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Kurzzusammenfassung

iese Dissertation behandelt die Analyse der statistischen und dynamischen Ei-
genschaften von konvektiven Systemen sowie der darin auftretenden kohärenten
Strukturen. Konvektion ist ein Phänomen, welches auftritt, wenn die Bewegung ei-

nes Fluids von Auftriebskräften angetrieben wird, wie es für viele Arten von Strömungen
der Fall ist, die in der Natur auftreten. Die Bewegung der tektonischen Platten, der Ozea-
ne, der Atmosphäre sowie der Sonnenoberfläche können auf derartige Auftriebskräfte
zurückgeführt werden. Das Paradebeispiel dieses Phänomens wird als Rayleigh–Bénard-
Konvektion bezeichnet: Ein sich zwischen zwei horizontalen Platten befindendes Fluid
wird von unten geheizt und von oben gekühlt, was einen Stoff- und damit Wärmetrans-
port durch die Fluidschicht zur Folge hat. Das Spektrum der verschiedenen Regime und
Strukturen, die sich in der Strömung beobachten lassen, reicht von stabiler laminarer
Konvektion bis zu hochturbulenten Strömungen, die bei großer Temperaturdifferenz
zwischen den beiden horizontalen Platten auftreten.
Die sprunghafte und verworrene Struktur turbulenter Konvektion macht eine statis-

tische Beschreibung unumgänglich, da auf der einen Seite eine punktweise Vorhersage
einer einzelnen Strömungskonfiguration nicht in greifbarer Nähe ist, auf der anderen
Seite aber auch aufgrund des chaotischen Verhaltens nicht sehr aufschlussreich wäre.
Nichtsdestoweniger treten in konvektiven Strömungen oft kohärente Strukturen mit
einer charakteristischen Dynamik auf, die wiederum die Statistik beeinflussen und somit
für ein tiefergehendes Verständnis des Systems essentiell sind. Gemäß dieses Gedanken-
gangs schlagen wir den folgenden Weg zur Analyse der Statistik und der Dynamik von
konvektiven Strömungen ein:

Im ersten Teil der Arbeit untersuchen wir die Temperaturfluktuationen in turbulenter
Rayleigh–Bénard-Konvektion und deren Statistik mit Hilfe ihrer Verteilungsfunktion
(englisch: probability density function, PDF). Ausgehend von den Grundgleichungen
leiten wir eine Bewegungsgleichung her, die die Form der Temperatur-PDF festlegt. Des
Weiteren schlagen wir eine Methode vor, wie sich die Entwicklung der PDF mit den
durchschnittlichen Transporteigenschaften der turbulenten Strömung in Verbindung brin-
gen lässt. Dadurch können wir die Statistik mit der Dynamik des Systems verknüpfen. So
lassen sich die Vorgänge im System aufgeschlüsselt nach ihrer Temperatur betrachten, und
wir können die verschiedenen Verhaltensweisen von Fluid unterschiedlicher Temperatur
an unterschiedlichen Stellen in der Konvektionszelle analysieren. Der hier vorgeschlagene
Ansatz macht es nötig, ungeschlossene Terme aus numerischen Simulationen zu gewinnen.
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Kurzzusammenfassung

Wir verwenden Daten, die in drei verschiedenen Geometrien berechnet wurden, und sind
so in der Lage, allgemeine Mechanismen sowie subtile Unterschiede herauszuarbeiten.
Der zweite Teil beschäftigt sich damit, kohärente Strukturen und deren Zusammen-

setzung in turbulenter Rayleigh–Bénard-Konvektion zu erfassen. Dazu benutzen wir
die sogenannte proper orthogonal decomposition (POD), ein etabliertes Verfahren, wel-
ches die Konstruktion von orthogonalen Basismoden zu einem gegebenen Datensatz
erlaubt. Die Basismoden lassen sich hierarchisch nach der in ihnen enthaltenen Energie
einordnen. Mit diesen Moden kann ein Basiswechsel durchgeführt werden, was eine
besser an turbulente Konvektion angepasste Beschreibung erlaubt, und es ist möglich, die
Dynamik der großskaligen kohärenten Strukturen vom Hintergrund der feinskaligen
Turbulenz zu trennen. Anschließend argumentieren wir, dass die Energie keine geeignete
Größe ist, um das System zu beschreiben, und dass stattdessen eine Charakterisierung
mit Hilfe des Wärmetransports physikalisch sinnvoller ist. Dementsprechend schlagen
wir eine Modifikation des POD-Verfahrens vor, die an konvektive Strömungen angepasst
ist und die die auftretenden Strukturen entsprechend der von ihnen transportierten
Wärmemenge klassifizieren kann. Anhand von Daten aus einer numerischen Simulation
zweidimensionaler Konvektion demonstrieren wir dann, dass dieser neue Ansatz besser
geeignet ist, um den Wärmetransport und dessen Zeitserie sowie Verteilungsfunktion zu
beschreiben.
Im dritten Teil der Arbeit entfernen wir uns von turbulenten Strömungen und un-

tersuchen stattdessen die Statistik und die Strukturen, die sich beim Eintreten von
Konvektion zeigen. Das Verhalten in diesem Regime kann durch die stochastische Swift–
Hohenberg-Gleichung modelliert werden, einer nichtlinearen Bewegungsgleichung für
einen Ordnungsparameter, der dem Temperaturfeld in horizontalen Schnitten durch
ein Konvektionsexperiment entspricht. Dabei werden Störstellen im System durch eine
stochastisch fluktuierende Kraft nachgebildet, was eine statistische Beschreibung nahelegt.
Wir leiten eine Bewegungsgleichung für die Verteilungsfunktion des Ordnungsparameters
her, die die Form einer Fokker–Planck-Gleichung besitzt. Dadurch können wir die Form
der Verteilungsfunktion zu den Termen der Swift–Hohenberg-Gleichung in Beziehung
setzen, wobei ungeschlossene Terme durch numerische Simulationen bestimmt werden.
Als ein Nebenprodukt der numerischen Simulation entwickeln wir eine Methode, mit
der sich schnell statistische Ensembles des stochastischen Swift–Hohenberg-Systems
generieren lassen. Dieses Verfahren lässt sich auf beliebige ausgedehnte Gradientensysteme
erweitern, die unter dem Einfluss von Rauschen stehen.
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Abstract

his thesis deals with the analysis of the statistics and the dynamics as well as
of coherent structures that are found in convecting systems. Convection is a
phenomenon that occurs whenever a fluid is driven by buoyancy forces, as is the

case for many types of flows encountered in nature. The motion of the tectonic plates, the
oceans, the atmosphere and the outer layers of the sun can all be traced back to buoyancy.
The prime example of this principle is the so-called Rayleigh–Bénard convection: A
fluid enclosed between two horizontal plates is heated from below and cooled from above,
which induces a transport of mass and thereby of heat energy through the horizontal
fluid layer. The spectrum of different flow regimes and structures that this system displays
ranges from stable laminar convection to highly turbulent flows which occur when the
temperature difference between the horizontal plates is increased.
The erratic and tangled structure of turbulent convection necessitates a statistical

description, as a pointwise prediction of a single realization of the flow is on the one
hand out of reach, and on the other hand not very insightful due to the chaotic behavior.
Nevertheless, the typical dynamics and coherent structures that are found in convective
flows influence the statistics, and their behavior is crucial for a deeper understanding of
the system. Along these lines, we pursue the following approach in analyzing the statistics
and dynamics of convection:
In the first part of the thesis, we examine the statistics of temperature fluctuations in

turbulent Rayleigh–Bénard convection with the help of their probability density function
(PDF). We derive an evolution equation from first principles that determines the shape
of the temperature PDF. Furthermore, we propose a method to link the evolution of the
PDF to the mean transport properties in the convection cell, thus connecting the statistics
and the average dynamics in turbulent convection. This results in a temperature-resolved
view of Rayleigh–Bénard convection that describes the distinct dynamics of fluid of
different temperatures in different regions of the convection cell. The appearing unclosed
terms are estimated from direct numerical simulations of convection in three different
geometries. We are thus able to work out the general picture as well as subtle differences
between the three convection cases we consider.

The second part concentrates on the detection and composition of coherent structures
in turbulent Rayleigh–Bénard convection. To this end, we apply a technique known
as proper orthogonal decomposition (POD), which is able to build a hierarchical set of
orthogonal basis modes from data, and the modes can be organized by the energy that
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Abstract

they contain. These modes can then be used to transform the data into a basis that is more
adapt in describing the turbulent flows, and it becomes possible to separate the dynamics
of the large-scale coherent structures from the small-scale background turbulence acting
as noise. We then argue that instead of the energy, the physically more relevant quantity
to describe the system is the heat transport through the fluid layer. Thus, we propose a
modification of the usual POD approach that is able to grasp the structures classified by
the heat they carry. A numerical data set of two-dimensional convection is then used as a
test case to show that this new approach consistently performs better in describing the
heat transport and its time series as well as its distribution function.

For the third part, we depart from turbulent states and instead investigate the structures
and statistics that are found near the onset of convection. The behavior in this regime can
be modeled by the stochastic Swift–Hohenberg equation, a nonlinear order parameter
equation that describes the temperature field in horizontal slices of convection experi-
ments, and impurities are included as a fluctuating force. The noise term that influences
the dynamics suggests a stochastic treatment, and we derive an evolution equation of
Fokker–Planck-type for the probability density function of the order parameter. We
then show how the shape of the PDF can be related to the terms of the Swift–Hohenberg
equation, where unclosed terms have to be estimated from direct numerical simulations.
In passing we propose a fast numerical method of generating ensembles of the stochastic
Swift–Hohenberg equation that can be extended towards arbitrary spatially extended
gradient systems subjected to noise.
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Mephistopheles:
Der ganze Strudel strebt nach oben;
Du glaubst zu schieben, und du wirst geschoben.

Faust I, Goethe





1 Introduction

onvection – the motion of a liquid or a gas that is driven by temperature differ-
ences – is the major mechanism at work for a wide range of flows that are found in
nature and engineering. It has been one of the first and until today remain among

the classical systems of fluid dynamics research, and despite of more than a century worth
of effort, the profound understanding of convection remains as one key ingredient in the
greater goal of the turbulence problem.1

1.1 Convection

The phenomenon of convection occurs when a fluid (i. e., a liquid or a gas) in a
downwards-acting gravity field is destabilized by temperature and thus density differences:
Fluid of lower density rises upwards, while higher densities fall down. One of the most
prominent and also the prime example for this phenomenon is called Rayleigh–Bénard
convection: A layer of fluid is confined between two horizontal plates, where a hot plate
is at the bottom and a cold plate is at the top. When the temperature difference between
the hot bottom and the cold top is high enough, the heated fluid at the bottom plate is
able to overcome its inner friction (i. e., viscosity) and starts to move up towards the cold
top plate. The system thus transports the heat that is injected at the bottom towards the
top by convection, where it is emitted from the system. This macroscopic fluid motion is
able to transport much more heat through the fluid layer than what would be possible
by pure heat conduction, i. e. when the fluid only moves on an atomic scale but not
macroscopically. The name of this system goes back to the first experiments of Bénard
(1901) and the theoretical description of the onset of convection by Rayleigh (1916).
Examples of the temperature field of Rayleigh–Bénard convection in different settings
are shown in figures 1.1 and 1.2.
This seemingly simple process – fluid motion induced by a temperature gradient – is

at the heart of nearly all the complex flows of fluid that occur in nature: Starting from
the plate tectonics in the mantle of the earth, which are caused by the motion of magma
between the hot core and the cold crust, it is also the principle driving force behind the

1The turbulence problem is deemed by some to be that nobody precisely knows what “the” turbulence prob-
lem is, although the Navier–Stokes existence and smoothness proof, the phenomenon of intermittency
and its interplay with the small-scale statistics, as well as the infamous closure problem of turbulence seem
to be constantly recurring unsolved components.

1



1 Introduction

Figure 1.1: Numerical simulation of three-dimensional convection with periodic horizontal
boundaries. The parameters are Ra= 109 and Pr= 1. The temperature field is shown, with
red corresponding to hot and blue to cold fluid; the mean temperature is made translucent.
Image adapted from Lülff (2011, sec. 1.1), where also details can be found.

circulation of the oceans and the atmosphere that both exhibit a temperature gradient
because heat is emitted at the top side. Further examples include the convection of plasma
in the outer layers of the sun as well as more down-to-earth examples borrowed from
engineering applications, e. g. the heat distributed into a room by a radiator or convection
patterns observed in solidifying liquid metals.
The flow structures and patterns that the system displays depend mainly on the

temperature difference between the two horizontal plates as well as the properties of the
fluid. The relevant quantities are condensed in two dimensionless control parameters, the
Rayleigh and the Prandtl number:

Ra=
αgδT L3

ν�
and Pr=

ν

�
(1.1)

The Rayleigh number is proportional to the temperature difference δT between bottom
and top and also strongly dependent on the distance L between the horizontal plates, and
the Prandtl number is defined as the ratio of inertia diffusion to heat diffusion. The
remaining quantities are the thermal expansion coefficient α, the gravitational acceleration
g , the kinematic viscosity ν and the thermal diffusivity �. Loosely speaking, the Rayleigh

2



1.1 Convection

Figure 1.2: Snapshot of two-dimensional convection with periodic horizontal boundaries
obtained from numerical simulation. Hot fluid is represented by reddish colors, cold fluid
is blue, and fluid of average temperature is white. The parameters of this simulation are
Ra= 1013 and Pr= 1, and at the bottom and top are no-slip plates of constant temperature.

number describes the experimental setup, while the Prandtl number characterizes the
fluid. A third control parameter that is often included is the aspect ratio

Γ=
lateral extent

vertical extent
(1.2)

that relates to the geometry of the fluid volume.
When the Rayleigh number is gradually increased, the system exhibits a wide range

of different flow configurations with distinct features: For low Ra, the fluid remains at
rest, and heat is transported through the system only by diffusion. At Ra≈ 1707 (with
no-slip – i. e., sticky – plates), the first instability occurs, and the fluid starts a macroscopic
motion in the form of parallel convection rolls. When the Rayleigh number is increased
further, the rolls start to deform and oscillate, and after Ra� 105 a chaotic rearrangement
of convection rolls sets in. After this regime, the fluid state departs from its relatively
clear roll-like structure, and more unstructured turbulence starts to form. With rising Ra
the smallest scales of turbulence become smaller and smaller, and thus the influence of
the boundary layers near the horizontal plates decreases. Finally, in the so-called ultimate
regime at Ra� 1014, the flow is expected to be largely determined by the behavior in the
bulk of the fluid volume.
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1 Introduction

The Prandtl number mainly influences the size and shape of the structures that
are found in the flow: For low Prandtl numbers (i. e., Pr� 1), the temperature field
shows large, blurred structures, while at large Pr� 1, the observed patterns (denoted as
plumes, i. e. vertically elongated, mushroom-like structures) become thinner and more
filament-like.
The turbulent temperature fields in three and two dimensions that are shown in

figures 1.1 and 1.2 give an impression of the generic mechanism of Rayleigh–Bénard
convection: Fluid that heats up at the hot bottom plate moves upwards due to buoyancy
until it arrives at the cold upper plate. At this point the fluid cools down and falls
towards the lower plate again. Due to this constant exchange of fluid between the plates,
the flow organizes in the large-scale structure of a convection cell (rotating counter-
clockwise in both figures), and it is found that its shape strongly depends on Γ. The
large-scale circulation that sweeps fluid along the horizontal plates also prevents hot fluid
to arbitrarily rise in a straight vertical line; instead the fluid mainly moves upwards in
bundles of hot fluid where the horizontal large-scale currents of two neighboring cells
collide head-on and are thus deflected in the vertical direction. These bundles of hot fluid
are denoted as plume hot spots,2 and the interplay between the large-scale current and the
plumes and hot spots can be perceived best from figure 1.2.

1.2 Mathematical Formulation

Although the first results on Rayleigh–Bénard convection have been the experimental
observations by Bénard, and also until today many insights about the system are gained
through experiments, still a lot has been and can be learned from the basic equations of
motion, the Oberbeck–Boussinesq equations for velocity field u(x , t ) and temperature
field T (x , t ):

∂

∂ t
u + u ·∇u =−∇p +PrΔu +PrRaT ez (1.3a)

∇ · u = 0 (1.3b)

∂

∂ t
T + u ·∇T =ΔT (1.3c)

Here the quantities have been non-dimensionalized with respect to the distance and the
temperature difference between the horizontal plates and the time scale of heat diffusion;

2As the Rayleigh–Bénard system is mirror-symmetric in the vertical direction (at least for symmetric
boundary conditions), the same picture holds for cold fluid being swept along the upper plate and
aggregating in “hot spots” of cold fluid, as can be seen in the figures. However, due to the aforementioned
symmetry, from now on the reversed “cold” process is implied for every “hot” process that is described
(and vice versa).

4



1.2 Mathematical Formulation

p(x , t ) is the pressure field. Equations (1.3a)–(1.3b) are the incompressible Navier–
Stokes equations for the velocity field u with an additional temperature-dependent
buoyancy force acting in vertical direction; the strength of the buoyancy force is propor-
tional to the Rayleigh number and thus also to the temperature difference between the
plates. Equation (1.3c) is an advection-diffusion equation for the temperature field T that
describes how the temperature is transported by the velocity field.
The Oberbeck–Boussinesq equations have to be supplemented by boundary condi-

tions for the temperature and velocity fields at the plates located at z = 0 and z = 1 and
at possible sidewalls. Throughout this thesis, we will use Dirichlet conditions at the
horizontal plates, i. e. the temperature of the plates is fixed to T = 1 at the bottom and
T = 0 at the top, and the velocity obeys no-slip conditions u = 0. Sidewalls are most
commonly assumed to be insulating, i. e. there is no flux of heat into the walls; this corre-
sponds to Neumann boundary conditions, where the derivative of the temperature field
in the direction of the wall normal n is zero, i. e. n ·∇T = 0. Other possible boundary
conditions, like a stress-free velocity field or a prescribed heat flux at the horizontal plates
(both corresponding to Neumann boundaries), will not be detailed in this thesis.

The name of the evolution equations (1.3) relates toOberbeck (1879), who formulated
the equations of motion for the advection of a temperature field, and to Boussinesq (1903).
The latter introduced and examined the approximation that the temperature dependence
of all material constants can be neglected, and also the temperature dependence of density
is relevant only in the buoyancy term. Because the Oberbeck–Boussinesq equations are
based on the Navier–Stokes equations, they share a number of properties: Both consist
of a set of nonlinear partial differential equations that are nonlocal due to the pressure
term, and therefore the same complications are encountered when analyzing convection
and “pure” fluid turbulence.

As the system is driven by a temperature gradient, it answers with a macroscopic fluid
motion and thus an enhanced heat transport. It is measured in terms of the dimensionless
Nusselt number, which specifies the total heat transport in multiples of the conductive
heat transport:

Nu=
total heat transport

conductive heat transport
=
�

uzT ′
�

V
+ 1 (1.4)

The last identity holds due the non-dimensionalization we are using, where T ′ = T −�
T
�

V
is the shifted temperature field so that

�
T ′
�

V
= 0, and 〈·〉V denotes averaging

over the whole fluid volume. Thus, the Nusselt number can be understood as the mean
correlation between vertical velocity and temperature, and Nu= 1 signifies that the fluid
transports heat through the system only by conduction, i. e. when the fluid is at rest.
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1.3 The Necessity of a Statistical Description

From the tangled, erratic structure of the turbulent convection flows shown in figures 1.1
and 1.2 it becomes clear that a pointwise prediction of the flow fields from first principles,
i. e. by solving theOberbeck–Boussinesq equations, is virtually impossible. Furthermore,
the nonlinear and nonlocal nature of the equations of motion has proven to be a major
challenge when trying to solve the equations analytically. Lastly, from the mathematical
side not even general existence proofs for the Navier–Stokes equations have been found
so far. Thus, an analytical and pointwise solution for arbitrary initial conditions is not in
prospect.
On the other hand, though, a microscopic description of all the small-scale turbulent

fluctuations may be way beyond what is needed for a physical understanding of the
system. To this end, we bring to mind the description of an ideal gas with its typically
� (1023) particles, where it is impossible to know and thus predict the vast amount of all
microscopic degrees of freedom. However, this detailed knowledge is not needed in order
to understand macroscopic variables like temperature and pressure, which are the more
relevant quantities in physics. Thus, for an ideal gas, it is possible to directly derive the
macroscopic behavior with the help of the microscopic equations of motion of the single
particles.
It is clear that the analysis of Rayleigh–Bénard convection would benefit from a

similar approach, where the analogue of the microscopic level is the description of all
turbulent scales in terms of the Oberbeck–Boussinesq equations.3 To give an example,
a great deal of Rayleigh–Bénard research is focused on understanding and predicting
the average heat transport through the system in dependence of the control parameters,
i. e. to find a functional dependence Nu(Ra,Pr,Γ) from first principles. While there has
been great progress in recent years – among the most notable the scaling theory by
Grossmann and Lohse (2000) that can adequately predict the heat transport on the basis
of average dissipation rates –, still these theories rely on modeling assumptions based
on experimental observations that as yet could not be derived rigorously from the basic
equations of motion.
Further examples include turbulent quantities like velocity and temperature fluctua-

tions, where the understanding of the higher moments and ultimately the probability
density functions is more important than a microscopic prediction of a single realization.
Although in this case the description is subjected to the notorious closure problem of
turbulence, this macroscopic, statistical description of convection and turbulence in
general is still more promising than a microscopic, pointwise prediction of the fluid.

3Obviously this analogy between an ideal gas and turbulent convection is not very profound and therefore
has to be taken with a grain of salt, as it compares a Hamiltonian system with a dissipative system far
from equilibrium.
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Figure 1.3: Four consecutive snapshots of two-dimensional convection with periodic horizontal
boundaries, starting from an initial condition with two large hot respectively cold patches
of fluid. The parameters are Ra= 1014 and Pr= 1, and the snapshots are taken 5 free-fall
time units apart. The color scale is the same as in figure 1.2.

1.4 The Importance of Dynamics and Coherent Structures

In the previous section we elaborated how a description of turbulent convection on a
statistical level is on the one hand sufficient to understand macroscopic variables like the
heat transport, and on the other hand inevitable due to the complex structure of the fluid
flows and the underlying equations of motion. However, among the complex behavior of
the convective flows in both space and time, coherent structures that possess characteristic
dynamics still emerge. Examples of these coherent structures are the large-scale current
and plumes that aggregate in hot spots, as already described in the previous sections.
In figure 1.3 four consecutive snapshots of two-dimensional convection exemplify the
dynamical behavior of coherent structures, especially plumes. Also the convection rolls
that are found in a linear stability analysis of the Oberbeck–Boussinesq equations can be
understood as coherent structures that appear near the onset of convection. The dynamics
of these structures also cover a wide range of different time scales: The cessation and
reorientation of the large-scale circulation happens on the longest time scales and may
take place during many re-circulations of the convection cell; in contrast, the change of
the small-scale turbulent fluctuations is usually the fastest time scale the system has. Both
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processes still have a significant influence on quantities like the heat transport through
the fluid layer.
While the statistical description is desirable, as argued in the previous section, it

only describes e. g. the heat transport in a statistical sense, and most of the coherent
structures and their dynamics get lost due to the coarse-grained view the statistics provide.
Nevertheless, convective flows and turbulence in general can be imagined as being built
from a hierarchical cascade of coherent structures of different sizes that all possess their
own dynamical behavior, as can be conceived from figures 1.1–1.3 in this chapter: Due to
the slow, large-scale dynamics of the convection cell, small-scale shear instabilities near the
boundary layer as well as plumes emerge and gather in the form of hot spots; these in turn
are build from big plumes that interact with smaller plumes and vortices that finally decay
into the “background” turbulence of the smallest and fastest scales. All these structures
influence the heat transport in a unique way, sometimes attenuating and sometimes
enhancing it, and this fine-grained view is missing in a purely statistical description.
Thus, this hierarchical picture of the building blocks of convective flows suggests that the
identification and understanding of coherent structures and their dynamics – either from
first principles, e. g. in the spirit of a linear stability analysis, or from an empirical point
of view – is essential for a comprehensive insight of convection.

1.5 Roadmap of the Thesis

The previous sections as well as the title of this thesis suggests the following roadmap in
order to examine the statistical and dynamical properties of structures that are found in
convective flows as well as their mutual interaction:
In part I we analyze the temperature statistics of turbulent Rayleigh–Bénard con-

vection by deriving an evolution equation for the probability density function and
supplementing this ansatz with data obtained from direct numerical simulations of the
Oberbeck–Boussinesq equations. We thus achieve a temperature-resolved view of the
average dynamics and structures in the flow, which enables us to examine how fluid
of different temperatures behaves in different parts of the convection cell and how this
in turn influences the heat transport. This method is then applied to numerical data
generated in three different settings and vessel geometries in order to work out differences
and generic behaviors. Part I closely follows the results that have already been published
in Lülff et al. (2015).
Part II deals with the empirical detection of coherent structures in turbulent con-

vective flows. For this purpose, we apply the known technique of proper orthogonal
decomposition to a numerical data set of two-dimensional convection to obtain a set of
basis modes that describe convection in an optimal way. We then extend this already
established, general ansatz and adapt it towards Rayleigh–Bénard convection to obtain
an optimal description of the heat transport. Thereby, we can identify a hierarchy of
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modes, starting from the large-scale structures and going down to the smallest fluctuating
scales, and classify them in terms of their heat transport. We then show that this new
ansatz achieves better results in describing the heat transport compared to the usual
approach. The essential results of this part have been condensed in the publication Lülff
(2015), where also further analysis can be found that goes beyond the scope of part II.

In part III we describe the behavior of the large-scale structures found in convection
in a more abstract sense. To this end, we analyze the Swift–Hohenberg equation,
which is an order parameter equation for a two-dimensional horizontal cut through
the temperature field of Rayleigh–Bénard convection. This equation describes the
formation of convection rolls and cell patterns from a more coarse-grained point of
view. When adding a stochastic driving force to this system, which can be thought of as
imperfections found in experimental settings, the behavior of the structures has to be
analyzed by statistical methods. We will combine tools borrowed from the analysis of
stochastic processes as well as a gradient-dynamics approach to yield a description of the
probability density function of the full order parameter field and the values it can take.
In the end, part IV will summarize and connect the main results of the three parts,

put them into a scientific context, and give an outlook on open questions that should be
revisited in further research.
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Part I

Statistical Description of Heat
Transport and Average Dynamics in

RAYLEIGH–BÉNARD Convection





ayleigh–Bénard convection, i. e. the flow of a fluid between two parallel plates that
is driven by a temperature gradient, is an idealized setup to study thermal convec-
tion. Of special interest are the statistics of the turbulent temperature field, which

we are investigating and comparing for three different geometries, namely convection
with periodic horizontal boundary conditions in three and two dimensions as well as
convection in a cylindrical vessel, in order to work out similarities and differences. To
this end, we derive an exact evolution equation for the temperature probability density
function (PDF). Unclosed terms are expressed as conditional averages of velocities and
heat diffusion, which are estimated from direct numerical simulations. This framework
lets us identify the average behavior of a fluid particle by revealing the mean evolution of
fluid of different temperatures in different parts of the convection cell. We connect the
statistics to the dynamics of Rayleigh–Bénard convection, giving deeper insights into
the temperature statistics and transport mechanisms. In all three cases we find that the
average behavior is described by closed cycles in phase space that reconstruct the typical
Rayleigh–Bénard cycle of fluid heating up at the bottom, rising up to the top plate,
cooling down and falling down again. The detailed behavior shows subtle differences
between the three cases.
The work presented here has already been published (Lülff et al., 2015), and the

content of part I has been adapted in large parts from this publication; additional analysis
and remarks that are not part of the publication are given as footnotes or in the appendix
of this thesis. It represents original research that builds upon the foundation that was laid
in previous publications (Lülff, 2011, Lülff et al., 2011). The cylindrical data used in
section 4.3 was provided by Stevens (2011).
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2 Introduction

n Rayleigh–Bénard convection, a fluid that is enclosed between two horizontal
plates is heated from below and cooled from above, which induces a flow and
thereby enhanced heat transport between the plates. This simple setup is the

benchmark system to study thermal convection, which is important in nature and
technical applications. Prominent examples include convection in the oceans and the
atmosphere or plate tectonics in the mantle of the earth. Depending on the control
parameters, the Rayleigh–Bénard system displays a variety of different patterns and
flow regimes, ranging from laminar to highly turbulent flows.
Apart from special cases like laminar convection, an analytical solution does not exist

as turbulent flows are remarkably hard to handle analytically. Because of their importance,
a deeper understanding of turbulent convective flows is still desired, despite the inability
to solve the basic equations analytically. To achieve this, many different approaches have
been pursued. The heat transport as a function of the control parameters is of particular
interest and is well described by the Grossmann–Lohse theory (Grossmann and Lohse,
2000, 2001, Ahlers et al., 2009, Grossmann and Lohse, 2011, 2012, Petschel et al.,
2013, Stevens et al., 2013). There have also been studies on the turbulence properties
of Rayleigh–Bénard convection, by e. g. characterizing the statistics of temperature
readings of thermal probes in the convection cell (Yakhot, 1989, Ching, 1993, Ching
et al., 2004, Shang et al., 2008) or by examining the heat transport mechanisms and
the large-scale circulation by Eulerian (Bailon-Cuba et al., 2010, Petschel et al., 2011,
van der Poel et al., 2011, Ahlers et al., 2012) or Lagrangian (Gasteuil et al., 2007,
Schumacher, 2009) approaches. An overview of recent progress on Rayleigh–Bénard
convection can be found in Ahlers et al. (2009), Lohse and Xia (2010), Chillà and
Schumacher (2012).
In the present part of the thesis, we will describe Rayleigh–Bénard convection with

the full single-point temperature statistics using the temperature probability density
function (PDF). This in turn gives us information about the dynamics of the convecting
fluid. To this end, we will derive an evolution equation for the temperature PDF, feed in
numerical data to complete our ansatz and obtain through the statistics a description of
the mean dynamics of fluid particles that travel around in the convection cell. A similar
method has been used to describe the statistics in homogeneous isotropic turbulence
before, see Wilczek and Friedrich (2009), Wilczek et al. (2011), Friedrich et al. (2012).
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In this part, we will generalize and extend the work presented by Lülff et al. (2011),
where we first introduced the aforementioned method to Rayleigh–Bénard convection.

We start by deriving the framework in the most general form. Since Rayleigh–Bénard
setups usually contain a number of symmetries that can be utilized to simplify the
problem, we will apply our framework to three different showcases of three- and two-
dimensional convection with homogeneous horizontal directions (i. e., periodic bound-
aries) and three-dimensional convection in a cylinder. All three cases have different
statistical symmetries and show slightly different dynamics. The differences between
two- and three-dimensional convection and also between fixed sidewalls and periodic
horizontal boundaries are discussed, for example, in van der Poel et al. (2013, 2014). We
will use the PDF methods presented here to further work out similarities and differences
between these three cases and give a comprehensive description of the statistics and the
dynamics of Rayleigh–Bénard convection.
Since the derivation of our framework utilizes the basic equations of Rayleigh–

Bénard convection, it can be considered as an ansatz from first principles. The basic
equations that govern Rayleigh–Bénard convection are the Oberbeck–Boussinesq
equations (Oberbeck, 1879, Boussinesq, 1903) for the velocity u(x , t ) and temperature
field T (x , t ):

∂

∂ t
u + u ·∇u =−∇p +PrΔu +PrRaT ez (2.1a)

∇ · u = 0 (2.1b)

∂

∂ t
T + u ·∇T =ΔT (2.1c)

Here, the equations have been non-dimensionalized by the heat diffusion time L2

� , the
vertical height L and the heat difference δT between the upper and lower plate. This

introduces the Rayleigh number Ra=
αgδT L3

ν� and the Prandtl number Pr= ν� as the
control parameters. The vertical coordinate lies in the range z ∈ [0,1] and the temperature
takes values T ∈ [0,1]. Another control parameter that is often taken into account is the
aspect ratio Γ which indicates the lateral over the vertical extent of the system.
The remainder of this part of the thesis is structured as follows. In chapter 3 we will

briefly recount our method, i. e. derive an equation for the temperature PDF and connect
it to the description of the dynamics of the system. This general theory is then applied
to three different Rayleigh–Bénard geometries in chapter 4, namely three- and two-
dimensional convection with homogeneous horizontal directions, and three-dimensional
convection in a closed cylindrical vessel with Γ = 1. Chapter 5 closes part I with an
interpretation and discussion of the findings.
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3 Statistical Description of Heat Transport

ur idea to describe Rayleigh–Bénard convection is to start from the tem-
perature PDF. Therefore we want to derive an equation that describes the
temperature PDF and use it to gain insights into the dynamics of the system.

This ansatz is generally referred to as PDF methods (Pope, 1984, 2000) or the Lundgren–
Monin–Novikov hierarchy (Lundgren, 1967, Monin, 1967, Novikov, 1968). We now
give a short overview of this derivation; a more detailed discussion of the framework can
be found in Lülff et al. (2011), Wilczek and Friedrich (2009), Wilczek et al. (2011),
Friedrich et al. (2012). Similar equations have been derived for turbulent reactive flows
by Pope (1985). However, there the unclosed terms are modeled instead of estimated
from the numerics as in our case.

3.1 PDF Methods

The starting point is the definition of the temperature PDF as an ensemble average,

f (T , x , t ) =
�
δ
�
T (x , t )−T

��
, (3.1)

where the PDF f (T , x , t ) describes the probability to find fluid of temperature T at
position x and time t . Accordingly, T is the sample space variable, while T (x , t ) is a
realization of the temperature field. The averaging process 〈·〉 can be considered as an
ensemble average; later on, ensemble averages are evaluated from the numerics by a
suitable volume and time average.
Since the definition in (3.1) includes an actual realization T (x , t ) of the temperature

field, it is now possible to calculate spatial and temporal derivatives of the PDF, i. e.
∇ f (T , x , t ) and ∂

∂ t
f (T , x , t ). These derivatives contain unclosed terms in the form of

conditional averages 〈·|T , x , t 〉, where, e. g., the appearing conditionally averaged velocity
〈u|T , x , t 〉 is a function of the sample space variables T , x and t that tells us what the
mean velocity is for fluid of given temperature, position and time.
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Putting the aforementioned derivatives together and rearranging them gives the desired
evolution equation that describes the temperature PDF:

∂

∂ t
f +∇ ·

�
〈u|T , x , t 〉 f

	
=− ∂
∂T


� ∂
∂ t

T + u ·∇T

����T , x , t


f
�

(3.2a)

=− ∂
∂T

�
〈ΔT |T , x , t 〉 f

	
(3.2b)

The left-hand side of (3.2a) can be seen as the convective derivative of the PDF f (T , x , t ),
while the right-hand side of (3.2a) contains the conditional average of the convective
derivative of the temperature field. Since T (x , t ) is a realization of the temperature field,
it obeys the Oberbeck–Boussinesq equations, so in (3.2b) we replaced the convective
derivative of the temperature field by the right-hand side of the Oberbeck–Boussinesq
equation (2.1c).

Above we obtained an evolution equation that links the shape of the temperature PDF
to the conditionally averaged velocity 〈u|T , x , t 〉 and heat diffusion 〈ΔT |T , x , t 〉, which
have to be supplied externally; in our case, we estimate them from simulations later on.

3.2 Method of Characteristics

The above evolution equation (3.2) that determines the temperature PDF is a first-order
partial differential equation. That means that we can apply the method of characteristics
(Courant and Hilbert, 1962, Sarra, 2003) which lets us identify the average behavior
of fluid as it travels through phase space.

In a nutshell, by applying the method of characteristics to the evolution equation, one
can identify trajectories (the so-called characteristic curves or just characteristics) in phase
space, along which the partial differential equation for the temperature PDF transforms
into a set of ordinary differential equations for T and x . The phase space is spanned by
the variables that the temperature PDF depends upon, i. e. T , x and t . The characteristics
are defined by the conditional averages,⎛⎜⎜⎝Ṫ

ẋ
ṫ

⎞⎟⎟⎠=
⎛⎜⎜⎝〈ΔT |T , x , t 〉
〈u|T , x , t 〉

1

⎞⎟⎟⎠ . (3.3)

This states that the characteristics are solutions
�

T , x , t
	T

of (3.3) that follow the vector
field on the right-hand side of the above equation; the vector field is regarded as the phase
space velocity. From the last line of (3.3), ṫ = 1, it becomes clear that the parametrization
of the characteristics in phase space, i. e. the arc length, is the same as the time of the
system – a fast movement in phase space therefore really has to be seen in the temporal
sense.
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3.2 Method of Characteristics

It is now important to notice that, since the characteristics are governed by the condi-
tionally averaged vector field, they show the average behavior of a fluid parcel in phase
space. In other words, the characteristics can be seen as the mean evolution of an ensemble
of Lagrangian particles that share the same coordinates in phase space. This is what
Pope (1985, sec. 4.5) refers to as conditional particles – quasi-particles following the condi-
tionally averaged vector field (3.3) that show the mean Lagrangian evolution and that
have the same statistics as Lagrangian particles. By examining the conditionally averaged
vector field and the resulting characteristic curves, one can investigate the mean transport
properties of fluid through phase space and gain insight into the mean heat transport
properties of Rayleigh–Bénard convection. Since the characteristics are trajectories in
phase space, the framework can be seen as a quasi-Lagrangian description, but it has to
be stressed that it is achieved by utilizing the statistics of Eulerian fields alone.
Along the characteristics, the partial differential equation (3.2) becomes an ordinary

differential equation which can be integrated. Thus, the temperature PDF along a certain
characteristic evolves according to

f (T (t ),x(t ), t ) = f (T (t0), x(t0), t0)×

exp

�
−
∫ t

t0

dt ′


∇ · 〈u|T , x , t 〉+ ∂

∂T
〈ΔT |T , x , t 〉

�
T (t ′),x(t ′),t ′

�
. (3.4)

Here, the integral is a line integral along a characteristic from t0 to t . The integral kernel
is the phase space divergence∇ · 〈u|T , x , t 〉+ ∂

∂T
〈ΔT |T , x , t 〉 evaluated at the phase space

position given by the characteristic for time t ′, i. e.
�

T (t ′), x(t ′), t ′
	T

. This equation
tells us that the temperature PDF along the characteristic that connects the initial point�

T (t0), x(t0), t0

	T
with the point

�
T (t ), x(t ), t

	T
in phase space changes according to

the integrated phase space divergence. As an alternative interpretation, (3.4) determines
how the temperature PDF for time t is traced back to the PDF for t0. While we will not
further investigate (3.4) in the numerical results of the next chapter, we included it for
the sake of completeness.

Up to now, we have kept the description as general as possible. But usually, a Rayleigh–
Bénard setup has a number of statistical symmetries which simplify the problem, i. e.
the phase space dimension is reduced and the estimation of the unknown conditional
averages from numerical simulation is simplified. In the next chapter, we will apply the
framework that has been outlined in this chapter to three different Rayleigh–Bénard
geometries with different symmetries and discuss the findings.
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4 Results from DNS

his chapter will focus on three Rayleigh–Bénard geometries, i. e. three-dimen-
sional convection with periodic horizontal boundaries (section 4.1), two-dimensi-
onal convection with periodic horizontal boundaries (section 4.2), and three-

dimensional convection in a cylindrical vessel with Γ= 1 (section 4.3).

4.1 Three-dimensional Convection with Periodic Horizontal
Boundaries

First, we consider three-dimensional convection with periodic horizontal boundaries
in the statistically stationary state. A snapshot of the instantaneous temperature field
taken from the numerics can be seen in figure 4.1. The parameters of the simulation
are Ra = 2.4× 107, Pr = 1, and the aspect ratio of the periodic box is Γ = 4. The two
horizontal plates have a constant temperature and a no-slip velocity boundary condition.
The numerical setup is a tri-periodic pseudospectral direct numerical simulation, where
the boundary conditions are enforced by volume penalization methods (Lülff et al., 2011,

Figure 4.1: Snapshot of the temperature field in three-dimensional Rayleigh–Bénard convec-
tion. Hot fluid rising up from the bottom plate is reddish, while cold fluid falling down
from the top is dyed blue.
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4 Results from DNS

Figure 4.2: Height-
resolved profiles of
the mean, standard
deviation, skewness
and kurtosis of the
temperature distribu-
tion (row-major from
upper-left panel) for
three-dimensional con-
vection with periodic
horizontal boundaries.
The skewness and
kurtosis are defined as
the third and fourth
standardized moment.
Gaussian distribu-
tions have skewness of
0 and a kurtosis of 3.
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Angot et al., 1999, Schneider, 2005, Keetels et al., 2007). The equidistant resolution
in x, y and z direction is 512× 512× 128 grid points, and in the vertical direction 5
grid points fall into the boundary layers, according to the criteria given by Shishkina
et al. (2010). We calculated the statistical quantities from an ensemble consisting of 571
snapshots, and the snapshots were taken 3.75 free-fall time units apart.

Statistically stationary Rayleigh–Bénard convection in this geometry is homogeneous
in horizontal directions. This means that the statistical quantities only depend on the
temperature T and the vertical coordinate z and not on the horizontal coordinates x and
y or time t . Thus, the temperature PDF and the conditional averages read f (T , z) and
〈·|T , z〉, and the phase space becomes two-dimensional.
In figure 4.2, the height-resolved mean, standard deviation, skewness and kurtosis

of the temperature field are shown. As is well known, the mean temperature is almost
constant in the bulk and has a steep gradient towards the hot and cold boundaries at z = 0
and z = 1. The standard deviation takes its highest values close to the boundaries and
decreases towards the center of the bulk, indicating a temperature PDF that is broadening
towards the boundaries. The height-resolved skewness takes its highest absolute values
near the boundaries and decreases linearly as function of height in the bulk. This can be
interpreted as hot fluid that is beginning to cool down on its way from the lower to the
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4.1 Three-dimensional Convection with Periodic Horizontal Boundaries

upper plate (and vice versa). The kurtosis indicates that, apart from the boundaries, the
temperature PDF is more peaked and shows stronger tails than the Gaussian distribution.
When the simplifications resulting from the statistical symmetries are incorporated

into the general framework presented in chapter 3, (3.2) that defines the PDF becomes

∂

∂ z

�
〈uz |T , z〉 f

	
=− ∂
∂T

�
〈ΔT |T , z〉 f

	
, (4.1)

while the vector field (3.3) of the characteristics reads�
Ṫ
ż

�
=

�
〈ΔT |T , z〉
〈uz |T , z〉

�
. (4.2)

The PDF and the characteristic curves are therefore defined by the conditional averages of
vertical velocity and heat diffusion. The next step is to estimate the conditional averages
from the numerics while taking the statistical symmetries into account. Subsequently, the

characteristics are obtained by integrating (4.2) for arbitrary initial conditions
�

T0, z0

	T
in phase space. Obviously only initial conditions where the PDF and the conditional
averages are defined, i. e. where there have been any events at all, can be considered.

When integrating the characteristics for many starting positions, we observed that they
tended to converge to what at first seems to be similar to a limit cycle. In contrast, though,
one would expect that the characteristics form concentric closed curves: To see this, let
the phase space be densely seeded by the conditional particles described in section 3.2. As
the density of the conditional particles following the characteristics is proportional to
the temperature PDF, and a limit cycle acts as an attractor for the conditional particles,
the temperature PDF should converge towards a δ -function that is non-vanishing on the
cycle and zero everywhere else. This in turn stands in contrast to the fact that we are
considering statistically stationary systems and that the temperature PDF is clearly not a
δ-function, and thus it follows that the characteristics cannot converge to a limit cycle
but must form concentric closed curves.

We find that the observed erroneous convergence is caused by the flawed conditionally
averaged vector field estimated from the numerics by a binning process. The noise
inherent to the binning violates the solenoidality of the probability flux (phase space
velocity times PDF) as demanded by (4.1), and thus the imperfect binned vector field
contains many localized sinks where the characteristics converge.
By smoothing the binned data through a convolution with a Gaussian kernel and

projecting the vector field onto the solenoidal part (i. e., enforcing the validity of (4.1)), we
are indeed able to find the expected concentric closed curves, as exemplified in figure 4.3.1

Here the horizontal axis corresponds to the temperature coordinate T and the vertical
axis to the vertical coordinate z of the phase space; the background color coding gives

1Details of this post-processing are given in section A.1.
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4 Results from DNS

Figure 4.3: Concentric
closed character-
istics found for
three-dimensional
convection after
removing the im-
perfections from the
binned condition-
ally averaged vector
field, cf. text. The
temperature PDF
f (T , z) is color
coded.
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the temperature PDF f (T , z). For every starting point located on the z = 0.5-axis, the
characteristics perform a closed loop in counter-clockwise direction that shows how
particles on average evolve through phase space. By tracing its course, one is able to
reconstruct the typical Rayleigh–Bénard cycle a conditional particle undergoes: A
fluid element near the lower plate first heats up and then starts to move up towards
the cold plate. During its upward travel it slowly cools down and then becomes much
colder when it is close to the top plate before it falls down again towards the lower
plate while beginning to heat up and starting what we call the RB cycle all over again.
The cycles for fluid starting at more moderate temperatures (i. e., near T = 0.5) show
a smaller amplitude in both T - and z-direction. We do not find closed circles located
further outwards, because the characteristics would visit areas of the phase space where
no events are recorded in the numerics, and thus the vector field is undefined there. This
usually happens near the vertical boundaries of the phase space (i. e., near the plates)
where the support of the vector field becomes very narrow. Furthermore, we remark
that the precise appearance of the closed cycles slightly varies with the parameters of
the post-processing described above (e. g., the amount of smoothing); nevertheless, the
description of the qualitative behavior we are aiming at is found to be robust.
Without the aforementioned projection to keep the vector field solenoidal in the

presence of noise, the characteristics converge in some parts of the phase space. To study
this behavior, and also the near-wall regions, we seed characteristics on the {T > 0.5, z =
0.5}-line and integrate them backwards in time, as shown in figure 4.4. The comparison of
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the characteristics in the regions T < 0.5 and T > 0.5 immediately reveals the convergence
for the non-solenoidal case, because the density of the characteristics on the right side
(i. e., at later times) is higher than on the left side. Furthermore, the characteristics on
the far right enter the boundary at z = 0 when integrated backwards in time, or, to put
it in other words, characteristics leave the boundaries very close to each other and then
become less dense when following them forward in time. This corresponds to the fact
that at z = 0, the temperature PDF becomes a δ-function located at T = 1 due to the
Dirichlet boundary condition. In fact, the characteristics should end precisely in this
point, but this behavior is not resolved here. Likewise, by symmetry considerations, the
characteristics approaching the boundary from the far left side should also enter the point
{T = 1, z = 0}, which we do not observe. We speculate that a numerical resolution that
goes beyond what is demanded by the criterion of Shishkina et al. (2010) may be needed
to capture the correct behavior of the characteristics in this singular region of phase space.
The cycle to which the characteristics converge in the presence of noise is shown in

figure 4.5. This cycle is very similar to the closed curves shown in figure 4.3; in fact, it is
almost completely embedded between two adjacent closed curves.2 While the solenoidal
projection helps to find the required closed curves, the conditionally averaged vector field
still containing the noise gives the same general picture of the RB cycle. Additionally,
the projection may introduce unpredictable systematic errors, especially in regions of
the phase space where the support of the conditional averages and the PDF changes

2See also section A.2.
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Figure 4.5: RB cycle of the characteristics for three-dimensional convection. The phase space
speed along the cycle shown as solid thick line is coded in black and white, i. e. the norm
of the phase space velocity appearing in (4.2). The color coding in the background shows
the temperature PDF f (T , z). The arrows show the phase space velocity field, where the
length of the arrows has been rescaled to arbitrary units for visualization purposes. Note
that around the lower-left and upper-right corners, no events were recorded (e. g., there is no
fluid of temperature T ≈ 1 near the upper plate).

rapidly. Therefore, as we want to focus on the qualitative features of Rayleigh–Bénard
convection that the RB cycle as well as the vector field represent, we will from now on
only consider the cases without the solenoidal projection and use the found cycle as one
generic representative of the family of closed concentric curves. The same applies to the
convection cases discussed in sections 4.2 and 4.3 where the characteristics also tend to
converge due to imperfections induced by noise.
We now come back to the discussion of the qualitative features that the conditionally

averaged phase space velocity and the RB cycle describe. In figure 4.5, the RB cycle is
shown together with the temperature PDF and in figure 4.6 together with the phase space
velocity. From the first-mentioned figure, it is interesting to see that hot fluid on the RB
cycle has the highest phase space speed in the range 0.25< z < 0.5, i. e. hot rising fluid is
fastest in the lower half of the convection vessel, and likewise for cold fluid in the upper
half due to the up-down symmetry of Rayleigh–Bénard convection. As a side note,
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from now on, whenever we describe a fluid process, the reversed process – interchanging
hot↔cold, bottom↔top, up↔down etc. – is also implied.
The temperature PDF in figure 4.5 shows that the temperature distribution changes

with the vertical coordinate and contracts to a δ-function at the fixed temperature
boundaries. Furthermore, one can map the shape of the distribution to the higher
moments in figure 4.2, i. e. the peaks of the standard deviation near the boundaries and
the linear dependence of the skewness on the height in the bulk region. We note that the
isocontours of the PDF do not lie tangent to the vector field or the RB cycle because the
divergence of the phase space velocity, ∂

∂ z
〈uz |T , z〉+ ∂

∂T
〈ΔT |T , z〉, is non-vanishing.

In figure 4.6, the black and white background color corresponds to the phase space
speed, and the temperature is given by the color of the arrows. This display lets us identify
how fluid behaves in different parts of the phase space. Near the boundaries, fluid of all
temperatures displays high phase space speeds, while in the bulk only fluid of intense
temperature (i. e., deviating strongly from the mean) has high speeds. This supports the
previous finding that hot fluid on the RB cycle has its highest speed in the lower half.
Fluid that has the mean temperature (cf. upper-left panel of figure 4.2) is found to be
at rest because no buoyancy acts on it and it does not heat up or cool down. As can
be expected a priori, the vector field shows that the main movement in T -direction, i. e.
heating and cooling, takes place near the boundaries, while the main movement in vertical
direction happens in the bulk.
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Figure 4.7: Temperature field for two-dimensional convection with periodic horizontal bound-
ary conditions. The color scale for T is shown on the right.

4.2 Two-dimensional Convection with Periodic Horizontal
Boundaries

The next case to investigate is two-dimensional Rayleigh–Bénard convection with
periodic horizontal boundaries. The parameters are Ra= 5× 108, Pr= 1 and Γ= 4, and
the numerical scheme that is used is identical to the one from section 4.1. Again, the
two horizontal plates are no-slip walls of fixed temperature. The numerical resolution
is 1536× 384 equidistant grid points with 7 grid points in the vertical direction falling
into the boundary layers (cf. Shishkina et al. (2010)), and the ensemble consists of 3891
snapshots separated by 3.75 free-fall time units.
A snapshot of the temperature field is shown in figure 4.7, and one can see coherent

structures in the form of four plume hot spots (two at the top, two at the bottom) and
four convection rolls, even at this intermediate Rayleigh number. Also, localized round
blobs of hot and cold fluid can be found. The statistical symmetries in this system are
identical to the ones for the three-dimensional periodic case discussed before, which
means the phase space becomes two-dimensional and the statistics depend on T and z
only.
Figure 4.8 shows the first four height-resolved standardized moments of temperature.

While the mean temperature profile has the same shape as the one from three-dimensional
convection (cf. figure 4.2), the higher moments show subtle new features. For the three-
dimensional case the moment profiles as function of the height are smoother than for
the two-dimensional case. Especially the skewness shows transitions and is in the bulk
not as linear as for the three-dimensional case. We link this to the coherent structures
in the form of plume hot spots in the two-dimensional case because the position of the
transitions in the moments corresponds to the vertical size of the plume hot spots (cf.
figure 4.7). In the plume hot spots, there is a re-cycling of hot fluid, which means that
fluid that is hotter than the mean temperature profile is trapped near the hot bottom plate
for some time instead of being advected upwards directly, cf. Sugiyama et al. (2010). This
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Figure 4.8: First four standardized moments of temperature for two-dimensional convection,
analogous to figure 4.2.

hot trapped fluid causes a temperature distribution that is near the lower plate strongly
skewed towards higher temperatures. Above the hot spot, only a sharp jet of hot fluid
remains which results in a flatter profile of the skewness. In three-dimensional convection
the trapping mechanism of plume hot spots is missing: Loosely speaking, in three-
dimensional convection, there is another lateral dimension into which the fluid can escape
and be advected away, forming the sheet-like plumes that can also be found in figure 4.1
(Schmalzl et al. (2004) and van der Poel et al. (2013) also discuss differences in flow
structures between two- and three-dimensional convection). Therefore, the entrapment
seen in two-dimensional convection does not occur in three dimensions, which means
that a strong mechanism that in two dimensions traps hot fluid near the bottom is missing
for the three-dimensional case.
When we estimate the conditional averages for two-dimensional convection from the

simulation and then numerically calculate the characteristics, we again find that the
dynamics in phase space resemble a closed cycle. This RB cycle is shown in figures 4.9
and 4.10. While the RB cycle displays the same basic cycle of fluid heating up at the
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Figure 4.9: RB cycle of the characteristics for two-dimensional convection, together with the
temperature PDF. Illustration analogous to figure 4.5.

bottom, moving upwards, cooling down at the top plate and falling down again, there are
some differences as compared to the three-dimensional case (figures 4.5 and 4.6).
The most striking new feature is a kink in the RB cycle in the lower left and upper

right corners. As can be seen from the color coding of the cycle, this is also the region of
the lowest phase space speed. Therefore, we also link this region to the re-cycling areas
discussed above because fluid trapped in the plume hot spots undergoes almost no net
vertical movement and needs more time to heat up in comparison to fluid that is in direct
contact with the much hotter bottom plate. A similar argument is discussed by van der
Poel et al. (2013).
Another difference with the three-dimensional case is that there is a bulge in the

temperature PDF towards higher temperatures (around T ≈ 0.6, z ≈ 0.15). This bulge
is due to hotter-than-average fluid that gathers near the bottom plate and is therefore
compatible with the interpretation of the re-cycling fluid from above; also, this bulge
gives a direct impression of the high skewness values found in this region (cf. figure 4.8).
Figure 4.10 shows the vector field of the phase space velocities together with its

norm (coded in black and white). The phase space velocities are more heterogeneously
distributed as compared to the three-dimensional case, e. g. the high speeds in the bulk
for intense temperatures are more pronounced (cf. figure 4.5). These strong vertical
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Figure 4.10: RB cycle of the characteristics for two-dimensional convection, together with the
phase space speed. Illustration analogous to figure 4.6.

movements in the bulk lead to higher phase space speeds as compared to three dimensions
(see the color scale in figures 4.6 and 4.10). We think this can only in part be attributed to
the difference in Rayleigh numbers (2.4×107 vs. 5×108), but is also due to the coherent
structures found in two dimensions, i. e. plume hot spots as localized events of intense
temperature. It is also found that in the kink region the RB cycle passes through the
region of lowest phase space speed, which can be understood as the average dynamics
being slowed down in the re-circulating plume hot spots.

4.3 Three-dimensional Convection in a Cylindrical Vessel

The last Rayleigh–Bénard geometry under investigation is a closed cylindrical vessel.
The control parameters are Ra = 2× 108, Pr = 1 and Γ = 1 (diameter over height).
All the walls are no-slip, and the horizontal plates are of constant temperature while
the sidewalls are thermally insulating. The ensemble consists of 870 snapshots that are
obtained from direct numerical simulation using a second-order finite difference scheme
on a staggered cylindrical grid (Verzicco and Camussi, 2003) with a resolution of
Nϕ×Nr ×Nz = 384× 192× 384 grid points (with ϕ, r and z being the azimuthal, radial
and vertical coordinate, respectively). The boundary layer contains 17 grid points in the
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Figure 4.11: Snapshot of
the temperature field
in three-dimensional
Rayleigh–Bénard convec-
tion in a Γ = 1-cylinder.
In the upper left corner,
the color and opacity scale
is shown; fluid around
the mean temperature is
translucent.

vertical direction. The snapshots are separated by 1 free-fall time unit. Figure 4.11 shows
a snapshot of the temperature field.

Rayleigh–Bénard convection in a cylinder has statistical symmetries that are different
from the former two cases of horizontally homogeneous convection. In addition to the
temperature T and vertical position z the statistics now also depend on the radial position
r in the cylinder. Here r = 0 corresponds to the cylinder axis and the sidewall is at
r = 1/2.
In figure 4.12 the r -z -resolved first four standardized moments of the temperature dis-

tribution are shown. The horizontal and vertical axes correspond to the radial coordinate
r and the vertical coordinate z, respectively. The mean temperature profile is almost
constant in the bulk, and only near the hot and cold plate (and to a lesser extent near the
sidewalls) a deviation can be seen. Like in the former cases, the standard deviation of the
temperature takes its highest values near the horizontal plates and falls off towards the
middle of the convection cell with a local minimum at z = 0.5. Also, it can be seen that
this local minimum is less pronounced near the sidewalls, i. e. for high r . After rising
up to its maximum value at z ≈ 0.1, the skewness varies monotonically with increasing
z. This has also been found for the former two cases. Regarding the radial dependence,
the skewness falls off towards the sidewalls, indicating a less asymmetric temperature
distribution there, while its highest values are found near the cylinder axis. Although the
statistics are less converged for the kurtosis (especially near r = 0 due to the cylindrical
geometry), one can see that the highest values correspond roughly to the extrema of
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Figure 4.12: First four standardized r -z -resolved moments of the temperature distribution,
i. e. mean value, standard deviation, skewness and kurtosis (from left to right). Here the
convection is in a cylinder with Γ= 1.

the skewness. These high values of skewness and kurtosis near the bottom wall can be
attributed to hot localized plumes detaching from the hot bottom plate and piercing
into the colder fluid of the bulk. We also note that the absolute values of skewness and
kurtosis are higher than in the former two cases (figures 4.2 and 4.8), which can be
understood on dimensional grounds: In horizontally periodic convection, we averaged
over all horizontal directions and therefore averaged out the sharp maxima that can be
seen in the cylindrical case (figure 4.12) where the statistics are resolved additionally in
the horizontal coordinate r .

When inserting the temperature PDF f (T , r, z) and the conditional averages 〈·|T , r, z〉
into the general framework from chapter 3, the PDF-defining equation (3.2) becomes

1

r

∂

∂ r

�
r 〈ur |T , r, z〉 f

	
+
∂

∂ z

�
〈uz |T , r, z〉 f

	
=− ∂
∂T

�
〈ΔT |T , r, z〉 f

	
, (4.3)

while the characteristics (3.3) read⎛⎜⎜⎝Ṫ
ṙ
ż

⎞⎟⎟⎠=
⎛⎜⎜⎝〈ΔT |T , r, z〉
〈ur |T , r, z〉
〈uz |T , r, z〉

⎞⎟⎟⎠ . (4.4)
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Figure 4.13: RB
cycle of the char-
acteristics for
convection in a
Γ = 1-cylinder.
Left: Tempera-
ture of the cycle
(figure-eight)
and r -z -resolved
mean tempera-
ture color coded.
Right: The r -z -
resolved standard
deviation of tem-
perature where
T ′ = T − 〈T 〉.
The color of
the figure-eight-
shaped cycle
indicates its
absolute temper-
ature difference
with respect to
the background
temperature.

0 1/4 1/2

r

0

1/4

1/2

3/4

1

z

0.47 0.53

〈T 〉

0 1/4 1/2

r

0.0 0.1

〈T ′2〉1/2

In comparison to the former two cases, we now deal with a three-dimensional phase space
where the additional dimension is related to the radial movement. From (4.4) one sees
that the radial coordinate r of the characteristics evolves according to the conditional
average of radial velocity ur .
We now again turn to the integration of the characteristics, following (4.4). Although

cylindrical convection is intrinsically different from the former two cases of horizontally
periodic convection (due to three- vs. two-dimensional phase space), we still find that the
average dynamics of fluid parcels are described by a closed, twisted loop in phase space
that shares common features with the former two. The cycle is shown in figures 4.13
and 4.14 as the slender figure-eight-shaped curve.
In the left panel of figure 4.13, the background shows the mean temperature (cf.

figure 4.12) and the figure-eight-shaped curve shows a projection of the RB cycle into
the r -z-plane. The third coordinate of the RB cycle, the temperature T , is color coded.
The temperature scale corresponds to the minimal and maximal temperature (T = 0.47
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and T = 0.53) the RB cycle takes. When tracing the cycle, one can again identify the
Rayleigh–Bénard cycle of the horizontally periodic convection cases, superposed with
an additional inwards and outwards motion: Starting with fluid of mean temperature that
is quickly heating up at the bottom, it then begins to rise up and move inwards into the
bulk until z ≈ 0.8 and r ≈ 0.3, where it goes outwards and starts to cool down. At the
maximal z, the fluid cools down quickly and then falls towards the lower plate while
moving inwards, thus starting the RB cycle all over again. Additionally, one can see that
the hot fluid rising from the lower plate steadily cools down when it crosses the bulk of
almost uniform temperature; this is related to the monotonically decreasing skewness of
temperature that can be seen in figure 4.12.
The difference of the temperature of the RB cycle and the background temperature

(cf. color coding of these two in figure 4.13 (left)) shows that the regions where the
temperature of the RB cycle deviates most from the mean background temperature are
the regions of high buoyancy and correspond to the regions of main vertical movement in
the bulk. To elaborate on this, the right panel of figure 4.13 shows the standard deviation
of the temperature field in the background, and the color coding of the cycle shows the
absolute deviation of its temperature coordinate T from the mean temperature. The
deviation of the temperature of a fluid particle on the cycle from the surrounding mean
temperature determines its mean buoyancy, so the right panel tells us how strong the
buoyancy acts; the highest values for hot rising fluid are found in the lower half of the
convection cell. In comparison, the mean deviation of fluid from the mean temperature
profile (shown in the background as the standard deviation of temperature) is much
weaker. To summarize, from the left panel of figure 4.13 one can see in which direction
the buoyancy acts, while the right panel shows its strength.
The vector field of the characteristics is shown in figure 4.14. Due to the difficulty to

display a vector field in three-dimensional phase space, we show slices of the phase space
velocity in the r -z plane at different T . The panels I–VIII show one cycle of a fluid parcel
traveling along the RB cycle, with its temperature color coded as in figure 4.13 (left).
Additionally to the RB cycle described above, figure 4.14 also reveals the average behavior
of fluid in different parts of the convection cell, conditioned on its temperature. The
arrows show an r -z slice of the vector field of the characteristics (4.4) at the T coordinate
of the cycle. Also, the black and white background color indicates the phase space speed,
i. e. how fast a fluid parcel travels through phase space (with white being the fastest
movement). The arrows indicate the mean movement of fluid of a given temperature in
different regions of the convection cell.
Panel I shows that cold fluid (here, T = 0.475) has the highest speeds in the bulk

and near the sidewall. Near the cold top plate, cold fluid is mainly transported towards
the outer wall. For z < 0.75, the direction of movement is slightly tilted towards the
cylinder axis. Cold fluid that falls down along the sidewall is deflected towards the inner
cylinder at around z ≈ 0.25 due to a corner flow that propels cold fluid upwards along
the sidewall; notice that at r ≈ 0.45 and z ≈ 0.25, up- and downwelling cold fluid collides.
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Figure 4.14: Vector field governing the characteristics in phase space for convection in a Γ= 1-
cylinder, cf. (4.4). Extents of horizontal and vertical axes as in figure 4.13, i. e. 0≤ r ≤ 1/2
and 0≤ z ≤ 1. The RB cycle is the slender figure-eight-shaped curve at the right side. The
temperature of the vector field and the RB cycle is color coded as in figure 4.13 (left), and
the phase space speed (i. e., norm of velocity) is coded in black and white in the background
(with white being high velocity). The eight panels I–VIII follow a fluid parcel (circle on
the cycle, with the color showing its temperature) along the RB cycle and show a slice of
the vector field of the phase space velocity in the r -z plane at the T coordinate of the fluid
parcel (with T ∈ {0.475,0.478,0.487,0.495,0.525,0.519,0.509,0.501} from left to right).
The vector fields show the average movement in different regions of the convection cell of
fluid of a particular temperature.
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This feature can be understood as cold plumes that are formed at the upper plate and are
swept towards the sidewalls. The plumes then fall down along the sidewall until they hit
the hot fluid at the bottom plate where they are directed inwards. These cold plumes that
fall down along the sidewall can also be seen in figure 4.11.
The fluid from panel III is less cold (T = 0.487) and has overall lower speeds, but

still shows the same features as in panel I, e. g. cold fluid is swept along the upper plate
outwards and falls down along the sidewall until it hits the upwelling corner flow. The
vector fields for fluid of mean temperature (T ≈ 0.5, panel IV and VIII) are symmetric
around z = 0.5 and show an almost vanishing velocity in the bulk. Near the horizontal
plates, fluid is swept towards the sidewalls and from there vertically towards the z = 0.5-
line.
The rest of the panels complete one run of the RB cycle and due to the up-down

symmetry contain the same information already described. Still, from all eight panels it
can be seen that fluid for all temperatures has high phase space speed near the sidewalls,
which can be attributed to plumes that are guided along the outer walls of the cylinder,
and also has high speeds near the bottom and top plate which is due to the vigorous
temperature contrast between fluid and horizontal plates that leads to high speeds regard-
ing the T coordinate. Also, we have to stress here that the corner flows show up due to
the investigation being conditioned on the temperature and not due to some large-scale
structure that may be present in the fields; this structure is lost in the azimuthal averaging
process when obtaining the vector field from (4.4). Therefore, in our analysis the corner
flows are statistical structures that are not necessarily related to structures in the flow.
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5 Summary

art I of this thesis analyzed the turbulent flow in Rayleigh–Bénard convection
on the basis of statistical quantities like the temperature PDF and conditionally aver-
aged fields. We derived that the mean path a fluid particle takes through phase space

(spanned by temperature and spatial coordinates) is defined by so-called characteristics, i. e.
trajectories in phase space that follow the conditionally averaged vector field composed of
heat diffusion and fluid velocities. Thereby, we could characterize the dynamics and flow
features that occur in turbulent convection cells from a statistical point of view, i. e. from
averaged quantities like the temperature distribution and its moments as well as statistics
conditioned on temperature and spatial position.
By estimating the aforementioned vector fields for three different Rayleigh–Bénard

geometries while utilizing their symmetries and then integrating the characteristics we
described the mean dynamics that fluid particles undergo, i. e. we could describe how fluid
of different temperatures behaves in different regions of the convection volume. We also
distinguished regions of high and low transport through phase space. For all geometries
there are high phase space speeds for intense temperatures in the bulk (which we attribute
to localized events of intense temperatures and high speeds, i. e. plumes) as well as high
speeds near the horizontal plates for all temperatures, while for the case of cylindrical
convection the phase space speed also takes high values near the wall of the cylinder. This
we interpret as plumes that are directed along the insulating sidewalls. In the conditionally
averaged vector field of the cylinder, we could furthermore identify corner flows near
the sidewalls for fluid of different temperatures. Cold fluid experiences a corner flow
near the bottom plate while showing no corner flow near the upper plate and vice versa.
Additionally, we described the higher moments of the temperature distributions, where
we could link features of the moments to coherent structures that appear in turbulent
flows.
When we then obtained the characteristics by integrating trajectories through the

conditionally averaged vector field, we found that for all different convection setups, the
characteristics form closed cycles in phase space. These cycles reconstruct the typical
Rayleigh–Bénard cycle a fluid particle undergoes on average, i. e. fluid is heated up at
the bottom and rises upwards while slightly cooling down until it hits the upper plate,
where it cools down fast and falls down to the lower plate while slightly heating up, thus
starting the cycle all over again. In the cylindrical case, where there is another phase
space dimension corresponding to horizontal movement, the fluid shows an additional
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inwards and outwards movement while following the RB cycle. The method thus allows
to further pin-point and quantify the differences and similarities between Rayleigh–
Bénard convection in two- and three-dimensional periodic boxes and in three-dimensional
convection in a cylindrical cell.
For so-called homogeneous Rayleigh–Bénard convection (Lohse and Toschi, 2003,

Calzavarini et al., 2005) – thermal convection with horizontally periodic boundary
conditions as well as periodic boundary conditions in vertical direction together with
an imposed temperature gradient driving the flow – we would expect quite different
behavior as such a system does not have boundary layers, but represents pure bulk
turbulence. Furthermore, the statistics do not depend on the spatial coordinates and
the phase space becomes one-dimensional, which is fundamentally different from the
three cases considered in the present part of this thesis. The analysis of homogeneous
Rayleigh–Bénard convection would actually be more in line with the work by Yakhot
(1989) and Ching (1993), who analyze with the help of conditional averages the PDF
of experimental time series obtained from temperature probe measurements. In these
works, in a sense the phase space is also one-dimensional due to the lack of any spatial
coordinate. Thus, while their ansatz can be used to e. g. describe the transition from soft
to hard turbulence, no information about the dynamics and spatial structures can be
obtained from the statistics, contrary to the method we proposed here.
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Optimal Modes of Heat Transport
Obtained by Proper Orthogonal
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oherent structures play a key role in Rayleigh–Bénard convection. Although
turbulence is characterized by many different length scales that fluctuate on
different time scales, still patterns like a stable large-scale circulation or plumes

emerge from convective flows. These building blocks of convective turbulence are what
we think of as coherent structures.

The above-mentioned examples for coherent structures are readily conceivable – one
can easily make out the main structures that form the convective flows in the pictures
of the introductory chapter of this thesis (e. g., the plumes and large-scale circulations
in figures 1.1 and 1.2 on pages 2 and 3). But how can one formalize this detection of
structures that seem evident to the naked eye? And can one also identify a cascade
of subsequent higher-order structures that build turbulent flows in a top-down fashion,
starting from the large-scale structures and going down to finer and finer turbulent
filaments?
To this end, we apply a technique known as proper orthogonal decomposition (POD).

Given an ensemble of flow fields, this methods yields a set of empirical spatial modes
that give the best approximation of the system. Here, “best” means that the modes are
optimal in capturing the energy. Also, the modes may be ordered by the energy that they
contain. Our new ansatz is then to extend this well-known technique so that the modes
give the best approximation of the heat transport instead of the energy, as this is the more
relevant quantity in Rayleigh–Bénard convection.

This part of the thesis is structured as follows: After introducing the idea behind POD
at a low-dimensional example in chapter 6, we give an overview of the mathematics
behind this procedure in chapter 7 and express the methods in a way that is most
suited to the application we are aiming for – namely, the POD of high-dimensional
turbulent convection data, as shown in chapter 8. Chapter 9 introduces our new ansatz
that can optimally describe the heat transport of the system, which is then used in a
lower-dimensional statistical analysis of convective flows.
The contents of the present part have been published in a modified form in Lülff

(2015). The publication was produced after this part of the thesis has been written and
contains additional analysis not presented here.
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6 Introductory Example – The Idea Behind
POD

hen applying proper orthogonal decomposition1, one seeks a set of modes
or basis vectors that characterize the essentials of a data set better than any
other basis. A transformation of the data set into the basis of POD modes

gives then a more insightful representation of the ensemble. Before presenting a more
mathematically sound description in chapter 7 (where also a formal definition of the
colloquial terms better, optimally etc. is given), we explain the idea behind POD at a
low-dimensional example.
In figure 6.1 (left), a two-dimensional data set is shown, with blue circles representing

ensemble members. The data set consists of random samples from a bivariate Gaussian
distribution. Since the covariance matrix has off-diagonal elements, the cloud of data
points is not rotationally symmetric but skewed; also, the data has an anisotropic standard
deviation, resulting in a rotated ellipsoidal form. The right graph of figure 6.1 shows the
same data transformed into the POD basis. Here, the cloud of data points is rotationally
symmetric and has the same standard deviation in all directions; thus, the POD basis
allows for a better description of the data.
The calculation of the POD modes and the subsequent transformation between data

basis (left graph) and POD basis (right graph) is done as follows: First, the 2×2 covariance
matrix of the data set is estimated.2 In the next step, the two eigenvalues and corresponding
eigenvectors of the covariance matrix are calculated. The eigenvectors can be thought of as
the principal axes of the data set (hence the alternative name principal component analysis),
while the eigenvalues give the variance of the data in the corresponding directions. In the
left graph of figure 6.1, the two brown arrows show the eigenvectors, with their lengths
scaled to be the corresponding standard deviation (i. e., square root of eigenvalue). Thus,
the brown arrows give a visual representation of the principal axes of the data and its

1Proper orthogonal decomposition goes under many names, depending on the field of study, e. g. principal
component analysis in signal processing (Pearson, 1901), Karhunen–Loève transformation (stochastic
processes (Karhunen, 1946, Loève, 1945)) or singular value decomposition in linear algebra. We denote it
as proper orthogonal decomposition (POD) since this is the preferred term in fluid dynamics and mechanical
engineering.

2In our example, it is know a priori due to the generation of the random sample, but in general it has to be
computed from the data.
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Figure 6.1: Proper orthogonal decomposition in two dimensions. Both plots show the same
random samples following a bivariate Gaussian distribution with covariance matrix�

1/2 1/2
1/2 1

�
and zero mean. Green arrows show basis vectors of the data (i. e., canonical) basis,

brown arrows show basis vectors of the POD basis.

extend along these axes. The green arrows show the canonical basis vectors e1 and e2 of
the data basis.
In this example, the brown arrows are the POD modes of the data set. In order to

describe the data in the POD basis, one has to find a linear transformation that converts
the POD modes into unit vectors e′

1
and e′

2
. This suggests that the transformation is

readily found as the inverse of the matrix that contains the eigenvectors as columns,
followed by dividing each row of the matrix by the square root of the eigenvalues. To put
it in other words, the transformation consists of a rotation followed by a rescaling to unit
variance (i. e., unit standard deviation). One can easily imagine how this transforms the
green and brown arrows between left and right graph of figure 6.1.
When the transformation is applied to each member of the data set, the data is trans-

formed into the POD basis. In this basis, the data distribution becomes symmetric,
and the covariance matrix is now the 2×2 identity matrix. Thus, proper orthogonal
decomposition gives an easier and more convenient view of the data.
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or the low-dimensional introductory example from the prior chapter, the en-
semble members of the data set were two-dimensional points, and also the POD
modes were vectors in two dimensions. Since we want to use proper orthogonal

decomposition to analyze the spatial modes of Rayleigh–Bénard convection, where a
single ensemble member is represented by a volumetric snapshot of the temperature and
flow fields, we will now give a mathematically rigor description of the method that can
also be applied to high- or even infinite-dimensional modes. For a more in-depth reading,
the interested reader is referred to the textbook literature (see, e. g., Holmes et al. (1996,
chap. 3)) or to Smith et al. (2005) for a tutorial-like introduction into the topic aimed at
an application to fluid dynamics. Authors that use POD to analyze Rayleigh–Bénard
convection include Lumley and Poje (1997), Bailon-Cuba et al. (2010) and Bailon-Cuba
and Schumacher (2011).

7.1 Formulation as Variational Principle

In this section, we will describe how to calculate POD modes from a data ensemble of
scalar functions {q(x)}. The proper orthogonal decomposition then gives a set of basis
functions {φ(x)} of the data ensemble. To keep the description as general as possible, we
allow the scalar functions to be complex valued. Also, the functions are chosen from a
Hilbert space such that a scalar product

�
f , g
�

:=

∫
dx f (x)g (x) (7.1)

exists that also induces an L2-norm via ‖ f ‖2 = � f , f
�
. The overbar · denotes complex

conjugation.
As outlined in chapter 6, the POD modes are optimal in describing the data set.

Mathematically this means that the mean projection of the data onto the POD modes is
maximized:

max
φ

�
|(q ,φ)|2

�
(7.2)

In other words, proper orthogonal decomposition captures the most energy (i. e., squared
L2-norm) from the data set. Here, 〈·〉 indicates an average over the data ensemble. While
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7 Mathematical Description of POD

this expression strictly speaking yields only one φ, the remaining local maxima of (7.2)
give the rest of the POD modes.1

Thus, the estimation of POD modes becomes a variational problem: Find a function φ
that maximizes the functional

�
|(q ,φ)|2

�
under the constraint ‖φ‖2 = 1 (since the basis

should be orthonormal).2 According to variational calculus, solutions of (7.2) obey an
Euler–Lagrange type equation, which can be recast as an integral equation for φ:3∫

dx ′
�

q(x) q(x ′)
�
φ(x ′) = λφ(x) (7.3)

The basis modes φ(x) are therefore eigenfunctions of the (spatial) covariance function
(or “matrix”)

�
q(x) q(x ′)

�
, and λ are the corresponding eigenvalues. Since the covari-

ance matrix has Hermitian property, spectral theory assures that eigenfunctions are
orthonormal.

The eigenvalue λ gives the mean energy of the data ensemble in φ-direction, which can

be seen as follows: Multiplication of (7.3) by φ(x) and integration over x gives∫
dx

∫
dx ′
�

q(x) q(x ′)
�
φ(x ′)φ(x) = λ

∫
dxφ(x)φ(x) , (7.4)

which after reordering and identifying scalar products reads4

λ (φ,φ)︸ ︷︷ ︸
=1

= λ=
�
|(q ,φ)|2

�
. (7.5)

The eigenvalue λ is therefore the average squared L2-norm (i. e., energy) of the data
ensemble projected onto the corresponding φ-direction.
Given a data ensemble {qi (x)}, which may contain a finite or (un)countable infinite

number of member functions indexed by i , the solutions of the eigenvalue problem (7.3)
give a set of orthonormal functions {φi (x)} that form a basis of the data ensemble,5 as
well as a spectrum {λi} of corresponding energies. The representation of the data set in
the POD basis is then

q j (x) =
∑

k

ξk jφ
k (x) (7.6)

1Alternatively, to obtain the other POD modes one could think of a projection approach: After obtaining
the first mode through (7.2), one projects the data set onto this mode and calculates the next mode from
the residuum between projection and full data set. Iterating this step gives all POD modes.

2In the literature, this is often summarized as max
φ

〈|(q ,φ)|2〉
‖φ‖2 .

3For a detailed presentation, see section B.1 or Holmes et al. (1996, sec. 3.1).
4It is assumed that the ensemble average commutes with the spatial integration.
5Or, to be more precise, a basis of the linear hull of the data ensemble.
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with amplitudes ξi j that may be obtained by scalar multiplication with φi :

ξi j =
�
φi , q j
	

(7.7)

With an uncountable POD basis, the sum in (7.6) has to be replaced by an integration
over a continuous index.
According to (7.5), the mean energy contained in mode φi is given by λi . The mean

energy contained in the whole data ensemble is
∑

i λi . This can be seen by inserting (7.5)

and utilizing the completeness of the POD basis, i. e.
∑

i φ
i (x)φi (x ′) = δ(x − x ′) (cf.

section B.2 for a detailed calculation).
In the representation of the data in the POD basis, it is also possible to reduce the

dimensionality of the data ensemble. This is done by taking only certain modes in (7.6)
into account, i. e. by truncating the sum. For example, one could use only the Np POD
modes with the highest energies, thus projecting the data set onto the subspace spanned by
the most energetic modes. The optimality of the POD modes assures that this projection
is the best among all Np -dimensional projections (in an L2- or energetic sense).

7.2 Matrix Formulation for Discrete Numerical Data

In the application we are aiming for, the data ensemble consists of Nt member functions
(or snapshots) {qi (x)} with i ∈ {1, . . . ,Nt }, which may have been obtained by sampling
a dynamical system at discrete times ti . The ensemble average then can be thought as
an average over time. Also, since we want to deal with numerical or experimental data,
we will not have continuous functions but vectors of Nx real or complex numbers that
correspond to a finite sampling in space. These sampling points may not only be points
on the real line but also come from a higher-dimensional space, so that a snapshot can e. g.
represent a three-dimensional snapshot of the temperature field of a numerical simulation
of convection or even a “mixed” snapshot of temperature and velocity fields. Therefore,
one ensemble member is now a vector q i ∈ �Nx , and the scalar product between two
vectors v and w reads

(v, w) = v†
Sw , (7.8)

where the row vector v† ∈ �1×Nx is the conjugate transpose of the column vector
v ∈�Nx (×1). The matrix S ∈�Nx×Nx induces the scalar product of two snapshots. The
simplest case would be S = 1

Nx
1 for an equidistant discretization of the scalar product

(7.1);6 likewise, by choosing S as a diagonal matrix with appropriate weights on the

6Here and likewise from now on, 1 is the identity matrix of appropriate size. Whenever its size is unclear
from the context, it will be given as a subscript, e. g. in this case 1Nx×Nx

. The same applies to the zero
matrix 0n×n , which may also be rectangular (0n×m ).
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7 Mathematical Description of POD

diagonal, one could account for a non-equidistant spatial sampling of the snapshots (e. g.,
the cylindrical grid used in section 4.3). In general though, S could be any positive definite
Hermitian matrix, which would induce an arbitrary spatial scalar product.
The whole ensemble of Nt snapshots is assembled as columns in the data matrix

X =
�

q1 q2 · · · qNt
	
=

⎛⎜⎜⎜⎜⎝
q1

1
. . . q

Nt

1
...

. . .
...

q1
Nx

. . . q
Nt

Nx

⎞⎟⎟⎟⎟⎠ ∈�Nx×Nt . (7.9)

In the rightmost “full” matrix representation, upper indices are temporal and lower
indices are spatial ones. This matrix representation is especially useful, because it allows
for a compact notation of operations on the whole data set.
We will now show what the steps to obtain the POD modes from the prior section

look like when performed for discrete numerical data: Calculating the spatial covariance
matrix means correlating all pairs of grid points and averaging over time; in a matrix
representation of the data ensemble, one can easily see that

XTX
† =

⎛⎜⎜⎜⎜⎝
q1

1
. . . q

Nt

1
...

. . .
...

q1
Nx

. . . q
Nt

Nx

⎞⎟⎟⎟⎟⎠
⎛⎜⎜⎜⎝
β1

. . .
βNt

⎞⎟⎟⎟⎠
⎛⎜⎜⎜⎜⎝

q1
1

. . . q1
Nx

...
. . .

...
q

Nt

1
. . . q

Nt

Nx

⎞⎟⎟⎟⎟⎠ ∈�Nx×Nx (7.10)

is the discretized version of the covariance matrix
�

q(x)q(x ′)
�
from (7.3). Similar to

the matrix S before, the matrix T ∈ �Nt×Nt is the diagonal matrix that contains the
temporal weights βi of the snapshots q i . In the most simple cases, e. g. for equidistant
sampling in time or uncorrelated snapshots, it would be 1

Nt
1, but again, any positive

definite Hermitian matrix could be used, corresponding to an arbitrary temporal scalar
product.
The eigenvalue equation (7.3) in a discrete formulation then reads

XTX
†
Sφi = λiφ

i (7.11)

for one pair of eigenvector and eigenvalue, where the matrix S accounts for the spatial
weights of the integral (i. e., the scalar product) in (7.3).7 More compact, the eigenvalue
problem (7.11) reads

XTX
†
SΦ= ΦΛ (7.12)

7In general, S performs the spatial scalar product between the covariance matrix XTX
† ∈�Nx×Nx and the

eigenvector φi ∈�Nx , cf. Rowley et al. (2004) or Rowley (2001, sec. 4.1).
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7.2 Matrix Formulation for Discrete Numerical Data

with the matrix

Φ=
�
φ1 . . . φNx

	
∈�Nx×Nx (7.13)

containing the POD modes as columns and

Λ= diag(λ1, . . . ,λNx
) ∈�Nx×Nx (7.14)

as the diagonal matrix that contains the corresponding eigenvalues.
It is crucial that the matrix A = XTX†S is self-adjoint with respect to the scalar

product (7.8) induced by S:

(Av, w) = (Av)†Sw (7.15a)

= v†
A

†
Sw (7.15b)

= v†
S

†
XT

†
X

†
Sw (7.15c)

= v†
SXTX

†
Sw (S, T are Hermitian) (7.15d)

= v†
SAw (7.15e)

= (v,Aw) (7.15f)

Thus, the eigenvectors Φ can be chosen to be orthonormal with respect to the same scalar
product:8

Φ
†
SΦ= 1 (7.16)

Therefore, the solution Φ of (7.12) gives Nx orthonormal vectors, which form a basis of
the data ensemble (i. e., a basis of�Nx ).9 Also, the eigenvalues λi are real and non-negative,
cf. section B.3, so that the interpretation of the eigenvalues as energies or L2-norms holds.

For a finite data set, the transformation of the data into the POD basis, i. e. (7.6)–(7.7),
reads

X = ΦΞ , (7.17)

with the amplitudes

Ξ=

⎛⎜⎜⎜⎝
ξ11 . . . ξ1Nt
...

. . .
...

ξNx 1 . . . ξNx Nt

⎞⎟⎟⎟⎠ ∈�Nx×Nt . (7.18)

8In the numerical implementation, this has to be ensured by hand a posteriori (i. e., by dividing every
column of Φ by its norm), as the eigenproblem algorithm does not know about the matrix S, but only
“sees” the whole matrix XTX

†
S.

9At least for well-behaved matrices, i. e. when the matrix XTX
†
S has full rank or, equivalently, if all

eigenvalues are non-zero; also cf. section 7.4.
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Here, ξi j gives the contribution of POD mode φi to snapshot q j ; accordingly, the i -th

row of Ξ is the time series of mode φi , and the j -th column represents the partition
of snapshot q j . Multiplying (7.17) from the left with Φ†S gives the calculation of the
amplitudes as

Ξ= Φ†
SX (7.19)

which is the discretized version of (7.7). The following verification shows that the
transformation of the data into the POD basis is exact:10

X =ΦΞ (7.20a)

= ΦΦ†
S︸ ︷︷ ︸

=Φ†
SΦ=1

X (7.20b)

= X (7.20c)

With this matrix formulation of the relevant equations (sometimes referred to as the
direct method), it is easy to calculate the POD modes and corresponding energies from a
numerical data set (equation (7.12)) and also obtain the time series or amplitudes that
reconstruct the data set in the basis of the POD modes (equation (7.19)).

7.3 Method of Snapshots

Although the direct method to obtain POD modes described in the previous section is
exact, it may be infeasible in practice. The reason is that in fluid dynamics, the number
of grid points is usually much higher than the number of snapshots in a data set. For
example, the data sets of three-dimensional turbulent convection used in part I consist of
Nt = � (103) snapshots, while the number of grid points is roughly Nx = � (108). Thus,
the spatial covariance matrix has � (1016) entries, which means it is far too big to be
handled numerically.11

As a solution, Sirovich (1987a) suggested the method of snapshots to deal with data sets
where there are more grid points than snapshots. This ansatz boils down to calculating
the Nt ×Nt temporal instead of the Nx×Nx spatial covariance matrix, which is favorable
when Nt �Nx . In the following, we will outline this method.

We want the method of snapshots to give essentially the same POD modes φi and
eigenvalue spectrum λi as the direct method, but avoid the calculation of the spatial

10The identity ΦΦ†
S = Φ†

SΦ in (7.20b) holds because for square matrices A and B, the relation AB = 1

implies B =A
−1, and thus AB = BA because an invertible matrix commutes with its inverse.

11As an example, the spatial covariance matrix of the data set from section 4.1 would consume � (252) bytes,
which would be roughly 4.5 petabytes.
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7.3 Method of Snapshots

covariance matrix XTX†. So the goal is to obtain Φ and Λ from the temporal covariance
matrix

X
†
SX ∈�Nt×Nt , (7.21)

where the entry (X†SX)i , j gives the spatially averaged correlation of snapshots q i and
q j .
The eigenvalue problem of the temporal covariance matrix reads

X
†
SXTc i = λi c

i or X
†
SXTC =CΛ (7.22)

with eigenvectors c i ∈�Nt respectively C ∈�Nt×Nt and eigenvalues Λ ∈�Nt×Nt . Similar
to (7.11), the matrix T here accounts for the temporal weights of the snapshots. A
calculation analogous to (7.15) shows that X†SXT is self-adjoint with respect to the
scalar product induced by T, which implies that the eigenvectors C are orthonormal
under the same scalar product:12

C
†
TC = 1 (7.23)

Also, it has to be stressed that the matrices X†SXT = (X†S)(XT) and XTX†S =
(XT)(X†S) share the same non-zero eigenvalues, which is a general result for the eigenval-
ues of matrix products (cf. section B.4); therefore the eigenvalues obtained by the direct
method (7.12) and by the method of snapshots (7.22) were both denoted by Λ.

To relate the eigenvectors C to the desired POD modes Φ, we multiply the eigenvalue
problem (7.22) of the spatial covariance matrix from the left with XT and with Λ−1/2

from the right13:

XTX
†
SXTCΛ

−1/2 = XTCΛΛ
−1/2 (7.24a)

= XTCΛ
−1/2
Λ (7.24b)

⇒ XTX
†
SΦ= ΦΛ (7.24c)

In the last step, we arrived at the direct method (7.12) by identifying the POD modes as

Φ= XTCΛ
−1/2 . (7.25)

Indeed, it is readily seen that this choice assures orthonormal POD modes:

Φ
†
SΦ=Λ−1/2

C
†
T

†
X

†
SXTC︸ ︷︷ ︸
=CΛ

Λ
−1/2 (7.26a)

=Λ−1/2
C

†
T

†
C︸ ︷︷ ︸

=C
†
TC=1

ΛΛ
−1/2 (7.26b)

= 1 (7.26c)

12Also see footnote 8 on page 51 regarding the normalization of the eigenvectors C.
13The matrix Λ−1/2 can be calculated trivially because Λ is diagonal with strictly positive diagonal entries

(for the well-behaved case).
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Equation (7.25) states that the POD modes Φ are expressed as a linear combination
(determined in large part by C) of the data snapshots X.14 Therefore, the POD modes
inherit any linear constraints that the snapshots have, e. g. boundary conditions or
incompressibility, cf. Rowley (2001, sec. 4.1).

Contrary to the direct method, the matrix Φ ∈�Nx×Nt contains only Nt POD modes,
which is the most one can expect from a data set that consists of Nt snapshots (also in
an information-theoretical sense). Thus, the POD modes Φ do not span the full �Nx but
only the linear hull of the data set. Of course, the more linearly independent snapshots
are used, the bigger the space spanned by the POD modes becomes.
The transformation of the data set X into the POD basis Φ in principle looks alike to

the direct method, i. e. X = ΦΞ with the amplitudes Ξ= Φ†SX ∈�Nt×Nt . One can avoid
the calculations involving the big Nx ×Nt matrices Φ and X, though:

Ξ= Φ†
SX (7.27a)

=Λ−1/2
C

†
T

†
X

†
SX︸ ︷︷ ︸

=(CΛ)†

(7.27b)

=Λ
1/2

C
† (7.27c)

The amplitudes can therefore be obtained in passing because they are calculated from
small Nt ×Nt matrices that are available anyhow. As in the direct method, one can verify
the transformation of the data into the POD basis as follows:15

X = ΦΞ (7.28a)

= XTCΛ
−1/2
Λ

1/2
C

† (7.28b)

= X TCC
†︸ ︷︷ ︸

=C
†
TC=1

(7.28c)

= X (7.28d)

In the method of snapshots, the matrices of the eigenvalue problem have only Nt

rows and columns, so the eigenvalue problem can readily be solved numerically. The
computation of the covariance matrix X†SX is now possible, contrary to the direct
method for Nx �Nt .

16

14In fact, most authors begin the derivation of the method of snapshots by inserting a linear combination of
the snapshots into the direct method.

15For the justification of the relation TCC
† =C

†
TC in (7.28c), see footnote 10 on page 52.

16Though the calculation is possible per se, it is still computationally challenging; comments on this are
given in section B.5.

54



7.4 Direct Method or Method of Snapshots?

7.4 Direct Method or Method of Snapshots?

As mentioned before, the spatial covariance matrix of the direct method and the temporal
covariance matrix of the method of snapshots have the same number of non-zero eigen-
values and thus the same rank. This means that the same number of energy-containing
eigenvectors and thus the same number of POD modes φi can be obtained with both
methods. Thus, in general one will choose the method that leads to smaller matrices and
is computationally more feasible, i. e. the method of snapshots whenever Nx >Nt , as is
the case here.
The rank of the temporal covariance matrix of the method of snapshots can be esti-

mated as

Nt ≥ rank(X†
SXT) =min(rank X, rank T) , (7.29)

assuming that S has full rank with rank S > rank T. Because rank X ≤Nt and rank T ≤
Nt , the covariance matrix has full rank Nt whenever X and T have full rank, i. e. when all
snapshots q i in X are linearly independent and all temporal weights are non-vanishing17.
If this should not be the case, the corresponding snapshots can simply be omitted from
the data set, thus assuring that all matrices have full rank. This reasoning also justifies
why we could assume well-behaved matrices earlier on.

A similar reasoning can also be applied to the direct method: If either X or S is rank
deficient, i. e. has rank smaller than Nx , then either some spatial dimensions of the data
set are not linearly independent (e. g., the data set consists of snapshots of the form
q i =
�

x, y, 2y
�T ∈�3), or some dimensions are given zero weights by the scalar product

S. In both cases the respective dimensions can be omitted from the data set, which results
in matrices with full rank.

7.5 Lower-Dimensional Projection

The transformation of the data set into the POD basis is an exact relation, as shown
in (7.20) and (7.28). But the POD basis can also be used to obtain a lower-dimensional
projection of the data-set, i. e. by projecting only onto a range of POD modes. Since the
ordering of the single POD modes in Φ (and the corresponding ordering of eigenvalues
in Λ) is arbitrary, we will assume that the data set should be projected onto the first Np

modes.18

17Strictly speaking, this is already guaranteed by the positive definiteness of T.
18Usually the modes are sorted by descending eigenvalues, which means the first Np modes are the most

energetic ones.
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7.5.1 Direct Method

We want to obtain the matrix "Φ that contains only the first Np modes of Φ. This is

formally achieved by multiplication with an appropriate matrix R
Np ∈ �Nx×Np that

retains only the first Np columns of Φ:

"Φ= ΦR
Np (7.30a)

:= Φ

⎛⎜⎝ 1Np×Np

0(Nx−Np )×Np

⎞⎟⎠ ∈�Nx×Np (7.30b)

With this matrix and (7.20), the projected data set reads

"X = "Φ"Φ†
SX (7.31a)

=: Pd X . (7.31b)

Thus, in the direct method the projected data set "X is easily obtained by left-multiplying

the full data set X with the projection matrix Pd =
"Φ"Φ†

S ∈�Nx×Nx , which is constructed
from the first Np POD modes. A simple calculation shows that Pd fulfills the required
idempotence P

2
d
= Pd of a projection.

The action of the projection matrix and its different constituents

Pd X = "Φ"Φ†
SX (7.32a)

= Φ︸︷︷︸
IV

R
Np
�

R
Np
	†︸ ︷︷ ︸

III

Φ
†︸︷︷︸

II

S︸︷︷︸
I

X (7.32b)

can intuitively be interpreted as a weighting of the spatial dimensions (I) followed by a
rotation into the POD basis (II). In this basis the data is projected onto an Np -dimensional
subspace (III) and then rotated back into the original basis (IV).

7.5.2 Method of Snapshots

In the method of snapshots, the subset "Φ of POD modes (cf. (7.25)) is obtained by
keeping only the first Np eigenvalues in Λ and correspondingly the first Np columns in C

(this is achieved in the same way as before, i. e. by "C =CR
Np ). Therefore, the projected

data set in the method of snapshots reads

"X = XT"C"C†
(7.33a)

=: XPs , (7.33b)
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7.5 Lower-Dimensional Projection

cf. (7.28). Again, the projection is readily obtained by right-multiplying X with the

projection matrix Ps = T"C"C† ∈ �Nt×Nt (with P
2
s
= Ps ). The projected snapshots

therefore are linear combinations of the initial snapshots, and so they obey the same
linear constraints, as discussed in section 7.3.
It has to be stressed that for the projection in the method of snapshots, the actual

POD basis (which is a big Nx ×Nt matrix) does not have to be calculated explicitly: The
projection can instead be achieved by utilizing rather small Nt ×Nt matrices that are
already available (i. e., T and C).

7.5.3 Quantifying the Quality of the Projection

In both methods, it can be shown that the residuum between full and projected data set is
related to the eigenvalues. To this end, we observe that the weighted Frobenius norm of
X may be defined as the temporal average of the norm of every snapshot, i. e.

‖X‖2
F
=

Nt∑
i=1

‖q i‖2βi =

Nt∑
i=1

�
q i
	†

Sq iβi (7.34a)

= tr(X†
SXT) =

Nt∑
i=1

λi (7.34b)

for the method of snapshots,19 which means that the squared Frobenius norm is the
mean energy of the data set (cf. section B.2).
By utilizing the invariance of the trace under cyclic permutations and inserting the

definition of "X, one can easily find that

‖"X‖2
F
=

Np∑
i=1

λi , (7.35)

which is reasonable: Since "X is the data set projected onto Np modes, it should also
contain only the energy represented by these modes. Reversely, this means that the norm
of the residuum between projected and full data set is given by the energy contained in
the POD modes that are removed from the system:

‖X− "X‖2
F
=

Nt∑
i=Np+1

λi (7.36)

With these relations, one can easily quantify the quality of the projection by examining
the eigenvalues (instead of, e. g., directly calculating norms of the full data set).

19The same is found for the direct method because X
†
SXT and XTX

†
S have the same non-zero eigenvalues

and the trace is cyclic.
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7 Mathematical Description of POD

It has to be stressed, though, that the eigenvalues relate to the overall quality of the
projection; however, the lower-dimensional projection of a single snapshot cannot be
assessed from the eigenvalues alone. Indeed, the projection quality of a certain snapshot
may be significantly worse than the overall quality, e. g. when one snapshot differs strongly
from all the others.

7.6 Summary of Mathematical Description

In this section, we gave an introduction into the mathematics behind proper orthogonal
decomposition. We outlined the direct method and the method of snapshots, the latter
being preferred when the spatial dimension is bigger than the temporal dimension. Both
methods are deeply connected with the eigenvalue problem of the covariance matrix
of the data ensemble, i. e. the correlation between two spatial dimensions for the direct
method and the correlation between two snapshots in time for the method of snapshots.
We gave the formulas to obtain a set of orthonormal POD modes in a concise form, and
also showed the easiest ways to perform a transformation into this basis or a projection
onto a number of basis vectors.

We want to emphasize, though, that POD methods are known for a long time and have
become a standard tool in many fields of application; thus, we do not claim we presented
any new insights in the present chapter. Instead, we tried to give an accessible formulation,
that on the one hand is kept as general as possible; on the other hand, we derived all
relations using matrix calculus, as this greatly simplifies the numerical implementation we
are aiming for. Also, we elaborated on the estimation of time series (i. e., transformation
into the POD basis) as well as on the lower-dimensional projection aspect of POD. This,
as well as a rigorous matrix formulation leaned towards a numerical implementation, is
understudied by most authors – at least to the knowledge of the author of these lines.

We want to finish with two closing remarks: First, we deliberately did not subtract the
temporal mean from the snapshots, which would amount to an affine-linear transformation,
as Rowley (2001, sec. 4.1.4) puts it. Though this is in principle possible, we considered
it inconvenient, as then the matrix X would be rank deficient20 and one eigenvalue in
Λ would be zero – this would lead to problems, e. g. when calculating the matrix Λ−1/2

in (7.25) (cf. also section 7.4). Also the interpretation of eigenvalues and modes would
become less insightful, as they would relate to the fluctuations about the mean and not
directly to the flow itself.
Second, in POD analysis it is generally also possible to expand the data ensemble

by utilizing symmetries, and there are techniques that allow to do so with little addi-

20It can easily be seen that the mean-subtracted snapshots are not linearly independent: Since their mean
is zero, we have found a linear combination that produces the null vector, which implies that the
mean-subtracted snapshots are linearly dependent.
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7.6 Summary of Mathematical Description

tional numerical cost (Sirovich and Park, 1990)21. We decided not to take discrete or
even continuous symmetries into account, though, because this would “destroy” spatial
structures that are present in convective flows: Consider for example two-dimensional
convection with a stable clockwise large-scale circulation (this is actually the situation
we will discuss in the next chapter). Employing the horizontal reflectional symmetry
of this system would result in POD modes that do not show a large scale circulation –
for every “clockwise” snapshot, the data ensemble would also contain the corresponding
“anti-clockwise” snapshot due to symmetries, and their contribution would average out.
Likewise, the continuous azimuthal symmetry of convection in a cylindrical vessel de-
stroys information about the reorientation of the large-scale circulation. In other words,
by taking into account the symmetries of the system one may lose information about
symmetry-breaking flows that are present in the data ensemble (a similar argument is
also discussed by Holmes et al. (1996, sec. 3.3.3) in the context of ergodicity). Therefore
we decided against utilizing symmetries, although in certain situations, symmetries do
make sense; the interested reader is referred to the pivotal overview provided by Sirovich
(1987b).

21In this reference, there are 16 possible discrete symmetries (i. e., reflections and rotations), but the
numerical cost for incorporating these symmetries in the POD calculation can be as low as a factor of 22

instead of the factor of 162 one would naively assume.
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8 POD of Turbulent Convection

e now will apply the methods that where outlined before to a data set of
two-dimensional convection. To this end, we will compute the eigenvalue
spectrum and the POD modes from the data ensemble and also examine

lower-dimensional projections of the data.

q1 q2

q3 q4

Figure 8.1: Four subsequent snapshots of the two-dimensional data set used in this chapter.
The temperature is color-coded and additionally shown with 8 equidistant isothermals for
0.25≤ T ≤ 0.75, and the velocity field is indicated by the arrows. The axis labels and ticks
have been omitted (horizontal axis: 0≤ x ≤ 1, vertical axis: 0≤ z ≤ 1).
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8 POD of Turbulent Convection

8.1 Data Set

The data set consists of 500 snapshots of the temperature field T (x , ti ) and the velocity

field u(x , ti ) =
�

ux (x ,ti )
uz (x ,ti )

�
of two-dimensional convection in a box with aspect ratio Γ= 1,

obtained from DNS (cf. also section 4.2). The snapshots are separated by half a free-
fall time unit, and the temperature and velocity fields are non-dimensionalized by the
temperature difference as well as the distance of the plates and with respect to diffusive
time scales. The bottom and top plate have a fixed temperature of T = 1 respectively
T = 0, and the side walls are adiabatic; all walls obey no-slip conditions. Rayleigh and
Prandtl numbers are Ra= 1.46× 108 and Pr= 1.
Four consecutive snapshots of the temperature and velocity fields are shown in fig-

ure 8.1. This system forms a stable convection cell with the main turbulence occurring
near the side walls and especially in the counter-rotating corner rolls. In the data ensemble
there is no reversal of the large-scale circulation, in accordance with the findings of
Sugiyama et al. (2010) for the parameters considered here.
The fields are each resolved with nx = 224× 224 equidistant grid points x1, . . . , x nx

,
so one snapshot would in principle be a vector consisting of all three fields sampled at
the grid point, i. e. a vector with 3nx entries. Since we are dealing with incompressible
fluids, though, ux is already fully determined by uz , so we can restrict our snapshots to
be vectors

q i =
�

T (x1, ti ), . . . ,T (x nx
, ti ), uz (x1, ti ), . . . , uz (x nx

, ti )
	T ∈�2nx . (8.1)

The total spatial dimension of the grid points is therefore Nx = 2× 224× 224= 100352.
With Nt = 500 snapshots, we definitely will apply the method of snapshots.

8.2 POD Eigenvalue Spectrum and Modes

We choose the spatial scalar product simply as S = 1
nx

1, and the temporal weighting

matrix as T = 1
Nt

1, which corresponds to an equidistant sampling in space and time.
Thus, the squared norm of one snapshot will be the “generalized” energy averaged over
the whole fluid volume:

‖q i‖2 =
�

q i , q i
	
=

1

nx

nx∑
j=1

T (x j , ti )
2+

1

nx

nx∑
j=1

uz (x j , ti )
2 (8.2a)

=
�

T (ti )
2
�

V
+
�

uz (ti )
2
�

V
(8.2b)

Likewise, the eigenvalue λi gives the energy contained in mode φi , i. e. temperature
squared plus vertical velocity squared. The mean energy content of the data ensemble is�
‖q‖2
�
≈ 1770976.
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8.2 POD Eigenvalue Spectrum and Modes
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Figure 8.2: Eigenvalues λi of
the POD modes, with the
first eigenvalues magnified
in the inset. As a guide to
the eye, the brown line in-
dicates an exponential de-
cay.

Figure 8.2 shows the eigenvalues, determined by solving the eigenvalue problem (7.22)
numerically. One observes that the first mode contains a large part of the energy, with
the drop to the second eigenvalue being almost 3 orders of magnitude, as is seen in the
inset. The higher eigenvalues show an almost exponential decay, which has also been
observed for turbulent convection by Bailon-Cuba et al. (2010)1.
In figure 8.3, some exemplary POD modes are shown. Since the modes are scaled to

be orthonormal, the absolute value of the temperature (as well as the velocity) fields
becomes more or less meaningless; therefore the temperature part of each mode has been
rescaled in the color coding. The first mode φ1 looks like the flow fields averaged over
time (cf. figure 8.1), while modes φ2, φ3 and φ4 have their main contribution near the
corners. This indicates that they are responsible for the deformation and oscillation of
the corner rolls. The higher modes become more erratic and noise-like, which can be
seen in mode φ90.
The energy content of the first modes relative to the total energy content is displayed

in figure 8.4. This confirms that the first mode contains almost all the energy, namely
98.1%. From there the energy rises quickly to almost 100% (e. g., the first 10 modes
contain 99%, and the first 90 modes contain 99.9% of the energy). The higher modes
contribute less and less to the total energy, so in the end the curve converges slowly
towards the 100% contained in the 500 modes of the full data set. This graph can also be
used to determine the desired dimension of the projection, as one can readily read of the
number of modes needed to achieve a certain amount of energy.
In figure 8.5, a projection of the snapshot q1 onto a different number of modes is

shown. It is seen that already a few modes (say, 10 or even as few as 4 modes) suffice to
reproduce the general picture of a stable roll with “broken” corner flows. For the finer
structures, though, more modes are needed: For example, the small patch of hot fluid

1In this reference, a norm similar to ours is used, namely
�

T 2
�
+
�

u2
�
.

63



8 POD of Turbulent Convection

φ1 φ2

φ3 φ4

φ10 φ90

Figure 8.3: Examples of the POD modes of the data set. In each mode, the temperature part
has been rescaled according to its minimal and maximal values, and the 8 equidistant

isothermals as well as the color scale cover a temperature range
#

Tmin

2
,

Tmax

2

$
.
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8.2 POD Eigenvalue Spectrum and Modes

1 50 100 200 300 400 500
n

98
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E
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%

E of n modes
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98
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Figure 8.4: Sum of the first
n eigenvalues, which is
the energy contained in
the first n POD modes,
normalized by the to-
tal energy, i. e. 100% ×∑n

i=1
λi/
∑Nt

i=1
λi . The total

energy is indicated by the
dashed line.

that is swept clockwise along the top plate is barely visible with 10 modes, but already
quite pronounced when using 90 modes (i. e., less that 20% of the available modes).
We can also inspect the time series of the energies, i. e. the norm of each (projected)

snapshot. It is straightforward to see that the time series of the full data set is given by the
diagonal entries of the temporal covariance matrix X†SX, while the time series of the
projected data corresponds to the diagonal of

"X†
S"X = P

†
s
X

†
SXPs . (8.3)

Since the full covariance matrix is calculated anyhow, the time series of the projected data
is quickly obtained by multiplying this matrix with the projection matrix P

†
s
respectively

Ps , constructed as given in (7.33) – this means that we do not need to construct the whole
projected data set in order to obtain the projected time series. The resulting time series of
some of the projections from before (cf. figure 8.5) are shown in figure 8.6. We see that
already one mode describes the full time series quite well, while of course more modes
reproduce the full signal better and better.
In section 7.5.3 we discussed how the mean energy captured by a lower-dimensional

projection monotonically rises with increasing mode count. In the right panel of figure 8.6
we can see that this also seems to be true for the projection of every single snapshot.
This is not evident a priori: The mean energy captured is monotonically rising because
it corresponds to the sum of non-negative eigenvalues; the more modes are used for the
projection, the more non-negative eigenvalues are summed up. This simple argument
does not hold for every single snapshot, though, as the energy of a projection of a single
snapshot does not depend on the eigenvalues alone. To this end, we present a rigorous
proof of this observation in section B.6.
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8 POD of Turbulent Convection

all modes 2 modes

3 modes 4 modes

10 modes 90 modes

Figure 8.5: The snapshot q1 projected onto the first {2,3,4,10,90} modes, with representation
as in figure 8.1. The projection onto only the first mode has been omitted since it looks
precisely as the mode φ1 itself, cf. figure 8.3. Instead, the upper left panel shows a projection
using all modes, i. e. the full snapshot q1.
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8.2 POD Eigenvalue Spectrum and Modes
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Figure 8.6: Time series of the energies (i. e., the energy of the i -th snapshot) of the full data set
and projections onto the first {1,2,3,4}modes. The dashed line indicates the mean energy

of
�
‖q‖2
�
≈ 1770976. In the right panel, time steps 400–500 have been magnified.
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9 New Approach that Optimizes the Heat
Transport

s yet we have shown the standard POD analysis of two-dimensional convection in
the last chapter. The modes and eigenvalues were representing the generalized en-
ergy E =

�
T 2
�

V
+
�

u2
z

�
V
, which was a consequence of the chosen scalar product.

This generalized energy does not have a meaningful physical significance though, as quan-
tities measured in different units are added. Even when non-dimensionalized quantities are
used, this issue persists, as the relative weight given to temperature respectively velocity
depends on the way the non-dimensionalization is achieved. For example, the velocities
non-dimensionalized according to free-fall time scales are typically of order � (1), while
for diffusive time scales (as we are using), velocities for the parameters considered here are
of order � (1000). If the temperature is in both cases non-dimensionalized with respect
to the plate temperatures and is therefore typically of order � (1), this means that one
non-dimensionalization gives a factor of � (1000) more weight to the velocity than the
other. Introducing a weighting factor in front of the velocity would also not solve this
problem but merely shift it, because then the question arises of how to determine a
“good” choice for this external factor. All in all, the problem boils down to the fact that
it is not a good idea to compare temperatures and velocities. The generalized energy is
therefore not an appropriate measure for convective systems.
In contrast, what is a good measure of convection is the heat transport through the

system, measured in terms of the Nusselt number

Nu= 1+
�

T uz

�
V

, (9.1)

assuming that the temperature field has been shifted to
�

T
�

V
= 0. The Nusselt number

and its dependencies on the system parameters (i. e., Rayleigh and Prandtl number and
fluid geometry) is one of the most studied quantities in Rayleigh–Bénard convection
(see e. g. Ahlers et al. (2009), Grossmann and Lohse (2001)). Also, it has been found
that the Nusselt number depends strongly on the flow configurations, for example the
shape and dynamics of the large-scale current circulation (Petschel et al., 2011, van der
Poel et al., 2011). Thus, it would be insightful to learn about the “building blocks” from
which the spatial structures are constructed, and also to quantify the heat transport of
these building blocks.
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9 New Approach that Optimizes the Heat Transport

To this end, we adapt the POD technique to allow for modes that are optimal in
capturing the convective heat transport of the system, instead of the generalized energy.
The average convective heat transport is the average correlation between vertical velocity
and temperature, which we define as the convective Nusselt number

Nuc =
�

T uz

�
V

, (9.2)

with Nu= 1+Nuc. We will show in the next section how the previous methods have to
be modified in order to achieve a proper orthogonal decomposition that maximizes Nuc.
The description will be restricted to the method of snapshots, as this will be the preferred
choice in virtually all applications.

9.1 Theory

In the matrix formulation of section 7.2, the quantity that the POD method maximizes
hinges on the choice of the scalar-product-inducing matrix S. The choice S ∼ 1 resulted
in the generalized energy that does not contain any mixed terms, as are needed to obtain
the Nusselt number.

With the snapshots as in (8.1), here abbreviated in a blockwise fashion1 as q i =



T i

u i
z

�
∈

�2nx , the matrix

S =
1

2nx

�
0 1

1 0

�
∈�2nx×2nx (9.3)

results in the representation of the heat transport of a single snapshot as

�
q i
	†

Sq i =
1

2nx

�
T i u i

z

	�0 1

1 0

��
T i

u i
z

�
=

1

2nx

�
T i u i

z

	�u i
z

T i

�
(9.4a)

=
1

2

��
T i u i

z

�
V
+
�

u i
z
T i
�

V

�
=Nuc(ti ) . (9.4b)

By utilizing this matrix S and the scalar product it induces, it becomes possible for the
POD method to optimize for the convective heat transport and also to obtain the spatial
structures (i. e., modes) that achieve the most heat transport.
There is a slight complication, though, as the matrix S is Hermitian, but not positive

definite – its eigenvalues are ±1/2nx . Thus, the scalar product of a vector with itself, i. e.
the squared norm, is not guaranteed to be non-negative. Speaking in physical terms, this
is the case when a snapshot has a negative convective heat transport, which can happen if
e. g. strong hot plumes are swept downwards by the large-scale current.

1That is, T i and u i
z
are blocks of nx values that represent the temperature and velocity fields at time ti .
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9.1 Theory

Since the requirement of positive definiteness,
�
q, q
�≥ 0, is not fulfilled, the matrix S

does not define a proper scalar product, but rather a non-degenerate symmetric bilinear
form2, which is sometimes denoted as a pseudo scalar product; likewise, the pseudo
scalar product of a vector with itself defines a pseudo norm that may become negative.
At first glance, this definition of a pseudo scalar product and a pseudo norm may seem
unintuitive and artificial. But in physics, there exists a well-known concept that has
similar properties, namely the Minkowski space of special relativity. Here, the distance or
Minkowski metric3 between two events in space-time can be positive or negative, which
categorizes distances in space-like or time-like. Moreover, theMinkowski space is a special
case of a pseudo-Euclidean space that also generalizes the concept of norms and distances
to allow for negative measures; this is also achieved by general symmetric (not necessarily
positive definite) bilinear forms, just as in our case. The interested reader is referred to
textbooks leaned towards the mathematics of special relativity, e. g. Fliessbach (1992,
chap. IX), or to the mathematical literature relating to linear algebra. For the rest of this
section, we will sloppily drop the “pseudo” for reasons of simplicity and just refer to
scalar products or norms – e. g., the reader should be aware that whenever we discuss the
norm of a snapshot, it is not to be meant in the strict mathematical sense but in the sense
of a measure assigned to the snapshot.

9.1.1 Consequences of Indefinite S

In the matrix formulation of sections 7.3ff., we did not rely on S defining a proper scalar
product, but rather on properties of the matrix itself, e. g. that it is positive definite and
Hermitian. Thus, we will now analyze how the methods have to be adapted for the
indefinite matrix (9.3).

The matrix X†SX is still self-adjoint with respect to T, so there still exist eigenvectors
C and real eigenvalues Λ with X†SXTC =CΛ and C

†
TC = 1. However, the eigenvalues

in Λ are not strictly positive, as S is not positive definite.4 This agrees with the eigenvalues
measuring the convective heat transfer Nuc which may become negative. Thus, calculating
the POD modes Φ from C as given in (7.25) could result in complex modes, as it involves
the inverse square root Λ−1/2 of the eigenvalues. To prevent complex POD modes (as for
real input data, real POD modes should be obtained), we can take the absolutes of the
eigenvalues, i. e.

Λ+ := diag
�
|λ1|, . . . , |λNt

|
�

, (9.5)

2In our context, this means that (i) v†Sw = w†Sv and (ii) for every non-zero v, there exists a w with
v†Sw �= 0.

3We are aware that the term “Minkowski metric” is a misnomer, as it is not a metric in the strict mathemat-
ical sense; terms like this are established in the physical jargon, though – albeit being imprecise.

4This can be seen from a reasoning similar to the one given in section B.3: Multiplying the eigenvalue
problem X

†
SXTc = λc from the left with c†T

† gives λ= c†T
†
X

†
SXTc =: v†Sv ≶ 0.
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9 New Approach that Optimizes the Heat Transport

for which Λ−
1/2
+ and therefore also the POD modes

Φ= XTCΛ
−1/2
+ (9.6)

are real.
The apparent “drawback” of using Λ+ instead of Λ is that now the POD modes are

not orthonormal anymore:

Φ
†
SΦ=Λ

−1/2
+ C

†
T

†
X

†
SXTC︸ ︷︷ ︸
=CΛ

Λ
−1/2
+ (9.7a)

=Λ
−1/2
+ ΛΛ

−1/2
+ (9.7b)

= diag

⎛⎜⎝ λ1

|λ1|
, . . . ,

λNt

|λNt
|

⎞⎟⎠=:Λs (9.7c)

Therefore, the POD modes are not normalized to 1 but to ±1, i. e. the signs of the
eigenvalues as contained in Λs ; modes with positive heat transport are normalized to
+1, and modes with negative heat transport are normalized to −1. The drawback can
therefore rather be interpreted as a grouping of the modes into positive and negative
convective heat transport.5

Due to Φ†SΦ = Λs , the amplitudes of the transformation into the POD basis, i. e.
X = ΦΞ, have to be modified: Multiplication with ΛsΦ

†S from the left yields

ΛsΦ
†
SX =ΛsΦ

†
SΦΞ=ΛsΛsΞ= Ξ , (9.8)

because Λ2
s
= 1. After inserting Φ from (9.6), the amplitudes finally read

Ξ=ΛsΛ
−1/2
+ C

†
T

†
X

†
SX︸ ︷︷ ︸

=(CΛ)†=ΛC
†

(9.9a)

=ΛsΛ
−1/2
+ Λ+Λs C

† (because Λ=Λ+Λs ) (9.9b)

=Λ
1/2
+ C

† . (9.9c)

One can quickly verify the self-consistency of the transformation,

X = ΦΞ= XTCΛ
−1/2
+ Λ

1/2
+ C

† = XTCC
† = X , (9.10)

5We want to remark here that the normalization of the modes to ±1 is not a consequence of the choice
of Λ+ over Λ in (9.6): Had we instead chosen to use the complex Λ−1/2 (where (Λ−1/2)† �= Λ−1/2 ), (9.7)
would read Φ†

SΦ= (Λ−1/2)†ΛΛ−1/2 = diag
�
λ1/|λ1 |, . . . , λNt/|λNt

|
	
, i. e. the same as it is now – complex POD

modes would therefore also result in normalization to ±1. Thus, we could conveniently opt for real
POD modes.
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9.2 Results from DNS Data

cf. (7.28). The lower-dimensional projection from section 7.5.2 depends only on the
eigenvectors and the temporal weighting matrix, so the formulas presented there are still
valid for the new S considered here.
Summarizing this section, we have seen that the methods developed for a positive

definite S may be extended to indefinite matrices – as the one we use to describe the
convective heat transport – by almost trivial modifications like splitting the eigenvalues
into sign and absolute value.

9.2 Results from DNS Data

We will now apply the newly developed methods to the same data set as before and
compare the performance to the prior results. In order to distinguish between the modes
that optimize the generalized energy and the ones that optimize the convective heat
transport, we will refer to them as E -modes and Nu-modes whenever otherwise confusion
is to be feared, or add subscripts to the variables and matrices.

9.2.1 Eigenvalues and Modes

Figure 9.1 shows the eigenvalue spectrum of the Nu-modes, sorted in descending order;
the eigenvalue λi is the convective heat transport of mode φi . Due to the logarithmic
vertical axis, we plot the absolute of the eigenvalues. As for the energy case, we see that the
first mode transports most of the heat, and the drop from the first to the second eigenvalue
is almost 2 orders of magnitude. There are 324 modes with positive heat transport, and a
big share of the eigenvalues show an exponential decay. Correspondingly, there are 176
modes with negative heat transport, and the most negative one is about a factor of 5 to
the second to last (best seen in the inset of the figure). The sum of the eigenvalues, i. e.
the mean convective heat transport of the data set, is Nuc =

�
‖q‖2
�
≈ 27.39.
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102 Figure 9.1: Eigenvalues of

the Nu-modes sorted in
descending order, grouped
into positive and negative
ones. The green line acts as
a guide to the eye for an ex-
ponential decay. The inset
magnifies the first 50 most
positive modes in blue and
the last 50 most negative
modes in brown.
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φ1 φ2

φ3 φ4

φ499 φ500

Figure 9.2: Examples of the Nu-modes of the data set; the representation is in line with the
one in figure 8.3. The mode φ1 corresponds to the most positive eigenvalue, and φ500 to the
most negative one.
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The corresponding modes are shown in figure 9.2. As expected, the first mode φ1

represents the mean large-scale circulation, and it looks virtually identical to the first
E -mode, cf. figure 8.3. The second mode is concentrated near the corner flows and is
thought to trigger their deformation, similar to the second E -mode. However, the third
Nu-mode differs from the respective E -mode, as it shows elongated vertical structures of
high absolute temperature values near the side walls that correspond to events of high
convective heat transport – these are missing from the third E -mode, as there the method
is in a sense insensitive to the convective heat transport.
The last mode φ500 which corresponds to the most negative eigenvalue looks almost

like φ1, i. e. the mean flow – upon closer inspection, though, it clearly shows signatures
of negative heat transport: On the left side, there is a patch of cold fluid moving upwards,
which is the signature of cold plumes that are swept towards the upper plate by the large
scale current; likewise on the right side, hot fluid is swept down. Also at the boundary
between the corner flows and the main circulation cell one can find cold fluid being swept
upwards respectively hot fluid being swept downwards, and this appears to be much more
pronounced than in the analogue regions of φ1. These flow structures all have a negative
convective heat transport.

9.2.2 Comparing the Heat Transport of Nu- and E -Modes

Next we want to compare the convective heat transport of the Nu and E -modes (the time
series of the convective heat transport of the data ensemble is shown in figure 9.3). The
convective heat transport of the Nu-modes is simply given by the respective eigenvalues.
For the heat transport of the E -modes, a more intricate processing is needed, as their
eigenvalues give the generalized energy instead of the heat transport. In principle one
could project the data set onto the E -modes and calculate the heat transport of these
projections to obtain the heat transport of the E -modes. But as before, the projections do
not have to be calculated explicitly:
First we note that the heat transport of the full data set X can be expressed as Nuc =

tr(X†SNuXT). The heat transport represented by φi
E
(the i -th E -mode) can then be

calculated by inserting a projection of X onto φi
E
into this relation. According to (7.33),

this projection is given by

"X = XTc i
E

�
c i

E

	†
, (9.11)
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Figure 9.3: Time series of
the convective heat trans-
port of the full data set.
The dashed line marks the
mean of the full data set,
Nuc ≈ 27.39.
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where c i
E
denotes the i -th eigenvector of the E -covariance matrix X†SE XT, correspond-

ing to the i -th E -eigenvalue. Inserting this projection into the trace from before, we
obtain the heat transport of φi

E
as

Nuc(φi
E
) = tr

"X†

SNu
"XT

�
(9.12a)

= tr
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E

�
c i

E

	†
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†
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(9.12b)

= tr

�
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†
SNuXTc i
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�
(9.12c)

=
�

c i
E

	†
T

†
X

†
SNuXTc i

E
. (9.12d)

From (9.12b) to (9.12c) we have used that the trace is cyclic and c i
E
is orthonormal with

respect to T, i. e.
�

c i
E

	†
Tc i

E
= 1, and in the last step we used the fact that the argument

of the trace is actually already a scalar. To put the expression (9.12d) in colloquial terms,
the heat transport of the E -modes is obtained from the Nu-covariance matrix by simply
utilizing the eigenvectors of the E -eigenvalue problem – again, all necessary information
is already contained in the covariance matrices and their eigenvectors.
In (9.12), we calculated the heat transport of one single mode φi

E
; as is evident, this is

actually given by the i -th diagonal entry of the matrix C
†
E

T
†
X†SNuXTCE , which means

that the diagonal of this matrix contains the heat transport of all the E -modes.6 Also, the
heat transport of a projection onto a range of E -modes is obtained simply as the sum of
the respective diagonal elements.
Figure 9.4 compares the convective heat transport spectra of the Nu- and E -modes.

The heat transport of the E -modes is found to be generally decreasing, though not mono-

6The matrix can be computed rather quickly, as it consists of products of the already known covariance
matrix and the small Nt ×Nt matrices T and C.
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Figure 9.4: Heat transport
that is contained in the
i -th Nu- respectively E -
mode. In the inset, the first
50 modes are shown.

Figure 9.5: Heat transport of
a projection onto n Nu- re-
spectively E -modes, given
in percent of the heat trans-
port of the full system. In
the inset, the first 50 modes
are shown. Also cf. ta-
ble 9.1.
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tonically but superimposed with noise. For the higher modes, the two spectra deviate
strongly, because the Nu-modes show a zero crossing towards negative heat transport
while all E -modes have a positive convective heat transport. This seems reasonable, be-
cause positive convective heat transport is in a sense the prevalent flow structure (cf.
figure 9.3, where all time steps have Nuc > 0); thus, only a method that is sensitive to the
heat transport is able to filter out the structures with negative heat transport.
In figure 9.5, the heat transported by a projection onto n modes (i. e., the integrated

eigenvalue spectrum) is shown in percent of the total heat transport. The transport
of the E -modes is always positive, which means that the 100% heat transport of the
full data is an upper bound that is reached for n = 500, i. e. when there is in fact no
projection at all (cf. figure 8.4 for the integrated spectrum of the generalized energy). For
the Nu-modes, though, the picture is rather different: Since there are positive and negative
Nu-eigenvalues, their sum can rise above 100% (i. e., when only positive modes are used),
and it shows a maximum at n = 324 of 104.4%, before again dropping towards 100% at
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all modes 3 modes, 90%

10 modes, 95% 24 modes, 99%

30 modes, 100% 324 modes, max.

Figure 9.6: One snapshot projected onto {3,10,24,30,324} Nu-modes, with the convective
heat transport of the projected data ensemble given in percent, cf. table 9.1.
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90% 95% 99% 100% max.
E 6 22 109 (500) (500)

Nu 3 10 24 30 324

Table 9.1: Number of modes needed to ob-
tain a specified percentage of convective
heat transport, distinguished into E - and
Nu-modes.

n = 500. Therefore, by omitting the modes with negative Nuc from the projection, the
heat transport of the projected system is actually increased above 100%. Likewise, as few
as 30 modes are needed to obtain the same heat transport as is contained in the full system.
Of course, these 30 modes will not be able to reconstruct all the fine structures of the full
data set, but as long as only the heat transport is regarded, the Nu-modes allow for a vast
dimensional reduction. Table 9.1 summarizes the number of modes needed to obtain a
projection that contains a certain percentage of the convective heat transport, and the
corresponding visualizations of the projections are given in figure 9.6. As before, it is seen
that few modes suffice to obtain the general picture of a stable convection cell, but more
modes are needed to reproduce the finer structures. The convective heat transport, i. e. an
averaged quantity, is still reasonably well described with a lower-dimensional projection.
As was pointed out in section 7.5, the modes that are used for the projection may be

chosen arbitrarily. Up to now we considered the n modes with the highest heat transport,
and this resulted in the increased heat transport of 104.4%. Instead, one could also
consider to sort the modes by the absolute value of the heat transport, as also the strong
negative modes are part of “the physics” of the system. The integrated heat transport
spectrum of this alternate sorting is shown as the green line in figure 9.5. The curve
now converges to 100% strictly from below, and it is not monotonous but jagged as it is
the sum of alternating positive and negative values. However and most importantly, the
percentage of Nuc contained in a lower-dimensional projection is still above the E -modes
for all values of n, thus indicating that the Nu-modes give a better description of the heat
transport independent of the ordering. From now on we will only consider the direct
sorting of the modes by descending value of Nuc.

9.2.3 Time Series of Projections

Figure 9.7 shows the time series of the convective heat transport calculated after projecting
onto subsets of Nu-modes, compared to the one of the full data set. It is seen that the
lower-dimensional projections describe the full data very well, and that the projections
chosen here (i. e., sets of modes corresponding to 90%, 95% and 99% of the full Nuc)
capture also an increasing amount of heat transport per snapshot. Unlike the generalized
energy (see discussion of figure 8.6), though, the convective heat transport is in general
not monotonically rising with the number of modes used; e. g., the full heat transport can
lie above, below or in between the lower-dimensional projections, as is seen in the right
graph of figure 9.7. This is due to the Nu-eigenvalues being not strictly positive, as it is
not a priori clear how the heat transport of a single snapshot is composed from the linear
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Figure 9.7: Time series of the convective heat transport of the full data set and projections onto
the first {3,10,24}Nu-modes, cf. table 9.1. The dashed line indicates the mean convective
heat transport. Time steps 400–500 have been magnified in the right panel.

Figure 9.8: Time series of the
convective heat transport
of projections onto the 324
Nu-modes that have a pos-
itive eigenvalue and onto
30 modes corresponding to
100% Nuc. Only the last
100 time steps are shown,
as in the magnified time
series from the plots before.
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combination of the positive and negative Nu-eigenvalues (cf. (B.21), section B.6). When
only considering projections onto positive modes, though, then the argument given for
the generalized energy holds again – i. e., the convective heat transport of the projection
of every single snapshot rises monotonically with the number of positive modes used for
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Figure 9.9: Time series of the convective heat transport of the full data set and projections onto
the first {6,22,109} E -modes, cf. table 9.1. The mean convective heat transport is given by
the dashed line.

the projection. In this regard, figure 9.8 compares the full time series with the one of a
projection onto the 324 positive Nu-modes, and it is seen that the projected time series
always has a higher convective heat transport than the full time series.
The comparison with the projections onto the number of E -modes that achieve

the same heat transport as the Nu-modes (cf. table 9.1) is rather striking: Figure 9.9
shows the Nuc-time series of projections onto {6,22,109} E -modes, corresponding to
{90%,95%,99%} of convective heat transport, i. e. the same shares of the total heat
transport as in figure 9.7 for the Nu-modes. Although more E -modes are used for the
respective projections, one can directly see that the full time series differs strongly from
the lower-dimensional ones; especially the big swings are not reproduced. This is best
seen at the time series corresponding to 90%, which shows much less pronounced peaks.
Also in general the deviation from the true time series is not systematic at all: Sometimes
the projection is above the true value, sometimes below, sometimes one projection is
above while the other is below etc. To conclude, when compared to the E -modes, the

81



9 New Approach that Optimizes the Heat Transport

Figure 9.10: Difference be-
tween Nuc-time series ob-
tained from a projection
onto n Nu- respectively E -
modes and the full time se-
ries, measured in terms of
the L2-norm, cf. text.
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Nu-modes show a better performance with fewer modes in reconstructing the time series
of the convective heat transport.7

The performance with regard to time series is quantified in figure 9.10. Here, the

difference of the full time series Nuc(ti ) and the one projected onto n modes, say%Nuc
n
(ti ),

is compared in terms of the L2-norm, i. e.
&

1
Nt

∑Nt

i=1

�
Nuc(ti )−%Nuc

n
(ti )
	2

for equal

temporal weights as are considered here. For n � 420, the L2-difference of the Nu-modes
is up to an order of magnitude below the E -modes. The Nu-modes show a local minimal
deviation from the true time series at n = 30, which seems reasonable as this corresponds
exactly to 100% Nuc; cf. also figure 9.8 for this case. Also, it is clear that the difference
of the Nu-modes is not monotonically falling with rising mode number n, because, as
we have seen, lower-dimensional projections onto Nu-modes can actually increase the
heat transport, thus resulting in a difference (i. e., increasing L2-norm) compared to
the full case. In contrast, the L2-norm of the E -modes is monotonically falling (cf. the
monotonically rising heat transport in figure 9.5); this is also the reason for the seemingly
better performance of the E -modes for n � 420. Of course, in the end for n = 500, in
both cases the L2-norm vanishes.

9.2.4 Statistics of Local Convective Heat Transport

The convective heat transport Nuc is defined as a volume-averaged quantity. In order to
achieve a better understanding of the spatial structures involved and how these structures

7We want to remark here that the “benchmark” of describing the heat transport is on the one hand slightly
biased, because the Nu-modes were specifically tailored to do so; conversely, the E -modes would perform
better than the Nu-modes in describing the generalized energy. On the other hand, though, the argument
still holds that the Nusselt number is a physically relevant quantity, while the generalized energy is not.
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Figure 9.11: Color plots of temperature field T (x) (left) and local convective heat transport
Nuc(x) (right) of a single snapshot, cf. (9.13). The color scale of Nuc(x) in the right panel is
the same as in figure 9.12.

are represented by our new ansatz, we will now investigate the statistics of the local
convective heat transport, defined as (Bailon-Cuba et al., 2010)

Nuc(x) = uz (x)θ(x) (9.13a)

= uz (x)
�

T (x)−〈T (x)〉A,t

	
, (9.13b)

where θ are the temperature fluctuations about the horizontally and temporally averaged
temperature profile 〈T (x)〉A,t (z). Obviously, the mean local convective heat transport
gives the total convective heat transport, i. e. 〈Nuc(x)〉V ,t =Nuc.
A color plot of the local convective heat transport is compared to the respective

temperature field in figure 9.11. While also the temperature representation gives an
impression of the convective structures that have a big impact on the heat transport (e. g.,
the hot plume being swept downwards in the upper right corner), the same structures
can be identified much easier in the color plot of the local convective heat transport – in
this case, one can for example make out roughly three big blue patches that correspond
to negative heat transport, i. e. plumes being swept in the “wrong” vertical direction. Due
to them, the snapshot has a convective heat transport way below the average, namely
Nuc ≈ 13.15.

The projection of this snapshot onto all 324 positive Nu-modes is shown in figure 9.12;
the convective heat transport of the projection is enhanced by 22%. The color plot
of Nuc(x) makes it clear that this enhancement is achieved by removing the big blue
patches, i. e. localized events of negative heat transport, from the snapshot, while the
positive structures are only marginally smaller in amplitude, compared to the full snapshot
(figure 9.11 right).

To attain a more quantitative understanding of this enhancement mechanism, we will
now investigate the probability density function (PDF) of the local convective heat
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Figure 9.12: Local convective heat transport of
a projection onto the 324 positive Nu-modes,
with the same snapshot as used in figure 9.11.
While in this projection in general the high val-
ues are missing, the negative events are much
more diminished compared to the positive ones.
The mean convective heat transport of the full
snapshot is Nuc ≈ 13.15, while the projection
presented here has Nuc ≈ 15.99, which is 22%
higher than the value without projection. −350
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Nuc /σNuc Figure 9.13: Probability den-
sity function of the local
convective heat transport
Nuc(x) of the full ensem-
ble (black) and of projec-
tions onto the first 30 and
324 Nu-modes. The upper
abscissa is rescaled with re-
spect to the standard devi-
ation σNuc ≈ 122.9 of the
full PDF.

transport. The PDF of the full data in figure 9.13 is asymmetric and has stronger tails
towards positive values, which is not surprising, as positive heat transport is in a sense the
generic behavior of the Rayleigh–Bénard system. The blue curve shows the PDF of the
data set projected onto the 324 positive Nu-modes that maximize the heat transport, and
it is seen that the negative tails are less pronounced, while the positive tails actually lie
above the ones of the full data. Thus, the projection onto the positive modes optimizes
the convective heat transport in a two-fold way – by enhancing the events of positive
heat transport while reducing the negative ones. Likewise, 100% heat transport with as
few as 30 modes (which is a remarkable result) can be achieved by strongly reducing the
negative tails of the PDF while capturing almost all positive events, as the respective tails
of the PDF reveal (cf. brown curve).

We will now compare the PDFs of projections onto Nu- and E -modes that represent a
certain percentage of the total convective heat transport: In line with the observations
from before, the PDFs of the local convective heat transport of the Nu-projection
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ble (black) and of projec-
tions onto the first 22 and
109 E -modes, correspond-
ing to 95% and 99% of
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corresponding to 95% and 99% in figure 9.14 have strongly falling negative tails; also
the shoulder seen in the full PDF is missing. The positive tails, though, remain almost
as strong as in the full case; one can indeed see that in the far positive end, the full PDF
even has a steeper slope than the projected PDFs, although this is obscured by noise.
Thus, the reason only 10 (24) modes are needed to obtain 95% (99%) of Nuc is because
the respective modes contain many positive, but few negative events of convective heat
transport – after all, this is what the newly developed method was tailored for.
The picture is rather different for the PDFs of the same share of Nuc obtained from

E -modes, cf. figure 9.15. Here the extreme events in the positive and negative tails of the
projected PDFs are equally reduced; in comparison to the Nu-case, the negative tails are
slightly bigger, while the positive tails fall of much more steeply. This results in fewer
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Figure 9.16: Higher moments – i. e. mean, standard deviation σNuc , skewness (centralized
third moment over σ3

Nuc ) and kurtosis (centralized fourth moment over σ4
Nuc ) – of the PDFs

of the local convective heat transport relative to the number n of Nu- and E -modes used
for the projection.

positive and more negative events when compared to the Nu-case, and thus, 120% (354%)
more E -modes are needed to obtain the same share of the heat transport as the Nu-modes.

Instead of discussing the form and especially the tails of the PDFs of certain projections,
we can also quantify the shapes of the PDFs of all projections by their higher moments. To
this end, we calculate the projections onto n ∈ {1, . . . , 500} Nu- respectively E -modes and
then estimate the first four moments of the PDFs of the local convective heat flux. The
higher moments are more sensitive to changes in the tails of the PDF, and therefore the
different behavior of the Nu- and E -projections with respect to the tails should manifest
in the moments. As the Nu-modes favor the positive tails and therefore introduce an
asymmetry, especially the comparison of the skewness between Nu- and E -modes is
expected to be insightful.
The results are shown in figure 9.16: Obviously the mean is equivalent to figure 9.5.

The monotonically rising standard deviation simply indicates that with increasing mode
count, the PDFs of Nuc become broader and in general more events are captured by the
projection. Although the Nu- and the E -curves differ, this is mainly due to the ordering of
the modes; for the Nu-case, at n � 400 the modes with the biggest negative heat transport
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begin to kick in, thus resulting in the increasing slope of the standard deviation towards
n = 500 (also cf. figure 9.4). As was predicted before, the skewness of the Nu-PDF is
higher than that of the E -PDF (about 15%), which again shows the asymmetry of the
Nu-modes with respect to the heat transport. The skewness of the Nu-PDF displays a
maximum when utilizing n ≈ 55 modes. Likewise, the kurtosis of the Nu-PDF is about
20− 25% higher than the one of the E -PDF, which is a signature of the enhanced tails
when a projection onto Nu-modes is utilized (as we have seen in figure 9.13, the positive
tails of the projected PDF can actually overshoot the ones of the full PDF). As before for
the skewness, the Nu-kurtosis shows a maximum at n ≈ 55 modes.

To conclude, the PDF analysis of the convective heat transport has shown the difference
between Nu- and E -modes when it comes to capturing the heat transport: The E -modes
do not distinguish between positive and negative convective heat transport, and thus,
in a lower-dimensional projection both tails of the PDF of Nuc(x) are missing. On the
other hand, the Nu-modes we developed can distinguish between positive and negative
heat transport; when using a projection onto the modes with on average positive heat
transport, the PDF of Nuc(x) can actually have stronger positive tails than the full
PDF, while the negative tails are weakened. Therefore, we confirmed the presumed
mechanism of how a projection onto the positive Nu-modes increases the heat transport
– by amplifying the positive and diminishing the negative extreme events of convective
heat transport.

9.2.5 Amplitudes of the POD Modes

In this section, we want to investigate the amplitudes Ξ of the transformation into the
POD basis of the Nu-modes, cf. sections 7.2f. Figure 9.17 displays the time series of the
amplitudes of a choice of modes. As we have seen before, the first mode contributes
the most, and it is not surprising that the mean amplitude of the first mode is around
5 – the heat transport is the squared norm of the snapshots, i. e. the scalar product of
a snapshot with itself, and the heat transport of the first mode is approximately 25 (cf.
figure 9.16 upper left). In general, it is found that the standard deviations of the time
series are decreasing for the higher modes.
To scrutinize on this, we calculate the cross-correlation between the time series of

the amplitudes of two modes, say φi and φ j . As the time series of the amplitude of
mode φi is the i -th row of Ξ, denoted here as ξξξi , the cross-correlation is the temporally
weighted scalar product between the two time series, i. e. ξξξ †

i
Tξξξ j . It can easily be seen that

this is actually the i , j -th element of the matrix8 ΞTΞ†, and thus, this matrix contains

8The adjoint dagger (·)† switching sides here is not a typing error, but because ξξξi is the i -th row, not column
of Ξ.
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Figure 9.17: Time series of
the amplitudes of the trans-
formation into the POD
basis. The coefficient ξi j

gives the contribution of
mode i to snapshot j .
Only the amplitudes of
four exemplary modes are
shown, i. e. φ1, φ2, φ10

and φ100.
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the cross-correlations between all pairs of time series. By inserting the definition of the
amplitudes from (9.9), the cross-correlation matrix becomes

ΞTΞ
† =Λ

1/2
+ C

†
TC︸ ︷︷ ︸
=1

Λ
1/2
+ =Λ+ . (9.14)

Thus, we see that the time series of the amplitude of a mode has a root-mean-square
value that is directly related to the respective eigenvalue, and that time series of different
modes are uncorrelated, which is a remarkable observation – the proper orthogonal
decomposition does not only yield spatially orthogonal modes, but also the time series of
the amplitudes are temporally orthogonal.

It is easy to see that the mean value 〈Ξ〉t of the time series of the amplitudes corresponds
to the amplitudes of the transformation of the temporal average 〈X〉t of the snapshots
into the POD basis:9

〈Ξ〉t = ΞTv1 (9.15a)

=ΛsΦ
†
SXTv1 (deploying (9.8)) (9.15b)

=ΛsΦ
†
S〈X〉t (9.15c)

This compares to (9.8), i. e. Ξ = ΛsΦ
†SX. To put it in concise terms, the temporally

averaged amplitudes are the amplitudes of the temporal average. Thus, the temporal mean
of the amplitudes has to be calculated from Ξ itself, because it cannot be related to the
eigenvalues as was the case for the temporal standard deviations.
In figure 9.18, we have calculated PDFs of the time series of each amplitude rescaled

to zero mean and unit standard deviation. The PDFs of all the time series are close to a
9Here, the vector 〈A〉t is the temporal average, i. e. the weighted sum of the columns of the matrix A with
the temporal weights as contained in T; in a matrix formulation, this can be written as 〈A〉t :=ATv1

with the one-vector v1 = (1,1, . . . , 1)T.
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Figure 9.18: PDFs of the time series of the amplitudes Ξ, rescaled to mean of 0 and standard
deviation of 1. The left graph shows 500 PDFs for every time series, the right graph all time
series condensed in a single PDF; the black curve is a Gaussian distribution, also with mean
of 0 and standard deviation of 1. Due to the small amount of data (a single time series
consists of only 500 data points), the PDFs were calculated using kernel density estimation,
see, e. g.,Härdle et al. (2004).

Gaussian shape, but the data quality of 500 samples per PDF results in noisy statistics.
Condensing all the data in the single PDF of the right graph creates a better Gaussian
curve with less noise, which suggests that the time series of the amplitudes are normally
distributed.
The amplitude of the first mode ξξξ1 as well as the time series of the Nusselt number

seem to have characteristic time scales of roughly 15 snapshots or 7.5 free-fall times per
oscillation (cf. figures 9.17 and 9.3). To this end, we investigate the frequency power
spectrum of some exemplary amplitudes in figure 9.19. The power spectrum of the
amplitude of the first mode shows a peak around wave number j ≈ 35, which indeed
corresponds to a time scale of 500/35 ≈ 14.3 snapshots per oscillation. For lower wave
numbers, the spectrum could be thought of as rather flat, while after the peak, it exhibits
an algebraic decay; due to the noise inherent to the power spectra, this is rather ambiguous,
though. The power spectra of the higher modes feature peaks at higher wave numbers,
albeit being less pronounced (ξξξ2: j ≈ 80 and j ≈ 130; ξξξ10: j ≈ 150); this is in line with
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Figure 9.19: Power spectra of
the time series of the ampli-
tudes, i. e. squared norm
of the Fourier transform
of the rows ξξξi of Ξ, with
kj being the wave number;
the yellow line indicates
an algebraic decay ∼ j−4.
Only spectra correspond-
ing to time series from fig-
ure 9.17 are shown, also
with the same colors. The
spectra are shifted verti-
cally for illustration pur-
poses.
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the assumption from before that the higher modes are responsible for the smaller-scale
features that fluctuate on a faster time scale, e. g. the deformation and oscillation of
the corner rolls. The spectrum of ξξξ100 is completely flat and thus suggests a noise-like
temporal behavior of the higher modes, which fits the general picture, as the higher
modes are also spatially becoming more and more noise-like.

With the statistical analysis of the time series presented in this section, new possibilities
present themselves to model a convective flow: As the temporal statistics (represented
by PDF and spectrum, figures 9.18 and 9.19) and the importance (represented by the
eigenvalues, figure 9.1) of the modes are known, one can artificially generate random
time series of the amplitudes which have the same PDF and spectrum (or, at least, a
representative band of wave numbers), and decide for an intended number of modes
to generate a synthetic ensemble of snapshots of arbitrary size and arbitrary temporal
spacing. As the eigenvalues, modes and temporal statistics are obtained from actual,
“physical” data and the modes excel in maximizing the heat transport, this ansatz can be
expected to produce physically sound artificial data with few modes – in a sense, “the
physics” behind the Rayleigh–Bénard system also try to maximize the heat transport
through the fluid layer. The implementation and analysis of the proposed procedure is
beyond the scope of this thesis, though. Also, it has to be emphasized that this procedure
is different from the lower-dimensional projection shown in the previous sections, as
there the true time series of the modes where used instead of randomly generated ones.
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10 Summary and Outlook

his part of the thesis started with an introduction into the topic of proper or-
thogonal decomposition, which is often used in fluid dynamics to investigate the
predominant spatial structures of flow configurations. The idea behind POD is to

obtain a set of orthonormal basis modes that can describe the flow in an optimal way;
mathematically speaking, this optimality is achieved by means of a variational principle,
which physically amounts to each mode capturing the most possible (generalized) energy.
The variational principle boils down to solving the eigenvalue problem of the covariance
function, where the eigenfunctions are the orthonormal basis modes and the eigenvalues
are the corresponding energies. We then gave the relevant formulas for a discrete matrix
formulation in a recipe-like fashion aimed towards a numerical implementation, and also
presented the best way to calculate transformations and projections in the POD basis.
Also, we introduced the method of snapshots as an alternate, numerically more feasible
way to compute the modes from the high-dimensional data sets that are characteristic for
fluid dynamics.
These general methods where then tested at a data set of two-dimensional Rayleigh–

Bénard convection confined in a box. We obtained the modes and eigenvalue spectrum,
and could relate them to spatial features of the flow, e. g. the large-scale circulation or
corner flows.
As the generalized energy (i. e., kinetic energy plus temperature variance) is not a

physically meaningful quantity, we then developed a way to adapt the POD technique
so that it optimally describes the convective heat transport instead – the analysis of the
related Nusselt number is physically highly relevant, as it is one of the key ingredients
in Rayleigh–Bénard research. This new method hinges on the definition of a certain
scalar product such that the induced squared norm of a snapshot represents its convective
heat transport. Although the formulas had to be slightly modified due to mathematical
complications, we could analyze the data set with the Nu-optimizing modes. It was found
that the new method is able to extract spatial structures that amount to strong events
of heat transport, e. g. plumes. Also, the POD modes can be grouped into positive and
negative heat transport, which allowed for lower-dimensional projections that give the
same or even an enhanced heat transport compared to the full system. We found that the
Nu-modes perform significantly better in describing the heat transport when compared
to the E -modes; this could be traced back to the new method being sensitive to the
local convective heat transport, which we proved by examining its PDF. In the end, we
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analyzed the temporal statistics of the time series obtained by transforming the data set
into the POD basis, which suggested an ansatz to generate arbitrarily large, artificial data
sets from relatively few modes. This had to remain as future work, though.

In a further outlook, the methods should be applied to larger data sets – e. g., cylindrical
three-dimensional data to further understand the structures that contribute the most to
the convective heat transport or hinder it in this changed geometry. The numerical cost
rises quadratically with the number of degrees of freedom, though; therefore we decided
to analyze a longer time span of 500 snapshots for a two-dimensional data set instead of a
short time span for a three-dimensional one (in comparison, Bailon-Cuba et al. (2010)
could only use 100 three-dimensional snapshots due to computational limitations). The
newly developed method should be able to cope with three-dimensional convection data
as well, though care has to be taken, as the convectiveNusselt number we are optimizing
only depends on one of the three velocity components. Comments on this are given in
section B.7.1

As a distant goal, we expect it to be worthwhile to further analyze in detail how a
stronger heat transport is achieved by lower-dimensional projections: We have seen that
the heat transport may actually be enhanced when omitting the negative modes. By
investigating projections onto only the negative modes, one could be able to identify
typical flow configurations that reduce the heat transport. If there was a way to actively
suppress these kind of flow configurations, e. g. by building appropriate barriers into
the fluid vessel, it could perhaps be possible to actively enhance the heat transport in
convection experiments. Of course, this adaption of our newly developed method aimed
towards technical or industrial applications remains speculative, but still rather promising.

1Also, the publication Lülff (2015) that was produced in accordance to the present part implements the
three-dimensional POD analysis that is only sketched here.
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Part III

Statistical Analysis of the Forced
SWIFT–HOHENBERG Equation





or the limit of small Rayleigh numbers, the Rayleigh–Bénard system displays
stable coherent structures in the form of convection rolls. Depending on the
chosen parameters, for example the applied temperature gradient, the convection

rolls may lie parallel to each other or form tangled patterns when viewed from above.
Frequently, one is not interested in the full three-dimensional structure of the velocity
and temperature fields described by the full Oberbeck–Boussinesq equations, but only
in the resulting patterns that the convection rolls form. This two-dimensional pattern
forming behavior is described by the Swift–Hohenberg equation, a nonlinear partial
differential equation that can be obtained from the full system in the limit of small
Rayleigh numbers; the equation gives the temporal evolution of an order parameter
that corresponds to a horizontal slice of the temperature field of Rayleigh–Bénard
convection.
In this part, we will analyze the statistical behavior of the Swift–Hohenberg equa-

tion forced by noise, which may be thought of as temperature fluctuations induced
by inhomogeneities of the horizontal plates of the Rayleigh–Bénard system. To this
end, we will derive an evolution equation for the probability density function (PDF)
of the order parameter along the lines of the Lundgren–Monin–Novikov hierarchy
already covered in part I of this thesis. The PDF equation contains unclosed terms in the
form of conditional averages that are estimated from direct numerical simulations of the
forced Swift–Hohenberg equation. Furthermore, as the system is described by gradient
dynamics, the corresponding Lyapunov functional can be used in the analysis of the PDF
equation as well as in the simplification of the numerics.

This part of the thesis is structured as follows: After introducing the Swift–Hohenberg
equation and motivating its connection to the Rayleigh–Bénard system in chapter 11, we
go into detail on the direct numerical simulation (chapter 12) and also give an alternative
description in terms of the Lyapunov functional in chapter 13. We then outline the
derivation of the PDF equation and present the obtained results in chapter 14 before
ending with a conclusion (chapter 15).
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11 Introduction

ere we will give an introduction to the behavior of the Rayleigh–Bénard sys-
tem slightly above the onset of convection: Section 11.1 represents a phenomenolog-
ical overview of the occurring pattern formation, while section 11.2 motivates how

these patterns may be modeled by an order parameter equation – the Swift–Hohenberg
equation – and how this is related to the full Oberbeck–Boussinesq equations that
describe Rayleigh–Bénard convection.

11.1 Pattern Formation in Convection

When increasing the Rayleigh number, i. e. the control parameter that is connected to
the temperature gradient between the horizontal plates in a Rayleigh–Bénard system,
a variety of different flow regimes emerges. For high Rayleigh numbers, the fluid is
turbulent and erratic, as was the case in the preceding parts of this thesis; cf. also figures 1.1
and 1.2 of the introduction on pages 2 and 3. On the other end of the spectrum, i. e. for
Rayleigh numbers below the critical one, there is no convection at all, the fluid is at rest,
and heat transport between the plates happens purely by conduction.

Figure 11.1: Examples of pattern formation in convection. Left: Convection cells from the
historic experiment conducted by Bénard; image borrowed from Bénard (1901). See also
footnote 1 on page 98. Right: Numerical simulation of the full Rayleigh–Bénard system in
an ellipsoidal vessel displaying four convection rolls. Streamlines of the velocity field are
shown, with color coding according to the temperature (i. e., red corresponds to hot and blue
to cold fluid). The Rayleigh number is Ra= 104, which corresponds to ε= 4.9, cf. (11.2).
For details, see Lülff (2011, sec. 3.7).
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Figure 11.2: Clouds of the undulatus type that show a stripe pattern. Image courtesy of
O’Beirne (2009).

In this part of the thesis, we are interested in the behavior in the intermediate flow
regime when the Rayleigh number is slightly above the critical one. It is long known
that in this flow regime, stable convection patterns emerge, as exemplified in figure 11.1,
where an experimental and a numerical convection system are shown that form hexagons
respectively stripes. In fact, the foundations of Rayleigh–Bénard research were laid
by Bénard (1901) when studying these patterns experimentally and by their analytical
description due to Rayleigh (1916).1 This research continues until today, and recent
developments and also examples of Rayleigh–Bénard convection near the onset are
given in the review by Bodenschatz et al. (2000). Furthermore, many examples of
pattern formation arise in convective systems that occur in nature, e. g. the distinct stripe
pattern in clouds of the so-called undulatus type in figure 11.2; further examples are found
in the review article by Cross and Hohenberg (1993).

11.2 Randomly Forced SWIFT–HOHENBERG Equation

The convection patterns in the figures above are prime examples of what Haken (1975)
introduced as the slaving principle: The macroscopic, slowly varying modes – i. e., the
convection patterns – determine or enslave the behavior of the fast, microscopic modes
(e. g., the dynamics on the level of single fluid particles). Thus, only the dynamics of the
macroscopic modes (also called order parameters) determine the behavior of the whole
system, and the microscopic degrees of freedom quickly follow the order parameters (for
an introduction into this topic, see Argyris et al. (2010, sec. 6.8)).

Following this reasoning, it often is not necessary to know the details of all microscopic
degrees of freedom, i. e. the dynamics on the smallest scales as described by theOberbeck–

1We note that the hexagonal pattern of figure 11.1 (left) is not an example of Rayleigh–Bénard convection
in a strict sense, as the pattern is in part caused by surface effects – for example the Bénard–Marangoni
effect, i. e. temperature dependence of the surface tension, see e. g. Chandrasekhar (1981, sec. 18) – that
are not present in the Rayleigh–Bénard system. Still, the experiment of Bénard is an example of a
pattern-forming convective system.
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Boussinesq equation. Instead, the pattern forming behavior of convective systems can be
described by an evolution equation of a macroscopic order parameter field ψ(x , t ) with
x ∈Ω⊂�2. This thinking led Swift and Hohenberg (1977) to introduce the following
partial differential equation:

∂

∂ t
ψ(x , t ) = εψ(x , t )− (Δ+ 1)2ψ(x , t )−ψ(x , t )3 (11.1)

The order parameter ψ is related to the temperature field in a horizontally extended plane
in the Rayleigh–Bénard system. The terms on the right-hand side consist of a linear
driving εψ where ε can be seen as the temperature difference δT of hot bottom and cold
top plate in units of the critical temperature difference δTc at the onset of convection, i. e.

ε :=
δT

δTc

− 1=
Ra

Rac

− 1 , (11.2)

cf. Swift and Hohenberg (1977, equation (22a)). Here we have used that the Rayleigh
number Ra is proportional to the temperature difference, cf. (1.1), and convection
respectively pattern formation sets in for ε > 0. The linear driving is saturated by
the cubic2 nonlinearity −ψ3, and the spatial linear operator −(Δ+ 1)2 selects patterns
with a wave vector |k| ≈ 1 or equivalently a wave length of 2π.3

An example of the patterns that emerge from the Swift–Hohenberg equation (11.1)
is given in figure 11.3. It shows snapshots of a two-dimensional numerical simulation
(cf. chapter 12), and a stripe pattern is obtained that reminds of convection rolls in a
horizontally extended layer of fluid that is viewed from above. In the beginning, the
system quickly establishes a pattern with a distinct wave length, and stripes are formed.
The so-called defects (e. g., points where a convection roll ends or where two rolls merge)
then wander around (cf. the shift of the defect in the upper-left corner from t = 140 to
t = 240) and annihilate each other, while the dynamics gradually become slower and
slower.
Equation (11.1) describes a deterministic evolution of the order parameter ψ obeying

gradient dynamics,4 i. e. the system dynamics slow down over time and come to rest in a
stationary pattern of perfect parallel stripes for t →∞. On the other hand, when noise
enters the equation, the system is pushed out of these stable configurations; this noise
may be thought of as e. g. an irregular heating of the hot bottom and cold top plates in a

2Some authors also add a quadratic nonlinearity ψ(x , t )2. We will not consider this case, but more details
are given in section C.1.

3Usually the spatial operator is written as
�
Δ+ k 2

c

	2
, which instead selects patterns with wave vector

|k| ≈ kc. By rescaling the spatial coordinates, though, it is possible to choose the critical wave number
kc = 1 without loss of generality.

4We will go into detail on gradient dynamics in chapter 13.

99



11 Introduction

t = 40 t = 140 t = 240

Figure 11.3: Example of patterns formed by the Swift–Hohenberg equation at different times
for ε= 0.3 and a simulation domain Ω= [0,16π]× [0,16π] with periodic boundaries.
The field ψ(x) is color coded and varies between −0.8 (blue) and 0.8 (red). The initial
condition is a noise field with small amplitude. Details of the numerics are given in
chapter 12. The order parameter field ψ(x) forms a pattern reminiscent of convection rolls
with a predominant wavelength.

Rayleigh–Bénard experiment or as fluctuating internal sources of heat. This leads to the
stochastically driven Swift–Hohenberg equation:

∂

∂ t
ψ(x , t ) = εψ(x , t )− (Δ+ 1)2ψ(x , t )−ψ(x , t )3+Γ(x , t ) (11.3)

Here, Γ is a stochastic force with zero mean that is δ -correlated in time and has a certain
correlation function c(|r |) in space, i. e.�

Γ(x , t )
�
= 0 (11.4a)�

Γ(x , t )Γ(x + r , t ′)
�
= c(|r |)δ(t − t ′) (11.4b)

with c(0) =C0 as a measure of the noise strength. Note that a stochastic force was already
introduced in the fundamental publication by Swift and Hohenberg (1977).

The system described by (11.3)–(11.4) still displays gradient dynamics, but the “kicks”
introduced by the stochastic force Γ enable the order parameter field ψ(x , t ) to explore
larger areas of the phase space. Also, due to the unpredictable nature of the force Γ, a
certain realization of ψ(x , t ) is of less interest than the statistics the order parameter
obeys. We will come back to this when we analyze the probability density function
(PDF) in chapter 14 after we go into the details of the numerical simulation of (11.3) in
chapter 12.
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12 Numerics

ue to its nonlinear nature, the Swift–Hohenberg equation in general cannot
be solved analytically, and thus, we have to resort to direct numerical simulations
of the forced system. The simulation involves two major topics: The calculation of

the spatial operators, for which we will use the pseudospectral method as described in
section 12.1, and the temporal integration of the equations (section 12.2), which needs
extra care due to the form of the spatial operator and the stochastic force. We will keep
the description of both the pseudospectral scheme as well as the time-stepping relatively
short; a more elaborated portrayal of the general techniques may be found in Lülff (2011,
sec. 2).

12.1 Pseudospectral Scheme

To handle the forced Swift–Hohenberg equation (11.3) with the pseudospectral method,
we apply the Fourier transformation

�
#
ψ(x , t )

$
(k, t ) =

1

2π

∫
d2xψ(x , t )e−ik·x =: "ψ(k, t ) (12.1a)

�−1
# "ψ(k, t )

$
(x , t ) =

1

2π

∫
d2k "ψ(k, t )eik·x =ψ(x , t ) (12.1b)

with "ψ(k, t ) denoting the time-dependent Fourier coefficients and k ∈ �2 the wave
number vector. As the Fourier transformation of a spatial derivative obeys the relation

�'∇ψ(= ik�'ψ(= ik "ψ , (12.2)

which can easily be seen through integration by parts, the forced Swift–Hohenberg
equation in Fourier space reads

∂

∂ t
"ψ= ε "ψ− (−k2+ 1)2 "ψ−�#ψ3

$
+� [Γ] . (12.3)

Thus, the partial differential equation (11.3) in real space is transformed into a set of
ordinary differential equations in Fourier space.

The pseudospectral ansatz now means that instead of calculating the Fourier transform

of the cubic term by convolutions of "ψ in Fourier space, the calculation is instead carried
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out in real space by utilizing the inverse Fourier transform, i. e. inserting ψ=�−1
# "ψ$.

Therefore, the full pseudospectral scheme reads

∂

∂ t
"ψ= ε "ψ− (−k2+ 1)2 "ψ−�)�−1

# "ψ$3*+� [Γ] . (12.4)

The cubic term introduces the so-called aliasing phenomenon when solving (12.4), cf.
Orszag (1971): Due to the nonlinearity, the Fouriermodes that belong to different wave
vectors interact and produce high frequencies that are not resolved by the numerical grid
and therefore misinterpreted as lower frequencies. To prevent this, one usually dealiases
the fields, i. e. removes frequencies from the system that would cause aliasing in the
cubic nonlinearity. We found, though, that dealiasing is not necessary here, as the term
(−k2+ 1)2 "ψ favors wave numbers with |k| ≈ 1 while strongly damping all other (higher)
wave numbers (the damping strength grows approximately with the fourth power of
the distance from |k| = 1 for big |k|). Therefore, “the physics” of the system already
make sure that no problematic high wave numbers are active, which renders dealiasing
redundant.

12.2 Semi-Implicit Time-Stepping

After having dealt with the spatial terms by utilizing the pseudospectral scheme in the
previous section, we now have to integrate (12.4) with a time-stepping scheme. It turns
out that explicit schemes such as the classical Runge–Kutta method of fourth order
are unsuitable for the system at hand, because the strongly diffusing spatial operator
(Δ+ 1)2 (or, thinking in Fourier space, the high values that the prefactor (−k2+ 1)2 of
the corresponding term takes) imposes a severe restriction on the minimal time step.

To prevent this, we employ the semi-implicit Euler scheme to integrate the stochastic
differential equation (12.4), cf. Jentzen and Kloeden (2009). It treats the linear term
implicitly by evaluating it in the future while handling the nonlinear term explicitly and
the noise term in the Itō-sense, i. e. evaluating it at the beginning t of the time interval.
Thus, after approximating the temporal derivative by finite differences with time step Δt ,
(12.4) reads

"ψ(t +Δt )− "ψ(t ) = (12.5)

Δt
�
ε− (−k2+ 1)2

	 "ψ(t +Δt )+Δt�
)
�−1
# "ψ(t )$3*+�Δt�'Γ(t )(
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t = 40 t = 140 t = 240

Figure 12.1: Numerical solution of the stochastically driven Swift–Hohenberg equation
(11.3) with ε = 0.3 and a simulation domain Ω = [0,16π]× [0,16π]. Color scale as
described in figure 11.3. The noise strength is chosen as C0 = 0.4, and the correlation length
is 1.5 grid points, i. e. l = 16π 1.5

256
≈ 0.29 for a resolution of 256× 256 grid points.

where all "ψ also depend on the wave vector k. Equation (12.5) can easily be solved for"ψ(t +Δt ) to yield an explicit formula to calculate the next time step:

"ψ(t +Δt ) = (12.6)
1

1−Δt
�
ε− (−k2+ 1)2

	 + "ψ(t )+Δt�
)
�−1
# "ψ(t )$3*+�Δt�'Γ(t )(,

As the diffusing term (Δ+ 1)2 is now handled implicitly, it does not pose a restriction on
the time step in order to obtain a stable temporal integration. Furthermore, the solution
of a linear system that is usually needed when using implicit schemes is trivial here,
because the linear operator ε− (Δ+ 1)2 is diagonal in Fourier space.

Equation (12.6) is solved numerically by discretizing ψ and "ψ on a two-dimensional
uniform grid and utilizing the fast Fourier transform-algorithm (Cooley and Tukey,
1965), which results in periodic boundary conditions in both directions. In the following
we use a resolution of 32 grid points per period of the stripe pattern, i. e. a grid spacing
of Δx = 2π

32
, in accordance with Hernández-García et al. (1992). The noise Γ(x , t ) is

Gaussian distributed, δ -correlated in time, and the spatial correlation function is chosen
to be a Gaussian bell curve with correlation length l , i. e.

�
Γ(x , t )Γ(x + r , t ′)

�
=C0e

− r2

2l 2 δ(t − t ′) . (12.7)

This form of the spatial correlation ensures that the noise field Γ(x , t ) is differentiable.
Details on how to generate the correlated noise are given in section C.2.
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An example of the stochastically forced Swift–Hohenberg equation is shown in
figure 12.1. The general picture of patterns with a distinct wavelength is comparable to
figure 11.3, and also remnants of a labyrinth-like structure of elongated rolls or stripes
can be found. However, the patterns are disturbed by the noise term, which causes them
to change continuously; in contrast, the system settles in a stationary configuration when
it is not subjected to noise.
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13 Linear Stability Analysis and LYAPUNOV

Functional

ow we will perform a linear stability analysis of the Swift–Hohenberg equa-
tion that explains the spatial structures that emerge from the system. Further-
more, we will recount a description in terms of the Lyapunov functional that

connects to the linear stability analysis as well as to the gradient dynamics we mentioned
earlier on. In the end, we will combine these two techniques to propose a new method
to quickly generate ensembles of numerical data obtained from the stochastically forced
Swift–Hohenberg equation. This new method saves computational time by reducing
the transient initial phase.

13.1 Linear Stability Analysis

A stationary solution of the unforced Swift–Hohenberg equation is trivially given by
ψ(x , t ) ≡ 0. The stability of this solution is determined by adding perturbations and
investigating their temporal behavior. As the perturbations are assumed to be small, the
cubic term −ψ3 can be neglected, which gives rise to the linearized Swift–Hohenberg
equation:

∂

∂ t
ψ=
�
ε− (Δ+ 1)2

	
ψ (13.1)

By inserting disturbances in the form of plane waves,

ψ(x , t ) = eλt eix ·k + c. c. , (13.2)

where the wave number vector k ∈�2 gives the direction of the mode, the k-dependent
growth rate

λ= λ(k) = ε− (−k2+ 1)2 (13.3)

is obtained. The requirement for unstable modes, i. e. modes that grow when the station-
ary solution ψ≡ 0 is subjected to arbitrarily small amounts of noise, is that the growth
rate λ is positive, and therefore, only modes in the unstable wave number band

1−�ε < k2 < 1+
�
ε (13.4)
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can be excited for ε > 0. The biggest growth rate λ= ε is obtained for |k|= 1 (provided
that such wave numbers can be realized1), and thus, patterns with a characteristic length
scale of preferably k = 1 are formed by the Swift–Hohenberg system. On the other
hand, λ is always negative for ε < 0, and the trivial solution ψ ≡ 0 is stable against
perturbations with arbitrary wavelength. The growth of the linear modes is saturated by
the cubic nonlinearity for finite amplitudes. In the next section we will show that the
amplitude of plane waves of the form (13.2) can be obtained by examining the Lyapunov
functional.

13.2 Variational Formulation of the SWIFT–HOHENBERG

Equation: The LYAPUNOV Functional

The deterministic part of the right-hand side of the Swift–Hohenberg equation can be
formulated as the variation of a functional, which yields an alternative and insightful
view of the system. Especially, with the variational representation it will become possible
to achieve analytical results in the statistical analysis of the Swift–Hohenberg equation,
as presented in sections 13.3 and 13.4.
For the Swift–Hohenberg system there exists a Lyapunov functional

� [ψ] : C 4(Ω)→� , (13.5)

where � assigns a value to every field configuration ψ(x) ∈ C 4(Ω) and � is bounded
from below. Similar to elementary mechanics, where the overdamped (i. e., inertialess)
one-dimensional movement in a potential V (x) can be expressed as ẋ = − d

dx
V (x),

the Lyapunov functional yields the right-hand side of the unforced Swift–Hohenberg
equation (11.1) in the form

∂

∂ t
ψ(x , t ) =− δ� [ψ]

δψ(x , t )
, (13.6)

where δ� [ψ]
δψ(x ,t )

denotes the functional derivative of � [ψ] with respect to ψ(x , t ). An
overview of variational calculus including rules of calculating functional derivatives is
given in section C.3. With the tools presented there, it is easy to see that the choice

� [ψ] =
∫
Ω

d2x ′
�
−ε

2
ψ(x ′)2+

1

4
ψ(x ′)4+

1

2

�
Δψ(x ′)+ψ(x ′)

	2�
(13.7)

results in the Swift–Hohenberg equation. A variational formulation was already given in
the pivotal publication by Swift and Hohenberg (1977); their exact form of� differed

1For periodic boundary conditions, as are used in the numerics, the k-vector can only take discrete values.
However, choosing the system size as an integer multiple of 2π assures that plane waves with k = 1 can
exist.
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Figure 13.1: Qualitative il-
lustration of the compe-
tition of linear driving
versus cubic saturation in
the Lyapunov functional
of the Swift–Hohenberg

equation. For ε < 0, ψ =
0 is the stable minimum,
while for ε > 0, ψ = 0
is an unstable stationary
point and additional sta-
ble minima appear at ψ �=
0.

slightly, though, as one has a certain freedom of choosing� , provided that the functional
derivative yields the correct right-hand side.
In the form of � chosen here, it becomes immediately clear that apart from the

quadratic one related to the linear driving (i. e., − ε
2
ψ2), all terms are positive. Due to the

positive quartic term that for sufficiently large amplitudes surpasses the quadratic term,
� is bounded from below. Therefore, the evolution equation (13.6) states that the system
moves in a steepest descent-manner towards (local) minima of � which correspond to
stationary solutions of the problem; this behavior is referred to as gradient dynamics. For
ε < 0, all terms in (13.7) are positive and� ≥ 0, and the system tends towards the global
minimum � = 0 at ψ(x) ≡ 0. Contrary, for ε > 0, the minimum of � < 0 is reached
for ψ(x) �≡ 0, and pattern formation occurs. These two cases agree with the observations
made in the linear stability analysis in section 13.1. The different qualitative behavior for
ε≷ 0 is also illustrated in figure 13.1, with arrows indicating the overdamped movement,
and the open circle stands for an unstable stationary point.

13.2.1 Plane Waves and LYAPUNOV Functional

The optimal amplitude of plane waves, i. e. the one that minimizes� , can be obtained
by inserting the ansatz

ψ(x) = αeik·x + c. c. (13.8)

into the Lyapunov functional, which results in

�
#
αeik·x + c. c.

$
=V (Ω)

�
−εα2+

3

2
α4+ (−k2+ 1)2α2

�
(13.9a)

=V (Ω)

�
−λ(k)α2+

3

2
α4

�
(13.9b)
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Figure 13.2: Lyapunov functional of plane
waves in dependence on their amplitude α
for different wave numbers k and ε= 0.3.
Plane waves with k = 1 and k = 1.15 are
unstable, and� displays a minimum for
α �= 0, with its position and value given
by (13.11) and (13.12), respectively. The
wave number k = 1.3 is outside the un-
stable wave number band (13.4), and the
minimum of� = 0 at α= 0 corresponds
to the stable trivial solution.
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with the growth rate λ(k) as in (13.3) and V (Ω) the area of the spatial domain Ω. The
optimal amplitudes α are then obtained by minimizing the above expression,

∂

∂α
�
#
αeik·x + c. c.

$ !
= 0 , (13.10)

which yields the amplitudes

α=

-
1

3
λ(k) or α= 0 . (13.11)

The trivial solution ψ(x) ≡ 0 for α = 0 with � = 0 always exists, with the stability

depending on λ(k), while the non-trivial solution αmin =
.

1
3
λ(k) with � < 0 exists

only for λ(k)> 0, which is in agreement with the former observations. The Lyapunov
functional takes the value

�
#
αmineik·x + c. c.

$
=−V (Ω)

6
λ(k)2 (13.12)

and is minimal for |k|= 1, as can be expected a priori from the linear stability analysis.
These findings are illustrated in figures 13.2 and 13.3.

By directly inserting the Fourier series ansatz2

ψ(x) =
∞∑

n=0

An sin
�
(2n+ 1)k · x

	
(13.13)

into the Swift–Hohenberg equation and sorting terms of different order, Viñals et al.

(1991) reported the amplitude A0 = 2
.

1
3
λ(k). This corresponds to our result (13.11),

where the additional factor of 2 is due to the different ansatz functions used, i. e. sin(k · x)
versus eik·x + c. c.
2Due to symmetry considerations, only odd multiples of the wave number vector k make sense, as even
multiples would result in fields that have no reflectional symmetry.
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optimal amplitude αmin

(13.11) and growth rate
λ(k) (13.3) of plane
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on their wave number
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wave number band,
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13.2.2 Plane Waves Compared to Stationary Solutions

After the linear stability analysis resulted in the modes that become unstable and the
Lyapunov functional gave their amplitude, the question remains how close these plane
waves are to stationary solutions of the full nonlinear problem. It is stated by Viñals et al.
(1991) that for stationary solutions of the Swift–Hohenberg equation the coefficients
An in (13.13) are of the order εn+1/2, provided that |k| ≈ 1. Also, the second coefficient is

explicitly given as A1 =−
A3

0

4λ(3k)
. For ε= 0.3 and |k|= 1, as is also used in the numerical

simulations of this chapter, this results in the amplitudes A0 = 0.632 and A1 = 0.993×10−3

of the first two modes, i. e. already the first two modes differ by a factor of � (1000) in
strength. The Lyapunov functional of the two-mode ansatzψ2 =A0 sin(k·x)+A1 sin(3k·x)
can be calculated exactly:

� [ψ2] =−
V (Ω)

6
λ(k)2

⎛⎜⎝1− 2

9

λ(k)

λ(3k)
−
�

2

3

λ(k)

λ(3k)

�2

−
�

1

3

λ(k)

λ(3k)

�4
⎞⎟⎠ (13.14)

Numerical values for the one-mode ansatz (i. e., ψ1 = A0 sin(k · x)) and the two-mode
ansatz are

� [ψ1] =−37.8993 and � [ψ2] =−37.9386 , (13.15)

cf. (13.12) and (13.14), and the two values differ by 0.1%.3 As furthermore the higher
modes in the Fourier ansatz (13.13) contribute less and less to the Lyapunov functional, it
can be expected that already the one- or two-mode ansatz is very close to actual stationary
solutions of the Swift–Hohenberg equation.
To further pinpoint the relation between plane waves and stationary solutions, we

numerically solved the unforced Swift–Hohenberg equation from initial conditions con-
sisting of one mode and of two modes. The results are shown in figure 13.4, and it is seen

3As a comparison, the labyrinth-like structure in figure 11.3, corresponding to the same parameters, has a
value of� =−34.51.
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Figure 13.4: Temporal evolution of the Lyapunov functional of the Swift–Hohenberg equa-
tion, estimated from numerical simulations for ε= 0.3. Initial conditions consisted of one
or two modes with |k|= 1, cf. text and ansatz (13.13). The difference of� [ψ(t )] and the
value�∞ ≈−37.9387 for large times, i. e. when the dynamics became stationary, is plotted
logarithmically. The right panel magnifies the early times.

that the value of the Lyapunov functional exponentially approaches the stationary value
�∞. From the magnification in the right panel of the figure, it also becomes clear that the
difference when using ψ1 or ψ2 as initial conditions vanishes very quickly. Furthermore,
the relative difference between�∞ ≈−37.9387 (estimated from the numerics) and the
initial values of� [ψ1] respectively� [ψ2] amounts to 0.1% respectively 0.26× 10−3 %.
Therefore we conclude that an initial condition consisting of one or two modes is a very
good approximation of a true stationary solution, as ψ1 (and even slightly more so ψ2)
are in the direct vicinity of a deep minimum of the Lyapunov functional, which is reached
exponentially fast.

13.3 The Functional FOKKER–PLANCK Equation

Up to nowwe only considered the unforced Swift–Hohenberg equation in the Lyapunov
functional formalism, and found that the evolution of the system is described by gradient
dynamics. On the other hand, in the functional formulation of the stochastically forced
Swift–Hohenberg equation,

∂

∂ t
ψ(x , t ) =− δ� [ψ]

δψ(x , t )
+Γ(x , t ) , (13.16)

it becomes clear that the forced system does not show pure gradient dynamics: While
traveling towards local minima, the noise kicks the solution around in phase space, and
thus the evolution does not monotonously minimize � . This in turn means that the
forced Swift–Hohenberg system can escape shallow local minima of � , where the
unforced system would get “trapped”. In general, the forced system is able to explore
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larger areas of the phase space, departing from the way of steepest descent that the
unforced system follows.
As a consequence of the stochastic noise, a single solution ψ(x , t ) is not very informa-

tive, as it depends on the specific realization of the noise term. Later on, we will therefore
examine the forced Swift–Hohenberg equation in a statistical sense, i. e. by analyzing in
chapter 14 the probability density function (PDF) of the different values the field ψ(x , t )
can take.
Instead of describing the different values of the field statistically, it is also possible

to assign a probability to a whole field configuration ψ(x , t ). To this end, we observe
that the stochastically forced Swift–Hohenberg equation (13.16) can be considered as a
functional Langevin equation (i. e., with infinitely many degrees of freedom) for the field
ψ(x , t ) with a deterministic force − δ

δψ
� [ψ] and a noise term Γ(x , t ) that is Gaussian

distributed with zero mean and standard deviation C0, cf. (12.7). The corresponding
functional Fokker–Planck equation describes how the corresponding PDF P

�
ψ(x), t

	
changes over time under the influence of the deterministic and stochastic forces. It reads

∂

∂ t
P
�
ψ(x), t

	
=

δ

δψ

�
δ� [ψ]
δψ

P
�
ψ(x), t

	�
+

C0

2

δ
2

δψ2
P
�
ψ(x), t

	
, (13.17)

where P
�
ψ(x), t

	
is proportional to the probability to find the field configuration ψ(x)

at time t , and δ

δψ
is shorthand for δ

δψ(x)
. As the deterministic force in the Langevin

equation (13.16) is given by the functional derivative of� , a stationary solution of the
Fokker–Planck equation can be calculated to yield

P
�
ψ(x)
	
=Nexp

�
−� [ψ]

C0/2

�
, (13.18)

which is easily confirmed by substituting P
�
ψ(x)
	
into (13.17). Here, N is a normaliza-

tion constant.4

With the results from section 13.2.1,5 we can therefore give the probability with which
plane waves with a certain wave number are assumed by the system, and substituting
(13.12) into (13.18) results in

P
�
αmineik·x + c. c.

�
=Ne

V (Ω)
3C0
λ2(k)

. (13.19)

4It is not readily possible to calculate the normalization constant N, as it is not clear how to average P (ψ)
for all possible fields ψ ∈ C 4(Ω). Thus, (13.18) can only be used to give relative probabilities, i. e. to
compare probabilities of different field configurations.

5For the sake of simplicity, we will from now on restrict the analysis to the one-mode ansatz αmineik·x +
c. c. As was noted earlier, already the second-order term in (13.14) amounts to only 0.1% of � , and
furthermore figure 13.4 shows that the difference between one and two modes vanish quickly, and is
expected to do so even faster in the presence of noise.
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Figure 13.5: Probability to obtain plane waves in the stochastically forced Swift–Hohenberg

equation, normalized to P (. . .)|k|=1 = 1, cf. (13.19). Parameters are ε= 0.3, C0 = 0.4 and

Ω= [0,16π]× [0,16π], also cf. figure 12.1. The probability shows a strong peak at |k|= 1
and falls off quickly (e. g., P (. . .)|k|=0.9 = 2.43× 10−19 and P (. . .)|k|=1.1 = 3.83× 10−23);

the standard deviation of the peak is 9.97× 10−3. The right panel gives a logarithmic
representation over a larger |k|-range.

Figure 13.5 shows that the probability to obtain plane waves with wave vector k is
strongly peaked around |k|= 1. The width of this peak is related to the noise strength C0:
For higher C0, the peak becomes broader, and roll configurations with |k| �= 1 become
more probable. This is in line with the remark from before that with a strong noise term,
the system is able to explore more states and larger areas in phase space.

13.4 Construction of Statistical Ensembles

We will now utilize the findings of the previous sections to propose a new method how
to save computational time when generating statistically stationary data sets of the forced
Swift–Hohenberg equation. These data sets are needed to estimate unclosed terms in
the following chapter 14, where we derive an evolution equation for the PDF of ψ along
the lines of the Lundgren–Monin–Novikov hierarchy, as already laid out in part I of
this thesis.
When we ran simulations of the stochastically forced Swift–Hohenberg equation

starting from the homogeneous solution ψ(x , t = 0) ≡ 0, we found that after a long
transient phase (corresponding examples of ψ(x) are depicted in figure 12.1), the system
ultimately settled in a roll-like state. The patterns are reminiscent of plane waves with
slight deformations due to the noise, see the examples in figure 13.6. The noise term is
responsible for the fact that in the long run, only parallel rolls instead of labyrinth- or
patch-like structures survive: The latter ones correspond to shallow local minima of the
Lyapunov functional where the unforced system would get trapped due to the gradient
dynamics. On the other hand, with noise the system is able to leave these shallow minima;
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Figure 13.6: Two different
examples of the long-
term behavior of the
forced Swift–Hohenberg

equation, starting from
ψ(x) ≡ 0, with parame-
ters ε= 0.3, C0 = 0.4 and
Ω = [0,16π] × [0,16π]
(likewise from now on for
all results).

e. g., the defects found in labyrinth-like structures are removed by simply “reconnecting”
different rolls, and this process is induced respectively sped up by noise. Parallel rolls, on
the other hand, are found in deeper local minima of� from which it is harder to escape.
Also, the barriers between local minima of different patterns of parallel stripes are high
and hard to overcome by noise; e. g., to transform the left stripe pattern in figure 13.6
into the right one, all the stripes have to tilt and reconnect in a regular fashion. The values
of the Lyapunov functional given before (� ≈−34.5 for labyrinth versus� ≈−37.9 for
parallel rolls with |k| ≈ 1) also support the finding that with noise, the system will settle
in the deep parallel-stripe-minima of� in the long run.
Following this reasoning, it is not necessary to simulate the long transient (and thus

not statistically stationary) descent from ψ≡ 0 into the deep minima of parallel stripes
where the system finally settles in a statistically stationary state. Instead it is possible to
start the simulations directly from the plane waves we derived in section 13.2.1 and let
the solution become statistically stationary, which requires considerably less time. To still
ensure a statistically sound ensemble of different stripe patterns, we choose plane waves
with different k-vectors as prescribed by the probability distribution P

�
αmineik·x + c. c.

	
from (13.19); if one would start many simulations from ψ ≡ 0 and let them become
stationary, the k-vectors of the different solutions would follow the same distribution.

The choice of the proper plane waves is further simplified due to the periodic boundary
conditions we are dealing with, as only discrete k-vectors (i. e., countably many, as
opposed to uncountably many continuous vectors) are possible: Only an integer number
of nx respectively ny plane waves in x- and y-direction can be fit into the periodic domain
Ω, and thus, the possible k-vectors may be parametrized as

k(nx , ny ) =

�
nx

2π

Lx

, ny

2π

Ly

�T

with nx , ny ∈	 , (13.20)

where Lx,y is the extent of the periodic domain in x, y-direction. For example, the only
wave vectors with |k|= 1 that are possible for the domain Ω= [0,16π]× [0,16π] used
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Figure 13.7: Lyapunov functional of plane waves for the discrete wave vectors in a periodic
domain. The possible wave vectors are represented as circles. Left: Green (gray) circles
present unstable (stable) wave vectors, and the unstable wave number band is framed by
the two brown lines (i. e., |k|2 = 1±�ε). The blue line gives the most unstable modes, i. e.
|k|= 1, which coincides with the minimum of� ; the Lyapunov functional is color coded,
with black corresponding to the minimum and white to� = 0. Right: The possible wave
vectors and the corresponding� ordered by |k| are shown as green circles and range from
|k(2,5)|= 0.673 to |k(7,7)|= 1.237. Only some wave vectors are given explicitly.

Figure 13.8: Probability to
obtain plane waves in the
forced Swift–Hohenberg

equation for the possible
discrete wave numbers,
normalized to maxk P =
1. Only the most relevant
wave numbers in the very
narrow peak of P are
shown, cf. figure 13.5.
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|k(0,8)|= 1.000, P = 1.000

|k(1,8)|= 1.008, P = 0.735

|k(4,7)|= 1.008, P = 0.735

|k(5,6)|= 0.976, P = 6.29× 10−2

|k(2,8)|= 1.031, P = 7.43× 10−3

in the numerics are k(0,8) and k(8,0), which corresponds to 8 periods in x- respectively
y-direction.6

Figure 13.7 shows the Lyapunov functional of the possible wave vectors and figure 13.8
the corresponding probability that plane waves with these wave vectors are assumed by

6Since the Swift–Hohenberg system is isotropic for the case Lx = Ly , these two wave vectors can of course
be considered to be equivalent.
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k(0,8) k(1,8) k(4,7) k(5,6) k(2,8)

Figure 13.9: Order parameter field ψ(x) of the five most probable plane waves (modulo
reflection, rotation and translation) which are used as initial conditions (upper row), and
the corresponding fields at the end of the numerical simulation (lower row).

k(0,8) k(1,8) k(4,7) k(5,6) k(2,8) k(3,7)
|k| 1.000 1.008 1.008 0.976 1.031 0.952
� −37.899 −37.838 −37.838 −37.349 −36.919 −35.711

Nens 3937 2893 2893 248 29 0.07

Table 13.1: Number of ensemble members Nens for each mode when the total number of
members is Ntotal = 10000; only five modes are realized. The sixth most common mode
k(3,7) would contribute with only a fraction of 0.07 of a single snapshot. Additionally, the
Lyapunov functional of the corresponding plane wave is indicated.

the forced system. It is seen that only a small number of wave vectors is found in the
unstable wave number band – to be exact, there are 58 different wave vectors with 28
distinct lengths. Even fewer wave vectors are actually realized in the stochastically forced
system with a noteworthy probability; for example, already the tenth most common
plane wave with wave vector |k(2,7)|= 0.91 has a relative probability of P < 10−15, cf.
figure 13.8.7

With the relative probability P , it is now easy to generate statistically sound ensembles
of arbitrary size from the numerics. For 10000 ensemble members, only the 5 most
probable plane waves are realized. These initial conditions and the order parameter field
ψ(x) at the end of the simulations are shown in figure 13.9, and table 13.1 gives the number

7The precise quantitative behavior of course depends on the parameters of the numerical simulation; in a
larger spatial domain and for larger ε, fewer different wave vectors are realized, while for a stronger noise
term more plane waves have a considerable probability.
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Figure 13.10: Three exem-
plary time series of the
Lyapunov functional, ob-
tained from numerical
simulations of the forced
Swift–Hohenberg equa-
tion. The value of �
quickly rises and saturates
after approximately 106

time steps. The horizontal
line gives the mean value
of� = 209.7, and the in-
set shows a zoom of the
first time steps.
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ε C0 l Lx,y Δt Nx,y Nt Ntotal

0.3 0.4 1.5 16π 10−6 256 2× 106 10000

Table 13.2: Details of the numerical simulations for the ensemble calculation. The spatial
correlation length l of the noise term is given in gridpoints. Nx,y is the equidistant grid
resolution in x - respectively y -direction. Nt is the number of time steps, andΔt their time
interval. Ntotal gives the total number of ensemble members, with the shares of the different
initial conditions as in table 13.1.

of snapshots that are generated for each k-vector (we again assume “mirrored” k-vectors
– e. g., k(0,8) and k(8,0) – to be equal due to the symmetries of the Swift–Hohenberg
system). We then ran a number of simulations from different initial conditions and
generated the required number of snapshots as outlined above.8 Exemplary time series of
the Lyapunov functional are shown in figure 13.10, and it is seen that in the beginning�
quickly rises from its plane-wave value� ≈−37 and then continues to grow more slowly
until the system approaches a statistically stationary state. We consider the simulations to
be stationary after 106 time steps when the Lyapunov functional saturates at a value of
� ≈ 209.7. The snapshots are then taken 104 time steps apart. Details of the ensemble
calculations that we performed are presented in table 13.2.

8To speed up the overall computation, we opted to run e. g. 40 simulations in parallel for k(0,8), each
producing approximately 100 snapshots; this takes considerably less time than running one simulation
that produces 3937 snapshots.
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13.5 Summary of LYAPUNOV Formalism and Ensemble
Construction

In this chapter, we started from two well-established tools – the linear stability analysis
and the formulation of the problem in terms of the Lyapunov functional. With the linear
stability analysis, we recounted the known result that the Swift–Hohenberg system
tends to form patterns with a distinct wave length of |k|= 1. We furthermore showed that
the system obeys gradient dynamics, and from the corresponding Lyapunov functional
we could tell that stationary solutions of the system are close to plane waves with a
known amplitude. Also, by utilizing the variational formulation of the stochstastically
forced Swift–Hohenberg equation, it was straight-forward to give a Fokker–Planck
equation for the probability distribution of configurations of the order parameter field,
and a stationary solution was readily obtained.
We then combined these concepts to propose a method to quickly generate valid

numerical ensembles of the stochastically forced Swift–Hohenberg equation. To this
end, we skipped the lengthy descent of the order parameter, i. e. the process of starting
from the homogeneous solution and ending in the plane-wave-minima of the Lyapunov
functional. As the patterns that are assumed in the minima are approximately known
from the linear stability analysis as well as the Lyapunov functional, and the relative
probability of the minima is known from the Fokker–Planck equation, we are instead
able to start the numerical simulations directly from plane waves and let them reach a
statistically stationary state; this requires much less computational time.
The method relies on the fact that we can enumerate the plane-wave-minima of the

Lyapunov functional, because they are parametrized by only a single discrete parameter,
i. e. the k-vector. This can be seen as a weakness of the proposed approach, because
patterns in local minima that are harder to parametrize (e. g., the labyrinth-like structure
in figure 11.3 that requires the interplay of many degrees of freedom) cannot be generated
easily. Although all the minima of plane waves that we considered are deeper than
the labyrinth-like-minimum from before, it is not guaranteed that there are minima
corresponding to more complicated patterns that lie in between the plane-wave-minima
from section 13.4 and that should thus be included in the ensemble. However, we remark
that we did only find roll-like final patterns instead of more complicated ones when we
ran long simulations starting from homogeneous initial conditions.

The methods presented in sections 13.1–13.4 can readily be extended towards the Swift–
Hohenberg equation with an additional quadratic nonlinearity (cf. section C.1), as there
still exists a Lyapunov functional that is bounded from below; the exact calculations
performed in section 13.2 may become a bit cumbersome, though, as the characterization
of the unstable modes requires more cases to be differentiated (e. g., the stability of
hexagonal versus stripe patterns, cf. Bestehorn (2006, sec. 9.4.5)). Also, generating the
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13 Linear Stability Analysis and Lyapunov Functional

patterns corresponding to the hexagonal minima of the Lyapunov functional requires
more rigor, as more modes and thus less symmetry is involved.
As an outlook, the proposed ansatz of generating statistical ensembles may readily be

extended to any gradient system with an additional stochastic force, as the stationary
solution of the Fokker–Planck equation does not depend on the precise form of the
Lyapunov functional. Thus, the same method can be used to generate ensembles of the
stochastically driven Ginzburg–Landau equation (Hohenberg and Halperin, 1977,
Aranson and Kramer, 2002) or thin-film equations under the influence of noise, e. g.
Mecke and Rauscher (2005).
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14 Statistical Analysis

fter having introduced all the prerequisites, we will now derive an evolution
equation for the probability density function (PDF) of the order parameter ψ
along the lines of the Lundgren–Monin–Novikov hierarchy that was already

outlined in part I. As the derivation for the Swift–Hohenberg system is in large parts
analogous to the one for Rayleigh–Bénard convection, we will keep the description in
section 14.1 relatively short. In section 14.2, we will use data obtained from DNS to solve
the PDF equation and compare the reconstructed PDF with the directly estimated one,
and also present models that are able to describe the PDF.

14.1 PDF Equation

Similar to the temperature PDF in chapter 3, the derivation of the evolution equation for
the PDF f (ψ, x , t ) of the order parameter field ψ(x , t ) starts from the definition

f (ψ, x , t ) =
�
δ
�
ψ(x , t )−ψ�� , (14.1)

where ψ is the sample space variable and 〈·〉 is an ensemble average over the realizations
ψ(x , t ) of the order parameter field. Thus, f is defined as the ensemble-average of the fine-
grained PDF δ

�
ψ(x , t )−ψ�. Without noise, it is straightforward to derive the following

evolution equation for f by calculating the temporal derivative of (14.1) and inserting
the Swift–Hohenberg equation (11.1) (cf. also chapter 3 for details):

∂

∂ t
f (ψ, x , t ) =− ∂

∂ψ


�
εψ− (Δ+ 1)2ψ−ψ3

���ψ, x , t
�

f (ψ, x , t )
�

(14.2a)

=− ∂
∂ψ


�
εψ−ψ3−〈(Δ+ 1)2ψ|ψ, x , t 〉

	
f (ψ, x , t )

�
(14.2b)

The evolution of the PDF is therefore determined by the conditionally averaged right-
hand side 〈. . . |ψ, x , t 〉 of the Swift–Hohenberg equation, where the linear and the cubic
term can be evaluated explicitly.

The evolution equation for the stochastically forced Swift–Hohenberg equation (11.3)
is a bit more cumbersome to derive, though, because it is not immediately clear how to
evaluate the conditional average of the fluctuating force Γ. For noise that is uncorrelated
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14 Statistical Analysis

in time and has zero mean (as for the noise we are using, cf. (12.7)), the conditional
average is determined by the strength C0 of the noise. Together with the conditional
average of the deterministic part from above, this results in the evolution equation for
the PDF of the stochstastically driven Swift–Hohenberg equation:

∂

∂ t
f =− ∂

∂ψ


�
εψ−ψ3−〈(Δ+ 1)2ψ|ψ, x , t 〉

	
f
�
+

C0

2

∂ 2

∂ψ2
f (14.3)

Here, f is shorthand for f (ψ, x , t ). The derivation of this equation utilizes series expan-
sion for small times as well as properties of the noise and is in principle straightforward,
albeit a bit lengthy; thus, we refer the interested reader toHaken (1983, sec. 6.3, pp. 170ff.)
where a detailed account is given in a more general form. The only unclosed term in this
equation is the conditional average of (Δ+ 1)2ψ which we will estimate from ensembles
obtained from the direct numerical simulations that we discussed in chapters 12 and 13.

14.1.1 Symmetry Considerations

Due to the periodic boundary conditions we assume, the forced Swift–Hohenberg
system is statistically homogeneous in all spatial directions. Thus, the statistics do not
depend on x , and the evolution equation (14.3) becomes

∂

∂ t
f (ψ, t ) =− ∂

∂ψ


�
εψ−ψ3−〈(Δ+ 1)2ψ|ψ, t 〉

	︸ ︷︷ ︸ f (ψ, t )
�
+

C0

2

∂ 2

∂ψ2
f (ψ, t ) (14.4a)

=: − ∂
∂ψ



D(ψ, t ) f (ψ, t )

�
+

C0

2

∂ 2

∂ψ2
f (ψ, t ) . (14.4b)

The evolution equation of the PDF of ψ therefore takes the form of a Fokker–Planck
equation with the drift term D(ψ, t ) and with constant diffusion term C0.
For statistically stationary systems, the conditional average as well as the PDF do not

depend on the time t , i. e. f = f (ψ) and D = D(ψ), and thus ∂
∂ t

f = 0. In this case a
stationary solution of the Fokker–Planck equation is

f (ψ) =� exp

�∫ ψ
−∞

dψ′
D(ψ′)

C0/2

�
, (14.5)

which can easily be confirmed by substitution into (14.4). Here, � = � (C0) is a
constant that ensures the normalization

∫∞
−∞dψ f (ψ) = 1. Equation (14.5) yields two

ways to obtain and compare the PDF ofψ: By directly estimating f (ψ) from the numerics,
and by estimating 〈(Δ+ 1)2ψ|ψ〉 from the numerics and reconstructing f (ψ) according
to (14.5). This benchmark will be performed in the next section.
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Figure 14.1: Probability density function of ψ estimated from the direct numerical simulation
of the forced Swift–Hohenberg equation (11.3). The right panel shows the PDF in a
logarithmic scale.
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14.2 Numerical Results

Wewill now use numerical data obtained from ensembles of DNS calculations as proposed
in section 13.4 to analyze the statistics of the forced Swift–Hohenberg equation. In
figure 14.1 the PDF of ψ is estimated from the numerics. The PDF is bimodal and
symmetric, which has to be the case due to the symmetry ψ→−ψ of the system. Also
the location of the two maxima at ψ≈±0.5 is reasonably justified by the amplitude of
the rolls that the system assumes; for the unforced system, the preferred amplitude of sine
waves is A0 = 0.63, cf. section 13.2.

When evaluating the reconstructed PDF (14.5), the only unknown expression in the
drift term D(ψ) is the conditional average of (Δ+ 1)2ψ. This term can be decomposed as
〈(Δ+1)2ψ|ψ〉= 〈Δ2ψ|ψ〉+2〈Δψ|ψ〉+ψ, and the first two terms are shown in figure 14.2.
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14 Statistical Analysis

Figure 14.3: Terms of the
right-hand side of the PDF
equation, i. e. conditional
average of (Δ+ 1)2ψ and
the full drift term D(ψ) =
εψ−ψ3−〈(Δ+ 1)2ψ|ψ〉
with ε= 0.3, cf. (14.4). It
is seen that the drift term
is dominated by the condi-
tional average.
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Figure 14.4: Comparison of the directly estimated PDF of ψ and the PDF reconstructed
according to (14.5); both lines overlap almost completely. The inset shows the pointwise

relative error between the two PDFs in percent, i. e. 100%× fest− frec
1
2
( fest+ frec)

.

One observes that in general Δψ is negatively and Δ2ψ positively correlated with ψ.
Especially in the core region, i. e. around ψ≈ 0, the approximate relations 〈Δψ|ψ〉 ≈ −ψ
and 〈Δ2ψ|ψ〉 ≈ψ seem to hold, see the dotted lines in the figure. This can be understood
when considering plane waves ϕ =A0 sin(k · x), for which the conditional averages can
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14.2 Numerical Results

be calculated explicitly to yield 〈Δϕ|ϕ〉=−k2ϕ and 〈Δ2ϕ|ϕ〉= k4ϕ. As the distribution
of possible k-vectors is sharply peaked around |k|= 1 (cf. figure 13.5), this explains the
behavior of the conditional averages close to ψ= 0. Further outwards, the conditional
averages deviate from this linear behavior due to the dynamics and the noise of the
forced Swift–Hohenberg system; in the far ends (i. e., for |ψ|� 1) the estimation of the
conditional averages becomes flawed due to insufficient statistics.
The combined conditional average of (Δ + 1)2ψ and the resulting drift term D(ψ)

are given in figure 14.3, and it is seen that D(ψ) is almost completely dominated by
〈(Δ+ 1)2ψ|ψ〉, while the additional terms, i. e. εψ−ψ3, only play a minor role for the
form of the drift. However, one has to keep in mind that the conditional average implicitly
depends on the linear driving and the cubic saturation of the Swift–Hohenberg equation.
By numerically integrating the estimated drift D(ψ) from figure 14.3 as according to

(14.5) with C0 = 0.4, we obtain the reconstructed PDF in figure 14.4, where it is shown
together with the PDF directly estimated from the data ensemble. The two curves are
almost indistinguishable, apart from the outer regions of poor statistics. This is also
confirmed by the pointwise relative error in the inset, which is below 1% in the core
region of the PDF and only becomes bigger than 2% in the outer regions where the
numerical errors grow bigger. We want to emphasize here that no fitting to the estimated
PDF was utilized when performing the reconstruction; the only “free” parameter was
the a posteriori determined normalization constant � . On the other hand, however,
the steps leading to the reconstructed PDF (14.5) were exact and did not involve any
approximations or assumptions (apart from statistical symmetries). Thus, upon closer
consideration it comes as no surprise that the two PDFs generated from the same data
set coincide quite well; e. g., in Wilczek and Friedrich (2009) and Wilczek et al. (2011)
a similar method was applied to the vorticity respectively velocity distribution of the
three-dimensional Navier–Stokes equation and yielded even better agreements. The
grade of agreement of course depends on the quality of the data ensemble and how well it
fulfills the demanded statistical symmetries.

14.2.1 Model for the Conditional Averages

The shape of the conditional average of (Δ+ 1)2ψ in figure 14.3 as well as the approxi-
mately linear behavior of the two conditional averages in figure 14.2 suggests a model up
to cubic order:

〈Δψ|ψ〉=−ψ+α3ψ
3 (14.6a)

〈Δ2ψ|ψ〉=β1ψ+β3ψ
3 (14.6b)

While the prefactor of the linear term in (14.6a) has been chosen as −1 (cf. figure 14.2),
we found that the prefactor of the linear term in 〈Δ2ψ|ψ〉 deviates from the slope 1
that figure 14.2 suggests; thus, we included it as a free parameter via β1. Fitting the
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Figure 14.5: The cubic model (14.6) of the conditional averages ofΔψ (left) andΔ2ψ (right)
fitted to the data obtained from direct numerical simulations via α3, β1 and β3.
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Figure 14.6: PDF of ψ reconstructed from the cubic model as presented in (14.6) and
figure 14.5 (brown curve). The blue curve is the PDF directly estimated from the nu-
merics. The green PDF has been obtained by inserting the model into the PDF recon-
struction and fitting this to the directly estimated PDF; the obtained parameters are
(α3,β1,β3) = (−9.420×10−3,−7.101×10−4, 4.979). The right panel shows a logarithmic
plot of the PDFs.

model (14.6) to the data, i. e. 〈Δψ|ψ〉 and 〈Δ2ψ|ψ〉 as estimated from the numerics,
gives the results shown in figure 14.5, and indeed it is found that close to ψ ≈ 0 the
slope of 〈Δ2ψ|ψ〉 differs from 1 (cf. the parameters given in the figure). We find that the
conditional averages can be described reasonably well with a cubic model. Inserting this
model into the PDF reconstruction (14.5) yields the results shown in figure 14.6. While
the model is certainly able to capture the general bimodal form of the PDF, there are still
deviations between the directly estimated and the modeled PDF (especially in the core
regions).
Surprisingly, a different fit method yielded better results for the same model: For the

green PDF of figure 14.6 we did not fit the model to the conditional averages, but inserted
the model into the PDF reconstruction and then fitted the reconstructed to the estimated
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Figure 14.7: The simplistic model (14.8) of the conditional average (left panel) and the loga-
rithmic PDF of ψ reconstructed from this model (right panel). The model was inserted into
the reconstructed PDF (14.5) which was then fitted to the PDF obtained from DNS via γ3.

PDF. This ansatz gives a far better results, as is seen in the agreement between the blue
and green curve of figure 14.6; only in the far end the green PDF performs slightly worse
than the brown one, as can be seen from the logarithmic plot in the right panel.
When fitting the PDF instead of the single conditional averages of Δψ and Δ2ψ, one

effectively uses the following ansatz for the full conditional average of (Δ + 1)2ψ (cf.
(14.6)):

〈(Δ+ 1)2ψ|ψ〉= 〈Δ2ψ|ψ〉+ 2〈Δψ|ψ〉+ψ (14.7a)

= (β1− 1)ψ+ (2α3+β3)ψ
3 (14.7b)

Thus, when fitting the PDF and therefore the whole conditional average 〈(Δ+ 1)2ψ|ψ〉,
the parameters α3 andβ3 are dependent on each other and can be combined into one. Fur-
thermore, the small value of the parameter β1 =−7.101× 10−4 (cf. figure 14.6) suggests
the following one-parametric cubic model for the conditional average of (Δ+ 1)2ψ:

〈(Δ+ 1)2ψ|ψ〉=−ψ+ γ3ψ3 (14.8)

When inserting this ansatz into (14.5) and fitting the PDF to the data, the results shown
in figure 14.7 are obtained. The conditional average as well as the PDF agree very well
with the model, and again deviate only in the outer regions of strong noise.1 Thus, we
find that one free parameter γ3 is enough to characterize the PDF of ψ reasonably well.

1It is immediately clear that the directly estimated and the modeled PDF deviate mostly in the outer regions:
The least-squares fit is obtained by minimizing the L2-distance between the two functions, and the steep
tails of the PDF contribute only negligibly to the L2-norm. We found that using the L2-distance of the
logarithm of the PDFs yields essentially the same result. The L2-norm of a function g (ψ) is defined as
‖g‖2 = ∫dψ g (ψ)2.
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Figure 14.8: Ansatz func-
tions fd and fs (with
σ = 0.153) used in
the Gaussian convolu-
tion model, cf. (14.9)
and (14.10), together
with the PDF obtained
from the data. The
upper abscissa shows
the amplitude of plane
waves with |k| = 1, i. e.

A0 = 2
.

1
3
λ(k) ≈ 0.632,

and the green arrow
indicates the convolution
process.
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14.2.2 Model for the PDF Using GAUSSian Convolution

The models presented above contained physical insights because the form of the recon-
structed PDF followed directly from the Swift–Hohenberg equation, and only models
for 〈(Δ+ 1)2ψ|ψ〉 had to be provided. In this section, we will briefly present another
model that yields a PDF that is qualitatively comparable to the data.
To this end, we propose that the PDF of the stochastically forced Swift–Hohenberg

equation is the result of the interplay of two processes: The deterministic dynamics de-
scribed by the Swift–Hohenberg equation and the stochasticity described by a Gaussian
distribution of the noise. In section 13.2.1 we have shown that the deterministic long-term
behavior is reasonably well described by plane waves ψ(x) = A0 sin(k · x). The PDF of
plane waves, i. e. the distribution function of a sine, can be calculated explicitly to yield
the distribution of the deterministic part:

fd(ψ) =
�
δ
�
A0 sin(k · x)−ψ��= 1

V (Ω)

∫
Ω

d2xδ
�
A0 sin(k · x)−ψ� (14.9a)

=

⎧⎪⎨⎪⎩
1

π

1.
A2

0
−ψ2

if |ψ|<A0

0 else

(14.9b)

The distribution of the stochastic part, on the other hand, is given by the Gaussian PDF

fs(ψ) =
1.

2πσ2
e
− ψ2

2σ2 (14.10)
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Figure 14.9: PDF obtained from the convolution model proposed in (14.9)–(14.11), together
with the directly estimated one; the right panel shows the PDFs logarithmically. The param-
eter σ = 0.153 has been obtained by minimizing the L2-distance between the modeled and
the estimated PDF, while the parameter σ = 0.135 stems from the minimized L2-distance
between the logarithms of the two PDFs.

with the standard deviation σ as a free parameter. Figure 14.8 shows these two PDFs
together with the one obtained from the numerics.
The proposed model is that the PDF of the forced Swift–Hohenberg equation is

reasonably well described by the convolution of the two aforementioned PDFs:

f (ψ) =
�

fd ∗ fs
�
(ψ) =

∫ ∞
−∞

dψ′ fd(ψ
′) fs(ψ−ψ′) (14.11)

This ansatz can be motivated from the fact that for two statistically independent random
variables X and Y which have the distribution functions fX and fY , their sum Z =X +Y
is distributed as fZ = fX ∗ fY , i. e. as the convolution of the single distributions.2 It is of
course an open question whether or not a decomposition of the random fields of the
forced Swift–Hohenberg equation as a sum of a deterministic and a stochastic part (i. e.,
as ψ=ψd+ψs) is possible and how good their statistical independence is fulfilled.
When the ansatz (14.11) is fitted to the estimated PDF via the fit parameter σ , the

results shown in figure 14.9 are obtained, and the model fits the data rather well. The
bimodal and symmetric form of the PDF is reproduced by construction,3 and also the
asymptotic behavior of the tails of the PDF is captured quite well. There is a difference,
though, whether one minimizes the distance between the PDFs or the logarithms of the

2This can be seen as follows: In general, the sum Z = X + Y of two random variables X and Y is
distributed as fZ (z) =

∫
dx dy fX ,Y (x, y)δ

�
z − (x + y)

�
with the joint distribution fX ,Y (x, y). Assuming

statistical independence of X and Y , the joint distribution factorizes into fX ,Y (x, y) = fX (x) fY (y), and
thus, the above expression reduces to fZ (z) =

∫
dx dy fX (x) fY (y)δ

�
z − (x + y)

�
=
∫

dx fX (x) fY (z− x) =�
fX ∗ fY

�
(z).

3The model PDF (14.11) is a convolution of (i) a symmetric and (ii) a symmetric and bimodal PDF, and
thus symmetric and bimodal itself.
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PDFs: In the first case, the core region of the estimated PDF is reproduced better, while
in the latter case the model describes the tails of the PDF almost perfectly. This suggests
the view that in the tails of the PDF the Gaussian behavior of the noise dominates the
statistics, while the dynamics of the Swift–Hohenberg system only play a minor role
there.

However, we have to emphasize again that this model is purely phenomenological and
driven only by the numerical data and not the physics behind the system (apart from
the amplitude A0 of the plane waves that is known from the theory). In particular, we
could not directly relate the fitted standard deviations σ ∈ {0.153,0.135} to the strength
C0 = 0.4 of the stochastic force.
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15 Summary and Conclusion

his part dealt with the pattern forming behavior of convective systems that can
be described by the forced Swift–Hohenberg equation and its statistical analysis.
In nature and technical applications where the convection is not too turbulent, it is

generally found that patterns in the form of rolls emerge. In chapter 11 we gave examples
of these patterns and motivated how they can be described by a two-dimensional order
parameter field governed by the Swift–Hohenberg equation. We also introduced the
stochastically driven Swift–Hohenberg equation, where the idea of impurities of the
convective system – e. g., an inhomogeneous heating rate or rough boundaries – enters
the order parameter description as a stochastic force. Furthermore, we compared the
stripe patterns of both the deterministic and the driven Swift–Hohenberg system which
we obtained from direct numerical simulations. The DNS described in chapter 12 is a
pseudospectral scheme where the time-stepping treats the linear term implicitly and also
takes extra care regarding the fluctuating force.
In chapter 13 we went into the details and consequences of the Swift–Hohenberg

system being described by gradient dynamics: As the right-hand side of the evolution
equation can be formulated as the functional derivative of the corresponding Lyapunov
functional, the deterministic dynamics of the system follow the way that minimizes this
functional in a steepest-descent-manner. This view leads to a wide range of results. For the
preferred patterns of plane waves that are obtained from a linear stability analysis of the
Swift–Hohenberg equation, we could calculate the optimal amplitude by minimizing
the Lyapunov functional and thereby reproduced the established results, cf. Viñals et al.
(1991). Furthermore, we showed numerically that the plane waves are reasonably close to
true stationary solutions of the Swift–Hohenberg system. For the stocastically driven
system, the gradient formulation allowed to construct and solve a functional Fokker–
Planck equation that corresponds to the functional Langevin equation that the forced
Swift–Hohenberg equation represents, and we thereby could assign a probability to
every configuration of the order parameter field. All these partly new, partly reproduced
results were then combined to propose a new method to generate statistically stationary
ensembles of the stochastically driven Swift–Hohenberg equation: As we can predict
the long-term evolution towards local minima of the Lyapunov functional and know the
relative frequency of the different minima, this allows us to directly start simulations in
states of minimal Lyapunov functional and let the system settle in a statistically stationary
state. This takes considerably less computational time compared to a “cold start” from the
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15 Summary and Conclusion

homogeneous solution. The method does not depend on the exact form of the Lyapunov
functional, and therefore we expect it to be easily extended to generate statistically
stationary ensembles of any gradient system driven by noise.
With the data set that was produced accordingly, we then proceeded in chapter 14

to give a statistical analysis of the forced Swift–Hohenberg system along the lines of
the Lundgren–Monin–Novikov hierarchy already introduced for Rayleigh–Bénard
convection in part I. We analyzed the PDF of the Swift–Hohenberg system, this time
assigning probabilities to single values of the order parameter and not a whole field config-
uration. As anticipated, the PDF is symmetric because of the inversion symmetry of the
system. Due to the fluctuating force, the evolution equation for this PDF took the form
of a Fokker–Planck equation, i. e. a second order partial differential equation, in contrast
to the first order equation encountered for the Rayleigh–Bénard case (cf. chapter 3).
The only unclosed term that appeared in this formalism was the conditional average of the
spatial term, which we estimated from the numerics. The comparison between the PDFs
obtained as the solution of the Fokker–Planck equation with the estimated conditional
average and the directly estimated PDF yielded satisfactory agreement. Furthermore, the
distinct cubic shape of the conditional average suggested different mechanisms at work in
the core region respectively the tails of the PDF, and we could show that a simple cubic
model of the conditional averages gave results close to the real statistics. An even simpler
phenomenological model was introduced that expresses the statistics as the convolution
of a PDF describing the deterministic part, which dominates the core region, with a PDF
related to the stochastic force which dominates the tails. This one-parametric convolution
ansatz yielded reasonable results.
The results obtained from the Lundgren–Monin–Novikov hierarchy in part I gave

insight into the average dynamics of the Rayleigh–Bénard system. The present part,
on the other hand, gave a description of the pattern formation and the corresponding
statistics that can appear in convective systems, and we could reconstruct and model the
statistics of the Swift–Hohenberg system and identify the interplay of the responsible
deterministic and stochastic processes. Furthermore, as a byproduct we could establish
a method to accelerate the generation of ensembles of stochastically driven gradient
systems.
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Part IV

Summary and Conclusion of the
Thesis





n this thesis, we dealt with convective flows, i. e. the motion of a fluid that is
heated from below and cooled from above and thus driven by a temperature
gradient. We analyzed in three parts the statistics and the dynamics of the flows

and of coherent structures therein: In part I we applied statistical methods to the tem-
perature fluctuations of turbulent Rayleigh–Bénard convection, part II introduced a
tailored method to examine how turbulent convection is build from coherent structures,
and in part III we described the statistics of the structures that emerge near the onset of
convection with the help of the stochastic Swift–Hohenberg equation.

In part I, we utilized a technique known from homogeneous isotropic turbulence
research – the so-called Lundgren–Monin–Novikov hierarchy or PDF methods – to
study the temperature fluctuations of turbulent Rayleigh–Bénard convection. Starting
from the basic equations of motion, i. e. theOberbeck–Boussinesq equations, we derived
an exact evolution equation for the probability density function (PDF) of the turbulent
temperature field. We then applied the method of characteristics to this first-order partial
differential equation and obtained a quasi-Lagrangian description of the average dynamics
of the system. This suggested the notion of so-called conditional particles, i. e. Lagrangian
quasi-particles that are governed by the conditionally averaged flow fields. Thus, starting
from a statistical description in terms of the temperature PDF, we could characterize
the temperature-resolved average dynamics in the phase space of the system that allowed
us to identify the behavior of fluid of different temperatures in different regions of the
convection cell.
The conditional averages that appear in this formalism are unclosed terms that had

to be estimated from direct numerical simulations of Rayleigh–Bénard convection in
three different geometries: Horizontally periodic convection in three and two dimensions
and convection in a cylindrical vessel. We found for all three cases that the characteristic
curves, i. e. the trajectories of the conditional particles, form concentric closed curves in
phase space that reconstruct the general picture of fluid heating up at the bottom, rising
to the top, cooling down and sinking to the lower plate again. The two settings with
periodic horizontal boundaries exhibited generally a comparable behavior, where the
subtle differences were linked to coherent structures that appear in two dimensions, e. g.
plume hot spots. As cylindrical convection has another phase space dimension related to
the horizontal movement, it featured additional structures that were not present in the
former two cases; in particular, we could identify corner flows near the sidewalls of the
cylindrical vessel that are only performed by fluid of certain temperatures.

The goal of part II was to identify and understand the structures that are the building
blocks of turbulent convection. A method that is able to achieve this is the proper
orthogonal decomposition (POD) that yields an orthonormal set of basis modes for a
given data set of flow fields. Applying this established technique to turbulent convection
resulted in modes that give the optimal description of the data in terms of the generalized
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energy, i. e. kinetic energy plus temperature variance. However, the generalized energy is
not physically meaningful, as one effectively mixes quantities of different units. Therefore
we tailored the technique towards Rayleigh–Bénard convection so that it instead gives a
description of the heat transport. The understanding of the heat transport through the
fluid layer in terms of the Nusselt number is one of the key components in Rayleigh–
Bénard research.

We then used a data set of two-dimensional convection to benchmark the new method
against the usual approach, and could show that theNusselt-maximizing ansatz performs
better in all cases. The description of the time series and the distribution function of the
heat transport achieved better results with fewer modes when utilizing lower-dimensional
projections on the Nusselt-modes. We could link the better performance to the modes
being sensitive to the heat transport: Compared to the usual approach, the Nusselt-
modes emphasized localized structures of strong convective heat transport that could
subsequently be distinguished, i. e. into plumes that have a high positive heat transport
versus blobs of fluid that are being swept in the “wrong” direction (e. g., hot fluid that is
forced downwards) and thus have a strongly negative heat transport.

In part III, we analyzed the behavior of the temperature field and its fluctuations near
the onset of convection, i. e. far from the turbulent regime that we have considered in
the prior parts. To this end, we employed the stochastically forced Swift–Hohenberg
equation, which is a nonlinear evolution equation for a two-dimensional order parameter
field that is related to the temperature field in horizontal slices of convection. We applied
the methods known from part I to derive an equation for the PDF of the order parameter,
this time taking the shape of a Fokker–Planck equation due to the noise term. As
before, unclosed terms in the form of conditional averages appeared, which we estimated
from data obtained through direct numerical simulations. We could thus reconstruct
the PDF of the order parameter with the help of the basic equations of motion and link
the shape of the PDF to different mechanisms at work in the system. Furthermore, we
proposed two simple models – one on the basis of the conditional averages and the PDF
methods described above, the other being more phenomenological – that were able to
yield reasonable results comparable to the directly estimated PDF.

As a spin-off product of the statistical analysis, the description of the stochastic Swift–
Hohenberg system in terms of gradient dynamics (i. e., in a functional formulation)
allowed us to propose a method to speed up the generation of data ensembles. We
put forward and solved a functional Fokker–Planck equation for the forced Swift–
Hohenberg system, which enabled us to assign probabilities to whole configurations of
the order parameter field. This in turn made it possible to skip the slow transient initial
phases of the dynamics and instead start the numerical simulations in the final stationary
states of the system.
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Apart from the physical results summarized before, another key aspect of this thesis
was the development of methods that were used to analyze convective flows:

Although the framework of PDF methods has been known for some time in pure fluid
dynamics as well as in the research on turbulent reactive flows, it had not been adapted
towards Rayleigh–Bénard convection. We have shown that it yields a temperature-
resolved description of the dynamics in the convection cell, which is an insightful view of
convection that should be pursued further. As an example, the methods presented here
could obviously be used to analyze numerical convection data of different flow geometries
or in a parameter scan of the Rayleigh and the Prandtl number. This could yield
further insights on general mechanisms as well as differences between the different cases.
Furthermore, with sufficiently sophisticated measurement tools, it would be interesting
to apply the PDF methods to experimental data obtained from simultaneous velocity and
temperature measurements.
The description of the Nusselt-maximizing POD method has been kept as general

as possible, and thus it is straightforward to apply the method to different systems that
are characterized by response parameters with a strong physical meaning. For example,
one could think of a POD method that analyzes the flow of air around the wings of an
airplane or the propeller of a wind turbine, and characterize the POD modes in terms of
the lift or the drag that is produced. In this way, it should be possible to obtain the flow
structures with a major influence on the lift or the drag. Subsequently one can hope to
adjust and optimize the wing profiles in order to enhance the desired flow structures and
to suppress the unfavored ones, thus increasing the effectiveness.
The functional methods developed for the analysis of the Swift–Hohenberg system

can also be extended towards other systems, most easily of course to other gradient
dynamics under the influence of noise. But also the PDF analysis may lead to a different
view of pattern-forming systems in general, as these are usually coarse-grained models of
microscopic behavior (e. g., the pattern formation in thin films is described in the so-called
lubrication approximation, which can be thought of as a coarse-graining of the Navier–
Stokes equations). In this coarsening process the microscopic noise is lost. Thus, in the
PDF analysis of the stochastic Swift–Hohenberg equation we performed, the amount
of noise that is added to the system may be linked to the amount of smoothing that is
applied in the coarse-graining. Therefore, a trade-off between smoothing the microscopic
noise while still retaining the relevant large-scale fluctuations in the pattern-forming
system may be achieved by fine-tuning the amount of noise in a description by PDF
methods. We believe that the analysis of other model equations for pattern formation
would benefit from this line of thought.

To bring up another aspect and a further outlook, also the stronger synergy of the
three parts of this thesis is expected to yield more insights into the single systems:

As the driving force behind the Swift–Hohenberg system is to minimize the Lyapunov
functional, a POD approach that measures the Lyapunov functional (or, to be more
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precise, the linear terms therein) is expected to give better results than the usual ansatz.
In turn it would be interesting to see how these POD modes compare to the description
of the system by a superposition of plane waves, which was already found to be quite
satisfactory.
Furthermore, as the modified POD approach was sensible to the convective heat

transport, and the PDF method described the mean transport properties of Rayleigh–
Bénard convection, we expect that a combination of these two techniques might provide
interesting results. To this end, we suggest to use lower-dimensional projections of
convection data onto a subset of the POD modes in the estimation of the conditional
averages that are needed for the PDF methods. By this, the mean dynamics and transport
properties in the convection cell could be related to the large-scale structures and the
small-scale fluctuations that the POD method is able to separate from each other. Thus,
we expect that a “hierarchy of heat transport dynamics” could be built to understand the
precise role of the structures and their dynamics on different scales.
Also, the PDF analysis of Rayleigh–Bénard convection with a fluctuating force –

which can be motivated from inhomogeneities of the horizontal plates or from internal
sources of heat – seems promising: In this case, the structure of the equations would
not allow for concentric closed curves in phase space (as were found in part I), as the
dynamics in phase space are now subjected to diffusion. It would be interesting to examine
how the concentric curves behave when noise is gradually added to the system. The
required numerical simulations of the stochastic system can then in turn be sped up with
methods alike to the one proposed for the generation of statistical ensembles of the forced
Swift–Hohenberg system.

In conclusion, over the course of this thesis we developed statistical methods for the
detection of coherent structures and the dynamical behavior of fluid therein. While this
does not solve the overarching turbulence problem, the methods we developed as well as
the insights we obtained from them may prove useful to achieve this distant goal.
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ature statistics in turbulent Rayleigh–Bénard convection. New Journal of Physics,
13(1):015002.

This is the publication resulting from my diploma thesis (Lülff, 2011) that consti-
tutes the basis upon which part I of the present thesis is build. Text and figures of
this publication where produced entirely by me.

Friedrich, Rudolf and Daitche, Anton and Kamps, Oliver and Lülff, Johannes
and Voßkuhle, Michel and Wilczek, Michael (2012). The Lundgren–Monin–
Novikov hierarchy: Kinetic equations for turbulence. Comptes Rendus Physique,
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Dr. Rudolf Friedrich († 2012) and his co-workers, where the Rayleigh–Bénard
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hannes and Hansen, Ulrich (2013). Dissipation layers in Rayleigh–Bénard con-
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from the geophysics department on a new classification scheme of boundary layers
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Petschel, Klaus and Stellmach, Stephan and Wilczek, Michael and Lülff, Jo-
hannes and Hansen, Ulrich (2015). Kinetic energy transport in Rayleigh–Bénard
convection. Journal of Fluid Mechanics, 773:395–417.

Joint work with my second supervisor Prof. Dr. Ulrich Hansen and his co-workers
on the composition and redistribution of kinetic energy in Rayleigh–Bénard
convection, building upon the previous work by Petschel et al. (2013). This
publication is not detailed in the present thesis.
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Lülff, Johannes and Wilczek, Michael and Stevens, Richard J. A. M. and
Friedrich, Rudolf and Lohse, Detlef (2015). Turbulent Rayleigh–Bénard con-
vection described by projected dynamics in phase space. Journal of Fluid Mechanics,
781:276–297.

This is the publication from which part I of this thesis was adapted. It represents
original research, and text and figures where produced entirely by me.

Lülff, Johannes (2015). Describing the heat transport of turbulent Rayleigh–Bénard
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Fluid Mechanics.
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and was written after the corresponding part of this thesis, it includes some research
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A PDF Description of RAYLEIGH–BÉNARD

Convection: In-depth Analyses

In this section we will present analyses and remarks referring to part I. In particular, this
includes figures and technical details that were used in the answers to the referees in the
peer review process of the publication that part I is based upon (Lülff et al., 2015), but
that were deemed too exhaustive to fit into the publication.

A.1 Improvement of the Numerics

In section 4.1 on page 21 we find that the characteristics tend to converge towards
limit cycles due to the presence of numerical noise. As this behavior is defective (the
characteristics should form closed concentric curves instead), we improved the numerics
(i. e., the integration of the characteristics) in the course of the review process of the
publication. For reasons of readability, we did not go into the technical details in the
publication; nevertheless, we want to include the detailed list of improvements in this
appendix:

1. When estimating the conditionally averaged vector field through binning, we
enforced the up-down symmetry of the Rayleigh–Bénard system, thus effectively
doubling the amount of statistics.

2. We applied smoothing to the conditionally averaged vector field by convolving the
bins with a Gaussian kernel. Extensive testing suggested a standard deviation of 1.5
bins.

3. We compared a variety of time-stepping schemes and found that the implicit
midpoint rule (see, e. g., Kastner-Maresch (1992)) gave the best results.1

4. The field of the probability flux was made divergence-free, i. e. the validity of (4.1)
(page 23) was enforced pointwise in the following way: Let q be the phase space

velocity, i. e. q =
� 〈uz |T ,z〉
〈ΔT |T ,z〉

�
. Then the solenoidality of the probability flux (i. e.,

(4.1)) reads ∇ · (q f ) = 0. This was enforced by projecting q f onto its solenoidal

1As a side note, this time-stepping scheme is also a symplectic integrator when applied to Hamiltonian
dynamics.
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part by the usual approach, i. e.4q f =
�
1−∇Δ−1

∇

	
(q f ) with ∇ ·

�4q f
	
= 0 (see,

e. g., Lülff (2011, sec. 2.2.3)). Here, Δ−1 stands symbolically for the solution of a
Poisson equation, i. e. a Poisson integral.

The modified phase space velocity "q corresponding to the solenoidal probability

flux4q f was then obtained by division by f , i. e.

"q = 1

f
4q f =

1

f
(1−∇Δ−1

∇)(q f ) , (A.1)

and this "q was then used for the integration of the trajectories. It is immediately
clear that by construction, "q fulfills ∇ · ("q f ) = 0.

This “workaround” of projecting q f and dividing by f is necessary because the
solenoidality poses a restriction on the probability flux q f , whereas the phase
space velocity q is needed for the integration of the characteristics. We are aware
that this procedure implies a bias, because it assumes that only the phase space
velocity is defective and responsible for the violation of the solenoidality. But as
one cannot expect to unambiguously rectify the two quantities q and f from one

equation (∇ · (q f )
!
= 0) alone, this bias is in our opinion inevitable.

5. When integrating the trajectories, true bicubic interpolation was applied to sample
the conditionally averaged vector field between grid points; prior to this, we used
a cubic interpolation in horizontal direction followed by a cubic interpolation
in vertical direction (this is different from true bicubic interpolation as it misses
certain cross-terms).

The implementation and tuning of these improvements and the post-processing scheme
then gave rise to the closed concentric curves we find in section 4.1.

A.2 Comparison of Limit Cycle and Family of Closed Curves

In the discussion of figure 4.5 (page 26) in section 4.1 it is put forward that the faulty
limit cycle obtained in the case with noise and the family of closed trajectories obtained
by post-processing the data give in general the same picture; furthermore, it is claimed
that the limit cycle is one valid member of the family of closed curves, apart from minor
imperfections. This comparison is given in figure A.1.
The figure confirms that the limit cycle shown in gray is positioned almost entirely

between two adjacent closed circles. Only in the lower left and upper right corners
small deviations can be seen. We speculate that these deviations may be attributed to the
solenoidal projection (cf. (A.1) in the above section A.1) that may produce unreliable
results in these areas: Towards the boundary at z = 0, the support of the conditional
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ison of the faulty
limit cycle that is
obtained when the
noise is not removed
from the vector
field (in gray) and
the family of closed
concentric curves
that are obtained
after post-processing
the vector field (in
black). Presenta-
tion analogous to
figures 4.3 and 4.5.

averages changes quickly with z and moves towards T = 1 as the temperature PDF
contracts towards a δ-function, and thus, in the lower left corner the spatial derivatives
of the projection operator (1−∇Δ−1

∇) may become flawed (especially the derivative in
z-direction). Nevertheless, we deem the alleged limit cycle as a valid, generic member of
the family of closed nested loops (modulo minimal imperfections), and it is plausible that
the same applies to the Rayleigh–Bénard setups of two-dimensional (section 4.2) and
cylindrical convection (section 4.3).
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B Proper Orthogonal Decomposition:
Proofs and Remarks

This section gives some in-depth calculations and comments that have only been sketched,
and especially provides rigorous proofs for observations and statements made in part II.

B.1 From Maximization to Eigenvalue Problem

For a function φ(x) that maximizes
�
|(q ,φ)|2

�
under the normalization constraint

‖φ‖2 = 1 (cf. section 7.1 on page 47), a necessary condition is that φ is a stationary point
of the Lagrangian functional

L[φ] =
�
|(q ,φ)|2

�
−λ�(φ,φ)− 1

�
(B.1a)

=

5∫
dx ′ q(x ′)φ(x ′)

∫
dx ′φ(x ′)q(x ′)

6
−λ
�∫

dx ′φ(x ′)φ(x ′)− 1

�
, (B.1b)

where λ is a Lagrange multiplier that assures normalization. From (B.1a) to (B.1b),
(q ,φ) = (φ, q) (with · denoting complex conjugation) as well as the definition of the

scalar product as
�

f , g
�
=
∫

dx ′ f (x ′)g (x ′) has been used. For φ to be a stationary point,
the variation of L with respect to φ has to vanish:

δ

δφ(x)
L[φ] = 0 (B.2)

With the principal rules of differentiation (see also section C.3)

δφ(x ′)

δφ(x)
= δ(x − x ′) (B.3a)

δφ(x ′)

δφ(x)
= 0 (φ is independent of φ)1 (B.3b)

δq(x ′)

δφ(x)
= 0 (q is independent of φ) (B.3c)

1See, for example, Greiner and Reinhardt (1993, secs. 2.2 and 4.2).
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equation (B.2) becomes

0=
δ

δφ(x)
L[φ] =

5∫
dx ′ q(x ′)δ

�
x − x ′
	∫

dx ′φ(x ′)q(x ′)
6

−λ
∫

dx ′φ(x ′)δ
�

x − x ′
	

, (B.4)

which simplifies to 5
q(x)

∫
dx ′φ(x ′)q(x ′)

6
= λφ(x) . (B.5)

After reordering, interchanging integration and ensemble average2 and applying complex
conjugation this reads ∫

dx ′
�

q(x)q(x ′)
�
φ(x ′) = λφ(x) , (B.6)

which is the eigenvalue problem (7.3) on page 48.

B.2 Mean Energy of the Data Ensemble

From λi =
�
|(q ,φi )|2

�
(cf. (7.5) on page 48), it follows that the sum of all eigenvalues

equals ∑
i

λi =
∑

i

�
|(q ,φi )|2

�
(B.7a)

=
∑

i

�
(q ,φi )(φi , q)

�
(B.7b)

=
∑

i

5∫
dx q(x)φi (x)

∫
dx ′φi (x ′)q(x ′)

6
(B.7c)

=

7∫∫
dx dx ′ q(x)q(x ′)

∑
i

φi (x)φi (x ′)

8
. (B.7d)

In (B.7a)–(B.7c), only definitions have been inserted, and in (B.7d) terms have been
reordered (it is again assumed that spatial integrals and ensemble averaging commute).
Spectral theory now assures that the POD modes φi , which have been obtained as the
eigenfunctions of a Hermitian operator, obey the completeness relation∑

i

φi (x)φi (x ′) = δ(x − x ′) . (B.8)

2The arbitrary function φ does not depend on the data ensemble {q} and therefore “commutes” with the
ensemble averaging.
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Therefore (B.7) becomes∑
i

λi =

5∫
dx q(x)q(x)

6
=
�
(q , q)
�
=
�
‖q‖2
�

, (B.9)

i. e. the sum of all eigenvalues is the mean energy of the data ensemble.

B.3 Positive Definiteness of XTX
†
S

Multiplying the Eigenvalue problem (7.11) on page 50, i. e.

XTX
†
Sφ= λφ , (B.10)

from the left with φ†
S

†, one gets

φ†
S

†
XTX

†
Sφ= λφ†

S
†φ . (B.11)

With v := X†Sφ and φ†
S

†φ= 1 (cf. (7.16)), this reduces to

λ= v†
Tv = (v, v)

T
= ‖v‖2

T
≥ 0 , (B.12)

thus proving the positive definiteness of XTX†S (with (·, ·)
T
and ‖ · ‖T being the scalar

product and norm induced by T).

B.4 Eigenvalues of AB and BA

To proof that for general (not necessarily square) matrices3 A ∈ �m×n and B ∈ �n×m

the products AB and BA have the same non-zero eigenvalues, consider the following
(n+m)× (n+m) block matrices:

M =

�
0n×n 0n×m

A AB

�
N =

�
BA 0n×m

A 0m×m

�
Y =

�
1n×n B

0m×n 1m×m

�
(B.13)

A simple calculation shows that YM =NY, or, since Y is invertible (all eigenvalues of Y

are 1),

M = Y
−1

NY . (B.14)

Thus, the matrices M and N are similar and therefore have the same characteristic
polynomial: ��λ1−M

��= ��λ1−N
�� (B.15)

3Without loss of generality, we assume m ≤ n.
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Inserting M and N yields

λn
��λ1−AB

��= λm
��λ1−BA

�� or λn−m
��λ1−AB

��= ��λ1−BA
�� , (B.16)

which shows that the n eigenvalues of the bigger matrix BA consist of the m eigenvalues
of AB and n−m additional zeros.
The idea of this proof is due to Butler (2013). Equivalently, the same may be shown

by applying Sylvester’s determinant theorem (Sylvester, 1851), which states that��1+AB
��= ��1+BA

��.
B.5 Comments on the Calculation of Covariance Matrices and

its Implementation

As the data ensemble may become very large, the direct implementation of the matrix
equations from section 7.2 with a linear algebra library is a bit cumbersome. Often, the
data set consists of a collection of one file per snapshot. Then the direct manipulation of
X may become impossible simply because the matrix becomes too large to fit into the
main memory of the computer. To still handle e. g. the temporal covariance matrix X†SX

of the method of snapshots, one could opt to calculate every entry “by hand” – i. e., load
pairs of snapshots corresponding to columns of X into the memory and calculate their
scalar product to obtain one entry of X†SX. While this is certainly possible, it requires a
considerable amount of additional management – for example, one has to care about how
the matrix equations look like when instead operating on collections of vectors. Also,
the calculation of the POD modes Φ as a linear combination of the snapshots contained
in X becomes unhandy, not least because it requires a huge amount of swapping between
memory and disk space as all snapshots have to be separately loaded from disk to obtain
a single POD mode.
After extensive testing, we found that the fastest and most concise numerical imple-

mentation can be achieved by utilizing so-called memory-mapped matrices (or arrays),
which are available in many programming languages. With memory-mapped arrays, a big
file on the hard disk can be manipulated as a regular array, and the required parts of the
array are loaded from disk into the memory by the operating system as needed. As the
operating system is also in charge of caching parts of the arrays, this is usually orders of
magnitude faster than the ansatz proposed above; but most importantly, one can operate
on the whole matrices, thus enabling a direct implementation of the equations derived
in section 7.2. This means that in the numerical implementation, the single snapshots
contained in single files have first to be copied into columns of the memory-mapped
matrix X; after that, the program does not have to care about swapping, caching, copying
between disk and memory etc., as this is all done in the background by the operating
system.
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Also, it should be noted that the big Nx ×Nx matrix S does not have to reside in
memory with all N 2

x
entries, because in virtually all cases it is not dense but (blockwise)

diagonal. Thus only � (Nx ) entries have to be stored, and most linear algebra libraries
contain special methods to efficiently handle (blockwise) diagonal matrices.

B.6 Energy Contained in the Projection of a Single Snapshot

We want to show that the energy contained in a single snapshot, projected onto Np POD
modes, is rising monotonically with the number Np of modes used (cf. discussion of
figure 8.6 on page 67). To this end, we examine the energy contained in the projection of
an arbitrary (say, the i -th) snapshot, i. e.

ENp (ti ) =
�"q i
�†

S"q i , (B.17)

where "q i is the i -th column of the projected data set "X:

"q i = "Xe i (B.18a)

= XT"C"C†
e i (B.18b)

= XTCR
Np
�

R
Np
	†

C
†e i (B.18c)

Here, only definitions from section 7.5 have been substituted. Inserting "q i into (B.17)
and identifying the eigenvalue problem X†SXTC =CΛ and the orthonormality relation
C

†
TC = 1, we arrive at

ENp (ti ) = e†
i
CR

Np
�

R
Np
	†
ΛR

Np
�

R
Np
	†

C
†e i (B.19a)

=: v†
Λv (B.19b)

with the vector v :=



CR
Np
�

R
Np
	†�†

e i ∈�Nt . Since Λ is a diagonal matrix composed

of the non-negative eigenvalues λi , writing the previous vector-matrix-vector product as a
sum over the entries reads

ENp (ti ) =

Nt∑
j=1

vjλ j v j (B.20a)

=

Nt∑
j=1

λ j |vj |2 . (B.20b)

The energy of an Np -dimensional projection of a single snapshot can therefore be written
as a sum of non-negative terms.
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To show that this sum is monotonically growing with Np , we note that the matrix

CR
Np
�

R
Np
	†

is the same as the matrix C but with the last Nt −Np columns replaced by
zeros; thus, the last Nt −Np rows of its conjugate transpose and therefore also the last
Nt −Np entries of v are zero. Consequently, the previous sum actually consists of only
Np terms:

ENp (ti ) =

Np∑
j=1

λ j |vj |2︸ ︷︷ ︸
≥0

(B.21)

This concludes the proof that ENp (ti ) is monotonically growing with Np .

B.7 Heat Transport Maximizing POD in Three Dimensions

In chapter 9, we developed and tested the POD that maximizes the convective heat
transport for Rayleigh–Bénard convection in two dimensions. Although the velocity
field is two-dimensional, due to incompressibility the horizontal velocity depends on
the vertical one, and thus, we can restrict ourselves to only handle the vertical velocity
component. Therefore, the snapshots consisting of temperature and vertical velocity fully
determine the fluid state at each time instant. As a consequence, the newly defined scalar
product that measures the convective heat transport uses all the information contained
in the snapshots, which is also reflected in the fact that the matrix S defining the scalar
product (cf. (9.3) on page 70) has only non-zero eigenvalues.
This situation changes when considering convection in three dimensions. Here, the

incompressible fluid is fully determined by specifying the fields of temperature and two
velocity components, say one horizontal and the vertical one. The snapshots take (in a
blockwise fashion) the form

q i =
�

T i , u i
x
, u i

z

	T ∈�3nx , (B.22)

and the whole data matrix is

X =

⎛⎜⎜⎜⎝
T 1 . . . T Nt

u 1
x

. . . u
Nt
x

u 1
z

. . . u
Nt
z

⎞⎟⎟⎟⎠ ∈�3nx×Nt . (B.23)

The Nuc-maximizing scalar product matrix then reads

S =
1

2nx

⎛⎜⎜⎝0 0 1

0 0 0

1 0 0

⎞⎟⎟⎠ ∈�3nx×3nx , (B.24)
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which has the eigenvalues ±1/2nx and 0, each nx -fold. Due to the eigenvalues 0, the matrix
S is not non-degenerate any more and does not have full rank; in the induced scalar
product and thus in the covariance matrix, information about the horizontal velocity
component is lost.
This does not pose a problem, though, and it does not necessarily mean that the

temporal covariance matrix becomes rank deficient: In section 7.4 it was established that
the temporal covariance matrix X†SXT has full rank as long as all matrices have full rank
and rank S > rank T. In the case discussed here, this reasoning has to be slightly adapted
as S is rank deficient. To this end, consider the above matrices without the horizontal
part, i. e.

9X =�T 1 . . . T Nt

u 1
z

. . . u
Nt
z

�
∈�2nx×Nt (B.25)

and

9S = 1

2nx

�
0 1

1 0

�
∈�2nx×2nx . (B.26)

It is easy to see that the covariance matrices are identical, i. e.

X
†
SXT = 9X†9S9XT . (B.27)

Since the reasoning from section 7.4 directly applies to the “hatted” matrices, it follows
that X†SXT has full rank when 9X has full rank and rank9S > rank T, i. e. 2nx >Nt . In
this case, the maximal number of Nt non-zero eigenvalues of the covariance matrix is
obtained, and no problematic eigenvalues 0 appear.4

To put it in other words, the snapshots lacking the horizontal part have to be linearly
independent. This could be violated for snapshots that have identical temperature and
vertical velocity parts and only differ in the horizontal velocities, which we consider
irrelevant because it is a pathological and not well-behaved case.
Although the information about the horizontal velocity components is lost in the

covariance matrix, the horizontal velocity is still present in the POD modes and in the
lower-dimensional projections, because these are constructed as linear combinations of
the snapshots (cf. (9.6) and (7.33)). In a sense, the POD preserves the linear relation
between the velocity components – e. g., when all the snapshots have a preferred direction
of rotation in the horizontal plane (think of rotating convection), the POD modes will
display the same horizontal rotation.

4As a reminder, full rank means only non-zero eigenvalues.
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C SWIFT–HOHENBERG Equation: Additional
Comments

This section will give additional comments and explanations regarding the Swift–Hohen-
berg equation analyzed in part III.

C.1 Quadratic Nonlinearity in the SWIFT–HOHENBERG Equation
and the Connection to the RAYLEIGH–BÉNARD System

The Swift–Hohenberg equation with an additional quadratic nonlinearity reads

∂

∂ t
ψ(x , t ) = εψ(x , t )− (Δ+ 1)2ψ(x , t )−ψ(x , t )3+δψ(x , t )2 , (C.1)

see e. g. Bestehorn (2006, sec. 9.4.5). The quadratic term breaks the symmetry ψ→−ψ,
and additionally to the usual stripes also hexagonal as well as localized patterns are
obtained, cf. figure C.1. Although the hexagonal pattern was already found in the early
convection experiments by Bénard (1901), hexagons are generally not found in the
pure Rayleigh–Bénard system but require special prerequisites like a Marangoni-esque
surface instability or an internal heating. This is also the reason why we will not consider
a quadratic nonlinearity in this thesis.

Figure C.1: Stationary solution of the
Swift–Hohenberg equation with
additional quadratic nonlinearity
that displays an ordered hexagonal
structure. The parameters are ε =
0.3, δ = 1.0 and Ω = [0,16π]×
[0,16π], and the remaining param-
eters are as in section 13.4ff.
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It is mentioned by Kraft and Gurevich (2015) that the addition of an offset

ψ→ψ+ δ
3

(C.2)

transforms (C.1) into

∂

∂ t
ψ=

�
ε+
δ2

3

�
ψ− (Δ+ 1)2ψ−ψ3+

δ

3

�
ε− 1+

2δ2

9

�
(C.3a)

=: ε′ψ− (Δ+ 1)2ψ−ψ3+Y , (C.3b)

i. e. the quadratic term has the same effect on the dynamics and the patterns of the Swift–
Hohenberg equation as an inhomogeneity Y .1 As the order parameter ψ is related to
the temperature distribution in a horizontal plane of Rayleigh–Bénard convection,
the inhomogeneity Y connects nicely to the observation that with internal heating,
Rayleigh–Bénard convection may display hexagonal patterns – internal heating amounts
to an inhomogeneity in the temperature part of the Oberbeck–Boussinesq equations.
In fact, hexagonal structures are often obtained in Rayleigh–Bénard convection when
the up-down symmetry is broken, which is the case for both a quadratic nonlinearity
and internal heating. Also, in the experiments by Bénard (1901) the up-down symmetry
was broken due to different boundary conditions at the bottom and the top, which led
(together with a Marangoni-like surface instability) to the hexagonal patterns that were
observed.

C.2 Creating GAUSSian Noise with Correlation

In order to generate a Gaussian noise field Γ(x) with a prescribed correlation function,
i. e. �

Γ(x)Γ(x + r )
� !
= c(r ) , (C.4)

we make use of the Wiener–Khinchin theorem. It states that the Fourier transform
of the correlation function c(r ) is the spectral density (i. e., the squared absolute value
of the Fourier transform) of the noise field, and therefore the absolute value of the
Fourier-transformed noise field is����'Γ(x)( (k)���=.�'c(r )( (k) . (C.5)

1Equation (C.3) is widely used in the context of nonlinear optics. There, the order parameter field ψ is
connected to the light field in an optical resonator, and the inhomogeneity Y is an injection field (Tlidi
et al., 2009).
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C.3 Variational Calculus in a Nutshell

By choosing the yet undetermined complex phases of�'Γ(x)( as eiφ where φ=φ(k)
are random numbers uniformly distributed in the interval [0,2π), we can construct a
noise field Γ(x) that obeys (C.4) as

Γ(x) =�−1
).
�'c(r )(eiφ

*
. (C.6)

The central limit theorem then guarantees that Γ(x) follows a Gaussian distribution, as
the inverse Fourier transform in (C.6) can effectively be seen as the sum of independent
random variables with different (but finite) variances. Additionally, certain assumptions
have to hold regarding the form of the spectral density, such as a faster-than-algebraic
decay.
In general, (C.6) allows the generation of random fields with an arbitrary correlation

function, as long as its Fourier transform is known (or can be computed numerically).
In part III, we use the choice

c(r ) =C0e
− r2

2l 2 (C.7)

for which the Fourier transform is know analytically,

�'c(r )(=C0 l 2e−
k2 l 2

2 , (C.8)

and which also shows an exponential decay. Thus, noise with correlation as in (C.7) can
easily be generated. In fact, as the pseudospectral scheme employs� [Γ] instead of Γ itself
(cf. (12.4) in section 12.1), the inverse Fourier transform in (C.6) is redundant, and the
correlated noise can be generated without actually calculating Fourier transformations
numerically. Furthermore, because c(r ) has slope zero at r = 0, the noise field Γ(x) is
differentiable, which is convenient for the pseudospectral scheme.

C.3 Variational Calculus in a Nutshell

The variational calculus deals with mappings of the form

L : V →� , (C.9)

where V is a vector space containing functions; in part III and also for the remainder
of this section, we consider V = C 4(Ω), i. e. the set of all bounded functions from a
compact two-dimensional set Ω⊂�2 to the real numbers that have continuous fourth
derivatives2 that are also bounded. The mapping L, also called a functional, therefore
assigns a real number L[ f ] to each function f (x) ∈ V , and the calculus of variations
examines how this value changes when the function f changes. Here, the function f (x)

2This is because the Swift–Hohenberg equation contains a fourth derivative, i. e. Δ2ψ.

155



C Swift–Hohenberg Equation: Additional Comments

can be thought of as an infinite-dimensional vector with a continuous index x ∈ Ω, as
opposed to a finite-dimensional vector f = ( fi ) ∈�n with a discrete index i ∈ {1,2, . . . , n}.
As an example, the functional L[ f ] =

∫
Ω

d2y f (y) is proportional to the mean value of f ;
an more elaborate example is the Lyapunov functional (13.7) on page 106 that chapter 13
deals with.

The functional derivative of a functional L[ f ] can be defined as the limit of a difference
quotient:

δL[ f (y)]

δ f (x)
:= lim
ε→0

L
#

f (y)+ εδ(y − x)
$
− L
#

f (y)
$

ε
(C.10)

While the functional L[ f ] is a scalar, the functional derivative δL[ f (y)]
δ f (x)

yields a function
that depends on x .

Speaking in terms of the analogy of f (y) being an infinite-dimensional vector indexed
by the continuous index y, the expression f (y)+ εδ(y − x) means disturbing the “x -th”
entry of the vector f by ε, or, to put it in other words, f (y) is disturbed in the “direction”
δ(y− x). In finite dimensions, the analogue would be fi +εδi j , i. e. disturbing the vector
f in the direction of the j -th coordinate, and the limit of the corresponding difference
quotient becomes the derivative of the function L at position f in the direction e j .
Although the definition (C.10) of the functional derivative is mathematically precise,

it is not handy to work directly with the difference quotient. Therefore, we will now
give a number of rules how to calculate functional derivatives, where δ

δ f (x)
denotes the

functional derivative with respect to f (x). In the following, F :�→� is an arbitrary3

function of a scalar.

I. f (x) and f (y) are independent for x �= y:

δ f (y)

δ f (x)
= δ
�
x − y
�
= δ
�
y − x
�

(C.11)

The finite-dimensional analogue would be d fi

d f j
= δi j .

II. Functional derivative and integral commute for functionals of the form L[ f ] =∫
Ω

d2y F
�

f (y)
	
:

δL[ f ]

δ f (x)
=

δ

δ f (x)

∫
Ω

d2y F
�

f (y)
	
=

∫
Ω

d2y
δ

δ f (x)
F
�

f (y)
	

(C.12)

III. The functional derivative obeys a chain rule:

δF
�

f (y)
	

δ f (x)
= F ′
�

f (y)
	 δ f (y)

δ f (x)

I
= F ′
�

f (y)
	
δ
�
x − y
�

(C.13)

3We assume all functions and functionals appearing in this section to be well-behaved.
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This allows to use the usual rules of differentiation, e. g. calculate the derivative
locally

δ f (y)n

δ f (x)
= n f (y)n−1δ

�
x − y
�

, (C.14)

or together with rule II globally (or, in other words, in a weak sense):

δ

δ f (x)

∫
Ω

d2y sin f (y)
II
=

∫
Ω

d2yδ
�
x − y
�

cos f (y) = cos f (x) (C.15)

IV. The functional derivative of a “regular” derivative (i. e., gradient) ∇ f obeys the rule

δ∇ f (y)

δ f (x)
=∇

δ f (y)

δ f (x)
=∇δ
�
x − y
�

, (C.16)

i. e. functional derivative and regular derivative commute.4 This states that a function
f and its gradient ∇ f are dependent.

The gradient of the δ-function, ∇δ
�
x − y
�
, can be evaluated globally through

integration by parts, for example:∫
Ω

d2y g (y)∇δ
�
x − y
� i.p.
= −
∫
Ω

d2yδ
�
x − y
�
∇g (y) =−∇g (x) (C.17)

Here we assumed that the boundary term of the integration by parts vanishes, i. e.∫
∂ ΩdA g (y)δ

�
x − y
�
= 0; this is fulfilled for periodic boundaries or by demanding

that the functions vanish on the boundary ∂ Ω of the volume Ω.

To give an example, these rules can be combined to evaluate functional derivatives of
the form

∫
Ω

d2y G
�
∇ f (y)
	
with an arbitrary function G :�2→�:

δ

δ f (x)

∫
Ω

d2y G
�
∇ f (y)
	
=

∫
Ω

d2y (∇G)
�
∇ f (y)
	
· δ∇ f (y)

δ f (x)
(II, III) (C.18a)

=

∫
Ω

d2y (∇G)
�
∇ f (y)
	
·∇δ�x − y

�
(IV) (C.18b)

=−
∫
Ω

d2yδ
�
x − y
�
∇ ·
�
(∇G)
�
∇ f (y)
	�

(i. p.) (C.18c)

=−(ΔG)
�
∇ f (x)
	
Δ f (x) (C.18d)

4In a mathematically more precise context, an expression like ∇δ would have to be defined in a distribu-
tional sense. For the sake of simplicity, we will follow the physicist’s practice to not strictly distinguish
between regular functions and distributions; however, one has to keep in mind that an expression like
∇δ only makes sense under an integral, i. e. in a weak formulation.
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In the first equality, rule III has been used two times for the two arguments of the function
G, i. e. for the two components of ∇ f ; we have thus calculated the total functional
derivative of G. In the last step, we calculated the (total) divergence of the expression
(∇G)
�
∇ f (y)
	
by performing the usual chain rule, which resulted in the derivative

∇
2 f =Δ f of the inner function ∇ f . In contrast to that, the expression (∇G)

�
∇ f (y)
	

means that the gradient of G is evaluated at position ∇ f (y), i. e. the gradient does not act
on the inner function ∇ f (y).
As a further example and the actual application we are aiming at, we consider the

Lyapunov functional (13.7)

� [ψ] =
∫
Ω

d2x ′
�
−ε

2
ψ(x ′)2+

1

4
ψ(x ′)4+

1

2

�
Δψ(x ′)+ψ(x ′)

	2�
(C.19)

for a bounded function ψ : C 4(Ω)→ �. When calculating the functional derivative of
� [ψ], the first two terms can be evaluated trivially:

δ� [ψ]
δψ(x)

=−εψ(x)+ψ(x)3+ 1

2

δ

δψ(x)

∫
Ω

d2x ′
�
Δψ(x ′)+ψ(x ′)

	2
(C.20)

The functional derivative of the remaining term is calculated as follows:

1

2

δ

δψ(x)

∫
Ω

d2x ′
�
Δψ(x ′)+ψ(x ′)

	2
(C.21a)

=

∫
Ω

d2x ′
�
Δψ(x ′)+ψ(x ′)

	�
Δδ(x − x ′)+δ(x − x ′)

	
(II, III, IV) (C.21b)

=

∫
Ω

d2x ′
�
Δψ(x ′)+ψ(x ′)

	
Δδ(x − x ′) + Δψ(x)+ψ(x) (eval. δ(·)) (C.21c)

=Δ2ψ(x)+Δψ(x) + Δψ(x)+ψ(x) (2× i. p.) (C.21d)

= (Δ+ 1)2ψ(x) (C.21e)

Hints for the undertaken steps are given after the respective equations. By substituting

this into (C.20) it becomes clear that − δ� [ψ]
δψ(x)

results in the correct right-hand side of the
unforced Swift–Hohenberg equation, cf. (11.1) on page 99.
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