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Abstract

In this thesis we generalize the construction of the two, a priori different, versions
of the index difference to the case of families of twisted Spin Dirac operators and
give a proof that they are mapped to each other under the Bott isomorphism in
KK-theory. The classical versions of the index difference assign to a pair of positive
scalar metric on a closed spin manifold an index in the Real K-theory of a point
using Spin Dirac operators. By replacing the Spin Dirac operators by twisted
Spin Dirac operators one obtains two new versions taking the fundamental group
of the manifold into account. This is done not only for pair of positive scalar
curvature metric but also for compact families of positive scalar curvature metrics.
Therefore the proof, called the spectral flow index theorem, that the two definitions
of the classical index difference agree does not work anymore. We give a proof of
this by calculating a Kasparov product. As an application a result of Ebert and
Randal-Williams concerning the homotopy of the space of positive scalar metrics
on even dimensional manifolds can be generalize to odd dimensional manifolds.
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Introduction

Foreword. The local geometry of two homeomorphic Riemannian manifolds can
be very different. This suggests a fundamental research interest in the theory of
smooth Riemannian manifolds, namely the relation between the local geometry
and the global topology of a given smooth manifold M. It turns out that the scalar
curvature has a rich interaction with topology. The scalar curvature scal(g) is the
simplest curvature invariant of a Riemannian manifold (M,g). Its value at a point
x ∈ M is given by the double trace of the Riemannian curvature tensor at x. In
dimension two the scalar curvature is twice the Gaussian curvature. Using the
classical Gauss Bonnet Theorem, this entails that the only orientable 2-dimensional
closed manifold with non-negative scalar curvature which is not flat is S2. Of
course this does not continue to hold for d > 3. For that reason the space R+(M)

of all Riemannian metrics on M with positive scalar curvature (hereafter psc) is well
worth studying. There are two pivotal questions concerning R+(M):

Question 1. Which closed Riemannian manifolds M admit a metric with positive scalar
curvature, i. e. for which manifolds M is the space R+(M) non-empty?

Question 2. Provided that R+(M) 6= ∅, what is the homotopy type of R+(M), i. e. what
do its homotopy groups πk(R+(M),g) look like?

This thesis helps to examine the second question. The main result of this
thesis is the generalization of the spectral flow index theorem of [Ebe17] taking the
fundamental group of M into account. As a consequence it allows to apply the re-
sults of [ERW17] about the homotopy type of R+(M)[B−1] also to odd dimensional
manifolds.
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Literature review. We will first discuss answers to question 1 about the existence
of psc metrics on a given smooth simply connected manifold M. In the presence of
a spin structure the answer is given purely in topological terms and only depends
on the spin-cobordism class of the manifold:

Let (Md,g) be a closed connected d-dimensional Riemannian spin manifold.
A spin structure is given by a lift of the Gauss map τ : M → BO(d) classifying
the tangent bundle along the covering map BSpin(d)→ BO(d) to the 2-connected
cover BSpin(d). A spin manifold has a KO-fundamental class [M]KO ∈ KOd(M)

determined by the spinor bundle /S(M)→M and the Spin Dirac operator /D. This
is a first order elliptic operator acting on the smooth sections Γ( /S(M)) of the spinor
bundle. Its index ind( /D) can be interpreted as an element of the real K-theory
KO−d(pt) of a point in degree −d due to the Clifford symmetries encoded in /S(M)

and /D. Since M is compact, the map M→ {pt} is proper and hence induces a map
p∗ : KOd(M) → KOd(pt) ∼= KO−d(pt) under which [M]KO is sent to ind( /D). If g
has psc then /D is invertible. This is a consequence of the Schrödinger-Lichnerowicz
formula [Lic63] which states that

/D
2
= /∇∗ /∇+

1

4
scal(g)

Therefore ind( /D) must be zero. It follows that the index of the Spin Dirac operator
is the obstruction to psc on M. The Atiyah-Singer Index Theorem computes ind( /D)

in terms of the Â-genus of M, a topological invariant independent of the metric,
defined using characteristic classes. Thus R+(M) = ∅ if Â(M) 6= 0, i. e. parts of the
geometry of M are determined by a topological invariant.

Indeed α(M) := ind( /D) is not only an invariant of the manifold Md but also
an invariant of the cobordism class [M] ∈ Ωspin

d of M. Moreover Gromov and
Lawson proved [GL80a] that psc is stable under suitable surgeries. In other
words, if the closed d-dimensional spin manifold M1 is obtained from the closed
d-dimensional spin manifold M0 by suitable surgeries then R+(M0) 6= ∅ if and only
if R+(M1) 6= ∅. Stolz was able to prove for a simply connected manifold that the
necessary condition of having trivial Â-genus for admitting a psc metric is also
sufficient, i. e. he proved

Theorem ([Sto92]). Let M be a simply connected closed spin manifold of dimension d > 5.
Then R+(M) 6= ∅ if and only if ind( /D) = 0.

The case when M is not simply connected is merely conjectured and called the
(unstable) Gromov-Lawson-Rosenberg-Conjecture. It predicts that the result continues
to hold with ind( /D) replaced by a refinement, called the Rosenberg-index αRr (M) ∈
KOd(C

∗
rπ1(M)) with values in the real K-theory of the reduced C∗-algebra of π1(M):
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Conjecture. Let Md be a connected closed spin manifold of dimension d > 5. Then
R+(M) 6= ∅ if and only if αRr (M) 6= 0.

However, there are counterexamples to this conjecture, compare [DSS02] and
[Sch98]. This suggests that the conjecture has to be modified: The stable version of
this conjecture asserts that αRr (M) = 0 if and only if there exists k ∈ N such that
R+(M× Bk) 6= ∅. Here B is the Bott manifold, an 8-dimensional simply connected
spin manifold with Â(B) = β ∈ KO−8(pt). When π1(M) satisfies the strong Novikov
conjecture, the stable Gromov-Lawson-Rosenberg conjecture is true due to a theorem
of Stolz [Sto02].

Next we discuss answers to question 2 about the homotopy type of the space
R+(M) provided that it is non-empty. In the case not taking the fundamental group
into account all previous results concerning the homotopy type of R+(M) such as
[Hit74, GL80b, HSS14] or [CS13] were superseded by the results of Botvinnik, Ebert
and Randal-Williams in [BERW17]. In loc. cit. the space R+(W)h of psc metrics on
a compact d-dimensional manifold W with collared boundary M which are of the
form h+ dt2 on M× [−ε, 0] is studied. The aforementioned authors combined a
parameterised version of the surgery theory of Gromov and Lawson and secondary
index theory with techniques coming from the study of moduli spaces of manifolds.
Using this they were able to construct maps πk(R+(W)h,g0) → KO−∗(pt) which
are nontrivial whenever k > 0 , d > 6 and the target is nontrivial. In a second paper
the two last named authors extended the methods used in [BERW17] to closed
connected even-dimensional spin manifolds with a map ϕ to the classifying space
BG of a discrete group G. They investigated the homotopy type of the homotopy
colimit R+(M)[B−1] of the sequence

R+(M)→ R+(M×B)→ R+(M×B×B)→ · · ·

In the case that G is torsion-free and satisfies the Baum-Connes Conjecture and
π1(M)

ϕ∗−−→ G is split-surjective they were able to show that πk(R+(M)[B−1],g0)
surjects onto KOk+d+1(C∗rG) for all k > 0.

Methodology. One of the central methods to detect non-trivial elements in the
homotopy groups of R+(M) is provided by a secondary index theoretic invariant
called the index difference. Introduced in two a priori different ways by Hitchin in
[Hit74] and Gromov-Lawson in [GL83] the index difference became an important
tool in the study of the homotopy type of R+(M). The construction of Hitchin
differs substantially from the construction given by Gromov and Lawson. The way,
roughly speaking, Hitchin defined the index difference is as follows: Let Md be
a closed connected spin manifold such that R+(M) is non-empty. Choose a base
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point g0 ∈ R+(M) and consider for every g1 ∈ R+(M) the path of Riemannian
metrics gt := tg1 + (1 − t)g0 from g0 to g1. One obtains a corresponding path
of Spin Dirac operators /Dt defining a path in the space Fredd of Cld,0-linear
odd self-adjoint Fredholm operators. The operators /D0 and /D1 are invertible
and the subspace of invertible operators is contractible due to Kuipers theorem.
Therefore we obtain a map [([0, 1], {0, 1}), (Fredd, pt)] given by the path of Spin
Dirac operators. Since the space Fredd represents the functor KO−d(_) we obtain
an element inddiffHg0(g1) ∈ KO

−d([0, 1], {0, 1}) ∼= KO−d−1(pt). It only depends on
the pair (g0,g1) ∈ R+(M) × R+(M) of psc metrics. This construction likewise
works for compact manifolds W with boundary ∂W. Furthermore a smooth
map G : X → R+(M) × R+(M) from a compact manifold X defines an element
inddiffHG ∈ KO−d−1(X). Hence for g0 ∈ R+(W) we obtain a well-defined homotopy
class of maps

inddiffHg0 : R+(W)h −→ Ω∞+d+1KO

into the infinite loop space representing real K-theory. The key idea in [BERW17]
is the construction of a map ρ from an infinite loop space Z to R+(W)h and the
identification of the composition inddiffHg0 ◦ ρ with another well-known infinite
loop map A : Z → Ω∞+d+1KO which is surjective on homotopy groups. Using
this Botvinnik, Ebert and Randal-Williams were able to derive that the induced
maps on homotopy groups

πk(R+(W)h,g0)
(inddiffHg0)∗−−−−−−−→ KO−k−d−1(pt)

are nontrivial whenever k > 0 , d > 6 and the target is nontrivial. The construction
of the map ρ requires the dimension of W to be even. The odd-dimensional
case of the identification of inddiffg0 ◦ ρ with an infinite loop map is deduced
from the even-dimensional case using the second version of the index difference
inddiffGLg0 due to Gromov and Lawson, as well as the spectral flow index theorem
proven in [Ebe17]. The index difference due to Gromov and Lawson also takes
two psc metrics g0,g1 ∈ R+(M) as input. However, instead of considering the
path of metrics between g0 and g1, one endows M×R with a complete metric
g ∈ R(M×R) which is cylindrical on the ends, i. e.

g =

g0 + dt2, on M× (−∞, 0]

g1 + dt
2, on M× [1,∞)

As the scalar curvature is positive on the ends, the Spin Dirac operator /D on the
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(d+ 1)-dimensional manifold M×R has an index in KO−d−1(pt). One defines
inddiffGLg0 (g1) := ind( /D). This construction generalizes also to families. Fixing
g0 ∈ R+(W) this also yields a well-defined homotopy class of maps

inddiffGLg0 : R+(W)h −→ Ω∞+d+1KO

The spectral flow index theorem as in [Ebe17] states that the maps inddiffHg0
and inddiffGLg0 are weakly homotopic. Now the deduction of the odd dimen-
sional case from the even dimensional case goes roughly as follows: The first
step is the reduction to the case W = D2n+1 and the identification of the spaces
Ωg0R+(S2n)

T−→ R+(D2n+1)g0 . Since S2n is even-dimensional, A is weakly homo-
topic to inddiffGLg0 ◦ ρ. Therefore

Ω(A ) ' Ω(inddiffGLg0 ◦ ρ) ' Ω(inddiffGLg0 ) ◦ Ω(ρ).

Hence one can use T and the spectral flow index theorem to deduce that

Ω(inddiffGLg0 ) ◦ Ω(ρ) ' inddiffHg0 ◦ T ◦Ω(ρ).

The crucial point here is that the spectral flow index theorem was only proven
for operators with indices in KO−∗(pt). The proof in [Ebe17] does not allow for a
generalization to the case of operators with indices in KO∗(C∗rG) as the proof boils
down to an index calculation for which the knowledge of KO∗(C∗rG) is needed.

In [ERW17] Ebert and Randal-Williams were able to generalize the methods
of [BERW17] to the non-simply connected case. This goes as follows: Let Wd

be a compact connected spin manifold of even dimension d = 2n with collared
boundary M := ∂W and a map ϕ : W → BG. The index difference inddiffH induces
a map

R+(W)h ×R+(W)h −→ KK(Cl0,d+1,C∗rG)

depending on ϕ by replacing ind( /Dt) ∈ KO−d+1(pt) by αRr (M,gt) ∈ KOd+1(C∗rG).
As in the previous case the authors used the index difference to factor a map AG

of infinite loop spaces through the space R+(W)h. Contrary to the former case, AG

is itself a composition and factors through the real K-homology KO∗(BG) of the
classifying space of G. Indeed the map AG is induced by the composition of the
maps

Ω
spin
d (BG)→ KOd+1(BG)→ KOd+1(C

∗
rG)

[W,ϕ] 7→ ϕ∗([W]KO) 7→ ν(ϕ∗([W]KO))
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or rather by the maps between the infinite loop spaces of the spectra representing
these generalized homology theories. The second map is given by the Novikov
assembly map ν : KO∗(BG) → KO∗(C

∗
rG). If G is torsion free then the Novikov

assembly map can be identified with the Baum-Connes assembly map µ. If G further-
more satisfies the Baum-Connes conjecture then µ, hence also ν, is an isomorphism.
Provided that G is torsion free and satisfies the Baum-Connes conjecture and that
ϕ∗ : π1(M)→ G is split-surjective, Ebert and Randal-Williams proved in [ERW17]
that the induced maps

πk(R+(M)[B−1],g0)
(inddiffHg0 [B

−1])∗
−−−−−−−−−−−→ KOd+1(C

∗
rG)

are surjective for all k.

Research aim and results. As mentioned earlier the restriction to even dimen-
sional manifolds relies on the lack of a proof of the spectral flow index theorem
taking the fundamental group into account. The thesis arose from necessity to
provide a proof of the spectral flow index theorem in this case. This goal was
achieved: Let Md be a closed connected d-dimensional spin manifold with a map
ϕ : M→ BG to the classifying space of a countable discrete group. For example let
π1(M) ∼= G. Furthermore let R+(M) be non-empty and let X be a compact smooth
manifold possibly with boundary. For every smooth map G : X→ R+(M)×R+(M)

we construct elements

inddiffHG ∈ KK(Cl0,d,C0(R×X,C∗rG)) and inddiffGLG ∈ KK(Cl0,d+1,C(X,C∗rG)),

and prove the following

Theorem. Let bott−1 : KK(Cl0,d,C0(R × X,C∗rG)) → KK(Cl0,d+1,C(X,C∗rG)) be the
inverse of the Bott isomorphism in KK-theory. Then bott−1([inddiffHG ]) = [inddiffGLG ]

holds.

This is the most general form of the spectral flow index theorem. With the aid
of this theorem the restriction to even dimensional manifolds in [ERW17] can be
dropped.

Overview of the thesis and outline of the argument. The proof of the theorem
is provided by using Kasparovs KK-theory. In fact it boils down to a calculation of
an unbounded Kasparov product in theorem 5.2.1 using a theorem of Kucerovsky
[Kuc97]. The first chapter can be viewed as a short overview of this topic starting
with C∗-algebras, Hilbert modules and (unbounded) operators. In section 1.3 the
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reader will find the relevant definitions concerning KK-theory. The geometric input
such as bundles of Hilbert modules and (families of) A-linear differential operators
is explained in chapter 2. The thesis is organized is such a way that a reader who is
familiar with these concepts can skip the first two chapters. Chapter 3 is devoted to
a different description of the groups KK(A,C(X, B)) in terms of continuous fields
of Hilbert modules and operator families. It is adaption of the results of [Ebe18].
This description is adequate to construct Kasparov modules from families of
manifolds and families of operators. The unbounded Kasparov modules inddiffHG ∈
Ψ(Cl0,d,C0(R×X,C∗rG)) and inddiffGLG ∈ Ψ(Cl0,d+1,C(X,C∗rG)) are constructed in
chapter 4. Finally the product is calculated in chapter 5.

To prove theorem 5.0.1 we consider an unbounded product. Kucerovsky
provided criteria under which an unbounded Kasparov module z represents the
Kasparov product of the two unbounded modules x and y. In more detail, he
gave sufficient conditions when the bounded transform, i. e. the image of z under the
surjection b : Ψ(A, B)� KK(A, B), is equal to the Kasparov product b(x)#b(y).

The first step of the proof of theorem 5.0.1 is to represent inddiffHG and inddiffGLG

by (unbounded) Kasparov-modules. Both versions of the index difference can
be obtained as special cases from the following general construction developed
in [Ebe18] and presented in chapter 3: A submersion π : N → X together with
a bundle E → N of Hilbert-B-modules defines a continuous field L2X(π,E), cf.
definition 3.2.4, of Hilbert-B-modules over X. A B-linear differential operator
D : Γ∞cv(N,E) → Γ∞cv(N,E) induces an (unbounded) operator family on L2X(π,E).
When (N,D) is fiberwise complete, compare definition 3.2.6, the closure D is self-
adjoint and regular by theorem 2.2.3. Moreover by theorem 3.2.9 the resolvent of
the closure is compact, if D is bounded from below by a fiberwise coercive function,
cf. definition 3.2.8. If the bundle E→ N is Real, graded by η and endowed with a
Clifford action ρ of Cl0,d such that D is Real, odd and anti-commutes with ρ, then
the tuple (L2X(π,E),η, c,D) defines an unbounded Kasparov-(Cl0,d,C(X, B))-module.
This is the content of theorem 3.2.10.

To define inddiffHG let Md be a closed connected spin manifold with a map
ϕ : M → BG and suppose that R+(M) is non-empty. Furthermore let X be a
smooth compact manifold endowed with a smooth map G : X→ R+(M)×R+(M).
We consider the submersion π : M ×R × X → R × X with a fiberwise Rieman-
nian metric induced by G . The bundle E is given by the spinor bundle /S(π)

of the vertical tangent bundle Tvπ = TM×R × X twisted with the pullback of
the Miščenko-Fomenko line bundle LG → BG along ϕ. The operator family is
induced by the twisted fiberwise Spin Dirac operators /Dλ,x on π−1(λ, x) ∼=M. The
element inddiffHG ∈ Ψ(Cl0,d,C0(R×X,C∗rG)) is obtained from this data in the way
explained above, see theorem 4.2.9. The element inddiffGLG ∈ Ψ(Cl0,d+1,C(X,C∗rG))

vii



is constructed in a similar way in theorem 4.2.18 by considering the submersion
Π : M×R×X→ X and the (unbounded) operator family induced by the Spin Dirac
operators /Dx on the non-compact manifolds Π−1(x) ∼= M×R. In the case that
X = {pt} and G = {1} we get back the classical definition of the index difference of
either Hitchin or Gromov and Lawson.

Let bott−1 : KK(Cl0,d,C0(R × X,C∗rG))
∼=−→ KK(Cl0,d+1,C(X,C∗rG)) be the in-

verse of the Bott isomorphism. It is given by the Kasparov product with the
module τC(X,C∗rG)(α). Here α ∈ KK(C0(R), Cl0,1) is the inverse of the Bott ele-
ment β ∈ KK(Cl0,1,C0(R)) and the homomorphism τC(X,C∗rG) : KK(C0(R), Cl0,1)→
KK(C0(R) ⊗̂C(X,C∗rG), Cl0,1 ⊗̂C(X,C∗rG)) is given by the exterior product. Hence
the proof of theorem 5.0.1 would be accomplished by showing that

b(inddiffHG )#τC(X,C∗rG)(α) = b(inddiffGLG ).

However it is hard to prove this directly. Therefore the second step is to construct
an unbounded Kasparov module z ′ ∈ Ψ(Cl0,d+1,C(X,C∗rG)) for which it is easier
to prove that it represents the Kasparov product of inddiffHG and τC(X,C∗rG)(α). This
is done in lemma 5.1.4. Subsequently we show that z ′ ∼ inddiffGLG . To prove
that this is indeed the case we make use of the following elementary fact: If the
metric on M×R is cylindrical, then the spinor bundle /S(M×R) is isomorphic to
/S(M) ⊗̂ /S(R) and the Spin Dirac operator /D of M×R is of the form /D ⊗̂ 1+ 1 ⊗̂DR.
In the case of inddiffGLG we endow M×R with a metric which is cylindrical outside
a compact subset. Hence the difference of the operators /D and /D ⊗̂ 1+ 1 ⊗̂DR

has compact support M× [0, 1]. It follows that the induced unbounded operator
families are identical up to a compact perturbation. As a consequence both modules
represent the same element, cf. proposition 5.2.6. The last step is to show that

b(z ′) = b(inddiffHG )#τC(X,C∗rG)(α).

To this end we have to show that the “difference” of the unbounded operators
/D ⊗̂ 1+ 1 ⊗̂DR and DR is bounded on the domain of DR and that the “graded
commutator” { /D ⊗̂ 1, /D ⊗̂ 1+ 1 ⊗̂DR} is semi-bounded. Here we make use of the
special form of the operator /D ⊗̂ 1+ 1 ⊗̂DR: The difference is given by multiplying
u ∈ C∞c (R, S1) with a fixed section /D(s) with compact support. Therefore it defines
a bounded map, see proposition 5.2.3 and eq. (5.7). The graded commutator
conforms /D2 ⊗̂ 1. Using the Lichnerowicz formula for twisted bundles, see eq. (4.3),
and the assumption about the scalar curvature this implies the semi-boundedness
of the graded commutator, see proposition 5.2.5. This completes the proof of
theorem 5.0.1 using theorem 1.3.9.
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Chapter 1

C∗-algebras, Hilbert modules and
KK-Theory

In this chapter we give an overview over the functional analysis needed in this
thesis. Section 1.2 provides the definitions and concepts needed for KK-theory.
This includes graded C∗-algebras, Hilbert modules and their morphisms. We also
need to consider unbounded operators on Hilbert modules. It should be viewed as
a summary and a reader who is familiar with Kasparov’s (unbounded) KK-theory
can skip this chapter.

1.1 C∗-algebras

In his original paper G. G. Kasparov [Kas80] defines the bivariant KK-functor for
real, Real and complex Z/2-graded C∗-algebras. For our purpose it suffices to
consider only the class of Real Z/2-graded C∗-algebras, i. e. the class of (complex)
C∗-algebras A equipped with a Z/2-grading and a Real structure. A Z/2-grading
is a self-adjoint unitary ι : A → A, such that ι2 = id. Whereas a Real structure is
a conjugate-linear and self-adjoint unitary τ : A → A, such that τ2 = id. The two
structures are required to be compatible in the sense that ιτ = τι. The grading
defines a decomposition A(0)⊕A(1) of A into the eigenspaces A(i) := {a ∈ A : ι(a) =
(−1)ia} of the unitary ι. The elements of the eigenspaces are called homogeneous
and we define the degree of a ∈ A(i) by ∂a = i. The graded commutator of two
homogeneous elements is defined by {a, b} := ab − (−1)∂a∂bba. This definition can
be extended by linearity to the entire algebra. Note that any C∗-algebra can be
Z/2-graded using the trivial grading id. A trivial example is the field of complex
numbers C with the trivial grading and Real structure coming from the complex
conjugation. This Real graded C∗-algebra is denoted by R.

1
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As tensor product we take the spatial tensor product within the class of Real Z/2-
graded C∗-algebras. This entails that the tensor product A ⊗̂B of two Real Z/2-
graded C∗-algebras is again a Real Z/2-graded C∗-algebra such that:

• ι(a ⊗̂ b) = ι(a) ⊗̂ ι(b),

• τ(a ⊗̂ b) = τ(a) ⊗̂ τ(b),

• (a1 ⊗̂ b1) · (a2 ⊗̂ b2) = (−1)∂b1∂a2(a1a2 ⊗̂ b1b2),

• (a ⊗̂ b)∗ = (−1)∂a∂b(a∗ ⊗̂ b∗).

The C∗-norm is obtained in the usual way, but with graded states instead of states.
See [WO93, Appendix T]. Let X and Y be locally compact Hausdorff spaces. Then
the spatial tensor product C0(X)⊗A is isomorphic to C0(X, A) and the spatial tensor
product C0(X)⊗C0(Y) is isomorphic to C0(X× Y). Compare [WO93, Proposition
T.5.21]. For Real C∗-algebras see also [Sch93]. We will finish this section with an
example.

The reduced C∗-algebra of a group: Let G be a countable discrete group and
denote by CG the complex group ring of G. The complex Hilbert space of square
summable functions G→ C is denoted by `2G. There is a representation of CG on
`2G by means of the regular representation ρr:

ρr(g) := [f 7→ f(g−1 · _)] ∈ Lin(`2G) (1.1)

Using the regular representation we define the norm of x ∈ CG by ‖x‖r := ‖ρr(x)‖.
The completion of CG inside Lin(`2G) with respect to ‖ · ‖r is by definition the
reduced group C∗-algebra C∗rG. We consider C∗rG to be trivially graded and endowed
with the Real structure given by complex conjugation, i. e. τ(

∑
λgg) :=

∑
λgg.

1.2 Hilbert modules

Let A be a C∗-algebra and E a right A-module. An A-valued inner product on E is a
sesquilinear map (linear in the second and conjugate linear in the first variable)
(·, ·) : E× E −→ A, such that for all x,y ∈ E and a ∈ A the following hold:

• (x, x) > 0,

• (x,ya) = (x,y)a,

• (x,y)∗ = (y, x).
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1.2. Hilbert modules

Note that (x, x) > 0 means that (x, x) is a positive element in A, i. e. it is a self-adjoint
element with positive spectrum. Using this inner product and the C∗-norm ‖ · ‖A

on A we define the norm of an element x ∈ E as follows:

‖x‖ :=
√
‖(x, x)‖A (1.2)

If E is a Banach space with respect to this norm, then E is called a Hilbert-A-module.
As in the case of C∗-algebras we will also consider Real graded Hilbert modules
over a Real graded C∗-algebra A:

A grading on a Hilbert-A-module E is a C-linear self-adjoint involution η such
that η(xa) = η(x)ι(a) and (η(x),η(y)) = ι((x,y)). A Real structure on E is a conjugate-
linear involution κ satisfying the same compatible conditions as a grading with ι
replaced by τ.

The Hilbert-A-module E is called finitely generated and projective if E is isomorphic
as a Hilbert-A-module to an orthogonal direct summand of the Hilbert-A-module
An for some n ∈ N. While a Hilbert-A-module E is countably generated if there
exists a countable set of generators, i. e. a countable set {xn} ⊂ E such that the linear
span of {xna : n ∈N, a ∈ A} ⊂ E is dense in E. When A is unital then the standard
Hilbert-A-module

HA := {(xk) ∈
∞∏
1

A :

∞∑
k=1

x∗kxk is norm convergent in A}

is countably generated.

1.2.1 Bounded operators on Hilbert modules

The well-behaved operators between two Hilbert-A-modules E and E ′ are those
which admit an adjoint, i. e. those maps D : E → E ′ for which there is a map
D∗ : E ′ → E such that

(D(x),y) = (x,D∗(y)) (1.3)

holds for all x ∈ E and for all y ∈ E ′. One can show that these maps, a priori neither
linear nor bounded, are in fact linear module maps and that the vector space
LinA(E) of all adjointable maps from E to itself equipped with the supremum norm
is a C∗-algebra, see [WO93, Proposition 15.2.4]. A grading ι on E induces a grading
on LinA(E) as follows: An operator D ∈ LinA(E) is called odd, if D ◦ ι = −ι ◦D
and even if D ◦ ι = ι ◦D. When E is Real, we say that D ∈ LinA(E) is Real, if
κ(Dx) = Dκ(x). Compact operators on Hilbert-A-modules are defined as follows:
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Let x,y ∈ E and consider the map

θx,y : E −→ E , z 7→ x · (y|z). (1.4)

It is adjointable and hence defines a bounded operator on E, called rank one operator.
These operators form a two-sided ∗-ideal inside LinA(E). The compact operators
KomA(E) ⊂ LinA(E) on E are defined as the norm closure of the linear span of the
rank one operators.

1.2.2 Unbounded operators on Hilbert modules

We also have to consider unbounded operators on Hilbert-A-modules. We refer to
[Lan95] for a general treatment. However we also recall a result from [KL17]. It is
sufficient to consider only unbounded operators on a single Hilbert-A-module E.
These are A-linear maps D defined on a dense A-submodule dom(D) ⊂ E, called
the domain of D, whose range lie in E. As in the case of unbounded operators
between Hilbert spaces one defines the graph of D as the following submodule of
E⊕ E:

G(D) := {(x,Dx) : x ∈ dom(D)}.

On the graph of D there is the following A-valued inner product:

((x,Dx), (y,Dy))G(D) := (x,y) + (Dx,Dy).

If G(D) is complete with respect to this inner product then D is called closed. D is
called symmetric, if (Dx,y) = (x,Dy) holds for all x,y ∈ dom(D). Let D : dom(D)→
E be an unbounded operator then

dom(D∗) := {y ∈ E : ∃ z ∈ E ∀ x ∈ dom(D) (Tx,y) = (x, z)}

is an A-submodule of E. For y ∈ dom(D∗) the map y 7→ z is well-defined and
defines an A-linear map D∗ : dom(D∗)→ E called the adjoint of D.

Remark. So far the treatment of unbounded operators on Hilbert modules is
analogous to the theory of unbounded operators on Hilbert spaces. While a
densely defined unbounded operator on a Hilbert space has a densely defined
adjoint this does not need to hold in the Hilbert module case.

To account for this defect we say that an unbounded and densely defined
operator D is regular, if D admits a densely defined adjoint D∗ and 1+D∗D has
dense range. A closed densely defined symmetric operator D is self-adjoint and
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1.2. Hilbert modules

regular if and only if there exists t ∈ R such that the operators (D± it) : dom(D)→
E are invertible. See [KL17, Proposition 4.1]. The self-adjoint and regular operators
are those operators for which there exists a functional calculus. Let C(R) be the
C∗-algebra of continuous functions f : R → R such that limλ→±∞ f(λ) exists. The
functional calculus is a unital ∗-homomorphism

ΦD : C(R)→ LinA(E) , f 7→ f(D)

with the following properties:

1. ‖f(D)‖ 6 ‖f‖C0

2. if D is Real and f is real-valued then f(D) is Real and

3. if D and f are odd then f(D) is odd.

See for example [Lan95, p. 118-120] or [Ebe18, Theorem 2.19]

1.2.3 Tensor products of Hilbert modules

There are two different types of (graded) tensor products of graded Hilbert modules.
The first one is the external tensor product of a Hilbert-A-module E0 and a Hilbert-
B-module E1, which is a graded Hilbert module over the graded tensor product
A ⊗̂ B constructed as follows: The algebraic tensor product E0 � E1 has a right
A ⊗̂B-action

(x0 ⊗̂ x1) · (a ⊗̂ b) := (−1)∂x1∂a(x0a ⊗̂ x1b)

and a A ⊗̂B-valued inner product

(x0 ⊗̂ x1,y0 ⊗̂ y1) := (−1)∂x1·(∂x0+∂y0)(x0,y0) ⊗̂ (x1,y1).

The completion of E0 � E1 with respect to the norm induced by this inner product
is E0 ⊗̂ E1. It can be graded by η(x0 ⊗̂ x1) = η0(x0) ⊗̂ η1(x1). Using the exterior
tensor product of E0 and E1 one gets an embedding

LinA(E0) ⊗̂ LinB(E1) −→ LinA⊗̂B(E0 ⊗̂ E1)

given by (D0 ⊗̂D1)(x0 ⊗̂ x1) := (−1)∂D1∂x0(D0(x0) ⊗̂D1(x1)). This induces an iso-
morphism between KomA(E0) ⊗̂KomB(E1) and KomA⊗̂B(E0 ⊗̂E1). The second one
is the internal tensor product E0 ⊗̂ϕ E1 of two Hilbert modules E0 and E1 over A and
B respectively, over a graded ∗-homomorphism ϕ : A → LinB(E1). The internal
tensor product E0 ⊗̂ϕ E1 is the Hilbert-B-module (the right B-module structure is
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induced from the right B-module structure on the algebraic tensor product E0�̂E1)
obtained as the completion of E0 � E1 with respect to the norm induced by the
B-valued inner product

(x0 ⊗̂ϕ x1,y0 ⊗̂ϕ y1) := (x1,ϕ((x0,y0)E0)y1)E1

and graded in the same way as E0 ⊗̂ E1. In the case of the internal tensor product,
there is only an embedding

LinA(E0)→ LinB(E0 ⊗̂ϕ E1) , D 7→ D ⊗̂ϕ 1

In general there is no way to define a map LinB(E1)→ LinB(E0 ⊗̂ϕ E1). See [Bla98,
14.] or [JK12, §1.2.].

1.3 KK-Theory

Kasparov modules: From now on A, B, C,. . . will always denote Real Z/2-graded
C∗-algebras and when we say C∗-algebra we mean a complex C∗-algebra equipped
with a grading and a Real structure. Moreover we require all C∗-algebras to be
separable. For us this is no restriction at all since with only one exception (which is
separable) all C∗-algebras we consider are even unital. The C∗-algebra C([0, 1], B)

of continuous functions from the unit interval I := [0, 1] to B is denoted by IB.

Definition 1.3.1. Let A and B be two C∗-algebras, E a countably generated Hilbert-B-
module, ρ : A → LinB(E) a Real graded ∗-homomorphism and D ∈ LinB(E) an odd and
Real operator. The triple (E, ρ,D) is called a Kasparov-(A, B)-module provided that

1. ρ(a)(D−D∗),

2. ρ(a)(D2 − 1) and

3. {D, ρ(a)}

are compact operators for every a ∈ A. If the elements 1., 2. and 3. are zero, then (E, ρ,D)

is called degenerate.

Let E(A, B) be the set of (bounded) Kasparov-(A, B)-modules and D(A, B) the
subset of degenerate Kasparov-(A, B)-modules. The addition of two Kasparov-
(A, B)-modules is given by the direct sum of the triples. We want to turn E(A, B)

into a group. To this end we introduce an equivalence relation on the set of
Kasparov-(A, B)-modules. Two Kasparov-(A, B)-modules (Ei, ρi, Ti), i = 0, 1, are
unitary equivalent, denoted by (E0, ρ0, T0) ∼u (E1, ρ1, T1), if there exists a unitary
u ∈ LinB(E0,E1) of even degree such that ρ0 = u∗ρ1u and T0 = u∗T1u.
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1.3. KK-Theory

Definition 1.3.2. A homotopy between two Kasparov-(A, B)-modules (E0, ρ0, T0) and
(E1, ρ1, T1) is a Kasparov-(A, IB)-module (E, ρ, T), satisfying

(evi)∗((E, ρ, T)) ∼u (Ei, ρi, Ti) , for i = 0, 1

where evi : IB→ B is given by ϕ 7→ ϕ(i) and (evi)∗((E, ρ, T)) is given by the Kasparov-
(A, B)-module (E ⊗̂evi B, evi ◦ρ, T ⊗̂evi 1).

The notion of homotopy defines an equivalence relation ≈ on E(A, B) under
which a degenerate Kasparov module is homotopic to the 0-module (HB, 0, 0).

Definition 1.3.3. KK(A, B) := E(A, B)/ ≈.

A priori KK(A, B) is only a semi group, but using the notion of homotopy one
proves that

Lemma 1.3.4. KK(A, B) is an abelian group.

Proof. See for example [Kas80, Theorem 1.] or [Bla98, Proposition 17.3.3].

Remark. Let R denote the Real trivially graded C∗-algebra of complex numbers.
Then KK(R, B) is isomorphic to KO0(B), the real K-theory of B in degree zero. See
[Sch93, Theorem 2.3.8.].

1.3.1 Functoriality

The KK-groups are contravariant in the first and covariant in the second vari-
able with respect to graded ∗-homomorphisms, in the sense that a graded ∗-
homomorphism ϕ : A0 → A1 induces a group homomorphism ϕ∗ : KK(A1, B) →
KK(A0, B) and a graded ∗-homomorphism ψ : B0 → B1 induces a group homo-
morphism ψ∗ : KK(A, B0)→ KK(A, B1). Since these properties are not needed we
will not go into details. Using the exterior tensor product of Hilbert modules one
obtains a map

E(A, B)→ E(A ⊗̂D, B ⊗̂D) , (E, ρ,D)) 7→ (E ⊗̂D, ρ ⊗̂ 1,D ⊗̂ id)

This map is compatible with direct sums and respects the equivalence relation and
hence induces a homomorphism

τD : KK(A, B)→ KK(A ⊗̂D, B ⊗̂D)

which is natural in each variable.
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1.3.2 The Kasparov product

One major feature of KK-theory is the Kasparov product originally defined in [Kas80].
Its construction was simplified through the notion of connections introduced by
Cones and Skandalis [CS84].

Let Ei be Hilbert-Bi-modules, i = 0, 1 and ϕ1 : B0 → LinB1(E1) a graded ∗-
homomorphism. For x0 ∈ E0 we define the B1-linear Tx0 : E1 → E0 ⊗̂ϕ1 E1 by
x1 7→ x0 ⊗̂ x1. Then Tx0 is adjointable with adjoint T∗x0(y0 ⊗̂ x1) := ϕ1((x0,y0)E0)(x1).
Hence Tx0 defines an element in LinB1(E1,E0 ⊗̂ϕ E1) called tensor operator or creation
operator. Using tensor operators we can formulate the connection property of an
operator D ∈ LinB1(E0 ⊗̂ϕ1 E1) for D1 ∈ LinB1(E1):

Definition 1.3.5. The operator D is called a D1-connection on E0 ⊗̂ϕ1 E1, if

Tx0 ◦D1 − (−1)∂x0D ◦ Tx0 (1.5)

D1 ◦ T∗x0 − (−1)∂x0T∗x0 ◦D (1.6)

are compact operators for every x0 ∈ E0.

It is a consequence of the Stabilization Theorem [WO93, Theorem 15.4.6] that, if
E0,E1,ϕ1 and D1 are as above, there always exists a D1-connection D on E0 ⊗̂ϕ1 E1.
Compare [JK12, §2.2.] or [Bla98, 18.3.].

Definition 1.3.6. Suppose that x := (E0, ρ0,D0) is a Kasparov-(A, B0)-module and that
y := (E1, ρ1,D1) is a Kasparov-(B0, B)-module. Their Kasparov product x#y is given by a
Kasparov-(A, B)-module (E0 ⊗̂ρ1 E1, ρ0 ⊗̂ 1,D) such that

1. The operator D is a D1-connection on E0 ⊗̂ρ1 E1 and

2. for all a ∈ A the graded commutator ρ(a){D0 ⊗̂1,D}ρ(a)∗ is positive modulo compact
operators.

Theorem 1.3.7. Let A be separable and B0 be σ-unital. Then for every x ∈ E(A, B0) and
y ∈ E(B0, B) there exists a Kasparov product x#y which is unique up to homotopy. Hence
the Kasparov product induces a bilinear pairing

# : KK(A, B0)×KK(B0, B)→ KK(A, B) (1.7)

compatible with τD in the sense that τD(x#y) = τD(x)#τD(y).

See [Bla98, Theorem 18.4.3] and [Bla98, Theorem 18.4.4].
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1.3.3 Unbounded Kasparov modules

Later we will make use of the notion of unbounded Kasparov modules introduced by
Baaj and Julg in [BJ83]. The setting is the same as in the case of bounded Kasparov
modules:

Definition 1.3.8. Let A, B be two C∗-algebras, E a countably generated Hilbert-B-module,
ρ : A→ LinB(E) a Real graded ∗-homomorphism and D an unbounded regular self-adjoint
Real and odd operator on E. The set Ψ(A, B) of unbounded Kasparov modules is given by
triples (E, ρ,D) as above satisfying

1. (1+D2)−1ρ(a) is a compact operator for every a ∈ A and

2. the set of all a ∈ A such that {D, ρ(a)} is densely defined and extends to an element
in LinB(E) is a dense subset of A.

Let b : R → R be the function λ 7→ λ(λ2 + 1)−
1
2 . Then b(D) is called the bounded

transform of the unbounded regular and self-adjoint operator D. The operator b(D)

is bounded and for (E, ρ,D) ∈ Ψ(A, B) the triple (E, ρ,b(D)) is a Kasparov-(A, B)-
module, see [Bla98] or [BJ83]. Moreover Baaj and Julg proved in loc. cit. that the
map

b : Ψ(A, B)→ KK(A, B) , (E, ρ,D) 7→ (E, ρ,b(D)) (1.8)

is surjective if A is separable. We will denote the image of an unbounded Kasparov
module x under the map 1.8 by b(x). The reason why we introduced unbounded
Kasparov modules is that in some cases it is easier to calculate their Kasparov prod-
uct. Let x := (E0, ρ0,D0) ∈ Ψ(A, B0) and y := (E1, ρ1,D1) ∈ Ψ(B0, B). Furthermore
let z := (E0 ⊗̂ρ1 E1, ρ0 ⊗̂ρ1 1,D) ∈ Ψ(A, B). Suppose that dom(D) ⊂ dom(D0 ⊗̂ρ1 1),
then Kucerovsky proved the following:

Theorem 1.3.9 ([Kuc97] Theorem 13). Suppose that the operator{(
D 0

0 D1

)
,

(
0 Tx0

T∗x0 0

)}

is bounded on dom(D⊕D1) for all x0 in a dense subset of ρ0(A)E0. Furthermore assume
that there exists a constant c ∈ R such that

(D0 ⊗̂ρ1 1(x),Dx) + (Dx,D0 ⊗̂ρ1 1(x)) > c · (x, x)

for all x in the domain of D. Then (E0 ⊗̂ρ1 E1, ρ0 ⊗̂ρ1 1,b(D)) represents the Kasparov
product of (E0, ρ0,b(D0)) and (E1, ρ1,b(D1)).
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Definition 1.3.10. We say that an unbounded Kasparov module z represents the Kasparov
product of the unbounded Kasparov modules x and y if z satisfies the assumptions of
theorem 1.3.9.

1.3.4 Clifford algebras and Periodicity

As we work in the category of Real Z/2-graded C∗-algebras we will only introduce
the Real Clifford algebras Clp,q. The standard reference is [LML16, Chapter I].
Let Rp,q be the real Euclidean vector space with basis {e1, · · · , ep, ε1, · · · , εq}. We
define the Clifford algebra Clp,q to be the C-algebra generated by the basis elements
subject to the relations

eiej + ejei = −2δij for 1 6 i, j 6 p,

εiεj + εjεi = 2δij for 1 6 i, j 6 q,

eiεj + εjei = 0 for 1 6 i 6 p and 1 6 j 6 q.

Defining e∗i = −ei and ε∗j = εj and extending this to a C-antilinear antiauto-
morphism turns Clp,q into a ∗-algebra. A Z/2-grading ι on Clp,q is obtained by
setting ι(ei) = −ei and ι(εj) = −εj and extending this to a C-linear automorphism.
The Real structure is defined to be the identity on the generators and then to be
extended to a C-antilinear automorphism. The norm on Clp,q is introduced as
follows: Let Sp,q := Λ∗Rp+q ⊗C be complexified exterior algebra of Rp+q with
its natural inner product, even/odd-grading and Real structure coming from the
complex conjugation. Sp,q is called the canonical Clifford module, cf. [Ebe18, Defi-
nition 4.2]. We obtain an injective ∗-homomorphism c : Clp,q ↪→ End(Sp,q) and
define ‖a‖ := ‖c(a)‖ for a ∈ Clp,q. If p = q then c is an isomorphism. The graded
tensor product Clp,q ⊗̂Clp

′,q ′ of two Clifford algebras is identified with the Clifford
algebra Clp+p

′,q+q ′ by means of the isomorphism induced by v ⊗̂ 1 7→ (v, 0) and
1 ⊗̂ v ′ 7→ (0, v ′) for v ∈ Rp,q and v ′ ∈ Rp

′,q ′ .
Using Clifford algebras one defines the graded KK-groups as follows:

Definition 1.3.11. KKp,q
p ′,q ′(A, B) := KK(A ⊗̂Clp

′,q ′ , B ⊗̂Clp,q)

For a fixed d := (q− p) − (q ′ − p ′) all these groups are isomorphic. See [Kas80,
Theorem 5.4]. Hence we define the higher KK-groups as follows:

Definition 1.3.12. KKp−q(A, B) := KKp−q,0(A, B), if p > q and KKp−q(A, B) :=

KK0,q−p(A, B), if q > p.

Since the Kasparov product is compatible with the homomorphism τD, it also
induces a bilinear pairing # : KKp(A, B0) ×KKq(B0, B) → KKp+q(A, B). Since
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the KK-groups are stable, c.f. [Kas80, Theorem 5.1], and Cl8,0 ∼= Cl0,8 ∼= Cl4,4 ∼=

Mat16(R) we obtain the formal part of the Bott periodicity.

Proposition 1.3.13 ([Kas80], Theorem 5.5). KKp(A, B) ∼= KKp+8(A, B).

1.3.5 KK-equivalence and Bott isomorphism

Let H be an infinite dimensional Real graded separable Hilbert space with scalar
multiplication λ. Let F be a Real odd Fredholm operator on H whose index is equal
to 1. Then e := (H, λ, F) is a Kasparov-(R, R)-module and for every x ∈ KK(A, B)

the following holds:

τA(e)#x = x = x#τB(e)

See [Kas80, Theorem 4.5].

Definition 1.3.14. Let A and B be separable. They are called KK-equivalent, if there
exists x ∈ KK(A, B) and y ∈ KK(B, A) such that

x#y = τA(e) and y#x = τB(e).

The next theorem is called Bott periodicity in [Kas80].

Theorem 1.3.15 ([Kas80], Theorem 5.7). The C∗-algebras C0(R1,0) and Cl1,0 are KK-
equivalent.

The theorem is equivalent to: There exists α ∈ KK(C0(R
1,0), Cl1,0) and β ∈

KK(Cl1,0,C0(R1,0)) such that

α#β = τC0(R1,0)(e) and β#α = τCl1,0(e).

The element α ∈ KK(C0(R), Cl1,0) is given by the triple (L2(R, Cl1,0),µ, b(DR)).
The Hilbert-Cl1,0-module L2(R, Cl1,0) is the completion of C∞c (R, S1,1) and the
action µ of C0(R) on L2(R, Cl1,0) is given by multiplication. The operator DR is
given by DR := e1 · ∂λ. The Kasparov module β is sometimes called the Bott class.
It is given by the tuple (C0(R, Cl0,1), λ, λ(x)(1+ ‖x‖2)− 1

2 ) ∈ KK(R,C0(R, Cl0,1)) ∼=

KK(Cl1,0,C0(R)). The isomorphism is given by τCl1,0 . Kasparov proved that
τCl1,0(β)#α = 1 ∈ KK(R, R) ∼= Z and that α#τCl1,0(β) = [id] ∈ KK(C0(R),C0(R)). See
[Kas80, §5 Theorem 7].
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Bundles and operators

The generalization of the theory of ordinary differential operators to the case of
A-linear differential operators based substantial on the work of Miščenko and
Fomenko in [MF79]. They behave quite similar as ordinary differential operators,
but have to be treated with care. They act on A-bundle, which are introduced in
section 2.1. At the end of this section we define real K-theory of A-bundle in a
similar way one defines real K-theory for vector bundles. In section 2.2 we present
the basic definitions concerning A-linear differential operators. Finally the concept
of a family of operators in introduced. This will be important for the definition of
the index difference.

2.1 Bundles of Hilbert Modules

Definition 2.1.1. Let P be a Hilbert-A-module. A bundle of Hilbert-A-modules over a
locally compact Hausdorff space M is a fiber bundle E → M with fiber P and structure
group AutA(P) the A-linear automorphisms of P.

When P is a finitely generated projective Hilbert-A-module, E is called a bundle
of finitely generated projective Hilbert-A-modules. We will abbreviate the term
bundle of finitely generated projective A-modules by A-bundle. A graded A-bundle is
a fiber bundle E → M with graded fiber P and structure group the even A-linear
automorphisms of P. One defines Real A-bundles similarly.

If the base space M has the structure of a smooth manifold, a smooth structure
on E → M is an atlas of local trivializations such that all transition functions
φ1 ◦ φ−1

0 : U0 ∩ U1 → AutA(P) are smooth. This makes sense since the group
AutA(P) is a Banach Lie group because it is an open subgroup of the C∗-algebra
LinA(P). For a compact smooth manifold M there always exists a unique (up to
isomorphism) smooth structure on an A-bundle, see [Sch05, Theorem 3.14(6)].
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Definition 2.1.2. The space of smooth sections of an A-bundle E over a smooth manifold
M is denoted by Γ∞(M,E).

If it is clear from context which base space we consider, we sometimes omit it in
the notation and simply write Γ∞(E) instead of Γ∞(M,E). With Γ∞c (M,E) we denote
the space of compactly supported smooth sections and with Γ∞0 (M,E) those sections
vanish at infinity. The space of smooth sections Γ∞(E) has the natural structure
of a (right) A-module. Moreover every A-bundle E→M over a smooth manifold
admits a smooth fiberwise inner product with values in A using the A-valued
inner product (·, ·) of the fiber P. Therefore for two sections s0, s1 ∈ Γ∞(M,E) we
obtain a smooth function

(s0, s1) : M→ A , p 7→ (s0, s1)(p) := (s0(p), s1(p))

If M is a Riemannian manifold and s0, s1 ∈ Γ∞c (E), we can integrate the function
(s0, s1) with respect to the volume form vol(M) on M and obtain an A-valued inner
product on Γ∞c (M,E) as follows:

〈s0, s1〉 :=
∫
M

(s0, s1)dvol(M). (2.1)

Endowed with this inner product the space of compactly supported section has
the structure of a pre-Hilbert-A-module.

Definition 2.1.3. We define the Hilbert-A-module L2(M,E) as the completion of the space
of compactly supported smooth sections Γ∞c (M,E) with respect to the norm induced by this
inner product.

2.1.1 Connections

The following can be found in [Sch05, Chapter 4]. LetM×A be the trivial A-bundle
over M. The differential dϕ ∈ Γ∞(T∗M⊗ (M×A)) of ϕ ∈ Γ∞(M×A) = C∞(M, A)

is given locally by dϕ =
∑

dxi ⊗ ∂ϕ
∂xi

.

Definition 2.1.4. Let E → M be a smooth A-bundle over a smooth manifold M. An
A-linear map

∇ : Γ∞(E) −→ Γ∞(T∗M⊗ E)
is called a connection, if ∇(s · ϕ) = s · dϕ +∇(s) · ϕ holds for every s ∈ Γ∞(E) and
ϕ ∈ C∞(M, A).

Lemma 2.1.5 ([Sch05] Lemma 4.12). Assume that V is a smooth finite dimensional
complex vector bundle over M endowed with a bundle metric and let E be a smooth A-
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bundle both equipped with connections ∇ and ∇E, respectively. Their tensor product (over
C) is again an A-bundle with connection

∇⊗ := ∇⊗ 1+ 1⊗∇E

The curvature Ω⊗ of ∇⊗, which is by definition ∇⊗ ◦∇⊗, is equal to

ΩV ⊗ 1+ 1⊗ΩE

where ΩV and ΩE are the curvature of V and E respectively.

Proofs and further properties of A-bundles can also be found in [Kar71] or
[MS77].

2.1.2 KO-theory of A-bundles

Definition 2.1.6. Let M be a compact Hausdorff space and A a Real graded C∗-algebra.
Then KO(M, A) is defined as the Grothendieck group of isomorphism classes of Real graded
A-bundles over M.

The group KO(M, A) can be identified with the real K-theory KO0(C(M, A))

of the Real trivial graded C∗-algebra C(M, A) in degree zero, see [Sch05, Proposi-
tion 3.17]. Using the identification KO0(C(M, A)) ∼= KK(R,C(M, A)) one obtains
that KO(M, A) ∼= KK(R,C(M, A)). With the aid of this isomorphism we define
the higher real K-theory groups by KO−d(M, A) := KK(Cl0,d,C(M, A)). By Bott
periodicity the latter groups are isomorphic to KK(R,C0(M×Rd, A)), which is a
more common description of the groups KO−d(M, A). See again [Sch05, Definition
3.20].

We finish this section with an important example: The Miščenko-Fomenko
line bundle. Let G be a countable discrete group with classifying space BG. The
universal cover EG → BG is a principal G-bundle with contractible total space.
Since G acts on the reduced C∗-algebra C∗rG by unitaries, see 1.1, we define the
Miščenko-Fomenko line bundle

LG := EG×ρ C∗rG→ BG (2.2)

using the Borel construction. The universal Miščenko-Fomenko line bundle is a
bundle of free (rank one) Real trivial graded Hilbert-C∗rG-modules over BG. The
C∗rG-valued inner product is given by the formula (a, b) := a∗b. Since G acts by
unitaries this inner product is invariant under left-multiplication by elements of
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G. When M is a closed manifold with a map ϕ : M → BG the we can pullback
LG → BG along ϕ.

Definition 2.1.7. We define the Miščenko-Fomenko line bundle of the map ϕ by

Lϕ := ϕ∗(LG)→M (2.3)

The bundle Lϕ is a C∗rG-bundle over M defining a class in KO(M,C∗rG) given
by the Kasparov module (Γ∞(M,Lϕ), _ , 0) ∈ KK(R,C(M,C∗rG)). By construction
Lϕ can be equipped with a flat connection.

2.2 A-linear differential operators

Next we will consider differential operators on a A-bundle E over a smooth
Riemannian manifold M of dimension d. For us it suffices to consider only
differential operators of order one. For the general theory of A-linear differential
operators see [MF79].

Definition 2.2.1. Let M be a smooth manifold and E → M a smooth A-bundle. An A-
linear differential operator of order one is an A-linear map D : Γ∞c (M,E)→ Γ∞c (M,E) such
that for every chart x = (x1, . . . , xd) : U → Rd and every local trivialization φ : E|U →
U× P there exist smooth functions a1, . . . ,ad,b : U→ LinA(P) such that the operator is
given with respect to these coordinates by

(Ds)(p) =

d∑
i=1

ai(p)∂xis(p) + b(p)s(p).

Since for our purpose it suffices to consider only A-linear differential operators
of order one let us make the convention that the term A-linear differential operator
will always mean A-linear differential operator of order one. When we consider D
as an operator on the pre-Hilbert-A-module Γ∞c (E) with the inner product 2.1, then
we say that D is formally self-adjoint, if

〈Ds0, s1〉 = 〈s0,Ds1〉 (2.4)

holds for all si ∈ Γ∞c (E). A grading η of E induces a grading η of Γ∞c (E) and D

is called odd, if D anticommutes with the grading, i. e. if Dη + ηD = 0. When
there exists a Real structure on the bundle we say that the operator D is Real if
κ(Ds) = Dκ(s). The symbol σ(D) of D is defined as the map

σ(D) : T∗M⊗ E→ E , σ(D)(p, ξ)(s(p)) := i[D, f]s(p), (2.5)
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where f is a function such that dpf = ξ and s ∈ Γ∞(M,E). This only depends on ξ
and s(p). In particular it does not depend on the specific choice of f. A formally
self-adjoint differential operator whose symbol σ(D) satisfies σ(D)(p, ξ)2 = −‖ξ‖2

for all p ∈ M and ξ ∈ T∗pM is called a Dirac operator. A Dirac operator is a
special case of the larger class of elliptic operators. These are differential operators
whose symbols are invertible for all non-zero cotangent vectors. These are all easy
generalizations of the theory of ordinary differential operators found in [HJ00],
[LML16] or [Roe99].

2.2.1 Differential operators as unbounded A-linear operators

The proof that every ordinary symmetric first order differential operator on a
manifold M is essentially self-adjoint as long as M is complete for D (see 10.2.10 of
[HJ00]) has a generalization to the case of A-linear differential operators. In [Ebe18]
Ebert gave sufficient conditions under which the closure of D : Γ∞c (E) → Γ∞c (E)

defines an unbounded self-adjoint and regular operator D : dom(D) → L2(M,E).
In the case of twisted operators Dirac operators Hanke, Pape and Schick [HPS14]
gave the proof of a similar result due to Vassout. Let us recall the definitions from
[Ebe18]

Definition 2.2.2. A proper smooth function h : M → R bounded from below is called a
coercive function. The pair (M,D) is called complete if there exists a coercive function h
on M such that [D,h] is bounded.

Theorem 2.2.3 ([Ebe18],Theorem 1.14). If (M,D) is complete, then the closure of
D : dom(D)→ L2(M,E) is self-adjoint and regular.

2.2.2 Families of A-linear operators

Now we introduce the concept of families of A-linear differential operators. The
set up is the following:

Let π : M → X be a submersion and E → M a smooth A-bundle on M. Since
M is smooth E carries a fiberwise smooth A-valued inner product (·, ·). The
vertical tangent bundle Tvπ → E of π is by definition the kernel of the differential
dπ : TM → TX. If f : M → R is a smooth function with differential df : TM → R,
then the restriction dvf of df to Tvπ is called the fiberwise differential of f.

By definition a fiberwise Riemannian metric on M is a smooth bundle metric on
Tvπ. In particular a fiberwise Riemannian metric endows each fiber Mx := π−1(x) of
the submersion π with the structure of a smooth Riemannian manifold. We denote
the restriction of E to the submanifold Mx by Ex and the space of smooth sections
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with compact support of the bundle Ex → Mx by Γ∞c (Mx,Ex). Then Γ∞c (Mx,Ex)
becomes a pre-Hilbert-A-module. The A-valued inner product is given by

〈s0, s1〉x :=

∫
Mx

(s0(p), s1(p))dvol(Mx),

cf. eq. (2.1). Let D : Γ∞c (M,E)→ Γ∞c (M,E) be an A-linear differential operator. Then
D defines a family of A-linear differential operators if and only if [D, f ◦ π] = 0 for all
smooth functions f : X→ R. In this case the restriction Ds|Mx

of Ds ∈ Γ∞c (M,E) to
the submanifold Mx only depends on s|Mx

∈ Γ∞(Mx,Ex). Hence for every x ∈ X we
obtain differential operators Dx on Γ∞c (Mx,Ex) and the family (Dx)x∈X determines
D uniquely.

The family of A-linear differential operators is called formally self-adjoint if
Dx is formally self-adjoint for every x ∈ X with respect to the inner product or
equivalently if 〈Ds0, s1〉 = 〈s0,Ds1〉 holds for all si ∈ Γ∞c (M,E). Using the fiberwise
differential of a smooth function f : M → R we can define the fiberwise symbol
σ(D) of the family by σ(D)(dvf) := i[D, f].

The family is called a Dirac family if the fiberwise symbol satisfies σ(D)(dvf)2 =
−‖dvf‖2. Hence a family is a Dirac family if and only if each operator Dx is a Dirac
operator.

18



Chapter 3

Continuous fields

In this chapter we will briefly describe a variation of K-theory based on continuous
fields of Hilbert modules developed in [Ebe18]. The goal is to give another description
of the KK-group KK(Cl0,d,C(X, A)). As an application we show how to assign an
unbounded Kasparov module to a submersion π : M → X, an A-bundle E → M

and an A-linear differential operator D : Γ∞cv(E)→ Γ∞cv(E). We will be very brief and
refer to [Ebe18] for a detailed treatment of the category of continuous fields.

3.1 Continuous Fields

We start with the definition of a continuous field of Banach spaces first considered
by Dixmier and Douady in [DD63]. For the rest of the chapter let X be a compact
Hausdorff space.

Definition 3.1.1. A continuous field (E, Γ) of Banach spaces over X is a family E :=

(Ex)x∈X of Banach spaces over X together with a subspace Γ ⊂
∏
x∈X Ex satisfying

1. Γ is a C(X)-submodule of
∏
x∈X Ex,

2. ∀ξx ∈ Ex ∃s ∈ Γ such that sx = ξx,

3. ∀s ∈ Γ the map x 7→ ‖sx‖ is continuous and

4. If t ∈
∏
x∈X Ex satisfies that for each x ∈ X and for every ε > 0 there exists a

neighborhood U ⊂ X of x and s ∈ Γ such that supy∈U ‖ty − sy‖ 6 ε, then t ∈ Γ .

The submodule Γ is called the space of continuous sections of the continuous field and we
can regard the elements s ∈ Γ as a functions X→

∏
x∈X Ex , x 7→ s(x) := sx.

We will exclusively consider continuous fields of Hilbert modules over X. These
are given by a Banach field (E, Γ) over X together with a compatible Hilbert module
structure on every Ex:
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Definition 3.1.2. A continuous field of Hilbert-A-modules over X is a continuous field of
Banach spaces (E, Γ) over X endowed with an A-valued inner product (·, ·)x and a right
A-module structure µx on each Ex such that:

1. (·, ·)x induces the norm on Ex,

2. (Ex,µx, (·, ·)x) is a Hilbert-A-module,

3. Γ is a right C(X, A)-module with respect to the action given by (s · f)(x) := µx(s(x), f(x))
for f ∈ C(X, A) and s ∈ Γ and

4. for all s, t ∈ Γ the function x 7→ (s(x), t(x))x is in C(X, A).

Morphisms between continuous fields of Hilbert modules are called bounded
operator families. They are defined as follows:

Definition 3.1.3. A bounded operator family T : (E, Γ)→ (E, Γ) is a family T := (Tx)x∈X

of adjointable maps Tx ∈ LinA(Ex) such that

1. the map x 7→ ‖Tx‖ is locally bounded,

2. T(Γ) ⊂ Γ and

3. the family of adjoints T∗ := (T∗x)x∈X satisfies also 1 and 2.

The family is self-adjoint if T = T∗ holds, i. e. if Tx is self-adjoint for every x ∈ X.

The vector space LinX,A(E, Γ) of bounded operator families on (E, Γ) is a ∗-
algebra and equipped with the norm ‖T‖ := supx∈X ‖Tx‖ it becomes a C∗-algebra.

Lemma 3.1.4. The space of continuous sections Γ of a continuous field (E, Γ) of Hilbert-A-
modules over a compact Hausdorff space X is a Hilbert-C(X, A)-module.

Proof. Γ is by definition a right C(X, A)-module with a C(X, A)-valued inner product.
Since X is compact we can define the norm of s ∈ Γ by ‖s‖ := supx∈X ‖s(x)‖. Now it
is only left to show that Γ is complete with respect to this norm. But this follows
from the fourth axiom for continuous fields of Banach spaces.

It is also proven in [Ebe18] that every Hilbert-C(X, A)-module can be realized as
the space of continuous sections of a continuous field of Hilbert-A-modules over a
compact Hausdorff space X. Moreover a bounded operator family T : (E, Γ)→ (E, Γ)
induces a bounded operator, denoted by T , on the Hilbert-C(X, A)-module Γ . In
particular this defines an isomorphism [Ebe18, Lemma 3.21]

LinX,A(E, Γ)
∼=−→ LinC(X,A)(Γ) (3.1)
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between the bounded operator families on the continuous field (E, Γ) and the
adjointable operators on the Hilbert module Γ . In fact the category of continuous
fields of Hilbert-A-modules over X and bounded operator families is equivalent
to the category of Hilbert-C(X, A)-modules and adjointable operators. Using this
equivalence of categories we say that a bounded operator family T ∈ LinX,A(E, Γ) is
compact if and only if the induced operator T ∈ LinC(X,A)(Γ) on the Hilbert-C(X, A)-
module Γ is compact. Similarly a bounded operator family F ∈ LinX,A(E, Γ) is
Fredholm precisely when F ∈ LinC(X,A)(Γ) is invertible modulo compact operators.
A grading on (E, Γ) is given by a family (ηx)x∈X of gradings of the Hilbert modules
Ex such that the direct sum decomposition Γ (0)⊕ Γ (1) of the Hilbert-C(X, A)-module
Γ defines a grading on Γ , where

Γ (i) := {s ∈ Γ | ∀ x ∈ X : ηx(s(x)) = (−1)is(x)}.

One defines a Real structure on (E, Γ) analogously. When (E, Γ) is Real and graded
we require that the grading and the Real structure are compatible in the sense that
they commute. A family T ∈ LinX,A(E, Γ) is odd if T is odd and even if T is even.
Furthermore T is Real if T commutes with the Real structure.

3.2 Application

For the rest of this section let X be a smooth compact connected manifold possibly
with boundary and let π : M → X be a submersion with d-dimensional fibers
endowed with a fiberwise Riemannian metric g. Furthermore let E → M be
a smooth A-bundle over M with fiber P. We will use the same notation as in
section 2.2.2. The space Γ∞c (Mx,Ex) of the compactly supported smooth sections of
the A-bundle Ex →Mx endowed with the inner product defined in eq. (2.1) and
denoted with 〈·, ·〉x is a pre-Hilbert-A-module.

Definition 3.2.1. A section s ∈ Γ∞(M,E) has compact vertical support if the restriction
π|supp(s) : supp(s)→ X of π to the support of s is a proper map.

Therefore the space Γ∞cv(M,E) of smooth sections of the bundle E → M with
compact vertical support is a subset of the direct product

∏
x∈X Γ

∞
c (Mx,Ex). If

s ∈ Γ∞cv(M,E), then sx := s|Mx
∈ Γ∞c (Mx,Ex) denotes its restriction to Mx. We make

the following two simple observations.

Lemma 3.2.2. For every compactly supported section s ∈ Γ∞c (Mx,Ex) there exists a
section t ∈ Γ∞cv(M,E) such that t|Mx

= s.

Proof. By the inverse mapping theorem we can cover M by “box neighborhoods”
Rd ×Rk. On a box neighborhood, π is the projection to the second factor and E
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is trivial. Suppose that s is supported in a box neighborhood. Then s is given by
a function Rd × {x} ⊂ Rd ×Rk → P. Let µ be a bump function on Rk such that
µ(x) = 1 and define t : Rd ×Rk → P by (p,q) 7→ s(p)µ(q). If s is not supported in a
box neighborhood we can cover its support by finitely many open sets such that
these open sets are contained in box neighborhoods. As before we get sections ti
of E. Using a partition of unity we obtain a smooth section t of E with compact
vertical support such that t|Mx

= s.

Lemma 3.2.3. For every s, t ∈ Γ∞cv(M,E) the map x 7→ 〈s, t〉(x) := 〈sx, tx〉x is smooth.

Proof. Because smoothness is a local property we can assume that both s and t have
compact support in a box neighborhood Rd ×Rk. Over a box neighborhood the
bundle E is trivial with fiber P and the volume measure on Mx is given by b(x,y)dx,
with b a smooth function. Since p 7→ (sy(p), ty(p)) is smooth and bounded in norm
from above we can use the dominated convergence theorem to prove that

y 7→ 〈s, t〉(y) =
∫

Rd

(sy, ty)b(x,y)dx.

is a smooth map Rk → P.

Therefore the pair (Γ∞c (Mx,Ex))x∈X, Γ∞cv(M,E)) is called a pre-field of Hilbert
modules over X, cf. [Ebe18]. In loc. cit. Lemma 3.7 it is proven how to complete a
pre-field to obtain a continuous field of Hilbert modules over X. This completion
is unique (up to isomorphism). It is given by the pair ((L2(Mx,Ex))x∈X, Γ). The
Hilbert modules L2(Mx,Ex) are the completions of Γ∞c (Mx,Ex) with respect to
the inner products 〈·, ·〉x. The space Γ of continuous sections is the subspace of
all s ∈

∏
x∈X L

2(Mx,Ex) such that for each x ∈ X and every ε > 0 there exists a
neighborhood U of x and t ∈ Γ∞cv(M,E) such that supy∈U ‖sy− ty‖ 6 ε. In particular
Γ∞cv(M,E) ⊂ Γ .

Definition 3.2.4. L2X(M,E) := ((L2(Mx,Ex))x∈X, Γ) denotes the continuous field of
Hilbert-A-modules over X obtain as the completion of ((Γ∞c (Mx,Ex))x∈X, Γ∞cv(M,E)).

A grading on the bundle E → M induces a gradings on Γ∞c (Mx,Ex) and on
Γ∞cv(M,E) respectively. This is also true for a Real structure. Therefore a Real
graded A-bundle E defines a Real graded continuous field L2X(M,E) over X.

An A-linear differential operator D : Γ∞cv(M,E) → Γ∞cv(M,E) induces a family
of A-linear differential operators over X, cf. section 2.2, i. e. a family (Dx)x∈X of
A-linear differential operators Dx on Γ∞c (Mx,Ex). Therefore the family D induces,
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by definition, cf. [Ebe18, Definition 3.22], a densely defined unbounded operator family

D : dom(D)X −→ L2X(M,E)

with domain dom(D)X := ((Γ∞c (Mx,Ex))x∈X, Γ∞cv(M,E)) on the continuous field
L2X(M,E). The unbounded densely defined operator family is symmetric if the family
of operators is formally self-adjoint, i. e. if each Dx is formally self-adjoint. We will
only consider symmetric operator families. As in the case of unbounded operators
on Hilbert modules one can introduce the graph scalar product on dom(D)X: For
s, t ∈ Γ∞cv(M,E) we define

〈s, t〉G(Dx) := 〈s, t〉x + 〈Dxs,Dxt〉x.

Endowed with the graph scalar product, ((Γ∞c (Mx,Ex))x∈X, Γ∞cv(M,E)) is also field
of pre-Hilbert-A-modules. The closure D of the unbounded operator family D

is by definition the unbounded operator family given by (Dx)x∈X with domain
dom(D)X. The operators Dx : Γ∞c (Mx,Ex) → L2(Mx,Ex) are the closures of the
densely defined unbounded symmetric operators Dx on the Hilbert-A-modules
L2(Mx,Ex).

Definition 3.2.5. The closed densely defined symmetric unbounded operator family D is
called self-adjoint and regular if the individual operators Dx are self-adjoint and regular.

Remark. Note that it is not always the case that a property of an operator family
D = (Dx)x∈X is determined by the properties of the individual operators Dx. For
example a family K = (Kx)x∈X of compact operators Kx does not have to be a
compact operator family.

However to prove self-adjointness and regularity of the closed densely defined
symmetric unbounded operator family D = (Dx)x∈X it suffices to prove this for
every operator Dx. This will be ensured by the existence of a fiberwise coercive
function h, i. e. a smooth function h : M → R bounded from below such that the
map M → X×R , p 7→ (π(p),h(p)) is proper and the commutator [D,h] is locally
bounded in norm.

Definition 3.2.6. We say that (M,D) is fiberwise complete if there exists a fiberwise
coercive function h : M→ R.

As long as X is compact the boundedness of the commutator is no restriction
at all. When h is a fiberwise coercive function then (Mx,Dx) is complete, cf.
definition 2.2.2. Therefore the closure of each Dx is self-adjoint and regular by
theorem 2.2.3. This proves
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Lemma 3.2.7 ([Ebe18] 3.28). Suppose that (M,D) is fiberwise complete. Then the closure
of the unbounded operator family D : dom(D)X → L2X(M,E) is self-adjoint and regular.

For a self-adjoint and regular operator family D = (Dx)x∈X there exists a func-
tional calculus by applying the functional calculus for self-adjoint and regular oper-
ators on Hilbert modules fiberwise, i. e. for f ∈ C(R) we define f(D) := (f(Dx))x∈X.
Since ‖f(Dx)‖ 6 ‖f‖ the operator family f(D) is bounded and induces a bounded
operator on the Hilbert-C(X, A)-module Γ . We will adapt the notation from the
ordinary functional calculus, e.g. (D2 + 1)−1 denotes the bounded operator family
r(D) := (r(Dx))x∈X with r(λ) := (λ2 + 1)−1.

We already mentioned that compactness of a bounded operator family is not
determined by the individual operators, which makes it difficult to prove that a
given family is compact. Yet sometimes there are additional assumptions about
the operator D inducing the operator family D which ensure that f(D) is compact.
This is the case when D : Γ∞cv(M,E)→ Γ∞cv(M,E) is elliptic and the induced operator
family D is bounded from below by a fiberwise coercive function:

Definition 3.2.8. A fiberwise coercive function h : M → R is a lower bound for the
operator family D = (Dx)x∈X on L2X(M,E), if

〈Ds, t〉x > 〈hs, t〉x (3.2)

holds for every x ∈ X and all s, t ∈ Γ∞cv(M,E). In that case we will write D > h.

Theorem 3.2.9 ([Ebe18], Theorem 4.40). Let D : dom(D)X → L2X(M,E) be an elliptic
self-adjoint and regular (unbounded) operator family and h a fiberwise coercive function
such that D2 > h. Then the bounded operator family (D2 + 1)−1 is compact.

The next theorem summarizes what we achieved so far.

Theorem 3.2.10. Let π : M→ X and E→M be as above. Suppose that E is endowed with
a Real structure and a grading and that the A-linear differential operator D : Γ∞cv(M,E)→
Γ∞cv(M,E) is elliptic. Furthermore let h : M→ R be a fiberwise coercive function such that
D2 > h. Then we obtain an unbounded Kasparov-(R,C(X, A))-module (Γ , λ·,D).

Proof. An unbounded Kasparov-(R,C(X, A))-module is given by definition by a
Real graded Hilbert-C(X, A)-module Γ , a Real graded ∗-homomorphism _ : R →
LinC(X,A)(Γ) and a Real odd self-adjoint and regular operator with compact re-
solvent. The Hilbert-C(X, A)-module Γ is the space of continuous sections of
the continuous field L2X(M,E) obtained from ((Γ∞c (Mx,Ex))x∈X, Γ∞cv(M,E)). The
∗-homomorphism λ· is given by scalar multiplication. The elliptic A-linear dif-
ferential operator D induces a family of operator (Dx)x∈X over X and hence an

24



3.2. Application

unbounded operator family D with domain domX(D). Since X is compact [D,h]
is bounded in norm and therefore the closure D of D is self-adjoint and regular.
By assumption D2 > h. Hence theorem 3.2.9 implies that the resolvent of D is
compact. Therefore the induced operator D on the Hilbert-C(X, A)-module Γ is
self-adjoint and regular and has compact resolvent. Since the operator is linear it
commutes with the scalar multiplication.

3.2.1 Extension by zero

To define the index difference of Hitchin we have to consider a submersion π : M→
R × X over the non-compact manifold R × X. Let E → M and D : Γ∞cv(M,E) →
Γ∞cv(M,E) as above. We obtain a continuous field L2R×X(M,E) := (E, Γ) of Hilbert-
A-modules over R× X together with an unbounded operator family D given by
(Dλ,x)(λ,x)∈R×X. However the space Γ of continuous sections of L2R×X(M,E) is not
a Hilbert module since ‖s‖ := sup(λ,x)∈R×X ‖sλ,x‖ can be infinite. We claim that the
subspace Γ0 ⊂ Γ of all elements vanishing at infinity is a Hilbert-C0(R×X)-module.
This can be proven as follows: Let (R × X)+ := (R × X) ∪ {∞} be the one-point
compactification of R×X. Extending the continuous field L2R×X(M,E) by zero at
the point at infinity defines a continuous field (E+, Γ+) of Hilbert-A-modules over
(R×X)+. It is given by the following family over (R×X)+

Hλ,x :=

L2(Mλ,x,Eλ,x), (λ, x) ∈ R×X,

0, else.

The space of continuous sections Γ+ can be canonical identified with Γ0. Therefore
Γ0 is a Hilbert-C0(R×X, A)-module. In a similar way we can extend the unbounded
operator family D to a unbounded operator family on (E+, Γ0): A fiberwise coercive
function h : M→ R such that [D,h] is bounded and D2 > h implies that the closure
of D on L2R×X(M,E) is self-adjoint and regular with compact resolvent. Therefore
the operator family D0 on (E+, Γ0) defined by

D0 :=

Dλ,x : Γ
∞
c (Mx,Ex)→ L2(Mx,Ex), (λ, x) ∈ R×X,

0, else

is self-adjoint and regular. Since ‖(D2λ,x + 1)
−1‖ → 0 as (x, λ) → ∞, the operator

family induced by the resolvent of D on (E+, Γ0) is compact by an application of
[Ebe18, Lemma 4.8]. Hence the triple (Γ0, λ·,D0) defines an unbounded Kasparov-
(R,C0(R×X, A))-module.
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Two Versions of the Index
Difference

In this chapter we will define both versions of the index difference. In section 4.1
we will recall some basic concepts from differential geometry and index theory. A
standard reference is [LML16]. In section 4.2 the general setup is introduced. In
the last two sections the unbounded Kasparov modules inddiffH and inddiffGL are
constructed using the methods from chapter 3.

4.1 Preliminaries

Let (M,g) be a smooth connected Riemannian manifold. By the fundamental
theorem of Riemannian geometry M possesses an unique symmetric connection
∇ which is compatible with the metric g. It is called Levi-Civita connection, [Roe99,
Theorem 1.9]. There are several curvature operators uniquely determined by the
Levi-Civita connection. Since ∇ is uniquely determined by the metric, the curvature
is also uniquely determined by the metric. We will not go into detail and refer
again to [Roe99, Chapter 1] for a comprehensive overview. The simplest curvature
form of a Riemannian metric g is the scalar curvature.

Definition 4.1.1. We define the scalar curvature scalg(x) of g ∈ Γ∞(M,Sym2(TM)) at
x ∈M as the double trace of the Riemannian curvature tensor R evaluated at x. We say
that g has positive scalar curvature, if scalg(x) > 0 holds for every x ∈M.

If M is compact, then the space R+(M) of all Riemannian metrics on M whose
scalar curvatures are positive is an open subspace of the Fréchet space R(M) of all
Riemannian metrics on M. When R+(M) is non-empty we say that M has psc.

A spin structure on a real orientable Riemannian vector bundle V →M of rank
d is a lift of its classifying map τ : M→ BO(d) along the covering map BSpin(d)→
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BO(d) to the 2-connected cover BSpin(d) of BO(d). A spin structure is determined
by a Spin(d)-principal bundle P → M and an isometry u : P ×Spin(d) Rd

∼=−→ V .
Given a spin structure on V there exists the spinor bundle /S(V) → M of V . The
spinor bundle is a Real graded vector bundle with a bundle metric, such that the
fibers /S(V)x are Cl(Vx) ⊗̂Cl0,d-modules. The (pointwise-)action of Cl(Vx) on Vx is
referred to as Clifford multiplication. It is denoted by c(vx). Clifford multiplication
is skew-adjoint with respect to the bundle metric. The action of Cl0,d on Vx defines
a graded homomorphism ρ : Cl0,d → End(V). The images ρ(εi) of the generators
ε1, · · · , εd of Cl0,d are called multigrading operators and V is called a d-multigraded
vector bundle, cf. [HJ00]. The spinor bundle /S(V) can be constructed by replacing
the fiber of P×Spin(d) Rd by the Hilbert space Sd,d ,compare 1.3.4, using the action
of Spin(d) on Sd,d given by the identification End(Sd,d) ∼= Cld,d.

An orientable smooth Riemannian manifold Md is called a spin manifold pro-
vided that there exists a spin structure on its tangent bundle TM. The corresponding
spinor bundle over M is denoted by /S(M). A standard reference is [LML16]. From
now on M will always be a connected closed spin manifold.

The Levi-Civita connection ∇ on M induces a connection /∇ on /S(M), called
spinor connection. It is an even and Cl0,d-linear first order differential operator
satisfying

/∇X(c(Y)s) = c(∇X(Y))s+ c(Y) /∇X(s) (4.1)

for all vector fields X, Y ∈ Γ∞(TM) and sections s ∈ Γ∞( /S(M)). Using the Clif-
ford multiplication and the spinor connection we define the following first order
differential operator /D on Γ∞( /S(M)):

Definition 4.1.2. The operator /D : Γ∞( /S(M))→ Γ∞( /S(M)) on (M,g) is defined as the
composition

Γ∞( /S(M))
/∇−→ Γ∞(TM⊗ /S(M))

c−→ Γ∞( /S(M)).

/D is called the Cl0,d-linear Atiyah-Singer operator in [LML16]. As it is also a Dirac
operator, we will call /D the Spin Dirac operator. If {e1, · · · , ed} is a local orthonormal
frame of TM then /D is locally given by

d∑
i=1

c(ei) · /∇ei

The next lemma summarizes the properties of the operator /D proven in [LML16,
Chapter II].
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Lemma 4.1.3. The operator /D is a Real odd formally self-adjoint Cl0,d-antilinear operator
with symbol σ( /D)(x, ξ) = c(i · ξx). In particular /D is elliptic.

Because /D is elliptic and M is compact, it is Fredholm, i. e. has finite dimensional
kernel and cokernel. This is a consequence of the Sobolev embedding theorem and
the Rellich lemma. Moreover /D is of the form

/D =

(
0 /D1

/D0 0

)
(4.2)

with respect to the grading on /S(M). Since /D is formally self-adjoint /D∗1 = /D0.
The kernel of /D0 : Γ∞( /S(M)) → Γ∞( /S(M)) is a finite dimensional Cld−1,0-module.
Therefore it defines an element [ker /D0] in the real K-theory KO−d(pt) ∼= KOd(R) ∼=

KK(Cl0,d, R) of a point in degree −d due to the work of Atiyah, Bott and Shapiro
[ABS64].

Definition 4.1.4. We define the index of /D by ind( /D) := [ker /D0] ∈ KO−d(pt).

The following theorem proven by Lichnerowicz establishes the link between
positive scalar curvature and topology.

Theorem 4.1.5 ([LML16] Theorem II.8.8). Let M be a spin manifold with spinor bundle
/S(M) and induced connection /∇. Let /D be the Spin Dirac operator. Then

/D
2
= /∇∗ /∇+

1

4
scalg .

When M has psc, Theorem 4.1.5 implies that /D is invertible and therefore
ind( /D) = 0.

In the case M is not simply connected there exists a refinement of ind( /D).
This is based on the theory of Hilbert-A-module bundles and A-linear differential
operators introduced by Miščenko-Fomenko [MF79] and Rosenberg [Ros86]. See
also chapter 2 for an overview. This done as follows:

Let G be a countable discrete group and suppose that M is endowed with
a map ϕ : M → BG. The Miščenko-Fomenko line bundle Lϕ is a Real bundle
of Hilbert-C∗rG-modules over M. See definition 2.1.7. It is trivially graded and
carries a flat connection ∇ϕ. The tensor product /S(M)⊗Lϕ → M of the spinor
bundle of M and the Miščenko-Fomenko line bundle is a Real graded bundle of
Hilbert-C∗rG-modules. It has a Clifford multiplication and is d-multigraded.

Definition 4.1.6. The operator /Dϕ on Γ∞( /S(M) ⊗̂Lϕ) is defined as the composition

Γ∞( /S(M)⊗Lϕ)
/∇⊗1+1⊗∇ϕ−−−−−−−−→ Γ∞(TM⊗ /S(M)⊗Lϕ)

c−→ Γ∞( /S(M)⊗Lϕ)
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of the product connection and the Clifford multiplication. The operator is called the twisted
(Spin) Dirac operator.

The operator /Dϕ is an elliptic C∗rG-linear first order differential operator,
which is formally self-adjoint and anticommutes with the multigrading oper-
ators. Moreover Miščenko-Fomenko proved that its closure is C∗rG-Fredholm,
compare [MF79]. Therefore one can define an index [(M, /Dϕ)] ∈ KO−d(M,C∗rG) :=
KK(Cl0,d,C(M,C∗rG)) ∼= KOd(C(M,C∗rG)). See again loc. cit. §1. Since M is com-
pact the map c : M → {pt} is proper and hence induces a map KO−d(M,C∗rG) →
KOd(C

∗
rG).

Definition 4.1.7. The Rosenberg index of /Dϕ is defined by αRr (M) := c∗([(M, /Dϕ)] ∈
KOd(C

∗
rG).

Because the bundle Lϕ carries a flat connection, i. e. has zero curvature, theorem
4.1.5 is still true:

/D
2
ϕ = ( /∇∗ /∇+

1

4
scalg)⊗ 1 (4.3)

This follows from lemma 2.1.5 since ΩLϕ = 0. Therefore psc also implies that
αRr (M) is zero.
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4.2. The Index Difference

4.2 The Index Difference

The index difference is an invariant assigned to a pair or a family of psc metrics on
a given Riemannian manifold M. It takes values in KK(Cl0,d,C0(R× X,C∗rG)) ∼=

KK(Cl0,d+1,C(X,C∗rG)).
Throughout this section we will fix a closed connected d-dimensional Rieman-

nian spin manifold M, a map ϕ from M to the classifying space BG of a discrete
countable group G, and a compact smooth manifold X possibly with boundary,
which one should think of as a parameter space. Furthermore we make the assump-
tion that the space R+(M) of Riemannian metrics with positive scalar curvature is
non-empty. Let G : X −→ R+(M)×R+(M) , x 7→ (g0(x),g1(x)) be a smooth map.

Definition 4.2.1. Then we define a family (gλ(x))(λ,x)∈R×X of Riemannian metrics on M
by

gλ(x) :=
χ(λ) + 1

2
g1(x) −

χ(λ) − 1

2
g0(x), (4.4)

where χ : R → [−1, 1] is an arbitrary normalization function, i. e. a smooth, odd function
such that χ(λ) = 1, if λ > 1 and χ(λ) = −1, if λ 6 −1.

This family can be understood as a smooth map

GHχ : R×X −→ R(M) , (λ, x) 7→ gλ(x) (4.5)

from R×X to the space of all Riemannian metrics on M, such that gλ(x) ∈ R+(M)

for |λ| > 1. It is also possible to define a map

GGLχ : X→ R(M×R) , x 7→ gλ(x) + dλ
2 (4.6)

and obtain a family of Riemannian metrics on M×R.

Remark. Neither of the definitions of the Index difference will depend on the special
choice of the normalization function χ. In fact we could choose an arbitrary smooth
function χ such that χ(λ) = −1 for λ� −1 and χ(λ) = 1 for λ� 1 to define GHχ as
well as GGLχ . Moreover both definitions will only depend on the homotopy class of
the smooth map G .
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4.2.1 Hitchin’s Version

Associated to the map GHχ , i. e. to the family (gλ(x))(λ,x)∈R×X of Riemannian
metrics on the closed manifold M, there is a family D := ( /Dλ,x)(λ,x)∈R×X of
twisted Spin Dirac operators and a family E := (L2( /S(M) ⊗̂ Lϕ))(λ,x)∈R×X of
Hilbert modules. The Index difference of Hitchin assigns to (the homotopy
class of) the smooth map G : X→ R+(M)×R+(M) an unbounded Kasparov mod-
ule inddiffHG := (Γ0, ρ,D) ∈ Ψ(Cl0,d,C0(R × X,C∗rG)). The Hilbert-C0(R × X,C∗rG)-
module Γ0 will be determined by the family E of Hilbert-C∗rG-modules over R×X
and the operator D will be determined by the family D of twisted Dirac operators.

Let π : M×R × X → R × X be the trivial M-bundle. It is a submersion with
d-dimensional closed fiber M. Let Tvπ := kerdπ = TM×R × X → M×R × X be
the vertical tangent bundle of π. The smooth map GHχ endows Tvπ with a bundle
metric, such that the induced Riemannian metric on each fiber M(λ, x) := π−1(λ, x)
is given by gλ(x).

The bundle Tvπ → M×R × X has a spin structure determined by the spin
structure on M. The associated spinor bundle of Tvπ is denoted by /S(π) :=

/S(Tvπ)→M×R×X. Its restriction to M(λ, x) is isomorphic to the spinor bundle
/S(λ, x)→M(λ, x), i. e.

/S(π)|M×{λ}×{x} /S(λ, x)

M× {λ}× {x} M(λ, x)

∼=

In particular the Clifford-multiplication of Cl((Tvπ)(p,λ,x)) on /S(π)(p,λ,x) agrees
with the Clifford multiplication of Cl(TpM(λ, x)) on /S(λ, x)p. Moreover the re-
striction of the multigrading operators of /S(π) to /S(π)|M(λ,x) agree with the
multigrading operators of /S(λ, x).

We can pullback the Miščenko-Fomenko line bundle LG := EG×ρ C∗rG→ BG
along ϕ : M → BG and the projection prM : M×R× X →M and obtain a bundle
L := Lϕ◦prM →M×R×X of finitely generated and free Hilbert-C∗rG-modules over
M×R×X.

Definition 4.2.2. We define the bundle Λ(π)→M×R×X by Λ(π) := /S(π) ⊗̂L.

The bundle Λ(π) is a smooth C∗rG-bundle. Moreover it is endowed with a Real
structure and a grading. The grading is given by the decomposition

Λ(π) := ( /S(π)(0) ⊗L)⊕ ( /S(π)(1) ⊗L). (4.7)
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The Real structure is given by the tensor product of the Real structures of the
bundles /S(π) and L. Furthermore the Clifford action of Cl0,d on /S(π) induces a
Clifford action of Cl0,d on Λ(π). We denote the restriction of Λ(π) to M(λ, x) by
Λ(λ, x). It is clear that Λ(λ, x) ∼= /S(λ, x) ⊗̂Lϕ.

Definition 4.2.3. The operator /D : Γ∞cv(M×R×X,Λ(π))→ Γ∞cv(M×R×X,Λ(π)) is de-
fined by the family ( /Dλ,x)(λ,x)∈R×X of the twisted Spin Dirac operators /Dλ,x : Γ

∞(Λ(λ, x))→
Γ∞(Λ(λ, x)) on Λ(λ, x).

The operator /D is a C∗rG-linear formally self-adjoint elliptic differential operator.
It is Real odd and anticommutes with the multigrading operators, i. e. with the
Clifford action.

Lemma 4.2.4. If |λ| > 1, then /Dλ,x is invertible.

Proof. This follows from eq. (4.3) since scal(gλ(x)) > 0, if |λ| > 1.

Hence we assigned to (M,ϕ, G )

• a submersion π : M×R×X→ R×X with closed d-dimensional fiber M and
fiberwise Riemannian metric,

• a Real graded C∗rG-bundle Λ(π)→M×R×X with an action ρ of Cl0,d and

• a C∗rG-linear Real graded formally self-adjoint elliptic differential operator /D
acting on Γ∞cv(Λ(π)) which anticommutes with ρ.

Using the result of section 3.2 we get a continuous field L2R×X(M×R×X,Λ(π)) of
Real graded Hilbert-C∗rG-modules over R×X. The operator /D defines a symmetric
unbounded operator family also denoted by /D on L2R×X(M×R × X,Λ(π)) with
domain

dom( /D)R×X := ((Γ∞(Λ(λ, x)))(λ,x)∈R×X, Γ∞cv(M×R×X,Λ(π))).

Lemma 4.2.5. The closure of the symmetric unbounded densely defined operator family /D

is a self-adjoint and regular family on L2R×X(M×R×X,Λ(π)).

Proof. We have to show that the closure of every operator /Dλ,x is self-adjoint and
regular. However this is clear, since M(λ, x) is closed.

By abuse of notation we will denote the closure of the family by /D. The existence
of a fiberwise coercive function f : M×R×X→ R such that /D2 > f would ensure
that /D has compact resolvent. Moreover the resolvent of the induced operator /D0
on the Hilbert-C0(R× X,C∗rG)-module Γ0 would also be compact. Therefore the
triple (Γ0, ρ, /D0) would be an unbounded Kasparov-(Cl0,d,C0(R×X,C∗rG))-module.

33



Chapter 4

Figure 4.1: Graph of the function h

Let h : M×R×X→ R be a smooth approximation of the function given by

(p, λ, x) 7→

1, if |λ| 6 1,

(λ2 + 1)
1
4 , if |λ| > 1.

Then h is proper and bounded from below. Since /D is a family of linear
operators over R×X the next lemma is rather obvious.

Lemma 4.2.6. h /D = /Dh

Proof. This follows since /D = ( /Dλ,x)(λ,x)∈R×X is a family over R × X and hλ,x :=

h|M(λ,x) : M(λ, x)→ R is constant.

The family h /Dh := (hλ,x /Dλ,xhλ,x)(λ,x)∈R×X induces an unbounded family h /Dh
on L2R×X(M ×R × X,Λ(π)) with dom(h /Dh)R×X = dom( /D)R×X. Moreover this
family is symmetric and its closure, also denoted by h /Dh, is self-adjoint and
regular. Let m(x) be the minimum of the smooth function

scalx : M× [−1, 1]→ R , (p, λ) 7→ scalgλ(x)(p).

Define a smooth function fx : M×R× {x} such that

fx(p, λ) =

14m(x), if |λ| 6 1,

ln(|λ|), if |λ|� 1.
(4.8)

The function f : M×R×X→ R, (p, λ, x) 7→ fx(p, λ) is smooth, fiberwise proper and
bounded from below (since X is compact). Moreover f commutes with h /Dh since
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fλ,x := f|M(λ,x) is constant. Therefore f is a fiberwise coercive function.

Lemma 4.2.7. The coercive function f satisfies (h /Dh)2 > f.

Proof. We have to show that for all (λ, x) ∈ R×X and every s ∈ dom( /D
2
)R×X

〈(h /Dh)2s, s〉λ,x > 〈fs, s〉λ,x

holds. Since (h /Dh)2 = h /Dh2 /Dh = h4 /D
2 we obtain that

〈(h /Dh)2s, s〉λ,x
Def.
= 〈h4 /D2λ,xsλ,x, sλ,x〉λ,x

4.3
= 〈h4( /∇∗ /∇+

1

4
scalλ,x) ⊗̂ 1(sλ,x), sλ,x〉λ,x

>〈h4 1
4

scalλ,x sλ,x, sλ,x〉λ,x.

If |λ| > 1 the scalar curvature ofM(λ, x) is positive and hence (λ2+1) scalλ,x > ln(|λ|)

for |λ|� 1. If |λ| 6 1 then 1
4 scalλ,x >

1
4m(x). It follows that

〈h4 1
4

scalλ,x sλ,x, sλ,x〉λ,x > 〈fλ,xsλ,x, sλ,x〉λ,x

for all (λ, x) ∈ R×X possibly after multiplying fx by a constant kx < 1 depending
smoothly on x to ensure that (λ2 + 1)scalλ,x > ln(|λ|) holds for all |λ| > 1. Note
that this will only be necessary, if 0 < scalλ,x < 1 and in this case kx is equal to
scalλ,x.

Now we can apply theorem 3.2.9 to prove

Corollary 4.2.8. The bounded operator family ((h /Dh)2 + 1)−1 is a compact family.

Now we can prove

Theorem 4.2.9. The triple (Γ0, ρ,h /Dh) an unbounded Kasparov-(Cl0,d,C0(R×X,C∗rG))-
module.

Proof. Γ0 is a Real graded Hilbert-C0(R × X,C∗rG)-module. The action ρ of Cl0,d

on Λ(π) defines a Real graded ∗-homomorphism Cl0,d → LinC0(R×X,C∗rG)(Γ0). The
operator h /Dh induces a Real odd C∗rG-linear self-adjoint and regular operator
family on L2R×X(M×R × X,Λ(π)). By the previous corollary h /Dh has compact
resolvent. The induced operator on Γ0 is also denoted by h /Dh. It is a Real odd
C∗rG-linear self-adjoint and regular operator with compact resolvent by the results
of section 3.2. Therefore it is only left to show that the set of all a ∈ Cl0,d such
that {h /Dh, ρ(a)} is densely defined and extend to a bounded operator is dense.
Since h /Dh anticommutes with the Clifford action of Cl0,d the graded commutator
{h /Dh, ρ(a)} is zero for every a ∈ Cl0,d.
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Definition 4.2.10. Let (M,ϕ, G ) as above. Then we define inddiffHG := [(Γ0, ρ,h /Dh)].

Lemma 4.2.11. The definition inddiffHG only depends on the homotopy class of the smooth
map G .

Proof. Let G ′ : X → R+(M)× R+(M) be a smooth map homotopic to G . We can
choose the homotopy H to be a smooth map H : X× I → R+(M)×R+(M). We
obtain an unbounded Kasparov module h in Ψ(Cl0,d,C(I,C0(R×X,C∗rG))) exactly
in the same way as before. It follows that b(h) is a homotopy between b(inddiffHG )

and b(inddiffHG ′).
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4.2.2 Gromov and Lawson’s Version

The construction of the index difference of Gromov and Lawson is similar to the
construction of the index difference of Hitchin in the previous section. However
instead of the submersion π we will consider the trivial M×R-bundle Π : M×R×
X → X. Using the smooth map GGLX we define a bundle metric on the vertical
tangent bundle TvΠ = T(M×R)×X→M×R×X. The induced Riemannian metric
on each fiber Wx := Π−1(x) is given by gx := gλ(x) + dλ

2. The spinor bundle of
TvΠ is denoted by /S(Π)→M×R×X. Adapting the constructions of the previous
section we make the following two definitions:

Definition 4.2.12. The bundle Λ(Π)→M×R×X is defined by Λ(Π) := /S(Π) ⊗̂L.

Definition 4.2.13. The operator /D: Γ∞cv(M×R×X,Λ(Π)) → Γ∞cv(M×R×X,Λ(Π)) is
defined by the family ( /Dx)x∈X of the twisted Dirac operators /Dx : Γ∞c (Λ(x))→ Γ∞c (Λ(x))

on Λ(x).

This can be summarized as before: We assigned to (M,ϕ, G )

• a submersion Π : M×R× X → X with (d+ 1)-dimensional fiber M×R and
fiberwise Riemannian metric,

• a Real graded C∗rG-bundle Λ(Π) → M×R × X with an action ρ of Cl0,d+1

and

• a C∗rG-linear Real graded formally self-adjoint elliptic differential operator /D
acting on Γ∞cv(Λ(Π)) which anticommutes with ρ.

Using the result of section 3.2 we obtain a continuous field L2X(M×R× X,Λ(Π))
of Real graded Hilbert-C∗rG-modules over the compact manifold X. The operator
/D defines a symmetric unbounded operator family also denoted by /D on L2X(M×
R×X,Λ(Π)) with domain

dom( /D)X := (Γ∞c (Λ(x)), Γ∞cv(M×R×X,Λ(Π))).

Since X is compact the space Γ of continuous sections of L2X(M×R × X,Λ(Π)) is
a Hilbert-C(X,C∗rG)-module. Let h, f : M×R× X → R be as before. To obtain an
unbounded Kasparov-(Cl0,d+1,C(X,C∗rG))-module we follow the same strategy as
we did before and consider the operator induced by h/Dh.

Lemma 4.2.14. The commutator [h/Dh, f] of the family h/Dh and the coercive function f is
bounded in X.
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Proof. Let f : M×R×X→ R be as above. Then

[h/Dh, f] = h(hf /D+ [ /D,hf]) − fh(h/D+ [ /D,h]).

Since the commutator of a Dirac operator with any smooth function is given by
Clifford multiplication with the gradient of the function we get

[h/Dh, f] = h2f /D+ hc(grad(hf)) − fh2 /D− fhc(grad(h)) = h2c(grad(f)).

Let hx be the restriction of h to Wx. Similarly denote the restriction of f to Wx by
fx. Then

‖[h/Dh, f]x‖ = ‖h2xc(grad(fx))‖ 6 sup
|λ|>1

‖
√
λ2 + 1

λ
‖ <∞,

because h2(p, λ) = (λ2 + 1)
1
2 and grad(f) 6 1

λ . Therefore [h/Dh, f] is bounded in
norm.

Lemma 4.2.15. The closure of h/Dh : dom( /D)X → L2X(M×R× X,Λ(Π)) is self-adjoint
and regular.

Proof. Since [h/Dh, f] is bounded it is locally bounded. It follows that (M×R ×
X,h/Dh) is fiberwise complete. Therefore the closure of (h/Dh)x is self-adjoint and
regular for every x ∈ X by theorem 2.2.3.

By abuse of notation h/Dh will denote the closure of h/Dh.

Lemma 4.2.16. The coercive function f satisfies (h/Dh)2 > f.

Proof. We have to show that for all x ∈ X and every s ∈ domX( /D
2
)

〈(h/Dh)2s, s〉x > 〈fs, s〉x

holds. We compute

〈(h/Dh)2s, s〉x =

∫
Wx

((h/Dh)2s, s)dvol(x) =
∫
Wx

(h/Dhs,h/Dhs)dvol(x)

=

∫
Wx

h2( /Dhs, /Dhs)dvol(x) =
∫
Wx

h2( /D
2
hs,hs)dvol(x)

=

∫
Wx

h2(( /∇∗ /∇+
1

4
scal(gλ(x)) ⊗̂ 1)(hs),hs)dvol(x)

>
∫
Wx

h2(
1

4
scal(gλ(x))hs,hs)dvol(x)
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=

∫
Wx

1

4
scal(gλ(x))(h4s, s)dvol(x) >

∫
Wx

(fs, s)dvol(x)

=〈fs, s〉x.

In the first inequality we used that ( /∇∗ /∇ ⊗̂ 1(s), s) = ( /∇ ⊗̂ 1(s), /∇ ⊗̂ 1(s)) > 0. The
second inequality follows since the scalar curvature is positive outside M× [−1, 1]×
{x} and on M× [−1, 1]× {x} bounded from below by f.

Using theorem 3.2.9 we obtain

Corollary 4.2.17. The bounded operator family ((h/Dh)2 + 1)−1 is a compact family.

Therefore we can prove

Theorem 4.2.18. The triple (Γ , ρ,h/Dh) is an unbounded Kasparov-(Cl0,d+1,C(X,C∗rG))-
module.

Proof. The space of continuous sections Γ of the continuous field L2X(M ×R ×
X,Λ(Π)) over the compact space X is a Hilbert-C(X,C∗rG)-module. The Real struc-
ture and the grading of Λ(Π) induce a Real structure and a grading on Γ . The
closure of the Real odd unbounded and densely defined operator family h/Dh
defines a Real odd self-adjoint and regular operator h/Dh ∈ LinC(X,C∗rG)(Γ). The
Clifford action ρ on Λ(Π) given by the multigrading operators induces a Real
graded ∗-homomorphism Cl0,d+1 → LinC(X,C∗rG)(Γ) and the operator anticom-
mutes with this action. By 4.2.17 the resolvent of h/Dh is compact. Hence the triple
(Γ , ρ,h/Dh) is an unbounded Kasparov module.

Definition 4.2.19. Let (M,ϕ, G ) as above. Then we define inddiffGLG := [(Γ , ρ,h/Dh)].

Remark. This definition also only depends on the homotopy class of the map G .
The proof is the same as in the case of inddiffHG .
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The spectral flow theorem for
families of twisted Dirac operators

We already put some effort into constructing KK-cycles representing the index
difference of either Hitchin or Gromov and Lawson. Now we will show that they
are mapped to each other under the Bott isomorphism in KK-theory. The next
theorem is called the spectral flow theorem for families of twisted Dirac operators.

Theorem 5.0.1. Let X be a compact smooth manifold and Md a closed Riemannian
spin manifold endowed with a map ϕ : M → BG. Suppose that R+(M) 6= ∅ and let
G : X → R+(M)× R+(M) be smooth. Let inddiffHG and inddiffGLG be the unbounded
Kasparov modules constructed from (M,ϕ, G ). Then

bott([b(inddiffGLG )]) = [b(inddiffHG )], (5.1)

where bott : KK(Cl0,d+1,C(X,C∗rG))
∼=−→ KK(Cl0,d,C0(R×X,C∗rG)) is the Bott map.

In KK-theory the Bott isomorphism is given by the Kasparov product with the
Bott element β and its inverse is given by the Kasparov product with the element
α. Hence eq. (5.1) is equivalent to

τCl1,0(b(inddiffGLG ))#τC(X,C∗rG)(β) = b(inddiffHG ). (5.2)

Therefore to prove theorem 5.0.1 it is sufficient to show that

b(inddiffGLG ) = τCl0,1(b(inddiffHG ))#τC(X,C∗rG)(α). (5.3)

This will be done in three steps: We will first construct an unbounded Kasparov
module z ′ ∈ Ψ(Cl0,d+1,C(X,C∗rG)) in section 5.1. Afterwards we will prove in
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section 5.2 that

b(z ′) = τCl0,1(b(inddiffHG ))#τC(X,C∗rG)(α). (5.4)

using theorem 1.3.9. Finally we will show that [b(z ′)] = [b(inddiffGLG )] by construc-
tion an homotopy H ∈ KK(Cl0,d+1, IC(X,C∗rG)).

5.1 An approximation of inddiffGL

Consider the unbounded Kasparov module x ∈ Ψ(Cl0,d+1,C0(R×X,C∗rG) ⊗̂Cl0,1)

given by x := τCl0,1(inddiffHG ) = (Γ0 ⊗̂Cl0,1, ρ ⊗̂ 1,h /Dh ⊗̂ 1).
Let y ∈ Ψ(C0(R, Cl0,1) ⊗̂C(X,C∗rG),C(X,C∗rG)) be the unbounded Kasparov module
given by y := τC(X,C∗rG)(α) = (L2(R, S1,1) ⊗̂C(X,C∗rG),µ ⊗̂ 1,DR ⊗̂ 1).
The Kasparov product of x and y is given by an unbounded Kasparov module
z := ((Γ0 ⊗̂ Cl0,1) ⊗̂µ⊗̂1 (L2(R, S1,1) ⊗̂ C(X,C∗rG)), ρ ⊗̂ 1, F) ∈ Ψ(Cl0,d+1,C(X,C∗rG))
satisfying the assumptions of theorem 1.3.9 with respect to x and y. The goal of
this section is to give an “easy” description of the unbounded Kasparov module z.
With it we intend that it is relatively “easy” to check the criteria of theorem 1.3.9.

Let Σ→M×R×X be the trivial Hilbert bundle with fiber S1,1 and obvious Real
structure grading and Cl1,1-action. The bundle ΣΛ(π) := Λ(π) ⊗̂ Σ → M×R × X
has then the structure of a Real graded C∗rG-bundle. We will regard Λ(π) ⊗̂ Σ
as a bundle over the submersion Π : M×R × X → X. In this way we obtain a
continuous field L2X(M×R×X,Λ(π) ⊗̂Σ) of Hilbert-C∗rG-modules over X as before.
The space Γ ′ of continuous sections of L2X(M×R× X,Λ(π) ⊗̂ Σ) is a Real graded
Hilbert-C(X,C∗rG)-module.

Lemma 5.1.1. The Hilbert modules
(
Γ0 ⊗̂Cl0,1

)
⊗̂µ⊗̂1

(
L2(R, S1,1) ⊗̂C(X,C∗rG)

)
and

Γ ′ are isomorphic as Real graded Hilbert-C(X,C∗rG)-modules.

Proof. It is sufficient to construct a surjective isometry

Φ : (Γ0 ⊗̂Cl0,1) ⊗̂µ⊗̂1 (L
2(R, S1,1) ⊗̂C(X,C∗rG))→ Γ ′.

For (s ⊗̂a) ⊗̂ (u ⊗̂γ) ∈
(
Γ∞0 (M×R×X,Λ(π)) ⊗̂Cl0,1

)
⊗̂µ⊗̂1

(
L2(R, S1,1) ⊗̂C(X,C∗rG)

)
we define for every x ∈ X:

Φ((s ⊗̂ a) ⊗̂ (u ⊗̂ γ))x := [(p, λ) 7→ sx(p, λ)γ(x) ⊗̂ au(λ)],

where sx denotes the restriction of s ∈ Γ∞0 (M×R×X,Λ(π)) to Wx :=M×R× {x}.
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We claim that Φ((s ⊗̂ a) ⊗̂ (u ⊗̂ γ))x ∈ L2(Wx,ΣΛ(π)x), i. e. that

〈Φ((s ⊗̂ a) ⊗̂ (u ⊗̂ γ))x,Φ((s ⊗̂ a) ⊗̂ (u ⊗̂ γ))x〉x
Def.
=

∫
Wx

(sxγ(x) ⊗̂ au(λ), sxγ(x) ⊗̂ au(λ))dvol(x)

=

∫
R

〈sγ, sγ〉Γ0(_ , x)a∗au(λ)∗u(λ)dλ

exists. However since 〈sγ, sγ〉Γ0( _ , x) ∈ C0(R,C∗rG) and u ∈ L2(R, S1,1) the last
integral exists. Because Γ∞c (M×R×X,Λ(π)) ⊂ Γ∞0 (M×R×X,Λ(π)) is dense, for
each x ∈ X and every ε > 0 there exists a neighborhood U of x and a compactly
supported smooth section t of ΣΛ(π) such that

sup
y∈U
‖Φ((s ⊗̂ a) ⊗̂ (u ⊗̂ γ))y − ty‖ 6 ε.

Therefore Φ(s, a,u,γ) := (Φ((s ⊗̂ a) ⊗̂ (u ⊗̂ γ))x)x∈X is indeed an element in Γ ′. It is
clear that Φ is graded and preserves the Real structure. Next we show that Φ is an
isometry. It is sufficient to show that

〈(s ⊗̂ a) ⊗̂ (u ⊗̂ γ), (t ⊗̂ b) ⊗̂ (v ⊗̂ δ)〉(x)=〈Φ((s ⊗̂ a) ⊗̂ (u ⊗̂ γ)),Φ((t ⊗̂ b) ⊗̂ (v ⊗̂ δ))〉(x)

holds for every x ∈ X. Note that the formulas for the interior tensor product in
the ungraded and graded case agree. Moreover 〈u ⊗̂ γ, v ⊗̂ δ〉 = 〈u⊗ γ, v⊗ δ〉 since
C(X,C∗rG) is trivially graded. Therefore

〈(s ⊗̂ a) ⊗̂ (u ⊗̂ γ), (t ⊗̂ b) ⊗̂ (v ⊗̂ δ)〉(x) Def.
= 〈u ⊗̂ γ,µ ⊗̂ 1(〈s ⊗̂ a, t ⊗̂ b〉)(v ⊗̂ δ)〉(x)

= 〈u ⊗̂ γ,µ ⊗̂ 1(〈s, t〉Γ0 ⊗̂ a∗b)(v ⊗̂ δ)〉(x)

=

∫
R

〈s, t〉Γ0(_ , x)u(λ)∗a∗bv(λ)γ(x)∗δ(x)dλ.

On the other hand

〈Φ(s, a,u,γ),Φ(t, b, v, δ)〉(x) Def.
= 〈Φ((s ⊗̂ a) ⊗̂ (u ⊗̂ γ))x,Φ((t ⊗̂ b) ⊗̂ (v ⊗̂ δ))x〉x

=

∫
Wx

(sxγ(x) ⊗̂ au, txδ(x) ⊗̂ bv)dvol(x)

=

∫
Wx

(sx ⊗̂ au, tx ⊗̂ bv)γ(x)∗δ(x)dvol(x)

=

∫
R

〈s, t〉Γ0(_ , x)(au(λ))∗bv(λ)γ(x)∗δ(x)dλ.
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In particular both inner products are equal and hence Φ is an isometry, once
we have shown that Φ is surjective. To show that Φ is surjective, it suffices
to show that Φ has dense image. Therefore it is sufficient to prove that each
t ∈ Γ∞c (M×R×X,ΣΛ(π)) can be approximated in norm by elements in the image
of Φ. By the inverse mapping theorem we can cover M ×R × X by relatively
compact “box neighborhoods” Rd ×R ×Rk. Since supp(t) is compact, we can
assume that t is supported in the unit ball of a box neighborhood, using a partition
of unity. Over such a box neighborhood the bundle Λ(π) is trivial. Hence t is given
by t := t0 ⊗̂ t1 : Rd ×R×Rk → (Sd ⊗̂C∗rG) ⊗̂ S1,1, such that t0 is a (local) section
of Λ(π) and t1 is a (local) section of the trivial bundle Σ. Then we can choose
s0 ∈ Γ∞0 (M×R×X,Λ(π)) and u ∈ L2(R, S1,1) approximating t on its support.

By the previous lemma we can identify the Hilbert modules (Γ0 ⊗̂Cl0,1) ⊗̂µ⊗̂1
(L2(R, S1,1) ⊗̂ C(X,C∗rG)) and Γ ′ by means of the even isometry Φ. Therefore it
is sufficient to construct an operator F on Γ ′ such that the triple (Γ ′, ρ ′, F) is an
unbounded Kasparov module representing the unbounded product of x and y.

Lemma 5.1.2. The bundles Λ(Π) and Λ(π) ⊗̂ Σ over M×R × X are isomorph and the
Clifford action of Cl0,d+1 on both bundles agree.

Proof. Since all bundles are trivial in X it is sufficient to show that Λ(Π)x ∼= Λ(π)x ⊗̂
Σx for all x ∈ X. This follows once we have shown that /S(Π)x ∼= /S(π)x ⊗̂ Σx.
However /S(Π)x = /S(Wx) ∼= /S(Tvπ)|Wx

⊗̂ Σx = /S(π)x ⊗̂ Σx.

From now on we will identify both bundles by means of the above isomorphism.
On the bundle Λ(π) ⊗̂ Σ we have the family

/D ⊗̂ 1+ 1 ⊗̂D : Γ∞cv(M×R×X,Λ(π) ⊗̂ Σ)→ Γ∞cv(M×R×X,Λ(π) ⊗̂ Σ) (5.5)

where /D is given by the family of twisted Dirac operators ( /Dλ,x)(λ,x)∈R×X. The
operator D is given by differentiating in the R-direction, i. e. by the operator(

0 −∇∂λ
∇∂λ 0

)

with respect to the direct sum decomposition of Γ∞cv(M×R×X,Λ(π) ⊗̂ Σ) induced
by the grading on ΣΛ(π). The induced unbounded operator family

D := /D ⊗̂ 1+ 1 ⊗̂D : dom(D)X → L2X(M×R×X,Λ(π) ⊗̂ Σ) (5.6)

on L2X(M×R× X,Λ(π) ⊗̂ Σ) is densely defined and symmetric. This unbounded
operator family also defines an unbounded operator on the Hilbert-C∗rG-module
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Γ ′ denoted again by /D ⊗̂ 1+ 1 ⊗̂D with domain Γ∞cv(M×R×X,Λ(π) ⊗̂ Σ).

Lemma 5.1.3. The operator Q := /D− /D ⊗̂ 1+ 1 ⊗̂D : Γ∞cv(M×R×X,Λ(π) ⊗̂Σ)→ Γ ′ is
a compactly supported operator of order zero. In particular q := ‖Q‖ is finite.

Proof. It is a general fact, that for a cylindrical metric on M×R the Levi-Civita
connection ∇M×R on T(M ×R) and the product connection ∇M ⊗ 1 + 1 ⊗ ∇R

on TM ⊗ TR agree. It follows that the Spin Dirac operators on /S(M ×R) =

/S(M) ⊗̂ /S(R) are identical. In particular the twisted Spin Dirac operators agree.
Outside K := M× [−1, 1]× X the metric gλ(x) + dt2 on Wx becomes cylindrical.
Therefore outside K the operators /Dx and ( /D ⊗̂ 1+ 1 ⊗̂D)x are identical for every
x ∈ X. Over K the difference /Dx− ( /D ⊗̂ 1+ 1 ⊗̂D)x is a differential operator of order
zero. As its support is compact, its operator norm is finite.

Lemma 5.1.3 implies that Q and −Q are relatively /D-bounded, i. e. that

‖Qs‖ 6 ‖Q‖ · ‖s‖ 6 ε‖ /Ds‖+ q · ‖s‖

for s ∈ dom( /D) and every ε > 0 and with q > 0. Hence we can use the Kato-Rellich
Theorem ([KL17, Theorem 4.5]) to conclude that /D−Q = /D ⊗̂ 1+ 1 ⊗̂D has the same
domain as /D and is self-adjoint and regular. Using the same arguments provided
in the previous chapter one also proves that the unbounded operator (family)
h( /D ⊗̂ 1+ 1 ⊗̂D)h has compact resolvent. We can summarize this as follows:

Lemma 5.1.4. The triple (Γ ′, ρ ′,h( /D ⊗̂ 1 + 1 ⊗̂D)h) defines an unbounded Kasparov-
(Cl0,d+1,C(X,C∗rG))-module.

Proof. The space Γ ′ is the space of continuous sections of a continuous field of
Real graded Hilbert-C∗rG-modules over the compact space X. Therefore it also has
the structure of an Real graded Hilbert-C(X,C∗rG)-module. The Clifford action on
Λ(π) ⊗̂ Σ induces the Clifford action ρ ′ of Cl0,d+1 on Γ ′ and the unbounded odd
Real self-adjoint and regular operator h( /D ⊗̂ 1+ 1 ⊗̂D)h anticommutes with ρ ′.
Since the operator also has compact resolvent, the triple (Γ ′, ρ ′,h( /D ⊗̂ 1+ 1 ⊗̂D)h)

is indeed an unbounded Kasparov-(Cl0,d+1,C(X,C∗rG))-module.

5.2 Calculation of the Kasparov product

Our next goal is

Theorem 5.2.1. The unbounded Kasparov module (Γ ′, ρ ′,h( /D ⊗̂ 1+ 1 ⊗̂D)h) represents
the Kasparov product of x and y.
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To prove theorem 5.2.1 we will show that the unbounded Kasparov module z ′ :=
(Γ ′, ρ ′,h( /D ⊗̂ 1+ 1 ⊗̂D)h) satisfies the conditions of theorem 1.3.9.

It is obvious that /D ⊗̂ 1 ◦Φ = Φ ◦ ( /D ⊗̂ 1) ⊗̂µ⊗̂1 (1 ⊗̂ 1). In fact as, the notation
suggests, both operators are induced by the same family of operators. To ease
notation we will write /Dµ instead of ( /D ⊗̂ 1) ⊗̂µ⊗̂1 (1 ⊗̂ 1).

Definition 5.2.2. For s ⊗̂ a ∈ Γ0 ⊗̂Cl0,1 we define Φs⊗̂a : L
2(R, S1,1) ⊗̂C(X,C∗rG)→ Γ ′

as the composition

L2(R, S1,1) ⊗̂C(X,C∗rG)
Ts⊗̂a−−−→

(
Γ0 ⊗̂Cl0,1

)
⊗̂µ⊗̂1

(
L2(R, S1,1) ⊗̂C(X,C∗rG)

)
Φ−→ Γ ′.

This map has an adjoint Φ∗
s⊗̂a = T∗

s⊗̂a ◦Φ
∗. In particular Φs⊗̂a is bounded.

Proposition 5.2.3. The map h( /D ⊗̂ 1+ 1 ⊗̂D)h ◦Φs⊗̂a − (−1)∂(s⊗̂a)Φs⊗̂a ◦h(DR ⊗̂ 1)h
from dom(DR ⊗̂ 1) to Γ ′ is bounded for every s ⊗̂ a ∈ dom( /D ⊗̂ 1) ⊂ Γ0 ⊗̂Cl0,1.

Proof. Let u ⊗̂ γ ∈ dom(DR ⊗̂ 1). The commutator [( /D ⊗̂ 1+ 1 ⊗̂D),h] is given by
Clifford multiplication with grad(h). Similarly [(DR ⊗̂ 1),h] = hc(h ′). Moreover
ρ ′(grad(h)) ◦Φs⊗̂a = (−1)∂(s⊗̂a)Φs⊗̂a ◦ c(h ′). Using this we compute(

h( /D ⊗̂ 1+ 1 ⊗̂D)h ◦Φs⊗̂a − (−1)∂(s⊗̂a)Φs⊗̂ah(DR ⊗̂ 1)h
)
(u ⊗̂ γ)

= h2
(
( /D ⊗̂ 1+ 1 ⊗̂D) ◦Φs⊗̂a − (−1)∂(s⊗̂a)Φs⊗̂a ◦ h

2(DR ⊗̂ 1)
)
(u ⊗̂ γ)

= h2
(
( /D ⊗̂ 1+ 1 ⊗̂D)(sγ ⊗̂ au) − (−1)∂(s⊗̂a)sγ ⊗̂ aDR(u)

)
= h2

(
/D(sγ) ⊗̂ au+ (−1)∂ssγ ⊗̂D(au) − (−1)∂(s⊗̂a)sγ ⊗̂ aDR(u)

)
= h2

(
/D(sγ) ⊗̂ au+ sγ ⊗̂ a

(
±D(u)∓DR(u)

))
Outside K :=M× [−1, 1]×X the metric becomes cylindrical. This implies that ∇∂λ =
∂λ. Therefore (1 ⊗̂D) ◦Φs⊗̂a and Φs⊗̂a ◦ (DR ⊗̂ 1) are equal on the complement of
K. It follows that sγ ⊗̂ (D(u) −DR(u)) has compact support. In particular the map
J := [u ⊗̂ γ 7→ (1 ⊗̂D) ◦Φs⊗̂a(u ⊗̂ γ) −Φs⊗̂a ◦ (DR ⊗̂ 1)(u ⊗̂ γ)] is bounded. Hence

‖h2
(
( /D ⊗̂ 1+ 1 ⊗̂D) ◦Φs⊗̂a − (−1)∂(s⊗̂a)Φs⊗̂a ◦ (DR ⊗̂ 1)

)
(u ⊗̂ γ)‖

6 ‖h2 /D(sγ) ⊗̂ au‖+ ‖h2sγ ⊗̂ a
(
D(u) −DR(u)

)
‖

= ‖h2Φ /D(s)⊗̂a(u ⊗̂ γ)‖+ ‖h
2sγ ⊗̂ a

(
D(u) −DR(u)

)
‖

6 (C0 +C1)‖u ⊗̂ γ‖

with constants C0 and C1 given by C0 := sup(p,λ,x)∈supp( /Ds) h
2(p, λ, x)‖Φ /D(s)⊗̂a‖

and C1 := sup(p,λ,x)∈K ‖s(p, λ, x)‖ · ‖J‖. Note that since s ∈ dom( /D) the support of s
and hence the support of /Ds is compact. Therefore sup(p,λ,x)∈supp(s) h

2(p, λ, x) is
finite.
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As a corollary of proposition 5.2.3 we obtain the first condition of theorem 1.3.9:

Corollary 5.2.4. The operator{(
h( /D ⊗̂ 1+ 1 ⊗̂D)h 0

0 h(DR ⊗̂ 1)h

)
,

(
0 Φs⊗̂a

Φ∗
s⊗̂a 0

)}
(5.7)

is bounded on its domain for all s ⊗̂ a in the dense submodule dom( /D ⊗̂ 1) ⊂ Γ0 ⊗̂Cl0,1.

Proof. The graded commutator 5.7 equals{(
h( /D ⊗̂ 1+ 1 ⊗̂D)h 0

0 h(DR ⊗̂ 1)h

)
,

(
0 Φs⊗̂a

Φ∗
s⊗̂a 0

)}
=

(
0 T0

T1 0

)

with T0 = h( /D ⊗̂ 1+ 1 ⊗̂D)h ◦Φs⊗̂a − (−1)∂(s⊗̂a)Φs⊗̂a ◦h(DR ⊗̂ 1)h and T1 = h(DR ⊗̂
1)h ◦Φ∗

s⊗̂a − (−1)∂(s⊗̂a)Φ∗
s⊗̂a ◦ h( /D ⊗̂ 1 + 1 ⊗̂D)h. By proposition 5.2.3 T0 has a

bounded extension and hence its adjoint T∗0 is everywhere defined and therefore
bounded. Since h( /D ⊗̂ 1 + 1 ⊗̂D)h and h(DR ⊗̂ 1)h are self-adjoint, T∗0 equals
Φ∗
s⊗̂a ◦ h( /D ⊗̂ 1+ 1 ⊗̂D)xh− (−1)∂(s⊗̂a)h(DR ⊗̂ 1)h ◦Φ∗s⊗̂a. It follows that T∗0 and T1

agree on the domain of T1. In particular T1 has a bounded extension which must
be T∗0 . Altogether this proves that 5.7 is bounded on its domain.

The second condition of theorem 1.3.9 involves the graded commutator of
the unbounded operators /Dh,µ := (h /Dh ⊗̂ 1) ⊗̂µ⊗̂1 (1 ⊗̂ 1) and h( /D ⊗̂ 1+ 1 ⊗̂D)h.
However we must be careful since the operators are not defined on the same Hilbert
modules. Since Φ ◦ /Dh,µ = h( /D ⊗̂ 1)h ◦Φ it is clear that dom(h( /D ⊗̂ 1+ 1 ⊗̂D)h) ⊂
Φ(dom( /Dh,µ)). For Φ(ξ) ∈ dom(h( /D ⊗̂ 1+ 1 ⊗̂D)h) we define

S(ξ)x := 〈Φ ◦ ( /Dh,µ)λ,x(ξ),h( /D ⊗̂ 1+ 1 ⊗̂D)xh ◦Φ(ξ)〉x and

T(ξ)x := 〈h( /D ⊗̂ 1+ 1 ⊗̂D)xh ◦Φ(ξ),Φ ◦ ( /Dh,µ)λ,x(ξ)〉x.

The next proposition ensures that the “graded commutator” of the operators /Dh,µ

and h( /D ⊗̂ 1+ 1 ⊗̂D)h is semi-bounded.

Proposition 5.2.5. There exists c > 0 such that

S(ξ)x + T(ξ)x > c〈ξ, ξ〉x (5.8)

for all Φ(ξ) ∈ dom(h( /D ⊗̂ 1+ 1 ⊗̂D)h) and every x ∈ X.

Proof. Since Φ ◦ ( /Dh,µ)λ,x = h( /D ⊗̂ 1)hx ◦Φ on dom( /Dh,µ) we have

S(ξ)x = 〈h( /D ⊗̂ 1)xh ◦Φ(ξ),h( /D ⊗̂ 1+ 1 ⊗̂D)xh ◦Φ(ξ)〉x and
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T(ξ)x = 〈h( /D ⊗̂ 1+ 1 ⊗̂D)xh ◦Φ(ξ),h( /D ⊗̂ 1)xh ◦Φ(ξ)〉x.

Since h( /D ⊗̂ 1 + 1 ⊗̂D)hx is regular and self-adjoint it suffices to consider only
elements in dom(h( /D ⊗̂ 1 + 1 ⊗̂D)h2x). Let ζ ∈ dom(h( /D ⊗̂ 1 + 1 ⊗̂D)h2x). It fol-
lows that ζ is also in dom(h( /D ⊗̂ 1)h2x) = Φ(dom( /Dh,µ)

2) since dom(h( /D ⊗̂ 1+ 1 ⊗̂
D)h2x) = dom(h( /D

2 ⊗̂ 1)hx)∩dom(h(1 ⊗̂D2)hx). Moreover h( /D ⊗̂ 1+ 1 ⊗̂D)hx(ζ) ∈
dom(h( /D ⊗̂ 1+ 1 ⊗̂D)hx) ⊂ domh(( /D ⊗̂ 1)hx) = Φ(dom( /Dh,µ)). Let ζ := Φ(ξ) ∈
dom(( /D ⊗̂ 1+ 1 ⊗̂D)2x). We first compute S(ξ)x:

S(ξ)x = 〈h( /D ⊗̂ 1)xh(ζ),h( /D ⊗̂ 1+ 1 ⊗̂D)x(ζ)〉x

=

∫
Wx

(
h( /D ⊗̂ 1)h(ζ),h( /D ⊗̂ 1+ 1 ⊗̂D)xh(ζ)

)
dvol(x)

=

∫
Wx

h2
(
( /D ⊗̂ 1)xh(ζ), ( /D ⊗̂ 1+ 1 ⊗̂D)x(ζ)

)
dvol(x)

=

∫
Wx

h2
(
h(ζ), ( /D ⊗̂ 1)x( /D ⊗̂ 1+ 1 ⊗̂D)xh(ζ)

)
dvol(x)

=

∫
Wx

h2
(
h(ζ), ( /D ⊗̂ 1)2xh(ζ) + ( /D ⊗̂ 1)x(1 ⊗̂D)xh(ζ)

)
dvol(x)

=

∫
Wx

h2
(
h(ζ), ( /D ⊗̂ 1)2xh(ζ)

)
+ h2

(
h(ζ), ( /D ⊗̂ 1)x(1 ⊗̂D)xh(ζ)

)
dvol(x)

=

∫
Wx

h2
(
( /D ⊗̂ 1)2xh(ζ),h(ζ)

)
+ h2

(
(1 ⊗̂D)x( /D ⊗̂ 1)xh(ζ),h(ζ)

)
dvol(x)

=

∫
Wx

h2
(
( /D ⊗̂ 1)2xh(ζ),h(ζ)

)
− h2

(
( /D ⊗̂D)xh(ζ),h(ζ)

)
dvol(x)

The minus sign in the last equation follows from the Koszul rule for multiplying
graded tensors: (1 ⊗̂D)x ◦ ( /D ⊗̂ 1)x = (−1)∂D∂ /D( /D ⊗̂D)x. Now we compute T(ξ)x:

T(ζ)x = 〈h( /D ⊗̂ 1+ 1 ⊗̂D)xh(ζ),h( /D ⊗̂ 1)xh(ζ)〉x

=

∫
Wx

h2
(
(( /D ⊗̂ 1+ 1 ⊗̂D)xh(ζ), ( /D ⊗̂ 1)xh(ζ))

)
dvol(x)

=

∫
Wx

h2
(
(( /D ⊗̂ 1)x( /D ⊗̂ 1+ 1 ⊗̂D)xh(ζ),h(ζ))

)
dvol(x)

=

∫
Wx

h2
(
(( /D ⊗̂ 1)2xh(ζ),h(ζ))

)
+ h2

(
(( /D ⊗̂ 1)x(1 ⊗̂D)h(ζ),h(ζ))

)
dvol(x)
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Therefore we obtain

S(ξ)x + T(ξ)x =

∫
Wx

2h2
(
(( /D ⊗̂ 1)2xh(ζ),h(ζ))

)
dvol(x)

=

∫
Wx

2h2
(
(( /D ⊗̂ 1)2xh(ζ),h(ζ))

)
dvol(x) = 2〈h2( /D ⊗̂ 1)2xh(ζ),h(ζ)〉x

= 2〈h3Φ(( /Dµ)
2
λ,x(ξ)),hΦ(ξ)〉x > 2〈h2Φ(

1

4
scal(gλ(x))ξ),h2Φ(ξ)〉x

= 〈1
2

scal(gλ(x))h2ζ,h2ζ〉x =
1

2

∫
Wx

scal(gλ(x))
(
h2ζ,h2ζ)

)
dvol(x)

>
1

2
m(x)

∫
Wx

‖h2|supp(ζ)‖(ζ, ζ)dvol(x) =
1

2
C〈ζ, ζ〉x

=
1

2
C〈Φ(ξ),Φ(ξ)〉x =

1

2
C〈ξ, ξ〉x

with C = m(x)‖h2
|supp(ζ)‖ and m(x) = min|λ|61(scal(gλ(x))).

The proof of theorem 5.2.1 is now an easy corollary of proposition 5.2.4 and
proposition 5.2.5 using theorem 1.3.9:

Proof of 5.2.1. By propositions 5.2.4 and 5.2.5 the unbounded Kasparov module
z ′ satisfies the assumptions of theorem 1.3.9. Therefore the bounded Kasparov-
(Cl0,d+1,C(X,C∗rG))-module b(z ′) = (Γ ′, ρ ′, b(h( /D ⊗̂ 1 + 1 ⊗̂D)h)) represents the
Kasparov product of the bounded Kasparov modules b(x) and b(y).

Proposition 5.2.6. [b(inddiffGLG )] = [b(z ′)] in KK(Cl0,d+1,C(X,C∗rG)).

Proof. We will construct a homotopy between b(inddiffGLG ) and b(z ′), i. e. a Kas-
parov module H ∈ KK(Cl0,d+1, IC(X,C∗rG)) = KK(Cl0,d+1,C(X× I,C∗rG)), such that
(ev0)∗(H) = b(z ′) and (ev1)∗(H) = b(inddiffGLG ). To begin with we construct the
following unbounded Kasparov module h := (ΓI, ρI,h( /D ⊗̂ 1+ 1 ⊗̂D+ λ ·Q)h). The
Hilbert module ΓI is the space of continuous sections of the pullback of the con-
tinuous field L2X(M×R × X,Λ(Π)) via pr : X× I → X. The Clifford action ρI is
induced by the Clifford action ρ of Cl0,d+1 on L2X(M×R×X,Λ(Π)). The operator
Q = /D− /D ⊗̂ 1+ 1 ⊗̂D is a compactly supported bundles endomorphism of Λ(Π)
by lemma 5.1.3. We claim that h is an unbounded Kasparov-(Cl0,d+1,C(X× I,C∗rG)-
module. To prove that we only need to check that the resolvent of h( /D ⊗̂ 1+ 1 ⊗̂
D+ λ ·Q)h = h( /D ⊗̂ 1 = 1 ⊗̂D)h+ λ · h2Q is compact. However, since Q has order
zero and compact support, ‖h2Q‖ is finite. Therefore by changing the coercive
function f only on the compact subset M× [−1, 1]×X by a finite constant implies
that h( /D ⊗̂ 1+ 1 ⊗̂D)h+ λ · h2Q is bounded from below by a coercive function. It
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follows by theorem 3.2.9 that the resolvent of h( /D ⊗̂ 1+ 1 ⊗̂D+ λ ·Q)h is compact.
We define H := b(h) ∈ KK(Cl0,d+1,C(X× I,C∗rG)). Then (ev0)∗(H) = b(z ′). Fur-
thermore sine h( /D ⊗̂ 1+ 1 ⊗̂D+Q)h = h/Dh we have that (ev1)∗(H) = b(inddiffGLG ).
Therefore H is a homotopy between the Kasparov-(Cl0,d+1,C(X,C∗rG))-modules
b(z ′) and b(inddiffGLG ).

Now we can prove theorem 5.0.1:

Proof of 5.0.1. [b(z ′)] = [b(inddiffGLG )] by proposition 5.2.6. However

b(z ′) = τCl0,1(b(inddiffHG ))#b(τC(X,C∗rG)(α))

by theorem 5.2.1. Therefore

b(inddiffGLG ) = τCl0,1(b(inddiffHG ))#τC(X,C∗rG)(α).

This finishes the proof of theorem 5.0.1.
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