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Abstract. We show that three Euler characteristics of categories, Leinster’s Euler charac-
teristic, the series Euler characteristic and the Euler characteristic of N-filtered acyclic cat-
egories, are invariant under barycentric subdivision for finite acyclic categories. An acyclic
category is a small category in which all endomorphisms and isomorphisms are identities,
that is, an acyclic category is a skeletal scwol. We show for any small category I, the op-
posite subdivision category Sd(I)op is of type (L2) if and only if I is finite acyclic. We
also extend the definition of the L

2-Euler characteristic and prove our extended L
2-Euler

characteristic is invariant under barycentric subdivision for a wider class of finite categories.
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1. Introduction

Euler characteristics are defined for many mathematical objects, for exam-
ple, cell complexes, manifolds, varieties, graphs and so on. But the most basic
one is the Euler characteristic for simplicial complexes which is defined by the
alternating sum of the number of faces. Rota defined the Euler characteristic
for finite posets [14]. The relation between the Euler characteristic of simplicial
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complexes and the one of posets is described by the following diagram

Finite posets

χRota

&&▼▼
▼▼

▼▼
▼▼

▼▼
▼

order complex // Finite simplicial complexes

χ

uu❦❦❦
❦❦❦

❦❦❦
❦❦❦

❦❦❦
❦

Z.

Here, the order complex of a finite poset P is an abstract simplicial complex
having totally ordered (n+ 1)-subsets of P as its n-simplices.

Leinster extended Rota’s theory. He defined the Euler characteristic χL
for finite categories which satisfy certain conditions on the underlying directed
graph, including finite posets, finite groups, orbifolds, directed graphs and so
on [8]. At present, we have various invariants of categories, the series Euler
characteristic χ∑ [2], the L2-Euler characteristic χ(2) [5], the L2-Betti numbers
of discrete measured groupoids [15], the Euler characteristic of an N-filtered
acyclic category χfil [13], the cardinality of categories [1] and so on.

In this paper, we show three Euler characteristics of categories, Leinster’s
Euler characteristic, the series Euler characteristic and the Euler characteristic
of N-filtered acyclic categories, are invariant under barycentric subdivision for
finite acyclic categories. An acyclic category is a small category in which all
endomorphisms and isomorphisms are identities, that is, an acyclic category is
a skeletal scwol [3]. We show for any small category I, the opposite subdivision
category Sd(I)op is of type (L2) if and only if I is finite acyclic. We also extend
the definition of the L2-Euler characteristic and prove our extended L2-Euler
characteristic is invariant under barycentric subdivision for a wider class of
finite categories.

First of all, let us review four Euler characteristics of categories.
Leinster’s Euler characteristic χL and the series Euler characteristic χ∑

are defined for finite categories satisfying certain conditions on the underlying
directed graph. When a finite category I has a Möbius inversion, they coincide
χL(I) = χ∑(I) ([2, Thm. 3.2]). Here, a finite category I with the set of
objects Ob(I) = {x1, . . . , xn} has a Möbius inversion if the matrix ZI =
(#HomI(xi, xj))i,j is invertible. But if I does not have a Möbius inversion,
there are various situations, that is, these two Euler characteristics take the
same values, they take different values, one is defined but the other is not,
both of them are not defined.

The L2-Euler characteristic is defined not only for finite categories but also
infinite categories satisfying a certain homological condition. For a finite, free,
skeletal EI-category I, Leinster’s Euler characteristic and the L2-Euler char-
acteristic coincide, χL(I) = χ(2)(I) ([5, Lemma 7.3]). Here, an EI-category is
a small category whose endomorphisms are isomorphisms. A small category
J is free if the left Aut(y)-action on HomJ (x, y) is free for any objects x, y
of J . Free here is different than being a freely generated category. The L2-
Euler characteristic sometimes takes different values from χL(I) and χ∑(I).
The reason that it is different from χL and χ∑ is that those only depend
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on the underlying graph and ignore the composition of I, while the L2-Euler
characteristic detects composition also. For instance, let M = {0, 1} be the
commutative monoid where 0 is the unit element and 1 + 1 = 1. A monoid
can be regarded as a category with one object. Then, as pointed out in [5,
Rem. 7.2], χ(2) distinguishes between M and Z2, that is,

χ(2)(M) 6= χ(2)(Z2) =
1

2
,

but χL and χ∑ do not, that is,

χL(M) = χL(Z2) =
1

2

and

χ∑(M) = χ∑(Z2) =
1

2
.

The next invariant χfil is the Euler characteristic for N-filtered acyclic cat-
egories. An N-filtered acyclic category is a pair (A, µ) of an acyclic category
A and a filtration µ, called an N-filtration, on the set of objects in A. For a
finite acyclic category A, these four Euler characteristics coincide

χL(A) = χ∑(A) = χ(2)(A) = χfil(A, µ)

for any N-filtration µ of A. The first equality is implied by the fact that A has
a Möbius inversion and [2, Thm. 3.2]. The second equality is implied by the
fact A is a finite, free, skeletal EI-category and [5, Lemma 7.3]. The definition
of χfil(A, µ) and [8, Cor. 1.5] directly imply the third equality.

Moreover, χfil is suitable for barycentric subdivision of small categories.
The barycentric subdivision of small categories is a functor from the category
of small categories to itself

Sd : Small categories −→ Small categories

(see [4] and [6]). For a small category J , Sd(J ) is an acyclic category and
its objects are the nondegenerate chains of morphisms of J . In addition,
Sd(J ) has naturally an N-filtration. Since the Euler characteristic of simplicial
complexes is invariant under barycentric subdivision, we expect a categorical
analogue of this fact would hold for a certain class of small categories. But
we have to note that Sd(J ) is often infinite even if J is finite. The category
Sd(J ) is finite if and only if J is a finite acyclic category (see Lemma 3.6).
So we can not always use Leinster’s Euler characteristic and the series Euler
characteristic for this purpose. In [13], the following theorem was proved.

Theorem 1.1 ([13, Thm. 4.9]). Let I be a finite category for which the series
Euler characteristic can be defined. Then, χfil(Sd(I), L) is also defined and
they coincide

χ∑(I) = χfil(Sd(I), L),
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that is, we have the following commutative diagram

χ∑-categories

χ∑

&&▼▼
▼▼

▼▼
▼▼

▼▼
▼

Sd // χfil-categories

χfil

xxqq
qq
qq
qq
qq
q

Q,

where χ∑-categories denotes the category of finite categories for which the
series Euler characteristic can be defined and χfil-categories denotes the cat-
egory of N-filtered acyclic categories for which its Euler characteristic can be
defined (see Section 3.8, Section 3.12). Here, L is the N-filtration of Sd(I)
which is defined by taking the length of chains.

Since the L2-Euler characteristic is defined for a certain class of infinite
categories, we can consider a similar problem; is the L2-Euler characteristic
invariant under barycentric subdivision? In this paper, the following theorem
is obtained.

Theorem 1.2 (Theorem 3.25). For any small category I, the opposite of the
subdivision Sd(I)op is of type (L2) if and only if I is finite acyclic. In this
case,

χ(2)(Sd(I)op) = χ(2)(I) = χ(2)(Sd(I)).

Thus, the L2-Euler characteristic is invariant under barycentric subdivision
for finite acyclic categories. But Sd(A) is a finite category for a finite acyclic
category A and χL(Sd(A)) and χ∑(Sd(A)) exist. Furthermore, we obtain

χL(A) = χL(Sd(A)) (Section 3.1), χ∑(A) = χ∑(Sd(A)) (Section 3.8)

for a finite acyclic category A. For any N-filtration µ of A we obtain

χfil(A, µ) = χfil(Sd(A), L) (Section 3.12).

Theorem 1.2 suggests that extensions of the notion of “type (L2)” and the L2-
Euler characteristic are desirable in order to have a wider class of categories I

such that both χ
(2)
ex (Sd(I)op) and χ

(2)
ex (I) exist and are equal. We do this in

Section 4 and obtain the following theorem.

Main Theorem (Theorem 4.5). Let I be a finite category. Then Sd(I)op is
of type extended (L2) if and only if the power series fI(t) =

∑∞
n=0 #Nn(I)t

n

is rational with a nonvanishing denominator at t = −1. In this case, we have

χ∑(I) = χ(2)
ex (Sd(I)

op).

If I is additionally acyclic, these are equal to χ(2)(I), χ(2)(Sd(I)), and χ
(2)
ex

(Sd(I)).

Here, Nn(I) is the set of nondegenerate chains of morphisms of I of length
n.

We note that the N-filtration L appears on the way to prove our main
theorem, although the L2-Euler characteristic and the Euler characteristic of
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N-filtered acyclic categories were independently found. When we compute

χ(2)(Sd(I)op) and χ
(2)
ex (Sd(I)op), the definition of the L2-Euler characteristic

requires us to have a projective resolution of the constant functor C in the
functor category Func(Sd(I),C-vect). The following is a projective resolution
of C we will construct

. . .
∂2 //

⊕

f1∈N1(I)

C[HomSd(I)(f1,−)]
∂1 //

⊕

f0∈N0(I)

C[HomSd(I)(f0,−)]
∂0 // C // 0

where C[HomSd(I)(fn,−)] is a projective object corresponding to each fn of

Nn(I) (Note that fn is an object in Sd(I)). The functor C[HomSd(I)(fn,−)]
means to compose the free vector space functor with the functor HomSd(I)(fn,
−). Thus, this projective resolution gives the N-filtration L on Sd(I) and con-
versely L gives the projective resolution. Furthermore, on the way to compute

χ∑(I), χ(2)(Sd(I)op), χ(2)
ex (Sd(I)

op), χfil(Sd(I), L),

the power series
∞∑

n=0

#Nn(I)z
n

always appears. The Euler characteristics χ
(2)
ex (Sd(I)op) and χfil(Sd(I), L) are

just the series Euler characteristic χ∑(I) and it can be indicated that the
series is very important to consider the Euler characteristic of categories.

This paper is organized as follows.
In Section 2, we give some notation and basic definitions. We recall the

homological algebra of a functor category, which is used in the definition of
the L2-Euler characteristic.

In Section 3, we prove the four Euler characteristics of categories mentioned
above are invariant under barycentric subdivision for finite acyclic categories.
To prove the exactness of the sequence above

. . .
∂2 //

⊕

f1∈N1(I)

C[HomSd(I)(f1,−)]
∂1 //

⊕

f0∈N0(I)

C[HomSd(I)(f0,−)]
∂0 // C // 0

we introduce the notion of an equivalence n-simplex and we prove that it forms
an acyclic chain complex.

In Section 4, we extend the domain of the definition of the L2-Euler char-
acteristic and give a proof of our main theorem.

Münster Journal of Mathematics Vol. 6 (2013), 85–116
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2. Preliminaries

2.1. Notation.

(1) Natural numbers mean nonnegative integers. So

N = {0, 1, 2, . . .}.

(2) For a natural number n, let [n] = {0, 1, . . . , n} equipped with usual order-
ing.

(3) Let X be a set. Then, C[X ] denotes the free C-vector space generated by
X .

(4) Let X be a finite set. Then, we denote the number of elements of X by
#X .

(5) Let ϕ : J → I be a functor between small categories and let i be an object
of I. Then, the category ϕ-over i is denoted by (ϕ ↓ i) and the category
ϕ-under i is denoted by (i ↓ ϕ).

(6) A discrete category X is a category that consists of only objects and iden-
tity morphisms. In particular, if a discrete category has exactly one object,
it is called one-point category, denoted by ∗.

(7) Suppose J is a small category and C is a category. The functor category
Func(J ,C ) consists of functors from J to C as its objects and natural
transformations between them as its morphisms. Sometimes we simply
write it C

J .

2.2. Basic definitions. In this subsection, we recall basic definitions.

Definition 2.3. A small category A is acyclic if every endomorphism and
every isomorphism is an identity morphism.

Remark 2.4. This is the same as a skeletal scwol [3].
Define an order on the set Ob(A) of objects of A by x ≤ y if there exists a

morphism x→ y. Then, Ob(A) is a poset.

Definition 2.5. Let J be a small category. The nerve N∗(J ) of J is the
simplicial set whose set of n-simplices Nn(J ) is defined as follows:

Nn(J ) = {(f1, f2, . . . , fn) | t(fi) = s(fi+1) for all 0 ≤ i < n}

where t(f) is the target of a morphism f and s(f) is the source of a morphism
f .

The nondegenerate nerve of J , denoted by N∗(J ), is the N-graded subset
of N∗(J ) defined by the following:

Nn(J ) = {(f1, f2, . . . , fn) ∈ Nn(J ) | none of fi is the identity morphism}

whereN0(J ) is defined byN0(J ) = N0(J ). We remark that when J is acyclic,
N∗(J ) is a ∆-set, that is, a simplicial set without degeneracy operators, a
semisimplicial set in today’s terminology.

For any objects x and y of J , define

Nn(J )xy =

{
(x0

f1 // x1
f2 // . . .

fn // xn) ∈ Nn(J )

∣∣∣∣ x0 = x, xn = y

}
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and

Nn(J )y =

{
(x0

f1 // x1
f2 // . . .

fn // xn) ∈ Nn(J )

∣∣∣∣ xn = y

}
.

Definition 2.6. [4, 6] Let J be a small category. Then, barycentric subdivision
Sd(J ) of J is the small category whose objects are the nondegenerate chains of
morphisms in J and the set of morphisms between f and g is the quotient set
of order-preserving maps ϕ : [n] → [m] satisfying g ◦ ϕ = f under the relation
defined below where n and m are the length of f and g, respectively. Here, f
and g are regarded as functors from posets [n] and [m] to J , respectively. So
the condition g ◦ ϕ = f implies the commutativity of the diagram

J

[n]

f

??⑦⑦⑦⑦⑦⑦⑦⑦
ϕ // [m]

g

``❆❆❆❆❆❆❆❆

in the category of small categories.
The equivalence relation is generated by the following relation: Given order-

preserving maps ϕ, ψ : [n] → [m] satisfying g ◦ ϕ = f ,g ◦ ψ = f , respectively,
define ϕ ∼ ψ if for any 0 ≤ i ≤ n, g(min{ϕ(i), ψ(i)} → max{ϕ(i), ψ(i)}) is an
identity morphism. Here,

min{ϕ(i), ψ(i)} → max{ϕ(i), ψ(i)}

is a morphism in [m]. The composition in Sd(J ) is defined by the composition
of order-preserving maps.

This is equivalent to the definition of [6], as the author of that paper told
me. The functor Sd preserves homotopy type (see [6, Thm. 32]) and opposite,
that is, for any small category J , BJ is homotopy equivalent to BSd(J )
and Sd(J ) is isomorphic to Sd(J op). Here, we briefly describe an isomorphic
functor between Sd(J ) and Sd(J op). Define a functor FJ : Sd(J ) → Sd(J op)
by the following. Define FJ (f) = fop for any object f of Sd(J ). For any
[ϕ] : f → g, define FJ ([ϕ]) : fop → gop by FJ ([ϕ])(i) = m− ϕ(n− i) for any i
of [n] where n and m are the length of f and g, respectively. It is easy to show
that this functor is well-defined and FJ ◦ FJ op = id and FJ op ◦ FJ = id.

On the other hands, Sd(J ) is not isomorphic to Sd(J )op. The category J =
x // y is an example. This subdivision and the subdivision for simplicial

sets form the following commutative diagram

Small categories

Sd

��

N∗ // Simplicial sets

Sd

��
Small categories Simplicial sets

C
oo

where C is the categorization functor ([6, Rem. 13]).

Münster Journal of Mathematics Vol. 6 (2013), 85–116



92 Kazunori Noguchi

Remark 2.7. We summarize important properties we will often use. For
proofs see [13].

(1) For a small category J , Sd(J ) is an acyclic category (see [13, Prop. 3.4]).
(2) For a morphism [ϕ] : f → g in Sd(J ) and for any representative ψ of [ϕ],

ψ : [n] → [m] is an order-preserving injection (see [13, Lemma 3.3]).

2.8. Homological algebra of a functor category. In this subsection, let
us recall the definition and basic properties of the Kan extensions. See [7] and
[12] for more details.

Suppose ϕ : J → I is a functor between small categories and C is a category.
Then, ϕ induces a functor ϕ∗ by precomposition

Func(I,C )
ϕ∗

// Func(J ,C ).

ϕ‡

uu

ϕ†

ii

If C is closed under all small limits and colimits, ϕ∗ has a left and a right
adjoint ϕ† and ϕ‡, respectively. These functors can be described as follows.
For any β : J → C ,

ϕ†(β) : I → C , ϕ†(β)(i) = colim
(ϕ↓i)

β ◦ Pi

ϕ‡(β) : I → C , ϕ‡(β)(i) = lim
(i↓ϕ)

β ◦Qi

where Pi : (ϕ ↓ i) → J and Qi : (i ↓ ϕ) → J are the projections. For
a morphism f : i → i′ in I, ϕ†(β)(f) and ϕ‡(β)(f) are determined by the
universal properties. For morphisms

ϕ(j)

g1
  ❆

❆❆
❆❆

❆❆
❆

ϕ(h1) // ϕ(j′)

g2
}}⑤⑤
⑤⑤
⑤⑤
⑤⑤

i

, i′

g4

!!❈
❈❈

❈❈
❈❈

❈
g3

~~⑤⑤
⑤⑤
⑤⑤
⑤⑤

ϕ(j)
ϕ(h2) // ϕ(j′)

in (ϕ ↓ i) and (i′ ↓ ϕ), respectively, we obtain the following diagrams

β(j) = β ◦ Pi (g1 : ϕ(j) → i)

β(h1)

��

λ′(f◦g1)

&&

λ(g1) // colimβ ◦ Pi

∃!ϕ†(β)(f)

��
β(j′) = β ◦ Pi (g2 : ϕ(j′) → i)

λ(g2)

88

λ′(f◦g2)

// colimβ ◦ Pi′

β(j) = β ◦Qi
′

(g3 : i′ → ϕ(j))

β(h2)

��

limβ ◦Qi
µ(g3◦f)oo

∃!ϕ‡(β)(f)
��

µ(g4◦f)ss
β(j′) = β ◦Qi

′

(g4 : i′ → ϕ(j′)) limβ ◦Qi
′

µ′(g4)

oo

µ′(g3)
kk
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where λ, λ′ are the colimiting cones of colimβ ◦Pi and colimβ ◦Pi′ respectively
and µ, µ′ are the limiting cones of limβ ◦Qi and limβ ◦Qi

′

respectively.
Since ϕ† and ϕ‡ are a left and a right adjoint of ϕ∗, respectively, we have

the following bijections

HomFunc(I,C )(ϕ
†(β), α) ∼= HomFunc(J ,C )(β, ϕ

∗(α))

HomFunc(J ,C )(ϕ
∗(α), β) ∼= HomFunc(I,C )(α, ϕ

‡(β)).

Recall that for an abelian category A , the functor category Func(I,A ) is
an abelian category.

Lemma 2.9. Suppose ϕ : J → I is a functor between small categories and
A is an abelian category closed under all small colimits. If P is a projective
object in Func(J ,A ), then ϕ†(P ) is projective in Func(I,A ).

Proof. It is equivalent that ϕ†(P ) is projective and HomAI (ϕ†(P ),−) is an
exact functor. Given a short exact sequence

0 // F1
α // F2

β // F3
// 0

in Func(I,A), we have

0 // Hom
AI (ϕ†(P ), F1)

α∗ //

∼=

��

Hom
AI (ϕ†(P ), F2)

β∗ //

∼=

��

Hom
AI (ϕ†(P ), F3) //

∼=

��

0

0 // Hom
AJ (P, ϕ∗(F1))

ϕ∗(α)∗ // Hom
AJ (P, ϕ∗(F2))

ϕ∗(β)∗ // Hom
AJ (P, ϕ∗(F3)) // 0.

Note that these vertical maps are just bijections, not isomorphisms and this
diagram is commutative since the definition of an adjoint functor is required
to be natural. Since

0 // F1
α // F2

β // F3
// 0

is exact in Func(I,A),

0 // F1(i)
α(i) // F2(i)

β(i) // F3(i) // 0

is exact in A for any object i of I. So for any object j of J and ϕ(j), we have

0 // F1(ϕ(j))
α(ϕ(j))// F2(ϕ(j))

β(ϕ(j))// F3(ϕ(j)) // 0

is exact. Hence,

0 // ϕ∗(F1)
ϕ∗(α) // ϕ∗(F2)

ϕ∗(β) // ϕ∗(F3) // 0

is also exact. Since HomAJ (P,−) is an exact functor,

0 // Hom
AJ (P, ϕ∗(F1))

ϕ∗(α)∗ // Hom
AJ (P, ϕ∗(F2))

ϕ∗(β)∗ // Hom
AJ (P, ϕ∗(F3)) // 0

is exact. This follows that ϕ∗(β)∗ is a surjection and ϕ∗(α)∗ is an injection.
Since the ladder diagram is commutative and the vertical maps in the diagram

Münster Journal of Mathematics Vol. 6 (2013), 85–116
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are bijections, we obtain α∗ is an injection and β∗ is an surjection. Hence,
HomAI (ϕ†(P ),−) is an exact functor. �

Let I be a small category and let i be an object of I. Define Ii : ∗ → I to
be the inclusion functor into i. Then we have

Func(I,C-vect)
I∗i // C-vect

I
‡
i

uu

I
†
i

ii

where C-vect is the category of C-vector spaces. The comma category (Ii ↓ j)
can be determined easily for any object j of I.

Lemma 2.10. Suppose I is a small category and i is an object of I. For the
inclusion functor Ii : ∗ → I into i, (Ii ↓ j) is the discrete category HomI(i, j)
for any object j of I.

Proposition 2.11. Let I be a small category and i be an object of I. Then,
for the functor

I†i (C) : I −→ C-vect,

we have

I†i (C)(j) = C[HomI(i, j)]

and

I†i (C)(f) = f∗ : C[HomI(i, j)] −→ C[HomI(i, j
′)]

for any object j of I and for any morphism f : j → j′ of I.

Proof. By Lemma 2.10, (Ii ↓ j) is the discrete category HomI(i, j). Hence, we
obtain

I†i (C)(j) = colim
(Ii↓j)

C

= C[HomI(i, j)].

The universal property of the colimit implies I†i (C)(f) = f∗. �

Corollary 2.12. Let I be a small category and i be an object of I. Then,

I†i (C) is projective in Func(I,C-vect).

Proof. This is a special case of Lemma 2.9. �

3. Invariance of the Euler characteristics under barycentric
subdivision for finite acyclic categories

In this section, we prove that four Euler characteristics of categories (Lein-
ster’s Euler characteristic [8], the series Euler characteristic [2], the L2-Euler
characteristic [5] and the Euler characteristic of N-filtered acyclic categories
[13]) are invariant under barycentric subdivision for finite acyclic categories.
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3.1. Leinster’s Euler characteristics of categories. Let us recall the def-
inition of Leinster’s Euler characteristic [8]. Suppose I is a finite category and
the set of objects Ob(I) is labeled by natural numbers as follows:

Ob(I) = {x1, x2, . . . , xn}

Let ZI be the n× n-matrix whose (i, j)-entry is the number of morphisms of
I from xi to xj .

Definition 3.2 (Leinster [8]). Let w, c be row vectors in Qn. Then, we say
w is a weighting on I if

ZI
tw = ZI




w1

w2

...
wn


 =




1
1
...
1


 .

We say c is a coweighting on I if

cZI = (c1, c2, . . . , cn)ZI = (1, . . . , 1).

Definition 3.3 (Leinster [8]). A finite category I has Euler characteristic if
it admits both a weighting w and a coweighting c. Its Euler characteristic is
then

χL(I) =
∑

i

wi =
∑

i

ci ∈ Q

for any weighting w and coweighting c.

Definition 3.4 (Leinster [8]). We say I has a Möbius inversion if ZI has an
inverse matrix. Then, the Möbius inversion µ is the map

µ : Ob(I)×Ob(I) −→ Q

defined by µ(xi, xj) = (i, j)-entry of Z−1
I .

A finite category I has a Möbius inversion if and only if there uniquely exist
a weighting and a coweighting on I. Then, we have

∑

i,j

µ(xi, xj) =
∑

i

wi =
∑

i

ci

and χL(I) =
∑
i,j µ(xi, xj).

Example 3.5. Let A be a finite acyclic category. Then, [8, Cor. 1.5] implies
that A has a Möbius inversion given by

µ(x, y) =
∑

n≥0

(−1)n#Nn(A)xy

(see Definition 2.5). Note that this sum is a finite sum. Hence, Leinster’s Euler
characteristic of A is

χL(A) =
∑

n≥0

(−1)n#Nn(A).

We will use this fact many times later.
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Lemma 3.6. Let J be a small category. Then, the following are equivalent

(1) J is finite acyclic.
(2) Sd(J ) is a finite category.
(3) Nk(J ) is finite for any k and there exists a sufficiently large integer M

such that Nn(J ) = ∅ for n > M .

Proof. It is clear that (1) and (3) are equivalent. We only give a proof which
shows (2) and (3) are equivalent.

Suppose Sd(J ) is a finite category. Then, the set of objects of Sd(J ) is
a finite set. Here, since the set of objects of Sd(J ) is

∐
n≥0Nn(J ), so each

Nk(J ) is finite and there exists such an M .
Conversely, if we suppose (3), then the set of objects of Sd(J ) is a finite set

since it is equal to
∐
n≥0Nn(J ). The category Sd(J ) is locally finite, that is,

each Hom-set is a finite set. So Sd(J ) is a finite category. �

Proposition 3.7. Let I be a finite category. Then Sd(I) has Euler charac-
teristic in the sense of Leinster if and only if I is acyclic. In this case, we
have

χL(I) = χL(Sd(I)).

Proof. Suppose Sd(I) has Euler characteristic. Then, Sd(I) must be a finite
category since χL is defined for only finite categories. Lemma 3.6 implies I is
finite acyclic.

Conversely, if I is acyclic, then Sd(I) is finite by Lemma 3.6. Example 3.5
implies Sd(I) has Euler characteristic. So the first claim is proven.

Suppose I is finite acyclic. Then, since Sd(I) is finite acyclic, we can apply
[8, Cor. 1.5] and we obtain a Möbius inversion µ which is given by

µ(f ,g) =
∑

n≥0

(−1)n#Nn(Sd(I))
f
g.

Here, we note Remark 2.7 part 2. For an element
(

f
ϕ1 // f1

ϕ2 // . . .
ϕn // g

)

of Nn(Sd(I))fg, we have

L(f) < L(f1) < · · · < L(fn−1) < L(g)

where L is the length function since each ϕk is an order-preserving injection
and ϕk is not the identity morphism. Hence, the alternating sum is

µ(f ,g) =

L(g)∑

n≥0

(−1)n#Nn(Sd(I))
f
g.
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So we have

χL(Sd(I)) =
∑

f ,g∈Ob(Sd(I))

µ(f ,g)

=
∑

g∈Ob(Sd(I))

(
∑

f∈Ob(Sd(I))

µ(f ,g)

)

=
∑

g∈
∐

M
n=0Nn(I)

(
∑

f∈
∐L(g)

n=0 Nn(I)

µ(f ,g)

)

=
∑

g∈
∐

M
n=0Nn(I)

(
L(g)∑

n=0

(−1)n#Nn(Sd(I))g

)
.(1)

By [13, Thm. 4.7] and substituting −1 for s, we obtain

L(g)∑

n=0

(−1)n#Nn(Sd(I))g = (−1)L(g).

Thus, equation (1) is

χL(Sd(I)) =
∑

g∈
∐

M
n=0Nn(I)

(−1)L(g)

=

M∑

n=0

(−1)n#Nn(I)

= χL(I). �

3.8. The series Euler characteristic. We recall the series Euler character-
istic [2] and show that it is invariant under barycentric subdivision for finite
acyclic categories.

We have the following commutative diagram of rings:

Z[t]
� _

��

� � // Z[[t]]
� _

��
Q(t) //� � // Q((t)).

Here, Z[t] is the polynomial ring with the coefficients in Z and Z[[t]] is the ring
of formal power series over Z. The rings Q(t) and Q((t)) are the respective
quotient fields.

Let I be a finite category. Then, the formal power series

fI(t) :=

∞∑

n=0

#Nn(I)t
n

is rational over Q ([2, Thm. 2.2]).
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Definition 3.9. Let f(t) be a formal power series over Z. If there exists a
rational function g(t)/h(t) in Q(t) such that f(t) = g(t)/h(t) in Q((t)), then
define

f |t=−1 =
g(−1)

h(−1)
∈ Q

if h(−1) 6= 0.

Definition 3.10. A finite category I has series Euler characteristic if fI |t=−1

can be defined as in Definition 3.9. In this case, its series Euler characteristic
is

χ∑(I) = fI |t=−1.

When A is finite acyclic, the power series fA(t) is a polynomial by Lemma
3.6. Hence, the series Euler characteristic χ∑(A) is

χ∑(A) =
M∑

n=0

(−1)n#Nn(A)

where M is a sufficiently large integer.

Proposition 3.11. Let I be a finite category. Then, Sd(I) has series Euler
characteristic if and only if I is acyclic. In this case, we have

χ∑(I) = χ∑(Sd(I)).

Proof. Suppose Sd(I) has series Euler characteristic. Then, Sd(I) must be a
finite category since χ∑ is defined for only finite categories. Lemma 3.6 implies
I is finite acyclic.

Conversely, if I is acyclic, then Sd(I) is finite by Lemma 3.6, so that Sd(I)
has series Euler characteristic since Sd(I) is acyclic. [2, Thm. 3.2] and Propo-
sition 3.7 complete this proof. �

3.12. The Euler characteristic of N-filtered acyclic categories. We re-
call the Euler characteristic of an N-filtered acyclic category [13] and show that
it is invariant under barycentric subdivision for finite acyclic categories.

Definition 3.13. Let A be an acyclic category. A functor µ : A → N

satisfying µ(x) < µ(y) for x < y in Ob(A) is called an N-filtration of A. A
pair (A, µ) is called an N-filtered acyclic category.

Example 3.14. Let J be a small category. Then, Sd(J ) is an acyclic category.
The length functor L gives a natural N-filtration on Sd(J ) where the functor
L is defined by L(f) = n for f of Nn(J ). Thus, we obtain an N-filtered acyclic
category (Sd(J ), L).

Definition 3.15. Let (A, µ) be an N-filtered acyclic category. Then, define
χfil(A, µ) as follows.

For natural numbers i and n, let

Nn(A)i = {f ∈ Nn(A) | µ(t(f)) = i}
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where t(f) = xn if

f =

(
x0

f1 // x1
f2 // . . .

fn // xn

)
.

Suppose each Nn(A)i is finite. Define the formal power series fχ(A, µ)(t) over
Z by

fχ(A, µ)(t) =
∞∑

i=0

(−1)i

(
i∑

n=0

(−1)n#Nn(A)i

)
ti.

Then, define

χfil(A, µ) = fχ(A, µ)|t=−1

if fχ(A, µ)(t) is rational and has a nonvanishing denominator at t = −1.

Lemma 3.16. Let A be a finite acyclic category. Then A has an N-filtration.

Proof. We can label the set of objects of A such that if xi < xj in the ordering
of Remark 2.4, then i < j in the usual ordering on integers

Ob(A) = {x1, . . . , xn}.

Indeed, take a maximal element x of Ob(A) and label it as xn. Inductively,
we obtain such labeling. This labeling gives an N-filtration to A. �

Proposition 3.17. Let A be a finite acyclic category. Then, we have

χfil(A, µ) = χfil(Sd(A), L)

where µ is any N-filtration of A and L is the length N-filtration (see Example
3.14).

Proof. We have

fχ(A, µ)(t) =
∞∑

i=0

(−1)i

(
i∑

n=0

(−1)n#Nn(A)i

)
ti

=

M∑

i=0

(−1)i

(
i∑

n=0

(−1)n#Nn(A)i

)
ti
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for a sufficiently large integer M . Hence, fχ(A, µ)(t) is a polynomial. Thus,
we obtain

χfil(A, µ) = fχ(A, µ)|t=−1

= fχ(A, µ)(−1)

=

M∑

i=0

(−1)i

(
i∑

n=0

(−1)n#Nn(A)i

)
(−1)i

=

M∑

i=0

(
i∑

n=0

(−1)n#Nn(A)i

)

=

M∑

n=0

(−1)n#Nn(A)

= χ∑(A).

Since A has series Euler characteristic, [13, Thm. 4.9] implies

χ∑(A) = χfil(Sd(A), L).

Hence, we obtain

χfil(A, µ) = χ∑(A) = χfil(Sd(A), L). �

3.18. The L2-Euler characteristic. In this subsection, we show the invari-
ance of the L2-Euler characteristic under barycentric subdivision for finite
acyclic categories.

First, we recall the L2-Euler characteristic of [5]. Let k be a commutative
ring and let J be a small category. We denote the category of left k-modules
by k-Mod.

Definition 3.19. If M : J op → k-Mod and N : J → k-Mod are functors,
then the tensor product M ⊗kJ N is the quotient of the k-module

⊕

x∈Ob(J )

M(x)⊗k N(x)

by the k-submodule generated by elements of the form

(M(fop)m)⊗ n−m⊗ (N(f)n)

where f : x → y is a morphism in J , m is an element of M(y) and n is an
element of N(x).

For a discrete group G, we denote the group von Neumann algebra byN (G).
It is a von Neumann algebra and when G is a finite group N (G) is just the
group ring C[G]. We briefly recall its dimension theory, see [5], [10] and [11] for
more details. The von Neumann dimension dimN (G) is a map which assigns
real numbers or +∞ to right N (G)-modules

dimN (G) : Mod-N (G) −→ [0,+∞].
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Here, we ignore the functional analytic aspects of N (G), so we regard it purely
algebraically. An N (G)-chain complex is a chain complex of N (G)-modules
and its homology is also the usual module homology. We often use the fact
that when G is a finite group, dimN (G) =

1
#G dimC. For an object x of J , the

group von Neumann algebra N (Aut(x)) is simply denoted by N (x).

Definition 3.20. Let C∗ be an N (G)-chain complex. The p-th L2-Betti num-
ber of C∗ is the von Neumann dimension of the N (G)-module given by its p-th
homology, namely

b(2)p (C∗) = dimN (G)(Hp(C∗)) ∈ [0,∞].

Definition 3.21. Let C∗ be an N (G)-chain complex. Define

h(2)(C∗) =
∑

p≥0

b(2)p (C∗) ∈ [0,∞].

If h(2)(C∗) <∞, the L2-Euler characteristic of C∗ is defined by

χ(2)(C∗) =
∑

p≥0

(−1)pb(2)p (C∗) ∈ R.

The following definition actually comes from [9].

Definition 3.22. Let J be a small category and let x be an object of J .
Define the splitting functor at x

Sx : Func(J op,C-vect) −→ Func(Aut(x)op,C-vect)

as follows.
For a functor F : J op → C-vect,

SxF : Aut(x)op −→ C-vect

is defined by

SxF (∗) = Coker

(
⊕

u:x→y in J , 6∃u−1

F (uop) :
⊕

u:x→y in J , 6∃u−1

F (y) −→ F (x)

)

where this direct sum runs over all the morphisms u : x → y in J which are
not invertible. For gop of Aut(x)op,

Sx(g
op) : SxF (∗) −→ SxF (∗)

is defined by Sx(g
op)[m] = [F (gop)(m)] for any [m] of SxF (∗).

For a natural transformation α : F ⇒ G, Sxα is defined by the universal
property of the cokernels.

⊕
F (y)

⊕
α(y)

��

⊕
F (uop) // F (x)

α(x)

��

// Coker = SxF

∃!Sxα

��⊕
G(y)

⊕
G(uop) // G(x) // Coker = SxG
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Definition 3.23. A small category J of type (L2) if for some projective res-
olution P∗ in Func(J op,C-vect) of the constant functor C we have

h(2)(J ) :=
∑

[x]∈iso(J )

h(2)(SxP∗ ⊗C[x] N (x)) <∞.

It is equivalent to require this for some (single) projective resolution or for
any resolution.

Definition 3.24. Suppose that J is of type (L2). The L2-Euler characteristic
of J is the real number

χ(2)(J ) :=
∑

[x]∈iso(J )

χ(2)(SxP∗ ⊗C[x] N (x)) ∈ R,

where P∗ is a projective resolution of the constant functor C in Func(J op,C-
vect).

As remarked in [5], this definition makes sense since the condition (L2) en-
sures that the sum

∑
[x]∈iso(J ) χ

(2)(SxP∗ ⊗C[x] N (x)) is absolutely convergent.

The following is our main theorem of this section and the proof is given
later.

Theorem 3.25. For any small category I, the opposite of the subdivision
Sd(I)op is of type (L2) if and only if I is finite acyclic. In this case,

χ(2)(Sd(I)op) = χ(2)(I) = χ(2)(Sd(I)).

To prove this theorem we need Lemma 3.26 and Proposition 3.35. In Lemma
3.26, we characterize the splitting functor for an acyclic category. In Proposi-
tion 3.35, we construct a projective resolution of C in Func(Sd(J ),C-vect).

Lemma 3.26. Let A be an acyclic category and x and y be objects of A. For
the functor

Sx : Func(Aop,C-vect) −→ C-vect,

we have

SxC[HomAop(y,−)] =

{
C, if x = y,

0, if x 6= y.

Proof. For the functor

C[HomAop(y,−)] : Aop → C-vect,

we have

C[HomAop(y,−)](z) = C[HomAop(y, z)]

= C[HomA(z, y)]
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for an object z of Aop. We have

SxC[HomAop(y,−)]

= Coker

(
⊕

u:x→z
u6=1

u∗ :
⊕

u:x→z
u6=1

C[HomA(z, y)] → C[HomA(x, y)]

)
.

If x = y, then

SxC[HomAop(x,−)] = Coker

(
⊕

u:x→z
u6=1

u∗ :
⊕

u:x→z
u6=1

C[HomA(z, x)] → C

)
.

Here, all of the running u : x → z are not 1x, so x 6= z. Since A is acyclic,
HomA(z, x) are empty sets if there exists a morphism u : x→ z. Hence,

SxC[HomAop(x,−)] = Coker (0 : 0 → C)

= C.

Suppose x 6= y. If HomA(x, y) = ∅, then we obtain

SxC[HomAop(y,−)] = Coker

(
⊕

u:x→z
u6=1

u∗ :
⊕

u:x→z
u6=1

C[HomA(z, x)] → 0

)
= 0.

If HomA(x, y) 6= ∅, then such u : x→ z runs over HomA(x, y) and
∐

u:x→y
u6=1

HomA(y, y) ⊆
∐

u:x→z
u6=1

HomA(z, y).

This maps onto HomA(x, y) since 1y is in each copy of HomA(y, y). Hence we
obtain SxC[HomAop(y,−)] = 0. �

For a small category J we construct a projective resolution of the constant
functor C in Func(Sd(J ),C-vect). Let P (Sd(J ))∗ be the sequence

. . .
∂2 //

⊕

f1∈N1(J )

C[HomSd(J )(f1,−)]
∂1 //

⊕

f0∈N0(J )

C[HomSd(J )(f0,−)]
∂0 // C // 0

where each ∂k is defined as follows. The map

∂k(g) :
⊕

fk∈Nk(J )

C[HomSd(J )(fk,g)] −→
⊕

fk−1∈Nk−1(J )

C[HomSd(J )(fk−1,g)]

is defined by

∂k(g)([ϕ]) =
∑

ℓ∈F (fk)

(−1)ℓ[ϕ ◦ dℓ]
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for any [ϕ] of HomSd(J )(fk,g) where

F (fk) = {ℓ ∈ [k] | dℓ(fk) ∈ Nk−1(J )}.

Note that if J is acyclic, then F (fk) = [k]. For a morphism [ψ] : g → g′ in
Sd(J ), the following diagrams are commutative

⊕

fk∈Nk(J )

C[HomSd(J )(fk,g)]

[ψ]∗

��

∂k(g) //
⊕

fk−1∈Nk−1(J )

C[HomSd(J )(fk−1,g)]

[ψ]∗

��⊕

fk∈Nk(J )

C[HomSd(J )(fk,g
′)]

∂k(g
′) //

⊕

fk−1∈Nk−1(J )

C[HomSd(J )(fk−1,g
′)]

[ϕ]
✤ ∂k(g) //

❴

[ψ]∗

��

∑
ℓ∈F (fk)

(−1)ℓ[ϕ ◦ dℓ]
❴

[ψ]∗

��
[ψ ◦ ϕ] ✤

∂k(g
′) //∑

ℓ∈F (fk)
(−1)ℓ[ψ ◦ ϕ ◦ dℓ]

for [ϕ] : fk → g of HomSd(J )(fk,g). Therefore, ∂k is a natural transformation.

At k = 0, ∂0 is the augmentation, that is, for g of Nk(J ),

∂0(g) :
⊕

f0∈N0(J )

C[HomSd(J )(f0,g)] −→ C

∂0(g)([ϕ]) = 1 for any [ϕ] of HomSd(J )(f0,g).
To prove P (Sd(J ))∗ is exact we introduce the notion of equivalence n-

simplex. It is a generalization of a combinatorial n-simplex and it is obtained
by exclusion and identification of some faces of an n-simplex. We prove that an
equivalence n-simplex satisfying a certain condition generates an acyclic chain
complex and this fact implies P (Sd(J ))∗ is exact.

Definition 3.27. Let n be a natural number and let ∼ be an equivalence
relation on [n]. For 0 ≤ k ≤ n− 1, let

∆
(n)
k = {(i0, i1, . . . , ik) ∈ [n]k+1 | i0 < · · · < ik}

and

E
(n)
k = {(i0, i1, . . . , ik) ∈ ∆

(n)
k | for all 0 ≤ ℓ ≤ k − 1, iℓ 6∼ iℓ+1}

and

C
(n)
k = E

(n)
k / ≈

where (i0, i1, . . . , ik) ≈ (j0, j1, . . . , jk) if and only if iℓ ∼ jℓ for every ℓ. For

k = −1, let ∆
(n)
−1 = C

(n)
−1 = ∗. We also define C

(n)
n = {[(1, 2, . . . , n)]}. We call

the family {C
(n)
k }k≥−1 an equivalence n-simplex.
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Example 3.28. Suppose n = 2 and 0 ∼ 2. Then, we have

C
(2)
0 = {[(0)] = [(2)], [(1)]}

C
(2)
1 = {[(0, 1)], [(1, 2)]}

C
(2)
2 = {[(0, 1, 2)]}.

The families {∆
(2)
k }k≥−1 and {C

(2)
k }k≥−1 are visualized as follows.

1

0
2

1

0
2

[(0)]=[(2)]

[(1)]

The left hand side is {∆
(2)
k }k≥−1 and the right hand side is {C

(2)
k }k≥−1.

The face operator dℓ : ∆
(n)
k → ∆

(n)
k−1 is the map which eliminates the ℓ-th

coordinate,
dℓ(i0, i1, . . . , ik) = (i0, . . . , iℓ−1, iℓ+1, . . . , ik).

It is partially defined on C
(n)
k . We give the definition in the following.

Lemma 3.29. Let {C
(n)
k }k≥−1 be an equivalence n-simplex. For [(i0, . . . , ik)]

of C
(n)
k , define

F ([(i0, . . . , ik)]) = {ℓ ∈ [k] | dℓ(i0, . . . , ik) ∈ E
(n)
k−1}.

Then, F ([(i0, . . . , ik)]) does not depend on the choice of the representation of
[(i0, . . . , ik)].

Proof. Suppose (i0, . . . , ik) ≈ (j0, . . . , jk). For ℓ of F ([(i0, . . . , ik)]), we have
iℓ−1 6∼ iℓ+1. Then we also have jℓ−1 6∼ jℓ+1, since jℓ−1 ∼ iℓ−1 6∼ iℓ+1 ∼ jℓ+1.
Hence, F ([(i0, . . . , ik)]) contains ℓ if and only if F ([(j0, . . . , jk)]) contains ℓ,

F ([(i0, . . . , ik)]) = F ([(j0, . . . , jk)]).

�

Definition 3.30. Let {C
(n)
k } be an equivalence n-simplex. For [(i0, . . . , ik)]

of C
(n)
k and ℓ of F ([(i0, . . . , ik)]), define the face operator

dℓ([(i0, . . . , ik)]) = [dℓ(i0, . . . , ik)].

If (i0, . . . , ik) ≈ (j0, . . . , jk), then im ∼ jm for every m. So

(i0, . . . , iℓ−1, iℓ+1, . . . , ik) ≈ (j0, . . . , jℓ−1, jℓ+1, . . . , jk).

Hence, this map is well-defined.
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Definition 3.31. Let {C
(n)
k }k≥−1 be an equivalence n-simplex. For 0 < k

define Dk : C[C
(n)
k ] → C[C

(n)
k−1] by

Dk([(i0, . . . , ik)]) =
∑

ℓ∈F ([(i0,...,ik)])

(−1)ℓdℓ([(i0, . . . , ik)])

for any [(i0, . . . , ik)] of C
(n)
k . For k = 0 define D0 : C[C

(n)
0 ] → C to be the

augmentation, that is,

D0

( ∑

xi∈C
(n)
0

αixi

)
=

∑

xi∈C
(n)
0

αi.

Proposition 3.32. Let {C
(n)
k }k≥−1 be an equivalence n-simplex. Then,

Dk ◦Dk−1 = 0.

Hence,

. . . // 0 // C
Dn // C[C

(n)
n−1]

Dn−1 // . . .

. . .
D2 // C[C

(n)
1 ]

D1 // C[C
(n)
0 ]

D0 // C // 0

is a chain complex.

Proof. We prove this claim by comparing this complex with the familiar chain

complex {C[∆
(n)
k ], ∂k}k≥−1 where ∂k : C[∆

(n)
k ] → C[∆

(n)
k−1] is defined by the

alternating sum of the face operators,

∂k =

k∑

ℓ=0

(−1)ℓdℓ.

This chain complex is isomorphic to the augmented chain complex of usual
n-simplex with coefficients in C.

Define a map pk : C[∆
(n)
k ] → C[C

(n)
k ] by

pk((i0, . . . , ik)) =

{
[(i0, . . . , ik)], if (i0, . . . , ik) ∈ E

(n)
k ,

0, if (i0, . . . , ik) 6∈ E
(n)
k .

In particular, define p−1 = 1C. We show {pk} : {C[∆
(n)
k ], ∂k} → {C[C

(n)
k ], Dk}

is a chain map. It suffices to show that the following two types of diagrams
are commutative

C[∆
(n)
k ]

pk

��

∂k // C[∆
(n)
k−1]

pk−1

��

C[∆
(n)
0 ]

p0

��

∂0 // C

1C

��
C[C

(n)
k ]

Dk // C[C
(n)
k−1] C[C

(n)
0 ]

D0 // C

Münster Journal of Mathematics Vol. 6 (2013), 85–116



Euler characteristics of categories and barycentric subdivision 107

where ∂0 is the augmentation and 1 ≤ k ≤ n.
Since p0 is a natural projection, the diagram of the right hand side is com-

mutative.
Next we show the commutativity of the left diagram. Take (i0, . . . , ik) of

∆
(n)
k . Suppose E

(n)
k does not contain it. We have

Dk ◦ pk((i0, . . . , ik)) = Dk(0)

= 0.

Since E
(n)
k does not contain (i0, . . . , ik), there exists ℓ such that 0 ≤ ℓ < k and

iℓ ∼ iℓ+1. Here, we have to consider two cases,

(1) the existence of such ℓ is unique,
(2) there is another such ℓ′.

In the first case,

pk−1 ◦ ∂k((i0, . . . , ik)) = pk−1

(
k∑

j=0

(−1)jdj(i0, . . . , ik)

)
.

For 0 ≤ j ≤ ℓ − 1 or ℓ + 2 ≤ j ≤ k, dj(i0, . . . , ik) contains iℓ and iℓ+1 which
are consecutive, hence pk−1(dj(i0 . . . , ik)) = 0. Since iℓ ∼ iℓ+1, dℓ(i0, . . . , ik) ≈
dℓ+1(i0, . . . , ik). This fact implies

pk−1 ◦ ∂k((i0, . . . , ik)) = pk−1

(
(−1)ℓdℓ(i0, . . . , ik) + (−1)ℓ+1dℓ+1(i0, . . . , ik)

)

= (−1)ℓ[dℓ(i0, . . . , ik)] + (−1)ℓ+1[dℓ+1(i0, . . . , ik)]

= 0.

The second case can be done by induction, with some case distinctions if three
or more consecutive entries are equivalent.

If E
(n)
k contains (i0, . . . , ik), it is easy to see

pk−1 ◦ ∂k((i0, . . . , ik)) = Dk ◦ pk((i0, . . . , ik)).

Hence, {pk} is a chain map. Since each pk is a surjection and ∂k ◦∂k−1 = 0,
we obtain Dk ◦Dk−1 = 0. �

Proposition 3.33. Let {C
(n)
k }k≥−1 be an equivalence n-simplex. Suppose its

equivalence relation satisfies the property that i 6∼ i + 1 for all 0 ≤ i ≤ n− 1.
Then,

Hm({C
(n)
k , Dk}k≥−1) = 0

for any m.

Proof. Define a chain homotopy between 0 and identity hk : C[C
(n)
k ] → C[C

(n)
k+1]

by

hk([(i0, . . . , ik)]) =

{
[(0, i0, . . . , ik)], if 0 6∼ i0,

0, if 0 ∼ i0.

Münster Journal of Mathematics Vol. 6 (2013), 85–116



108 Kazunori Noguchi

In particular, for k = −1 define h−1 : C → C[C
(n)
0 ] by h−1(∗) = [(0)]. Then

we have the following diagram

. . . // C[C
(n)
2 ]

1
��

D2 //

h2

||③③
③③
③③
③③
③③
③

C[C
(n)
1 ]

1
��

h1

zz✉✉
✉✉
✉✉
✉✉
✉

D1 // C[C
(n)
0 ]

1
��

h0

zz✉✉
✉✉
✉✉
✉✉
✉

D0 // C //

1

��

h−1

}}④④
④④
④④
④④
④

0

����✄✄
✄✄
✄✄
✄✄
✄

. . . // C[C
(n)
2 ]

D2 // C[C
(n)
1 ]

D1 // C[C
(n)
0 ]

D0 // C // 0.

We have

D0 ◦ h−1(1) = D0[(0)]

= 1.

For 0 ≤ k < n, we show hk−1◦Dk+Dk+1◦hk = 1. Take an element [(i0, . . . , ik)]

of C
(n)
k . If i0 ∼ 0, then

(2) (hk−1 ◦Dk +Dk+1 ◦ hk)([(i0, . . . , ik)]) = hk−1 ◦Dk([(i0, . . . , ik)])

= hk−1

(
∑

ℓ∈F ([(i0,...,ik)])

(−1)ℓdℓ[(i0, . . . , ik)]

)
.

Here, for ℓ of F ([(i0, . . . , ik)]) such that ℓ > 0, we have

hk−1((−1)ℓdℓ[(i0, . . . , ik)]) = hk−1((−1)ℓ[(i0, . . . , iℓ−1, iℓ+1, . . . , ik)])

= 0.

Since i0 6∼ i1, we have i1 6∼ 0. Thus, equation (2) is

hk−1((−1)0d0[(i0, . . . , ik)]) = hk−1([(i1, . . . , ik)])

= [(0, i1, . . . , ik)]

= [(i0, i1, . . . , ik)].

If i0 6∼ 0, then we have

Dk+1 ◦ hk([(i0, . . . , ik)]) = Dk+1([(0, i0, . . . , ik)])

=
∑

ℓ∈F ([(0,i0,...,ik)])

(−1)ℓdℓ[(0, i0, . . . , ik)]

and

hk−1 ◦Dk([(i0, . . . , ik)]) = hk−1

(
∑

ℓ∈F ([(i0,...,ik)])

(−1)ℓdℓ[(i0, . . . , ik)]

)
.

For ℓ > 0, F ([(i0, . . . , ik)]) contains ℓ if and only if F ([(0, i0, . . . , ik)]) contains
ℓ+ 1. Thus, we obtain

(hk−1 ◦Dk +Dk+1 ◦ hk)([(i0, . . . , ik)]) = (−1)0d0[(0, i0, . . . , ik)]

= [(i0, . . . , ik)].
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When k = n, hn is the 0-map. Hence, we have

(3) (hn−1 ◦Dn +Dn+1 ◦ hn)([(0, 1, . . . , n)]) = hn−1 ◦Dn([(0, 1, . . . , n)])

= hn−1

(
∑

ℓ∈F ([(0,1,...,n)])

(−1)ℓdℓ[(0, 1, . . . , n)]

)
.

If there exists ℓ such that ℓ > 0 and ℓ of F ([(0, 1, . . . , n)]), we have

hn−1((−1)ℓdℓ[(0, 1, . . . , n)]) = hn−1((−1)ℓ[(0, 1, . . . , ℓ− 1, ℓ+ 1, . . . , n)])

= 0.

Here, we use the asymmetric condition that i 6∼ i + 1 for all 0 ≤ i ≤ n − 1.
Since i 6∼ i + 1 for all 0 ≤ i ≤ n − 1, F ([(0, 1, . . . , n)]) contains 0. Thus the
equation (3) is

hn−1((−1)0d0[(0, 1, . . . , n)]) = hn−1([(1, . . . , n)]).(4)

Since 0 and 1 is consecutive, we have 0 6∼ 1. Hence, equation (4) is

hn−1([(1, . . . , n)]) = [(0, 1, . . . , n)].

We conclude {C
(n)
k , Dk}k≥−1 is an exact sequence. �

Remark 3.34. We used the asymmetric condition that i 6∼ i + 1 for all 0 ≤
i ≤ n− 1 at the last part of the proof above. If we drop this assumption, we
do not expect this result.

If there exists i such that i ∼ i+ 1, then F ([(0, 1, . . . , n)]) does not contain
ℓ which satisfies 0 ≤ ℓ < i or i+ 1 < ℓ ≤ n. If 0 ≤ ℓ < i, then

dℓ(0, 1, . . . , n) = (0, 1, . . . , ℓ− 1, ℓ+ 1, . . . , i, i+ 1, . . . , n),

but E
(n)
n−1 does not contain it. Hence, F ([(0, 1, . . . , n)]) does not contain ℓ. In

the same way, we can show F ([(0, 1, . . . , n)]) does not contain ℓ if i+1 < ℓ ≤ n.
Therefore, if there is another such i′, the set F ([(0, 1, . . . , n)]) is an empty set.

So the differential Dn : C → C[C
(n)
n−1] is the 0-map. If the existence of such i

is unique, we have F ([(0, 1, . . . , n)]) = {i, i+ 1}. Then, we have

Dn([(0, 1, . . . , n)]) = (−1)idi([(0, 1, . . . , n)]) + (−1)i+1di+1([(0, 1, . . . , n)])

= (−1)i([(0, 1, . . . , i− 1, i+ 1, . . . , n)])

+ (−1)i+1([(0, 1, . . . , i, i+ 2, . . . , n)])

= 0.

In any case, if the equivalence relation does not satisfy the property that i 6∼
i+ 1 for all 0 ≤ i ≤ n− 1, the differential Dn is the 0-map. Hence, we obtain

Hn({C
(n)
k , Dk}k≥−1) = C and it is not what we expect.
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This result is a homological interpretation of [13, Prop. 4.6] which proved

the reduced Euler characteristic of an equivalence n-simplex {C
(n)
k }k≥−1 is

zero, that is,

χ̃({C
(n)
k }) =

n∑

k=−1

(−1)k#C
(n)
k = 0

when its equivalence relation satisfies the property that i 6∼ i + 1 for all 0 ≤
i ≤ n− 1.

Proposition 3.35. For a small category J , P (Sd(J ))∗ is a projective reso-
lution of C in Func(Sd(J ),C-vect).

Proof. Since each C[HomSd(J )(f ,−)] is projective for any object f of Sd(J ) by
Proposition 2.11 and Corollary 2.12,

⊕

fk∈Nk(J )

C[HomSd(J )(fk,−)]

is also projective for any k. Next we show exactness of P (Sd(J ))∗. Note
that P (Sd(J ))∗ is exact if and only if each P (Sd(J ))∗(g) is exact for any g

of Nn(J ). Take g of Nn(J ) and define an equivalence relation ∼g on [n] by
i ∼g j if

g(min{i, j} → max{i, j}) = id.

Then, ∼g is an equivalence relation and it satisfies i 6∼g i+1 for all 0 ≤ i ≤ n−1.
For this equivalence relation, we obtain an equivalence n-simplex and its chain

complex {C
(n)
k , Dk}k≥−1.

Then, the chain complex is isomorphic to P (Sd(J ))∗(g) as we now show.
Define two maps

ϕk : C
(n)
k −→

∐

fk∈Nk(J )

HomSd(J )(fk,g)

ψk :
∐

fk∈Nk(J )

HomSd(J )(fk,g) −→ C
(n)
k

by

ϕk([(i0, . . . , ik)]) : [k] −→ [n]

ϕk([(i0, . . . , ik)])(ℓ) = iℓ

and

ψk([α]) = [(α(0), . . . , α(k))]

for any [(i0, . . . , ik)] of C
(n)
k and any [α] : fk → g. In general, a morphism

[ϕ] : f → g in Sd(J ) satisfies f = g ◦ ϕ, so g and ϕ determine f . Thus, the
order-preserving injection ϕk([(i0, . . . , ik)]) and g determine the domain of the
map ϕk([(i0, . . . , ik)]) :? → g. Then, ϕk and ψk are well-defined. Indeed, if
α1 ∼ α2 : fk → g, then

g(min{α1(i), α2(i)} → min{α1(i), α2(i)}) = id
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for any i, that is, α1(i) ∼g α2(i). Hence,

ψk([α1]) = [(α1(0), . . . , α1(k))]

= [(α2(0), . . . , α2(k))]

= ψk([α2]).

If [(i0, . . . , ik)] = [(j0, . . . , jk)], then iℓ ∼g jℓ for any ℓ. So we have

g (min{iℓ, jℓ} → max{iℓ, jℓ}) = id

and we have ϕk([(i0, . . . , ik)]) ∼ ϕk([(j0, . . . , jk)]). It is clear that ϕk ◦ ψk = 1
and ψk ◦ϕk = 1 for any k. Moreover, {ϕk} is compatible with the differentials,

so {ϕk} is a chain map. Hence, P (Sd(J ))∗(g) is isomorphic to {C
(n)
k , Dk}k≥−1.

Proposition 3.33 implies {C
(n)
k , Dk}k≥−1 is exact, so P (Sd(J ))∗(g) is also. �

Finally, we give a proof of Theorem 3.25 which states the opposite of the
subdivision Sd(I)op is of type (L2) if and only if I is finite acyclic for any small
category I and in this case

χ(2)(Sd(I)op) = χ(2)(I) = χ(2)(Sd(I)).

Proof of Theorem 3.25. To compute χ(2)(Sd(I)op) we work on the category

Func((Sd(I)op)op,C-vect) = Func(Sd(I),C-vect).

We have the projective resolution P (Sd(I))∗ of the constant functor C. Since
Sd(I) is acyclic, so is Sd(I)op. Hence, we can apply Lemma 3.26. Since the
splitting functor preserves direct sums, for any object f of Sd(I) we obtain

SfP (Sd(I))∗ = . . . // 0 // C // 0 // . . .

where C is only in the dimension L(f). Since Sd(I)op is acyclic, Aut(f) is
trivial, hence the tensor operation −

⊗
C[f ] N (f) is trivial. Thus, we have

h(2)

(
SfP (Sd(I))∗

⊗

C[f ]

N (f)

)
= h(2)

(
SfP (Sd(I))∗

)

=
∑

n≥0

dimN (f)

(
Hn(SfP (Sd(I))∗)

)

= 1.
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Note that dimN (f) is just the dimension as C-vector spaces. We obtain

h(2)(Sd(I)op) =
∑

f∈Ob(Sd(I)op)

h(2)

(
SfP (Sd(I))∗

⊗

C[f ]

N (f)

)

=
∑

f∈Ob(Sd(I)op)

1

=
∑

f∈Ob(Sd(I))

1

=

∞∑

n=0

#Nn(I).(5)

The series (5) converges if and only if each Nn(I) is finite and there exists a
sufficiently large integer M such that Nn(I) = ∅ for n > M . In other words,
Sd(I)op is of type (L2) if and only if P (Sd(I))∗ is an L2-resolution if and only
if (5) converges if and only if I is finite acyclic by Lemma 3.6.

If I is finite acyclic, the series (5) converges, hence Sd(I)op is of type (L2).
We have

χ(2)(Sd(I)op) =
∑

f∈Ob(Sd(I)op)

χ(2)

(
SfP (Sd(I))∗

⊗

C[f ]

N (f)

)

=
∑

f∈Ob(Sd(I)op)

(−1)L(f)

=
M∑

n=0

(−1)n#Nn(I)

= χL(I)

for a sufficiently large integer M . [5, Lemma 7.3] implies χL(I) = χ(2)(I).
Hence, we obtain

χ(2)(Sd(I)op) = χ(2)(I).

Since I is finite acyclic, Sd(I) is finite acyclic by Lemma 3.6. [5, Lemma 7.3]
implies χL(Sd(I)) = χ(2)(Sd(I)). Proposition 3.7 implies

χ(2)(I) = χL(I) = χL(Sd(I)) = χ(2)(Sd(I)).

Hence, we obtain the result. �

4. The extended L2-Euler characteristic

In this section, we extend the definition of the L2-Euler characteristic. As
we have seen, the equation χ(2)(Sd(I)op) = χ(2)(I) only holds when I is finite
acyclic, because Sd(I)op is of type (L2) if and only if I is finite acyclic. We show
the extended L2-Euler characteristic is invariant under barycentric subdivision
for a wider class of finite categories, that is, the class for which the series Euler
characteristic can be defined (Section 3.8).
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Definition 4.1. A small category J is called of type extended (L2) if for some
projective resolution P∗ of the constant functor C in Func(J op,C-vect),

h(2)n (J ) :=
∑

[x]∈iso(J )

dimN (x)

(
Hn(SxP∗ ⊗C[x] N (x))

)

converges, the radius of convergence ρ of the power series with complex variable

f
(2)
J (z) :=

∞∑

n=0

h(2)n (J )zn

is not zero, there exist a real number ε and a complex function g such that

(1) ε ∈ [1,∞]
(2) g is holomorphic on the open ε-disk around 0, except possibly at finitely

many poles
(3) −1 ∈ dom g

(4) g = f
(2)
J on the open ρ-disk around 0

(5) If ε = 1, then we additionally require g is continuous along the real line
segment [−1, 0].

Then we define the extended L2-Euler characteristic χ
(2)
ex (J ) of J by

χ(2)
ex (J ) = g(−1) = lim

z→−1
z∈[−1,0]

g(z).

If there exist another δ and h, then the uniqueness of the analytic continuity
assures g = h in U(0; 1) since ε, δ ≥ 1. Hence, g(z) = h(z) for any z of (−1, 0].
Therefore,

lim
z→−1
z∈[−1,0]

g(z) = lim
z→−1
z∈[−1,0]

h(z),

so that g(−1) = h(−1). Hence, this definition is well-defined.

Remark 4.2. The definition does not depend on the choice of projective
resolution. This follows from the fundamental lemma of homological algebra
for RΓ-modules, as in [9]. See also [5, § 5.3].

Proposition 4.3. If a small category J is of type (L2), then J is of type

extended (L2) and χ
(2)
ex (J ) = χ(2)(J ).

Proof. Suppose J is of type (L2), so that h(2)(J ) converges absolutely, and

hence also each h
(2)
n (J ) does. By comparison, we see that f

(2)
J (z) converges

on the closed disk of radius 1. Namely if |z| ≤ 1 we have

∞∑

n=0

|h(2)n (J )zn| =
∞∑

n=0

|h(2)n (J )||z|n

≤
∞∑

n=0

h(2)n (J ) <∞.
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Thus, the radius of convergence ρ of the power series f
(2)
J is at least 1. If ρ > 1,

then we may take g = f
(2)
J and ε := ρ so that Definition 4.1 is satisfied.

If ρ = 1, take ε = 1, then an application of Abel’s Theorem for Power

Series to the real series
∑

(−1)nh
(2)
n (J ) shows that g := f

(2)
J is continuous on

the interval [−1, 0]. Namely, since
∑

(−1)nh
(2)
n (J ) converges, Abel’s Theorem

implies

g(−1) =
∞∑

n≥0

(−1)nh(2)n (J ) = lim
z→−1
z∈[−1,0]

g(z),

so that Definition 4.1 is satisfied.
Moreover, we have

χ(2)
ex (J ) = g(−1)

= f
(2)
J (−1)

= χ(2)(J ).

�

Example 4.4. Let G be the skeleton of the category of finite sets and bijec-
tions. Then, G is a groupoid. By [5, Ex. 5.12], we have

Hp

(
SxP∗

⊗

C[x]

N (x)
)
=

{
C
⊗

C[x]N (x), if p = 0,

0, if p > 0.

Since each Aut(x) is finite, N (x) = C[x]. Hence, we have

Hp

(
SxP∗

⊗

C[x]

N (x)
)
=

{
C, if p = 0,

0, if p > 0.

The von Neumann dimension dimN (x) is also easy, that is,

dimN (x) =
1

#Aut(x)
dimC .

Hence, h
(2)
n (J ) = 0 if n > 0 and

h
(2)
0 (J ) =

∞∑

n=0

1

n!
= e,

so that the series f
(2)
G (z) = e. The constant polynomial clearly satisfies all of

Definition 4.1 and f
(2)
G (−1) = e, so that χ

(2)
ex (G) = e.

This example was studied by Baez–Dolan on [1, p. 15] from a different point
of view.

Theorem 4.5. Let I be a finite category. Then Sd(I)op is of type extended
(L2) if and only if the power series fI(t) =

∑∞
n=0 #Nn(I)t

n is rational with
a nonvanishing denominator at t = −1. In this case, we have

χ∑(I) = χ(2)
ex (Sd(I)

op).
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If I is additionally acyclic, these are equal to χ(2)(I), χ(2)(Sd(I)), and χ
(2)
ex

(Sd(I)).

Proof. In equation (5) of proof of Theorem 3.25, we obtain

f
(2)
Sd(I)op(z) =

∞∑

n=0

#Nn(I)z
n = fI(z).(6)

As pointed out by [2] in the proof of Theorem 2.2, the number #Nn(I) can
be expressed by using matrices, that is, #Nn(I) = sum{(ZI − E)n}. Since
entries of (ZI − E) are natural numbers, we obtain

#Nn(I) = sum{(ZI − E)n} ≤ {sum(ZI − E)}n.

Hence, we have
∞∑

n=0

|#Nn(I)z
n| =

∞∑

n=0

#Nn(I)|z
n|

≤
∞∑

n=0

{sum(ZI − E)}n|zn|.(7)

For 0 ≤ |z0| <
1

sum(ZI−E) , the series (7) converges, hence f
(2)
Sd(I)op(z0) also

converges. So the radius of convergence of f
(2)
Sd(I)op(z) is not zero.

By [2, Thm. 2.2] and equation (6), it follows that f
(2)
Sd(I)op has the rational

expression

f
(2)
Sd(I)op(z) =

sum(adj(E − (ZI − E)z))

det(E − (ZI − E)z)
.

The rational function f
(2)
Sd(I)op has finitely many poles on U(0;∞). Hence,

Sd(I)op is of type extended (L2) if and only if (6) does not have a pole at −1
and this is equivalent to the existence of χ∑(I). So we obtain

χ(2)
ex (Sd(I)

op) =
sum(adj(E − (ZI − E)(−1)))

det(E − (ZI − E)(−1))

= χ∑(I).

Furthermore, since Sd(I)op is acyclic, Theorem 3.25 and Proposition 4.3 imply
the last part of the claim. �

Remark 4.6. We defined an extension of the L2-Euler characteristic which
turns out to be not invariant under equivalence of categories, since the series
Euler characteristic is not. In [5, Lemma 5.15], it was proven that the L2-
Euler characteristic is invariant under equivalence of categories for directly
finite categories.
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