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Abstract. A conjugation-invariant ideal I ⊆ C[zj , zj | j = 1, . . . , n] has the Quillen prop-
erty if every real valued, strictly positive polynomial on the real zero set VR(I) ⊆ Cn is a
sum of hermitian squares modulo I. We first relate the Quillen property to the archimedean
property from real algebra. Using hereditary calculus, we then quantize and show that the
Quillen property implies the subnormality of commuting tuples of Hilbert space operators
satisfying the identities in I. In the finite rank case we give a complete geometric character-
ization of when the identities in I imply normality for a commuting tuple of matrices. This
geometric interpretation provides simple means to refute Quillen’s property of an ideal. We
also generalize these notions and results from real algebraic sets to semialgebraic sets in Cn.

1. Introduction

On any (affine) real algebraic variety V there exists a natural source for
positivity certificates, namely squares (of regular functions): Any square, and
hence any sum of squares, is nonnegative whereever it is defined on the R-
points of V . This observation lies at the very basis of real algebra, starting
with Hilbert’s 17th problem and its solution by Artin. Today the polarity
between positivity and sums of squares is the focus of intense research, both
from theoretical and applied points of view. See [11] and [19] for recent surveys.

In the present article we consider real algebraic subvarieties V of complex
affine space. The embedding in complex space provides V with additional
structure and gives the notion of holomorphic (and antiholomorphic) elements
in the complexified structural rings of V . Accordingly we get a second, more
restricted kind of positivity certificate, namely sums of hermitian squares on
V , that is, of squared absolute values of holomorphic polynomials restricted
to V . Our aim is to study this notion from the points of view of real algebra,
geometry and operator theory.

We work with several complex variables z = (z1, . . . , zn) and their conju-
gates z = (z1, . . . , zn). Let I ⊆ C[z, z] be a conjugation-invariant ideal, and
let VR(I) ⊆ Cn be its zero set, a real algebraic subset of Cn. Let p ∈ C[z, z]
be a conjugation-invariant polynomial that is nonnegative on VR(I). We study
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the question whether p admits an identity

(1) p(z, z) = |h1(z)|2 + · · ·+ |hr(z)|2 + g(z, z)

with g ∈ I, in which h1, . . . , hr ∈ C[z] are holomorphic polynomials. When
such an identity exists we will say that p is a sum of hermitian squares mod-
ulo I.

A classical instance where this property holds is the case of the unit circle
T ⊆ C and its vanishing ideal I = (zz − 1). According to the Riesz–Fejér
theorem, any p ∈ C[z, z] nonnegative on T is a single hermitian square p =
|h(z)|2 modulo I.

The first multivariate example with such a property was discovered almost
half a century ago by Quillen [16]. He studied the unit sphere S ⊆ Cn and
its reduced ideal I, and showed that any p strictly positive on S is a sum of
hermitian squares modulo I.

Quillen’s theorem amounts to a Positivstellensatz on the sphere vis-à-vis
sums of hermitian squares, rather than ordinary squares. It is our aim to
prove this result in greater generality, and to study the algebraic and geometric
implications of such a result. Although our approach is basically algebraic,
the interlacing with Hilbert space methods and operator theory is a recurrent
theme of our study.

Fixing a conjugation-invariant ideal I ⊆ C[z, z], we will say that I has the
Quillen property if the Positivstellensatz holds for hermitian sums of squares
modulo I. Assuming that VR(I) is compact, an abstract characterization of
this property comes from real algebra (Proposition 3.2). This characteriza-
tion, however, is often not explicit enough. An improvement, on the construc-
tive side, is offered by a known link to operator theory. Specifically, given
p ∈ C[z, z], and given a commuting tuple T = (T1, . . . , Tn) of bounded linear
operators on a Hilbert space, define the operator p(T, T ∗) using hereditary
calculus, thereby putting all adjoints to the left. We consider the following
properties of the ideal I:

(A) (Archimedean property) c−∑n
j=1 |zj |2 is a sum of hermitian squares mod-

ulo I, for some real number c.
(Q) (Quillen property) Every conjugation-invariant polynomial strictly posi-

tive on VR(I) is a sum of hermitian squares modulo I.
(S) (Subnormality) Every commuting tuple T of bounded operators on a

Hilbert space and satisfying f(T, T ∗) = 0 for all f ∈ I is subnormal.
(Sf) (Finite rank subnormality) Every commuting tuple T of operators acting

on a finite-dimensional Hilbert space and satisfying f(T, T ∗) = 0 for all
f ∈ I is subnormal (hence normal),

(G) (Geometric normality) The ideal I is not contained in the any of the
“diamond” ideals

I(a, b) =
{

f ∈ C[z, z] | f(a, a) = f(a, b) = f(b, a) = f(b, b) = 0
}

for a 6= b in Cn, and neither in any of their degenerations J(a, U), see 4.2.
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We prove the implications

(A) ⇒ (Q) ⇒ (S) ⇒ (Sf) ⇔ (G),

(A) ⇐ (Q) if VR(I) is compact,

see 3.2, 3.9 and 4.4. We also analyze by means of examples why the missing
implications do not hold. For instance, even real conics in C offer nontrivial
features (5.4, 5.8): A circle satisfies (A), an eccentric ellipse has property (S)
but not (Q), the nonreduced ideal of a circle with a double point satisfies
(Sf) but not (S), and a hyperbola whose asymptotes are perpendicular doesn’t
satisfy (Sf).

We then extend the study of hermitian Positivstellensätze from real alge-
braic sets to semialgebraic sets in C

n. To this end we replace the semiring
of hermitian sums of squares mod I by a hermitian module M , and the real
algebraic set VR(I) by the semialgebraic set XM ⊆ Cn associated with M .
Defining properties (Q), (S) and (Sf) for M accordingly, the implications (Q)
⇒ (S) ⇒ (Sf) remain true. When M is archimedean and satisfies a polynomial
convexity property, the reverse (S) ⇒ (Q) holds true as well (Theorem 6.16).
When M is finitely generated, we prove that the Quillen property is incompat-
ible with XM containing an analytic disc (Theorem 6.20). In this direction we
mention article [6], where a notion of hermitian complexity was introduced for
conjugation-invariant ideals with the precise aim of bridging the gap between
Quillen’s property at one end and the existence of analytic discs in the support
at the other.

At the end of the paper we make a few historical comments putting this
work into perspective, mentioning some of the analytic roots and applications
of hermitian sums of squares.

2. Preliminaries and notation

2.1. Let C[z, z] be the polynomial ring in 2n independent variables z =
(z1, . . . , zn) and z = (z1, . . . , zn). On C[z, z] we consider the C/R-involution
z∗j = zj (j = 1, . . . , n). Thus

(

∑

α,β

aα,β z
α
z
β
)∗

=
∑

α,β

aα,β z
β
z
α

for aα,β ∈ C, with the usual multi-index notation z
α
z
β =

∏n
j=1 z

αj

j z
βj

j . The

fixed ring of ∗ is the polynomial ring R[x, y] generated by the 2n variables x =
(x1, . . . , xn) and y = (y1, . . . , yn), where xj =

1
2 (zj + zj) and yj =

1
2i(zj − zj)

(and i =
√
−1). Thus C[z, z] is identified with R[x, y] ⊗ C, and under this

identification, the involution ∗ becomes complex conjugation in the second
tensor component.

Given f ∈ C[z, z] and a, b ∈ Cn, we write f(a, b) ∈ C for the result of
substituting a for z and b for z. We often abbreviate f(a) := f(a, a).
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2.2. There is a one-to-one correspondence between ∗-invariant ideals J of
C[z, z] and arbitrary ideals I of R[x, y], given by J 7→ I := J ∩ R[x, y]. Given
an ideal I of R[x, y], we denote the zero set of I in Cn by

VR(I) := {a ∈ C
n | for all f ∈ I : f(a) = 0}.

This is a real algebraic subset of Cn.

2.3. For every p ∈ C[z, z], the hermitian norm |p|2 := pp∗ is a sum of two
(usual) squares in R[x, y]. The convex cone in R[x, y] generated by {|p|2 | p ∈
C[z, z]} will be denoted by Σ; it is the cone of all (usual) sums of squares in
R[x, y]. The smaller convex cone in R[x, y] generated by {|p|2 | p ∈ C[z]} is
denoted by Σh. Its elements are called the hermitian sums of squares.

2.4. We recall a few notions from real algebra. Given an R-algebra A (i.e., a
commutative ring containing R), a subset S ⊆ A will be called a semiring in
A if S contains the nonnegative real numbers and is closed in A under taking
sums and products. Given a semiring S, an S-module is a subset M of A with
M+M ⊆M , SM ⊆M and 1 ∈M . A particularly important semiring is ΣA2,
the set of all (finite) sums of squares in A. The modules over this semiring are
usually referred to as the quadratic modules in A.

The S-module M is said to be archimedean if A = R +M , that is, if for
every f ∈ A there exists c ∈ R with c± f ∈M .

In this paper we will mostly be concerned with the R-algebra A = R[x, y]
and with the two semirings Σh ⊆ Σ in R[x, y].

2.5. Given a module M over some semiring S in R[x, y], we write

XM :=
{

a ∈ C
n | for all g ∈M : g(a) ≥ 0

}

,

which is a closed subset of Cn.

The celebrated archimedean Positivstellensatz from real algebra (see [12]
or [19]) implies:

Theorem 2.6. If M is a module over an archimedean semiring S in R[x, y],
then M contains any f ∈ R[x, y] that is strictly positive on the set XM .

3. Hermitian sums of squares and subnormal tuples of operators

3.1. Let R[x, y] ⊆ C[z, z] be the fixed ring of ∗ (see 2.1). Given any ideal
I ⊆ R[x, y], we will consider the semiring S = Σh + I in R[x, y]. Note that
XS = VR(I). Consider the following two properties of the ideal I:

(A) (Archimedean Property) The semiring Σh + I in R[x, y] is archimedean
(see 2.4);

(Q) (Quillen Property) Σh+I contains every f ∈ R[x, y] that is strictly positive
on VR(I).

We will also refer to (A) by saying that Σh is archimedean modulo I.
Given any ∗-invariant ideal J ⊆ C[z, z], we will say that J has property (A)

resp. (Q) if the ideal J ∩R[x, y] of R[x, y] has the respective property (see 2.2).
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The following result was proved in [14, Thm. 2.1 and Prop. 2.2]. It is
essentially an application of the archimedean Positivstellensatz 2.6:

Proposition 3.2. For any ideal I ⊆ R[x, y], the following are equivalent:

(i) I has the Archimedean property (A);
(ii) I has the Quillen property (Q), and VR(I) is compact;
(iii) I contains a polynomial of the form ||z||2 + p + a, where p ∈ Σh and

a ∈ R.

(We are using the shorthand ||z||2 := |z1|2 + · · ·+ |zn|2.)

Remarks 3.3.

1. Quillen’s theorem [16], reproved later by Catlin–D’Angelo [3], was men-
tioned in the introduction. The statement is recovered here in a purely
algebraic way, as a very particular instance of Proposition 3.2.

As observed in [3], Quillen’s theorem implies the following classical the-
orem due to Pólya: Given a homogeneous polynomial f ∈ R[x1, . . . , xn]
strictly positive on {a ∈ Rn | a1 ≥ 0, . . . , an ≥ 0} r {(0, . . . , 0)}, the form
(x1 + · · ·+ xn)

Nf has positive coefficients for large enough N ≥ 0.
2. Condition (iii) of 3.2 gives an abstract algebraic characterization of the

ideals I with VR(I) compact and with property (Q). Note that the Posi-
tivstellensatz for usual sums of squares holds whenever VR(I) is compact,
by Schmüdgen’s theorem [20]. In contrast, “most” ideals with VR(I) com-
pact do not satisfy property (Q) (see, e.g., 5.4 below).

The applicability of 3.2(iii) as an algebraic criterion for property (Q)
is somewhat limited, since this condition is not sufficiently explicit. In
particular, it is usually cumbersome to prove that an ideal I does not contain
any polynomial of the form given in (iii). Therefore it is desirable to know
other conditions on I that are necessary for (A) resp. (Q), and that are more
easily checked. In this section and the next we will offer two conditions of
very different nature that are both necessary for the Quillen property, one
operator-theoretic and one ideal-theoretic.

3. Part of the original motivation for this work came from a question of
D’Angelo. Given a compact real algebraic set X ⊆ Cn which is the bound-
ary of a strictly pseudo-convex region in Cn, D’Angelo had asked whether
every strictly positive polynomial on X is a sum of hermitian squares on
X . This question was answered in the negative, see [14].

Examples 3.4.

1. The Quillen property (Q) alone does not imply the archimedean property
(A), since VR(I) need not be compact. This is seen by considering a line
in C, given (say) by the ideal I = (y) ⊆ R[x, y]. Condition (Q) is satisfied
since, in fact, Σh + I contains every f ∈ R[x, y] nonnegative on the line
y = 0. Indeed, such f is a sum of two usual squares modulo I, from which
one sees easily that f is congruent modulo I to a single hermitian square,
i.e., f ≡ |p|2 (mod I) with p ∈ C[z].
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2. If n = 1 and f ∈ R[x, y] has degree 2, the principal ideal I = (f) satisfies
the Archimedean property (A) if and only if there exist α ∈ C and a, c ∈ R

with f = a|z − α|2 + c. This will be proved in Theorem 5.4 below.

3.5. Let E be a (separable complex) Hilbert space, and let B(E) denote the
algebra of bounded linear operators on E. Fix a tuple T = (T1, . . . , Tn) of
operators Tj ∈ B(E) that commute pairwise. We use hereditary calculus

(see [1, Sec. 14.2] for more details). Given a monomial f = z
α
z
β (with α, β ∈

Zn
+
) we write

f(T, T ∗) := T ∗βTα.

We extend this definition C-linearly, thereby putting all adjoints to the left.
This defines the C-linear map

ψT : C[z, z] → B(E), f(z, z) 7→ ψT (f) = f(T, T ∗).

The map ψT commutes with the involution, i.e. ψT (f
∗) = ψT (f)

∗. In partic-
ular, ψT (f) is selfadjoint for f = f∗. Note that

ψT

(

q(z) · f(z, z) · p(z)
)

= ψT (q)
∗ ψT (f)ψT (p)

for p, q ∈ C[z] and f ∈ C[z, z]. The set

MT :=
{

f ∈ R[x, y] | ψT (f) ≥ 0
}

(of real polynomials f for which the selfadjoint operator ψT (f) is nonneg-

ative) is a Σh-module in R[x, y], since ψT (|p|2f) = ψT (p(z)f(z, z)p(z)) =
p(T )∗ ψT (f) p(T ) holds for f ∈ C[z, z] and p ∈ C[z]. The support MT ∩
(−MT ) = ker(ψT ) of MT is an ideal in R[x, y]. Note that the subset MT of
R[x, y] is closed with respect to the finest locally convex topology on R[x, y].

3.6. Recall that the tuple T is said to be (jointly) subnormal if T can be
extended to a commuting tuple of normal operators on a larger Hilbert space,
i.e., if there is a tuple T ′ = (T ′

1, . . . , T
′
n) of commuting normal operators on

a Hilbert space E′ such that E′ contains E and the T ′
i leave E invariant and

satisfy T ′
i |E = Ti for i = 1, . . . , n. Note that subnormal is equivalent to normal

when dim(E) <∞. For details see [4].
According to the Halmos–Bram–Itô criterion (see [9]), the commuting tuple

T = (T1, . . . , Tn) is subnormal if and only if
∑

α,β

〈Tαξβ , T
βξα〉 ≥ 0

for all finitely supported families {ξα}α∈Zn
+
in E. Using this criterion we show:

Proposition 3.7. Let T = (T1, . . . , Tn) be a commuting tuple in B(E). Then
T is subnormal if and only if Σ ⊆MT .

In other words, the tuple T is subnormal if and only if ψT (|p|2) ≥ 0 holds
for every p ∈ C[z, z].
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Proof. Assume ψT (|p|2) ≥ 0 for every p ∈ C[z, z]. To prove that T is subnormal
we can, using a result of Stochel ([21, Cor. 3.2]), assume that there exists a
cyclic vector ξ for T , i.e. the linear span of {Tαξ | α ∈ Zn

+
} is dense in E.

It suffices to verify the Halmos–Bram–Itô condition for all finite families {ξα}
lying in the linear span of {Tαξ | α ∈ Zn

+
}. So let ξα = pα(T )ξ where pα ∈ C[z]

for α ∈ Zn
+
(and pα = 0 for almost all α), and consider p :=

∑

α pα(z) z
α ∈

C[z, z]. Since

|p|2 =
∑

α,β

pα(z) pβ(z) z
β
z
α,

the assumption Σ ⊆MT gives

0 ≤ 〈ψT (|p|2)ξ, ξ〉 =
∑

α,β

〈

T βpα(T )ξ, T
αpβ(T )ξ

〉

=
∑

α,β

〈

T βξα, T
αξβ

〉

,

which shows that T is subnormal. Conversely, the same argument shows that
T subnormal implies Σ ⊆MT . �

3.8. We shall consider the following properties of an ideal I ⊆ R[x, y]:

(S) (Subnormality) Every commuting tuple T = (T1, . . . , Tn) of bounded lin-
ear operators in a Hilbert space satisfying p(T, T ∗) = 0 for every p ∈ I is
subnormal.

(Sf) (Finite rank subnormality) Every commuting tuple T = (T1, . . . , Tn) of
complex matrices satisfying p(T, T ∗) = 0 for every p ∈ I is normal.

Trivially (S) implies (Sf). Condition (Sf) will be considered in the next
section. Here we first show that condition (S) is necessary for the Quillen
property (Q). (This fact was announced without proof in [15, Cor. 2.2]).

Proposition 3.9. For any ideal I ⊆ R[x, y], Quillen property (Q) implies the
subnormality condition (S).

Proof. Assume (Q) holds for I. Given a commuting tuple T of bounded opera-
tors with I ⊆ ker(ψT ), we have Σh+ I ⊆MT . Since MT is closed with respect
to the finest locally convex topology of R[x, y] (3.5), it follows from (Q) that
MT contains every polynomial that is nonnegative on VR(I). In particular we
have Σ ⊆MT , which implies that T is subnormal (Proposition 3.7). �

Remark 3.10. In the case when VR(I) is compact, we can give a very short
proof of Proposition 3.9, using Athavale’s theorem [2]. Indeed, assume that
VR(I) is compact and (Q) holds for I. After suitably scaling the variables we
can assume |ξj | < 1 for every ξ = (ξ1, . . . , ξn) ∈ VR(I). Let T be a commuting
tuple of bounded operators satisfying I ⊆ ker(ψT ). In order to show that T is
subnormal it suffices, by [2, Thm. 4.1], to show for any tuple α = (α1, . . . , αn)
of nonnegative integers that

f :=

n
∏

j=1

(1 − |zj|2)αj ∈ MT .
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Now f > 0 on VR(I), so the assumption on I implies f ∈ Σh + I, from which
ψT (f) ≥ 0 is obvious.

Remark 3.11. The subnormality property (S) on an ideal I ⊆ R[x, y] is
strictly weaker than the Quillen property (Q). An immediate example to show
this is given by the ideal I = (x1, . . . , xn) = (zj + zj | j = 1, . . . , n) in R[x, y]:
Every commuting tuple T of operators with I ⊆ ker(ψT ) consists clearly of
normal operators. On the other hand, for any n ≥ 2 there exist strictly positive
polynomials on VR(I) ∼= Rn that are not even sums of usual squares, and
a fortiori not of hermitian squares. For instance, adding a positive constant
to the well-known Motzkin polynomial y41y

2
2 + y21y

4
2 − 3y21y

2
2 + 1 gives such an

example.
It is less straightforward to find an ideal I satisfying (S) but not (Q), for

which VR(I) is compact. Let f(z, z) = 0 be the equation of an ellipse that
is not a circle. Then every bounded operator T satisfying f(T, T ∗) = 0 is
subnormal, that is, the principal ideal I = (f) satisfies (S). But I does not
have the Quillen property, see Theorem 5.4 below, and also [15].

4. Normal tuples of matrices

In this section we will provide a complete geometric characterization of
the ideals satisfying finite rank subnormality (Sf). More specifically, we will
explicitly list those ideals that are maximal with respect to not satisfying (Sf).

First we need some preparation. It seems more natural here to work with
∗-invariant ideals of C[z, z], rather than with ideals of R[x, y].

4.1. Given a 6= b in Cn, let I(a, b) ⊆ C[z, z] be the ideal consisting of all
polynomials f(z, z) with

f(a, a) = f(b, b) = f(a, b) = f(b, a) = 0.

Clearly, I(a, b) is ∗-invariant. As an ideal in C[z, z], note that I(a, b) is gen-
erated by the polynomials p(z) and p(z)∗, where p(z) ∈ C[z] is a holomorphic
polynomial satisfying p(a) = p(b) = 0.

These ideals were introduced in [14], where I(a, b) was denoted by Ja,b.

4.2. The usual inner product on the space of hermitian n×n matrices will be
denoted by 〈S, T 〉 := tr(ST ). Given a ∈ Cn and a complex hermitian n × n
matrix U 6= 0, let J(a, U) be the set of all f ∈ C[z, z] such that

(1) f(a, a) = 0,
(2) U · ∇zf(a, a) = U · ∇zf(a, a) = 0,
(3)

〈

U, ∇2
zzf(a, a)

〉

= 0.

Here we denote the holomorphic resp. antiholomorphic gradient by

∇zf =
( ∂f

∂zj

)

j=1,...,n
, ∇zf =

( ∂f

∂zj

)

j=1,...,n

Münster Journal of Mathematics Vol. 7 (2014), 671–696
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(regarded as column vectors), and the mixed Hessian (Levi form) by

∇2
zzf =

( ∂2f

∂zj ∂zk

)

j,k=1,...,n
.

It is easy to see that J(a, U) is a ∗-invariant ideal in C[z, z].

Example 4.3. With a view toward the proof of Theorem 4.4 below, let us
consider the following example. Fix an integer r ≥ 1 and column vectors
w1, . . . , wn ∈ Cr, not all of them zero. Moreover, let a = (a1, . . . , an) ∈ Cn,
and let

Tj =

(

aj 0
wj ajIr

)

∈ Mr+1(C)

(we are using a (1, r) block matrix notation). Clearly, T = (T1, . . . , Tn) is
a commuting tuple of matrices, and is not normal since wj 6= 0 for at least
one j. A straightforward calculation shows ker(ψT ) = J(a, U), where U is the
nonnegative hermitian n× n-matrix

U =
(

w∗
jwk

)

1≤j,k≤n
.

Note that the rank of U is the dimension of the linear span of w1, . . . , wn in
C

r.

Next comes the main result of this section. It gives a complete ideal-
theoretic characterization of condition (Sf):

Theorem 4.4. Let I ⊆ C[z, z] be an ideal. The following are equivalent:

(Sf) Every commuting tuple T = (T1, . . . , Tn) of complex matrices satisfying
I ⊆ ker(ψT ) is normal;

(G) I is not contained in I(a, b) for any pair a 6= b in Cn, and neither in
J(a, U) for any a ∈ Cn and any nonnegative hermitian n × n matrix
U 6= 0.

4.5. We prove the implication (Sf) ⇒ (G) by contraposition. More precisely,
we will show:

(a) For any a 6= b in Cn, there exists a commuting non-normal n-tuple T of
2× 2 matrices with ker(ψT ) = I(a, b).

(b) For any a ∈ C
n and any nonnegative hermitian n × n matrix U 6= 0,

there exists a commuting non-normal n-tuple T of m ×m matrices with
ker(ψT ) = J(a, U). (We can take m = rk(U) + 1 here.)

In fact, (b) has already been proved by Example 4.3. (The last assertion
comes from the fact that a nonnegative hermitian matrix U of rank r ≥ 1 can
be written U = W ∗W with W ∈ Mr×n(C).) Assertion (a) will be proved in
4.6 and 4.7. The reverse implication (G) ⇒ (Sf) will be proved in 4.8.

4.6. Let a 6= b in C
n. Fix two linearly independent vectors u, v in C

2 that
are not perpendicular. Let Tj ∈ M2(C) be the matrix satisfying Tju = aju
and Tjv = bjv (j = 1, . . . , n). Then T = (T1, . . . , Tn) is a commuting tuple of
matrices. Clearly, the matrix Tj fails to be normal for any index j with aj 6= bj,

Münster Journal of Mathematics Vol. 7 (2014), 671–696
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and in particular, the tuple T is not normal. We claim ker(ψT ) = I(a, b). The
inclusion I(a, b) ⊆ ker(ψT ) is obvious. Since the vector space C[z, z]/I(a, b)
has dimension 4, we have to show that the linear map ψT : C[z, z] → M2(C)
is surjective. This in turn follows immediately from the following lemma.

Lemma 4.7. Let S ∈ M2(C). The matrices I, S, S∗, S∗S are linearly depen-
dent if and only if S is normal.

Proof. Let WS be the linear span of I, S, S∗ and S∗S in M2(C). We have
WS =WS−λI for every λ ∈ C. Since S−λI is normal if and only if S is normal,
we can replace S by S − λI for any λ ∈ C. In particular, we may do this for
λ an eigenvalue of S. After changing to a suitable orthonormal basis we can
therefore assume S =

(

0 a
0 b

)

where a, b ∈ C. For this matrix it is immediate
that WS 6= M2(C) if and only if a = 0, if and only if S is normal. �

4.8. We now show that (G) implies (Sf) in Theorem 4.4, again by contra-
position. To this end let E be a finite-dimensional Hilbert space, and let
T = (T1, . . . , Tn) be a commuting tuple of endomorphisms of E such that at
least one Tj is not normal. We will show that the ideal ker(ψT ) of C[z, z] is
contained in one of the ideals I(a, b) or J(a, U), as in (G).

Let F be any T -invariant subspace of E (that is, TjF ⊆ F holds for each j),
and let T |F denote the restriction of T to F . So T |F is a commuting tuple of
endomorphisms of F . Let i : F → E be the inclusion map and π : E → F the
orthogonal projection onto F , and let

ρ : End(E) → End(F ), ρ(S) = π ◦ S ◦ i.

For S ∈ End(E) we have (S|F )∗ = ρ(S∗). Moreover, if S leaves F invariant,
then ρ(S′S) = ρ(S′)ρ(S), ρ(S∗S′) = ρ(S)∗ρ(S′) hold for any S′ ∈ End(E).
As maps C[z, z] → End(F ), we therefore have ψT |F = ρ ◦ ψT . In particular,
ker(ψT ) ⊆ ker(ψT |F ). In order to prove what we want, we can therefore replace
E and T by F and T |F whenever F is a T -invariant subspace of E for which
T |F is not normal.

For any tuple a = (a1, . . . , an) ∈ Cn, denote by

E(T, a) = {ξ ∈ E | (Tj − aj)ξ = 0 for j = 1, . . . , n}
resp. by

E∞(T, a) = {ξ ∈ E | (Tj − aj)
dim(E)ξ = 0 for j = 1, . . . , n}

the a-eigenspace resp. the generalized a-eigenspace of T . These are T -invariant
subspaces of E, and E =

⊕

a∈Cn E∞(T, a). Since T is not normal, one of the
following two situations occurs:

(1) One of the Tj is not diagonalizable;
(2) each Tj is diagonalizable, but for at least one index j there are two

eigenspaces of Tj that are not perpendicular.

Let us first discuss case (2). By assumption we have E =
⊕

a∈Cn E(T, a), and
there exist a 6= b in Cn such that E(T, a) and E(T, b) are not perpendicular.
Pick vectors x ∈ E(T, a) and y ∈ E(T, b) that are not perpendicular. The
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two-dimensional subspace F spanned by x and y is T -invariant, and T |F is
not normal. By the argument used in 4.6, we see that ker(ψT |F ) = I(a, b). So
we are finished with case (2).

Now we discuss case (1) and assume that one of the Tj cannot be diago-
nalized. Then there exists a ∈ Cn with E(T, a) 6= E∞(T, a). Replacing E by
E∞(T, a) and Tj by Tj − aj for each j (the latter corresponding to a change
of variables zj → zj − aj in the polynomial ring), we can assume that each Tj
is nilpotent and Tj 6= 0 for at least one j. Let c ≥ 2 be the highest order of

nilpotency among the Tj, that is, assume T c
j = 0 for all j and T c−1

j0
6= 0 for

one index j0. Replacing E by ker(T c−2
j0

) we can assume T 2
j = 0 for all j.

Let Vj = ker(Tj) for j = 1, . . . , n. Whenever there are two indices j, k with
Vj 6⊆ Vk, we can replace E by Vj . Iterating this step we arrive at the case
where all nonzero operators among T1, . . . , Tn have the same kernel V 6= E.
Thus, for each j, we have either Tj = 0 or im(Tj) ⊆ ker(Tj) = V , and the
latter occurs for at least one index j.

Choose a nonzero vector x ∈ V ⊥. The subspace F := Cx ⊕ V of E is T -
invariant, and we can replace E with F . Put yj = Tjx (j = 1, . . . , n), and let
W ⊆ V be the linear span of y1, . . . , yn. We can replace E by Cx ⊕W , and
have now arrived at a minimal non-normal tuple of operators.

Let r = dim(W ), so 1 ≤ r ≤ n. Fixing an orthonormal linear basis of W ,
we represent the operators Tj by (r + 1)× (r + 1) matrices as

Tj =











0 0 · · · 0
y1j 0 · · · 0
...

...
...

yrj 0 · · · 0











.

Let wj = (y1j , . . . , yrj), regarded as a column vector (j = 1, . . . , n), and let

U =
(

w∗
jwk

)

1≤j,k≤n

a psd hermitian matrix of rank r. From Example 4.3 we see ker(ψT ) = J(a, U).
This completes the proof of Theorem 4.4. �

Remark 4.9. Ideals of the form I(a, b) or J(a, U), as in 4.4, are pairwise
incomparable with respect to inclusion, except that J(a, U) = J(a, cU) for
every real number c > 0. To see that J(a, U) ⊆ J(a, U ′) implies U ′ = cU with
c > 0, observe that the mixed Hessians of elements of J(a, U) are precisely
the matrices that are orthogonal to U (condition (3) of 4.2). Therefore U is
determined by J(a, U) up to (positive) scaling.

So we see that the ideals I(a, b) and J(a, U) are precisely the maximal
ones among the ideals of relations between non-normal commuting tuples of
matrices (in the sense of hereditary calculus).

Remark 4.10. A complex square matrix may be non-normal for two reasons:
It may fail to be diagonalizable, or it may have two nonperpendicular eigen-
vectors for different eigenvalues. The ideals J(a, U) and I(a, b) in Theorem 4.4
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correspond to these two possibilities. More precisely, if T = (T1, . . . , Tn) is a
commuting tuple of matrices, and if one of the Tj is not diagonalizable, then
ker(ψT ) ⊆ J(a, U) for some pair (a, U). On the other hand, if the Tj are
diagonalizable but one of them has two nonperpendicular eigenspaces, then
ker(ψT ) ⊆ I(a, b) for some pair (a, b). Both assertions are clear from the proof
in 4.8.

Remark 4.11. Consider commuting tuples T = (T1, . . . , Tn) in B(E) where E
is a complex Hilbert space, together with the associated maps ψT : C[z, z] →
B(E) given by hereditary calculus (3.5). It is a consequence of Fuglede’s
theorem that the tuple T is normal if and only if ψT is a ring homomorphism.
As a consequence of Theorem 4.4, we can add another characterization, as long
as E has finite dimension. It shows that the normality of a commuting tuple
T of matrices can be decided from its ideal ker(ψT ) of relations:

Corollary 4.12. A commuting tuple T of matrices is normal if and only if
the ideal ker(ψT ) is not contained in I(a, b) for any a 6= b in Cn, and neither
in J(a, U) for any a ∈ Cn and any nonnegative hermitian n×n-matrix U 6= 0.

Proof. Indeed, if T is normal, there is an orthogonal basis of simultaneous
eigenvectors. This implies that ker(ψT ) is an intersection of finitely many
ideals ma = {f ∈ C[z, z] | f(a, a) = 0}, a ∈ Cn. Such an intersection is never
contained in any of the ideals I(a, b) or J(a, U). �

Remarks 4.13.

1. Up to holomorphic linear coordinate changes there exist precisely n essen-
tially different ideals J(a, U) in C[z, z]. Indeed, we can assume that a = 0
and that

U = Ur := diag(1, . . . , 1, 0, . . . , 0)

is the diagonal matrix of rank r, where 1 ≤ r ≤ n can be arbitrary. In this
case, J(0, Ur) consists of all f ∈ C[z, z] which are modulo (z1, . . . , zn)

2 +
(z1, . . . , zn)

2 congruent to

n
∑

j=r+1

(bjzj + b′jzj) +

n
∑

j,k=1

cjk zjzk

with bj, b
′
j, cjk ∈ C and

c11 + · · ·+ crr = 0.

A system of generators for the ideal J(0, Ur) is therefore given by the fol-
lowing list of polynomials:

zjzk, zjzk 1 ≤ j ≤ k ≤ r,

zjzk, zkzj 1 ≤ j < k ≤ r,

|zj |2 − |zj+1|2 1 ≤ j < r,

zj , zj r + 1 ≤ j ≤ n.
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2. In [14], the ideals

Ja,a = (z1 − a1, . . . , zn − an)
2 + (z1 − a1, . . . , zn − an)

2 (a ∈ C
n)

of C[z, z] were used. They ideals relate to the ideals J(a, U) studied here
via

Ja,a =
⋂

U

J(a, U),

intersection over all nonnegative hermitian matrices U 6= 0. In particular,
in the one variable case (n = 1) we have Ja,a = J(a, 1).

As a consequence of Theorem 4.4 and Proposition 3.9, we obtain:

Corollary 4.14. Let I ⊆ R[x, y] be an ideal, and assume that I ⊆ I(a, b) for
some a 6= b in Cn, or that I ⊆ J(a, U) for some a ∈ Cn and some nonnegative
hermitian n× n matrix U 6= 0. Then there exists f ∈ R[x, y] such that f > 0
on VR(I), but f is not a hermitian sum of squares modulo I. �

In the first case of Corollary 4.14, the assertion was already proved in [14,
Prop. 3.1], by a different argument.

5. Examples

We start by identifying some classes of (principal) ideals that satisfy the
subnormality condition (S).

Proposition 5.1. Let f = f∗ ∈ C[z, z] be of the form

f = Re g(z)−
r

∑

k=1

|qk(z)|2

where g, q1, . . . , qr ∈ C[z]. Assume for every j = 1, . . . , n that zj is a polyno-
mial in g, q1, . . . , qr, that is,

C[g, q1, . . . , qr] = C[z1, . . . , zn].

Then every commuting tuple T satisfying f(T, T ∗) = 0 is subnormal. In other
words, the principal ideal I = (f) has property (S).

Proof. Choose a real number c > 0 so large that the operator A := g(T )+ c id
is invertible. From 2c Re(g) = |g + c|2 − c2 − |g|2 we get

2cf = |g + c|2 − c2 − |g|2 − 2c
∑

k

|qk|2.

This implies

A∗A = c2 id + g(T )∗g(T ) + 2c
∑

k

qk(T )
∗qk(T ),

hence suitable scalings of the commuting operators

A−1, g(T )A−1, q1(T )A
−1, . . . , qr(T )A

−1

satisfy the identity of the sphere. Therefore the tuple consisting of these op-
erators is subnormal, by Athavale’s theorem [2]. Using rational functional
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calculus in conjunction with the spectral inclusion theorem [13], we conclude
that the tuple

(

g(T ), q1(T ), . . . , qk(T )
)

commutes and is subnormal. Now the
hypothesis implies that the tuple T = (T1, . . . , Tn) is subnormal. �

5.2. We discuss yet another class of identities that entail the subnormality
condition (S), this time in one variable (n = 1). Let f ∈ R[x, y] have the form

f = |g(z)|2 − a− |l(z)|2 −
r

∑

k=1

|qk(z)|2

where a > 0 is a real number, g, q1, . . . , qr ∈ C[z] are arbitrary polynomials and
l ∈ C[z] has degree one. The identity f(T, T ∗) = 0 implies g(T )∗g(T ) ≥ aI,
and we conclude that g(T ) is invertible. Inverting g(T ) we again arrive at a
sphere identity, and arguing as in 5.1 we conclude in particular that l(T ) is
subnormal, whence T is subnormal.

This construction can also be performed in any number of variables.

5.3. In certain cases we can prove that VR(f) is compact and Σh is not
archimedean modulo f , for f as in 5.2. Indeed, let

f = |z|2m −
m−1
∑

j=0

aj |z|2j

with m ≥ 2 and real coefficients a0, . . . , am−1 ≥ 0. Then Σh + (f) is not
archimedean. Indeed, assume c − |z|2 + fg ∈ Σh, with c ∈ R and g = g∗ ∈
C[z, z]. Let bj be the coefficient of |z|2j in g. For any j ≥ 0, the coefficient of
|z|2j in c− |z|2 + fg is ≥ 0. For j = 1 this gives

(2) −1− a1b0 − a0b1 ≥ 0,

while for j = m+ k with k ≥ 0 it gives

(3) bk − am−1bk+1 − · · · − a0bk+m ≥ 0 (k ≥ 0).

Let l ≥ 0 be the largest index for which bl 6= 0 (by (2), there has to be such l).
From (3) for k = l we get bl > 0. By a downward induction, repeatedly using
(3), we conclude that bk ≥ 0 holds for all k ≥ 0. But this contradicts (2). On
the other hand, property (2) holds as soon as a0 > 0 and a1 > 0, see 5.2. The
zero set VR(f) is the union of (at least one, at most m − 1) concentric circles
around 0.

Next, we look at the simplest case, which is plane conics. The following
theorem shows that we can completely decide in which cases the various prop-
erties discussed so far are satisfied. In particular, it turns out that properties
(S) and (Sf) are equivalent for plane conics:

Theorem 5.4. Consider a nonconstant polynomial

f = azz + αz2 + αz2 + βz + βz + c

with a, c ∈ R and α, β ∈ C, and let (f) be the principal ideal generated by f
in R[x, y].
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(a) (f) has the Archimedean property (A) if, and only if, α = 0 and a 6= 0.
(b) (f) has the Quillen property (Q) if, and only if, α = 0.
(c) Properties (S), (Sf) and (G) for the ideal (f) are equivalent among each

other, and are also equivalent to (a 6= 0 ∨ a = α = 0).

Note that the result [15, Thm. 3.3] on the ellipse is contained in (c) as a
particular case.

For the proof of the theorem we need the following simple observation.
(A similar argument was used in [15], proof of Proposition 3.1.) The leading
form lf(f) of 0 6= f ∈ C[z, z] is the nonvanishing homogeneous part of f of
highest degree. Clearly lf(fg) = lf(f)lf(g) and lf(f∗) = lf(f)∗.

Lemma 5.5. (n arbitrary) For 0 6= f = f∗ ∈ Σh we have lf(f) ∈ Σh. In
particular, when n = 1, this implies lf(f) = a(zz)m where deg(f) = 2m and
0 < a ∈ R.

The lemma is obvious since in a sum
∑

j |qj(z)|2, no cancellation of leading
forms can occur.

Proof of Theorem 5.4. Assume α = 0 and a 6= 0. Then the identity

af =
∣

∣az + β
∣

∣

2
+ (ac− |β|2),

combined with Proposition 3.2, shows that Σh+(f) is archimedean and (hence)
contains every polynomial g with g > 0 on VR(f). If α = a = 0 then f is linear,
and after a holomorphic change of variables we may assume f = 1

2i(z−z) = y.
By Remark 3.4.1 we see that Σh + (f) contains every g ∈ R[x, y] with g ≥ 0
on VR(f).

Conversely, we show that Σh + (f) cannot contain all polynomials strictly
positive on VR(f) when α 6= 0. Indeed, assume α 6= 0 and choose γ ∈ C with
γ /∈ VR(f). For sufficiently small real r > 0, the polynomial g = |z − γ|2 − r2

is strictly positive on VR(f). Assuming g ∈ Σh + (f) would mean g + fh ∈ Σh

for some h ∈ C[z, z], and necessarily h 6= 0. When h is constant then l(g+ fh)
contains λz2 for some λ 6= 0, contradicting Lemma 5.5. Otherwise deg(h) > 0,
and then lf(f) divides lf(fh) = lf(g + fh), again contradicting 5.5.

We have thus proved (a) and (b). For the proof of (c) we easily dispense with
the linear case a = α = 0, and can assume deg(f) = 2. If a = 0 then f = g+g∗

with a quadratic holomorphic polynomial g ∈ C[z]. For generic choice of t ∈ R

there are two different numbers α 6= β in C with g(α) = g(β) = it. For any

such pair we have f(α) = f(β) = f(α, β) = 0, and hence f ∈ I(α, β). For
a = 0, therefore, the ideal (f) does not satisfy condition (G), and a fortiori
does not satisfy conditions (S) and (Sf), by 4.4.

On the other hand, assume a 6= 0. Then f has the form

f = Re g(z) + a|z|2

with g ∈ C[z]. According to Proposition 5.1, every bounded operator T satis-
fying f(T, T ∗) = 0 is subnormal. So (f) satisfies conditions (S), (Sf) and (G)
in this case. �
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Remarks 5.6.

1. We rephrase part of Theorem 5.4 in geometric terms, and assume deg(f) = 2
and VR(f) 6= ∅ for simplicity. Then Σh + (f) contains all polynomials
positive on VR(f) if and only if VR(f) is a circle. On the other hand, the
identity f(T, T ∗) = 0 implies subnormality for a bounded operator T if and
only if VR(f) is not a hyperbola with perpendicular asymptotes (and neither
a union of two perpendicular lines).

2. From Theorem 5.4 we see in particular that there exist ideals I ⊆ R[x, y]
with VR(I) = ∅ for which −1 /∈ Σh + I. This is in striking contrast to the
case of usual sums of squares, where it is well known that VR(I) = ∅ implies
−1 ∈ Σ + I. Such ideals may well have the subnormality property (S). For
example, this is so for I = (ax2 + by2 + c) with a, b, c > 0 and a 6= b.

5.7. For (reduced) plane conics, the normality condition (Sf) for finite-dimen-
sional Hilbert spaces already implies the subnormality condition (S) for arbi-
trary Hilbert spaces, as shown in 5.4. We now show that this ceases to hold
when we take a suitable nonreduced version of a conic.

To this end consider the ∗-invariant ideal
J =

(

(z − 1)(zz − 1), (z − 1)(zz − 1)
)

in C[z, z], respectively its real version

I = J ∩R[x, y] = (x2 + y2 − 1) · (x− 1, y).

The ideal corresponds to the unit circle with nilpotents added at one point.
We will see that hermitian sums of squares modulo I behave quite different
than modulo

√
I.

Let T ∈ B(E) satisfy I ⊆ ker(ψT ), that is,

(4) (T ∗ − id)(T ∗T − id) = 0.

We decompose the Hilbert space as E = ker(T − id) ⊕ ker(T − id)⊥. With
respect to this decomposition, T has a block matrix representation

T =

(

id A
0 B

)

with ker(A) ∩ ker(B − id) = {0}. From (4) we deduce A(B − id) = 0 and
A∗A + (B∗B − id)(B − id) = 0. The second identity implies that B − id is
actually injective. If dim(E) <∞, then B − id is invertible, and we get A = 0
and B∗B − id = 0. In short, T is unitary. Every (finite-dimensional) matrix
annihilated by the ideal J is therefore unitary, and hence normal.

On the other hand, we will produce an operator T acting on E = ℓ2(N)
such that T is annihilated by the ideal J and T is not subnormal. Let E have
Hilbert basis ek (k ≥ 0), and let S : ek 7→ ek+1 (k ≥ 0) be the unilateral shift.
Let π be the orthogonal projection onto the space generated by e0, and define
T = S + π. A direct computation, supported by the relations

S∗S = id, SS∗ = id− π, πS = 0,
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yields (T ∗−id)(T ∗T−id) = 0. But T is not subnormal. Indeed, any subnormal
operator X satisfies the hyponormality inequality [X∗, X ] ≥ 0, evident from

the matrix decomposition of a normal extension N =
(

X Y
0 Z

)

and the equation
[N∗, N ] = 0. The commutator [T ∗, T ] = π − Sπ − πS∗ acts on the span of e0

and e1 as

(

1 −1
−1 0

)

, and this is not a nonnegative operator. In summary,

this shows:

Proposition 5.8. Let I ⊆ R[x, y] be the above ideal, corresponding to the unit
circle with a thickened point. Then I satisfies condition (Sf), but not (S) (and

a fortiori, not (A)). In contrast, its reduced version
√
I satisfies (A) (and

therefore also (S) and (Sf)). �

6. Semialgebraic sets

6.1. In Section 3 we studied the question whether every polynomial strictly
positive on a real algebraic set X ⊆ Cn is a hermitian sum of squares on X . We
now extend this question to (real) semialgebraic subsets of Cn. Algebraically,
this means that instead of an ideal I ⊆ R[x, y] and the semiring Σh + I we
consider hermitian modules, that is, modules over the semiring Σh (see 2.4).
This means that the real algebraic set X = VR(I) is replaced by the closed set

XM = {a ∈ C
n | for all f ∈M f(a) ≥ 0}

(see 2.6). If the hermitian module M is finitely generated (or, more generally,
if the quadratic module generated by M is finitely generated), the closed set
XM is basic closed, i.e., there are finitely many f1, . . . , fk ∈ R[x, y] with XM =
{a ∈ Cn | f1(a) ≥ 0, . . . , fk(a) ≥ 0}.

6.2. Each of the four properties of an ideal I ⊆ R[x, y] labelled (A), (Q), (S),
(Sf) that were discussed in the first part of this paper is in fact a property of
the semiring S = Σh + I, i.e., can be expressed in terms of S. We now extend
these properties to arbitrary hermitian modules M ⊆ R[x, y]:

(A) M is archimedean;
(Q) M contains every f ∈ R[x, y] with f > 0 on XM ;
(S) every commuting tuple T of bounded operators in a Hilbert space satis-

fying p(T, T ∗) ≥ 0 for every p ∈M is subnormal;
(Sf) every commuting tuple T of complex matrices satisfying p(T, T ∗) ≥ 0 for

every p ∈M is normal.

When M = Σh + I for some ideal I, the above properties agree with the
respective properties of the ideal I, as defined in 3.1 and 3.8.

We start by the following characterization of archimedean hermitian mod-
ules, thereby generalizing part of Proposition 3.2:

Lemma 6.3. A hermitian module M ⊆ R[x, y] is archimedean if and only if
c− ||z||2 ∈M for some real number c.
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Proof. Assuming c − ||z||2 ∈ M we have to show R +M = R[x, y]. For this
let A := {p ∈ C[z] | −|p|2 ∈ R +M}. It suffices to prove A = C[z]. Indeed,
any f ∈ R[x, y] can be written f =

∑

j |pj|2 −
∑

k |qk|2 with pj , qk ∈ C[z]; if
qk ∈ A for every k, then f ∈ R+M .

From c − |zj |2 = (c − ||z||2) + ∑

k 6=j |zk|2 we see zj ∈ A for j = 1, . . . , n.

Therefore (and since C ⊆ A) it is enough to prove that A is a ring. From
a− |f |2, b− |g|2 ∈M with a, b ≥ 0 we get

ab− |fg|2 = a(b − |g|2) + |g|2(a− |f |2) ∈M,

so A is closed under products. From |f + g|2 + |f − g|2 = 2(|f |2 + |g|2) we see
that A is also closed under sums. The lemma is proved. �

Before we start discussing a Positivstellensatz for hermitian modules, we
need to mention a subtle point. The archimedean Positivstellensatz 2.6 holds
for modules over archimedean semirings, but not in general for archimedean
modules over semirings. This distinction is relevant for hermitian modules, as
the following example shows:

Example 6.4. The hermitian moduleM = Σh+Σh(1−||z||2) is archimedean
by Lemma 6.3. But there exist polynomials that are strictly positive on the
closed unit ball XM and are not contained in M . In fact, ǫ + (1 − ||z||2)2 is
such a polynomial for 0 < ǫ < 1. To see this, assume

ǫ+ (1 − ||z||2)2 = p+ q(1− ||z||2)
with p, q ∈ Σh. Comparing constant coefficients gives q(0) ≤ 1+ ǫ, while com-
paring coefficients of z1z1 gives −2 ≥ −q(0), i.e. q(0) ≥ 2, since the coefficient
of z1z1 in any hermitian sum of squares is nonnegative.

The point is that, although the hermitian module M is archimedean, M is
not a module over any archimedean semiring.

The proper “quantization” of the module M is a linear operator T acting
on a Hilbert space, subject to the contractivity condition

I − T ∗T ≥ 0.

It is clear that not every contractive operator T is subnormal.

Example 6.4 has shown (c.f. also Proposition 3.2):

Lemma 6.5. Consider the following two properties of a hermitian module M
in R[x, y]:

(i) XM is compact, and M has the Quillen property (Q);
(ii) M is archimedean (A).

Then (i) implies (ii), but the converse fails in general. �

Here we are mainly interested in a Positivstellensatz, that is, in the Quillen
property (Q), in the case whenXM is compact. Therefore, we will often assume
that M is archimedean (which implies that XM is compact), and try to find
additional properties for M that will imply the Positivstellensatz. Verifying
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the archimedean property of a concretely given hermitian module M is usually
easy, using the criterion of Lemma 6.3.

One instance where we get the Positivstellensatz for free is the following:

Proposition 6.6. Let I ⊆ R[x, y] be any ideal with the archimedean property
(A). Then for any p1, . . . , pr ∈ R[x, y], the hermitian module

M = I +Σh + p1Σh + · · ·+ prΣh

has the Quillen property (Q).

Proof. M is a module over the archimedean semiring Σh + I, so the assertion
follows from the archimedean Positivstellensatz 2.6. �

Remarks 6.7.

1. For M as in 6.6, the associated semialgebraic set is

XM = VR(I) ∩
{

a ∈ C
n
∣

∣

∣ p1(a) ≥ 0, . . . , pr(a) ≥ 0
}

.

2. In the particular case I = (1 − ||z||2), Proposition 6.6 was proved by
D’Angelo and Putinar ([5, Thm. 3.1]).

Generalizing Proposition 3.9, the Positivstellensatz for M implies the fol-
lowing subnormality property for commuting tuples T of bounded operators.

Corollary 6.8. For any hermitian module M ⊆ R[x, y], we have (Q) ⇒ (S).

Proof. The proof of Proposition 3.9 carries over (essentially) verbatim. �

We next discuss a refinement of the last corollary, in which we are going to
weaken condition (Q) and strengthen condition (S).

6.9. Let M ⊆ R[x, y] be a hermitian module. Recall [20] that M is said to
have the Strong Moment Property if the following holds:

(SMP) Every linear functional L : R[x, y] → R with L|M ≥ 0 is integration
with respect to some positive Borel measure on XM .

Lemma 6.10. Let M ⊆ R[x, y] be a hermitian module. The Quillen property
(Q) for M implies the strong moment property (SMP) for M . The converse is
true if M is archimedean.

Proof. Assume that M has property (Q). Then any f ∈ R[x, y] nonnegative
on XM lies in the closure M with respect to the finest locally convex topology
on R[x, y]. So L|M ≥ 0 implies L(f) ≥ 0, and therefore L is integration
with respect to some positive Borel measure on XM , according to the Riesz–
Haviland theorem [8]. Conversely, let M be archimedean and satisfy (SMP),
and assume that there is f ∈ R[x, y] with f > 0 on XM but f /∈ M . By
Eidelheit’s separation theorem (e.g., [10, §17.1]) there is a linear functional
L : R[x, y] → R with L(1) = 1, L|M ≥ 0 and L(f) ≤ 0. By assumption, L
is integration with respect to a probability measure µ on XM . We conclude
L(f) =

∫

XM
f dµ > 0, a contradiction. �
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Lemma 6.11. For M a hermitian module in R[x, y], consider the following
property:

(SOS) Σ ⊆ M (closure with respect to the finest locally convex topology on
R[x, y]).

Then property (SOS) for M implies property (S) for M . The converse is true
if M is archimedean.

Proof. (SOS) ⇒ (S): Let T be a commuting tuple of operators with M ⊆MT .
Since MT is closed in R[x, y] (3.5) we have M ⊆ MT . So assumption (SOS)
implies Σ ⊆MT , and hence T is subnormal according to Lemma 3.7.

(S) ⇒ (SOS): Let M be archimedean and have property (S). Assume that
there is f ∈ Σ with f /∈ M . There exists a linear functional L : R[x, y] → R

satisfying L|M ≥ 0 and L(f) < 0. We extend L to a complex linear functional
on R[x, y] ⊗R C = C[z, z] and perform a GNS construction: Consider the
positive semidefinite inner product 〈p, q〉 := L(pq∗) on C[z], and let E be the
corresponding Hilbert space completion of C[z]. SinceM is archimedean, there
is a real number c > 0 with c − |zj |2 ∈ M for j = 1, . . . , n, and it follows for
any p ∈ C[z] that

L(|zj |2 |p(z)|2) ≤ c · L(|p(z)|2).
Hence multiplication by zj induces a bounded linear operator Tj on E (j =
1, . . . , n), and T = (T1, . . . , Tn) is a commuting tuple in B(E). For g ∈ C[z, z]
and q ∈ C[z] we have 〈ψT (g)q, q〉 = L(g|q|2). So for g ∈M the operator ψT (g)
is nonnegative, which means M ⊆ MT . On the other hand, f /∈ MT since
〈ψT (f)1, 1〉 = L(f) < 0. Therefore, the tuple T is not subnormal, according
to Proposition 3.7. This contradicts property (S). �

Lemma 6.12. For any hermitian module M we have (SMP) ⇒ (SOS).

Proof. By hypothesis, any linear functional L : R[x, y] → R with L|M ≥ 0 is
integration with respect to a measure on XM . In particular, L(f) ≥ 0 for any
f ∈ Σ. This implies f ∈M . �

Remarks 6.13.

1. The implication (S) ⇒ (SOS) for archimedean M (Lemma 6.11) is uninter-
esting if M is a module over an archimedean semiring. Indeed, in this case
we know anyway that M contains all polynomials strictly positive on XM ,
and hence Σ ⊆ M is clear. But in the other cases, the equivalence of (S)
and (SOS) is a new information.

2. Altogether we have now obtained the chain of implications

(Q) ⇒ (SMP) ⇒ (SOS) ⇒ (S)

for any hermitian module M . When M is archimedean, the first and the
last implication can be reversed.

6.14. Under a stronger condition on M , we are now going to prove the impli-
cation (SOS) ⇒ (SMP), and hence the equivalence of (Q) and (S), when M is
archimedean. Recall that a closed subset K ⊆ Cn is said to be polynomially
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convex if the following holds: For every ξ ∈ Cn with ξ /∈ K, there exists a
polynomial p ∈ C[z] with |p| ≤ 1 on K and |p(ξ)| > 1. We shall consider the
following property for a hermitian module M ⊆ R[x, y]:

(PC) For every ξ ∈ Cn rXM , there exist f ∈ M and q ∈ Σh such that q ≤ 1
on {a ∈ Cn | f(a) ≥ 0}, and such that q(ξ) > 1.

Remarks 6.15.

1. If M satisfies condition (PC), then the set XM is polynomially convex in
Cn. Indeed, XM has the form

XM =
⋂

ν

{a ∈ C
n | qν(a) ≤ 1}

for some family of polynomials qν ∈ Σh. For each ν, the set {a ∈ Cn |
qν(a) ≤ 1} is polynomially convex, since it is the preimage of the closed
unit ball in some Cm under a polynomial map Cn → Cm. Therefore XM is
polynomially convex.

2. Condition (PC) is satisfied when the hermitian module M is generated by
polynomials of the form 1 − qν with qν ∈ Σh. More generally, (PC) holds
when M contains a family {fν} of polynomials with XM =

⋂

ν{a ∈ C
n |

fν(a) ≥ 0} such that, for every ν, the set {fν ≥ 0} is polynomially convex.

Theorem 6.16. Let M be an archimedean hermitian module in R[x, y] which
satisfies condition (PC). Then the subnormality property (S) implies the
Quillen property (Q) for M .

Proof. By Lemma 6.10 it suffices to show thatM has the strong moment prop-
erty (SMP). Given a linear functional L : R[x, y] → R with L|M ≥ 0, we need to
show that L is integration with respect to a positive Borel measure supported
on XM . Similar to the proof of Lemma 6.11, we use a GNS construction to get
a Hilbert space E together with a commuting tuple T = (T1, . . . , Tn) in B(E)
and a cyclic vector ξ, such that L(pq∗) = 〈p(T )ξ, q(T )ξ〉 for all p, q ∈ C[z].
Since M has property (S), the tuple T is subnormal. The spectral measure of
a commuting normal extension S of T gives a Borel measure µ on Cn with

L(f) = 〈ψS(f)ξ, ξ〉 =

∫

f dµ

for all f ∈ R[x, y]. It remains to prove supp(µ) ⊆ XM , which follows from the
next lemma. �

Lemma 6.17. Let M be a hermitian module, and let µ be a positive measure
on Cn all of whose moments exist, satisfying

∫

f dµ ≥ 0 for every f ∈ M . If
M satisfies condition (PC), then supp(µ) ⊆ XM .

Proof. Assume there exists ξ ∈ supp(µ) with ξ /∈ XM . By (PC) we find f ∈M
and q ∈ Σh such that q(ξ) > 1 and q < 1 on {f ≥ 0}. We have

∫

fqm dµ =

∫

{f≥0}

fqm dµ+

∫

{f<0}

fqm dµ.
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For m → ∞, the first summand on the right tends to zero by the dominated
convergence theorem. On the other hand, the second summand tends to −∞:
Consider a small ball B around ξ on which q ≥ a > 1 and f ≤ b < 0, and note
that B has positive µ-measure. So there is m ∈ N for which the integral on
the left is negative, a contradiction since fqm ∈M . �

Summarizing Lemmas 6.10–6.12 and Proposition 6.16, we obtain:

Theorem 6.18. Let M be a hermitian module in R[x, y] which is archimedean
and satisfies condition (PC). Then for M we have

(Q) ⇔ (SMP) ⇔ (SOS) ⇔ (S). �

Example 6.19. Without any hypothesis like (PC), the implication (S) ⇒ (Q)
is false, even if we assume that M is archimedean. Indeed, let n = 1 and
0 < r < R, and consider the Σh-module

M = Σ +Σh(R
2 − |z|2) + Σh(|z|2 − r2).

Here XM is the annulus around the origin with radii r < R. Clearly, M is
archimedean (6.3) and satisfies condition (S) (Lemma 6.11). But there exists
a compactly supported measure µ on C with supp(µ) 6⊆ XM and with

∫

f(z)µ(dz) ≥ 0

for every f ∈M . Namely, let r < ρ < R, and let
∫

f dµ := ǫf(0) +

∫ π

−π

f(ρeit) dt.

When ǫ > 0 is sufficiently small, we have
∫

(|z|2 − r2)|p(z)|2 dµ ≥ 0 for every
p ∈ C[z], and hence

∫

f(z)µ(dz) ≥ 0 for every f ∈M . Namely, the integral is

(ρ2 − r2)

∫ π

−π

|p(ρeit)|2 dt− ǫr2|p(0)|2 ≥
(

2π(ρ2 − r2)− ǫr2
)

|p(0)|2.

Note that the annulus XM is not polynomially convex, and so the hypotheses
of Theorem 6.16 are not satisfied.

Theorem 6.20. Let M ⊆ R[x, y] be a finitely generated hermitian module.
If M satisfies (Sf), then the semialgebraic set XM in Cn does not contain an
analytic disc.

Proof. By an analytic disc we mean the image of a nonconstant holomorphic
map ϕ : D → Cn. We can assume ϕ(0) = 0, and since we work locally, we
can assume that there exists an analytic function F : ϕ(D) → D such that
F (ϕ(ζ)) = ζ (ζ ∈ D). By assumption, ϕ(D) ⊆ XM . Let M be generated
by nonzero polynomials f1, . . . , fr ∈ R[x, y]. We reorder the generators so
that f1, . . . , fs vanish identically on ϕ(D), and fs+1, . . . , fr have only isolated
zeros on ϕ(D). By passing to an appropriate subdisc on D we can assume
fs+1(0) > 0, . . . , fr(0) > 0.
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Let ǫ > 0 be sufficiently small, and choose a non-normal matrix A of norm
||A|| ≤ ǫ. Then the commuting tuple of matrices ϕ(A) is not normal, as
A = F (ϕ(A)) by the superposition property of the analytic functional calculus.
In addition, M ⊆ Mϕ(A). Indeed, fixing 1 ≤ j ≤ s, the composite function

fj(ϕ(z), ϕ(z)) is identically zero. If

fj(z, z) =
∑

α,β

cα,β z
α
z
β ,

this means that the power series
∑

α,β

cα,β ϕ1(z)
α1 · · ·ϕn(z)

αn ϕ1(z)
β1 · · ·ϕn(z)

βn

in z and z is identically zero, from which we see fj(ϕ(A)) = 0. On the other
hand, fs+1(ϕ(A)) > 0, . . . , fr(ϕ(A)) > 0 by the continuity of the functional
calculus.

Since ϕ(A) is not (sub-) normal, this implies that M does not satisfy (Sf).
�

Remark 6.21. In the case where M = Σh + I for some ideal I ⊆ R[x, y],
Theorem 6.20 also follows from Theorem 4.4. Indeed, assume that ϕ : D → Cn

is a holomorphic map with ϕ(D) ⊆ VR(I) and with u := ∇zϕ(0) 6= 0. A direct
calculation shows that I ⊆ J(a, U) (see 4.2) with a := ϕ(0) and U := u∗u (we
consider u as a row vector). Therefore, the ideal I does not satisfy condition
(G), and by Theorem 4.4, it neither satisfies (Sf).

By Corollary 6.8, Theorem 6.20 implies:

Corollary 6.22. Let M be a finitely generated hermitian module. If XM

contains an analytic disc, then M does not satisfy Quillen’s property (Q). �

Proof. Let M be generated by nonzero polynomials f1, . . . , fr ∈ R[x, y]. Since
XM contains an analytic disc, the subnormality condition (S) does not hold for
M , by Theorem 6.20 above. According to Corollary 6.8, the Positivstellensatz
does not hold either. �

7. Historical comments

We feel that leaving aside the analytic roots of the questions encountered
in this article would deprave the reader of some essential insight. We briefly
describe below some of the old sources and applications of the decomposition
of a real polynomial in a sum of hermitian squares.

Start with Riesz–Fejér Theorem asserting that a polynomial p(z, z) which
is nonnegative on the unit circle can be decomposed as

(5) p(z, z) = |h(z)|2 + (1 − |z|2)g(z, z),
where h ∈ C[z] and g ∈ C[z, z].
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Next we “quantize” the above setting, that is we replace the complex vari-
able by a linear transformation. Let T be a bounded linear operator acting on
a Hilbert space E and denote by T ∗ its adjoint. The simple operator identity

T ∗T = id

defines an isometric transformation, with the known consequences: spectral
picture, functional model and classification, see [4]. In particular, the operator
T has in this case spectrum contained in the closed unit disc D, and for every
real valued polynomial p(z, z) the estimate

(6) p(T, T ∗) ≤ max
λ∈T

p(λ, λ) id

holds true. Recall that here we adopt the hereditary calculus convention,
putting the powers of T ∗ to the left of the powers of T , in every monomial
appearing in p.

Inequality (6) is a simple consequence of (5): If p(z, z) ≤M on T, then

(7) M −p(T, T ∗) = h(T )∗h(T )+ [(1−|z|2)g(z, z)](T, T ∗) = h(T )∗h(T ) ≥ 0.

As a matter of fact, estimate (6) implies that the linear functional calculus
p(z, z) 7→ p(T, T ∗) possesses an additional positivity property. The latter im-
plies, essentially repeating F. Riesz construction of the representing measure
for a positive functional, that the operator T is subnormal, that is, there exists
a larger Hilbert space E ⊆ K and a normal operator U acting on K, such that
U(E) ⊆ E and U |E = T . By choosing U minimal with this property we can
also assume that the spectrum of U is contained in the torus T, hence U is
unitary, see for instance [4]. In particular, if in addition TT ∗ = id, that is T
is unitary from the beginning, we obtain in this manner a proof of the spec-
tral theorem, as advocated by F. Riesz from the dawn of functional analysis
[17, 18].

Turning now to several complex variables, or their quantized form, com-
muting tuples of linear operators, we encounter Quillen’s idea [16]. Let P (z, z)
be a conjugation-invariant polynomial, bihomogeneous of the same degree in
the variables z and z. Assume that P (z, z) > 0 whenever z 6= 0. Denote by
M = (Mz1 , . . . ,Mzn) the n-tuple of commuting multipliers by the complex
variables, on the Bargmann–Fock space of entire functions (square integrable
in Cn with respect to the Gaussian weight). Using analytical tools (elliptic es-
timates and Fredholm theory), Quillen analyzes the positivity of the operator
P (M,M∗) inherited from the positivity of the symbol P . He reaches the purely
algebraic conclusion that there exists a positive integer N and homogeneous
complex analytic polynomials h1, . . . , hk such that

(8) ‖z‖2NP (z, z) = |h1(z)|2 + · · ·+ |hk(z)|2.

Very recently Drout and Zworski [7] have obtained, using the same Bargmann–
Fock space representation, degree bounds in Quillen’s decomposition above.
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An elementary dehomogenization argument shows that (8) implies that ev-
ery positive polynomial on the unit sphere of Cn is equal, on the sphere, to a
sum of hermitian squares, as stated by condition (Q) in our article.

On the abstract operator theory side, we mention the 1987 discovery of
Athavale [2] stating that every commuting tuple of bounded operators T =
(T1, . . . , Tn) subject to the sphere identity

T ∗
1 T1 + · · ·+ T ∗

nTn = id

is subnormal, and hence possesses a functional calculus with a positivity prop-
erty of type (6). Athavale’s work belongs to a framework advocated for several
dozen years by now by Conway [4], Agler and McCarthy [1] and their followers.

Quillen’s theorem was rediscovered in 1996, generalized and put into the
context of Cauchy–Riemann geometry and function theory of several complex
variables by Catlin and D’Angelo [3]. Their proof also uses analysis, this time
employing analytic Toeplitz operators acting on the Bergman space of the
unit ball. One of the main themes of research in Cauchy–Riemann geometry is
the (local) classification up to biholomorphic transformations of real algebraic
subvarieties of Cn. There is no surprise that Quillen property, or better its
algebro-geometric consequences (Sf) and (G) are relevant for CR manifold
theory. A modest step into this direction was taken in [6].
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