Mathematik

Model Reduction for
Parametric Multi-Scale Problems

Inaugural-Dissertation
zur Erlangung des Doktorgrades
der Naturwissenschaften im Fachbereich
Mathematik und Informatik
der Mathematisch-Naturwissenschaftlichen Fakultat
der Westfalischen Wilhelms-Universitat Munster

vorgelegt von
FELIX SCHINDLER, GEB. ALBRECHT
aus Kirchheimbolanden
- 2015 -

Dekan:
Erster Gutachter:
Zweiter Gutachter:

Tag der miindlichen Priifung:

Tag der Promotion:

Prof. Dr. Martin Stein
Prof. Dr. Mario Ohlberger
Prof. Axel Malqvist, PhD

23.10.2015
23.10.2015

To my beloved wife

Abstract

The focus of the present work are elliptic parametric multiscale problems, which inherit
the computational challenges of both multiscale as well as parametric problems. We
present the localized reduced basis multiscale method (LRBMS) for the efficient and
accurate approximation of such problems. To achieve this goal, the LRBMS combines
localization ideas from numerical multiscale methods with model reduction techniques
from reduced basis methods.

We present a new reliable and localizable a posteriori error estimate in the context
of the LRBMS, which allows to efficiently assess the discretization as well as the model
reduction error during all stages of the computational process. Based on this estimate, we
propose an adaptive online enrichment procedure to improve the quality of the resulting
approximation by solving local corrector problems.

In addition, we present the design and implementation of a generic discretization and
model reduction software framework, which is utilized to demonstrate the applicability
of the LRBMS, in particular in the context of single-phase flow in porous media with
complex heterogeneities.

Zusammenfassung

Die vorliegende Arbeit behandelt elliptische parametrische mehrskalen Problemen. Die
numerische Behandlung solcher Probleme wird sowohl durch ihren parametrischen als
auch durch ihren mehrskalen Charakter erschwert. In diesem Zusammenhang stellen wir
die lokalisierte reduzierte Basis mehrskalen Methode (LRBMS) vor, die der exakten und
effizienten Approximation solcher Probleme dient. Um dies zu erreichen kombinieren
wir in der LRBMS Lokalisierungsansétze aus numerischen mehrskalen Methoden mit
Anséatzen der Modellreduktion aus dem Bereich der reduzierte Basis Methoden.

Fiir die LRBMS stellen wir einen neuen zuverlédssigen und lokalisierbaren a posteriori
Fehlerschatzer vor. Dieser Fehlerschatzer ermoglicht es, sowohl den Diskretisierungs-
fehler als auch den Modellreduktionsfehler in allen Bereichen der numerischen Approx-
imation effizient zu bewerten. Aufbauend auf diesem Fehlerschétzer schlagen wir ein
adaptives online Anreicherungsverfahren vor, um die Approximationsgiite durch die
Losung lokaler Korrekturprobleme zu erhéhen.

Zusatzlich stellen wir ein Design und die Implementierung eines generischen Diskre-
tisierungs- und Modellreduktions-Framework vor, um die Anwendbarkeit der LRBMS
im Zusammenhang mit ein-Phasen Stréomung in porésen Medien mit komplexen Hetero-
genitdten zu demonstrieren.

Acknowledgments

I would like to express my gratitude towards Mario Ohlberger for providing exceptional
support and the best of all environments. I would also like to thank Christian Himpe,
Stephan Rave, Anne Schindler, Michael Schindler and Barbara Verfiirth for proofreading.

I acknowledge support of the German Research Foundation (DFG) under contract
OH 98/4-2, and support of the German Federal Ministry of Education and Research
(BMBF) under contract 05M13PMA.

vii

Contents

Introduction Xvii
1 Elliptic parametric multiscale problems 1
1.1 Elliptic problems and grid-based approximations 2
1.1.1 Elliptic problems 3

1.1.2 Grid-based numerical approximations with Finite Element methods 4

1.2 Multiscale problems and numerical multiscale methods 7
1.2.1 Elliptic multiscale problems 7

1.2.2 Numerical multiscale methods 11

1.3 Parametric problems and model order reduction 15
1.3.1 Elliptic parametric problems 15

1.3.2 Model order reduction with reduced basis methods 18
1.3.2.1 Offline/online decomposition 19

1.3.2.2 Basis generation L. 21

1.3.2.3 Accuracy vs. efficiency 22

1.4 Parametric multiscale problems and combined approaches 26
1.4.1 Elliptic parametric multiscale problems 26

1.4.2 The localized reduced basis multiscale method 27

1.4.3 Combined approaches 28

2 The localized reduced basis multiscale method (LRBMS) 31
2.1 Detailed discretizationo 32
2.1.1 Local discretizations 34
2.1.2 Globalcoupling 35

2.2 Reduced discretization Lo 37
2.2.1 Offline/online decomposition 38

2.3 Error control 41
2.3.1 Residual based error control of the model reduction error 43
2.3.2 Localized error control of the discretization and the full error . . . 44
2.3.2.1 Oswald interpolation, 48

2.3.2.2 Diffusive flux reconstruction 49

2.3.2.3 Localefficiency 51

2.3.2.4 Localized offline/online decomposition 53

2.4 Adaptivity 60
2.4.1 Offline basis generation 60
2.4.2 Oanline basis enrichment 62

X

Contents

3 Software concepts and implementations 65
3.1 Discretization framework o 65
3.1.1 Mathematical foundation and theoretical requirements 65
3.1.1.1 Approximating the solution of a PDE 66

3.1.1.2 Error estimation 83

3.1.1.3 Projections and prolongations. 91

3.1.2 Abstract design principles and technical requirements 93
3.1.3 Existing implementations 96
3.1.4 A new discretization frameworko 98
3.1.4.1 dune-stuff 99

3.14.2 dune-gdt 114

3.2 Model reduction framework 137
3.21 Requirements L 137
3.2.1.1 High-dimensional operations 138

3.2.1.2 Low-dimensional operations 139

3.2.2 Existing implementationso 139
3.2.2.1 App. 1: Separate software 140

3.2.2.2 App. 2: Inside high-dimensional solver 141

3.2.2.3 App. 3: Separate low- and high-dimensional operations . 141

3.2.3 Design principles oo 142
3.2.4 A new model reduction framework 144
3.24.1 pyMOR L 145

3.2.4.2 dune-pymor 153

3.24.3 dune-hdd 160

4 Numerical experiments 165
4.1 The localized reduced basis (multiscale) method 165
4.1.1 The thermal block experiment 165
4.1.2 The Spel0 model2 experiment 169

4.2 A new discretization framework: dune-gdt 174
4.2.1 A first online enrichment experiment 174
4.2.2 A first validation of the new localized estimator 176
4.2.3 A first localization study of the new estimator 177
4.2.4 Detailed study of the parametric localized error estimator 179
4.24.1 Academicexample 180

4.2.4.2 Parametric multiscale example 181

4.3 A new model reduction framework: pyMOR 185
4.3.1 Vector array benchmarks 185
4.3.2 Gram-Schmidt and POD benchmarks 186

4.4 The online adaptive LRBMS 0. 189
4.4.1 Academic example 190
4.4.2 Parametric multiscale example 0oL 192
Bibliography 209

List of Figures

4.1 Problem setup for the thermal block experiment from Section 4.1.1. . . . 166
4.2 Estimated error evolution and size of the global reduced basis to reach
the desired tolerance during the greedy basis generation for the thermal

block experiment from Section 4.1.1 167
4.3 Comparison of selected offline and online timings for the thermal block

example from Section 4.1.1.o 168
4.4 Problem setup for the Spel0 model2 experiment from Section 4.1.2. . . . 170

4.5 Estimated error evolution and size of the global reduced basis to reach the
desired tolerance during the greedy basis generation for the Spe10 model2

experiment from Section 4.1.2. oo 171
4.6 Comparison of offline and online timings for the Spe10 model2 experiment

from Section 4.1.2. 172
4.7 Problem setup and error evolution for the enrichment experiment from

Section 4.2.1. e e 175

4.8 Log/log plot of the decay of the energy error, the estimator local to the
fine grid 7, from [ESV2007] and the estimator local to the coarse grid Ty
for different configurations of the coarse grid for the estimator validation

experiment from Section 4.2.2. Lo oo 177
4.9 Data functions, pressure distribution and velocity reconstruction for the
experiment from Section 4.2.3. 178

4.10 Comparison of the spatial distribution of the local energy error contribu-
tion with the local estimator contribution for different coarse grid config-
urations for the experiment from Section 4.2.3. 178
4.11 Data functions of the parametric multiscale experiment in Section 4.2.4. 182
4.12 Data functions and sample solutions of the parametric multiscale example
in Section 4.2.4. e 182
4.13 Spatial distribution of the relative error contribution and the relative esti-
mated error contribution for the parametric multiscale example in Section

4.2.4.2. . 183
4.14 Plot of the measured execution time of A.gramian() for the benchmarks

in Section 4.3. L 186
4.15 Plot of the measured execution time of the Gram-Schmidt and POD al-

gorithms for the benchmarks in Section 4.3. 188
4.16 Estimated error evolution during the adaptive online phase for the aca-

demic example in Section 4.4.1. 191
4.17 Spatial distribution of the final sizes of the local reduced bases after the

adaptive online phase for the academic example in Section 4.4.1. 192

xi

List of Figures

4.18 Estimated error evolution during the adaptive online phase for the para-
metric multiscale example in Section 4.4.2.
4.19 Spatial distribution of the final sizes of the local reduced bases after the

adaptive online phase for the parametric multiscale example in Section
4.4.2.

xii

List of Tables

4.1 Discretization error, estimator components and efficiency of the error es-

timator for the academic example in Section 4.2.4.1. 180
4.2 Selected estimator components, estimated error and efficiency of the error
estimator for the academic example in Section 4.2.4.1. 180

4.3 Discretization error, selected estimator component, estimated error and
efficiency of the error estimator for the academic example in Section

4.2.4.1. L e 181
4.4 Discretization error, estimator components and efficiency of the error es-
timator for the parametric multiscale example in Section 4.2.4. 183

xiii

List of Algorithms

1.3.5
1.3.10

2.2.2
2.4.2

3.1.15
3.1.18
3.1.29
3.1.33
3.1.34
3.1.37
3.2.1
3.2.2
3.2.3
3.2.4

AFEM for elliptic parametric problems. 17
The greedy algorithm. 22

Local assembly of reduced component matrices and vectors (LRBMS). 39
Adaptive basis enrichment in the intermediate local enrichment phase. 63

Naive assembly of global matrices and vectors. 74
Local assembly of global matrices and vectors (CG FEM). 75
Local assembly of global matrices and vectors (SWIPDG FEM). 82
Local computation of global norms. 86
Local assembly of global product matrices. 87
Local computation of the diffusive flux reconstruction. 90
Stabilized Gram-Schmidt orthonormalization algorithm. 147
Simplified version of the POD algorithm. 148
Generic reduced basis projection of arbitrary discretizations. 150
Parallel error estimation in greedy algorithm. 153

XV

Introduction

Over the past decades, numerical approximations of solutions of partial differential equa-
tions (PDEs) have become increasingly important throughout almost all areas of natural
sciences. At the same time, research efforts in the field of numerical analysis, computer
science and approximation theory have led to adaptive algorithms to produce such ap-
proximations in an efficient and accurate manner: by now, advanced approximation
techniques are available for a large variety of PDEs. However, there still exist prob-
lems where the computational cost of traditional algorithms easily exceeds the limits of
available computing power.

This is, for instance, the case for multiscale problems, where the data functions consti-
tuting the PDE exhibit a high contrast or strong oscillations on small spatial or temporal
scales. It is also the case for parametric problems, where the data functions depend on
a low-dimensional input vector and where one is interested in many solutions for a large
number of configurations. Multiscale problems arise in almost all contexts: it can be
argued that they arise almost always, whenever real-world data is involved [EE2003a, p.
1]. Interest in parametric problems is equally widespread: they arise in the context of
optimization, uncertainty quantification and decision making.

For each of these problems, there exist specialized algorithms to overcome the limita-
tions of traditional approximation techniques: numerical multiscale methods are specif-
ically tailored to allow for approximations in the context of multiscale problems, and
model order reduction techniques are available to reduced the computational demand
associated with parametric problems.

The focus of the present work are elliptic parametric multiscale problems, which in-
herit the computational challenges of both multiscale as well as parametric problems.
We present the localized reduced basis multiscale method (LRBMS) for the efficient and
accurate approximation of such problems. To achieve this goal, the LRBMS combines
localization ideas from numerical multiscale methods with model reduction techniques
from reduced basis methods.

This work is organized as follows: in Chapter 1 we introduce the problem setup and
present existing approximation techniques. In particular, we discuss appropriate notions
of accuracy and efficiency. Chapter 2 covers the LRBMS and presents novel a posteriori
error estimation techniques, which are required for accurate and efficient approximations.
In Chapter 3 we present the software framework, which was utilized for the numerical
experiments presented in Chapter 4, which demonstrate the applicability of the LRBMS.

This work builds on previously published work: parts of Chapter 2 have been published
in [0S2014, OS2015], parts of Section 4.1 have been publish in [AHKO2012], parts of
Section 4.2.1 have been published in [AO2013], parts of Sections 4.2.4 and 4.4 have been
published in [0S2015], and parts of Section 4.3 have been published in [MRS2015].

xvii

1 Elliptic parametric multiscale problems

This chapter introduces elliptic partial differential equations (PDEs) and numerical ap-
proximation techniques. In particular, we consider the accuracy and efficiency of ap-
proximations in the context of multiscale problems and parametric problems. To set the
stage, we consider the example of immiscible two-phase flow in porous media.

Immiscible two-phase flow in porous media We consider two-phase immiscible flow in
a porous medium, which is of interest for instance in the context of oil production, ground
water pollution or CO9 sequestration; we mainly follow the notation of [CHM2006]. Let
Q) denote a porous medium with porosity ¢, x the absolute permeability tensor, g the
gravitational acceleration, z the depth and let p, denote the density, ¢, the mass flow,
Vo the viscosity and K, the relative permeability of the wetting phase (o« = w) and the
non-wetting phase (a = n). We are looking for wetting and non-wetting pressures p,
Darcy velocities u, and saturations s, for @ = w,n, to fulfill mass conservation and
Darcy’s law within each fluid phase,

o o Sa Rra
(¢gt) = _-V- (paua) + qao and Uaq = — v ’%(VPCV - pagvz)’

respectively and the capillary pressure relation (for a given capillary pressure p.),
Pe(Sw) = Pn — Pw, together with 1 =5y + S,

modeling that the two fluids together fill the void completely. There exists a unique
solution to the above equations together with appropriate boundary and initial condi-
tions for incompressible fluids (see [Che2001, Che2002]). It is convenient to consider the
global pressure formulation of the above equations, for simplicity under the assumption
of constant densities (originating from [Ant1972, CJ1986]). For o = w, n, we define the
phase mobilities N = krqvy ', the total mobility X := Ay, + A\, the fractional flow func-
tions f, := Ao A" and the total velocity u := wy + u,. With s := s,, we define the global
pressure p := p, + [o(5) fw(ps1(€)) d€. The above six equations can be transformed into
the following three equations for p, u and s:

—V-(AKVD) = (pufu + pufn)gVz — G + L2 4 &2 (1.0.1a)
u=—Xe(Vp = (pwfuw+ pnfn)gVz) (1.0.1b)
¢% + S%‘f + V- ()\”wa d;;c Vs) = V- ()\n/ifw((pn — pw)sz) - fwu) + % (1.0.1c)

A popular method for the time discretization of the above equations is the implicit
pressure, explicit saturation (IMPES) scheme, first introduced by [SZC1959, SG1961].

1 Elliptic parametric multiscale problems

Using IMPES, Equations 1.0.1 are decoupled by implicitely solving for the pressure
(1.0.1a) and computing the velocity (1.0.1b) in each time step, using quantities from
the previous time step, and an explicit solve for the saturation (1.0.1c) afterwards.
Considering the whole simulation process, the pressure equation (1.0.1a) has to be solved
in each time step, which is responsible for most of the computational effort.

The permeability field in (1.0.1a) can be highly heterogeneous and rapidly varying
on small spatial scales, while the computational domain may be very large (see the
experiments in chapter 4). Thus, (1.0.1a) can be interpreted as a multiscale problem.

On the other hand, since a different saturation enters in the total mobility A in each
time step, we can also view (1.0.1a) as a parametric problem, with a parameter dependent
data function A.

The present work deals exclusively with approximations of such elliptic problems.
Accordingly, this chapter is organized as follows. In Section 1.1, we introduce the gen-
eral definition of an elliptic problem and discuss grid-based numerical approximation
techniques based on Finite Element methods. We establish the notion of accuracy and
efficiency, where the former is associated with error control and the latter is associated
with adaptive methods based on reliable and localizable a posteriori error estimates.

We present multiscale problems, which are associated with highly oscillating or hetero-
geneous data functions, in Section 1.2. Though particularly challenging to approximate,
such problems arise in almost all areas of natural sciences. We give a brief overview
of numerical methods which are specifically tailored to multiscale problems in Section
1.2.2 and discuss the extend, to which accuracy and efficiency can be obtained for such
problems.

In Section 1.3, we consider elliptic problems which are parameterized by a low-
dimensional input vector and discuss the applicability of model reduction techniques.
Model order reduction allows for an increased efficiency in many circumstances, though
at the price of giving up full control over accuracy. As a particular model reduction
strategy, we present reduced basis (RB) methods.

Finally, a definition of elliptic parametric multiscale problems is given in Section 1.4.
The numerical approximation of such problems is particularly interesting, since the com-
putational demand of straightforward attempts easily exceeds available resources. We
give a brief presentation of the localized reduced basis multiscale method (LRBMS), which
is covered in detail in Chapters 2 and 4, for the efficient and accurate approximation of
parametric multiscale problems (such as Equation 1.0.1a in the context of IMPES).

1.1 Elliptic problems and grid-based approximations

Let Q C RY, for d = 1,2, 3, be a bounded connected domain with Lipschitz boundary, let
H1(Q) denote the Sobolev space of weakly differentiable functions over Q and H{(Q) C
H'() its elements that vanish on the boundary of €2 in the sense of traces.

1.1 FElliptic problems and grid-based approximations

1.1.1 Elliptic problems

We consider a linear functional [: H1(2) — R and a bilinear form b : H'(Q)x H}(Q) — R
with the following properties: we require / to be continuous, that is |I(¢)|/|lql| ;1 (q) < o©

for all ¢ € H'(2), and we require b to be elliptic, i.e., to be continuous and coercive over
HE(Q), that is

b, @) < Co Pl oy @y forallp,g € H'(Q) and (1.1.1)
cb lall 70y < 16(a, 9)] for all g € Hy (), (1.1.2)

respectively, with positive constants ¢, > 0 and C, > ¢,. Owing to the Lax-Milgram
Lemma there exists a unique solution of the following elliptic problem, presuming the
above requirements (see, for instance [Cial978, Theorem 1.3.1}).

Definition 1.1.1 (Elliptic problem). Given b and | as defined above, find p € H}(S),
such that

b(p,q) = I(q) for all g € Hy(€).
The stationary heat equation may serve as a model problem.

Example 1.1.2 (Stationary heat equation). Let f € L?(Q) be bounded, let A € L>(£2) be
strictly positive and let i € [L°(02)]9%? be symmetric and positive definite, such that Ak €
[L®(Q)]?%4. Here, the product Ak models the thermal conductivity of a medium that is
cooled at the boundary and f models a collection of heat sinks and sources. We are looking
for a temperature distribution p € HE(Q) in its equilibrium, such that —V-(A&Vp) = f
in a weak sense in Hi ().

The stationary heat equation results from considering conservation laws involving the
heat flux u := —AxkVp (which will be an important quantity in the context of flow
problems and error estimation further below). We can see that the above example is an
elliptic problem by setting

b(p,q) ::/Q()\/{Vp)-qum and 1(q) ::/qudm, (1.1.3)

respectively. The continuity of both [and b and the coercivity of b follow from the
properties of f, A and k.

For arbitrary domains and data functions, we cannot solve Problem 1.1.1 directly and
therefore need to rely on efficient and accurate approximations of such problems (we
shall detail the precise meaning of “accurate” and “efficient” further below). There exist
many techniques to obtain approximate solutions, such as wavelet methods [Urb2009],
spectral methods [GO1977], radial basis functions [Buh2000], or other grid-free methods.
In this work, we consider grid-based discretizations, such as Finite Volume (FV) and
continuous or discontinuous Galerkin (DG) approximations.

1 Elliptic parametric multiscale problems

1.1.2 Grid-based numerical approximations with Finite Element methods

Generally speaking, we consider Finite Element methods (FEM), which are widely used
and thoroughly studied in engineering as well as academic contexts (see for instance the
classical work [Cial978]). Any such discretization is based on a partition of the compu-
tational domain by a grid 7, into a finite number of non-overlapping elements ¢t C €2 of
simple shape, such that Ue,, t = €2, and an approximation of the infinite-dimensional
space H'(9) by a finite-dimensional (sub-)space Q% (73,) of some local polynomial order
k € N.' In addition, a discretization provides approximations of the bilinear form b
and the linear functional I, denoted by by, and I, respectively (which often consist of
replacing integrals by numerical quadratures). If carefully constructed, these discrete
counterparts inherit the properties of b and [and, as a result, there also exists a unique
solution to the following discrete problem.

Definition 1.1.3 (Discrete elliptic problem). Given Q¥(7), by and I, by a suitable
discretization, find py, € Q¥ (11), such that

b (P an) = ln(qn) for all g, € Qf ().
We call an approximation accurate, iff, for a prescribed tolerance A > 0,
lp = pnl, < A (1.1.4)

in a suitable norm |-||,; this will often be the L?(€2)- or the H!(£2)-(semi-)norm, or the
norm induced by the bilinear form 5. On the other hand, we call an approximation
efficient, iff the computational cost of accurately computing pj, is optimal (which may
depend on the circumstances or posed requirements, see further below). We know from
a priori theory that FE methods have the potential to be accurate in the sense that the
discretization error arising in (1.1.4) is bounded as in

Ip = pall 2y S A or lp = pall oy S B, (1.1.5)

respectively, for a discretization of order & (under mild assumptions on the regularity of
p and the grid, compare [Cial978, Chapters 2 and 3, in particular Theorems 2.4.1, 3.2.2
and 3.2.4]). Here, h denotes a typical width of an element of 73, (see also Section 2.1)
and < denotes a relationship defined as a < b < a < C'b with a constant C' > 0. The
a priori estimate (1.1.5) justifies the use of FE methods in general. However, while it
ensures that any prescribed accuracy can be reached in theory, it does not tell us how to
choose 75, (and thus Q’fL(Th), bn, and 13,) to reach a desired accuracy in practice. We could,
for instance, construct an algorithm that uniformly refines the grid 7, and iteratively
computes approximate solutions associated with each refinement. But we would have no

1We call the discretization a conforming one, if Qﬁ(m) C HY(Q), else a non-conforming one (compare
Section 3.1.1.1). For ease of notation we presume a conforming discretization throughout this chapter.
This allows us, for instance, to compare the approximate with the true solution, as in (1.1.4), in a
meaningful way. We also restrict ourselves to approximation spaces with uniform local polynomial
degree k, in contrast to locally varying polynomial degree.

1.1 FElliptic problems and grid-based approximations

rigorous means to decide when to stop the algorithm and, more importantly, no means to
assess the quality of the computed approximations. In general, no a priori® information
can guide the construction of an accurate discretization, let alone an efficient one.

This is the domain of a posteriori® analysis (for an overview see [Ver1996, Ver2013]).
If successfully applied, it yields an estimate on the discretization error,

[P =l < nn(pn),

for an already computed approximation py, € QZ(T}Z). Given such an a posteriori error
estimate 7, we can assess the quality of the computed approximation without knowledge
of the true solution p. Therefore, we could enhance the above mentioned algorithm
by computing such an estimate in each iteration of the algorithm and to derive an
appropriate stopping criterion: namely, to stop the algorithm, once n(py) < A. Such
an algorithm would therefore yield an accurate approximation in the sense of (1.1.4) for
any prescribed tolerance (we refer to [Ver1996, Ver2013| for an overview). Most likely,
however, the computational cost of computing this accurate approximation would not
be optimal (and the discretization thus not efficient), in the sense that the uniformly
refined grid would be too fine in parts of the domain.

Adaptive Finite Element methods (AFEM) try to minimize the computational cost of
the approximation by refining only relevant parts of the grid, for instance those parts
that are associated with the largest estimated error. To identify these parts of the
grid they utilize localized a posteriori error estimates, which are composed of local error
indicators 17}51 for each grid element ¢ € 73, such that

m(pn)® S ik (on). (1.1.6)

There exist many classes of problems where such an iterative and adaptive solve —
estimate — mark — refine procedure was shown to produce a series of approximations
that converge to the desired solution. In particular, such an adaptive algorithm produces
an accurate approximation for any prescribed tolerance in finite time. We refer to
[BV1984], where first results for one space dimension were established, to [Doel996],
where the well-known Dérfler-marking strategy was proposed, and to [MNS2002], where
a refinement strategy was proposed which removes the need for any a priori knowledge
or user input.

If the a posteriori estimate serves additionally as a lower bound,

nn(pn) S P = pall, < 1n(pn), (1.1.7)

2«
3«

a priori” as in: before computing the approximation.

a posteriori” as in: after computing the approximation.

4As we do not consider approximation spaces with varying local polynomial degree, we only discuss
the h-adaptive FEM. A similar notion of adaptivity is realized by locally adapting the polynomial
degree of the approximation space (p-adaptive FEM [BSK1981]), or both the local polynomial degree
and the grid (hp-adaptive FEM [BD1981]). For an overview we refer to [Ngu2010] and the references
therein.

1 Elliptic parametric multiscale problems

it induces a norm equivalent to ||-||,. Such reliable estimates can be used to ensure that
the computational cost of an adaptive algorithm is optimal (for instance by an additional
adaptive coarsening of the grid, as proposed in [BDD2004]).

To conclude, adaptive FE discretizations based on reliable and localizable a posteriori
error estimates are the de-facto standard to accurately and efficiently compute approxi-
mations of Problem 1.1.1 for arbitrary domains and data functions (at least within the
classes of approximation algorithms considered here).

To summarize: we introduced elliptic problems and briefly mentioned grid-based ap-
proximation techniques (which are covered in detail in Section 3.1.1.1). We established
the notion of accuracy, as full control over the approximation error for any prescribed
tolerance, and the notion of efficiency, which is related to the computational cost of
computing such accurate approximations. As a key ingredient for either concept, we
briefly introduced a posteriori error estimation techniques, yielding reliable and localiz-
able estimates on the discretization error. Such estimates 7, are employed to steer fully
adaptive algorithms, yielding accurate as well as efficient approximations.

1.2 Multiscale problems and numerical multiscale methods

1.2 Multiscale problems and numerical multiscale methods

The numerical treatment of elliptic problems, such as Problem 1.1.1, becomes increas-
ingly difficult with the increasing complexity of the data functions involved. This is for
instance the case, if the data functions exhibit a high contrast or vary on several spatial
scales: on a coarse scale associated with |©2] = O(1) and on a fine scale associated with
a multiscale parameter 0 < e < €.

1.2.1 Elliptic multiscale problems

In order to give a more rigorous description, we revisit the a priori results on the ap-
proximation quality of grid-based discretizations. In particular, we study the role of the
data functions in the hidden constant in (1.1.5), where we stated the following a priori
bound on the discretization error:

lp = pall g1 oy < C " (1.2.1)

To investigate the effect of the data functions on the constant C' > 0 in the above
bound let us recall that we obtain the bound by first using Céa’s Lemma [Cial978,
Theorem 2.4.1], which bounds the discretization error (on the left hand side) by the
best-approximation error of the Finite Element space,

lp = Pl 10y < Co/es qheglﬁfm) lp = anll 1 (1.2.2)
where ¢, and C} denote the coercivity and continuity constants of the bilinear form b
(Equations 1.1.1 and 1.1.2). We further estimate the approximation error by employing
local interpolation properties of the Finite Element space Qﬁ(Th), yielding local bounds
of the right hand side in Equation 1.2.2 (under mild assumptions on the data functions,
the grid and the regularity of the solution, see [Cial978, Chapter 3, in particular Sections
3.1 and 3.2]), ultimately yielding

Ilp = pall 0y S Co/les Il ey BF, (1.2.3)

with the relationship < from the previous section. We obtain the desired result (1.2.1)
since p is bounded (compare the proof of the Lax-Milgram Lemma [Cial978, Theorem
1.3.1]).

As long as the bilinear form b and the linear functional | (and their discrete coun-
terparts) fulfill the requirements stated in the previous section, the above analysis is
valid and states the potential accuracy of Finite Element approximations (compare the
discussion in the previous section). From (1.2.3) we know that we can reach any pre-
scribed accuracy if h is chosen small enough, since the constants Cy/¢, and |p| HE+1(Q)
do not depend on h. They do, however, depend on the data functions that constitute
the elliptic problem and we highlight two scenarios where this might be problematic in
practical computations:

1 Elliptic parametric multiscale problems

(7) Given a bilinear form b as in (1.1.3), we can think of the coercivity and continuity
constants ¢, and Cp as the minimum and maximum eigenvalues of the inducing
data functions, Ax. If these data functions exhibit a high contrast (compare the
Spel0 data functions in Chapter 4), namely if Cj, is of order |2| = O(1), while ¢
is of order € > 0, for a very small ¢ < |Q|, we actually have Cy/c, = O(s7!) in
(1.2.3).

(7i) There also exist many scenarios where the data functions exhibit strong oscilla-
tions on a fine scale 0 < ¢ < || and the corresponding solution p shows similar
oscillations (think of sin(z/¢)). Consequently, the derivatives of p are of order e~
for some [> 1, and we have |p|gk+1(q) = O(e7" in (1.2.3).

Neither of the above situations is troublesome in theory and does not impact the
existence and uniqueness of the solution p. They do, however, impact the feasibility
of grid-based approximation techniques, as we obtain the following estimate on the
discretization error (in the presence of multiscale phenomena) from (1.2.3):

hE
Hp_thHl(Q) < = < A, (1.2.4)

for some [> 1 (a similar result holds for other norms). We have to interpret this result
in the following way:

In the context of multiscale phenomena, grid-based approximations can only be
accurate (in the sense of Section 1.1) if the grid is fine enough, h < O(e).

We are now in the position to define elliptic multiscale problems.

Definition 1.2.1 (Elliptic multiscale problem). With the notation from Definition 1.1.1,
let I be continuous and let € > 0 denote a multiscale parameter, such that ¢ < |§2|. Let
further b : H' () x H'(Q) — R denote an elliptic bilinear form in the sense of (1.1.1)
and (1.1.2). We call the problem of finding p. € HE(Q), such that

b (pe, q) = U(q) for all g € Hy(9), (1.2.5)

an elliptic multiscale problem, if b. exhibits high contrast or strong oscillations (in the
sense of (1) and (ii) above).

The numerical approximation of Problem 1.2.1 is a computationally challenging task.
In particular, it is not clear whether the notions of accuracy and efficiency established
in Section 1.1 are suitable for the assessment of approximations of multiscale problems.
While (1.2.4) states that traditional grid-based discretization methods can be accurate
(in the sense that the discretization error can be controlled up to any prescribed tolerance
A by decreasing h), it also states that the grid is therefore required to resolve all features
associated with the fine scale €.

Since the multiscale Problem 1.2.1 is an elliptic problem in the sense of Definition
1.1.1, one can apply traditional (adaptive) Finite Element methods. However, the level

1.2 Multiscale problems and numerical multiscale methods

of accuracy that can possible be obtained is bounded by the available computing power.
While this is also true for smooth elliptic problems, it is particularly troublesome in the
context of multiscale problems, as detailed above (recall that the size of the approxima-
tion space scales with the size of the grid, which in turn is proportional to 7).

Remark 1.2.2 (Efficiency of traditional (A)FE methods). A typical implementation
of a Finite Element method (compare Section 3.1.1.1) requires O(N) operations in
order to assemble a linear system to solve the discrete elliptic Problem 1.1.8, with
N = dim Qﬁ(Th). Similarly, the requirements on the system’s memory scale with N.
Solving the resulting linear system requires O(N?) operations using standard iterative
solvers.

For the remainder of this section, we present several techniques for the approximation
of such computationally challenging problems, and discuss their accuracy and efficiency.
We first mention two classical approaches, which are not necessarily related to multi-
scale problems: domain decomposition and multi-grid methods. Both rely on at least
two partitions of the computational domain: a fine grid 75, that accurately resolves all
features of the PDE (as discussed above) and a coarse grid Ty, such that |Ty| < |m].
Often, the two grids are nested partitions of 2 and one refers to the elements T € Tz of
the coarse grid as subdomains (compare Section 2.1).

The idea of domain decomposition methods (DD) is to split the computational domain
into several subdomains T' € Ty and to consider the elliptic Problem 1.1.1 on each subdo-
main separately. These local problems are then independently discretized with local fine
grids ThT covering the subdomain T' (possibly including overlap) and local approximation
spaces Qﬁ (ThT), with N7 := dim Qﬁ(ThT). To obtain the solution of the original problem,
these local problems are iteratively solved and coupled by using the neighboring solution
as boundary values (we refer to [QV1999, TW2005] for an overview). While DD meth-
ods still require O3 ey, N Ty ~ O(N) operations to assemble the problem (and the

memory requirements also scale with V), they only require O3 77, N T2) operations
to solve the problem (since one solves a number of local systems instead of one global
system). In addition, the local systems can be assembled and solved in parallel (to a
certain degree).

Multi-grid methods, on the other hand, rely on the observation that the error associ-
ated with the fine grid 75, (for instance during an iterative solving procedure) behaves
much smoother on a coarser grid 7. Using restriction and prolongation operators with
respect to the two grids and smoothing operators, it is possible to greatly speed up the
iterative solution process. There exist many variants of multi-grid methods, in partic-
ular algebraic multi-grid (AMG) methods (we refer to [Wes1992] and [Sha2003] for an
overview). Such AMG methods construct the aforementioned operators solely based on
algebraic information assembled with respect to 7, without actually requiring a coarse
grid Tg. While the memory requirements of multi-grid or AMG methods still scale with
N and while they also require O(N) operations to assemble the problem, they are ca-

1 Elliptic parametric multiscale problems

pable of solving the problem in O(N') operations, for 1 < < 2 (where [= 1 is usually
only obtained for non-algebraic multi-grid methods).

Remark 1.2.3 (Improved efficiency). Both domain decomposition and multi-grid meth-
ods are well-established and powerful means to reduced the computational cost of solving
the discrete problem. However, even in the best of circumstances, the associated compu-
tational cost still scales linearly with the size of the approximation space, N.

To conclude, the size of the approximation spaces (and thus the computational de-
mands) of traditional FE methods (with or without DD or AMG methods) scales with
N ~ ! for some [> 1, which poses severe restrictions on the usefulness of these meth-
ods in the context of multiscale phenomena. The computational cost of approximating
elliptic multiscale problems arbitrarily accurate (i.e., for arbitrary small A ~ ¢) thus
easily exceeds available computing resources, despite the ever-growing power of state-of-
the-art super-computers. As a consequence, the minimum possible accuracy is bounded
by the available computational power.

Luckily, many multiscale problems exhibit a separation of scales and the solution of
such problems can be written as an asymptotic expansion

pe(z) = po(x) +epr(z,x/e) + ..., (1.2.6)

where the leading term pg represents the coarse (or average) behavior of the solution
and p; represents fine-scale features of the solution. In many applications, it is not
required to have explicit knowledge about the full multiscale solution but one is rather
interested in its coarse behavior pg. It would thus be sufficient to have access to a coarse
approximation pg of po, associated with a coarse grid Ty of moderate size |Tx| < |4/,
such that

lpo — pul, S H,

in some suitable norm, where H > 0 denotes the width of a typical element of Ty.
Equivalently speaking: one is satisfied to reach a coarse accuracy A ~ H.

It is, however, particularly troublesome in the context of multiscale problems, that the
straightforward approach of computing such a coarse approximation by merely using a
coarser grid, cannot succeed (as it is well known that standard approximation techniques
on coarse grids do not lead to an appropriate coarse approximation of the solution,
compare [Ohl2005, Section 6.1]).

For some classes of multiscale problems, homogenization theory provides a means to
study rapidly oscillating PDEs and their convergence behavior for € — 0, for instance by
means of I'-convergence [Gio1975, Gio1983], G-convergence [Spal968], H-convergence
[Tar1976, MT1997], by the energy method of Tartar [Tar1976], or by two-scale conver-
gence [Al11992, Ngu1989]; for an overview we refer to [Hor1997]. If the multiscale nature
of the PDE allows for it, it is even possible to obtain an explicit form of the homogenized
coarse scale equation for pg, which is independent of £ and can thus be approximated
with a computational cost which is also independent of €. This can for instance be the
case if the multiscale nature is periodic or stochastic.

10

1.2 Multiscale problems and numerical multiscale methods

For the more general case, an ever-growing class of numerical multiscale methods has
emerged over the past decades,

to compute a coarse approximation of the solution of elliptic multiscale
problems as efficiently as possible.

A discussion of these methods is the focus of the remainder of this section.

1.2.2 Numerical multiscale methods

The idea of numerical multiscale methods is to make use of a possible separation of
scales in the underlying problem to approximate py (and sometimes also p; in view of
Equation 1.2.6) in circumstances where an explicit form of a coarse equation for pg is not
given. For many of these methods, convergence and a priori estimates can be given for
periodic or stochastic problems, while numerical evidence of their successful application
is available for the more general case. Some of these methods can be cast into a unified
framework, a brief presentation of which is given (in the discrete setting), based on
[Mal2011, HO2012, Ohl2012, HOS2014].

Given a fine and a coarse grid, 7, and Ty, and an approximation space Q’fb(rh) as
above, the two scales of the underlying problem are reflected in a possible decomposition
of the approximation space into a coarse and a fine space, Q% (7,) = QS (Tu) & Q! (1),
associated with the two grids. The coarse space Q% (Tr) C Q¥ () is supposed to capture
the coarse behavior of the solution with few Degrees of Freedom, dim Q5,(7Tx) = O(|Tw|),
while the fine space Q%(Th) C Qﬁ(Th) arises as the kernel of a coarse projection operator
W : QB(m) — Q5 (Th).

Consequently, we can decompose each function p; € Qﬁ(Th) into a coarse part pg €
Q% (Tu) and its fine-scale correction pl;L S Qg(Th): L = pH + pg. We associate this
decomposition with a correction operator Q : Q% (Tw) — Qfl(m) and a reconstruction
operator R : Q% (Tu) — QF(7). Given a coarse function py € Q% (Tw), the first
computes the fine scale correction pz = Q(pm), while the latter reconstructs the full
multiscale function pp, = R(pg) = py + Q(pw).

Inserting this decomposition into (1.2.5) yields a coupled problem for py € Qu(TwH),
such that

be(R(pu), qu) = l(qn) for all gy € Qu(Th), (1.2.72)
be(Q(pn). a,) = Ua}) for all ¢f € QF (2). (1.2.7b)

It is coupled through the reconstruction operator R, which in turn is determined by
the correction operator Q. However, problem (1.2.7) can be decoupled by a careful
choice of the correction operator (usually by means of localization) to actually obtain a
low-dimensional problem for the coarse approximation pg.

Several numerical multiscale methods can be derived from the above framework by
specifying the coarse projection operator, the reconstruction and the correction operator.
We briefly discuss the most common methods but refer to [Mal2011, HO2012, Ohl2012,
HOS2014] for a detailed discussion, in particular regarding the unified framework above.

11

1 Elliptic parametric multiscale problems

We mention two approaches that allow to obtain a coarse approximation py with a
computational complexity independent of € under certain circumstances. The first is the
variational multiscale method (VMM), which was proposed in [Hug1995, HFMQ1998].
The VMM was the first method to be based on the abstract splitting of the approx-
imation spaces into coarse and fine contributions, as mentioned above. The space of
fine contributions is determined analytically by means of bubble or Greens functions to
decouple (1.2.7).

Second, the two-scale Finite Element method for homogenization problems presented
by [MS2002, SM2002] is based on a two-scale formulation of the problem and yields an
e-independent computational scheme for the approximation of pg, if the solution of the
problem exhibits a certain two-scale regularity.

In addition, there exist several numerical multiscale methods which aim at dealing with
more general situations, however at the price of involving e-dependent computations.
They are based on the idea to construct the coarse approximation space by solutions of
local problems (associated with the elements of the coarse grid) posed on the fine grid.
Since artificial boundary conditions have to be provided for these local problems, they
are often posed and solved on slightly larger domains (often called “oversampling” or
“overlap”) and restricted afterwards to minimize the effects of the boundary conditions.

In this spirit, an adaptive variant of the VMM was proposed by means of energy-based
a posteriori error estimates [LM2007, LM2009] and duality-based estimates [LM2005,
LM2009a]. Similarly, a fully adaptive variant based on a discontinuous Galerkin formu-
lation was proposed [EGMP2013] and complemented with a posterior error estimates
[EGM2013].

In case of the multiscale Finite Element Method (MsFEM), the coarse space Qg (Tx)
is spanned by globally continuous shape functions obtained by solving local fine-scale
problems. The MsFEM was first introduced in [HW1997], applied to the linear ellip-
tic [HW1997, HWC1999, EH2009] as well as the nonlinear elliptic [EHG2004] setting,
to two-phase flow in porous media [EH2007], stochastic porous media flow [AE2008]
and uncertainty quantification [DEH2008]|. There exist several variants of the MsFEM
with and without overlap, and we refer to [HP2013] for an overview. Convergence of
the MSFEM in the general homogenization setting was shown in [EP2003, EP2004,
EP2005, Hen2012, SV2011] and a priori estimates in periodic or stochastic scenarios
were established in [HW1997, HWC1999, EHW2000, EHG2004, CS2008]. Recently, also
a posteriori estimates were established in [HOS2014] which allow to adaptively control
the resolution of the fine and coarse grids as well as the size of the overlap.

Finally, the multiscale Finite Volume method (MSFV) is based on a piecewise constant
non-conforming approximation space @9 (7). It was introduced in [JLT2003, JLT2004,
JLT2006] and successfully applied to flow in porous media [HBHJ2008, HJ2009] with a
focus on a physically meaningful reconstruction of the flux u mentioned in the previous
section (see also [ALKK?2009, NB2008| for an overview). An adaptive iterative variant
was proposed in [HJ2011].

12

1.2 Multiscale problems and numerical multiscale methods

Remark 1.2.4 (Efficiency of multiscale methods). Numerical multiscale methods such as
the adaptive VMM, the MsFEM and the adaptive MSF'V yield low-dimensional problems
for the approzimation of the coarse solution behavior, with little to no structural assump-
tions on the multiscale nature of the problem. However, these methods assume that the
fine scale € can be resolved by a fine grid T, and the assembly of the low-dimensional
problem still requires O(N) computations.

It is not clear whether these multiscale methods are more efficient (regarding their
computational complexity) then the classical approaches discussed above (such as DD
or AMG methods), if applied to a single multiscale problem. In addition, the localization
which is required for the decoupling of (1.2.7) requires the coarse grid to resolve certain
features of the PDE, further limiting the usefulness of these methods (for instance in
the presence of global conductivity channels, see [AEJ2008]). We mention two methods
which each overcomes one these limitations.

As an extension of the adaptive VMM, a new multiscale method based on localized
orthogonal decomposition techniques (LOD) was introduced in [MP2014]. The idea of the
LOD is to construct a coarse approximation space @Q (7) with very high approximation
qualities (with respect to both scales), based on a Clement-type quasi-interpolation
operator. The method was extended to multiscale boundary conditions in [HM2014]
and to the semi-linear setting in [HMP2014]. While the LOD also requires computations
on a fine grid 7, it does not make any structural assumptions on the multiscale nature of
the problem and is at the same time capable of dealing with high-conductivity channels
connecting domain boundaries.

Lastly we mention the heterogeneous multiscale method (HMM), which was originally
proposed in [EE2003, EE2003a, EE2005] including a priori analysis. While the HMM
can be cast into the abstract framework presented above, it fundamentally differs from
other methods regarding its computational requirements. Within the framework of the
HMM, one also solves a low-dimensional problem for the coarse behavior of the solution.
However, whenever the evaluation of a multiscale data function in a quadrature point
on the coarse grid is required, a local fine grid is constructed around the quadrature
point and a local fine-scale problem is solved to determine the effective value of the data
function. The HMM was shown to correspond to a direct approximation of the two-
scale homogenized problem in the classical homogenization setting by [Ohl2005]. First
a posteriori error estimates were derived in [Ohl2005] based on this identification and
later on complemented by [HO2009, HO2010, AN2009, AN2011]. While the HMM also
requires fine-grid computations, it does so only in a small area proportional to €.

To conclude, the HMM is the only numerical multiscale method which approximates
the coarse behavior of a multiscale solution with a computational complexity independent
of € (to the best of our knowledge).

To summarize: we introduced a specific class of elliptic problems, which arise in the
context of highly oscillating or heterogeneous data functions and discussed the limitations
of traditional approximation techniques in this context. In particular, we discussed the
impact of limited available computing power on the level of accuracy which can be

13

1 Elliptic parametric multiscale problems

obtained. We presented problems which exhibit scale separation and thus allow for an
approximation of the coarse solution behavior with a computational complexity that
does not depend on the multiscale features, and discussed homogenization techniques as
well as numerical multiscale methods, which can allow for such a coarse approximation
in an efficient manner.

14

1.3 Parametric problems and model order reduction

1.3 Parametric problems and model order reduction

Consider elliptic problems, where all data functions and the domain involved may depend
on a parameter vector u € R?, for some p € N. In this scenario, we are not interested in
a single solution, but in many solutions associated with a set of admissible parameters
P C RP (called the parameter space).

1.8.1 Elliptic parametric problems

For convenience, we consider a common space for all solutions to all parameters and
presume that parametric domains are transformed to a reference domain and that an ac-
cording geometry transformation is encoded in the bilinear form (compare [MMPR2001,
Dro2009, DHO2009]). For simplicity, we do not consider a parameter dependent right
hand side or parametric boundary values and refer to [PR2006] for the treatment of such
problems. Hence, we consider a nonparametric linear functional [as in Section 1.1 and
a parametric bilinear form b: P — [H'(Q) x H'(Q) — R], such that for all parameters
p € P the resulting nonparametric bilinear form b(-,-;p) : HY(Q) x HY(Q) — R is
continuous and coercive in the sense of (1.1.1) and (1.1.2). Thus, there exists a unique
solution of the following problem for each p € P.

Definition 1.3.1 (Elliptic parametric problem). Given P and b as defined above and
as defined in Section 1.1, find p(n) € HL(Q) for u € P, such that

b(p(w),q; 1) = I(q) for all ¢ € Hy(Q). (1.3.1)

An example for a parametric problem is, for instance, given by a parametric variant
of Example 1.1.2, where the thermal conductivity is locally controlled by a parameter
component.

Example 1.3.2 (Thermal block problem). Let be partitioned into = € N non-

overlapping subdomains Q¢ C €1, such that U?;c]lflg = Q. Let f and k be as in Ez-
ample 1.1.2 and let X be given piecewise constant in each subdomain: X : P — L>®(Q),
B ACs), with Mas p) = pe if © € Q¢ and A(z;p) := 0 else, for 0 < § < =Z. For
pEP = {1 €RZ|0 < foy B < Hyphs for some fized oy, fiogas € R, find
p(p) € HF (), such that —=V- (A(pu)kVp(p)) = f in the weak sense in H}(Q).

In this example, each parameter p € P corresponds to a specific thermal conductivity
A(p)k and yields a nonparametric elliptic problem as in Example 1.1.2. We can see that
this example is an elliptic parametric problem by setting

bpipe) = | (WeVp(u))-Vada (132)

in Problem 1.3.1. The continuity and coercivity of b for any p € P follow from the
properties of .

15

1 Elliptic parametric multiscale problems

We are interested in accurate and efficient approximations of elliptic parametric prob-
lems, such as the thermal block problem, for many parameters. To be more precise:
given the input/output map

10 : P — H}(Q), p— p(p), where p(p) is the solution of (1.3.1), (1.3.3)

we are interested in an efficient evaluation of an accurate approximation of 1O (since we
do not have direct access to the solutions p, compare Section 1.1).

To properly define a discrete input/output map /0y, as an approximation of 10, we
need to carefully examine the possible range of such a map (as an approximation of
the range of 10, which is H{(Q)). Each approximation of a solution of Problem 1.3.1
for a single parameter p € P is in general associated with a different grid 7;,(p) and a
corresponding approximation space Qﬁ (Th(/l,)) of order k, which are required to ensure
the accuracy of that specific approximation (compare AFEM in Section 1.1). We thus
denote by Qﬁ (Th(P)) a common space for all approximations, where 73, (P) is defined as
the coarsest grid, such that Qﬁ (Th([l,)) C Q’,?L (Th(P)) for all pu € P.

Remark 1.3.3. Though easily defined, the construction of Qﬁ (Th(P)) is not feasible in
practice. Apart from the computational challenge of constructing Qﬁ (Th(P)) for a large
number of parameters, it is usually the case that P is not finite.

Nevertheless, the common approximation space Q’,j (Th(P)) is required for the defini-
tion of a suitable approximation of Q. Therefore, we presume that a suitable discretiza-
tion of Problem 1.3.1 is available, yielding discrete counterparts of b and [, denoted by
b, and [, respectively (compare Section 1.1), such that there exists a unique solution of
the following problem for each p € P.

Definition 1.3.4 (Discrete elliptic parametric problem). Given QF (Th(P)), by, and Iy,
by a suitable discretization, find pn(p) € QF (7h(P)) for m € P, such that

b (pr (), an; 1) = Un(qn) for all gy € QF (n(P)). (1.3.4)

With this discrete problem as an approximation of Problem 1.3.1, we define the dis-
crete input/output map

10, : P — QF (Tn(P)), w— pp(p), where pp(p) is the solution of (1.3.4),

as an approximation of /O in (1.3.3). By construction, the evaluation of IOy (p) yields
an accurate approximation of the evaluation of IO(u) for any parameter p € P (since
the approximation space be (Th(P)) was chosen accordingly). Despite the infeasibility
of an actual construction of QF (Th (73)) (see Remark 1.3.3), we can formulate a practical
algorithm to evaluate IOy, arbitrarily accurate (see Algorithm 1.3.5), in the sense that
for any prescribed tolerance A > 0,

110(1) — TOu(w)]], < A for all 41 € P, (13.5)

in a suitable norm |-|,. Recall that since, IO(p) = p(p) and IOp(p) = pr(p), the above
difference corresponds to the discretization error from Section 1.1.

16

1.3 Parametric problems and model order reduction

We therefore collect all parameters for which we would like to evaluate 10y, in a finite
set of parameters of interest, Pin. C P. Additionally, we presume we are given a reliable
and localizable a posteriori error estimate on the discretization error, as in Equations
1.1.7 and 1.1.6. By construction, the following algorithm yields accurate approximations
of 1O in the sense of (1.3.5). If we consider each parameter p € Piy. separately, this
algorithm is also efficient in the sense of Section 1.1.

Algorithm 1.3.5 AFEM for elliptic parametric problems.
Input: Py CP, A >0, n,
Output: py(p), for all p € Piy., such that [p(p) — pr(p)], < A
for p€P do
Use adaptive Finite Element methods (compare Section 1.1) to construct a grid
Th(p) and to compute an approximate solution pp(u) € Qi (Th(u)), such

that [p(p) — pr()], < mn(pa(p);).
end for

There exist circumstances, however, where this notion of efficiency is not suitable. We
present two such scenarios in the context of parametric problems, following the overview
of [RHP2008].

In real-time contexts, one is interested in very quick evaluations of the input/output
map IOy, or rather in a quantity derived from its output (e.g., some functional
acting on the solution associated with a parameter). In order to achieve this near
real-time evaluation one is willing to spend a considerable amount of computing
power in advance. An example for such a scenario is the use of low-end devices
(such as tablet computers, smartphones or embedded devices) to quickly access
results in the context of decision making while extensive numerical simulations
have been prepared in advance, possibly on a high performance cluster.

In many-query contexts, one is interested in an evaluation of the input/output
map IOy, (or a derived quantity) for a very large number of parameters, that is
overall less costly than Algorithm 1.3.5. An example for such a scenario is an
optimization or Monte-Carlo procedure (for instance in the context of uncertainty
quantification) which requires many subsequent solutions of Problem 1.3.4.

Both scenarios induce a different meaning of “efficiency”. In a real-time context one is
interested in online efficiency, namely to split the evaluation of IOy into a computa-
tionally expensive “offline” part and a computationally very cheap “online” part. In a
many-query context, on the other hand, one is interested in overall efficiency, namely to
evaluate 10y, for a large number of parameters, with an overall computational cost that
is lower than the cost of the procedure in Algorithm 1.3.5. Both notions of efficiency are
the motivation for model order reduction (MOR).

The idea of model order reduction for parametric problems is to make use of some
regularity of the input/output map IOj (in other words: to exploit “opportunities”
[RHP2008, p. 230] encoded in Problem 1.3.4) in order to achieve either online or over-
all efficiency. There exists a large class of established model reduction approaches,

17

1 Elliptic parametric multiscale problems

for instance POD- or snapshot-based [Sir1987, BHL1993, WP2002, LV2014, HO2014]
and interpolation-based [GAB2008, AF2011, BBBG2011] approaches, and we refer to
[BBH+2015] for an overview.

1.8.2 Model order reduction with reduced basis methods

We consider model reduction by projection-based reduced basis (RB) methods, which
can be applied in real-time as well as many-query contexts and allow for an elegant
mathematical setting. RB methods were first introduced several decades ago [FM1971,
ASB1978, FR1983, Por1985] but have only gained the interest of a larger community
in the past 15 years. They have been applied to a large variety of problems and we
refer to [PR2006, QRM2011, RHP2008] for an overview. Beside the Lagrangian RB
ansatz which we consider, there also exist Taylor, Hermit or least-squares RB methods
(compare [Por1985, RHP2008]).

Consider the range of all possible solutions of Problem 1.3.4, or equivalently, the image
of I Oh:

I04(P) = {pn(p) € Q (m1(P)), solution of (1.3.4) |pe P} (1.3.6)

As we shall argue below, there exist many circumstances, where IOy, (P) is of considerably
lower dimension than Qﬁ (Th(P)). The idea of RB methods is to find a low-dimensional
reduced space Qreq C Qﬁ (Th (73)), which is a good approximation of 10, (P).

We postpone the question of how to find a “good” reduced space until Section 1.3.2.2
and continue with the definition of the reduced problem to establish the notation, which
is required for the discussion. For the time being, we can think of the reduced space as
being spanned by a reduced basis ¢req, which is composed of solutions of Problem 1.3.4
for selected parameters.

Presuming we are given a reduced space Qreq C Qfl (Th(P)), the reduced problem is
given by a Galerkin projection of Problem 1.3.4 onto the reduced space; existence and
uniqueness of solutions of the following problem follow directly from the existence and
uniqueness of solutions of Problem 1.3.4, since Q;.q is a subspace.

Definition 1.3.6 (Reduced elliptic parametric problem). Given a reduced space Qreq C
Ql,‘; (Th(u)), we define the reduced bilinear form breq : Qred X @red — R and reduced linear
functional leq : Qrea — R by restrictions of their discrete counterparts,

bred = bh’QreduQred and lred = lh"Qred’

respectively, with by, and l, from Definition 1.8.4. Find preq(pt) € Qreq for p € P, such
that

bred (pred(ll')a Qred; l‘/) = lred(Qred) fO’I” all Qred S Qred‘ (137)

While the dimension of the original approximation space, N := dim Qf (7, (P))), scales
with the size of the grid, the dimension of the reduced space, n := dim Qeq, only depends
on the parameterization of the problem and we can expect n < N (see Section 1.3.2.2).

18

1.3 Parametric problems and model order reduction

Thus, we can expect to solve the algebraic problem corresponding to (1.3.7) for any
p € P much quicker than the one corresponding to (1.3.4). However, we also need to be
able to assemble this algebraic problem for any p € P quickly, in order to achieve any
kind of online or overall efficiency.

1.8.2.1 Offline/online decomposition

This kind of efficiency can be achieved in the context of RB methods by precomputing
the restriction of by and [; to the reduced space. This, in turn, is possible if the param-
eterization of Problem 1.3.1 allows for it, to be more precise: if all parameter dependent
quantities allow for an affine parameter decomposition.

Definition 1.3.7 (Affine parameter dependence). We callb: P — [H'(Q)x H'(Q) — R]
affinely decomposable with respect to P, iff there exist = € N nonparametric components
be - HY(Q) x HY(Q) — R and coefficients 0 : P — R, such that

n

—_

b(p,q;) = Oc (1) be(p, q) for all p,q € H'(Q) and all p € P. (1.3.8)
=0

7axY

The affine parameter dependence of the bilinear form usually follows from a similar
decomposition of the data functions, for instance, if b is given as in (1.3.2).

Example 1.3.8 (Affine decomposition of the Thermal Block problem). With the nota-
tion and assumptions from Ezample 1.3.2, we define \¢(v) := xq,(v) and O¢(p) = pe,
respectively, for allx € Q, all p € P and all 0 < & < =, where x,, denotes the indicator
function for any w C Q. It then holds that \(xz; pu) = 2552—01 Oc () Ae().

If such an affine decomposition of the data functions is not available, one can replace
the data functions by arbitrary close approximations using Empirical Interpolation, in-
troduced in [BMNP2004].

We also presume that the discrete bilinear form b, is affinely decomposable in the
sense of Definition 1.3.7 as well, with components bg y, : Q’fL (Th(u)) X Qﬁ (Th(u)) — R,
such that:

br(Ph, qn; Z Oc (1) be h(phyqn) for all py,qn € QZ(Th) and all p € P. (1.3.9)

For many problems, this decomposition is directly given by a discretization of the compo-
nents of b. If such a decomposition is not available, for instance in the context of nonlinear
PDEs, an efficient evaluation of the involved operators can still be achieved using Empir-
ical Operator Interpolation [Dro2012, DHO2012] (or equivalently the discrete Empirical
Interpolation method [CS2010]). These nonlinear model reduction techniques (some-
times also referred to as “hyper reduction” techniques) are an active field of research
but do not lie within the scope of this work; we refer to [Dro2012, CFCA2013, WSH2014].

19

1 Elliptic parametric multiscale problems

The affine decomposition of the discrete bilinear form is a crucial ingredient for an
efficient evaluation of the quantities involved in (1.3.7), since the reduced bilinear form
inherits this decomposition,

bred (preda Qred; K Z 0§ b§ red preda Qred) for all Dred; Qred € Qred and JUAS P.

with the coeflicients from (1.3.9) and the reduced components b¢ req =
This affine decomposition of the reduced bilinear form allows for a decomposition of
the computational process into an offline and an online part, since the projection of the
high-dimensional components onto the reduced space can be precomputed.

We therefore denote the matrix and vector representation of b¢ , and [, with respect
to the basis of Qﬁ(Th) by be € RNXN “for 0 < € < =, and Iy € R, respectively.® Let
further Il eq : QZ (Th(p,)) — Qreq denote the L2-orthogonal projection onto Qpeq and
,eq € R™Y its matrix representation (each row of Il,.q corresponds to one element of
the reduced basis ¢req).

We then obtain the matrix representation of the reduced components b¢ eq for all
0 < ¢ < =, as well as the vector representation of [,.q, with respect to the reduced basis,

bg,red = Il eq b§7’h HredL e Rm*" and lrid = l7h HredJ' S Rn, (1.3.10)

respectively.® The algebraic problem corresponding to (1.3.7) then reads: find pyeq(pt) €
R"™ for p € P, such that

bred() Prea() = lreds With brea(pt) = Y Oe(p)berea € R™". (1.3.11)

Remark 1.3.9 (Offline/online decomposition). In the offline part of the computation,
given a reduced basis, we compute b yeq and lreq as in (1.3.10) with a computational com-

plexity of O(En?N). The reduced basis can be obtained with a computational complexity
of O(N?) if spanned by high-dimensional solutions (compare the greedy algorithm 1.8.10
and Remark 1.2.2).

In the online part of the computation, we evaluate the = scalar coefficients 0¢ and form
the linear combination of the reduced component matrices as in (1.3.11), with a com-
putational complezity of O(En?). The reduced dense algebraic system can then be solve
with a computational complexity of O(n?) using a direct solver.

This offline/online decomposition of the computational process allows for online- as
well as overall efficient computations, since solving the sparse algebraic system corre-
sponding to the high-dimensional problem (1.3.4) requires O(N') operations, for 1 <
[<2 (compare the discussion on multi-grid methods in Section 1.2).

5The same methodology can be applied to matrix-free operators and functionals as well.
SFor a matrix A € RVM*M we denote its transposed by AL € RM*N,

20

1.3 Parametric problems and model order reduction

Since we assume that n is much smaller than N (say 100 compared to 10°), solving
the reduced system is much quicker than solving the high-dimensional system, resulting
in online efficient computations. If additionally the computational demand of the offline
part is taken into account, overall efficiency can be obtained if a large enough number
of solutions are required.

1.3.2.2 Basis generation

The quality of the reduced space Qreq has a big influence on the success of the model
reduction. It should be sufficiently rich to yield an accurate approximation of the image
of IO}, (compare Equation 1.3.6). On the other hand, it should be of low dimension to
yield a small reduced system (compare Equation 1.3.11).

The potential of a set of functions X to be approximated by a finite-dimensional
subspace X,, C X of a Hilbert space X is measured by the Kolmogorov n-width,

dp(X)= Inf sup Inf |z —
WX) = ot sup inf o=yl
dim X,,=n

(see [Pin1985, Definition 1.1]), going back to early studies of Kolmogorov [Kol1936].
It can be shown that spaces X, exist, for which this infimum is attained (and finite)
[Pin1985, Theorem I1.2.2], but in general it is impossible to find such spaces.

In our setting, X is given by Qﬁ (Th(P)) and we are looking for n-dimensional reduced
spaces Qreq to approximate X = IOy (P). If the Kolmogorov n-width d,, (I On (73)) would
decay exponentially fast for growing n, and if we knew how to construct appropriate n-
dimensional subspaces, we would obtain the best possible reduced space.

Great effort has been invested into the task of specifying the n-width of specific sets,
such as periodic functions over an interval or the range of linear operators (see for in-
stance [Kol1936, Pin1985]). Explicitly computing the n-width of solution spaces for
arbitrary parameterized PDEs a priori, however, can be considered (close to) impossi-
ble. However, recent work [CD2015] shows that for affinely decomposed problems such
as those considered here, the n-width of the solution manifold actually does decay ex-
ponentially fast.

Thus, IOx(P) can be well approximated by low-dimensional spaces and we are left
with the question of how to construct these. In the context of reduced basis meth-
ods, one employs the greedy algorithm to iteratively build a series of nested spaces
Xo C X7 C Xo--- C X,, C X to approximate a set X by using the hitherto worst ap-
proximated element of X (see Algorithm 1.3.10). greedy algorithms are well-known tools
from approximation theory [Tem2008], and were first introduced in the context of RB
methods in [VPP2003] and the references therein. The greedy algorithm searches for the
worst approximated element over a set of training parameters Pipain (using estimate),
and enriches the basis ¢,, of the approximation space X,, using this element (modeled
by extend).

We shall present several variants of the greedy algorithm throughout this work, which
are each given by specific choices of init, estimate and extend. The performance
of the greedy algorithm and the approximation quality of the resulting reduced spaces

21

1 Elliptic parametric multiscale problems

Algorithm 1.3.10 The greedy algorithm.
Input: Pirain € P, Ared > 0, nmax € N, init, estimate, extend
Output: ¢,, such that X,, = span(¢y)
¢o < init (Pirain), n <0
while max,cp,, .. estimate (¢,) > Areq and n < nypax do
p* < argmax,cp . estimate(¢n, 1)
Ont1 —extend(¢,, u*), n—n+1
end while

return ¢,

can be analyzed, if estimate is given by a reliable a posteriori error estimate on the
approximation error, init is given by () and extend is given by ¢, U IO(p*). Then,
this algorithm is a weak greedy algorithm in the sense of [BCD+2011]. The worst best-
approximation error of the resulting reduced space can be bounded

_Cna(a+l)_l

sup inf |IO(p) = greal| S Me :
EPtrain Gred €Qred

if the Kolmogorov n-width of IOp(Pirain) decays exponentially fast in the sense, that
there exist M, a,a > 0, such that

dn (Ioh(Ptrain)) < Me—an(’7

where ¢ > 0 only depends on a and o [BCD+2011, Theorem 3.2].

Thus, the greedy algorithms yields nearly-optimal reduced spaces, if the set of training
parameters is a good representative of P and if the Kolmogorov n-width of the solution
manifold 7Oy (Pirain) decays exponentially fast, which is the case for the class of problems
studied throughout this work. The set of training parameters is usually given by an
equidistant partition of the parameter space or a random selection of parameters, but far
more complex choices are conceivable and used in practice (see for instance [HDO2011,
MS2013]).

1.8.2.8 Accuracy vs. efficiency

As discussed in Section 1.3.2.1, reduced basis methods have the potential to be vastly
superior to the Algorithm 1.3.5 in terms of efficiency. This, however, comes at a price
in terms of accuracy.

By employing model order reduction, we introduced an additional level of approxima-
tion on top of the one already given by the underlying discretization. In the context of
RB methods, our original notion of accuracy (compare Equation 1.1.4) reads: for any
prescribed tolerance A > 0,

Ip(ee) = pr()ll,. + llpn (1) = prea(p)], < A (1.3.12)

discretization error model reduction error

22

1.3 Parametric problems and model order reduction

in a suitable norm ||-||, for any parameter of interest g € Pipt..

However, due to the offline/online decomposition of the computational process, this
level of accuracy cannot be attained by traditional RB methods. To elaborate this point,
we present the traditionally used variant of the greedy algorithm, which presumes the
existence of an “appropriate” discretization.

Definition 1.3.11 (Discrete weak greedy algorithm). Let Pyain C P be a finite set, let
pr(p) denote the solution of the discrete Problem 1.3.4 for a given discretization and let
Pred(pt) denote the solution of the reduced Problem 1.3.6, for w € P. Let further nyeq :
P — [QF (Ta(P)) — R] denote a reliable a-posterior estimate on the model reduction
error, i.e.,

Mred (pred(ﬂ); N) S th (N) — Pred (N)“ < red (pred(/"'); N)

which is offline/online decomposable in the sense of Section 1.3.2.1. The discrete weak
greedy algorithm for the construction of a reduced basis ¢roq spanning a reduced space
space Qreq to approximate IOk (Pirain) 8 then given by Algorithm 1.8.10 with

estimate (QZ)E:B, wn):= Tlred (piz) (H); H) ’

init (Pirain) = pp (argmax,,cp . estimate ({0}, ,u)) and

extend(gbgg, u) = C]NB((;SEZC)1 Upn(p*)),

where ONB denotes an orthonormalization procedure for improved numerical stability, for
instance a stabilized Gram Schmidt procedure (see also Section 3.2.4.1).

The reduced scheme resulting from this greedy algorithm ensures that the model
reduction error is below the prescribed greedy tolerance for all parameters contained in
the training set

th(li) - pred(/*‘/)”* S A1red for all [IAS Ptraina

but it does not give such a guarantee for any untrained parameter g € Pint \Pirain-
While we can assess the model reduction error for any parameter efficiently during the
online phase by means of the a posteriori error estimate,

”ph(y‘) - pred(p‘)”* < Tlred (pred(”); [,I,) for all JUAS P?

we have no means to improve the approximation quality of the reduced space without re-
sorting to high-dimensional computations involving Qp (7). Since the high-dimensional
approximation space was prescribed a priori, we have in general no means to assess the
discretization error during the online phase. Thus, instead of (1.3.12) we have

7?4+ Ated for p € Phrain,
T+ Tred (pred(#'); N) for e Pint.\Ptrain-
(1.3.13)

lp(r) = pn ()|, +lpn (1) = prea(p)ll, < {

23

1 Elliptic parametric multiscale problems

During the online phase of traditional RB methods, one is thus left with neither a
guarantee on nor an assessment of the magnitude of the full approximation error (namely,
the discretization and the model reduction error).

An improvement of this unfortunate situation has only recently been introduced by
[Yan2014], by incorporating an AFEM procedure into the greedy algorithm to simulta-
neously generate Qﬁ (Th (Ptrain)) and Q,eq in a fully adaptive manner.

Definition 1.3.12 (Spatio-parameter greedy algorithm). With the notation of Defini-
tion 1.3.11, let Npred : P — [Q’,TL (Th(P)) — R] denote an a posteriori estimate of the full
approximation error, i.e.,

”p(l'l') _pred(ﬂ')H* < Mh,red (pred(“); N) fOT’ all IS P,

which is offline/online decomposable in the sense of Section 1.53.2.1. Let further ny, denote
a reliable and localizable a posteriori estimate of the discretization error and A > 0 a
tolerance. The spatio-parameter greedy algorithm for the simultaneous construction of
an accurate discretization space Q’fL (Th(Ptrain)) and the reduced basis ¢req Spanning a
reduced space Qreq to approximate IOy (Pirain) s then given by Algorithm 1.3.10 with

estimate (8"}, 14):= Mprea (P (10); 12),
init (Pirain) := AFEM (Q’fL (Th(@)) ,argmax,cp, - estimate {0},), A) and

extend (¢\"), p*) = ONB(¢")U AFEM(Q¥ (4 (Prrain)) "V, ¥, A,
where AFEM(Q’fL(Th),u*,A) denotes an AFEM procedure which adaptively refines the
given grid T, using np, and produces an accurate approximation pp(p*) € Qﬁ (Th([,b*)),
such that np(n*) < A. In init, 7,(0) denotes an arbitrary coarse initial grid.

The spatio-parameter greedy algorithm constructs sequences of nested discretiza-

(n
re()i -

tion spaces Qﬁ (T h(Ptrain))(n) and nested reduced basis spaces QEZQ, such that @Q
Qﬁ (Th(Ptrain))(n). Since it does not permit a coarsening of the grid during AFEM, all
quantities from the previous iteration can be prolonged without any loss of accuracy.
Compared to the traditionally used discrete weak greedy algorithm, the spatio-parameter
greedy algorithm guarantees the accuracy of the resulting reduced approximation over
the whole training set and allows for an efficient estimation of the full approximation

error. Instead of (1.3.13), we thus have

A fOI’ ll/ E Ptrain,

lp(ee) = pr ()l + lpn () = Prea(p)ll, <
nh,red(ﬂ) for [URS Pint.\Ptrain-
during the online phase.

Remark 1.3.13. The spatio-parameter greedy algorithm yields efficient approzimations
of elliptic parametric problems that are accurate over the whole set of training parameters
and furthermore allows to quantify the full approximation error for any parameter in an

24

1.3 Parametric problems and model order reduction

online-efficient manner. It is worth noting, that we require access to an offline/online
decomposable a posteriori error estimate of the full error, which might not be as readily
available as an estimate of the model reduction error. It is also worth noting, that
the above greedy algorithm can be seen as the first feasible algorithm to approximate
IO(Pirain), in contrast to IOn(Pirain,)-

We present such an error estimate in Section 2.3.2, which was developed independently
of (and, to the best of our knowledge, earlier than) [Yan2014].

While the spatio-parameter greedy algorithm is fully adaptive during the offline part
of the computation and we can efficiently estimate the error online, we have no means to
improve the reduced approximation, except by breaking the offline/online decomposition
of the computational process and thereby giving up efficiency.

In addition, there exist many problems where the available computing power is limited
and where the greedy algorithm can only carry out a limited number of high-dimensional
solution snapshots, resulting in a reduced space with insufficient approximation qualities.
The latter is true, for instance, in the context of parametric multiscale problems (see
Section 1.4), where one can only afford to evaluate 10y, for very few parameters.

An efficient enrichment of the reduced space in the online part of the computational
process can only be achieved by a careful incorporation of additional adaptive strategies.
Such “online-adaptive” model reduction strategies are an active field of research, see
[Car2015, ZF2015]. The localized reduced basis multiscale method (LRBMS), which is
the focus of the remainder of this work, can be considered the first method of this kind.

To summarize: we introduced elliptic problems that are parameterized by a low-
dimensional input vector, and presented the reduced basis method as a particular model
reduction technique for such problems. In particular, we discussed the trade-of between
the improved efficiency of the resulting reduced scheme and the reduced level of accuracy
of such schemes.

25

1 Elliptic parametric multiscale problems

1.4 Parametric multiscale problems and combined approaches

This section treats elliptic parametric multiscale problems, which are a combination of
the problems presented in the previous two sections.

1.4.1 Elliptic parametric multiscale problems

As in Sections 1.2 and 1.3, we consider data functions which exhibit multiscale features
associated with a fine scale ¢ < |2 and also depend on a parameter vector p € P: for
fixed € > 0, we consider a parametric bilinear form b, : P — [H1(2) x H(Q) — R], such
that b(-,+;) is continuous and coercive over H}(f2) in the sense of (1.1.1) and (1.1.2)
for all g € P, and exhibits high-contrast or strong oscillations as in Definition 1.2.1. We
pose the same assumptions on the linear functional [as in the previous sections and,
for simplicity, do not consider any parameter or multiscale dependency in the forces
and boundary values. Thus, for each parameter there exists a unique solution of the
following problem.

Definition 1.4.1 (Elliptic parametric multiscale problem). For a fized multiscale pa-
rameter € > 0, a parameter space P C R”, | as given in Definition 1.1.1 and b, as given
above, find p.(pn) € HE(Q) for p € P, such that

b (pe (1), ¢; 1) = 1(q) for all ¢ € Hy(Q). (1.4.1)

An example for a parametric multiscale problem is given by the pressure Equation
1.0.1a in the context of two-phase flow in porous media.

Example 1.4.2 (Two-phase flow in porous media). Let the collection of forces f € L*(Q)
be bounded, let the parametric total mobility A : P — L°() be strictly positive for all
i € P and let the multiscale permeability tensor k. € [L>®°(Q)]%*? be symmetric and
positive definite, such that A\(p)k. € [L°(Q)]9*? for all p € P. For u € P, find a global
pressure p-(p) € Hg (), such that —V-(A()keVpe(p)) = f in the weak sense in Hy(<2).

We can see that this is an example for an elliptic parametric multiscale problem by
setting

be(p, q;) == /Q (A(u)mEVp) -Vgdzx and l(q) = /qud:z (1.4.2)
in Definition 1.4.1.

We are interested in accurate and efficient approximations of elliptic parametric mul-
tiscale problem, such as the one given in Example 1.4.2. Problem 1.4.1 is mainly an
elliptic parametric problem in the sense of the previous section. As such, we can employ
the reduced basis method to efficiently compute approximations of Problem 1.4.1 for a
large number of parameters u € P. The accuracy of any reduced basis approximation
is related to the approximation quality of the reduced space, which in turn is related to

26

1.4 Parametric multiscale problems and combined approaches

the number of available solutions of Equation 1.4.1 (since the reduced space is spanned
by solutions of (1.4.1) for selected parameters, see the greedy Algorithm 1.3.11).

However, the problem of solving (1.4.1) for a fixed parameter is a multiscale problem
in the sense of Section 1.2 and thus suffers from the limitations discussed there. In
particular, we cannot expect to approximate the solution of multiscale problems arbi-
trarily accurate. Moreover, already the cost of approximating only the coarse behavior
of the solution may exceed the available computing power. This is particularly trou-
blesome in the context of parametric multiscale problems, where we require many such
approximations.

On the other hand, the parametric nature of Problem 1.4.1 also simplifies matters.
Similar to traditional reduced basis methods, we can afford to spend a considerable
amount of computing power in the offline phase to prepare a reduced space which in-
corporates as much multiscale information as possible. Many of the techniques used in
numerical multiscale methods, such as the preparation of multiscale basis functions en-
riched with fine-scale information, may seem computationally too costly in the context
of nonparametric multiscale problems (compare Remark 1.2.4). In the parametric case,
however, these preparations can lead to efficient approximations, since we are interested
in solving (1.4.1) for many parameters.

1.4.2 The localized reduced basis multiscale method

Inspired by the localized formulation of numerical multiscale and domain decomposition
methods (see Section 1.2), the localized reduced basis multiscale method (LRBMS) was
introduced [AHKO2012, 0S2014, OS2015] for the approximation of parametric multi-
scale problems, such as Problem 1.4.1. The idea of the LRBMS is to construct a spatially
localized reduced basis on each subdomain of a coarse grid 7Tg, in contrast to a single
reduced basis associated with 2. These local reduced bases can be prescribed a priori,
or given as solutions of discrete problems on a fine grid Tg (possibly including overlap)
in each of the coarse subdomains T' € Tz, or by global solution snapshots that are re-
stricted to the individual subdomains. In particular, these solution snapshots can be
obtained by any of the numerical multiscale methods discussed in Section 1.2. The local
reduced spaces are coupled with a discontinuous Galerkin scheme along the faces of the
coarse grid, yielding a discontinuous reduced basis space Qreq (7T), associated with the
coarse grid.

The localized nature of the LRBMS allows to reduce the computational cost of many
aspects of the basis generation, compared to traditional reduced basis methods. Since the
LRBMS also inherits the offline/online decomposition of the computational process from
RB methods, the LRBMS has the potential to be much more efficient than traditional
approaches (compare the experiments in Chapter 4).

While the development of the LRBMS was motivated by considering multiscale prob-
lems, the resulting methodology is not tied to the multiscale setting and can be seen as
a general localized reduced basis scheme. In particular, the resulting reduced scheme is
equivalent to that obtained from traditional RB methods (see the discussion of Definition
2.2.1) and most results which are available for RB methods also apply to the LRBMS

27

1 Elliptic parametric multiscale problems

(including results on error estimation and approximation quality).

In addition to the standard a posteriori estimates on the model reduction error, we
also provide a fully offline/online decomposable a posteriori error estimate on the full
error in the context of the LRBMS (see Section 2.3.2). This estimate is additionally
localizable with respect to the coarse grid and allows for an efficient estimation of the
spatial error distribution during the online part of the computational process.

While it is not possible to enrich the reduced space in the context of tradition RB
methods, without resorting to high-dimensional computations involving the full high-
dimensional discretization, the localized nature of the LRBMS in combination with the
localized error estimate, allows for an online enrichment of the local reduced spaces, that
only involves local high-dimensional computations (see Section 2.4.2).

Remark 1.4.3 (Accuracy and efficiency of the LRBMS). If used in conjunction with
the discrete weak greedy algorithm 1.3.11, the LRBMS yields accurate reduced approx-
imations for all parameters in the training set, similar to traditional RB methods. In
addition, it allows to give an estimate on the full error (including the discretization
error), during the online phase. The LRBMS could also be used together with the spatio-
parameter greedy algorithm 1.3.12 to additionally ensure the approximation quality of
the high-dimensional approximation space.

During online computations, the LRBMS additionally allows for an enrichment of the
reduced basis and thus yields reduced approximations, which are as accurate as the high-
dimensional approximation for any parameter. If combined with local grid adaptation,
the LRBMS would also allow for an adaptation of the local approximation spaces during
the online enrichment, yielding fully accurate reduced approrimations (concerning the
discretization as well as the model reduction error).”

After an online enrichment of the basis, all quantities can again be offline/online de-
composed with only local high-dimensional computations. Thus, the LRBMS still allows
for an efficient computation of such accurate approxrimations.

To conclude, the LRBMS in its current state allows for efficient and accurate approx-
imations of parametric multiscale problems. Due to its localized nature, the LRBMS
additionally carries the potential for a level of accuracy that is far beyond the scope of
traditional methods. The theoretical framework of the LRBMS, including the adaptive
basis generation, several a posteriori error estimates and the adaptive online enrich-
ment, is presented in Chapter 2 and numerical experiments are given in Chapter 4. The
corresponding software framework is presented in Chapter 3.

For the remainder of this chapter, we discuss related methods that combine ideas from
model reduction and domain decomposition or numerical multiscale techniques.
1.4.8 Combined approaches

We begin with methodologies that combine domain decomposition and reduced basis
techniques to allow for an online adaptation of the computational domain, which are

"This is subject to future work.

28

1.4 Parametric multiscale problems and combined approaches

not explicitly associated with multiscale problems. The idea of the reduced basis element
method [MR2002, MR2004, LMR2007] is to prepare a reduced basis for each archetype
of subdomain and to allow for a deformation and combination of several of these sub-
domains to form the actual computational domain (much in the spirit of traditional
Finite Element methods, where shape functions for each reference element of the grid
are considered). The local reduced bases are coupled with Lagrange multipliers and the
shape and composition of the domain can be altered during the online computation.

Similarly, the idea of the reduced basis hybrid method [IQR2012, IQRV2014] is also to
prepare a reduced basis for each archetype of subdomain and to combine these subdo-
mains online. In contrast to the reduced basis element method, however, the Degrees of
Freedom associated with the coupling faces of the subdomains are not fully eliminated.
This results in a hybrid reduced basis/Finite Element scheme in the online phase. Both
methods have been applied for slow flow in the context of computational fluid dynamics.

The port reduced static condensation reduced basis element method [HKP2013, EP2013,
EP2013a, Sme2015] is an extension of the reduced basis element method and is also based
on a set of local reduced bases which have been trained by prescribing different boundary
values at the connecting faces of the subdomains (ports). These subdomains can also be
combined and assembled online, where the resulting system is treated by static conden-
sation to yield online efficiency. The method has been mainly applied in the context of
linear elasticity and structural analysis.

In addition, there exist several approaches where reduced basis techniques have been
employed to lower the computational cost of traditional numerical multiscale methods.
For instance, in the context of homogenization, the reduced basis methods was employed
to provide efficient access to the solutions of the required cell problems [Boy2008]. Sim-
ilarly, the reduced basis Finite FElement heterogeneous multiscale method combines the
HMM multiscale method (see Section 1.2) on the coarse scale with reduced basis tech-
niques on the fine-scale to provide efficient evaluations of the multiscale data functions
[AB2013, AB2014].

However, none of these methods is tailored to the efficient approximation of parametric
multiscale problems. Only recently, a combination of the reduced basis framework with
localized orthogonal decomposition (compare Section 1.2) has been proposed in [AH2014]
for that purpose.

Last, we mention the generalized MSFEM for the linear [EGH2013] as well as the
nonlinear setting [EGLP2014] as an extension of the traditional MSFEM (compare Sec-
tion 1.2). It is based on ideas from [AE2008] where limited global information was
used to construct multiscale basis functions. While these basis functions were reused
in subsequent computations, yielding efficient approximations of a collection of multi-
scale problems, the methodology is not proposed as a model reduction technique for the
approximation of parametric multiscale problems.

29

2 The localized reduced basis multiscale
method (LRBMS)

This chapter introduces the localized reduced basis multiscale method (LRBMS). As an
overview, we briefly revisit the problem context and give a very brief overview of the
LRBMS methodology. For further details we refer to the previous chapter, in particular
Section 1.4, and the respective sections of this chapter.

We are interested in accurate and efficient approximations of elliptic parametric mul-
tiscale problems such as: for a given multiscale parameter 0 < ¢ < || and a set of
admissible parameters P € R?, find p.(u) € H}(Q) for pu € P, such that

be(p(), ¢;) = 1(q) for all ¢ € Hy (), (2.0.1)

where b. denotes an elliptic parametric bilinear form, [a continuous linear functional
and 2 the spatial domain.

To obtain approximations of 2.0.1 we rely on grid-based discretizations and presume
we are given a grid 7, of €, which resolves the fine scale associated with e, a Finite
Element approximation space QZ(T}L) of order k € N and approximations of b. and I,
denoted by b, ;, and I: find p. p(p) € Q’,ﬁ(m) for p € P, such that

beh(Den (1), ans) = Un(qn) for all g5, € QF (). (2.0.2)

Possible discretizations include standard continuous or discontinuous Finite Element
discretizations (compare Section 3.1.1.1), the multiscale discretizations from Section 1.2
or the one we propose in the next section.

We also presume the existence of a localizable and reliable a posteriori error estimate
on the discretization error,

pe (1) = pen ()], < 01 (Pen(2); 1)

in a suitable norm ||-||, to assure the accuracy of the approximation; we discuss a par-
ticular estimate in Section 2.3.2 below.

To achieve online- and overall-efficiency, we rely on a further model reduction of
(2.0.2) with respect to p by reduced basis methods, namely the localized reduced basis
multiscale method (LRBMS). Therefore, we presume the existence of a coarse grid Ty
in addition to the fine grid and a tensor-type decomposition of the approximation space,
Qi(Th) = OreTy QZ’T, given local approximation spaces Qz’T on each subdomain of the
coarse grid. This decomposition is directly given for the discretization proposed in the
next section and can be obtained for other discretizations by a projection of p. ; onto
suitable local approximation spaces.

31

2 The localized reduced basis multiscale method (LRBMS)

The main idea of the LRBMS is to build individual reduced spaces z;d(Qi’T) on each
subdomain T € Ty, yielding a reduced space which inherits the discontinuous structure
of the approximation space: Qred(T) = ®reTy Qz;d. We obtain the reduced scheme by
a projection onto this reduced space: find preq(pt) € Qreda(Trr) for p € P, such that

bred(pred(ll')a Gred; H) = lred(Qred) for all greq € Qred(TH)- (2-0-3)

The reduced bilinear form and linear functional in (2.0.3) are always given by restrictions
of the discrete counterparts in Section 2.1, which do not have to coincide with the ones
from (2.0.2).

To control the model reduction error,

Ipe,n (1) = Prea()|l, < Mred (Prea(12); 1),

as well as the full error

Hpa(p‘) - pe,h(”)‘|*+“pe,h(”) - pred(ﬂ')H* < Th,red (pred(ﬂ); V’)a (2'0'4)

we propose suitable a posteriori error estimates in Section 2.3, which are used in the
adaptive greedy basis generation (Section 2.4.1) and to ensure the accuracy of the overall
approximation. The latter estimate is additionally localizable with respect to the coarse
grid Ty while being fully offline/online decomposable.

We use the localized estimate (2.0.4) to adaptively enrich the local reduced bases
during the online computation (Section 2.4.2). This is of particularly interest in the
context of multiscale problems, where we cannot expect to be given enough computing
power to construct a reduced space with sufficient approximation quality during the
offline computation (compare Sections 1.2 and 1.4).

2.1 Detailed discretization

This section introduces the approximation space QF(7), the discrete bilinear form be
and the linear functional [, all of which we require twofold. First, we use them to
discretize the elliptic parametric multiscale Problem 1.4.1 and to compute approximate
solutions p; 4, as in (2.0.2). Second, we use them to define the reduced scheme, namely
the reduced bilinear form b, ;.q and the reduced linear functional l;eq. We make this
explicit distinction here since we want to allow the use of other discretizations for the
generation of the solution snapshots, in particular those given by the methods discussed
in Section 1.2, which are specifically tailored to the multiscale setting.

We require two nested partitions of 2, a coarse one, Ty, and a fine one, 7. Let 7, be
a grid of Q0 with non-overlapping elements ¢ of simple shape, such that Uje,, = Q. We
call 7, a fine grid if it resolves all features of the quantities involved in (2.0.1). We pose
no further requirements on the coarse grid Ty here, apart from 7Ty being a partition of
Q and that each coarse element is made up of at least one fine element. We will pose
further requirements on both grids in the context of error estimation further below, but
these are not needed to define the discretization.

32

2.1 Detailed discretization

For simplicity, we can think of 75, as a shape-regular simplicial triangulation without
hanging nodes, and of the coarse elements T' € Ty as convex. We collect all fine faces
in Fy, all coarse faces in Fy and denote by N (t) C 73, and N(T') C Ty the neighbors
of t € 7, and T € Tpy, respectively, and by h, the diameter of any element * of the sets
Thy Tr, Fp or Fg. In addition, we define h := maxyc,, hy and H := maxpe7,, Hp. We
collect in T;{ C 73, the fine elements of 75, that cover the coarse element 7' € Ty and in
F; C Fyp all faces that cover the set *, e.g., by]:'fL the faces of a fine element ¢t € 7,
by .7-"}? the faces that cover a coarse face £ € Fp and so forth; the same notation is
used for coarse faces Fj; C Fp. In addition, we denote the set of all boundary faces by
Fp C .7-"h and the set of all inner faces, that share two elements, by Fh C Fp, such that
Fru fh Fy, and Fp N fh = (. We also denote the set of fine faces which lie on the
boundary of any coarse element T' € Ty by .7-"h = UEE.FIE]:h and by .7:;{ = th\}"h
the set of fine faces which lie in the interior of the coarse element. Finally, we assign
a unit normal n. € R? to each inner face - Nt =e € j}h’ pointing from ¢~ to ¢,
and denote the unit outward normal to 2 by n. for a boundary face e = 9t~ N K2, for
t=tt e,

Given any two such grids 7, and Ty we extend the domain of the bilinear form b,
and the linear functional [to the broken Sobolev space H!(7;) and localize them with
respect to Ty, where H'(7}) := {q € L*(Q)| q|, € H'(t) Vt € 7};} for any 7} C 7.
Throughout this chapter, we presume b, and [to be as in (1.4.2), but the methodology
can be applied to any elliptic problem. Given the data functions as in Example 1.4.2,
we define the local bilinear forms b! : P — [H! (7)) x H'(7]') — R] and the local linear
functionals {7 : H(7) by

vl (p, q;) ::/ ()\(u)/i5Vp)-qu:c and 1T(q) ::/fqda;, (2.1.1)
T T

respectively, for all p € P and all p,q € H'(r}'). By defining b, := ZTGTH P —

[H' (1) x HY(71;,) — R] and [:= Y TeTy I : H'(1;,) — R we obtain the same b, and I
as in (1.4.2), if restricted to H'(2) € H(m).

We discretize Problem 1.4.1 by allowing for a suitable discretization of at least first
order inside each coarse element T' € Ty and by coupling those with a Symmetric
weighted Interior-Penalty discontinuous Galerkin (SWIPDG) discretization along the
coarse faces of T. This ansatz can be either interpreted as an extension of the SWIPDG
discretization introduced in [ESZ2009] on the coarse partition Tz, where we further
refine each coarse element and introduce an additional local discretization, or it can
be interpreted as a domain-decomposition approach, where we use local discretizations,
defined on subdomains given by the coarse partition, which are then coupled by the
SWIPDG fluxes. In view of the latter, this ansatz shows some similarities to [BZ2006]
but allows for a wider range of local discretizations. A similar ansatz for a multi-
numerics discretization using a different coupling strategy was independently developed
and recently introduced in [PVWW2013]. We present two particular choices for the local
discretizations and continue with the definition of the overall DG discretization.

33

2 The localized reduced basis multiscale method (LRBMS)

2.1.1 Local discretizations

The main idea of our discretizations scheme is to approximate the local bilinear forms bET
and the local linear functionals {7 from (2.1.1), which are defined on the local subdomain
triangulations ThT , by discrete counterparts I;STh and lg, respectively, discretizing Problem
1.4.1 on T with homogeneous Neumann bouhdary values. We additionally choose local
discrete ansatz spaces Qz’T c H! (7',?), with local polynomial order k € N, k > 1,
to complete the definition of the local discretizations. A natural choice for the local
discretization is to use a standard continuous Galerkin (CG) discretization, which we
obtain by setting lo)aTh to b7 l{ to [T and QZ’T to

ShTh —{qECO |q|t€IP’k() VteThT} C Hl(T),

where P (w) denotes the set of polynomials on w C Q with total degree at most k € N.
Another choice is to use a discontinuous space for Q];’;’T, given by

Qi) =={qe LX) | ql, e Pe(t) Vterl} c HY),

to set lg to {7 and to choose l.;ETh from a family of DG discretizations. Therefore, we
introduce the technicalities needed to state a common framework for the non-symmetric,
the incomplete, the symmetric and the symmetric weighted interior-penalty (IP) DG dis-
cretization (henceforth denoted by NIPDG, ITPDG, SIPDG and SWIPDG, respectively,
see [ESZ2009] and the references therein), following [ESV2010, Sect. 2.3].

For a function ¢ € H'(7), which is double-valued on interior faces, we denote its
jump on an inner face e €]S"h by [ql, == ¢ — ¢© with ¢& := ¢|,+, recalling that
e =t~ Ntt for t* € 7,. We also assign weights w_, w} > 0 to each inner face, such that
wg +ws =1, and denote the weighted average of ¢ by {¢}}, := w_ ¢~ + wS¢". On a
boundary face e € Fj, we set wy = 1, wl =0, [¢], := ¢ and {q}}, := ¢. With these
definitions, we define the local discrete bilinear form l%aTh : P — [HY () x HY(7]) — R]
for ¥ € {—1,0,1} by 7

o

bln(p) == bl (o) + Y (0b§(q,p; p) + b5(p, 43 1) + bE(q, p; u)) (2.1.2)
ecFT

on T' € Ty, with its coupling and penalty parts b and by, respectively, defined by

oy / LWV ne [a. ds and b(p,g;) = / oe(p) [, [l ds,

e

(2.1.3)

for all w € P, all p,q € H'(r,) and all e € Fj,. The parametric positive penalty
function o, : P — R is given by o(p) := oh, ! {A ()}, o0&, where o > 1 denotes a user-
dependent parameter and the locally adaptive weight is given by ¢ := 670, (6 +4,)"
for an interior face e €]-'Dh and by o¢ := §; on a boundary face e € Fj, respectively,

34

2.1 Detailed discretization

with 6 := n.xZn.. Using the weights wr := 1/2, we obtain the NIPDG bilinear
form for ¥ = —1, the IIPDG bilinear form for ¥ = 0 and the SIPDG bilinear form
for ¥ = 1. We obtain the SWIPDG bilinear form for ¥ = 1 by using locally adaptive
weights w, = 6H(0F +62)" and wl =6, (6F +6.)~!. From now on, we assume that
bTh is of the form (2.1.2), since this is the most general case (which also covers a CG
discretization, where all face terms vanish due to the nature of S¥(7)).

2.1.2 Global coupling

Now given suitable local discretizations on the coarse elements 17" € Ty we couple those
along the coarse faces F € Fp using a SWIPDG discretization again and define the
bilinear form b 5, : P — [H'(7,) x H (1) — R] by

bep(p @) = Y b (Pl dls 1) + > b aw), (2.1.4)
TETy EeFy

where we use the SWIPDG variants of wX to define the coupling bilinear form bgh
P — [H(m,) x H' (1) — R] by
Do (D 1) = Y (bi(q,p; 1) + b (p, 4;) + b5 (g, p; u))

ee]-'f

for all E € Fpy, all u € P and all p,q € H'(r,). We also define the discrete linear
functional I, : H'(7;,) — R by

= Z 1T(q), forall g H'(r). (2.1.5)
TeTH

Finally, we define the global approximation space Q¥ (r,) C H'(r,) for k > 1 by
Qf () =={a € H'(m) | dly € Q" VT € Ty}, (2.1.6)

with Qﬁ’ either being the local CG space SF(7il) or the local DG space Qf (7). Given
the data functions from Example 1.4.2, I}, is continuous and, if ¢ is chosen large enough,
be », is continuous and coercive with respect to a DG norm over Qi (e.g., given by the
semi H'! norm combined with a DG jump norm) and there exists a unique solution to
the following problem.

Definition 2.1.1 (Discrete elliptic parametric multiscale problem). With the notation
from Definition 1.4.1 and Qz(Th), be,n, and lp, given as above, find p.n(p) € QE(T}J for
w € P, such that

ba7h (pa,h(/fl’)v qh; /'l’) = lh(Qh) fOT' all qn € Qz(Th) (217)

Depending on the choice of the coarse grid and the local discretizations we can re-
cover several discretizations from (2.1.7). Choosing Ty = 2 and QZ’T = Sk(rT) yields

35

2 The localized reduced basis multiscale method (LRBMS)

a standard CG discretization (except for the treatment of the boundary values), for
instance. Choosing Qﬁ’ = Qh(Th) for any choice of Ty or Ty = 7, for any choice
of Qi’T, on the other hand, results in the standard SWIPDG discretization proposed
n [ESZ2009, ESV2010]. Note that the local discretizations as well as the polynomial
degree k do not have to coincide on each coarse element (or even inside a coarse element
when using a local DG space). It is thus possible to balance the computational effort by
choosing local CG or k-adaptive DG discretizations.

This puts our discretization close to the multi-numerics discretization proposed in
[PVWW2013], where the latter allows for an even wider range of local discretizations
while coupling along the coarse faces using Mortar methods. Our discretization is also
closely related to the adaptive discontinuous Galerkin multiscale method [EGMP2013,
EGM2013]. Concerning the choice of the user dependent penalty factor, we found an
automated choice of o depending on the polynomial degree k, as proposed in [ER2007],
to work very well.

Remark 2.1.2 (Alternate form of the global bilinear form). We have given the global
bilinear form be j, in primal formulation in (2.1.4), due to our definition of the coupling
bilinear forms bE . It is worth noting that there also exists an equivalent form of b, p,
which is more suztable for the reduction process. This local formulation is induced by a
decomposition of b<E ns analogous to local DG methods [CKSS2002]: we can decompose bE
into several contributions associated with the coarse elements adjacent to E. We can thén
rearrange these contributions to obtain local bilinear forms b’ cn P — [H (1) x HY (1) —
R], given by

T (T
ba,h(Phthv) —bah(Phthv Z bah ph’qhv ®),
EeFl

for all pz,qg € QZ and p € P, and coupling bilinear forms bz}f P — [Hl(rg) X
HY(7?) — R] for each coarse element T € Ty and all of its neighbors S € N(T'), given
by

7,8 E (T S
bgh(ph’qhﬂu)’: Z b@h(quh;lL),

BeFinFy

for all pF € QF, ¢ € QF and all p € P, such that

bentom i) = 0 [Palorlps arlim) + S VS (il anlgim)], (218)
TeETH SeN(T)

for all py, qp € QZ(Th) and all p € P.

36

2.2 Reduced discretization

2.2 Reduced discretization

Once we are given a reduced space Qreq, the reduced scheme follows directly from the
discrete Problem 2.1.1 by Galerkin projection of all quantities onto the reduced space
just like for standard RB methods, as detailed in Section 1.3. Nevertheless, we explicitly
state a definition of the reduced discretization here and discuss some of its aspects, in
particular those related to the offline/online decomposition of the computational process.
For the rest of this section we presume we are given a reduced space Qeq C Q’fL(Th).
The reduced basis spanning Qyeq is usually made up of solutions of (2.1.7) for selected
parameters. This does not always have to be the case, however, as the reduced basis
functions can also be given a priori (see Section 2.4.1 below) or by another approximation
of (2.0.1) entirely (for instance by one of the multiscale methods discussed in Section
1.2). We postpone any discussion regarding the generation of the reduced basis to Section
2.4.1 and presume we are given elements of QE(T}Z), which span Qreq-

The reduced space inherits the discontinuous structure of QZ(Th), namely its decom-
position with respect to the coarse grid, and we explicitly denote the reduced space by
Qred(TH) from here on. Following (2.1.6) we assume we are given local reduced basis
spaces QZ;d C QZ’T for all T' € Ty, such that

Qred(TH) = EBTETHQZ;d (221)
= {an € QF(m) | anly € Qg YT € Tu} C Qf(7h).
In the same manner, the reduced bilinear form and linear functional inherit the structure

of their discrete counterparts, (2.1.8) and (2.1.5), where we prefer the alternate form of
the bilinear form as discussed in Remark 2.1.2. We thus define reduced local bilinear

forms b1, : P — [QT, x QL — R, reduced local functionals (L, : Q1 , — R and
reduced coupling bilinear forms bre’ds : P = QL x Qred R] for all coarse elements

T € Ty and respective neighbors S € N(T) by restrlctlons of their discrete counterparts
to the corresponding local reduced spaces,

T . T.s . ,T,S
bred T Eh‘Qred7 red bred T beh

T
and lred lh ‘QT y
Qred’Qred red

respectively. The reduced bilinear form byeq : P — [Qred(Ta) X Qrea(Ta) — R] and
reduced linear functional lyeq : Qred(7Trr) — R are then given by

7.8
bred(pred7 Gred; ;L) = Z [bﬁd(pred‘jw Qred|T; IL) + Z bred (pred|T7 Qred’5§ l")]

TETy SeN(T)
(2.2.2)
and
red Qred Z lred Qred‘T ; (223)
TeTy

respectively, for all p, ¢ € Qreq- Since breq and l,oq inherit continuity and coercivity from
their discrete counterparts, there exists a unique solution of the following problem.

37

2 The localized reduced basis multiscale method (LRBMS)

Definition 2.2.1 (Reduced elliptic parametric multiscale problem). For a given param-
eter space P, a reduced space Qred(TH) C Qﬁ(Th) and byeq and l.eq given as above, find
pred(u) € Qred(TH> fO?" e P; such that

bred (pred(ll/)7 Qred; I'I’) = lred(Qred) fOT’ all Qred € Qred(TH)- (224)

There are several things worth noting, regarding the above reduced scheme. First of
all it is equivalent to a reduced scheme obtained by a standard RB method (see Section
1.3) in the following way: we can define a reduced space Qreq C Qﬁ(rh) by collecting all
local reduced basis functions of all local reduced spaces Qg;d for all T' € Ty and extending
them by 0 outside of T'. It is, however, more useful to consider the local reduced spaces,
local reduced bilinear forms and local reduced linear functionals separately, as indicated
by (2.2.1), (2.2.2) and (2.2.3). This local view allows us to carry out the offline/online
decomposition for all subdomains independently, and in parallel, and is crucial for the
online-adaptive basis enrichment (see Section 2.4.2).

2.2.1 Offline/online decomposition

The offline/online decomposition of the computational process in the context of the
LRBMS is very close to that of standard RB methods, with some techniques borrowed
from DG methods. Given the definitions in the previous subsection, the detailed bilinear
form b, j, is affinely decomposable in the sense of (1.3.8) if such a decomposition holds
for A (compare Example 1.3.8), which we presume from here on. This decomposition is
also present in the detailed local and coupling bilinear forms and carries over to their
respective reduced variants. With the notation from Definition 1 3 7 we thus presume
that the local bilinear forms bTh and the coupling bilinear forms b h are affinely decom-
posable in the sense of (1.3.8) and we denote their respectwe nonparametrlc components
bybsh QpT x QpT w Rand b1 - QT x Qp° = R, for all 0 < £ < Z, all subdo-
mains 7" € Ty and each respective nelghbor S e N (T'). As usual, we define the reduced
counterparts of these bilinear forms by restrictions to the respective local reduced spaces,
forall T € Ty, SeN(T) and 0 < ¢ < =

T . 7.8 TS
be red 1= bz, th and bé,red T et or

red’ md red 7Qred

Given these nonparametric reduced local bilinear forms bgred : Qred X Qred — R and

non-parametric reduced coupling bilinear forms b S red - Qred Qred — R we define the
non-parametric components of the reduced blhnear forms bg red : Qred X @red — R by

T,S
b&,red(preda Qred; /1') = Z [bZred(pred|T7 Qred|T; U) + Z bg,red(pred|T7 Qred|s§ ﬂ)]
TeTu SeN(T)
for all pred, Gred € Qred, all p € P and all 0 < ¢ < =, analogously to (2.2.2). The affine
decomposition of the reduced bilinear form b,oq then reads

bred (preda Gred; N) = 66 (N) bf,red (preda Qred)v (2-2~5)
=0

I

—_

a2

38

2.2 Reduced discretization

for all pred,qred € Qred and all p € P, with the coefficients 6¢ of the corresponding
decomposition of A. Given the local structure of the reduced space (2.2.1) we presume
that for each local reduced space Qred, we are given a local reduced basis qﬁz;d spanning

QL for all subdomains T € Ty. We denote for all T € T by IIZ , : QZ’ — QL the

L?-orthogonal prOJectlon and by Hred e R" >N jts matrix representation with respect

to the basis of Qh where n! := dim Qred and NT := dim QZ’T Each row of HTd thus

corresponds to the ba51s representation of one element of the local reduced basis qbred

with respect to Qh . We also denote the matrix and vector representations of the local

bilinear forms bg,g,}w the coupling bilinear forms bz’gh and the local functionals lg with

respect to the bases of QIZ’T and QIZ’S by

¥ erY, Wen c RV xRT and bLS, € RVINT
respectively, for all 0 < < =, all T € Ty and all S € N(T).

With this notation, we split the assembly of the algebraic problem corresponding to
Problem 2.2.1 into an offline and an online part as follows: we apply standard techniques
locally on each subdomain and combine those with a DG-like mapping ¢ : Ty x N - N
to assemble the reduced component matrices.!

Algorithm 2.2.2 Local assembly of reduced component matrices and vectors (LRBMS).

Input: T, ¢, l:;Fed and bgred and bZ’rid foral0 <¢< =
Output: leg and bereq for all 0 <& < =
initialize l;eq € R™ and bg req € R™*™ for all 0 < & < = with zero entries
for all T € Ty do
for all 0 <i<n” do
(lrid)b(m) < (lrid)b(m) (Lea)
forallOSanTanda110§§<Edo
(bé’id)L(T,i),L(T,j) = (@)L(T,i),L(T,g‘) + (b?id)”
end for
end for
for all S € N(T) do
forallogignsandallOSjgnTand all0 < ¢ < = do
(bgvid)L(T,i),L(S,j) A (bgvid)L(T,i),L(S,j) + (@)w
end for
end for
end for
return loq and bg req for all 0 < ¢ < =

!Given a consecutive numbering of the subdomains, which we denote by ir € {0, |Tg|—1} forall T € Tx,
we define the mappmg o(T,-) : {0,n" — 1} — {0,|Tu| — 1} for each subdomain by i — o(T,4) :=
Z{SeTH lig<ir} n® 41, Wthh corresponds to a standard DG DoF mapping (see also Section 3.1.1.1).

39

2 The localized reduced basis multiscale method (LRBMS)

Offline, for all subdomains T' € Ty and neighbors S € N (T') we assemble the matrix and
vector representations of bgTredv bTred and lred with respect to the local reduced bases, by

T
lhog = Iy Hred cR"”
T . 1z €L T xnT
b 7l“ed T red be e h h red e R™ %" and
TS S T,S nSxnT
b&,red - H ““red be “e,&h 1_[red eR ;

respectively, for all 0 < € < 5.2 We then assemble the matrix and vector representations
of b¢ rea and lreq, denoted by be req € R™*" for all 0 < § < = and leq € R”, respectively

with n = ZTGTH nT = dim Qyeq (T), using Algorithm 2.2.2.

Online, given any p € P we proceed just like in the standard RB setting described
in Section 1.3.2.1 and assemble the reduced system matrix beq(p) € R™*™ by a linear
combination of all component matrices:

brea(w) = Y (k) berea.

The reduced linear algebraic problem corresponding to (2.2.4) then reads: find preq(pt) €
R™, such that byeq () Pred () = lred-

There are several things worth noting regarding the offline as well as the online part
of the computation, compared to standard RB methods (which correspond to |7Tg| = 1).
Offline we can carry out the projection of the local matrices and vectors and coupling
matrices in parallel, where we only require access to those values of the neighboring local
reduced basis functions which lie on the subdomain boundaries. Thus we only have to
communicate data associated with one layer of fine grid elements touching the coarse
subdomain boundaries (which corresponds to the communication pattern of standard
FE methods). Online, the reduced linear system is roughly | 7| times larger than that
of standard RB methods. The reduced system matrix byeq(pt) however, is sparse and we
can use standard iterative solvers, if needed.

2Note that Hred denotes the transpose of TIZ.

40

2.3 Error control

2.3 Error control

As motivated in the previous Chapter, a posteriori error estimates are crucial for all
parts of the computational process. Denoting the weak solution of Problem 1.4.1 for a
parameter pu € P by p.(p) € H} (), the discrete solution of Problem 2.1.1 by p. (p) €
Qﬁ(Th) and the reduced solution of Problem 2.2.1 by preqa(pt) € Qrea (T), we require

e an estimate on the discretization error,

lpe(pe) = Pen(p)ll, < mm(p) < An (2.3.1)

to assess the quality of the discrete solution. If the estimate is localizable, i.e.,
nn(p)? = D ten, nt (1)?, we can also use it to steer an adaptive refinement of the
computational grid to reach a prescribed tolerance Ap > 0 (ensuring an accurate
approximation) or to drive the spatio-parameter greedy algorithm 1.3.12. If the
estimate is additionally rigorous, i.e., it is an upper as well as a lower bound on
the error, we can additionally ensure that these adaptive approximations are also
efficient (see Sections 1.1 and 1.3 for further details);

e an estimate on the model reduction error,

”pa,h(u) - pred(u)”* < nred(p') < Ared (232)

to drive the adaptive basis generation in the case that we are given a fixed approx-
imation space Qﬁ(Th), for instance using the discrete weak greedy algorithm 1.3.11
with a prescribed tolerance A,eq > 0. This estimate should be reliable as well as of-
fline/online decomposable, to allow the greedy algorithm to search over a large set
of training parameters during the basis generation. It also allows us to efficiently
assess the model reduction error during the online part of the computation;

e and an estimate on the full error,

() = prea(m)ll, < Mh,rea (k). (2.3.3)

If offline/online decomposable, such an estimate allows us to assess the full ap-
proximation error during the online part of the computation. If additionally lo-
calizable with respect to the coarse grid, i.e., N rea(pt)? = > TeTy n,{:red(p)Q with
offline/online decomposable local indicators ngred(u), we can assess the local error
distribution efficiently during the online part of the computation.

For the discretization presented in the previous section, an estimate on the discretiza-
tion error as in (2.3.1) is given in [ESV2010], if we choose the local approximation spaces
as DG spaces, i.e., QT = QIfL(ThT) or the coarse grid as the fine grid, Ty = 74. The es-
timate from [ESV2010] can be extended to the parameter-dependent case (analogously
to the methodology presented below) and is localizable with respect to the fine grid 7.

We present an extension of this estimate to arbitrary local approximation spaces (given
mild requirements on the shape of the subdomains), which is localizable with respect to

41

2 The localized reduced basis multiscale method (LRBMS)

the coarse grid Ty, in Subsection 2.3.2. In the context of RB methods, an estimate on
the model reduction error as in (2.3.2) is readily available (at least for linear problems)
by residual type estimates and we present a variant of this standard estimate in the
context of the LRBMS in Section 2.3.1. That estimate, however, is not localizable and
its offline/online computation depends on the number of subdomains.

The estimate we propose in Section 2.3.2 is also an estimate on the full error as
in (2.3.3), given mild requirements on the local reduced spaces. Moreover it is fully
offline/online decomposable and localizable, which is quite a novelty in the context of
RB methods.

For our error analysis we require several norms and scalar products. We denote the
product over a space V(w), for w C Q, by (-, -)v and omit w if w = €; the same holds
for the induced norm, HH%,UJ = (+,")vw. For the estimates (2.3.1) and (2.3.3), we use
the parametric energy semi-norm ||-||. : P — [H'(7,) — R], which is for @t € P defined
as

2 2 2
T S = [=

TeTu tETg

2o HZ, =0t sm), (23.4)

with bL(p, q; pu) := I ()\(H)EEVP) -Vqdz for all t € 73, all p,q € H'(73,) and all u € P.
Note that ||-]|. is a norm only on H}(€2). For the estimate (2.3.2), on the other hand,
we define the discrete energy scalar product (-,). : P — [QF () x Q¥ () — R] and
use the discrete energy norm || - |, . : P — [QF () — R], for it € P defined as

(pry an Dz = ben(Prs s B) and llanll z == (gnr an Dz (2.3.5)

respectively, for all pp, qn € Qi(rh), with b, 5, given from Section 2.1.

In order to compare these norms for different parameters we use the affine decomposi-
tion of A (compare Example 1.3.8), A(z; p) = Zfz_ol ¢ (1) A¢(x), where we presume from
here on that the coefficients 0¢ are positive and that the components A\¢ are non-negative,
for all 0 < & < =. We can then compare A for two parameters by

a(p, B) Mz;) < Mas p) < y(p, B) Mz; B) for all z € Q, (2.3.6)

with the positive equivalent functions «,~y : P x P — R given by

)= min Sy) = ik)
a(p, B) Wi @) d v, ;) = X G (@) (2.3.7)

for all p, r € P. Since this decomposition carries over to b, and b. 5, we can also compare
the above energy semi-norm for any two parameters u, it € P by

Vel 1) Iz < -l < voale, m) -z (2.3.8)

the same holds for the local energy semi-norms in (2.3.4) and the discrete energy norm
in (2.3.5).

42

2.3 Error control

2.8.1 Residual based error control of the model reduction error

Residual-based error estimation is a well established technique within the RB community
to estimate the model reduction error eyeq(pt) = pen(p) — Prea(pt), see for instance
[PR2006, QRM2011, RHP2008]. This technique is particularly suited for the RB context
since the solution we compare to, p. ,(pt), is already a discrete quantity (which makes
the computation of the norm of the Riesz-representative feasible). It is worth noting
that the concept of residual-based error estimation has already been used in the context
of Finite Element methods to estimate the discretization error for a long time (see for
instance [Ver1996, Ver2013] and the references therein).

We estimate the error in the discrete energy norm || - |, ; (see Equation 2.3.5), which
enables us to easily compute all constants involved and to obtain a fully computable
upper bound on the error during the online part of the computation. One can also
estimate the error in any equivalent norm and obtain computable bounds using the
so-called min-0 approach [PR2006, QRM2011, RHP2008] and Successive constraints
methods [HRSP2007].

Given b, j, and [j, from the Section 2.1, we define the residual r.p : P — [Qﬁ(rh) —

QIfL(Th)/] for all ps, qn € Q’fL(Th) and all p € P by

e n[Ph; #)(an) = ben (P, an;) — In(qn)-

Residual-based error estimation is based on the following error identity for the reduced
solution prea () € Qred(Ta) for all g, € QF(71,) and all p € P:

Teh[Prea(p); 1l(an) = (€xea(r), an)p,,, - (2.3.9)

This error identity allows us to bound the norm of the model reduction error by the
norm of the Riesz-representative of the above residual. We therefore denote the Riesz-
representative of re p,[pred(pt); p] with respect to the discrete energy scalar product given
by (2.3.5) for a fixed parameter zt € P by gy, (u)m € QF (1), such that

(" Qh)))h,ﬁ = 7 n[Pred(10); 1) (qn) for all g, € QF (7). (2.3.10)
We then have the following a posteriori error estimate.

Theorem 2.3.1 (Residual-based a posteriori error estimate). Let p.p(p) € QF ()
denote the discrete solution of Problem 2.1.1 and pred(pt) € Qred(TH) the reduced solution
of Problem 2.2.1 for a parameter p € P. Let further q, ,(wm € QZ(T}I), for a fixed
parameter @ € P, denote the Riesz-representative of the residual for preq(pt), as defined
above. It then holds that

VR () < () — Peca() s < ()

5

with || - I,z given by (2.3.5), o and ~ given by (2.3.7) and

Nred (1) 1= \/ﬁ ‘qured(ﬂ)?l"”lh,ﬁ'

43

2 The localized reduced basis multiscale method (LRBMS)

Proof. We obtain the upper bound by

— 2 2
a(p, 1) [[pen (1) = Prea()ll, 7 < llevea()lh

= (erealpr) exea(8)) 0
=Teh [pred (.U’)§ .U/] (ered(“))
= (@preatmyns erea(m)))) h.f

S mqpred(u)wH‘h,ﬁmeredO‘)|Hh,ﬁ7

where we used the norm equivalence (2.3.8) and the definition of ey, in the first inequality,
the definition of the discrete energy norm (2.3.5) in the first equality, the error identity
(2.3.9) in the second equality, the definition of the Riesz-representative (2.3.10) in the
third equality and the Cauchy-Schwarz inequality in the last inequality. We obtain the
lower bound, on the other hand, by

mqpred(u);umi,ﬁ < (et Breatwsn)) Wi
= Te,h[Pred (1); 1 (Qpred)
= ((erea(B): Dprcatuuy))
< lllerea(e)lly

h,p ‘qpred(u)mmh,u

< ’Y(P’a) ”|€red()H|h7ﬁmq7’rcd(li)§ﬂ‘Hh7ﬁ’
using the same arguments. O

As already noted, this kind of estimate is a common one in the context of RB methods.
It is reliable, fully offline/online decomposable and gives a fully online computable upper
bound (at least in the variant we proposed here). This estimate, however, relies on the
error identity (2.3.9), which is a global property. Thus, we cannot except to immediately
get a localized estimate using this approach, though there exist recent contributions
towards localization [Sme2015]. Additionally, the offline/online decomposition of the
computation of [|g,, . (u);ull h requires as many inversions of the global scalar product
as there are elements of the global reduced basis, which in turn scales with the size of the
coarse grid, as noted earlier. Again, this global interpretation of the reduced basis is not
appropriate in the context of the LRBMS and leads to extensive offline computations,
compare the experiments in Section 4.1.

Next, we present a completely different approach to error estimation, which is based on
local flux reconstruction. This approach yields a reliable estimate on the discretization
as well as on the full error. The resulting estimate is also offline/online decomposable
and additionally localizable with respect to the coarse grid.

2.8.2 Localized error control of the discretization and the full error

Our error analysis is a generalization of the ansatz presented in [ESV2010] to provide
an estimate on the discretization error for the solution p. »(u) € Q¥ (7,) of the discrete

44

2.3 Error control

Problem 2.1.1 as well as an estimate on the full error for the solution preq(pt) € Qrea(Tw)
of the reduced Problem 2.2.1. The main idea of the a posteriori error estimate pre-
sented in [Voh2007, ESV2010] is to observe that the approximate discrete diffusive flux
—A(p) ke Vppe 1 (p) is nonconforming while its exact counterpart belongs to Hgiy(£2) C
[L2(2)]%, which denotes the space of vector valued functions the divergence of which lies
in L2(£2). The idea of [Voh2007, ESV2010] is to reconstruct the discrete diffusive flux
in a conforming Raviart-Thomas-Nédélec space V}l(7,) C Haiy(2) and compare it to the
nonconforming one. Their error analysis relies on a local conservation property of the
reconstructed flux on the fine grid 7, to prove estimates local to the fine grid.

We transfer this concept to the discretization from Section 2.1 and prove estimates lo-
cal to the coarse grid that are valid for the discrete as well as the reduced approximation.
We obtain mild requirements for the coarse triangulation and the local approximation
spaces, namely that a local Poincaré inequality holds on each coarse element and that the
constant function 1 is present in the local approximation spaces. The latter is obvious
for traditional discretizations and can be easily achieved for the LRBMS approximation.
The estimates are fully offline/online decomposable and can thus be efficiently used for
model reduction in the context of the LRBMS.

From here on, we presume the fine grid 7, to be a simplicial one (and thus call it
a triangulation from here on) and to fulfill the requirements stated in [ESV2010, Sect.
2.1], namely shape-regularity and the absence of hanging nodes; an extension to more
general triangulations is possible analogously to [ESV2010, A.1]. We also presume the
subdomains T' € Ty to be shaped convex.

We begin by stating an abstract energy norm estimate (see [ESV2010, Lemma 4.1])
that splits the difference between the weak solution p. € HE(Q2) of problem (1.3.1)
and any function p, € H'(7) into two contributions. This abstract estimate does not
depend on the discretization and thus leaves the choice of s and v open. Note that we
formulate the following Lemma with different parameters for the energy norm and the
weak solution. The price we have to pay for this flexibility is the additional constants
involving a(u, @) and ~v(u,), that vanish if @ and p coincide.

Lemma 2.3.2 (Abstract energy norm estimate). Let p-(p) € H}(Q) be the weak solution
of Problem 1.4.1 for p € P and let p,, € H' (1) and & € P be arbitrary. Then

e (k) = prllye < s (VA o) il = sl (2:3.11)

o(p,) €HX(
* vebiffili{((l) { goeSI;léIZQ) {(f = V-0.0) o = (Aw)e - Vipn + v, Vw)ﬂ}})
llell,,=1

< (1, 18)
-)

2 |lp=(r) = pnlll-

2
F
J

Proof. We mainly follow the proof of [ESV2010, Lemma 4.1] while accounting for the
parameter dependency of the energy norm and the weak solution. It holds for arbitrary

45

2 The localized reduced basis multiscale method (LRBMS)

we€P,pe HYQ) and p, € HY(7,), that

llp = pull, < inf lpn = sll, + sup be(p — pr, ;1) (2.3.12)
s€H; () PEH ()
lell,, =1

(see [Voh2007, Lemma 7.1]) and for the weak solution p.(u) € HE(Q) of Problem (1.4.1),
that

b&‘(p&‘(“) — Ph, P; IJ‘) = (f7 QO) 2 (A(H’)sthphu v@)[ﬁv
= (f=V-v,90) 2 — (AM1)ke- Vipn + 0, V) 5 (2.3.13)

for all p € HL(Q) and all v € Hgiy(f2), where we used the definition of b. in the
first equality and the fact that (v, V)2 = —(V-v,¢)r2 due to Green’s Theorem and
¢ € H}(Q) in the second one. Inserting (2.3.13) into (2.3.12) with p = p.(p) and using
the norm equivalence (2.3.8) then yields the first inequality in (2.3.11).

To obtain the second inequality we choose s = p.(p) and v = —A(p) ke Vp.(p) in the
right hand side of (2.3.11) which eliminates the two infimums and leaves us with two
terms yet to be estimated arising inside the supremum. Using Green’s Theorem and the
definition of b. we observe the vanishing of the first term. We estimate the second term
as

‘ ()‘(“)/‘fsvhph = Mp)rVp. (), v@)[ﬁ{
= ‘ (()‘(“)/iE)lmvh(ph — pe(m)), (A(M)H€)1/2V@)L2|
| A 290 0n = po)| | Ak 29

= lllpn = pe (o)l Ll s

IN

L2 L2

where we used the Cauchy-Schwarz inequality and the definition of the energy norm. We
finally obtain the second inequality of (2.3.11) from the bound above by observing that
the supremum vanishes (due to [|¢]|,, = 1) and by using the norm equivalence (2.3.8)
again. O

The following theorem states the main localization result and gives an indication on
how to proceed with the choice of v: it allows to localize the estimate of the above Lemma,
if v fulfills a local conservation property. It is still an abstract estimate in the sense that
it does not use any information of the discretization and does not yet fully prescribe s
and v. Given our assumptions on the data functions A and r., we denote by 0 < ct(u)
and cL(p) < C%(p) the smallest and largest eigenvalue of A(p)k.|,, respectively, for any
p € P and additionally define cf := infyep ci(p) and ¢ < CL:= 37 p Cl(p), for all
tecTy.

Theorem 2.3.3 (Locally computable abstract energy norm estimate). Let p.(u) €
H(Q) be the weak solution of Problem 1.4.1 for p € P, let s € H}(Q) and pp, € H*(13,)
be arbitrary, let v € Hqai,(Q) fulfill the local conservation property

(Vev, D)2 = (f, 1) 2 p

46

2.3 Error control

and let C’}; > 0 denote the constant from the Poincaré inequality,
2
le =15 ¢l 2.7 < CERZIVlIZ2 1 for all p € H'(T), (2.3.14)

on all T € Ty, where IIY denotes the L2-orthogonal projection onto Py(w) forl € N and
w C Q. It then holds for arbitrary @, 1 € P, that

“‘pa(ﬂ) - ph’”* S ﬁ(pfh S, U3 ﬁ) ﬂ))
with the abstract global estimator 7(pp, s, v; @, ft) defined as

Ry p— [(Y itonsm?) (X w2

a(p,
(re.11) TeTy TeTy

/
b (X i) |

TeT
and the local nonconformity estimator defined as
~T _
Tne(Phs 5 18) := [lpn — slllz 7,
the local residual estimator defined as
=T T ; T\1/2
i (v) = (Ch /D) Phr|f = V-vllpa

and the local diffusive flux estimator defined as

belons 03) = ||\ o) ™2 (@) T+ 0)|

L2T
T._; t
for all coarse elements T € Ty, where ¢z = 1nft€7_hT L.

Proof. We loosely follow the proof of [ESV2010, Theorem 3.1] while accounting for the
parameter dependency and the coarse triangulation. Fixing an arbitrary s € HJ () in
(2.3.11) and localizing with respect to the coarse triangulation yields

le(ut) = pilla < s (VAG), | 3 llon = sllr (2:3.15)

TeT

+ sup Z ((f - V'U5¢)L27T_ ()\(H’)'%E'Vhph +Uav§0)L27T)})
pEH () TeT d
llell,,=1 i=(2) = (i)

which leaves us with two local terms we will estimate separately.

(i) Since (f — V-v,II§p) 27 = 0 due to the local conservation property of v we can
estimate the first term as

|(f - V‘v,go)Lz’T} <|f- V'UHL2,TH90 - HgSDHsz
11\1/2
< \/CBhr (max) 1 = Vvl gz el
ter, Ce

where we used the Cauchy-Schwarz inequality, the Poincaré inequality and the
equivalence of the local norms, (2.3.8), on all t € 7]

47

2 The localized reduced basis multiscale method (LRBMS)

(1) We estimate the second term as

|\ RTnpn +,V0) 12 1] < || AR 2N in +0) | [l
—~—1 N _
< Valm @) | M@k A weTnon +)|, Il r

using the Cauchy-Schwarz inequality, the definition of the local energy semi-norms
(2.3.4) and the parameter equivalence (2.3.6).

Inserting the last two inequalities in (2.3.15) and using the Cauchy-Schwarz inequality
and the definition of the local estimators and of ¢! yields

o)~ il < e (VA (Y it sim?)

(1, 1) TeTy

2

+ sup (7 (v) + ———= Ade(pn, v) lell o |)-
SDEHol(Q)[T;H Valwi) g])
loll, =1 ~ y

Using the Cauchy-Schwarz inequality again we can further estimate (7ii) as

(i) < [(> i) + (X o vi0)?) 2] ol

TETy

The previous two inequalities combined give the final result, since the supremum vanishes
due to |||go|\|“ =1. O

Remark 2.3.4 (Properties of the locally computable abstract energy norm estimate). In
contrast to the estimator proposed in [ESV2010] the above estimate is local with respect
to T, not 1,. Choosing Tgr = 1, we obtain nearly the same estimate as the one in
[ESV2010] for the pure diffusion case (apart from a slightly less favorable summation).
In general, however, we can only expect 7, to be super-convergent as in [ESV2007] if we

refine Ty along with T, (see the experiments in Section 4.2.4.1), thus keeping the ratio
H/h fized.

What is left now in order to turn the abstract estimate of Theorem 2.3.3 into a fully
computable one is to specify s and v, given a discrete solution p, ,(p). We will do so in
the following paragraphs, finally using the knowledge that p. j(p) was computed using
the discretization from Section 2.1.

2.8.2.1 Oswald interpolation

The form of the nonconformity estimator in Theorem 2.3.3 already indicates how to
choose s: it should be close to p.p(p), in order to minimize 7., and it should be

48

2.3 Error control

computable with reasonable effort. Both requirements are met by the Oswald inter-
polation operator, that goes back to [KP2003] (in the context of a posteriori error es-
timates; see also [ESV2010, Section 2.5] and the references therein). Given any pos-
sibly discontinuous function ¢, € QQ(TH) we define the Oswald interpolation operator
Ios : Q¥ (Tr) — QF(Tu) N HL(Y) by prescribing its values on the Lagrange nodes v of
the triangulation: we set Ios[gn)(v) := ¢}, (v) inside any ¢ € 75, and

Ioslgn](v) :== |T = Z qp(v) for all inner nodes of 7, and Ios[gn](v) :==0 (2.3.16)
h

for all boundary nodes of 7, where 73 C 75, denotes the set of all simplices of the fine
triangulation which share v as a node. Given a nonconforming approximation p. ,(p),
we choose s = g [p&h(u)].

We continue with the specification of v, which is a bit more involved. The only formal
requirement we have is for v to fulfill the local conservation property on each coarse
element, but the diffusive flux estimator already gives a good hint on the specific form
of v (namely, to be close to —A(p)k:Vipen(p)). A particular choice is given by the
element-wise diffusive flux reconstruction (with respect to the fine triangulation) that
was proposed in [ESV2010], which fulfills the local conservation property on the coarse
elements if properly defined with respect to the discretization from Section 2.1.

2.8.2.2 Diffusive flux reconstruction

We reconstruct a conforming diffusive flux approximation w. j (1) € Haiv(£2) of the non-
conforming discrete diffusive flux —A(p)keVppe 1 (1) € Haiv(§2) in a conforming discrete
subspace V,f(Th) C Hgiv(92), namely the Raviart-Thomas-Nédélec space of vector valued
functions (see [ESV2010] and the references therein), defined for k —1 <1 < k by

Vi) = {v € Ha(V)|v], € [B1(1)]? + xPy(t) Vt e}

See [ESV2010, Section 2.4] and the references therein for a detailed discussion of the role
of the polynomial degree [, the properties of elements of V,f(Th) and the origin of the use
of diffusive flux reconstructions in the context of error estimation in general. We define
the parametric diffusive fluz reconstruction operator R : P — [QF(Ty) — V(m)],
n— [qh > Rﬁl[qh; u]], by locally specifying th [qn; 1] € V,f(Th), such that

(Rilans 1] -ne,) o, = bEan, 4 1) + 05 (g, 0 1) for all ¢ € Py(e) (2.3.17a)
and all e € f,tL and

(Rilan; 1), Va) 2, = =0 (an g 10) = 9 Y bE(g, qns) for all Vg € [Py (8)]
eE]—'t
(2.3.17b)

49

2 The localized reduced basis multiscale method (LRBMS)

with g € Py(t) for all t € 75, where 9 is given by the local discretization inside each coarse
element and by ¥ = 1 on all fine faces that lie on a coarse face. This reconstruction
of the diffusive flux is sensible for the discrete solution as well as the reduced solution,
since the reconstructions of either fulfill the requirements of Theorem 2.3.3.

Lemma 2.3.5 (Local conservativity). Let 1 € QL, C QE’T for all T € Ty and
let pen(p) € QF(Th) and prea(p) € Quea(Tw) be the discrete and reduced solution
of Problems 2.1.1 and 2.2.1 for a parameter p € P, respectively, and let usp(p) =

Rﬁl[pgyh(u);u] € V,f(Th) and Upeq(p) = Rﬁl[pred(u);p,] S V,f(Th) denote their respective
diffusive flux reconstructions. It then holds that u. (i) and urea(p) fulfill the local con-
servation property of Theorem 2.3.3, i.e.,

(V-ug7h(u), 1)L2,T = (f,]I)LQ’T = (V-ured(u), ll)LgﬁT for all T € Ty.

Proof. We follow the ideas of [ESV2010, Lemma 2.1] while accounting for the coarse
triangulation. Let 17 € Q¥(7x) be an indicator for T' € Ty, such that]lT’T =1¢ Qi’T
and zero everywhere else. It then holds, that

(V'Us,h(“)a]l)LQ,T = Z [(Ue,h(l’/) N,]l)Lzﬂ - (us,h(“)7 V]l))[g’t]

tEThT

= ba,h(pa,h(U)v]lT; II') = (fa]I)LQ,Ta

for all T € Ty, where we used Green’s Theorem in the first equality, the definition of the
diffusive flux reconstruction, (2.3.17), and the definition of 17 and b, j, in the second and
the fact, that 1 € Qz’T and p.p, solves (2.1.7) in the third. The very same arguments
hold for ueq and preq solving (2.2.4). O

Inserting the Oswald interpolation for s and the diffusive flux reconstruction for v in
Theorem 2.3.3 then yields a locally computable energy estimate for the discrete as well as
the reduced solution. Though mathematically identical we explicitly distinguish between
Ny, and 1y, red, since the latter, restricted to Qred (7), is offline/online decomposable.

Corollary 2.3.6 (Locally computable energy norm estimate). Let p.(u) € HZ(Q) be the
weak solution of Problem 1.4.1, let p. ,(p) € Q1. (Th) be the discrete solution of Problem
2.1.1, let prea(p) € Qrea(Ta) be the reduced solution of Problem 2.2.1 and let R% denote
the diffusive flur reconstruction operator. Let the assumptions of Theorem 2.3.3 and
Lemma 2.3.5 be fulfilled and let w, f € P be arbitrary. It then holds, that

llp=(re) = pen(B)llz < nn (e, (10); 11, 12, 1),
H|p€(u) — Pred (H)|||* < nh,red(pred (u)v M, ﬁa Il)

with
. 1 — T2\ /2 T 2\ 1/2
M 0 T 1) 1= s Vi) (Y mm?) (Dl (w?)
’ TETy TETH
CN1/2

50

2.3 Error control

Jor nw = np = N rea and
M () = i Los[1), mf (i) =L (RL[5), mdeCs o, o) == iigg(c, R[5 pls).
2.8.2.83 Local efficiency

The global efficiency of the abstract estimate was already shown in Lemma 2.3.2 (again
note, that y(u,) = a(p, ;) = 1 if p and @ coincide), see [ESV2007, Remarks 4.2
and 4.3] for a discussion. We also state a local efficiency of the local estimates from
Corollary 2.3.6 using the form of the discretization, the Oswald interpolation and the
diffusive flux reconstruction. Therefore, we further localize our estimates with respect
to the fine triangulation and apply the ideas of [ES2008, ESV2007, ESV2010]. We
denote by < a proportionality relation between to quantities a and b in the sense that
a < b:<= a < Cb, where the positive constant C' only depends on the space dimension,
the polynomial degree k, the polynomial degree of f, the shape-regularity of 75, and the
DG parameters o and ¥. We additionally denote the set of all fine elements that touch
T € Ty by 7l := {t € 7, |tNT # 0}, the set of all fine faces that touch T by F := {e €
Fn|3t €l s ent # 0} and the weighted jump seminorms [[]]. » : P — [H' () — R,
p g lall, 7] and [, 7« P = [H'(ta) = R], p— [q = [la]l,, . 7] for any subset
F C Fp,all p€ P and g€ H(r) by
1/2

o= (S OG0 0]) and Tl r = (X i)

eceF ecF

respectively. We also denote the set of all fine elements that touch ¢ € 7, by %,i and the
set of all fine faces that touch ¢ by F; and define

- — _ 1/2
caT = min ct hr = maxht, ol = (maxw) / ,
terl ter] ecFl
7T CS
CT .= max C!, hr := min h, C. :=max ((max =£)?)

teTy, i t@-h teThT sEtUN(t) Ce
forall T € Ty.

Theorem 2.3.7 (Local efficiency of the locally computable energy norm estimate). With
the notation and assumptions from Corollary 2.5.6, let f be polynomial and maxic,, hy <
1. It then holds for ps = pe h,Dred, that

e (pe(1); 1) S (CT /)2 pe(pt) = pe ()] o 57
0 (pe)s 1) S VA B (CF /D) Phr [CF b () = 2 ()l
+ @ hr [l r
+ 02 by [pe(pt) — P 5 |
o) 0.) % /AT /A7) O (e () — ()l

+ [[pe(pe) — p*(ﬂ)mp,ﬁ,f}f)

o1

2 The localized reduced basis multiscale method (LRBMS)

for all coarse elements T € Ty.

Proof. We estimate each local estimator separately. It holds for the nonconformity
estimator, that

b) = (3 o) = ol G)

< (X ctmined) D) -0)

< (/) o) = po ()] 3 5

where we use the definition of nl [p.(p)] and 7 in the equality and the arguments of
[ESV2010, Proof of Theorem 3.2] in the first and the definition of CT, &' and ' in the
second inequality.

It holds for the residual estimator that

n (pe(p):) < (C /D) P (|15 = V- (M) Vnpa () | 2

with u, as in Lemma 2.3.5, where we used the definition of 1! [u.(u)] and the triangle
inequality, which leaves us with two terms we will estimate separately.

(i) The first term can be estimated as follows, using the definition of 7/ and the
arguments of [ES2008, Proposition 3.3] in the first and the definition of CI and
ThT and the fact that max;er, hy <1 in the second inequality:

) 12)
i) < (> Clhype(w) —p*(u)!Hi,t) < CThrMIp=(p) = pu(w)], 7

tE’T}?
(7i) The second term can be estimated as

()5 | X (m' X @ I weTapa() -nel] | 2.

+ O’l/th_lm E(u) - p*(u’)mgu,}-ﬁ)2 :| -
S @ hr e, rr + hr 0" [pe(p) = po(W)], 0

using the definition of 71 and the arguments of [ESV2010, Proof of Theorem 3.2]

in the first and Young’s inequality and the definition of @’ KT, hr and T}? in the
second inequality.

52

2.3 Error control

Applying the norm equivalence (2.3.8) yields the desired result for the residual estimator.
Finally, it holds for the diffusive flux estimator, that

(P« (1); 1 B) < Vv (my ﬂ)(> H (Mp)re) ™2 (A ()52 V. () + U*(u))‘ iQ,t)l/Q
VA | 3 (a7 (=) = pe(m)llug

I~ 2l)]

< VA " (p-1) = o)l + Do) = o0 s).

where we used the definition of n[p.(p)] and 77 and the parameter equivalence from

(2.3.8) in the first, [ESV2007, Lemma 4.12] in the second and the definition of QET and
FI' in the third inequality. Applying the norm equivalence (2.3.8) again finally yields
the desired result for the diffusive flux estimator. O

2.8.2.4 Localized offline/online decomposition

We give a localized offline/online decomposition of the local error indicators and of the
global estimator, as defined in Corollary 2.3.6. Here, localized is to be understood in the
sense that in order to compute the indicators for a subdomain we only require quantities
associated with this subdomain and its neighbors. Therefore, for each local reduced basis
space Qﬁd, we denote the corresponding reduced basis by QSZ;d = {(p(j;, e SDZTAL with

n! = dim Qz;d € N for all subdomains T" € Ty. We also define qz;d = Gred| € Qz;d for
any function greq € Qrea(7Tr) (and implicitly understand ¢Z 4 to be extended by 0 outside
of T, if required by the context). For the reduced solution pyeq(pt) € Qred (7w), we thus

get prea(pt) = ZTGTH pz;d(u) with pz;d(u) = Z?:T(;lpiT(u)goiT. We denote the vector of
Degrees of Freedom (DoF) of pL ,(p) € QL by pL 4 (p) € R, with (p;-';d(u))i =pl(p).

First of all, however, we need to revisit the definition of the diffusive flux reconstruction
operator (2.3.17). Since that operator is defined locally with respect to the fine grid,
we can reformulate it with respect to each subdomain and its neighbors, analogously to
(2.1.8). Additionally, it inherits the affine decomposition of the bilinear forms. This does
not only make it possible to decompose the evaluation of the local indicators as defined
in Corollary 2.3.6 into an offline and an online part, given prescribed @, ot € P. It also
allows us to evaluate those indicators efficiently for any online choice of . This, in turn,
allows us to efficiently estimate the full error of a reduced solution in the parameter
dependent energy norm ||-||; online, for any 1z € P.

For each subdomain T" € T, we therefore define the local component diffusive flux

reconstruction operators }%2751 : Qf - Vhl(T}?) for all 0 < ¢ < = by locally specifying
Rﬁ;g[%], for g, € Qﬁ(Th), on all e € FI', such that

(Rielan) nesa) 1o, = Ve (ans @) + b5 ¢(ans q) for all g € P (e)

53

2 The localized reduced basis multiscale method (LRBMS)

and on all t € TE , such that

(Ri{z [Qh]’ vq) L2t == Qha ﬁz bCf q, qh for all Vq € []P)l_l(t)]d
ee]-‘,im}‘g

with ¢ € P;(¢), where 9 is given as in (2.3.17) and b’ . ¢+ be e and by . denote the components
of the affine decomposition of the local, coupling and penalty blhnear forms bt, b and by
from (2.3.4) and (2.1.3), respectively (which we do not give explicitly here). Addltlonally
for all coarse faces E € Fy, we define the face component diffusive flux reconstruction
operator Riﬁg : QZ(T;L) — V,f(Th) for all 0 < £ < = by locally specifying Rl};g[qh], such
that

(Riglan) nesa) 2, = Ve (an: @) + by elan0) for all ¢ € Pi(e)

onall e €]:};E and

(RyElan)Va) oy == D> beela,an) for all Vg € [P,y (t))"
ee]-‘;im}‘,’f

with ¢ € Py(t) on all t € 7, where 77 C 7, denotes those fine elements, a face of
which lies in]-'f . With these definitions we can rewrite the diffusive flux reconstruction
operator from (2.3.17) as

Rilaniel = Y[R landrid + - B lanlgiml].

TeTu SeEN(T)
with
=-1 =-1
1T 1T IT,S IT,S
Ry [anlps p] == Z aﬁ(N)Rh,g[Qh‘T] and Ry [qnlp; pl == Z QE(N)Rh,g [anlr];
£=0 £=0

where 0¢ denote the coefficients from the affine decomposition of A and

LT .
Rh7§[Qh|T] : hg Qh|T Z R Qh‘T and
EcFE
IT,S
Ry lanle] = > R Elanls]
EBeF]

for all g5, € QF () and all p € P.

Using this reformulation of the diffusive flux operator and the fact that the Oswald
interpolation operator Iog from (2.3.16) is linear, we proceed with the actual offline/online
decomposition of the local error indicators and the a posteriori error estimator from
Corollary 2.3.6.

o4

2.3 Error control

The nonconformity estimator 1!.. Using the definitions of 7., and the energy norm
(2.3.4), we obtain for the nonconformity estimator

e (Prea (1):72)” = Ilprea() = Los[prea (10)] 1% -
= bg (predo‘l'):pred(ﬂ);i) - 2bT (pred(ll/) Ios[pred(ll/)]vﬁ)
+ b (os[pred()} os[pred<)]) (2~3-18)

We define the component matrices AT,Bg,Cg e RV " for all 0 < ¢ < Z and the

parametric matrices AT (@), BT (), CT (@) € R 1" for all i € P by

(A8),; = ble(el)), AT(@) = Y be(m)AT.
€0
=1
(BE),; = ble(ol Iosle]) B"(m) = 6c(m)BL.
£=0
=1
(CT), ;= Ve (TaslT), Il]) - amd O (@) == >~ Oc(m)CE,
£=0

respectively, for all ¢! ,cpj € ng .q and all subdomains T € Ty. We thus obtain the

following decomposition of the evaluation of nl, from (2.3.18), for variable zr € P and
all T € Ty:

1/2
e (Prea (14):) = (pZ;d(u) (A7 (@) - 2B (@) + C"(m)) pﬁd(u)) :

The residual estimator n!. Similarly, using the definitions of n! and the L? norm, we
obtain for the residual estimator

! (prea(ue):)’ = (CB/eF) || f = V- Rhlprea(uo): |,
= (CBIEY (e =2 (V- Bhlprea(m)i) o (2:3.19)
=:(i)
+ ||V R} [prea(p); g ||L2T>

~~

2

=:(%1)

which leaves us with two terms we consider separately. We make use of the reformulation
of the diffusive flux operator from above and the fact that

RZ[%;M]T—RZT% > Ry a5 p]
SeN(T)

which also holds for all components of the reformulated diffusive flux operator.

95

2 The localized reduced basis multiscale method (LRBMS)

(i) We define the component vectors d? e R" and dg’s eR" forall 0 < ¢ < = and

the parametric vectors d’ (p) € R"" and d"%(u) € R"" for all u € P by

n

—_

(), = (£, V-Rylel) o d"(p) = 3 Bl

o~
Il
o

n

—

(d0%), = (£ VR 68]) ay and dT5(n) =" Be(p)d]

T
o

respectively, for all <pl € qﬁred, <pz € ¢red and all subdomains 7" € Ty and their
respective neighbors S € N(T). We thus obtain

() = ploa(p)-d"(w) + D palp)-d"5(w). (2.3.20)

SeN(T)

(ii) Using the definition of the L? norm, we obtain

. 1T 2
(ZZ) = Hv R red(lj' s HL2 T
l, 1,7T,s
+ 2 Y (VB Pl VB s ()i m))
SEN(T) ’
LTS 1T, S
+ Z Z <V R pred()] VR}L [pred(p‘) “])LQT'
SEN(T) S'eN(T '
(2.3.21)
We define the component matrices Egg, €]R"TX”T, EgT’; € R 7" and Egsgs €

R *7™ for all 0 < £,¢ < Z and the parametric matrices E7 (u) € R xn” ,

ETS () € R0 and ESTS () € B0 for all p e P by

l
(ELe),; = (VBN V- B I0T) |, ET() = > 6e(u) B
) 5:0
=-1
S S : L .S
(BLS),, = (VBT VR [goj])LzT, ETS(n) = Y 0e(m)EFS,
b 5:0
-1
S.T,8' 1T, 11,8 8 5! L S.T,8'
(B = (VB VR 65T) o BT ()= Y 0w BETY
b §:0

respectively for all cpz € qﬁred, cpz ,g0] qﬁred, cpj € qbfe/d and all subdomains T € Ty

56

2.3 Error control

and their respective neighbors S, S’ € N (T). We thus obtain from (2.3.21):

(i2) = Prea(t) BT (1) Prea () (2.3.22)

+ 2 > pha(w) BT () pla(p)
SeN(T)

+ Z Z pred ESTS,(IJ’) prsgd(l'l’)

SEN(T) S’"eN(T)

Inserting (2.3.20) and (2.3.22) into (2.3.19) finally yields the following decomposition for
the evaluation of the residual estimator n!, for all g € P and all T € Ty:

ﬁer(pred(M);M) = W

(HfHLT + (pha(w) BT () —2d" () pha(i)

2 Y (phaw BT () - d"S W) pia(m)
SeN(T)

1/2
+ > Y phalw) ESTS () pla(w)) :

SEN(T) S"eN(T)

The diffusive flux estimator ngf. Similarly, using the definitions of 77({lc and the L2
norm, we obtain for the diffusive flux estimator

The(prea(p): o0 = | (AG) ™ (A) Viprea41) + R e)|

2T
A -1/2 2
= H (AMi@n)re) ()‘(U)Hsvhpred(u))‘ er (2.3.23)
=:(i)
+2 (A Vaprea(pe). (Mi)oe) ™ Bhprea (i),

=:(i)
|| e R prea(p);

D)

2

2,71’

which leaves us with three terms we consider separately.

(1) We define the component matrices F, 5 ¢ forall 0 <&, ¢ < Z and the parametric
matrices F7' () for all u € P by

(Ffin/)w = (()\(ﬂ)ﬂa)_l()\gﬁgvhw?)’Aﬁ%svhgp?)m T

o7

2 The localized reduced basis multiscale method (LRBMS)

(i)

(iii)

o8

and

E-15-1

ZZ%)0gr (1) Feer,

£€=0¢'=

respectively, for all <pl ,gpj € ng g and all subdomains T' € Ty. We thus obtain

(i) = Prea(w) F* (1) Prea(ks)- (2.3.24)

We define the component matrices Gg,g' e RV and G?g e R"""% for all 0 <

¢,¢ < Z and the parametric matrices GT () € R X" and GT>5(pu) € R™ *n
for all u € P by

S

(6Le),, = (hemeDuel, (M) "Bl glel])

L2 T
(GL5),, = (emeiel, (i)~ L))

2T

and

G5 (p) = ZZ% e ()G

respectively, for all 901 ,cpj € ¢red’ goj € gb;ged and all subdomains T € Ty and their
respective neighbors S € N(T). We thus obtain

(i1) = Prea(18) GT (1) Pla(8) + D ploa(r) G5 (1) pa(p). (2:3.25)
SeN(T)

We define the component matrices H g ¢ € R”TX"T, H gT 5‘/9 e R""*n" and H £S g s

RS for all 0 < ¢ < EZ and the parametric matrices H” (u) € R "
HTS (a) € R0 and 9T () € R0 for all € P by

)

(HEe):; = ((Mwme) PRI (Miwe) ™R L)
(HEE),, = (@) TP RERT), (i) PR RS)

(HEDS), = (()\(ﬂ)na)—lﬂ RIES105], (M) we) 2 RES Lpf/])L?,T’

2.3 Error control

and

=-15-1
€0 &=
=—1=-1
HS () =) Z Oc ()0 (1t &Tgv
€0 /=
Z-15-1
HOS () o= 3 D O (W HE S

§=0¢'=0

respectively, for all gpz ,cpj d)red, goz ,<p] gbred, gpj € qﬁred and all subdomains
T € Ty and their respective neighbors S, 5" € N(T'). We thus obtain

(i11) = Plea(tr) H (1) ploa (1) (2.3.26)
+ Z Prea(pr) HS (1) plha(p)
SeN(T
+ Z Z pred HSTS (ll/) pid(lj’)
SEN(T) S'eN (T

Inserting (2.3.24), (2.3.25) and (2.3.26) into (2.3.23) finally yields the following
decomposition for the evaluation of the diffusive flux estimator nl, for all p € P
and all T € Tg:

N (Prea (14); 11, f1) = (Pra () (F7 (1) + G (1) + H' (1)) pg (1)

+2 Y pred 1) (GT5 () + H™ (1)) plia (1)
SeN(T

1/2
+ Y > phalw) HS’T’Sl(u)pféd(u)> :

SEN(T) S'eN(T)

Given these decompositions of the local indicators, the corresponding offline/online
decomposition of the estimator n,.q is straightforward. Note that the computational
complexity of computing the estimators during the online phase scales quadratically
with the number of components of the affine decomposition of A, =.

Now that we know how to compute high-dimensional snapshots and how to estimate
the error of the discrete as well as the reduced solution, the definition of the LRBMS is
nearly complete. For the remainder of this chapter, we therefore discuss how to generate
the local reduced bases offline and how to adaptively enrich them online.

99

2 The localized reduced basis multiscale method (LRBMS)

2.4 Adaptivity

We have already identified several challenges in the context of parametric multiscale
problems, where traditional RB methods reach their limits (see Section 1.4). These
challenges are related to the fact that the dimension of the approximation space scales
with e~ for some [> 1, which results in a very expensive offline part of the computational
process. We address this issue by localizing many aspects of the offline part, for instance
by a combination of the greedy algorithm using localized snapshots and an a priori choice
of local reduced basis functions (see Section 2.4.1).

In addition, we have already discussed another shortcoming of traditional RB methods
with respect to the training character of the greedy algorithm (see Section 1.3): we can
only expect the greedy algorithm to produce a good reduced approximation space (in
the sense of the Kolmogorov n-width), if we allow it to search over a large set of training
parameters, Piain C P, and if we allow it to add a certain amount of solution snapshots
to the reduced basis. In general, we cannot say anything about the approximation quality
of the generated reduced space for untrained parameters, P\ Pirain. While we can assess
the approximation error online, we have no means to improve the approximation quality
of the reduced basis online, without dropping back to high-dimensional computations.

The latter is particularly troublesome in the context of parametric multiscale problems,
where a single solution snapshot is already very costly and where we usually do not have
the computational power to generate an acceptable reduced space offline. We address
this issue by an adaptive enrichment of the local reduced bases during the online part
of the computational process (see Section 2.4.2). While we allow for high-dimensional
computations online (and thus break the traditional offline/online decomposition), we
only require computations that are local to a subdomain.

2.4.1 Offline basis generation

As discussed in Section 1.3, there exist several variants of the greedy algorithm, depend-
ing on the circumstances and requirements. In many multiscale scenarios, the fine grid
T, and thus the high-dimensional approximation space Qﬁ(Th), is prescribed a priori (see
for instance the experiment in Section 4.1.2). A natural choice for these kind of problems
is the discrete weak greedy algorithm 1.3.11, which we adapt to the LRBMS setting. We
do so by using the residual-based a-posterior estimate on the model reduction error from
Theorem 2.3.1, neq, and by restricting the snapshots to each subdomain:

(n) oy . T'(n) * : (n) _ T'(n)
extend (¢ 4, u") = Urer;, ONB(¢, 4" U Pe (1)|T)’ with ¢4 = UreTy Greq -
This variant of the greedy algorithm produces a reduced space with better approxima-
tion properties than that of standard RB methods while requiring less global snapshots
(see the experiments in section 4.1). In addition, the local orthonormalization proce-
dures operate on much smaller quantities and can be carried out in parallel. This step
of the offline part is thus much cheaper than the global orthonormalization step of the
traditional discrete weak greedy algorithm. On the other hand, the offline part suffers

60

2.4 Adaptivity

from the bad scaling of the offline/online decomposition of the residual-based error es-
timator with respect to the coarse grid, which undermines our efforts of reducing the
overall offline cost.

We addressed this drawback by using the localized a posteriori error estimate, 1, red,
from Corollary 2.3.6. We could use this estimate on the full error, together with the local-
ized estimate on the discretization error from [ESV2010], to drive the spatio-parameter
greedy Algorithm 1.3.12, which adaptively refines the discrete space Q () along with
the reduced space Qreq(Tr). However, since the idea of the spatio-parameter greedy
algorithm has only recently been proposed and since there still remain some practical
aspects to be considered in the context of the LRBMS, we postpone this ansatz for
future work. We thus use the estimate on the full error in the above context where a
fixed approximation space QZ(Th) is given, which requires some careful considerations:
since the full error of a reduced solution can never be lower than the discretization error
induced by the prescribed approximation space QE(T}L), say Ap > 0, we cannot expect
a greedy algorithm to reach any tolerance below that, A.q < Ap (see also Definition
2.4.1 below).

In general we do not have any information about the solution manifold a priori and it
thus does not make sense to initialize the reduced basis with problem independent func-
tions a-priori. The most natural choice therefore is to initialize the reduced basis with
the largest element of the solution manifold (see the variants of the greedy algorithms in
Section 1.3). In the context of the LRBMS, however, we are not interested in generating
one reduced basis with global support, but instead many local reduced bases, associated
with the subdomains of the coarse grid. Inspired by numerical multiscale methods (see
Section 1.2) and the interpretation of the LRBMS as a generalized DG method with re-
spect to the coarse grid, we initialize each local reduced basis with DG shape functions
of order up to ky, for some ky € N. We thus ensure that any LRBMS approximation is
at least as good as a standard DG method of order kj on the coarse grid. In addition,
the coarse behavior of the reduced solutions will be captured by the DoFs associated
with these basis functions, while all subsequent local reduced basis functions can be
interpreted as local fine scale corrections (see also the discussion of numerical multiscale
methods in Section 1.2.2).

Definition 2.4.1 (Discrete weak greedy algorithm in the context of the LRBMS). Let
Pirain C P be a finite set and let p. () and prea(p) denote the solutions of the dis-
crete Problem 2.1.1 and the reduced Problem 2.2.1, respectively, for p € P. Let further
Ny (-5 -5 1, ft) and Ny red (-3 -, &, ft) denote the localizable a-posterior estimates on the full
error from Corollary 2.53.6 for some fived @, i € P and let kg € N. With the mazimum
estimated discretization error denoted by Ap, := max,ep, ... M (Ps,h(ﬂ); b, ,ll), the dis-
crete weak greedy algorithm for the construction of a local reduced basis (;5;";(1 spanning
a local reduced space space Qz;d on each subdomain T € Ty, to approximate IO (Pirain)
with an accuracy Apeq > Ap, is then given by Algorithm 1.3.10 with

init (Pirain) = UTeTH{DG shapefunctions of order up to kg w.r.t T}

(n)

estimate (¢, 11):= M rea (P2 (12); 1, T 1),

61

2 The localized reduced basis multiscale method (LRBMS)

T . T
extend(gbizg, pw*) = Urery ONB(¢re(dn) U pen(p”)|), with (f)Egg = UTGTH¢re£ln)7
where ONB denotes an orthonormalization procedure for improved numerical stability, for
instance a stabilized Gram Schmidt procedure (see also Section 3.2.4.1).

In order to bring down the computational cost of the offline part we can use the above
greedy algorithm while allowing only for a very limited amount of global solution snap-
shots. This will result in a relatively small reduced space that may well be insufficient
for most parameters (even most training parameters).

We are thus now in the situation already outlined in the beginning of this chapter:

We are not given sufficient resources to generate an appropriate reduced basis of-
fline and we would thus like to adaptively improve the reduced basis online, while
maintaining as much of the offline/online decomposition of the computational pro-
cess as possible.

2.4.2 Online basis enrichment

Online, given any p € P, we compute a reduced solution preq(pt) € Qreda(Tr) and effi-
ciently assess its quality using the error estimator 7, yeq. With traditional RB methods,
we have no means to improve the quality of the reduced solution, if the estimated error
was too large. The localized nature of the LRBMS, however, allows us to improve the
quality of the reduced solution during the online phase by carrying out an intermedi-
ate local enrichment step in the SEMR (solve — estimate — mark — refine) spirit of
adaptive FE methods (see Section 1.1). Instead of enlarging the approximation space
by local grid adaptation, however, we enrich the local reduced bases by solving local
corrector problems on selected subdomains, motivated by domain decomposition and
numerical multiscale methods (the procedure is summarized in Algorithm 2.4.2): we
first compute local error indicators n{red(pred(u);u,ﬁ,) for all T € Ty, such that

nh,red('; uyﬁu ﬂ)z S ZTG’TH nired('; p‘vﬁu ﬂ)Qv defined as

T (o 2. 3 [ty T (2 T N2 1 T N2
nh,red(S, T f1) \/m[v (1,) 77nc()"+ ()7 + \/mndf(s,)7,
(2.4.1)

and mark subdomains Tz C Tg for enrichment, given a marking strategy MARK. We
propose and discuss several such strategies in Section 4.4. On each marked subdomain
T € Ty we solve the local corrector problem

b2, (L5, (1), an;) = 1y (an) for all g, € QF(r,°) (2.4.2)

on an overlapping domain Ty D T with the insufficient reduced solution pyeq () as dirich-
let boundary values on dIs to obtain an updated detailed solution pfé(p) € Qﬁ(ThT ?).

Here Q’,fb(T;{‘S), bgT‘Sh and lg‘s are extensions of QZ(T;{), baTh and [T, respectively, to the
overlapping domain Ty while additionally encoding pyeq () as dirichlet boundary values.

62

2.4 Adaptivity

We then extend each marked local reduced basis by performing an orthonormalization
procedure on pETfh (u)’ o With respect to the existing local reduced basis and update all
reduced quantities with respect to the newly added basis vector. Finally, we compute
an updated reduced solution using the updated coarse reduced space and estimate the
error again. We repeat this procedure until the estimated error falls below the prescribed
tolerance A,.q or until the prescribed maximum number of iterations, ney € N, is
reached.

Algorithm 2.4.2 Adaptive basis enrichment in the intermediate local enrichment phase.
Input: MARK, ONB, {d)z;d}TeTH’ Dred(14), ty Ared > Ap, Next € N
Output: Updated reduced solution and local reduced bases.
¢r O §T NT € Ty, n 0
while nh,red(pred(u); oy 1 ﬂ) > Areq and n < Neyy do
for all T € Ty do

Compute local error indicator nired(pred(p,); W, &, ft) according to (2.4.1).
end for
Th + MARK(Tg)
for all T € Ty do

Solve (2.4.2) for pZ“h(u) € QZ(T,?‘S).

d¢3f;é"+” omB({on " pl ()| })
en or
T (n)

n T (n+1
Qred(TH)() < ®T67’H Span(érec(l i)) ® @TGTH\'-]-H Span(qﬁred)
Update all reduced quantities w.r.t Qred(TH)("Jrl)'

Solve (224) fOT' pred(u’) € Qred(TH)(n+1)'
n+<n+1
end while

T
return pred(“)7 {(z)re(gn) }TETH

There are several things worth noting about our modification of the online part of the
computational process. First of all, if the approximation quality of the reduced space is
sufficient for all parameters of interest, we do not interrupt the online phase at all; it
is then completely analogous to the online phase of traditional RB methods. The com-
putation of the local error indicators in Algorithm 2.4.2 can be efficiently offline/online
decomposed (see above); the computational complexity of MARK only depends on the
number of subdomains, |Tz|. Once a set of subdomains has been marked, the enrich-
ment can be carried out in parallel with respect to the marked subdomains, without any
communication. For the update of the reduced quantities only local information and the
information on one layer of neighboring fine grid cells is needed.

The LRBMS method with the proposed basis generation Algorithm 2.4.1 and the
adaptive online enrichment strategy from Algorithm 2.4.2 is now suitable for a far wider

range of circumstances than standard RB methods or the initially published variants
of the LRBMS method [AHKO2012]. As mentioned before it can now be applied if

63

2 The localized reduced basis multiscale method (LRBMS)

the computational power available for the offline phase is limited by time- or resource
constraints. It can also be applied if the set of training parameters given to the greedy
Algorithm was insufficiently chosen or even if online a solution to a parameter is requested
that is outside of the original bounds of the parameter space. In general, the online
adaptive LRBMS method can be applied whenever the basis that was generated during
the offline phase turns out to not be sufficient for what is required during the online
phase.

Remark 2.4.3. Our choice of the greedy Algorithm 2.4.1 and the adaptive online enrich-
ment Algorithm 2.4.2 covers a wide range of scenarios. Disabling the online enrichment
(by setting ney = 0) and choosing any suitable Aeq and nyeq yields the standard discrete
weak greedy basis generation. Setting nweq = 0 and ki = 1, on the other hand, disables
the greedy procedure and merely initializes the reduced bases with the coarse DG basis of
order one. This is of particular interest in situations where the computation of solutions
of the detailed problem during the greedy procedure might be too costly. In that setup
nearly all work is done in the adaptive online enrichment phase.

Many other variants of Algorithm 2.4.2 are possible, e.g. other local boundary con-
ditions, other marking strategies MARK or orthonormalization algorithms ONB or other
stopping criteria; one could also limit the number of intermediate snapshots added to
the local bases. Depending on these choices the resulting method is then close to existing
DD methods (i.e., a DD method with overlapping subdomains, see [QV1999]) or numer-
ical multiscale methods (i.e., the adaptive iterative multiscale finite volume method, see
[HJ2011] or Section 1.2).

64

3 Software concepts and implementations

In this chapter we present and discuss the discretization and the model reduction frame-
work, which were utilized to conduct the experiments in Chapter 4. Scientific software
plays a crucial role in research and is vital for a practical confirmation of theoretical
results as well as for an experimental justification of algorithms, which have not yet
been fully studied theoretically. For each of the two frameworks, we give a thorough
mathematical description of the underlying theoretical requirements (Sections 3.1.1 and
3.2.1), which naturally lead to the abstract design principles for each framework (Sec-
tions 3.1.2 and 3.2.3). We also discuss existing software frameworks (Sections 3.1.3 and
3.2.2) and present our own implementation of either framework in detail (Sections 3.1.4
and 3.2.4).

3.1 Discretization framework

An implementation of a discretization is at the heart of many numerical algorithms, be it
the adaptive grid-based discretizations discussed in Section 1.1, the numerical multiscale
methods discussed in Section 1.2 or the model reduction techniques discussed in Section
1.4.

However, the implementation of a discretization framework as a library of building
blocks for many different circumstances is not a trivial task. We present a realization of
a discretization framework, the purpose of which is to provide such a library for rapid
prototyping of new discretization schemes as well as for well performing discretizations
for highly complex real-world problems.

This section is organized as follows: we examine the different circumstances, where a
discretization framework is required, and define all relevant mathematical concepts in
Section 3.1.1. Based on these requirements, we derive abstract design principles for a
designated discretization framework in Section 3.1.2 and discuss possible available candi-
dates in Section 3.1.3. Since none of those met our needs, we present a new discretization
framework in Section 3.1.4, which is centered around the DUNE module dune-gdt.

8.1.1 Mathematical foundation and theoretical requirements

We recall what we require (mathematically speaking) of a discretization framework.

e Most prominently: given data functions, we require an approximation of the solu-
tion of a partial differential equation (PDE). This approximation involves a parti-
tion of the computational domain, an approximation of integrals, a discrete repre-
sentation of the solution and the solution of linear systems, among other ingredients
(see Section 3.1.1.1).

65

3 Software concepts and implementations

e For a given solution we require an assessment on the error introduced by the
approximation, either by comparison with a known exact solution, a more detailed
approximation or by means of a posteriori error estimation (see Section 3.1.1.2).

e We also require direct access to discrete counterparts of operators, bilinear forms,
products and functionals. This is especially the case in the context of model
reduction (see Section 3.2).

We shall examine these different scenarios and requirements in the following sections
and derive key concepts along the way.

3.1.1.1 Approzimating the solution of a partial differential equation

Following Section 1.1, we consider an elliptic problem as in Example 1.1.2, but allow
for more general types of boundary values. Let therefore Q@ C R, for d = 1,2,3,
denote a bounded connected domain with polygonal boundary &) = I', U I'y, which
is separated into a Dirichlet boundary I'p, and a Neumann boundary I'y, such that
I'pb NIy =0 and I'p # (). Let additionally H'(£2) denote the Sobolev space of weakly
differentiable functions over {2 and H%D () ¢ HY(Q) its elements that vanish on the
Dirichlet boundary I', in the sense of traces.

Given a force f € L%*(Q), a diffusion factor A € L*®(), a diffusion tensor x €
[L>(9)]9%¢ | Dirichlet boundary values g, € L?(I'p) and Neumann boundary values
gy € L?(T'y), we are looking for a pressure p € H'(Q), such that

—V-(A&Vp) = f in Q,
P=49p onI'y, and
(A&Vp)-n = gy on I'y

in a weak sense in Hf._ (). Equivalently put (in a variational setting), we are looking
for p € H(Q) with p = gp on I'p, such that

b(q,p) = 15(q) + lgy (q) for all ¢ € Hp, (%), (3.1.1)

with the bilinear form b : H'(2) x H'() — R and the linear functionals [: L*(Q) — R
and Iy : L?(T'y) — R defined as

b(q,p) = /()\/ﬁVq)'Vpdx, l¢(q) ::/fqd;r and gy (q) ::/qudJ:, (3.1.2)
Q Q I'n

respectively.

The classes of discretizations we consider, namely Finite Element methods (FEM), are
based on a suitable partition of the computational domain 2 by a grid 7, and a Galerkin
projection of (3.1.1) onto a discrete function space associated with this grid.! To proceed
further, however, we need to differentiate between a conforming approximation, where
the approximating space is a subspace (e.g., S,’i(?h) C H'(9Q)), or a nonconforming one,
where this is not the case (e.g., QF () C L*(Q) with QF () ¢ HY(R)).

'See Section 2.1 for a definition of a grid.

66

3.1 Discretization framework

A conforming approximation: continuous Galerkin FEM. We consider the operator
B:HY Q) — HYQ), p+ [¢+— B[p|(q) := b(q, p)] corresponding to the bilinear form b,
and express the solution p in terms of its homogeneous part pg € H%D (©) and a Dirichlet
shift gn p € H(2). Problem (3.1.1) is then equivalent to: find pg € H%D(Q), such that

Blpo] = Iy + lgy — Blgn,p] in H (), (3.1.3)

where gj, p is any representation of gp, such that g D|FD = ¢gp in the sense of traces
(we will specify the choice of gh,p further below). The weak solution is then given by
D:=po+ ghp-

In order to discretize (3.1.3), we introduce two approximations by substituting the
ansatz space by a finite dimensional subspace and the operator B and the two functionals
Iy and [y, by discrete variants; both approximations are induced by the choice of the grid
Tn. (We think of grids as introduced in [BBD+2008] and use the notation of Chapter
2, that is: a grid is denoted by 73, its elements are denoted by ¢ € 75, and its faces are
denoted by e € Fj,.) To begin with, presuming we are given a grid, let S¥(r,) C H*(Q)
denote the continuous Lagrange space of globally continuous and piecewise polynomial
functions of order k € N, k > 1,

Sﬁ(Th) = {q € CO(Q) ‘ q\t S Pk(t> vVt € Th}, (3.1.4)

where Pp(w) denotes the set of polynomials of order at most k for any set w C .
(For ease of notation we shall frequently drop the explicit polynomial order, where
appropriate, and denote by P(w) the set of polynomials of at most some fixed finite
order, which does not have to be the same at each occurrence.) The Galerkin projection
of (3.1.3) onto S¥ then simply reads: find pp o € SF(r4) N H%D (), such that

Blpnol =y +lgy — Blgn,p] in Sy () N Hp (Q). (3.1.5)

Before we proceed any further, let us consider the relationship between the elliptic
bilinear form b and the elliptic operator B.

Remark 3.1.1 (On operators and two-forms). We think of an operator L as a mapping
between Hilbert-spaces V' and W, that is: L : V. — W'. We can also interpret each
operator as a two-form acting on'V and W :

() WxV =R, (w,v); = Lv](w) forallve V,weW.
If L is linear, the corresponding two-form is a bilinear form.

It is thus equivalent to consider (3.1.5), which is posed in operator notation, or the
following problem, which is expressed using the bilinear form: find pro € SF(7) N
HllD (), such that

b(qn, pro) = ly(qn) + lgy (an) — b(qn, gn,p) for all g, € Sp(ry) N Hp, ().

67

3 Software concepts and implementations

To proceed with the approximation of the PDE we can consider either problem but
mainly prefer operator notation in this section. It will only be important to clearly
separate operators and two-forms in the context of the implementation, compare Section
3.1.4.2.

Now that we have approximated H! by the discrete (finite dimensional) space SF(7y),
we require an approximation of the operator and the functionals by discrete counterparts
Bp, = B, lpf =~ lg and lp, 4 = lgy, since B, Iy and Iy, act on H'(£2) and involve integrals
which need to be approximated. We obtain these discrete counterparts by a localization
of the integrals with respect to 75, and by numerical quadratures to approximate the local
integrals on each element of the grid. In order to define the correct discrete operator,
we start by localizing B:

Bl)(p) =) /t (AV)-Vipda. (3.1.6)

teTy,

The next step would be to approximate the above local integrals by a numerical quadra-
ture on each grid element ¢ € 1. However, providing quadratures for arbitrary elements
t € 7, is not an easy task (the same holds for the local shape functions that are required
for the local basis functions, as we will see below). Most discretization frameworks thus
presume that each element of the grid, ¢ € 7, is defined in terms of a reference element
t and a bijective map &' : £ — t and we follow this assumption.? Using this map and
the definition A? := | det(V@tLV@ﬂ we transform the integral in (3.1.6) and obtain

/(Mw) Vo da = /At (Ao @) (ko d")(Vipod")) (Vipodh)da. (3.1.7)
t i

Definition 3.1.2 (Local function, local derivative). Let 75, be a grid of Q and let ¢ :
t — t denote the reference map for allt € 1,. Let further P(t) := {¢! = pod! | ¢ € P(t)}
denote the set of localized polynomials for t € 1,. Given a function ¢ : t — R, for
t € 11, we call the function ¢t := @ o @' : t — R a local function, iff there exists a finite
polynomial degree (which may depend on t), such that ©' € I@’(t) Given a derivative
operator D acting on o, we define the local derivative of o' by Dyp! :== Dy o @', In

particular, for a local function @' € I@’(t), we define its local gradient by Vo' := Vipod® €
[P(t)]%.

Remark 3.1.3. Note that the local gradient of a local function, V¢!, does not coincide
with the gradient of a local function, V'. Using the chain rule we obtain for the latter

V! = V(p o ®') = (Vip 0 ") V',
while the following holds for the former:

Vig! = Vip 0 @' = V(p 0 ") (VO') ™ = Vi (V') 1.

2The reference element £ is usually given by the unit cube or simplex on which quadratures and shape
functions can be constructed.

3Note that the concept of localization naturally holds for vector- and matrix-valued functions as well.
For ease of notation, however, we only discuss the scalar case in this chapter (unless noted otherwise).

68

3.1 Discretization framework

Nevertheless, the local gradient of a local function is a useful concept, as it allows to
rewrite (3.1.7) in a more intuitive way, preserving the structure of the integrand:

/()\mvw) Vodxr = /At (A%tvtz/ﬁ) Vil de. (3.1.8)
t P
=:(x)

We transform the local integrals required for the approximation of the linear functional
l¢ from (3.1.2) in a similar manner:

/fw da = /At Syt da. (3.1.9)
t t ;«(/-/**)

In the above integrals, we implicitly assumed the existence of local functions A, x* and
ft, given the data functions), x and f. We formalize this assumption by demanding all
functions involved to be localizable from here on.

Definition 3.1.4 (Localizable function). Let 15, be a grid of Q and let ¢ : 2 — R be a
function. We call g localizable with respect to Ty, iff it can be expressed as a local function
on all elements of the grid. To be more precise, we call q localizable, iff ¢ € Q(13), where

Q(mn) ={q: Q= R|Vtemn, 3k(t) €N, such that ¢ = q|, 0 D" € I@’k(t)(t)}
denotes the vector space of functions which are localizable with respect to Ty,.

By requiring all data functions involved to be localizable, we can always transform
local integrals as in (3.1.8) and (3.1.9) and obtain polynomial integrands.

Remark 3.1.5 (Local functions and quadratures). While only considering locally poly-
nomial data functions might seem restrictive, note that by using numerical quadratures
we can only integrate polynomials exactly. In practice we are thus bound by the quadra-
ture of largest available order, anyway. In addition, non-polynomial data functions such
as q(x) = sin(x) can still be approximated arbitrarily well (given appropriate quadra-
tures) by specifying large enough local polynomial degrees. The problem of quadrature
errors is thus shifted towards the specification of appropriate local polynomial degrees of
the data functions.

In order to properly define the discrete operator and functionals we return to the inves-
tigation of the transformed local integrals (3.1.8) and (3.1.9). The respective integrand
is composed of the transformation A; and a local evaluation (x and %, respectively),
motivated by the form of b and Iy in (3.1.2). The question of finding an appropriate
numerical quadrature in order to approximate the integrals over the reference element ¢,
however, does only depend on the polynomial degree of the integrand, not on its actual
form. Since we are seeking an approximation of (3.1.8) and (3.1.9) by a (local) discrete
operator and functional, say

Bl [o"(y") ~ /At ()\tntvtq/;t) Vit da and lzj(d)t) ~ /At fytde,
t i g
=(%) =

69

3 Software concepts and implementations

the main difference between the two local evaluations * and *x is the number of local
basis functions they depend on.

Definition 3.1.6 (Local binary volume evaluation and local volume integral operator).
Let 7y, be a grid and let T5 : P(t) x P(t) — P(t) denote a local binary volume evaluation.
We define the local volume integral operator ¥ (Y5) : P(t) — P(t)" by

N(TL)-1

SLT)TW) = Y wihe(@) T o) (),

n=0

where w!, and xt,, for all0 <n < N(T%) € N, denote the quadrature weights and points,
respectively, in order to integrate AT} (wt, gpt) exactly.

We finally obtain the local elliptic operator B,t1 to approximate the integral in (3.1.8)
by combining the abstract local volume integral operator X with the appropriate local
evaluation.

Example 3.1.7 (Local elliptic evaluation and local elliptic operator). Let 7, be a grid
and let X € Q(1,) and r € [Q(11,)]%¢ be localizable with respect to 1,. We define the
local elliptic evaluation Yt : Q(7,) x [Q(7,)]™*? — [I@’(t) x P(t) — If”(t)] and the local
elliptic operator Bf : B(t) — P(t)’ by

Th N k) (0 ¢f) = (MR - Vit and B}, =35, (Th [\ w]),

respectively, where 3 denotes the local volume operator from Definition 3.1.6. Note that
YL, [\ K] is a local binary volume evaluation in the sense of Definition 3.1.6.

Given the above definition of an elliptic operator, some remarks are in order.

Remark 3.1.8 (On integrals vs. integrands or operators vs. evaluations). The explicit
distinction between the operator integrating over a certain domain and the evaluation
modeling the integrand may seem over-engineered at first and may seem to come at a
price of overly complex notation. However, it gives us an increased flexibility and may
even simplify the notation, since we can focus our efforts on specifying meaningful local
evaluations. This shall become apparent in the next paragraphs, where we require exactly
the same evaluation for a non-conforming approximation and for error estimation. In
addition, the concept of local evaluations allows us to formalize many quantities arising
in discretization schemes. In the context of Finite Volume approximations, for instance,
we usually do not carry out a quadrature but compute numerical fluzes on faces (which
are appropriately modeled by local evaluations).

We continue with the approximation of the integral in (3.1.9) for the linear functional
ly.

4 As noted earlier, we restrict ourselves to scalar functions in order to simplify the notation, all concepts
hold for vector- and matrix-valued local functions as well.

70

3.1 Discretization framework

Definition 3.1.9 (Local unary volume evaluation and local volume integral functional).
Let 11, be a grid and let Y} : P(t) — P(t) denote a local unary volume evaluation. We
define the local volume integral functional X% (T%) : P(t) — R by

N(Tt)-1

SHOTD @ = Y wihe(@l) i (9" (a3,),

n=0

where w!, and xt, for all0 <n < N(Y!) € N, denote the quadrature weights and points,
respectively, in order to integrate Ay X! (wt) exactly.

Note that we use the same notation for the local volume operator and functional, X,
to indicate their similarity (since the sole purpose of either is to approximate the integral
over t). It will be clear from the context to which of the two we are referring to (for
instance by the number of arguments).

In the same spirit as above, we obtain the local L? functional lfl, ¢ to approximate the
integral in (3.1.9) by combining the abstract local volume integral functional X} with
the appropriate local evaluation.

Example 3.1.10 (Local product evaluation and local L?-volume functional). Let 7, be
a grid and let f € Q(7) be localizable with respect to 1,. We define the local product

(ivaluation T;rod. :Q(th) — [ﬁ”(t) — If”(t)] and the local L2-volume functional lz,f :
P(t) — R by
Throa [f1(¥1) = F19' and . = S (Tproa [£1)

respectively, where X denotes the local volume integral functional from Definition 3.1.9.

Note that T;md. [f] is a local unary volume evaluation in the sense of Definition 3.1.9.

The approximation of the original PDE is now nearly complete: we are still missing
the approximation of the Neumann L? functional I, from (3.1.2). We start again by
localizing the boundary integral with respect to 7, where we use the fact that every
boundary face is uniquely associated with an element of the grid, e =t N 'y:

loy(0) =) /gwquzz > /qudx. (3.1.10)

e€Fn,N tETh e€F N

The latter form is more suitable in our context, since we approximate the linear func-
tional in terms of a local discrete functional acting on local functions, which in turn are
associated with elements of the grid, not faces.

We proceed with the approximation of the above face integral in the same manner as
we did with the volume integrals: by transformation onto a reference face and numerical
quadrature. Similarly to the elements of the grid, each face e € F, is given by a reference
face € and a bijective map &€ : € — e. In addition we require another map in order to
formulate a quadrature on é which allows us to evaluate a local function on ¢: for each
element t € 75, of the grid that shares the face e C O, there exists a bijective embedding

71

3 Software concepts and implementations

of the respective reference face into the respective reference element, which we denote
by @ : é — t. This allows us to transform the integral in (3.1.10) to the respective
reference face and to formulate it in terms of local functions,

/gN gdz = /Ae (3% o @i) (¢"o (ﬁ’;) dr = /Ae gk, dt, (3.1.11)

where A2 := |V@°L . V@°|, t € 7, such that e = t N 'y and where gy € Q(7,) is an
extension of gy, such that gN’FN = gy in the sense of traces (which is only evaluated on
I'y).

Remark 3.1.11 (Local functions and face evaluations). In order to preserve the struc-
ture of integrands associated with face integrals, we denote a local function q* €]f”(t), for
t € 1, which can be evaluated on the reference face é of e € Fy,, such that e C O, by
gt = ¢t o B € P(e), with P(e) := {@ o ®°|p € P(e)}. We apply the same notation for
the local derivative as in Definition 3.1.17, e.g., we denote the local gradient of a local
function which can be evaluated on a reference face by Viq. = (tht) o Qgé

Similar to volume integrals, we approximate the above integral in terms of a local
evaluation and a local functional.

Definition 3.1.12 (Local unary face evaluation and local boundary integral functional).
Let 1, be a grid and let Y$[Ty] : P(t) — P(e) denote a local unary face evaluation, for a
boundary face e € ?h,N, with t € T, such that e =tNT'y. We define the local boundary
integral functional 3¢ (Y§[I'y]) : P(t) = R by

N(T¢)-1
SHCSITN]) (01 == > whAe () YD) () (),

n=0

where wt, and z¢,, for all0 < n < N(Y{) € N, denote the quadrature weights and points,
respectively, in order to integrate A TSI y](¢*) ezactly.

We finally obtain the local L2-boundary functional Iy hgy [0 approximate the integral
n (3.1.11) by combining the abstract local boundary integral functional ¥f with the
appropriate local evaluation.

Example 3.1.13 (Local product evaluation and local L?-boundary functional). Let 7,
be a grid and let gy € Q(7p) be localizable with respect to 7y, such that gn|p, = gn
i?} the sense of traces. We define the local product evaluation Y7 4 [I'n,"| : Q() —
[P(t) — P(e)] for a boundary face e € Fp n, with t € 75, such that e =t N Ty, and the
local L2-boundary functional I§ o I@’(t) — R by

Tgrod.[rl\UgN] (1/}) = gNe Qz[)t and (;L,g]\] = Z(;L (T}c;rod.[FN7 gN])’

respectively, where X5 denotes the local boundary integral functional from Definition

8.1.12. Note that Tprod [Cn, gn] is a local unary face evaluation in the sense of Definition
3.1.12.

72

3.1 Discretization framework

This completes the approximation of the local operator and functionals which consti-
tute their respective global counterparts.

Definition 3.1.14 (Discrete elliptic operator, discrete L>-functionals). With Bt, I, ¢
and lp, g as in Examples 3.1.7, 3.1.10 and 3.1.13 we define the discrete elliptic operator
By, : Q(1h) — Q(7,) and the discrete L*-functionals Iy ¢ : Q(1) — R and lp gy :
Q(tn) = R for any p,q € Q(m4) by

Bulpl(a) := Y Bilpl, o ®'(al, 09" =) B4,

teTy, teTh
Inf(q) := Z Z;L,f(q‘t o d') = Z li,f(qt) and
teTy teTy,
gy (@)=Y D lhguladleo®) =) > (),
tETh 66?27]\] tETh 66?271\]

respectively.

The discrete variant of (3.1.3) then reads: find pyo € S} (74) N H%D (), such that

Bu[pnol(an) = ln,s(an) + lhgy (an) — Brlgn.o)(gn) for all g, € Sy () N HE, (),
(3.1.12)

where we make use of the fact that S¥(7,) C Q(74).

The approximation of the original PDE is now formally complete. However, there
remain some important technical details on how to compute all quantities arising in
(3.1.12), namely how to form (and solve) the algebraic problem and how to choose g, p.
We first consider the algebraic problem associated with (3.1.12).

Given a basis ¢ := {¢o, ..., pr—1} of S¥(r,), for some I € N, we represent the unknown
solution in terms of its Degrees of Freedom (DoFs) p; € R: pp g = ZZ-I:_OI pip;. Using this
basis representation, (3.1.12) reads: find p; € R, for 0 < j < I, such that

I-1

> " 0iBulil(#i) = I (0i) + lngy (9i) — Brlgnpl(pi) forall0<i<I, (3.1.13)
=0

under the constraint that ¢;lp, = 0 forall 0 < i < [> We have thus arrived at a
system of I linear equations to determine the I unknowns p;. Given (3.1.13), we define
the matrix representation of By, and vector representations of /5,y and I}, 4, with respect
to the basis ¢, namely By, € RIXT, lny € R’ and Ihgn € R, by

(Bh)m' = Bu[e;l(vi), (M)Z =l f(pi) and (lhﬂ)z =lhgy (i), (3.1.14)

respectively, for all 0 < 4,5 < I. A naive way of computing the above matrices and
vectors is given in Algorithm 3.1.15. This algorithm, however, is computationally not

SWe will see further below how to enforce this constraint.

73

3 Software concepts and implementations

Algorithm 3.1.15 Naive assembly of global matrices and vectors.

Input: a global basis ¢ of SF ()
Output: By, ln,5 and lp gy
for all0< i< I do
(bng), < lns (i)
(lhvgN)i —lhgy (‘PZ)
for all0 < j < I do
(&)i,j <~ Bh%
end for
end for

efficient, since random access to containers is usually much cheaper than iterating over
the elements of a grid. In addition, Algorithm 3.1.15 is inspired by the interpretation of
¢ as a global basis of S ,’f(Th), which is not very useful in the context of Finite Element
methods. In the spirit of Finite Element methods (see [Cial978, FEM3 on page 41]) we
presume each basis function to have a local support of only very few elements of the
grid. It would thus be a waste of resources to repeatedly iterate over all elements of the
grid for each entry (I, r)i, (Ingy)i and (Bp)i; to compute the underlying integrals. It
shall be much more useful to consider the localization of the global basis ¢ with respect
to the grid 7.

Definition 3.1.16 (Discrete function space). Let 1, be a grid of Q and Vi, (13,) be a
vector-space of real-valued functions v : Q — R™¢, for r,c € N.b We call Vi(13) a
discrete function space iff

o its basis ¢ = {vo,...,pr-1} is a finite set, for I € N; and

e for all t € 15, there exists a local basis gi)};(t) = {&h, .. "303(1:)—1} of polynomial
degree at most k(t) € N, where the size of the local basis, I1(t) € N, only depends
on the polynomial degree k(t), the dimension d and the element t; and

o for allt € 1, there exists a DoF map «(t,-) : {0,...,I(t) —1} — {0,...,1 — 1},
such that for each local basis function ¢! € qbfc(t) there exists exactly one global basis

function ¢, 3y € ¢, such that ol = Pu(t i) ‘t ot

Each local basis function is thus given as the localization of a global basis function
and the relation of the two is determined by the DoF map ¢. As a consequence, each
element of a discrete function space is localizable.

Definition 3.1.17 (Discrete function, DoF vector). Let Vi, (73) be a discrete function
space. We call an element vy, € Vi(13,) a discrete function, represented by its DoF
vector vy, € R, such that vy(z) = Ef;ol (vn)i pi(x) for all x € Q. Each discrete function
can be localized (in the sense of Definition 3.1.2) with respect to 1, by means of a local
discrete function vf € I@)(t), represented by its local DoF vector vj," € RI®) | such that

vl (#) = 1D on) ey PL(E) for all & € 1.

SWe only consider real valued functions. The concepts introduced work for other fields as well, though.

74

3.1 Discretization framework

Compared to Algorithm 3.1.15 it is computationally much more efficient to make
use of the fact that SF () is a discrete function space and to consider all local basis
functions on one grid element at a time and to add their respective contrlbutlon to the
corresponding global matrix or vector entry (see Algorithm 3.1.18, where 7, hn C Fn
denotes the set of all faces of ¢ that lie on the Neumann boundary I'y).

Algorithm 3.1.18 Local assembly of global matrices and vectors (CG FEM).

Input: a discrete function space Sj ()
Output: By, ln,y and I gy
initialize Bh, ln,5 and lp 4, with zero entries
for all t € 7, do - >compute volume integrals
for all 0 <i < I(t) do
(M)L(t,i) = (M)L(t,i) + l;—bj(@f)
forallO<j<I()d0
(Bh)b(t i),0(t,5) (Bh)L(t 0),0(t,7) + Bj, [‘PJ}(‘P@)
end for
end for
for all e € f;N do >compute Neumann face integrals
for all 0 <4 < I(t) do
(M)L(t,i) - (M)L(t,i) + g (#1)
end for
end for
end for

Last, we specify how to choose g, , € H 1(Q2) and how to enforce the Dirichlet con-
straints, in order to form the algebraic problem. For both, we make use of the fact that
S}’f (1) is a Lagrangian type discrete function space.

Definition 3.1.19 (Continuous Lagrange discrete function space). Let S¥(7,) be a dis-
crete function space fulfilling (3.1.4) with k € N, k > 1. We call S¥(7,) a continuous
Lagrange discrete function space of order k, iff, for all t € 13, there exists a finite set
of Lagrange points {2, .. Z/I(t e t, such that ©(i) = 05 for all 0 < 4,7, < I(t),
where 0;; denotes the Kronecker symbol

Thus, each element of a Lagrange discrete function space is uniquely defined by spec-
ifying its values on all Lagrange points. The Lagrange points of the piecewise linear
continuous Lagrange discrete function space S}L(Th) are given by the vertices of each
element t € 73, for instance.

Given the definition of a Lagrange discrete function space, the choice of g, , as a
projection of the Dirichlet boundary values gp, is straightforward and we choose g, p :=

HFD(lgp] in (3.1.3).

Definition 3.1.20 (Dirichlet projection). Let S¥(7;,) be a continuous Lagrange discrete

function space. We define the Dirichlet projection IT-P L*(Tp) — Sﬁ(Th), g —

SE(Th)
D t

mntp lg], by specifying the values of the local discrete function of its image, g g,
Sy (Th) Sp(Th)

75

3 Software concepts and implementations

at each Lagrange point on each element t € Tp:

T o) = {(goaﬁt)(ﬁ), if #'(5) € T,

S (7h 0, else.

Finally, we enforce the constraint pj, o € SF(7) ﬁHllD (€2), required by (3.1.12), on the
algebraic level, again making use of the structure of S ,’2 (Th).

Definition 3.1.21 (Dirichlet constraints). Let SF(r,) be a Lagrange discrete function
space, let B € R and | € R and let py, € S’fi’(Th) be a discrete function with DoF
vector p € R!. We call the problem: find pE R!, such that

Bl, p= Up
Dirichlet constrained, denoted by -|,, iff for all elements t € 7,
(§|D)L(t,i),L(t,j) = 0ij and (HD)L(t,i) =0

for all {0 <i< I(t)| 0} €Tp} and all 0 < j < I(t).

The algebraic problem that corresponds to (3.1.12) then reads: find po € R!, such
that o

Bl prno = (Ihs +lhgy — Bngn.o) ‘D, (3.1.15)

where pj, o is the DoF vector of the constrained solution py o € SF(7,) of (3.1.12). The
DoF vector of the unconstrained solution p,, € S’,fj (2) can be obtained by pj, := pn,0+3n,p-

This finalizes the continuous Galerkin Finite Element approximation of (3.1.1).

Next we consider a nonconforming approximation by discontinuous Galerkin methods.
In contrast to a conforming approximation, discontinuous Galerkin methods enforce the
continuity of the solution along the faces of the grid only implicitly. While this comes at
the expense of a considerably higher number of Degrees of Freedom, these methods have
other desirable properties (such as local conservation properties or less communication
effort in parallel environments, at least for higher orders).

A nonconforming approximation: discontinuous Galerkin FEM. There exist a large
variety of discontinuous Galerkin based Finite Element approximations for elliptic prob-
lems. We consider the symmetric weighted Interior Penalty discontinuous Galerkin
(SWIPDG) method, introduced in [ESZ2009], which covers many existing methods (com-
pare the discussion in Section 2.1).
Similar to continuous Galerkin Finite Element approximations, a discontinuous Galerkin

approximation consists of two parts: the definition of an approximation space as well
as the choice of appropriate discrete operators and functionals. Therefore, we directly

76

3.1 Discretization framework

consider (3.1.1) and choose a space of globally discontinuous and piecewise polynomial
functions,

Qf (1) = {q € L*(Q) | ql, € Pr(t), YVt € m} C Q) (3.1.16)
for k € N, to approximate H'(Q), with QF(r,) ¢ H(£2).”

Definition 3.1.22 (Discontinuous Galerkin discrete function space). Let 1, be a grid
and k € N. We call Q% () a discontinuous Galerkin discrete function space iff it is a
discrete function space in the sense of Definition 3.1.16 and fulfills (3.1.16).

Particular discontinuous Galerkin discrete function spaces are given by specifying the
local shape functions which span Py (t), possible choices include Legendre and Lagrange
polynomials. We consider the latter and thus denote QZ(T}L) a discontinuous Lagrange
discrete function space from here on.

Since Q(75,) ¢ H'(Q2) we cannot obtain a discretization of (3.1.1) by a mere Galerkin
projection onto Q% (7;,). Functions in Q(7;,) are discontinuous across and thus double
valued on the faces of the grid and we need to add additional continuity and penalty
terms to the discrete operator and functionals. We thus approximate (3.1.1) by the
following problem: for k > 1 find pj, € Q¥ (73,), such that

br(qn, pn) = U (qn) + lgy (qn) + ln,o(qn) for all g5 € QF (1), (3.1.17)

where [f and Iy, are given by (3.1.2). In order to specify the bilinear form b, and
the linear functional [/}, , we recall from Section 2.1 of the previous chapter the broken
Sobolev space

H*(m,) = {q € L*(Q) | ql, € H*(t) Yt € 7.},
the broken gradient operator Vy, : H*(1) — [H* 1 (m,)]4,
(Vra)l, = V(dl,) for all t € 7,

and the jump and weighted average of a two-valued function ¢ € H*(r;,) on an inner face
e € Fp, with e =t~ Ntt,

lal. = ql;- — al;+ and {aBe = we ql- +w:q’t+

and on a boundary face e € Fy, [q]], = ¢ and {¢}}, = g, respectively. The locally
adaptive weights wX > 0 are given by w, = 6+ (6 +6.)' and wl =6, (6 +6;)71,
respectively, such that w, + w} = 1, with 6% = n,- k[, -ne. We recall that each inner
face e € ﬁh is uniquely oriented with a unit normal n. € R? pointing from ¢~ to ¢+
(corresponding to an ordering of the elements of the grid which allows for a meaningful
comparison in the sense of t~ < t71).

"For simplicity we only consider the same polynomial degree k on all elements, all concepts hold for
locally varying polynomial degrees as well.

7

3 Software concepts and implementations

With this notation we define the SWIPDG bilinear form by, : H'(7,) x H(,) — R
and the linear functional lj, , : H'(7,) — R in (3.1.17) by

br(ap) = Y /t(Mth) Vppdz (3.1.18)

teTy

+ > / — {OwVip) -ne i, lale = HARVRG) -ne i [P]. + o [4]. [P]. d=

] J—
eEJ:hU]'—h,D

=:(4)

and

lho(q) :== Z /(aeq — (A&Vhq) 'ne)gD dz, (3.1.19)

GE?h’D

respectively, with the locally adaptive penalty function given by o := oh ! {\}}, oy
(with a locally adaptive penalty parameter o > 1 as specified in [ER2007]) and the
locally adaptive weight given by o, = 66, (6 +0,)~! on an inner face and by o, = &
on a boundary face.

In order to fully discretize Problem (3.1.17) we need to rephrase it in terms of local
operators and local functionals acting on local functions. We have already done so
for the linear functionals Iy and [y, in (3.1.17) and the part of by, in (3.1.18) that is
associated with the volume integral. We are left to specify how to approximate l;, , and
the parts of by, in (3.1.18) that are associated with the face integrals. We start with the
former and recall from Definition 3.1.12 the local boundary integral functional 3§ which
approximates a face integral by a numerical quadrature, given an appropriate local unary
face evaluation (which we obtain by transforming the face integral in (3.1.19) into an
integral on the reference face).

Example 3.1.23 (Local SWIPDG boundary evaluation and local SWIPDG boundary
functional). Let 7, be a grid and let A € Q(7), k € [Q(1)]™? and §p € Q(mh) be
localizable with respect to 1y, where §p is an extension of gp, such that §D|FD = gp n the

sense of traces. For a boundary face e € Fy, p, with t € 75, such that e = tNTp,we define
the local SWIPDG boundary evaluation Towelo, -] : Q) x [Q(1h)]™* x Q(11) —
[IP’(t) — P(e)], by

Tswip[lo: A 5, 30] (41) = (0ew — (X 5E VL) 1e) G
and the local SWIPDG boundary functional ZZ’QD ‘P(t) = R by

szgD = EZ(TEWIP [FD, /\7 K, gD])?

where X denotes the local boundary integral functional from Definition 3.1.12. Note that
Yowip[Los A, &, Gp] is a local unary face evaluation in the sense of Definition 3.1.12.8

8Note that 9% € I@’(e) denotes a local function which can be evaluated on the reference face, compare
Remark 3.1.11.

78

3.1 Discretization framework

We continue with the approximation of the face integral in (3.1.18). In order to
reformulate the bilinear form by, in terms of local functions associated with the elements
of the grid we examine the face integral and split it up, depending on the integration
area and the local functions involved. We start by inserting the definition of {{-}}, and
[], in (3.1.18):

(1) = Z /—(AﬁVp) ‘neq — (A&Vq) -nep + 0 gpdx (3.1.20)
e€Fnp = ~~

=:(i7)
+ Z /_((we)“t K- Vpli- +we+>‘|t+ ﬁ|t+vp‘t+)'n€)(q,t* - q,ﬁ)

eEFy

- ((We_)"t— Kl-Val- + w:)“ﬁ K+ Va4) 'ne) (p|t— - p|t+)

+Ue(Q|t* - Q|t+) (p|t* - p|t+) dz.
=:(44)
Next, we transform the integrals to the reference face and group the terms associated
with an inner face by the adjacent grid elements, to which the ansatz and test functions

p and q are restricted to. We start with the integral associated with boundary faces and
obtain from (3.1.20), with ¢ € 73, such that e =t N T p:

(i) = /Ae (_(AZ /#;thé) "Tle qz - ()‘té ’%févtqté) “Tle pé + 0Oe qz pi) dz. (3.1.21)
::TPS‘WIP[FDukzn}(qt’pt)

We continue with the integral associated with inner faces and obtain from (3.1.20), with
t* € 7,, such that e =t~ Ntt:

(1i1) = [Ae < —w, (/\27 HS thp';i) “Ne qE —w, ()\27 H(t; V- qf;) “Ne pg + o¢ q27p27
e

=Tp Al pt)
(3.1.22)

+ 4t + - N - + - 4t
_w;r()‘é ’{2 vt‘*pi)'neCIE +we ()‘2 K’Z Vt“]é)'nepz + oe qz pz

]
_+ —
::YEWIP[)\J‘?} (q* 7Pt+)

A - + + 4+ + - + 4=
_H")e ()‘2 K‘Z Vt—pi)'neQE _w:()‘i "{Z vt'”]i)'nepte + o¢ qz pé

[¢]
+_ —
::YEWIP[)\J‘?} (qt+,Pt)

+ 4t + + + ot i B . N
o (R epl) me gl + o (W kgl) mepl +oel pl) da

~~

et + ¢t
::TEWIPP\W](qt ')

79

3 Software concepts and implementations

We have thus derived the local evaluations and local operators required for the ap-
proximation of the face integrals of by,.

Definition 3.1.24 (Local binary face evaluation and local boundary integral operator).
Let 15, be a grid and let Y5 : P(t) x P(t) — P(e) denote a local binary face evaluation
for a boundary face e € ?h,D; with t € 1, such that e = t N T'p. We define the local

boundary integral operator ¢ (%) : P(t) — P(t) by

N(T5)-1
SH(TD)PIW) = Y wihe(an)T5(v',) (7).
n=0
where wS, and x5, for all0 < n < N(Y$5) € N, denote the quadrature weights and points,
respectively, in order to integrate AcY$ (wt, cpt) exactly.

Example 3.1.25 (Local SWIPDG boundary evaluation and local SWIPDG boundary
operator). Let 1, be a grid and let X € Q(11,) and & € [Q(73,)]™*? be localizable with respect
to T, For a boundary face e € F, p, such that e = tNT'p for an element t € 75, we define
the local SWIPDG boundary evaluation Yewp[Lp, -] : Q(h) x [Q(7)]P*¢ — []@’(t) X
P(t) — ﬁ”(e)] by (3.1.21) and the local SWIPDG boundary operator E;D [P(t) — P(t)
by

F;,D = EZ(TEWIP [FDv)" K])v

where X5, denotes the local boundary integral operator from Definition 3.1.24. Note that
TEWIP [Cp, A\, k] is a local binary face evaluation in the sense of Definition 3.1.24.

Definition 3.1.26 (Local quaternary face evaluation and local coupling integral opera-
tor). Let 1, be a grid. For an inner face e € Fp,, with t* € 1, such that e =t~ NtT, let
T4 denote a local quaternary face evaluation given by

TS P(T) x P(tT) — Pe), TSP x P — Be),
T P x P(ET) — Ble) and T PR x PET) — B(e).
We define the local coupling integral operators
S (TS) BE) = B, S0y) cB@) = B,
() Bt = B and (T (et = B
for all combinations of — and + by
N1
O ot fanptt + + e enmmett /i 1EN e
Eh (T4)[90t](d]t) = Z wnAe(‘Tn)Tzl (W)Sot)(xn)
n=0

where w;, and zf,, for all 0 < n < N(Tiii) € N, denote the quadrature weights and
. .)) et 4t 4E
points, respectively, in order to integrate A Y (@ZJ , P) exactly.

80

3.1 Discretization framework

Example 3.1.27 (Local SWIPDG coupling evaluations and local SWIPDG coupling
operators). Let 7, be a grid and let A € Q(7,) and k € [Q(14)]%*? be localizable with

respect to T,. For an inner face e € .7c-)'h, such that e =t~ Nt for elements t* € 1,, we
define the local SWIPDG coupling evaluations

Twip 1 Q(mh) x [Q(m)] 4 — [B(t™) x B(t7) = P(e)],
Powie : Q) x [Q(m)] ™ — [B(t7) x B(t+) — B(e)),
Téwp : Q) x [Q(m)] ¥4 — [B(tF) x B(t7) — P(e)] and
Thwip : Q(mn) x [Q(7) ™4 — [B(£7) x B(t7) — P(e)]

by (3.1.22). Note that these local evaluations form a local quaternary evaluation in the
sense of Definition 3.1.26. We define the local SWIPDG coupling operators

BE i P(t) > PR, BeT P - P,
BY' Pty —» Pt and B Pty - Pt

for all combinations of — and + by

S - ++
By =X (SWIP[/\ /QD
where Effi denote the local coupling integral operators from Definition 3.1.26.

We are now in the position to define the discrete SWIPDG operators éh and Bj, and
the discrete SWIPDG functional [, , which are required to approximate by, from (3.1.18)
and I, , from (3.1.19), respectively.

Definition 3.1.28 (SWIPDG operators and functional). With the notation from Exam-
ples 3.1.23 3.1.25 and 3.1.27 we define the SWIDPG coupling operator By, : Q(1,) —
Q(13,)', for inmer faces e € Fj, with e =t~ Nt for t* € 1, by

Budla) =Y (B W I@) + B e
eE]'O—h
o t— i t+ et gt 4t
+ B) + B)
and the SWIPDG boundary operator By, : Q(7) — Q(74)" and SWIDG boundary

functional Zh,D : Q(mn) — R, for Dirichlet boundary faces e € ?h,D with e =tN Ty for
t €Ty, by

BhD Z BhD and ZhD) Z lhD ’

EG.FMD ee}-h,D

respectively, for all p,q € Q(p).

81

3 Software concepts and implementations

Algorithm 3.1.29 Local assembly of global matrices and vectors (SWIPDG FEM).

Input: a discrete function space Q¥ ()
Output: By, B, B, , € R and ln s, lngy L, , € R

initialize By, B, B, by lngs lngy and I, , with zero entries
for all t € 7, do T
for all 0 <i < I(t) do
(M) L(t,3) — (lhi’f) L(t,2) + l;"’f(gpi)
for all 0 < j < I(t) do
(Bn) ey © Br)yiy .y T Baleslen)
end for
end for
for all e € 72,,\, do
for all 0 <14 < I(t) do
(M)L(t,i) = (M)L(t,i) + li,gzv (Sﬁi)
end for
end for
for all e € f;,D do
for all 0 <14 < I(t) do

(o) (o) +Tn(eh)
(i) u(t,7)
for all 0 < j < I(t) do

B) <—(§) BS ot (o
b0 (t,8),0(t,5) h,D L(ﬂi)’L(t’j)"’ n,o[#5](#)

end for
end for
end for .
for all e € F} do with t~ :=t and tT € 7,, such that e =t~ NtT: >compute inner face integrals
if t= <t then > (visit each face only once, given an ordering of the elements)

for all 0 <i< I(t™) do
for all0 < j < I(¢t7) do

>compute volume integrals

>compute Neumann face integrals

>compute Dirichlet face integrals

By) « (Bw) + By [1ok
(J c(tT,1),0(t7,5) =h L(t,4),0(t,5) h [80]](SD)

end for
for all 0 < j < I(t") do

(Bh) — (éh) + §§_+
T/ u(t,d) (T, 5) T/ u(tT i), (t T, g)

end for

end for

for all 0 <i < I(t") do
for all 0 < j < I(¢t7) do

o o — +
B) “ (B) + Bt
(*h ety T B ey TER

end for
for all 0 < j < I(t") do

(B1) < (Bn)
T /(i) (tt) T/ u(tt,d) e (tt,5)
end for
end for
end if
end for
end for

'_](%’)

1(#i)

82

3.1 Discretization framework

With these definitions the fully discretized variant of (3.1.17) then reads: for & > 1
find py, € Qﬁ(Th), such that

By [pn](an) + By [pn)(an) + Bh,olpn)(an) = ln,g(an) + gy (an) + lnolan), (3.1.23)

for all g, € QF(r1,), where the elliptic operator By, and the L? functionals I, ; and I g
are given by Definition 3.1.14.

Analogous to (3.1.14) we define the matrix and vector representation of the operators
éh and Eh,D and the functional Zh,D with respect to the global basis ¢ = {0, ..., pr-1}

of QF (), namely & e R\ B, , e R and 1), , € RY, by

(B, ; = Buleil(es)s (Buo).

»J

=Buoleile) and (o) = o),

7

respectively, for all 0 < 4,5 < T —1.

Similar to the previous paragraph we assemble these containers in a localized fashion
(see Algorithm 3.1.29) using the fact that Q¥ (7;,) provides a local basis. The algebraic
problem then reads: find py € R!, such that

(& + By + Eh,D) Ph =g +lhgy + lhp, (3.1.24)

where pj, € R is the DoF vector of the solution p;, € QF(7;,) of (3.1.23).
This finalizes the discontinuous Galerkin Finite Element approximation of (3.1.1)
using a SWIPDG discretization.

While approximating the solution of a PDE is surely one of the most important tasks
we require of a discretization framework, we also need to assess the quality of the resulting
approximation.

8.1.1.2 Error estimation

This section deals with the assessment of the approximation quality of a discretization
by estimating the discretization error ey := p — pp (where “estimating” is not to be
solely understood in the sense of a posterior error estimation, see the discussion below).
As usual, p denotes the exact solution of (3.1.1) and py, the discrete solution of (3.1.12)
or (3.1.23), associated with a grid 7, and an approximation space S¥(7,) or Q¥ (7). We
know from a priori theory (compare Section 1.1), that the discretization error is bounded
as in

lenllr2 < ™Y, lenll < A" and llenll < h*,

where h > 0 denotes the typical width of an element of 7,, & > 0 denotes the polynomial
degree of the ansatz space, ||-|| denotes the energy norm induced by the bilinear form b
and < denotes a proportionality relationship (compare Sections 1.1 and 2.1). We thus
know the rate by which the approximation should improve whenever we decrease h (for
instance by refining the grid 75,): namely k or k+ 1, depending on the norm in question.

83

3 Software concepts and implementations

There are several ways to estimate the norm of the discretization error, in particular:
by a direct comparison of the approximate solution with either a known exact or a
computed reference solution, or indirectly by an evaluation of a reliable a posteriori
error estimate 7, (1.1.7); each of these options is presented in detail further below.
Given any such (direct or indirect) estimate on the discretization error, we compute
the experimental order of convergence (EOC) of this quantity and compare it to the
expected rate, k or k + 1.

We therefore consider a series of refined grids T}(LO), T,El),T}(LQ), ... with respective grid
widths 2© > r() > B > ... > 0. For each level v = 0,1,2,... we compute an
approximate solution ngV) and compute the estimate on the discretization error, say ég/),
by one of the means presented below. We then compare its values on different grid

refinements, to obtain the corresponding EOC (for all v > 0):

~(v)
()
n égLVq)
A N\
n (h(v—1))
If, for a series of refined grids, the EOC of the quantity in question is close to its
theoretical order (k or k+1), we have good reason to trust our discretization framework.

EOC~(1,) =
€n

In the next paragraphs, we discuss several means to actually compute an estimate on
the discretization error, and derive further requirements for a discretization framework.

Comparison with a known solution. In some (rare) cases we actually do explicitly know
the exact solution p of (3.1.1) for given data functions. Though usually of academic
nature, these problems are important to easily test the approximation quality of our
discretization framework. Since we presume all data functions as well as the exact
solution p € Q(73) to be localizable with respect to 73, and since the discrete solution py,
is an element of a discrete function space Vy(7,) C Q(71,), we can compare the two in
Q(7h) in a meaningful way: p — p, = ep, € Qn(mh).

The question of how to compute the norm of the discretization error thus simplifies
to the question of how to compute the norm of a localizable function e;, € Q(75,). Given
a grid 7, we consider norms

I, - Q(rn) — R, g lal. == (g,9)}/%,

which are induced by a corresponding scalar product (-,-), : Q(7,) x Q(7,) — R. While
the energy scalar product is induced by the elliptic operator B from (3.1.3),

gl := (- 2)) == Blal(a) = /Q (AkVaq) - Vg da,

we express the L2-product or the H'-semiproduct directly by

(¢:9) r2(0) ::/Qq2da: and (4, 9) g1 (o) 3=/QVq2dx, (3.1.25)

84

3.1 Discretization framework

respectively. In order to actually compute the evaluation of these products, we need to
numerically approximate the arising integrals. We have already done so for the elliptic
operator inducing the energy product by localization with respect to the grid and by
numerical quadratures, yielding

((a,p)) = Bil'(d"),

teTy

with the local elliptic operator BZ from Example 3.1.7, where ¢’ denotes the local func-
tion of ¢ with respect to ¢t € 7, in the sense of Definition 3.1.2. We recall that the local
elliptic operator is defined in terms of an abstract local volume integral operator Z',{L
(approximating the integral) and a local elliptic evaluation (modeling the integrand).

We obtain approximations of the other products by defining the appropriate local
evaluation and using existing local operators.

Example 3.1.30 (Local product evaluation and local L? product operator). Let 73, be
a grid and let ¢ € Q(7p,) be localizable with respect to T,. We define the local product

evaluation Y7 4 @ Q(1h) — [If”(t) x P(t) — If"(t)] and the local L? product operator
()52 1 P(t) > P(t) by
Tfarod. [Q] (wt7 th) = qt %Z)t SDt and ('7)22 = ZZ (Tgrod[]l])[]()7

respectively, where ¥ denotes the local volume integral operator from Definition 3.1.6
and 1 € Q(m,) denotes a function mapping to 1 € R. Note that Témd. [1] is a local binary
volume evaluation in the sense of Definition 3.1.6.7

Example 3.1.31 (Local H'-semi product operator). With tAhe notation from Example
3.1.7 we define the local H'-semi product operator (-,-)4: : P(t) — P(t)" by

() o= S5 (o [, 1a]) [1 (),

respectively, where ¥ denotes the local volume integral operator from Definition 3.1.6
and 14 € [Q(7,)]%¢ denotes a function mapping to the unit matriz in R*?.

Note that the above example demonstrates the usefulness of the concept of local
evaluations, since we can easily express the localization of the integrand in (3.1.25) by
an existing local evaluation:'?

S4(Th 1, L))69 = [A%t Vit da = [V- Vpda
t t

With these local product operators, we obtain the discrete variants of (3.1.25).

9Note that we use the same notation for the unary as well as for the binary local product evaluation,
Tgmd. (compare Example 3.1.10); it is clear from the context which of the two is used. The above
definition of the local binary product evaluation also allows for weighted L? products, which we
require in the context of a posteriori error estimation.

10WWhile this is a rather simple case of a reuse of local evaluations the benefit will be more apparent in
the context of a posterior error estimation further below, we we reuse the local SWIPDG evaluations.

85

3 Software concepts and implementations

Definition 3.1.32 (Discrete L? and H'-semi product operators). With the notation
from Ezample 3.1.30 and 3.1.31 we define the discrete L? and H'-semi product operators

(5 In,r2 1 Q) = Q(7n)" and () 1+ Q(Th) = Q(7a)" by

(@:P)pp2 =D (d'0") and (0P =D (49" i

teTy tety

respectively, for p,q € Q(13).

We assemble the evaluation of these products in a localized fashion, analogously to
Algorithm 3.1.18.

Algorithm 3.1.33 Local computation of global norms.

Input: a local product (-,-)", a localizable function es, € Q(73)
Output: |||,
lenl 0
for all t € 7, do
lenlZ < llenll? + (ehreh)
end for

t
*

Comparison with a more detailed discrete solution. In general, we do not have access
to the exact solution p of (3.1.1) to compare our approximate solution to. In order to
still have a way to compute an approximate EOC on the first v € N levels of the grid,
we substitute the unknown exact solution by a discrete approximation on a more refined
reference grid, say pgj/) € Vh(Tf(LV/)), with v/ € N, such that v < v/. Since we do not
considering a coarsening of the grid, we obtain a set of nested discrete function spaces for
each grid refinement, Vh(T}(lO)) C Vh(T}(ll)) C Vh(T,SZ)) C---C Vh(T,Sy)) C---C Vh(T}(LI/)),
such that we can compare all quantities in Vh(T,(LV/)) C Q(T,(LV/)). (As usual, V}, denotes
a discrete function space in the sense of Definition 3.1.16 and) denotes the space of
localizable functions in the sense of Definition 3.1.4.)

To this end, we prolong the discrete approximations pgly) € Vh(T}(LV)), for each level

(

v < v/, onto the reference grid Thy/) by means of a prolongation operator
Q) = Vi (r)y. (3.1.26)

We present several prolongation operators further below, along with projection opera-
tors. Given a suitable prolongation operator for all v < v/, the question of how to obtain
an approximation of the discretization error simplifies to the question of how to compute
the norm of a discrete function

v 7 v v v/
pg .) [pg)] = eg) GVh(T;(L)).
Vh(Th)

Since egby) is localizable with respect to T}(LV,) we can employ the techniques of the previous

)
h

paragraph to compute any norm of e; ’ in a localized manner.

86

3.1 Discretization framework

However, we can also make use of the fact, that eg/) is a discrete function in the sense

of Definition 3.1.17, belonging to the discrete function space Vh(TISV/)). Since the local
polynomial degree of all discrete functions belonging to a discrete function space is fixed,
we can precompute a matrix representation of the product in question with respect to
this discrete function space, as detailed in the following algorithm, where we reuse the

local product operators from the previous paragraph.

Algorithm 3.1.34 Local assembly of global product matrices.

Input: a local product (-,-), a discrete function space Vy(11,)
Output: (-,-), € R™! (the matrix representation of (-,-),)
initialize (-,-), with zero entries
for all t € 7, do
for all 0 < < I(t) do with ¢; the ith element of the local basis ¢}y of Vi (7s):

for all 0 < j < I(t) do with ¢ the jth element of the local basis ¢y, of Vi (7h):
t o t\t
(¢, ')*)L(t,i),L(t,j) (C .)*)L(t,i),L(t,j) + (e, ¢1).,
end for
end for
end for

€ R of a product (-,-), : Vi(m) x
Vi(mn) — R, we can compute the induced norm of any discrete function e, € Vp(75,)
(e.g., for the discretization errors in each refinement step) by a simple matrix vector
multiplication using e;’s DoF vector ej € RI:

Given such a matrix representation (-,-)

* *

leall, = \/ent (), en-

While the comparison with a more detailed discrete solution allows us to estimate
the discretization error in cases where we do not have access to the exact solution, it
is computationally not always feasible (since it requires a discrete approximation on a
finer grid). In addition we do not obtain any guarantee on how well we approximated
the evaluation of the norm of the discretization error (since we do not use the unknown
exact solution to compare with). We usually obtain good results if the reference grid is
much finer than the original one, but this may not be the case for finer approximations,
e.g., where v = v/ — 1. In many cases, a good way of computing an estimate on the
discretization error is by means of a reliable a posteriori error estimate (if available).

A posteriori error estimation. There exist a large variety of a posteriori error estima-
tors and we refer to [Ver1996, Ver2013| for an overview. We consider the localized a
posteriori error estimate from Section 2.3.2, which (being formulated for the parametric
case) is based on a similar estimate on the discretization error for the nonparametric
case, introduced in [ESV2010]. The form of the latter is very similar to Corollary 2.3.6,
except for the parameter dependency. Given a solution p, € Qn(7) of the discrete
Problem (3.1.23), the estimate 7, (py) consists of three components,

87

3 Software concepts and implementations

(i) a local nonconformity estimator n'.(pr) = ||lpn — Los[palll,,

(ii) a local residual estimator nt(pp) = (C};/Cﬁ)l/thHf — V-Rl[p4]||,», and

L2t

(iii) a local diffusive flux estimator n%(p) = ||(A&) "V2(A&Vipy + R}, [ph])Hm’t,

where Ipg denotes the Oswald interpolation operator from (2.3.16), Rﬁl denotes the
diffusive flux reconstruction from (2.3.17) and C%, ¢t € R denote positive constants.

We briefly discuss the ingredients we require in order to realize each of these local
estimators.

(1) The Oswald interpolation operator Ipg actually coincides with the generalized
Lagrange projection operator HS,’j(Th) we present further below. To compute the
nonconformity estimator we can thus use the local elliptic operator B} from Ex-

ample 3.1.7 as detailed in the previous paragraphs, applied to the local function
of pn — Mgk 7,y [Pr] € Q(7h).

(73) Since the divergence of the image of the diffusive flux reconstruction operator R%
(the implementation of which we discuss below) is localizable with respect to the
grid, f — V-R! [pp] € Q(73) is as well. And since (C};/cé)lﬂht‘t € Py(t) is positive
for all ¢t € 7, we use the product evaluation Tfmd. [c] from Example 3.1.30 and
the local volume operator from Definition 3.1.6 to compute the residual estimator,
with ¢ € Q(7,) such that c|, = (C%/ct)'/2hy for all t € .

(7i7) To approximate the diffusive flux estimator we use the local volume operator from
Definition 3.1.6 as well, but require a special local evaluation: given localizable
A € Q(m), Kk € [Q()]P*? and v € [Q(75,)]%, we define Y, : Q(71,) x [Q(7)]P*? x
[Q(m)]* — [B(t) x P(t) — B(¢)] by

Thel, 5, 0] (01, ") := (NR)TH (N RV 4 07) - (AR Nip! 4 07).

Given the diffusive flux reconstruction R [ps] we then evaluate the local product
operator 3§ (Y[, &, R [pr]]) (p}, p},). Note that (A'x")~! in the definition of Y%,
is in general not polynomial any more and Y%, thus only yields an approximate
local evaluation.

For the remainder of this paragraph we discuss the diffusive flux reconstruction Rﬁl [pr] €
V() in a Raviart-Thomas-Nédélec space of order [€ N:

Vii(m) = {v € Haiy (Q)|v], € [B1(1)]" + xPy(t) Vt € 74} (3.1.27)

The local DoFs of an element of Vhl are associated with the faces of a grid element and
the grid element itself, depending on the dimension d, the polynomial degree [and the
shape of the grid element (for simplicity we restrict ourselves to triangles and orders 0
and 1; for a definition of V,i(Th) for higher orders, higher dimensions and other grids, see
[BF1991, §111.3]).

88

3.1 Discretization framework

Definition 3.1.35 (Raviart-Thomas-Nédélec discrete function space). Let 1, be a sim-
plicial triangulation of Q C R? and let V}E(Th) be a discrete function space fulfilling
(3.1.27) with 1 = 0,1. We call Vi\(7;,) a Raviart-Thomas-Nédélec discrete function space
of order 1, iff, for all t € 13, there exist the following bijections: between the elements of
the local basis

e and the faces of the element ((bf(t) < F}) for 1 =0;

e and the faces of the element and the element itself (gbf(t) = {FLUt}) forl=1.

Similar to the parametric case, R} [py] is given analogously to (2.3.17) and the arising
nonparametric local coupling and penalty bilinear forms b*, b¢ and by, coincide with the
individual terms in (3.1.18), ignoring p. We already discretized those using the local
SWIPDG evaluations in the previous paragraphs and the corresponding local operators
and functionals. We briefly discuss how to obtain the local DoF's of the diffusive flux
reconstruction RY[p] of lowest order, given a localizable function p € Q (7).

For | = 0, these local DoF's are associated with the faces of the grid only. We transform
the integrals in (2.3.17a) to the reference face, for a boundary face e € Fj , with t € 7,
such that e =t NTp:

/ A Y5 [To] (1Y, RY[p]") dz = / AXswip Lo, A k] (1, p") da, (3.1.28)

where Y§; [F D] denotes the local evaluation from Example 3.1.36 below, TSWIP denotes
the local SWIPDG boundary evaluation from Example 3.1.25 and where 1t € Py(t)
denotes a local function mapping to 1 € R, modeling the basis of Py(e). Since R?L [p] €
V2(7,) is a discrete function, we can express its local function in terms of the local basis
qﬁ};(t) of V2(75,) and the local DoF vector R p)" € RI®) with I(t) := \gzﬁi:(t)\ e N, for all
t € 15,. Using this basis representation and the local boundary volume operator X7 from
Definition 3.1.24 (to approximate the integral), we obtain from (3.1.28): find %ﬁ € R,
such that

Ry lpl', S (Y& [To)) [0 (1Y) = 5. (Tawie [Tos A, £]) [p'](19), (3.1.29)

where ¢ € {0,...,I(t) — 1} denotes the index of the local DoF, which corresponds to
the local basis function ¢! € gzﬁz(n that is associated with the face e (compare Definition
3.1.35).

We proceed with the integrals in (2.3.17b) in a similar manner. Since the normal
component of R?L [p] is continuous across faces of the grid, it suffices to consider only
one of the local functions of RY[p] associated with the grid elements adjacent to a face
(in order to fully specify the local DoF's associated with inner faces of the grid). Using

o

the above basis representation we obtain from (2.3.17b), for an inner face e € Fj, with
t+ € 73, such that e =t~ Nt+: find R?L[p]ff € R, such that
1

o __

Rl S5 (05)t 107) = S5 (Tewre [A#]) ' 1(1) (3.1.30)

89

3 Software concepts and implementations

where the local evaluation T§; is given by the example below, %gj\;lp denote the lo-
cal SWIPDG coupling evaluations from Example 3.1.27, X¢ denotes the local coupling
integral operator from Definition 3.1.26 and where i € {0,...,1(t7) — 1} denotes the
index of the local DoF, which corresponds to the local basis function ¢! € gbﬂt,) that

is associated with the face e (compare Definition 3.1.35).

Example 3.1.36 (Local evaluation). Let 75, be a grid. For a boundary face e € Fp p,
such that e = tNI'p for an element t € 15, we define the local boundary evaluation
Tie[To] : [P(5) x P(t) — P(e)] by

T[] (¥ ¢") == ¥l ne .

For an inner face e € ﬁh, such that e =t~ Nt1 for elements t* € 1, we define the local
coupling evaluations

P(e), T [P x B(tF) — Ple),
B(e) and Y5 [P x P(tT) = Ple)

G [BE)) X BT
To [P < B)
by
G (0 e) =gl et
for all combinations of — and +. Note that Y [FD] s a local binary face evaluation

in the sense of Definition 3.1.24 and that the four local evaluations Tg?i form a local
quaternary evaluation in the sense of Definition 3.1.26.

Due to the nature of the Raviart-Thomas-Nédélec space we have completely specified
the discrete function R2 [p] € V}? (1) by specifying its local DoF's for all faces of the grid,
as summarized in Algorithm 3.1.37.

Algorithm 3.1.37 Local computation of the diffusive flux reconstruction.

Input: a Raviart-Thomas-Nédélec space V;2(4), localizable A, p € Q(r1) and & € [Q(75)]*¢

Output: the diffusive flux reconstruction R} [p]
initialize Ry [p] € R’
for all t € 7, do
for all e € ?z do >compute boundary DoFs
compute R} [p]" € R according to (3.1.29)

—_—

(M)m,t) = Mi

end for A
for all e € 7} do with t~ :=t and tT € 7, such that e =t~ Nt >compute inner DoFs
if t~ <t then > (visit each face only once)

compute R [p}t; € R according to (3.1.30)

— -
(M)L(i,t7> = Mg
end if
end for
end for

90

3.1 Discretization framework

3.1.1.8 Projections and prolongations.

We have already encountered a scenario which requires the prolongation of a discrete
function: in order to determine the EOC of an error norm we require to prolong a discrete

function ¢q; € Vﬁ(r}(;j)), associated with a coarse grid onto a discrete function space

V%(T}Ey/)) associated with a finer grid, to compare it to a reference solution (Equation
3.1.26). A similar situation arises in the context of adaptive Finite Element methods
(compare Section 1.1).

In general we require a prolongation operator whenever we are given a localizable
function associated with a source grid 7;; that we wish to interpret in the context of a
range grid 77 . In the above cases the range grid is simply a refinement of the source grid,
such that Q(7;;) C Vi (77). In the context of multiscale methods, however, we also allow
for two grids associated with different physical domains: while the source grid could be
a partition of the full domain §2, the range grid could be a partition of only a subdomain
T C Q, possibly including overlap (compare the nested fine and coarse grids in Section
2.1). In that case, the prolongation operator also carries out a restriction and we have
Q) € Vi(r):

We can actually think of a prolongation as two distinct operations:

1) Given a function ¢ € Q(77), which is localizable with respect to 7;, we require a
1) Gi functi Q77 hich is localizable with t to 13, i

function H:é lq] € Q(7}), which is localizable with respect to 7.

(i1) Given a function g € Q(77), which is localizable with respect to 7}, we require a
projection onto a discrete function space V¥ (7'), which we denote by Hvﬁ (1) [q].

Thus, we have split the problem of prolonging a function into two separate problems
and the prolongation operator from (3.1.26) is actually given by:

S
Th

TS TS
Hth(T;:) : Qh(Tif) - Vh(Tg)v th(T;) = HV’;L(TZL) ° HTZ

We define the reinterpretation operator, H:é 1 Q7)) = Q(73), locally by defining the
local functions of its image, for all elements of the range grid " € 73 :

t t"

1 lq] €P(t"), such that H:é lq] (&7) :=¢" (@ts_l (" (i’r))>,

Th
where t* € 77 denotes the element of the source grid, such that ®!' (") € ¢°.

Remark 3.1.38 (The reinterpretation operator H:;Z) There are several things worth
noting regarding the reinterpretation of a localizable function with respect to a different
grid. The role of the reinterpretation operator is merely to provide a local function on
each element of the range grid 77, by redirecting the evaluation to an appropriate local
function on the source grid 1. Formally, we do not require any relationship between
the source grid and the range grid, apart from the fact that the physical domain covered
by 1, has to be included in the physical domain covered by 7;. While this also holds

91

3 Software concepts and implementations

for the case where the source grid is coarser than the range grid, the definition of the
T

operator HTZ“ is not meaningful in that case and we would require a restriction operator

(which we do not consider here). While the operator is easily defined in theory, a well

performing implementation of H:Z can be quite involved in practice (since it needs to

find an appropriate t° € 1 for each t” € 1}).

Given the close connection between prolongation and projection operators, we only
need to define the projection of an arbitrary localizable function ¢ onto a discrete function
space V’Z(Th). The actual definition of the projection operator depends on its range: in
case of a continuous Lagrange space we can carry out the projection in a localized
manner.

Definition 3.1.39 ((Generalized) Lagrange projection). Let SF(7,) be a continuous
Lagrange discrete function space in the sense of Definition 3.1.19 and let q be localizable
with respect to 7. For globally continuous q, we define the Lagrange projection operator
Mgt (7, - C%(Q) N Q) — S¥(mh) by specifying the local DoF vector g)[q]t e RI®

Th

of the local functions of its image HS’;(T;L)[QL by

(Hsﬁ(%)[q]t) = ¢'(}), for all0 <i < I(t) and allt € 1,

7
where U} € t denotes a Lagrange point, for all 0 < i < I(t). For an arbitrary localizable
function q € Q(71,) we define the generalized Lagrange projection operator HSQ(T}L) :
Q(7h) — Sk(h) by specifying
1 1~ —1 4
t .
(gpplil), = = D2 o (&7 (@),

Thl o, ot
t'er,

ot
where T}l:i C 7 denotes the set of those elements of the grid, that share the Lagrange
point ®L(D}).
Though locally defined, the generalized Lagrange projection operator might involve
ot

global computations (in order to determine T;:i), depending on the implementation of
the grid.

If the range of the projection operator is a discontinuous discrete function space, we
can also carry out the projection locally.

Definition 3.1.40 ((Local) L? projection). Let Q¥(7,) be a discontinuous Galerkin
discrete function space in the sense of Definition 3.1.22 and let q be localizable with
respect to 1,. We define the L? projection operator HQE(Th) : Q(mh) — QfL(Th), by

specifying the local DoF wvector HQZ(Th)[q}t e RI®W of the local functions of its image
HQQ(Th)[q], as the solution of

L%: HQQ(Th)[‘I]t = l;fz,q’ for allt € y,

92

3.1 Discretization framework

with the local mass matm’x[it e RIOXI®) gnd the local right hand side l};?q e RI® given
by o
t t
(Lh);; = (1 ¢5) 12 and (tha); = tha($5)

respectively, with the local basis functions ¢!, 4,0;» € qﬁz(t) of the discrete function space,
forall0 <i,j <I(t)= |d>’,;(t)], the local L? product operator (-,)tLQ from Example 3.1.50
and the local L?-volume functional Z;L,q from Example 3.1.10 (with f replaced by q).

We can carry out the above projection locally due to the discontinuity of the discrete
function space. In general, however, we require the inversion of a global mass matrix.

Definition 3.1.41 ((Global) L? projection). Let V,(73,) be a discrete function space
in the sense of Definition 8.1.16 and let q be localizable with respect to 1;,. We define
the L? projection operator Wy, (r,) * Q(h) — Vin(ms), by specifying the DoF' vector
Iy, (-, 4] € R of its image Iy, (7, la], as the solution of

L7f21, HVh(Th,) [q] = lh77q7

with the global mass matriz L? := (-,)2 € R™XT given by the matriz representation of
the L? product from above Empare Algorithm 38.1.34) and the global right hand side
lhg € R! given by the vector representation of the discrete L? functional from Definition
3.1.14 (compare also (3.1.14) with f replaced by q).

Note that these global containers can also be assembled in a localized fashion, compare
Algorithms 3.1.18 and 3.1.34.

Following this presentation and discussion of the (mathematical) ingredients we re-
quire of a discretization framework, we continue with a presentation of the main design
principles for a designated discretization framework (which are a direct consequence of
these ingredients).

8.1.2 Abstract design principles and technical requirements

We revisit the main concepts behind the mathematical foundation introduced in the
previous section and derive abstract design principles that shall be constitutive for a
discretization framework. From a bird’s eye perspective, these principles are:

e localizable functions

e local operators, local functionals and local evaluations
e direct access to building blocks

e abstract interfaces and generic algorithms

We discuss those in the following paragraphs and touch on some aspects of a possible
implementation of such a discretization framework.

93

3 Software concepts and implementations

Localizable functions. Perhaps the most basic principle is the concept of localizable
functions, as expressed in Definition 3.1.4. Since all data functions are required to be
localizable and all discrete functions are localizable as well, we can formulate operators,
functionals, products and norms purely in terms of localizable functions. This yields
generic constructs that can be applied in a large variety circumstances: for instance, the
discrete elliptic operator By, from Definition 3.1.14 can be used either to be assembled
into a system matrix, given any discrete function space, or to be assembled into an
energy or H'-semi product matrix, given any discrete function space, or to compute the
energy or H'-semi product of two arbitrary localizable functions. This is possible since
all localizable functions yield local functions in the sense of Definition 3.1.2, which can
be evaluated on the reference elements of the grid. Thus, all operators, functionals and
products can be realized by local counterparts (see the next paragraph).

As a consequence, all discrete function spaces yield local bases as well (the elements
of which are local functions, see Definition 3.1.16). (Given the interpretation of a local
basis function as the local function of a localizable global basis function, those do in
particular include all necessary transformations, for instance in the context of Raviart-
Thomas-Nédélec spaces.) We thus only require a single implementation of a discrete
function that works with arbitrary discrete function spaces.

Local operators, local functionals and local evaluations. All operators, two-forms and
functionals can be localized with respect to the grid and integrals can be transformed
to the respective reference element. We treat the resulting local integrals by modeling
the integrand as a local evaluation and applying generic local operators and functionals
to approximate the integral by a numerical quadrature. This splitting allows for a
reuse of local evaluations in different circumstances (see the local SWIPDG evaluations
from Examples 3.1.23, 3.1.25 and 3.1.27 that are used in the context of the SWIPDG
discretization as well as in the context of a posteriori error estimation) yielding powerful
and versatile constructs. For instance, a combination of the local product evaluation
(Example 3.1.30) with the generic local volume operator (Definition 3.1.9) yields a local
L?-volume operator. Since the local operators act on local functions only, they can be
used to form localizable operators and products (acting on localizable functions) as well
as assembled operators and products (acting on the DoF vectors of discrete functions).
The very same local L? operator, for instance, can be used to form several L? products
(Definition 3.1.32 and Algorithm 3.1.34) or L? projection operators (Definitions 3.1.40
and 3.1.41).

The above separation of duties leads to simple objects with a distinct purpose, which
has several benefits regarding a possible implementation. The sole purpose of a local
volume operator, for instance, is to approximate a local volume integral by a numerical
quadrature (without bothering with the form of the integrand). On the one hand, the
resulting implementation can thus be easily understood. On the other hand, this leads to
less code duplication and easier to track down errors, since there need only be two objects
implementing a volume quadrature in the whole discretization framework (namely the
local volume operator and the local volume functional). While implementing the use of a

94

3.1 Discretization framework

quadrature may seem like a simple example, a safe and well performing implementation
still needs to obtain and check the polynomial degree of the integral, try to obtain a
suitable quadrature and handle the situation where such a quadrature is not available.

Since it is good practice not to duplicate such code and effort, a possible implementa-
tion should follow the proposed separation of local operators, functionals and evaluations.

Direct access to building blocks. When designing new discretization schemes it is im-
portant for the developer to have direct access to the underlying building blocks, such
as the DoF map ¢ (Definition 3.1.16), the properties of the local Finite Element (such
as Lagrange points or the interpretation of the local basis of a Raviart-Thomas-Nédélec
space, see Definitions 3.1.19 and 3.1.35), or the containers constituting discrete functions
and assembled operators and functionals. If all underlying parts are individually accessi-
ble and exposed, they can be used and combined in new ways that not even the original
authors may have thought of. Such a library of reusable and flexible building blocks is
the basis for an easy development of new discretization schemes and error estimators.

Abstract interfaces and generic algorithms. All mathematical concepts should be
represented by abstract interfaces, in particular matrices and vectors, operators and
functionals, discrete function spaces, discrete functions and localizable functions and
local functions. Such interfaces are the only reliable way to allow for generic imple-
mentations (as mentioned above). Discrete functions can be implemented generically,
given any discrete function space and vector; localizable operators and functionals can
be implemented generically given any localizable functions; assemblable operators and
functionals can be implemented generically given any discrete function space; and so
forth. ..

A considerable amount of time and effort has to be invested into an implementation
of a discretization framework, in particular regarding maintenance. In the long run,
this effort can only be kept at bay through the use of abstract interfaces and generic
algorithms, keeping code duplication at a minimum.

In addition, for instance in the context of model reduction, we require access to at
least the vectors, operators and discretizations of a discretization framework (compare
[MRS2015, Section 3.3]). When used in conjunction with an external model reduction
library, this access can easily be granted (and implemented) in terms of the abstract
interfaces. Any implementation of these interfaces then automatically benefits from the
exposure of the interfaces and can be used in novel ways, far beyond the traditional
scope of discretization frameworks.

While one might regard abstract interfaces and the required direct access to building
blocks and underlying structures as opposite philosophies, we consider both beneficial
and necessary (in particular if access to the underlying structures can be provided in a
generic way).

In addition to these design principles there are other (more technical) aspects which
we require of a discretizations framework:

95

3 Software concepts and implementations

We require a means to model and identify different parts of the boundary of the
domain (such as I', and I'y) in a well defined way to allow for generic implemen-
tations of local boundary operators and functionals.

We require a well defined way to create, access and combine (dense and sparse)
matrices and vectors to allow the use of different existing linear algebra backends.
We also require linear solvers which should be exchangeable at runtime.

Since iterating over the grid may be costly we want to be able to execute as many
local operations on one element of the grid as desired. This allows to assemble
several containers or apply products in one iteration over the grid.

In order to fully use all available resources it should be possible to execute most
operations in parallel, in particular the assembly of containers and the inversion
of system matrices. We do not want to enforce a specific parallelization paradigm,
allowing in particular for shared memory and distributed approaches. All objects
representing mathematical concepts (such as local evaluations, operators, discrete
functions, containers) should be usable without explicit knowledge of the paral-
lelization involved; a user of the discretization framework should be able to focus
mainly on the mathematical aspects of discretization schemes.

It is clear from the above discussion that we aim for a system language (such as C,
Fortran or C++) for performance critical parts of the implementation and a modern
object oriented language (such as a recent version of C++ or Python in conjunction
with NumPy [Oli2007] and SciPy [JOP02001] for all parts that are visible to the
user.

In case of a statically typed language, such as C++, we aim for a balance between
static and dynamic polymorphism: while performance critical parts (such as the
type of the grid, field types, dimensions, local evaluations) should be fixed at
compile time, it should be possible to switch between data functions (of the same
dimension) at runtime.

3.1.8 FExisting implementations

Needless to say, we are interested in an open source and freely available software frame-
work with a strong scientific background in the developer- and user-base. There exist
several such frameworks:

deal.ii [BHH+2015], which is available at https://www.dealii.org/, “is a C++
program library targeted at the computational solution of partial differential equa-
tions using adaptive finite elements”!!.

DUNE [BBD+2008, BBD+2008a], which is available at http://www.dune-project.
org/ is a “modular toolbox for solving partial differential equations (PDEs) with
grid-based methods” 2.

"https://wuw.dealii.org/about.html, 22.07.2015
2http://www.dune-project.org/dune.html, 22.07.2015

96

https://www.dealii.org/
http://www.dune-project.org/
http://www.dune-project.org/
https://www.dealii.org/about.html
http://www.dune-project.org/dune.html

3.1 Discretization framework

Feel++ [PCD+2012], which is available at http://www.feelpp.org/, “is a C++
library for partial differential equation solves using generalized Galerkin methods
such as the finite element method, the h/p finite element method, the spectral
element method or the reduced basis method.”!3.

FreeFem++ [Hec2012], which is available at http://www.freefem.org/ff++/index.
htm, “is a partial differential equation solver”!4.

The FEniCS Project [LMW2012], which is available at http://fenicsproject.
org/ “is a collection of free software with an extensive list of features for automated,
efficient solution of differential equations”!®.

libMesh [KPSC2006], which is available at http://libmesh.github.io/, “pro-
vides a framework for the numerical simulation of partial differential equations
using arbitrary unstructured discretizations on serial and parallel platforms” 6.

Most of these frameworks allow for adaptive mesh refinement, different parallelization
paradigms and the use of external libraries. They vary in their provided features, aims
and philosophies, user friendliness and target audience.

We chose to realize our discretization framework within the context of the DUNE
project: the Distributed and Unified Numerics Environment [BBD+2008, BBD+2008a/,
written in C++. DUNE is free and open source software, its philosophy aligns well
with the abstract design principles identified in Section 3.1.2, it yields highly efficient
programs, is fairly well documented and has a large developer and user base with a
strong background in numerical analysis and scientific computing. However, DUNE is
mainly targeted at researchers and thus has a steep learning curve.

DUNE has a modular structure, with the core modules being used and developed by
all research groups involved:

dune-common contains abstract parallelization helpers, dense vectors modeling co-
ordinates and many abstractions of advanced C++ features to yield portable code
which works with most compilers of the last decade.

dune-geometry contains generic reference elements, embeddings and quadratures.

dune-grid contains the abstract definition of a grid and is probably the most
widely used module. It also contains some reference implementations of the ab-
stract grid interface and wrapper code to allow the use of external grid managers.
(Note that a grid in DUNE includes all elements on all refinement levels. The
concept of a grid 73, as used throughout this work, is modeled by a GridView.)

dune-istl provides an iterative solver template library with generic sparse matri-
ces, vectors and linear solvers.

Bhttp://www.feelpp.org/, 22.07.2015

Yhttp: //www. freefem.org/ff++/index. htm, 22.07.2015
http://fenicsproject.org/, 22.07.2015
Shttp://libmesh.github.io/index.html, 22.07.2015

97

http://www.feelpp.org/
http://www.freefem.org/ff++/index.htm
http://www.freefem.org/ff++/index.htm
http://fenicsproject.org/
http://fenicsproject.org/
http://libmesh.github.io/
http://www.feelpp.org/
http://www.freefem.org/ff++/index.htm
http://fenicsproject.org/
http://libmesh.github.io/index.html

3 Software concepts and implementations

dune-localfunctions contains shape functions defined on the reference elements
together with interpolation operators which form the basis of a local Finite Ele-
ment. (Note that these shape functions do not coincide with the notion of local
functions from Definition 3.1.2.)

On top of these core modules, there exist two main discretization modules, which
are independently developed by different research groups: dune-fem!” [DKNO2010] and
dune-pdelab'®, each with different philosophies, design approaches and implementa-
tions.

dune-fem is formulated in terms of discrete function spaces and discrete opera-
tors. It has a long history for adaptive grid refinement and distributed parallel
computations.

dune-pdelab is based on the residual formulation of PDEs. Is supports differ-
ent linear algebra backends and arbitrary function spaces based on local Finite
Elements.

Being the younger project of the two, dune-pdelab uses more modern programming
techniques and is developed more openly than dune-fem. Its residual formulation and
automatic differentiation make it easy to solve systems of complicated PDEs. From the
perspective of a developer of new numerical schemes, however, it does not allow for an
easy access to the underlying building blocks. In addition, the residual formulation is
not suitable for the context of model reduction, where we require access to individual
operators and functionals.

While dune-fem supports the notion of a discrete operator it lacks support for func-
tionals. In addition, its monolithic design hinders shared memory parallel implementa-
tions due to many global singletons.

Both frameworks do not support the notion of a localizable function and a discrete
function space as proposed in Section 3.1.1.1 and neither of the two supports the separa-
tion of integration and integrand. We could have added some of the required function-
ality to either of these frameworks. However, due to our requirements (see the previous
sections), this would have only been possible to a certain degree. Each framework would
bring severe restrictions regarding the required flexibility and its use in the context of
model reduction.

3.1.4 A new discretization framework

There was no suitable discretization framework available when we started to work on
efficient and reliable discretizations in the context of parametric multiscale problems in
2011. We thus provide our own implementation of such a framework within the con-
text of the DUNE project, based on the mathematical foundation and design principles
discussed in Sections 3.1.1 and 3.1.2.

"http://dune.mathematik.uni-freiburg.de/
Bhttp://www.dune-project.org/pdelab/

98

http://dune.mathematik.uni-freiburg.de/
http://www.dune-project.org/pdelab/

3.1 Discretization framework

Following the modular structure of DUNE, we provide several modules which imple-
ment different aspects of our discretization framework (we discuss each in detail in the
following sections):

dune-stuff provides extensions of the core modules dune-common and dune-grid,
which are mostly centered around improved usability and generic algorithms, to-
gether with important build and test infrastructures. In particular it contains the
concept of a GridProvider (which encapsulates a grid and provides an abstrac-
tion of GridParts and GridViews) and the concept of a BoundaryInfo (which
provides a standardized way to identify different parts of the boundary). In ad-
dition, dune-stuff contains the abstract interface modeling localizable functions
and local functions (in the sense of Definitions 3.1.4 and 3.1.2) and various ready
to use implementations. Lastly, it provides an abstraction for linear algebra con-
tainers and linear solvers along with several implementations supporting different
parallelization paradigms (for instance based on dune-istl or eigen'? [GJ02010]).

dune-gdt, the generic discretization toolboz, is the heart of our discretization
framework. It provides abstract interfaces for local evaluations, local operators
and functionals, discrete function spaces, operators, products and functionals and
so forth, in the spirit of Section 3.1.1. In addition, it contains many ready to use
implementations, problem definitions and discretizations. It is currently mainly
centered around linear elliptic and hyperbolic problems.

The remainder of this chapter gives an in-depth discussion of these modules which
together make up our implementation of a discretization framework. We provide ex-
ample code snippets along the way that are not necessarily meant to be directly us-
able (for instance, we shall omit int main(...) in C++ code). In addition, we pro-
vide reference to code locations, where “dune/foo/bar.hh” denotes the location of a
file within the dune-foo module. However, we do not provide individual references
for elements of the standard C++ library, which are prefixed by std::, and refer to
http://en.cppreference.con/.

3.1.4.1 dune-stuff

The DUNE module dune-stuff is open source software and freely available on GitHub:
https://github.com/wwu-numerik/dune-stuff. It is mainly developed by R. Milk
and F. Schindler with contributions from A. Buhr, S. Girke, S. Kaulmann, T. Leibner,
B. Verfiirth and K. Weber. As mentioned above, dune-stuff contains helpful infrastruc-
ture, extensions of dune-common and dune-grid and the definition and implementation
of localizable functions and linear algebra containers and solvers. Accordingly, it contains
the following submodules, modeled as namespaces below the Dune: : Stuff namespace:
Common, Functions, Grid and LA. We discuss relevant content of these submodules in
the following paragraphs.

http://eigen.tuxfamily.org/

99

http://en.cppreference.com/
https://github.com/wwu-numerik/dune-stuff
http://eigen.tuxfamily.org/

© 0w N O U R W N

=
(=}

© 00 9 O g W N =

e e
O S =)

n

[
[9;

3 Software concepts and implementations

Improved handling of dense containers in Dune: : Stuff: :Common. dune-common con-
tains the FieldVector?® and FieldMatrix?®!' classes, which model small dense vectors
and matrices of fixed size (in particular used for coordinates, affine reference maps and
function evaluations). These containers are implemented to provide maximum perfor-
mance, but lack some convenience features. In particular the lack of certain operators
and contructors make it difficult to write generic code. Consider, for instance, a generic
string conversion utility (assuming T is a matrix type):

template< class T >

static inline T fromString(const std::string ss,
const size_t rows = O,
const size_t cols 0)

T result(rows, cols); // <- does not compile for FieldMatriz
// fill result from ss

/7

return result;

}

The above example does compile if T is a DynamicMatrix??, but not if T is a Field-
Matrix, which makes it extremely difficult to write generic code.?

In order to allow for generic algorithms we provide templated VectorAbstraction
and MatrixAbstraction classes in dune/stuff/common/{matrix,vector}.hh (along
with specializations for all sensible vector and matrix classes), which allow for generic
creation of and access to matrices and vectors. Additionally, we provide is_vector and
is_matrix traits, which allow to rewrite the above example:

#include <dune/stuff/common/matriz.hh>
using namespace Dune::Stuff::Common;

template< class T >
static inline typename std::enable_if< is_matrix< T >::value, T >::value
fromString(const std::string ss,
const size_t rows = O,
const size_t cols = 0)

auto result = MatrixAbstraction< T >::create(rows, cols);

// fill result from ss using MatrizAbstraction< T >::set_entry(...)
VA

return result;

}

It is thus possible to use fromString with matrices of different type:

20qune/common/fvector.hh

2 qune/common/fmatrix.hh

22 qune/common/dynmatrix.hh

Z3While it is clear that constructing a FieldMatrix of fixed size MxN is not sensible for other values of
rows and cols, the construction in line 6 should be possible for rows = M and cols = N (throwing
an appropriate exception otherwise).

100

dune/stuff/common/{matrix,vector}.hh

[N

N O s W=

N o s W =

[A

3.1 Discretization framework

#include <dune/common/fmatriz.hh>
#include <dune/common/dynmatriz.hh>

")
)

auto fmat = fromString< Dune::FieldMatrix< double, 2, 2 > >("[1. 2.; 3. 4.]
auto dmat = fromString< Dune::DynamicMatrix< double > >("[1. 2.; 3. 4.]"

>

In particular, one can use it with any custom matrix implementation by providing a
specialization of MatrixAbstraction within the user code:

template< class FieldType >
class CustomMatrix { /* implement custom matriz */ };

template< class FieldType>
struct MatrixAbstraction< CustomMatrix< FieldType > > { /* implement spectialization */ };

auto cmat = fromString< CustomMatrix< FieldType > >("[1. 2.; 3. 4.]1");

Based on these abstractions we provide many generic implementations in dune/stuff/
common/. For instance, we provide an extension of the FloatCmp?* mechanism from
dune-common for any combination of vectors (which allows for the same syntax as its
counterpart in dune-common, including compare styles and tolerances):

#include <dune/common/dynvector.hh>
#include <dune/stuff/common/float_cmp.hh>

std::vector< double > svector({1., 1.});
Dune: :DynamicVector< double > dvector(2, 1.);

Dune: :Stuff: :Common: :FloatCmp: :eq(svector, dvector);

Improved string handling and Configuration in Dune: :Stuff::Common. As already
hinted at in the previous paragraph, we provide the string conversion utilities

template< class T >
static inline T fromString(const std::string ss,
const size_t size = 0, const size_t cols = 0);

template< class T >
static inline std::string toString(const T& ss);

in dune/stuff/common/string.hh. These can be used with any basic type as well as
with all matrices and vectors supported by the abstractions from the previous paragraph.
We use standard notation for vectors ("[1 2]") and matrices ("[1 2; 3 4]"), see the
previous paragraph for examples. The fromString function takes optional arguments
which determine the size of the resulting container (for containers of dynamic size),
where 0 means automatic detection.

Based on these string conversion utilities, we provide an extension of dune-common’s
ParameterTree?® in dune/stuff/common/configuration.hh: the Configuration class.

*dune/common/float_cmp.hh
25dune/common/parametertree.hh

101

dune/stuff/common/
dune/stuff/common/
dune/stuff/common/string.hh
dune/stuff/common/configuration.hh

© 0 N O Ut R W N

3 Software concepts and implementations

The Configuration is derived from ParameterTree and can thus be used in all places
where a ParameterTree is expected. While it also adds an additional layer of checks
(in particular regarding provided defaults), report and serialization facilities, one of its
main features is to allow the user to extract any type that is supported by the string
conversion facilities. Given a sample configuration file in .ini format (for example the
default configuration of the Cube grid provider discussed further below),

Listing 1 Contents of the default_config() of Stuff::Grid: :Providers: :Cube.
lower_left = [0 0 0 0]

upper_right =[1111]
num_elements = [8 8 8 8]
num_refinements = 0
overlap =1

we can query the resulting Configuration object config for the types supported by
the ParameterTree,

auto num_refinements = config.get< int >("num_refinements");

as well as for all types supported by our string conversion utilities (including custom
matrix and vector types as explained in the previous paragraph):

auto lower_left = config.get< FieldVector< double, dimDomain > >("lower_left");

The above is valid for all 0 < dimDomain < 4, due to the automatic size detection of
fromString.

Identification of domain boundaries in Dune: : Stuff: :Grid. As noted in Section 3.1.2
we require a generic way to identify parts of the boundary of the computational domain,
such as those associated with Dirichlet- or Neumann boundary values. Unfortunately,
dune-grid does not provide such a mechanism. In dune/stuff/grid/boundaryinfo.
hh, we thus provide a virtual interface,

template< class IntersectionType >
class BoundaryInfoInterface

{
virtual bool has_dirichlet() const;
virtual bool has_neumann() const;

virtual bool dirichlet(const IntersectionType& intersection) const = 0;

virtual bool neumann(const IntersectionType& intersection) const = 0;

};

based on which we can provide generic algorithms, which act only on parts of the domain
boundary (such as the Dirichlet projection from Definition 3.1.20). We also provide the
following implementations of the BoundaryInfoInterface within the BoundaryInfos
namespace:

102

dune/stuff/grid/boundaryinfo.hh
dune/stuff/grid/boundaryinfo.hh

© 0 N O U R W N

NN NN NN NN R R R e e e e
® N 0 A WN = O © 0N oA W N = O

3.1 Discretization framework

AllDirichlet and AllNeumann, the purpose of which is self-explanatory.

IdBased, using the now-deprecated boundaryId() method of an intersection
(given key-value pairs such as {"dirichlet", {1, 2}}, {"neumann", {3, 4}},
mapping the reported boundary ids to the respective boundary type).

NormalBased, which allows to identify boundary intersections by the direction of
their outward pointing normal.

In order to allow for problem definition classes to define domain boundaries inde-
pendently of the type of the grid, we also provide the BoundaryInfoProvider fac-
tory. Classes can hold a complete description of one of the boundary infos above in
a Configuration. Given the type of the grid (and thus the type of an intersection), one
is then able to create an instance of one of the implementations of the BoundaryInfo-
Interface of correct type, as required:

#include <dune/grid/yaspgrid.hh>

#include <dune/grid/sgrid.hh>

#include <dune/stuff/common/configuration.hh>
#include <dune/stuff/grid/boundaryinfo.hh>

using namespace Dune::Stuff::Common;
using namespace Dune::Stuff::Grid;

class Problem

{
public:
Configuration boundary_info_cfg()
{
Configuration config;
config["type"] = "stuff.grid.boundaryinfo.normalbased";
config["default"] = "dirichlet";
config["neumann.0"] = "[1. 0.]";
config["neumann.1"] = "[-1. 0.]";
return config;
}

}; // class Problem

typedef typename Dune::YaspGrid< 2 >::LeafIntersection YI;
typedef typename Dune::SGrid< 2, 2 >::LeafIntersection SI;

Problem problem;
auto boundary_info_y = BoundaryInfoProvider< YI >::create(problem.boundary_info_cfg());
auto boundary_info_s = BoundaryInfoProvider< SI >::create(problem.boundary_info_cfg());

The type of boundary_info_y, for instance, is std: :unique_ptr< BoundaryInfoIlnter-
face< YI > >. Given a rectangular domain in R?, it models a Neumann boundary left
and right and a Dirichlet boundary everywhere else.

Walking the grid in Dune: :Stuff::Grid. Since we are considering grid-based numer-
ical methods, we frequently need to iterate over the elements t € 73, of a grid (compare

103

© 0w N O U e W N

T
= o

© 00 9 O g W N =

=
[=}

ol W N

3 Software concepts and implementations

Algorithms 3.1.18 and 3.1.29). In order to minimize the amount of required grid itera-
tions, we want to be able to carry out several operations on each grid element (instead
of several iterations over the grid). We thus provide in dune/stuff/grid/walker.hh
the templated Walker class, working with any GridView (from dune-grid) or GridPart

(from dune-fem):%0

template< class GridViewType >
class Walker

{
// not all methods and types shoun ...

public:
void add(Functor::Codim0O< GridViewType >& functor/*, ... */);
void add(Functor::Codimi< GridViewType >& functor/*, ... */);
void add(Functor::Codim0Andi1< GridViewType >& functor/*, ... */);

void walk(const bool use_tbb = false);
};

The user can add an arbitrary amount of functors to the Walker, all of which are then
locally executed on each grid element. Fach functor is derived from one of the virtual
interfaces Functor: : Codim0, Functor: :Codiml or Functor: : CodimOAnd1, for instance

template< class GridViewType >
class CodimO
{
public:
typedef typename Stuff::Grid::Entity< GridViewType >::Type EntityType;

virtual void prepare() {}
virtual void apply_local(const EntityType& entity) = 0; // called for all t & 7
virtual void finalize() {}

};

where prepare (and finalize) are called before (and after) iterating over the grid,
while apply_local is called on each element of the grid. Each add method of the
Walker accepts an additional argument which allows to select the elements and faces,
the functor will be applied on. For instance, in the context of the SWIPDG discretization
we want to apply the local coupling operators from Example 3.1.27 on all inner faces of
the grid and the local boundary operators from Example 3.1.25 on all Dirichlet faces of
the grid (compare Section 3.1.1.1). Presuming we were given suitable implementations of
these local operators as functors and a BoundaryInfo object in the sense of the previous
paragraph, the following would realize just that:

#include <dune/stuff/grid/walker.hh>
using namespace Dune::Stuff::Grid;

Walker< GV > walker(grid_view);

26We provide traits in dune/stuff/grid/{entity,intersection}.hh to extract required information
from a GridView or GridPart in a generic way (see the Codim0 functor example).

104

dune/stuff/grid/walker.hh
dune/stuff/grid/{entity,intersection}.hh

© 0w N O

© 0 N O U R W N =

-
[=}

© 0w N O U R W N

e e e e e
D Ut R W N = O

3.1 Discretization framework

walker.add(coupling_operator, new ApplyOn::InnerIntersectionsPrimally< GV >());
walker.add(boundary_operator, new ApplyOn::DirichletIntersections< GV >(boundary_info));
// add more, if required...

walker.walk ()

Note that the walk method allows to switch between a serial and a shared memory
parallel iteration over the grid, at runtime (via the use_tbb switch). In particular, the
user only has to provide implementations of the functors and need not deal with any
parallelization issues (or different types of grid walkers, depending on the parallelization
paradigm).

Providing generic access to GridViews and GridParts in Dune: : Stuff: :Grid. There
exists an unfortunate disagreement between dune-grid and dune-fem, whether Grid-
Views or GridParts are to be used to model a collection of grid elements, which makes
it hard to implement generic algorithms. Think of some code which needs to create a
LevelGridView or LevelGridPart, depending on the further use for a discrete function
space implemented via dune-pdelab or dune-fem:

#include <dune/fem/gridpart/levelgridpart.hh>

template< class GridType >
void create_level(GridType& grid, const int 1lv) {

// either

auto level_view = grid.levelGridView(1lv);

// or

Dune: :Fem: :LevelGridPart< GridType > level_part(grid, 1v);
Zane

}

To allow for generic code despite this disagreement we provide the ProviderInterface
in dune/stuff/grid/provider.hh, the purpose of which is to be passed around instead
of a grid:

template< class GridType >
class ProviderInterface
{
// not all methods and types shown ...
public:
virtual GridType& grid() = 0;

template< ChooselLayer layer_type, ChoosePartView part_view_type >
typename Layer< layer_type, part_view_type >::Type layer(const int 1lv = 0);

template< ChoosePartView type >
typename Level< type >::Type level(const int 1v);

template< ChoosePartView type >
typename Leaf< type >::Type leaf();

105

dune/stuff/grid/provider.hh

© 0 N O O R W N =

B oW N e

© 0 N O U R W N =

e e e
U W NN = O

3 Software concepts and implementations

Together with the ChooseLayer and ChoosePartView enum classes?’, this allows to
write generic code by passing a grid provider along with the required tag (this will be of
significant importance in the context of dune-gdt further below):

#include <dune/stuff/grid/provider.hh>
using namespace Dune::Stuff::Grid;

template< class GridType, ChoosePartView type >

void create_level(ProviderInterface< GridType >& grid_provider, const int 1lv) {
auto level_part_or_view = grid_provider.level< type >(1lv);
7

}

We provide several implementations of the ProviderInterface (for instance Provi-
ders: :Default, wrapping an existing grid and Providers: :Cube, which creates grids
of rectangular domains). In addition, we provide a means to select a grid provider at
runtime using the GridProviders struct, given the type of the grid G and a configuration
(for instance using the default one of the Cube provider, see Listing 3.1.4.1),

#include <dune/stuff/grid/provider.hh>

auto grid_provider = Dune::Stuff::GridProviders< G >::create("stuff.grid.provider.cube",
config);

which is particularly useful in conjunction with configuration files or Python bindings.

Local functions and localizable functions in Dune: : Stuff: :Functions. As discussed
in Section 3.1.2, the concept of a local function in the sense of Definition 3.1.2 is crucial
for a discretization framework (not to be confused with shape functions from dune-
localfunctions). Given a grid element t € 75, we can evaluate a (scalar-, vector- or
matrix-valued) local function ¢! : £ — R™ ¢, for ,¢ € N, on the reference element
associated with t. To model such functions (as well as a set of local basis functions) we
provide the LocalfunctionSetInterface in dune/stuff/functions/interfaces.hh:
template< class EntityType,
class DomainFieldType, size_t dimDomain,
class RangeFieldType, size_t dimRange, size_t dimRangeCols = 1 >
class LocalfunctionSetInterface
{
// not all methods and types show ...
public:
virtual const EntityType& entity() const

virtual size_t size() const = 0;
virtual size_t order() const = 0;

virtual void evaluate(const DomainType& xx, std::vector< RangeType >& ret const = 0;
virtual void jacobian(const DomainType& xx,
std: :vector< JacobianRangeType >& ret) const = 0;

};

" qune/stuff/grid/layers.hh

106

dune/stuff/functions/interfaces.hh

© 0w N O U R W N =

e e
= W N o= O

© 00 9 O g W N =

=
[=}

3.1 Discretization framework

The template parameter EntityType models the type of the grid element ¢t € 13, the
parameters DomainFieldType and dimDomain model R? O 75, while RangeFieldType,
dimRange and dimRangeCols model R"*¢. The resulting DomainType is a FieldVector
from dune-common, while RangeType and JacobianRangeType are composed of Field-
Vector and FieldMatrix, depending on the dimensions. As a shorthand, we often
write

template< class E, class D, size_t d, class R, size_t r, size_t xrC >

for these arguments. Each set of local functions has to report its polynomial order and
size. The methods evaluate and jacobian expect vectors of size size() for ret.
While local bases of discrete function spaces will be realized as implementations of
LocalfunctionSetInterface (see below), we also provide an interface for individual
local functions, which is used by data functions and local functions of discrete functions:

template< class E, class D, size_t d, class R, size_t r, size_t rC >
class LocalfunctionInterface
: public LocalfunctionSetInterface< E, D, d, R, r, rC >
{
// not all methods and types shown ...
public:
virtual void evaluate(const DomainType& xx, RangeType& ret) const = 0;
virtual void jacobian(const DomainType& xx, JacobianRangeType& ret) const = 0;

virtual size_t size() const override final
{

return 1;
}
¥

All local evaluations, operators and functionals in dune-gdt are implemented using
LocalfunctionSetInterface and thus work for local bases, local functions and local
discrete functions at the same time.

Alongside, we also provide the following interface for localizable functions according
to Definition 3.1.4, which merely work as containers of localizable functions:

template< class E, class D, size_t d, class R, size_t r, size_t rC >
class LocalizableFunctionInterface
{
// not all methods and types shown ...
public:
virtual std::string name() const;

virtual std::unique_ptr< LocalfunctionInterface< E, D, d, R, r, rC > >
local_function(const EntityType& entity) const = 0;
};

Based on this interface we provide visualization and convenience operators, allowing for

(p - p_h).visualize(grid_view, "difference");

107

3 Software concepts and implementations

where p might denote a localizable data function and p_h might denote a discrete func-
tion (see further below), if both are localizable with respect to the same grid_view.
Expressions such as p - p_h, p + p_h or p*p_h yield localizable functions via generi-
cally implemented local functions (if the dimensions allow it).

We also provide numerous implementations of LocalizableFunctionInterface in
dune-stuff, most of which can also be created using the FunctionsProvider?® factory
class, given a Configuration:

e Functions: :Checkerboard in dune/stuff/functions/checkerboard.hh models

a piecewise constant function, the values of which are associated with an equidis-
tant regular partition of a domain. Sample configuration for a function R? — R:

lower_left = [0. 0.]
upper_right = [1. 1.]
num_elements = [2 2]

values = [1. 2. 3. 4.]

Functions: :Constant in dune/stuff/functions/constant.hh models a constant
function. Sample configuration for a function R¢ — R2*2, for any d € N, mapping
to the unit matrix in R?:

value = [1. 0.; 0. 1.]

Functions: :Expression in dune/stuff/functions/expression.hh models con-
tinuous functions, given an expression and order at runtime (expressions for gra-
dients can be optionally provided). Sample configuration for f : R? — R? given

by (z,y) — (a:,sin(y)):

variable = x

order =3

expression = [x[0] sin(x[1])]
gradient.0 = [1 0]

gradient.1 = [0 cos(x[1])]

Note that the user has to provide the approximation order, resulting in f being
locally approximated as a third order polynomial on each grid element.

GloballambdaFunction in dune/stuff/functions/global.hh models continuous
functions by evaluating a C++ lambda expression. Sample usage for f : R? = R
given by (z,y) — a:

GlobalLambdaFunction< E, double, 2, double, 1 > f([](DomainType x){ return x[0]; 1},
1); // <- local polynomial order

Functions: :Spel0: :Modell in dune/stuff/functions/spel0.hh models the per-
meability field of the SPE10 modell test case, given the appropriate data file?.

28dune/stuff/functions.hh
29 Available at http://www.spe.org/web/csp/datasets/set01.htm

108

dune/stuff/functions/checkerboard.hh
dune/stuff/functions/constant.hh
dune/stuff/functions/expression.hh
dune/stuff/functions/global.hh
dune/stuff/functions/spe10.hh
http://www.spe.org/web/csp/datasets/set01.htm

© 00 N O g W N =

[T S U
N R O © N Uk W N R O

3.1 Discretization framework

Generic linear algebra containers in Dune: :Stuff: :LA. We discussed the use of small
dense vectors and matrices in the context of coordinates and function evaluations above.
In addition we require large vectors and matrices (usually sparse) to represent assem-
bled operators and functionals, compare Section 3.1.2. Linear algebra containers are a
performance critical aspect of the discretization framework and we do not want to bet
on a single horse: there exists external backends which are well suited for serial and
shared memory parallel computations (such as eigen) while others are more suited for
distributed memory parallel computations (such as dune-istl). Neither is fitting for
every purpose and we thus require a means to exchange the implementation of matri-
ces and vectors depending on the circumstances. This calls for abstract interfaces for
containers, which we provide within the Dune: : Stuff: :LA namespace.

We chose a combination of static and dynamic inheritance for these interfaces, allowing
for virtual function calls that act on the whole container (such as operators) while
using the “Curiously recurring template patterns” (CRTP, see [Cop1995]) paradigm for
methods that are called frequently (such as access to individual elements in loops),
allowing the compiler to optimize performance critical calls (for instance by inlining).
We provide a thread-safe helper class CRTPInterface in dune/stuff/common/crtp.hh
along with thread-safe CHECK_... macros for debugging (since the tools provided in
dune/common/bartonnackmanifcheck.hh do not work properly in a shared memory
parallel program).

All matrices and vectors are derived from ContainerInterface in dune/stuff/la/
container/container-interface.hh:

template< class Traits, class ScalarType = typename Traits::ScalarType >
class ContainerInterface

: public CRTPInterface< ContainerInterface< Traits, ScalarType >, Traits >
{

// not all methods and types shown ...
public:

typedef typename Traits::derived_type derived_type;

// Sample CRTP implementation:

inline void scal(const ScalarType& alpha) // as_imp () from CRTPInterface

{ // performs a static_cast into
CHECK_AND_CALL_CRTP(this->as_imp() .scal(alpha)); // derived_type. Thus, scal() of

} // the derived class is called.

inline void axpy(const ScalarType& alpha, const derived_type& xx);
inline derived_type copy() const;

virtual derived_type& operator*=(const ScalarType& alpha) // Default implementation:
{ // could be overriden by
scal(alpha) ; // any derived class.
return this->as_imp();
}
};

The ContainerInterface enforces just enough functionality to assemble a linear com-
bination of matrices or vectors, which we require for instance in the context of model
reduction. Given an affine decomposition of a parametric matrix or vector B (compare

109

dune/stuff/common/crtp.hh
dune/common/bartonnackmanifcheck.hh
dune/stuff/la/container/container-interface.hh
dune/stuff/la/container/container-interface.hh

B oW N e

© 0 9 o O«

10
11
12
13
14
15

3 Software concepts and implementations

Definition 1.3.7), we need to assemble B(u) := ZqQ:_Ol 6,(p) B, for given components B,
and coefficients 6,(p). The following generic code will work for any matrix or vector
type C derived from ContainerInterface:

#include <dune/stuff/la/container/container—interface.hh>
using namespace Dune::Stuff::LA;

template< class C >
typename std::enable_if< is_container< C >::value, C >::type
assemble_lincomb(const std::vector< C >& components,
const std::vector< double >& coefficients)
{
auto result = components[0].copy();
result *= coefficients[0];
for (size_t qq = 1; qq < components.size(); ++qq)
result.axpy(coefficients[qq], components[qql);
return result;

}

Note that since we implement copy-on-write and move semantics for all matrices and
vectors in dune-stuff, the only deep copy is actually done in line 11 (neither in line 10
nor in line 14).3°

Based on ContainerInterface we provide the VectorInterface?®! for dense vectors
and the MatrixInterface®? for dense and sparse matrices. Each derived vector class has
to implement the methods size, add_to_entry, set_entry and get_entry_ref, which
allow to access and change individual entries of the vector. The interface provides default
implementations for all relevant mathematical operators, support for range-based for
loops and many useful methods, such as dot, mean, standard_deviation and 12_norm,
just to name a few.

Each derived matrix class has to implement rows, cols, add_to_entry, set_entry
and get_entry to allow for access to individual entries, mv for matrix/vector multipli-
cation and clear_row, clear_col, unit_row and unit_col, which are required in the
context of Dirichlet Constraints and pure Neumann problems. Every matrix implemen-
tation (even dense ones) is constructible from a sparsity pattern (which we provide in
dune/stuff/la/container/pattern.hh) and the access methods ..._entry are only
required to work on entries that are contained in the pattern. The interface provides
several mathematical operators, norms and a means to obtained a pruned matrix (where
all entries close to zero are removed from the pattern).

We also provide several vector and matrix implementations:

e The CommonDenseVector and CommonDenseMatrix in dune/stuff/la/container/

3%Note also the use of the is_container traits in line 6 that we provide in dune/stuff/la/container/
container-interface.hh. Together with enable_if, this checks that C is derived from Container-
Interface at compile time. We will see further below how to deal with CRTP interfaces in a much
nicer way, if the situation allows for it (e.g., if the argument is not wrapped inside a vector).

3ldune/stuff/la/container/vector-interface.hh

32qune/stuff/la/container/matrix-interface.hh

110

dune/stuff/la/container/pattern.hh
dune/stuff/la/container/common.hh
dune/stuff/la/container/common.hh
dune/stuff/la/container/container-interface.hh
dune/stuff/la/container/common.hh
dune/stuff/la/container/container-interface.hh
dune/stuff/la/container/common.hh
dune/stuff/la/container/common.hh
dune/stuff/la/container/common.hh
dune/stuff/la/container/common.hh
dune/stuff/la/container/common.hh

© 00 N 3 U R W N

LT T T o
N~ O © N O U W N~ O

3.1 Discretization framework

common . hh, based on the DynamicVector and DynamicMatrix from dune-common.
These are always available.

e The EigenDenseVector, EigenMappedDenseVector, EigenDenseMatrix and Eigen-
RowMajorSparseMatrix in dune/stuff/la/container/eigen.hh, based on the
eigen package (if available). The EigenMappedDenseVector allows to wrap an
existing double* array and the EigenRowMajorSparseMatrix allows to wrap ex-
isting matrices in standard CSR format, which allows to wrap other container (for
instance in the context of Python bindings).

e The IstlDenseVector and IstlRowMajorSparseMatrix in dune/stuff/la/con-
tainer/istl.hh, based on dune-istl (if available).

To allow for generic algorithms we also provide the LA: :ChooseBackend enum class
along with the default_backend, default_sparse_backend and default_dense_bac-
kend defines (which are set depending on the build configuration). For instance, these
could be used together with the LA: : Container traits to implement a local L? projection
(see Definition 3.1.40), given a local basis and an appropriate quadrature:

#include <dune/stuff/la/container.hh>
using namespace Dune::Stuff::LA;

typedef typename Container< double, default_dense_backend >::MatrixType LocalMatrixType;
typedef typename Container< double, default_dense_backend >::VectorType LocalVectorType;

// ... on each grid element

LocalMatrixType local_matrix(local_basis.size(), local_basis.size(), 0.);
LocalVectorType local_vector(local_basis.size(), 0.);

LocalVectorType local_DoFs(local_basis.size(), 0.);

// ... at each quadrature point, given evauations of the local basis and the source function
for (size_t ii = 0; ii < local_basis.size(); ++ii) {
local_vector[ii] += integration_element * quadrature_weight
* (source_value * basis_values[ii]);
for (size_t jj = 0; jj < local_basis.size(); ++jj) {
local_matrix.add_to_entry(ii, i
integration_element * quadrature_weight
* (basis_values[ii] * basis_values[jjl));
}
}

Note that we neither have to manually specify the correctly matching matrix and vector
types nor to include the correct headers (which depend on the current build configura-
tion). The Container traits together with any of the default_. .. defines always yields
appropriate available types.

We will see further below how these matrices and vectors are used in a variety of
circumstances and examples.

111

dune/stuff/la/container/common.hh
dune/stuff/la/container/common.hh
dune/stuff/la/container/eigen.hh

© 00 N U R W N =

O S e v S ~ S S R SR
S © ® N O Uk W N~ O

© 0 N O U W N

[
o

3 Software concepts and implementations

Generic linear solvers in Dune: :Stuff::LA. The last example from the previous para-
graph illustrates how to generically create appropriate dense matrices and vectors. In
order to determine the local DoF vector in the above example, we need to solve the
algebraic problem: find local_DoFs, such that

local_matrix:local_DoFs = local_vector.

In addition to such small dense problems we also require the inversion of large (sparse)
system and product matrices (compare Problems (3.1.15) and (3.1.24)). For interesting
large and real-world problems, however, there are few linear solvers available which can
be used as a black box (if at all). Most problems require a careful choice and detailed
configuration of the correct linear solver. We thus require access to linear solvers which
can be used in a generic way but also exchanged and configured at runtime.

In dune/stuff/la/solver.hh we provide such solvers via the Solver class:

template< class MatrixType >
class Solver
{
// simplified vartant
public:
Solver(const MatrixType& matrix);

static std::vector< std::string > types();
static Configuration options(const std::string type = "");

template< class RhsType, class SolutionType >
void apply(const RhsType& rhs, SolutionType& solution) const;

template< class RhsType, class SolutionType >
void apply(const RhsType& rhs, SolutionType& solution, const std::string& type) const;

template< class RhsType, class SolutionType >
void apply(const RhsType& rhs, SolutionType& solution, const Configuration& options) const;
I

We provide specializations of the Solver class for all matrix implementations derived
from MatrixInterface (see the previous paragraph). Continuing the example from the
previous paragraph, this allows to determine the local DoF vector of an L? projection:

#include <dune/stuff/common/exceptions.hh>
#include <dune/stuff/la/solver.hh>

try {
Stuff::LA::Solver< LocalMatrixType >(local_matrix).apply(local_vector, local_DoFs);
} catch (Stuff::Exceptions::linear_solver_failed% ee) {
DUNE_THROW(Exceptions::projection_error,
"L2 projection failed because a local matrix could not be inverted!\n\n"
<< "This was the original error: " << ee.what());

112

dune/stuff/la/solver.hh

BWw N =

3.1 Discretization framework

The above example shows a typical situation within the library code of dune-gdt: we
need to solve a small dense system for provided matrices and vectors of unknown type.
We can do so by instantiating a Solver and calling the black-box variant of apply (line
5). This apply variant is default implemented by calling

apply(rhs, solution, types()[0]);

where types () always returns a (non-empty) list of available linear solvers for the given
matrix type, in descending priority (meaning the first is supposed to “work best”). For
instance, if local_matrix was an EigenDenseMatrix, a call to types() would reveal
the following available linear solvers:

{"lu.partialpiv", "qr.householder", "11t", "1dlt", "qr.colpivhouseholder",
"qr.fullpivhouseholder", "lu.fullpiv"}

On the other hand, if the matrix was an EigenRowMajorSparseMatrix, a call to types ()
would yield

{"bicgstab.ilut", "lu.sparse", "llt.simplicial", "1dlt.simplicial", "bicgstab.diagonal",
"bicgstab.identity", "qr.sparse", "cg.diagonal.lower", "cg.diagonal.upper",
"cg.identity.lower", "cg.identity.upper"}

Given a (large sparse) system_matrix (for instance stemming from a discretized elliptic
operator) and rhs vector, we can solve the corresponding linear system using a specific
solver by calling

#include <dune/stuff/la/solver.hh>

Stuff::LA::Solver< SystemMatrixType > linear_solver(system_matrix);
linear_solver.apply(rhs, solution, "1ldlt.simplicial");

The above call to apply is default implemented by calling
apply(rhs, solution, options(type));

where options(type) always returns a Configuration object with appropriate options
for the selected type. With type = "1dlt.simplicial", for instance, we are implicitly
using the following options (which are the default for "1d1t.simplicial"):

type = 1dlt.simplicial
post_check_solves_system = le-5
check_for_inf_nan =1
pre_check_symmetry = le-8

All implemented solvers per default check whether the computed solution does actually
solve the linear system and provide additional sanity checks. We make extensive use of
exceptions if any check is violated, which allows to recover from undesirable situations
in library code (as shown in the example above).3> The "1d1t.simplicial" solver,

33We also provide our own implementation of the DUNE_THROW macro in dune/stuff/common/
exceptions.hh which replaces the macro from dune-common and can be used with any
Dune: :Exception. Apart from a different formatting (and colorized output), it also provides in-
formation of interest in distributed memory parallel computations.

113

dune/stuff/common/exceptions.hh
dune/stuff/common/exceptions.hh

© 00 9 O g W N =

— e
= o

3 Software concepts and implementations

for instance, does only work for symmetric matrices and we thus check the matrix for
symmetry (which can be disabled by setting "pre_check_symmetry" to 0). Each type
of linear solver provides its own options, which allow the user to fine-tune the linear
solver to his needs. For instance, the iterative "bicgstab" solver with "ilut" precon-
ditioning accepts the following options (in addition to "post_check_solves_system"
and "check_for_inf_nan", which are always supported):

#include <dune/stuff/la/solver.hh>

Stuff::LA::Solver< SystemMatrixType > linear_solver(system_matrix);
auto options = linear_solver.options("bicgstab.ilut");

options["max_iter"] = 1000;
options["precision"] = "le-14";
options["preconditioner.fill_factor"] = 10;
options["preconditioner.drop_tol"] = "le-4";

linear_solver.apply(rhs, solution, options);

The actually implemented variant of Solver in dune-stuff also takes a communicator
as an optional argument, to allow for distributed parallel linear solvers. We provide
several implementations of such parallel solvers based on dune-istl. A linear solver
for Ist1lRowMajorSparseMatrix, for instance, supports the following types(), most of
which can readily be used in distributed parallel environments:

{
#if IHAVE_MPI €€ HAVE_SUPERLU
"superlu",
#endif
"bicgstab.amg.ssor", "bicgstab.amg.iluO", "bicgstab.ilut", "bicgstab.ssor",
"bicgstab"
#1if HAVE_UMFPACK
, "umfpack"
#endif
}

This finalizes our discussion of the main features of dune-stuff that we require for
our discretization framework. Of course, dune-stuff provides many additional features,
and we redirect any further interest to the project homepage: https://github.com/
wwu-numerik/dune-stuff.

3.1.4.2 dune-gdt

The DUNE module dune-gdt is open source software and freely available on GitHub:
https://github.com/pymor/dune-gdt. It is mainly developed by R. Milk and F.
Schindler with contributions from M. Drohmann, S. Girke, S. Kaulmann, T. Leibner, M.
Nolte and K. Weber. It forms the main part of our discretization framework and makes
use of dune-fem and dune-pdelab (if available). Similar to the previous section we give
illustrating code excerpts that are not necessarily directly usable.

114

https://github.com/wwu-numerik/dune-stuff
https://github.com/wwu-numerik/dune-stuff
https://github.com/pymor/dune-gdt

© 0w N O U R W N

LT T T S S SOt G S
N~ O © ® N O Uk W N~ O

3.1 Discretization framework

As motivated in Section 3.1.1.1, there exist two main ingredients of discretization
schemes: an approximation of ansatz and test spaces by discrete function spaces and an
approximation of operators and functionals by discrete counterparts. We begin with a
discussion of the former.

Generic discrete function spaces, mappers and base function sets. We already iden-
tified the mathematical requirements of a discrete function space in Definition 3.1.16.
In dune/gdt/spaces/interface.hh we provide a CRTP interface which realizes these
requirements:

template< class Traits, size_t dimDomain, size_t dimRange, size_t dimRangeCols = 1 >
class Spacelnterface

: public Stuff::CRTPInterface< Spacelnterface< Traits, dimDomain, dimRange, dimRangeCols >

, Traits >
{
// not all methods and types shown ...
public:
const BackendType& backend() const;
const GridViewType& grid_view() const; // 7
const MapperType& mapper() const; // ¢

BaseFunctionSetType base_function_set(const EntityType& entity) const; // of‘,m

template< class G, class S, size_t d, size_t r, size_t rC >
PatternType compute_pattern(const GridView< G >& local_grid_view,
const Spacelnterface< S, d, r, rC >%& ansatz_space) const;

template< class S, size_t d, size_t r, size_t rC, class C >

void local_constraints(const SpaceInterface< S, d, r, rC >& ansatz_space,
const EntityType& entity,
Spaces: :ConstraintsInterface< C >& ret) const;

};

All spaces in dune-gdt provide access to the DoF mapping ¢ and the set of local base
functions qﬁz(£’ both of which we discuss further below. In addition, each space can com-
pute local constraints (such as hanging nodes or Dirichlet constraints) and compute the
sparsity pattern for operators acting on this space. The implementation of either is op-
tional and depends on the space in question (for instance, a discontinuous Galerkin space
does not provide any constraints while a continuous Lagrange space implements Dirich-
let constraints, compare Definition 3.1.21). The SpaceInterface also grants access to a
communicator for parallel computations and provides several default implementations,
for instance to visualize the local basis functions or compute several types of patterns
(not shown).3*

Accompanying the SpaceInterface, we provide the MapperInterface in dune/gdt/
mapper/interface.hh, modeling the DoF map ¢ (see Definition 3.1.16):

34We can also observe a nice use of CRTP interfaces in the above example (lines 15, 16, 19 and 21),
following up on our discussion in the previous section. This use of CRTP enforces the correct type of
arguments at compile time and documents expectations (as opposed to Duck typing, for instance).

115

dune/gdt/spaces/interface.hh
dune/gdt/mapper/interface.hh
dune/gdt/mapper/interface.hh

© 0 N O U R W N =

e e
= W N = O

© 00 N 3 U R W N =

3 Software concepts and implementations

template< class Traits >
class MapperInterface
: public Stuff::CRTPInterface< MapperInterface< Traits >, Traits >

{
// not all methods and types shown ...
public:
const BackendType& backend() const;
size_t size() const; /)1
size_t maxNumDofs () const; // max¢er, I(t)

size_t numDofs(const EntityType& entity) const; // I(¢)
void globalIndices(const EntityType& entity, Dune::DynamicVector< size_t >& ret) const;
size_t mapToGlobal(const EntityType& entity, const size_t& locallndex) const;

};

Given an element ¢ € 75, of the grid (modeled by entity) and the size of the local basis
I(t) € N (modeled by numDofs(entity)), we have «(t,7) = mapToGlobal (entity, i),
for all 0 < i < I(t). Since we usually treat all elements of a local basis at once,
we also provide globalIndices, which computes ret = (L(t, z))fgg; Depending on
the backend, one of the methods is usually implemented in terms of the other (which
is documented in each implementation). Thus, the interface allows for non-optimal
methods, which one might argue against. However, we see this as a strength, as it
facilitates quick prototyping of new discretization schemes.

A call to space.base_function_set(entity) yields a set of local basis functions,
an interface for which we provide in dune/gdt/basefunctionset/interface.hh (recall
the shorthands D and d, modeling R? and R, r and rC, modeling R"*¢, from the previous
section):
template< class Traits, class D, size_t d, class R, size_t r, size_t rC =1 >

class BaseFunctionSetInterface
: public Stuff::LocalfunctionSetInterface< typename Traits::EntityType, D, d, R, r, rC >

, public Stuff::CRTPInterface< BaseFunctionSetInterface< Traits, D, d, R, r, rC >, Traits >

{

// not all methods and types shoun ...
public:

const BackendType& backend() const;
};

Obviously, the main purpose of a set of basis functions is to behave like a set of local
functions and all relevant requirements are inherited by LocalfunctionSetInterface.

Since we use existing implementations of discrete function spaces from dune-fem and
dune-pdelab we always provide direct access to the underlying space, mapper, local
base function set or local space object from these modules, by means of the backend ()
method in SpaceInterface, MapperInterface and BaseFunctionSetInterface.?® At
this point, a review of the above interfaces is in order.

Remark 3.1.42 (Scope of the interfaces in dune-gdt and dune-stuff). It is apparent
that the above interfaces are intended to model a single function space, and only in a

35The same is true for the matrices and vectors from the previous section: a user can always call
backend () on any matrix or vector to access the underlying wrapped object.

116

dune/gdt/basefunctionset/interface.hh

© 00 N 3 U R W N

NN NN NN NN R R e e e e
© 0 N O O RE W N R O © ® N TR W N~ O

3.1 Discretization framework

straightforward way. For instance, we always presume DoF wvectors to be consecutively
indezed and do not realize adaptivity by means of an adaptive grid view (we rather
consider spaces on indiwvidual levels of the grid), in contrast to dune-fem.

For the approzimation of systems (or in the context of domain decomposition) we
provide support for blocked spaces and mappers. While this allows to realize different
local DoF orderings, we do not provide support for arbitrary nested and combined spaces
as dune-pdelab does (though it is by no means prohibited by the interfaces).

One motivation for this was for dune-gdt to be usable in the broader context of model
reduction, where we often require access to underlying (consecutive) containers. The
main motivation, however, was to keep things simple and to enable developers and users
to easily understand and use the spaces, mappers and base function sets in dune-gdt
when developing new schemes, and to provide generic and transparent access to all un-
derlying (mathematically relevant) components and concepts. It is clear that these design
decisions limit the scope of dune-gdt; on the other hand dune-gdt may thus be easier
to pick up than other discretization frameworks.

In addition to the SpaceInterface, we provide interfaces for each class of discrete
function spaces. For instance, we provide the Spaces::CGInterface in dune/gdt/
spaces/cg/interface.hh, modeling a continuous Lagrange discrete function space in
the sense of Definition 3.1.19:

template< class Traits, size_t dimDomain, size_t dimRange, size_t dimRangeCols = 1 >
class CGInterface
: public Spacelnterface< Traits, dimDomain, dimRange, dimRangeCols >
{
// not all methods and types shown ...
public:
// required by any derived class
std: :vector< DomainType > lagrange_points(const EntityType& entity) const;

std::set< size_t > local_dirichlet_DoFs(const EntityType& entity,
const BoundaryInfoType& boundaryInfo) const;

// default implemented
template< class G, class S, size_t d, size_t r, size_t rC >
PatternType compute_pattern(const GridView< G >& local_grid_view,
const Spacelnterface< S, d, r, rC >& ansatz_space) const
{
return BaseType: :compute_volume_pattern(local_grid_view, ansatz_space);

}

template< class S, size_t d, size_t r, size_t rC, class ConstraintsType >
void local_constraints(const Spacelnterface< S, d, r, rC >& /*other*/,

const EntityType& /*entity*/, // Use of CRIP: reject

ConstraintsType& /*ret*/) const // arbitrary ConstraintsType,
{

static_assert(AlwaysFalse< S >::value, "Not implemented for these constraints!");
}
// but tmplement for

template< class S, size_t d, size_t r, size_t rC > // DirichletConstraints.

117

dune/gdt/spaces/cg/interface.hh
dune/gdt/spaces/cg/interface.hh

30
31
32
33
34
35
36
37
38
39
40

42

© 0 N O Ut W N

e e
= W N o= O

3 Software concepts and implementations

void local_constraints(const Spacelnterface< S, d, r, rC >& /*other*/,
const EntityType& entity,
DirichletConstraints< IntersectionType >& ret) const

{
const auto local_DoFs = this->local_dirichlet_DoFs(entity, ret.boundary_info());
if (local_DoFs.size() > 0) {
const auto global_indices = this->mapper().globallndices(entity);
for (const auto& local_DoF : local_DoFs) {
ret.insert(global_indices[local_DoF]);
}
}
Y // ... local_constraints(...)

}; // class CGInterface

The CGInterface enforces all derived classes to provide the local Lagrange points
(ﬁf)l.lg_l (see Definition 3.1.19), as well the indices of those points, which lie on the
Dirichlet boundary (modeled by local_dirichlet_DoFs, given a boundary info as dis-
cussed in the previous section). It also computes the correct sparsity pattern (by calling
the appropriate method on SpaceInterface, not shown) and Dirichlet constraints, once
again demonstrating a nice use for the CRTP paradigm.

As already hinted at we provide implementations of these interfaces based on the
dune-fem and dune-pdelab modules in dune/gdt/spaces/cg/{fem,pdelab}.hh. Ei-
ther implementation has its strengths and weaknesses, in particular regarding paral-
lelization and supported grid types. Mathematically, however, both behave identi-
cally and model the same continuous Lagrange discrete function space. In order to
facilitate the use of different backends we provide the Spaces: :CGProvider traits in
dune/gdt/spaces/cg.hh, along with the ChooseSpaceBackend enum class. They allow
for generic code by using the grid provider discussed in the previous section and the
appropriate tags:

#include <dune/gdt/spaces/cg.hh>

using namespace Dune::Stuff::Grid;
using namespace Dune::GDT: :Spaces;

template< class GridType, Chooselayer layer_type, ChooseSpaceBackend backend_type >
void discretize(ProviderInterface< GridType >& grid_provider,
const int 1lv = 0)
{
// create a CG space of scalar piecewise linear functions
typedef CGProvider< GridType, layer_type, backend_type, 1, double, 1 > SpaceProvider;
auto cg_space = SpaceProvider::create(grid_provider, 1v);
/.
}

Note that the user neither has to provide the correct includes (which depend on the
build configuration), nor does he have to create the correct grid view or grid part
to match the designated space. By providing a backend_type (e.g., fem, pdelab or
default_cg_backend) and a layer_type (e.g., level or leaf), the correct leaf/level
view /part is automatically created from the given grid_provider (where 1v is ignored,

118

dune/gdt/spaces/cg/{fem,pdelab}.hh
dune/gdt/spaces/cg.hh

© 0w N O U R W N

e e e
oA W N R O

© 00 N 3 U R W N =

o= e
N = O

3.1 Discretization framework

if layer_type == leaf). It is thus finally possible to completely exchange the imple-
mentation of a discrete function space by only changing one compile-time constant.

In addition to the CGInterface, we also provide respective interfaces and imple-
mentations for discontinuous Galerkin, Finite Volume and Raviart-Thomas-Nédélec dis-
crete function spaces in dune/gdt/spaces/{dg,fv,rt}.hh (compare Sections 3.1.1.1
and 3.1.1.2).

The discrete function. The discrete function spaces from the previous paragraph are
modeled after the mathematical requirements in Definition 3.1.16. The resulting inter-
pretation of each local basis function as a local function of a global basis functions greatly
simplifies the implementation of discrete functions in the sense of Definition 3.1.17: con-
ceptually, only a single implementation is required. In dune/gdt/discretefunction/
default.hh, we provide the

template< class SpaceType, class VectorType >
class ConstDiscreteFunction

: public Stuff::LocalizableFunctionInterface< ... >
{

// not all methods and types shown ...
public:

const SpaceType& space() const;
const VectorType& vector() const;

virtual std::unique_ptr< LocalfunctionType >
local_function(const EntityType& entity) const override;

std::unique_ptr< ConstLocalDiscreteFunctionType >
local_discrete_function(const EntityType& entity) const;

};
which allows to interpret a given const vector as a discrete function (read-only) and

template< class SpaceType, class VectorType >
class DiscreteFunction
: Stuff::Common: :StorageProvider< VectorType >
, public ConstDiscreteFunction< SpaceType, VectorType >
{
// not all methods an types shown ...
public:
VectorType& vector();

std::unique_ptr< LocalDiscreteFunctionType >
local_discrete_function(const EntityType& entity);
};

which also allows to alter the DoF vector. Both implementations provide a local discrete
function (in the sense of Definition 3.1.17), which in turn allows to access the local DoF
vector (read-only or writable, respectively).

The main purpose of the ConstDiscreteFunction is to allow to represent a given DoF
vector as a discrete function of a given space. It can for instance be used to visualize an
approximate solution:

119

dune/gdt/spaces/{dg,fv,rt}.hh
dune/gdt/discretefunction/default.hh
dune/gdt/discretefunction/default.hh

© 0 N O U R W N =

-
[=}

© 0 N O U R W N

LT T T S S
N~ O © ® N O U A W N~ O

3 Software concepts and implementations

#include <dune/gdt/discretefunction/default.hh>
using namespace Dune: :GDT;

template< class SpaceType, class VectorType >
void visualize_solution(const SpaceType& space, const VectorType& solution,
const std::string& filename)
{
ConstDiscreteFunction< SpaceType, VectorType >(space, vector).visualize(filename);

}

The DiscreteFunction, on the other hand, can also be created without an existing

vector (in which case a vector of correct size is automatically created, see lines 19 and
21):36

#include <dune/stuff/la/container/vector-interface.hh>
#include <dune/gdt/discretefunction/default.hh>
#include <dune/gdt/spaces/interface.hh>

using namespace Dune::Stuff::LA;
using namespace Dune::GDT;

template< class S, size_t d, size_t r, size_t rC, class V, class R >
typename VectorInterface< V >::derived_type
prolong_vector(const Spacelnterface< S, d, r, rC >& source_space,
const VectorInterface< V >& source_vector,
const Spacelnterface< R, d, r, rC >& range_space)

typedef typename Spacelnterface< S, d, r, rC >::derived_type SourceSpaceType;

typedef typename VectorInterface< V >::derived_type VectorType;

typedef typename Spacelnterface< R, d, r, rC >::derived_type RangeSpaceType;

ConstDiscreteFunction< SourceSpaceType, VectorType > source(source_space.as_imp(),
source_vector.as_imp());

DiscreteFunction< RangeSpaceType, VectorType > range (range_space.as_imp());

// carry out the prolongation ...

return range.vector(); // <= No copy required here, due to copy-on-urite
} // and move semantics for all containers.

The above (ficticous) example also demonstrates the use of CRTP interfaces to enforce
matching dimensions of the spaces (modeled by d, r and rC); the template arguments S,
V and R model the traits of the source space, vector and range space type, respectively.

The main purpose of the DiscreteFunction is to allow write access to the DoF vector.
It is thus used for projections and prolongations, as presented further below.

A note on operators and two-forms. Before we introduce the local building blocks for
operators and functionals we revisit the concept of operators and two-forms. As already
discussed, for instance in Remark 3.1.1, there is a close relationship between operators
and two-forms (such as products and bilinear forms). In the discrete (finite dimensional)

36This is possible since the StorageProvider from dune/stuff/common/memory.hh allows to generically
handle the case where we want to hold a reference to an existing object or create a new object.

120

dune/stuff/common/memory.hh

3.1 Discretization framework

setting the situation is similar, but at the same time slightly more difficult regarding the
implementation. Consider two spaces of localizable functions, Q(7;) and R(7}), and two
discrete function spaces V(7)) C Q(7) and Wy (7)) C R(77). In general, we think of a
discrete operator B and its inverse B~! as mappings between two spaces of localizable
functions®” (which we denote the source and range of the operator),

B :Q(13) — Wy(m) and B™: R(1) = Vi (15),
and of products (or bilinear forms) as an interpretation of the operator as a two-form:

(g s B(mp) x Q(73) — R, (riq) = (r,9) g == Blg)(r).

Actual implementations of operators and two-forms may also be restricted to acting only
on the discrete spaces V,(7;;) and Wy(7;). This already indicates that the implementa-
tion of an operator differs from that of a two-form (although the mathematical concepts
are closely related): operators shall provide

void apply(const SourceType& source, RangeType& range);

allowing them to alter the range discrete function, while the interpretation of an operator
as a two-form shall provide

FieldType apply2(const RangeType& range, const SourceType& source);

only requiring read access to its arguments. While we discuss the OperatorInterface
in detail further below, the above distinction is vital for an understanding of the local
building blocks introduced in the following paragraph.

Local evaluations, two-forms and functionals. As discussed extensively in Sections
3.1.1 and 3.1.2, we require operators, two-forms and functionals, which can be expressed
in a localized fashion with respect to a grid. We first consider operators and functionals
based on integrals, which in turn are transformed to local integrals on the reference
elements of the grid. We approximate those local integrals by a splitting into the inte-
grand and the numerical quadrature. The former is modeled by local evaluations, while
the latter is modeled by local integral operators and functionals. We discuss our imple-
mentation of this concept for volume integral operators; coupling and boundary integral
operators and integral functionals work analogously.

Therefore, we consider the example of an elliptic PDE from section 3.1.1.1. At some
point we need to evaluate the local elliptic operator which approximates the following
local integral on the reference element ¢, where A and x model the diffusion factor and
tensor, ¢! and 1! denote local ansatz and test basis functions and A; stems from the
geometric transformation of the integral (compare Definition 3.1.6 and Example 3.1.7):

Ble'|(4") = T [Ta X 6l] (07, ¢) = /fAt (V&' Vey") - da.

t
YelL

3"Note that each localizable function has locally fixed polynomial degrees. Thus, we can think of Q(73)
as finite dimensional.

121

© 0 N O U R W N

e e
w N o= O

14

23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46

3 Software concepts and implementations

The local elliptic operator B,tl is composed of the elliptic evaluation Ttell_ (modeling
the integrand) and the local volume operator Xf, the purpose of which is to approx-
imate the integral (given any integrand). We provide an implementation of ¥ in
dune/gdt/localoperator/integrals.hh (of which we show a simplified variant). Note
that the LocalVolumeIntegralOperator is actually a local two-form and thus derived
from LocalVolumeTwoFormInterface:

#include <dune/common/dynmatriz.hh>

#include <dune/geometry/quadraturerules.hh>
#include <dune/stuff/functions/interfaces.hh>
#include "interface.hh”

using namespace Dune;
using namespace Dune::Stuff;

template< class BinaryEvaluationType >
class LocalVolumeIntegralOperator // Y from Definition 3.1.6.
: public LocalVolumeTwoFormInterface< ... >
{
// not all methods and types shown ...
public:
template< class [::Mrgs >
explicit LocalVolumeIntegralOperator(const size_t over_integrate, Args&& ...args)
integrand_(std::forward< Args >(args)...)
, over_integrate_(over_integrate)

{

template< class E, class D, size_t d, class R, size_t rT, size_t rCT, size_t rA, size_t rCA >
void apply2(const LocalfunctionSetInterface< E, D, d, R, rT, rCT >& test_base, // (@ﬁ)
const LocalfunctionSetInterface< E, D, d, R, rA, rCA >& ansatz_base, /7’(@})

Dune: :DynamicMatrix< R >& ret) conmst /7’(2ﬂj..ﬂ[¢§“lﬁ))ﬂi

i

J

const auto& entity = ansatz_base.entity();
const auto local_functions = integrand_.localFunctions(entity);
// create quadrature
const size_t integrand_order = integrand_.order(local_functions, ansatz_base, test_base)
+ over_integrate_;
const auto& quadrature
= QuadratureRules< D, d >::rule(entity.type(),
boost: :numeric_cast< int >(integrand_order));
// prepare storage
ret *= 0.0;
const size_t rows = test_base.size();
const size_t cols = ansatz_base.size();
DynamicMatrix< R > evaluation_result(rows, cols, 0.);
// loop over all quadrature points
for (const auto& quadrature_point : quadrature) {
const auto xx = quadrature_point.position(); /7 ah
// integration factors
const auto integration_factor = entity.geometry().integrationElement (xx); // A;(xl)
const auto quadrature_weight = quadrature_point.weight(); // wh,
// evaluate the integrand
integrand_.evaluate(1oca1_functions, ansatz_base, test_base, xx, evaluation_result);

122

dune/gdt/localoperator/integrals.hh

© 0 N O U W N =

=
= o

3.1 Discretization framework

// compute integral

for (size_t ii = 0; ii < rows; ++ii) {
auto& ret_row = ret[ii];
const auto& evaluation_result_row = evaluation_result[ii];
for (size_t jj = 0; jj < cols; ++jj)

ret_row[jj] += evaluation_result_row[jj] * integration_factor * quadrature_weight;

} // compute integral
} // loop over all quadrature points
Y // ... apply2(...)

private:
const BinaryEvaluationType integrand_;
const size_t over_integrate_;

}; // class LocalVolumeIntegralOperator

The only method that is enforced by the LocalVolumeTwoFormInterface is the above
apply2 method. As input, apply?2 takes any two sets of local functions, ((p;»)j and (wf)l
modeled by test_base and ansatz_base, which are defined on the same grid (modeled
by the template parameters E, D and d) but may map to different dimension (modeled
by rT and rCT for the test and by rA and rCA for the ansatz functions). As output, the
evaluation of the local two-form operator for all combinations of these local functions,
(L[][¢§](¢f))zj, is written to ret.

Before we continue with the discussion of the implementation of apply2, we demon-
strate how to combine the LocalVolumeIntegralOperator (modeling X}) with the
Elliptic evaluation from dune/gdt/localevaluation/elliptic.hh (modeling Y%),
in order to form the elliptic operator BZ from Example 3.1.7. The E1liptic evaluation
needs to hold the diffusion factor A and tensor s, while the LocalVolumeIntegral-
Operator holds the Elliptic evaluation as the integrand_ member. In order to sim-
plify the creation of the resulting operator, all integral operators provide perfect for-
warding (lines 15-17). We thus create the final operator by simply defining its type
and passing on the required arguments of the E11iptic evaluation (without the need to
create the evaluation first):

#include <dune/gdt/localevaluation/elliptic.hh>
#include <dune/gdt/localoperator/integrals.hh>

using namespace Dune: :GDT;

typedef LocalVolumeIntegralOperator< LocalEvaluation::Elliptic<
DiffusionFactorType, DiffusionTensorType > > EllipticOperatorType;

EllipticOperatorType elliptic_operator(l, // Integrate one order higher than required.
diffusion_factor, // <- A\
diffusion_tensor); // <- k

The elliptic evaluation is a binary (since it accepts two sets of local functions) codim
0 evaluation (since it can be evaluated on a codim 0 reference element) and thus derived
from LocalEvaluation: :CodimOInterface< ..., 2 >, which we provide in dune/gdt/
localevaluation/interface.hh:

123

dune/gdt/localevaluation/elliptic.hh
dune/gdt/localevaluation/interface.hh
dune/gdt/localevaluation/interface.hh

© 0 N O U R W N =

R S i T e
S © 0 N O U A W N = O

3 Software concepts and implementations

template< class Traits >
class LocalEvaluation: :CodimOInterface(Traits, 2 >
: public Stuff::CRTPInterface< CodimOInterface< Traits, 2 >, Traits >
{
// not all methods and types shown ...
public:
LocalfunctionTupleType localFunctions(const EntityType& entity) const,

template< class R, size_t rT, size_t rCT, size_t rA, size_t rCA >
size_t order(const LocalfunctionTupleType& local_functions_tuple,
const Stuff::LocalfunctionSetInterface< E, D, d, R, rT, rCT >& test_base,

const Stuff::LocalfunctionSetInterface< E, D, d, R, rA, rCA >& ansatz_base) const;

template< class R, size_t rT, size_t rCT, size_t rA, size_t rCA >
void evaluate(const LocalfunctionTupleType& local_functions_tuple,
const Stuff::LocalfunctionSetInterface< E, D, d, R, rT, rCT >& test_base,

const Stuff::LocalfunctionSetInterface< E, D, d, R, rA, rCA >& ansatz_base,

const FieldVector< D, d >& local_point,
DynamicMatrix< R >& ret) const;

};

All interfaces for local evaluations enforce the above three methods (localFunctions,
order and evaluate) and only differ in their respective arguments.

We return to the discussion of the implementation of the apply2 method of the Local-
VolumeIntegralOperator above. This method is called on each grid element ¢t € 7,
(modeled by entity) and in turn calls the elliptic evaluation at each quadrature point.
The elliptic evaluation holds the localizable functions A and x, but requires the respective
local functions on each grid element, A\! and !, in order to compute the elliptic evalu-
ation (A'(2)rk!(2!)Viy!(2!)) - Vip' (2,) for each quadrature point zf,. Since we do not
want the elliptic evaluation to create the local functions A\’ and ! for each quadrature
point anew, each local evaluation exports its required local functions for a grid element
via the localFunctions method (returning a std: :tuple of std: :shared_ptrs of lo-
cal functions). And since the local operator does not know about the individual local
functions (and does not have to), it just passes this tuple back to the local evaluation in
each call (for the local evaluation to extract the required local functions).

For instance, in order to obtain a quadrature of correct order, the local operator
passes A\! and k! wrapped inside local_functions as well as the test and ansatz bases
to the local evaluation to obtain the polynomial order of the integrand (see line 29 of
the apply2 implementation above). At each quadrature point z!, (modeled by xx), the
operator passes the same arguments along with xx to the evaluate method of the local
evaluation (see line 45 of the apply2 example above). After evaluating the integrand,
the operator computes the approximation of the integral by multiplication with the
quadrature weight w! and A;(z!), for all combinations of local test and ansatz functions
(see lines 47-52 of the apply2 implementation above).

Let us now consider the implementation of the E11liptic evaluation, for example the
evaluate method. As demonstrated in apply2, evaluate is called for each quadrature
point, given a tuple of local functions as the first argument. The first step in the
implementation of the E1liptic evaluation is to extract the individual local functions

124

© 0 N O U R W N =

= e
N o= O

© 0 N O U R W N

I S e i T e
S © ® N o ;oA W N = O

3.1 Discretization framework

Al and k! and redirect the actual computation of the evaluation:

template< class R, size_t rT, size_t rCT, size_t rA, size_t rCA >
void evaluate(const LocalfunctionTupleType& local_functions_tuple,
const Stuff::LocalfunctionSetInterface< E, D, d, R, rT, rCT >& test_base,
const Stuff::LocalfunctionSetInterface< E, D, d, R, rA, rCA >& ansatz_base,
const FieldVector< D, d >& local_point,
DynamicMatrix< R >& ret) const
{
const auto local_diffusion_factor = std::get< 0 >(loca1_functions_tup1e);
const auto local_diffusion_tensor = std::get< 1 >(local_functions_tuple);
evaluate(*local_diffusion_factor, *local_diffusion_tensor,
test_base, ansatz_base, local_point, ret);

}

After extracting the local functions, an implementation of the redirected evaluate
method (line 10) could be provided by

template< class R >

void evaluate(const Stuff::LocalfunctionInterface< E, D, d, R, 1, 1 >& diffusion_factor,
const Stuff::LocalfunctionInterface< E, D, d, R, d, d >& diffusion_tensor,
const Stuff::LocalfunctionSetInterface< E, D, d, R, 1, 1 >& test_base,
const Stuff::LocalfunctionSetInterface< E, D, d, R, 1, 1 >& ansatz_base,
const Dune::FieldVector< D, d >& local_point,
Dune: :DynamicMatrix< R >& ret) const

// evaluate local functions
const auto diffusion_factor_value = diffusion_factor.evaluate(local_point);
const TensorType diffusion_tensor_value = diffusion_tensor.evaluate(local_point);
const auto diffusion_value = diffusion_tensor_value * diffusion_factor_value;
// evaluate basis functions (yields std::vector< ... > of jacobian evaluations)
const auto test_gradients = test_base.jacobian(local_point);
const auto ansatz_gradients = ansatz_base.jacobian(local_point);
// compute elliptic evaluation
for (size_t ii = 0; ii < test_base.size(); ++ii)
for (size_t jj = 0; jj < ansatz_base.size(); ++jj)
ret[ii] [jj] = (diffusion_value * test_gradients[jj]l[0]) * ansatz_gradients([ii] [0];
}

making use of our extension of dune-common’s FieldMatrix®® (as TensorType above)

to provide convenience multiplication operators (lines 12 and 19).3° The above example
demonstrates the power of the LocalfunctionSetInterface: we can exchange functions
at runtime, but only those with respect to the same grid and dimensions. Together with
the matching of template arguments above, we can ensure the correctness of arguments
at compile time (for instance the dimensions of A, see line 3) and at the same time
allow the compiler to generate optimal code (since all vector and matrix types and

38dune/stuff/common/fmatrix.hh

39The use of such convenience operators does involve the creation of temporary objects, which
is not optimal. On the other hand, they allow for generic code such as the one displayed
above, which would otherwise not compile for all dimensions (since the implementation of
Dune: :FieldMatrix< double, 1, 1 > does not provide the required mv method, in contrast to the
implementation for all other dimensions).

125

© 00 9 O g W N =

=
[=}

3 Software concepts and implementations

sizes are fixed at compile time). While a fairly simple example, the implementation of
the Elliptic evaluation demonstrates how developers and users can provide custom
implementations of their integrands for different combinations of dimensions, if desired.

In addition to the LocalVolumeIntegralOperator, we provide similar implementa-
tions for coupling and boundary integral operators and volume and boundary integral
functionals, which together cover all possibly arising integrals. In the context of contin-
uous and discontinuous discretizations of linear elliptic PDEs, we provide the following
local evaluations within the LocalEvaluation namespace:

e Elliptic in dune/gdt/localevaluation/elliptic.hh, implementing the local
elliptic evaluation Y!, from Example 3.1.7.

e Product in dune/gdt/localevaluation/product.hh, implementing the local prod-
uct evaluation T;md‘ from Examples 3.1.10, 3.1.13 and 3.1.30. We do so by deriv-
ing from CodimOInterface< ..., 1 >, CodimOInterface< ..., 2 >, Codimi-
Interface< ..., 1 > and CodimlInterface< ..., 2 >, and by providing the
appropriate specializations of order and evaluate for all cases.

e The SWIPDG namespace in dune/gdt/localevaluations/swipdg.hh, providing

— Inner, implementing the local SWIPDG coupling evaluation fSWIP from Ex-
ample 3.1.27 and

— Boundary{LHS,RHS}, implementing the local SWIPDG boundary evaluation
TgWIP from Examples 3.1.25 and 3.1.23.

Local operators. In addition to the integral operators and functionals discussed in the
previous paragraph we also provide an interface for local building blocks for other more
general operators in dune/gdt/localoperator/interfaces.hh:

template< class Traits >
class LocalOperatorInterface
: public Stuff::CRTPInterface< LocalOperatorInterface< Traits >, Traits >
{
// not all types shown ...
public:
template< class SourceType, class RangeSpaceType, class VectorType >
void apply(const SourceType& source,
LocalDiscreteFunction< RangeSpaceType, VectorType >& local_range) const;

};

The apply methods of the LocalOperatorInterface allows for a localizable function
or a discrete function as source. While being sufficient for our purposes this interface
might have to be extended for general matrix-free operators in the future.

The LocalOperatorInterface is for instance suitable for the local L?-projection op-
erator from Definition 3.1.40, which is given by its action on the local discrete function
of its range. A possible implementation of the local operator constituting the local L2-
projection operator could be realized in terms of the LocalVolumeIntegralOperator,
LocalVolumeIntegralFunctional and LocalEvaluation: :Product:

126

dune/gdt/localevaluation/elliptic.hh
dune/gdt/localevaluation/product.hh
dune/gdt/localevaluations/swipdg.hh
dune/gdt/localoperator/interfaces.hh

© 0 N O G W N =

e e e e
D Uk W N = O

18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49

3.1 Discretization framework

#include <dune/stuff/functions/interfaces.hh>
#include <dune/stuff/la/container/common.hh>
#include <dune/stuff/la/solver.hh>

#include <dune/gdt/discretefunction/local.hh>
#include <dune/gdt/localevaluation/product.hh>
#include <dune/gdt/localfunctional/integrals.hh>
#include <dune/gdt/localoperators/integrals.hh>

class LocallL2ProjectionOperator
: public LocalOperatorInterface< ... >

{

// not all methods and types shown ...
public:
template< class E, class D, size_t d, class R, size_t r, size_t rC

, class RangeSpaceType, class VectorType >

void apply(const Stuff::LocalizableFunctionInterface< E, D, d, R, r, rC >& source,

{

}

LocalDiscreteFunction< RangeSpaceType, VectorType >& local_range) const

// create local L2 operator and functional

const LocalVolumeIntegralOperator< LocalEvaluation::Product< /*...*x/ > >
local_12_operator(over_integrate_/+*, ...*/);

const LocalVolumeIntegralFunctional< LocalEvaluation::Product< SourceType >
local_12_functional(over_integrate_, source);

// create local lhs and rhs

const auto& local_basis = local_range.basis();

Stuff::LA::CommonDenseMatrix< R > local_matrix(local_basis.size(), local_basis.size());

Stuff::LA::CommonDenseVector< R > local_vector(local_basis.size());

// assemble

local_12_operator.apply2(local_basis, local_basis, local_matrix.backend());

local_12_functional.apply(local_basis, local_vector.backend());
// solve

Stuff::LA::CommonDenseVector< R > local_solution(local_basis.size());

try {

Stuff::LA::Solver< Stuff::LA::CommonDenseMatrix< R > >(local_matrix).apply(tmp_rhs,
local_solution);
} catch (Stuff::Exceptions::linear_solver_failed% ee) {
DUNE_THROW (Exceptions: :projection_error,
"L2 projection failed because a local matrix could not be inverted!\n\n"
<< "This was the original error: " << ee.what());
}
// set local DoFs
for (size_t ii = 0; ii < local_range_vector.size(); ++ii)
local_range.vector().set(ii, local_solution[ii]);

// ... apply(...)

private:
const size_t over_integrate_;
}; // class LocallL2ProjecttonOperator

While possibly not an optimal implementation, the above example demonstrates how
to realize a local L2-projection using existing building blocks. We initialize the L?-
product operator from Definition 3.1.30 (line 22) and the local L?-volume functional

127

© 00 N 3 U W N =

NN NN NN NN R R R e e e
0 N D A WN R O © KON O A W N~ O

3 Software concepts and implementations

from Example 3.1.10 (line 24) and assemble both into appropriate local containers (lines
30-31). We immediately obtain the local DoF vector as the solution of the local dense
linear system using the linear solvers introduced in the previous Section (line 35).

Putting it all together: unified computation of localized quantities. With the local
operators, two-forms and functionals we have all the local building blocks we need to
approximate the solution of a linear elliptic PDE. Further below, we also introduce
ready built global operators, two-forms and functionals that are more convenient in
many scenarios. However, sometimes convenience has to be traded in for full control
over all building blocks (for instance when developing a new discretization scheme). For
such use cases we provide local assemblers (which copy a local matrix into the respective
entries of a global matrix) and the SystemAssembler as an extension of the GridWalker
from dune-stuff (introduced in the previous section).

Given a test and ansatz discrete function space, the purpose of the SystemAssembler
is to allow for the assembly and computation of any local operator, local two-form or local
functional (in addition to the functors already accepted by the GridWalker). Presuming
we have already created the local building blocks (for instance as detailed in the previous
paragraph), we can add them to the SystemAssembler in order to compute them all in
one iteration over the grid:

#include <dune/gdt/assembler/local/codim0.hh>
#include <dune/gdt/assembler/local/codiml.hh>
#include <dune/gdt/assembler/system.hh>

// Given a local elliptic operator for A\ and r, a local L*? wolume functional for f,
// a local L? boundary functional for gy and a dirichlet projection for gp,
// create local assemblers,
LocalAssembler: :CodimOMatrix

< LocalEllipticOperatorType > elliptic_assembler(local_elliptic_operator);
LocalAssembler: :CodimOVector

< LocallL2VolumeFunctionalrType > force_assembler(local_force_functional);
LocalAssembler: :CodimlVector

< LocalL2BoundaryFunctionalrType > neumann_assembler(local_neumann_functional);
// create system matriz and right hand stide,
MatrixType system_matrix(test_space.mapper().size(), // (Choose the correct sparsity

ansatz_space.mapper () .size(), // pattern for elliptic operator
test_space.compute_volume_pattern(ansatz_space); // and CG space.)

VectorType rhs_vector(test_space.mapper().size());

// add them to the system assembler,

SystemAssembler< SpaceType > assembler(test_space, ansatz_space);
assembler.add(elliptic_assembler, system_matrix);
assembler.add(force_assembler, rhs_vector);

assembler.add(neumann_assembler, rhs_vector, // (only on Neumann boundary intersections)
new Stuff::Grid::ApplyOn: :NeumannIntersections< GridViewType >(boundary_info));
assembler.add(dirichlet_projection) ; // (is not assembled but locally computed)

// compute everything in one grid iteration and
assembler.assemble();
// solve the linear system (see previous section)

We manually create the global system matrix with the correct sparsity pattern (lines 15—

128

3.1 Discretization framework

17) and add the corresponding local assembler (line 21). During the grid walk triggered
in line 27, the local elliptic two-form operator will compute the elliptic integrals for
all test and ansatz basis functions and the local assembler (created in lines 8-9) will
copy the resulting local matrix into the global matrix using the mapper ()s of the test
and ansatz space. In the same spririt, we create a global right hand side vector (line
18) that the two local vector assemblers (created in lines 10-13) will assemble into.
Note that we restrict the assembly of the local L? boundary integral for the Neummann
boundary values to those intersections of the grid that lie on the Neumann boundary,
by simply providing the ApplyOn: :NeumannIntersections tag (line 24) together with
a boundary_info object (see the previous section). We provide various tags of this kind
in dune/stuff/grid/walker/apply-on.hh to manually restrict the set of entities or
intersections a local functor is applied on.

We demonstrate further below how many of these manual tasks are provided by ready
built global operators, two-forms and functionals and how a complete approximation of
a linear elliptic PDE can be easily realized in terms of these global objects. Nevertheless,
the above example demonstrates how a user or developer has full control over all local
building blocks. Since these local building blocks can be combined in many ways, he or
she is empowered to rapidly develop new discretization schemes by combining existing
building blocks with new custom implementations.

We would also like to note (again), that the above assemble method can be used to
trigger a sequential as well as a shared memory parallel iteration over the grid by simply
providing a runtime switch.

Operators, two-forms and functionals. We already introduced the local building blocks
which are essential to our discretization framework, above, in a paragraph on local oper-
ators, local two-forms, local functionals and local evaluations. However, as demonstrated
in the previous paragraph, those need to be combined in the correct way to successfully
define a discretization scheme (e.g., the sparsity pattern of the system matrix has to
match the local operator and discrete function space, the assembly of the boundary in-
tegrals has to be restricted to the right set of intersections, and so forth). While there
exist circumstances where this fine-grained control is exactly what we wish for, it is also
convenient to have access to ready built global operators, two-forms and functionals.

In addition, the local building blocks lack important information that is only available
if we consider the respective global counterpart: while a local operator might be enough
to determine how to apply an operator, it is for instance not sufficient to define how
the operator should be inverted (e.g., by an iterative linear solver repeatedly applying
the operator or by a Newton scheme requiring access to the operators jacobian). Lastly,
we require global operators and functionals in the context of model reduction. Most
model reduction algorithms can be generically implemented acting on (global) operators
and functionals and do not require any knowledge about the local building blocks of the
operator (compare Section 3.2).

We briefly revisit our view on operators, two-forms and functionals before presenting
their respective implementation in dune-gdt. In general, we think of a discrete operator

129

dune/stuff/grid/walker/apply-on.hh

3 Software concepts and implementations

B and its inverse B~! as mappings between two spaces of localizable functions (which
we denote the source and range of the operator),

B:Q(1;) — R(}) and B R(7]) = Q(73),
and of products or bilinear forms as an interpretation of the operator as a two-form:

(,)g : R(mp,) x Q(13) = R, (r,q) = (r,q) g :== Blq](r). (3.1.31)

While we do provide implementations of products acting on localizable functions (for
instance in the spirit of Definition 3.1.32), operators usually need to act on discrete
function spaces: the application of the operator or its inverse requires access to the
image, which is only possible through the DoF vector of a discrete function. To illustrate
this point we consider some examples:

e Consider a Finite Volume operator Ly in the context of a (possibly nonlinear) time-
dependent PDE. Such an operator would act on the solution at the previous time
step to produce the solution at the next time step (which would be sufficient for
an explicit scheme). Thus, Lj would map onto a (Finite Volume) discrete function
space Wy, (77) C R(7}), taking as input any localizable function or possibly only
Finite Volume discrete functions (for performance reasons). We thus either have

Ly : Q1) = Wh(mp) or Ly, : V(1) = Wy(7]), (3.1.32)

with a (Finite Volume) discrete function space Vi (75) C Q(73). If required (for
instance for an implicit scheme), the inverse of the operator would be realized by
a generic iterative linear solver if L was linear (solely requiring the application of
the operator) or a variant of a Newton scheme if L; was nonlinear (requiring the
application of the operator and its jacobian). Either way, the inverse of L; would
exclusively map between discrete function spaces:

L}:I : Wh(T}TL) — Vh(sz).

If the operator was implemented to act on Vj(77) (in contrast to Q(7})), it could
also be interpreted as a two-form, by means of the Euclidean product on Wy (7}):

(5)p, - Wh(ry) X V() — R, (wh,vn) g, = wh - Lp[on] (3.1.33)

e Consider on the other hand the elliptic operator By and its matrix representation
By, in the context of a stationary linear elliptic PDE (see Definition 3.1.14). If
interpreted as a product, B}, can act on localizable functions:

(2, R(m,) x Q) — R, (3.1.34)

However, by means of its matrix representation, we obtain an operator (and its
inverse) acting on discrete functions,

By, : Vi (1) = Wy(17,), vp = wp := Bypluy), with wy, := Brvp, (3.1.35)

By bWy (1) — Vi(75), wp > vy, such that By vy = Wh, (3.1.36)

130

© 0 N O U e W N =

WO NN NN NN NN R R e e e e
S © ® 9 0 A W N RO O KX N oA WN = O

3.1 Discretization framework

where vy, € RA™Va(Ti) and wp, € R Wn(75) denote the DoF vectors of vy, € Vi (73)
and wy, € Wj,(17), respectively. In addition, the matrix representation of By, allows
to provide a variant of the product acting on discrete functions only:

(), Wh(Th) x Vi(m) = R, (wn,vn)p, == wn™ - (Buvn). (3.1.37)

While less general than the variant acting on localizable functions (since this one
also works for discrete functions) this one might be preferable, depending on the
circumstances: while the matrix representation requires more storage, it only has
to be computed once and can repeatedly be applied to different discrete functions.

For functionals I, : Q(7,) — R or I : Vi(7) — R, the situation is similar (though
slightly simpler) and we do not discuss it further in this context.

The above considerations on operators and products are reflected by the abstract
interface we provide in dune/gdt/operators/interfaces.hh, representing an operator,
its inverse and its interpretation as a two-form:

template< class Traits >
class OperatorInterface
: public Stuff::CRTPInterface< OperatorInterface< Traits >, Traits >

{
// mnot all methods and types shoun ...
public:
template< class SourceType, class RangeType > // wr = Bprlvs]

void apply(const SourceType& source, RangeType& range) const;

template< class RangeType, class SourceType > // Ovh,vh)gh
FieldType apply2(const RangeType& range, const SourceType& source) const;

template< class SourceType >
JacobianType jacobian(const SourceType& source) const;

template< class RangeType, class SourceType > // vy, = By Hws]
void apply_inverse(const RangeType& range, SourceType& source,
const Stuff::Common::Configuration& opts) const;

std: :vector< std::string > invert_options() const; // To be used like types() and options()
// of a linear solver (see previous
Stuff::Common: :Configuration invert_options(const std::string& type) const; // section).

// default implemented
template< class RangeType >
FieldType induced_norm(const RangeType& range) const
{
return std::sqrt(apply2(range, range));
}
};

This templated interface pays respect to the fact that we know little about the source
and range of an operator (at least in the sense of C++ types). Again, the CRTP paradigm
is a perfect fit for this situation, as it allows us to define what functionality we expect of

131

dune/gdt/operators/interfaces.hh

3 Software concepts and implementations

an operator while allowing the actual argument types of the methods to differ for each
implementation. It is clear from the above discussion that not every implementation of an
operator will completely fulfill the above OperatorInterface and we raise an exception
which provides additional information, whenever an operator does not implement one of
the methods.

Nevertheless, following the above examples, we identify three archetypes of operators:
(1) an operator given by its matrix representation, (i7) a product acting on localizable
functions and (ii7) a matrix-free (linear or nonlinear) operator acting on localizable or
discrete functions. In order to facilitate the implementation of new operators, products
and bilinear forms we provide a default implementation for each of the three archetypes
in dune/gdt/operators/default.hh (the use of which is demonstrated further below):

(¢) For all operators By, which are given by their matrix representation, we provide
the MatrixOperatorDefault: for fixed source and range discrete function spaces
Vi (77) and Wp,(77), such operators provide an assembled matrix representation
of themselves. They fully comply to the OperatorInterface and implement the
apply, apply2 and apply_inverse methods for discrete functions v, and wy and
their respective DoF vectors vy, and wy, (compare Equations 3.1.35, 3.1.36 and
3.1.37).

(74) For all product operators B, which work on arbitrary localizable functions, we
provide the LocalizableProductDefault: for fixed source and range localizable
functions ¢ and 7, such operators can be evaluated as a two-form. Localizable-
ProductDefault does not derive from OperatorInterface but can be used to
implement an operator derived from OperatorInterface, which only implements
the apply2 method (compare Equation 3.1.33).

(7i7) For all matrix-free operators Ly, we provide the LocalizableOperatorDefault:
for a fixed source function vy and a range discrete function wy, such operators
can be applied. LocalizableOperatorDefault does not derive from Operator-
Interface but can be used to implement an operator derived from Operator-
Interface which implements the apply method (compare Equation 3.1.32), the
apply2 method (if the source function is a discrete function, compare Equation
3.1.33) and the apply_inverse method, if proper generic linear solvers or Newton
schemes are available (where we do not yet provide the latter).

The purpose of these default implementations is to greatly simplify the implementa-
tion of new operators by providing as much infrastructure as possible. Therefore,
the MatrixOperatorDefault is derived from SystemAssembler, while Localizable-
ProductDefault and LocalizableOperatorDefault are derived from dune-stuff’s
GridWalker. In order to implement a new operator, one simply has to derive from the
appropriate default implementation and add the constituting local operator or two-form.

For instance, we implement the elliptic operator By from above (that is given by its
matrix representation) in dune/gdt/operators/elliptic.hh as follows:

template< /*...%/ >
class EllipticMatrixOperator

132

dune/gdt/operators/default.hh
dune/gdt/operators/elliptic.hh

© 0w N 3 Ot ke W

11
12
13
14
15
16
17
18
19
20
21
22

3.1 Discretization framework

: public MatrixOperatorDefault< /*...,#*/ ChoosePattern::volume >
{
// not all types shown ...
typedef LocalVolumeIntegralOperator
< LocalEvaluation::Elliptic< DiffusionFactorType, DiffusionTensorType > >
LocalEllipticOperatorType;
public:
template< class [:]Args >
explicit EllipticMatrixOperator (const DiffusionFactorType& diffusion_factor,
const DiffusionTensorType& diffusion_tensor,
Args&& ...args)
: MatrixOperatorDefault< /#*...*/ >(std::forward< Args >(args)...)
, local_elliptic_operator_(diffusion_factor, diffusion_tensor)
{
this->add(local_elliptic_operator_);
}

private:
const LocalEllipticOperatorType local_elliptic_operator_;
};

This example shows the minimum amount of boilerplate code which is required to im-
plement new matrix-based operators. We create the local two-form constituting the
operators and pass all other arguments to the MatrixOperatorDefault base using per-
fect forwarding. All we have to do is to register the local two-form with the system
assembler (line 17), and the base class provides the assembly as well as the full function-
ality of the OperatorInterface. The above EllipticMatrixOperator can be created
with an existing matrix as well as without. In the latter case, a matrix with the appro-
priate sparsity pattern is automatically created (since we provide the volume tag, see
line 3).

In addition, we provide a generator function which further alleviates the user from
manually specifying the correct template arguments. Given a discrete function space
and data functions, one can obtain an elliptic matrix operator with

auto elliptic_operator = make_elliptic_matrix_operator< MatrixType >(diffusion_factor,
diffusion_tensor,
space) ;

the use of which we demonstrate in the next paragraph.
In addition, we provide an implementation of the elliptic operator as a localizable
product (compare Equation 3.1.34), acting on localizable functions:

class EllipticLocalizableProduct
: public LocalizableProductDefault< /*...x/ >
{
// not all methods and types shown ...
typedef LocalVolumeIntegralOperator
< LocalEvaluation::Elliptic< DiffusionFactorType, DiffusionTensorType> >
LocalEllipticOperatorType;
public:
template< class [:]Args >

133

10
11
12
13
14
15
16
17
18
19
20
21

© 00 N O U R W N =

[un
[=}

3 Software concepts and implementations

explicit EllipticLocalizableProduct(const DiffusionFactorType& diffusion_factor,
const DiffusionTensorType& diffusion_tensor,
Args&& . ..args)
: BaseType(std: :forward< Args >(args)...)
. local_elliptic_operator_(diffusion_factor, diffusion_tensor)

{
this->add(local_elliptic_operator_);
}
private:
const LocalEllipticOperatorType local_elliptic_operator_;
};

Note that the EllipticLocalizableProduct and the EllipticMatrixOperator are
very similar and mostly differ in the base class they are derived from. In particular, they
both use the same local elliptic two-form operator, which is, however, interpreted by the
respective base class in a different way: while the MatrixOperatorDefault computes
local matrices for all test and base functions on all grid elements (and assembles those
together into the global matrix), the LocalizableProductDefault evaluates the local
two-form with the local functions of the prescribed source and range and accumulates
the local results.

Given such fixed source and range localizable functions v and wy,, the purpose of the
EllipticLocalizableProduct is to represent the evaluation of the product (wp, Uh)Bh
as an object, the computation of which can be localized by means of dune-stuff’s Grid-
Walker. The source and range functions are passed on to LocalizableProductDefault
by means of perfect forwarding, again.

Localizable products can be used to compute several products or norms of localizable
functions in a single grid walk. Suppose we are given the exact solution p and a discrete
approximation p_h and want to compute several error norms:

// prepare the products

EllipticLocalizableProduct< /*...#*/ > energy_product(diffusion_factor, diffusion_tensor,
grid_view, p - p_h, p - p_h);

L2LocalizableProduct< /*...*/ > 12_product(grid_view, p - p_h, p - p_h);

// use the first as grid walker

energy_product.add(12_product); // register the second for computation

energy_product.walk() ; // compute both in one grid walk

// access the results

double energy_error = energy_product.induced_norm() ;
double 12_error = 12_product.induced_norm() ;

This is the computationally most efficient way to compute several products in one grid
walk. If we are only interested in a single product, however, the specification of the
energy_product, for instance, is not very intuitive. We thus additionally provide a
generic El1lipticOperator in dune/gdt/operators/elliptic.hh, which derives from
OperatorInterface and implements apply, apply2 and apply_inverse by redirecting
the computation to the EllipticMatrixOperator or EllipticLocalizableProduct,
depending on the method in question and its arguments. Using this generic operator
(and a generator method as discussed above) we can obtain the same error norm in a
more intuitive way:

134

dune/gdt/operators/elliptic.hh

© 00 N 3 U e W N

NN N NN N R R e e e
S O RE W N R O © ®m N TR W N~ O

3.1 Discretization framework

auto elliptic_operator = make_elliptic_operator(diffusion_factor, diffusion_tensor,
grid_view) ;
double energy_error = elliptic_operator->induced_norm(p - p_h);

The LocalizableOperatorDefault can be used in a similar way to form any matrix-
free operator. For instance, we realize the L? projection operator from Definition 3.1.40
by deriving from LocalizableOperatorDefault and using the LocallL2Projection-
Operator presented above.

This finalizes our discussion of how we implement global operators and two-forms in
dune-gdt. Of course, we also provide similar default implementations for functionals.

System tests: a full example of discretizing a linear elliptic PDE. With dune-gdt,
we provide and ship an extensive test suite in dune-gdt/tests (based on the googletest
framework?). We provide unit tests for all spaces, products and operators as well as
system tests. Given predefined grid and problem descriptions, the latter compute a series
of approximate solutions, the associated discretization errors in several norms and the
corresponding EOCs (compare Section 3.1.1.2). The resulting error- and EOC-values
are then compared to an internal database to ensure the quality of the approximation.

To finalize the presentation of dune-gdt, we provide the actual code that is used in
dune/gdt/tests/linearelliptic/discretizers/cg.hh in order to compute a contin-
uous Galerkin FE approximation of a linear elliptic PDE:

using namespace Dune::Stuff::Grid;

static DiscretizationType discretize(ProviderInterface< GridType >& grid_provider,
const ProblemType& problem,
const int level = 0)

// create discrete function space
auto space = Spaces::CGProvider< /*...#*/ >::create(grid_provider, level);

auto boundary_info = BoundaryInfoProvider< /*...*/ >::create(problem.boundary_info_cfg());

// define all operators and functionals
auto elliptic_operator
= make_elliptic_matrix_operator< MatrixType >(problem.diffusion_factor(),
problem.diffusion_tensor(),
space) ;
auto 12_force_functional
= make_12_volume_functional< VectorType >(problem.force(), space);

auto 12_neumann_functional // Assemble both
= make_12_boundary_functional (problem.neumann(), // functionals into
12_force_functional->vector(), // the same wvector.
space,

new ApplyOn::NeumannIntersections< /*...#*/ >(xboundary_info));

// prepare the dirichlet projection and constraints
auto dirichlet_function

= make_discrete_function< VectorType >(space, "dirichlet values");
auto dirichlet_projection

= Operators: :make_localizable_dirichlet_projection(space.grid_view(),

“Onttps://code.google.com/p/googletest/

135

dune-gdt/tests
dune/gdt/tests/linearelliptic/discretizers/cg.hh
https://code.google.com/p/googletest/

27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48

3 Software concepts and implementations

*boundary_info,
problem.dirichlet(),
dirichlet_function);

Spaces: :DirichletConstraints< /*...*/ >

dirichlet_constraints(*boundary_info, space.mapper().size());

// register everything for assembly in one grid walk

SystemAssembler< SpaceType > assembler (space);

assembler.add(*elliptic_operator);

assembler.add(*¥12_force_functional);

assembler.add (*12_neumann_functional);

assembler.add(dirichlet_projection) ;

assembler.add(dirichlet_constraints);

assembler.assemble();

// assemble the dirichlet shift

auto& system_matrix = elliptic_operator->matrix();

auto& rhs_vector = 12_force_functional->vector();

auto& dirichlet_shift = dirichlet_function.vector();

rhs_vector -= system_matrix * dirichlet_shift;

dirichlet_constraints.apply(system_matrix, rhs_vector);

// create the discretization (no copy of the containers done here, bc. of cow)

return DiscretizationType(problem, space, system_matrix, rhs_vector, dirichlet_shift);

}

This static method is the main methods of the CGDiscretizer and returns a stationary
discretization object, which holds all assembled containers and provides a solve method.
The CGDiscretizer is instantiated (and discretize and solve are called) for all avail-
able combinations of discretization and linear algebra backends; the appropriate tags are
passed on to Spaces: : CGProvider (line 7, not shown) and Stuff: :LA: :Container (also
not shown). Note (again), that we are thus able to switch between different backends
for the linear algebra containers and linear solvers as well as for the discrete function
spaces by just passing on two compile-time constants, yielding the above generic code
that works for all implementations.

This finalizes the demonstration and discussion of our discretization framework, which
we utilize for all high-dimensional computations in the context of elliptic parametric
multiscale problems. The remainder of this chapter gives a presentation and discussion
of our model reduction software framework.

136

3.2 Model reduction framework

3.2 Model reduction framework

Similar to the presentation of our discretization framework in the previous section, we
begin the discussion of our designated model reduction framework by revisiting our re-
quirements. Following our earlier work [MRS2015] we continue with a discussion of
existing model reduction frameworks and motivate the design of our framework, which
mainly consists of pyMOR. We finish this chapter with a presentation of pyMOR’s archi-
tecture and implementation and a brief presentation of our related software packages,
dune-pymor and dune-hdd.

3.2.1 Requirements

We refer to Sections 1.3 for a presentation of the reduced basis (RB) method and briefly
summarize the required building blocks in view of their relevance for a model reduction
software framework.

The reduced basis method is by nature a very generic model reduction technique
which can be applied to a wide range of high-dimensional problems. It is an important
feature of RB methods that existing high-dimensional discretizations can be used (and
are usually required) in order to derive a reduced order model: any discretization (in
particular those discussed in Section 3.1.1.1) can be used as long as the high-dimensional
problem is of an appropriate form, such as

e in Definition 1.3.4 for stationary linear problems; or

e in the form of: for p € P find pp () € Qp, such that

Bhlpn(p); p] = Iy in Qp (3.2.1)

for stationary nonlinear problems; or

e in the form of: for p € P find py,(t;) € Qp, such that

< Opn(t; 1), qn > +Bulpn(t; w); ul(an) = ln(qn), for all ¢4 € Q and (3.2.2)
pr(0; 1) = pon(p) for some pop(p) € Qn,

for instationary problems,

where @), denotes a high-dimensional discrete function space, l;, € @}, denotes a linear
functional and By, : P — [Q), — Q)] denotes a parametric operator.?!

While high-dimensional discretizations are essential to model reduction and while the
reduced scheme only depends on the form of the above problem (not its implementa-
tion), the code implementing the high-dimensional discretization nearly always has to be
adapted for model order reduction. We thus briefly summarize which main operations
are needed when implementing reduced basis schemes.

“1The two problems sketched here are of course not mathematically complete, can be further extended
(by additional parameter and time-dependencies) and are only meant to be illustrating.

137

3 Software concepts and implementations

8.2.1.1 High-dimensional operations

Going through the reduction process as laid out in Section 1.3, the following operations
associated with the high-dimensional discretization have to be performed:

Computation of solution snapshots pp(p): During any variant of the greedy basis gen-
eration (Algorithm 1.3.10), solution snapshots p,(p) need to be computed for certain
training parameters g € Pyrain selected by the algorithm. Since these parameters are
not known a priori, either the high-dimensional solver has to stay initialized in memory
during the whole offline phase, or the solver has to be re-initialized (grid generation,
matrix assembly, etc.) for each new solution snapshot.

Basis extension: To ensure the numerical stability of the reduced model, system ma-
trices need to be assembled with respect to an orthonormal basis of Q;,. For greedy basis
generation, a stabilized Gram-Schmidt algorithm is the standard choice for orthonormal-
ization, as it generates hierarchical bases which are compatible with the nesting of the
reduced spaces Qigzl C Qgg C ---. For instationary problems such as (3.2.2), the solu-
tion trajectory has to be orthogonally projected onto the current reduced space Qreq and
a proper orthogonal decomposition (POD) of the projection errors has to be computed.

Assembly of reduced system matrices: To assemble the reduced Problem 1.3.6, the
high-dimensional bilinear form b, and the right-hand side [, have to be evaluated for
each (combination of) basis vector(s) of Qreq. The implementation needs to be aware of
the affine decomposition 1.3.7 in order to achieve offline/online decomposition.

Assembly of reduction error estimator: In order to estimate the model reduction error
(see Section 2.3.1), all scalar products between Riesz representatives of the components
of the residual r. 5[-;] with respect to the affine decomposition 1.3.7 need to be com-
puted. This standard approach for offline/online decomposition of the residual norm
shows bad numerical stability, however. An improved algorithm [BEOR2014] requires
the computation of an orthonormal basis for the span of the Riesz representatives of the
residual components and the computation of the coefficients of these components with
respect to the orthonormal basis.

Generation of empirical interpolation data: For the reduction of nonlinear prob-
lems such as (3.2.1), we need to perform an offline/online decomposition according to
[DHO2012] or [MRS2015, Section 2.4.3]. Therefore, we have to evaluate the nonlinear
operator at appropriately selected solution snapshots, generate a collateral basis and in-
terpolation points using the EI-GREEDY [HOR2008] or DEIM [CS2010] algorithm and
finally compute projections and evaluate restricted operators (see the above mentioned
references).

Reconstruction and visualization: In many cases we want to be able to access the re-
duced solutions preq(pt) of the reduced Problem 1.3.6 as elements of the high-dimensional

138

3.2 Model reduction framework

discrete function space @y, to perform visualizations or to compute quantities of interest
not available in the reduced model. Therefore, a reconstruction as a linear combination
of the reduced basis functions has to be computed. Additional discretization data such
as the grid used for discretizing will be needed for visualization.

8.2.1.2 Low-dimensional operations

The following operations within reduced basis schemes are low-dimensional in nature
and do not depend on high-dimensional data:

Solution of reduced problem: For the solution of the reduced Problem 1.3.6, the re-
duced system matrix needs to be assembled for a given parameter g and a dense linear
solver is invoked to determine the coefficient vector pyeq(p). For instationary problems
such as (3.2.2), a time-stepping scheme is additionally required.

Error estimation: Given a coefficient vector pyeq(pt) the norm of the residual has to
be evaluated using the pre-computed data.

greedy basis generation: While many high-dimensional operations have to be per-
formed during the offline phase, the logic of the main greedy search loop driving these
operations is low-dimensional in nature. While a greedy Algorithm such as 1.3.11 is
quite simple and easily implemented, much more complicated search strategies, for in-
stance using an adaptive parameter training set Piram or dictionaries of reduced bases
for different parameter space regions, are conceivable and are used in practice (see for
instance [HDO2011]).

Interpolated operator evaluation: When empirical interpolation is used, interpolated
operators have to be evaluated, in the linear case for the assembly of the system matrix,
in the nonlinear case to compute the residual inside a Newton algorithm (see [MRS2015]).
This does in particular involve the evaluation of a restricted operator, which therefore
needs to be available during the online phase. For Newton schemes, access to the Jaco-
bian of the restricted operator is additionally required.

3.2.2 FExisting implementations

As discussed, implementations of reduced basis schemes involve several building blocks,
which we have categorized by whether they involve direct manipulation of high-dimen-
sional data or not. This naturally leads to the following three basic designs for reduced
basis software: 1. Implement the whole reduced basis scheme as an individual software
package, loading high-dimensional solution snapshots and system matrices from disk.
2. Implement the whole reduced basis scheme as a ‘model reduction mode’ of the high-
dimensional solver software. 3. Only implement low-dimensional building blocks as a
separate model reduction software package and communicate via interfaces with the
high-dimensional solver, which performs the high-dimensional operations.

139

3 Software concepts and implementations

We discuss the main advantages and disadvantages of these designs, before presenting
the new approach which has been taken by pyMOR.

8.2.2.1 Approach 1: Separate software

Maybe the most simplistic design of reduced basis software is to implement the whole
reduced basis machinery as a single software package which is able to read and pro-
cess high-dimensional data which has been produced by some external high-dimensional
solver. All high-dimensional operations (Section 3.2.1.1) within the offline phase are
carried out by the reduced basis software, with the exemption of the solution snapshot
computation which may be performed by the solver. A typical example of such a soft-
ware is the rbMIT [PR2006] package for Matlab.

Advantages: The main benefit of this approach is its simplicity: a single self-contained
software package can be developed and maintained by experts for model order reduc-
tion in a programming language ecosystem of their choice. Interfacing external high-
dimensional solvers is simple, only export of system matrices and (solution) vectors has
to be implemented on the solver side.

Disadvantages: Implementing all high-dimensional operations within the model reduc-
tion software means that the software has to be able to efficiently work with the high-
dimensional data produced by the external solver. For instance, this means that matrix-
vector products for the (usually) sparse matrix format at hand have to be computed for
the assembly of the reduced system matrices, and a linear solver for the computation of
the residual Riesz representatives needs to be available.

While this may be easily possible for small to medium sized discretizations using the
tools provided by numerics packages such as Matlab, the limitations of this approach
become obvious when we think of large-scale memory distributed problems solved on
computer clusters where, for instance, a single system matrix for the whole problem
is never assembled. By design, this approach also cannot be used in conjunction with
matrix-free solvers.

Handling of nonlinear problems is problematic as well: since evaluating the high-
dimensional nonlinear operator inside the reduced basis software would amount to a
more or less complete re-implementation of the high-dimensional discretization, evalu-
ations of the operator for certain solution snapshots have to be produced by the high-
dimensional solver. However, the reduced basis software still needs to be able to evaluate
the restricted operators. Thus the restricted operator has to be re-implemented within
the reduced basis software. This is not only a duplication of effort but also only possible
if the exact details of the high-dimensional discretization are known. Alternatively, the
restricted operator has to be provided by the external solver in some way, which however
does not fit the paradigm of this approach very well.

140

3.2 Model reduction framework

8.2.2.2 Approach 2: Inside high-dimensional solver

In this approach the complete reduction process is carried out by the high-dimensional
solver which has been extended by a reduced basis module. Examples for this approach
are the reduced basis implementations of the 1ibMesh [KP2011] and feel++ [DVTP2013]
PDE solver packages.

Advantages: Implementing all reduction algorithms as part of the high-dimensional
solver offers the tightest possible integration between the high-dimensional model and
the reduced basis code. This allows for maximum performance of the implementation
and easy development of more advanced reduction techniques, which might require spe-
cial operations on the high-dimensional data. A single code base also eliminates any
interoperability issues between different versions of the model reduction and the solver
code.

Disadvantages: An obvious consequence of this design is that, despite the generality
of reduced basis methods, implemented algorithms can only be used within a specific
software ecosystem. Given the large number of PDE solver software libraries devel-
oped by research groups and software vendors around the world, this vastly diminishes
the reusability of the code and ultimately hinders collaboration between researchers.
Moreover, the implementor is required to have a good understanding of the inner work-
ings of the PDE solver library, which is typically written in a system language such as
C++. Many researchers working on model order reduction do not have such technical
knowledge, however. Consequently many new methods are only evaluated for ad hoc
implementations of academic ‘toy problems’.

8.2.2.8 Approach 3: Separate low- and high-dimensional operations

In this approach, as a compromise between the aforementioned ones, all low-dimensional
operations (Section 3.2.1.2) are implemented as a reduced basis software package which
communicates over well-defined software interfaces with the high-dimensional solver car-
rying out all high-dimensional operations (Section 3.2.1.1). This approach has been pur-
sued by the integration of RBmatlab with the dune-rb module of the DUNE numerics
environment [DHKO02012].

Advantages: This interface-based approach shares many benefits of the previous two
approaches. All low-dimensional algorithms can be developed independently from the
high-dimensional solver in a programming language of choice and these algorithms can
be integrated with any external solver implementing the necessary interfaces. Since all
high-dimensional operations are carried out by the PDE solver, the size of the high-
dimensional model is only limited by the performance of the solver’s implementation.
Memory distributed or matrix-free implementations can be easily utilized.

Disadvantages: To fulfill the interfaces required by the model reduction software, exter-

141

3 Software concepts and implementations

nal solvers have to be extended to implement the high-dimensional operations defined in
Section 3.2.1.1. Apart from the computation of solution snapshots, all these operations
are model reduction specific. Thus, implementing these interfaces requires substantial
work on the solver side which can only be done with some background on reduced basis
methods. Moreover, apart from certain special cases, a change of the reduction algorithm
will almost always require modification of the reduced basis code in the high-dimensional
solver. (Think of switching from Galerkin projection to a Petrov-Galerkin approach as in
[DPW2014].) This can be a major issue when the high-dimensional solver is developed
by a different team than the group implementing the model reduction algorithms, in
particular for research projects where both the PDE solver and the reduction algorithm
are under constant development. Moreover, as with design approach 1, the evaluation
of restricted nonlinear operators is problematic: either the nonlinear operator has to
be re-implemented in the reduced basis software, or the restricted evaluations have to
be performed by the PDE solver which breaks the paradigm of separating high- and
low-dimensional operations between the two software packages.

3.2.8 Design principles

The main goal for the development of pyMOR is to create a model reduction software
library that serves as a flexible tool for scientists in education and research which, at
the same time, can be effectively used for the reduction of large real-world application
problems.

pyMOR’s design is based on the central observation that all high-dimensional operations
during the offline phase of reduced basis schemes (Section 3.2.1.1) can be expressed
using only a small set of basic operations on operators, (collections of) vectors and the
discretization, which are independent from the concrete reduction scheme in use. This
observation leads to the following basic design paradigm for pyMOR:

1. Define model reduction agnostic interfaces for the mathematical objects involved
with reduced basis methods and related schemes.

2. Generically implement all algorithms through operations provided by these inter-
faces.

We shall discuss pyMOR’s interfaces and how the high-dimensional reduction operations
can be implemented via these interfaces in Section 3.2.4.1 in more detail. For the re-
mainder of this section, we consider the general consequences of the design approach.

As with design approach 1, pyMOR contains all model reduction code as a separate
self-contained software package, allowing us to choose an implementation language which
optimally fits our requirements. For pyMOR we chose the Python scripting language to
make pyMOR an easy to pick up tool for rapid algorithm development. In addition, pyMOR
provides its own basic discretization toolkit to easily test new reduction algorithms. The
data types provided by the toolkit can also be used to import high-dimensional data
from disk which have been produced by an external solver. This allows for pyMOR’s
algorithms to be used in a workflow similar to design approach 1.

142

3.2 Model reduction framework

The interface-based design of pyMOR allows to integrate pyMOR’s algorithms with any
high-dimensional solver implementing these interfaces. As with design approach 3, doing
so requires additional work on the solver side. However, a major benefit of the generic
nature of pyMOR’s interfaces over design approach 3 is that no model reduction specific
code has to enter the high-dimensional solver, allowing to develop the model reduction
algorithms independently from the solver. This, for instance, allows a workflow where for
a given high-dimensional problem the reduction algorithm can be effortlessly developed
and tested using a low-fidelity version of the high-dimensional model implemented with
pyMOR’s own discretization toolkit, before the very same algorithms are used to reduce
the actual high-dimensional model implemented in a high-performance solver running
on a large computer cluster.

In addition, our approach offers strongly improved code reusability and maintainability
since the complete reduction algorithms can be implemented in a single software library.
This is particularly important when the model reduction library is used in conjunction
with different PDE solver ecosystems.

pyMOR’s interfaces correspond to data structures which are present in most PDE solver
designs: operators, vectors and discretizations. Thus, implementing pyMOR’s interfaces
is basically equivalent to exposing the solver’s internal data structures via a public APL.
Refactoring a PDE solver to offer such an API has many benefits apart from allowing
model order reduction, as it enables the user to easily use and extend the solver in
new ways which have not been envisioned by the developers of the solver. For instance,
PyMOR implements time-stepping algorithms via its interfaces which can be used to easily
create instationary discretizations out of stationary discretizations (see [MRS2015, Sec-
tion 5.3]). While implementing time-stepping schemes is clearly not a focus of pyMOR’s
development, a software library of advanced time-stepping algorithms could use such an
API to allow for easy testing of these algorithms with a given discretization, after which
a selected algorithm might be implemented in the solver for maximum performance.

Apart from such opportunities for extending the solver, a public API also allows
to interactively control the solver, especially when used in conjunction with dynamic
languages such as Python. Such interactive sessions can be a powerful tool for debugging
and allow to inspect and modify the solvers state in ways, which are not possible with
a classical debugger.

Note that design approach 3 and pyMOR’s design strongly differ in the view on the re-
lationship between the model reduction software and the high-dimensional solver: while
approach 3 advocates a strong separation between low- and high-dimensional operations,
we think of both components as strongly intertwined. For instance, pyMOR makes it nat-
ural to perform preliminary analyses of models which have been reduced only partially
and still require high-dimensional operations for solving, e.g., a reduced basis projection
of problems for which an affine decomposition is not yet available. In particular, using
the PDE solver for a restricted evaluation of nonlinear operators is a natural option in
our design.

While design approaches 2 and 3 allow to perform all high-dimensional reduction
operations with the maximum efficiency the high-dimensional solver has to offer, it is
clear that pyMOR’s interface design comes at a price of sub-optimal performance: every

143

3 Software concepts and implementations

call of an interface method incurs a certain overhead, compiler optimizations may be
hindered and the restriction to the available interface methods may prevent implemen-
tations which optimally exploit the given data structures. To asses the possible loss
in performance, we conduct several performance benchmarks (Section 4.3) which show
that, while a certain overhead exists, this overhead usually becomes negligible for large
enough problems. In the rare cases where pyMOR’s generic algorithms might not perform
sufficiently well for a given problem, the possibility still remains to re-implement the
critical parts inside the solver.

While we have designed pyMOR’s interfaces with model reduction in mind, we are
convinced that there should be a general paradigm shift towards a more modular, library
oriented design of high-performance PDE solvers, allowing non-expert scientists to use
these solvers more easily and in new ways, using a programming language which suits
their needs. We see pyMOR as one step in this direction.

3.2.4 A new model reduction framework

As discussed in Section 3.2.2, none of the existing model reduction frameworks pro-
vided the functionality we required (compare Section 3.2.3), in particular since we pro-
vide our own discretization framework. We thus provide our own implementation of a
model reduction framework, which mainly consists of pyMOR and the support packages
dune-pymor and dune-hdd:

pyMOR forms the heart of our model reduction framework: it contains all required
interfaces and generic algorithms, based on the design principles from Section 3.2.3.
It also contains vectorized grids and discretizations itself, but one of its purposes
is to be coupled with existing discretization frameworks.

dune-pymor introduceds the concepts of parameter dependency and affine decom-
position, which are required to treat parametric problems in the sense of Section
1.3, to the C++ discretization framework from Section 3.1. It provides parametric
variants of functions from dune-stuff and operators from dune-gdt as well as
affinely decomposed variants of the containers from dune-stuff and the operators
form dune-gdt. In addition, it provides Python bindings for these objects. This
allows to access most parts of the discretization framework within an interactive
Python session, providing a low entry point for users as well as powerful interactive
debugging for developers. It also enables our discretization framework to be used
by other software packages such as pyMOR, for instance in the context of model
reduction.

dune-hdd bundles the other modules together and provides ready to use parametric
discretization objects, which are required for model reduction with pyMOR.

In the following sections, we give a brief presentation of these software packages.

144

3.2 Model reduction framework

3.2.4.1 pyMOR

The Python package pyMOR is open source software and freely available: http://pymor.
org. It is mainly developed by R. Milk, S. Rave and F. Schindler with contributions
from A. Buhr, M. Laier, P. Mlinaric and M. Schaefer.*?

In this section we present the architecture of pyMOR in more detail. We demonstrate
how high—dimensional model reduction operations (see Section 3.2.1.1) can be expressed
via pyMOR’s interfaces and cover the parallelization of pyMOR’s reduction algorithms.
First of all, however, we discuss our reasons for choosing Python as the implementation
language.

Implementation. One of pyMOR’s main design goals is to provide an easy to use library
of tools for the research of new model order reduction algorithms. It was therefore clear
to us to choose for pyMOR a managed, dynamically typed language such as Python, which
is easy to pick up (even for unexperienced programmers) and in which the user does not
have to care about memory management or data types during his or her daily work.

In contrast to Matlab, Python does not have copy-on-write semantics for assignment,
which allows for more precise control over data, but often raises the issue of object
ownership. To alleviate the user from having to care too much about ownership, pyMOR
enforces immutablility on all Discretizations and Operators, as well as all classes
of pyMOR’s own discretization toolbox. In combination with Python’s dynamic memory
management, this makes the question of ownership irrelevant for these objects.*> While
Python is designed as a general purpose language, the NumPy [Oli2007] package offers a
multi-dimensional array class with a very similar feature set and performance as Matlab
matrices. Many numerical algorithms and several sparse matrix types can be found in
the SciPy [JOP02001] package. Both packages are used extensively in pyMOR for all
low—dimensional operations as well as for pyMOR’s builtin discretization toolbox.

pyMOR’s interfaces do not make any assumption on how the communication between
pyMOR and the external solver is implemented by the interfacing classes, and many com-
munication patterns are conceivable, such as disk-based communication via job and
output files or network-based communication via a standard protocol such as xm1-rpc**
or some custom protocol. Being a long-running general purpose scripting language,
Python is ideally suited for pyMOR’s interface-based approach, offering a large selection
of extension packages for handling virtually any established input-output protocol.

However, in spirit of the tight coupling between pyMOR and the external solver as
promoted by our design, we favour, whenever possible, to integrate the solver by re-
compiling it as a Python extension module, which gives Python direct access to the
solver’s data structures. This design not only delivers maximum performance as no

42Regarding the contributions in pyMOR: the design is based on discussions which mainly involve R. Milk,
S. Rave and F. Schindler, while S. Rave is responsible for most of the implementation.

43Since VectorArrays are mutated very often in pyMOR, enforcing immutability on VectorArrays is not
feasible. However, we plan to enforce deep-copy-on-write semantics for the copy operation as part of
the interface in future version of pyMOR.

“http://xmlrpc.scripting. com/

145

http://pymor.org
http://pymor.org
http://xmlrpc.scripting.com/

3 Software concepts and implementations

communication overhead is present, it also allows to directly manipulate the solvers
state from within Python beyond the operations available via pyMOR’s interfaces. This
makes it possible to quickly extend or modify the solver’s behavior using NumPy or SciPy
for debugging or the exploration of new ideas, and gives the user an interactive Python
debugging shell with direct access to the solver’s memory.

Again, Python’s long-standing tradition as a glue language vastly facilitates this ap-
proach with a wide array of tools for generating Python bindings for foreign language
libraries. We took this approach in [MRS2015, Sections 5.2 and 5.3] and showed its
feasability, even for MPI-distributed solvers running on high-performence computing clus-
ters. This approach has also been taken for the integration of pyMOR with the BEST
battery simulation code as part of the MULTIBAT project [ORSZ2014].

Finally, we note that choosing arrays of vectors instead of single vectors as elementary
objects in pyMOR not only allows to concisely express many model reduction operations
in a vectorized manner (see the examples below), it also makes vectorized VectorArray
implementations possible, which optimally exploit the vectorized structure of the op-
eration for increased performance. An example of such an implementation is pyMOR’s
NumpyVectorArray (see the benchmarks in Section 4.3). However, since few external
solvers use such data structures, pyMOR also ships a generic ListVectorArray which
manages a Python list of vector objects provided by the external solver.

Algorithms and Interfaces. From a bird’s eye perspective, pyMOR can be seen as a col-
lection of generic algorithms operating on VectorArray, Operator and Discretization
objects. These objects are expected to be instances of subclasses of the abstract base
classes VectorArrayInterface, OperatorInterface and DiscretizationInterface,
which define methods each derived object is expected to provide. To integrate pyMOR
with an external high—dimensional solver, wrapper classes for these types have to be im-
plemented (as discussed above) to represent high—dimensional objects inside the solver,
which can be manipulated through the interface methods implemented by these classes.

It is an important property of pyMOR’s interfaces that each interface method returns
either low—dimensional data or new VectorArray, Operator or Discretization ob-
jects. This ensures that no high—dimensional data ever has to be communicated between
the external solver and pyMOR and that no code for handling the solver-specific high—
dimensional data structures has to be added to pyMOR. Instead, all high—dimensional
manipulations can be performed by specialized routines already implemented inside the
solver.

Note that not only the high—dimensional model but also the reduced low-dimensional
model is represented by VectorArrays, Operators and Discretizations, implemented
inside pyMOR using data structures and solvers provided by the NumPy package. This
allows to use all algorithms in pyMOR with both high- and low—dimensional objects. For
instance, the reduced model could be interpreted again as the high—dimensional model
for an additional reduction step.

A full documentation of pyMOR’s interface classes can be found online*®. We present

“http://docs . pymor. org/

146

http://docs.pymor.org/

3.2 Model reduction framework

some of their methods by indicating how the operations of Section 3.2.1.1 can be ex-
pressed through the interfaces. In the following paragraphs, the variables V, o, d will
always represent VectorArray, Operator and Discretization objects, respectively.

Computation of solution snapshots pp(p): Each high-dimensional (or low-dimensional)
model is represented by a Discretization object d. We obtain a solution snapshot

pr(p) by executing

V = d.solve(mu)

which returns for a given parameter p a VectorArray V containing the solution pp(p).

VectorArrays are ordered collections of vectors of the same dimension. For a sta-
tionary problem, we have len(V) == 1, whereas for instationary problems V usually
contains multiple vectors forming the discrete solution trajectory.

Basis extension: Reduced bases are stored inside VectorArrays. To extend a basis RB
by a new solution snapshot contained in V, we could call

RB.append(V, remove_from_other=True)

which moves the vector(s) in V to the end of RB. However, in order to guarantee numerical
stability, RB has to be orthonormalized, for instance using Gram-Schmidt orthonormal-
ization (Algorithm 3.2.1). In this algorithm, scalar products are computed using the
V.dot (other, ind, o_ind) method, which returns a matrix of all scalar products be-
tween vectors in V and other. The optional ind and o_ind parameters can be numbers
or lists of numbers specifying the vectors in V and other on which to operate. (ind
parameters can be passed to most methods of VectorArrays and Operators.)

Algorithm 3.2.1 Simplified version of the stabilized Gram-Schmidt orthonormalization
algorithm contained in pyMOR.
def gram_schmidt(V, offset=0):
for i in range(offset, len(A)):
for j in range(i):
alpha = V.dot(V, ind=i, o_ind=j) [0, 0]
V.axpy(-alpha, V, ind=i, x_ind=j)
norm = V.12_norm(ind=i) [0]
V.scal(l./norm, ind=i)

PyMOR provides an extended version of Algorithm 3.2.1 which includes re-orthonor-
malization of vectors for improved numerical accuracy, absolute and relative tolerances to
detect linear dependent vectors and an additional orthonormality check for the resulting
array (see pymor.algorithms.gram_schmidt). Moreover, it is possible to provide a
scalar product with respect to which to orthonormalize, given as an Operator. The
scalar product alpha is then obtained as

alpha = product.apply2(V, V, U_ind=i, V_ind=j) [0, 0].

147

3 Software concepts and implementations

In general, every operator has an apply method which returns (in the parametric case
for a given parameter mu) the applications of the operator to the vectors of a provided
VectorArray as a new VectorArray. Calling o.apply2(V, U, U_ind, V_ind) is then
equivalent to

V.dot(o.apply(U, ind=U_ind), ind=V_ind)

as it is default implemented in pymor.operators.basic.0OperatorBase.

Algorithm 3.2.2 Simplified version of the POD algorithm contained in pyMOR.

def pod(V, modes):
a = V.gramian()

evals, evecs = eigh(a, eigvals=(len(V) - modes, len(V) - 1))
singular_values = np.sqrt(evals)

return V.lincomb((evecs / singular_values).T)

An alternative orthonormalization procedure is given by proper orthogonal decom-
position (POD). pyMOR includes a POD algorithm based on the so called ‘method of
snapshots’ (Algorithm 3.2.2). In this algorithm, the Gramian of the vectors in V is com-
puted using the gramian method which is default implemented as V.dot (V). Then the
SciPy method eigh is used to compute the first modes vectors of the eigenvalue decom-
position of the Gramian. Finally, the POD modes are computed by forming the linear
combinations of the vectors in V with the Gramian’s eigenvectors as coefficients, scaled
by its singular values. Note that the size of the eigenproblem is given by the number of
vectors in V which we always assume to be small in relation to their dimensions, making
this low—dimensional problem easy to solve (compare the benchmarks in Section 4.3).

Again, pyMOR’s actual implementation of Algorithm 3.2.2 (pymor.algorithms.pod) is
numerically more robust, allows to choose the number of computed POD modes based
on relative and absolute tolerances for the singular values and allows to compute the
POD with respect to arbitrary scalar products.

Assembly of reduced system matrices: The reduced basis projection (compare Section
1.3.2.1) of bilinear forms (or operators) in pyMOR is performed by calling the operator’s
projected method

o.projected(range_basis=RB, source_basis=RB)

which returns a new Operator representing the projected bilinear form (operator). For
linear, nonparametric Operators, this method can be default implemented as

NumpyMatrixOperator (o.apply2(range_basis, source_basis))
Here, NumpyMatrixOperator is an Operator provided by pyMOR, which implements a
thin wrapper around NumPy arrays and SciPy sparse matrices in order to fulfill pyMOR’s

Operator interface. NumpyMatrixOperators can be applied to NumpyVectorArrays
which is a vectorized VectorArray implementation, again based on NumPy arrays.

148

3.2 Model reduction framework

Affinely decomposed bilinear forms (compare Definition 1.3.7) are represented in
pyMOR as instances of LincombOperator which hold lists of the Operators bs and the
ParameterFunctionals ¢¢. The projected method for LincombOperator is then sim-
ply implemented as

LincombOperator([o.projected(range_basis, source_basis) for o in self.operators],
self.coefficients)

constructing a new LincombOperator holding the projected summands with the same
coefficient functions as the original operator.

Note that LincombOperators can hold arbitrary Operators as summands. In partic-
ular, if such an operator itself contains LincombOperators as summands, the reduced
basis projection is performed recursively, yielding automatic offline/online decomposition
of arbitrary nested trees of operators.

To keep the amount of interface classes in pyMOR as small as possible, Operators also
represent functionals. Such operators have the special property that they map Vector-
Arrrays (of an arbitrary fixed type) to NumpyVectorArrays of dimension 1 which hold
the functional evaluations. For an operator representing a functional, the reduced basis
projection is obtained by calling

o.projected(range_basis=None, source_basis=RB).

In the same spirit, parameter dependent vectors are represented by linear operators
mapping one—dimensional NumpyVectorArrays to VectorArrays of appropriate type,
such that 1 maps to the vector the Operator represents. Vectors are (usually) projected
orthogonally onto (..q which is for such vector-operators o achieved by invoking

o.projected(range_basis=RB, source_basis=None, product=p),

where p represents the Qp-scalar product. For vector-like operators, this call to projected
returns a new vector-like operator that, for a parameter mu, maps 1 to

NumpyVectorArray(p.apply2(v.apply (NumpyVectorarray([1]), mu), RB)),

which, assuming RB is p-orthogonal, is the coefficient vector of the p-orthogonal projec-
tion of the vector onto the linear span of RB.

Note that pyMOR provides a default implementation for projected which allows to
project any given Operator in pyMOR. While for arbitrary parametric (or nonlinear)
Operators no offline/online decomposition is performed, this allows to easily test the
approximation quality of the reduced model before further steps for offline/online de-
composition are taken.

pyMOR’s Discretizations hold dictionaries of all operators, functionals, vectors and
scalar products which appear in the definition of the discrete problem. As the reduced
basis projection does not change the structure of the problem but merely replaces high—
dimensional objects by their respective projected low—dimensional counterparts, the re-
duced model for a standard reduced basis approximation can be computed generically
using Algorithm 3.2.3. In this algorithm, the with_ method of the Discretization

149

3 Software concepts and implementations

Algorithm 3.2.3 Generic reduced basis projection of arbitrary discretizations (simpli-
fied).
def reduce_generic_rb(d, RB, product=None):
p_o = {k: o.projected(RB, RB)
for k, o in d.operators.items()}
p_f = {k: f.projected(None, RB)
for k, f in d.functionals.items()}
{k: v.projected(RB, None, product=product)
for k, v in d.vector_operators.items()}
p-p = {k: p.projected(RB, RB)
for k, p in d.products.items()}
return d.with_(operators=p_o, functionals=p_f, vector_operators=p_v, products=p_p)

pP_v

d is called to return a new (reduced) Discretization in which the high—dimensional
Operators have been replaced by the provided projected Operators.

PyMOR provides generic Discretization classes for stationary and instationary prob-
lems which implement solve by operations on the Operators they contain. For these
Discretizations, the reduced problem can be described by an instance of the very same
class. Discretizations which call a specialized solve method of the external solver
are usually implemented as a subclass of one of these classes, and the with_ method is
adapted to return an instance of the base class.

Assembly of reduction error estimator: In order to evaluate the estimator for the model
reduction error, Riesz representatives of the affine summands of the residual have to be
computed with respect to a scalar product (compare Section 2.3.1). If this product is
given by the operator p, the Riesz representatives of vectors in V can be obtained by
calling

p.apply_inverse (V)

which gives access to linear (and possibly nonlinear) solvers for the Operator p and
right-hand side V.

pyMOR includes a generic, numerically stable algorithm for the assembly of residual-
based error estimators based on [BEOR2014], which (recursively) computes the residual
component Riesz representatives (for a given reduced basis), determines a p-orthonormal
basis for the vectors and then projects the residual operator onto this basis (pymor.
reductors.residual). This algorithm can be used in conjunction with any operator
for which an appropriate estimate of its range when applied to a set of vectors is known.
In particular, this includes empirically interpolated operators for which the range is given
by the span of the collateral basis (compare [MRS2015, Section 2.4.3]).

Generation of empirical interpolation data: For the computation of the interpolation
points and the collateral basis, which are required for the empirical interpolation of
Operators (compare [MRS2015, Section 2.4.3]), pyMOR provides two commonly used,
similar algorithms: EI-GREEDY [HOR2008] and DEIM [CS2010] (pymor.algorithms.

150

3.2 Model reduction framework

ei). These algorithms require access to individual entries of the high—dimensional vec-
tors at indices selected such that the absolute values of the entries of a certain vector
are maximized. Both operations can be supported by pyMOR’s VectorArrays by imple-
menting

V.components (component_indices)

for vectorized extraction of the entries at the given list of indices and

V.amax ()

to obtain the maximizing indices. Note that len(component_indices) is expected to
be small. Thus, the components method is not intended for communication of high-di-
mensional data.

Reconstruction and visualization: A high—dimensional reconstruction of the solution
vector V from a reduced coefficient vector v is easily performed by executing

V = RB.lincomb(v.data).

Here, the data property of NumpyVectorArray is used to extract the actual (low-dimen-
sional) array data from the VectorArray to pass it into the lincomb method. To allow
more complex usage scenarios, reduction algorithms in pyMOR return a reconstructor
class rc along with the reduced discretization which allows to obtain V by calling

V = rc.reconstruct(v).

In the basic setting presented here, rc simply holds a reference to RB in order to perform
the 1incomb call, but more complex reconstructors are conceivable.

Visualization of solution vectors may be supported by the high—dimensional solver by
implementing d.visualize(V).

Parallelism in pyMOR. Reduced basis methods have proven themselves to provide reli-
able, high-accuracy reduced order models for various application problems, which can
offer savings of computation time of multiple orders of magnitude. However, for many
applications, the time needed in the offline phase for computing the reduced order model
— which can take days or longer — needs to be taken into account. Therefore, a reduced
basis software which is suited to handle large-scale problem needs to be able to per-
form offline computations with good computational efficiency. For modern computing
architectures this requires parallelization of algorithms.

Considering a standard greedy basis generation algorithm (Algorithm 1.3.10) for the
offline phase, the main loop consists of three parts: 1. solving of the reduced problem
and error estimation on a training set Pirain to obtain the parameter p*, 2. computation
of the solution snapshot pp(p*), 3. extension of the reduced basis using pp(p*) and
reduction of the high—dimensional model. Note that for small to moderate sizes of the
reduced basis, steps 2 and 3 are mainly limited by the dimension of @)}, whereas step
1 is mainly limited by the size of Piain. (In particular for high—-dimensional parameter

151

3 Software concepts and implementations

spaces P, Pirain can easily contain millions of parameters.) Therefore, in pyMOR we chose
different strategies for the parallelization of step 1 and steps 2 and 3.

For the parallelization of steps 2 and 3, pyMOR relies on an already existing, high-
performance parallelization of the external solver. Since pyMOR’s interfaces require no
communication of any high—dimensional data and are completely implementation agnos-
tic, memory distributed vector data can be handled via the VectorArray interface as
efficiently as any non-distributed data.

Adapting the solver to perform memory distributed operations on operators and vec-
tors at pyMOR’s command, however, might be a non-trivial task. pyMOR therefore offers
tools which help transitioning to an MPI parallel use of the solver when pyMOR bindings
for the serial case already exist: based on the mpidpy [DPSD2008] library, a simple
event loop is provided to run as the main loop on all MPI ranks except for rank 0 (see
pymor.tools.mpi). This allows the user to execute arbitrary Python functions simul-
taneously on all MPI ranks. A basic resource manager allows to locally store and return
function return values via a data handle.

Based on these tools, MPIVectorArray, MPIOperator and MPIDiscretization classes
are implemented which hold data handles to the distributed objects they represent and
pass interface method calls via MPI to these distributed objects. Communication between
the distributed objects (for instance exchange of shared degrees of freedom after opera-
tor application) is still implemented by the solver as usual. However, for VectorArrays
we also provide MPIVectorArrayAutoComm which implements communication and sum-
mation of local scalar products, etc., in Python. These tools have also been used to
integrate the high—-dimensional solver for the numerical examples in [MRS2015, Section
5.3].

For the parallelization of step 1 and similar embarrassingly parallel tasks, which require
little to no communication, pyMOR provides an abstraction layer for existing Python
parallelization solutions based on a simple worker pool concept (pymor.parallel): after
instantiation of a worker pool p, a single function f can be applied to a sequence of
arguments args in parallel by calling

r = p.map(f, args)

which is equivalent to the sequential code

r = [f(arg) for arg in args]

The function and all arguments are automatically serialized and distributed to the work-
ers of the pool.

For the case that the same arguments are required repeatedly on the workers, single
objects can be distributed to all workers using the distribute method, whereas lists of
objects can be scattered among the workers using distribute_list. In both cases, a
handle object is returned which can later be passed to map or the simpler apply function
(which does not scatter arguments among workers), which transparently map the handle
to the already distributed data on the workers. This mechanism is used in Algorithm
3.2.4 to estimate the model reduction error in parallel over a previously distributed
training set of parameters.

152

3.2 Model reduction framework

Algorithm 3.2.4 Parallel error estimation in greedy algorithm.

with p.distribute_list(training set) as s:
while ...

errs, mus = zip(*p.apply(_estimate, rd=rd, training set=s))
max_err_ind = np.argmax(errs)
max_err, max_mu = errs[max_err_ind], mus[max_err_ind]

def _estimate(rd=None, training_set=None):
errs = [rd.estimate(rd.solve(mu), mu) for mu in samples]
max_err_ind = np.argmax(errs)
return errs[max_err_ind], training_ set[max_err_ind]

pyMOR currently provides a worker pool implementation based on the IPython [PG2007]
toolkit, which easily allows for parallel computation with large collections of heteroge-
neous compute nodes. An MPI-based implementation using pyMOR’s event loop, which
can seamlessly be used in conjunction with external solvers using the same event loop,
is planned.

3.2.4.2 dune-pymor

The DUNE module dune-pymor is open source software and freely available on GitHub:
https://github.com/pymor/dune-pymor. It is mainly developed by S. Rave and F.
Schindler with contributions from R. Milk. dune-pymor serves several purposes: first,
it provides the concept of a parameter p and parametric objects for C++-based dis-
cretizations of parametric problems. Second, it provides the infrastructure for Python
bindings of these objects and the linear algebra components of dune-stuff, based on
pybindgen®. Third, it provides Python wrappers around these objects which con-
form to the corresponding pyMOR interfaces. In this section, we briefly discuss some of
dune-pymor’s features and give illustrating examples by discussing a possible implemen-

tation of the thermal block problem (compare Example 1.3.2).

Parameters in dune/pymor/parameters/ Similar to pyMOR, we model parameters p €
P as key/value pairs represented by the Parameter class, where the key is an identifier
and the value is a collection of doubles. Each parameter is of a ParameterType, con-
sisting of its keys and the size of the corresponding values.*” For instance, if we consider
a thermal block problem with four subdomains and a parametric right hand side, the
parameter types of the data functions could be modeled by

Dune: :Pymor: :ParameterType ("diffusion", 4);
Dune: :Pymor: :ParameterType("force", 1);

4https://code.google.com/p/pybindgen/
4"For simplicity, we restrict parameter values to vectors in dune-pymor, while pyMOR also allows for
arrays of arbitrary dimensions.

153

https://github.com/pymor/dune-pymor
https://code.google.com/p/pybindgen/

© 0 N O U R W N =

e e e e
N O O W NN = O

N O g e W =

D Ut e W N =

3 Software concepts and implementations

Every parametric object is derived from Parametric, the purpose of which is to export
the ParameterType of the object via type () (and to provide some management tools for
the implementor of parametric objects). As in pyMOR, parameters (and their types) can
be joined: suppose we are given two parametric data functions (diffusion and force)
of the above ParameterTypes, we could construct a simple parametric problem class:

#include <dune/pymor/parameters/base.hh>
using namespace Dune: :Pymor;

class ThermalblockProblem
: public Parametric
{
public:
ThermalblockProblem(const DiffusionType& diffusion,
const ForceType& force)
{
this->inherit_parameter_type("d", diffusion); // Provided by
this->inherit_parameter_type("f", force); // Parametric.

}

void visualize(const Parameter& mu, const std::string filename);
};
The parameter type () of this problem is given by ({"diffusion", "force"}, {4, 1}).
A parameter p corresponding to this type is for instance given by

Dune: :Pymor: :Paramer mu({"diffusion", "force"}, {{0.1, 0.2, 3.0, 4.0}, 0.5});

If such a combined parameter is passed to a parametric function, say by calling problem.
visualize(mu, "problem"), it can be split into the individual parameters again:
void visualize(const Parameter& mu, const std::string filename)

{
assert(mu.type() == this->type());

auto mu_diffusion = this->map_parameter(mu, "d"); // ("diffusion”, {0.1, 0.2, 3.0, 4.0})
auto mu_force = this->map_parameter(mu, "f"); // ("force"”, 0.5)
Y/

}

The parameters mu_diffusion and mu_force match the respective parameter types of
diffusion and force and can be passed on to these data functions.

To realize affine decompositions as in Definition 1.3.7, we provide the Parameter-
Functional, modeling ¢ : P — R. ParameterFunctionals are created with a Pa-
rameterType and an expression modeling the evaluation of . The four parameter
functionals required for the above thermal block problem (which map to the respective
parameter component) could for instance be created by:

#include <dune/pymor/parameters/functional.hh>
Dune: :Pymor: :ParameterFunctional theta_O(diffusion.type(), "diffusion[0]");
Dune: :Pymor: :ParameterFunctional theta_1(diffusion.type(), "diffusion[1]");

Dune: :Pymor: :ParameterFunctional theta_2(diffusion.type(), "diffusion[2]");
Dune: :Pymor: :ParameterFunctional theta_3(diffusion.type(), "diffusion[3]");

154

3.2 Model reduction framework

The keys of the parameter type ("diffusion") can be used as variables in expres-
sions, which (in contrast to the simple ones above) can contain mathematical expressions
and function evaluations (compare Stuff: :Functions: :Expression in Section 3.1.4.1).
ParameterFunctionals can be evaluated with a matching Parameter: an evaluation of
02(p) by calling theta_2.evaluate (mu_diffusion) would yield 3.0.

Parametric functions in dune/pymor/functions/. To facilitate the handling of para-
metric data functions we provide the AffinelyDecomposableFunctionInterface for
all affinely decomposable functions, such as in Example 1.3.8. It provides access to
the components and coefficients of the affine decomposition, where component (£) yields
a Stuff::LocalizableFunctionInterface (see Section 3.1.4.1) and coefficient ()
yields a ParameterFunctional as discussed above, for 0 < ¢ < = =: num_components ().

With Pymor: :Functions: : Checkerboard, we also provide a ready-to-use parametric
thermal conductivity for the thermal block Example 1.3.2 in dune/pymor/functions/
checkerboard.hh. It can be created with a Stuff: :Common: : Configuration similar to
Stuff::Functions: :Checkerboard. Instead of prescribing the functions value on each
subdomain, however, we have to provide a name that is used as the key to determine the
parameter type. In order to obtain the data function for the example above we could
use

lower_left = [0 0]
upper_right = [1 1]
num_elements = [2 2]
parameter_name = diffusion

yielding a function with parameter type ("diffusion", 4).
Apart from this specific function we also provide two generic default implementations
to facilitate the creation of functions in dune/pymor/functions/default.hh:

Functions: :NonparametricDefault wraps any function derived from Stuff::
LocalizableFunctionInterface to conform to AffinelyDecomposableFunction-
Interface. This allows to implement generic discretizations which can always
assume to be provided with a function derived from AffinelyDecomposable-
FunctionInterface, even in the nonparametric case.

Functions: :AffinelyDecomposableDefault can be used to build arbitrary affinely
decomposed functions out of functions derived from Stuff: :LocalizableFunction-
Interface. Via the register_component(comp, coeff) method, one can regis-

ter any number of nonparametric component functions together with the corre-

sponding ParameterFunctional modeling the coefficient; the parameter type of

the resulting function is automatically deduced from the given coefficient function-

als.

We also provide the AffinelyDecomposableFunctionsProvider factory class in dune/
pymor/functions.hh which can be used similarly to the FunctionsProvider (compare
Section 3.1.4.1) to create affinely decomposed functions at runtime, which are given by

155

dune/pymor/functions/checkerboard.hh
dune/pymor/functions/checkerboard.hh
dune/pymor/functions/default.hh
dune/pymor/functions.hh
dune/pymor/functions.hh

3 Software concepts and implementations

a Stuff::Common: :Configuration (for instance obtained from a data file). The follow-
ing Configuration would yield a parametric force f(x;pu) = b+ (1 — p) cos(x), for
instance:

component.0.type = stuff.functions.constant
component.0.value = 5.0
coefficient.O.force =1 # determines parameter type: ("force", 1)

coefficient.0.expression = force[0]
component.1.type

stuff.functions.expression

component.l.variable = x

component.1.expression = cos(x[0])

coefficient.1l.force =1 # determines parameter type: ("force", 1)
coefficient.l.expression = -forcel[0]

affine_part.type = stuff.functions.expression
affine_part.variable = x

affine_part.expression = cos(x[0])

The final parameter type of the above function, ("force", 1), is determined by setting
force = 1 in the above Configuration, yielding p € R.

Parametric operators and functionals. We provide interfaces for parametric opera-
tors and functionals (Pymor: :FunctionalInterface and Pymor: :OperatorInterface)
in dune/pymor/{functionals, operators}/interfaces.hh, which are very similar to
the ones provided by dune-gdt (see Section 3.1.4.2). In contrast to their respective non-
parametric counterparts in dune-gdt, the interfaces in dune-pymor are restricted to act
on vectors only and provide some additional information about their source and range
(which are fixed per functional/operator to yield non-templated methods). Of course,
they are derived from Parametric and every method additionally accepts an optional
Parameter, e.g.:

void apply(const SourceType& source, RangeType& range,
const Parameter mu = Parameter()) const;

For nonparametric or affinely decomposed functionals (operators) which are based on
vectors (matrices), we provide default implementations of the above interfaces. They are
based on LA: : AffinelyDecomposedConstContainer and LA: : AffinelyDecomposedCon-
tainer in dune/pymor/la/affine.hh, which allows (const) access to the components
and coefficients of the affine decomposition of the vector representation of a functional
(or matrix representation of an operator) similar to AffinelyDecomposableFunction-
Interface above. Analogously to Functions: :AffinelyDecomposableDefault, they
also allow to create arbitrary affinely decomposed containers by registering any container
from dune-stuff (see Section 3.1.4.1) along with a matching coefficient Parameter-
Functional.

Parametric discretization. In the spirit of pyMOR, we provide the StationaryDiscre-

tizationInterface in dune/pymor/discretizations/interfaces.hh. It is meant as
a container of a collection of discrete operators, functionals, products and vectors:

156

dune/pymor/{functionals,operators}/interfaces.hh
dune/pymor/la/affine.hh
dune/pymor/discretizations/interfaces.hh

© 0 N O U R W N =

I o T e e e
= O © 0 N O U A W N = O

3.2 Model reduction framework

template< class Traits >
class StationaryDiscretizationInterface
: public Parametric
, public Stuff::CRTPInterface< StationaryDiscretizationInterface< Traits >, Traits >

{
// not all methods and types shown ...
public:
OperatorType get_operator() const;
FunctionalType get_rhs() const;

std::vector< std::string > available_products() const;
ProductType get_product(const std::string id) const;

std::vector< std::string > available_vectors() const;
AffinelyDecomposedVectorType get_vector(const std::string id) const;

std: :vector< std::string > solver_types() const; // To be used like types() and

DSC: :Configuration solver_options(const std::string type = "") const; // options() of

void solve(const DSC::Configuration options, VectorType& vector, // a Stuff::LA::Solver.
const Parameter mu = Parameter()) const;

};

Each operator, product, functional or vector may be parametric or nonparametric and
is meant to be created by a discretization framework such as dune-gdt (see the next
section). Each call to solve is redirected to the apply_inverse method of the system
operator (which can be obtained by get_operator()).

The purpose of the above operators, functionals and discretizations is two-fold: as
pure C++ classes, they can be used by a discretization framework to mange parameter
dependent discretizations. Their main intention, however, is to facilitate Python bindings
and to be used in conjunction with pyMOR.

Python bindings. With dune-pymor, we ship the required Python and cmake infras-
tructure to generate Python bindings for dune-pymor, parts of dune-stuff and any
user defined classes derived from dune-pymor’s interfaces. Within the Python module
dune.pymor.core.bindings, we provide the prepare_python_bindings, inject_lib_
dune_stuff, inject_lib_dune_pymor and finalize_python_bindings functions. We
also provide the cmake macro add_python_bindings, which is available to all DUNE
modules which depend on dune-pymor.

To generate Python bindings, a user has to provide a C++ header and a correspond-
ing Python script, say foo_bindings_generator.hh and foo_bindings_generator.py.
The header should include all required C++ headers and define all required C++ sym-
bols. The Python script can make use of the aforementioned functions to generate the
bindings:

not all imports shoun ...

from dune.pymor.core import (prepare_python_bindings, inject_lib_dune_pymor,
finalize_python_bindings)

157

3 Software concepts and implementations

Prepare the module,

module, pybindgen_filename, config h_filename = prepare_python_bindings(sys.argv[1:])

add all of libdunepymor,

module, exceptions, interfaces, CONFIG_H = inject_lib_dune_pymor (module, config_h_filename)
add exzample user code (see below),

inject_Example(module, exceptions, interfaces, CONFIG_H)

and write the resulting .cc file.

finalize_python_bindings(module, pybindgen_filename)

Using the functions provided in dune . pymor. core.bindings, the user obtains the Python
module (in the sense of pybindgen), access to the interfaces of dune-pymor and a Python
dict modeling the config.h file of DUNE. The latter is required to enable or disable
the generation of Python bindings of features that depend on external libraries (which
may or may not be present in the current build configuration). After adding the user
code (see below), the C++ file foo_bindings_generator.cc is written to disk. Using
the cmake macro in a corresponding CMakeLists.txt file,

add_python_bindings (foo
foo_bindings_generator.py
foo_bindings_generator.hh
libfoo) # optional: linked against libfoo

generates a cmake target foo, which can be treated as any target (e.g., to add additional
compile flags):

add_dune_alugrid_flags(foo)
add_dune_mpi_flags(foo)

Compilation of the foo target yields a shared object file foo.so which can be imported
as a Python module.

In the above example, the user code is added via the inject_Example function.
For instance, if foo_bindings_generator.hh provides a discretization derived from
StationaryDiscretizationInterface (say FooDisc, depending on the type of the grid
and the containers), the user code could be added as:

not all imports shown ...
from dune.pymor.discretizations import inject_StationaryDiscretizationImplementation

def inject_Example(module, exceptions, interfaces, CONFIG_H):
assert CONFIG_H[’HAVE_ALUGRID’]
assert CONFIG_H[’HAVE_DUNE_ISTL’]
define all types
GridType = ’Dune::ALUGrid< 2, 2, Dune::simplex, Dune::conforming >’
MatrixType = ’Dune::Stuff::LA::IstlRowMajorSparseMatrix< double >’
VectorType ’Dune: :Stuff::LA::IstlDenseVector< double >’
OperatorType = (’Dune::Pymor: :0perators::LinearAffinelyDecomposedContainerBased< ’
+ MatrixType + ’, ’ + VectorType + ’ >’)
FunctionalType = (’Dune::Pymor::Functionals::LinearAffinelyDecomposedVectorBased< °’
+ VectorType + ° >’)
DiscretizationType = ’FooDisc< ’ + GridType + ’, ’ + MatrixType + ’, ’ + VectorType + > >’

158

3.2 Model reduction framework

add FooDisc to the python module
inject_StationaryDiscretizationImplementation(module, exceptions, interfaces, CONFIG_H,
DiscretizationName,
Traits={’VectorType’: VectorType,
’OperatorType’: OperatorType,
’FunctionalType’: FunctionalType,
’ProductType’: OperatorType},
template_parameters=[GridType,
MatrixType,
Vectortypel)

In addition to inject_StationaryDiscretizationImplementation, we provide similar
functions to add user classes derived from any of the interfaces in dune-pymor. These
functions always return the injected class (not shown), which allows the user to add
additional functionality (like special constructors) using the syntax of pybindgen.

As we can see from the above example, the C++ code has to be exactly mirrored within
the Python script to successfully generate Python bindings. This may become quite
elaborate for more complicated examples. In addition, this induces quite a maintenance
overhead since any change to the C++ classes in dune-pymor has to be mirrored in the
inject_... functions on the Python side.*®

Python wrappers. In addition to the Python bindings we also provide pure Python
wrappers of the resulting objects, which conform to the interfaces in pyMOR and fi-
nally allow the C++-based discretization to be used in conjunction with pyMOR. In
dune.pymor.core we therefore provide the wrap_module function, which recursively
traverses the generated Python module and creates a wrapper instance which allows
to convert user defined classes to pyMOR conforming classes (if they are derived from
the interfaces in dune-pymor and injected into the module with the above mentioned
inject_... functions).

Let us return to the above example and let us assume that there exists a successfully
generated foo.so containing a simple Example class to setup the grid and the discretiza-
tion. Using wrap_module, we wrap the resulting discretization, which is then directly
usable by all algorithms in pyMOR:

from dune.pymor.core import wrap_module

tmport and wrap foo.so
include foo as dune_module
_, wrapper = wrap_module(dune_module)

create the example and obtain the discretization
example = dune_module.Example()
discretization = example.discretization()

wrap the discretization
discretization = wrapper[discretization]

48Since our use of pybindgen is purely historically motivated it is likely that in the future we will switch
to using boost.python: http://www.boost.org/doc/1ibs/1_568_0/1ibs/python/doc/

159

http://www.boost.org/doc/libs/1_58_0/libs/python/doc/

© 0 N U W N

e e e e e e
© 00 9 O g W N = O

3 Software concepts and implementations

start using the discretization
...

The resulting discretization object is derived from DiscretizationInterface in
pymor.discretizations.interfaces. Consequently, all operators, functionals, prod-
ucts and vectors are also wrapped and derived from the respective interface in pyMOR.
While the user can always access the original objects via the _impl attribute, the
wrapped objects can now be used like native pyMOR operators, functionals, products,
discretizations and vector arrays.

While dune-pymor provides the infrastructure for handling parametric problems, it
does not actually provide discretizations of such problems. This is the purpose of
dune-hdd, based on the nonparametric discretizations from dune-gdt.

3.2.4.8 dune-hdd

The DUNE module dune-hdd is open source software and freely available on GitHub:
https://github.com/pymor/dune-hdd. It is mainly developed by F. Schindler with
contributions from S. Kaulmann, R. Milk, S. Rave and K. Weber. The purpose of
dune-hdd is to provide ready-to-use discretizations for parametric problems. In contrast
to dune-gdt it is not meant as a flexible discretization toolbox but rather as a complete
PDE solver that can be coupled with pyMOR for model reduction of parametric PDEs.
To treat linear elliptic parametric PDEs (compare Section 1.3) we provide several
problem and discretization classes within the Dune: :HDD: : Linearelliptic namespace.

Parametric linear elliptic problems. We provide the virtual ProblemInterface in
dune/hdd/linearelliptic/problems/interfaces.hh, the purpose of which is to act
as a container of all required data functions (compare Example 1.3.2):

#include <dune/grid/common/gridview.hh>
#include <dune/pymor/parameters/base.hh>
#include <dune/pymor/functions/interfaces.hh>

using namespace Pymor;

template< class E, class D, int d, class R, int r >
class ProblemInterface
: public Pymor: :Parametric
{
// not all methods and type shown ...
public:
typedef AffinelyDecomposableFunctionInterface< E, D, d, R, 1, 1 > DiffusionFactorType;
typedef AffinelyDecomposableFunctionInterface< E, D, d, R, d, d > DiffusionTensorType;
typedef AffinelyDecomposableFunctionInterface< E, D, d, R, r > FunctionType;
virtual const std::shared_ptr< const DiffusionFactorType >& diffusion_factor() const =
virtual const std::shared_ptr< const DiffusionTensorType >& diffusion_tensor() const
virtual const std::shared_ptr< const FunctionType >& force() const = 0; // f

160

0; // A
0; // K

https://github.com/pymor/dune-hdd
dune/hdd/linearelliptic/problems/interfaces.hh

20
21
22
23
24
25
26
27
28

30

3.2 Model reduction framework

virtual const std::shared_ptr< const FunctionType >& dirichlet() const = 0; // gp
virtual const std::shared_ptr< const FunctionType >& neumann () const 0; // gn

template< class G >
void visualize(const GridView< G >& grid_view,
std::string filename,
const bool subsampling = true,
const VTK::OutputType vtk_output_type = VIK::appendedraw) const;

std: :shared_ptr< NonparametricType > with_mu(const Parameter mu = Parameter()) const;

};

Similar to the nonparametric functions in dune-stuff and the parametric functions in
dune-pymor, this interface class is templated with the grid elements ¢ € 75, (modeled by
E), the domain R? (modeled by D and d) and the range R of the solution (modeled by R
and r). Given these template arguments, the types and dimensions of all data functions
can be fixed (lines 13-15); implementations of this interface can thus be exchanged at
runtime. In addition to providing the data functions (lines 17-21), the problem allows
to visualize those for a given grid_view. Being derived from Pymor: :Parametric,
the problem inherits the Pymor: :ParameterType of the data functions. If the problem
is parametric, it also yields a nonparametric variant of itself via with_mu(mu) (given a
Pymor: :Parameter mu of appropriate type), where all data functions have been made
non-parametric by inserting the respective parameter components (compare the previous
section).

We provide ready-to-use implementations of this interface, most of which can be
created by a Configuration from dune-stuff. Similar to the Stuff::Grid: :Boun-
daryInfoProvider, the Stuff::GridProviders, the Stuff: :FunctionsProvider and
the Pymor: : AffinelyDecomposableFunctionsProvider, we also provide the Problems-
Provider factory class in dune/hdd/linearelliptic/problems.hh, which allows to
select one of the following problem implementations from dune/hdd/linearelliptic/
problems/ at runtime, given a suitable Configuration (for instance by a corresponding
.ini file):

Problems: :Default in default.hh provides any combination of nonparametric
functions from dune-stuff and affinely decomposed parametric functions from
dune-pymor, given a configuration where the sub-Configurations correspond-
ing to the keys diffusion_factor, diffusion_tensor, force, dirichlet and
neumann are passed on to the respective functions provider.

Problems: : ESV2007 in ESV2007 .hh models the nonparametric problem from
[ESV2007, Page 23] and Section 4.2.2.

Problems: :0S2014: :ParametricESV2007 in 0S2014.hh models the parametric
problem from Sections 4.2.4.1 and 4.4.1.

Problems: :0S82014: :LocalThermalblock in 0S2014.hh models the parametric
problem from Section 4.2.1.

161

dune/hdd/linearelliptic/problems.hh
dune/hdd/linearelliptic/problems/
dune/hdd/linearelliptic/problems/
default.hh
ESV2007.hh
OS2014.hh
OS2014.hh

3 Software concepts and implementations

Problems: :Spel0: :Modell in spel0.hh models the parametric problems from
Sections 4.2.3 and 4.4.2.

Problems: : Thermalblock in thermalblock.hh models the thermal block problem
from Section 4.1.1.

We also provide a test case in dune/hdd/linearelliptic/testcases/ for each of the
above problems, which bundles the problem together with a corresponding BoundaryInfo
and a suitably refined grid. These test cases are used in automatic system testing to
reproduce the results of the respective publications.

Discretizations of parametric linear elliptic problems. We provide several discretiza-
tions for the above parametric linear elliptic problem within the LinearE11iptic names-
pace. They are all derived from Discretizations: :ContainerBasedDefault, which is
derived from Discretizations: :CachedDefault, which is derived from LinearEllip-
tic::DiscretizationInterface, which is derived from Pymor::StationaryDiscret-
izationInterface.

In addition to the functionality required by Pymor: :StationaryDiscretizationIn-
terface, the LinearElliptic: :DiscretizationInterface enforces access to the un-
derlying grid_view(), the test_space(), the ansatz_space(), the boundary_info ()
and the problem(). Those are required, for instance, in the context of error estima-
tion and to locally use arbitrary discretizations in the context of the LRBMS (compare
Section 2.1).

The Discretizations: :CachedDefault adds a caching functionality to the solve
method by holding copies of the already computed solution vectors for each parameter
and solver options. This is particularly useful in the context of model reduction, where
we might want to solve for the same parameter several times. The caching is implemented
using a std: :map and by enforcing any derived class to implement an uncached_solve
method.

Finally, Discretizations: :ContainerBasedDefault implements the methods en-
forced by all of these interfaces, given matrix and vector representations of the involved
operators, products and functionals. The uncached_solve method is implemented using
the LA: :Solver infrastructure from dune-stuff (see Section 3.1.4.1).

We provide ready-to-use implementations of the CG as well as the SWIPDG dis-
cretizations presented in Section 3.1.1.1 for the discretization of parametric linear ellip-
tic problems from above. These are based on dune-gdt to discretize the nonparametric
operators, functionals and products, which are then combined to form affinely decom-
posed parametric objects with the tools from dune-pymor (see previous Section). We
make use of the abstractions from dune-stuff and dune-gdt to allow for generic dis-
cretizations which work for any linear algebra and discrete function space backend. The
Discretizations: :CG in dune/hdd/linearelliptic/discretizations/cg.hh, for in-
stance is templated by

template< class GridType, Stuff::Grid::Chooselayer layer,
class RangeFieldType, int dimRange, int polOrder = 1,

162

spe10.hh
thermalblock.hh
dune/hdd/linearelliptic/testcases/
dune/hdd/linearelliptic/discretizations/cg.hh

BwWw N =

3.2 Model reduction framework

GDT: :ChooseSpaceBackend space_backend = GDT::ChooseSpaceBackend: :pdelab,
Stuff::LA::ChooseBackend la_backend = Stuff::LA::default_sparse_backend >
class CG;

and provides the following constructor:

CG(GridProviderType& grid_provider,
Stuff::Common: :Configuration bound_inf_cfg,
const ProblemType& prob,
const int level = 0)

As demonstrated in Section 3.1.4.2, we automatically deduce the correct implementation
of the discrete function space (based on dune-fem or dune-pdelab) using the GridType,
the dimRange, the polOrder and the GDT: :ChooseSpaceBackend space_backend tag.
Accordingly, we deduce the required GridPart or GridView given the GDT: :Choose-
SpaceBackend space_backend, the Stuff::Grid: :ChooselLayer layer and the Grid-
Type, as demonstrated in Section 3.1.4.1.

Similarly, we provide the Discretizations: :SWIPDG in dune/hdd/linearelliptic/
discretizations/swipdg.hh, which accepts the same template and constructor argu-
ments. Both discretizations only differ in the respective implementation of the init ()
method, which assembles the matrix and vector representations of the nonparametric
components of the operators, products and functionals, based on the corresponding op-
erators, products and functionals from dune-gdt (see Section 3.1.4.1).

Based on the two discretizations we also provide the Discretizations: :BlockSWIPDG
in dune/hdd/linearelliptic/discretizations/block-swipdg.hh as an implementa-
tion of the discretization proposed in the context of the LRBMS (Section 2.1). This
discretization is created with a Multiscale::ProviderInterface< GridType > grid
provider from dune-grid-multiscale®®. On each subdomain, one of the discretiza-
tions from above is created by passing on the multiscale grid provider along with the
Stuff::Grid: :ChooselLayer: :local tag and the subdomain encoded in the level vari-
able.

Since all of these implementations are derived from Pymor: : StationaryDiscretiza-
tionInterface, pyMOR compatible Python bindings and wrappers are automatically
available through dune-pymor (compare previous section). Together with the ability to
exchange the problem at runtime (given any string-based Configuration), this allows
for an easy coupling of the high-performance discretizations from dune-gdt with the
interactive model reduction framework pyMOR.

nttps://github. com/pymor/dune-grid-multiscale/

163

dune/hdd/linearelliptic/discretizations/swipdg.hh
dune/hdd/linearelliptic/discretizations/swipdg.hh
dune/hdd/linearelliptic/discretizations/block-swipdg.hh
https://github.com/pymor/dune-grid-multiscale/

4 Numerical experiments

This chapter presents experiments which demonstrate various aspects of the LRBMS
(Chapter 2), as well as experiments and benchmarks of the discretization and model re-
duction software framework (Chapter 3). We present those experiments in chronological
order to demonstrate the evolution of the methodology from a localization of traditional
reduced basis methods to a fully adaptive reduced basis multiscale method. In addition,
we discuss some of the obstacles we met along the way, which motivated and guided the
further development of the LRBMS and the required software packages.

4.1 The localized reduced basis (multiscale) method

First ideas of localized reduced basis methods for multiscale problems emerged in the
context of S. Kaulmann’s Diploma thesis [Kau2011, KOH2011]. The experiments in
[Kau2011] were realized within dune-rb [DHKO2012, DHO2012, Dro2012, KFH+2014],
the development of which was started by B. Haasdonk in 2008 and soon picked up by
M. Drohmann and S. Kaulmann. dune-rb provided a tight integration of discretization
and reduced basis schemes and could be coupled with RBmatlab! [Dro2012]. (Compare
Section 3.2.2.)

Based on [KOH2011], the first variant of the LRBMS [AHKO2012] (joint work with
S. Kaulmann, B. Haasdonk and M. Ohlberger) was in essence a localization of the tradi-
tional reduced basis method, applied to multiscale problems. The detailed discretization
in both [KOH2011] and [AHKO2012] was limited to an SIPDG discretization on the full
fine triangulation, in contrast to the variant discussed in Chapter 2.

The a posteriori error estimate in [KOH2011] was based on local lifting operators,
which turned out to be disadvantageous in practice. In the context of a DFG project
on “Multiscale analysis of two-phase flow in porous media with complex heterogeneities”
(grant number OH 98/4-1), we decided to complement the existing method with the
residual-based a posteriori error estimator from Section 2.3.1 in [AHK02012].2

4.1.1 The thermal block experiment

In [AHKO2012, Section 5.1] we considered the thermal block problem of stationary heat
diffusion from Example 1.3.2 on the unit cube Q = [0, 1]?, which is a popular toy-problem
within the RB community. We chose 16 subdomains €)¢, given by an equidistant cubic

"ttp://www.morepas.org/software

2The individual contributions in [AHKO2012] were as follows: the experiments were conducted by
S. Kaulmann while the development of the error estimator and the compilation of the publication
was carried out by F. Schindler.

165

http://www.morepas.org/software

4 Numerical experiments

partitioning of €2, yielding a 16-dimensional parameter, where each component models
the constant value of the thermal conductivity in the corresponding subdomain (compare
Figure 4.1). The problem definition was completed by setting f = 1, K € R?*? as the
unit matrix and by prescribing homogeneous Dirichlet boundary values (g, = 0) on
the top an bottom of the domain as well as homogeneous Neumann boundary values
(gv = 0) on the left and right. We discretized the above problem with a first order
SIPDG scheme (see Section 2.1) on a 30 x 30 equidistant rectangular grid (|7,| = 900).
Both the high-dimensional as well as the reduced discretization along with all required
algorithms were implemented in dune-rb, allowing for the tightest possible integration

of high- and low-dimensional schemes.?

I'p

M3 Hr K1 His

Mo He Hio Hig

Iy

(231 Hs Ko Hi3

Ho Ky Hsg Hi2
I'p

Figure 4.1: Problem setup for the thermal block problem from Example 1.3.2 with 16
subdomains and indicated boundary types (left) and sample solution for p =
(3,6,9,2,5,8,1,4,7,10,3,6,9,2,5,8) (right), with values ranging between 0
(dark) and 3.05- 1072 (light).

We considered the 16-dimensional parameter space P = [0.1,1]!6 for this parametric
problem. For the basis generation we used the discrete weak greedy algorithm from
Definition 1.3.11 on a training set Pyrain C P of 100 randomly chosen parameters with the
localized extend method from Definition 2.4.1 (using a local Gram-Schmidt algorithm
for the orthonormalization of the local bases), together with 7,6q from Theorem 2.3.1 for
estimate and an empty basis in init.

Although this problem was computationally quite small and simple, it allowed us to
investigate a special property of the LRBMS: formally, the LRBMS interpolates between
a standard RB and a standard SIPDG method. By choosing different coarse grids Tg

3The implementation corresponding to these experiments can be obtained at https://users.
dune-project.org/projects/dune-rb, roughly at around commit 493977c. The experiments were
conducted on standard Desktop machines of that time.

166

https://users.dune-project.org/projects/dune-rb
https://users.dune-project.org/projects/dune-rb

4.1 The localized reduced basis (multiscale) method

Error evolution during the greedy algorithm Size of the global reduced basis
1015‘ T T T T T] amma e R R
[EE]
3 10° g E I 12,000
] [b =
s | g
3 r 1 E
g: 107! E E &5
Y f E 11,000 &
<] r] ’U
g i |
1072 F E
L] = -0
! ! ! ! ! ! L [TTT R T WA REER RN S
0 10 20 30 40 50 60 10! 10° 101 102
#high-dimensional snapshots MAX Y €Prain Mroa (1)
—Tul=1 —|Tul=4 [Tu| =16 [Ta| = 64
| Ta| =225 | Te| =400 e |Tu| = 625 [Tz| =900

Figure 4.2: Estimated error evolution and size of the global reduced basis to reach the
desired tolerance (thin black dots) during the greedy basis generation for the
thermal block experiment from Section 4.1.1 for different configurations of
the coarse grid (data for 225 and 900 subdomains beyond the tolerance is
not shown). Left: logarithmic plot of the maximum estimated model reduc-
tion error depending on the number of high-dimensional solution snapshots.
Right: logarithmic plot of the resulting size of the global reduced basis. Note
the numerical instabilities for 400 and 625 subdomains (thick colored dots).

as equidistant rectangular partitions of) with 1, 2 x 2, 4 x 4, 8 x 8, 15 x 15, 20 x 20,
25 x 25 and 30 x 30 subdomains, respectively, we were able to cover the complete range
between the two extremes: for |7z| = 1 the resulting scheme corresponds to a standard
RB approach where nearly all work is done offline, while for |7x| = 900 the resulting
scheme corresponds to a standard SIPDG discretizations where nearly all work is done
online.

Let us fist discuss the generation of the reduced basis, where we disregard the numerical
instabilities, which are visible in Figure 4.2 for 400 and 625 subdomains, for the moment.
As we observe in Figure 4.2 (left), by increasing the number of subdomains, we lower the
number of high-dimensional solution snapshots, which are required to reach the desired
tolerance during the greedy algorithm: while a standard RB method (|7z| = 1) requires
56 snapshots, only three suffice for a standard SIPDG method (|7z| = 900). The latter
is not surprising, since three DoF's are enough to fully specify piecewise linear functions
on rectangles in 2 dimensions.

On the other hand, as we observe in Figure 4.2 (right), the size of the global re-
duced basis grows considerably with an increasing number of subdomains, since for each

167

4 Numerical experiments

Assembling of reduced quantities (offline) Solving the linear system (online)
108 ET T — T T T T —
P estimator) 1 H reduced 0.2
| | —e— operator ° | —— detailed
10° b E =
= F 1 - -10.15 g
k=) [B k)
1l | ©
E 0 S {01 £
e I : o
s | | %
o o
= 100 = | g
g e 0.05 %
r o 1
107 F ERS -0
(= Ll Ll R Ll Ll Ll Ll
10° 10" 10 10° 10° 10" 10 10
| Tw| [Ta|

Figure 4.3: Comparison of selected offline and online timings for the thermal block ex-
ample from Section 4.1.1. Left: Log/log plot of the measured total time
spent for assembling the reduced operator and estimator during the greedy
basis generation (over all extension steps). Right: Log plot of the measured
average time for computing a reduced solution, compared to the average
measured time for computing a high-dimensional solution (over 25 randomly
selected test parameters). Note the outliers (marked as individual red cir-
cles) corresponding to untrustworthy measurements obtained for numerically
unstable configurations (400 and 625 subdomains, compare Figure 4.2).

snapshot roughly |7x| basis functions are added to the global reduced basis (see the
discussion on local vs. global interpretation of the reduced basis in the context of the
LRBMS in Section 2.2).

The low number of required solution snapshots reflects the sizes of the local reduced
bases. Since many parts of the basis generation can be carried out locally in parallel, we
hope to significantly lower the offline time by increasing the number of subdomains. At
the same time, the size of the global basis reflects the size of the resulting reduced linear
system and we expect reduced solutions to take more time during the online phase.

As we observe in Figure 4.3, both is only partially true. By increasing the number of
subdomains we can decrease the total time spent for assembling the reduced operator
by several orders of magnitude, while the total time spent for assembling the reduced
estimator increases by several orders of magnitude (compare Figure 4.3, left). The latter
is not surprising, since the residual based estimator requires the inversion of a global
product matrix for each global basis function (compare Section 2.3.1).

As expected, the average time to solve the resulting reduced problem online increases
for more subdomains, eventually surpassing the average time to solve the full high-
dimensional problem (for 64 subdomains and above, compare Figure 4.3, right). While
the reduced system matrix is sparse, its pattern is less favorable due to larger dense blocks

168

4.1 The localized reduced basis (multiscale) method

(compare Section 2.2). However, for the extreme case where the LRBMS coincides with
a SWIPDG discretization (|7z| = 900), the reduced system matrix corresponds to the
high-dimensional one again, which is reflected in the average time required for a reduced
solution.

Remark 4.1.1 (Discussion of the thermal block experiment). There are several things
worth noting regarding the comparison of standard RB, LRBMS and standard SIPDG
schemes in the context of the thermal block example. First of all, we could show that the
resulting local reduced bases allow for an increased flexibility of the global reduced space
(which is reflected in the size of the global reduced basis) and thus for greatly improved
reduced approximation quality. In particular, much less global solution snapshots were
required to reach the same accuracy, compared to standard RB. As a drawback (resulting
from the larger reduced system), we could observe an increase in average solution times.

Of course, the biggest effect of an increased number of subdomains was visible in
the offline basis generation. While we could observe a large potential for savings (e.g.,
regarding the assembly of the reduced operator) it also became clear that the standard
residual based a posteriori error estimator was not suitable for the LRBMS. Using that
estimator, the total offline time was much higher for the LRBMS than for the standard
RB method.

The purpose of the thermal block experiment was mainly to get a feeling for the
possible effects of varying the number of subdomains, though it was rather simple and
academic in nature. We thus conducted another experiment that was closer to the orig-
inal motivation for the LRBMS. At that time we were involved in the above mentioned
DFG project on “Multiscale analysis of two-phase flow in porous media with complex
heterogeneities” and were exploiting the possibilities of model reduction in the context
of two-phase flow (compare Section 1.4).

4.1.2 The Spel0 model2 experiment

The problem setup of the second experiment we conducted in [AHKO2012] modeled
the flooding of a domain in the context of two-phase flow in porous media (posed in the
global pressure formulation, compare Example 1.4.2). We chose the highly heterogeneous
data from the Spel0 model2 benchmark* for the permeability field k. (compare Figure
4.4, right), f = 0 and boundary values modeling a flow through the domain along the
longest axis. To model a flooding of the domain by one of the two fluid phases we
chose a parametric total mobility A as a linear combination of functions modeling a
saturation drop at different profiles throughout the domain, spreading from one corner
of the domain to the opposite (compare Figure 4.4, left). In this setup, we can think
of each parameter component being associated with a different time-step of the global
pressure system (1.0.1). We discretized this problem with the same SIPDG scheme as
above on a 60 x 220 x 42 rectangular grid (|7,| = 554, 400), implemented in dune-rb.

‘http://www.spe.org/web/csp/datasets/set02.htm

169

http://www.spe.org/web/csp/datasets/set02.htm

4 Numerical experiments

Figure 4.4: Problem setup for the Spe10 model?2 experiment from Section 4.1.2. Left:
schematic plot of the positions of the saturation drops with the associated
parameter components and plot of the boundary values. Right: Re-scaled
logarithmic plot of the absolute value of the permeability field k. (from the
Spe10 model2 benchmark setup), with values ranging between 7-10~4 (dark)
and 2 - 10* (light).

For this parametric problem we considered the six-dimensional parameter space P =
[0.01,0.95]% and chose for the basis generation the same weak discrete greedy algorithm
with local Gram-Schmidt basis extensions as in the thermal block example of the pre-
vious section, searching over 100 randomly selected parameters. This problem was far
more challenging to tackle than the previous one: a single high-dimensional solution
snapshot took about 530 seconds on standard desktop machines of that time. While
the heterogeneous permeability certainly posed some difficulties for the linear solver, the
sheer size of the problem posed challenges for the projection and orthonormalization
algorithms in terms of memory and CPU demand (due to large operators and vectors).
Thus, this problem was a perfect test bed for the LRBMS, the purpose of which was
to allow for model reduction of such problems using less CPU time and memory than
standard RB approaches.

We again chose different coarse grids Ty as equidistant rectangular partitions of €.
Due to time constraints, however, we only conducted experiments for 1, 2x2x2, 2x4x2
and 4 x4 x 2 subdomains; thus, less data was available compared to the previous example.

Considering the basis generation, in Figure 4.5 (left) we can observe a similar be-
havior as in the thermal block case: with an increasing number of subdomains, less
high-dimensional solution snapshots are required to reach the desired tolerance during
the greedy algorithm. While the differences are not that pronounced (23 snapshots for
the standard RB approach vs. 19 snapshots for the LRBMS with 32 subdomains), this
nevertheless resulted in savings of 17% of the computational time spent for the high-
dimensional snapshots.

Unfortunately, this did not lead to overly large savings during the offline part: as
we observe in Figure 4.5 (right), the size of the global basis grows with an increasing
number of subdomains (as discussed in Section 4.1.1). While the total time spent for

170

4.1 The localized reduced basis (multiscale) method

Error evolution during the greedy algorithm Size of the global reduced basis
E T T T T g R e 1 o aan
F 1 = — 600
10% £ E
g) [i
3 10°F E = 1400 "%
< k 1 g
i 1 E
¢ 101 E S
w £ B g
3 F 1
2 r i I <1200 =
B 100 E
10~k -
O ot 1o
L | | | | il T YW T 1YWV V¥ W B EN VTN RN (TTRUA
0 5 10 15 20 25 103 102 10! 10° 101
#high-dimensional snapshots MAXUEPrain Mred (1)
|— 17l =1 I Tu| = 8 Tl =16 —|Tu| =32 |

Figure 4.5: Estimated error evolution and size of the global reduced basis to reach the
desired tolerance (dotted) during the greedy basis generation for the Spe10
model?2 experiment from Section 4.1.2 for different configurations of the
coarse grid. Left: logarithmic plot of the maximum estimated model reduc-
tion error depending on the number of high-dimensional solution snapshots.
Right: logarithmic plot of the resulting size of the global reduced basis.

computing solution snapshots decreases for an increasing number of subdomain, the
total time spent for the evaluation of the reduced estimator increases: although only
a low-dimensional summation is required, we still need to compute the sum of 62 - 608
reduced quantities for 32 subdomains, since the performance of the reduced estimator
depends on the size of the coarse grid (compare Section 2.3.1). Thus, the overall part
of the offline computation that was not spent for the assembly of the operator or the
estimator only slightly decreased (“rest” in Figure 4.6, left).

As expected, the growing size of the global reduced basis also led to an increase of the
average time required to solve the reduced problem, roughly by a factor of 100 (from
0.3ms to 34ms, see Figure 4.6, right).

Considering the time spent in individual parts of the offline computation (displayed in
Figure 4.6), we observe a similar behavior as in the thermal block case: while the total
time required to assemble the reduced operator decreases significantly, the total time
required for the assembly of the reduced estimator grows dramatically with an increasing
number of subdomains. Thus, the total offline time of the LRBMS is significantly larger
than for standard RB methods.

Remark 4.1.2 (Discussion of the Spe10 model2 experiment). There are several things
worth noting regarding the Spel0 model2 experiment. As already observed in the ther-
malb block experiment, the residual based a posteriori error estimate proved to be ill-fitted
for the LRBMS. While perfectly usable in the greedy basis generation in terms of its esti-

171

4 Numerical experiments

Generating the basis (offline) Solving the reduced problem (online)
T ——T
estimator
. rest . 130
30 [| operator —
= g
g i)
<2 i 120
g g
= =
E 2
8 10 — 110 s
3
0 || | Jdo
L L
1 8 16 32 10° 10t
| Ta| | Tw|

Figure 4.6: Comparison of offline and online timings for the Spel0 model2 experiment
from Section 4.1.2. Left: Breakdown of the individual parts of the measured
total time spent for the greedy basis generation during the offline part of the
computation (over all extension steps): assembling of the reduced operator
(dark), assembling of the reduced estimator (light) and remaining part of
the offline computation (medium). Right: Log plot of the measured aver-
age time for computing a reduced solution (over 25 randomly selected test
parameters). Note that computing a single high-dimensional solution takes
about 530s.

mation qualities, the computational time required to assemble the reduced estimator were
not acceptable.

Nevertheless, we were still satisfied with the overall results of this experiments. The
largest bottleneck in the context of multiscale problems is usually the computation of high-
dimensional solution snapshots (compare Section 1.2): the time to solve larger real-world
problems can grow arbitrarily large (up to month even on high-performance clusters).
The ability of the LRBMS to reach the same error tolerance with fewer global solution
snapshots thus made it a promising method for the model reduction of multiscale prob-
lems.

This early work on the LRBMS [AHKO2012] was the starting point and provided direc-
tions on what to pursue next. While we had learned about the strengths of the LRBMS
(namely its superior approximation quality and parallelization capabilities due to local-
ization) we had also identified several shortcomings of our approach in [AHKO2012],
concerning the error estimator as well as the software framework. On the mathematical
side, it was clear that the residual based a posteriori error estimator would have to be
replaced. Since we were incorporating spatial localization into RB methods it made
sense to develop a spatially localized estimator. In addition we could identify several
shortcomings of the existing software framework dune-rb. On the one hand, dune-rb

172

4.1 The localized reduced basis (multiscale) method

was completely based upon dune-fem and thus suffered from limitations concerning the
discretization (as discussed in Section 3.1.3).% The strict dependency on dune-fem would
in particular be an issue when implementing the new localized a posteriori error estima-
tor. On the other hand, dune-rb was also responsible for the model reduction process, in
particular the greedy basis generation. It thus suffered from the limitations discussed in
Section 3.2.2. In the thermal block experiment (Section 4.1.1), for instance, we observed
numerical instabilities during the basis generation, which probably stemmed from the
implementation of the Gram-Schmidt orthonormalization procedure, or the products in-
volved. Due to its nature (implemented in the system language C++, tightly integrated
into the DUNE framework), dune-rb was not a very flexible model reduction frame-
work: it was, in particular, not easily possible to quickly adapt and change the model
reduction specific algorithms, try out different products, orthonormalization techniques
and so forth. ..

After the publication of [AHKO2012] we thus split efforts: S. Kaulmann further pur-
sued the original motivation of the LRBMS while M. Ohlberger and F. Schindler were
interested in developing the localized error estimator and pursuing new ideas regarding
local online adaptation of the reduced bases. S. Kaulmann thus integrated the LRBMS
as a model reduction technique for the pressure equation into the tool-chain required for
full two-phase flow simulations. In that context he demonstrated how an application of
the LRBMS could lead to large computational savings (see [KFH+-2014]).

5The integration with dune-fem went so far that in some stage of the development of dune-rb, the
reduced basis space was actually derived from dune-fem’s discrete function space, in contrast to
being a collection of reduced basis vectors. Thus, all operator projections involved iterating over the
computational grid, in contrast to simple linear algebra operations.

173

4 Numerical experiments

4.2 A new discretization framework: dune-gdt

Due to the above mentioned shortcomings of dune-rb and the fact that M. Drohmann
left the development team after his PhD, the public development of dune-rb came to
a halt in 2012 and we required new software frameworks to realize our ideas. In the
beginning of 2011, M. Drohmann, S. Girke and F. Schindler had already started to work
on a new discretization framework that was later to become dune-gdt. In the early stages
it was based upon dune-fem and later on abstracted further to additionally support
discrete function spaces from dune-fem-localfunctions [Gir2012] and dune-pdelab
(see Section 3.1 for further information). By 2012, S. Rave had joined our team and
he, R. Milk and F. Schindler began to work on pyMOR, which would become exactly the
flexible model reduction framework we required (see Section 3.2).

4.2.1 A first online enrichment experiment

The new localized a posteriori error estimate we were developing should not only bring
down the total time of the offline computation, it would also provide us with local
error information (in a spatial sense) during the offline and online phase. The latter
would enable us to identify those local reduced bases the approximation quality of which
was insufficient for the given parameter. While traditional RB methods only allow
an adaptation of the reduced basis by involving the full high-dimensional model, the
localized approach of the LRBMS would then allow us to enrich the insufficient local
reduced bases by local computations - much in the spirit of domain decomposition and
numerical multiscale methods (compare Chapters 1 and 2).

We thus conducted a first experiment in early 2013 in the context of the “Numerical
Upscaling for Media with Deterministic and Stochastic Heterogeneity” Oberwolfach mini-
workshop [AO2013]. At that time our newly developed discretization framework was in
good shape and we had additionally developed the dune-grid-multiscale® module to
realize the coarse grid. In dune-grid-multiscale, each subdomain is modeled as a
GridView or GridPart (in the sense of dune-grid and dune-fem, respectively) which
allows to locally use arbitrary discretizations that are not aware of the LRBMS context.
Unfortunately, our model reduction framework pyMOR was not yet fully coupled with
our discretization framework and we conducted a simple experiment, which focused on
the aspect of solving local corrector problems (rather than performing the full model

reduction).
In [AO2013], we again considered the thermal block problem from Example 1.3.2 on
the unit cube Q = [0,1]? with only three subdomains, yielding a three-dimensional

parameter (compare Figure 4.7, left). We completed the problem definition by setting
f =1, k € R?*? as the unit matrix and by prescribing homogeneous Dirichlet boundary
values (gp = 0) on the domain boundary (I', = 2). We discretized the above problem
with the generalized DG scheme from Section 2.1 (using a first order continuous Galerkin
FE discretization in each coarse grid element and a SWIPDG coupling with respect to

Shttps://github.com/pymor/dune-grid-multiscale/

174

https://github.com/pymor/dune-grid-multiscale/

4.2 A new discretization framework: dune-gdt

Error evolution during local enrichment

1 T T T 7
§ 10° g —— overlap: 2 E
= r —=—overlap: 6 |]
& | —o—overlap: 10 | |
gy
e r B
Q [N
3 L 1
9
g L |
5 1072 E
< = B
9 []
g L i
o I N
2 5
= 1073 F E
1 SN Y
L ! ! ! 1
0 20 40 60

dim Qred (TH)

Figure 4.7: Problem setup and error evolution for the enrichment experiment from Sec-
tion 4.2.1. Left: Layout of the three subdomains (different shadings) for the
thermal block problem from Example 1.3.2, the associated parameter com-
ponents and the four coarse grid cells T;. Right: error evolution during the
intermediate local enrichment phase for different overlap sizes (where, for in-
stance, 2 corresponds to an overlap of two layers of fine grid elements around
a coarse grid element).

the coarse grid) on a 50 x 50 equidistant rectangular fine grid (|7,| = 2500) and a 2 x 2
equidistant rectangular coarse grid (|Tz| = 4).”

We were interested in modeling the situation outlined in Section 1.4: we are given an
insufficient reduced space and need to enrich the local reduced bases to approximate the
solution for an untrained parameter during the online phase. To this end we used the dis-
crete weak greedy algorithm from Definition 1.3.11 on a training set Pyain := {(0.1,1,1)}
consisting of only one parameter, resulting in a local reduced basis of size one on each
of the four coarse grid elements. We then solved for the parameter p = (0.1,1,0.01),
which differed from the training parameter only in the local region associated with the
third parameter component (compare p, in Figure 4.7, left), resulting in a locally high
contrast of the thermal conductivity.

The reduced basis was clearly insufficiently trained for this parameter and we started
the intermediate local enrichment phase as discussed in Section 2.4.2. Since the de-
velopment of our new local error estimator was not yet completed and we were mainly
interested in observing the error evolution during the basis enrichment, we used the local
relative model reduction H'-error, |[pn(p) — prea ()|l g1 o/ |on(p0) |1 1 for all T € T,
as local error indicators and marked those subdomains for enrichment, where the local
error indicator lay above the average of all indicators.

"The implementation corresponding to this experiment can be obtained from https://github.com/
pymor/dune-hdd by checking out the oberwolfach-2013-abstract-albrecht-thermalblock commit.

175

https://github.com/pymor/dune-hdd
https://github.com/pymor/dune-hdd

4 Numerical experiments

We conducted the experiment for different overlap sizes and recorded the number of
iterations required to reach the desired relative model reduction H!'-error of 0.1%, as
well as the size of the resulting reduced basis. As we observe in Figure 4.7 (right), the
prescribed tolerance was reached after 14 local enrichment steps for ten overlap layers
(which corresponds to 2/5th of a coarse grid cell). The final sizes of the resulting local
reduced bases, |¢Z;?d| = |¢Z;2d = 14 and |¢Z;1d| = |¢Z§d = 6, show the local influence of
the parameter component py and the symmetry of the problem.

Remark 4.2.1 (Discussion of the first online enrichment experiment). First of all,
the results of our first experiment on local basis enrichment were very promising but
at the same time not too surprising. The use of local corrector problems to enrich
the solution is a well established technique in the context of numerical multiscale or
domain decomposition methods, and a similar error decay can be observed in that area.
Nevertheless we were satisfied to observe that the techniques of numerical multiscale
methods could be transferred in a straightforward way to the LRBMS.

In addition, we used this first experiment to demonstrated the state of our new dis-
cretization framework, as we were now able to locally use any discretization of at least
first order and couple those with respect to the coarse grid in a generic way.

The experiment on local enrichment was only one of several options we were pursu-
ing. By that time the theoretical development of our new localized a posteriori error
estimator had proceeded enough to start the corresponding implementation in our new
discretization framework, the development of which had proceeded enough to provide
the Raviart-Thomas-Nédeléc spaces required for the diffusive flux reconstruction.

4.2.2 A first validation of the new localized estimator

Our new localized a posteriori error estimate [0S2014] was based on the work of A. Ern,
A.F. Stephansen and M. Vohralik [ESV2007, ES2008, ESV2010] (compare Section 2.3.2).
To be applicable in the context of the LRBMS we had to adapt the original estimate
with respect to the parameterization of the problem and the coarse triangulation. In
a nonparametric setting our estimate was quite close to the original one, except for a
less favorable summation of the local contributions (since we were interested in localiza-
tion with respect to the coarse grid and not the fine grid, compare Theorem 2.3.3 and
[ESV2010, Theorem 3.1]).

In 2014 we conducted a first validation of the new error estimator in a nonparametric
setting in the context of the “Finite Volumes for Complex Applications VII” conference
[0S2014]. We considered Example 1.1.2 on 2 = [~1,1]? with f = A = 1, x as the unit
matrix in R?*2 and Dirichlet boundary values g (z,y) = cos(1/2mz) cos(1/27y), repro-
ducing the nonparametric example from [ESV2007, Section 8.1], where an exact solution
and data on the performance of the original estimator was available. We discretized the
above problem with the SWIPDG scheme from Section 2.1 using a Oth order diffusive
flux reconstruction on a series of fine grids to exactly match the experiment in [ESV2007,

176

4.2 A new discretization framework: dune-gdt

Section 8.1].8

The purpose of this experiment was to study the impact of the coarse grid on the
quality of the estimator and we considered several configurations of the coarse grid, each
given by equidistant rectangular partitions of 2. We could reproduce the results from
[ESV2007, Section 8.1] with our discretization framework and refer to Section 4.2.4 for
a detailed discussion. As we observe in Figure 4.8, our estimator is not as sharp as the
original one (which is in particular due to the presence of the width of the coarse grid
in the residual component and thus not unexpected) but still very acceptable.

Another purpose of this first validation of the new error estimator was to demon-
strate the implementation of the a-posterior error estimator within our discretization
framework.

Error and estimator decay

—— |lp—pxll —e— 1) from [ESV2007]
—o—nn (|Tul=1) —— nn (|Tu| =4)
nn (|Tu| = 16) nn (|Ta| = 64)

10°

Figure 4.8: Log/log plot of the decay of the
energy error, the estimator local
to the fine grid 7, from [ESV2007]
and the estimator local to the
coarse grid Ty for different con-

figurations of the coarse grid for

1(;2 — ‘1‘(‘)3 — ‘1647 the estimator validation experi-

7] ment from Section 4.2.2.

107!

In addition to this preliminary validation study, we were also interested in the local-
ization qualities of the estimator, in particular in the context of multiscale phenomena.

4.2.8 A first localization study of the new estimator

Once we had successfully implemented the estimator for the nonparametric setting we
turned our attention to its localization qualities in the context of highly heterogeneous
multiscale problems. For the presentation associated with [0S2014] we thus considered
Example 1.1.2 with A = 1, homogeneous Dirichlet boundary values (g, = 0) and the
highly heterogeneous permeability field x° and forces f as depicted in Figure 4.9 (top).
We discretized this problem with the SWIPDG scheme from Section 2.1 using a Oth
order diffusive flux reconstruction on a triangular grid with 8,000 elements.'°

8The implementation corresponding to this experiment can be obtained from https://github.com/
pymor/dune-hdd-demos by checking out the 0S2014-FVCA7-poster commit.

With k. obtained from http://www.spe.org/web/csp/datasets/set01.htm, compare Figure 4.9.

10The implementation corresponding to this experiment can as well be obtained from https://github.
com/pymor/dune-hdd-demos by checking out the 0S2014-FVCA7-poster commit.

177

https://github.com/pymor/dune-hdd-demos
https://github.com/pymor/dune-hdd-demos
http://www.spe.org/web/csp/datasets/set01.htm
https://github.com/pymor/dune-hdd-demos
https://github.com/pymor/dune-hdd-demos

4 Numerical experiments

Figure 4.9: Data functions, pressure distribution and velocity reconstruction for the ex-

periment from Section 4.2.3, on a triangulation with |7,| = 8,000 elements.
Top row, left: logarithmic plot of the absolute value of the permeability field
ke (from the Spel0 modell benchmark setup) with values ranging from 1073
(dark) to 103 (light). Top row, right: plot of f, modeling two producers
(—1, light) and two injectors (1, dark), zero elsewhere. Middle row: plot
of the pressure solution pj (dark: low pressure, light: high pressure). Bot-
tom row: comparison of the magnitude of the diffusive flux reconstruction
RY[py] (right) and the piecewise Darcy velocity (—AxVppp)|, on each grid
element ¢ € 7, (left). Note that both bottom plots share the color map of
the diffusive flux reconstruction (blue: low magnitude, red: high magnitude)
to better identify the discontinuities and overshoots in the Darcy velocity.

| Tar| = 10 x 2
. - N
|
- H
|Ta| = 50 x 10 | Tar| =20 x 4

Figure 4.10: Comparison of the spatial distribution of the local energy error contribu-

178

tion on a triangulation with |73 = 8,000 elements (top left) with the local
estimator contribution for different coarse grid configurations (small con-
tribution: light, large contribution: dark) for the experiment from Section
4.2.3.

4.2 A new discretization framework: dune-gdt

As a side-product, the computation of the error estimator also yields an Hgj,-con-
forming reconstruction of the Darcy velocity (compare Section 2.3.2.2), which is useful
when simulating slow flow (since in that context we require a good approximation of the
Darcy velocity, compare Equations 1.0.1). As we observe in Figure 4.9 (bottom), the
diffusive flux reconstruction RY [py] gives a physically more meaningful reconstruction of
the Darcy velocity than a straightforward computation (which gives undesirable results
due to the non-conformity of the pressure and the discontinuity of the permeability).

The main purpose of this experiment was to study the localization of the a posteriori
error estimator, compared to the localization of the true error in the energy norm.!
We thus computed the local estimator components (as discussed in Corollary 2.3.6) for
several configurations of the coarse grid |Ty|. As we observe in Figure 4.10, the spatial
distribution of the estimator contributions aligns well with the spatial distribution of
the local energy error contributions.

By now, the theoretical work on the new localized a posteriori error estimator was
also completed for the parametric setting. In 2014, we finished the implementation of
this estimator in our discretization framework. Naturally, the next step was to study
the performance of the estimator in a parametric setting and we extended our previous
experiments accordingly.

4.2.4 Detailed study of the parametric localized error estimator

To study the convergence properties of our estimator we consider two experiments
[0S2015]. The first one is an extension of the experiment from Section 4.2.2 and thus
serves as an academic example and as a comparison to the work of [ESV2007, ESV2010].
The second experiment is an extension of the experiment from Section 4.2.3 and demon-
strates the efficiency of the parametric estimator in realistic circumstances. In both
experiments we compute estimator components 7,2 := ZTGTH 17*T2, for x = nc, r, df, and
the estimator 7, as defined in Corollary 2.3.6, using a 0th order diffusive flux reconstruc-
tion. We denote the efficiency of the estimator, n, (pn(p); p, 1, 2) /|lp(8) — pr ()|l > 1,
by “eff.” and the average (over all refinement steps) experimental order of convergence
of a quantity by “order”.

In both experiments, we discretized the respective problem with the SWIPDG scheme
of first order from Section 2.1 in each subdomain. For the fine grids 7, we used
conforming refinements of triangular grids, represented by instances of ALUGrid< 2,
2, simplex, conforming > (see [DKN2014]). All coarse triangulations 7z consist of
equidistant squared elements (though arbitrary shapes are possible), implement with

dune—grid—multiscale.12

1Since we did not have access to the true solution, we used an approximation on a refined grid with
128,000 elements (compare the paragraph on “comparison with a more detailed discrete solution” in
Section 3.1.1.2).

12The implementation corresponding to these benchmarks can be obtained from the sources given in
[0S2015, References 40, 41, 49, 48, 50 and 51].

179

4 Numerical experiments

4.2.4.1 Academic example

We again consider Example 1.1.2 on Q = [—1, 1] with homogeneous Dirichlet boundary
values, f(z,y) = 372 cos(37x) cos(3my), Az, y;) = 1+ (1 — p) cos(3mx) cos(3my), K
the identity in R?*? and a parameter space P = [0.1,1]. This setup coincides with the
one from Section 4.2.2 if we choose p = 1 (where p models the online parameter in the
context of reduced basis methods). Due to the design of the error estimator we have
another two parameters to choose (ft and f1) which are associated with the norm we
estimate against and the offline/online decomposition of the estimator (compare Section
2.3.2). We thus study the components of the estimator as well as its efficiency in several

circumstances, i.e., for different parameters p, f, 1 € P and triangulations 7, and Tz.'3

ITnl | llp(p) —Pn()llz ime(5) ne(500) mar(5p,) eff.
128 3.28-107 1 1.66-10- 5.79-10°1 3551071 3.36
512 1.60-107* 7.89-1072 2.90-107* 1.76-107" 3.40

2,048 7.781072 3.91:1072 1.45-107' 8.73-1072 3.49
8,192 3.47-1072 1.95-1072 7271072 4351072 3.91
order 1.08 1.03 1.00 1.01 —

Table 4.1: Discretization error, estimator components and efficiency of the error es-

timator for the academic example in Section 4.2.4.1 with |Ty| = 1 and
p=p=p=1
p=1 =01
ol / ATul || meCGiw) [nGipomp) et | naCip i) n(ipmp) eff
128/ 2 x 2 2.89-10° " 8.10-10°" 247 [3.16-10° ' 7.71-1007 2.35
512/ 4 x4 7.26-1072 3.27-107% 2.04 | 1.56-107! 3.081071 1.92
2,048/ 8 x 8 1.82-1072 1.45-107Y 1.86 | 7.74-1072 1.35:107' 173
8,192 /16 x 16 4.54-1073 6.76:107% 1.95 | 3.85107% 6.26-107% 1.80
order 2.00 1.20 - 1.01 1.21 —~

Table 4.2: Selected estimator components, estimated error and efficiency of the error
estimator for the academic example in Section 4.2.4.1 with 7, and Ty si-
multaneously refined, u = 1 and two choices of fi. Note that the estimator
components 7, and 7g¢ are not influenced by 77, the estimator components
e and 7, are not influenced by fi and the discretization error is not influ-
enced by either. Thus only 7,, n and its efficiency are given for 1 = 1 and only
nat, n and its efficiency are given for f1 = 0.1 (the other quantities coincide
with the ones in Table 4.1).

We choose 73, just as in [ESV2007, Section 8.1] and Section 4.2.2 and begin with
p =@ = o = 1, thus reproducing the nonparametric example studied above (and in
[ESV2007, Section 8.1], since A = 1 and all constants involving a and « are equal to
1). For this specific choice of parameters an exact solution is available (see [ESV2007,

13The additional parameters [z and f in particular determine the constants o and ~ in Theorem 2.3.3.
A suitable choice for either is thus to minimize these constants.

180

4.2 A new discretization framework: dune-gdt

Section 8.1]). In this configuration, ny. and ng¢ coincide with their respective counter-
parts defined in [ESV2007, ESV2010] while 7, is directly influenced by the choice of the
coarse triangulation and the parametric nature of A (entering c¢l'). Choosing Ty = Q
(the coarse grid configuration with the worst efficiency, compare Section 4.2.2 and Figure
4.8), we observe results similar to [ESV2007, Table 1] for n4¢ and 7y in Table 4.1. In con-
trast, 7, shows only linear convergence while the residual estimator in [ESV2007, Table
1] converges with second order. Overall, the efficiency of the estimator n is around 3.5
(for fixed |Tz| = 1) while the efficiency of the estimator in [ESV2007, Table 1] is around
1.2. (These observations are in line with the earlier validation study we conducted, see
Section 4.2.2.)

We can recover the superconvergence of 1,, however, by refining 7y along with 7
(thus keeping the ratio H/h fixed), see the left columns of Table 4.2. As discussed ear-
lier, we have to fix fi throughout the experiment to make the estimator offline/online
decomposable. Choosing gt = 0.1 has no negative impact on the efficiency of the estima-
tor, as we observe in the right columns of Table 4.2. Additionally, it is often desirable
to fix the error norm throughout the experiments. Choosing @t = 0.1 we still observe a
very reasonable efficiency in Table 4.3.

Il / | Tul | llp(p) —pe(@)llz mc(5m) nCspmp) eff.
128/ 2x2 3.81-107 " 1.82-107 1 1.18-10° 3.10
512/ 4x4 1.87-1071 8.57-1072 5.00-107" 2.67
2,048/ 8 x 8 9.08-1072 4.22-1072 2291071 2.52
8,192/16 x 16 4.05-1072 2.11-1072 1.10-107Y 2.71
order 1.08 1.03 1.14 -

Table 4.3: Discretization error, selected estimator component, estimated error and effi-
ciency of the error estimator for the academic example in Section 4.2.4.1 with
7 and Ty simultaneously refined, g =1 and &z = f» = 0.1. Note that n, and
ngt are not influenced by @ and coincide with Table 4.2.

While the setup of the above experiment was rather simple, it allowed us to reconsider
the influence of the coarse grid and to recover the exceptional convergence rate of the
residual estimator by refining the coarse grid along with the fine grid. In addition, it
allowed us to demonstrate the influence of the parametric constants « and ~ as well as
the two additional parameters z and fi. Following this validation of the estimator in the
parametric setting the final step was to investigate the performance of the estimator in
a parametric multiscale setting.

4.2.4.2 Parametric multiscale example

To investigate the sharpness as well as the localization qualities of the estimator we
consider Example 1.1.2 on © = [0,5] x [0,1] with homogeneous Dirichlet boundary
values (g, = 0) everywhere (I', = 2), f modeling one source and two sinks (see Figure
4.11, right), the parametric total mobility given by A(z,y;u) = 1 4+ (1 — p)Ae(z,y)
and the permeability given by k. = kid, where id denotes the unit matrix in R?*2.

181

4 Numerical experiments

Figure 4.11: Location of the channel A, (left) and plot of the force f (right) modeling
one source (black: 2-10% in [0.95,1.10] x [0.30,0.45]) and two sinks (dark
gray: —1-103 in [3.00,3.15] x [0.75,0.90] U [4.25, 4.40] x [0.25,0.40]), 0 else.

Figure 4.12: Data functions and sample solutions of the parametric multiscale example in
Section 4.2.4 on a triangulation with |75,| = 16,000 elements for parameters
p = 1 (left column) and g = 0.1 (right column). In each row both plots
share the same color map (middle) with different ranges per row. From top
to bottom: logarithmic plot of A\(p)x (dark: 1.41-1073, light: 1.41-103), plot
of the pressure py(u) (dark: —3.92-1071, light: 7.61-107}, isolines at 10%,
20%, 45%, 75% and 95%) and plot of the magnitude of the reconstructed
diffusive flux R [pp(p); p] (blue: 3.10-107, red: 3.01-102).

On each t € 7, k|, is the corresponding Oth entry of the permeability tensor used in
the first model of the 10th SPE Comparative Solution Project!* (given by 100 x 20
constant tensors) and A\, models a channel, as depicted in Figure 4.11 (left). The
right hand side f models a strong source in the middle left of the domain and two sinks
in the top and right middle of the domain, the influence of which is well visible in the
structure of the solutions (see Figure 4.12). We consider the parameter space P = [0.1, 1],
where the role of the parameter p is to toggle the existence of the channel A.: p = 0.1
models the removal of a high-conductivity region near the center of the domain (compare
Figure 4.12, top right) and for g = 1 the effective diffusivity A(@)k. corresponds to the
nonparametric one from the experiment in Section 4.2.3. The missing channel has a
visible impact on the structure of the pressure distribution as well as the reconstructed

“http://www.spe.org/web/csp/datasets/set01.htm

182

http://www.spe.org/web/csp/datasets/set01.htm

4.2 A new discretization framework: dune-gdt

Il / |Tul | llp(e) —pr()llz mnc(5 B) n: (5 1) nae(s s o) eff.
16,000/ 25 x 5 7.49-1071 2.13-10° 1.88-1077 9.66-10°" 4.14
64,000/ 50 x 10 4.52.107" 1.46-10° 7.05-107'° 6.05-107' 4.58

256,000 / 100 x 20 2.58.107! 1.02-10° 7441071 3.85.107! 5.44
1,024,000 / 200 x 40 1.26-107* 7.20-107! 2.00-1071° 249.107' 7.70
order 0.86 0.52 1.07 0.65 -

Table 4.4: Discretization error, estimator components and efficiency of the error estima-
tor for the parametric multiscale example in Section 4.2.4 with 75, and Ty
simultaneously refined and p = @ = it = 1. Note that 7, should be close
to zero (since f is piecewise constant, compare Figure 4.11) and suffers from
numerical inaccuracies (ignoring the last refinement would yield an average
order of 2.33 for 7).

-".!—.qu".— _|_"
Wk SRR e

Figure 4.13: Spatial distribution of the relative error contribution ||p(p) — pr(p)llz 1/
llp() — pr()llz (top) and the relative estimated error contribution

. o 1/2
0" (on(): 1 T)/ (Xpery 07 (on(0); 0, 8, 0)2) ' (bottom), for all T €
Tw, for the parametric multiscale example in Section 4.2.4.2 with |Ty| =

25 x 5 and r = f1 = 0.1 for parameters p = 1 (left, light: 2.26-1073, dark:
3.78-107!) and p = 0.1 (right, light: 4.02-1073, dark: 3.73-1071).

velocities, as we observe in the left column of Figure 4.12. With a contrast of 10° in the
diffusion tensor and an e of about [€2|/2,000 this setup is a challenging heterogeneous
multiscale problem.

To study the convergence properties of the estimator we consider a series of refined
fine and coarse grids. As we observe in Table 4.4, the convergence rates of the estimator
components are not as good as in the academic experiment studied before. However, the
estimator shows an average efficiency of 5.5 which is quite remarkable considering the
contrast of the data functions. As already discussed above, the additional parameters [
and [need to be fixed to obtain a fully offline/online decomposable estimate with a fixed
error norm, while the online parameter p is allowed to vary. We thus choose oz = i = 0.1
and consider g = 1, which yields an average efficiency of 10.2 (not shown). While the
resulting estimate is obviously not as sharp as the previous one, the efficiency is still
very reasonable (considering that we gain the capability to decompose the evaluation of
the estimator into an offline and an online part).

183

4 Numerical experiments

We are also interested in the localization qualities of the estimator in the context
of parametric multiscale problems. Since the resulting local error indicators should be
fully offline/online decomposable as well we chose @ and [as above and study the
spatial distribution of the relative error contribution and the relative local indicators for
a moderate-sized coarse grid: as we observe in Figure 4.13, both show a good agreement.

This last (and latest) experiment finalizes the demonstration of our discretization
framework in the context of parametric multiscale problems. In particular we presented
experiments regarding those aspects of the discretization framework that are concerned
with local CG and SWIPDG discretizations and error estimation. What is left for the
new implementation of the LRBMS are those parts of the software framework that are
concerned with model reduction.

184

4.3 A new model reduction framework: pyMOR

4.3 A new model reduction framework: pyMOR

As already mentioned above we started to work on pyMOR in early 2012, first on its
theoretical design and soon on the actual implementation. From the beginning, one
of the main design goals was to allow for an easy coupling of pyMOR with external
PDE solvers, such as our discretization framework. Alongside pyMOR, we thus developed
dune-pymor to provide the necessary bridging code between Python and C++ (compare
Section 3.2). We performed several benchmark experiments of pyMOR’s core constructs
in [MRS2015]'. We also demonstrated other aspects and applications of pyMOR in
[MRS2015], in particular two examples concerning different parallelization paradigms
(compare [MRS2015, Sections 5.2 and 5.3]).16

The main goal of our benchmarks is to compare the performance of pyMOR’s Vector-
Array and Operator interfaces, when used to access external high-dimensional solver
data structures, to native NumPy based implementations of these classes. Moreover, we
want to investigate possible performance benefits for vectorized VectorArray implemen-
tations.

As native implementations within pyMOR we consider NumpyVectorArray, which allows
for vectorized operations on vectors by internally holding an appropriately sized two-
dimensional NumPy array, as well as ListVectorArray maintaining a Python list data
structure holding vector objects implemented as one-dimensional NumPy arrays. The
scalar products in the gram_schmidt and pod benchmarks are implemented with Numpy-
MatrixOperators holding sparse SciPy matrices coming from pyMOR’s own discretization
toolbox.

The external solver code is based on our discretization framework discussed in Sec-
tion 3.1. In particular we used vectors, matrices and linear solvers from dune-stuff
and parametric discretizations (used here to obtain appropriate scalar products for the
gram_schmidt and pod benchmarks) from dune-hdd, which in turn is based on dune-gdt.
The integration of the DUNE code with pyMOR is done by compiling the solver as a
Python extension module using the infrastructure provided by dune-pymor.

Our benchmarks were executed on a dual socket compute server equipped with two
Intel Xeon E5-2698 v3 CPUs with 16 cores running at 2.30GHz each and 256GB of
memory available. All benchmarks were performed as single-threaded processes.

4.8.1 Vector array benchmarks

We consider the gramian and axpy methods of the VectorArrayInterface. The first
computes the Gramian of the vectors contained in the array A, i.e. the Euclidean scalar
products of all combinations of vectors contained in the array, while the latter performs
a vectorized BLAS-conforming axpy operation, i.e. pairwise in-place addition of the
vectors in the array with vectors of a second array multiplied by a scalar factor.

5Regarding the contributions in [MRS2015]: while the publication [MRS2015] was mainly written by
S. Rave, F. Schindler was mainly responsible for the benchmarks presented in this section.

16The implementation corresponding to these benchmarks can be obtained from the sources given in
[MRS2015, References 22, 32, 33, 34, 35 and 36].

185

4 Numerical experiments

Benchmark of VectorArrayInterface.gramian Benchmark of VectorArrayInterface.axpy
10% FrmT T T T TR LB 1 e B 11 B 1 B A
101; A S
; F 2
2| B f
N /////k/iiijﬁ 10° E KT 7+ 7
Py 2 r L A
8 ~ 107'E A AT
] z g o 7 . 7/
XS Z / Z 1072} S AR
£ ow02f - D572
= S0 7S £
1074 : 107" -
1 1]
107° J
1076 - 1 . 1
Dl v ol o vl o vl 1 Bl v vuvnnd v vl i vl 1o
10t 102 10° 10" 10° 10° 107 10t 102 10° 10" 10° 10° 107
A.dim A.dim, X.dim

- - - NumpyVectorArray
ListVectorArray [NumpyVector]
ListVectorArray[Dune::Stuff::LA::IstlDenseVector]

Figure 4.14: Log/log plot of the measured execution time of A.gramian() (left) and
A.axpy(X) (right, with len(X)==1len(A)) for different implementations
and several lengths (len(A)==1: O, len(A)==4: A, len(A)==16: +,
len(A)==64: @, len(A)==256: A).

In case of the gramian method, as we observe in Figure 4.14 (left), both ListVector-
Array-based implementations show about the same performance for sufficiently large ar-
ray dimensions. In fact, the DUNE-based implementation (IstlDenseVector) actually
performs better than the NumPy-based implementation (NumpyVector), showing the per-
formance of our tight integration between pyMOR and the external solver. The vectorized
NumpyVectorArray implementation, however, clearly outperforms both implementations
for sufficiently large array lengths. This shows that VectorArray implementations can
indeed greatly benefit from pyMOR’s vectorized interface design. NumpyVectorArray, for
instance, does so by calling NumPy’s dot method which is able to defer the task to highly
optimized BLAS implementations.

As we observe in Figure 4.14 (right), in case of the axpy method the NumpyVector-
Array implementation does not benefit from vectorization for larger array dimensions.
We assume that this is due to the fact that NumPy offers no native axpy operations,
such that a large temporary array has to be created holding all to be added and scaled
vectors. Here, the DUNE-based implementation performs better than both of pyMOR’s
native implementations.

4.8.2 Gram-Schmidt and POD benchmarks

The Gram-Schmidt and POD algorithms are important tools in the context of model
reduction. The implementation of a numerically stable Gram-Schmidt algorithm or a
correct POD might not be completely straightforward (compare the corresponding dis-
cussion in Section 4.1.1) and it is an important benefit that pyMOR’s interface design

186

4.3 A new model reduction framework: pyMOR

allows to provide tried and tested implementations of these algorithms which can auto-
matically be used with any external solver integrated with pyMOR.

Nevertheless, compared to a native implementation within the external solver, the
algorithms provided by pyMOR introduce a certain overhead since every operation on the
solver data structures has to pass through wrapper classes implementing VectorArray
or Operator interfaces. The main purpose of the gram_schmidt benchmark is thus to
measure the overhead introduced by these interface method calls, by comparing pyMOR’s
gram_schmidt algorithm operating on VectorArrays and Operators with native imple-
mentations of the identical algorithm: a C++ implementation operating directly on the
DUNE vectors within the ListVectorArray[IstlDenseVector] and two Python imple-
mentations operating directly on the NumPy arrays contained within NumpyVectorArray
and ListVectorArray [NumpyVector].

The POD algorithm mainly consist of three steps with different complexities: 1. com-
putation of a Gramian matrix with respect to the given scalar product (by calling
product.apply?2) 2. computation of the eigenvalue decomposition of the Gramian (using
the SciPy eigh method) and 3. mapping right-singular vectors to left-singular vectors
(by calling lincomb on the original VectorArray). Note that the computational cost
for steps 1 and 3 depends on the VectorArray implementation, scaling linearly with
the array dimension and quadratically (resp. linearly) with the array length. The com-
putational cost for step 2 is independent of the VectorArray implementation and only
increases with the number of given vectors.

As the scalar product for both benchmarks and all implementations we have cho-
sen the full H'-product matrix stemming from a first order continuous Galerkin FE
discretization over the same structured triangular grid on the unit square.

As expected, we observe in Figure 4.15 (top left) that for the Gram-Schmidt algorithm
the native implementations (dashed) are faster than the generic variants (solid). For
higher dimensions, however, the overhead of the generic variant becomes negligible.

For the POD algorithm we can observe again in Figure 4.15 (top right) that both
ListVectorArray-based implementation show roughly equal performance. However,
the vectorized pyMOR implementation is able to outperform both other implementations
thanks to the fact that the computationally dominant steps 1 and 3 of the algorithm (see
Figure 4.15, middle and bottom) can be expressed idiomatically via a single interface
call.

Considering the benchmark results, we can clearly observe a performance benefit for
vectorized VectorArray implementations such as NumpyVectorArray. This justifies our
design decision of choosing arrays of vectors (over single vectors) as basic classes for vec-
tor data in pyMOR. We expect similar performance benefits for external high-dimensional
solvers, when consecutive-in-memory arrays of vectors are available as native data struc-
tures inside theses solvers.

In view of the numerical instabilities we observed in our earliest experiments (Section
4.1) it is of particular importance to have access to the numerically stable and thoroughly
tested Gram-Schmidt algorithm from pyMOR, since the benefit of numerical stability
greatly outweighs the slight performance overhead of using this generic algorithm.

187

4 Numerical experiments

10*

102 -

10°

time (sec.)

1072

1074

107¢

100 %
50 %
0%

100 %
50 %
0%

Figure 4.15:

188

Benchmark of gram_schmidt Benchmark of pod
11 e 1 1L B 11 11 e N 10 [T T T T
| | — pyMOR A — pPyMOR
PyMOR, list-based 7 PyMOR, list-based A 1
—— dune-gdt = , | | — dune-gdt 1 |
- - - native - B 10 scipy.eigh
5
i 12 100f :
()
El
L | B
1072 |- :
0t b
T TR Y BN YT R RTINS TTITI Wl ol ol Ll 4l
10t 10* 10° 10* 10° 10° 107 10t 10 10° 10* 10° 10° 107
A.dim A.dim
pod, len(A)==256 (pyMOR) pod, len(A)==256 (pyMOR, list-based) pod, len(A)==256 (dune-gdt)
10" 10° 10° 107 10" 10° 10° 107 10" 10° 10° 107
A.dim A.dim A.dim
pod, len(A)==16 (pyMOR) pod, len(A)==16 (pyMOR, list-based) pod, len(A)==16 (dune-gdt)
e EEEEE EEEEEEE
10! 10° 10° 10" 10t 10° 10° 10" 10t 10° 10° 107
A.dim A.dim A.dim

Log/log plot of the measured execution time of the Gram-Schmidt
(top left) and POD (top right) algorithms for several lengths of
the vector array (len(A)==1: O, len(A)==4: A, len(A)==16: +,
len(A)==64: @, len(A)==256: A) and breakdown of individual parts
of the POD algorithm (middle and bottom). Top left: Comparison
of gram_schmidt (A=A, product=hl, check=False, reiterate=False)
for several implementations of A and product (solid) and the
respective native implementation (dashed). Top right: Com-
parison of pod (A=A, modes=10, product==hl, orthonormalize=False,
check=False) for several implementations of A and product (solid) and
the respective time spent in scipy.eigh (dotted). Middle and bottom:
Comparison of the relative time spent in the three parts of the POD al-
gorithm (product.apply2: light, scipy.eigh: medium, A.lincomb: dark)
for 1len(A)==256 (middle) and len(A)==16 (bottom).

4.4 The online adaptive LRBMS

4.4 The online adaptive LRBMS

We are now in the position where all building blocks for the online adaptive LRBMS
(compare Section 2.4) are readily implemented and thoroughly tested. By combining the
discretization and model reduction components (dune-stuff, dune-grid-multiscale,
dune-gdt, dune-pymor, dune-hdd and pyMOR), presented in Chapter 3, we obtain a
software framework that combines the computational power of DUNE (implemented in
the system language C++) with the flexibility of pyMOR (implemented in the interpreted
language Python).

To demonstrate the proposed adaptive online enrichment Algorithm 2.4.2 and the
flexibility of the LRBMS we study two distinct circumstances [0S2015, Section 6.2].
We first consider again the academic example from Section 4.2.4.1 where we disable the
greedy procedure and build the reduced bases only by local enrichment online. The
second example is again the parametric multiscale one from Section 4.2.4.2 with global
channels in the permeability and we allow for very few global solution snapshots offline
and adaptively enrich afterwards online.”

For the orthonormalization procedure ONB in the greedy Algorithm 2.4.1 we use the
stabilized Gram Schmidt procedure implemented in pyMOR'® with respect to the scalar
product given by (p,q) — b" (p, ¢; It +Ze€fg bg(p, q;) on each T € Ty. In contrast to
other possible basis extension algorithms (e.g., a proper orthogonal decomposition) the
Gram Schmidt basis extension yields hierarchical local reduced bases. This is of partic-
ular interest in the context of online enrichment, since we can reuse reduced quantities
w.r.t. existing basis vectors after enrichment.

In all experiments, we initialize the local reduced bases with the coarse DG basis of
order up to one by setting ky = 1 in Algorithm 2.4.1. We choose the same orthonormal-
ization algorithm in the adaptive basis enrichment Algorithm 2.4.2 and consider several
marking strategies for MARK, depending on the circumstances (detailed below). Regard-
ing the overlap for the local enrichment we always chose the overlapping subdomains
Ts O T to include T and all subdomains that touch it, thus choosing an overlap of O(H),
as motivated in [HP2013]. We also chose the coarse triangulation to be fine enough to
represent the coarse behavior of the solution, since in previous Experiments (compare
Section 4.2.1) we observed that a small coarse grid together with small overlaps lead to
extensive online computations in terms of the number of required enrichment iterations.

Since the error of any reduced solution ||p(pt) — pred(p)|lz cannot be lower than the
error of the corresponding detailed solution [|p(x) — pr(p)z. We choose Areq in Algo-
rithm 2.4.2 to be slightly larger than max,cp,_ ;.. 7h(Pn(1); i, &, ft) in our experiments
(see below), where Popiine C P is the set of all parameters we consider during the online
phase. This is only necessary since we do not allow for an adaptation of 75,; combining
our online adaptive LRBMS with the ideas of [Yan2014] would overcome this restriction
(compare the discussion in Section 1.3).

"We use the same software configuration as detailed in Section 4.2.4.
Bhttp://docs.pymor.org/en/0.3.x/generated/pymor.la.html#module-pymor.la.gram_schmidt

189

http://docs.pymor.org/en/0.3.x/generated/pymor.la.html#module-pymor.la.gram_schmidt

4 Numerical experiments

4.4.1 Academic example

We again consider the academic example from Section 4.2.4.1 on fixed triangulations
with |75,| = 131,072 and |7z | = 8 x 8 elements and choose the set of online parameters
Ponline to consist of 10 randomly chosen parameters i, ..., g € P. We set npax = 0
and kg = 1, thus disabling any greedy search and initializing the local bases with the
coarse DG basis of order up to one (consisting of 4 shape functions). In this setup
maxep, e Th(Pr(p); g, 1, 1) = 2.79- 1072 and we choose Ayeq = 51072 in Algorithm
2.4.2.

We begin by choosing MARK such that Ty = T (all coarse elements are marked;
denoted by uniform in the following). For each parameter g € Ponine this results
in a method that is similar to domain decomposition (DD) methods with overlapping
subdomains. In contrast to traditional DD methods, however, we start with an initial
coarse basis and perform a reduced solve before each iteration which helps to spatially
spread information. As we observe in Figure 4.16, top left, it takes four enrichment
steps (or equivalently four DD iterations) to lower the estimated error for the first online
parameter p, below the desired tolerance and another two enrichment steps for the next
on-line parameter p; (which is max,ep, ;..). With uniform marking this increases the
local basis sizes from four to ten on each coarse element. The resulting coarse reduced
space of dimension 640 is then sufficient to solve for the next four online parameters
W, . - ., s without enrichment. One additional enrichment phase is needed for pg (which
is mingep, ;.. #) and none for the remaining three online parameters. Note that while
this uniform marking strategy may be optimal in the number of enrichment steps it
takes to reach the desired error for all online parameters it also leads to an unnecessarily
high-dimensional coarse reduced space (of dim Qeq(7z) = 704) and a high work-load in
each enrichment step.

Another popular choice in the context of adaptive mesh refinement is a Dorfler mark-
ing strategy (see [MNS2002] and the references therein), where we collect those coarse
elements that contribute most to G4qgert ZTETH 0" (- w, m, 1)? in Tu C Ty, for a given
user-dependent parameter 0 < 8goer < 1. In addition, similar to [BDD2004, HDO2011],
we count how often each T' € Ty was not marked and mark those elements the “age”
of which is larger than a prescribed Nuge € N (resetting the age count of each selected
element). We denote this marking strategy by doerfler_age (fgoerf, Nage). We found
that a combination of Ogoers = 1/3 and N,ge = 4 yielded the smallest overall basis size
(of 572), compared to other combinations of Oqoerf and Nage and the uniform marking
strategy. The number of elements marked per step range between five and 52 (over all
online parameters and all enrichment steps; 23 steps in total) with a mean of 14 and a
median of ten. Of these marked elements between one and 44 have been marked due to
their age in 12 of these 23 steps (with an average of 12 and a median of eight, taken over
only those 12 steps where elements have been marked due to their age). We observe
in Figure 4.16, top right, that the general behavior of the method with this marking
strategy is similar to the one with uniform marking, with some commonalities and dif-
ferences worth noting. First of all it also takes three enrichment phases to reach the
prescribed error tolerance, and for the same parameters pg, p; and pg as above. But

190

4.4 The online adaptive LRBMS

uniform doerfler_age(1/3,4)

r T] r T T T T]

I % 1 I | 1
] o &%
) <
=100 1R 10 E
3 r 12 r]
5 12 |
3 1 3 1
I 107" | 94 5 107" | E
& [1 s []

& =5y,
n \A @\? b r - 2 ‘5 N
L ! ! ! ! ! 1 L ! ! ! ! ! 1
300 400 500 600 700 300 400 500 600 700
dim Qred (Tw) dim Qrea(Tw)
uniform doerfler_age(10,1/3,4)

r T T T T T]

i r]
. : g% : Ponline
3
X 10°F E —A— py = 0.43708 ...
3 I] 1y =0.95564. ..
=y L] — py, =0.75879...
= * 1 A py=0.63879...
£ i | Oy =0.24041 ...
el | * s = 0.24039 ...
& g E O pg = 0.15227. .

- \ 5 1 X pr = 0.87955

i 1 + g = 0.64100

L B O pg =0.73726

! ! ! ! !
300 400 500 600 700
dim Qred(TH)

Figure 4.16: Estimated error evolution during the adaptive online phase for the academic
example in Section 4.4.1 with |T| = 64, nypax = 0, kg = 1, Apeq = 5- 1072
(dotted line) and t = fr = 0.1 for several marking strategies: uniform mark-
ing of all subdomains (top left), combined Doérfler and age-based marking
with Ogoers = 1/3 and Nage = 4 (top right) and additional uniform marking
while 7(prea(p); by |,) > Ounilyeq with Oypi = 10 (bottom left). With
each strategy the local reduced bases are enriched according to Algorithm
2.4.2 for each subsequently processed online parameter g, ..., g (bottom
right).

191

4 Numerical experiments

each of these enrichment phases naturally needs more steps and large improvements can
usually be observed after a lot of elements have been marked due to their age count (see
for instance the fifth enrichment step for p, or p;). In addition we observe that the
estimated error for a parameter sometimes increases, in particular in the very beginning
(see the first four steps for p, the fourth step for p, or the first step for pg). This
is not troublesome since we can only expect a strict improvement in the energy norm
induced by the bilinear form that is used in the enrichment. This shows, never the less,
that there is still room for improvement, although using the doerfler_age marking we
could reach a significantly lower overall basis size than using the uniform marking (572
vs. 704).

We propose a combination of the two strategies, namely a uniform marking while the
estimated error is far away from the desired tolerance, i.e., n(preqa(1t); 1, o, f8) > Ouni Ared
for some Oy > 0, followed by a Dorfler and age-based marking as detailed above.
We denote this marking strategy by uniform_doerfler_age (Ouni, Odoerf, Nage) . As we
observe in Figure 4.16, bottom left, this marking strategy combines advantages of both
previous approaches, recovering the rapid error decrease of the uniform marking strategy
far away from the desired tolerance (see the first step for py and ;) while yielding the
smallest overall basis size of 530 (using a factor of 8, = 10) due to the doerfler_age
marking strategy. The smoothness and symmetry of the problem is reflected in the
spatial distribution of the final local basis sizes (see Figure 4.17).

Figure 4.17: Spatial distribution of the final sizes of the local reduced
bases, |®T| (light: 7, dark: 11), for all T € Ty af-
ter the adaptive online phase for the academic example
in Section 4.4.1 with Q = [~1,1]?, |Ty| = 8 x 8 and
the uniform doerfler_age(10,1/3,4) marking strat-
egy (see Figure 4.16, bottom left).

4.4.2 Parametric multiscale example

We again consider the multiscale example from Section 4.2.4.2 on fixed triangulations
with |7| = 1,014,000 and |7x| = 25 x 5 and choose the set of online parameters Popjine
to consist of the same 10 randomly chosen parameters g, ..., ptg € P as in the previous
example. In this setup max,cp, .. 7h(Pr(1); 1, &, ft) = 1.66 and we choose A;eq = 2 in
Algorithm 2.4.2.

We first set npax = 0 and kg = 1 and thus disable any greedy search in the offline
phase and initializing the local bases with the coarse DG basis of order up to one; in the
online phase we use the uniform marking strategy (see above). This results in the same
DD-like approach that worked well for the academic example from the previous section.
As we observe in Figure 4.18 (top), however, it takes 129 enrichment steps to lower the
estimated error below the desired tolerance for the first online parameter p,. After this
extensive enrichment it takes 12 steps for g, and none or one enrichment steps to reach
the desired tolerance for the other online parameters. The resulting coarse reduced space

192

4.4 The online adaptive LRBMS

10" £ E
T) *
= B]
j_ |- 4
2 2L N
S §
E - |
z 5]
= 0
10° & I I I I ! I I I I I o;\?;
1,000 2,000 3,000 4,000 5000 6,000 7,000 8000 9,000 10,000
dim Qred (TH)
r] Pon]ine
| il —A— py = 0.43708.....
=~ =0.95564. ..
e} 2 El H
1< o 1 o = 0.75879 . ..
< s] O py = 0.63879...
= i il = 0.24041 ...
2 | * ;= 024039
E | S prg = 0.15227 ...
= F] — ., =0.87955. ..
I . + g =0.64100...
® O po =0.73726...
100 | | | |
800 1,000 1,200 1,400
dimQred(TH)

Figure 4.18: Estimated error evolution during the adaptive online phase for the paramet-
ric multiscale example in Section 4.4.2 with [Tz | = 125, kg = 1, Aonline = 2
(dotted line), @ = f» = 0.1, for different on-line and offline strategies: no
global snapshot (greedy search disabled, Ngreedy = 0) during the offline
phase, uniform marking during the online phase (top) and two global snap-
shots (greedy search on Pirain = {0.1,1}, Ngreedy = 2) and combined uni-
form marking while 9(pred (1); t, Iy f£) > OuniDonline With Oyn; = 10, Dorfler
marking with fgeerf = 0.85 and age-based marking with Nyge = 4 (bottom
left); note the different scales. With each strategy the local reduced bases
are enriched according to Algorithm 2.4.2 while subsequently processing the
online parameters p, ..., pg (bottom right).

193

4 Numerical experiments

is of size 10,749 (with an average of 86 basis functions per subdomain), which is clearly
not optimal. Although each subdomain was marked for enrichment, the sizes of the
final local reduced bases differ since the local Gram Schmidt basis extension may reject
updates (if the added basis function is locally not linearly independent). As we observe
in Figure 4.19 (left) this is indeed the case with local basis sizes ranging between 24
and 148. Obviously, a straightforward domain decomposition ansatz without any global
solution snapshots is not feasible for this setup. This is not surprising since the data
functions exhibit strong multiscale features and non-local high-conductivity channels
connecting domain boundaries, see Figure 4.12.

To remedy the situation we allow for two global snapshots during the offline phase (set-
ting Nmax = 2, Pirain = {0.1,1}) and use the adaptive uniform doerfler_age marking
strategy (see above) in the online phase. With two global solution snapshots incor-
porated in the basis the situation improves significantly, as we observe in Figure 4.18
(bottom left) and there is no qualitative difference of the evolution of the estimated
error during the adaptive online phase between the academic example studied above
and this highly heterogeneous multiscale example (compare Figure 4.16, bottom left).
In total we observe only two enrichment steps with uniform marking (see the first two
steps for py). The number of elements marked range between 11 and 110 (over all online
parameters and all but the first two enrichment steps) with a mean of 29 and a median
of 22. Of these marked elements only once have 87 out of 110 elements been marked
due to their age (see the last step for p;). Overall we could reach a significantly lower
overall basis size than in the previous setup (1,375 vs. 10,749) and the sizes of the final
local bases range between only nine and 20 (compared to 24 to 148 above). We also
observe in Figure 4.19 (right) that the spatial distribution of the basis sizes follows the
spatial structure of the data functions (compare Figures 4.11, 4.12), which nicely shows
the localization qualities of our error estimator.

I g L

Figure 4.19: Spatial distribution of the final sizes of the local reduced bases, || for
all T € Ty, after the adaptive online phase for the parametric multiscale
example in Section 4.4.2 with Q = [0,5] x [0,1], |Tg| = 25 x 5 for the two
strategies shown in Figure 4.18: no global snapshot with uniform enrich-
ment (left, light: 24, dark: 148) and two global snapshots with adaptive en-
richment (right, light: 9, dark: 20). Note the pronounced structure (right)
reflecting the spatial structure of the data functions (compare Figures 4.11
and 4.12).

194

4.4 The online adaptive LRBMS

It is clear that these experiments do not cover all aspect of the LRBMS in all details.
In particular, we did not study the possible computational gain of an offline/online
decomposition of the localized error estimator. Instead we rather focused on those
aspects of the LRBMS that go beyond traditional reduced basis methods: localized error
control and online enrichment of the reduced basis. We could demonstrate that our new
localized a posteriori error estimator allows to identify problematic local reduced bases
and that the localized ansatz in general allows to enrich the local reduced basis online
without resorting to full high-dimensional computations. This combination enables the
LRBMS to be applicable in a far wider range of scenarios than traditional RB methods.

195

Bibliography

[AE2008)

[AEJ2008]

[ALKK2009]

[AB2013]

[AB2014]

[AH2014]

[AN2009]

[AN2011]

[AHKO02012]

[A02013]

[A111992]

[ASB1978]

J. E. AARNES, Y. EFENDIEV. Mizxed multiscale finite element methods for
stochastic porous media flows. SIAM J. Sci. Comput., 30 (2008) (5), pp. 2319—
2339. doi:10.1137/07070108X.

J. E. AARNES, Y. EFENDIEV, L. JIANG. Mized multiscale finite element methods
using limited global information. Multiscale Model. Simul., 7 (2008) (2), pp. 655—
676. doi:10.1137/070688481.

J. E. AArNES, K.-A. Lig, V. KiPPE, S. KROGSTAD. Multiscale methods for
subsurface flow. In Multiscale modeling and simulation in science, vol. 66 of
Lect. Notes Comput. Sci. Eng., pp. 3-48. Springer, Berlin, 2009. doi:10.1007/
978-3-540-88857-4_1.

A. ABDULLE, Y. BAlL. Adaptive reduced basis finite element heterogeneous mul-
tiscale method. Comput. Methods Appl. Mech. Engrg., 257 (2013), pp. 203-220.
do0i:10.1016/j.cma.2013.01.002.

A. ABDULLE, Y. BAIL Reduced-order modelling numerical homogenization. Phi-
los. Trans. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci., 372 (2014) (2021,
20130388). doi:10.1098/rsta.2013.0388.

A. ABDULLE, P. HENNING. A reduced basis localized orthogonal decomposition.
ArXiv e-prints [math.NA], (2014). 1410.3253.

A. ABDULLE, A. NONNENMACHER. A posteriori error analysis of the heteroge-
neous multiscale method for homogenization problems. C. R. Math. Acad. Sci.
Paris, 347 (2009) (17-18), pp. 1081-1086. doi:10.1016/j.crma.2009.07.004.

A. ABDULLE, A. NONNENMACHER. Adaptive finite element heterogeneous mul-
tiscale method for homogenization problems. Comput. Methods Appl. Mech. En-
grg., 200 (2011) (37-40), pp. 2710-2726. do0i:10.1016/j.cma.2010.06.012.

F. ALBRECHT, B. HAASDONK, S. KAULMANN, M. OHLBERGER. The localized
reduced basis multiscale method. In Proceedings of Algoritmy 2012, Conference
on Scientific Computing, Vysoke Tatry, Podbanske, September 9-14, 2012. Slovak
University of Technology in Bratislava, Publishing House of STU, 2012 pp. 393—
403.

F. ALBRECHT, M. OHLBERGER. The localized reduced basis multi-scale method
with online enrichment. Oberwolfach Rep., 7 (2013), pp. 12-15. doi:10.4171/
OWR/2013/07.

G. ALLAIRE. Homogenization and two-scale convergence. STAM J. Math. Anal.,
23 (1992) (6), pp. 1482-1518. doi:10.1137/0523084.

B. O. ALMROTH, P. STERN, F. A. BROGAN. Automatic choice of global shape
functions in structural analysis. AIAA J., 16 (1978) (5), pp. 525-528.

197

1410.3253

Bibliography

[AF2011]

[Ant1972]

[BD1981]

[BSK1981]

[BV1984]

[BHH+2015]

[BMNP2004]

[BBD+2008a]

[BBD-2008]

[BBBG2011]

[BBH+2015]

[BHL1993]

[BCD+2011]

[BDD2004]

198

D. AMSALLEM, C. FARHAT. An online method for interpolating linear parametric
reduced-order models. STAM J. Sci. Comput., 33 (2011) (5), pp. 2169-2198. doi:
10.1137/100813051.

S. N. ANTONTSEV. On the solvability of boundary value problems for degenerate
two-phase porous flow equations. Dinamika Splosnoi Sredy Vyp, 10 (1972), pp.
28-53.

I. BABUSKA, M. R. DORR. Error estimates for the combined h and p versions
of the finite element method. Numer. Math., 37 (1981) (2), pp. 257-277. doi:
10.1007/BF01398256.

I. BABUSKA, B. A. SzaBo, I. N. KaTrz. The p-version of the finite element
method. STAM J. Numer. Anal., 18 (1981) (3), pp. 515-545. doi:10.1137/0718033.

I. BABUSKA, M. VOGELIUS. Feedback and adaptive finite element solution of one-
dimensional boundary value problems. Numer. Math., 44 (1984) (1), pp. 75-102.
doi:10.1007/BF01389757.

W. BANGERTH, T. HEISTER, L. HELTAI, G. KANSCHAT, M. KRONBICHLER,
M. MAIER, B. TURCKSIN, T. D. YOUNG. The deal.II Library, Version 8.2.
Archive of Numerical Software, 3 (2015).

M. BARRAULT, Y. MADAY, N. C. NGUYEN, A. T. PATERA. An ‘empirical in-
terpolation’ method: application to efficient reduced-basis discretization of partial
differential equations. C. R. Math. Acad. Sci. Paris, 339 (2004) (9), pp. 667-672.
doi:10.1016/j.crma.2004.08.006.

P. BasTiaN, M. BLaTT, A. DEDNER, C. ENGWER, R. KLOFKORN, R. KORN-
HUBER, M. OHLBERGER, O. SANDER. A generic grid interface for parallel and
adaptive scientific computing. II. Implementation and tests in DUNE. Comput-
ing, 82 (2008) (2-3), pp. 121-138. doi:10.1007/s00607-008-0004-9.

P. BastTiaN, M. Brarr, A. DEDNER, C. ENGWER, R. KLOFKORN,
M. OHLBERGER, O. SANDER. A generic grid interface for parallel and adap-
tive scientific computing. I. Abstract framework. Computing, 82 (2008) (2-3), pp-
103-119. doi:10.1007/s00607-008-0003-x.

U. BAUR, C. BEATTIE, P. BENNER, S. GUGERCIN. Interpolatory projection
methods for parameterized model reduction. STAM J. Sci. Comput., 33 (2011) (5),
pp. 2489-2518. doi:10.1137/090776925.

U. BAUR, P. BENNER, B. HAASDONK, C. HIMPE, I. MARTINI, M. OHLBERGER.
Comparison of methods for parametric model order reduction of instationary prob-
lems. Tech. rep., Max Planck Institute Magdeburg, 2015.

G. BErRKOOZ, P. HOLMES, J. L. LUMLEY. The proper orthogonal decomposition
in the analysis of turbulent flows. In Annual review of fluid mechanics, Vol. 25,
pp- 539-575. Annual Reviews, Palo Alto, CA, 1993.

P. Binev, A. CoHEN, W. DAHMEN, R. DEVORE, G. PETROVA, P. WOJ-

TASZCZYK. Convergence rates for greedy algorithms in reduced basis methods.
SIAM J. Math. Anal., 43 (2011) (3), pp. 1457-1472. doi:10.1137/100795772.

P. BINEv, W. DAHMEN, R. DEVORE. Adaptive finite element methods with
convergence rates. Numer. Math., 97 (2004) (2), pp. 219-268. doi:10.1007/
s00211-003-0492-7.

[Boy2008]
[BF1991]

[Buh2000)]

[BEOR2014]

[BZ2006]

[Car2015]

[CFCA2013]

(CS2010]

[CJ1986]

[Che2001]

[Che2002]

[CHM2006]

(CS2008]

[Cial978]

[CKSS2002]

Bibliography

S. BOYAVAL. Reduced-basis approach for homogenization beyond the periodic set-
ting. Multiscale Model. Simul., 7 (2008) (1), pp. 466-494. do0i:10.1137/070688791.

F. Brezzi, M. FORTIN. Mized and hybrid finite element methods. Springer-
Verlag New York, Inc., 1991.

M. D. BUHMANN. Radial basis functions. In Acta numerica, 2000, vol. 9 of
Acta Numer., pp. 1-38. Cambridge Univ. Press, Cambridge, 2000. doi:10.1017/
S0962492900000015.

A. BuHR, C. ENGWER, M. OHLBERGER, S. RAVE. A Numerically Stable A
Posteriori Error Estimator for Reduced Basis Approzimations of Elliptic Equa-
tions. In E. ONATE, X. OLIVER, A. HUERTA, eds., Proceedings of the 11th World
Congress on Computational Mechanics. CIMNE, Barcelona, 2014 pp. 4094-4102.

E. BurMAN, P. ZuNINO. A domain decomposition method based on weighted in-
terior penalties for advection-diffusion-reaction problems. SIAM J. Numer. Anal.,
44 (2006) (4), pp. 1612-1638 (electronic). doi:10.1137/050634736.

K. CARLBERG. Adaptive h-refinement for reduced-order models. Internat. J.
Numer. Methods Engrg., 102 (2015) (5), pp. 1192-1210. doi:10.1002/nme.4800.

K. CARLBERG, C. FARHAT, J. CORTIAL, D. AMSALLEM. The GNAT method
for monlinear model reduction: effective implementation and application to com-
putational fluid dynamics and turbulent flows. J. Comput. Phys., 242 (2013), pp.
623-647. doi:10.1016/j.jcp.2013.02.028.

S. CHATURANTABUT, D. C. SORENSEN. Nonlinear model reduction via discrete
empirical interpolation. STAM J. Sci. Comput., 32 (2010) (5), pp. 2737-2764.

G. CHAVENT, J. JAFFRE. Mathematical Models and Finite Elements for Reser-
voir Simulation: Single Phase, Multiphase and Multicomponent Flows through

Porous Media. Studies in Mathematics and its Applications, Elsevier Science,
1986. ISBN 978-0-444-70099-5.

Z. CHEN. Degenerate two-phase incompressible flow. 1. Ezistence, uniqueness
and regularity of a weak solution. J. Differential Equations, 171 (2001) (2), pp.
203-232. doi:10.1006/jdeq.2000.3848.

Z. CHEN. Degenerate two-phase incompressible flow. II. Regularity, stability and
stabilization. J. Differential Equations, 186 (2002) (2), pp. 345-376. do0i:10.1016/
S0022-0396(02)00027-X.

Z. CHEN, G. HuaN, Y. MA. Computational methods for multiphase flows in
porous media, vol. 2. Siam, 2006.

Z. CHEN, T. Y. SAVCHUK. Analysis of the multiscale finite element method
for nonlinear and random homogenization problems. SIAM J. Numer. Anal., 46
(2008) (1), pp. 260-279. doi:10.1137/060654207.

P. CiaARLET. The Finite Element Method for Elliptic Problems. North-Holland
Publishing Company, 1978. ISBN 9780898715149.

B. CockBURN, G. KANSCHAT, D. ScHOTZAU, C. SCHWAB. Local discontinuous
Galerkin methods for the Stokes system. SIAM J. Numer. Anal., 40 (2002) (1),
pp. 319-343. doi:10.1137/S0036142900380121.

199

Bibliography

[CD2015]

[Cop1995]

[DPW2014]

[DPSD2008]

[DVTP2013]

[DKN2014]

[DKNO2010]

[Doe1996]

[DEH2008)]

[Dro2009]

[Dro2012]

[DHKO2012]

[DHO2009]

[DHO2012]

200

A. CoHEN, R. DEVORE. Kolmogorov widths under holomorphic mappings. ArXiv
e-prints [math.AP], (2015). 1502.06795.

J. O. CopLIEN. Curiously recurring template patterns. C++ Report, 7 (1995) (2),
pp. 24-27.

W. DAHMEN, C. PLESKEN, G. WELPER. Double greedy algorithms: reduced
basis methods for transport dominated problems. ESAIM Math. Model. Numer.
Anal., 48 (2014) (3), pp. 623-663. do0i:10.1051/m2an/2013103.

L. DALcIN, R. Paz, M. SToRTI, J. D’ELIA. MPI for Python: Performance
improvements and MPI-2 extensions. Journal of Parallel and Distributed Com-
puting, 68 (2008) (5), pp. 655-662. doi:10.1016/j.jpdc.2007.09.005.

C. DAVERSIN, S. VEYs, C. TROPHIME, C. PRUD’HOMME. A reduced basis
framework: application to large scale non-linear multi-physics problems. In CEM-
RACS 2012, vol. 43 of ESAIM Proc., pp. 225-254. EDP Sci., Les Ulis, 2013.
doi:10.1051/proc/201343015.

A. DEDNER, R. KLOFKORN, M. NOLTE. The DUNE-ALUGrid Module. ArXiv
e-prints [cs.MS], (2014). 1407.6954.

A. DEDNER, R. KLOFKORN, M. NoLTE, M. OHLBERGER. A generic interface
for parallel and adaptive discretization schemes: abstraction principles and the
DUNE-FEM module. Computing, 90 (2010) (3-4), pp. 165-196. doi:10.1007/
s00607-010-0110-3.

W. DORFLER. A convergent adaptive algorithm for Poisson’s equation. SIAM J.
Numer. Anal., 33 (1996) (3), pp. 1106-1124. doi:10.1137/0733054.

P. DosTERT, Y. EFENDIEV, T. Y. HOU. Multiscale finite element methods for
stochastic porous media flow equations and applications to uncertainty quantifica-
tion. Comput. Methods Appl. Mech. Engrg., 197 (2008) (43-44), pp. 3445-3455.
doi:10.1016/j.cma.2008.02.030.

M. DROHMANN. Reduzierte Basis Methoden fiir ungesdttigte Grundwasser-
stréomungen. Diplomarbeit, Institut fiir Numerische und Angewandte Mathe-
matik, Westfélische Wilhelms-Universitat Miinster, 2009.

M. DROHMANN. Reduced basis model reduction for nonlinear evolution equations.
Ph.D. thesis, Institute for Computational and Applied Mathematics, Miinster,
Einsteinstr. 64, 48149 Miinster, 2012.

M. DROHMANN, B. HAASDONK, S. KAULMANN, M. OHLBERGER. A software
framework for reduced basis methods using DUNE-RB and RBmatlab. In A. DED-
NER, B. FLEMISCH, R. KLOFKORN, eds., Advances in DUNE. Proceedings of the
DUNE User Meeting, Held 6.-8.10.2010, in Stuttgart, Germany. Springer, 2012
pp. 77-88. doi:10.1007/978-3-642-28589-9_6.

M. DROHMANN, B. HAASDONK, M. OHLBERGER. Reduced Basis Method for Fi-
nite Volume Approzimation of Evolution Equations on Parametrized Geometries.

In Proceedings of ALGORITMY 2009, 2009 pp. 111-120.

M. DROHMANN, B. HAASDONK, M. OHLBERGER. Reduced Basis Approzima-
tion for Nonlinear Parametrized Evolution Equations based on Empirical Op-
erator Interpolation. SIAM J. Sci. Comput., 34 (2012), pp. A937-A969. doi:
10.1137/10081157X.

1502.06795
1407.6954

[EE2003]
[EE2003a]

[EE2005]

[EGH2013]

[EGLP2014]

[EH2007]

[EHG2004]

[EH2009]

[EP2003]

[EP2004]

[EP2005]

[EHW2000]

[EP2013a)

[EP2013]

[EGM2013]

Bibliography

W. E, B. ENcQUIST. The heterogeneous multiscale methods. Commun. Math.
Sci., 1 (2003) (1), pp. 87-132.

W. E, B. ENGQUIST. Multiscale modeling and computation. Notices Amer. Math.
Soc., 50 (2003) (9), pp. 1062-1070.

W. E, B. ENGQUIST. The heterogeneous multi-scale method for homoge-
nization problems. In Multiscale methods in science and engineering, vol. 44
of Lect. Notes Comput. Sci. Eng., pp. 89-110. Springer, Berlin, 2005. doi:
10.1007/3-540-26444-2\ 4.

Y. EFeENDIEV, J. GaLvis, T. Y. Hou. Generalized multiscale finite element
methods (GMsFEM). J. Comput. Phys., 251 (2013), pp. 116-135.

Y. ErFeENDIEV, J. GALvIS, G. Li, M. PRESHO. Generalized multiscale finite
element methods. Nonlinear elliptic equations. Commun. Comput. Phys., 15

(2014) (3), pp. 733-755.

Y. EFeENDIEV, T. HOU. Multiscale finite element methods for porous media flows
and their applications. Appl. Numer. Math., 57 (2007) (5-7), pp. 577-596. doi:
10.1016/j.apnum.2006.07.009.

Y. ErFenDIEV, T. Hou, V. GINTING. Multiscale finite element methods for
nonlinear problems and their applications. Commun. Math. Sci., 2 (2004) (4), pp.
553-589.

Y. EFenDIEV, T. Y. HOUu. Multiscale finite element methods, vol. 4 of Theory
and applications. Surveys and Tutorials in the Applied Mathematical Sciences.
Springer, New York, 2009. ISBN 978-0-387-09495-3.

Y. ErFeENDIEV, A. PANKOV. Numerical homogenization of monotone elliptic
operators. Multiscale Model. Simul., 2 (2003) (1), pp. 62-79. doi:10.1137/
51540345903421611.

Y. EFENDIEV, A. PANKOV. Numerical homogenization and correctors for non-
linear elliptic equations. SIAM J. Appl. Math., 65 (2004) (1), pp. 43-68. doi:
10.1137/50036139903424886.

Y. EFENDIEV, A. PANKOV. Homogenization of nonlinear random parabolic op-
erators. Adv. Differential Equations, 10 (2005) (11), pp. 1235-1260.

Y. R. ErFenDIEV, T. Y. Hou, X.-H. Wu. Convergence of a nonconforming
multiscale finite element method. STAM J. Numer. Anal., 37 (2000) (3), pp. 888-
910. doi:10.1137/S0036142997330329.

J. L. EFTanG, A. T. PATERA. A port-reduced static condensation reduced basis
element method for large component-synthesized structures: approximation and A
Posteriori error estimation. Advanced Modeling and Simulation in Engineering
Sciences, 1 (2013) (3). doi:10.1186/2213-7467-1-3.

J. L. EFTanNG, A. T. PATERA. Port reduction in parametrized component static
condensation: approrimation and a posteriori error estimation. Internat. J. Nu-
mer. Methods Engrg., 96 (2013) (5), pp. 269-302.

D. ELFVERSON, E. H. GEORGOULIS, A. MALQVIST. An adaptive discontinuous

Galerkin multiscale method for elliptic problems. Multiscale Model. Simul., 11
(2013) (3), pp. 747-765. doi:10.1137/120863162.

201

Bibliography

[EGMP2013]

[ER2007]

[ES2008]

[ESV2007]

[ESV2010]

[ESZ2009]

[FR1983]

[FM1971]
[Gio1975]
[Gio1983]

[Gir2012]

[GO1977]

[GJ02010]
[GAB2008]

[HDO2011]

202

D. ELFVERSON, E. H. GEORGOULIS, A. MALQVIST, D. PETERSEIM. Conuver-

gence of a discontinuous Galerkin multiscale method. STAM J. Numer. Anal., 51
(2013) (6), pp. 3351-3372. doi:10.1137/120900113.

Y. EPSHTEYN, B. RIVIERE. FEstimation of penalty parameters for symmetric
interior penalty Galerkin methods. J. Comput. Appl. Math., 206 (2007) (2), pp.
843-872.

A. ErN, A. F. STEPHANSEN. A posteriori energy-norm error estimates for
advection-diffusion equations approrimated by weighted interior penalty methods.

J. Comput. Math., 26 (2008) (4), pp. 488-510.

A. ERN, A. F. STEPHANSEN, M. VOHRALIK. Improved energy norm a posteriori
error estimation based on flux reconstruction for discontinuous Galerkin meth-
ods. Preprint R07050, Laboratoire Jacques-Louis Lions & HAL Preprint, 193540
(2007).

A. ErN, A. F. STEPHANSEN, M. VOHRALIK. Guaranteed and robust discon-
tinuous Galerkin a posteriori error estimates for convection—diffusion—reaction
problems. J. Comput. Appl. Math., 234 (2010) (1), pp. 114-130.

A. ErN, A. F. STEPHANSEN, P. ZUNINO. A discontinuous Galerkin method

with weighted averages for advection—diffusion equations with locally small and
anisotropic diffusivity. IMA J. Numer. Anal., 29 (2009) (2), pp. 235-256.

J. P. FINk, W. C. RHEINBOLDT. On the error behavior of the reduced basis

technique for nonlinear finite element approximations. Z. Angew. Math. Mech.,
63 (1983) (1), pp. 21-28. d0i:10.1002/zamm.19830630105.

R. L. Fox, H. MIURA. An approzimate analysis technique for design calculations.
ATAA J., 9 (1971) (1), pp. 177-179.

E. D. GIORGL. Sulla convergenza di alcune successioni di integrali del tipo
dell’area. Rend. Mat. Appl. (7), 8 (1975), pp. 277-294.

E. D. GIORGI. G-operators and I'-convergence. In Proceedings of the International
Congress of Mathematicians, vol. 1, 1983 p. 2.

S. GIRKE. Vereinheitlichter Rahmen zur Implementierung hybridisierter
Diskretisierungsverfahren. — Diplomarbeit, Westfalische Wilhelms-Universitat
Miinster, Institut fiir Numerische und Angewandte Mathematik, Einsteinstr. 62,
48149 Miinster, 2012.

D. GOTTLIEB, S. A. ORSZAG. Numerical Analysis of Spectral Methods: Theory
and Applications. CBMS-NSF Regional Conference Series in Applied Mathemat-
ics, Society for Industrial and Applied Mathematics (SIAM, 3600 Market Street,
Floor 6, Philadelphia, PA 19104), 1977. ISBN 9781611970425.

G. GUENNEBAUD, B. JACOB, ET AL. Figen v3. http://eigen.tuxfamily.org, 2010.

S. GUGERCIN, A. C. ANTOULAS, C. BEATTIE. Hy model reduction for large-
scale linear dynamical systems. SIAM J. Matrix Anal. Appl., 30 (2008) (2), pp.
609-638. doi:10.1137/060666123.

B. HAASDONK, M. DIHLMANN, M. OHLBERGER. A training set and multiple
bases generation approach for parameterized model reduction based on adaptive
grids in parameter space. Math. Comput. Model. Dyn. Syst., 17 (2011) (4), pp.
423-442. doi:10.1080/13873954.2011.547674.

[HOR2008]

[HBHJ2008]

[HJ2009]

[HJ2011]
[Hec2012]

[Hen2012)

[HM2014]

[HMP2014]

[HO2009]

[HO2010]

[HO2012]

[HOS2014]

[HP2013]

[HO2014]

[Hor1997]

Bibliography

B. HAASDONK, M. OHLBERGER, G. R0ZzZA. A reduced basis method for evolution

schemes with parameter-dependent explicit operators. Electron. Trans. Numer.
Anal., 32 (2008), pp. 145-161.

H. HaJyBeEvGI, G. BoNrFIGLI, M. A. HESSE, P. JENNY. [terative multiscale
finite-volume method. J. Comput. Phys., 227 (2008) (19), pp. 8604-8621. doi:
10.1016/j.jcp.2008.06.013.

H. HAJIBEYGI, P. JENNY. Multiscale finite-volume method for parabolic problems
arising from compressible multiphase flow in porous media. J. Comput. Phys., 228
(2009) (14), pp. 5129-5147. do0i:10.1016/j.jcp.2009.04.017.

H. HaJsiBEYGI, P. JENNY. Adaptive iterative multiscale finite volume method. J.
Comput. Phys., 230 (2011) (3), pp. 628-643. doi:10.1016/j.jcp.2010.10.009.

F. HECHT. New development in freefem++. J. Numer. Math., 20 (2012) (3-4),
pp. 251-265.

P. HENNING. Convergence of MSFEM approzimations for elliptic, non-periodic
homogenization problems. Netw. Heterog. Media, 7 (2012) (3), pp. 503-524. doi:
10.3934/nhm.2012.7.503.

P. HENNING, A. MALQVIST. Localized orthogonal decomposition techniques for
boundary value problems. STAM J. Sci. Comput., 36 (2014) (4), pp. A1609-A1634.

P. HENNING, A. MALQVIST, D. PETERSEIM. A localized orthogonal decompo-
sition method for semi-linear elliptic problems. ESAIM Math. Model. Numer.
Anal., 48 (2014) (5), pp. 1331-1349.

P. HENNING, M. OHLBERGER. The heterogeneous multiscale finite element
method for elliptic homogenization problems in perforated domains. Numer.

Math., 113 (2009) (4), pp. 601-629. doi:10.1007/s00211-009-0244-4.

P. HENNING, M. OHLBERGER. The heterogeneous multiscale finite element
method for advection-diffusion problems with rapidly oscillating coefficients and
large expected drift. Netw. Heterog. Media, 5 (2010) (4), pp. 711-744. doi:
10.3934/nhm.2010.5.711.

P. HENNING, M. OHLBERGER. A Newton-scheme framework for multiscale meth-
ods for nonlinear elliptic homogenization problems. In Proceedings of the Algo-
ritmy 2012, 19th Conference on Scientific Computing, Vysoke Tatry, Podbanske,
September 9-14, 2012, 2012 pp. 65-74. doi:10.13140/2.1.4553.4727.

P. HENNING, M. OHLBERGER, B. SCHWEIZER. An adaptive multiscale finite
element method. Multiscale Model. Simul., 12 (2014) (3), pp. 1078-1107.

P. HENNING, D. PETERSEIM. Ouwersampling for the multiscale finite element
method. Multiscale Model. Simul., 11 (2013) (4), pp. 1149-1175. doi:10.1137/
120900332.

C. HiMPE, M. OHLBERGER. Cross-gramian-based combined state and parameter
reduction for large-scale control systems. Math. Probl. Eng., (2014), pp. Art. ID
843869, 13. doi:10.1155/2014/843869.

U. HORNUNG, ed. Homogenization and porous media, vol. 6 of Interdisciplinary
Applied Mathematics. Springer New York, 1997. ISBN 978-1-4612-7339-4. doi:
10.1007/978-1-4612-1920-0.

203

Bibliography

[HW1997]

[HWC1999]

[Hug1995]

[HFMQ1998]

[HKP2013]

[HRSP2007]

[IQR2012]

[IQRV2014]

[JLT2003]

[JLT2004]

[JLT2006]

[JOP02001]

[KP2003]

204

T. Y. Hou, X.-H. Wu. A multiscale finite element method for elliptic problems
in composite materials and porous media. J. Comput. Phys., 134 (1997) (1), pp.
169-189. doi:10.1006/jcph.1997.5682.

T. Y. Hou, X.-H. Wu, Z. Cal. Convergence of a multiscale finite element
method for elliptic problems with rapidly oscillating coefficients. Math. Comp.,
68 (1999) (227), pp. 913-943. doi:10.1090/50025-5718-99-01077-7.

T. J. R. HUGHES. Multiscale phenomena: Green’s functions, the Dirichlet-to-
Neumann formulation, subgrid scale models, bubbles and the origins of stabilized
methods. Comput. Methods Appl. Mech. Engrg., 127 (1995) (1-4), pp. 387—401.
doi:10.1016,/0045-7825(95)00844-9.

T. J. R. HugHES, G. R. FEIJ60O, L. MAzzEI, J.-B. QUINCY. The variational
multiscale method—a paradigm for computational mechanics. Comput. Meth-
ods Appl. Mech. Engrg., 166 (1998) (1-2), pp. 3—24. doi:10.1016/S0045-7825(98)
00079-6.

D. B. P. HuynH, D. J. KNEzZEVIC, A. T. PATERA. A static condensation
reduced basis element method: approximation and a posteriori error estimation.
ESAIM Math. Model. Numer. Anal., 47 (2013) (1), pp. 213-251. doi:10.1051/
m2an/2012022.

D. B. P. HuynH, G. RozzA, S. SEN, A. T. PATERA. A successive constraint
linear optimization method for lower bounds of parametric coercivity and inf-sup
stability constants. C. R. Math. Acad. Sci. Paris, 345 (2007) (8), pp. 473-478.
doi:10.1016/j.crma.2007.09.019.

L. IApicHINO, A. QUARTERONI, G. R0zzA. A reduced basis hybrid method for
the coupling of parametrized domains represented by fluidic networks. Comput.
Methods Appl. Mech. Engrg., 221/222 (2012), pp. 63—-82. d0i:10.1016/j.cma.2012.
02.005.

L. IAPICHINO, A. QUARTERONI, G. R0zzA, S. VOLKWEIN. Reduced basis method
for the Stokes equations in decomposable parametrized domains using greedy op-
timization. In ECMI 2014 proceedings. ECMI book subseries of Mathematics in
Industry, Springer, Heildeberg, 2014 pp. 1-7.

P. JEnNY, S. H. LEE, H. A. TCHELEPL. Multi-scale finite-volume method for
elliptic problems in subsurface flow simulation. J. Comput. Phys., 187 (2003) (1),
pp. 47-67.

P. JENNY, S. H. LEg, H. A. TCHELEPL. Adaptive multiscale finite-volume

method for multiphase flow and transport in porous media. Multiscale Model.
Simul., 3 (2004) (1), pp. 50-64. doi:10.1137/030600795.

P. JENNY, S. H. LEg, H. A. TCHELEPI. Adaptive fully implicit multi-scale finite-
volume method for multi-phase flow and transport in heterogeneous porous media.
J. Comput. Phys., 217 (2006) (2), pp. 627-641. doi:10.1016/j.jcp.2006.01.028.

E. Jongis, T. OLIPHANT, P. PETERSON, ET AL. SciPy: Open source scientific
tools for Python (http://www.scipy.org/), 2001-2015.

O. A. KARAKASHIAN, F. PASCAL. A posteriori error estimates for a discontin-

wous Galerkin approximation of second-order elliptic problems. SIAM J. Numer.
Anal.; 41 (2003) (6), pp. 23742399 (electronic). doi:10.1137/S0036142902405217.

[Kau2011]

[KFH+2014]

[KOH2011]

[KPSC2006]

[KP2011]

[Kol1936]

[LM2005]

[LM2007]

[LM2009a]

[LM2009]

[LV2014]

[LMW2012]

[LMR2007]

Bibliography

S. KAULMANN. A Localized Reduced Basis Approach for Heterogeneous Multiscale
Problems. Diplomarbeit, Institut fiir Numerische und Angewandte Mathematik,
Westfélische Wilhelms-Universitat Miinster, 2011.

S. KAULMANN, B. FLEMISCH, B. HAASDONK, K.-A. LiE, M. OHLBERGER. The
Localized Reduced Basis Multiscale method for two-phase flows in porous media.
ArXiv e-prints [math.NA], (2014). 1405.2810.

S. KAULMANN, M. OHLBERGER, B. HAASDONK. A new local reduced basis
discontinuous Galerkin approach for heterogeneous multiscale problems. C. R.
Math. Acad. Sci. Paris, 349 (2011) (23-24), pp. 1233-1238. do0i:10.1016/j.crma.
2011.10.024.

B. S. Kirg, J. W. PETERSON, R. H. STOGNER, G. F. CAREY. libMesh:
A C++ Library for Parallel Adaptive Mesh Refinement/Coarsening Simulations.
Engineering with Computers, 22 (2006) (3-4), pp. 237-254.

D. J. KNEZEVIC, J. W. PETERSON. A high-performance parallel implementation
of the certified reduced basis method. Computer Methods in Applied Mechanics
and Engineering, 200 (2011) (13-16), pp. 1455-1466. doi:10.1016/j.cma.2010.12.
026.

A. KOLMOGOROFF. Uber die beste Anndherung von Funktionen einer gegebenen
Funktionenklasse. Ann. of Math. (2), 37 (1936) (1), pp. 107-110. doi:10.2307/
1968691.

M. G. LARSON, A. MALQVIST. Adaptive variational multiscale methods based
on a posteriori error estimation: duality techniques for elliptic problems. In Mul-

tiscale methods in science and engineering, vol. 44 of Lect. Notes Comput. Sci.
Eng., pp. 181-193. Springer, Berlin, 2005. doi:10.1007/3-540-26444-2_9.

M. G. LARSON, A. MALQVIST. Adaptive variational multiscale methods based
on a posteriori error estimation: energy morm estimates for elliptic problems.
Comput. Methods Appl. Mech. Engrg., 196 (2007) (21-24), pp. 2313-2324. doi:
10.1016/j.cma.2006.08.019.

M. G. LARSON, A. MALQVIST. An adaptive variational multiscale method for
convection-diffusion problems. Comm. Numer. Methods Engrg., 25 (2009) (1),
pp. 65-79. doi:10.1002/cnm.1106.

M. G. LARSON, A. MALQVIST. A mized adaptive variational multiscale method
with applications in oil reservoir simulation. Math. Models Methods Appl. Sci.,
19 (2009) (7), pp. 1017-1042. doi:10.1142/S021820250900370X.

O. LAss, S. VOLKWEIN. Adaptive POD basis computation for parametrized
nonlinear systems using optimal snapshot location. Comput. Optim. Appl., 58
(2014) (3), pp. 645-677. doi:10.1007/310589-014-9646-z.

A. Loca, K.-A. MARDAL, G. WELLS, eds. Automated Solution of Differen-
tial Equations by the Finite Element Method, vol. 84 of Lecture Notes in Com-
putational Science and FEngineering. Springer Berlin Heidelberg, 2012. ISBN
978-3-642-23098-1. doi:10.1007/978-3-642-23099-8.

A. E. LovGrEN, Y. MaDAY, E. M. R@NQUIST. The reduced basis ele-
ment method for fluid flows. In Analysis and simulation of fluid dynamics,
pp. 129-154. Adv. Math. Fluid Mech., Birkhéduser, Basel, 2007. doi:10.1007/
978-3-7643-7742-7_8.

205

1405.2810

Bibliography

[MMPR2001]

[MR2002]

[MR2004]

[MS2013]

[Mal2011]
[MP2014]

[MS2002]

[MRS2015]

[MNS2002]

[MT1997]

[Ngu1989]

[Ngu2010]

[NB2008]

[Oh12005]

206

L. MACHIELS, Y. MADAY, A. T. PATERA, D. V. Rovas. A blackbox reduced-
basis output bound method for shape optimization. In T. CHAN, T. KAKO,
H. KawaArADA, P. O., eds., Proceedings of the 12th International Conference
on Domain Decompostion Methods, 2001 pp. 429 — 436.

Y. MaDAY, E. M. RoNQUIST. A reduced-basis element method. C. R. Math.
Acad. Sci. Paris, 335 (2002) (2), pp. 195-200. doi:10.1016/S1631-073X(02)
02427-5.

Y. Mapay, E. M. R@ONQUIST. The reduced basis element method: application
to a thermal fin problem. SIAM J. Sci. Comput., 26 (2004) (1), pp. 240-258.
doi:10.1137/51064827502419932.

Y. MaDpAY, B. STAMM. Locally adaptive greedy approximations for anisotropic
parameter reduced basis spaces. SIAM J. Sci. Comput., 35 (2013) (6), pp. A2417—
A2441. doi:10.1137/120873868.

A. MALQVIST. Multiscale methods for elliptic problems. Multiscale Model. Simul.,
9 (2011) (3), pp. 1064-1086. doi:10.1137/090775592.

A. MALQVIST, D. PETERSEIM. Localization of elliptic multiscale problems. Math.
Comp., 83 (2014) (290), pp. 2583-2603. doi:10.1090/S0025-5718-2014-02868-8.

A.-M. MATACHE, C. SCHWAB. Two-scale FEM for homogenization problems.
M2AN Math. Model. Numer. Anal., 36 (2002) (4), pp. 537-572. doi:10.1051/
m2an:2002025.

R. MILK, S. RAVE, F. SCHINDLER. pyMOR - Generic Algorithms and Interfaces
for Model Order Reduction. arXiv e-prints [cs.MS], (2015). 1506.07094v1.

P. MoriN, R. H. NocHETTO, K. G. SIEBERT. Convergence of adaptive fi-
nite element methods. SIAM Rev., 44 (2002) (4), pp. 631-658 (2003). doi:
10.1137/S0036144502409093. Revised reprint of “Data oscillation and convergence
of adaptive FEM” [STAM J. Numer. Anal. 38 (2000), no. 2, 466-488 (electronic);
MR1770058 (2001g:65157)].

F. MURAT, L. TARTAR. H-Convergence. In A. CHERKAEV, R. KOHN, eds., Top-
ics in the Mathematical Modelling of Composite Materials, vol. 31 of Progress in
Nonlinear Differential Equations and Their Applications, pp. 21-43. Birkhauser
Boston. ISBN 978-1-4612-7390-5, 1997. doi:10.1007/978-1-4612-2032-9_3.

G. NGUETSENG. A general convergence result for a functional related to the
theory of homogenization. SIAM J. Math. Anal., 20 (1989) (3), pp. 608-623.
doi:10.1137/0520043.

H. T. NGUYEN. p-adaptive and automatic hp-adaptive finite element methods for
elliptic partial differential equations. ProQuest LLC, Ann Arbor, MI, 2010. ISBN
978-1124-10087-6. Thesis (Ph.D.)—University of California, San Diego.

J. M. NORDBOTTEN, P. E. BIGRSTAD. On the relationship between the multi-

scale finite-volume method and domain decomposition preconditioners. Comput.
Geosci., 12 (2008) (3), pp. 367-376. doi:10.1007/s10596-007-9066-6.

M. OHLBERGER. A posteriori error estimates for the heterogeneous multiscale
finite element method for elliptic homogenization problems. Multiscale Model.
Simul., 4 (2005) (1), pp. 88-114. doi:10.1137/040605229.

1506.07094v1

[Oh12012]

[ORSZ2014]

[0S2014]

[0S2015]

[01i2007]

[PR2006]

[PVWW2013]

[PG2007]

[Pin1985]

[Por1985]

[PCD+-2012]

Bibliography

M. OHLBERGER. Error control based model reduction for multiscale problems.
In Proceedings of Algoritmy 2012, Conference on Scientific Computing, Vysoke
Tatry, Podbanske, September 9-14, 2012. Slovak University of Technology in
Bratislava, Publishing House of STU, 2012 pp. 1-10.

M. OHLBERGER, S. RAVE, S. SCHMIDT, S. ZHANG. A Model Reduction
Framework for Efficient Simulation of Li-Ion Batteries. In J. FUHRMANN,
M. OHLBERGER, C. ROHDE, eds., Finite Volumes for Complex Applications VII-
Elliptic, Parabolic and Hyperbolic Problems, vol. 78 of Springer Proceedings in
Mathematics € Statistics, pp. 695—702. Springer International Publishing. ISBN
978-3-319-05590-9, 2014. doi:10.1007/978-3-319-05591-6_69.

M. OHLBERGER, F. SCHINDLER. A-Posteriori Error Estimates for the Localized
Reduced Basis Multi-Scale Method. In J. FUHRMANN, M. OHLBERGER, C. RoO-
HDE, eds., Finite Volumes for Complex Applications VII-Methods and Theoret-
ical Aspects, vol. 77 of Springer Proceedings in Mathematics & Statistics, pp.
421-429. Springer International Publishing. ISBN 978-3-319-05683-8, 2014. doi:
10.1007/978-3-319-05684-5_41.

M. OHLBERGER, F. SCHINDLER. FError control for the localized reduced basis
multi-scale method with adaptive on-line enrichment. ArXiv e-prints [math.NA],
(2015). 1501.05202.

T. E. OLIPHANT. Python for Scientific Computing. Computing in Science &
Engineering, 9 (2007) (3), pp. 10-20. doi:10.1109/MCSE.2007.58.

A. T. PATERA, G. RozzA. Reduced Basis Approximation and A Posteriori Error
Estimation for Parametrized Partial Differential Equations, Version 1.0. Tech.
rep., Copyright MIT 2006-2007, to appear in (tentative rubric) MIT Pappalardo
Graduate Monographs in Mechanical Engineering, 2006.

G. V. PENCHEVA, M. VOHRALIK, M. F. WHEELER, T. WILDEY. Robust a pos-

teriori error control and adaptivity for multiscale, multinumerics, and mortar cou-
pling. STAM J. Numer. Anal., 51 (2013) (1), pp. 526-554. doi:10.1137/110839047.

F. PEREZ, B. E. GRANGER. IPython: a System for Interactive Scientific Com-
puting. Computing in Science and Engineering, 9 (2007) (3), pp. 21-29. doi:
10.1109/MCSE.2007.53.

A. PiNkuUS. n-Widths in Approzimation Theory. FErgebnisse der Mathematik
und ihrer Grenzgebiete. 3. Folge / A Series of Modern Surveys in Mathemat-
ics, Springer-Verlag Berlin Heidelberg, 1985. ISBN 354013638X. doi:10.1007/
978-3-642-69894-1.

T. A. PORSCHING. Estimation of the error in the reduced basis method solution
of nonlinear equations. Math. Comp., 45 (1985) (172), pp. 487-496. do0i:10.2307/
2008138.

C. PRUD’HOMME, V. CHABANNES, V. DOYEUX, M. IsSMAIL, A. SAMAKE,
G. PENA. FEEL++: a computational framework for Galerkin methods and ad-
vanced numerical methods. In CEMRACS’11: Multiscale coupling of complex
models in scientific computing, vol. 38 of ESAIM Proc., pp. 429-455. EDP Sci.,
Les Ulis, 2012. doi:10.1051/proc/201238024.

207

1501.05202

Bibliography

[QRM2011]

[QV1999]

[RHP2008]

[SM2002]

[SV2011]

[Sha2003]

[SZC1959]

[Sir1987]

[Sme2015]

[Spal968]
[SG1961]

[Tar1976)

[Tem2008]

[TW2005]

[Urb2009]

[Ver1996]

208

A. QUARTERONI, G. RozzA, A. MANZONI. Certified reduced basis approzimation

for parametrized partial differential equations and applications. J. Math. Ind., 1
(2011), pp. Art. 3, 44. doi:10.1186,/2190-5983-1-3.

A. QUARTERONI, A. VALLL. Domain Decomposition Methods for Partial Differ-

ential Equations. Numerical mathematics and scientific computation, Clarendon
Press, 1999. ISBN 9780198501787.

G. Rozza, D. B. P. HuyNH, A. T. PATERA. Reduced basis approximation and a
posteriori error estimation for affinely parametrized elliptic coercive partial differ-
ential equations: application to transport and continuum mechanics. Arch. Com-
put. Methods Eng., 15 (2008) (3), pp. 229-275. doi:10.1007/s11831-008-9019-9.

C. SCHWAB, A.-M. MATACHE. Generalized FEM for homogenization problems.

In Multiscale and multiresolution methods, vol. 20 of Lect. Notes Comput. Sci.
Eng., pp. 197-237. Springer, Berlin, 2002. doi:10.1007/978-3-642-56205-1_4.

B. SCHWEIZER, M. VENERONI. The needle problem approach to mon-periodic
homogenization. Netw. Heterog. Media, 6 (2011) (4), pp. 755-781. doi:10.3934/
nhm.2011.6.755.

Y. SHAPIRA. Matriz-Based Multigrid: Theory and Applications. Numerical meth-
ods and algorithms, Kluwer Academic Publishers, 2003. ISBN 9781402074851.

J. W. SHELDON, B. ZONDEK, W. T. CARDWELL. One-dimensional, incom-

pressible, non-capillary, two-phase fluid flow in a porous medium. Trans. SPE
AIME, 216 (1959), pp. 290-296.

L. SirovICH. Turbulence and the dynamics of coherent structures. I. Coherent
structures. Quart. Appl. Math., 45 (1987) (3), pp. 561-571.

K. SMETANA. A new certification framework for the port reduced static conden-
sation reduced basis element method. Comput. Methods Appl. Mech. Engrg., 283
(2015), pp. 352-383. doi:10.1016/j.cma.2014.09.020.

S. SPAGNOLO. Sulla convergenza di soluzioni di equaziont paraboliche ed ellittiche.
Ann. Scuola Norm. Sup. Pisa Cl. Sci. (3), 22 (1968) (4), pp. 571-597.

H. L. STONE, A. O. J. GARDER. Analysis of gas-cap or dissolved-gas reservoirs.
Trans. SPE AIME, 222 (1961), pp. 92-104.

L. TARTAR. Quelques remarques sur I’homogénéisation. In Functional Analysis
and Numerical Analysis, Proceedings of the Japan-France Seminar, 1976 pp. 469—
482.

V. N. TEMLYAKOV. Greedy approzimation. Acta Numer., 17 (2008), pp. 235-409.
d0i:10.1017/50962492906380014.

A. ToseLLl, O. WIDLUND. Domain Decomposition Methods — Algorithms and
Theory. No. 34 in Springer Series in Computational Mathematics, Springer-Verlag
Berlin Heidelberg, 2005. ISBN 978-3-540-20696-5. d0i:10.1007/b137868.

K. URBAN. Wavelet methods for elliptic partial differential equations. Numerical
mathematics and scientific computation, Oxford University Press Oxford, 2009.
ISBN 978-0-19-852605-6.

R. VERFURTH. A Review of A Posteriori Error Estimation and Adaptive Mesh-
Refinement Techniques. Wiley Teubner, 1996. ISBN 978-0-19-967942-3.

[Ver2013]

[VPP2003]

[Voh2007]

[Wes1992]
[WP2002]

[WSH2014]

[Yan2014]

[ZF2015)

Bibliography

R. VERFURTH. A posteriori error estimation techniques for finite element
methods. Numerical Mathematics and Scientific Computation, Oxford Univer-
sity Press, Oxford, 2013. ISBN 978-0-19-967942-3. doi:10.1093/acprof:oso/
9780199679423.001.0001.

K. VErROY, C. PRUD’HOMME, A. T. PATERA. Reduced-basis approximation of

the viscous Burgers equation: rigorous a posteriori error bounds. C. R. Math.
Acad. Sci. Paris, 337 (2003) (9), pp. 619-624. doi:10.1016/j.crma.2003.09.023.

M. VOHRALIK. A posteriori error estimates for lowest-order mized finite element
discretizations of convection-diffusion-reaction equations. STAM J. Numer. Anal.,
45 (2007) (4), pp. 1570-1599 (electronic). doi:10.1137/060653184.

P. WESSELING. An introduction to multigrid methods. Pure and applied mathe-
matics, John Wiley & Sons Australia, Limited, 1992. ISBN 9780471930839.

K. WiLLcoX, J. PERAIRE. Balanced model reduction via the proper orthogonal
decomposition. ATAA J.; 40 (2002) (11), pp. 2323-2330.

D. WirTz, D. C. SORENSEN, B. HAASDONK. A posteriori error estimation for
DEIM reduced nonlinear dynamical systems. STAM J. Sci. Comput., 36 (2014) (2),
pp. A311-A338. doi:10.1137/120899042.

M. YANO. A minimum-residual mixed reduced basis method: Exact residual cer-
tification and simultaneous finite-element reduced-basis refinement. Tech. rep.,
MIT, 2014.

M. J. ZAHR, C. FARHAT. Progressive construction of a parametric reduced-order
model for PDE-constrained optimization. Internat. J. Numer. Methods Engrg.,
102 (2015) (5), pp. 1111-1135. d0i:10.1002/nme.4770.

209

	Introduction
	1 Elliptic parametric multiscale problems
	1.1 Elliptic problems and grid-based approximations
	1.1.1 Elliptic problems
	1.1.2 Grid-based numerical approximations with Finite Element methods

	1.2 Multiscale problems and numerical multiscale methods
	1.2.1 Elliptic multiscale problems
	1.2.2 Numerical multiscale methods

	1.3 Parametric problems and model order reduction
	1.3.1 Elliptic parametric problems
	1.3.2 Model order reduction with reduced basis methods
	1.3.2.1 Offline/online decomposition
	1.3.2.2 Basis generation
	1.3.2.3 Accuracy vs. efficiency

	1.4 Parametric multiscale problems and combined approaches
	1.4.1 Elliptic parametric multiscale problems
	1.4.2 The localized reduced basis multiscale method
	1.4.3 Combined approaches

	2 The localized reduced basis multiscale method (LRBMS)
	2.1 Detailed discretization
	2.1.1 Local discretizations
	2.1.2 Global coupling

	2.2 Reduced discretization
	2.2.1 Offline/online decomposition

	2.3 Error control
	2.3.1 Residual based error control of the model reduction error
	2.3.2 Localized error control of the discretization and the full error
	2.3.2.1 Oswald interpolation
	2.3.2.2 Diffusive flux reconstruction
	2.3.2.3 Local efficiency
	2.3.2.4 Localized offline/online decomposition

	2.4 Adaptivity
	2.4.1 Offline basis generation
	2.4.2 Online basis enrichment

	3 Software concepts and implementations
	3.1 Discretization framework
	3.1.1 Mathematical foundation and theoretical requirements
	3.1.1.1 Approximating the solution of a PDE
	3.1.1.2 Error estimation
	3.1.1.3 Projections and prolongations.

	3.1.2 Abstract design principles and technical requirements
	3.1.3 Existing implementations
	3.1.4 A new discretization framework
	3.1.4.1 dune-stuff
	3.1.4.2 dune-gdt

	3.2 Model reduction framework
	3.2.1 Requirements
	3.2.1.1 High-dimensional operations
	3.2.1.2 Low-dimensional operations

	3.2.2 Existing implementations
	3.2.2.1 App. 1: Separate software
	3.2.2.2 App. 2: Inside high-dimensional solver
	3.2.2.3 App. 3: Separate low- and high-dimensional operations

	3.2.3 Design principles
	3.2.4 A new model reduction framework
	3.2.4.1 pyMOR
	3.2.4.2 dune-pymor
	3.2.4.3 dune-hdd

	4 Numerical experiments
	4.1 The localized reduced basis (multiscale) method
	4.1.1 The thermal block experiment
	4.1.2 The Spe10 model2 experiment

	4.2 A new discretization framework: dune-gdt
	4.2.1 A first online enrichment experiment
	4.2.2 A first validation of the new localized estimator
	4.2.3 A first localization study of the new estimator
	4.2.4 Detailed study of the parametric localized error estimator
	4.2.4.1 Academic example
	4.2.4.2 Parametric multiscale example

	4.3 A new model reduction framework: pyMOR
	4.3.1 Vector array benchmarks
	4.3.2 Gram-Schmidt and POD benchmarks

	4.4 The online adaptive LRBMS
	4.4.1 Academic example
	4.4.2 Parametric multiscale example

	Bibliography

