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Abstract. We construct a simple C∗-algebra with nuclear dimension zero that is not iso-
morphic to its tensor product with the Jiang–Su algebra Z, and a hyperfinite II1 factor not
isomorphic to its tensor product with the separable hyperfinite II1 factor R. The proofs use
a weakening of the Continuum Hypothesis.

Elliott’s program of classification of nuclear (a.k.a. amenable) C∗-algebras
recently underwent a transformative phase (see e.g., [5]). Following the coun-
terexamples of Rørdam and Toms to the original program, it was realized that
a regularity assumption stronger than nuclearity is necessary for C∗-algebras to
be classifiable by K-theoretic invariants. Conjecturally, regularity properties
of three different flavors are all equivalent and are, modulo the UCT, sufficient
for classification (restricting, say, to simple, separable, nuclear C∗-algebras).
We shall consider two of these regularity assumptions on a C∗-algebra A. One
of them asserts that A is Z-stable, meaning that it is isomorphic to its ten-
sor product with the Jiang–Su algebra Z. Another postulates that A has
finite nuclear dimension, this being a strengthening of the Completely Positive
Approximation Property (CPAP) introduced by Winter and Zacharias in [18]
(the CPAP is an equivalent formulation of amenability for C∗-algebras, see [3,
Chap. 2]). The Toms–Winter conjecture states (among other things) that for
separable, nuclear, simple, non-type I C∗-algebras, having finite nuclear dimen-
sion is equivalent to being Z-stable (see e.g., [18, Cor. 9.3], [15]). The direct
implication is a theorem of Winter ([17]). We show that it badly fails if the
separability assumption is dropped.

Theorem 1. The Continuum Hypothesis implies that there exists a simple
nuclear C∗-algebra with nuclear dimension zero which is not Z-stable.
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The paradigm of regularity properties for C∗-algebras parallels certain older
ideas in the study of von Neumann algebras. It has long been known that
amenability for von Neumann algebras is equivalent to hyperfiniteness, and
in the separable, non-type I case, it implies R-stability (the property of be-
ing isomorphic to one’s tensor product with the unique separable hyperfinite
II1 factor R; von Neumann algebras with this property are commonly called
McDuff) (see [14, Chap. XIV and XVI]). It is also not a stretch to find that
amenability is equivalent to a von Neumann-theoretic analog of nuclear dimen-
sion zero [12, Lemma 1.2]. The construction used to prove Theorem 1 adapts
easily to the von Neumann case, allowing us to prove the following.

Theorem 2. The Continuum Hypothesis implies that there exists a hyperfinite
II1 factor which is not R-stable.

We prove these theorems by constructing algebras whose central sequence
algebras are abelian. In fact, we strengthen the construction in two directions,
one in which the conclusion is strengthened (Theorems 1.2 and 1.5) and another
in which weaker set-theoretic axioms are assumed (Theorems 1.3 and 1.6). It
seems unlikely that the conclusions of Theorems 1.3 and 1.6—or even the
stronger conclusions of Theorems 1.2 and 1.5—are independent from ZFC.
The assumption of Theorems 1.3 and 1.6 is the cardinal equality b = c, where
b denotes the bounding number—see Section 2, where we also give two new
characterizations of b.

A result similar to Theorem 1.5 was proven in [8, Prop. 3.7(1)], where a II1
factor M is constructed using ZFC alone, whose central sequence algebra is
trivial, but every separable II1 subfactor of M has property Γ (this factor has
density character ℵ1, with respect to the strong operator topology). Unlike the
example in Theorem 1.5 (which shares the aforementioned properties), the von
Neumann algebra in [8, Prop. 3.7(1)] is not hyperfinite, due to the use of the free
product construction. Likewise, a minor modification of the construction in [8]
gives a monotracial C∗-algebra whose central sequence algebra is abelian, yet
whose non-type I, separable subalgebras each have nonabelian central sequence
algebras; but again, the free product construction prevents this example from
being nuclear, let alone having nuclear dimension zero.

The factor in Theorem 2 is clearly different from the “obvious” hyperfinite
factor whose predual has character density ℵ1. The existence of “nonobvious”
hyperfinite II1 factors with nonseparable preduals was first proved by Widom
([16]), and in [10] it was proved that there are 2κ nonisomorphic hyperfinite II1
factors with predual of density character κ, for every uncountable cardinal κ.

In Section 1 we provide more information about the algebras we construct
and their central sequence algebras. In Section 2 we give two new reformula-
tions of the bounding number b, one in terms of convergent subseries of null
sequences and another in terms of convergence of a sequence of inner automor-
phisms of a C∗-algebra. The proofs of main results are completed in Section 3,
using transfinite recursive construction, and in Section 4 we give concluding
remarks.
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Recall that density character of a topological space X is the minimal car-
dinality of a dense subset. Therefore X is separable if and only if its density
character is ℵ0 and it has cardinality c if and only if its density character is
≤ c. In our case, X will either be a C∗-algebra equipped with the norm topol-
ogy, or a von Neumann algebra considered with the strong operator topology
(SOT). In fact, the density character of a von Neumann algebra M is the same
whether measured with respect to the strong operator topology or any other
usual, non-norm, von Neumann algebra topology (e.g. WOT, weak∗-topology);
it also coincides with the density character of the predual M∗ under its norm
topology. All C∗-algebras are assumed to be unital. Background can be found
e.g., in [1] (for C∗-algebras and von Neumann algebras) and in [2] (for set
theory).

1. Locally matricial algebras

Following [9] and [13], we say that a C∗-algebra A is

• approximately matricial (or AM ) if it has a directed family of full matrix
subalgebras with dense union.

• locally matricial (or LM ) if for any finite subset F of A and any ε > 0,
there exists a full matrix subalgebra M of A such that for every a ∈ F we
have dist(a,M) < ε.

• locally finite dimensional (or LF ) if for any finite subset F of A and any
ε > 0, there exists a finite dimensional subalgebra M of A such that for
every a ∈ F we have dist(a,M) < ε.

Nuclear dimension, as defined in [18], is a property that is preserved under
local approximation; it follows that each LF algebra has nuclear dimension
zero (in fact, the converse also holds [18]).

LM algebras are not necessarily AM ([9, Thm. 1.5]). However, as LM al-
gebras are direct limits of separable UHF algebras ([9, Lemma 2.12]) they are
always simple. Recall that xn, for n ∈ N, is a central sequence of a C∗-algebra
A if ‖[xn, a]‖ → 0 for all a ∈ A. The central sequence algebra of A is the
subalgebra of ℓ∞(A)/c0(A) consisting of all equivalence classes of (bounded)
central sequences.

Lemma 1.1. If a central sequence algebra of a unital algebra A is abelian then
A is not Z-stable.

Proof. If B and C are unital C∗-algebras then the central sequence algebra of
B ⊗ν C (where ⊗ν is any C∗-tensor product) clearly has the central sequence
algebra of C as a unital subalgebra. The conclusion now follows from the fact
that the central sequence algebra of Z has a subalgebra isomorphic to Z. �

Every sequence of elements from the center of a C∗-algebra is obviously
a central sequence. We call the central sequence of a C∗-algebra A trivial
if it only consists of (equivalence classes of) such sequences (i.e. if it equals
(ℓ∞(Z(A)) + c0(A))/c0(A)).
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Theorem 1.2. The Continuum Hypothesis implies that there exists an AM
algebra all of whose central sequences are trivial.

By Lemma 1.1, Theorem 1 will follow once Theorem 1.2 is proved in Sec-
tion 3.

Strengthening Theorem 1 in another direction we show that an assumption
weaker than both the Continuum Hypothesis and Martin’s Axiom suffices. We
write c = 2ℵ0 and b for the bounding number (see Section 2 for definitions).

Theorem 1.3. If b = c then there exists a LM algebra whose central sequence
algebra is abelian.

By Lemma 1.1 and Theorem 1.2 (once the latter is proved) the conclusion
of Theorem 1 also follows from b = c.

A sequence, xn for n ∈ N, in a von Neumann algebra M is said to be central
if [xn, a] → 0 in the strong operator topology, for every a ∈ M . The central
sequence algebra of M is the subalgebra of

ℓ∞(A)/{(xn) | SOT− lim xn = 0}

consisting of equivalence classes of central sequences. A trivial central sequence
is one in the same equivalence class as a sequence from Z(M). Proven in the
same manner, we have the following analog of Lemma 1.1.

Lemma 1.4. If the central sequence algebra of a von Neumann algebra M is
abelian then M is not R-stable.

We will make great use of the fact that, when M has a faithful trace τ , then
the strong operator topology coincides with the topology induced by the norm
‖ · ‖2, given by

‖x‖2 := τ(x∗x)1/2;

indeed, adapting our main construction from the C∗-setting to the von Neu-
mann setting will primarily consist in using ‖ · ‖2 in place of ‖ · ‖. Here are the
von Neumann versions of Theorems 1.2 and 1.3.

Theorem 1.5. The Continuum Hypothesis implies that there exists a hyper-
finite II1 factor all of whose central sequences are trivial.

Theorem 1.6. If b = c then there exists a hyperfinite II1 factor whose central
sequence algebra is abelian, and in particular, which is not R-stable.

2. New characterizations of the bounding number

In the present section we provide alternative characterizations of the bound-
ing number, b. Readers interested only in the proofs of Theorems 1.2 and 1.5
can skip ahead to Section 3, modulo the facts that b1 defined below is un-
countable (this is not hard to show directly, or alternatively, using b2 ≤ b1 and
the uncountability of b2). Given two functions f, g : N → N, we say that f
eventually dominates g if f(n) ≥ g(n) for all but finitely many n ∈ N.

Münster Journal of Mathematics Vol. 7 (2014), 515–528



A simple C∗-algebra with finite nuclear dimension 519

Recall that the bounding number, which we denote by b, is the minimal
cardinality κ such that there exist functions f ξ : N → N for ξ < κ, such that
for every g : N → N, there exists some f ξ which isn’t eventually dominated
by g.

Let b1 be the minimal cardinal κ such that there exists a unital C∗-algebra
A of density character κ and a central sequence of unitaries un, for n ∈ N,
such that the following holds. For every subsequence un(i), for i ∈ N, with

vk := un(1)un(2) . . . un(k),

we have that the sequence of inner automorphisms Ad vk, for k ∈ N, does not
converge pointwise on A.

Let b1(LF) be the minimal κ with the above property where we additionally
require that A is LF.

Let b2 be the minimal cardinal κ such that there are sequences rξn, for n ∈ N

and ξ < κ, satisfying

(1) rξn ∈ (0,∞) for all ξ and n,
(2) limn r

ξ
n = 0 for all ξ, and

(3) there is no infinite increasing sequence n(i), for i ∈ N, of natural numbers

such that
∑

i r
ξ
n(i) < ∞ for all ξ.

It is well-known that Martin’s Axiom for σ-centered posets implies b = c (see
e.g., [11]).

Readers familiar with the generalized Galois–Tukey connections will have no
trouble in recasting the above definitions in this framework and observing that
each part of Lemma 2.2 asserts the existence of a morphism in the terminology
of [2, §4].

Proposition 2.1. We have b = b1 = b1(LF) = b2.

The proof that b = b2 uses the following lemma, which relates null sequences
to functions N → N.

Lemma 2.2.

(1) If rn ∈ (0,∞), for n ∈ N, is a null sequence, then there exists a function
f : N → N such that for any g : N → N, if g eventually dominates f then
∑∞

i=1 rg(i) < ∞.
(2) If f : N → N is a function then there exists a null sequence rn ∈ (0,∞), for

n ∈ N, such that for any g : N → N, if
∑∞

i=1 rg(i) < ∞ then g eventually
dominates f .

Proof. (1) Let f be any function such that

rn ≤
1

2i
holds for all i and all n ≥ f(i)

(which exists because limn rn = 0). If g : N → N eventually dominates f , then
eventually rg(i) < 2−i and so

∑∞

i=1 rg(i) < ∞.
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(2) Let rn be any sequence of positive real numbers converging to 0 satisfying

rn ≥
1

i
for all i and all n ≤ f(i).

Aiming to prove the contrapositive, suppose that g : N → N does not eventually
dominate f . Let B ⊆ N be the set of all i for which f(i) > g(i). Next, “thin
out” B as follows: let bj be an increasing sequence of distinct elements of B
such that for each j, over half of the elements of Im(g) before g(bj+1) are not
before g(bj). Then,

∞
∑

i=0

rg(i) =
∑

i<b0

rg(i) +
∑

b0≤i<b1

rg(i) +
∑

b1≤i<b2

rg(i) + . . .

≥
∑

i<b0

1

b0
+

∑

b0≤i<b1

1

b1
+

∑

b1≤i<b2

1

b2
+ . . .

≥ (b0)
1

b0
+ (

1

2
b1)

1

b1
+ (

1

2
b2)

1

b2
+ . . .

= 1 +
1

2
+

1

2
+ . . .

= ∞,

as required. �

Proof that b = b2. b ≤ b2: Let κ < b be arbitrary. Let rξn be sequences of
positive reals, for n ∈ N and ξ < κ. Assume that limn r

ξ
n = 0 for each ξ < κ.

For each ξ < κ, let fξ : N → N be as in Lemma 2.2 (1). Since κ < b,
there is some g : N → N that eventually dominates each fξ, and therefore by

Lemma 2.2 (1),
∑

i r
ξ
g(i) < ∞ for each ξ < κ.

The proof that b2 ≤ b is exactly the same, but this time using Lemma 2.2
(2) instead of (1). �

To prove the remaining part of Proposition 2.1 (namely, that b1 = b1(LF) =
b2), we need the following lemmas.

Lemma 2.3. Let (rn)
∞
n=1 be a null sequence of real numbers. Then

∑∞

n=1 rn
converges in R if and only if (

∑N
n=1 rn mod 1)∞N=1 converges in R/Z.

Proof. The forward implication is trivial. Suppose, on the other hand, that

(
∑N

n=1 rn mod 1)∞N=1 converges in R/Z. Let N0 be such that |rn| < 1/2 for
n ≥ N0. If N0 is sufficiently large, then for all N ≥ N0,

∑N
n=N0

rn ∈ (−ε, ε) + Z.

If ε < 1/2 then, between these facts, it follows that
∑N

n=N0
rn ∈ (−ε, ε).

This shows that the partial sums form a Cauchy sequence, so that
∑∞

n=1 rn
converges in R. �
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The following simple fact will be used both here and in Section 3, to “de-
centralize” elements or sequences.

Lemma 2.4. If A is a C∗-algebra and α : A → A is an endomorphism, then
α+ : A → M2(A) defined by

α+(a) =

(

a 0
0 α(a)

)

is a ∗-homomorphism. Moreover, for any a ∈ A,

‖[α+(a), v]‖ = ‖a− α+(a)‖,

where

(1) v :=

(

0A 1A
1A 0A

)

.

Proof. Obvious. �

Lemma 2.5. Let (rn) be a null sequence of real numbers. Then there exist
unitaries v, un, for n ∈ N, in the CAR algebra such that (un) is a central
sequence and, for any increasing sequence (n(i)) of natural numbers,

∑

i rn(i)

converges in R if and only if

Ad(un(1) . . . un(k))(v)

converges. Moreover, the CAR algebra contains subalgebras An
∼= M2 such

that un ∈ An and [un, Am] = 0 if m 6= n.

Proof. Let A = M⊗∞
2 and let α be the automorphism of A given by applying

Ad

(

0 1
1 0

)

to each tensor factor M2. Then B = M2(A) is isomorphic to the CAR algebra,
and we shall make use of the morphism α+ : A → B given by Lemma 2.4.

Define v as in (1). For each n, set

u′
n := 1

⊗(n−1)
M2

⊗

(

1 0
0 e2πirn

)

⊗ 1⊗∞
M2 ∈ A,

and
un = α+(u′

n).

Evidently, (u′
n) is central in A, and an easy computation shows that (un)

approximately commutes with v, and therefore, with every element of B. That
is to say, (un) is a central sequence.

Now, given an increasing sequence (n(i)) of natural numbers, we compute

Ad(un(1) . . . un(i)(v) = exp(2πi
∑i

j=1 rn(j))v,

and therefore, the sequence (Ad(un(1) . . . un(i)(v)) converges if and only if the
sequence

(exp(2πi
∑i

j=1 rn(j)))

Münster Journal of Mathematics Vol. 7 (2014), 515–528
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converges in T, which by Lemma 2.3, occurs if and only if
∑∞

i=1 rn(i) converges
in R.

Finally, we set An := α+(1
⊗(n−1)
M2

⊗M2 ⊗ 1⊗∞

M2 ). �

Proof of Proposition 2.1. We shall now prove that b1 = b1(LF) = b2.

b2 ≤ b1: Let A be a unital C∗-algebra of density character κ < b2 and let
vn, for n ∈ N, be a central sequence of unitaries in A. Let aξ, for ξ < κ, be a
dense subset of A and let

rξn = ‖[vn, aξ]‖.

Since (vn) is a central sequence, we have limn r
ξ
n = 0 for all ξ. We can therefore

choose an increasing sequence of natural numbers n(i), for i ∈ N, so that
∑

i r
ξ
n(i) < ∞ for all ξ.

Let wk = vn(1)vn(2) . . . vn(k). For k < m and all ξ we have

‖(Adwk)aξ − (Adwm)aξ‖ = ‖Adwk(aξ −Ad(vn(k+1) . . . vn(m))(aξ))‖

= ‖[aξ, vn(k+1) . . . vn(m)]‖

≤

m−1
∑

j=k

‖(Adwj)aξ − (Adwj+1)aξ‖

≤

m−1
∑

j=k

(rξn(j) + 2−j‖aξ‖),

and therefore (Adwk)aξ, for k ∈ N, is a Cauchy sequence. Since the automor-
phisms (Adwk) are isometries which pointwise converge on a dense subset of
A, they pointwise converge to an endomorphism. Since A was arbitrary we
have proved that κ < b2 implies κ < b1, and therefore b1 ≥ b2.

b1(LF) ≥ b1: this is trivial.

b2 ≥ b1(LF): Let κ < b2, and let rξn ∈ (0,∞), for n ∈ N, be a null sequence,
for each ξ < κ. For each ξ < κ, let A(ξ) be a copy of the CAR algebra and let

v(ξ), u(ξ)
n ∈ A(ξ)

be unitaries, for n ∈ N, as given by Lemma 2.5. Also, let A
(ξ)
n ⊂ A(ξ), for

n ∈ N, be the subalgebras given by the same lemma.
Set B =

∏

ξ<κ A
(ξ), and define

un := (u(ξ)
n )ξ<κ ∈ A

for each natural number n and

v̂(j) := (δijv
(ξ))i∈I ∈ A.

Set

Bn :=
∏

i∈I A
(ξ)
n

for each natural number n, and set

A′ := C∗
(
⋃

n∈N
Bn ∪

⊕

i∈I A
(ξ)

)

.
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We easily see that A′ is LF and contains each un and each v(ξ), and that (un) is
a central sequence in A′. By a downward Löwenheim–Skolem argument, there
exists an LF subalgebra A of A′ with density character κ and which contains
each v(ξ) and each un.

Now, suppose that (n(i)) is an increasing sequence of natural numbers such
that

Ad(un(1) . . . un(k))

converges in the point-norm topology. Then in particular,

Ad(un(i) . . . un(k))(v
(ξ))

converges for each ξ < κ, which by Lemma 2.5, means that
∑∞

i=1 r
ξ
n(i) < ∞.

The proof is complete. �

Remark 2.6. The proof that b1 ≤ b2 (= b) can be adapted (by using ‖ · ‖2
in place of ‖ · ‖) to show that, if M is a von Neumann algebra with a faithful
trace and with density character < b, and un, for n ∈ N, is a central sequence
from M , then there exists a subsequence un(i), for i ∈ N, such that

Ad un(1) . . . un(k)

converges (in the point-strong operator topology). However, the proof of the
converse does not adapt, since when the construction used to show b2 ≤ b1(LF )
is adapted to the von Neumann setting, the resulting von Neumann algebra
does not have a faithful trace.

3. Proofs of the main theorems

Lemma 3.1. Let A be an LM algebra, and for each i = 1, . . . , N , let x
(i)
n ,

for n ∈ N, be a central sequence. Then there exists an increasing sequence

n(k) ∈ N, for k ∈ N, and y
(i)
k such that:

(1) for each i, ‖y
(i)
k − x

(i)
n(k)‖ → 0 as k → ∞; and

(2) for each i, i′, k, k′ ∈ N, if k 6= k′ then y
(i)
k and y

(i′)
k′

∗-commute.

Proof. Since A is LM, there exists a separable LM subalgebra B which contains

each x
(i)
n . By perturbing the sequences x

(i)
n (by an error that vanishes at ∞),

we have without loss of generality that

B = Mm1
⊗Mm2

⊗ . . . ,

and x
(i)
n ∈ Mm1

⊗ · · · ⊗Mmn
for each i and n.

Let εn > 0 be any null sequence. Set n(1) = 1. Using compactness of the
unit ball of a matrix algebra, we may iteratively choose n(k) such that

(2) ‖[x
(i)
n(k), a]‖ ≤ εn‖a‖

for all a ∈ Mn(1)⊗· · ·⊗Mn(k−1). Letting Ek denote the conditional expectation
from Mn(k) to M ′

n(k−1) ∩Mn(k), set

y
(i)
k := Ek(x

(i)
n(k)).
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Then, it follows from (2) (and by writing the conditional expectation as an
average over the unitary group of Mn(k−1)) that

‖y
(i)
k − x

(i)
n(k)‖ ≤ εn,

as required. �

We say that a central sequence is hypercentral if it commutes with every
other central sequence (i.e., if it is a representing sequence of a central element
of the central sequence algebra). (Although the terminology originated in
theory of II1 factors and our C∗-algebras have a unique trace, we emphasize
that only the operator norm is being used here.)

Lemma 3.2. Assume A is an LM algebra of density character < b. If xn,
for n ∈ N, is a central sequence which is not hypercentral then there exists an
endomorphism α of A such that lim infn ‖xn − α(xn)‖ > 0.

Proof. Let un, for n ∈ N, be a central sequence such that for some ε > 0 we
have ‖[xn, un]‖ > ε > 0 for all n. We may assume each un is a unitary since
every element in a C∗-algebra is a linear combination of four unitaries.

By Lemma 3.1, by passing to a subsequence, there exist sequences yn and
vn, for n ∈ N, such that

‖yn − xn‖, ‖vn − un‖ → 0

as n → ∞, and [vn, vm] ∗-commutes with vm, ym for n 6= m.
Since un is unitary, by functional calculus, we may arrange that vn is too.

(Note that modifying vn using functional calculus does not change the fact
that it ∗-commutes with vm, ym for n 6= m.)

By using that the density character of A is less than b = b1 (by Proposi-
tion 2.1), we can go to a subsequence of vm (again denoted vm) such that the
automorphisms αn :=

∏n
j=1 Ad vj converge pointwise to an endomorphism,

and so we may set

α := lim
k

αk.

Then α(yn) = Ad vn ◦ yn, and therefore,

lim inf
n

‖xn − α(xn)‖ = lim inf
n

‖yn − α(yn)‖

= lim inf
n

‖[yn, vn]‖

= lim inf
n

‖[xn, un]‖ > 0,

as required. �

Note that by assuming that the algebra A is separable, the assumption in
the previous lemma, that xn is not hypercentral, comes for free.

Proposition 3.3. Let A be a separable LM algebra. Then every hypercentral
sequence is trivial.

Münster Journal of Mathematics Vol. 7 (2014), 515–528



A simple C∗-algebra with finite nuclear dimension 525

Proof. Let xn, for n ∈ N, be a nontrivial central sequence. By passing to a
subsequence, we may assume for some ε > 0, we have d(xn, Z(A)) > ε for all
n. Using the proof of Lemma 3.1 (and by passing again to a subsequence and
perturbing), we may assume that A = Mm1

⊗Mm2
⊗ . . . such that

xn ∈ 1m1
⊗ · · · ⊗ 1mn−1

⊗Mmn
.

Since xn has distance at least ε from the center of A, there must exist

yn ∈ 1m1
⊗ · · · ⊗ 1mn−1

⊗Mmn

such that ‖[xn, yn]‖ ≥ ε. Evidently, yn for n ∈ N, forms a central sequence, and
it does not asymptotically commute with the given sequence, as required. �

Proof of Theorem 1.3. We need to construct A so that all central sequences of
A are hypercentral. Fix a surjection χ : c → c

2 such that if χ(ξ) = (η, ζ) then
η ≤ ξ and moreover for every fixed pair (η, ζ) ∈ c

2 the set {ξ : χ(ξ) = (η, ζ)} is
cofinal in c. This is possible because every infinite cardinal κ is equinumerous
with κ2.

We construct A as a transfinite direct limit of LM algebras Aξ, for ξ < γ
for some ordinal γ ≤ c. Each Aξ will be of density character ≤ c, and therefore
the set (Aξ)1

N of all sequences in the unit ball (Aξ)1 of Aξ will have cardinality
c. For each ξ we fix an enumeration (~x(ξ, η) : η < c) of (Aξ)1

N as soon as this
algebra is defined.

We now describe the recursive construction of a directed system of LM-
algebras Aξ, βξη : Aξ → Aη for ξ < η.

Let A0 = M2∞ . If δ is a limit ordinal and Aξ, for ξ < δ are defined, we let
Aδ = limξ Aξ, the inductive limit of Aξ.

Now assume Aξ is defined and we construct Aξ+1. If all central sequences
in Aξ are hypercentral, we stop our recursive construction and let A = Aξ.

Otherwise, write χ(ξ) = (η, ζ). Since η ≤ ξ the algebra Aη was already
defined we can consider the sequence ~x(η, ζ) in Aη. Let xj , for j ∈ N, be the
βη,ξ-image of this sequence in Aξ.

If this is not a central sequence, or if it is a hypercentral sequence, let
Aξ+1 = Aξ (actually we can do almost anything here).

Now assume this sequence is central, but not hypercentral. Use Lemma 3.2
to find α ∈ Aut(Aξ) and ε > 0 such that ‖xj−α(xj)‖ > ε for infinitely many j.
Then let Aξ+1 = M2(Aξ) and apply Lemma 2.4 to find a *-homomorphism
βξ : Aξ → Aξ+1 such that α(xj), for j ∈ N, is not a central sequence in Aξ+1.

This describes the recursive construction of transfinite directed system of
LM algebras of length c. If the construction does not stop at any stage ξ, let
A = limξ Aξ.

We claim that all central sequences of A are hypercentral. For simplicity
of notation assume that each Aξ is a unital subalgebra of A (this is not a
problem since all connecting maps had trivial kernels) so that each βξη is
equal to the identity on Aξ. Assume otherwise and let xj , for j ∈ N, be a
central, nonhypercentral, sequence. Also fix a central sequence yj, for j ∈ N,
such that [xj , yj] 6→ 0.
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Since the cofinality of c is uncountable, these sequences are included in Aη

for some η < c. The first one was enumerated as ~x(η, ζ) for some ζ < c. Since
χ is a surjection, there is ξ such that χ(ξ) = (η, ζ). We also have ξ ≥ η by
the choice of χ. By the construction, Aξ+1 was defined so that (the image
of) xj , for j ∈ N, is not a central sequence. This contradiction completes the
proof. �

Proof of Theorem 1.2. The proof is essentially identical to the proof of Theo-
rem 1.3. The only difference is that, since c = ℵ1, all algebras Aξ for ξ < c

are separable and we can therefore use Proposition 3.3 and Lemma 3.2 to as-
sure that the central sequence algebra of the limit is trivial. The constructed
algebra is an LM algebra of density character ℵ1 and is therefore AM by [9,
Thm. 1.5]. �

Proof of Theorems 1.6 and 1.5. We can see that the analog of Lemma 3.1
for hyperfinite II1 factors holds, by applying the lemma to a dense LM C∗-
subalgebra. Using this and Remark 2.6 in the proof of Lemma 3.2 allows us to
adapt that lemma to the von Neumann case, showing that if M is a von Neu-
mann algebra of density character < b and (xn) is a (SOT-)central sequence
which is not (SOT-)hypercentral, then there exists an endomorphism α of M
such that

lim inf
n

‖xn − α(xn)‖2 > 0.

The analog of Proposition 3.3 for R holds, by using an appropriate dense LM
C∗-subalgebra. Finally, using these von Neumann-theoretic adaptations (and
the strong operator topology in place of the norm topology), the proofs of
Theorems 1.3 and 1.2 become proofs of Theorems 1.6 and 1.5 respectively. �

4. Concluding remarks

The following is a well-known result about separable C∗-algebras (see
e.g., [7, Lem. 2.3]).

Theorem 4.1. Let A be a unital, separable C∗-algebra. The following are
equivalent.

(1) A is Z-stable;
(2) Z embeds into the central sequence algebra of A.
(3) for any finite subsets F ,G of A,Z respectively, and any ε > 0, there exists

an (G, ε)-approximately multiplicative ∗-linear unital map φ : Z → A such
that

‖[φ(x), y]‖ < ε

for all x ∈ G and y ∈ F ;

In the nonseparable case, (1) ⇒ (2) ⇒ (3), and Theorem 1.3 shows that (3)
6⇒ (2). Note that, by a downward Löwenheim–Skolem argument, (3) remains
equivalent to “local Z-stability” in the following sense:

(1’) For every separable set X ⊆ A, there exists a Z-stable subalgebra B ⊆ A
which contains X .

Münster Journal of Mathematics Vol. 7 (2014), 515–528



A simple C∗-algebra with finite nuclear dimension 527

Whether (2) ⇒ (1) holds remains unclear.

Question 4.2. Is there a (nonseparable) non-Z-stable C∗-algebra A such that
Z embeds into its central sequence algebra?

Question 4.3. Can the conclusions of Theorem 1.3, Theorem 1.2 and Theo-
rem 1.5 be proved in ZFC?

An approach to these two questions alternative to transfinite recursion would
be to show that such an algebra could be directly defined using combinatorics
of the uncountable and some of the constructions from [9] or [6].

It is not clear whether the conclusion of Theorem 1.3 is genuinely weaker
than the conclusion of Theorem 1.2, since we don’t know whether there exists
a simple C∗-algebra whose central sequence algebra is abelian and nontrivial.
Martino Lupini pointed out that such an algebra cannot be separable unless
the simplicity assumption is dropped. On the other hand, it is well-known
that there exists a II1 factor with a separable predual whose central sequence
algebra is abelian and nontrivial ([4]).
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