hyperbolic group (see
Section 6) we can assign to a group a metric space such that a quasiisometry
induces a “nice” map between the associated structures.

Further information and a discussion of some applications to quasiisome-
try can be found for instance in [20, Chapter I.5 on page 77 ff.] and [37].
Asymptotic cones play a significant role in the proof of certain rigidity re-
sults, for instance in the proof of the rigidity of quasiisometries for symmetric
spaces and Euclidean buildings due to Kleiner-Leeb [73] or in the proof the
rigidity under quasiisometry of the mapping class group (see Theorem 4.5)
due to Behrstock-Kleiner-Minsky-Mosher [9] and Hamenstädt [65]. Asymp-
totic cones and quasiisometry classes of fundamental groups of 3-manifolds are
investigated in [71].

Remark 3.16 (Group splittings). A lot of activity in geometric group theory
has been focused on extending the Jaco-Johannson-Shalen decomposition for
3-manifolds to finitely presented groups (see for instance [17], [38], [119], [126],
[128]). Its quasiisometry invariance has been proved in [107].

Further information about quasiisometry invariants can be found for in-
stance in [13], [20], [34], [59], [63].

4. Rigidity

An explanation of the following two theorems and a list of papers that have
made significant contributions to their proof can be found in [42]. It includes
Eskin [40], Eskin-Farb [41], Farb-Schwarz [45], Kleiner-Leeb [73], Pansu [104],
and Schwartz [124] and [125].

In the sequel semisimple Lie group means non-compact, connected semisim-
ple Lie group with finite center. Lattice means a discrete subgroup of finite
covolume. A lattice is called uniform if it is cocompact.

Theorem 4.1 (Rigidity of the class of lattices). Let Γ be a finitely generated
group. If Γ is quasiisometric to an irreducible lattice in a semisimple Lie group
G, then Γ is almost a lattice in G, i.e., there is a lattice Λ′ in G and a finite
group F such that there exists an exact sequence

1 → F → Γ → Λ′ → 1.

Theorem 4.2 (Classification among lattices). The quasiisometry classes of
irreducible lattices in semisimple Lie groups are precisely:

(i) One quasiisometry class for each semisimple Lie group, consisting of
the uniform lattices in G;

(ii) One quasiisometry class for each commensurability class of irreducible
non-uniform lattices, except in G = SL2(R), where there is precisely
one quasiisometry class of non-uniform lattices.
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The following result is the main result of [43]. Recall that for n ≥ 2 the
solvable Baumslag-Solitar-group is defined by

BS(1, n) = 〈a, b | bab−1 = an〉.

Theorem 4.3 (Rigidity of Baumslag-Solitar groups). Let G be a finitely gen-
erated group. Suppose that G is quasiisometric to BS(1, n) for some n ≥ 2.
Then there is an exact sequence

1 → F → G → Γ → 1,

where F is finite and Γ is commensurable to BS(1, n).

Remark 4.4 (Abelian by cyclic groups). The quasiisometry rigidity of finitely
presented abelian-by-cyclic groups is investigated in [44, Theorem 1.2].

The following result is due Behrstock-Kleiner-Minsky-Mosher [9] and Ha-
menstädt [65].

Theorem 4.5 (Rigidity of mapping class groups). Let S be an oriented closed
surface. Let M(S) be the associated mapping class group. Let G be a finitely
generated group that is quasiisometric to M(S). Let cent(M(S)) be the center
of M(S) which is a finite group.

Then there is a finite index subgroup G′ in G and a homomorphism G′ →
M(S)/ cent(M(S)) with finite kernel and finite index image.

5. Hyperbolic spaces and CAT(κ)-spaces

Recall that we have introduced the notion of a geodesic space in Defini-
tion 2.6.

Example 5.1 (Geodesic spaces). A complete Riemannian manifold inherits
the structure of a geodesic metric space from the Riemannian metric by defining
the distance of two points to be the infimum over the length of any curve joining
them.

A graph inherits the structure of a metric space by defining the distance
of two points to be the infimum over the length of any piecewise linear path
joining them, where each edge is isometrically identified with the unit interval
[0, 1]. A graph is connected if and only if it is a geodesic space with respect to
this metric.

A geodesic triangle in a geodesic space X is a configuration of three points
x1, x2 and x3 in X together with a choice of three geodesics g1, g2 and g3

such that g1 joins x2 to x3, g2 joins x1 to x3 and g3 joins x1 to x2. For
δ > 0 a geodesic triangle is called δ-thin if each edge is contained in the closed
δ-neighborhood of the union of the other two edges.

Definition 5.2 (Hyperbolic space). Consider δ ≥ 0. A δ-hyperbolic space is a
geodesic space whose geodesic triangles are all δ-thin.

A geodesic space is called hyperbolic it is δ-hyperbolic for some δ > 0.
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Remark 5.3 (Equivalent definitions of hyperbolic space). There are many
equivalent definitions of hyperbolic spaces, which are useful and can be found
under the key words “fine triangles”, “minsize”, “insize”, “Gromov’s inner
product and the 4-point-condition”, “geodesic divergence” and “linear isoperi-
metric inequality”. (see for instance [16], [20], [58], [62]).

Remark 5.4 (Examples and non-examples for hyperbolic spaces). Every geo-
desic space with bounded diameter is hyperbolic. Every complete Riemannian
manifold whose sectional curvature is bounded from above by a negative con-
stant is a hyperbolic space. In particular the hyperbolic n-space Hn and every
closed Riemannian manifold with negative sectional curvature are hyperbolic
spaces. The Euclidean space Rn is not hyperbolic. A tree is δ-hyperbolic for
every δ ≥ 0.

For κ ≤ 0 let Mκ be the up to isometry unique simply connected complete
Riemannian manifold whose sectional curvature is constant with value κ. Con-
sider a metric space X . For every geodesic triangle ∆ with edges x1, x2 and x3

in X there exists a geodesic triangle ∆ in Mκ with edges x1, x2, and x3 which
is a geodesic triangle and satisfies dX(xi, xj) = dMκ

(xi, xj) for i, j ∈ {1, 2, 3}.

We call such a triangle ∆ a comparison triangle. It is unique up to isometry.
For every point x in ∆ there is unique comparison point x determined by the
property that x lies on the edge from xi to xj if x lies on the edge joining xi

and xj and the distance of x and xi agrees with the distance of x and xi.

Definition 5.5 (CAT(κ)-space). Let X be a geodesic space and let κ ≤ 0.
Then X satisfies the CAT(κ)-condition if for every geodesic triangle ∆ and
points x, y ∈ ∆ and any comparison triangle ∆ in Mκ and comparison points
x and y we have

dX(x, y) ≤ dMκ
(x, y).

A CAT(κ)-space is a geodesic space which satisfies the CAT(κ)-condition.
A geodesic space is of curvature ≤ κ for some κ ≤ 0 if it satisfies the

CAT(κ)-condition locally. It is called negatively curved or non-positively curved
respectively if it is of curvature ≤ κ for some κ < 0 or κ ≤ 0 respectively.

A space Y is called aspherical if it is path connected and πn(Y, y) vanishes for
one (and hence all) y ∈ Y . Provided that Y is a CW -complex, Y is aspherical
if and only if it is connected and its universal covering is contractible.

Theorem 5.6 (CAT(κ)-spaces). Fix κ ≤ 0. Then:

(i) A simply connected Riemannian manifold has sectional curvature ≤ κ
if and only if it is a CAT(κ)-space with respect to the metric induced
by the Riemannian metric;

(ii) A CAT(κ)-space is contractible;
(iii) A simply connected complete geodesic space of curvature ≤ κ is a

CAT(κ)-space;
(iv) A complete geodesic space of curvature ≤ κ has a CAT(κ)-space as

universal covering and is aspherical;
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(v) Consider κ ≤ κ′ ≤ 0. If X is a CAT(κ)-space of curvature ≤ κ, then
X is a CAT(κ′)-space of curvature ≤ κ′;

(vi) A proper CAT(0)-space is hyperbolic if and only if it contains no sub-
space isometric to R2;

(vii) For κ < 0 a CAT(κ)-space is hyperbolic;
(viii) A tree is a CAT(κ)-space for all κ ≤ 0.

Proof. (i) See [20, Corollary 1A.6 in Chapter II.1 on page 173].

(ii) See [20, Corollary 1.5 in Chapter II.1 on page 161].

(iii) See [20, Theorem 4.1 (2) in Chapter II.4 on page 194].

(iv) This follows from assertions (ii) and (iii).

(v) See [20, Theorem 1.12 in Chapter II.1 on page 165].

(vi) See [20, Theorem 1.5 in Chapter III.H on page 400].

(vii) See [20, Proposition 1.2 in Chapter III.H on page 399].

(viii) See [20, Example 1.15 (4) in Chapter II.1 on page 167]. �

Remark 5.7. The condition of being hyperbolic is a condition in the large.
For instance, a local change of the metric on a compact subset does not destroy
this property. This is not true for the condition being CAT(κ). For example,
any compact metric space is hyperbolic, whereas it is not CAT(κ) for some
κ ≤ 0 in general.

In general it makes a significant difference whether a space is negatively
curved or non-positively curved.

There is no version of the CAT(0)-condition known that is like the condition
hyperbolic defined in the large.

6. The boundary of a hyperbolic space

Let X be a hyperbolic space. A geodesic ray is a geodesic c : [0,∞) → X
with [0,∞) as source. We call two geodesic rays c, c′ : [0,∞) → X asymptotic
if there exists C ≥ 0 such that dX(c(t), c′(t)) ≤ C holds for all t ∈ [0,∞).

Definition 6.1 (Boundary of a hyperbolic space). Let ∂X be the set of equiv-
alence classes of geodesic rays. Put

X = X ∐ ∂X.

The description of the topology on X and the proof of the following two re-
sults can be found in [20, Chapter III.H on pages 429-430 and Exercise 3.18 (4)
in Chapter III.H on page 433].

Lemma 6.2. There is a topology on X such that X is compact and metrizable,
the subspace topology of X ⊆ X agrees with the topology coming from the
metric, X ⊆ X is open and dense, and ∂X ⊆ X is closed.

Lemma 6.3. Let X and Y be hyperbolic spaces. Let f : X → Y be a quasi-
isometry. It induces a map

f : X → Y ,
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which restricts on the boundary to a homeomorphism

∂f : ∂X
∼=
−→ ∂Y.

In particular, the boundary is a quasiisometry invariant of a hyperbolic space.

Remark 6.4 (Mostow rigidity). Let f : M → N be a homotopy equivalence
of hyperbolic closed manifolds of dimension n ≥ 3. Mostow rigidity says that
f is homotopic to an isometric diffeomorphism. Lemma 6.3 plays a role in its
proof as we briefly explain next. More details can be found for instance in [11].

Notice that the universal coverings M̃ and Ñ are isometrically diffeomor-
phic to the n-dimensional hyperbolic space Hn. The boundary of Hn can be
identified with Sn−1 and Hn with Dn. Since M and N are compact, the

map f̃ : M̃ → Ñ is a quasiisometry. Hence it induces a homeomorphism

∂f̃ : ∂M̃
∼=
−→ ∂Ñ . Next one shows that the volume of a closed hyperbolic

manifold is a homotopy invariant, for instance using the notion of the simpli-
cial volume due to Gromov and Thurston. This is used to prove that an ideal
simplex in Hn with vertices x0, x1, . . . , xn on ∂Hn has the same volume as

the ideal triangle with vertices ∂f̃(x0), ∂f̃(x1), . . . , ∂f̃(xn). This implies that

there is an isometric diffeomorphism g̃ : M̃ → Ñ with ∂g̃ = ∂f̃ such that g̃ is
compatible with the actions of the fundamental groups and passes to an iso-
metric diffeomorphism g : M → N which induces on the fundamental groups
the same map as f and hence is homotopic to f .

In the last step the condition n ≥ 3 enters. Indeed, Mostow rigidity does
not hold in dimension n = 2.

7. Hyperbolic groups

Definition 7.1 (Hyperbolic group). A finitely generated group is called hy-
perbolic if its Cayley graph is hyperbolic.

Recall that the quasiisometry type of the Cayley graph of a finitely generated
group G depends only on G as a group but not on the choice of a finite set of
generators and the notion hyperbolic is a quasiisometry invariant for geodesic
spaces. Hence the definition above makes sense, i.e., being hyperbolic is a
property of the finitely generated group G itself and does not depend on the
choice of a finite set of generators.

Let G be hyperbolic. Its boundary ∂G is the boundary of the Cayley graph.
This is well-defined up to homeomorphism, i.e., independent of a choice of a
finite set of generators because of Lemma 6.3.

The notion of the classifying space for proper G-actions EG will be ex-
plained in Definition 9.1.

A Dehn presentation of a group G with a finite set of generators S is a finite
list of words u1, v1, . . . , un, vn such that u1 = v1, . . . , un = vn holds in G,
and dS(e, vi) ≤ dS(e, ui) is true for i = 1, 2, . . . , n and any word represents the
identity element e only if it contains one of the words ui as a subword. Now
there is an obvious algorithm to decide whether a word w represents the unit
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element e in G: Look whether it contains one of the words ui. If the answer
is no, the process ends, if the answer is yes, replace ui by vi. By induction
over dS(e, w) one sees that this process stops after at most dS(e, w) steps. The
word w represents e if and only if the process ends with the trivial word.

A survey article about Poincaré duality groups is [31].
The property of being hyperbolic has a lot of consequences:

Theorem 7.2 (Properties of hyperbolic groups).

(i) Geometric:
The property “hyperbolic” is geometric;

(ii) Characterization by actions:
A group G is a hyperbolic group if and only if it acts isometrically,
properly and cocompactly on a proper hyperbolic space X. In this case
∂G is homeomorphic to ∂X;

(iii) Characterization by asymptotic cones:
A finitely generated group is hyperbolic if and only if all its asymptotic
cones are R-trees. A finitely presented group is hyperbolic if and only
if one (and hence all) asymptotic cones are R-trees;

(iv) Presentations:
(a) A finitely generated group is hyperbolic if and only if it possesses

a Dehn presentation;
(b) Suppose that the finitely presented group G is a small cancellation

group in the sense that it admits a presentation which satisfies the
condition C′(1/6) or which satisfies both the conditions C′(1/4)
and T (4) (see [58, Definition 3 in Chapter 8 on page 228]). Then
G is hyperbolic;

(v) Classifying spaces and finiteness properties:
(a) If G is hyperbolic, then there exists a finite model for the universal

space for proper G-actions EG;
(b) If G is hyperbolic, then there is a model for BG of finite type,

Hn(G; Z) is finitely generated as Z-module for n ≥ 0 and
Hn(G; Q) is trivial for almost all n ≥ 0;

(c) If G is hyperbolic, then G is finitely presented;
(d) Suppose that G is hyperbolic. Then there are only finitely many

conjugacy classes of finite subgroups;
(e) If G is hyperbolic and torsionfree, then there is a finite model

for BG, the abelian group Hn(G; Z) is finitely generated for n ≥ 0
and Hn(G; Z) is trivial for almost all n ≥ 0;

(vi) Subgroups:
(a) Let C ⊆ G be an infinite cyclic subgroup of G. Suppose that G is

hyperbolic. Then C has finite index in both its centralizer CGC
and its normalizer NGC. In particular, G does not contain a
subgroup isomorphic to Zn for n ≥ 2;
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(b) Any subgroup of a hyperbolic group is either virtually cyclic or
contains a free group of rank two as subgroup. In particular, an
amenable subgroup of a hyperbolic group is virtually cyclic;

(c) Given r elements g1, g2, . . . , gr in a hyperbolic group, then there
exists an integer n ≥ 1, such that {gn

1 , gn
2 , . . . , gn

r } generates a
free subgroup of rank at most r;

(vii) Torsion groups:
Let G be a torsion group, i.e., each element in G has finite order.
Then G is hyperbolic if and only if G is finite;

(viii) Inheritance properties:
(a) The product G1×G2 of two hyperbolic groups is again hyperbolic

if and only if one of the two groups G1 and G2 is finite;
(b) The free product of two hyperbolic groups is again hyperbolic;

(ix) Decision problems:
(a) The word-problem and the conjugation-problem is solvable for a

hyperbolic group;
(b) The isomorphism-problem is solvable for torsionfree hyperbolic

groups;
(x) The boundary:

(a) Let G be a hyperbolic group that is virtually torsionfree. Then

vcd(G) − 1 = dim(∂G),

where vcd(G) is the virtual cohomological dimension of G and
dim(∂G) is the topological dimension of ∂G;

(b) Let G be hyperbolic and infinite and let n ≥ 2 be an integer.
Suppose that ∂G contains an open subset which is homeomorphic
to Rn. Then ∂G is homeomorphic to Sn;

(c) Let G be hyperbolic. Then ∂G is homeomorphic to S1 if and only
if G is a Fuchsian group;

(d) A torsionfree hyperbolic group G is a Poincaré duality group of
dimension n if and only if ∂G has the integral Čech cohomology
of Sn−1;

(e) A torsionfree hyperbolic group G is a Poincaré duality group of
dimension 3 if and only if ∂G is homeomorphic to S2;

(xi) Rationality:

Let G be a hyperbolic group. Let S be a finite set of generators. For
the integer n ≥ 0 let σ(n) be the number of elements g ∈ G with
dS(g, e) = n;

Then the formal power series
∑∞

n=0 σ(n) · tn is a rational function.
The same is true if one replaces σ(n) by the number β(n) of ele-

ments g ∈ G with dS(g, e) ≤ n;
(xii) Further group theoretic properties:

(a) A hyperbolic group is weakly amenable in the sense of Cowling-
Haagerup [29];

(b) A hyperbolic group has finite asymptotic dimension;
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(c) A finitely generated subgroup H of a torsionfree hyperbolic group
is Hopfian, i.e., every epimorphism H → H is an isomorphism;

(xiii) Being hyperbolic is generic:

In a precise statistical sense almost all finitely presented groups are
hyperbolic.

Proof. (i) Quasiisometric groups have quasiisometric Cayley graphs and it is
not difficult to see that the property being hyperbolic is a quasiisometry in-
variant of geodesic spaces.

(ii) See [69, Theorem 2.24], [62].

(iii) See [97, Section 1.1].

(iv)a See [20, Theorem 2.6 in Chapter III.Γ on page 450].

(iv)b See [58, Theorem 36 in Chapter 8 on page 254].

(v)a One can assign to a hyperbolic group its Rips complex for a certain pa-
rameter. If this parameter is chosen large enough, then the Rips complex is a
model for EG (see [92]). The Rips complex is known to be a G-CW -complex
which is finite or, equivalently, cocompact.

(v)b This follows from assertion (v)a (see [80, Theorem 4.2]).

(v)c This follows from assertion (v)b.

(v)d This follows from assertion (v)a (see [80, Theorem 4.2]).

(v)e This follows from assertion (v)a.

(vi)a See [20, Corollary 3.10 in Chapter III.Γ on page 462].

(vi)b This follows from [58, Theorem 37 in Chapter 8 on page 154] and the fact
that an amenable group cannot contain a free group of rank 2 as subgroup.

(vi)c See [20, Proposition 3.20 in Chapter III.Γ on page 467].

(vii) See [20, Proposition 2.22 in Chapter III.Γ on page 458].

(viii)a This follows from assertions (vi)b and (vii).

(viii)b See [58, Exercise 34 in Chapter 1 on page 19].

(ix)a See [20, Theorem 2.8 in Chapter III.Γ on page 451].

(ix)b See [127].

(x)a See [12, Corollary 1.4 (e)].

(x)b See [69, Theorem 4.4].

(x)c See [26], [49], [52].

(x)d See [12, Corollary 1.3].

(x)e This follows from assertion (x)d. See [31, Corollary 6.3].

(xi) See [20, Theorem 2.21 in Chapter III.Γ on page 457].

(xii)a See [102].

(xii)b See [120].

(xii)c See [22].
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(xiii) See [98]. �

Remark 7.3 (The boundary of a hyperbolic group). The boundary ∂X of a
hyperbolic space and in particular the boundary ∂G of a hyperbolic group G
are metrizable. Any compact metric space can be realized as the boundary of
a hyperbolic space. However, not every compact metrizable space can occur
as the boundary of a hyperbolic group. Namely, exactly one of the following
three cases occurs:

(i) G is finite and ∂G is empty;
(ii) G is infinite virtually cyclic and ∂G consists of two points;
(iii) G contains a free group of rank two as subgroup and ∂G is an infinite

perfect, (i.e., without isolated points) compact metric space.

The metric structure on ∂X for a hyperbolic space X is not canonical.
One can actually equip ∂X with the structure of a visual metric (see [20,
Definition 3.20 on page 343]). Again the structure of a space with a visual
metric is not canonical, not even for ∂G of a hyperbolic group G. However,
the induced quasiconformal structure and the induced quasi-Möbius structure
associated to some visual metric on ∂G of a hyperbolic group G are canonical,
i.e., independent of the choice of a visual metric.

These structures are quasiisometry invariants. Namely, a quasiisometry of
finitely generated hyperbolic groups G1 → G2 (with respect to some choice
of finite sets of generators) induces a homeomorphism ∂G1 → ∂G2 which is
quasiconformal and quasi-Möbius homeomorphism with respect to any visual
metric. The converse is also true in the sense that a homeomorphism ∂G1 →
∂G2, which is a quasi-Möbius equivalence or a quasiconformal homeomorphism,
comes from a quasiisometry G1 → G2. (see [15], [69, Section 3], [110]).

The induced action of G on the boundary ∂G is also an important invariant
of G.

For more information about the boundary of a hyperbolic group we refer
for instance to [69].

We mention the following result whose proof will appear in a forthcoming
paper by Bartels, Lück and Weinberger [6].

Theorem 7.4 (High-dimensional spheres as boundary). Let G be a torsionfree
hyperbolic group and let n be an integer ≥ 6. Then:

(i) The following statements are equivalent:
(a) The boundary ∂G is homeomorphic to Sn−1;
(b) There is a closed aspherical topological manifold M such that

G ∼= π1(M), its universal covering M̃ is homeomorphic to Rn

and the compactification of M̃ by ∂G is homeomorphic to Dn.
(ii) The following statements are equivalent:

(a) The boundary ∂G has the integral Čech cohomology of Sn−1;
(b) There is a closed aspherical ANR-homology manifold M with G ∼=

π1(M).
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(iii) Let M and N be two aspherical closed n-dimensional manifolds to-

gether with isomorphisms φM : π1(M)
∼=
−→ G and φN : π1(N)

∼=
−→ G.

Then there exists a homeomorphism f : M → N such that π1(f) agrees
with φ−1

N ◦ φM (up to inner automorphisms).

Remark 7.5 (Algorithm for the homeomorphism problem). By unpublished
work of Bartels and Lück [5] on the Borel Conjecture for hyperbolic groups two
closed aspherical manifolds with hyperbolic fundamental groups and dimension
n ≥ 5 are homeomorphic if and only if their fundamental groups are isomor-
phic. Combining this with the result of Sela [127] stated in Theorem 7.2 (ix)b
shows for any integer n ≥ 5: There exists an algorithm which takes as input
two closed aspherical n-dimensional manifolds with hyperbolic fundamental
groups and which (after a finite amount of time) will stop and answers yes or
no according to whether or not the manifolds are homeomorphic.

The following is already pointed out in [20, page 459]: There is a technical
problem here with how the closed aspherical manifolds are given. They must
be given by a finite amount of information (from which one can read off a
presentation of the fundamental group).

Remark 7.6 (Lacunary groups). Olshanskii-Osin-Sapir [100] introduced the
notion of a lacunary group as a finitely generated group one of whose asymp-
totic cones is an R-tree. They show that such a group can always be obtained
as a colimit of a directed system of hyperbolic groups G1 → G2 → G3 → · · · ,
where the structure maps are epimorphisms of hyperbolic groups with certain
additional properties. A finitely presented lacunary group is hyperbolic. The
class of lacunary groups is very large and contains some examples with unusual
properties, e.g., certain infinite torsionfree groups whose proper subgroups are
all cyclic and infinite torsion-groups whose proper subgroups are all of order p
for some fixed prime number p.

Remark 7.7. Colimits of directed systems of hyperbolic groups which come
from adding more and more relations have been used to construct exotic
groups. Other constructions come from random groups (see [64]). Here are
some examples:

(i) Let G be a torsionfree hyperbolic group which is not virtually cyclic.
Then there exists a quotient of G which is an infinite torsiongroup
whose proper subgroups are all finite (or cyclic) (See [99]);

(ii) There are hyperbolic groups which do have Kazhdan’s property (T)
(see Zuk [140]);

(iii) There exist groups with expanders. They play a role in the con-
struction of counterexamples to the Baum-Connes Conjecture with
coefficients due to Higson, Lafforgue and Skandalis [67].

Remark 7.8 (Exotic aspherical manifolds). For every n ≥ 5 there exists an
example of a closed aspherical topological manifold M of dimension n that
is a piecewise flat, non-positively curved polyhedron such that the universal

covering M̃ is not homeomorphic to Rn (see [33, Theorem 5b.1 on page 383]).
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This manifold is not homeomorphic to a closed smooth manifold with Rie-
mannian metric of non-positive sectional curvature by Hadamard’s Theorem.
There is a variation of this construction that uses the strict hyperbolization of
Charney-Davis [27] and produces closed aspherical manifolds whose universal
cover is not homeomorphic to Euclidean space and whose fundamental group
is hyperbolic.

There exists a strictly negatively curved polyhedron N of dimension 5 whose
fundamental group is hyperbolic, which is homeomorphic to a closed aspherical
smooth manifold and whose universal covering is homeomorphic to Rn, but the
ideal boundary of its universal covering, which is homeomorphic to ∂G, is not
homeomorphic to Sn−1 (see [33, Theorem 5c.1 on page 384]). Notice N is
not homeomorphic to a closed smooth Riemannian manifold with negative
sectional curvature.

Remark 7.9 (Cohomological characterization of hyperbolic groups). There
exist also characterizations of the property hyperbolic in terms of cohomol-

ogy. A finitely presented group G is hyperbolic if and only if H
(1)
1 (G, R) =

H
(1)

1 (G, R) = 0 holds for the first l1-homology and the first reduced l1-homology
(see [2]). For a characterization in terms of bounded cohomology we refer
to [93].

8. CAT(0)-groups

Definition 8.1 (CAT(0)-group). A group is called CAT(0)-group if it admits
an isometric proper cocompact action on some CAT(0)-space.

Theorem 8.2 (Properties of CAT(0)-groups).

(i) Classifying spaces and finiteness properties:
(a) If G is a CAT(0)-group, then there exists a finite model for the

universal space of proper G-actions EG (see Definition 9.1);
(b) If G is a CAT(0)-group, then there is a model for BG of finite

type, Hn(G; Z) is finitely generated as Z-module for n ≥ 0 and
Hn(G; Q) is trivial for almost all n ≥ 0;

(c) If G is a CAT(0)-group, then G is finitely presented;
(d) Suppose that G is a CAT(0)-group. Then there are only finitely

many conjugacy classes of finite subgroups of G;
(e) If G is a torsionfree CAT(0)-group, then there is a finite model

for BG, the abelian group Hn(G; Z) is finitely generated for n ≥ 0
and Hn(G; Z) is trivial for almost all n ≥ 0;

(ii) Solvable subgroups:
Every solvable subgroup of a CAT(0)-group is virtually Zn;

(iii) Inheritance properties:
(a) The direct product of two CAT(0)-groups is again a CAT(0)-

group;
(b) The free product with amalgamation along a virtually cyclic sub-

group of two CAT(0)-groups is again a CAT(0)-group;
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(c) The HNN-extension of a CAT(0)-group along a finite group is
again a CAT(0)-group;

(iv) Examples:
(a) Limit groups in the sense of Sela are CAT(0)-groups;
(b) Coxeter groups are CAT(0)-groups;
(c) Three-dimensional FC Artin groups are CAT(0)-groups;

(v) Decision problems:
The word-problem and the conjugation-problem are solvable for a
CAT(0)-group;

(vi) Hyperbolic:
Let G act isometrically, properly and cocompactly on the CAT(0)-
space X. Then G is hyperbolic if and only if X does not contain an
isometrically embedded copy of a Euclidean plane;

(vii) Weak Hyperbolization Theorem:
Let G be a three-dimensional Poincaré duality group. Suppose that in
addition that G is a CAT(0)-group. Then G satisfies the Weak Hy-
perbolization Conjecture, i.e., either G contains Z2 or G is hyperbolic.

Proof. (i)a Let X be a CAT(0)-space on which G acts properly, isometrically
and cocompactly. Then it is easy to show that X is a model for JG for the
numerable version of the classifying space for proper G-actions. (Notice that
X is not necessarily a CW -complex. But this implies that there is a cocompact
model for EG. Details will appear in [87].

(i)b This follows from assertion (i)a (see [80, Theorem 4.2]).

(i)c This follows from assertion (i)b.

(i)d This follows from assertion (i)a (see [80, Theorem 4.2]).

(i)e This follows from assertion (i)a.

(ii) See [20, Theorem 1.1 in Chapter III.Γ on page 439].

(iii)a See [20, Theorem 1.1 in Chapter III.Γ on page 439].

(iii)b See [20, Theorem 1.1 in Chapter III.Γ on page 439].

(iii)c See [20, Theorem 1.1 in Chapter III.Γ on page 439].

(iv)a [1].

(iv)b This is a result due to Moussong. See [32, Theorem 12.3.3 on page 235],
[95].

(iv)c See [10].

(vi) See [20, Theorem 3.1 in Chapter III.Γ on page 459].

(vii) See [70, Theorem 2]. �

Interesting results about CAT(0)-groups and CAT(0)-lattices including ri-
gidity statements have been proved by Caprace and Monod [24].

Münster Journal of Mathematics Vol. 1 (2008), 73–108



Survey on geometric group theory 95

9. Classifying spaces for proper actions

Very often information or basic properties of groups are reflected in inter-
esting actions of the group. In this context the notion of a classifying space
for proper G-actions is important. This notion and the more general notion
of a classifying space for a family of subgroups was introduced by tom Dieck
(see [134], [135, I.6]).

A G-CW -complex X is a CW -complex with a G-action such that for every
open cell e and every g ∈ G with g · e = e we have gx = x for every g ∈ G
and x ∈ e. The barycentric subdivision of a simplicial complex with simplicial
G-action is a G-CW -complex. A G-CW -complex X is proper if and only if all
its isotropy groups are finite (see [79, Theorem 1.23]).

Definition 9.1 (Classifying space for proper actions). Let G be a group. A
model for the classifying space of proper G-actions is a proper G-CW -complex
EG such that EGH is contractible for all finite subgroups H ⊆ G.

Theorem 9.2 (Homotopy characterization of EG).

(i) There exists a model for EG;
(ii) A G-CW -complex Y is a model for EG if and only if for every proper

G-CW -complex X there is up to G-homotopy precisely one G-map
X → Y . In particular any two models for the classifying space for
proper G-actions are G-homotopy equivalent.

Proof. See for instance [85, Theorem 1.9 on page 275]. �

If G is torsionfree, then a model for EG is a model for EG, i.e., the total
space of the universal G-principal bundle G → EG → BG. A group G is finite
if and only if G/G is a model for EG.

Some prominent groups come with prominent actions on prominent spaces.
Often it turns out that these are models for the classifying space for proper
G-actions. Here we give a list of examples. More explanations and references
can be found in the survey article [85].

• Discrete subgroups of almost connected Lie groups
Let L be a Lie group with finitely many path components. Let K ⊆ L
be any maximal compact subgroup, which is unique up to conjugation.
Let G ⊆ L be a discrete subgroup. Then L/K is diffeomorphic to Rn

and becomes with the obvious left G-action a model for EG.
• Hyperbolic groups and the Rips complex

Let G be a hyperbolic group. Let Pd(G) be the Rips complex. Then
Pd(G) is a model for EG if d is chosen large enough.

• Proper isometric actions on simply connected complete Riemannian
manifolds with non-positive sectional curvature
Suppose that G acts isometrically and properly on a simply connected
complete Riemannian manifold M with non-positive sectional curva-
ture. Then M is a model for EG;
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• Proper actions on trees
Let T be a tree. Suppose that G acts on T by tree automorphisms
without inversion such that all isotropy groups are finite. Then T is
a model for EG;

• Arithmetic groups and the Borel-Serre compactification
Let G(R) be the R-points of a semisimple Q-group G(Q) and let K ⊆
G(R) be a maximal compact subgroup. If A ⊆ G(Q) is an arithmetic
group, then G(R)/K with the left A-action is a model for EA. The A-
space G(R)/K is not necessarily cocompact. However, the Borel-Serre
completion of G(R)/K is a finite A-CW -model for EA;

• Mapping class groups and Teichmüller space
Let Γs

g,rbe the mapping class group of an orientable compact sur-
face F s

g,r of genus g with s punctures and r boundary components.
This is the group of isotopy classes of orientation preserving self-
diffeomorphisms F s

g,r → F s
g,r that preserve the punctures individually

and restrict to the identity on the boundary. We require that the
isotopies leave the boundary pointwise fixed. We will always assume
that 2g+s+r > 2, or, equivalently, that the Euler characteristic of the
punctured surface F s

g,r is negative. Then the associated Teichmüller
space T s

g,r is a model for EΓs
g,r;

• Out(Fn) and outer space
Let Fn be the free group of rank n. Denote by Out(Fn) the group
of outer automorphisms of Fn. Culler and Vogtmann [30], [137] have
constructed a space Xn called outer space, on which Out(Fn) acts
with finite isotropy groups. It is a model for E Out(Fn).

The space Xn contains a spine Kn which is an Out(Fn)-equivariant
deformation retract. This space Kn is a simplicial complex of dimen-
sion (2n − 3) on which the Out(Fn)-action is by simplicial automor-
phisms and cocompact. Hence the barycentric subdivision of Kn is a
finite (2n − 3)-dimensional model of E Out(Fn);

• One-relator groups
Let G be a one-relator group. Let G = 〈(qi)i∈I | r〉 be a presenta-
tion with one relation. There is up to conjugacy one maximal finite
subgroup C which turns out to be cyclic. Let p : ∗i∈I Z → G be the
epimorphism from the free group generated by the set I to G that
sends the generator i ∈ I to qi. Let Y →

∨
i∈I S1 be the G-covering

associated to the epimorphism p. There is a 1-dimensional unitary
C-representation V and a C-map f : SV → resC

G Y such that the fol-
lowing is true: The induced action on the unit sphere SV is free. If we
equip SV and DV with the obvious C-CW -complex structures, the
C-map f can be chosen to be cellular and we obtain a G-CW -model
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for EG by the G-pushout

G ×C SV
f

//

��

Y

��

G ×C DV // EG

where f sends (g, x) to gf(x). Thus we get a 2-dimensional G-CW -
model for EG such that EG is obtained from G/C for a maximal finite
cyclic subgroup C ⊆ G by attaching free cells of dimensions ≤ 2 and
the CW -complex structure on the quotient G\EG has precisely one
0-cell, precisely one 2-cell and as many 1-cells as there are elements
in I.

Remark 9.3 (Isomorphism Conjectures). The space EG and its version for the
family of virtually cyclic subgroups play an important role in the formulation of
the Isomorphism Conjectures for K- and L-theory of group rings and reduced
group C∗-algebras or Banach algebras due to Farrell-Jones (see [47, 1.6 on page
257]), Baum-Connes (see [7, Conjecture 3.15 on page 254]) and Bost. Methods
and results from geometric group theory enter the proofs of these conjectures
for certain classes of groups. A survey on these conjectures, their status and
the methods of proof can be found for instance in [89].

Remark 9.4 (Small models). As one can ask whether there are small models
for BG (or, equivalently, for the G-CW -complex EG) such as finite models,
models of finite type or finite-dimensional models, the same question is inter-
esting for the G-CW -complex EG and has been studied for instance in [74],
[80], [88].

Although there are often nice small models for EG, these spaces can be
arbitrarily complicated. Namely, for any CW -complex X there exists a group
G such that G\EG and X are homotopy equivalent (see [77]). There can also
be dramatic changes in the complexity and size of EG if one passes from EH
to EG for a subgroup H ⊆ G of finite index (see [78]).

Remark 9.5 (Compactifications of EG). It is very important to find ap-
propriate compactifications of EG. Finding the right one which is “small at
infinity” leads to injectivity results concerning the Isomorphism Conjectures
(see for instance [25], [121], [122]). We have seen for a hyperbolic group that its
boundary yields a powerful compactification of the associated Rips complex. A
CAT(0)-space comes with a natural compactification by adding its boundary.
There is a whole theory of compactifications of the Teichmüller space. For
arithmetic groups the Borel-Serre compactification is crucial.

Remark 9.6 (Computations). A good understanding of the spaces EG can be
used to make explicit computations of the homology or topological K-theory
H∗(BG) and K∗(BG) or various K- and L-groups such as K∗(RG), L∗(RG)
and K∗(C

∗
r (G)). See for instance [81], [83], [84], [86], [90].
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10. Measurable group theory

Gromov [63, 0.2.C′
2 on page 6] (see also [34, Exercise 35 in IV.B on page 98]

or [131, Theorem 2.1.2]) observed that the notion of quasiisometry can be
reformulated as follows.

Lemma 10.1. Two finitely generated groups G1 and G2 are quasiisometric
if and only if there exists a locally compact space on which G1 and G2 act
properly and cocompactly and the actions commute.

This led Gromov to the following measure theoretic version (see [63, 0.5E],
[50] and [51]). A Polish space is a separable topological space which is metriz-
able by a complete metric. A measurable space is called a standard Borel space
if it is isomorphic to a Polish space with its standard Borel σ-algebra. Let Ω
be a standard Borel space with a Borel measure µ. Let G act on Ω by Borel
automorphisms. A measure theoretic fundamental domain for the G-action is
a Borel subset X ⊆ Ω such that µ(g · X ∩ X) = 0 for every g ∈ G, g 6= 1 and
µ(Ω − G · X) = 0 hold.

Definition 10.2 (Measure equivalence). Two countable groups G and H are
called measure equivalent if there is a standard Borel space Ω with a non-zero
Borel measure on which G and H act by measure-preserving Borel automor-
phisms such that the actions commute and the actions of both G and H admit
finite measure fundamental domains.

The actions appearing in Definition 10.2 are automatically essentially free,
i.e., the stabilizer of almost every point is trivial, because of the existence of
the measure fundamental domains. Measure equivalence defines an equivalence
relation on countable groups (see [50, Section 2]).

Remark 10.3 (Lattices). Let Γ and Λ be two lattices in the locally compact
second countable topological group G, i.e., discrete subgroups with finite co-
volume with respect to a Haar measure on G. Then Λ and Γ are quasiisometric
provided that they are cocompact. An important feature of measure equiva-
lence is that Λ and Γ are measure equivalent without the hypothesis of being
cocompact (see [63, 0.5.E2]).

An action G y X of a countable group G is called standard if X is a
standard Borel space with a probability measure µ, the group G acts by µ-
preserving Borel automorphisms and the action is essentially free.

Definition 10.4 ((Weak) orbit equivalence). Two standard actions G y X
and H y Y are called weakly orbit equivalent if there exist Borel subsets
A ⊆ X and B ⊆ Y meeting almost every orbit and a Borel isomorphism
f : A → B which preserves the normalized measures on A and B, respectively,
and satisfies for almost all x ∈ A

f(G · x ∩ A) = H · f(x) ∩ B.

If A and B have full measure in X and Y , the two actions are called orbit
equivalent.
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The following result is formulated and proved in [51, Theorem 3.3], where
credit is also given to Gromov and Zimmer.

Theorem 10.5 (Measure equivalence versus weak orbit equivalence). Two
countable groups G and H are measure equivalent if and only if there exist
standard actions of G and H that are weakly orbit equivalent.

The next result is due to Ornstein-Weiss [101].

Theorem 10.6.

(i) Let G1 and G2 be two infinite countable amenable groups. Then any
two standard actions of G1 and G2 are orbit equivalent;

(ii) Any infinite amenable group G is measure equivalent to Z.

On the other hand we have the following result due to Epstein [39, Corol-
lary 1.2], the case of a group with property (T) has been treated by Hjorth [68]
before.

Theorem 10.7. A countable non-amenable group admits a continuum of stan-
dard actions which are not pairwise orbit equivalent.

The following result is due to Gaboriau-Popa [56].

Theorem 10.8. Let G be a non-abelian free group. Then there exists a con-
tinuum of standard actions G y X which are pairwise not orbit equivalent and
whose associated von Neumann algebras L∞(X) ⋊ G are pairwise not isomor-
phic.

Remark 10.9 (Quasiisometry versus measure equivalence). In general two
finitely presented measure equivalent groups need not be quasiisometric. For
example Zn and Zm for n, m ≥ 1 are quasiisometric if and only if n = m (see
Theorem 3.5) and they are always measure equivalent (see Theorem 10.5).

We mention that property (T) is invariant under measure equivalence (see
[50, Theorem 8.2]) but is not a quasiisometry invariant (see Remark 3.11).

In general two finitely presented quasiisometric groups need not be measure
equivalent as the following example shows. If Fg denotes the free group on
g generators, then define Gn := (F3 × F3) ∗ Fn for n ≥ 2. The groups Gm

and Gn are quasiisometric for m, n ≥ 2 (see [34, page 105 in IV-B.46], [139,
Theorem 1.5]) and have finite models for their classifying spaces. One easily

checks that b
(2)
1 (Gn) = n and b

(2)
2 (Gn) = 4 (see [82, Example 1.38 on page 41]).

By the following result of Gaboriau [53, Theorem 6.3] the groups Gn and Gm

are measure equivalent if and only if m = n holds.

Theorem 10.10 (Measure equivalence and L2-Betti numbers). Let G1 and G2

be two countable groups that are measure equivalent. Then there is a constant
C > 0 such that for all p ≥ 0

b(2)
p (G1) = C · b(2)

p (G2).
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Remark 10.11 (Measure equivalence rigidity). In view of Theorem 10.6 one
realizes that measurable equivalence cannot capture any group theoretic prop-
erty which can be separated within the class of amenable groups and is highly
non-rigid for amenable groups. Nevertheless, there is a deep and interesting
rigidity theory underlying the notion of orbit equivalence. For information
about this topic we refer for instance to the survey article of Shalom [132]. We
give as an illustration some examples below.

The next result follows from Furman [51, Corollary B] and is stated in the
present sharpened form in [132, Theorem 3.1].

Theorem 10.12. Fix an odd natural number n ≥ 3. Consider the obvious
standard action of SLn(Z) on the n-torus T n equipped with the Lebesgue mea-
sure. Suppose that it is orbit equivalent to a standard action of the group Λ.
Then Λ ∼= SLn(Z) and the orbit equivalence is induced by an isomorphism of
actions.

The next result is due to Monod-Shalom [94, Theorem 1.18] and may be
viewed as the measure theoretic definition of a negatively curved group.

Theorem 10.13. The condition that the second bounded cohomology
H2

b (G, l2(G)) with coefficients in l2(G) does not vanish is an invariant under
measure equivalence. Hyperbolic groups have this property.

The next result is taken from [94, Corollary 1.11 and Theorem 1.16]. For a
countable group G and any probability distribution µ (different from Dirac) on
the interval [0, 1], the natural shift action on

∏
G([0, 1], µ) is called a Bernoulli

G-action.

Theorem 10.14.

(i) Let G be the direct product of two torsionfree groups G1 and G2 with
non-trivial H2

b (G1, l
2(G1)) and H2

b (G2, l
2(G2)). If a Bernoulli G-

action is orbit equivalent to a Bernoulli H-action for some group H,
then G ∼= H and the actions are isomorphic by a Borel isomorphism
which induces the given orbit equivalence;

(ii) Let G1, . . . , Gm and H1, . . . , Hn be torsionfree groups with non-
vanishing H2

b (Gi, l
2(Gi)) and H2

b (Hj , l
2(Hj)). Suppose that

∏m

i=1 Gi

and
∏n

j=1 Hj are measure equivalent. Then m = n and for an appro-
priate permutation σ the groups Gi and Hσ(i) are measure equivalent
for i = 1, 2, . . . n.

There are many more interesting results in the spirit that the orbit struc-
ture of an action remembers the group and the action, and relations between
orbit equivalence and questions about von Neumann algebras and bounded co-
homology. In particular, Popa has proved spectacular results on fundamental
groups of II1-factors and on rigidity. See for instance [23], [55], [56], [94], [103],
[111], [112], [113], [114], [115], [117], [116], [118].
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11. Some open problems

Here is a list of interesting open problems. It reflects some of the interests
(and limited knowledge) of the author:

11.1. Hyperbolic groups.

(i) Is every hyperbolic group virtually torsionfree?
(ii) Is every hyperbolic group residually finite?
(iii) Suppose that the space at infinity of a hyperbolic group is homeomor-

phic to S2. Does this imply that it acts properly isometrically and
cocompactly on the 3-dimensional hyperbolic space?

Partial results in this direction have been proved in [14].
(iv) Has the boundary of a hyperbolic group the integral Čech cohomology

of a sphere if and only if it occurs as the fundamental group of an
aspherical closed manifold M?

(v) Is the boundary ∂G of a hyperbolic group G homeomorphic to Sn if
and only if it occurs as the fundamental group of an aspherical closed

manifold M whose universal covering M̃ is homeomorphic to Rn and

its compactification M̃ ∪ ∂G by ∂G is homeomorphic to Dn?
The answer for the last problems is yes for n ≥ 6 (see Theorem 7.4).

(vi) Which topological spaces occur as boundary of a hyperbolic group?
(vii) Is every hyperbolic group a CAT(0)-group?

11.2. Isomorphism Conjectures.

(i) Are the Conjectures due to Baum-Connes, Farrell-Jones and Borel
true for the following groups?

• SLn(Z) for n ≥ 3;
• Mapping class groups;
• Out(Fn).
The fact that these conjectures are not known for these groups indi-

cates that we do not understand enough about the geometry of these
groups. Probably any successful proof will include new interesting
information about these groups.

(ii) Are the Conjectures due to Farrell-Jones and Borel true for amenable
groups?

The Baum-Connes Conjecture is known for groups with the Haa-
gerup property and hence in particular for amenable groups (see [66],
[46].) The Farrell-Jones Conjecture and the Borel Conjecture for these
groups are harder since there one has to take into account all virtually
cyclic subgroups and not only all finite subgroups as in the Baum-
Connes setting and one encounters Nil-phenomena which do not occur
in the Baum-Connes setting.

(iii) Is there a property for groups known such that Isomorphism Con-
jectures mentioned above are not known for any group having this
property. If yes, can one use this property to produce counterexam-
ples?
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For some time property (T) was thought to be such a property for
the Baum-Connes Conjecture until Lafforgue (see [75], [76]) proved
the Baum-Connes Conjecture for certain groups having property (T).
The counterexamples to the Baum-Connes Conjecture by Higson-
Lafforgue-Skandalis [67] given by groups with expanders have indi-
cated another source of possible counterexamples. Such groups can
be constructed by directed colimits of hyperbolic groups. However,
for directed colimits of hyperbolic groups the Farrell-Jones Conjecture
and the Borel Conjecture in dimension ≥ 5 are known to be true by
unpublished work of Bartels and Lück [5] and the Bost Conjecture
with C∗-coefficients has been proved by Bartels-Echterhoff-Lück [4].

11.3. Quasiisometry.

(i) Are there finitely presented groups that are quasiisometric such that
one is solvable but the other is not? See Remark 3.9.

(ii) Is the property of being poly-cyclic invariant under quasiisometry?
(iii) Is the Mal’cev completion of a finitely generated torsionfree nilpotent

group an invariant under quasiisometry? See Conjecture 3.6.
(iv) Are the Novikov-Shubin invariants or the vanishing of the L2-torsion

invariants under quasiisometry? See Remark 3.14.
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Enseign. Math. (2) 41 (1995), no. 1-2, 63–102. MR1341941 (96f:58120)

[16] B. H. Bowditch, Notes on Gromov’s hyperbolicity criterion for path-metric spaces, in
Group theory from a geometrical viewpoint (Trieste, 1990), 64–167, World Sci. Publ.,
River Edge, NJ. MR1170364 (93h:57002)

[17] B. H. Bowditch, Cut points and canonical splittings of hyperbolic groups, Acta Math.
180 (1998), no. 2, 145–186. MR1638764 (99g:20069)

[18] S. G. Brick, Quasi-isometries and ends of groups, J. Pure Appl. Algebra 86 (1993),
no. 1, 23–33. MR1213151 (94b:20043)

[19] M. R. Bridson and S. M. Gersten, The optimal isoperimetric inequality for torus
bundles over the circle, Quart. J. Math. Oxford Ser. (2) 47 (1996), no. 185, 1–23.
MR1380947 (97c:20047)

[20] M. R. Bridson and A. Haefliger, Metric spaces of non-positive curvature, Springer,
Berlin, 1999. MR1744486 (2000k:53038)

[21] K. S. Brown, Cohomology of groups, Springer, New York, 1982. MR0672956
(83k:20002)

[22] I. Bumagina, The Hopf property for subgroups of hyperbolic groups, Geom. Dedicata
106 (2004), 211–230. MR2079844 (2005e:20061)

[23] M. Burger and N. Monod, Continuous bounded cohomology and applications to rigidity
theory, Geom. Funct. Anal. 12 (2002), no. 2, 219–280. MR1911660 (2003d:53065a)

[24] P.-E. Caprace and N. Monod, Some properties of non-positively curved lattices, C. R.
Math. Acad. Sci. Paris 346 (2008), no. 15-16, 857–862. MR2441921

[25] G. Carlsson and E. K. Pedersen, Controlled algebra and the Novikov conjectures for
K- and L-theory, Topology 34 (1995), no. 3, 731–758. MR1341817 (96f:19006)

[26] A. Casson and D. Jungreis, Convergence groups and Seifert fibered 3-manifolds, Invent.
Math. 118 (1994), no. 3, 441–456. MR1296353 (96f:57011)

[27] R. M. Charney and M. W. Davis, Strict hyperbolization, Topology 34 (1995), no. 2,
329–350. MR1318879 (95m:57034)

[28] D. E. Cohen, Combinatorial group theory: a topological approach, Cambridge Univ.

Press, Cambridge, 1989. MR1020297 (91d:20001)
[29] M. Cowling and U. Haagerup, Completely bounded multipliers of the Fourier algebra

of a simple Lie group of real rank one, Invent. Math. 96 (1989), no. 3, 507–549.
MR0996553 (90h:22008)

[30] M. Culler and K. Vogtmann, Moduli of graphs and automorphisms of free groups,
Invent. Math. 84 (1986), no. 1, 91–119. MR0830040 (87f:20048)
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[37] C. Druţu, Quasi-isometry invariants and asymptotic cones, Internat. J. Algebra Com-
put. 12 (2002), no. 1-2, 99–135. MR1902363 (2003g:20069)

[38] M. J. Dunwoody and M. E. Sageev, JSJ-splittings for finitely presented groups over
slender groups, Invent. Math. 135 (1999), no. 1, 25–44. MR1664694 (2000b:20050)

[39] I. Epstein, Orbit equivalent actions of non-amenable groups. Preprint,
arXiv:math.GR/0707.4215, 2008.

[40] A. Eskin, Quasi-isometric rigidity of nonuniform lattices in higher rank symmetric
spaces, J. Amer. Math. Soc. 11 (1998), no. 2, 321–361. MR1475886 (98g:22005)

[41] A. Eskin and B. Farb, Quasi-flats in H2 × H2, in Lie groups and ergodic theory
(Mumbai, 1996), 75–103, Tata Inst. Fund. Res., Bombay. MR1699359 (2000h:53055)

[42] B. Farb, The quasi-isometry classification of lattices in semisimple Lie groups, Math.
Res. Lett. 4 (1997), no. 5, 705–717. MR1484701 (98k:22044)

[43] B. Farb and L. Mosher, Quasi-isometric rigidity for the solvable Baumslag-Solitar
groups. II, Invent. Math. 137 (1999), no. 3, 613–649. MR1709862 (2001g:20053)

[44] B. Farb and L. Mosher, On the asymptotic geometry of abelian-by-cyclic groups, Acta
Math. 184 (2000), no. 2, 145–202. MR1768110 (2001e:20035)

[45] B. Farb and R. Schwartz, The large-scale geometry of Hilbert modular groups, J.
Differential Geom. 44 (1996), no. 3, 435–478. MR1431001 (98f:22018)

[46] D. S. Farley, Proper isometric actions of Thompson’s groups on Hilbert space, Int.
Math. Res. Not. 2003, no. 45, 2409–2414. MR2006480 (2004k:22005)

[47] F. T. Farrell and L. E. Jones, Isomorphism conjectures in algebraic K-theory, J. Amer.
Math. Soc. 6 (1993), no. 2, 249–297. MR1179537 (93h:57032)

[48] E. Følner, On groups with full Banach mean value, Math. Scand. 3 (1955), 243–254.
MR0079220 (18,51f)

[49] E. M. Freden, Negatively curved groups have the convergence property. I, Ann. Acad.
Sci. Fenn. Ser. A I Math. 20 (1995), no. 2, 333–348. MR1346817 (96g:20054)

[50] A. Furman, Gromov’s measure equivalence and rigidity of higher rank lattices, Ann.
of Math. (2) 150 (1999), no. 3, 1059–1081. MR1740986 (2001a:22017)

[51] A. Furman, Orbit equivalence rigidity, Ann. of Math. (2) 150 (1999), no. 3, 1083–1108.
MR1740985 (2001a:22018)

[52] D. Gabai, Convergence groups are Fuchsian groups, Bull. Amer. Math. Soc. (N.S.) 25

(1991), no. 2, 395-402. MR1102752 (92h:57056)
[53] D. Gaboriau, Invariants l2 de relations d’équivalence et de groupes, Publ. Math. Inst.

Hautes Études Sci. No. 95 (2002), 93–150. MR1953191 (2004b:22009)
[54] D. Gaboriau, On orbit equivalence of measure preserving actions, in Rigidity in

dynamics and geometry (Cambridge, 2000), 167–186, Springer, Berlin. MR1919400
(2003c:22027)

[55] D. Gaboriau, Examples of groups that are measure equivalent to the free group, Er-
godic Theory Dynam. Systems 25 (2005), no. 6, 1809–1827. MR2183295 (2006i:22024)

[56] D. Gaboriau and S. Popa, An uncountable family of nonorbit equivalent actions of Fn,
J. Amer. Math. Soc. 18 (2005), no. 3, 547–559 (electronic). MR2138136 (2007b:37005)

[57] S. M. Gersten, Quasi-isometry invariance of cohomological dimension, C. R. Acad. Sci.

Paris Sér. I Math. 316 (1993), no. 5, 411–416. MR1209258 (94b:20042)
[58] Sur les groupes hyperboliques d’après Mikhael Gromov, Progr. Math., 83, Birkhäuser
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[134] T. tom Dieck, Orbittypen und äquivariante Homologie. I, Arch. Math. (Basel) 23

(1972), 307–317. MR0310919 (46 #10017)
[135] T. tom Dieck, Transformation groups, de Gruyter, Berlin, 1987. MR0889050

(89c:57048)
[136] L. van den Dries and A. J. Wilkie, Gromov’s theorem on groups of polynomial growth

and elementary logic, J. Algebra 89 (1984), no. 2, 349–374. MR0751150 (85k:20101)
[137] K. Vogtmann, Automorphisms of free groups and outer space, Geom. Dedicata 94

(2002), 1–31. MR1950871 (2004b:20060)
[138] C. Wegner, L2-invariants of finite aspherical CW-complexes with fundamental group

containing a non-trivial elementary amenable normal subgroup, in Schriftenreihe des
Mathematischen Instituts der Universität Münster. 3. Serie, Heft 28, 3–114, Univ.
Münster, Münster. MR1851963 (2002g:57049)

[139] K. Whyte, Amenability, bi-Lipschitz equivalence, and the von Neumann conjecture,
Duke Math. J. 99 (1999), no. 1, 93–112. MR1700742 (2001a:20064)

[140] A. Żuk, Property (T) and Kazhdan constants for discrete groups, Geom. Funct. Anal.
13 (2003), no. 3, 643–670. MR1995802 (2004m:20079)

Received June 23, 2008; accepted September 11, 2008

Wolfgang Lück
Westfälische Wilhelms-Universität Münster, Mathematisches Institut
Einsteinstr. 62, D-48149 Münster, Germany
E-mail: lueck@math.uni-muenster.de

URL: http://www.math.uni-muenster.de/u/lueck

Münster Journal of Mathematics Vol. 1 (2008), 73–108


