
Münster J. of Math. 4 (2011), 171–184 Münster Journal of Mathematics

urn:nbn:de:hbz:6-32449558914 c© Münster J. of Math. 2011
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Abstract. The Markov-Dyck shifts arise from finite directed graphs. An expression for the
zeta function of a Markov-Dyck shift is given. The derivation of this expression is based on
a formula in Keller [12]. For a class of examples that includes the Fibonacci-Dyck shift the
zeta functions and topological entropy are determined.

1. Introduction

Let Σ be a finite alphabet, and let SΣ be the left shift on ΣZ,

SΣ((xi)i∈Z) = (xi+1)i∈Z, (xi)i∈Z ∈ ΣZ.

The closed shift-invariant subsystems of the shifts SΣ are called subshifts. For
an introduction to their theory, which belongs to symbolic dynamics, we refer
to [13] and [20]. A finite word in the symbols of SΣ is called admissible for
the subshift X ⊂ ΣZ if it appears somewhere in a point of X . A subshift is
uniquely determined by its language of admissible words that we denote by
L(X). Ln(X) will denote the set of words in L(X) of length n ∈ N. The
topological entropy of the subshift X ⊂ ΣZ is given by

h(X) = lim
n→∞

1

n
log card Ln(X).

Denoting by Πn(X) the number of points of period n of a shift-invariant set
X ⊂ ΣZ, the zeta function of X is given by

ζX(z) = e
∑

n∈N

Πn(X)zn

n .

In this paper we are concerned with a class of subshifts that arise from finite
directed graphs as a special case of constructions that were described in [14],
[15], [10]. Following the line of terminology of [24], we call these subshifts
Markov-Dyck shifts. Let G be a finite directed graph with vertex set V and
edge set E . We denote the initial vertex of e ∈ E by s(e) and the final vertex
by r(e). Let G− be the graph with vertex set V and edge set E− a copy of
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E . Reverse the directions of the edges in E− to obtain the reversed graph G+

of G− with vertex set V and edge set E+. Denote by P− (resp. P+) the set
of finite paths in G− (resp. G+). The mapping e− → e+ (e− ∈ E−) extends
to the bijection w− → w+ (w− ∈ P−) of P− onto P+ that reverses direction.
With idempotents Pv, v ∈ V , the set E− ∪ {Pv | v ∈ V} ∪ E+ is the generating
set of the graph inverse semigroup of G, where, besides P 2

u = Pu, v ∈ V , the
relations are (see for instance [27])

PuPw = 0, u, w ∈ V , u 6= w,

(1.1) f−g+ =

{

Ps(f), (f = g),

0 (f 6= g), f, g ∈ E ,

Ps(f)f
− = f−Pr(f), Pr(f)f

+ = f+Ps(f), f ∈ E .
The alphabet of the Markov-Dyck shift DG of G is E− ∪ E+ and a word
(ek)1≤k≤K is admissible for DG precisely if

∏

1≤k≤K

ek 6= 0.

For the directed graph with one vertex and loops en, 1 ≤ n ≤ N , N > 1, the
relations take the form

(1.2) e−n e
+
n = 1, 1 ≤ n ≤ N, e−l e

+
m = 0, 1 ≤ l,m ≤ N, l 6= m.

and one sees the Dyck inverse monoid [26], together with the Dyck shifts that
were first described in [14].

The relations (1.2) can be viewed as the multiplicative relations among the
relations that are satisfied by the generators of a Leavitt algebra [19] or a
Cuntz algebra [5], and the relations (1.1) can be viewed as the multiplicative
relations among the relations that are satisfied by generators of a Leavitt path
algebra of the directed graph G [1], or the generators of the graph C∗-algebra
of G [6], [8].

The zeta functions of the Dyck shifts were determined in [12], and K-
theoretic invariants were computed in [22] and [17]. For related systems, the
Motzkin shifts that add a symbol 1 to the alphabets of the Dyck shifts, the
zeta functions were determined in [11] and K-theoretic invariants were com-
puted in [21]. In Section 2 we will obtain an expression for the zeta function
of a Markov-Dyck shift by applying a formula of Keller [12]. In Section 3 we
consider the subsystems of the Markov-Dyck shifts that are obtained by al-
lowing the paths in the Markov-Dyck shift to go from E− to E− or vice-versa
only when entering a given vertex, giving estimates of topological entropies.
Our approach to zeta functions and topological entropy is via the generating
functions that are associated to circular codes and Markov codes. Compare
here [23, Sec. 6]. For related material see [18]. In Section 4 we determine the
zeta functions and topological entropy of the Markov-Dyck shifts that arise
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from directed graphs with adjacency matrix F (a, b, c) =

[

a b

c 0

]

, a, b, c ∈ N.

K-theoretic invariants of the DF (1,1,1) shift were computed in [25].
The length of a word w we denote by ℓ(w) and we denote the generating

function of a formal language L by gL,

gL(z) =

∞
∑

n=0

card{w ∈ L | ℓ(w) = n}zn.

2. Zeta functions

Keller [12] has introduced the notion of a circular Markov code. Here we
find ourselves in a situation where we will want a Markov code to be given
by a set C of non-empty words in the symbols of a finite alphabet Σ together
with a finite set V and mappings r : C → V , s : C → V . To (C, r, s) there is
associated the shift invariant set XC ⊂ ΣZ of points x ∈ ΣZ such that there
are indices Ik, k ∈ Z, such that

(2.1) I0 ≤ 0 < I1, Ik < Ik+1, k ∈ Z,

and such that

(2.2) x[Ik,Ik+1) ∈ C, k ∈ Z,

and

(2.3) r(x[Ik ,Ik+1)) = s(x[Ik+1,Ik+2)), k ∈ Z.

(C, r, s) is said to be a circular Markov code if for every periodic point x in
XC the indices Ik, k ∈ Z, such that (2.1), (2.2), and (2.3) hold, are uniquely
determined by x and can then be denoted by Ik(x), k ∈ Z. If V contains one
element then one has a circular code (see e.g. [2]).

Generalizing the formula for the zeta function of XC , where C is a circular
code, Keller [12] has proven a formula for the zeta function of XC , where C is
a circular Markov code. For completeness we reproduce here Keller’s proof for
the special case that we have in mind.

Given a circular Markov code (C, s, r) denote by C(u,w) the set of words
c ∈ C such that s(c) = u, r(c) = w for u,w ∈ V . Set

gC(u,v),n = card{c ∈ C | s(c) = u, r(c) = v, ℓ(c) = n},

gC(u,v)(z) =

∞
∑

n=0

gC(u,v),nz
n

where gC(u,v),0 = 0, and introduce the matrix

H(C)(z) = (gC(u,v)(z))u,v∈V .

Theorem 2.1 (Keller). For a circular Markov code (C, s, r),

ζXC
(z) = det(I −H(C)(z))−1.
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Proof. Let n ∈ N. Consider triples of the form (j, c1, c1 · · · ck), where k ∈ N,

and where

cl ∈ C, 1 ≤ l ≤ k, s(c1) = r(ck), r(cl) = s(cl+1), 1 ≤ l ≤ k,

ℓ(c1 · · · ck) = n, j = ℓ(c1)

To every point x ∈ XC of period n one assigns a triple of this kind, where
k ∈ N is determined by

n = Ik(x) − I0(x), j = I1(x)− I0(x),

and

cl = x[Il−1(x),Il(x)), 1 ≤ l < k.

Due to the circularity of (C, r, s) this assignment is bijective.
Denote by γi(f) the i-th coefficient of the power series of a function f . From

γj((H
k)u,w) = card{c1 · · · ck | cl ∈ C, 1 ≤ l ≤ k, s(c1) = u, r(ck) = w,

r(cl) = s(cl+1), 1 ≤ l ≤ k, ℓ(c1 · · · ck) = j}, j, k ∈ Z+,

one has

(γj(H)γn−j(H
k))u,w

= card{c1 · · · ck | cl ∈ C, 1 ≤ l ≤ k, s(c1) = u, r(ck) = w,

r(cl) = s(cl+1), 1 ≤ l ≤ k, ℓ(c1) = j, ℓ(c1 · · · ck) = n− j},
1 ≤ j ≤ n, k ∈ Z+.

It follows that

log ζXC
(z) =

∑

n∈N

zn

n

∑

1≤j≤n

j card{c1 · · · ck | cl ∈ C, 1 ≤ l ≤ k, r(cl) = s(cl+1),

s(c1) = r(ck), ℓ(c1) = j, ℓ(c1 · · · ck) = n}

=
∑

n∈N

zn

n

∑

1≤j≤n

j trace

(

∑

k∈Z+

γj(H)γn−j(H
k)

)

=
∑

n∈N

zn

n

∑

1≤j≤n

j trace(γj(H)γn−j((I −H)−1))

=
∑

n∈N

zn

n

∑

0≤j<n

(j + 1)trace(γj+1(H)γn−1−j((I −H)−1))

=
∑

n∈N

zn

n

∑

0≤j<n

trace(γj(H
′)γn−1−j(I −H)−1))

=
∑

n∈N

1

n
trace(γn−1(H

′(I −H)−1)zn)

= −
∑

n∈N

trace(γn(log(I −H))zn)

= −trace(log(I −H)).
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By the formula (see [9, Sec. 1.1.10])

trace(log(I −H)) = log det(I −H),

the theorem follows. �

We state Keller’s formula for the case of a circular code (see [29], [28], and
references given in [4]) as a corollary.

Corollary 2.2. For a circular code C

ζXC
(z) =

1

1− gC(z)
.

Note that also the formula for the zeta function of a subshift of finite type in
terms of a presenting polynomial matrix [3] is a special case of Keller’s formula.

Let G be a finite directed graph with adjacency matrix AG. We introduce
the Markov-Dyck codes Cv, v ∈ V , of words c = (ck)1≤k≤K such that

∏

1≤k≤K

ck = Pv,
∏

1≤j≤J

ck 6= Pv, 1 ≤ J < K.

The codes Cv, v ∈ V , are circular codes. Standard methods of combinatorics
(as for instance described in [7]) give

(2.4) gCu
(z) = z2

∑

v∈V

AG(u, v)

1− gCv
(z)

, u ∈ V ,

and by the implicit function theorem (2.4) has a unique solution. Set

C =
⋃

v∈V

Cv.

Also denote by C− the set of admissible words that are concatenations of an
element (possibly empty) of P− with a word in C and denote by C+ the set
of admissible words that are concatenations of a word in C and an element
(possibly empty) of P+. (C−, s, r) and (C+, s, r) are circular Markov codes.
Denote byD(AG, z) the diagonal matrix with entries gCv

(z), v ∈ V , and denote
by D∗(AG, z) the diagonal matrix with entries gC∗

v
(z) = 1

1−gCv (z)
, v ∈ V .

Theorem 2.3. The zeta function of the Markov Dyck shift DG is

ζDG
(z) =

1

det((I −D(AG, z)−AGz)(I −D∗(AG, z)AGz))

=
det(D∗(AG, z))

det(I −D∗(AG, z)AGz)2
.

Proof. Since
∑

k∈Z+
Ak

Gz
k = (I −AGz)

−1 one has

H(C+)(z) = D(AG, z)(I −AGz)
−1,
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and H(C−)(z) is the adjoint of H(C+)(z). Applying Proposition 2.1 and collect-
ing all contributions to the zeta function, one has

ζDG
(z) =

(

∏

u∈V

gC∗
u
(z)−1

)

det(I −AGz)
−2det(I −D(AG, z)(I −AGz)

−1)−2

=
(

∏

u∈V

gC∗
u
(z)−1

)

det(D∗(AG, z)
−1 −AGz)

−2

= det((D∗(AG, z)
−1 −AGz)(I −D∗(AG, z)AGz))

−1

=
1

det((I −D(AG, z)−AGz)(I −D∗(AG, z)AGz))

=
det(D∗(AG, z))

det(I −D∗(AG, z)AGz)2
.

�

Inserting into the formula for the case of the graph with one vertex and
N -loops the generating function

gCv
(z) =

1−
√
1− 4Nz2

2
,

one obtains again the zeta function of the Dyck shift DN as

ζDN
(z) =

2(1 +
√
1− 4Nz2)

(1− 2Nz +
√
1− 4Nz2)2

(see [12]).

3. Topological entropy

Proposition 3.1. For the Markov-Dyck shift DG

h(DG) = lim
n→∞

1

n
logΠn(DG).

Proof. A word b = (bm)1≤m≤n ∈ Ln(DG) determines words a+(b) ∈ C+,
a−(b) ∈ C− by

∏

1≤m≤n

bm = a+(b)a−(b),

as well as an index I(b), 1 ≤ I(b) ≤ n, by

I(b) = min

{

i

∣

∣

∣

∣

∏

1≤j≤i

bj = a+(b)

}

.

Denote by Kn the set of b ∈ L(DG) of length n ∈ N such that I(b) = 1. Choose
for u,w ∈ V a path c(u,w) in G from u to w of shortest length λ(u,w) and set

L = max
u,w∈V

λ(u,w).

We define a mapping Ψn of Ln(DG) into ∪n≤m≤n+2LKm by

Ψn(b) = b[I(b),n]∗c(bn, bI(b))∗a−∗c(b1, bI(b)), a+(b) = a+, b ∈ Ln(DG), n ∈ N.

Münster Journal of Mathematics Vol. 4 (2011), 171–184



Zeta functions and entropy of the Markov-Dyck shifts 177

A word in Km, n ≤ m ≤ n + 2L, has at most n · cardV inverse images under
the mapping Ψn, therefore

(3.1) card Ln(DG) ≤ n · cardV
∑

n≤m≤n+2L

|Km|.

Every word in Km, n ≤ m ≤ n + 2L, determines a periodic point in DG and
(3.1) implies that

lim
n→∞

1

n
log |Ln(DG)| ≤ lim inf

n→∞

1

n
logΠn(DG).

By [20, Prop. 4.1.5], the formula of the proposition follows. �

Corollary 3.2. For the Markov-Dyck shift DG the topological entropy h(DG)
is the negative logarithm of the smallest positive solution of the equation:

det(I −D∗(AG, z)AGz) = 0.

For v ∈ V let Xv denote the subsystem of the Markov-Dyck shift DG that
is obtained by excluding the words

e(−)e(+), e ∈ E , r(e) ∈ V \ {v}

and the words

f(+)g(−), g, f ∈ E , s(f) ∈ V \ {v}.

We will estimate the asymptotic growth rate of the periodic points ofXv which,
by a proof that is similar to the proof of Proposition 3.1, is actually equal to
the topological entropy of Xv. In this way, we will also obtain estimates of the
topological entropy of the Markov-Dyck shifts.

For v ∈ V denote by Dv the circular code of elementary Markov-Dyck words
that start and end at v, and that are admissible for Xv, and denote by Cv the
circular code of paths in G that start at v and end at v when they return for
the first time to v. ρ denotes the inverse of the Perron eigenvalue of AG.

Proposition 3.3.

gD∗
v∗C

∗
v
(z) =

1−
√

1− 4gCv
(z2)

2(1− gCv
(z))

, v ∈ V .

Proof. One has gDv∗C∗
v
= gDv

gC∗
v
and gDv

satisfies the equation

gDv
(z) =

gCv
(z2)

1− gDv
(z)

.

It follows that

gDv
(z) =

1

2

(

1−
√

1− 4gCv
(z2)

)

,

which yields the proposition. �
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Denoting by p(z) the determinant of the matrix I −AGz and by pv(z) the
determinant of the matrix I − AGz with the v-th row and the v-th column
deleted, v ∈ V , we set

qv =
p

pv
, v ∈ V .

Theorem 3.4. Let v ∈ V be such that

(3.2) qv(ρ
2) >

3

4

and let µv denote the minimum of the derivative or qv on 0 ≤ z ≤ ρ. Then

(3.3) h(Xv) > − log ρ+

√

qv(ρ2)− 3
4

(

1
2 − qv(ρ)−

√

qv(ρ2)− 3
4

)

|µv|
(

ρ+
√

qv(ρ2)− 3
4

) .

Proof. Corollary 2.2 and Proposition 3.3 imply that h(Xv) is equal to − log κ,
where κ is the solution of the equation

1 = 2gCv
(z)−

√

1− 4gCv
(z2), 0 < z < ρ,

or, equivalently, of the equation

1

2
= qv(z) +

√

qv(z2)−
3

4
, 0 < z < ρ.

By (3.2), one has the estimate

ρ− κ >

√

qv(ρ2)− 3
4

(

1
2 − qv(ρ)−

√

qv(ρ2)− 3
4

)

|µv|
(

ρ+
√

qv(ρ2)− 3
4

)

and (3.3) follows. �

Proposition 3.5. Let

(3.4) ρ <
1

4
.

Then there is a v ∈ V such that

qv(ρ
2) >

3

4
.

Proof. Assume the contrary. Then

4

3
cardV ≤

∑

v∈V

pv(ρ
2)

p(ρ2)
= trace(I −AGρ

2)−1 ≤ 1

1− ρ
cardV ,

contradicting (3.4). �
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1 2

Figure 1

4. A class of examples

We consider first the Fibonacci-Dyck shift DF that is produced by the

directed graph (Figure 1) with adjacency matrix F =

[

1 1
1 0

]

.

The generating functions gC1 and gC2 of the two Fibonacci-Dyck codes C1
and C2 satisfy the equations

gC1(z) = (gC∗
1
(z) + gC∗

2
(z))z2,(4.1)

gC2(z) = gC∗
1
(z)z2,(4.2)

where

(4.3) gC∗
1
=

1

1− gC1

, gC∗
2
=

1

1− gC2

,

or

(4.4) gC1 = 1− 1

gC∗
1

, gC2 = 1− 1

gC∗
2

.

By (4.1) and (4.4)

(4.5) gC∗
1
(z) = 1 + gC∗

1
(z)(gC∗

1
(z) + gC∗

2
(z))z2,

and from (4.2) and (4.3)

(4.6) gC∗
2
(z) = 1 + gC∗

1
(z)gC∗

2
(z)z2.

From (4.2), (4.4) and (4.5)

(4.7) gC∗
2
(z)3z2 − gC∗

2
(z) + 1 = 0,

and from (4.6) and (4.7)

(4.8) gC∗
1
= g2C∗

2
.

From (4.2) and (4.3)

(4.9) det(I − Fz −D(F, z)) =
z

gC2(z)
(gC2(z)

2 − (2z + 1)gC2(z) + z).

Setting ξ(z) = gC∗
2
(z)z one has from (4.7)

(4.10) ξ(z)3 − ξ(z) + z = 0

and from (4.9) and (4.10)

(4.11) det(I − Fz −D(F, z)) = − z2

ξ(z)2
(2ξ(z)2 + ξ(z)− 1).
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By Theorem 2.3 and by (4.8) and (4.11)

(4.12) ζDF
(z) =

ξ(z)

z(2ξ(z)2 + ξ(z)− 1)2
,

where one identifies ξ as the solution of equation (4.10) vanishing at the origin
that is given by

(4.13) ξ(z) =
2√
3
sin

(

1

3
arcsin

3
√
3

2
z

)

, 0 ≤ z ≤ 2

3
√
3
.

By Theorem 3.1 and by (4.12) the topological entropy of the Fibonacci-Dyck
shift is equal to the negative logarithm of the solution of

2ξ(z)2 + ξ(z)− 1 = 0.

By (4.10) (or by (4.13)),

(4.14) h(DF ) = 3 log 2− log 3.

We turn to the Markov-Dyck shift that is produced by the directed graph

with adjacency matrix F (a, b, c) =

[

a b

c 0

]

, a, b, c ∈ N. Here

gC1(z) = (agC∗
1
(z) + bgC∗

2
(z))z2,(4.15)

gC2(z) = cgC∗
1
(z)z2(4.16)

and one has from (4.16) that

(4.17) gC1(z) = 1− cz2

gC2(z)
.

From (4.15) and (4.17)

(4.18) agC2(z)
3 − (a+ c)gC2(z)

2 + c(1 + (c− b)z2)gC2(z)− c2z2 = 0.

From (4.17)

(4.19) det(I − F (a, b, c)z −D(F (a, b, c), z))

=
z

gC2

(agC2(z)
2 − (a+ c(1 + b)z)gC2(z) + cz).

Theorem 2.3 and (4.17) and (4.19) give

(4.20) ζDF (a,b,c)
(z) =

cgC2(z)(1− gC2(z))

(agC2(z)
2 − (a+ c(1 + b)z)gC2(z) + cz)2

.

Setting

µ(z) = (c− a)2 + ac− 3ac(c− b)z2,

ν(z) = 2(a+ c)3 − 9ac(a+ c)− (27a2c2 − 9ac(a+ c)(c− b))z2,
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one identifies gC2(z) as the solution of (4.18) that vanishes at the origin that
is given by

gC2(z) =
a+ c

3a
+

2

3a

√

µ(z) cos

(

1

3

(

2π + arccos
ν(z)

µ(z)
√

µ(z)

)

)

.

We determine the topological entropy of DF (a,b,c), a, b, c,∈ N. Set

Pa,b,c(z) = (1 + c)[a(b− c)− c(1 + b)2]z3

+ (c[(1 + b)(1 + c)− 2ab] + a(1 + a− b))z2

+ (bc− a− (1 + a)(a− c))z + a− c.

Theorem 4.1.

(a) h(DF (a,b,c)) is equal to the negative logarithm of the smallest positive

solution of Pa,b,c(z) = 0, a, b, c ∈ N.

(b) h(DF (a,b,a+b)) = log(1 + a+ b), a, b ∈ N.

Proof. Let z > 0 be such that the equations

ay2 − (a+ c(1 + b)z)y + cz = 0(4.21)

and

ay3 − (a+ c)y2 + c(1 + (c− b)z2)y − c2z2 = 0(4.22)

have a common solution y. Then y also solves the equation

(4.23) (1− (1 + b)z)y2 − (1 − z + (c− b)z2)y + cz2 = 0

and, as is seen from (4.21) and (4.23), it also solves the equation

(4.24) (1− (1 + a+ b)z)y = 1− (1 + a)z − b(1 + c)z2.

From (4.21) and (4.24)

bzPa,b,c(z) =(1 − (1 + a)z − b(1 + c)z2)

{a(1− (1 + a)z − b(1 + c)z2)− (1− (1 + a+ b)z)(a+ c(1 + b)z)}
+ cz(1− (1 + a+ b)z)2 = 0.

(4.25)

This shows that for every z > 0 such that equations (4.21) and (4.22) have a
common solution, Pa,b,c(z) = 0.

Equation (4.23) is a multiple of equation (4.21) precisely if c = a + b and
z = 1

1+a+b
, and from this one sees, consulting (4.24), that both solutions of

equation (4.21) are also solutions of equation (4.22) precisely if c = a+ b and
z = 1

1+a+b
. Moreover, as is seen from (4.25), Pa,b,c(z) = 0 has the root 1

1+a+b

if and only if c = a+ b.
For the case that c 6= a+ b, let z > 0,

(4.26) Pa,b,c(z) = 0,
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and reverse the argument, setting

(4.27) y =
1− (1 + a)z − b(1 + c)z2

1− (1 + a+ b)z
.

Consult then (4.24) and find from (4.26) that y as given by (4.27) solves equa-
tion (4.21) and therefore also equations (4.23) and (4.22). Apply now Corollary
3.2 together with (4.18) and (4.20) to prove part (a) of the theorem for the
case c 6= a+ b.

Consider the case that c = a + b. One checks that 1
1+a+b

is the unique

positive root of Pa,b,a+b(z) = 0. It has already been shown that Pa,b,a+b(z) = 0
for every z > 0 such that equations (4.21) and (4.22), or, in this case, the
equations

(4.28) ay2 − (a+ (a+ b)(1 + b)z)y + (a+ b)z = 0

and

ay3 − (2a+ b)y2 + (a+ b)(1 + az2)y − (a+ b)2z2 = 0

have a common solution. One checks that for z = 1
1+a+b

a root of (4.28), in

fact the smaller one, is equal to gC2(
1

1+a+b
). Apply now again Corollary 3.2

together with (4.18) and (4.20) to prove part (a) of the theorem for the case
that c = a+ b and also part (b). �

The corollary reconfirms (4.14).

Corollary 4.2.

h(DF (a,1,a)) = log(a+ 1)− log(a+ 2) + log(a+ 3), a ∈ N.
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