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Eulerian polynomials

Friedrich Hirzebruch

(Communicated by Linus Kramer)

Abstract. A short report on my lecture at the Conference in Honor of W. Killing in Münster
on December 7, 2007, together with some remarks on the preceding paper by Arjeh M. Cohen.

I reported on Euler’s famous paper Remarques sur un beau rapport entre
les series des puissances tant direct que reciproques, Académie des sciences de
Berlin, Lu en 1749, Opera Omnia Serie I, Bd. 15, pp. 70-90.

In modern terminology Euler introduces the alternating ζ-function

ϕ(s) = 1 −
1

2s
+

1

3s
−

1

4s
+ . . . .

This series converges for Re(s) > 0. The function ϕ(s) can be holomorphically
extended to the whole s-plane. It is related to the ζ-function:

ϕ(s) = (1 − 21−s)ζ(s).

Euler wants to calculate ϕ(−n) for n = 0, 1, 2, 3, . . . . For this purpose he
introduces the Eulerian polynomials Pn(t) by

(1)
∞
∑

k=0

(k + 1)ntk =
Pn(t)

(1 − t)n+1

and writes down the polynomials up to n = 6:

P0(t) = 1,

P1(t) = 1,

P2(t) = 1 + t,

P3(t) = 1 + 4t + t2,

P4(t) = 1 + 11t + 11t2 + t3,

P5(t) = 1 + 26t + 66t2 + 26t3 + t4,

P6(t) = 1 + 57t + 302t2 + 302t3 + 57t4 + t5.
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Of course, the series (1) converges only for |t| < 1. But for Euler

(2) ϕ(−n) = Pn(−1)2−n−1.

Using (1) one obtains easily the exponential generating function for the Euler-
ian polynomials

(3)

∞
∑

n=0

Pn(t)
xn

n!
=

(1 − t)e(1−t)x

1 − te(1−t)x

and thus

(4)

∞
∑

n=0

Pn(−1)
xn

n!
= 1 + tgh(x).

Therefore, according to Euler,

(5) ϕ(0) =
1

2
, ϕ(−n) =

tgh(n)(0)

2n+1
for n > 0.

Euler compares ϕ(−n) with ϕ(n + 1), well known to him for n odd. For n > 0
even, ϕ(−n) = 0. In this way, Euler conjectures Riemann’s functional equation
for the ζ-function.

We write

(6) Pn(t) =
n−1
∑

k=0

Wn,ktk.

By multiplying (1) with t and differentiating we obtain

Pn+1(t) = Pn(t)(1 + nt) + t(1 − t)P ′

n(t)(7a)

Wn+1,k(t) = (k + 1)Wn,k + (n + k + 1)Wn,k−1(7b)

and prove by induction

Wn,k = number of permutations of {1, 2, . . . , n} with k ascents.

The Eulerian numbers Wn,k occur in this form in the combinatorial litera-
ture (modified Pascal triangle (7b)) usually without mention of Euler’s paper.
We have

(8) Pn(t) = P (An−1, t)

in the notation of the preceding paper. The first formula in Theorem 4 of the
preceding paper follows from (1) and the binomial development

(k + 1)m+1 − (k + 1 − 1)m+1 =
m
∑

i=0

(k + 1)m−i(−1)i

(

m + 1

i + 1

)

.

Euler says in his paper that he can deal in the same way with the function

L(s) =

∞
∑

k=0

(−1)k(2k + 1)−s.
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He does not carry out details. By a similar induction as above we have

∞
∑

k=0

(2k + 1)ntk =
P (Bn, t)

(1 − t)n+1
.

The second formula in Theorem 4 of the preceding paper follows from the
binomial development

(2(k + 1) − 1)n =

n
∑

i=0

2n−i(k + 1)n−i(−1)i

(

n

i

)

.

The exponential generating function for the polynomials P (Bn, t) is given by
the formula

∞
∑

n=0

P (Bn, t)
xn

n!
=

(1 − t)e(1−t)x

1 − te2(1−t)x

and thus
∞
∑

n=0

P (Bn,−1)
xn

n!
=

1

cosh(2x)

and, according to Euler,

L(−n) =
P (Bn,−1)

2n+1
=

En

2
,

where the Euler number En is the n-th derivative of 1
cosh(x) at x = 0. Again,

Euler conjectures the functional equation for L(s).

Some algebraic geometry

1) Consider the projective algebraic variety Pn
1 = P1×· · ·×P1 where P1 is the

complex projective line. On the i-th factor we use homogeneous coordinates
(xi, yi) and study the divisor D given by x1x2 · · ·xn = 0. Then the dimension
of the space of meromorphic functions on Pn

1 whose divisor plus kD (k ≧ 0)
is non-negative equals (k + 1)n. This is the Hilbert polynomial for D and so
∑

∞

k=0(k +1)ntk is the Hilbert series of commutative algebra for the divisor D.

For the divisor 2D we obtain the Hilbert series
∑

∞

k=0(2k + 1)ntk. In this way
the polynomials P (An−1, t) and P (Bn, t) are objects of algebraic geometry.

2) The toric varieties associated to the polytopes coming from the Coxeter
systems studied in the preceding paper have only even-dimensional cohomol-
ogy. The coefficients of the Eulerian polynomials are the Betti numbers. These
varieties have only Hodge numbers hp,p. All other hp,q vanish. Therefore hp,p

is the (2p)-th Betti number, the p-th coefficient of the Eulerian polynomial. In
general, the signature equals

∑

p,q(−1)qhp,q. Thus in our case the signature of
the toric varieties equals the value of the Eulerian polynomial at −1, exactly
the value Euler had to use.

In the case of An−1 the signature is the n-th derivative of tgh(x) at x =
0, for Bn it is 2nEn. There is a vast literature on these polytopes and the
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corresponding toric varieties. The toric variety belonging to An−1 occurs in a
paper by A. Losev and Y. Manin [3] as a moduli space of pointed curves.

3) In my book [1] I introduce the χy-genus for a projective algebraic manifold
X of dimension d as

χy(X) =

d
∑

p=0

χp(X)yp

where

χp(X) =

d
∑

q=0

(−1)qhp,q.

One of the main results of the book is that χy(X) is the genus associated with
the characteristic power series x/f(x), where

f(x) = −
e−(1+y)x − 1

1 + ye−(1+y)x
.

The power series x/f(x) was denoted in [1], section 10.2, by Q(y; x). If we

replace y by −t and x by −x, then x/f(x) goes over in x/f̃(x) with

f̃(x) =
e(1−t)x − 1

1 − te(1−t)x

=

∞
∑

n=1

Pn(t)
xn

n!

(compare (3) where the summation runs from 0 to ∞). Thus x/f̃(x) is the
characteristic power series for the genus (−1)dχ−t(X) with d = dim(X).
Therefore the Eulerian polynomial Pn(t) equals (−1)n−1χ−t(X) for a variety
X of dimension n − 1 with total Chern class (1 + g)−1 and gn−1[X ] = n!
(g ∈ H2(X,Z)). The Θ-divisor in a principally polarized abelian variety of
dimension n satisfies these conditions: generically the Θ-divisor is smooth and
represents a cohomology class of dimension 2 which restricted to the Θ-divisor
plays the role of g. The fact that the Eulerian polynomials Pn(t) are essentially
the χy-genera of the Θ-divisors was mentioned in [2].

4) A general reference for the following remarks is [1]. Let D be a divisor on a
projective algebraic manifold X of dimension n. We denote the characteristic
class of D by g ∈ H2(X,Z). For the divisor kD with k ∈ Z we consider the
sheaf of local meromorphic functions f (with divisor (f)) such that

(f) + kD ≧ 0

and denote it by O(kD). The holomorphic Euler number χ(X,O(kD)) depends
only on k and g. We write

χ(X,O(kD)) = χ(X, kg).

This is a polynomial in k of degree at most n, namely

χ(X, kg) =
gn

n!
[X ]kn + · · · + χ(X,O)
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where O is the structure sheaf of X .
For the Hilbert series

(9)

∞
∑

k=0

χ(X, kg)tk

we introduce the polynomial H(t) of degree ≦ n defined by

(10)
∞
∑

k=0

χ(X, kg)tk =
H(t)

(1 − t)n+1

called H-vector in commutative algebra. Now suppose that g is ample and the
first Chern class of X equals

c1 = λg with λ > 0 and integral.

Then by Kodaira’s vanishing theorem (see [1]) the cohomology groups
Hi(X,O(kD)) vanish for i > 0 and k > −λ. Therefore

χ(X, kg) = dimH0(X,O(k)) for k > −λ

χ(X, kg) = 0 for − λ < k < 0(11)

χ(X, 0 · g) = 1

We also need the following consequence of Serre’s duality

(12) χ(X,−kg) = (−1)nχ(X, (k − λ)g).

The following theorem is probably well known. We shall prove it by the R-R-
theorem of [1]. Compare Lemma 2(v) of the preceding paper concerning the
polynomials P (An−1, t) and P (Bn, t).

Theorem. Under the above assumptions (g ample, λ positive) the polynomial
H(t) has degree n + 1 − λ and satisfies

tn+1−λH(
1

t
) = H(t).

Proof. By R-R the Hilbert series (9) equals
(

∞
∑

k=0

ekgtk

)

T =
1

1 − teg
T

where T is the total Todd class. This expression has to be evaluated on the
fundamental cycle of X . In the same way

∑

−∞

k=−1 χ(X, kg)tk is given by

t−1e−g

1 − t−1e−g
T =

−1

1 − teg
T.

Thus
∞
∑

k=0

χ(X, kg)tk = −

−∞
∑

k=−1

χ(X, kg)tk.
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By changing the summation index from k to −k and using (12) and (11)
∞
∑

k=0

χ(X, kg)tk = (−1)n+1
∞
∑

k=1

χ(X, (k − λ)g)t−k

= (−1)n+1
∞
∑

k=λ

χ(X, (k − λ)g)t−k

= (−1)n+1
∞
∑

k=0

χ(X, kg)t−k−λ.

By the definition of H(t), see (10), this gives

H(t)(1 − t)−n−1 = (−1)n+1t−λH(t−1)(1 − t−1)−n−1

= tn+1−λH(
1

t
)(1 − t)−n−1

which concludes the proof. �

In the two examples in 1) the manifold X equals Pn
1 , the first Chern class

is 2g where g is the characteristic class of D. In the first example D is our
divisor for the Hilbert series, in the second example it is 2D. Therefore λ = 2
and λ = 1, respectively. The polynomials H(t) have degrees n − 1 and n, in
accordance with the theorem. For the n-dimensional complex projective space
X and the ample generator g of H2(X,Z) we have λ = n + 1 and H(t) = 1.

About the material of this paper I had many fruitful discussions with V.
Gorbounov.

References

[1] F. Hirzebruch, Neue topologische Methoden in der algebraischen Geometrie, Zweite
ergänzte Auflage. Ergebnisse der Mathematik und ihrer Grenzgebiete, Springer, Berlin,
1962. MR0137706 (25 #1155)

F. Hirzebruch, Topological methods in algebraic geometry, Translation and Appendix One
by R. L. E. Schwarzenberger, Appendix Two by A. Borel, Reprint of the 1978 edition,
Springer, Berlin, 1995. MR1335917 (96c:57002)

[2] F. Hirzebruch, Kombinatorik in der Geometrie. Jahrbuch der Heidelberger Akademie
der Wissenschaften für 1991, Heidelberg 1992, pp. 96-99.

[3] A. Losev and Y. Manin, New moduli spaces of pointed curves and pencils of flat connec-
tions, Michigan Math. J. 48 (2000), 443–472. MR1786500 (2002m:14044)

Received March 26, 2008; accepted July 13, 2008

Friedrich Hirzebruch
Max-Planck-Institut für Mathematik
Vivatsgasse 7, 53111 Bonn, Germany
E-mail: hirzebruch@mpim-bonn.mpg.de

Münster Journal of Mathematics Vol. 1 (2008), 9–14


