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(Communicated by Siegfried Echterhoff)

Abstract. We prove two isomorphism-invariance theorems for groupoids associated with
ultragraphs. These theorems characterize ultragraphs for which the topological full group
of an associated groupoid is an isomorphism invariant. These results extend those of graph
groupoids to ultragraph groupoids while providing another concrete example where the topo-
logical full group of a groupoid is a complete isomorphism invariant.

1. Introduction

Ultragraphs are versatile combinatorial objects that encompass graphs. In-
troduced by Mark Tomforde in [24] as an object to unify the study of graph and
Exel–Laca algebras, ultragraphs have connections with branching systems [6],
infinite alphabet shift spaces [7, 8, 9], chaos [11, 12], Leavitt path algebras [13],
KMS states [4], AF algebras [15], groupoids [16], topological quivers [14], and
are also interesting objects to study on their own. In this paper, we will focus
on the connections with topological dynamics and groupoids. More precisely,
we will use the recent description of topological full groups of ample groupoids
with locally compact unit spaces given in [20] to describe isomorphism of ultra-
graph groupoids (under condition (RFUM)) in terms of isomorphism of their
respective topological full groups.

The use of topological full groups as invariants for a certain form of equiva-
lence between orbits of dynamical systems ranges from its application in Cantor
minimal systems [5], to ample groupoids [18, 20], passing through Cuntz–
Krieger algebras [17], and graph algebras [20] (to name a few). In the groupoid
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setting, recent results connect continuous orbit equivalence, diagonal preserv-
ing isormorphism, and groupoid isomorphism (see [3] for example), and in [20],
the authors add topological full groups (of groupoids with locally compact unit
space) to the list.

Beyond the general study of full groups, it is important to study them in
specific cases. In fact, in [20], the authors mention in the introduction that
their initial goal was to study the topological full groups of general graph
groupoids and add them to the list of invariants for continuous orbit equiva-
lence between graphs. Our paper moves in this direction, as we characterize
the full groups associated to ultragraph groupoids and use the general results
in [20] to describe the topological full groups of ultragraph groupoids as invari-
ants for isormorphism of such groupoids. As with the graph case, due to results
in [3, 23, 10], our results connect topological full groups with continuous orbit
equivalence of ultragraph shift spaces and diagonal preserving isomorphism
between ultragraph C∗-algebras.

The paper is organized in the following way. Section 2 contains basic defi-
nitions and background on ultragraphs, the edge shift space of an ultragraph,
and ample groupoids and their topological full groups.

In Section 3, we associate a topological groupoid with an ultragraph that sat-
isfies condition (RFUM). We show that the topology of the associated groupoid
has a basis of compact open sets so that the associated groupoid is ample. In
Proposition 3.7, we characterize the isolated points of these groupoids, and
in Proposition 3.8, we describe when the groupoid is effective. We conclude
Section 3 with a characterization of the elements of the topological full group
of the groupoid associated with an ultragraph (Proposition 3.14).

In Section 4, we prove our two main results, Theorem 4.7 and Theorem 4.13.
To motivate our results, we give an example of an ultragraph satisfying the
conditions of Theorem 4.7, and whose associated C∗-algebra cannot be realized
as a graph C∗-algebra.

2. Preliminaries

In this section, we recall key definitions and set-up notation regarding ultra-
graphs, groupoids, and topological full groups. We start with ultragraphs.

2.1. Ultragraphs and the edge shift space. Ultragraphs first appeared
in [7], as defined below.

Definition 2.2. An ultragraph is a quadruple G = (G0, G1, r, s) consisting of
two countable sets G0,G1, a map s : G1 →G0, and a map r : G1 → P (G0) \ {∅},
where P (G0) is the power set of G0.

A key object when studying ultragraphs are generalized vertices, which we
define below.

Definition 2.3. Let G be an ultragraph. Define G0 to be the smallest subset
of P (G0) that contains {v} for all v ∈ G0, contains r(e) for all e ∈ G1, and is

Münster Journal of Mathematics Vol. 14 (2021), 165–189



Topological full groups of ultragraph groupoids 167

closed under finite unions and nonempty finite intersections. Elements of G0

are called generalized vertices.

Next we set-up notation that will be used throughout the paper. This agrees
with notation introduced in [16, 7].

Let G be an ultragraph. A finite path in G is either an element of G0 or
a sequence of edges e1 . . .ek in G1, where s(ei+1)∈ r(ei) for 1≤ i≤ k. If we write
α = e1 . . . ek, the length |α| of α is k. The length |A| of a path A ∈ G0 is zero.
We define r(α) = r(ek) and s(α) = s(e1). For A ∈ G0, we set r(A) = A = s(A).
The set of finite paths in G is denoted by G∗. An infinite path in G is an infinite
sequence of edges γ = e1e2 . . . in

∏

G1, where s(ei+1) ∈ r(ei) for all i. The set
of infinite paths in G is denoted by p∞. The length |γ| of γ ∈ p∞ is defined to
be ∞. A vertex v in G0 is called a sink if |s−1(v)| = 0, it is called an infinite

emitter if |s−1(v)| = ∞, and it is called a source if v /∈ r(e) for all e ∈ G1. For
v,w ∈ G0, we define vG1 = {e ∈ G1 | s(e) = v}, G1w = {e ∈ G1 | w ∈ r(e)}, and
vG1w = vG1 ∩ G1w.

For n ≥ 1, we define pn := {(α,A) | α ∈ G∗, |α| = n, A ∈ G0, A ⊆ r(α)}. We
specify that (α,A) = (β,B) if and only if α= β and A=B. We set p0 := G0, and
we let p :=

∐

n≥0 p
n. We embed the set of finite paths G∗ in p by sending α to

(α, r(α)). We define the length |(α,A)| of a pair (α,A) to be |α|. We call p the
ultrapath space associated with G, and the elements of p are called ultrapaths.
Each A ∈ G0 is regarded as an ultrapath of length zero and can be identified
with the pair (A, A). We extend the range map r and the source map s to p

by declaring that r((α,A)) = A, s((α,A)) = s(α), and r(A) = s(A) = A.
We concatenate elements in p in the following way: if x = (α, A) and

y = (β, B), with |x| ≥ 1, |y| ≥ 1, then x · y is defined if and only if s(β) ∈ A,
in which case,

x · y := (αβ,B).

Also, we specify that

x · y =











x ∩ y if x, y ∈ G0 and if x ∩ y 6= ∅,

y if x ∈ G0, |y| ≥ 1, and if s(y) ∈ x,

xy if y ∈ G0, |x| ≥ 1, and if r(x) ∩ y 6= ∅,

where, if x = (α,A), |α| ≥ 1, and if y ∈ G0, the expression xy is defined to be
(α,A ∩ y). Given x, y ∈ p, we say that x has y as an initial segment if x = y · x′

for some x′ ∈ p, with s(x′) ∩ r(y) 6= ∅.
We extend the source map s to p∞ defining s(γ) = s(e1), where γ = e1e2 . . . .

We may concatenate pairs in p, with infinite paths in p∞, as follows. If
y = (α, A) ∈ p and if γ = e1e2 . . . ∈ p∞ are such that s(γ) ∈ r(y) = A, then
the expression y · γ is defined to be αγ = αe1e2 · · · ∈ p∞. If y = A ∈ G0, we
define y · γ = A · γ = γ whenever s(γ) ∈ A. Of course, y · γ is not defined if
s(γ) /∈ r(y) = A.

Remark 2.4. To simplify notation, we omit the dot in the definition of con-
catenation so that x · y will be denoted by xy.
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Given α, β ∈ G∗, we say α is an initial segment of β, written as α < β,
if there is a γ ∈ G∗ with |γ| > 0 such that β = αγ, Similarly for α ∈ G∗ and
β ∈ p∞; in which case, γ ∈ p∞. The paths α and β are disjoint if they are
different and neither one is an initial segment of the other.

Definition 2.5. Two ultrapaths (α, A) and (β, B) are disjoint if one of the
following conditions is satisfied:
• α and β are disjoint paths;
• α = β and A and B are disjoint sets;
• α is an initial segment of β, say β = αγ, and s(γ) /∈ A;
• β is an initial segment of α, say α = βγ, and s(γ) /∈ B.

Definition 2.6. For each subset A ofG0, let ε(A) be the set {e∈G1 | s(e)∈A}.
We say that a set A in G0 is an infinite emitter whenever ε(A) is infinite.

The key concept in the definition of the shift space X associated to an
ultragraph without sinks G is that of minimal infinite emitters. We recall this
below.

Definition 2.7. Let G be an ultragraph and A ∈ G0. We say that A is a min-
imal infinite emitter if it is an infinite emitter that contains no proper subsets
(in G0) that are infinite emitters. For a finite path α in G, we say that A
is a minimal infinite emitter in r(α) if A is a minimal infinite emitter and
A ⊆ r(α). We denote the set of all minimal infinite emitters in r(α) by Mα.

Associated to an ultragraph with no sinks, we have the topological space
X = p∞ ∪Xfin, where

Xfin = {(α,A) ∈ p | |α| ≥ 1 and A ∈ Mα}

∪ {(A,A) ∈ G0 | A is a minimal infinite emitter},

and the topology has a basis given by the collection

{D(β,B) | (β,B) ∈ p, |β| ≥ 1} ∪ {D(β,B),F | (β,B) ∈ Xfin, F ⊂ ε(B), |F | < ∞},

where, for each (β,B) ∈ p, we have

D(β,B) = {(β,A) | A ⊂ B and A ∈ Mβ} ∪ {y ∈ X | y = βγ′, s(γ′) ∈ B},

and, for (β,B) ∈ Xfin and F a finite subset of ε(B),

D(β,B),F = {(β,B)} ∪ {y ∈ X | y = βγ′, γ′
1 ∈ ε(B) \ F}.

For (β,B) ∈ p and F ⊆ ε(B) finite, define

D(β,B),F = {(β,A) | A ⊂ B and A ∈ Mβ} ∪ {y ∈ X | y = βγ′, γ′
1 ∈ ε(B) \ F},

Notice that, for (β, B) ∈ p, D(β,B),F = D(β,B) \
(
⋃

γ1∈F D(βγ1, r(βγ1)
)

,

which is closed because it is a difference of a closed set [8] and a union of open
sets. Moreover,D(β,B),F =

⋃

A∈Mβ
D(β,A),F∩ε(A) ∪

⋃

γ1∈ε(B)\F D(βγ1, r(βγ1)),
which is an open set.

Remark 2.8. Note that if two ultrapaths (α,A) and (β,B) are disjoint, then
the sets D(α,A) and D(β,B) are disjoint.
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Topological full groups of ultragraph groupoids 169

We recall below condition (RFUM), which guarantees that the (R)ange of
each edge is a (F)inite (U)nion of (M)inimal infinite emitters and single vertices.
(RFUM): for each edge e ∈ G1, its range can be written as

r(e) =

k
⋃

n=1

An,

where An is either a minimal infinite emitter or a single vertex.
It was shown in [8] that under condition (RFUM), the shift space X has a basis
of open, compact sets. If condition (RFUM) is not satisfied, then certain basic
open sets may not be compact (cp. [8, Rem. 3.10]). Having a basis of compact
open sets such that each compact open set can be expressed as a disjoint
union of these basic sets (Lemma 3.10) is a crucial feature in our work, and
we therefore make the following assumptions for the remainder of this paper:
all ultragraphs are assumed to have no sinks and satisfy condition (RFUM).

Remark 2.9. The basis considered in [8] does not included the sets D(β,B),F

when (β, B) /∈ Xfin and F 6= ∅. However, as seen above, they are open and
closed (and thus compact under condition (RFUM)). We will include these sets
in the basis in order to simplify some of the proofs in this paper.

We associate to the space X a shift map.

Definition 2.10. The shift map is the function σ : X \ G(0) → X defined by

σ(x) =











γ2γ3 . . . if x = γ1γ2 . . . ∈ p∞,

(γ2 . . . γn, A) if x = (γ1 . . . γn, A) ∈ Xfin and |x| > 1,

(A,A) if x = (γ1, A) ∈ Xfin.

We call X together with the shift map the edge shift space.

Remark 2.11. Notice that we do not define the shift map for elements of X
of length zero, differently to what is done in [7, 8, 9, 11, 12], since the shift map
may fail to be continuous on paths of length zero. This ensures that it has all
the ‘nice’ continuity properties that we require on paths of length greater than
zero to build an étale groupoid from the shift [7, Prop. 3.16].

2.12. Groupoids and their topological full groups. In this section, we
gather necessary definitions and background on the topological full group of
an ample groupoid, closely following [20].

A groupoid G is a small category of isomorphisms. A topological groupoid is
a groupoid equipped with a topology making the operations of multiplication
and taking inverse continuous. The elements of the form gg−1 are called units.
We denote the set of units of G by G(0) and refer to G(0) as the unit space.
We think of the unit space as a topological space equipped with the relative
topology from G. The source and range maps are given by s(g) = g−1g and
r(g) = gg−1 for g ∈ G. These maps are necessarily continuous when G is
a topological groupoid.
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An étale groupoid is a topological groupoid G such that its unit space G(0)

is locally compact and Hausdorff and its range map is a local homeomorphism
(this implies that the source map and the multiplication map are also local
homeomorphisms). A bisection of G is a subset B ⊆G such that the restriction
of the range and source maps to B are injective. A bisection U is called full if
we have s(U) = r(U) = G(0). An étale groupoid is ample if its unit space has
a basis of compact open sets or, equivalently, if the arrow space G has a basis
of compact open bisections.

The isotropy group of a unit x ∈ G(0) is the group

Gx
x = {g ∈ G | s(g) = r(g) = x},

and the isotropy bundle is

G′ = {g ∈ G | s(g) = r(g)} =
⊔

x∈G(0)

Gx
x.

We say that G is effective if the interior of G′ equals G(0). We call G topologi-

cally principal if the set of points in G(0) with trivial isotropy group are dense
in G(0).

If x ∈ G(0), then the orbit of x is defined by

OrbG(x) = {y ∈ G(0) | there exists g ∈ G with s(g) = x, r(g) = y}.

A subset A ⊂ G(0) is wandering if |A ∩ OrbG(x)| = 1 for all x ∈ A. We say
that G is non-wandering if G(0) has no nonempty clopen wandering subsets.

To each bisection U ⊆G in an étale groupoid, we associate a homeomorphism

πU : s(U) → r(U)

given by r|U ◦ (s|U )
−1. Whenever U is a full bisection, πU is a homeomorphism

of G(0).
For a topological spaceX , we denote the group of self-homeomorphisms ofX

by Homeo(X). By an involution, we mean a homeomorphism (or more gener-
ally, a group element) φ with φ2 = idX . For a homeomorphism φ ∈Homeo(X),

we define the support of φ to be the (regular) closed set {x ∈ X | φ(x) 6= x}
and denote it by supp(φ). We also define

Homeoc(X) = {φ ∈ Homeo(X) | supp(φ) is compact open}.

Definition 2.13. Let G be an effective ample groupoid. The topological full

group of G, denoted JGK, is the subgroup of Homeo(G(0)) consisting of all
homeomorphisms of the form πU , where U is a full bisection in G such that
supp(πU ) is compact. We will denote by D(JGK) its commutator subgroup.

In the topological full group, composition and inversion of the homeomor-
phisms correspond to multiplication and inversion of the bisections, that is,
• πG(0) = idG(0) = 1,
• πU ◦ πV = πUV ,
• (πU )

−1 = πU−1 .
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Lemma 2.14 ([20, Lem. 3.7]). Let G be an effective ample groupoid, and let

πU ∈ JGK. Then we have a decomposition

U = U⊥ ⊔ (G(0) \ supp(πU )),

where U⊥ is a compact open bisection with s(U⊥) = r(U⊥) = supp(πU ). Con-

versely, any compact bisection V ⊆ G with s(V ) = r(V ) defines an element

πṼ ∈ JGK with supp(πṼ ) ⊆ s(V ) by setting Ṽ = V ⊔ (G(0) \ s(V )).

Lemma 2.15 ([20, Lem. 3.8]). Let G be an effective ample groupoid. Any

compact bisection V ⊆G which satisfies s(V ) ∩ r(V ) =∅ defines an involution

π
V̂
∈ JGK by setting V̂ equal to V ⊔ V −1 ⊔ (G(0) \ (s(V ) ∪ r(V ))). Moreover,

supp(π
V̂
) ⊆ s(V ) ∪ r(V ).

Definition 2.16 ([20, Def. 5.1 and Def. 6.1]). A space-group pair consists of
a pair (Γ, X), where X is a Hausdorff space with a basis of compact open
sets and Γ is a subgroup of Homeoc(X). A class K of space-group pairs
is called faithful if, for every (Γ1, X1), (Γ2, X2) ∈ K and every group iso-
morphism Φ : Γ1 → Γ2, there is a homeomorphism φ : X1 → X2 such that
Φ(γ) = φ ◦ γ ◦ φ−1 for every γ ∈ Γ1.

3. Ultragraph groupoids and their topological full groups

In this section, we define an ample groupoid associated with an ultragraph
with no sinks and satisfying condition (RFUM). We use this groupoid to extend
some known results about graphs to the general setting of ultragraphs. In
Proposition 3.14, we characterize the open bisections and describe the elements
of the topological full group of the groupoid associated with an ultragraph,
analog to that of graphs [20]. This section is based on and extends [20, Sec. 9]
to groupoids of ultragraphs.

Throughout this section, we fix an ultragraph G which satisfies condition
(RFUM) and has no sinks. Let (X, σ) denote the edge shift space associated
to G (see Definition 2.10).

We begin by describing the groupoid associated to an ultragraph and its
topology. For any nonzero m ∈ N, we let X≥m = {y ∈ X | |y| ≥ m}. Define

Gσ := {(x,m− n, y) ∈ X × Z×X | x ∈ X≥m, y ∈ X≥n, σm(x) = σn(y)}.

The set of composable pairs is given by

G2
σ = {(x,m, y), (x′, n, y′) ∈ Gσ | y = x′}.

Then Gσ is a groupoid with composition and involution given by

(x,m, y)(y, n, y) := (x,mn, z) and (x,m, y)−1 := (y,−m,x),

respectively. The unit space G
(0)
σ of Gσ is identified with X . To get a topology

on Gσ, we define

Z(U,m, n, V ) := {(x,m− n, y) ∈ Gσ | x ∈ U, y ∈ V, σm(x) = σn(y)},

where U ⊆ X≥m and V ⊆ X≥n are open sets such that σm|U and σn|V are
injective and σm(U) = σn(V ). The sets Z(U,m, n, V ), ranging over U and V
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that satisfy these conditions, form a basis for a locally compact Hausdorff
topology on Gσ. This topology is a direct analog of the topology for the
boundary path groupoid of directed graphs, which is well-known to be an étale
groupoid (see for example [22]).

Remark 3.1. Notice that the C∗-algebra associated to the groupoid defined
above coincides with the usual ultragraph C∗-algebra; see [23, 10] for details.

Remark 3.2. We point out that the description of the usual ultragraph C∗-al-
gebra using groupoids was done first in [16] by Marrero and Muhly. In order
to define the unit space of their groupoid, we need to work with filters and
ultrafilters. Condition (RFUM) allows us to define the unit space in simpler
terms using only the notion of minimal infinite emitters as in Section 2.

Also, in order to work with the full group, we also need a suitable basis of
open bisections of the groupoid. The basis considered just above [16, Lem. 21]
is weaker than the one needed to obtain the C∗-algebra of an ultragraph. Com-
paring their basis with ours in Lemma 3.12, they only consider the bisections
where FA is the empty set. However, if we only considering FA to be the
empty set for a usual graph with an infinite emitter results in a non-Hausdorff
topology.

With minor adjustments, the main results of [16] still hold. See for exam-
ple [1], where the class of C∗-algebras of labelled spaces, which include the
class of C∗-algebras of ultragraphs, is described in terms of groupoids using an
approach similar to [16].

We aim to characterize the topology on Gσ in terms of a different basis,
which will be helpful to show that Gσ is an ample groupoid. For this, we use
the cylinder sets defined in Section 2.1 and the following lemmas.

Lemma 3.3. Let α,β ∈ G∗. Assume that A∈ G0, (α,A), (β,A) ∈ p, and C ⊆A.
Then C ∈ Mα if and only if C ∈ Mβ.

Proof. If C ∈ Mα \Mβ , then C is an infinite emitter. Since C /∈ Mβ , there
exists an infinite emitter D in G0 such that D ( C. Hence C is not minimal
(in Mα), a contradiction. The same argument, with the roles of Mα and Mβ

reversed, proves the converse. �

Lemma 3.4. Assume that (α,A), (β,B) ∈ p. Then σ|α|(D(α,A)) = σ|β|(D(β,B))
if and only if A = B.

Proof. Assume that σ|α|(D(α,A)) = σ|β|(D(β,B)), but A 6= B. Without loss of
generality, we may assume that there exists a vertex v ∈ B \A. Since G has no
sinks, there is an element γ ∈ X≥1 such that s(γ) = v and βγ ∈ D(β,B). Then

γ ∈ σ|β|(D(β,B)) = σ|α|(D(α,A)), which implies that αγ ∈ D(α,A). However,
since s(γ) = v /∈ A, we have a contradiction. Hence A = B.

For the converse, assume that A = B, and let γ ∈ σ|α|(D(α,A)). Then there
exists x ∈ X such that x = αγ. Either γ ∈ Xfin or γ ∈ p∞. We consider these
cases separately.
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First assume that γ ∈Xfin. That is, γ = (γ,C) with s(γ)∈A and C ∈Mγ . If
|γ|= 0, then γ = (C,C) and C ⊂A and C ∈Mα. Then C ∈Mβ by Lemma 3.3.

Hence we have (β, C) ∈ D(β,A) and σ|β|(β, C) = (C, C), which shows that

γ ∈ σ|β|(D(β,B)). If |γ| ≥ 1, then s(γ) ∈ A = B and C ∈ Mγ , which implies

that (βγ,C)∈D(β,A). Then (γ,C) = σ|β|(βγ,C)∈ σ|β|(D(β,B)). For the second
case, assume that γ ∈ p∞. Then s(γ) ∈ A = B. Thus βγ ∈ p∞, which implies
that σ|β|(βγ) = γ ∈ σ|β|(D(β,B)).

The above shows that σ|α|(D(α,A)) ⊆ σ|β|(D(β,B)), and the same argument

with the assumption that γ ∈ σ|β|(D(β,B)) gives the reverse inclusion. Hence

σ|α|(D(α,A)) = σ|β|(D(β,B)), completing the proof. �

We now give an alternative description of the topology on Gσ in terms of
the cylinder sets that define the topology on X . Let α, β ∈ G∗, A ∈ G0 such
that (α,A), (β,A) ∈ p, and let U, V ⊂ X . We define

Z(U, α,A, β, V ) := {(x, |α| − |β|, y) ∈ Gσ | x ∈ U, y ∈ V,

σ|α|(x) = σ|β|(y) ∈ D(A,A)}.

Lemma 3.5. Let

C = {Z(U, α,A, β, V ) | σ|α|(U) = σ|β|(V )},

parametrized over all α, β ∈ G∗ and A ∈ G0 such that (α, A), (β, A) ∈ p, and

with U ⊆ D(α,A) and V ⊆ D(β,A) compact open sets. Then C is a basis of

compact open sets for the topology on Gσ, and hence Gσ is ample.

Proof. We show that C is a collection of open subsets such that, for any open
set W ⊆ Gσ and each w ∈ W , there is a C ∈ C such that w ∈ C ⊆ W .

Let Z(U, α, A, β, V ) ∈ C . Then, since D(α,A) ⊆ X≥|α| and D(β,A) ⊆ X≥|β|

are open, it follows that U ⊆D(α,A) ⊆X≥|α| and V ⊆D(β,A) ⊆X≥|β| are open.

It is clear that σ|α||U and σ|β||V are injective since we shift elements of the form
αx ∈ D(α,A) by the length of |α| (and similarly for β). Also, σ|α|(U) = σ|β|(V )
follows by definition. Hence Z(U, α, A, β, V ) = Z(U, |α|, |β|, V ) is an open set
in the topology of Gσ, which shows that C consists of a collection of open sets.

Let W ⊆ Gσ be an open set with (x, k, y) ∈ W . Then there exists a basis
element Z(U,m, n, V ) of the topology on Gσ such that

(x, k, y) ∈ Z(U,m, n, V ) ⊆ W.

Then k = m− n for some m,n ∈ N with σm(x) = σn(y) ∈ X . Let

z := σm(x) = σn(y).

Hence there exists α, β ∈ G∗ such that |α| = m, |β| = n, and αz, βz ∈ X . Note
that r(α) ∩ r(β) 6= ∅ since s(z) ∈ r(α) ∩ r(β) 6= ∅. Then

C = Z(U, α, r(α) ∩ r(β), β, V ) ⊆ Z(U,m, n, V ) ⊆ W.

Finally, we show that each Z(U, α, A, β, V ) ∈ C is a compact set. To see
this, take any net {(xi, ki, yi)} in Z(U, α, A, β, V ) ∈ C . Then the first and
third coordinates will each have a convergent subnet due to the compactness
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of U and V , say to x and y, and the middle coordinate stays constant for
all i. Thus the net has a subnet converging to {(x, |α| − |β|, y)}, showing
compactness. Now, since Gσ is an étale groupoid with a basis of compact open
sets, it follows that Gσ is ample. �

Next we extend some known results of graphs to ultragraphs that relate
the properties of the graph with certain topological properties of its associated
groupoid. We begin with some definitions. A finite path α ∈ G∗ with |α| > 0
is a loop if s(α) ∈ r(α). We say α is a loop based at A ∈ G0 if s(α) ∈ A. If
α = α1 . . . αn is a loop, then α is a simple loop if s(αi) 6= s(α1) for i 6= 1; that
is, the loop does not pass through s(α1) multiple times. An exit for a loop
α = α1 . . . αn is either of the following:
(i) an edge e ∈ G1 such that there exists an i for which s(e) ∈ r(αi), but

e 6= αi+1,
(ii) a sink w such that w ∈ r(αi) for some i.

Remark 3.6. Since we are working only with ultragraphs that have no sinks,
in this paper, an exit for a loop takes only form (i) above. So, for a simple loop
α1 . . .αn with no exits, we have r(αi) = {s(αi+1)} for all i, with the convention
that αn+1 = α1.

An ultragraph G satisfies condition (L) if every loop has an exit. An infinite
path x ∈ p∞ is called eventually periodic if x = αγ∞ for some finite path α
and some loop γ, where γ∞ denotes the infinite path γγγ . . . . An infinite path
x ∈ p∞ is called wandering if |{i ∈ N | s(xi) = v}| < ∞ for every v ∈ G0. An
infinite wandering path x ∈ p∞ has a semi-tail if

|{i ∈ N | |ε(s(xi))| > 1 or |r(xi)| > 1}| < ∞.

Note that if an infinite path α1α2 . . . in a graph is wandering and eventually
each vertex emits only one edge (that is, there is N such that |s−1(s(αi))| = 1
for all i > N), then by definition the path has a semi-tail, and hence it is an iso-
lated point. This need not be the case in ultragraphs: suppose α= α1 . . . ∈ p∞

is such that r(αi) = {s(αi+1), vi} for distinct vertices s(α1), v1, s(α2), v2 . . . .
Then |{j ∈N | s(αj) = s(αi)}|=1 for every i∈N, and α is wandering. However,
α does not have a semi-tail because |r(αi)| > 1 for every i ∈ N, and is therefore
not an isolated point because we can deviate from the path at any r(αi).

The next proposition characterizes all the isolated points in X .

Proposition 3.7. Let G be an ultragraph with no sinks that satisfies condition

(RFUM), and let X be its associated edge shift space.

(i) An eventually periodic path x = αγ∞ ∈ p∞ is an isolated point if and only

if γ does not have an exit.

(ii) A wandering path x ∈ p∞ is isolated point if and only if x has a semi-tail.

These are the only isolated points.

Proof. (i) Assume that x = αγ∞ ∈ p∞ is isolated, but that γ has an exit.
Since G has no sinks, there is an edge e ∈ G1 such that s(e) ∈ r(γi) for some
0 < i ≤ |γ| and e 6= γi+1. Let D(β,A)F be any basic open neighborhood of x.
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Then β < x, and thus there is n ∈ N such that β < αγn. Let y = αγnγ1 . . . γie.
Then D(y,r(e)) ⊂D(β,A)F , and it contains a point distinct from x. Hence every
neighborhood of x contains a point different from x, which contradicts that
{x} is open.

For the converse, assume that x = αγ∞ ∈ p∞ and that γ has no exits.
Since G has no sinks and γ has no exits, it follows that |r(γi)| = 1 for every
i=1, . . . , |γ|. Therefore, D(αγ,r(γ)) only contains infinite paths inX . Moreover,
there is exactly one infinite path, namely x, implying that {x}=D(αγ,r(γ)) and
is thus open.

(ii) Let x ∈ p∞ be a wandering isolated point. Let D(β,A)F be any basic
open neighborhood of x. Hence β < x. If x does not have a semi-tail, then
there is an i > |β|+1 such that |r(xi)|> 1 or |ε(s(xi))|> 1. If |r(xi)|> 1, then,
since G has no sinks, there is an edge e ∈ G1, e 6= xi+1, such that s(e) ∈ r(xi).
Then there is an infinite path (distinct from x) x1 . . . xie . . . ∈ D(β,A)F . If
|ε(s(xi))| > 1, then there is an edge e 6= xi such that s(e) = s(xi), and hence
there is an infinite path x1 . . . xi−1e . . . ∈D(β,A)F (distinct from x). Therefore,
every neighborhood of x contains a point different from x, which contradicts
that {x} is open.

Conversely, assume that x ∈ p∞ is wandering and has a semi-tail. Then
there is n0 ∈ N such that |ε(s(xn))| = 1 and |r(xn)| = 1 for all n > n0. Hence
D(x1...xn+1,r(xn+1)) = {x} for all n > n0, and thus {x} is open.

Finally, we show that these are only types of isolated points. Let x be an
isolated point. We claim that x ∈ p∞. To see this claim, suppose that x is not
an infinite path, and let D(α,A)F be any neighborhood of x. Then, since we do
not have any sinks, we can extend x to an infinite path x̃ = x̃1x̃2 . . . such that
x̃|α|+1 /∈F . Then x̃∈D(α,A)F , contradicting the fact that x is an isolated point.
Hence x must be an infinite path if it is an isolated point. If x = x1x2 . . . ∈ p∞

is neither eventually periodic nor wandering, then there exists v ∈ G0 such
that |{i ∈ N | s(xi) = v}| =∞. Let D(α,A)F be any neighborhood of x, and let
m,n be any indices such that m < n, s(xm) = s(xn) = v and |α| < |x1 · · ·xm|.
Note that γ := xm · · ·xn−1 is a loop. Then x and y := x1 · · ·xm−1γ

∞ are two
distinct points and both are contained in D(α,A)F . However, this contradicts
that x is an isolated point since D(α,A)F is arbitrary. �

Proposition 3.8. Let G be an ultragraph with no sinks and that satisfies con-

dition (RFUM). Then the following are equivalent:

(i) the groupoid Gσ is effective;

(ii) the ultragraph G satisfies condition (L);
(iii) the set of all elements in X which are not eventually periodic is dense

in X;

(iv) the groupoid Gσ is topologically principal.

Proof. (i) ⇒ (ii) Assume that Gσ does not satisfy condition (L). Let γ be
a loop without an exit. By Proposition 3.7 (i), γ∞ is an isolated point. Then
|r(γi)| = 1 for i = 1, . . . , |γ|. Hence, for all n ∈ N, the only point in D(γn,r(γ))

is γ∞. Thus Z(D(γ2,r(γ)), γ
2, r(γ), γ, D(γ,r(γ))) = {(γ∞, |γ|, γ∞)} is an open
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subset of the stabilizer subgroup at (γ∞,0, γ∞), which is not contained in G
(0)
σ ,

and thus Gσ is not effective.
(ii) ⇒ (iii) Assume G satisfies condition (L). Let γ∞ ∈ X , and let D(α,A)F

be any neighborhood of γ∞. Then there exist e ∈ G1 such that s(e) ∈ r(γi)
for some 0 ≤ i ≤ |γ| and also n ∈ N such that D(γnγ1...γie,r(e)) ⊂ D(α,A)F . Let
y ∈ D(γnγ1...γie,r(e)). Then y is distinct from x. If y is also eventually peri-
odic, then we repeat the process above of taking an exit and forming a new
neighborhood contained in D(α,A)F . In this way, we obtain an infinite path
that is not eventually periodic contained in D(α,A)F . Hence the neighborhood
D(α,A)F of γ∞ has nonempty intersection with the subset of X consisting of
points which are not eventually periodic, showing that this set is dense in X .

(iii) ⇒ (iv) Assume the set of elements in X which are not eventually peri-

odic is dense in X . Suppose that (x, 0, x) ∈ G
(0)
σ has nontrivial isotropy, and

let U ⊂G
(0)
σ be an open neighborhood of (x,0, x). Then there is a (y,0, y) ∈ U

such that y in infinite and not eventually periodic. Since (y, 0, y) ∈ G
(0)
σ has

nontrivial isotropy if and only if x is eventually periodic and infinite, it fol-
lows that (y, 0, y) has trivial isotropy, which shows that Gσ is topologically
principal.

(iv) ⇒ (i) This is a general fact for locally compact Hausdorff groupoids [2].
�

Let α, β ∈ G∗ and A ∈ G0 such that (α,A), (β,A) ∈ p, and let F ⊆ ε(A) be
finite. Define

Z(α, β,A, FA) := Z(D(α,A)F , α, A, β,D(β,A)F )

= {(αξ, |α| − |β|, βξ) | ξ ∈ D(A,A)F}.

Note that all the sets Z(α, β,A, FA) are compact open since they are in C .
Our next goal is to prove that the sets Z(α, β, A, FA) also forms basis for

the topology on Gσ (Lemma 3.12). This basis will allow us to characterize the
open bisections and the elements of the topological full group of Gσ (Proposi-
tion 3.14).

Lemma 3.9. Let α, α′,∈ G∗ and A, B ∈ G0 be such that (α, A), (α′, B),∈ p,

and let FA ⊆ ε(A) and FB ⊆ ε(B) be finite subsets. Then D(α,A)FA
∩D(α′,B)FB

equals either of the following:

(i) ∅,

(ii) D(α,A)FA
,

(iii) D(α′,B)FB
,

(iv) D(α,A∩B)FA∪FB
.

In addition, if α = α′, then D(α,A)FA
∪D(α′,B)FB

= D(α,A∪B)FA∩FB
.

Proof. We have the following four cases.
(i) If α= α′, then D(α,A)FA

∩D(α,B)FB
=D(α,A∩B)(FA∪FB). In this case, we

also have D(α,A)FA
∪D(α,B)FB

= D(α,A∪B)(FA∩FB). Note that, in this case, if
(α,A), (α′, B) ∈ Xfin, then A = B since A,B ∈ Mα (Lemma 3.3).
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(ii) Suppose α < α′; then α′ = αγ with |γ|> 0 and such that γ1 ∈ ε(A) \ FA.
Then D(α′,B)FB

⊆ D(α,A)FA
. Hence, if α′

|α|+1 ∈ ε(A) \ FA, then

D(α′,B)FB
∩D(α,A)FA

= D(α′,B)FB

and empty otherwise.
(iii) By the same reasoning as in (ii), if α′ < α and α|α|+1 ∈ ε(B) \ FB , then

D(α′,B)FB
∩D(α,A)FA

= D(α,A)FA
and empty otherwise.

(iv) In any other case, D(α,A)FA
∩D(α′,B)FB

= ∅. �

Lemma 3.10. Let U ⊆ X be a compact open set. Then U can be written as

a disjoint union of basic open cylinders sets.

Proof. Since U is open and the topology on X is second-countable, we can
express U as a countable union of basic open cylinder sets. Since U is compact,
this union may be taken to be finite, say

(1) U =

N
⋃

i=1

D(αi,Ai)Fi
.

If D(αi,Ai)Fi
∩ D(αj ,Aj)Fj

6= ∅ for some i 6= j, then αi ≤ αj or αj ≤ αi by
Lemma 3.9. We may assume without loss of generality that αi ≤ αj . If αi <αj ,
then D(αj ,Aj)Fj

⊆ D(αi,Ai)Fi
, and we may omit D(αj ,Aj)Fj

from the union in
Equation (1). If αi = αj , then D(α,A)FA

∪D(α,B)FB
=D(α,A∪B)(FA∩FB), which

is again a basic open set. By either taking the bigger set or by taking the union
for all pairs of basic open sets in equation (1) with nonempty intersection, we
end up with a disjoint union. �

Lemma 3.11. Let α, β, α′, β′ ∈ G∗ and A,B ∈ G0 be such that

(α,A), (β,A), (α′, B), (β′, B) ∈ p,

and let FA ⊆ ε(A) and FB ⊆ ε(B) be finite subsets. Then

Z(α, β,A, FA) ∩ Z(α′, β′, B, FB)

equals either of the following:

(i) ∅,

(ii) Z(α, β,A, FA),
(iii) Z(α′, β′, B, FB),
(iv) Z(α, β,A ∩B,FA ∪ FB).
In addition, if α = α′, β = β′, then we also have

Z(α, β,A, FA) ∪ Z(α′, β′, B, FB) = Z(α, β,A ∪B,FA ∩ FB).

Proof. Note that if Z(α, β,A, FA) ∩ Z(α′, β′, B, FB) 6= ∅, then

D(α,A)FA
∩D(α′,B)FB

6= ∅, D(β,A)FA
∩D(β′,B)FB

6= ∅,

and |α| − |β| = |α′| − |β′|.
By Lemma 3.9, we may assume without loss of generality that α ≤ α′. The

same applies to D(β,A)FA
∩ D(β′,B)FB

. We claim that α = α′ if and only if
β = β′, and also that α < α′ if and only if β < β′. To see this, first assume

Münster Journal of Mathematics Vol. 14 (2021), 165–189
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that α = α′. Then |α| = |α′|, which together with |α| − |β| = |α′| − |β′| imply
that |β| = |β′|. Let x ∈ D(β,A)FA

∩ D(β′,B)FB
. Then x = βγ = β′δ for some

γ, δ ∈ X , which implies that β ≤ β′ or β′ ≤ β. Since |β| = |β′|, it follows that
β = β′. A similar argument gives the converse.

Assume that α < α′. Then |α| ≤ |α′| and |α| − |β| = |α′| − |β′| imply that
|β| ≤ |β′|. Similarly to above, D(β,A)FA

∩D(β′,B)FB
6= ∅ implies that β ≤ β′ or

β′ ≤ β. However, if |β| ≤ |β′|, then β ≤ β′. The converse follows from a similar
argument.

Next we show that Z(α, β, A, FA) ∩ Z(α′, β′, B, FB) is equal to one of the
sets in (i)–(iv). If α′ < α and (necessarily) β′ < β, then, by Lemma 3.9, we
have D(α,A)FA

∩D(α′,B)FB
= D(α,A)FA

and D(β,A)FA
∩D(β′,B)FB

= D(β,A)FA
,

which implies that Z(α, β, A, FA) ⊂ Z(α′, β′, B, FB) and gives (ii). Similarly,
if α < α′ and (necessarily) β < β′, then Lemma 3.9 implies that

Z(α′, β′, B, FB) ⊂ Z(α, β,A, FA),

which gives (iii). Finally, if α= α′ and β = β′, then applying Lemma 3.9 again
gives (iv). The union in (iv) is clear from Lemma 3.9. In all other cases, we
have the empty set, which completes the proof. �

Lemma 3.12. The collection

T = {Z(α, β,A, FA) | (α,A), (β,A) ∈ p, FA ⊆ ε(A) is finite}

forms a basis for the topology on Gσ. Moreover, every compact open set in Gσ

can be written as a disjoint union consisting of sets from T .

Proof. We first show that T is basis by showing every element in C can be
written as a union of elements from T .

Fix Z(U, α, A, β, V ) ∈ C . Then σ|α|(U) = σ|β|(V ), with U ⊆ D(α,A) and

V ⊆ D(β,A). Let W = σ|α|(U) = σ|β|(V ). By [8, Prop. 3.16], the shift map is
a homeomorphism on basic open sets of X . Hence W is compact and open, so
we can write

W =

N
⋃

i=1

D(γi,Bi)FBi
.

Since σ|α| and σ|β| are injective on U and V , it follows that

U =

N
⋃

i=1

D(αγi,Bi)FBi
(with s(γ1) ∈ A),

V =

N
⋃

i=1

D(βγi,Bi)FBi

for some γ ∈ G∗. Since σ|α|(D(αγi,Bi)FBi
) = σ|β|(D(αγj ,Bj)FBj

) if and only if

i= j, and σ|α|(D(αγi,Bi)FBi
)∩ σ|β|(D(αγj ,Bj)FBj

) =∅ otherwise, it follows that

Z(U, α,A, β, V ) =
N
⋃

i=1

Z(αγi, βγi, Bi, FBi
).
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Now, since T is a basis for the topology on Gσ, any compact open set can
be written as a union of elements from T , which in turn can be written as
a disjoint union by applying Lemma 3.11 to nonempty intersections. �

The following lemma describes the bisections in Gσ.

Lemma 3.13. Let U ⊂ Gσ be a compact open bisection with s(U) = r(U).
Then

U =
N
⊔

i=1

Z(αi, βi, Ai, FAi
),

where, for i = 1, . . . ,N , we have Ai ∈ G0, (αi,Ai), (βi,Ai) ∈ p and FAi
⊂ ε(Ai)

finite. Moreover,

s(U) =
N
⊔

i=1

D(βi,Ai)FAi
=

N
⊔

i=1

D(αi,Ai)FAi
= r(U).

Proof. Since U is a compact open bisection, we can write

U =
N
⊔

i=1

Z(αi, βi, Ai, FAi
)

by Lemma 3.12. That s(U) =
⊔N

i=1 D(βi,Ai)FAi
and r(U) =

⊔N
i=1 D(αi,Ai)FAi

follows from the definition of Z(αi, βi, Ai, FAi
) and the fact that the range

and source maps restricted to U are injective, and hence preserve disjoint
unions. �

We now characterize elements of the topological full group of the groupoid
Gσ associated with an ultragraph that satisfies condition (L) (that is, Gσ is
effective by Proposition 3.8).

Proposition 3.14. Let G be an ultragraph with no sinks and that satisfies

condition (RFUM) and condition (L). If πU ∈ JGσK, then the full bisection

U ⊆ Gσ can be written as

U =

( N
⊔

i=1

Z(αi, βi, Ai, FAi
)

)

⊔ (X \ supp(πU )),

where, for i= 1, . . . ,N , we have Ai ∈ G0, (αi,Ai), (βi,Ai) ∈ p, and FAi
⊂ ε(Ai)

finite, and

supp(πU ) =

N
⊔

i=1

D(βi,Ai)FAi
=

N
⊔

i=1

D(αi,Ai)FAi
.

The paths α1, . . . , αN are pairwise disjoint, as are the paths β1, . . . , βN , and αi

and βi are distinct for each 0 ≤ i ≤N . The homeomorphism πU : s(U)→ r(U)
is given by πU (βix) = αix for βix ∈ D(βi,Ai)FAi

and the identity otherwise.

Proof. The proof follows directly from Lemma 3.13 and Lemma 2.14. �
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4. Equivalence of groupoid and topological
full group isomorphisms

In this section, we prove our main results, Theorem 4.7 and Theorem 4.13,
which give conditions under which ultragraph groupoids are isomorphic if and
only if their topological full groups are (algebraically) isomorphic. These gen-
eralize [20, Thm. 10.10 and Thm. 10.11] from graphs to the ultragraphs. The
techniques and ideas in this section are based on [20], but adapted to ultra-
graphs. Throughout, we highlight some of the subtle differences between the
graph and ultragraph case.

We begin by defining three conditions for ultragraphs that generalize that of
[20, Def. 10.1]. Fix an ultragraph G with no sinks and that satisfies condition
(RFUM). If A,B ∈ G0, then we let

ApB := {(α,C) ∈ p | |α| ≥ 1, s(α,C) ∈ A,B ⊆ C}.

• G satisfies condition (K) if, for every v ∈ G0, there is either no simple loop
based at v or at least two simple loops based at v.

• G satisfies condition (W) if, for every wandering path α = α1 . . . ∈ p∞, we
have, for some i ∈ N,

(2) |{(β,C) ∈ s(α)ps(αi+1) | β 6= α1 . . . αi}| ≥ 1.

• G satisfies condition (∞) if, for every minimal infinite emitter A ∈ G0, we
have

|{e ∈ ε(A) | r(e)pA 6= ∅}| = ∞.

Remark 4.1. We remark on some subtleties in conditions (K), (W), and (∞)
for ultragraphs when compared with graphs. Firstly, in contrast to graphs,
a simple loop α1, . . . , αn in an ultragraph may have r(αi) ∩ r(αj) 6= ∅. Sec-
ondly, condition (W) is intended to provide us with an arbitrary number
of disjoint paths on a wandering path with no cycles. For this, the con-
dition that β 6= α1 . . . αi in (2) is crucial because edge ranges can be sets.
For example, if r(αn) = {s(αn+1), v1, v2}, then (α1 . . . αn, {s(αn+1), v1}) and
(α1 . . . αn, {s(αn+1), v2}) are two distinct ultrapaths in s(α)ps(αi+1), but not
disjoint as required later on. So, unlike graphs, the cardinality of the set in (2)
may be infinite, but with only one path (as opposed to an ultrapath).

Conditions (K) and (W) are intended to provide us with an arbitrary number
of disjoint path for a given path. This will be crucial in Theorem 4.5. In the
following lemmas, we illustrate this fact by considering loops and wandering
paths separately, and then combining these results in Lemma 4.4.

If there are two distinct simple loops based at a vertex in a graph, then
these loops are necessarily disjoint. This is not the case for ultragraphs. For
example, if G0 = {v1, v2, v3}, G

1 = {e1, e2} with s(ei) = vi, r(e1) = {v1, v2}, and
r(e2) = {v1, v3}, then e1 and e1e2 are two distinct simple loops based at v1,
but they are not disjoint. However, we can still find infinitely many disjoint
loops as the following lemma illustrates.
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Lemma 4.2. Suppose G satisfies condition (K). If ρ is a loop, then there are

infinitely many loops α1, . . . based at s(ρ) such that ρ, α1, . . . are all pairwise

disjoint and r(ρ) ∩ r(αi) 6= ∅ for i = 1, 2, . . . .

Proof. Since ρ is a loop, condition (K) implies that there are at least two
distinct simple loops τ1 and τ2 based at s(ρ) (but possibly not disjoint).

Suppose τ2 has minimal length between all simple loops based on s(ρ). If
τ1 and τ2 are disjoint, then τ1, τ2τ1, τ

2
2 τ1, . . . are disjoint and

s(τ1) = s(τ2) ∈ r(τ1) = r(τn2 τ1)

for every n ∈ N.
Otherwise, τ1 = τ2β for some β ∈ G∗. We claim that τ2τ2β and τ2β are

disjoint. If τ2β is an initial segment of τ2τ2β, then β is an initial segment
of τ2β. In this case, s(β) = s(τ2) = s(ρ), and since r(β) = r(τ1), β would
be a loop based on s(ρ). Since τ2 has minimal length, we have |τ2| ≤ |β|,
which would imply that β = τ2α for some α ∈ G∗ and that τ1 = τ2τ2β, which
contradicts the fact that τ1 is a simple loop. Now, repeating the argument
above for τ2τ2α and τ2β gives the required result. �

In the graph case, if α, β, γ are paths such that α = βγ, r(β) = r(α) = s(γ),
then γ is necessarily a loop. For ultragraphs, if we replace the equality
with s(γ) ∈ r(α) ∩ r(β), then γ is not necessarily a loop. For example, say
r(α) = {v,w} and γ is a path of length one such that s(γ) = v and r(γ) = {w}.
The proof of the following lemma has to take this into account and is different
from [20, Lem. 10.2 (2)].

Lemma 4.3. Let G be an ultragraph that satisfies condition (W) and α a wan-

dering path such that it has no loop based at s(αi) for any i. Then, for any

given N ∈ N, there exist n ∈ N and N + 1 disjoint ultrapaths in s(α)ps(αn+1),
one of which is an initial segment of α.

Proof. We prove by induction on N . If N = 0, we can choose n = 1 since
(α1, r(α1)) ∈ s(α)ps(α2). Fix N ∈N, and suppose that n ∈N is such that there
exist N + 1 disjoint paths (β(1), B1), . . . , (β

(N+1), BN+1) ∈ s(α)ps(αn+1). We
can assume without loss of generality that B1 = · · · = BN+1 = {s(αn+1)} and
that s(αm) 6= s(αn+1) for all m > n + 1, the latter because the path is wan-
dering. Since αn+1αn+2 . . . is also wandering, by condition (W), there exists
m > n+ 1 such that |{(γ,A) ∈ s(αn+1)ps(αm+1) | γ 6= αn+1 . . . αm}| ≥ 1. Let
γ 6=αn+1 . . .αm be such that (γ,A)∈ s(αn+1)ps(αm+1) for some A∈G0. Again,
we may assume without loss of generality that A = {s(αm+1)}. We claim that
the ultrapaths (β(1)αn+1 . . .αm,A), . . . , (β(N+1)αn+1 . . . αm,A), (α1 . . . αnγ,A)
are mutually disjoint in s(α)ps(αm+1). We start by noticing that, for

i, j ∈ {1, . . . , N + 1} with i 6= j,

(β(i)αn+1 . . . αm, A) and (β(j)αn+1 . . . αm, A) are still disjoint.
We now prove that (β(i)αn+1 . . . αm, A) and (α1 . . . αnγ,A) are disjoint for

any i = 1, . . . , N + 1. We divide in six cases.
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• If β(i) is disjoint from α1, . . . , αn, then β(i)αn+1 . . . αm is also disjoint from
α1 . . . αnγ.

• If β(i) = α1 . . . αk for some k < n, then s(αk+1) 6= s(αn+1); otherwise,
αk+1 . . . αn is a loop based on s(αk+1). In this case, β(i)αn+1 . . . αm is
disjoint from α1 . . . αnγ because the (k + 1)-coordinates are different.

• If β(i) = α1 . . . αnβ
′ for some β′ with |β′| > 0, then s(β′) 6= s(αn+1); other-

wise, β′ is a loop based on s(αn+1). In this case, β(i)αn+1 . . .αm is disjoint
from α1 . . . αnγ because s(γ) = s(αn+1) so that β′

1 6= γ1.
• If β(i) = α1 . . . αn and αn+1 . . . αn and γ are disjoint, then β(i)αn+1 . . . αm

is also disjoint from α1 . . . αnγ.
• Suppose that β(i) = α1 . . . αn and γ = α(n+1) . . . αmγ′ for some γ′. Notice

that s(γ′) 6= s(αm+1) because otherwise γ
′ is a loop based at s(αm+1) since

s(αm+1) ∈ r(γ) = r(γ′). This implies that (β(i)αn+1 . . . αm, A) is disjoint
from (α1 . . . αnγ,A).

• Suppose that β(i) = α1 . . . αn and γ = αn+1 . . . αk for some n+ 1 ≤ k < m.
As in the last case, we must have s(αk+1) 6= s(αm+1); otherwise, αk+1 . . .αm

is a loop based on s(αk+1). Again, this implies that (β(i)αn+1 . . . αm, A)
is disjoint from (α1 . . . αnγ,A).

Hence there are N + 2 mutually disjoint ultrapaths in s(α)ps(αm+1).
The last part follows from the induction process. �

The following lemma provide us with four disjoint paths when conditions (K)
and (W) are satisfied (the proof could also be easily modified to provide us
with any desired number of disjoint paths, but we will only need four).

Lemma 4.4. Suppose that G satisfies conditions (K) and (W). Then, for any

x ∈ p∞ and any n ∈ N, there exist m> n and four paths α1 = xn+1 . . . xm, α2,

α3, and α4 such that s(xm+1) ∈ r(αi) and s(αi) = s(xn+1) for all i, and the

ultrapaths (x1 . . . xnαi, {s(xm+1)}), i = 1, . . . , 4 are mutually disjoint.

Proof. We divide in three cases. First, suppose that, for some n < p < m,
xp . . . xm is a loop. Then, applying Lemma 4.2, we find the paths αi.

Now suppose that there is no segment after xn of x that is a loop, but
there exists p > n and a loop ρ based on s(xp+1). We find three disjoint loops
α′
2, α

′
3, α

′
4 based on s(xp+1). By choosing m> p+maxi=2,3,4 |α

′
i|, we have that

xp+1 . . . xm is disjoint from each α′
i because of the choice of m and the fact

that no segment of x after xn is a loop. In this case, α1 = xn+1 . . . xm and
αi = xn+1 . . . xpα

′
ixp+1 . . . xm for i = 2, 3, 4 are mutually disjoint.

Finally, if there is no loop based at any s(xi) for i > m, then we can apply
Lemma 4.3 to find the appropriate paths. �

Suppose that G satisfies conditions (K), (W), and (∞). We want to employ
[20, Thm. 6.2] to show that we have an equivalence between isomorphisms of
ultragraph groupoids and isomorphisms of their topological full groups. For
this, we need to show that the class of all pairs (Γ, X), where Γ is a subgroup
of JGσK containing the commutator subgroup and X is the edge shift space, is
a faithful class of space-group pairs (see Definition 2.16). By [20, Thm. 6.6], for
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such a class to be faithful, it is sufficient to show that the following properties
are satisfied (see also [20, Def. 6.3]).
(F1) For x ∈ X and any clopen neighborhood A ⊂ X of x, there exists an

involution φ ∈ Γ such that x ∈ supp(φ) and supp(φ) ⊆ A.
(F2) For any involution φ ∈ Γ \ {1} and any nonempty clopen set A⊆ supp(φ),

there exists a ψ ∈ Γ \ {1} such that supp(ψ) ⊆ A∪ φ(A) and φ(x) = ψ(x)
for every x ∈ supp(ψ).

(F3) For any nonempty clopen set A ⊂ X , we have that there exists φ ∈ Γ
such that supp(φ) ⊆ A and φ2 6= 1.

Let KF denote the class of all space-group pairs that satisfy conditions (F1),
(F2), and (F3) above.

The following theorem extends [20, Thm. 10.3] to ultragraphs. The struc-
ture of the proof is essentially the same as that of [20, Thm. 10.3] (which is
based on Matui’s proof [19, Prop. 3.6]) since we now have the description of
the full bisections and topological full group of Gσ in an ultragraph context
(Proposition 3.14).

Theorem 4.5. Let G be an ultragraph with no sinks and that satisfies condition

(RFUM). Let Γ be a subgroup of JGσK containing the commutator subgroup

D(JGσK). Then (Γ, G
(0)
σ ) ∈ KF if and only if G satisfies conditions (K), (W),

and (∞).

Proof. We first show that conditions (K) and (W) imply conditions (F2) and
(F3), and then that (K), (W), and (∞) are necessary and sufficient for (F1)
to hold.

Assume conditions (K) and (W) are satisfied. We first show (F3). Let A⊂X
be a nonempty clopen set. Then there is x ∈ A and a cylinder set D(β,B)F ⊆ A
containing x for some (β, B) ∈ p and finite set F ⊂ ε(B). Since G does not
have sinks, there is an edge e ∈ G1 with s(e) ∈ B. Then D(βe,r(e)) ⊆ D(β,B)F .
So we may assume without loss of generality that, for any nonempty clopen
set A ⊂ X , there is an ultrapath (β, B) ∈ p such that D(β,B) ⊆ A (without
a set F ⊂ ε(B)). Since G has no sinks, we have that there exists at least
one infinite path x ∈ p∞ such that s(x) ∈ B. By Lemma 4.4, there are three
disjoint paths α1, α2, α3 based at B such that C = r(α1) ∩ r(α2) ∩ r(α3) 6= ∅.
Let V = Z(βα1, βα2, C,∅) and W = Z(βα2, βα3, C,∅), and define π

V̂
and

π
Ŵ

as in Lemma 2.15. Now define Λ = [π
V̂
, π

Ŵ
]. Let y ∈ X be such that

s(y) ∈C. Then Λ(βα3y) = βα2y,Λ(βα2y) = βα1y and Λ(βα1y) = βα3y (under
the convention that [g,h] = g−1h−1gh). Hence Λ2 6= id and Λ3 = id. Also, since
D(βαi,C) ⊆ D(β,B) ⊆ A for i = 1, 2, 3, it follows that supp(Λ) ⊆ A. Hence (F3)
is satisfied.

Next we show that (F2) is satisfied. Let τ ∈ Γ \ {1}, and let A ⊆ supp(τ)
be a nonempty clopen set. It follows from Proposition 3.14 that τ = πU , where
U is a full bisection in Gσ and can be written as

U =

( N
⊔

i=1

Z(αi, βi, Ai, FAi
)

)

⊔ (X \ supp(πU )).
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Similarly to the first part of the proof, we can find an ultrapath (γ, B) ∈ p

such that D(γ,B) ⊆ A ∩D(βj,Aj)FAj
for some index 1 ≤ j ≤N , and two disjoint

paths λ1 and λ2 based at B such that C = r(λ1) ∩ r(λ2) 6= ∅. We may assume
without loss of generality that |γ| > |βj | so that γ = βjρ for some ρ ∈ G∗ with
|ρ| ≥ 1 and ρ1 /∈ FAj

. Define the bisections

V = Z(βjρλ1, βjρλ2, C,∅) ⊔ Z(αjρλ1, αjρλ2, C,∅),

W = Z(αjρλ1, βjρλ2, C,∅).

Since τ = πU is an involution, we have τ(βjx) = αjx for βjx ∈D(βj ,Aj)FAj
and

τ(αjx) = βjx for αjx ∈ D(αj ,Aj)FAj
. Define Λ = [π

V̂
, π

Ŵ
]. Then Λ ∈ Γ, and

supp(Λ) = D(βjρλ1) ⊔D(βjρλ2) ⊔D(αjρλ1) ⊔D(αjρλ2)

⊆ D(γ,B) ∪ τ(D(γ,B)) ⊆ A ∪ τ(A).

Since both τ and Λ interchange the initial paths αj and βj , it follows that they
agree on supp(Λ). Hence (F2) is satisfied.

Next we show that (F1) holds if and only if conditions (K), (W), and (∞)
hold. Since properties (F1) and (F3) fail in the presence of isolated points, we
assume for the remainder of the proof that G has no sinks, satisfies (RFUM),
has no semi-tails, and satisfies condition (L) (see Proposition 3.7), and we fix
an x ∈ X and a clopen neighborhood A ⊂ X of x.

Assume that conditions (K), (W), and (∞) hold. First assume that x ∈ p∞.
By choosingm big enough, we may assumeD(x1...xm,r(xm))⊂A. By Lemma 4.4,

we can find three mutually disjoint paths β(1), β(2), β(3) ∈ s(xm+1)ps(xn+1), all
of which are also disjoint from xm+1 . . . xn. Now, we put α(1) = x1 . . . xmβ(1),
α(2) = x1 . . . xmβ(2), α(3) = x1 . . . xmβ(3), and α(4) = x1 . . . xn. Note that
B = r(α(1)) ∩ r(α(2)) ∩ r(α(3)) ∩ r(α(4)) 6= ∅. Define bisections

V = Z(α(1), α(2), B,∅) ⊔ Z(α(3), α(4), B,∅),

W = Z(α(1), α(3), B,∅).

Then π = [π
V̂
, π

Ŵ
] ∈ Γ with supp(π) =

⊔4
i=1 D(α(i),B) ⊆ D(x1...xm,r(xm)) ⊂ A,

π2 = id, and x ∈ D(α(4),B) ⊆ supp(π). Hence (F1) is satisfied.

Secondly, assume that x = (β, B) ∈ Xfin. Since B is a minimal infinite
emitter, there is a finite set F ⊂ ε(B) such that D(β,B)F ⊆ A. Condition (∞)
implies that |{e ∈ ε(B) | r(e)pB 6= ∅}| = ∞. Hence we can find three disjoint

loops α(1), α(2), α(3) based at B such that the edges α
(i)
1 /∈ F , i = 1, 2, 3. Put

H = F ∪ {α
(1)
1 , α

(2)
1 , α

(3)
1 }, and define

V = Z(βα(1), β, B,H) ⊔ Z(βα(2), βα(3), B,H),

W = Z(βα(1), βα(2), B,H).
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Then π = [π
V̂
, π

Ŵ
] ∈ Γ with

supp(π) =

3
⊔

i=1

D(βα(i),B)H ⊔D(β,B)H ⊆ D(β,B)F ⊂ A,

π2 = id, and x ∈ D(β,B)H ⊆ supp(π). Hence (F1) is satisfied.
Next assume properties (F1)–(F3) hold. We show this implies conditions

(K), (W), and (∞). We do this separately for each. We begin with condi-
tion (K). Assume that G dos not satisfy condition (K). Then there is a vertex
v ∈ G0 with a single simple loop γ based at v. Since G satisfies condition (L),
the loop γ has an exit. However, since we assume that there are no sinks,
there exists an edge e ∈ G1 such that s(e) = s(γi) and e 6= γi for some i ∈ N.
Let x = γ∞ and A = D(γ,r(γ)). We show that (F1) does not hold for this
pair. Assume there is a πU ∈ JGσK such that γ∞ ∈ supp(πU )⊆D(γ,r(γ)). Then
there is a basic open neighborhood Z(α, β,B,∅) ⊆ U (Proposition 3.14) with
(α,B), (β,B) ∈ p, α 6= β, and γ∞ ∈D(β,B) ⊂D(γ,r(γ)). Hence β = γmρ for some
m ∈ N and ρ ∈ G∗ with |ρ|< |β|. Therefore, by extending α and β if necessary,
we may assume that β = γm. Similarly, D(α,B) ⊂D(γ,r(γ)), and we may assume
that α = γn. However, since α 6= β and γ is the only simple loop based at v,
it follows that m 6= n. Let z ∈ ε(r(e)). Then (πU )

2(γ2mez) = γ2nez 6= γ2mez.
Hence πU is not an involution, which implies that (F1) is not satisfied.

We show next the necessity of condition (W) for (F1) to be satisfied. Assume
that condition (W) does not hold. Then there is an infinite wandering path
x = x1x2 · · · such that

(3) {(β,C) ∈ s(x)ps(xi+1) | β 6= x1 . . . xi} = ∅

for every i ∈ N. Put A = D(x1,r(x1)), and suppose that πU ∈ JGσK is such
that x ∈ supp(πU ) ⊆ D(x1,r(x1)). Then there is a basic open neighborhood
Z(α, β,B,∅) ⊆ U (Proposition 3.14) with (α,B), (β,B) ∈ p, α 6= β, and

x ∈ D(β,B) ⊆ supp(πU ) ⊆ D(x1,r(x1)).

Hence β = x1 · · ·xm for some m ∈ N. Since D(α,B) ⊆ supp(πU ) ⊆ D(x1,r(x1)),
it follows that s(x) = s(α) = s(β) and s(xm+1) ∈ B. Thus

(α,B) ∈ {(β,C) ∈ s(x)ps(xi+1) | β 6= x1 . . . xi},

which contradicts (3) because α 6= β = x1 · · ·xm. Thus (F1) is not satisfied.
Finally, we show the necessity of condition (∞) for (F1) to be satisfied. As-

sume that condition (∞) does not hold. Then there is a minimal infinite emitter
B ∈ G0 such that the set F := {e∈ ε(B) | r(e)pB 6=∅} is finite. Put x= (B,B),
and let A=D(B,B)F . We claim that (F1) fails for this pair. To see this, suppose
that πU ∈ JGσK is such that x ∈ supp(πU ) ⊆ D(B,B)F . Then there is a basic
open neighborhood Z(α,β,C,∅)⊆U (Proposition 3.14) with (α,C), (β,C) ∈ p,
α 6= β, (B, B) ∈ D(α,C) ⊆ D(B,B)F and (B, B) ∈ D(β,C) ⊆ D(B,B)F . Since
(B, B) ∈ D(α,C) ⊆ D(B,B)F and (B, B) ∈ D(β,C) ⊆ D(B,B)F , it follows that
B ⊆ C and that α = β = B, which contradicts that α 6= β and completes the
proof. �
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Lemma 4.6. Let G be an ultragraph with no sinks that satisfy conditions

(RFUM), (K), (W), and (∞). Then OrbGσ
(x) is infinite for each x ∈ X.

Proof. The proof is exactly the same as [20, Lem. 10.9]. �

We can now state the first main result of this section.

Theorem 4.7. Let G and F be ultragraphs with no sinks that satisfy conditions

(RFUM), (K), (W), and (∞). Let Γ be a subgroup of JGσK containing the

commutator subgroup D(JGσK), and let Λ be a subgroup of JFσK containing

the commutator subgroup D(JFσK). Then the following are equivalent:

(i) Gσ
∼= Fσ as topological groupoids;

(ii) JGσK ∼= JFσK as abstract groups;

(iii) D(JGσK) ∼= D(JFσK) as abstract groups.

Proof. Let X denote the edge shift space of G, and let Y be the edge shift
space of F . It follows from Theorem 4.5 that (Γ, X) ∈ KF and (Λ, Y ) ∈ KF .
By [20, Thm. 6.6], the class KF is a faithful class of space-group pairs. The
result now follows directly from [20, Prop. 6.2], Lemma 4.6, [20, Lem. 4.9], and
[20, Prop. 4.10]. �

Example 4.8. We give an example of an ultragraph G with property (RFUM)
such that the ultragraph C∗-algebra associated with G is not isomorphic to
any graph C∗-algebra [21, Rem. 4.4], and which satisfies conditions (K), (W),
and (∞). Let G be the ultragraph associated with the matrix A given by

A(i, j) =

{

1 if i = j, or i = j + 2, or i ∈ {1, 2} and j ≥ 3,

0 otherwise.

Then G is given by a countable number of vertices, say {vi}, and a countable
number of edges, say {ei}, such that s(ei) = vi for all i, r(e1) = {vi | i 6= 2},
r(e2) = {vi | i 6= 1}, and, for n ≥ 3, r(en) = {vn−2, vn}. It is straight-forward
to check that G satisfies condition (K). The only minimal infinite emitter is
r(e1) ∩ r(e2), and condition (∞) follows. Finally, notice that G has no wan-
dering path and thus satisfies condition (W).

Our next goal is to prove another isomorphism theorem with slightly weaker
conditions than in Theorem 4.7. However, as a result of this weakening, we
lose the isomorphism of subgroups (as is already evident in the case of graphs
[20, Thm. 10.11]).

Definition 4.9. G satisfies condition (T) if, for every vertex v ∈ G0, there
exists a vertex w ∈ G0 such that

|{β ∈ G∗ | there exists C such that (β,C) ∈ {v}p{w}}| ≥ 2.

Lemma 4.10. Let G be an ultragraph with no sinks that satisfies condition

(RFUM). The groupoid Gσ is non-wandering if and only if G satisfies condi-

tions (L) and (T).

Münster Journal of Mathematics Vol. 14 (2021), 165–189



Topological full groups of ultragraph groupoids 187

Proof. The proof follows the same line of [20, Prop. 10.7 (i)]. To show that
conditions (L) and (T) imply that Gσ is non-wandering, we merely have to
consider our cylinder set D(µ,r(µ)), instead of Z(µ) in [20, Prop. 10.7 (i)].

If condition (L) does not hold, then X has isolated points, by Proposi-
tion 3.7, and thus Gσ is wandering.

Now, suppose condition (T) is not true, and let v be a vertex where the
condition fails; that is, for each vertex w, either there is no path connecting v
to w or there exists only one path connecting v to w. For (α,A) ∈X such that
s(α) = v, since α connects v to any element of A, α is the only path with this
property. So if (β, B) ∈ D({v},{v}) ∩ OrbGσ

(α, A), then s(β) = v and B = A
so that β connects v to any element of A, and therefore β = α. And for an
infinite path x ∈ X , the proof that (β,B) ∈ D({v},{v}) = {x} is the same as in
[20, Prop. 10.7]. We again conclude that Gσ is wandering. �

Definition 4.11. Let G be an ultragraph with no sinks. We say that a minimal
infinite emitter A ∈ G0 is degenerate if it satisfies one of the two following
conditions:
(IE1) v is a source for every v ∈ A;
(IE2) there exists a unique v ∈ A such that v is not a source, and for this v,

we have G1v = {e} and that s(e) is a source.
And we say that a vertex v ∈G0 is degenerate if one of the following conditions
is satisfied:
(V1) G1v = {e} = vG1v;
(V2) G1v = {e, f}, where e ∈ vG1 and s(f) is a source;
(V3) there exists a vertex w different from v such that there are edges e, f

with G1v = {f} = wG1v and G1w = {e} = vG1w.
Finally, G satisfies condition (ND) if there are no degenerate infinite emitters

and no degenerate vertices.

Lemma 4.12. Let G be an ultragraph with no sinks that satisfies condition

(RFUM). Then |OrbGσ
(x)| ≥ 3 for all x ∈ X if and only if G satisfies condi-

tion (ND).

Proof. Recalling the definition of orbit given in Subsection 2.12, we see that
y ∈ OrbGσ

(x) if and only if x and y have the same tail.
An element x such that |OrbGσ

(x)| = 1 must be of the form x = e∞, where
s(e) is a degenerate vertex satisfying (V1) from Definition 4.11, or it is of the
form x = (A,A), where A is a minimal infinite emitter satisfying (IE1) from
Definition 4.11.

Now, if x is such that |OrbGσ
(x)| = 2, then there are three possibilities for

OrbGσ
(x), namely, {(A,A), (e,A)}, {e∞, fe∞}, or {(ef)∞, (fe)∞}, from where

we get conditions (IE2), (V2), and (V3) of Definition 4.11, respectively. �

Theorem 4.13. Let G and F be ultragraphs with no sinks that satisfy condi-

tions (RFUM), (L), (T), and (ND). Then the following are equivalent:

(i) Gσ
∼= Fσ as topological groupoids;

(ii) JGσK ∼= JFσK as abstract groups.
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Proof. Since the groupoids Gσ and Fσ are ample, the result follows immedi-
ately from Lemma 4.12 and [20, Thm. 7.10]. �
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[12] D. Gonçalves and B. B. Uggioni, Ultragraph shift spaces and chaos, Bull. Sci. Math.
158 (2020), 102807, 23 pp. MR4028649

[13] M. Imanfar, A. Pourabbas, and H. Larki, The Leavitt path algebras of ultragraphs,
Kyungpook Math. J. 60 (2020), no. 1, 21–43.

[14] T. Katsura, P. S. Muhly, A. Sims, and M. Tomforde, Ultragraph C∗-algebras via topo-
logical quivers, Studia Math. 187 (2008), no. 2, 137–155. MR2413313

[15] T. Katsura, A. Sims, and M. Tomforde, Realization of AF-algebras as graph algebras,
Exel–Laca algebras, and ultragraph algebras, J. Funct. Anal. 257 (2009), no. 5, 1589–
1620. MR2541281

[16] A. E. Marrero and P. S. Muhly, Groupoid and inverse semigroup presentations of ultra-
graph C∗-algebras, Semigroup Forum 77 (2008), no. 3, 399–422. MR2457327

[17] K. Matsumoto and H. Matui, Full groups of Cuntz–Krieger algebras and Higman-
Thompson groups, Groups Geom. Dyn. 11 (2017), no. 2, 499–531. MR3668049

[18] H. Matui, Homology and topological full groups of étale groupoids on totally discon-
nected spaces, Proc. Lond. Math. Soc. (3) 104 (2012), no. 1, 27–56. MR2876963

[19] H. Matui, Topological full groups of one-sided shifts of finite type, J. Reine Angew.
Math. 705 (2015), 35–84. MR3377390

[20] P. Nyland and E. Ortega, Topological full groups of ample groupoids with applications
to graph algebras, Internat. J. Math. 30 (2019), no. 4, 1950018, 66 pp. MR3950815

Münster Journal of Mathematics Vol. 14 (2021), 165–189



Topological full groups of ultragraph groupoids 189
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