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ful exchange of ideas. Moreover, I thank Martin Benning, Lars Ruthotto, Alexander

Wenner and Steffi Brune for carefully reading the manuscript and for giving helpful

hints and suggestions. I want to thank all my colleagues in the work group Imaging

and in the Institute for Computational and Applied Mathematics for the pleasant

working atmosphere.

Marcus Wagner, Karl Kunisch, Yiqiu Dong and Michael Hintermüller for interesting

discussions, collaborations and for hosting me in Graz.

Mohammad Dawood, Fabian Gigengack and Xiaoyi Jiang for interesting discussions

and collaborations on motion estimation and image registration.

Andreas Schönle and the group of Stefan Hell at the Max-Planck-Institute for bio-

physical chemistry in Göttingen for collaborations and for providing experimental

data.

Paul Lunkenheimer from the university hospital in Münster and the SCANCO Med-

ical AG in Bruettisellen, Switzerland for providing medical imaging data.

the European Institute for Molecular Imaging (EIMI) for the collaboration and for

providing data in positron emission tomography.



I acknowledge the Deutsche Telekom Stiftung for their financial support and valuable

seminars and contacts. Their financial support made it possible to realize internships

and visits at the University of British Columbia in Canada, in Austrian and at the

University of California in Los Angeles.

My special thanks go to Christiane Frense-Heck and Reiner Franke for their men-

toring and the excellent organization of events.

In particular, I want to thank Torsten Minkwitz from the Deutsche Telekom for

his mentoring, for interesting meetings and conversations, and the opportunity to

participate in his wide experiences.

I further acknowledge the financial support by the German Federal Ministry of Edu-

cation and Research through the joint project INVERS: Deconvolution with sparsity

constraints in optical nanoscopy and mass spectroscopy under the grant 03BUPAH3.

Finally, I want to thank my family. I am deeply grateful to my wife Steffi, whose

love encourages me every day. In my lows she helped me to look on the bright side of

life and to get up again. Moreover, I thank my parents, Gisela and Hans, my sister

Daniela and my parents in law, Hedwig and Gerhard, for their mental support.

6



Abstract

This thesis contributes to the field of mathematical image processing and inverse

problems. An inverse problem is a task, where the values of some model parameters

(in our case images) must be computed from observed data. Such problems arise in

a wide variety of applications in sciences and engineering, such as medical imaging,

biophysics, geophysics, remote sensing, ocean acoustic tomography, nondestructive

testing or astronomy.

Here, we mainly consider reconstruction problems with Poisson noise in tomography

and optical nanoscopy. In optical nanoscopy the task is to reconstruct images from

blurred and noisy measurements, whereas e.g. in positron emission tomography the

task is to visualize biochemical and physiological processes of a patient by measure-

ments from outside the body.

In the literature there are several models and algorithms for 3D static image recon-

struction. However, standard methods do not incorporate time-dependent informa-

tion or dynamics, e.g. heart beat or breathing in medical imaging or cell motion in

microscopy. This can lead to deficient accuracy particularly at object boundaries,

e.g. at cardiac walls in medical imaging.

This dissertation contains a treatise on models, analysis and efficient algorithms to

solve 3D static and 4D time-dependent inverse problems.

In the first part of this thesis the main goal is to present an accurate, robust and fast

3D static reconstruction framework based on total variation for inverse problems with

non-standard noise models. We will provide a detailed analysis including existence,

uniqueness and convergence proofs.

In the second part our main goal is to study different transport and motion models

and to combine them with the ideas of the first part, to build a joint 4D model for

simultaneous reconstruction, total variation regularization and optimal transport.

The fundamental concepts are based on non-standard noise models, sparsity regu-

larization techniques, Bregman distances, splitting techniques and motion estima-

tion. In the course of this thesis, topics of various areas in applied mathematics

and computer science are brought together, e.g. static and time dependent inverse

problems, regularization of ill-posed problems, applied functional analysis, error es-

timation, convex optimization theory, numerical algorithms, computational science

(parallelization, GPU programming), continuum mechanics, computer vision, mo-

tion estimation or optimal transport.

The performance of our main concepts is illustrated by experimental data in tomog-

raphy and optical nanoscopy.



Keywords: 4D image reconstruction, inverse problems, 4D image processing, Pois-

son noise, total variation, sparsity regularization, Bregman distances, motion esti-

mation, optimal transport, splitting methods, optical nanoscopy, tomography
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Notation and Symbols

Function Spaces and Norms

For an open and bounded subset of Rd we define the following real-valued function

spaces.

R
d The Euclidean space of dimension d with the Euclidean norm | · |.

R+ Non-negative real numbers.

BV (Ω) Space of functions of bounded variation with seminorm |u|BV (Ω),

the total variation of u in Ω.

Ck(Ω) The space of functions on Ω, which are k-times continuously differ-

entiable.

Lp(Ω) With 1 ≤ p < ∞ : Space of Lebesgue measurable functions u

such that
∫

Ω
|u|pdx <∞. The space Lp(Ω) is a Banach space with

corresponding norm ‖u‖Lp(Ω) =
(∫

Ω
|u|pdx

) 1
p . In the case p = 2 it

is a Hilbert space with corresponding inner product 〈u, v〉L2(Ω) =
∫

Ω
u · v dx.

〈 · , · 〉2 The duality product in L2(Ω), 〈 · , · 〉L2(Ω).

‖ · ‖2 The norm in L2(Ω), ‖ · ‖L2(Ω).

L∞(Ω) Space of Lebesgue measurable functions u such that there exists a

constant C with |u(x)| ≤ C, a.e. x ∈ Ω. The space L∞(Ω) is a

Banach space with corresponding norm ‖u‖L∞(Ω) = sup
x∈Ω
{ |u(x)| }.

Lp
loc(Ω) Lp

loc(Ω) = {u : Ω→ R | u ∈ Lp(D), for each D ⋐ Ω}.
W k,p(Ω) With 1 ≤ k, p ≤ ∞ : Sobolev space of functions u ∈ Lp(Ω) such

that all weak derivatives up to order k belong to Lp(Ω). The space

W k,p(Ω) is a Banach space with norm

‖u‖W k,p(Ω) =

(
k∑

i=1

∫

Ω

|Diu|pdx
) 1

p

, where Diu denotes the i-th dis-

tributional derivative of u.

W k,p
0 (Ω) Functions in the Sobolev space W k,p(Ω) with compact support, i.e.

W k,p
0 (Ω) :=

{
u ∈ W k,p(Ω) | u|∂Ω = 0

}
.

Hk(Ω) W k,2(Ω). This is a Hilbert space with corresponding inner product

〈u, v〉Hk(Ω) =
k∑

i=1

∫

Ω

Diu Div dx. For this special Sobolev space we

write ‖ · ‖Hh(Ω) := ‖ · ‖W k,2(Ω) for its corresponding norm.

‖ · ‖1 The norm in H1(Ω), ‖ · ‖H1(Ω).

13



Notation

H(div; Ω) The space H(div; Ω) := {v ∈ L2(Ω)2 | div(v) ∈ L2(Ω)} becomes

an Hilbert space with the inner product 〈v,w〉div;Ω := 〈v,w〉Ω +

〈div v, div w〉Ω.
H(curl; Ω) The space H(curl; Ω) := {v ∈ L2(Ω)2 | curl(v) ∈ L2(Ω)} becomes

an Hilbert space with the inner product 〈v,w〉curl;Ω 〈v,w〉Ω +

〈curl v, curl w〉Ω.
For a Banach space X with a norm ‖·‖X and ρ : (0, T )→ X we denote

Lp(0, T ;X) With 1 ≤ p < ∞ : Space of functions ρ → ρ(t) measurable on

(0, T ) for the measure dt, i.e. the scalar functions t → ‖ρ‖X are

dt-measurable. It is a Banach space with the norm

‖ρ‖Lp(0,T ;X) =

(∫ T

0

‖ρ‖pX dt

) 1
p

≤ ∞.

About Functions and Functionals

For a function u : Ω ⊂ R
d → R and a sequence of functions (un)n∈N belonging to a

Banach space X we have

un → u in X The sequence (un) converges strongly to u in X.

un ⇀ u in X The sequence (un) converges weakly to u in X.

un ⇀∗ u in X The sequence (un) converges to u in the weak* topology of X.

‖u‖X The norm of u in X; for specific norm definitions see previous no-

tation part.

supp(u) The support of u, supp(u) = Ω \⋃iwi, where u is measurable and

(wi)i∈I a family of all open subsets such that wi ⊆ Ω and for each

i ∈ I, u = 0 a.e. on wi.

Du Distributional derivative of u.

∇u Gradient of u in Ω; we will use ∇Ω u to lay emphasis on Ω.

∇ · u Divergence of u, i.e. ∇ · u =
d∑

i=1

∂u

∂xi
; we will use ∇Ω · u to lay

emphasis on Ω.

∆ u Laplacian of u, i.e. ∆Ωu =
d∑

i=1

∂2u

∂x2i
; we will use ∆Ωu to lay emphasis

on Ω.

ρt Temporal derivative ρt = ∂tρ of a function ρ : (0, T )→ X for t > 0.

J∗ The Legendre-Fenchel transform of J , i.e. the convex conjugate

J∗ : X∗ → R̄ is defined as J∗(p) = supu∈X { 〈u, p〉 − J(u) } .

14



Miscellaneous

Let A, B and R be bounded and open sets in R
d.

Ω ⊂ R
d An open and bounded set with Lipschitz boundary.

A →֒ B A is continuously embedded into B.

A →֒→֒ B A is compactly embedded into B.

K ∈ L(H) K is a bounded linear operator in a Hilbert space H.
K∗ The adjoint operator of K in H, i.e. 〈Ku, p〉 = 〈u,K∗p〉, where

〈·, ·〉 denotes the duality product in H.
‖K‖ The operator norm of K.

| · | Euclidean norm in R
d.

V ∗ The topological dual of a topological vector space V .

sign(u) The sign function, i.e. sign(u) =







1 u > 0

0 u = 0

−1 u < 0 .

χR Characteristic function of a bounded and open set R, i.e.

χR(u) =







0 x ∈ R
+∞ otherwise .

1R Indicator function of a bounded and open set R, i.e.

1R(u) =







1 x ∈ R
0 otherwise .
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1
Introduction

This thesis deals with models, analysis and algorithms for 3D static and 4D time

dependent inverse problems in nanoscopy and tomography. The main idea of this

work is to present 3D static reconstruction techniques for inverse problems with non-

standard noise models and to simultaneously combine 4D reconstruction algorithms

with optimal transport for time dependent inverse problems. The fundamental con-

cepts are based on non-standard noise models, sparsity regularization techniques like

total variation (TV), Bregman distances, splitting techniques and motion estimation.

In the course of this thesis, topics of various areas in applied mathematics and

computer science are brought together, e.g. mathematical image processing, static

and time dependent inverse problems, sparsity regularization of ill-posed problems,

applied functional analysis, error estimation, convex optimization theory, numerical

algorithms, computational science (parallelization, GPU programming), continuum

mechanics, computer vision, motion estimation or optimal transport.

To obtain a good overview of the contributions and the organization of this thesis

(Figure 1.2), we will define the main goals of this work in the following. We will start

with the motivation of our main problems by considering applications, and then give

an outline of the main ideas of this thesis.

1.1 Motivation and Contributions

Inverse Problems and Applications

In the past decades, the field of inverse problems has been a rapidly growing area of

applied mathematics. An inverse problem is a mathematical problem where desired

model parameters should be reconstructed from observed data. Inverse problems

arise in a wide variety of applications in sciences and engineering, such as medical



1. Introduction

imaging, biophysics, geophysics, remote sensing, ocean acoustic tomography, nonde-

structive testing or astronomy.

Inverse problems often are modeled with an operator equation

Ku = f ,

where K denotes a linear (or nonlinear) operator describing the relationship between

the observed data f and the desired model parameters u. In this thesis we assume

K as a linear and compact operator with a non-closed range, preserving positivity.

In imaging u is the desired (density) image we want to reconstruct and f are given

measurements possibly defined in another domain. Typical examples for the operator

K are Fredholm integral operators of the first kind, i.e.

(Ku)(x) =

∫

Ω

k(x, y) u(y) dy ,

where x ∈ Σ and where k denotes a non-negative kernel. Since K cannot be in-

verted continuously (due to the compactness of the forward operator), most inverse

problems are ill-posed following Hadamard.

In this thesis we mainly address the task of reconstructing images from data cor-

rupted by Poisson noise, which is important in various applications, such as fluores-

cence microscopy, positron emission tomography (PET) or astronomical imaging.

The first application we will consider in this thesis is optical nanoscopy. The tech-

nology of light microscopy has been considered to be exhausted for a couple of

decades, since the resolution is basically limited by Abbe’s law for diffraction of

light. With conventional microscopy techniques, it is not possible to distinguish

features that are located at distances less than about half the wavelength used, i.e.

about 200nm for visible light. This diffraction limit is based on the wave nature

of light. By developing stimulated emission depletion (STED)- and 4Pi-microscopy

[97] nowadays resolutions are achieved way beyond this diffraction barrier [112, 96].

STED-microscopy [191] takes an interesting laser scanning approach, which ”practi-

cally overcomes” physical limits and allows imaging resolutions in nano-scale. The

underlying principle was invented and experimentally realized by Stefan W. Hell and

his Max Planck Institute for Biophysical Chemistry in Göttingen.

18
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(a) (b)

Figure 1.1: Basic principle of a STED microscope: (a) Two laser beams are com-

bined to increase the resolution; (b) Fluorescent spot for different laser

intensities of the depletion beam.

Figure 1.2: Comparison of a confocal light microscope and a STED microscope for

different laser intensities; bottom: corresponding PSF structures in the

Fourier space.

The basic apparatus consists of two laser beams, a stimulation beam and a deple-

tion beam. Fluorescent dyes are stimulated by the excitation beam (”on-beam”)

and are directly quenched by an additional interfering laser spot (”off-beam”), the

STED spot. Since this depletion beam vanishes at a very small point in the middle,

fluorescence of the simulating spot is only detected at this tiny position, see Figure

1.1 (a). For higher laser intensities of the depletion spot the radius of the resulting

fluorescence spot reduces, see Figure 1.1 (b) and Figure 1.2. Hence, data with pre-

viously unknown resolution can be measured. However, by reaching the diffraction

limit of light, measurements f suffer from blurring effects and in addition suffer from

Poisson noise due to laser sampling (photon counts).

19
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Consequently, in the case of optical nanoscopy the linear and compact operator K

describes a blurring operator, i.e. a convolution operator with a kernel k ∈ C(Ω ⊂
R

d)

(Ku)(x) = (k ∗ u)(x) :=

∫

Ω

k(x− y) u(y)dy .

The kernel is often referred to as the point spread function (PSF). Our image re-

construction task is to compute deblurred and nearly noise-free images from the

measurements of the high resolution fluorescence microscope, see Figure 1.3 for a

synthetic illustration and Figure 1.5(a) for a real data set with the protein syntaxin.

desired exact data u kernel k (psf) blurred data given blurred &

noisy data f

Figure 1.3: Illustration of the inverse problem setting with synthetic data.

The second application we will consider in this thesis is tomography in medical

imaging. Positron emission tomography (PET) is a biomedical imaging technique,

which enables to visualize biochemical and physiological processes, such as glucose

metabolism, blood flow, or receptor concentrations, see e.g. [189], [178], [10]. This

Figure 1.4: Illustration of positron emission tomography (PET). left: PET scanner,

right: Visualization: From data to reconstruction.

modality can be used for instance to detect tumors, locate areas of the heart affected

by coronary artery disease and identify brain regions influenced by drugs. Therefore,
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1.1 Motivation and Contributions

PET is categorized as a functional imaging method and differs from methods such

as X-ray computed tomography (CT) that measures attenuation related to density

integrals on rays (non-functional). The data acquisition in PET is based on weak

radioactively marked pharmaceuticals, so-called tracers, which are injected into the

blood circulation. Used markers are suitable radio-isotopes which decay by emitting

positrons annihilating almost immediately with electrons in the body of a patient.

The resulting emissions of photons are collected by a detector system surrounding

the patient, see Figure 1.4. Due to the radioactive decay, measured data can be mod-

eled as an inhomogeneous Poisson process with a mean given by the X-ray transform

of the spatial tracer distribution. The X-ray transform maps a function on R
d into

the set of its line integrals. More precisely, if θ ∈ Sd−1 and x ∈ Ω, the operator

describing our inverse problem is an integral of u over the straight line through x

with direction θ,

(Ku)(θ, x) =

∫

R

u(x + t θ) dt , x + t θ ⊆ Ω .

Up to notation, in the 2D case the X-ray transform is equivalent to the more popular

Radon transform. To summarize, the image reconstruction task in PET is to gener-

ate density images of the inside of a patient from count data (sinograms) collected

at the detectors.

For further examples of ill-posed operator equations we refer to [65, Chapter 1]. One

difficulty of solving inverse problems in imaging is that often only noisy data are

available, and hence the reconstruction of images gets unstable due to ill-posedness.

In order to accomplish that, one can incorporate a priori knowledge about the so-

lution into the reconstruction process. This means we use so-called regularization

methods. To obtain variational methods, which are very common in imaging and

image processing, one can use a Bayesian approach for computing solutions of the

operator equations above in the presence of stochastic effects such as noise.

In a Bayesian approach one computes the MAP (maximum a-posteriori probability)

estimate by

uMAP = argmin
u

(− log p(u|f)) ,

where p(u|f) denotes the probability of observing u under given data f . By incor-

porating knowledge about the noise type of the data f and by incorporating a priori

known smoothness properties of the solution u, one can derive variational problems

of the form

min
u∈W(Ω)

{Hf (Ku− f) + α J(u)} ,

where Hf denotes a general data fidelity dependent on the operator K and the given
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data f and where J denotes a general regularization term penalizing deviations from

the smoothness of a solution.

First part of the thesis: 3D static image reconstruction

In the first part of the thesis we will concentrate on 3D static image reconstruction

models concerning non-standard noise models. We will use total variation (TV)

regularization and Bregman distances for the applications presented above. In the

case of Poisson noise and TV regularization we obtain the following variational

problem

min
u ∈BV (Ω)
u≥ 0 a.e.

∫

Σ

(Ku− f logKu) dµ + α |u|BV (Ω) , (1.1)

where α > 0 denotes a regularization parameter and where the total variation semi-

norm is defined as

|u|BV (Ω) := sup
g∈C∞

0 (Ω,Rd)
||g||∞≤1

∫

Ω

u ∇ · g .

In recent years extensions of the so-called EM algorithm respectively Richardson-

Lucy algorithm received increasing attention for inverse problems with Poisson data.

However, most algorithms for regularizations like TV produce images suffering from

blurred edges due to approximations in the algorithms, and neither can guarantee

positivity nor provide detailed convergence proofs.

The first goal of this part is to provide an accurate, fast and robust EM-TV al-

gorithm for efficient noise removal and for computing cartoon reconstructions facili-

tating post-segmentation. The method will be reinterpreted as a modified forward-

backward splitting (FBS) strategy known from convex optimization. We want to

establish the well-posedness of the basic variational problem in Section 1.1 including

existence, uniqueness and stability, and we want to show that our EM-TV method

preserves the positivity of a solution. In addition, we are interested in proving the

convergence of proposed algorithms. A damped variant of the EM-TV algorithm

with modified time steps, will be the key step towards convergence.

Typically, TV-based reconstruction methods provide reconstructions suffering from

contrast reduction. More precisely, it was shown for instance by Meyer in [124] or

in [134] that the amount of contrast reduction of an eigenmode (e.g. a cylinder

in 2D) of TV can be expressed by the regularization parameter α. Hence, the

second goal in this first part of the thesis is to propose extensions to EM-TV, based

on Bregman iterations and primal and dual inverse scale space methods, in order

to improve imaging results by simultaneous contrast enhancement. In this thesis

Bregman distances will be used in several parts for different applications playing

different roles, e.g. as an iterative regularization technique, as an analytical tool or
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1.1 Motivation and Contributions

as a key to fast L1-type algorithms. The Bregman distance for a convex functional

J is defined as follows

Dp
J(u, v) := J(u)− J(v)− 〈p, u− v〉 , (1.2)

where p ∈ ∂J(v) is a subgradient of J at v.

In the case of an L2 data fidelity the iterative Bregman distance regularization

concerning J reads as follows







ul+1 = argmin
u

{
1

2
‖Ku− f‖2L2(Σ) + α Dpl

J (u, u
l)

}

pl+1 = pl − 1

α
K∗(Kul+1 − f) ,

where the subgradient pl ∈ ∂J(ul) can be interpreted as a residual or noise function.

Via substitutions and by shifting terms to the quadratic data fidelity it is possible

to simplify this problem to the following equivalent scheme







ul+1 = argmin
u

{
1

2

∥
∥Ku− f l

∥
∥
2

L2(Σ)
+ α J(u)

}

f l+1 = f l + f −Kul+1 .

By adding back residuals, this method simultaneously enhances the contrast of re-

constructions. However, for general data fidelities Hf , particularly those of non-L2

type (i.e. not related to additive Gaussian noise), the question arises:

Is it always possible to find a Bregman regularization strategy that can be realized by

a simple shift in the data fidelity?

In other words, the third goal of this part is to find a Bregman iteration for general

data fidelities that simultaneously enhances contrast and is easy to implement. This

issue yields the general concept of dual Bregman regularization strategies and makes

it possible to obtain error estimates respectively convergence rates. We will illustrate

the performance of our techniques and analytical concepts by 2D and 3D synthetic

and real-world results in optical nanoscopy such as in Figure 1.5 or in PET such as

in Figure 1.6. In Figure 1.5 you can see a significant reconstruction improvement

if you compare the original noisy and blurred STED data with the EM-TV and

Bregman-EM-TV reconstructions.
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1. Introduction

(a) Syntaxin (b) EM-TV (c) Bregman-EM-TV

Figure 1.5: 2D experimental data: (a) Protein Syntaxin in cell membrane, fixed ma-

malian (PC12) cell; image size: 1000 x 1000; (b) EM-TV reconstruction;

and (c) 3rd iterate u3 of the Bregman-EM-TV algorithm.

(a) (b) (c)

Figure 1.6: PET results of the heart: (a) 3D PET, 20 min (”ground truth”); (b) 3D

EM, 5 sec; (c) 3D EM-TV, 5 sec

Second part: Joint 4D Image Reconstruction and Optimal Transport

In the second part of this thesis we will extend 3D image reconstruction to 4D image

sequence reconstruction. Instead of a static inverse problem, Ku = f , we now have

to solve inverse problems in space and time, i.e.

K̃(ρ(x, t)) = f(x, t), (x, t) ∈ Ω× [0, T ] ⊂ R
3 × R .

For fixed time steps t = t0, intuitively, one may take into account the application of

static reconstruction techniques similarly to the first part of the thesis.

However, since we talk about time dependent inverse problems, we have to consider

that ”life is always in motion”. In particular, in our applications in 4D medical

imaging and video fluorescence microscopy we can observe natural motion effects.

For example in positron emission tomography we have to consider natural patient
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1.1 Motivation and Contributions

motion like breathing or beating of the heart. To be more precise, in clinical studies

it has been found that the breathing motion of the diaphragm can range from 4 mm

to 38 mm, cf. [179].

Similarly, in dynamic fluorescence microscopy (e.g. dynamic STED) we can think

of reconstructing videos in live cell imaging. Here we have motion effects for in-

stance due to the migration of single cells or proteins. In optical nanoscopy time

dependent reconstruction algorithms and tracking techniques are becoming more

and more important. For example, recently, biophysicist achieved to observe and

study living cells in nano-scale, cf. [95, 115]. For the reconstruction of 4D data in

medical imaging or video microscopy standard methods as simple generalizations of

3D reconstruction algorithms can be applied, but usually they do not incorporate

time dependent motion models. However, in dynamic tomography, e.g. in positron

emission tomography (PET), motion is a well-known source of degradation of recon-

struction results. Hence reconstruction models without incorporating motion models

can cause significant blurring effects in resulting image sequences, especially at ob-

ject boundaries, cf. Figure 7.1 (artifacts at the cardiac wall in the bottom image).

Figure 1.7: Comparison of a PET sequence reconstruction with and without motion

modeling; Blurring effects due to motion artifacts in the bottom image.

The data is from the European Institute for Molecular Imaging (EIMI).

Here we can see undesired doubling effects. The blurring effects on the PET im-

ages usually are proportional to the magnitude of the motion. In the literature

it is well-known that these motion artifacts can cause significant errors in a later

quantification. For example motion artifacts can cause a wrong staging of tumors,

cf. [135, 66], or they can cause incorrect uptake values, cf. [132], and it can also
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happen that small tumors may remain undetected [137]. Therefore, the combination

of parameter estimation models or motion models and reconstruction techniques is

an interesting recently growing research area, cf. [123, 144, 80, 54, 147, 181].

As a consequence, our first goal for the second part of the thesis is to study and

characterize various models for motion estimation and optimal transport.

In computer vision optical flow estimation deals with the computation of visual mo-

tion information in image sequences. For a given video ρ(x, t) a common assumption

for estimating the optical flow is brightness constancy,

ρ(x+ v, t+ δt)
!
= ρ(x, t) ,

i.e. following the desired velocity field v, the pixel intensity should not change. By

using a Taylor expansion this assumption implies the following PDE, the so-called

optical flow constraint (OFC),

∂tρ+ v ∇Ωρ = 0 .

Hence, a standard model for optical flow estimation reads as follows,

min
v
‖∂tρ+ v ∇Ωρ‖22 + α J(u) , (1.3)

where the first term, the data fidelity term, penalizes deviations from the OFC

and where J(u) denotes a regularization term penalizing deviations from a certain

smoothness of the flow field.

For dynamic tomography data of the heart we basically have two types of motion.

On the one hand motion due to the respiratory displacement and on the other hand

motion due to the cardiac contraction. We will point out that the optical flow

concept only takes into account incompressible flows, whereas mass conservation is

more general and also takes into account compressible flows which will be useful

e.g. for cardiac contraction. In other words, mass conservation allows significant

density changes due to time, whereas the mass is preserved. Hence, we pass over to

continuity equations and optimal transport.

In Chapter 9 we will give an introduction to basic concepts of continuum mechan-

ics. Based on this, we will study mass conservation and optimal transport further

in detail. Particularly with regard to our joint 4D reconstruction model we will

concentrate on the following model for optimal transport with mass conservation

inf
ρ,v

T

∫ T

0

∫

Ω

ρ(x, t) |v(x, t)|2 dx dt
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1.1 Motivation and Contributions

subject to ∂tρ+∇Ω · (ρ v) = 0 (mass conservation)

ρ(·, 0) = ρ0

ρ(·, T ) = ρT ,

which was introduced by Benamou and Brenier in [17, 18]. The main idea of this

constrained optimization problem is to find an optimal transport ”plan”v, to move a

given start density ρ0 to a given end density ρT (the original problem of Monge [128]

was to move a heap of sand into a hole of the same size). The continuity equation

is the transport equation and the integral represents the transport cost.

Our final goal in the thesis is to combine the concepts of motion estimation and op-

timal transport with the reconstruction ideas of the first part of the thesis to build a

joint 4D model for simultaneous image reconstruction, total variation regularization

and optimal transport (including mass conservation), see Figure 7.1.

Our new 4D model for joint image reconstruction, spatio-temporal regularization

and optimal transport, reads as follows

Model 1.1.1. General 4D Reconstruction & Optimal Transport

min
ρ,v

∫ T

0

Hf(·,t) (Kρ(·, t)) dt + α

∫ T

0

J(ρ(·, t)) dt +
β

2

∫ T

0

∫

Ω

ρ |v|2 dx dt (1.4)

s.t. ∂t ρ + ∇Ω · (ρ v) = 0 in Q := Ω× [0, T ]

ρ ≥ 0 .
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On the one hand, this model computes a sequence of reconstructed images ρ from

the sequence of given data f in the sense of inverse problems while regarding an

optimal transport scheme. On the other hand, the model simultaneously estimates

the motion field v in the sequence, which can be used later on, e.g. for registration

or tracking purposes. The first term of the objective functional is a data fidelity

term Hf in space and time, which depends on the given image sequence f , on a

compact operator K and on the desired density sequence ρ. The compact operator

K is assumed to have the same structure in all time steps t. This makes sense for

various applications since detector systems like microscopes or tomographs will not

change their properties during time. In analogy to static reconstruction, different

data fidelities will result from different noise models using Bayesian theory and

MAP estimation. The second term of the objective functional is a time dependent

regularization term. J can for example be a quadratic regularization term or the total

variation. The third term and the constraint are related to the optimal transport

scheme with mass conservation we introduced above. The main difference to optimal

transport is the fact that we do not have a given start or end density. Initial values

for the transport equation automatically arise from the given data of the inverse

problem. In addition, we need to add a positivity constraint to the model since we

consider density images.

For this general formulation we will study different variants including TV regulariza-

tion in space and time. We will provide a detailed analysis including existence and

uniqueness proofs. To overcome the large amount of data we will propose two types

of numerical realizations based on preconditioning and splitting techniques to facili-

tate parallelization and efficiency. On the one hand we will present a preconditioned

Newton-SQP method with integrated line-search. On the other hand, for the case of

TV, we will present a special splitting technique based on inexact Uzawa techniques

that is highly parallelized and where each of the resulting sub-steps in the algorithm

is an efficient shrinkage or an efficient DCT inversion, which can additionally be

parallelized on GPUs.

To summarize, in this thesis we will provide several models in 3D and 4D image

reconstruction including motion estimation, a detailed analysis for different models,

as well as a wide range of numerical realizations and results in real applications.

1.2 Organization of the Work

The thesis is organized as follows (also see Figure 1.2). The following three chap-

ters, Chapter 2 - Chapter 4, serve as a general introduction of mathematical tools,
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concepts and algorithms. The main ideas and techniques of these chapters will be

applied in several sections throughout this thesis, see the left hand side of Figure

1.2.

In Chapter 2 we introduce variational methods for inverse problems and image pro-

cessing tasks via the Bayesian model. In particular, we discuss different function

spaces for image processing, e.g. the space of functions with bounded total variation

BV , and we introduce the total variation (TV). Subsequently, we consider basic

definitions and theorems in differentiability and optimality for a later analysis of

models and algorithms.

Chapter 3 is dedicated to convex analysis and Bregman distances, see (1.2). We

introduce concepts of subdifferential calculus and Legendre-Fenchel duality first.

Then, we pass over to Bregman distances and the ”role”, the distance plays in this

thesis. We study standard primal and a new dual Bregman iteration for general

variational problems. The latter iteration has very nice properties. For example

it enhances contrast in the sense of inverse scale space methods, and we can proof

the well-posedness as well as error estimates. In the case of L2 data fidelities this

dual Bregman method coincides with the primal Bregman iteration, see (1.3). In

a section on error forgetting we discuss recent ideas that may explain the power

of Bregman iterations. The primal and dual Bregman methods will be applied to

reconstruction problems with Poisson noise and TV in Chapter 5.

In Chapter 4 we study splitting methods in convex optimization. The main idea

of these methods is to decouple a variational or a constraint optimization problem,

such that resulting algorithms consist of cost-efficient sub-steps, which can be han-

dled and adapted easily. We start with the introduction of general saddle point

problems, because most splitting methods in this context can be characterized as

primal and dual multi-step methods. Continuing with the general class of inexact

Uzawa algorithms and with augmented Lagrangian methods, we aim precondition-

ing and build a general basis for the ”zoo” of specific splitting techniques known

in literature. Without making a claim to be complete we will introduce the main

splitting techniques used in this thesis. More precisely, in Chapter 6 we will use

forward-backward splitting for solving 3D TV reconstruction problems such as the

one in (1.1). With the Split Bregman technique (resp. DRS or ADMM) we are going

to establish a new algorithm for optical flow computation with TV regularization.

In Chapter 10 we will make extensive use of inexact Uzawa strategies, respectively

Bregmanized Operator Splitting (BOS), with preconditioning.

In Chapter 5 we will study 3D TV reconstruction problems in the case of Poisson

noise as introduced above. Furthermore, we are going to present extensions to si-

multaneous contrast enhancement via Bregman iterations, and a detailed analysis

of models and the proposed EM-TV algorithm.
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In Chapter 6 the methods introduced in the previous chapter will be applied to 2D

and 3D reconstruction problems in optical nanoscopy and positron emission tomog-

raphy.

Chapter 7 serves as a ”bridge” between 3D static image reconstruction and 4D time

dependent imaging, providing an overview on the subsequent chapters.

In Chapter 8 we will discuss different motion models based on optical flow, such as

the one in (1.3), further in detail. We will characterize different data fidelities and

different smoothing terms for the flow field. In particular, we will combine optical

flow techniques with total variation regularization and splitting techniques, and we

will present results in high resolution computed tomography (CT) and tracking ap-

plications.

In Chapter 9 we will give an introduction to basic concepts of continuum mechanics.

Based on this, we will study mass conservation and optimal transport problems as

introduced above.

Chapter 10 is dedicated to our joint 4D image reconstruction model with optimal

transport we introduced in Model 1.1.1.
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Figure 1.8: Organization of the thesis.
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2
Variational Methods

2.1 Motivation: Inverse Problems

First of all, in order to derive general variational models for image and video pro-

cessing tasks we need to define the terms image and image sequence in a continuous

setting.

Definition 2.1.1 (Image). Let Ω ⊂ R
d, d ∈ N be an image domain. A function

u : Ω→ R is called a d-dimensional image if the following conditions are fulfilled,

• u has a compact support, if Ω is not bounded.

• 0 ≤ u(x) <∞, ∀x ∈ Ω (Intensity boundedness)

•
∫

Ω
u(x)dx ≤ ∞ (Energy boundedness) .

If u is not only a one-channeled gray value image but also a color image, the defini-

tion extends for each channel in the straight forward way.

The definition of an image refers to a light intensity function u where each spatial

point x is mapped to a certain gray value or color. For example in biomedical

imaging we mainly think of density images. We denote the boundary of Ω by ∂Ω.

In dynamic image processing applications we work with videos, i.e. a sequence of

images.

Definition 2.1.2 (Image sequence). Let Q = Ω× [0, T ] be a space-time cylinder. A

function ρ : Q→ R is called a d-dimensional image sequence if it is a d-dimensional

image for every fixed t ∈ [0, T ].



2. Variational Methods

Since time dependence and motion plays an important role in this work, we will

use u to denote static images and ρ for image sequences. Image reconstruction is

a fundamental problem in many fields of applied sciences, e.g. nanoscopic imaging,

medical imaging or astronomy. Fluorescence microscopy for example is an important

imaging technique for the investigation of biological (live-) cells, down to nano-

scale. In this case image reconstruction arises in form of deconvolution problems.

Undesirable blurring effects can be ascribed to a diffraction of light.

Mathematically, image reconstruction in such applications can often be formulated

as the computation of a function ũ ∈ U(Ω) from the operator equation

Kũ = g . (2.1)

Typically, this is a Fredholm integral equation of the first kind with given exact data

g ∈ V(Σ) and the desired exact solution ũ.

Here, K denotes a linear and compact operator K : U(Ω)→ V(Σ) and U(Ω) as well
as V(Σ) are Banach spaces of functions on bounded and compact sets Ω respectively

Σ. In the case of nanoscopic imaging ũ is a convolution operator

(Ku)(x) = (k ∗ u)(x) =

∫

Ω

k(x− y)u(y) dy ,

where k is a convolution kernel, describing the blurring effects caused by a nanoscopic

apparatus.

Since K cannot be inverted continuously (due to the compactness of the forward

operator), most inverse problems are ill-posed. Furthermore, in real-life applications

the exact data g are usually not available, but a noisy version f instead. Hence, we

need to compute approximations to the ill-posed problem 2.1, i.e.

Ku = f (2.2)

with u ∈ U(Ω) and f ∈ V(Σ).

2.2 Bayesian Modeling

In order to obtain general variational models including different data fidelities and

different regularization terms we make use of the Bayesian approach for computing

solutions of the operator equation in 2.2 in the presence of stochastic effects such as

noise. In a classical log-likelihood estimation technique one computes a solution by

minimizing the negative log-likelihood of observing f under u, i.e.

uML = argmin
u

(− log p(f |u)) ,
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2.2 Bayesian Modeling

where p(f |u) denotes an appropriate probability density for observing f given u.

This can usually be identified with the probability density of the noise, e.g. in the

case of additive Gaussian noise

f = Ku+ η ,

where η denotes a stochastic perturbation (noise), we obtain

p(u|f) = pη(f −Ku) . (2.3)

A frequently used way to realize the latter is the Bayesian model, whose aim is the

computation of an estimate u of the unknown object by maximizing the a-posteriori

probability density p(u|f) with measurements f . In other words, in a Bayesian

approach one computes the MAP (maximum a-posteriori probability) estimate by

uMAP = argmin
u

(− log p(u|f)) . (2.4)

The posterior probability density is given according to Bayes formula

p(u|f) = p(f |u) p(u)
p(f)

, (2.5)

where p(u) is the prior probability for u and where p(f) denotes the prior probability

for f . Since p(f) does only contribute a constant term in the minimization of 2.4

we can write the MAP estimate similarly to the ML estimate above as

uMAP = argmin
u

(− log p(f |u)− log p(u)) .

The MAP approach has the advantage that it allows to incorporate additional in-

formation about u via the prior probability density p(u) into the reconstruction

process. It acts as a penalty or regularization functional. The most frequently used

prior densities are Gibbs functions

p(u) ∼ e−α J(u) , (2.6)

where α is a positive parameter and J a convex regularization energy J : W(Ω) →
R ∪ {∞} [78, 79].

Since stochastic modeling is often done in discrete terms based on the modeling of

random variables, we introduce a semi-discrete, linear and compact operator

K : U(Ω)→ D(Σ) , (2.7)

with a finite-dimensional range D(Σ), to be able to derive corresponding continuum

models. Typical models for the probability density p(f |u) in (2.5) are data with

35



2. Variational Methods

Gaussian noise, Poisson-distributed data or Γ-distributed data with multiplicative

noise, i.e.

p(f |u) ∼ e
− 1

2σ2 ‖Ku−f‖2
L2(Σ) (Gaussian)

p(f |u) =
∏

i

(Ku)fii
fi!

e−(Ku)i (Poisson)

p(f |u) =
∏

i

nn

(
Ku
)n

i
Γ(n)

fn−1
i e

−n
fi

(Ku)i (Gamma) ,

(2.8)

where K̄ is a semi-discrete operator derived from local mapping K̄ =
∫
K.

Most works deal with the case of additive Gaussian distributed noise so far. However,

in real-life there are several applications, in which different types of noise are of a

certain interest, such as Positron Emission Tomography (PET), Microscopy, CCD

cameras, or radar. For instance, in addition to fluorescence microscopy, Poisson

noise appears also in PET in medical imaging. Other non-Gaussian noise models

are salt and pepper noise or the different types of multiplicative noise, for example

appearing in Synthetic Aperture Radar (SAR) imaging to reduce speckle noise. In

[6], Aubert and Aujol assumed η in f = (Ku)η to follow a gamma law with mean

one and derived the conditional probability p(f |u) above. For such cases different

variational models (fidelities related to the log-likelihood of the noise distribution)

can be derived in the framework of MAP estimation, which need different analysis

than in the case of Gaussian distributed noise.

In the canonical case of additive Gaussian noise (see (2.8)), the minimization of the

negative log likelihood function (2.5) leads to classical Tikhonov regularization [22]

based on minimizing a functional of the form

min
u≥0

{
1

2
‖Ku− f‖2L2(Σ) + α J(u)

}

. (2.9)

The first term, the so-called data-fidelity term, penalizes the deviation from equality

in (2.1) whereas J is a regularization term as in (2.6). If we choose K = Id and

the total variation (TV) regularization technique J(u) := |u|BV , we obtain the well-

known ROF-model [157] for image denoising. The additional positivity constraint is

necessary in typical applications as the unknown represents a density image.

In nanoscopic imaging measured data are stochastic and pointwise, more precisely,

the data are called ”photon counts”. This property refers to laser scanning techniques

in fluorescence microscopy. Consequently, the random variables of measured data

are not Gaussian- but Poisson-distributed (see (2.8)), with expected value given by

(Ku)i. Hence an MAP estimation via the negative log likelihood function (2.5) leads
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to the following variational problem [22]

min
u≥0

{ ∫

Σ

(Ku− f logKu) dµ + α J(u)

}

. (2.10)

Up to additive terms independent of u, the data-fidelity term is the so-called Kullback-

Leibler functional (also known as cross entropy or I-divergence) between the two

probability measures f and Ku. A particular complication of (2.10) compared to

(2.9) is the strong nonlinearity in the data fidelity term and resulting issues in the

computation of minimizers.

The specific choice of the regularization functional J in (2.10) is important for the

way a-priori information about the expected solution is incorporated into the recon-

struction process. Smooth, in particular quadratic regularizations have attracted

most attention in the past, mainly due to the simplicity in analysis and computation.

However, such regularization approaches always lead to blurring of the reconstruc-

tions, in particular they cannot yield reconstructions with sharp edges.

Recently, singular regularization energies, in particular those of ℓ1 or L1-type, have

attracted strong attention. Throughout this work, the total variation (TV) regular-

ization functional will play a fundamental role. TV regularization has been derived

as a denoising technique in [157] and has been generalized to various other imaging

tasks subsequently. The exact definition of TV [1], used in this work, is

J(u) := |u|BV = sup
g∈C∞

0 (Ω;Rd)
||g||∞≤1

∫

Ω

u divg , (2.11)

which is formally (true if u is sufficiently regular) |u|BV =
∫

Ω
|∇u| dx. The motiva-

tion for using TV is the effective suppression of noise and the realization of almost

homogeneous regions with sharp edges. These features are attractive for nanoscopic

imaging if the goal is to identify object shapes that are separated by sharp edges

and shall be analyzed quantitatively.

2.3 Variational Calculus

The minimization of functionals as in (2.9) or (2.10) is related to the calculus of

variations. A general form of optimization problems in image reconstruction and

inverse problem is given by

min
u∈U(Ω)

{ Hf (Ku) + J(u)} . (2.12)
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Taking a closer look at this, the question arises, over which class of functions U(Ω) we
have to minimize. In other words, we have to think about adequate regularization

terms J , respectively function spaces for our imaging problems. The choice of a

function space directly influences reconstruction results and the analysis of such

problems, in particular the existence and uniqueness of minimizing elements.

2.3.1 Function Spaces and Total Variation

In this section we will introduce basic function spaces with special regard to mathe-

matical image processing. Let Ω ⊂ R
d be a bounded and open domain. Motivated by

analytical investigations in image processing, Ω is usually assumed to be a Lipschitz

space. For instance, we can take a closed rectangle, where the interior represents a

strict Lipschitz space.

Spaces of continuously differentiable functions Ck
Ck(Ω,Rn) for 1 ≤ k < ∞ is a space that contains all k-times continuously differen-

tiable functions with values in R
n. With C∞(Ω,Rn) we denote the space of infinitely

differentiable functions with values in R
n. We write Ck(Ω) for n = 1. On the interior

of Ω, the functions in Ck(Ω̄,Rn) are uniformly continuous.

Lebesgue-Spaces Lp

Definition 2.3.1 (Lp-Spaces). Let Ω ⊂ R
m be an open set and let 1 ≤ p <∞. With

Lp(Ω) we denote the space of all measurable functions u : Ω→ R with the property
∫

Ω

|u(x)|p dx <∞ . (2.13)

If u : Ω→ R
n with ui ∈ Lp(Ω) holds for all i = 1, ..., n, we write u ∈ Lp(Ω,Rn).

For the vector space Lp the mapping

||u||p :=

(∫

Ω

||u(x)||p dx
) 1

p

, u : Ω→ R
n (2.14)

is only a seminorm, because we do not have definiteness. The triangle inequality

for this seminorm is called Minkowski inequality and can be proved via the Hölder

inequality. The completeness of the Lp spaces equipped with the seminorm is given

by Riesz. From the space Lp with the seminorm we obtain a normalized space

Lp := Lp / ∼ (2.15)

as a factor space. The following equivalence relation implies a unique zero element:

u ∼ ũ :⇐⇒ λm({x ∈ Ω | u(x) 6= ũ(x)}) = 0 , (2.16)
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2.3 Variational Calculus

where λm denotes the Lebesgue measure. Hence, functions are equivalent, i.e. they

are in the same equivalence class, if they only differ in a point measure. A norm on

Lp is defined as

|| [u] ||p := ||u||p . (2.17)

Thus, an Lp-function can be interpreted as a whole equivalence class. For p = ∞
one can define an Lp-space as well. It is the space of measurable and essentially

(almost everywhere) bounded functions u : Ω→ R
n. Thereby, the norm is given by

the essential supremum

||u||∞ := ess sup
x∈Ω
||u(x)|| = inf

N∈B(Ω)
λm(N )=0

sup
x∈Ω\N

||u(x)|| , (2.18)

which is defined via the supremum of functions without regarding point measures.

B(Ω) denotes a σ-algebra of Borel sets of Ω. The spaces Lp(Ω,Rn), 1 ≤ p ≤ ∞, are

Banach spaces equipped with the described norms. With the norm induced by the

following scalar product,

〈u, ũ〉L2(Ω,Rn) :=

∫

Ω

〈u(x), ũ(x)〉 dx , (2.19)

the space L2(Ω,Rn) is a Hilbert space. Since Lp spaces are defined via Lebesgue

integrals, they are called Lebesgue spaces. Two different continuous functions never

lie in the same equivalence class. Hence, Lp spaces build a (natural) extension of

continuous functions.

Sobolev Spaces W k,p

Sobolev spaces form the basis of the solution theory of partial differential equations.

For their introduction we need the concept of weak derivatives first. To define them,

we need functions, which are zero on the boundary of Ω. We consider the space of

test functions

C∞0 (Ω,Rn) := { ϕ ∈ C∞(Ω,Rn) | supp(ϕ) ⊂ Ω is compact } , (2.20)

the space of infinitely often differentiable functions with compact support on Ω. The

support of ϕ is defined as the closed non-zero set of ϕ, i.e.

supp(ϕ) := {x ∈ Ω | ϕ(x) 6= 0} . (2.21)

To introduce Sobolev spaces we need to relax the concept of derivatives, in order to

ascribe derivatives to functions that are not differentiable in the ”usual” sense. In

particular, the partial integration can be guaranteed further on.

Definition 2.3.2 (Locally integrable functions). A function u : Ω → R
n, which

is Lebesgue integrable on every compact subset of Ω is called a locally integrable

function. The set of all locally integrable functions in Ω is denoted by L1
loc(Ω,R

n).
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By considering multiindices we define the weak derivative as

Definition 2.3.3 (Weak derivative). Let u ∈ L1
loc(Ω,R

n) and let α ∈ N
m
0 be a

multiindex. Then, if there exists a function ω ∈ L1
loc(Ω,R

n) with
∫

Ω

u(x)Dαϕ(s)dx = (−1)|α|
∫

Ω

ω(x)ϕ(x)dx , ∀ ϕ ∈ C∞0 (Ω) , (2.22)

we call ω a weak derivative of order |α| of u and denote the latter with ω = Dαu.

In other words, ω is a weak derivative of order α of u if it fulfills the partial integration

at positions of the (strong) derivativeDαu. Let us have a look at the following simple

example:

Example 2.3.4 (Absolute value function). Let u(x) = |u| in Ω = (−1, 1).
Then u has the weak derivative

u′(x) = ω(u) =







− 1 x ∈ (−1, 0)
1 x ∈ [0, 1)

, (2.23)

because for all ϕ ∈ C∞0 (−1, 1),
∫ 1

−1

|x|ϕ′(x)dx =

∫ 0

−1

(−x)ϕ′(x)dx+

∫ 1

0

xϕ′(x)dx

= −xϕ(x)|0−1 −
∫ 0

−1

−1ϕ(x)dx+ xϕ(x)|10 −
∫ 1

0

1ϕ(x)dx

= −
∫ 1

−1

ω(x)ϕ(x)dx

(2.24)

holds. The value at zero can be chosen arbitrarily, since it forms a point measure.

A weak derivative of a function can exist, but does not have to. The space L1
loc(Ω,R

n)

is not convenient, such that one is more interested in weak derivatives belonging to

Lp(Ω,Rn) spaces. This leads to the definition of Sobolev spaces:

Definition 2.3.5 (Sobolev Spaces). Let 1 ≤ p < ∞ and k ∈ N. With W k,p(Ω,Rn)

we denote the space of all functions u ∈ Lp(Ω,Rn), for which the weak derivatives

Dαu exist for all multiindices α with |α| ≤ k and also belong to Lp(Ω,Rn), i.e.

W k,p(Ω,Rn) := {u ∈ Lp(Ω,Rn) : Dαu ∈ Lp(Ω,Rn), |α| ≤ k} (2.25)

For functions u ∈ W k,p(Ω,Rn) the W k,p-norm is defined as:

||u||W k,p(Ω,Rn) :=




∑

|a|≤k

||Dαu||p
Lp(Ω,Rn) dx





1
p

. (2.26)
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Similarly we can introduce W k,∞(Ω,Rn) for p =∞ equipped with the norm

||u||W k,∞(Ω,Rn) := max
|α|≤k

||Dαu||L∞(Ω,Rn) . (2.27)

The spaces W k,p(Ω,Rn) are Banach spaces and are called Sobolev spaces.

For p = 2 the norm is induced by the scalar product

〈u, ũ〉W k,2(Ω,Rn) :=
∑

|α|≤k

〈Dαu,Dαũ〉L2(Ω,Rn) , (2.28)

where 〈 · , · 〉L2(Ω,Rn) denotes the scalar product (2.19) of the Hilbert space L
2. Thus

W k,2(Ω,Rn) is a Hilbert space and of special interest. An additional and common

notation for the latter is given by

Hk(Ω,Rn) := W k,2(Ω,Rn), ∀k ∈ N . (2.29)

The space H1(Ω,Rn) is commonly used in literature.

Space of functions of bounded total variation, BV

In this section we will generalize the term (weak) derivative further and we will in-

troduce the so called distributional derivative. To simplify notation we will consider

functions u : R ⊃ Ω → R first. A distribution can be seen as a generalization of a

function. More precisely, a distribution is a continuous, linear functional on a set of

test functions. Thus

T : C∞0 (Ω)→ R

ϕ 7→ T (ϕ) = 〈T, ϕ〉 .
(2.30)

To understand distributions, we examine in which way they generalize functions.

Let u be a piecewise continuous function and let ϕ ∈ Ω be a test function, such that
∫

Ω
u(x)ϕ(x)dx exists. Then we obtain a distribution Tu in the space of distributions

D′(Ω) with:

Tu(ϕ) = 〈Tu, ϕ〉 = [u](ϕ) :=

∫

Ω

u(x)ϕ(x)dx . (2.31)

As you can see, except for a point measure, u is uniquely determined by its distri-

bution Tu = [u]. Distributions, which have been constructed in this way are called

regular. The distributional derivative then is defined analog to the weak derivative

from above:

DαT (ϕ) := (−1)|α| T (Dαϕ), ∀ϕ ∈ C∞0 (Ω) . (2.32)

The formula directly results from the application of partial integration, where the

boundary terms drop out due to the compact support of the test functions ϕ. The
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δ-distribution is an example of a non regular distribution. You can directly see,

that there is no function in the ordinary sense representing the following formal

properties:

δ(x) :=







0 x 6= 0

∞ x = 0,

with

∫

Ω

δ(x) dx = 1 .

(2.33)

Accordingly, the Dirac-δ as a distribution is defined as follows:

δ(ϕ) = 〈δ, ϕ〉 := ϕ(0) . (2.34)

The idea of the distributional derivative can be illustrated nicely via the Heaviside

Figure 2.1: Dirac delta distribution with infinite momentum at 0

function Θ. The jump function is defined as

Θ : Ω→ R with Θ(x) :=







0 x ≤ 0

1 x > 0,
, Ω = R. (2.35)

Considering the latter as a function it is neither continuous nor differentiable in

zero. Considering it as distribution, we can formulate a distributional derivative.

The latter is simply given by the δ distribution, because:

Θ′(ϕ) = −Θ(ϕ′) = −
∫ ∞

0

ϕ′(x) dx ∀ϕ ∈ C∞0 (Ω) , Ω = R

def. ϕ
= ϕ(0) = δ(ϕ) .

(2.36)

In this example we could see that passing from functions on to distributions, offers

the definition of derivatives even at jump positions. With generalizations of that

kind we can introduce the space of functions with bounded total variation, BV .
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Figure 2.2: Heaviside function with jump at 0

Considering a BV function space in a model allows to compute solutions with sharp

edges in images. In other words, we allow discontinuities and jumps in the intensities

of a solution.

In imaging and image processing there are various task, where cartoon reconstruc-

tions, i.e. reconstructions with homogeneous regions and discontinuities are desired.

The standard model for denoising with total variation is the Rudin, Osher, Fatemi

(ROF) model [158]. Other applications for TV are deblurring, inpainting, segmen-

tation models of the Mumford-Shah type or vectorial TV regularization in motion

estimation. Besides the applicability of TV, the theory of BV -functions and the

analysis of related models is an interesting area.

Using the example of a Heaviside function θ we could see that the distributional

derivative never can be an Lp-function, but a measure on Ω. Provided, that u is

smooth enough, we can define the total variation of u by

TV [u] :=

∫

Ω

|∇u| dx , Ω ⊂ R , (2.37)

first of all. If TV (u) <∞ holds, we say u has bounded total variation. Therewith,

we can provide a first definition of BV , the space of functions of bounded total

variation,

BV (Ω) := {u ∈ L1(Ω) | TV [u] <∞} . (2.38)

Intuitively, a question arises: How smooth should u be, such that the definition

makes sense? Although the Sobolev space W 1,1(Ω) seems to be a possible choice at

first glance, the effectiveness of TV is based on the fact that we do not restrict to

functions in W 1,1(Ω). By weakening the conditions for the function space W 1,1(Ω)

we can attain functions with the desired properties described above. We will see

that

W 1,1(Ω) ⊂ BV (Ω) (2.39)

holds. In the following we will approach the BV -space from measure theory. A

radon measure is a measure on the σ algebra of Borel sets B(Ω), which is locally
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finite and inner regular [64]. For example the non-negative measure µ on B(Ω) with
µ(K) < ∞ for all compact spaces K ⊆ Ω is a Radon measure. To relate the terms

bounded total variation and Radon measure, we introduce this topic via a simple

total integral F [·]. For distributions, e.g. the Dirac δ-distribution (2.34), we can

write the total integral in a well-defined form

F [δ] :=

∫

Ω

δ(x) dx = 1 . (2.40)

A set function is called signed measure µ, if µ(∅) = 0 holds, µ only takes one of

the values (−∞), (+∞) and µ is σ-additive. More general, a total integral can be

defined for signed Radon measures µ ∈M(Ω):

F [µ] :=

∫

Ω

1 dµ = µ(Ω) . (2.41)

The δ-distribution from above can be interpreted as a bounded measure, more pre-

cisely, as a Radon measure. The space of signed Radon measures generalizes the

space L1
loc(Ω) of L

1 functions with locally compact support and actually represents

the most general space, where the total integral F [·] is still well-defined. Now we

want to transfer this ideas to the TV functional. For a signed Radon measure µ and

its accumulated distribution we obtain

TV [µ] =

∫

R

1 |dµ| = |µ|(R) . (2.42)

|µ| denotes the TV measure of µ, thus

|µ| = µ+ + µ−, for µ = µ+ − µ− . (2.43)

Figure 2.3: 1D examples with TV [f ] = TV [g] = TV [ht] = 2

With the latter concepts in mind we are able to redefine TV [x] and the space BV (Ω).

Let U ⊂ Ω be open and u ∈ L1(Ω) = L1(Ω,R). Let
∫

U

|D∗u| := sup
g∈C1

0(U)
||g||L∞(Ω)≤1

∫

U

u ∇ · g dx . (2.44)
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Hence

BVloc(Ω) := {u ∈ L1(Ω) |
∫

Ū

|D∗u| <∞ ∀Ū ⊂ Ω compact } (2.45)

is the space of functions, which have locally bounded variation. Now we have to

carry over this to an outer measure. For an arbitrary subset E ⊆ Ω we get
∫

E

|D∗u| := inf
U : E⊆U

∫

U

|D∗u| . (2.46)

Regarding measurable sets this yields a radon measure on Ω and we can define the

total variation as

TV [u] := |Du|(Ω) =

∫

Ω

|Du| = sup
g∈C1

0(Ω)
||g||L∞(Ω)≤1

(∫

Ω

u ∇ · g dx
)

(2.47)

Figure 2.4: Functions with bounded and unbounded total variation

(a) sin( 1
x
), unbounded TV (b) xsin( 1

x
), unbounded

TV

(c) x2sin( 1
x
), bounded TV

Besides a rule for defining the total variation, we obtain a second equivalent definition

for the BV space:

Definition 2.3.6 (BV -Space). Let Ω ⊂ R
m and u ∈ L1(Ω). The function u : Ω→ R

is of bounded total variation in Ω, if the distributional derivative of u can be expressed

by a vectorial Radon measure in Ω, i.e. if
∫

Ω

u
∂g

∂xi
dx = −

∫

Ω

g dDiu, ∀g ∈ C10(Ω), i = 1, ..., d (2.48)

holds, where Du = (D1u, ..., Ddu) is a measure with values in Ω.

The space of functions with bounded variation is defined as

BV (Ω) := {u ∈ L1(Ω) | ∂u
∂xi

is a Radon measure, i = 1, ..., d}, (2.49)
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with the norm

||u||BV (Ω) :=

∫

Ω

|u(x)| dx + |u|TV , (2.50)

with the semi-norm (or total variation)

|u|TV := TV [u] =

∫

Ω

|Du| =

√
√
√
√

d∑

i=1

(∫

Ω

d|Diu|
)2

. (2.51)

As indicated above, BV extends the Sobolev space W 1,1(Ω). Taking a function u in

W 1,1(Ω) implies
∫

Ω

|Du| = sup
g∈C1

0(Ω)
||g||L∞(Ω)≤1

(∫

Ω

g · ∇u dx
)

≤
∫

Ω

|∇u| dx .
(2.52)

Following Lusin and Uryson one can prove the converse inclusion, such that
∫

Ω

|Du| =
∫

Ω

|∇u| dx. (2.53)

Hence the total variation generalizes the Sobolev norm and we can conclude

W 1,1(Ω) ⊆ BV (Ω) . (2.54)

Remembering the example of a Heaviside jump function, the space BV (Ω) is actually

large enough to regard piecewise constant functions. In particular for images with

sharp edges edges the BV space is a better choice than Sobolev spaces. Similarly,

the described theory can be generalized to vector valued functions u : Ω ⊂ R
d → R

n.

2.3.2 Differentiability and Optimality

In the previous section we studied Banach spaces, in particular infinite dimensional

function spaces, which are of special interest in image processing and imaging. The

calculus of variations mainly deals with questions like existence, uniqueness or the

computation of stationary points of functionals in Banach spaces. The aim of this

section is to recall basic tools for derivatives and optimality in variational prob-

lems. The calculus of variations can be seen as a generalization of extreme values

of functions. Thus, we first derive basic concepts of derivatives and gradients for

functionals.

Definition 2.3.7 (Directional derivative). Let J : U → V be a functional between

Banach spaces U and V. The directional derivative (also called first variation) at

u ∈ U in direction v ∈ U is defined as

dvJ(u) := lim
t↓0

J(u+ tv) − J(u)

t
,

if that limit exists.
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In practice, for the computation of a directional derivative it is useful to define a

function ψv(t) := J(u+ tv), t ≥ 0 for an arbitrary direction v ∈ U . For an optimal

u it holds ψv(0) ≤ ψv(t). Hence the directional derivative of J is given by ψ′
v(t)|t=0.

Similarly to the definition of the directional derivative one can define higher order

variations. For example the second variation is defined as follows

Definition 2.3.8 (Second variation). Let J : U → V be a functional between Banach

spaces U and V and let the first variation dvJ(u) exist. The second directional

derivative (also called second variation) at position u in direction w is defined as

d2v,wJ(u) := lim
t↓0

dvJ(u+ tw) − dvJ(u)

t
,

if that limit exists.

In the following we shortly characterize two types of differentiability, namely Gâteaux-

respectively Fréchet-differentiability.

Definition 2.3.9 (Gâteaux-differentiability). Let J : U → V be a functional between

Banach spaces U and V. The set

dJ(u) := { dvJ(u) <∞ | v ∈ U } ,

is called Gâteaux-derivative. J is called Gâteaux-differentiable, if the set is not

empty.

Furthermore, we are interested in cases where the Gâteaux-derivative is a singleton.

This leads to the term of Fréchet-differentiability.

Definition 2.3.10 (Fréchet-differentiability). Let J : U → V be a functional with

Banach spaces U and V, and let dvJ(u) exist for all v ∈ U . If there exists a contin-

uous linear functional J ′(u) ∈ U , such that

J ′(u)v = dvJ(u), ∀v ∈ U , (2.55)

and
‖J(u+ v)− J(u)− J ′(u)v‖V

‖v‖U
−→ 0 , for ‖v‖U → 0

hold, then J is called Fréchet-differentiable in u and J ′ is called Fréchet-derivative.

If J is Fréchet-differentiable at u, then for all directions v ∈ U there exists a Gâteaux-

derivative concerning the first condition in (2.55). Analogously, a functional J is
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called twice Fréchet-differentiable, if the properties in the definition are fulfilled for

d2v,vJ(u) as well. In this case we will simply write J ′′ for the second Fréchet-derivative.

Besides computing potential extremal functions the question of existence and unique-

ness arises. The question of existence can be answered via the fundamental theorem

of optimization. First, we have to define the term of lower semi-continuity in the

special case of a Banach space.

Definition 2.3.11 (Lower semi-continuity). Let U be a Banach space with topology

τ . The functional J : (U , τ)→ R̄ is called lower semi-continuous at u ∈ U if

J(u) ≤ lim inf
k→∞

J(uk) ,

for all uk → u in the topology τ .

Together with compactness this leads to the fundamental theorem of optimization,

see [197, 7].

Theorem 2.3.12 (Fundamental theorem of optimization). Let U be a Banach space

with topology τ and let J : (U , τ) → R̄ be lower semi-continuous. Furthermore let

the level set

{u ∈ U | J(u) ≤ C}

be non-empty and compact in the topology τ for some C ∈ R. Then there exists a

global minimum of

J(u) −→ min
u∈U

.

Proof. Let J̃ = infu∈U J(u). Then a subsequence (uk)k∈N exists with J(uk)→ J̃ for

k → ∞. For k sufficiently large, J(uk) ≤ C holds and hence (uk)k≥k0 is contained

in a compact set. As a result, a subsequence (ukl)l∈N exists with ukl → ũ for l→∞
for some ũ ∈ U . From the lower semi-continuity of J we obtain

J̃ ≤ J(ũ) ≤ lim inf
k→∞

J(uk) ≤ J̃ ,

consequently ũ is a global minimizer.

In finite dimensional optimization this theorem can simply be used for existence

proofs. In that case, boundedness yields compactness. However, in function spaces

this is not the case due to the infinite dimension. To deduce compactness from

boundedness we need weaker topologies, the so-called weak respectively weak* topolo-

gies.
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Definition 2.3.13 (Weak and weak* topology). Let X be a Banach space and let

X ∗ denote its dual space. Then the weak topology on X is defined as

uk ⇀ u :⇔ 〈v, uk〉X → 〈v, u〉X ∀ v ∈ X∗ ,

and the weak* topology on X∗ is defined as

vk ⇀
∗ v :⇔ 〈vk, u〉X ∗ → 〈v, u〉X ∗ ∀ u ∈ X ,

The weak* topology on X ∗ is weaker than the weak topology on X ∗ since X ⊂ X ∗∗.

For a reflexive Banach space (X = X ∗∗), the weak and weak* topology coincide.

The fundamental result for attaining compactness is the theorem of Banach-Alaoglu,

which deduces compactness from boundedness at least in the weak* topology:

Theorem 2.3.14 (Theorem of Banach-Alaoglu). Let X be a Banach space, X ∗ its

dual space and C > 0. Then the set

{v ∈ X ∗ | ‖v‖X ∗ ≤ C} , for C > 0 ,

is compact in the weak* topology.

Hence, we can prove existence of a global minimum for a given infinite dimensional

optimization problem, if we are able to prove lower semi-continuity in the weak*

topology. In general, proving lower semi-continuity is not an easy task. If we have

existence, then we can simply compute the Fréchet-derivative to obtain a minimum.
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3
Convex Analysis and Bregman Distances

In this chapter we will review basic concepts of convex analysis including subdif-

ferentials and Legendre-Fenchel duality. Subsequently, we will introduce Bregman

distances, their properties and an overview of their usage in this work.

3.1 Introduction

In this introductory section we review techniques from convex analysis used in this

thesis, basically concerning subdifferential calculus and the Legendre Fenchel duality

concept. Standard textbooks dealing with these topics are e.g. [154],[62], [12], [105],

[100, Chapter 4], [8], [155],[23], [101] or [24].

3.1.1 Subdifferential Calculus

In the following we assume that X is a Banach space and, that J : X → [0,∞] is a

convex and proper penalty functional.

Definition 3.1.1 (Convexity). An operator J : X → [0,∞] is called convex, if for

u, v ∈ X and λ ∈ [0, 1] the following inequality holds:

J(λu+ (1− λ)v) ≤ λJ(u) + (1− λ)J(v) . (3.1)

The operator J is called strictly convex if the latter inequality is strict for all λ ∈
(0, 1) and u 6= v.

Note that J can take the value infinity. Hence it is useful to call a functional J

proper, if the effective domain dom(J) := {u ∈ X | J(u) < ∞} 6= ∅. The effective

domain of a convex functional is always a convex set.
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First- and second-order conditions for convexity: The following Lemma pro-

vides a first-order condition for convexity.

Lemma 3.1.1. Let J be differentiable over its domain. Then, J is convex if and

only if its domain is convex and

J(v) ≥ J(u) +DJ(u)(v − u), ∀ u, v ∈ dom(J) .

In other words, for a convex J , a first-order approximation, i.e. a Taylor linearization,

provides a global underestimate of J . Let us assume that J is twice differentiable,

i.e. its Hessian or second derivative D2u exists at each point in dom(J), which is

open. Then, a second-order condition for convexity is given by the following Lemma.

Lemma 3.1.2. J is convex if and only if dom(J) is convex and its Hessian is positive

semidefinite:

D2J(u) � 0, ∀ u ∈ dom(J) .

The geometric interpretation of this convexity condition is that the graph of J is

required to have positive (upwards) curvature at u.

Examples: For X = R and J : R → [0,∞) powers of the absolute value function

J(u) := |u|p, p ≥ 1, depicted in Fig. 3.1(a) for p = 1, are canonical examples

of convex functions. Another example is a quadratic-over-linear, see [24, page 73]

function. For X = R × R
+ and J : R × R

+ → [0,∞] the function J(u, v) := u2

v
is

convex, see Fig. 3.1(b). This can simply be verified by

D2J(u, v) =
2

v3

(

v2 −uv
−uv u2

)

=
2

v3

(

v

−u

)(

v

−u

)T

� 0 , (3.2)

for all v > 0, i.e. the Hessian of J is positive semidefinite. A variant of a quadratic-

over-linear function in a functional setting will play a role in our later 4D imaging

model in Chapter 7. In the case whereX is the function space BV the total variation

functional, we introduced in Section 2.3.1,

J(u) = |u|BV (Ω) = sup
g∈C∞

0 (Ω,Rd)
||g||∞≤1

∫

Ω

u ∇ · g , (3.3)
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3.1 Introduction

(a)

(b)

Figure 3.1: Examples of convex functions: (a) absolute value function J(u) = |u|
and (b) J(u) = u2

v
.

Figure 3.2: Quasiconvex functions J(u) = |u|p on the positive axis with p ∈ (0, 1)

is a prominent convex representative. In recent years sparsity models became very

popular in imaging and image processing. In such cases one often has to face non-

convex optimization problems. For example think of problems including |u|p, with
p ∈ (0, 1). For such problems a generalized convexity concept turns out to be useful.

Quasiconvexity is a generalized concept, which is defined as follows:

Definition 3.1.2 (Quasiconvexity). Let J be defined on a convex set X ⊆ R
d. The

function J is said to be quasiconvex on X if

J(λu+ (1− λ)v) ≤ max { J(u) , J(v) } ,

for every u, v ∈ X, u 6= v, and for every (0, 1). If the inequality is strict, the function

is called strictly quasiconvex. .

The functions we illustrated in Figure 3.2 are strictly quasiconvex. In denoising
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3. Convex Analysis and Bregman Distances

problems with sparsity regularization, one often considers lp-penalized Tikhonov

functionals corresponding to Figure 3.2. The existence of minimizers for such prob-

lems can be guaranteed for p ∈ (0, 1). However, a minimizer needs not to be unique.

For p = 0 the existence of a solution for such sparsity problems is not assured. For

further details on generalized convexity we refer e.g. to [38, Chapter 2], [170] or [24,

Section 3.4].

In order to obtain optimality conditions for general variational problems in imaging,

see (2.12), we need a general notion of derivatives. In particular this is required for

non-differentiable functionals, e.g. for the total variation, which is not differentiable

in the classical sense. In the following we introduce the notion of a subdifferential

(cf. [63]).

Definition 3.1.3 (Subdifferential). Let J : X → R̄ be a convex functional and let

X∗ denote the dual space of X. J is called subdifferentiable at u ∈ X if there exists

an element p ∈ X∗ such that

J(v)− J(u)− 〈p, v − u〉 ≥ 0 , ∀v ∈ X .

We call the generalized derivative p a subgradient of J at position u. The collection

of all subgradients

∂J(u) := {p ∈ X∗ : J(v)− J(u)− 〈p, v − u〉 ≥ 0 , ∀v ∈ X} ⊂ X∗ (3.4)

is called subdifferential of J at u. The effective domain of the subdifferential is given

by

D(∂J) = {u ∈ X : ∂J(u) 6= ∅} .

A subgradient p ∈ ∂J(u) can be identified with the slope of a plane (of codimension

one) in X × R through (u, J(u)), which lies under the graph of J . If J is Frechét

differentiable, the subgradient of J is a singleton and coincides with its Frechét

derivative, i.e. ∂J(u) = {∇J(u)} .

An illustrative example is the subdifferential of the absolute value function from

above in Figure 3.1(a).

Example 3.1.4 (Subdifferential of the absolute value). Let X = R and J : R →
[0,∞), J(u) := |u|, be the absolute value function. Then the subdifferential of J at

u is given by

∂J(u) =







{1} , for u > 0

[−1, 1], for u = 0

{−1} , for u < 0 .
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Figure 3.3: Visualization of subgradients p ∈ ∂|u| of the absolute value function.

We plotted subgradients of the absolute value function in Figure 3.3.

In this work the total variation semi-norm will be a fundamental regularization

functional. Thus, we will characterize the subdifferential of the total variation in

the following, which is not an easy task. For this purpose the one-homogeneity of

the total variation is a useful property. Hence, we start with characterizing the

subdifferential of one-homogeneous functionals,

Lemma 3.1.3. Let J : X → R̄ be a convex homogeneous functional of degree one,

i.e. J(α u) = α J(u), ∀ α > 0. Then the subdifferential of J is given by

∂J(u) = { p ∈ X∗ | 〈p, u〉 = J(u), 〈p, v〉 = J(v), ∀v ∈ X } . (3.5)

Proof. The definition of the subgradient concerning J yields

〈p, v − u〉 ≤ J(v)− J(u),

for all v in X. Using v = 0 we find

〈p, u〉 ≥ J(u) ,

and using v = 2u we find

〈p, u〉 ≤ J(2u)− J(u) = 2J(u)− J(u) = J(u) ,

where we applied the one-homogeneity of J . Thus, we obtain 〈p, u〉 = J(u) and the

assertion in (3.5) follows by one-homogeneity of J .

In the case of total variation we see that for each subgradient p the dual norm is

bounded by

‖p‖ = sup
v∈BV0(Ω)
|v|BV (Ω)=1

〈p, v〉 ≤ sup
v∈BV0(Ω)
|v|BV (Ω)=1

|v|BV (Ω) = 1 .
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3. Convex Analysis and Bregman Distances

Hence, this yields

∂|u|BV (Ω) =
{
p ∈ X∗ | ‖p‖∞ = 1, 〈p, u〉 = |u|BV (Ω)

}
.

From the structure of (BV (Ω))∗ we see that for each subgradient p ∈ X∗ with

‖p‖ ≤ 1 there exists a vector field g ∈ L∞(Ω;Rd) with p = ∇ · g (the opposite is not

true in general). As a consequence, we can characterize the subdifferential of the

total variation as follows,

Example 3.1.5 (Subdifferential of TV).

∂|u|BV (Ω) =
{
∇ · g | ‖g‖∞ ≤ 1, 〈∇ · g, u〉 = |u|BV (Ω), g|∂Ω = 0

}
.

In order to obtain optimality conditions for a general convex variational problem we

can use the subdifferential.

Theorem 3.1.6 (Subdifferential and Optimality). Let J be a convex functional and

X a Banach space. An element u ∈ X is a minimizer of J if and only if 0 ∈ ∂J(u).

Proof. Let 0 ∈ ∂J(u), then the definition of a subgradient yields

0 = 〈0, v − u〉 ≤ J(v)− J(u) ∀v ∈ X ,

and hence u is a global minimizer of J . And vice versa if 0 /∈ ∂J(u) there exists at

least one v ∈ X with

J(v)− J(u) < 〈0, v − u〉 = 0

so that u cannot be a minimizer of J .

Due to convexity the first-order optimality condition is not only necessary, but also

sufficient.

We presented the computation of the subdifferential of TV above. However, stan-

dard variational problems in image reconstruction usually consist of a data fidelity

functional Hf (Ku) and a regularization functional J(u), see (2.12). Computing the

subdifferential ∂(Hf (Ku)+J(u)) is not always trivial. With an additional regularity

on Hf , e.g. if Hf is continuous or differentiable, then the following equality holds

∂(Hf (u) + J(u)) = ∂Hf (Ku) + ∂J(u) .

For a proof and further details we refer to [62, Chapter 1, Proposition 5.6].
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3.1.2 Legendre-Fenchel Duality

In this subsection we review concepts of Legendre-Fenchel duality. In the realm

of function spaces, convexity and duality we need a dual mapping, i.e. a pair of

function spaces with an associated bilinear form. In what follows we assume that X

is a Banach space and we use the notation

〈x∗, x〉X := 〈x∗, x〉X∗,X := x∗(x)

for the dual pairing 〈·, ·〉 : X∗ ×X → R of X∗ and X. We write X∗∗ for its bidual

space, i.e. X∗∗ = (X∗)∗. For x ∈ X the natural mapping iX : X → X∗∗ is defined

by

iX(x)(x
∗) = 〈x∗, x〉X .

The general framework for duality is built around a transform that gives an opera-

tional form to the envelope representations of convex functions. This transformation

called convex conjugate is a generalization of the Legendre transformation. It is also

known as Legendre-Fenchel transformation named after Adrien-Marie Legendre and

Werner Fenchel. For further details on Legendre-Fenchel duality we refer to chapters

in books on convex analysis [154], [155, Chapter 11], [23, Chapter 3], [24, Section

3.3 and 5].

Definition 3.1.7 (Convex conjugate). Let X be a Banach space, and let X∗ be the

dual space to X. For a functional J : X → R̄ the convex conjugate J∗ : X∗ → R̄ is

defined by

J∗ (p) := sup
u∈X
{〈p, u〉 − J (u)} ,

or equivalently by

J∗ (p) := − inf
u∈X
{J (u)− 〈p, u〉} .

Similarly the Fenchel biconjugate is given by

J∗∗(u) = sup
p∈X∗

{〈p, u〉 − J∗ (p)} = (J∗)∗ (u) .

For many important functionals the Fenchel biconjugate J∗∗ agrees identically with

J . In general, the biconjugate is a majorant of J . For a convex functional J equality

holds if and only if J is lower semi continuous or equivalently J has closed level sets.

For further details on Fenchel biconjugation we refer for instance to [23, Chapter

4.2].

Restricting ourselves to the special case of the Legendre transformation for functions

Fig. 3.4 offers an intuitive geometric interpretation of the transformation.

57



3. Convex Analysis and Bregman Distances

Figure 3.4: The Legendre transformation f ∗ of a function f(x) at p0: The function

is colored in red, whereas the given dual element p0 = ḟ(x0) defines the

slope of the blue colored tangent at point (x0, f(x0)). The absolute value

of the y-intercept is the value of the Legendre transformation f ∗(p0).

Indeed f ∗ is a maximum because every other line through f with slope

p0 will have a y-intercept above.

Theorem 3.1.8 (Fenchel´s duality theorem). Let J1 : X2 → R̄ be a closed proper

convex functional, let J2 : X1 → R̄ be a closed proper concave functional and let

K : X1 → X2 be a bounded linear operator such that zero is in the interior, i.e.

0 ∈ int(dom(J1))−K(dom(J2)). Then, the following primal-dual identity

inf
u∈X
{ J1(Ku) + J2(u) } = sup

p∈X∗

{ −J∗
1 (p)− J∗

2 (−K∗p) } , (3.6)

holds.

Proof. We start with the primal problem on the left hand side,

inf
u
F (u) := inf

u
{ J1(Ku) + J2(u) } .

The latter primal problem is strongly consistent if and only if the the assumption

on the interior is fulfilled. In other words we have to guarantee that int(dom(J1))

and K(dom(J2)) have a point in common.

By introducing a new variable z := Ku, we can decouple the two terms in the

functional and obtain the following equivalent constraint optimization problem with

two primal variables:

inf
u,z
{ J1(z) + J2(u) } s.t. z = Ku .
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The corresponding Lagrangian results from introducing a Lagrange multiplier func-

tion p (dual variable) and adding a duality product to the functional. This yields a

primal dual saddle point problem,

inf
u,z

sup
p

{ J1(z) + J2(u) + 〈p,Ku− z〉 } .

We can change the order of the infimum and the supremum, and since we decoupled

the system with the additional constraint we obtain an infimum for z as well as for

u,

sup
p

{

inf
z
{ J1(z) − 〈p, z〉 } + inf

u
{ J2(u) − 〈−K∗p, u〉 }

}

sup
p

{

− sup
z

{ 〈p, z〉 − J1(z) } − sup
u

{ 〈−K∗p, u〉 − J2(u) }
}

.

By using the definition of the Legendre-Fenchel transform applied to J∗
1 respectively

J∗
2 we can get the desired dual problem

sup
p

{ −J∗
1 (p)− J∗

2 (−K∗p) } .

Remark. In Chapter 2 we introduced general variational problems for image recon-

struction. Mainly, they consist of a data fidelity Hf dependent on a linear operator

K and a regularization term J . Note that we can simply apply the Fenchel duality

Theorem 3.1.8 with J1 := Hf and J2 := −J to obtain a corresponding dual varia-

tional formulation. In Subsection 3.3.3 we will use the key ideas of the latter proof

to derive the dual Bregman algorithm. For further insights on the Legendre-Fenchel

duality theorem and extensions we refer to [154, Section 31] and [155].

Table 3.1: Table of functionals and their convex conjugates

J(u) J∗(p)

‖u‖2 χ{p | ‖p‖2≤1}

1
2α
‖u‖22 α

2
‖p‖22

‖u‖1 χ{p | ‖p‖
∞
≤1}

‖u‖∞ χ{p | ‖p‖1≤1}

max(u) χ{p | p≥1 ∧ ‖p‖1=1}
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3.2 Bregman distances

The Bregman distance is named after L. M. Bregman, who introduced the concept

in 1967 [27]. The Bregman distance for general convex, not necessarily differentiable

functionals, is defined as follows, see e.g. [45, 111].

Definition 3.2.1 (Bregman Distance). Let X be a Banach space and J : X → R̄ be

a convex functional with non-empty subdifferential ∂J . Then, the Bregman distance

is defined as

D
∂J(v)
J (u, v) := {J(u)− J(v)− 〈p, u− v〉 | p ∈ ∂J(v)} .

The Bregman distance for a specific subgradient p is defined as Dp
J : X ×X → R

+

with

Dp
J(u, v) := J(u)− J(v)− 〈p, u− v〉 , p ∈ ∂J(v) ,

where 〈a, b〉 := 〈a, b〉X denotes the dual product for a ∈ X∗ and b ∈ X for the sake

of simplicity.

For a continuously differentiable functional there is a unique element in the subd-

ifferential and consequently a unique Bregman distance. Intuitively, the Bregman

distance can be interpreted as the difference between the value of J at u and the

value of the first-order Taylor expansion of J around ul evaluated at u, see Figure 3.5.

In other words, the Bregman distance can be seen as a tail of a Taylor linearization.

Example: Total Variation

The Bregman distance with respect to the total variation semi-norm | · |BV (Ω) is

defined as follows:

Dp

|·|BV (Ω)
(u, v) := |u|BV (Ω) − |v|BV (Ω) − 〈p, u− v〉 ,

where p ∈ ∂ |v|BV (Ω) ⊆ (BV (Ω))∗ is a subgradient in the dual space of BV .

Properties of the Bregman distance:

The Bregman distance is a distance in the sense that for p ∈ ∂J(v)

Dp
J(u, v)







= 0, if u = v

≥ 0, else

holds.
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Positivity: The positivity is due to the convexity of J . If J is strictly convex, we

even obtain Dp
J(u, v) > 0 for u 6= v.

Convexity: The Bregman distance is convex in the first argument, but not neces-

sarily in the second argument.

Conjugate Duality: Let the convex functional J have a convex conjugate J∗. The

Bregman distance defined with respect to J∗ has an interesting relationship to DJ ,

sup
v

Dp
J(u, v) = sup

q

Du
J∗(p, q) ,

where p ∈ ∂J(v) and u ∈ ∂J∗(q).

Proof. For p ∈ ∂J(v) and u ∈ ∂J∗(q) we can apply the Legendre-Fenchel transform

twice and obtain

sup
v

Dp
J(u, v) = sup

v

{J(u)− J(v)− 〈p, u− v〉}

= J(u)− 〈p, u〉+ sup
v

{〈p, v〉 − J(v)}

= sup
q

{〈u, q〉 − J∗(q)} − 〈p, u〉+ J∗(p)

= sup
q

{J∗(p)− J∗(q)− 〈u, p− q〉} = sup
q

Du
J∗(p, q) .

In Section 3.3.3 we will introduce a dual Bregman iteration. This property is one

explanation why the dual Bregman iteration produces similar results compared to

the primal Bregman iteration, particularly in the case of L2 data fidelities.

In general, the Bregman distance is not a metric, since no triangular inequality

nor symmetry holds for the Bregman distance. The latter one can be achieved by

introducing the so-called symmetric Bregman distance.

Definition 3.2.2 (Symmetric Bregman Distance). Let X be a Banach space and

J : X → R̄ be a convex functional with non-empty subdifferential ∂J . Then, a

symmetric Bregman distance is defined as Dsymm

J : X ×X → R
+ with

Dsymm

J (u1, u2) := Dp1
J (u2, u1) +Dp2

J (u1, u2)

= 〈u1 − u2, p1 − p2〉X∗ ,

with pi ∈ ∂J(ui) for i ∈ {1, 2}.
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Figure 3.5: Quadratic function and Bregman distance as L2 norm

Figure 3.6: The Kullback-Leibler functional is a Bregman distance

Passing over to the symmetric Bregman distance of the convex conjugate J∗, obvi-

ously the following identity holds concerning duality

Dsymm
J (u1, u2) = Dsymm

J∗ (p1, p2) .

Bregman distance and underlying functionals

The squared L2 norm is a Bregman distance with the differentiable and strictly

convex functional J(u) = ||u||2 as the underlying functional, see Figure 3.5. Another

example of a Bregman distance is the relative entropy or Kullback-Leibler divergence.

The latter is generated by the strictly convex and differentiable Shannon entropy

which is defined on the positive domain, see Figure 3.6. The latter distances can be

used as data fidelities for Gaussian and Poisson noise modeling. Further Bregman

distances and their underlying functions are presented in Table 3.7.
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3.2 Bregman distances

Figure 3.7: Overview of functions and their Bregman distances, see [11]

Bregman distances in this work

In this work Bregman distances will be used in several parts for different applications,

playing different roles. In the following we will summarize the main applications of

Bregman distances in this work.

First Application: An iterative regularization technique

In recent years Bregman distances have been used successfully for iterative regular-

ization methods. Particularly for the case of L2 data fidelities it has been shown

that such methods can significantly improve reconstruction results. For example in

the case of total variation, iterative Bregman regularization simultaneously enhances

contrast in reconstructions by adding back residuals. In the following section we will

concentrate on iterative Bregman regularization techniques. Particularly, a new dual

Bregman iteration scheme can handle general data fidelities and has nice properties.

A justification for the ”strength” of Bregman regularization is given by the concept

of error forgetting.

Second Application: An analytical tool

In regularization theory in Banach spaces the Bregman distance plays an important

role. It has proven to be a valuable tool to study convergence and convergence rates

of various regularization problems, see for example [102], [149], [152] or [36]. Among

other things, the success of this technique is due to the fact that the Bregman dis-

tance automatically provides the suitable topology subordinate to a given problem.

For example we automatically obtain a strong topology in L2 or a weak* topology
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in BV . A major step for error estimates and multi-scale techniques in the case

of regularization with singular energies has been the introduction of (generalized)

Bregman distances (cf. [27, 45, 111]) as an error measure (cf. [36]). In this work

we will use Bregman distances for different analytical purposes. For example we

will derive error estimates respectively convergence rates for a new dual Bregman

iteration scheme via Bregman distances, see Section 3.3.3. Furthermore, we will

make use of Bregman estimates to prove the existence of a solution of a new 4D TV

reconstruction model in Chapter 10.

Third Application: A key to fast L1-type algorithms

For L1-type problems Bregman techniques turned out to be very useful to derive

fast algorithms (e.g. Split Bregman resp. Douglas-Rachford splitting). The main

idea of these splitting methods is to decouple functionals by substituting specific

terms. Hence resulting splitting schemes only depend on fast and easy computable

substeps (shrinkage, FFT, DCT). Another justification is given by the fact that

Bregman iteration is equivalent to augmented Lagrangian methods, at least in the

case of L2 data fidelities. In Chapter 4 we will concentrate on splitting methods in

convex optimization including Bregman algorithms.

3.3 Algorithms and Error Estimation

The goal of this section is to provide a general framework for simultaneous contrast

enhancement in image reconstruction problems via Bregman iteration. Particu-

larly we are interested in Bregman methods for non-standard data fidelities like the

Kullback-Leibler distance resulting from Poisson noise modeling. In the following

we will motivate and derive primal and dual Bregman methods in the sense of in-

verse scale space methods. In addition, we will prove error estimates for the dual

Bregman method and we will explain why Bregman forgets errors. This section is

general in the sense, that we will allow general convex data fidelities and general

convex, usually one-homogeneous, regularization functionals. In Section 5.6 we will

apply these techniques to 3D image reconstruction in the case of Poisson noise and

TV regularization.

3.3.1 Introduction

In the section on Bayesian modeling (2.2) we followed maximum a-posteriori prob-

ability (MAP) estimation, i.e.

uMAP = argmin
u

(− log p(f |u)− log p(u)) .
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Hence, we saw that different prior densities

p(u) ∼ e−α J(u) ,

typically Gibbs functions, lead to different regularization terms J in a variational

setting. Moreover, we saw that different noise models lead to different data fidelities.

For example, Gaussian noise implies an L2 data fidelity, whereas Poisson noise yields

the Kullback-Leibler functional with a strong nonlinearity in the fidelity. Hence it

makes sense to use a general variational reconstruction problem with the following

definitions in the course of this section

Problem 3.3.1 (Variational Problem).

min
u∈W(Ω)

{Hf (Ku− f) + α J(u)} ,

where

K : U(Ω)→ V(Σ)
denotes a linear and compact operator where U(Ω) and V(Σ) are Banach spaces of

functions on bounded and compact sets Ω respectively Σ.

Hf : V(Σ)→ R̄

is a convex data fidelity using the operator K. In order to guarantee that the data

fidelity is centered at zero, we use Ku− f as the argument, i.e. Hf (Ku− f) = 0 if

Ku = f . This notation is particularly useful for duality arguments. Moreover,

J :W(Ω) ⊂ U(Ω)→ R̄

denotes a convex regularization functional. Furthermore, we call g exact data and f

noisy data with a given noise estimate

Hf (g − f) ≤ δ . (3.7)

First of all, we explain why Bregman distances respectively Bregman iteration is

very useful for simultaneous contrast enhancement. To this end, let us consider

regularization with total variation,

J(u) := |u|BV = sup
g∈C∞

0 (Ω;Rd)
||g||∞≤1

∫

Ω

u∇ · g .

As we introduced in Section 2.3.1, regularization with TV favors cartoon image re-

constructions, that is it favors homogeneous regions with sharp edges. Furthermore,
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Protein Syntaxin (1024x1024)

MPI Göttingen, Germany

EM-TV Reconstruction

we can expect that the length of the level sets are minimized. For example, in the fig-

ure above we illustrate a TV reconstruction of a protein in fluorescence microscopy,

In the reconstruction on the right hand side, the noise has been reduced efficiently.

However, we can observe a certain contrast reduction.

Systematic error of TV:

This is the well-known systematic error of total variation, cf. [124] or [134]. Although

the ROF model [158], the standard reconstruction model with TV, had great success

in imaging and image processing there is this deficit remaining. Compared to the

original image (ground truth) we have to expect a loss of contrast in the reconstruc-

tion. This issue was studied by Meyer [124]. He verified that the application of

the ROF model to the characteristic function of a ball results in a shrinked version

as the minimizer u, where the shrinkage is proportional to α. In Figure 3.3.1 we

illustrate the systematic error in the 1D case for α = 0.3.
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Figure 3.8: Systematic error of TV, 1D example for α = 0.3

One possibility to overcome this contrast reduction is to apply iterative Bregman

regularization regarding J . In the case of TV, J := | · |BV (Ω), we obtain the following

scheme

Algorithm 3.3.2 (Primal Bregman Iteration, case Hf and TV ).
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Let u0 = 0 and p0 = 0.

For l = 0, 1, . . . , until stopping criterion is fulfilled:







ul+1 = argmin
u

{

Hf (Ku− f) + α Dpl

J (u, u
l)
}

pl+1 = pl − 1

α
ql+1 ,

where ql+1 ∈ ∂Hf (u
l+1). The Bregman distance due to J , Dpl

|·|BV (Ω)
(u, ul) is always

Figure 3.9: Quadratic function and Bregman distance as L2 norm

positive, since the Bregman distance is the tail of a linearization. Furthermore, you

can see in Figure 3.9 that

Dpl

|·|BV (Ω)
(u, ul) = 0, if pl ∈ ∂|u|BV (Ω) .

This is particularly the case if u ≡ cul, ∀c ∈ R
+. In other words, the Bregman

distance gets minimal if the edges (characterized by the subgradients) are located

at the same position, whereas changes in the contrast are allowed. In the following

Bregman methods we will see that contrast changes are realized by adding back

residuals.

Now let us consider the following variational problem with an L2 data fidelity as Hf

and a convex regularization term J(u)

min
u

{
1

2
‖Ku− f‖2L2(Σ) + α J(u)

}

,

Using a Bregman distance regarding the regularization functional J , the (primal)

Bregman iteration for this problem reads as follows
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Algorithm 3.3.3 (Primal Bregman Iteration, case L2 and J).

Let u0 = 0 and p0 = 0.

For l = 0, 1, . . . , until stopping criterion is fulfilled:







ul+1 = argmin
u

{
1

2
‖Ku− f‖2L2(Σ) + α Dpl

J (u, u
l)

}

= argmin
u

{
1

2
‖Ku− f‖2L2(Σ) + α

(
J(u)− 〈u, pl〉

)
}

,

pl+1 = pl − 1

α
K∗(Kul+1 − f) ,

where pl ∈ ∂J(ul) is a subgradient in the subdifferential of J at ul. The update

of the dual variables, resp. the subgradients, directly results from the optimality

condition for the variational problem with Bregman regularization

0 = K∗(Kul+1 − f) + α (pl+1 − pl), pl+1 ∈ ∂J(ul+1), pl ∈ ∂J(ul) .

Without affecting minimizers the scalar product in the Bregman distance in the

update of u can be transferred to the L2 data fidelity. Hence we get a shifted

reference function in the data fidelity of the update of u above,

ul+1 = argmin
u

{
1

2

∥
∥Ku− (f + α pl)

∥
∥
2

L2(Σ)
+ α J(u)

}

.

With the substitution

pl :=
1

α
K∗(f l − f) , (3.8)

the primal Bregman iteration in Algorithm 3.3.3 is equivalent to the following sim-

plified scheme without affecting minimizers.

Algorithm 3.3.4 (Primal Bregman Iteration, case L2 and J).

Let u0 = 0 and f 0 = f .

For l = 0, 1, 2, . . . , until stopping criterion is fulfilled:







ul+1 = argmin
u

{
1

2

∥
∥Ku− f l

∥
∥
2

L2(Σ)
+ α J(u)

}

f l+1 = f l + f −Kul+1 ,

with an updated reference function in the data fitting term. This reformulation is
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simply possible, because

ul+1 = argmin
u

{
1

2
‖Ku− f‖22 + αDpl

J (u, u
l)

}

(3.8)
= argmin

u

{
1

2
〈Ku,Ku〉 − 1

2
〈Ku, f〉 − 1

2
〈f,Ku〉

+
1

2
〈f, f〉+ αJ(u)−

〈
K∗(f l − f), u

〉
}

= argmin
u

{
1

2

∥
∥Ku− f l

∥
∥
2

2
+ αJ(u)

}

and

1

α
K∗(f l+1 − f) (3.8)

= pl+1 Alg. 3.3.3
= pl +

1

α
K∗(f −Kul+1)

(3.8)
=

1

α
K∗(f l − f) + 1

α
K∗(f −Kul+1) =

1

α
K∗(f l −Kul+1)

hold. For further details we refer for instance to [194] or [198]. In both variants,

Algorithm 3.3.3 and Algorithm 3.3.4, you can see that we add back residuals in

the data fidelity. This leads to the desired simultaneous contrast enhancement in

Bregman iteration. However, to transfer the shift with the scalar product in the

regularization functional to the data fidelities, we made use of the L2 structure.

Thus, for general data fidelities Hf , resulting from different inverse problems and

applications, the following question arises:

Is it always possible to find a shift with a residual function in the data

fidelity that enhances contrast?

Hf (Ku− f l) (3.9)

The answer to that question is yes and can be explained via duality. In the following

sections we will introduce a new iteration based on dual Bregman regularization. We

will see that this algorithm coincides with the previous (primal) Bregman iteration

in the case of L2 data fidelities.

3.3.2 Primal Bregman Iteration

In the following we present primal and dual inverse scale space strategies for solving

inverse problems with general corresponding reconstruction problems. These tech-

niques are based on iterative Bregman distance regularization for general, convex

functionals and arise in the oversmoothed limit. From a dual view point of the vari-

ational model we also derive a dual inverse scale space flow, which coincides with

69



3. Convex Analysis and Bregman Distances

the primal one in the case of the Gaussian noise. In more general cases of fidelities,

the dual flow appears to be easier with respect to analysis and even allows us to de-

rive error estimates. Starting with a general, convex variational problem with data

fidelity Hf and regularization functional J , we obtain the standard form for image

reconstruction as written in problem 3.3.1. The corresponding iterative Bregman

regularization strategy can be written as

Problem 3.3.5 (Inverse Scale Space).

ul+1 = argmin
u∈W(Ω)

{

Hf (Ku− f) + α Dpl

J (u, u
l)
}

= argmin
u∈W(Ω)

{
Hf (Ku− f) + α (J(u)− 〈u, pl〉)

}
,

(3.10)

with pl ∈ ∂J(ul).
The first-order optimality condition of this Bregman-regularized functional reads as

follows,

α(pl+1 − pl) = −K∗(∂Hf (Ku
l+1 − f)) ,

with pl ∈ ∂J(ul), and basically provides an update rule for pl. In the limit α→∞,

the latter can be interpreted as a forward Euler discretization of the flow

d

dt
p(t) = −K∗(∂Hf (Ku(t)− f)) ,

with p(0) = 0 ∈ ∂J(u(0)), which has been termed nonlinear inverse scale space

method (cf. [37], [33], [34]). The terminology inverse scale space method is due

to the fact that this approach somehow behaves in an inverse way to the popular

scale space methods (cf. [163], [192], [139]). In the case of inverse problems with

Gaussian noise modeling, i.e. L2 data fidelity, inverse scale space strategies have

been well studied and error estimates could be obtained (cf. [37]). Unfortunately,

in the general case above, the residuals Ku(t)− f are enclosed by the derivative of

the data fidelity. Unlike the special case of a L2 data fidelity, this nonlinearity leads

to mathematical difficulties if one wants to establish error estimates respectively

convergence rates of the scale space method, since we need to invert ∂Hf enclosed

by K∗. A different way to see the issues is to write the inverse scale-space method

as

∂H∗
f

(

(K∗)−1 d

dt
p(t)

)

= (f −Ku(t)) ,

with p(0) = 0 ∈ ∂J(u(0)). This is a strongly nonlinear equation for the dual variable

p. We are able to overcome these difficulties in the following section by using an

alternative dual scale space strategy.
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3.3.3 Dual Bregman Iteration

In this subsection we are going to derive a dual inverse scale space method in terms of

an iterative Bregman regularization of a dual reconstruction functional. Fortunately,

it is possible to derive error estimates and convergence rates of the corresponding

dual inverse scale space flow.

In order to derive the dual formulation of the Bregman regularization functional

in (3.10), we use the zero centered data fidelity Hf (·) and introduce the convex

conjugates

H∗
f (q) = sup

v∈V(Σ)

(
〈q, v〉V(Σ) −Hf (v)

)

J∗(p) = sup
u∈W(Ω)

(
〈p, u〉U(Ω) − J(u)

)
.

Under appropriate conditions, the Fenchel duality theorem (cf. [62]) implies the

following primal-dual relation.

inf
u∈W(Ω)

{
Hf (Ku− f) + α (J(u)− 〈pl, u〉)

}

= inf
u,v

sup
q

{
Hf (Ku− f) + α(J(u)− 〈pl, u〉) + 〈v −Ku+ f, q〉

}

= sup
q

{

inf
v
(Hf (v) + 〈v, q〉) + α inf

u
(J(u)− 〈pl + 1

α
K∗q, u〉) + 〈f, q〉

}

= sup
q

{

−H∗
f (−q) + 〈f, q〉 − αJ∗(

1

α
K∗q + pl)

}

,

with 1
α
K∗q + pl ∈ ∂J(u) ⊂ W(Ω)∗, where we have used convex conjugates and the

identity inf(·) = − sup(−·).

Defining p := 1
α
K∗q+ pl, hence q = α(K∗)−1(p− pl) implies the dual formulation of

the (primal) Bregman method above:

Problem 3.3.6 (Inverse Scale Space, dual formulation).

pl+1 = argmin
p∈U(Ω)∗

{
H∗

f (α(K
∗)−1(pl − p))− 〈f, α(K∗)−1(p− pl)〉+ αJ∗(p)

}
,

with α(K∗)−1(pl − p) ∈ ∂Hf (Ku) and p ∈ ∂J(u).

Now we are going to use the primal-dual relation above to provide a dual iterative

Bregman regularization technique. Considering the standard regularized reconstruc-

tion model in (3.3.1), the described primal-dual relation above, with pl = 0, yields

the dual formulation of the variational problem:
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Problem 3.3.7 (Variational Problem, dual formulation).

min
p∈U(Ω)∗

{
αJ∗(p)− 〈f, α(K∗)−1p〉+H∗

f (−α(K∗)−1p)
}
.

Note that the conjugate of J and the duality product act as a fidelity term and the

conjugate of Hf as a regularization term in this formulation.

Consequently, the natural dual counterpart of the primal inverse scale space method,

using the substitution q := α(K∗)−1p resp. ql := α(K∗)−1pl, reads as follows

Problem 3.3.8 (Dual Inverse Scale Space).

ql+1 = argmin
q∈V(Σ)∗

{

αJ∗(
1

α
K∗(q))− 〈f, q〉 + Drl

H∗

f
(−q,−ql)

}

= argmin
q∈V(Σ)∗

{

αJ∗(
1

α
K∗(q))− 〈f, q〉 + H∗

f (−q) + 〈rl, q〉
}

with rl ∈ ∂H∗
f (−ql). The corresponding dual formulation of this variational problem,

i.e. the primal (equal to the bidual) formulation, has a structure we are familiar

with. The definition of the convex conjugate and the Fenchel duality theorem under

appropriate conditions once more imply the following dual-primal relation:

inf
p

{
αJ∗(p)− 〈f, α(K∗)−1p〉 + H∗

f (−α(K∗)−1p) + 〈rl, α(K∗)−1p〉
}

= inf
p,q

sup
v

{
H∗

f (−q) + 〈rl − f, q〉 + αJ∗(p) + 〈K∗q − αp, v〉
}

= sup
v

{

inf
q
(H∗

f (−q) + 〈rl − f, q〉+ 〈Kv, q〉) + α inf
p
(J∗(p)− 〈p, v〉)

}

= sup
v

{

− sup
q

(H∗
f (−q) + 〈Kv + rl − f, q〉) − αJ(v)

}

= − inf
v

{
Hf (Kv + rl − f) + αJ(v)

}

We obtain the simple primal (bidual) iterative regularization technique, equivalent

to the dual formulation in Problem 3.3.8 above:

Problem 3.3.9 (Dual Inverse Scale Space, primal formulation).

ul+1 = argmin
u∈W(Ω)

{
Hf (Ku+ rl − f) + αJ(u)

}
, (3.11)
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with rl ∈ ∂H∗
f (−α(K∗)−1pl).

Since both Hf and J are proper, lower semi-continuous and convex, and since Hf is

locally bounded, we have

∂ (Hf (Ku) + αJ(u)) = ∂Hf (Ku) + α ∂J(u)

for all u ∈ W(Ω), cf. [62]. Hence, the optimality condition of (3.11) is given by

0 ∈ K∗(∂Hf (Ku
l+1 − f + ∂H∗

f (−α(K∗)−1pl))) + αpl+1 ,

and with the definition of convex conjugates this yields

(K∗)−1(−αpl+1) ∈ ∂Hf (Ku
l+1 − f + ∂H∗

f (−α(K∗)−1pl))

and

∂H∗
f (−α(K∗)−1pl+1) = ∂H∗

f (−α(K∗)−1pl) +Kul+1 − f .

Consequently, the first order optimality condition of this variational problem pro-

vides an update of the residual function rl,

rl+1 = rl +Kul+1 − f (3.12)

for rl ∈ ∂H∗
f (−α(K∗)−1pl) and rl+1 ∈ ∂H∗

f (−α(K∗)−1pl+1). This recursion formula

yields an interesting decomposition of f involving ”noise” at levels l and l + 1 and

signal at level l + 1.

Well-Definedness of the Iterates

In the following we show that the iterative dual-Bregman procedure is well-defined,

i.e. that (3.12) has a minimizer ul+1 and that we may find a suitable subgradient

rl+1.

Proposition 3.3.10. Assume Hf to be a strictly convex fidelity with operator K

having a trivial null space and J to be a convex functional. Let u0 := 0, p0 := 0 ∈
∂J(u0), r0 = 0 ∈ ∂H∗

f (−α(K∗)−1p0) and α > 0. Then, the minimizers ul+1 in

(3.11) are well-defined.

Proof. As described above, rewriting the optimality condition of (3.11) yields the

update (3.12) of the residuals. Since r0 = 0, the l − th residual can be expressed

explicitly by

rl = −
l∑

i=1

(f −Kui) ∈ ∂H∗
f (−α(K∗)−1pl),
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consequently (3.12) changes to

ul+1 = argmin
u∈W(Ω)

{

Hf (Ku+
l∑

i=1

(Kui)− (l + 1)f) + αJ(u)

}

. (3.13)

Hence, the existence of minimizers can be traced back to existence of minimizers

for the original reconstruction problem, just with modified given data, which can be

treated as usual. Moreover, as K has only a trivial null space, the strict convexity

of Hf and the convexity of J imply the strict convexity of the functional (3.11), and

therefore the minimizers ul+1 are unique.

Dual Inverse Scale Space Flow

To derive a dual nonlinear inverse scale space flow we have to take a look at the

update formula (3.12) due to the optimality condition of (3.11). In the limit α ↓ 0,
this can be interpreted as a forward Euler discretization of the flow

d

dt
r(t) = Ku(t)− f, r(0) = 0 , (3.14)

with r(t) ∈ ∂H∗
f (−α(K∗)−1p(t)), which is termed dual nonlinear inverse scale space

method (in analogy to previous works [34], [33]). By defining the integrated residual

in that way, we obtain

p(t) α = K∗(q(t)) . (3.15)

Error Estimates

In order to derive error estimates in the iterative Bregman distance setting we need

to introduce the so-called source condition

∃ p̃ ∈ ∂J(ũ), ∃ q̃ ∈ V(Σ)∗ : p̃ α = K∗q̃ . (SC)

The nowadays standard source condition (SC) will in some sense ensure that a

solution ũ contains features that are enhanced by the regularization term J . More

precisely, for an arbitrary, but fixed α > 0, the set of p̃ α satisfying the source

condition is equivalent to the set of minimizers p̃ α of the corresponding variational

problem, see [36, Prop. 1]. In other words, the existence of the function q̃ can

be interpreted as the existence of a Lagrange multiplier of a constraint optimization

problem, which is an additional regularity condition on the solution. In the following

we will see that a source condition allows to derive a quantitative estimate between

an exact solution and the solution of a regularized problem.
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Notice the resemblance between the time dependent subgradient p(t) in (3.15) and

p̃ in the source condition.

The techniques we will use in the followin are related to entropy methods for PDEs,

in particular they are related to the Bakry-Emery method, see e.g. [40, 41, 141,

183]. Now we consider the Bregman distance for the convex conjugate of Hf ,

D
∂H∗

f
(−q(t))

H∗

f
(−q̃,−q(t)), which is finite due to the source condition. Then

d

dt

(

D
∂H∗

f
(−q(t))

H∗

f
(−q̃,−q(t))

)

=
d

dt

(
H∗

f (−q̃)−H∗
f (−q(t))− ∂H∗

f (−q(t))(−q̃ + q(t))
)

= 〈rt, q̃ − q(t)〉
(3.14)
= 〈f −Ku(t), q(t)− q̃〉

= 〈f − g, q(t)− q̃〉 − 〈Ku(t)− g, q(t)− q̃〉
= 〈f − g, q(t)− q̃〉 − α〈u(t)− ũ, p(t)− p̃〉
= 〈f − g, q(t)− q̃〉 − αDsymm

J (u(t), ũ)

≤ 〈f − g, q(t)− q̃〉 − αDp(t)
J (ũ, u(t))

=: − I(t) .

(3.16)

In the following we want to analyse the monotone behavior of I(t). For that purpose,

we deduce a relation between qt and the second derivative of the data fidelity Hf

from the dual inverse scale space flow in (3.14) first, which is

d

dt
(∂H∗

f (−q(t))) = ∂2q (H
∗
f (−q(t))) (−qt)

= Ku(t)− f .

By using an equivalent definition of the convex conjugate in the differentiable case

(∂H∗
f = (∂Hf )

−1) and by using the derivative of inverse functions this yields

qt(t) = ∂t(α(K
∗)−1p(t))

= [∂2q (H
∗
f (−q(t)))]−1 (f −Ku(t))

= [∂u[(∂uHf (∂H
∗
f (−q(t))))−1]]−1 (f −Ku(t))

= ∂2uHf (r(t)) (f −Ku(t)), r(t) ∈ ∂H∗
f (−q(t)) .
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Consequently, the temporal properties of the estimate I(t) read as follows:

d

dt
(I(t))

= − 〈qt, f − g〉+ α
d

dt

(

D
p(t)
J (ũ, u(t))

)

= − 〈qt, f − g〉 − α〈ũ− u(t), pt〉
= − 〈qt, f − g〉 − 〈g −Ku(t), ∂t(α(K∗)−1p(t))〉
= − 〈f − g, qt〉 − 〈g −Ku(t), H

′′

f (r(t)) (f −Ku(t))〉
= − 〈f − g,H ′′

f (r(t)) (f −Ku(t))〉 − 〈g −Ku(t), H
′′

f (r(t)) (f −Ku(t))〉
= − 〈f −Ku(t), H ′′

f (r(t)) (f −Ku(t))〉
≤ 0

(3.17)

with r(t) ∈ ∂H∗
f (−q(t)). The latter inequality means that the Hessian H

′′

f is positive

semidefinite. This in turn is a second order criterion for the convexity of Hf , see

Lemma 3.1.2.

Hence, after integrating inequality (3.17) from 0 to t we get a decrease of I in time

and obtain

I(t) ≤ I(s) ∀t ≥ s hence t · I(t) ≤
∫ t

0

I(s)ds . (3.18)

Now, integrating (3.16) from 0 to t yields

D
r(t)
H∗

f
(−q̃,−q(t))−Dr(0)

H∗

f
(−q̃,−q(0)) ≤ −

∫ t

0

I(s)ds ,

which implies

t · I(t)
(3.18)

≤
∫ t

0

I(s)ds ≤ D
r(0)
H∗

f
(−q̃,−q(0))−Dr(t)

H∗

f
(−q̃,−q(t)). (3.19)

In the case of noise-free data, i.e. δ = 0, I(t) reduces to the time dependent Bregman

distance we want to estimate. Hence, we can conclude

t α ·Dp(t)
J (ũ, u(t)) ≤ D

r(0)
H∗

f
(−q̃,−q(0))−Dr(t)

H∗

f
(−q̃,−q(t))

︸ ︷︷ ︸

≤0

and thus:

Theorem 3.3.11 (Exact data). Let ũ ∈ U(Ω) satisfy Kũ = g = f , and (SC).

Moreover, with q(t) := (K∗)−1p(t), let u be a solution of the dual inverse scale space

flow

∂t r(t) = Ku(t)− g, r(t) ∈ ∂H∗
f (−q(t)) .
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Then the convergence rate D
p(t)
J (ũ, u(t)) = O(1

t
) holds, more precisely

D
p(t)
J (ũ, u(t)) ≤

D
r(0)
H∗

f
(−q̃,−q(0))
α t

.

In the case of noisy data some further effort is necessary, since the temporal derivative

of the Bregman distance with respect to H∗
f in (3.16) is not bounded by the negative

Bregman distance. Then, (3.19) reads as follows:

D
r(t)
H∗

f
(−q̃, q(t))−〈t(f −g), q(t)− q̃〉+ t αDp(t)

J (ũ, u(t)) ≤ D
r(0)
H∗

f
(−q̃,−q(0)) . (3.20)

In order to find a lower bound for the first two terms on the left hand side, we

provide the following lemma.

Lemma 3.3.1. Let F : X → R ∪ {∞} be a convex functional, twice continuously

Frechét-differentiable, u, v ∈ X, p, q ∈ X∗ and t ∈ R
+. Then the duality product can

be estimated by a sum of Bregman distances,

〈t(u− v), p− q〉X ≤ c t2 D
∂F (u)
F (v, u) +D

∂F ∗(q)
F ∗ (p, q),

with a constant,

c := ( inf
w∈[v,u]

‖F ′′(w)‖)−1 ( inf
ξ∈[q,p]

∥
∥F ∗′′(ξ)

∥
∥)−1 ,

depending on the norm of the second derivative of F and its convex conjugate.

Proof. One observes from a Taylor expansion of F ∗ in p around q with a residual

term,

F ∗(p) = F ∗(q) + 〈(F ∗)′(q), p− q〉+ 1

2
〈p− q, (F ∗)′′(ξ)(p− q)〉

with ξ ∈ [q, p], that a lower bound for the corresponding Bregman distance is given

by

D
(F ∗)′(q)
F ∗ (p, q) = F ∗(p)− F ∗(q)− 〈(F ∗)′(q), p− q〉

=
1

2
〈p− q, (F ∗)′′(ξ)(p− q)〉

≥ ǫ

2
‖p− q‖2 ,

with ǫ := inf
ξ∈[q,p]

‖(F ∗)′′(ξ)‖.
In analogy a Taylor expansion of F in v around u,

F (v) = F (u) + 〈F ′(u), v − u〉+ 1

2
〈v − u, F ′′(w)(v − u)〉,

77



3. Convex Analysis and Bregman Distances

with w ∈ [u− v], yields
1

c̃ ǫ
D

F ′(u)
F (v, u) =

1

c̃ ǫ
(F (v)− F (u)− 〈F ′(u), v − u〉)

=
1

2 c̃ ǫ
〈v − u, F ′′(w)(v − u)〉

≥ 1

2 ǫ
‖u− v‖2 ,

with c̃ := inf
w∈[u,v]

‖F ′′(w)‖.
Using Young’s inequality we obtain

〈t(u− v), p− q〉 ≤ t2

2ǫ
‖u− v‖2 + ǫ

2
‖p− q‖2

≤ c t2 D
∂F (u)
F (v, u) +D

∂F ∗(q)
F ∗ (p, q)

With constant c := 1
c̃ǫ

we get the desired estimation.

Now, applying Lemma 3.3.1 to functional Hf yields the estimate

〈t(f − g), q(t)− q̃〉 ≤ D
r(t)
H∗

f
(−q̃,−q(t)) + c t2D

∂Hf (f)
Hf

(g, f) ,

such that the Bregman distance corresponding to H∗
f is annihilated in (3.20) and

that we can conclude

−c t2D∂Hf (f)
Hf

(g, f) + t αD
p(t)
J (ũ, u(t)) ≤ D

r(0)
H∗

f
(−q̃,−q(0)) .

Finally, since Hf (f) = 0, ∂Hf (f) = 0 and with the upper bound of the noise (3.7)

we have

D
∂Hf (f)
Hf

(g, f) = Hf (g) ≤ δ ,

provides a general error estimate for the dual inverse scale space method:

Theorem 3.3.12 (Noisy data). Let ũ ∈ U(Ω) satisfy Kũ = g and (SC), and let f

be noisy data satisfying (3.7). Moreover, with q(t) := (K∗)−1p(t), let u be a solution

of the dual inverse scale space flow

∂t r(t) = Ku(t)− f, r(t) ∈ ∂H∗
f (−q(t)) .

Then the error estimate

D
p(t)
J (ũ, u(t)) ≤

D
r(0)
H∗

f
(−q̃,−q(0))
α t

+ c δ t

holds. In particular, for the choice t∗(δ) := O(1
δ
) we obtain the convergence rate

D
p(t∗)
J (ũ, u(t∗)) = O(δ).
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Remark. In the case of Poisson noise modeling, i.e. if Hf is the Kullback-Leibler

data fidelity, cKL reads as follows:

cKL = ( inf
w∈[g,f ]

∥
∥∂2wHf (w)

∥
∥)−1 ( inf

ξ∈[q̃,q(t)]

∥
∥∂2ξH

∗
f (ξ)

∥
∥)−1

=
max{sup g, sup f}2

inf f

max{sup(1− q̃), sup(1− q(t))}2
inf f

,

since

∂2wHf (w) =
f

w2
, H∗

f (ξ) =

∫

Σ

−f log(1− ξ) and ∂2ξH
∗
f (ξ) =

f

(1− ξ)2 .

3.3.4 Bregman and Error Forgetting

Throughout this work we will see that besides fast algorithms and analytical inves-

tigations, Bregman distances are very useful for L1, TV and related minimization

problems. Recently, Osher and Yin gave an explanation why Bregman works so well.

The reason is error cancellation respectively error forgetting.

Let us consider the following variational problem with an L2 data fidelity as Hf and

a convex regularization term J(u)

min
u

{
1

2
‖Ku− f‖2L2(Σ) + α J(u)

}

.

Using the Bregman distance from above 3.2.1 regarding the regularization functional

J , the (primal) Bregman iteration for this problem reads as follows

Algorithm 3.3.13 (Primal Bregman Iteration, case L2 and J).

Let u0 = 0 and p0 = 0.

For l = 0, 1, . . . , until stopping criterion is fulfilled:

ul+1 = argmin
u∈W(Ω)

{
1

2
‖Ku− f‖2L2(Σ) + α Dpl

J (u, u
l)

}

pl+1 = pl − 1

α
K∗(Kul+1 − f) ,

where pl ∈ ∂J(ul) is a subgradient in the subdifferential of J at ul. As described in

Section 3.3.1 this Bregman iteration scheme is equivalent to

Algorithm 3.3.14 (Primal Bregman Iteration, case L2 and J).

Let u0 = 0 and f 1 = f .

For l = 1, 2, . . . , until stopping criterion is fulfilled:

ul = argmin
u∈W(Ω)

{
1

2

∥
∥Ku− f l

∥
∥
2

L2(Σ)
+ α J(u)

}

(3.21)

f l+1 = f l + f −Kul .
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In comparison to Section 3.3.1 we shifted the index of the u update here, to simplify

the notation in the following part. Now we pass over to error forgetting in Bregman

iteration. Let us assume we make an error ǫl while computing ul+1 in the first step

of Algorithm 3.3.14, i.e.

ũl = ul − ǫl . (3.22)

Thus we obtain the following disturbed update for the second step regarding f

f̃ l+1 = f l + f −Kũl ,

and hence using the linearity of K

f̃ l+1 = f l+1 +Kǫl .

Now we have a look at the next update for u in the Bregman iteration process.

Computing a new solution ũl+1 via the new disturbed iterate f̃ l+1 yields

ũl+1 (3.22)
= ul+1 − ǫl+1

(3.21)
= argmin

u∈W(Ω)

{
1

2

∥
∥Ku−

(
f l+1 +Kǫl

)∥
∥
2

L2(Σ)
+ α J(u)

}

− ǫl+1 ,

where ǫl+1 denotes the new error in this minimization process. Instead of minimizing

over u we minimize over u− ǫl. This implies

ũl+1 + ǫl+1 = ǫl + argmin
u∈W(Ω)

{
1

2

∥
∥Ku− f l+1

∥
∥
2

L2(Σ)
+ α J(u+ ǫl)

}

,

because u and ǫl add in the computation of J . Since J is homogeneous of degree

one we obtain

ũl+1 + ǫl+1 = ǫl + argmin
u∈W(Ω)

{
1

2

∥
∥Ku− f l+1

∥
∥
2

L2(Σ)
+ α J(u) + α L(ǫl)

}

= ǫl + ul+1 ,

where L(ǫl) is independent of u. By induction we can deduce for all l, large enough,

the interesting result

ũl = ul + ǫl−1 − ǫl . (3.23)

To conclude, adding back the residual in Bregman iteration does not accumulate

errors. Instead the error cancels step by step. As you can see in (3.23), the magnitude

of the error in l is only dependent on the magnitude of the difference of the current

and previous error. In other words, Bregman iteration forgets errors by adding back

residuals.
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Error forgetting in Dual Bregman with general Hf :

Interestingly, error forgetting also happens in the dual Bregman iteration for general

data fidelities Hf , including various nonstandard noise models,

min
u
{Hf (Ku− f) + α J(u) } .

In the case of an L2 data fidelity, the primal and the dual Bregman iteration coincide.

Hence, error forgetting in the dual Bregman iteration scheme happens with the same

arguments as above. In the general case of dual Bregman iteration, error forgetting

happens since the residuals add up in the argument of the data fidelity term, see 3.13

in the proof of the well-definedness. This is an indication that Bregman iterations

can be very useful for various imaging and image processing problems with convex

and 1-homogeneous regularization terms.
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4
Splitting Methods

4.1 Saddle Point Problems

To describe primal-dual splitting methods for convex optimization problems we first

of all introduce general saddle point problems. Various applications in literature

lead to saddle point problems, e.g. computational fluid dynamics [82, 175, 190],

economics [5], image registration [91, 126, 127] or parameter identification problems

[35, 88, 89]. For an extensive list of applications leading to saddle point problems,

we refer to the work [20].

Saddle point problems usually result from Lagrangian approaches, where Lagrange

multipliers (dual variables) are used to build unconstrained problems from con-

strained optimization problems. Let L : U × V → R ∪ {∞} be a convex-concave

functional, where U and V are Banach spaces.

Problem 4.1.1 (Primal-Dual Saddle Point Problem).

inf
u∈U

sup
p∈V

L(u; p) , (4.1)

where we denote u as the primal and p as the dual variable.

We are interested in finding a saddle point pair (u∗; p∗) which means

L(u; p∗) ≤ L(u∗; p∗) ≤ L(u∗; p) , ∀ (u, p) ∈ U × V . (4.2)

By use of the dual optimality condition in (4.1) we obtain a purely primal convex

problem

inf
u∈U

F (u) , where F (u) := sup
p∈V

L(u; p) . (4.3)
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In an analogous way using the primal optimality condition in (4.1) we obtain a

purely dual problem

sup
p∈V

G(p) , where G(p) := inf
u∈U

L(u; p) . (4.4)

Following [154, 28.3], the pair (u∗; p∗) is a saddle point of the Lagrangian in (4.1), if

and only if u∗ is an optimal solution of the primal problem (4.3) and p∗ is an optimal

solution of the dual problem (4.4). In other words, the existence of a solution of the

primal problem or the existence of a solution of the dual problem on its own does

not imply the existence of a saddle point. The existence of a saddle point (u∗, p∗) of

L implies

L(u∗; p∗) = max
p

min
u

L(u; p) = min
u

max
p

L(u; p) .

In Section 4.3 we will introduce augmented Lagrangian methods. A saddle point

of the augmented Lagrangian is a saddle point of the Lagrangian and the converse

also holds, see [83, 3.2]. For further details on saddle point problems in convex

optimization we refer for example to [154, 83, 62].

4.2 Uzawa Methods

In the previous section we mentioned several applications leading to saddle point

problems. In Chapter 10 we will consider a 4D image reconstruction problem, whose

dynamic is modeled using a transport equation, and which leads to a saddle point

formulation. Classical examples that can be formulated as saddle point problems

and which are often numerically treated with Uzawa methods are the well-known

Stokes problems. Hence, we will motivate and introduce general Uzawa methods via

the stationary Stokes problem. For Ω ⊂ R
d the latter reads as follows:

Problem 4.2.1 (Stationary Stokes problem). Find a solution

(u, p) ∈
(
C2(Ω)d ∩ C1(Ω̄)d

)
× C1(Ω) with

−∆u+∇p = f in Ω

∇ · u = 0 in Ω

u = 0 in ∂Ω .

By multiplying with testfunctions and by integrating over Ω, a weak variational

formulation of the system can be written in the following way:
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4.2 Uzawa Methods

Find a function u ∈ X := (H1
0 (Ω))

d
, p ∈ Y :=

{
q ∈ L2(Ω) :

∫

Ω
q dx = 0

}
with

∫

Ω

∇u∇v −
∫

Ω

∇ · v · p =

∫

Ω

f · v dx ∀v ∈ X

−
∫

Ω

∇ · u · q = 0 ∀q ∈ Y .

The first equation results from applying partial integration with zero boundary con-

ditions. By introducing continuous bilinear forms a(u, v) :=
∫

Ω
∇u∇v respectively

b(v, p) := −
∫

Ω
∇ · v · p, and a continuous linear form on the right hand side, we

obtain

a(u, v) +b(v, p) = 〈f, v〉 ∀v ∈ X
b(u, q) = 0 ∀q ∈ Y .

If the considered function space has a finite basis, a discretization yields the following

system of linear equations
(

A BT

B 0

)(

u

p

)

=

(

f

g

)

, (4.5)

where we assume that A is a symmetric, positive definite (n×n) matrix, B is (m×m)

matrix with full rank m ≤ n, and BT denotes the transposed matrix of B. Linear

systems of the form (4.5) can be interpreted as Karush-Kuhn-Tucker conditions

for linearly constrained quadratic programming problems or saddle point problems.

Typically such systems result from finite element approximations of elliptic problems,

elasticity problems or the Stokes equations as above. Solving the system (4.5) is

equivalent to minimizing the following constrained optimization problem

min
u

1

2
uTAu− fTu

s.t. Bu = g .

This formulation reveals the correspondence to Lagrangian methods, whereas p can

be interpreted as a Lagrange multiplier.

In the following we deduce the classical Uzawa algorithm via the Schur complement

of A. We assume the coefficient matrix in (4.5) to be nonsingular and the (negative)

Schur complement C := BA−1BT of A to be symmetric and positive definite. The

Schur complement arises as the result of performing a block Gaussian elimination

by multiplying (4.5) from the right with the lower triangular block matrix

L =

(

I 0

BA−1 I

)

,
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that is we obtain
(

A BT

0 C

)(

u

p

)

=

(

I 0

−BA−1 I

)(

A BT

B 0

)(

u

p

)

=

(

I 0

−BA−1 I

)(

f

g

)

=

(

f

g −BA−1f

)

.

Hence the reduced optimality system reads as follows

Au = f −BTp (4.6)

Cp = BA−1f − g , (4.7)

and it can be seen as a basis for the following Uzawa methods. The classical Uzawa

algorithm [5, Chapter 10] relies on exactly solving (4.6) and an Jacobi-like iteration

for (4.7). The Arrow-Hurwicz algorithm [5, Chapter 6] may be regarded as an

inexpensive alternative to Uzawa‘s classical method, see below. The latter reads as

follows:

Algorithm 4.2.2 (Classical Uzawa method). Given p0, find uk+1, pk+1 with

Auk+1 = f −BTpk

pk+1 = pk + τ (Buk+1 − g)
= pk + τ

(
BA−1f − g − Cpk

)
.

As a consequence of the Schur approach the updates for uk+1 and pk+1 in the clas-

sical Uzawa approach depend on pk only. The Uzawa algorithm is equivalent to

the method of steepest descent with C = BA−1BT . The classical Uzawa method

converges for α < 2 ·
∥
∥BA−1BT

∥
∥
−1
.

However, for large scale and ill-posed problems the exact solution of (4.6) and (4.7)

is not possible in general. At best only approximate solvers for the latter are avail-

able. Avoiding the exact solution one can consider a class of iterative methods

called inexact Uzawa algorithms. Several modifications have been proposed, such as

Jacobi-like iterations or multigrid methods to avoid the exact solution of Au = b, cf.

[5, Chapter 6], [180] or [20, Section 8.1] for a nice overview and further references.

In general, inexact Uzawa methods can be described as

Algorithm 4.2.3 (Inexact Uzawa method).

Â (uk+1 − uk) = f − Auk −BTpk (4.8)

Ĉ (pk+1 − pk) = Buk+1 − g , (4.9)
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where Â and Ĉ are symmetric positive definite matrices and can be seen as precon-

ditioning matrices. For Â = A and Ĉ = 1
τ
· I we obtain the classical Uzawa method,

whereas Â = 1
µ
·I and Ĉ = 1

τ
·I yields the classical Arrow-Hurwicz algorithm [5, 142].

Convergence properties of inexact Uzawa methods have been investigated e.g. by

[145, 63, 25] and more recently in a unified setting with symmetric precondition-

ers by Zulehner [200]. The idea of various primal-dual algorithms for saddle point

problems trace back to this class of methods.

4.3 Augmented Lagrangian Methods

Historically, the augmented Lagrangian method dates back to Hestenes and Powell

[99, 143]. They called the algorithm method of multipliers. For background refer-

ences on the ALM we refer to [72], [83] and the recent book by Ito & Kunisch [107].

In the context of imaging and total variation regularization the ALM has been con-

sidered for instance in [68, 69, 198, 199, 193, 106]. The major application of the

augmented Lagrangian method is to solve constrained optimization problems of the

form

Problem 4.3.1 (Constrained Reconstruction Problem, Primal).

min
u∈V

J(u)

s.t. Ku = f ,

where J : X → R ∪ {+∞} is a functional and K : X → Y is a linear operator be-

tween Banach spaces X and Y . The augmented Lagrangian method is an attractive

method as it breaks a constrained optimization problem into smaller unconstrained

subproblems. For example you can think of J as a regularization functional and of

K as a compact operator in an inverse problem. Particularly in the case of inverse

problems and in the presence of noise one needs to be careful with the equality con-

straint in this model. Due to ill-posedness and data affected by noise, we cannot

directly expect to obtain an equality. An alternative is a penalized, usually separa-

ble, reconstruction model as we will see in the following section. By introducing a

Lagrange multiplier function p for the constraint in (4.3.1), the Lagrangian is given

by

L(u; p) = J(u) + 〈p, f −Ku〉 . (4.10)
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Hence, in the sense of (4.1) we can formulate a primal-dual saddle point problem

for (4.3.1)

min
u

max
p

L(u; p) .

Our starting problem (4.3.1) is the primal problem based on u only. By using

Legendre-Fenchel duality, see (3.1.2), we can deduce the corresponding dual problem

min
p

J∗(K∗p) − 〈f, p〉 ,

where J∗ denotes the convex conjugate (Legendre-Fenchel transform) of J . Several

splitting algorithms in this chapter are based on the augmented Lagrangian. The

augmented Lagrangian results from extending the Lagrangian in (4.10) by adding a

quadratic penalty of a constraint in the model,

Lµ(u; p) = J(u) + 〈p, f −Ku〉 + µ

2
‖Ku− f‖22 . (4.11)

We apply the standard Uzawa algorithm (without preconditioning) on the aug-

mented Lagrangian above and set the dual step size to the relaxation parameter

µ. The algorithm we obtain is called method of multipliers [99, 143] or augmented

Lagrangian method (ALM). For problem (4.3.1) the algorithm reads as follows:

Algorithm 4.3.2 (Augmented Lagrangian Method). Let u0 = 0 and p0 = 0 and

choose a sequence (µk)k∈N of positive parameters. For k = 0, 1, 2, ... compute







uk+1 = argmin
u

Lµk

(u; pk)

= argmin
u

{

J(u) +
〈
pk, f −Ku

〉
+

µk

2
‖Ku− f‖22

}

pk+1 = pk + µk (f −Kuk+1) .

Since f − Kuk+1 ∈ ∂pL
µk

(uk+1; p), the augmented Lagrangian method is nothing

else then the classical Uzawa algorithm 4.9 applied to the augmented Lagrangian,

where the step size τ is set to the relaxation parameter µ. In other words, the

Uzawa algorithm does not necessarily assume the dual step size to be the same

as the relaxation parameter µ. Concerning augmented Lagrangian algorithms it is

common to differentiate between stationary and non-stationary methods, depending

on whether the parameters µk are chosen constant or variable. Recently, there have

been some publications (see e.g. [74],[165] or [75]) revealing the equivalence relation

between the ALM and iterative primal Bregman distance regularization with an L2

data fidelity. This can be verified in the following way: Without affecting minimizers,
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the u update in the ALM algorithm 4.3.2 can be written as:

uk+1 = argmin
u

{
1

2
‖Ku− f‖22 +

1

µk

(
J(u) −

〈
K∗pk, u

〉)
}

= argmin
u

{
1

2
‖Ku− f‖22 +

1

µk
DK∗pk

J (u, uk)

}

,

which is the primal Bregman algorithm 3.3.3 with α := 1
µk . The update of the dual

variables coincides with the update in the Bregman algorithm if you consider the

subgradient K∗pk in the Bregman distance.

Using Rockafellar‘s duality concepts [156] the ALM can equivalently be reformulated

as a proximal point method applied to the dual. In comparison to methods without

the augmentation of the Lagrangian, the ALM can achieve faster convergence, but

one has to be careful with choosing the parameters. In [83] Glowinski et al. proved

the superlinear convergence for µ ր ∞, but obviously this can cause instabilities

due to ill-posedness if µ is too large.

4.4 The Splitting Zoo

Recently several works in literature used convex splitting algorithms for various

imaging and image processing tasks [198, 199, 69, 68, 165, 193]. In the three previous

sections we introduced the main ingredients for most of the methods in the ”splitting

zoo”: saddle point problems, Uzawa approaches with preconditioning and augmented

Lagrangian methods. The obvious advance of splitting methods, is that they rely

on efficient solvers for separated problems for primal and dual functions. Often

these subproblems are well understood and can be implemented very easily as a

combination of existing algorithms.

In the following we will take a prototype of a separable variational problem to explain

fundamental convex splitting ideas to get an overview of the zoo. Throughout this

work we will use splitting and preconditioning techniques for different imaging and

image processing tasks. For example we will use forward-backward splitting schemes

for 3D Poisson TV image reconstruction, split Bregman techniques for 3D optical

flow TV computation or augmented Lagrangian and inexact Uzawa techniques (pre-

conditioned Bregmanized operator splitting) for 4D image reconstruction with total

variation and optimal transport.

Separable Problems:

A variational problem is separable if we are able to decouple, respectively split,

the objective functional by adding (artificial) constraints. As a result one usually
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obtains several terms in the objective functional dependent on different primal vari-

ables. Common prototypes for separable problems are variational problems where

the addends are dependent on certain operators. For example in regularized inverse

problems usually data fidelities H are dependent on compact operators K or regu-

larization terms are dependent on differential operators, e.g. A = ∇. Let us assume

we have the following separable variational problem:

Problem 4.4.1 (Primal Separable Problem).

min
u
{H(u) + J(Au) } .

Here you can think of a reconstruction problem with a data fidelity H, e.g. an

L2 data fidelity and a regularization functional J , e.g. TV, which depends on the

differential operator A := ∇. The Problem 4.4.1 is the primal problem as it depends

on u only. By using the convex conjugate (Legendre-Fenchel transform) of J and

H, i.e.

J∗(p) = sup
v

〈p, v〉 − J(v) , H∗(q) = sup
w

〈q, w〉 −H(q) , (4.12)

we can rewrite this problem as a purely dual problem using Fenchel’s duality Theo-

rem 3.1.8,

Problem 4.4.2 (Dual Problem (D)).

max
p
{ −J∗(p) − H∗(−A∗(p)) }

If J is a closed proper convex functional we have J∗∗ = J . Hence we obtain

J(Au) = sup
p

〈p,Au〉 − J∗(p) .

Thus, a primal-dual saddle point formulation of our separable Problem 4.4.1 is given

by

Problem 4.4.3 (Primal-Dual Saddle Point Problem).

min
u

sup
p

{H(u) + 〈p,Au〉 − J∗(p) } . (4.13)

By introducing an (artificial) constraint Au = z, we can split the functional into two

parts dependent on different primal variables.
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Problem 4.4.4 (Primal Decoupled Problem).

min
u,z
{H(u) + J(z)} s.t. Au = z (decoupled)

By introducing a Lagrange multiplier function p for the constraint, the Lagrangian

is defined as

L(u, z; p) = H(u) + J(z) + 〈p, z − Au〉 .
Now we have two primal variables and one dual variable. Hence, in the decoupled

case we obtain a new saddle point formulation for Problem 4.4.4, which is given by

Problem 4.4.5 (Decoupled Primal-Dual Saddle Point Problem, (SP)).

min
u,z

sup
p

L(u, z; p) .

By applying Legendre-Fenchel duality once more, we can verify that the dual prob-

lem corresponding to Problem 4.4.4 simply is the Problem 4.4.2 above.

By adding a quadratic penalty concerning the equality constraint Au = z to the La-

grangian, we obtain the following augmented Lagrangian for the decoupled Problem

4.4.4,

Lµ(u, z; p) = H(u) + J(z) + 〈p, z − Au〉 + µ

2
‖Au− z‖22 . (4.14)

Consequently, we can apply the augmented Lagrangian method, see Algorithm 4.3.2,

to the decoupled problem, which yields the following algorithm

Algorithm 4.4.6 (Augmented Lagrangian method for Problem 4.4.4).







(uk+1, zk+1) = argmin
u,z

Lµ(u, z; pk)

= argmin
u,z

{

H(u) + J(z) +
〈
pk, z − Au

〉
+

µ

2
‖Au− z‖22

}

pk+1 = pk + µ
(
zk+1 − Auk+1

)
.

Here we have to compute a solution for the primal variables in u and z simultane-

ously. Since we are interested in simple and efficient sub-steps, we can split the first

update by alternatively minimizing due to u and z. We started with a decoupled

problem regarding u and z. If we make use of the splitting structure in different

ways, then various members of the splitting zoo can be deduced. In the following

sections we will present some useful representatives namely AMA, FBS, ADMM,

DRS, Split Bregman and inexact Uzawa approaches (BOS).
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Separable Primal Problem

min
u
{H(u) + J(Au)}

Decoupled Saddle Point Problem (SP)

min
u,z

sup
p

L(u, z; p) with

L(u, z; p) = H(u) + J(z) + 〈p, z − Au〉

AMA

on

(SP )

FBS

on

(D)

ADMM

on

(SP )

Douglas-

Rachford

on (D)

Split

Bregman

on (D)

Inexact Uzawa

on (SP )

Primal or Dual

Preconditioning

+µ

2
‖Au− z‖22

Lin. constr.

+
∥
∥u− uk

∥
∥
P (δ)

and/or +
∥
∥p− pk

∥
∥
Q(δ)

decoupling

Figure 4.1: Overview of splitting methods for separable variational problems
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4.4.1 Forward-Backward Splitting and AMA

We consider the decoupled primal Problem 4.4.4. In comparison to the augmented

Lagrangian Algorithm 4.4.6, the main idea of the so-called alternating minimization

algorithm (AMA) is to use the Lagrangian L(u, z; p) for the update of the primal

variable u, and the augmented Lagrangian Lµ(u, z; p) for the update of the other

primal variable z, i.e.

Algorithm 4.4.7 (Alternating minimization algorithm (AMA) for Problem 4.4.4).







uk+1 = argmin
u

L(u, zk; pk) = argmin
u

{
H(u) −

〈
pk, Au

〉 }

zk+1 = argmin
z

Lµ(uk+1, z; pk) = argmin
z

{

J(z) +
〈
pk, z

〉
+

µ

2

∥
∥z − Auk+1

∥
∥
2

2

}

pk+1 = pk + µ
(
zk+1 − Auk+1

)
.

This algorithm goes back to Tseng [176]. He verified that this Lagrangian based

splitting algorithm is equivalent to the dual application of the so-called forward

backward splitting (FBS) algorithm. The latter splitting technique traces back to

[119] and [138], and has often be used for decomposition problems in convex opti-

mization. We will introduce FBS for the dual Problem 4.4.2. The (dual) optimality

condition for Problem 4.4.2 can be interpreted as a decomposition problem,

0 ∈ Ψ(p) + Φ(p) , (4.15)

with the maximal monotone operators

Ψ(p) := ∂J∗(p) and Φ(p) := −A ∂H∗(−A∗(p)) . (4.16)

The basic idea of the following splitting procedure (and similarly for Douglas-

Rachford splitting in the following section) is to rearrange equation 4.15, such that

we obtain a fixed point equation p = T (p) and a related converging Picard iteration.

For µ > 0, equation 4.15 is equivalent to

(I − µΨ)p ∈ (I + µΦ)(p) ,

which can be written as

p ∈ (I + µΦ)−1(I − µΨ)(p) .

With the notation of the resolvent operator Rµ
Φ := (I + µΦ)−1, we can write the

fixed point equation as

p = T (p) := Rµ
Φ(I − µΨ)(p) . (4.17)
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Then the corresponding Picard iteration is the FBS algorithm and reads as follows

pk+1 = Rµ
Φ(I − µΨ)(pk) .

We can rewrite this closed form of FBS as a two-step algorithm,

Algorithm 4.4.8 (Forward-Backward Splitting (FBS)).






pk+
1
2 − pk
µ

+ Ψ(pk) = 0

pk+1 − pk+ 1
2

µ
+ Φ(pk+1) = 0 ,

which explains the name FBS. The first step is a forward step on Ψ, whereas the

second step is a backward step on Φ.

The main advantage of AMA and equivalently of FBS applied to the dual, is the

simplicity of the first iteration step. We only have to apply operators. Particularly,

the use of the simple Lagrangian in the first step of AMA avoids the inversion of

terms including A∗A if you take a look at the optimality condition.

However, to apply AMA, respectively FBS, either H or J must be strictly convex.

Assuming that H is strictly convex with modulus m > 0, Tseng [176] showed that
{
uk, zk

}
converges to a solution of the primal Problem 4.4.4 and

{
pk
}
converges to

a solution of the dual Problem 4.4.2, if the time dependent step size µk satisfies the

following restriction

ǫ ≤ µk ≤ 4m

‖A‖2
− ǫ , ǫ ∈ (0,

2m

‖A‖2
] .

Forward backward splitting can efficiently be applied to the dual problem and has

successfully been used for many problems, cf. Chambolle’s gradient descent reprojec-

tion algorithm [43], the Bermudez-Moreno algorithm [9] or the iterative thresholding

algorithm FPC [93, 94]. In the following chapter on 3D imaging we will use a modi-

fied forward-backward splitting scheme for image reconstruction with Poisson noise

and total variation regularization applied to a primal formulation.

4.4.2 ADMM and DRS and Split Bregman

In this subsection we still consider the decoupled primal Problem 4.4.4. Taking

into account the augmented Lagrangian Algorithm 4.4.6, we can take advantage of

the separable structure by minimizing alternatively between the separated primal

variables and the corresponding dual variables. This strategy is called alternating

direction method of multipliers (ADMM), which has been introduced by Gabay in

[76].
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Algorithm 4.4.9 (Alternating direction method of multipliers, ADMM).







uk+1 = argmin
u

Lµ(u, zk; pk) = argmin
u

{

H(u) −
〈
pk, Au

〉
+

µ

2

∥
∥Au− zk

∥
∥
2

2

}

zk+1 = argmin
z

Lµ(uk+1, z; pk) = argmin
z

{

J(z) +
〈
pk, z

〉
+

µ

2

∥
∥z − Auk+1

∥
∥
2

2

}

pk+1 = pk + µ
(
zk+1 − Auk+1

)
.

In comparison to AMA we have the same steps except replacing the Lagrangian in

the update of the first primal variable with the augmented Lagrangian. Without

affecting minimizers, Algorithm (4.4.9) can be rewritten as






uk+1 = argmin
u

{

H(u) +
µ

2

∥
∥
∥
∥
Au− zk − 1

µ
pk
∥
∥
∥
∥

2

2

}

zk+1 = argmin
z

{

J(z) +
µ

2

∥
∥
∥
∥
z − (Auk+1 − 1

µ
pk)

∥
∥
∥
∥

2

2

}

pk+1 = pk + µ
(
zk+1 − Auk+1

)
,

because the scalar products can be transfered to the L2 norms. The ADMM Al-

gorithm 4.4.9 is equivalent to the so-called Douglas-Rachford Splitting (DRS) tech-

nique applied to the dual Problem 4.4.2. DRS traces back to a work of Douglas

and Rachford from 1956 [58]. Connections between ADMM and DRS were explored

by Glowinki and Le Tallec [83], Gabay [76] and by Lions and Mercier [119]. The

equivalence of ADMM and the proximal point method was studied in [119], too.

The optimality system of the dual Problem 4.4.2 reads as follows

0 ∈ Ψ(p) + Φ(p) , (4.18)

with the maximal monotone operators defined in 4.16. This is a decomposition prob-

lem in convex optimization and can be interpreted as the steady state of a parabolic

problem. By formally applying Douglas-Rachford Splitting (DRS) to (4.18), we

obtain a two-step algorithm






pk+
1
2 − pk
µ

+ Ψ(pk+
1
2 ) + Φ(pk) = 0

pk+1 − pk
µ

+ Ψ(pk+
1
2 ) + Φ(pk+1) = 0 ,

(4.19)

where µ can be interpreted as a step size. Following [83] and [60], one can show that

ADMM satisfies scheme (4.19).

In the following we will derive the DRS scheme in (4.19) by aiming fixed point

equations and Picard iterations, similarly to the derivation of forward backward
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splitting (FBS). We start with the fixed point relation, we used for FBS in (4.17),

with the resolvent Rµ
Φ := (I + µΦ)−1 and µ > 0,

p ∈ Rµ
Φ(I − µΨ)(p) ,

which is equivalent to (4.18). By multiplying the equation with (I + µΨ) we obtain

(I + µΨ)(p) ∈ Rµ
Φ(I − µΨ)(p) + µΨ(p) ,

which again is equivalent to

p ∈ Rµ
Ψ (Rµ

Φ(I − µΨ) + µΨ) (p) . (4.20)

By introducing a new function t defined as

p = Rµ
Ψ(t) ,

and with the identities

Rµ
Ψ − µΨ(Rµ

Ψ) = 2Rµ
Ψ − I and I − µΨ = 2− (I + µΨ) ,

the equation in (4.20) yields

t ∈ Rµ
Φ(2p− t) + t− p .

Consequently, if Ψ is single-valued, then the DRS scheme reads as follows:

Algorithm 4.4.10 (Douglas-Rachford Splitting (DRS)).







tk+1 = Rµ
Φ(2p

k − tk) + tk − pk

pk+1 = Rµ
Ψ(t

k+1) .

If there exists a solution of the dual problem, then for any initial values t0 and p0 and

for any step size µ > 0, this algorithm converges weakly to a solution. Concerning

a proof, cf. Lions and Mercier [119] or Combettes [47].

For a single-valued Ψ, the fixed point iteration regarding (4.20),

pk+1 ∈ Rµ
Ψ (Rµ

Φ(I − µΨ) + µΨ) (pk) ,

is a Picard iteration and represents a closed form of the DRS scheme. With the

substitution

pk+
1
2 := pk+1 − µΨ(pk) + µΨpk+1 ,
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4.4 The Splitting Zoo

we can write this iteration as a two-step iteration scheme:







pk+
1
2 − pk
µ

+ Φ(pk+
1
2 ) + Ψ(pk) = 0

pk+1 − pk+ 1
2

µ
− Ψ(pk) + Ψ(pk+1) = 0 ,

which is equivalent to (4.19) and which reveals the structural differences compared

to the FBS Algorithm 4.4.8. Douglas-Rachford Splitting is equivalent to the so-

called Split Bregman algorithm if the constraints are linear. This connection has

been established by Setzer [165, 166]. The connection between Split Bregman and

ADMM has been made by Esser [68, 69].

Example:

In the case of TV denoising we have the primal decoupled Problem 4.4.4 with

H(u) := ‖u− f‖22 , and J(z) := α ‖z‖1 , (4.21)

with the operator A := ∇. Hence, the application of ADMM to this problem

is equivalent to the Split Bregman method proposed in [84]. The Split Bregman

algorithm can be realized very efficiently via shrinkage and DCT, respectively FFT

inversion:






uk+1 = (1 − µ∆)−1
(
f + µzk + pk

)

zk+1 = S(∇uk+1 − 1
µ
pk , α

µ
) (Shrinkage)

pk+1 = pk + µ
(
zk+1 −∇uk+1

)
.

In Section 8.5 on optical flow computation, we will use the Split Bregman idea,

respectively ADMM or DRS, for computing 3D optical flow with total variation.

The quadratic relaxation terms of the form µ

2
‖z − Au‖22 in the ADMM algorithm

result from the augmentation of the Lagrangian. These additional penalty terms

can improve the convergence behavior of resulting splitting schemes. However, the

primal variables in augmented Lagrangian based splitting schemes are coupled in

a way that can make sub-steps computationally expensive. If A is diagonal or

diagonalizable this may not be a problem since we can simply invert operators by

DCT or FFT, similarly to the TV denoising example from above. However, for more

complicated operators A concerning inverse problems, e.g. in PET imaging, this is

a difficulty.

There are at least two possibilities to overcome the difficulty resulting from the aug-

mentation in the corresponding primal update. On the one hand, we can simply

take the Lagrangian without the additional quadratic penalty. This leads to the
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alternating minimization algorithm (AMA), respectively to forward-backward split-

ting (FBS) for the dual problem, we presented in the previous section. On the other

hand, we can add suitable preconditioning terms relating consecutive primal iterates

in a specific way. This leads to the idea of Bregmanized operator splitting, or more

general, to inexact Uzawa algorithms for saddle point problems we introduced in

Section 4.2. In the following subsections we will study this issue further in detail.

4.4.3 Bregmanized Operator Splitting and Inexact Uzawa

In the first part of this subsection we will introduce Bregmanized operator split-

ting (BOS) for the primal constrained reconstruction Problem 4.3.1, which reads as

follows

min
u∈V

J(u)

s.t. Ku = f .

In Section 3.2, in Algorithm 3.3.4, we presented the primal Bregman iteration,






uk+1 = argmin
u

{
1

2

∥
∥Ku− fk

∥
∥
2

2
+ J(u)

}

fk+1 = fk + f −Kuk+1 ,

which, in the case of L2 data fidelities, turns out to be equivalent to the augmented

Lagrangian method regarding the constrained reconstruction problem above, see Al-

gorithm 4.3.2.

Then the Bregmanized operator splitting technique introduced in [198] results from

4.22 by applying forward-backward splitting (see Algorithm 4.4.8) to the first min-

imization problem concerning u. Restricting to one inner iteration and using the

step-size δ, the BOS algorithm reads as follows:

Algorithm 4.4.11 (Bregmanized Operator Splitting (BOS) for Problem 4.3.1).







uk+
1
2 = uk − δK∗

(
Kuk − fk

)

uk+1 = argmin
u

{
1

2δ

∥
∥
∥u− uk+ 1

2

∥
∥
∥

2

2
+ J(u)

}

fk+1 = fk + f −Kuk+1 ,

which is equivalent to






uk+1 = argmin
u

{
1

2δ

∥
∥u−

(
(1− δK∗K) uk + δK∗fk

)∥
∥
2

2
+ J(u)

}

fk+1 = fk + f −Kuk+1 .
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It turns out, that BOS can be interpreted as a special case of the inexact Uzawa

method we introduced in Section 4.2, also see [198].

In the sense of Lagrangian methods, the inexact Uzawa approach regarding the

constrained reconstruction Problem above, reads as follows

Algorithm 4.4.12 (Inexact Uzawa Algorithm for Problem 4.3.1).






uk+1 = argmin
u

{

J(u) +
〈
f −Ku, fk

〉
+ ‖Ku− f‖22 +

∥
∥u− uk

∥
∥
2

Â

}

Ĉ fk+1 = Ĉ fk + f −Kuk+1 ,

with the preconditioning term
∥
∥u− uk

∥
∥
2

Â
=
〈

u− uk, Â(u− uk)
〉

and the preconditioning operators Â and Ĉ, we already introduced in Algorithm

4.2.3. By carefully choosing these operators, we are able to ”control” subsequent

primal respectively dual iterates in a specific way.

If we choose Â := 1
δ
−K∗K and Ĉ := I, this algorithm coincides with Bregmanized

operator splitting.

In Chapter 10 we will apply the general inexact Uzawa strategy with preconditioning

to a 4D TV image reconstruction model with optimal transport to obtain an efficient

splitting scheme for a 4D-TV image reconstruction model. As a consequence, we

are going to build sub-steps, which consist of thresholding and DCT inversions only.

Example: Inexact Uzawa for L2 − TV Reconstruction

In the following we will present Bregmanized operator splitting (BOS), respectively

inexact Uzawa methods applied to image reconstruction problems with a separable

structure. This example can be seen as a motivation for the splitting algorithms we

will use at the end of this thesis.

Let us assume the following variational problem for image reconstruction,

min
u

{
1

2
‖Ku− f‖22 + α TV (u)

}

,

with an L2 data fidelity corresponding to an additive Gaussian noise modeling and

total variation regularization. Similarly to the previous subsections, the data fidelity

and the reconstruction term can be decoupled by adding constraints.

Problem 4.4.13 (Decoupled Reconstruction Problem L2 − TV ).

min
u,z

{
1

2
‖Ku− f‖22 + α ‖z‖1

}

s.t. z = ∇u (decoupled) .
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This is the decoupled primal Problem 4.4.4 with

H(·) := 1

2
‖K(·)− f‖22 and J(·) := α ‖·‖1 .

The augmented Lagrangian regarding Problem 4.4.13 reads as follows,

L(u, z; p) :=
1

2
‖Ku− f‖22 + α ‖z‖1 + 〈p,∇u− z〉 + µ

2
‖∇u− z‖22 .

With the additional preconditioning term

∥
∥u− uk

∥
∥
2

Pδ
=
〈
u− uk, Pδ(u− uk)

〉
,

we obtain

Algorithm 4.4.14 (Inexact Uzawa Algorithm).

u0 = 0, z0 = 0, y0 = 0







uk+1 = argmin
u

{
1

2
‖Ku− f‖22 +

〈
pk,∇u

〉
+

µ

2

∥
∥∇u− zk

∥
∥
2

2
+

1

2

∥
∥u− uk

∥
∥
2

Pδ

}

zk+1 = argmin
z

{

α ‖z‖1 −
〈
pk, z

〉
+

µ

2

∥
∥∇uk+1 − z

∥
∥
2

2
+

1

2

∥
∥z − zk

∥
∥
2

Q

}

Ĉ pk+1 = Ĉ pk + µ
(
∇uk+1 − zk+1

)
.

For the semi-implicit Bregmanized operator splitting technique introduced in [198],

we set

Q := 0 and Ĉ :=
1

τ
.







uk+1 = argmin
u

{

1

2
‖Ku− f‖22 +

µ

2

∥
∥
∥
∥
∇u− zk + 1

µ
pk
∥
∥
∥
∥

2

2

+
1

2

∥
∥u− uk

∥
∥
2

Pδ

}

zk+1 = argmin
z

{

α ‖z‖1 +
µ

2

∥
∥
∥
∥
z −

(

∇uk+1 +
1

µ
pk
)∥
∥
∥
∥

2

2

}

pk+1 = pk + τ
(
∇uk+1 − zk+1

)
.

Numerical solution of the primal variational problems:

0 = K∗(Kuk+1 − f)− µ∇ ·
(

∇uk+1 − zk + 1

µ
pk
)

+ Pδ(u
k+1 − uk)

which implies

uk+1 = (K∗K − µ∆+ Pδ)
−1 (K∗f +∇ ·

(
pk − µ zk

)
+ Pδu

k
)
.
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Figure 4.2: Visualization of soft-shrinkage

With the preconditioning operator Pδ :=
1
δ
−K∗K we obtain a simplified update for

u,

uk+1 =

(
1

δ
− µ∆

)−1(

K∗f +∇ ·
(
pk − µ zk

)
+

(
1

δ
−K∗K

)

uk
)

,

which can be inverted efficiently via DCT or FFT. The second step of the algorithm,

the z update, is based on a functional with an L2 fitting term and a sparsity regu-

larization term. Considering the optimality condition of the functional concerning

z, we obtain a solution via thresholding, i.e. via the simple shrinkage formula

zk+1 = S

(

∇uk+1 +
1

µ
pk ,

α

µ

)

.

Soft-Shrinkage Formulas:

In the following we will specify the isotropic and anisotropic soft-shrinkage formulas,

which are given by simple thresholding. The thresholding idea is illustrated in

Figure 4.4.3. Throughout this thesis we will use these formulas to solve denoising

(sub-)problems with sparsity regularization as above.

z = S(f, α) = f − α Π{g | |g|
l1≤ 1}

(
f

α

)

=







f − α sign(f) , if |f | > α

0 , if |f | ≤ α
=







f − α , if f > α

0 , if − α ≤ f ≤ α

f + α , if f < α

= sign(f) ·max(|f | − α, 0) .

This is the anisotropic case of soft-shrinkage. In the case where z and f are vector

fields, i.e. z : Ω→ R
d with d ≥ 2 we can choose different norms analog to the defi-

nition of total variation. Hence for isotropic soft-shrinkage we obtain the following
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shrinkage formula

For i = 1, .., d : zi = S(f, α) = f − α Π{g | |g|
l2≤ 1}

(
f

α

)

=
fi
|f |l2

·max(|f |l2 − α, 0) .
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5.1 Introduction

Image reconstruction is a fundamental problem in several areas of applied sciences,

such as medical imaging, optical microscopy or astronomy. An interesting example

is positron emission tomography (PET), a biomedical imaging technique in nuclear

medicine that generates images of living organism by visualizing weak radioactively

marked pharmaceuticals, so-called tracers. Due to the possibility of measuring tem-

poral tracer uptake (from list-mode data), this modality is particularly suitable for

investigating physiological and biochemical processes. Another application of image

reconstruction is fluorescence microscopy, which represents an important technique

for investigating biological living cells at nanoscales. In this type of applications im-

age reconstruction arises in terms of deconvolution problems, where the undesired

blurring effects being caused by diffraction of light.

Mathematically, image reconstruction in those applications can be formulated as a

linear inverse and ill-posed problem. Typically, in such problems one has to deal

with Fredholm integral equations of the first kind, or more general

f̄ = K̄ū

with a compact linear operator K̄, exact data f̄ and the desired exact image ū.

Unfortunately, in practice only noisy versions f and K of f̄ and K̄ are available and

an approximate solution u of ū from

f = Ku (5.1)

is wanted. The computation of u by direct inversion ofK is not reasonable since (5.1)

is ill-posed. In this case, regularization techniques are required to enforce stability

during the inversion process and to compute useful reconstructions.
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A commonly used idea to realize regularization techniques with statistical motivation

is the Bayesian model, using the posterior probability density p(u|f), given according

to Bayes formula

p(u|f) ∼ p(f |u) p(u) . (5.2)

The computationally interesting Bayesian approach is the maximum a-posteriori

(MAP) likelihood estimation, which consists of computing an estimate u of the

unknown object by maximizing the a-posteriori probability density p(u|f). If the

measurements f are available, the density p(u|f) is denoted as the a-posteriori likeli-

hood function, just depending on u. The Bayesian approach (5.2) has the advantage

that it allows to incorporate additional prior information about u via the a-priori

probability density p(u) into the reconstruction process. The most frequently used

a-priori densities are Gibbs functions

p(u) ∼ e−αJ(u) , (5.3)

where α denotes a positive parameter and J a convex energy functional. Typical

examples for probability densities p(f |u) in (5.2) are exponentially distributed raw

data f . In the canonical case of additive white Gaussian noise with expected value

0 and variance σ2 one finds

p(f |u) ∼ e
− 1

2σ2 ‖Ku−f‖2
L2(Σ) ,

and the minimization of the negative log-likelihood function leads to the classical

Tikhonov regularization methods [22], based on minimizing a functional of the form

min
u≥0

1

2
‖Ku− f‖2L2(Σ) + α J(u) . (5.4)

The first, so-called data fidelity term, penalizes the deviation from the equality in

(5.1), while J(u) is a convex regularization term penalizing deviations from a certain

ideal structure (smoothness) of the solution. If we choose K = Id and the total

variation (TV) regularization technique, J(u) := |u|BV (Ω) as in (5.6), we obtain the

well-known ROFmodel [158] for image denoising. An additional positivity constraint

as in (5.4) is essential for common applications, since the unknown functions u

usually represent densities or intensity information.

In the applications mentioned above the measured data are stochastic due to the

radioactive decay of tracers in PET imaging and to laser scanning techniques in

fluorescence microscopy. The random variables of the measured data in those ap-

plications are not Gaussian- but Poisson-distributed [178] with expected value given

by (Ku)i,

p(f |u) =
∏

i

(Ku)fii
fi!

e−(Ku)i .
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In this work, we will concentrate on MAP estimates for inverse problems with Poisson

distributed data. The MAP estimation via the negative log-likelihood function (5.2)

asymptotically leads to the following variational problem [22],

min
u≥0

∫

Σ

(Ku− f logKu) dµ + α J(u) . (5.5)

Up to additive terms independent of u, the data fidelity term here is the so-called

Kullback-Leibler divergence (also known as cross entropy or I-divergence) between

the two probability measures f andKu. A particular complication of (5.5) compared

to (5.4) is the strong nonlinearity in the data fidelity term and resulting issues in

the computation of minimizers.

In the literature there are in general two classes of reconstruction methods that

are used. On the one hand analytical (direct) methods and on the other hand

algebraic (iterative) strategies. A classical representative for a direct method is the

Fourier-based filter backprojection (FBP). Although FBP is well understood and

can be computed efficiently, iterative strategies receive more and more attention in

practice. The major reason is the high noise level (low signal-to-noise ratio) and the

special type of statistics found in measurements of various applications, such as PET

or fluorescence microscopy, which cannot be taken into account by direct methods.

Thus, in this work we deal with extensions of the expectation-maximization (EM) or

Richardson-Lucy algorithm [55], [122], [153], which is currently the standard iterative

reconstruction method to compute (5.5) with incomplete Poisson data f [168] in the

absence of regularization (J(u) = 0) . However, it is difficult to generalize the EM

algorithm to regularized cases. The robust and accurate solutions of this problem

for appropriate models of J and its analysis are one of the main contributions of this

chapter.

The specific choice of the regularization functional J in (5.5) is important for the way

a-priori information about the expected solution is incorporated into the reconstruc-

tion process. Smooth, in particular quadratic regularizations have attracted most

attention in the past, mainly due to simplicity in analysis and computation. How-

ever, such regularization approaches always lead to blurring of the reconstructions,

in particular they cannot yield reconstructions with sharp edges. Hence, recently

singular regularization energies, especially those of ℓ1 or L1-type, have attracted

strong attention. Quite recently, Bardsley proposed in [14] a theoretical framework

for the regularization of Poisson likelihood estimation problems, referring to a joint

work with Luttman [16], and verifies the properties of regularization schemes for

different terms of J . Hence we focus on total variation (TV) regularization, which

has been derived as a denoising technique in [158] and generalized to various other
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imaging tasks subsequently. The exact definition of TV [1], used in work, is

J(u) := |u|BV (Ω) = sup
g∈C∞

0 (Ω,Rd)
||g||∞≤1

∫

Ω

u ∇ · g , (5.6)

which is formally (true if u is sufficiently regular)

|u|BV (Ω) =

∫

Ω

|∇u| .

The space of functions with bounded total variation is denoted by BV (Ω). For

further properties and details of BV functions, we refer to [1], [70]. The motiva-

tion for using TV is the effective suppression of noise and the realization of almost

homogeneous regions with sharp edges. These features are attractive for PET and

nanoscopic imaging if the goal is to identify object shapes that are separated by

sharp edges and shall be analyzed quantitatively.

Various methods have been suggested for the TV regularized variational problem

(5.5), but still with limited success, e.g. [109], [136] for PET, [13], [16], [57] for

deconvolution problems or [116] for denoising problems withK = Id. This limitation

can be traced back to strong computational difficulties in the minimization of (5.5)

with TV regularization and to remaining blurring effects in reconstructed images,

which arises from using approximations of TV by differentiable functionals

Jǫ(u) =

∫

Ω

√

|∇u|2 + ǫ , ǫ > 0 .

In [13], Bardsley proposed an efficient computational method based on gradient pro-

jection and lagged-diffusivity where the non-negativity constraint is guaranteed via

a simple projection onto the feasible set. On the other hand, the schemes suggested

in [57], [109] and [136] are realized as elementary modifications of the EM algo-

rithm, with fully explicit or semi-implicit treatment of TV in the iteration. A major

disadvantage of these approaches is that the regularization parameter α needs to

be chosen very small, since otherwise the positivity of solutions is not guaranteed

and the EM-based algorithm cannot be continued. Due to the additional parameter

dependence on ǫ these algorithms are even less robust.

In this work, we propose a robust algorithm without approximation of TV, i.e. we

use (5.6) respectively a dual version. This enables us to realize cartoon reconstruc-

tions with sharp edges. We use a forward-backward splitting (FBS) approach [26],

[119], [176], which can be realized by alternating classical EM steps with weighted

Rudin-Osher-Fatemi (ROF) problems, which are solved analogous to the algorithm

of Chambolle in [42]. The advantage of our approach is that it can be performed

106



5.1 Introduction

equally well for large regularization parameter. Thus, it is favorably applicable for

problems with a low signal-to-noise ratio. Additionally, we study the existence,

uniqueness and stability of the minimization problem, prove positivity preservation

of the algorithm and provide a convergence analysis for a damped FBS strategy.

It is well-known that images reconstructed with TV-based methods suffer from a

loss in contrast. Hence, we suggest to extend EM-TV to an iterative regularization

using Bregman iterations, which incorporates simultaneous contrast correction. The

contrast improvement is realized via inverse scale space methods and Bregman itera-

tions, introduced in [134], [34], [33]. Related to these methods, an iterative contrast

correction can be implemented as a sequence of modified EM-TV problems (5.5)

with

J(u) := Dp̃

|·|BV (Ω)
(u, ũ) , p̃ ∈ ∂ |ũ|BV (Ω) ,

as regularization functional. The Bregman distance based on TV D|·|BV (Ω)
penalizes

deviations from piecewise constant functions and does not affect the position of

image edges. However, the Bregman iteration facilitates contrast improving intensity

changes and enables improved reconstructions.

This chapter is organized as follows. In Section 5.2 we will recall a mathematical

model for inverse problems with Poisson noise. Starting from a statistical view

of the image reconstruction in form of a maximum a-posteriori (MAP) likelihood

estimation based on works of [22], we will proceed to a continuous representation in

terms of multidimensional variational problems. An important point in this context

is the realization of a-priori knowledge via regularization functionals. As a simple

special case, we will derive the well-known EM or Richardson-Lucy algorithm with

positivity constraints. In Section 5.3, the EM algorithm will be combined with total

variation regularization. We will deduce a robust EM-TV algorithm, realized as

a two-step iteration scheme, and we will provide suitable stopping criteria. The

method will be reinterpreted as a modified forward-backward splitting algorithm

known from convex optimization. In Section 5.4 we will study the analysis of the

EM-TV model. After proving the well-posedness of the minimization problem in

terms of existence, uniqueness and stability, we will provide a convergence analysis

and positivity preservation properties of the proposed EM-TV algorithm. As a

consequence we obtain damping conditions to guarantee convergence of the forward-

backward splitting algorithm. The numerical realization of ROF related problems,

appearing in the second half step of the EM-TV algorithm, are studied in section

5.5. In the last section we will apply the primal and dual Bregman methods from

Section 3.3 to the EM-TV model. In the resulting primal and dual Bregman-EM-TV

methods a loss of contrast will be enhanced by iterative regularization with Bregman

distances. The performance of our techniques will be illustrated by synthetic and
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experimental 2D and 3D reconstructions in high-resolution fluorescence microscopy

and positron emission tomography in medical imaging in the following chapter.

5.2 Modeling and EM Algorithm

5.2.1 Model for Data Acquisition

This section provides an overview of mathematical modeling essential for a reason-

able formulation of inverse problems with Poisson noise. In the following we will

just concentrate on the relevant aspects of the model construction and refer to the

work of Bertero [22] for a detailed discussion.

An imaging system consists in general of two structural elements:

• A collection of different physical components which generate signals containing

useful information of spatial properties of an object.

• A detector system that provides measurements of occurring signals and which

causes in many cases the undesirable sampling and noise effects.

Hence, we assume that the raw data have following properties:

• The data are discrete and the discretization is specified by the physical con-

figuration of the detectors. We assume that the data are given in form of a

vector f ∈ R
N .

• The data are realizations of random variables, since noise is a random process

caused by the detector system. So, we consider the detected value fi as a

realization of a random variable Fi.

Additionally, a modeling of the imaging apparatus is necessary which describes the

generation and expansion of signals during the data acquisition process. Mathemat-

ically, the aim is to find a transformation that maps the spatial distribution of an

object to the signals arriving at the detectors. In this work we concentrate on prob-

lems where the transformation is a linear operator and the data acquisition process

can be described by a linear equation

f̄ = K̄ū . (5.7)

Here, K̄ : L1(Ω)→ L1(Σ) is a compact linear operator with a nonclosed range that

additionally preserves positivity. A typical example of (5.7) is a Fredholm integral

equation of the first kind with

(K̄u)(x) =

∫

Ω

k̄(x, y)u(y) dy , x ∈ Σ ,
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where k̄ is a nonnegative kernel. In (5.7) the function ū describes the desired exact

properties of the object and f̄ denotes the exact signals before detection. Problem

statements of the type above, can be found in numerous real-life applications, such

as positron emission tomography (PET) [133], [168], [189] in medical imaging, flu-

orescence microscopy [98], [57], astronomy [22] or radar imaging. The modeling of

the data acquisition in this manner turns the problem of object reconstruction to

the solution of a linear inverse problem of the form (5.7). However, as mentioned

above, in practice only noisy (and discrete) versions f and K of the exact data f̄

and operator K̄ are available so that only an approximate solution u of ū can be

computed from the equation

f = Ku . (5.8)

The operator K : L1(Ω) → R
N here is a semi-discrete operator based on K̄, which

transforms the desired properties u, in contrary to K̄, to the discrete raw data. Due

to noise in the measurements f a model for the probability density of the noise is

necessary to obtain a complete modeling for the problem of image reconstruction.

In this work we concentrate on a specific non-Gaussian noise, namely the so-called

Poisson noise. This type of noise appears for example in PET due to radioactive

decay of tracers and due to counting of photon coincidences [178], [10], or in optical

nanoscopy due to photon counts by laser sampling of an object [131], [57]. In such

cases, every Fi corresponds to a Poisson random variable with an expectation value

given by (Ku)i, i.e.

Fi is Poisson-distributed with parameter (Ku)i . (5.9)

In the following, we denote by p(f |u) the conditional probability density of data f

given an image u. Additionally, we make the assumption that the random variables

Fi are pairwise independent and identically distributed (i.i.d.), i.e.

p(f |u) =
N∏

i=1

p(fi|u) .

This assumption is in general reasonable since each random variable can be assigned

to a specific detector element. Combined with (5.9), this property leads to the

probability density

p(f |u) =
N∏

i=1

(Ku)fii
fi !

e−(Ku)i . (5.10)

Hence, a complete model for the process of data generation and data acquisition

is available, if the operator K and the conditional probability density p(f ; u) are

known.
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5.2.2 Statistical Problem Formulation of Image Reconstruction

Due to the compactness of inverting the operator K̄ (5.7) is an ill-posed problem

[65], [86]. Note that the problem (5.8) is not ill-posed in strong sense, because

the operator K has a finite range. Nonetheless the problem is highly ill-conditioned,

sinceK approximates K̄, hence still some type of regularization is required to enforce

stability during the inversion process and to compute useful reconstructions. A

frequently used class of regularization techniques are variational methods based on

the minimization of functionals of the form

1

s
||Ku− f ||sLs(Σ) + α J(u) , α > 0 , 1 ≤ s <∞ . (5.11)

However, from the viewpoint of statistical modeling, the functionals in (5.11) are

inappropriate for problems with Poisson-distributed data, since they result from the

assumption of exponentially distributed raw data f = Kū + η, where η is a vector

valued random variable with statistically i.i.d. components. Typical examples are

that η is Laplace-distributed (s = 1) or Gaussian-distributed (s = 2) [22].

In the following, we provide a statistical problem formulation of image reconstruction

in the case of Poisson noisy raw data. Inserting the given measurements f into Bayes’

formula, the density p(u|f) is denoted as the a-posteriori likelihood function, which

depends on u only. Now, to determine an approximation û to the unknown object

ū, we use the maximum a-posteriori probability (MAP) estimator which maximizes

the likelihood function, i.e.

û ∈ argmax
u ∈ L1(Ω)
u≥ 0 a.e.

p(u|f) . (5.12)

The positivity constraint on the solution is needed, since in typical applications the

functions represent densities or intensity information.

For a detailed specification of the likelihood function in (5.12) we proceed on the

assumption that a model for the process of data acquisition and data generation, in

the manner of the last section, is available. For this reason, we plug the probability

density for Poisson noise (5.10) and the Gibbs a-priori density concerning J (see

(2.6)) in the definition of the likelihood function (5.12) and obtain the negative

log-likelihood function

− log p(u|f) =
N∑

i=1

[(Ku)i − fi log(Ku)i] + α J(u) (5.13)

in which the additive terms independent of u are neglected. At this point we will

pass over from a discrete to a continuous representation of data, which corresponds
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to the way events on detectors are measured. With the indicator function

1i(x) =







1 , x ∈ Mi

0 , else
,

where Mi is the region of the i-th detector, we can interpret the mean values of the

discrete data as

fi =

∫

Mi

f dx =

∫

Σ

χif dx .

Thus we can rewrite the MAP estimate in (5.12) as the following continuous varia-

tional problem,

û ∈ argmin
u ∈ L1(Ω)
u≥ 0 a.e.

∫

Σ

(Ku− f logKu) dµ + α J(u) (5.14)

with dµ =
∑N

i=1 χi(x) dλ , where λ denotes the Lebesgue measure.

A particular complication of (5.14) compared to (5.11) is the strong nonlinearity

in the data fidelity term and resulting issues in the computation of minimizers.

Finally, with respect to problem (5.14), we point out that the functional J in the

Gibbs a-priori density (see (2.6)) is related to a regularization functional in the

context of inverse problems, cf. (5.11). Due to the problem formulation of the

image reconstruction via Bayes’ theorem one refers to Bayesian regularization in

this context.

5.2.3 Reconstruction Method: EM Algorithm

In the previous section we presented a statistical problem formulation for inverse

problems with measured data drawn from Poisson statistics and could observe that

the Bayesian approach leads to a constrained minimization problem (5.14). In this

section we will give a review on a popular reconstruction algorithm for this problem,

so-called expectation-maximization (EM) algorithm [55], [133], [168], which finds

numerous applications, for instance in medical imaging, microscopy or astronomy.

In the two latter ones, the algorithm is also known as Richardson-Lucy algorithm

[122], [153]. The EM algorithm is an iterative procedure to maximize the likelihood

function p(u|f) in problems with incomplete data and will form a basis for our

algorithms introduced later. Here, we disregard the prior knowledge and assume

that any object u has the same relevance, i.e. the Gibbs a-priori density p(u) is

constant. For simplicity we normalize p(u) such that J(u) ≡ 0. Hence, the problem
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in (5.14) reduces to the following variational problem with a positivity constraint,

min
u ∈ L1(Ω)
u≥ 0 a.e.

∫

Σ

(Ku− f logKu) dµ . (5.15)

To derive the algorithm, we consider the first order optimality condition of the con-

strained minimization problem (5.15). Formally, the Karush-Kuhn-Tucker (KKT)

conditions [100, Theorem 2.1.4] provide the existence of a Lagrange multiplier λ ≥ 0,

such that the stationary points of the functional in (5.15) need to fulfill the equations






0 = K∗1Σ − K∗

(
f

Ku

)

− λ

0 = λu

(5.16)

where K∗ is the adjoint operator of K and 1Σ ∈ (L1(Σ))∗ = L∞(Σ) is the character-

istic function on Σ. The optimization problem (5.15) is convex, hence every function

u fulfilling the equations (5.16) is a global minimum of (5.15). Multiplying the first

equation in (5.16) by u and division by K∗1Σ yields the fixed point equation

u = u
K∗

K∗1Σ

(
f

Ku

)

− 1

K∗1Σ

λ u .

Thus, the Lagrange multiplier λ can be eliminated and we obtain a simple iteration

scheme,

uk+1 = uk
K∗

K∗1Σ

(
f

Kuk

)

, (5.17)

which preserves positivity if the operatorK preserves positivity and the initialization

u0 is positive. This iteration scheme is the well-known EM algorithm, respectively

Richardson-Lucy algorithm. In [168], Shepp and Vardi showed that this iteration is

a closed example of the EM algorithm proposed by Dempster, Laird and Rubin in

[55], who presented the algorithm in a more general setup.

In the case of noise-free data f several convergence proofs of the EM algorithm to

the maximum likelihood estimate (5.12), i.e. the solution of (5.15), can be found in

literature [133], [151], [178], [108]. Besides, it is known that the speed of convergence

of the iteration (5.17) is slow.

For noisy data f it is necessary to differentiate between discrete and continuous

modeling. In the fully discrete case, i.e. if K is a matrix and u is a vector, the

existence of a minimizer can be guaranteed, since the smallest singular value is

bounded away from zero by a positive value. Hence, the iterates are bounded during

the iteration and convergence is ensured. A further property of the iteration is a lack

of smoothing, whereby the so-called ”checkerboard effect” arises, i.e. single pixels
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become visible in the iterates. However, if K is a general continuous operator, the

convergence is not only difficult to prove, but even a divergence of the EM algorithm

is possible, due to the underlying ill-posedness. This aspect can be taken as a lack

of additional prior knowledge about the unknown u resulting from J(u) ≡ 0.

As described in [151], the EM iterates show the following typical behavior for ill-

posed problems. The (metric) distance between the iterates and the solution de-

creases initially before it increases as the noise is amplified during the iteration

process. This issue might be regulated by using appropriate stopping rules to obtain

reasonable results. In [151] it is shown that certain stopping rules indeed allow stable

approximations. Another possibility to considerably improve reconstruction results

are regularization techniques. In the following chapter we shall discuss techniques

with edge preserving properties.

5.3 EM-TV Reconstruction Method

5.3.1 Algorithm FB-EM-TV

The EM or Richardson-Lucy algorithm, discussed in Section 5.2.3, is currently the

standard iterative reconstruction method for most inverse problems with incomplete

Poisson data based on the linear equation (5.8). However, with the assumption

J(u) ≡ 0, no a-priori knowledge about the expected solution are taken into account,

i.e. different images have the same a-priori probability. Especially in case of mea-

surements with low SNR, like lower tracer dose rate or tracer with short radioactive

half life in case of PET examinations, the multiplicative fixed point iteration (5.17)

delivers unsatisfactory and noisy results even with early termination. Therefore, we

propose to integrate nonlinear variational methods into the reconstruction process

to make an efficient use of a-priori information and to obtain improved results.

An interesting approach to improve the reconstructions is the EM-TV algorithm.

In the classical EM algorithm, the negative log-likelihood functional (5.15) is min-

imized. In the EM-TV approach, we modify the functional by adding a weighted

total variation (TV) term [158],

min
u ∈BV (Ω)
u≥ 0 a.e.

∫

Σ

(Ku− f logKu) dµ + α |u|BV (Ω) , α > 0 . (5.18)

This variational problem is exactly (5.14) with TV regularization, i.e. from the sta-

tistical point of view in Section 5.2.2, we use an a priori probability density p(u)

concerning J(u) = |u|BV (Ω). This means that images with smaller total variation

113



5. 3D Imaging

(higher prior probability) are preferred in the minimization (5.18). The expected re-

constructions are cartoon-like images, i.e. they will result in almost uniform (mean)

intensities inside the different structures which are separated by sharp edges. Ob-

viously, such an approach cannot be used for studying certain properties inside the

structures in an object (which is anyway unrealistic in case of low SNR), but it is

well suited for segmenting different structures and analyzing them quantitatively.

TV regularization is a popular and important concept in several fields of mathe-

matical image processing. It has been derived as a denoising technique in [158] and

generalized to various other imaging tasks subsequently. The space of functions with

bounded total variation is denoted by BV (Ω) and is a Banach space equipped with

the norm

‖u‖BV (Ω) = |u|BV (Ω) + ‖u‖L1(Ω) .

BV (Ω) is a popular function space in image processing since it can represent dis-

continuous functions (related to the edges in an image) which are even preferred

during the minimization of TV. For further properties and details on functions with

bounded variation we refer to [1], [70], [81].

For designing the proposed alternating algorithm, we consider the first-order opti-

mality condition of (5.18). Due to the total variation, this variational problem is

not differentiable in the usual sense. However, we can extend the data fidelity term

to a convex functional without changing the stationary points,

min
u ∈BV (Ω)
u≥ 0 a.e.

DKL(f,Ku) + α |u|BV (Ω) (5.19)

with the Kullback-Leibler (KL) functional DKL [150],

DKL(v, u) =

∫

Σ

(

v log
v

u
− v + u

)

dµ ,

such that the minimization problem (5.19) becomes convex, see section 5.4. For such

problems powerful methods from convex analysis are available, see Section 3.1.

For the use of the subdifferential calculus on the functional in (5.19), note that due to

the definition of DKL(f,K ·) on L1(Ω), its subgradients are elements of L∞(Ω), while

in general the subgradients of | · |BV (Ω) are in the larger function space (BV (Ω))∗.

However, we can extend TV to a convex functional on L1(Ω) by setting |u|BV (Ω) =∞
if u ∈ L1(Ω) \ BV (Ω). Hence, due to the continuity of the KL functional and [62,

Chapter I, Proposition 5.6], we obtain the identity

∂ (DKL(f,Ku) + α |u|BV (Ω) ) = ∂u DKL(f,Ku) + α ∂ |u|BV (Ω)
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in L∞(Ω) ⊂ (BV (Ω))∗ for any f ∈ L1(Ω). For the KL functional DKL the subd-

ifferentials are singletons and the first optimality condition of (5.19) for a positive

solution u is given by

K∗1Σ − K∗

(
f

Ku

)

+ α p = 0 , p ∈ ∂ |u|BV (Ω) , (5.20)

where K∗ denotes the adjoint of K. Formally this condition is a nonlinear integrod-

ifferential equation

K∗1Σ − K∗

(
f

Ku

)

− α∇ ·
( ∇u
|∇u|

)

= 0 .

The simplest iteration scheme to compute a solution of the variational problem

(5.18), respectively (5.19), is a gradient-type method in L2, which however is not

robust in case of TV and severe step size restrictions are needed since the subgradient

p of TV is treated explicitely. A better idea is to use an iteration scheme which

evaluates the nonlocal term (including the operator K) in (5.20) at the last iterate

uk and the local term (including the subgradient of TV) at the new iterate uk+1, i.e.

1 − K∗

K∗1Σ

(
f

Kuk

)

+ α
1

K∗1Σ

pk+1 = 0 , pk+1 ∈ ∂ |uk+1|BV (Ω) , (5.21)

with an additional division of (5.20) by K∗1Σ. In this iteration, the new iterate

uk+1 appears only as a point of reference for the subdifferential of | · |BV (Ω). This

is a considerable drawback since uk+1 cannot be determined from (5.21), due to the

missing of an one-to-one relation between subgradients and primal variable u. In

addition, such iteration schemes cannot guarantee preservation of positivity. Hence,

we obtain an improved method if we approximate also the constant term 1 in (5.21)

by uk+1

uk
such that uk+1 appears directly, i.e.,

uk+1 − uk
K∗

K∗1Σ

(
f

Kuk

)

+ α
uk

K∗1Σ

pk+1 = 0 , pk+1 ∈ ∂ |uk+1|BV (Ω) . (5.22)

In order to verify that the iteration scheme (5.22) preserves positivity, we proceed

in an analogous to the EM algorithm in Section 5.2.3. Due to the nonnegativity

constraint in (5.18) the KKT conditions provide formally a Lagrange multiplier

λ ≥ 0, such that the stationary points of (5.19) need to fulfill







0 ∈ K∗1Σ − K∗

(
f

Ku

)

+ α ∂ |u|BV (Ω) − λ

0 = λu .

(5.23)
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Multiplying the first equation in (5.23) by u, the Lagrange multiplier λ can be

eliminated and division by K∗1Σ leads to a fixed point equation

u − u
K∗

K∗1Σ

(
f

Ku

)

+ α
u

K∗1Σ

p = 0 , p ∈ ∂ |u|BV (Ω) , (5.24)

which is (5.20) multiplied by u, i.e. this multiplication corresponds with the nonneg-

ativity constraint in (5.18). Now, the iteration (5.22) is just a semi-implicit approach

to (5.24). In Section 5.4.3, we prove that this iteration method actually preserves

positivity if the operator K preserves positivity and the initialization u0 is positive.

Remarkably, the second term in the iteration (5.22) is the EM step in (5.17). Con-

sequently, the method (5.22) solving the variational problem (5.18) can be realized

as a nested two-step iteration







uk+ 1
2

= uk
K∗

K∗1Σ

(
f

Kuk

)

(EM step)

uk+1 = uk+ 1
2
− α

uk
K∗1Σ

pk+1 , pk+1 ∈ ∂ |uk+1|BV (Ω) (TV step) .

(5.25)

Thus, we alternate an EM reconstruction step with a TV correction step to compute

a solution of (5.18). In Section 5.3.2 we will see that this iteration scheme can be

interpreted as a modified forward-backward splitting strategy. The second half step

from uk+ 1
2
to uk+1 can be realized by solving the convex variational problem

uk+1 = argmin
u ∈BV (Ω)

{

1

2

∫

Ω

K∗1Σ (u − uk+ 1
2
)2

uk
+ α |u|BV (Ω)

}

. (5.26)

Inspecting the first order optimality condition confirms the equivalence of this min-

imization with the TV correction step in (5.25). Problem (5.26) is just a modified

version of the Rudin-Osher-Fatemi (ROF) model, with weight K∗1Σ

uk
in the fidelity

term. This analogy creates the opportunity to carry over efficient numerical schemes

known for the ROF model. In the numerical realization in Chapter 5.5, we offer an

algorithm analogous to Chambolle [42]. In this way, the weighted ROF problem

with the exact definition of TV can be solved by using duality, obtaining an accu-

rate, robust, and efficient algorithm.

The alternating structure of the proposed iteration (5.25) has the particular advan-

tage that we might control the interaction between reconstruction and denoising via

a simple adaption of the TV correction step. A possibility is a damped TV correction

step

uk+1 = (1− ωk) uk + ωk uk+ 1
2
− ωk α

uk
K∗1Σ

pk+1 , ωk ∈ (0, 1] , (5.27)
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5.3 EM-TV Reconstruction Method

which relates the current EM iterate uk+ 1
2
to the previous TV denoised iterate uk

in a suitable way using a damping parameter ωk. The damped half step (5.27) can

also be realized in an analogous way to (5.26), namely by minimizing the following

variational problem

uk+1 = argmin
u ∈BV (Ω)

{

1

2

∫

Ω

K∗1Σ (u − (ωk uk+ 1
2
+ (1− ωk) uk))

2

uk
+ ωk α |u|BV (Ω)

}

.

(5.28)

This aspect of damping is not only motivated by numerical results, see Section 5.5,

but also required to attain a monotone descent of the objective functional (5.18),

respectively (5.19), see Section 5.4.4. For ωk = 1, the iteration simplifies to the

original TV denoising step in (5.25). For ωk small the iterations stay close to uk.

For an adequate choice of ωk ∈ (0, 1], we can prove the convergence of the proposed

two-step iteration with the damped TV denoising step, with explicit bounds on ωk

in the special case of K = Id (cf. Section 5.4.4).

Further, we need appropriate stopping rules for the proposed FB-EM-TV algorithm

in order to guarantee its accuracy . In addition to a maximal number of iterations,

the error in the optimality condition (5.20) can be taken as a basic stopping criterion

in a suitable norm. For this purpose, we define a weighted norm deduced from a

weighted scalar product,

〈u, v〉w :=

∫

Ω

u v w dλ and ‖u‖2,w :=
√

〈u, u〉w , (5.29)

with a positive weight function w and the standard Lebesque measure λ on Ω. Hence,

the error in the optimality condition can be measured reasonably in the norm

optk+1 :=

∥
∥
∥
∥
K∗1Σ − K∗

(
f

Kuk+1

)

+ α pk+1

∥
∥
∥
∥

2

2,uk+1

. (5.30)

Due to the fact that we use a damped two-step iteration, we are not only interested

in the improvement of the whole optimality condition, but also in the convergence of

the primal functions {uk} and the subgradients {pk} with pk ∈ ∂ |uk|BV (Ω). Hence,

in order to establish appropriate stopping rules for these iterates, we consider the

damped TV correction step (5.27) with the EM reconstruction step in (5.25),

uk+1 − ωk uk
K∗

K∗1Σ

(
f

Kuk

)

− (1− ωk) uk + ωk α
uk

K∗1Σ

pk+1 = 0 .

Combining this iteration scheme with the optimality condition (5.24) evaluated at

uk, which must be fulfilled in the case of convergence, we obtain an optimality

statement for {pk} and {uk},

α (pk+1 − pk) +
K∗1Σ (uk+1 − uk)

ωk uk
= 0 .
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With the aid of the weighted norm (5.29), we have now additional stopping criteria

for the FB-EM-TV algorithm which guarantee the accuracy of the primal functions

{uk} and the subgradients {pk},

u optk+1 :=

∥
∥
∥
∥

K∗1Σ (uk+1 − uk)

ωk uk

∥
∥
∥
∥

2

2,uk+1

, p optk+1 := ‖ α (pk+1 − pk) ‖22,uk+1
.

(5.31)

We finally mention that the stopping criteria (5.30) and (5.31) are well defined, since

each iterate uk of the FB-EM-TV splitting method is strictly positive, see Lemma

5.4.11.

Based on the observations in this section we can use Algorithm 1 to solve the

problem (5.18).

Algorithm 1 FB-EM-TV

1. Parameters: f, α > 0, ω ∈ (0, 1], maxEMIts > 0, tol > 0

2. Initialization: k = 0, u0 = c > 0

while (k ≤ maxEMIts and (optk ≥ tol or u optk ≥ tol or p optk ≥ tol)) do

⊲ (5.30), (5.31)

Compute uk+ 1
2
via EM step in (5.25).

Set ωk = ω.

Compute uk+1 via modified ROF model (5.28). ⊲ Section 5.5

k ← k + 1

end while

return uk+1

Selecting a reasonable regularization parameter α in our model is a common problem.

In the case of additive Gaussian noise there exist several works in literature dealing

with this problem, e.g. [117], [172], [185]. Most of them are based on the discrepancy

principle and Chi-square distributions, generalized cross validation methods or un-

biased predictive risk estimates. Finding an ”optimal” parameter is in general more

complicated for non-Gaussian noise models. Nevertheless, there exist a few works

in literature addressing this issue, see e.g. [15] and the references within.

5.3.2 Forward-Backward-Splitting

In the previous section we introduced the FB-EM-TV reconstruction method as a

two-step algorithm (5.25) with an additional damping modification (5.27). This

two-step strategy can be interpreted surprisingly as an operator splitting algorithm.

118



5.3 EM-TV Reconstruction Method

In convex optimization such splitting methods arise in the context of decomposition

problems. Recently, some works in literature picked up these splitting ideas, pro-

viding efficient algorithms in image processing, see e.g. [165], [26], [49], [48], [84].

Most of the works dealing with convex splitting strategies go back to early works of

Douglas and Rachford [58], respectively of [119] and [176].

The optimality condition of our underlying variational problem (5.18), respectively

(5.19), can be interpreted as a decomposition problem (C = A + B), regarding the

convex Kullback-Leibler functional and the convex TV regularization term. Hence,

we consider the stationary equation

0 ∈ C(u) := K∗1Σ − K∗

(
f

Ku

)

︸ ︷︷ ︸

=:A(u)

+ α ∂ |u|BV (Ω)
︸ ︷︷ ︸

=:B(u)

, (5.32)

with two maximal monotone operators A and B. The damped two-step iteration for

the EM-TV model, (5.25) and (5.27) with ωk ∈ (0, 1], reads as follows






K∗1Σ ( uk+ 1
2
− uk )

uk
+ Auk = 0

K∗1Σ ( uk+1 − ωk uk+ 1
2
− (1− ωk) uk )

uk
+ ωk B uk+1 = 0

(5.33)

and can easily be reformulated as a forward-backward splitting algorithm






K∗1Σ ( ũk+ 1
2
− uk )

ωk uk
+ Auk = 0 (forward step on A)

K∗1Σ ( uk+1 − ũk+ 1
2
)

ωk uk
+ Buk+1 = 0 (backward step on B)

with

ũk+ 1
2

= ωk uk+ 1
2
+ (1− ωk) uk .

Compared to (standard) EM-TV (5.25), in the case of damped EM-TV, the artifi-

cial time step size is therefore not only given by uk, but can be controlled via the

additional damping parameter ωk. In a more compact form, the whole iteration can

be formulated as

uk+1 =

(

I +
ωk uk
K∗1Σ

B

)−1(

I − ωk uk
K∗1Σ

A

)

uk = (Lk + B)−1 (Lk − A) uk

with a multiplication operator Lk defined by K∗1Σ

ωk uk
.

The forward-backward splitting for maximal monotone operators has been suggested

independently by Lions and Mercier [119] and Passty [138]. In Section 5.4.4 we
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will see that the key to proving convergence of the FB-EM-TV splitting algorithm

lies in the incorporation of damping parameters. Alternatives to forward-backward

splitting are the Peaceman-Rachford or Douglas-Rachford splitting schemes, see e.g.

[119], which are indeed unconditionally stable, but have the numerical drawback

that also an additional backward step on A has to be performed, which would mean

an inversion of K in our case.

5.4 Analysis

In this chapter we carry out a mathematical analysis of the regularized problem

(5.18), and prove that the problem is well-posed, that the FB-EM-TV algorithm

preserves the positivity of the solution and that the proposed damped FB-EM-TV

iteration scheme has a stable convergence behavior.

5.4.1 Assumptions, Definitions and Preliminary Results

At the beginning of this section, for the sake of clarity, we will repeat the properties of

the operator K, having been assumed in the previous sections and we will introduce

other necessary assumptions, which will be used in the following analysis.

As introduced in Section 5.2.1, K is a semi discrete operator derived from K̄ :

L1(Ω) → L1(Σ), which transforms, contrary to K̄, a function from L1(Ω) to the

discrete data space R
N . Nevertheless, to be able to present a unified theory of a

continuous problem formulation (5.18), we introduced an integral formulation with

point measure in Section 5.2.2. For this sake we assumed that any element g in the

discrete data space R
N can be interpreted as samples of a function in L1(Σ), which

we denote for the sake of convenience with g again. For the assumptions below, note

that the operator K̄ itself is linear compact with a nonclosed range and additionally

preserves positivity. Hence, we assume the following:

(A1) The operator K : L1(Ω)→ L1
µ(Σ) is linear and bounded.

(A2) The operator K satisfies Ku ≥ 0 a.e. for any u ≥ 0 a.e. and the equality is

fulfilled if and only if u = 0.

(A3) The data function f is bounded and bounded away from zero, i.e. there exist

positive constants c1 and c2 such that 0 < c1 ≤ f ≤ c2 almost everywhere on

Σ.

(A4) If u ∈ L1(Ω) satisfies c1 ≤ u ≤ c2 a.e. for some positive constants c1, c2 > 0,

then there exist c3, c4 > 0 such that c3 ≤ Ku ≤ c4 a.e. on Σ.
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Remarks and Extensions. In the most practical situations, the assumptions (A3) and

(A4) are not significantly restrictive. In the case of the ”measured” data function

f , the almost everywhere boundedness on Σ away from zero is reasonable, when

a sufficient level of measurements has been collected. In addition, in most practi-

cal applications a certain level of background noise is available, which causes the

positivity of the data.

At the first glance, the assumption (A4) is restrictive, but there are large classes of

linear ill-posed problems for which the required condition is fulfilled. An example

are integral equations of the first kind, which have smooth, bounded, and positive

kernels. Such integral equations appear in numerous fields of applications, e.g. in

geophysics and potential theory or in deconvolution problems such as fluorescence

microscopy or astronomy. Another interesting example of an operator that fulfills

the assumption (A4) is the X-ray transform which assigns to a function the integral

values along all straight lines. This transform coincides in two dimensions with the

well-known Radon transform and will be strongly applied in medical imaging. The

assumption (A4) in this example is fulfilled if the length of the lines is bounded and

bounded away from zero, a condition obviously satisfied in practice.

Next we give a definition to simplify the following analysis of the regularized problem

(5.18).

Definition 5.4.1 (Kullback-Leibler Functional). The Kullback-Leibler (KL) func-

tional is the function DKL : L1(Σ)×L1(Σ)→ R∪{+∞} with Σ ⊂ R
m bounded and

measurable, given by

DKL(ϕ, ψ) =

∫

Σ

ϕ log

(
ϕ

ψ

)

− ϕ+ ψ dν for all ϕ , ψ ≥ 0 a.e. (5.34)

where ν is a measure. Note that we use the convention 0 log 0 = 0 and that the

integrand in (5.34) is non negative and vanishes if and only if ϕ = ψ.

Remarks and Extensions. In the literature there exist further notations for the

KL functional, like cross-entropy, information for discrimination or Kullback’s I-

divergence, e.g. [50], [61], [150]. The functional (5.34) generalizes the Kullback-

Leibler entropy

D(ϕ||ψ) =

∫

Σ

ϕ log

(
ϕ

ψ

)

dν

for functions which are not necessarily probability densities. In the definition above,

the extension is realized by adding additional (linear) terms which are chosen such

that (5.34) is a Bregman distance (divergence) with respect to the Boltzmann en-

121



5. 3D Imaging

tropy [150],

B(ψ) :=

∫

Σ

ψ logψ − ψ ,

i.e. DKL(ϕ, ψ)
!
=Dp

B(ϕ, ψ) = B(ϕ)−B(ψ)− 〈p, ϕ− ψ〉 ,

where p ∈ ∂B(ψ). Therefore, it shares useful properties of the Bregman distance, in

particular DKL(ϕ, ψ) ≥ 0.

In the next Lemmas, we recall from [150] and [1] a collection of basic results about

the KL functional and total variation | · |BV (Ω), which will be used in the following

analysis. For further information to the both terms, we refer to [150], [61] and [1],

[7], [70], [81].

Lemma 5.4.2 (Properties of KL Functional). The following statements hold:

1. The function (ϕ, ψ) 7→ DKL(ϕ, ψ) is convex and thus also the function (ϕ, u) 7→
DKL(ϕ,Ku).

2. For any fixed non negative ϕ ∈ L1(Σ), the function u 7→ DKL(ϕ,Ku) is lower

semicontinuous with respect to the weak topology of L1(Σ).

3. For any non negative function ϕ and ψ in L1(Σ), one has

‖ϕ− ψ‖21 ≤
(
2

3
‖ϕ‖1 +

4

3
‖ψ‖1

)

DKL(ϕ, ψ) .

Proof. See [150, Lemma 3.3 - 3.4].

Corollary 5.4.3. If {ϕn} and {ψn} are bounded sequences in L1(Σ), then

lim
n→∞

DKL(ϕn, ψn) = 0 implies lim
n→∞

‖ϕn − ψn‖1 = 0 .

Lemma 5.4.4 (Properties of Total Variation). The following statements hold:

1. | · |BV (Ω) is convex.

2. | · |BV (Ω) is lower semicontinuous with respect to the weak topology of L1(Ω).

3. Any uniformly bounded sequence {un} in BV (Ω) is relatively compact in L1(Ω).

Proof. See [1, Theorem 2.3 - 2.5].
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5.4.2 Well-Posedness of the Minimization Problem

In the following we verify existence, uniqueness, and stability of the minimization

problem (5.18). In order to use the known properties of the KL functional from

Lemma 5.4.2 for the analysis of (5.18), we add the term f log f − f in the data

fidelity term. Because this expression is independent from the desired function u,

the stationary points of the minimization problem are not influenced (if they exist).

Thus, (5.18) is equivalent to

min
u ∈BV (Ω)
u≥ 0 a.e.

F (u) := DKL(f,Ku) + α |u|BV (Ω) , α > 0 , (5.35)

where DKL is the Kullback-Leibler functional, see Definition 5.4.1.

For the following analysis, the compactness result from Lemma 5.4.4 is of fundamen-

tal importance. In order to use this property we introduce the following definition:

Definition 5.4.5 (Coercivity). A functional F defined on L1(Ω) is BV-coercive (cf.

[100], Definition IV.3.2.6), if the sub level sets of F are bounded in the ‖·‖BV (Ω)

norm, i.e. for all r ∈ R≥0 the set {u ∈ L1(Ω) : F (u) ≤ r} is uniform bounded in

the BV norm; equivalently

F (u) → +∞ whenever ‖u‖BV (Ω) → +∞ .

Lemma 5.4.6 (Coercivity of the Minimization Functional). Assume that the oper-

ator K does not annihilate constant functions. Then F in (5.35), is BV-coercive.

Remarks and Extensions. According to the definition of the space of functions with

bounded (total) variation, BV (Ω) ⊂ L1(Ω) is valid and we can extend the admissible

solution set of the minimization problem (5.35) from BV (Ω) to L1(Ω). For this

sake, we extend the total variation to a functional on L1(Ω) by |u|BV (Ω) = ∞ for

u ∈ L1(Ω) \ BV (Ω), where furthermore solutions from BV (Ω) are preferred during

minimization.

Because K is linear, see (A1), the condition in Lemma 5.4.6 is equivalent to

K1Ω 6= 0 (5.36)

where 1Ω is the characteristic function on Ω.

Proof of Lemma 5.4.6. For the proof we derive an estimate of the form

‖u‖BV (Ω) = ||u||1 + |u|BV (Ω) ≤ c1 [F (u)]2 + c2 F (u) + c3 (5.37)
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with constants c1 ≥ 0, c2 > 0 and c3 ≥ 0. Then, the desired coercivity property

follows directly from the positivity of the functional F for all u ∈ L1(Ω) with u ≥
0 a.e.

For the derivation of this estimate we use that any u ∈ BV (Ω) has a decomposition

of the form

u = w + v , (5.38)

where

w =

(∫

Ω
u dx

|Ω|

)

1Ω and v := u − w with

∫

Ω

v dx = 0 . (5.39)

First, we estimate |v|BV (Ω) and ||v||1. Because the constant functions have no vari-

ation, the positivity of the KL functional yields

α |v|BV (Ω) ≤ α |u|BV (Ω) ≤ F (u) which implies |v|BV (Ω) ≤
1

α
F (u) .

Together with the Poincaré-Wirtinger inequality, see e.g. [7], this yields an estimate

of the L1 norm,

||v||1 ≤ C1|v|BV (Ω) ≤ C1
1

α
F (u) , (5.40)

where C1 > 0 is a constant that depends from Ω ⊂ R
n and n only. If we use the

decomposition (5.38) and the results to |v|BV (Ω) and ||v||1, then the problem (5.37)

reduces to the estimation of the L1 norm of constant functions,

‖u‖BV (Ω) ≤ ||w||1 + ||v||1 + |v|BV (Ω)

≤ ||w||1 + (C1 + 1)
1

α
F (u) .

(5.41)

For this purpose, we consider the L1 distance between Ku = Kw+Kv and f . With

Lemma 5.4.2 (3) we obtain an estimate from above,

||(Kv − f) + Kw||21 ≤
(
2

3
||f ||1 +

4

3
||Kv +Kw||1

)

DKL(f,Ku)

≤
(
2

3
||f ||1 +

4

3
||Kv||1 +

4

3
||Kw||1

)

F (u) ,

as an estimate from below we obtain

||(Kv − f) + Kw||21 ≥ (||Kv − f ||1 − ||Kw||1)2

≥ ||Kw||1 (||Kw||1 − 2 ||Kv − f ||1) .
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Combining (5.40) with both inequalities yields

||Kw||1
(

||Kw||1 − 2

(

||K||C1
1

α
F (u) + ||f ||1

))

≤
(
2

3
||f ||1 +

4

3
||K||C1

1

α
F (u) +

4

3
||Kw||1

)

F (u) . (5.42)

This expression contains up to now terms which describe the function w in depen-

dence of the operator K only. For the estimate of ||w||1, we use the assumption

(5.36) on the operator K. Thus, there exists a constant C2 > 0 with

C2 =

∫

Σ
|K1Ω| dx
|Ω| and ||Kw||1 = C2||w||1 .

This identity used in the inequality (5.42) yields

C2||w||1
(

C2||w||1 − 2

(

||K||C1
1

α
F (u) + ||f ||1

)

− 4

3
F (u)

)

≤
(
2

3
||f ||1 +

4

3
||K||C1

1

α
F (u)

)

F (u) . (5.43)

To obtain an estimate of the form (5.37), we distinguish between two cases:

Case 1: If

C2 ||w||1 − 2

(

||K||C1
1

α
F (u) + ||f ||1

)

− 4

3
F (u) ≥ 1 , (5.44)

then from (5.43) we conclude

||w||1 ≤
1

C2

(
2

3
||f ||1 +

4

3
||K||C1

1

α
F (u)

)

F (u)

and we obtain with (5.41)

‖u‖BV (Ω) ≤
4C1 ||K||
3C2 α

[F (u)]2 +

(
2

3C2

||f ||1 +
C1 + 1

α

)

F (u) . (5.45)

Case 2: If the condition (5.44) does not hold, i.e.

||w||1 <
1

C2

(

1 + 2

(

||K||C1
1

α
F (u) + ||f ||1

)

+
4

3
F (u)

)

,

then from (5.41) we find

‖u‖BV (Ω) ≤
(
2 ||K||C1

1
α
+ 4

3

C2

+
C1 + 1

α

)

F (u) +
1 + 2 ||f ||1

C2

. (5.46)

With the assumptions (A1) and (A3) is f in L1(Σ) and ||K|| < ∞ and we obtain

from (5.45) and (5.46) the desired coercivity property.
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Theorem 5.4.7 (Existence of Minimizers). Let the operator K satisfy the assump-

tions of Lemma 5.4.6. Then, the functional F defined in (5.35) has a minimizer in

BV (Ω).

Proof. For the proof, we use the direct method of the calculus of variations, see e.g.

[7, Section 2.1.2]: Let {un} ⊂ BV (Ω), un ≥ 0 a.e., be a minimizing sequence for the

functional F , i.e.

lim
n→∞

F (un) = inf
u ∈BV (Ω)

F (u) =: Fmin < ∞ .

With the assumptions on the operator K, Lemma 5.4.6 implies that the functional

F is BV-coercive. Hence, all elements un of the sequence are uniformly bounded in

the BV norm. As a consequence of the compactness result from Lemma 5.4.4 (3),

there exists a subsequence {unj
} which converges to some ũ ∈ L1(Ω). Actually, the

function ũ lies in BV (Ω), since | · |BV (Ω) is lower semicontinuous (see Lemma 5.4.4

(2)) and the sequence {un} is uniformly bounded in BV (Ω).

Moreover, from Lemma 5.4.2 (2) and 5.4.4 (2) we know that the functional F is

lower semicontinuous, i.e.

F (ũ) ≤ lim inf
j→∞

F (unj
) = Fmin .

Obviously, this inequality implies that ũ is a minimizer of F .

Next, we consider the uniqueness of the minimizers, for which it suffices to verify

the strict convexity of the objective functional. It is straight-forward to see that the

negative log is strictly convex and consequently the Kullback-Leibler divergence is

strictly convex with respect to u if K is injective, i.e. the null space is N (K) =

{0}. Since the regularization term is assumed convex (see Lemma 5.4.4) we can

immediately conclude the following result:

Theorem 5.4.8 (Uniqueness of Minimizers). Let K be an injective operator and

f > 0. Then, the function u 7→ DKL(f,Ku) and also the functional F from (5.35)

are strictly convex. In particular the minimizer of F is unique in BV (Ω).

After existence and uniqueness of minimizers we show below the stability of the

regularized problem (5.35) with respect to a certain kind of data perturbations. In

Subsection 5.2.1 we already described that the given measurements are typically dis-

crete and can be interpreted in our framework as averages of a function f ∈ L1(Σ).

The open question is certainly the suitable choice of the function f , e.g. the in-

terpolation type of the measurements. Moreover, the physically limited discrete
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construction of the detectors leads to a natural loss of information because not all

signals can be acquired. Consequently, a stability result is required that guarantees

that the regularized approximations converge to the solution u if e.g. the inter-

polated measurements converge to a preferably smooth function f . Because the

measurements are still a realization of Poisson distributed random variables, it is

natural to assess the convergence in terms of the KL functional, as detailed below

in equality (5.47).

Remarks and Extensions. The assumption (A3) guarantees not only that the data

function f has a finite L∞ norm, but also that log f belongs to L∞(Σ). This fact

will be needed in the subsequent Theorem.

Theorem 5.4.9 (Stability with respect to perturbations in the data). Let α > 0 be

fixed and suppose that fn ∈ L1(Σ), n ∈ N, are nonnegative approximations of a data

function f with

lim
n→∞

DKL(fn, f) = 0 . (5.47)

Moreover, let

un ∈ argmin
u ∈BV (Ω)
u≥ 0 a.e.

Fn(u) := DKL(fn, Ku) + α |u|BV (Ω) , n ∈ N , (5.48)

and u is a solution of the regularized problem (5.35) corresponding to the data func-

tion f . In addition, we assume that the operator K does not annihilate constant

functions and that logKu belongs to the function space L∞(Σ), i.e. there exist pos-

itive constants c1 and c2 such that

0 < c1 ≤ Ku ≤ c2 almost everywhere on Σ . (5.49)

Then, the problem (5.35) is stable with respect to the perturbations in the data, i.e.

the sequence {un} has a convergent subsequence and every convergent subsequence

converges in the L1 norm to a minimizer of the functional F in (5.35).

Proof. For the existence of a convergent subsequence we want to use the compactness

result from Lemma 5.4.4. To this end, we show that the sequence {Fn(un)} is

uniformly bounded and that the functionals Fn are uniformly BV-coercive.

Firstly, we show the uniform boundedness of the sequence {Fn(un)}. Let α > 0 be

a fixed regularization parameter. For any n ∈ N, the definition of un implies

Fn(un) = DKL(fn, Kun) + α |un|BV (Ω) ≤ DKL(fn, Ku) + α |u|BV (Ω) . (5.50)

Hence, the sequence {Fn(un)} is bounded if the sequence {DKL(fn, Ku)} on the

right-hand side of (5.50) is bounded. To this end, we use the condition (5.47) and
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Corollary 5.4.3, so the sequence {fn} converges strongly to f in L1(Σ) as well as

pointwise almost everywhere. Thus, the assumptions (5.49) and (A3) together with

the inequality

|DKL(fn, Ku) − DKL(f,Ku) − DKL(fn, f)| =

∣
∣
∣
∣

∫

Σ

(logKu− log f)(f − fn) dµ
∣
∣
∣
∣

≤ || logKu − log f ||∞||f − fn||1

imply the convergence

lim
n→∞

DKL(fn, Ku) = DKL(f,Ku) . (5.51)

Because u is a minimizer of the regularized problem (5.35) corresponding to the data

function f , the expressions DKL(f,Ku) and |u|BV (Ω) are bounded and therefore also

the sequence {DKL(fn, Ku)} is bounded, since it converges. This fact together with
(5.50), yields the uniform boundedness of the sequence {Fn(un)}.

Next, we prove that the regularized functionals Fn are uniformly BV-coercive, i.e.

for any sequence {un} in L1(Ω) with un ≥ 0 a.e.,

Fn(un) → +∞ whenever ‖un‖BV (Ω) → +∞ .

For the proof we put un = wn + vn as in equation (5.38) and (5.39), and repeat the

proof of Lemma 5.4.6 with un and Fn instead of u and F . Since the operator K

does not annihilate constant functions, we obtain ||Kwn||1 = C2||wn||1 with C2 as

in the proof of Lemma 5.4.6 and as in (5.43),

C2 ||wn||1
(

C2 ||wn||1 − 2

(

||K||C1
1

α
Fn(un) + ||fn||1

)

− 4

3
Fn(un)

)

≤
(
2

3
||fn||1 +

4

3
||K||C1

1

α
Fn(un)

)

Fn(un) .

Since the sequence {fn} converges strongly to f in L1(Σ), it is also bounded in the

L1 norm. The upper bound on each ||fn||1 and the boundedness of the operator

norm of K yield uniform BV coercivity as in the two cases in the proof of Lemma

5.4.6.

The uniform BV-coercivity together with the boundedness of the sequence {Fn(un)}
implies that the sequence {un} is uniformly bounded in the BV norm. Then, Lemma

5.4.4 (3) ensures the existence of a subsequence {unj
} converging strongly to some

ũ ∈ L1(Ω). Actually, the function ũ lies in BV (Ω), since | · |BV (Ω) is lower semicon-

tinuous with respect to the weak topology of L1(Ω) (see Lemma 5.4.4 (2)), i.e.

|ũ|BV (Ω) ≤ lim inf
j→∞

|unj
|BV (Ω) < ∞ .
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Now let {unj
} denote an arbitrary subsequence of {un} that converges strongly

to ũ ∈ L1(Ω). The boundedness of the operator K (see (A1)) implies the strong

convergence of the sequence {Kunj
} to Kũ in L1(Σ) and hence, pointwise conver-

gence almost everywhere. Since all fn and un are nonnegative and K is an operator

that preserves positivity (see (A2)), Fatou’s Lemma can be applied to the sequence

{fnj
log(fnj

/Kunj
) − fnj

+ Kunj
} and yields

DKL(f,Kũ) ≤ lim inf
j→∞

DKL(fnj
, Kunj

) . (5.52)

Due to the lower semicontinuity of the functional | · |BV (Ω) (see Lemma 5.4.4 (2))

and due to (5.50), (5.51) and (5.52), we obtain

DKL(f,Kũ) + α |ũ|BV (Ω)

(5.52)

≤ lim inf
j→∞

DKL(fnj
, Kunj

) + α lim inf
j→∞

|unj
|BV (Ω)

≤ lim inf
j→∞

[
DKL(fnj

, Kunj
) + α |unj

|BV (Ω)

]

≤ lim sup
j→∞

[
DKL(fnj

, Kunj
) + α |unj

|BV (Ω)

]

(5.50)

≤ lim sup
j→∞

[
DKL(fnj

, Ku) + α |u|BV (Ω)

]

(5.51)
= DKL(f,Ku) + α |u|BV (Ω) .

This means that ũ is a minimizer of problem (5.35).

Remarks and Extensions. For the proof of stability, the condition (5.49) is required,

which means that logKu lies in L∞(Σ) where u is a regularized solution of the min-

imization problem (5.18). Due to the assumption (A4), it suffices to claim that u is

bounded and bounded away from zero. The authors in [150] prove that this condition

is satisfied, if the total variation in (5.35) is replaced by the KL functional DKL(·, u∗)
as the regularization, where u∗ denotes a prior estimate of the solution satisfying the

same boundedness condition. In the case of total variation regularization it is more

difficult to prove a similar property.

In Section 5.4.3, we can show at least that the sequence {uk} of the iterates of

the FB-EM-TV splitting algorithm (5.25) has the boundedness property and the

boundedness away from zero, assumed that condition (A3) on the data is fulfilled

and the initialization function u0 is strictly positive. For this reason, we think that

(5.49) is a reasonable assumption.

Analogous to the reasoning above, the convergence of the subsequences in Theorem

5.4.9 can also be proved in the Lp norm with 1 ≤ p < d/(d− 1), since any uniformly

bounded sequence {un} in BV (Ω) is actually relatively compact in Lp(Ω) for 1 ≤
p < d/(d− 1), see [1, Theorem 2.5].
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As in Theorem 5.4.9 it is also possible to consider perturbations of the operator K.

The proof is similar and only slight modifications are necessary. However, different

assumptions to the perturbed operators Kn are needed, see e.g. in [1, Theorem

4.2]. Unfortunately it is also essential that the operators Kn fulfill the assumption

(5.49), i.e. Knu is bounded and bounded away from zero for any n ∈ N where u is a

regularized solution of the minimization problem (5.18), which severely restricts the

possible perturbations of the operator K.

We finally mention that stability estimates for this problem have been derived in

[16] in a different setting. There the assumptions on the possible data perturbations

are more restrictive (in the supremum norm), while the assumptions on the operator

perturbations are relaxed.

5.4.3 Positivity Preservation of FB-EM-TV

In the following we further discuss the properties of the iterates uk during the FB-

EM-TV algorithm. Given a positive uk ∈ BV (Ω) it is straight-forward to see that

uk+ 1
2
is well defined and nonnegative due to the properties of the EM algorithm

and the assumptions (A3) and (A4). An existence and uniqueness proof for the

second half step, analogous to the classical results for the ROF model, yields also

the existence of uk+1 ∈ BV (Ω). In order to show inductively the well-definedness

of the iterates it remains to verify that uk+1 is indeed positive. Note that if any

uk is negative during the iteration, the objective functional in the second half step

of the iteration is not convex anymore and hence the existence and uniqueness of

uk+1 cannot be guaranteed. The non-negativity of a solution is also desired in our

reconstruction models, since in typical applications the functions represent densities

or intensity information. This aspect is considered explicitly by using the constrained

optimization problem (5.18). To clarify the positivity preservation we present a

maximum principle for the weighted ROF problem, i.e. for the second half step of

the forward-backward splitting strategy:

Lemma 5.4.10 (Maximum Principle for Weighted ROF Denoising). Let ũ ∈ BV (Ω)

be the minimizer of the variational problem

min
u ∈BV (Ω)

J(u) :=
1

2

∫

Ω

(u − q)2

h
+ β |u|BV (Ω) , β > 0 , (5.53)

where q ∈ L∞(Ω) and the weighting function h are positive. Then the following

maximum principle holds

0 < inf q ≤ inf ũ ≤ sup ũ ≤ sup q . (5.54)
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Proof. Let ũ be a minimizer of J . For the proof we show that it exists a function v

with

0 < inf q ≤ inf v ≤ sup v ≤ sup q (5.55)

and

J(v) ≤ J(ũ) . (5.56)

Then, the desired property (5.54) follows directly from the strict convexity of the

functional in (5.53), i.e from the uniqueness of the solution.

We define the function v as a version ũ cut off at inf q and sup q, i.e.

v := min {max {ũ, inf q} , sup q} .

With this definition, the property (5.55) is directly guaranteed. To show (5.56), we

use

M := { x ∈ Ω | v(x) = ũ(x) } ⊆ Ω

and estimate first the total variation of v by the total variation of ũ. The function

v has (due to its definition) no variation on Ω \M and we obtain

|v|BV (Ω) = |v|BV (M) = |ũ|BV (M) ≤ |ũ|BV (Ω) . (5.57)

The corresponding data fidelity terms can be estimated as follows: First, due to def-

inition of v the data fidelity terms agree on M . In case of x ∈ Ω \M , we distinguish

between two cases:

Case 1: If ũ(x) ≥ sup q , then v(x) = sup q and

0 ≤ v(x) − q(x) = sup q − q(x) ≤ ũ(x) − q(x) ,

which implies (v(x) − q(x))2 ≤ (ũ(x) − q(x))2 .

Case 2: If ũ(x) ≤ inf q , then v(x) = inf q and

0 ≤ −v(x) + q(x) = − inf q + q(x) ≤ −ũ(x) + q(x) ,

which implies (v(x) − q(x))2 ≤ (ũ(x) − q(x))2 .

Finally, we obtain

(v − q)2 ≤ (ũ − q)2 , ∀x ∈ Ω .

Now, the property (5.56) is fulfilled due to the positivity of the weighting function

h and (5.57).
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Lemma 5.4.11 (Positivity of the FB-EM-TV Algorithm). Let u0 > 0 and let the

assumptions (A3) and (A4) be fulfilled. Then each iterate of the FB-EM-TV splitting

algorithm in (5.25), i.e. uk+ 1
2
and uk+1 for k = 0, 1, ... , is strictly positive.

Proof. Since u0 > 0, f > 0 and the operator K and therewith the adjoint operator

K∗ does not affect the strict positivity, the first EM reconstruction step u 1
2
in (5.25)

is strictly positive. Because the TV correction step in (5.25) can be realized via

the weighted ROF problem (5.26), the maximum principle in Lemma 5.4.10 using

q := u 1
2
> 0 and h := u0

K∗1Σ
> 0 yields u1 > 0. Inductively, the strict positivity

of the subsequent iterates uk+ 1
2
and uk+1 for k = 1, 2, ... is obtained by the same

arguments.

5.4.4 Convergence Results

In Section 5.3.2 we provided an interpretation of the (damped) FB-EM-TV recon-

struction method in terms of a forward-backward operator splitting algorithm. In

the past, several works in convex analysis dealt with the convergence of splitting

strategies for solving decomposition problems, see e.g. Tseng [176] and Gabay [76].

For the proposed algorithm

uk+1 =

(

I +
ωk uk
K∗1Σ

B

)−1(

I − ωk uk
K∗1Σ

A

)

uk ,

Gabay provided a proof of weak convergence of the forward-backward splitting ap-

proach under the assumption of a fixed damping parameter strictly less than twice

the modulus of A−1. On the other hand, Tseng later gave a convergence proof, where

applied to our case, the damping values ωkuk

K∗1Σ
need to be bounded in the following

way:

ǫ ≤ ωk uk
K∗1Σ

≤ 4m − ǫ , ǫ ∈ (0, 2m] ,

where the first functional needs to be strictly convex with modulus m. These as-

sumptions cannot be verified in our case, due to the modulus assumption on the

data fidelity and due to the upper bounds for uk.

For these reasons we searched for another criterion based on the damping strategy, to

guarantee a monotone descent of the objective functional (5.18) in the FB-EM-TV

algorithm.

In the following theorem we will establish the convergence of the damped FB-EM-

TV splitting algorithm under appropriate assumptions on the damping parameters

ωk.
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Theorem 5.4.12 (Convergence of the damped FB-EM-TV algorithm). Let K be an

injective operator and let {uk} be the sequence of iterates obtained from the damped

FB-EM-TV algorithm (5.33). If there exists a sequence of corresponding damping

parameters {ωk}, ωk ∈ (0, 1], satisfying the inequality

ωk ≤

∫

Ω

K∗1Σ (uk+1 − uk)
2

uk
dλ

sup
v ∈ [uk,uk+1]

1

2

∫

Σ

f (Kuk+1 − Kuk)
2

(Kv)2
dµ

(1 − ǫ) , ǫ ∈ (0, 1) , (5.58)

then the objective functional F defined in (5.35) is decreasing during the iteration. If

in addition, the function K∗1Σ, the damping parameters and the iterates are bounded

away from zero by positive constants c1, c2 and c3 such that

0 < c1 ≤ K∗1Σ , 0 < c2 ≤ ωk and 0 < c3 ≤ uk , ∀ k ≥ 0 ,

(5.59)

then the iteration method converges to a minimizer of the functional F in the weak*

topology on BV (Ω) and in the strong topology on L1(Ω).

Proof.

First step: Monotone descent of the objective functional

To get a descent of the objective functional F using an adequate damping strategy,

we look for a condition on the damping parameters {ωk}, which guarantees

F (uk+1) +
ǫ

ωk

∫

Ω

K∗1Σ (uk+1 − uk)
2

uk
dλ ≤ F (uk) , ∀ k ≥ 0 . (5.60)

For this purpose, we start with the TV denoising step in (5.33), multiply it with

uk+1 − uk and integrate over Ω. Thus, for pk+1 ∈ ∂ |uk+1|BV (Ω), we obtain

0 =

∫

Ω

K∗1Σ (uk+1 − ωk uk+ 1
2
− (1− ωk) uk) (uk+1 − uk)
uk

dλ

+ ωk α 〈pk+1, uk+1 − uk〉

=

∫

Ω

K∗1Σ (uk+1 − uk)2
uk

+ ωk

K∗1Σ (uk − uk+ 1
2
) (uk+1 − uk)

uk
dλ

+ ωk α 〈pk+1, uk+1 − uk〉 .

Due to the definition of subgradients in (3.4), we have

〈pk+1, uk+1 − uk〉 ≥ |uk+1|BV (Ω) − |uk|BV (Ω)
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and

α |uk+1|BV (Ω) − α |uk|BV (Ω) +
1

ωk

∫

Ω

K∗1Σ (uk+1 − uk)2
uk

dλ

≤ −
∫

Ω

K∗1Σ (uk − uk+ 1
2
) (uk+1 − uk)

uk
dλ .

Adding the differenceDKL(f,Kuk+1) − DKL(f,Kuk) on both sides of this inequality

and considering the definition of the KL functional DKL in (5.34) and the objective

functional F in (5.35) yields

F (uk+1) − F (uk) +
1

ωk

∫

Ω

K∗1Σ (uk+1 − uk)2
uk

dλ

≤
∫

Σ

[

f log

(
f

Kuk+1

)

+ Kuk+1 − f log

(
f

Kuk

)

− Kuk

]

dµ

−
∫

Ω

[

K∗1Σ (uk+1 − uk) −
K∗1Σ uk+ 1

2

uk
(uk+1 − uk)

]

dλ (5.61)

=

∫

Σ

[

f log

(
f

Kuk+1

)

− f log

(
f

Kuk

)]

dµ −
∫

Ω

[

K∗

(
f

Kuk

)

(uk+1 − uk)
]

dλ .

The last equality in (5.61) holds since
∫

Σ

Ku dµ = 〈Ku,1Σ 〉Σ = 〈 u,K∗1Σ 〉Ω =

∫

Ω

K∗1Σ u dλ

and uk+ 1
2
is given by the EM reconstruction step in (5.25). Defining the functional

G as

G(u) :=

∫

Σ

f log

(
f

Ku

)

dµ

and φ1(t) := G(u + t w1) for any w1 ∈ L1(Ω), the Gáteaux derivative dG of G in

direction w1 is given by

dG(u; w1) = φ′
1(t) |t=0 =

∫

Σ

d

dt

(

f log

(
f

Ku+ tKw1

))

dµ

∣
∣
∣
∣
t=0

=

〈

− f

Ku
,Kw1

〉

Σ

=

〈

−K∗

(
f

Ku

)

, w1

〉

Ω

.

Interpreting the right-hand side of inequality (5.61) as a Taylor linearization of G

yields

F (uk+1) − F (uk) +
1

ωk

∫

Ω

K∗1Σ (uk+1 − uk)2
uk

dλ

≤ G(uk+1) − G(uk) − dG(uk; uk+1 − uk)

=
1

2
d2G(v; uk+1 − uk, uk+1 − uk) , v ∈ [uk, uk+1] , (5.62)

≤ sup
v ∈ [uk,uk+1]

1

2
d2G(v; uk+1 − uk, uk+1 − uk) .
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We can compute the second Gáteaux derivative of G,

d2G(u; w1, w2) = −
∫

Σ

d

dt

(
f

Ku+ tKw2

Kw1

)

dµ

∣
∣
∣
∣
t=0

=

∫

Σ

f Kw2 Kw1

(Ku)2
dµ .

Plugging the computed derivative in the inequality (5.62), we obtain

F (uk+1) − F (uk) +
1

ωk

∫

Ω

K∗1Σ (uk+1 − uk)2
uk

dλ

≤ sup
v ∈ [uk,uk+1]

1

2

∫

Σ

f (Kuk+1 − Kuk)
2

(Kv)2
dµ . (5.63)

Finally, we split the third term on the left-hand side of (5.63) with ǫ ∈ (0, 1),

F (uk+1) +
ǫ

ωk

∫

Ω

K∗1Σ (uk+1 − uk)2
uk

dλ +
1− ǫ
ωk

∫

Ω

K∗1Σ (uk+1 − uk)2
uk

dλ

≤ sup
v ∈ [uk,uk+1]

1

2

∫

Σ

f (Kuk+1 − Kuk)
2

(Kv)2
dµ + F (uk) ,

and obtain the condition (5.60), i.e. a descent of the objective functional F , if

sup
v ∈ [uk,uk+1]

1

2

∫

Σ

f (Kuk+1 − Kuk)
2

(Kv)2
dµ ≤ 1− ǫ

ωk

∫

Ω

K∗1Σ (uk+1 − uk)2
uk

dλ . (5.64)

By solving (5.64) for wk, we obtain the condition (5.58) for the damping parameters

{ωk}. By a suitable choice of ǫ in (5.58), we can additionally guarantee ωk ≤ 1,

∀k ≥ 0.

Second step: Convergence of the primal iterates

Next, in order to show that the iteration method converges to a minimizer of the

functional F , we need a convergent subsequence of the primal iterates {uk}. Since

the operator K is injective, the functional F is BV-coercive according to Lemma

5.4.6 and we obtain from (5.37),

‖uk‖BV (Ω) ≤ c4 [F (uk)]
2 + c5 F (uk) + c6 ≤ c4 [F (u0)]

2 + c5 F (u0) + c6 ,

for all k ≥ 0, and with constants c4 ≥ 0, c5 > 0 and c6 ≥ 0. The latter in-

equality holds due to the positivity of F and due to the monotone decrease of the

sequence {F (uk)} with the corresponding choice of the damping parameters {ωk} in
(5.58). For this reason, the sequence {uk} is uniformly bounded in the BV norm and

the Banach-Alaoglu theorem delivers the precompactness in the weak* topology on

BV (Ω), which implies the existence of a subsequence {ukl} with

ukl ⇀∗ u in BV (Ω) .
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The definition of the weak* topology on BV (Ω) in [4, Definition 3.11] implies that

the subsequence {ukl} also converges strongly in L1(Ω),

ukl → u in L1(Ω) .

With the same argumentation, we can choose further subsequences, again denoted

by kl, such that

ukl+1 ⇀∗ ũ in BV (Ω) ,

ukl+1 → ũ in L1(Ω) .

We show that the limits of the subsequences {ukl} respectively {ukl+1} are the same,

i.e. u = ũ. For this purpose, we apply inequality (5.60) recursively and obtain the

following estimate,

F (uk+1) + ǫ

k∑

j = 0

∫

Ω

K∗1Σ (uj+1 − uj)
2

ωj uj
dλ ≤ F (u0) < ∞ , ∀k ≥ 0 .

Thus, the series of the damping terms is summable and the Cauchy criterion for

convergence delivers

lim
k→∞

∫

Ω

K∗1Σ (uk+1 − uk)
2

ωk uk
dλ = 0 . (5.65)

Additionally, the Cauchy-Schwarz inequality yields the following estimate,

‖uk+1 − uk‖21 ≤
∫

Ω

ωk uk
K∗1Σ

dλ

∫

Ω

K∗1Σ (uk+1 − uk)
2

ωk uk
dλ . (5.66)

The first term on the right-hand side of (5.66) is uniformly bounded for all k ≥ 0,

since ωk ∈ (0, 1], the function K∗1Σ is bounded away from zero (5.59) and the

sequence {uk} is uniformly bounded in the BV norm. From (5.65), the second term

converges to zero and we obtain from (5.66) that

uk+1 − uk → 0 in L1(Ω) . (5.67)

Hence, the uniqueness of the limit implies u = ũ.

Third step: Convergence of the dual iterates

In addition we need a convergent subsequence of the subgradients {pk} corresponding
to the sequence {uk}, i.e. pk ∈ ∂ |uk|BV (Ω). For this sake, we use the general property

that the subdifferential of a convex one-homogeneous functional J : X → R∪{+∞},
X Banach space, can be characterized by

∂J(u) = { p ∈ X∗ : 〈p, u〉 = J(u) , 〈p, v〉 ≤ J(v) ∀v ∈ X } .
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In the case of TV, we see that for each subgradient pk the dual norm is bounded by

‖pk‖ = sup
‖v‖BV (Ω) = 1

〈pk, v〉 ≤ sup
‖v‖BV (Ω) = 1

|v|BV (Ω) ≤ sup
‖v‖BV (Ω) = 1

‖v‖BV (Ω) = 1 .

Hence, the sequence {pk} is uniformly bounded in the BV* norm and the Banach-

Alaoglu theorem delivers the precompactness in the weak* topology on (BV (Ω))∗,

which implies the existence of a subsequence, again denoted by kl, such that

pkl+1 ⇀∗ p in (BV (Ω))∗ .

Fourth step: Verification of p ∈ ∂ |u|BV (Ω)

We have now the weak* convergence of ukl respectively ukl+1 in BV (Ω) and the

weak* convergence of pkl+1 in (BV (Ω))∗. Next, we will show that the limit p of the

dual iterates is a subgradient of | · |BV (Ω) at the limit u of the primal iterates, i.e.

p ∈ ∂ |u|BV (Ω). Hence we have to prove, see the definition of the subdifferential in

(3.4), that

|u|BV (Ω) + 〈p, v − u〉 ≤ |v|BV (Ω) , ∀v ∈ BV (Ω) .

Let pkl+1 ∈ ∂ |ukl+1|BV (Ω), then and the definition of the subdifferential of | · |BV (Ω)

(3.4) yields

|ukl+1|BV (Ω) + 〈pkl+1, v − ukl+1〉 ≤ |v|BV (Ω) , ∀v ∈ BV (Ω) . (5.68)

Since | · |BV (Ω) is lower semicontinuous we can estimate the BV seminorm of the

primal iterates from below,

|u|BV (Ω) ≤ lim inf
l→∞

|ukl+1|BV (Ω) ≤ |ukl+1|BV (Ω) ,

and (5.68) delivers

|u|BV (Ω) + 〈pkl+1, v − ukl+1〉 ≤ |v|BV (Ω) , ∀v ∈ BV (Ω) . (5.69)

In addition, in the previous step we verified the weak* convergence of {pkl+1} in

(BV (Ω))∗, i.e.

〈pkl+1, v〉 → 〈p, v〉 , ∀v ∈ BV (Ω) .

Hence, in order to prove p ∈ ∂ |u|BV (Ω), it remains to with respect to (5.69) that

〈pkl+1,−ukl+1〉 → 〈p,−u〉 . (5.70)

For this purpose we consider the complete iteration scheme of the damped FB-EM-

TV algorithm, see (5.27) and (5.25), concerning the convergent subsequences,

ukl+1 − ωkl

(

ukl
K∗

K∗1Σ

(
f

Kukl

))

− (1−ωkl)ukl + ωklα
ukl
K∗1Σ

pkl+1 = 0 , (5.71)
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which is equivalent to

− α pkl+1 =
K∗1Σ (ukl+1 − ukl)

ωkl ukl
+ K∗1Σ − K∗

(
f

Kukl

)

.

Multiplying this formulation of the iteration scheme with ukl+1 and integrating over

domain Ω yields

− α 〈pkl+1, ukl+1〉

=

∫

Ω

K∗1Σ (ukl+1 − ukl) ukl+1

ωkl ukl
dλ + 〈1Σ, Kukl+1〉 −

〈
f

Kukl
, Kukl+1

〉

=

∫

Ω

K∗1Σ (ukl+1 − ukl)
2

ωkl ukl
dλ

︸ ︷︷ ︸

(5.65)
−→ 0

+

∫

Ω

K∗1Σ (ukl+1 − ukl) ukl
ωkl ukl

dλ

︸ ︷︷ ︸

−→ 0

(5.72)

+ 〈1Σ, Kukl+1〉 −
〈

f

Kukl
, Kukl+1

〉

.

The second term on the right-hand side of (5.72) vanishes in the limit since K∗1Σ

ωkl

is

uniformly bounded in the supremum norm, due to the boundedness away from zero

of ωk (5.59) and the assumption (A4), and the convergence (5.67). Furthermore,

using the boundedness of the operator K for the convergence of f

Kukl

, we obtain

〈1Σ, Kukl+1〉 −
〈

f

Kukl
, Kukl+1

〉

→ 〈1Σ, Ku〉 −
〈

f

Ku
,Ku

〉

and can deduce from (5.72) that

− α 〈pkl+1, ukl+1〉 →
∫

Ω

(

K∗1Σ − K∗

(
f

Ku

))

u dλ
(5.74)
= − α 〈p, u〉 .

Hence, we can conclude (5.70) and that p ∈ ∂ |u|BV (Ω).

Fifth step: Convergence to a minimizer of the functional

We consider the complete iteration scheme of the damped FB-EM-TV algorithm

(5.71) with respect to the convergent subsequences and show the convergence in the

weak* topology to the optimality condition (5.20) of the variational problem (5.35).

An equivalent formulation of equation (5.71) reads as follows

ukl+1 − ukl
ωkl ukl

+ 1 − K∗

K∗1Σ

(
f

Kukl

)

+
α

K∗1Σ

pkl+1 = 0 . (5.73)

The convergence can be verified in the following way. Due to the assumptions of the

boundedness away from zero in (5.59), we can use result (5.65) in order to deduce

the following convergence

c1 c2 c3

∫

Ω

(uk+1 − uk)
2

ω2
k u

2
k

dλ ≤
∫

Ω

K∗1Σ (uk+1 − uk)
2

ω2
k u

2
k

ωk uk dλ
(5.65)−→ 0 .
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Since the integrand on the left-hand side is positive, we obtain with the uniqueness

of the limit, that

lim
l→∞

ukl+1 − ukl
ωkl ukl

= 0 .

Therefore, if we pass over to the weak* limit of the subsequences in (5.73), using the

boundedness of the operator K for the convergence of f

Kukl

, the function u and the

subgradient p ∈ ∂ |u|BV (Ω) fulfill the optimality condition (5.20) of the variational

problem (5.35),

1 − K∗

K∗1Σ

(
f

Ku

)

+ α
1

K∗1Σ

p = 0 . (5.74)

This means that the subsequence {ukl} converges in the weak* topology on BV (Ω)

and in the strong topology on L1(Ω) to a minimizer of the functional F . Note that

it suffices to show (5.74) instead of (5.24) since with the assumption 0 < c3 ≤ uk for

all k ≥ 0 in (5.59) is u automatically positive with 0 < c3 ≤ u.

Since we assumed the operator K to be injective, we obtain the strong convexity

of the functional F from Theorem 5.4.8 and for this reason a unique minimizer u.

This means that every convergent subsequence has the same limit. Thus, also the

sequence {uk} converges to the unique minimizer in the weak* topology on BV (Ω)

and in the strong topology on L1(Ω).

Remarks and Extensions. We mention that the equation (5.64) motivated at the

same time the necessity of a damping in the FB-EM-TV splitting strategy. In the

undamped case, i.e. ωk = 1, the condition (5.64) is in general not fulfilled and hence

we need a parameter ωk ∈ (0, 1) increasing the term on the right-hand side of (5.64)

in order to guarantee a descent of the objective functional F .

Analogous to above, the strong convergence of the sequence {uk} to a minimizer

of the functional F in Theorem 5.4.12 can also be proved in the Lp norm with

1 ≤ p < d/(d−1), since any uniformly bounded sequence {uk} in BV (Ω) is actually

relatively compact in Lp(Ω) for 1 ≤ p < d/(d− 1), see [1, Theorem 2.5]. Therefore,

since the subsequence {ukl} is furthermore uniformly bounded in the BV norm, there

exists a subsequence
{
uklm

}
with

uklm → ũ in Lp(Ω) with 1 ≤ p < d/(d− 1) .

With the uniqueness of the limit and the definition of the weak* topology on BV (Ω)

we obtain

uklm ⇀∗ u in BV (Ω) ,

uklm → u in L1(Ω) .
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Due to the uniqueness of the limit, i.e. ũ = u, we can pass over in the proof from

{ukl} to
{
uklm

}
.

The assumptions on boundedness away from zero in (5.59) are reasonable. Let us

consider the case of the function K∗1Σ. The assumption is practical, because if there

is a point x ∈ Ω with (K∗1Σ)(x) = 0, then it is a priori impossible to reconstruct the

information in this point. Moreover, the assertion on the damping parameters makes

sense because a strong damping is certainly undesirable. The boundedness of the

iterates uk is fulfilled due to the strict positivity of each halfstep of the FB-EM-TV

splitting method, see Lemma 5.4.11.

Inspired by the relaxed EM reconstruction strategy proposed in [133, Chapter 5.3.2],

another possibility of influencing convergence arises in FB-EM-TV by adding a re-

laxation parameter ν > 0 to the EM fixed point iteration,

uk+ 1
2

= uk

(
K∗

K∗1Σ

(
f

Kuk

))ν

(relaxed EM step) .

One can obtain a reasonable TV denoising step in the FB-EM-TV splitting strategy

via

uk+1 =
(

u
1
ν

k+ 1
2

− α u
1
ν

k pk+1

)ν

(relaxed TV step) ,

with pk+1 ∈ ∂ |uk+1|BV (Ω), corresponding to the relaxed EM step uk+ 1
2
above. The

relaxed terms in the TV denoising step are necessary to fit the basic variational

problem (5.18), respectively its corresponding optimality condition. Due to the

computational challenge of the relaxed TV denoising step, which would require again

novel methods, a comparison of this strategy with our damping strategy would go

beyond the scope of this thesis.

In practice, determining the damping parameters ωk via the general condition in

(5.58) is not straight-forward and one can be interested in an explicit bound for all

damping parameters ωk. That is why we will provide an explicit bound on ωk in the

case of Poisson denoising, i.e. K = Id. In this case, the EM reconstruction step in

(5.25) reduces to uk+ 1
2
= f and we compute only,

uk+1 = argmin
u ∈BV (Ω)

{
1

2

∫

Ω

(u − (ωk f + (1− ωk) uk))
2

uk
+ ωk α |u|BV (Ω)

}

.

(5.75)

In Section 6.1 we will see that a reasonable choice of such a bound can improve the

convergence behavior significantly. For the denoising scheme a maximum principle

will be a key step to provide an explicit bound on ωk.
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Lemma 5.4.13 (Maximum Principle for K = Id). Let {ωk} be a sequence of damp-

ing parameters with ωk ∈ (0, 1] for all k ≥ 0 and the initialization function u0 fulfill

0 < min f ≤ min u0 ≤ max u0 ≤ max f . (5.76)

Moreover, let {uk} be a sequence of iterates generated by the damped Poisson de-

noising scheme (5.75). Then, the following maximum principle holds

0 < min f ≤ min uk ≤ max uk ≤ max f , ∀k ≥ 0 . (5.77)

Proof. We prove the assertion by induction. For k = 0, the condition (5.77) is

fulfilled due to (5.76). For a general k ≥ 0, Lemma 5.4.10 offers a maximum principle

for the weighted ROF denosing model (5.75),

0 < min { ωk f + (1− ωk) uk } ≤ min uk+1

≤ max uk+1 ≤ max { ωk f + (1− ωk) uk } . (5.78)

Due to the fact that ωk ∈ (0, 1] for all k ≥ 0 and the inequalities

min { ωk f + (1− ωk) uk } ≥ ωk min f + (1− ωk) min uk

and

max { ωk f + (1− ωk) uk } ≤ ωk max f + (1− ωk) max uk ,

we obtain from (5.78) and the induction hypothesis the desired maximum principle

(5.77).

Remarks and Extensions. The assumption (5.76) is fulfilled in general, since the

initialization u0 will be usually chosen as a positive and constant function.

Corollary 5.4.14 (Explicit Bound on ωk for K = Id). Let {uk} be a sequence of

iterates generated by the damped Poisson denoising scheme (5.75). To guarantee the

convergence in the case of K = Id, the condition (5.58) in Theorem 5.4.12 on the

damping parameters simplifies to

ωk ≤
2 (min f)2

(max f)2
(1− ǫ) , ǫ ∈ (0, 1) . (5.79)

Proof. In the special case of K = Id, the maximum principle from Lemma 5.4.13

is the key idea for simplifying the condition (5.58) on the damping parameters. For

this sake, we consider the inequality (5.64), according to which a monotone descent

of the objective functional is guaranteed if

1

2

∫

Ω

f uk
v2

(uk+1 − uk)
2

uk
≤ 1− ǫ

ωk

∫

Ω

(uk+1 − uk)2
uk

, ∀ v ∈ [uk, uk+1] ,
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holds. Our goal is now to find an estimate for the coefficients fuk

2v2
. Due to the fact

that v ∈ [uk, uk+1] and that {uk} are iterates generated by the damped Poisson

denoising scheme (5.75), we can use the maximum principle from Lemma 5.4.13 and

obtain an estimate for the coefficients,

f uk
2 v2

≤ max f max uk
2 (min {uk, uk+1})2

≤ (max f)2

2 (min f)2
, ∀ k ≥ 0 ,

which should be less or equal 1−ǫ
ωk

. Thus, choosing ωk according to the estimate

(5.79) guarantees a monotone descent of the objective functional.

5.5 Numerical Realization of weighted ROF

In this section we discuss the numerical realization of the TV correction half step

which occurs in the (damped) FB-EM-TV and the (damped) Bregman-EM-TV al-

gorithm, proposed in Chapter 5.3. In the latter, we suggested to realize the TV

denoising steps equivalently by the solution of the weighted ROF problems, see

(5.26), (5.28), (5.93) and (5.94). The most general form of all the schemes above is

u = argmin
u ∈BV (Ω)

{
1

2

∫

Ω

(u − q)2

h
+ β |u|BV (Ω)

}

, β > 0 , (5.80)

with an appropriate setting of the noise function q, the weight function h and the

regularization parameter β, namely

K = Id (Poisson Denoising)

q := f , h := uk , β := α

FB-EM-TV Algorithm (5.26)

q := uk+ 1
2
, h :=

uk
K∗1Σ

, β := α

Damped FB-EM-TV Algorithm (5.28)

q := ωk uk+ 1
2
+ (1− ωk) uk , h :=

uk
K∗1Σ

, β := ωk α

Bregman-EM-TV Algorithm (5.93)

q := ul+1
k+ 1

2

+ ul+1
k vl , h :=

ul+1
k

K∗1Σ

, β := α

Damped Bregman-EM-TV Algorithm (5.94)

q := ωl+1
k ul+1

k+ 1
2

+ (1−ωl+1
k )ul+1

k + ωl+1
k ul+1

k vl , h :=
ul+1
k

K∗1Σ

, β := ωl+1
k α
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5.5.1 Dual Implementation

For the original ROF model, i.e. q := f , h := 1Ω and β := α, a variety of mini-

mization approaches are known in literature, e.g. we refer to [42], [43], [9]. Most of

these computational schemes can be adapted to the weighted modification (5.80).

Here, we use for the minimization the exact dual approach (5.6), which does not

need any smoothing of the total variation. Our approach is analogous to the one

of Chambolle in [42], which characterizes the subgradients of TV as divergences of

vector fields with supremum norm less or equal one and allows an accurate, robust

and efficient algorithm.

In the following, we establish an iteration to compute the solution of the variational

problem (5.80). This minimization can be written as a saddle point problem in the

primal variable u and the dual variable g,

inf
u ∈BV (Ω)

sup
g ∈ C∞

0 (Ω,Rd)
||g||∞ ≤ 1

{

L(u, g) :=
1

2

∫

Ω

(u − q)2

h
+ β

∫

Ω

u∇ · g
}

. (5.81)

Formally, the infimum at u and the supremum at p can be changed. In the case of

the standard ROF model, i.e if the weight h in (5.80) is missing, this property is

proved in [129], which can be carried over with minimal modifications. Moreover, a

more precise analysis of this property for general saddle point problems is available

in [62, Proposition 2.3, p. 175]. After exchange of inf and sup, the primal optimality

condition for the saddle point problem (5.81) is given by

∂

∂u
L(u, g) = 0 ⇔ u = q − β h∇ · g . (5.82)

If the optimal dual variable g̃ is known, the condition (5.82) can be used to obtain

a solution of (5.81),

u = q − β h∇ · g̃ . (5.83)

For the computation of g̃, we plug (5.82) into (5.81) and obtain a purely dual prob-

lem which depends on g only. With terms that are constant with respect to the

optimization variable and hence do not change the supremum, and under the sub-

stitution of the maximization by minimization of the negative functional, we obtain

g̃ = argmin
g ∈ C∞

0 (Ω,Rd)

∫

Ω

(β h∇ · g − q)2

h

subject to |g(x)|2ℓ2 − 1 ≤ 0 , ∀x ∈ Ω ,

(5.84)

where | · |ℓ2 is the Euclidean vector norm. For the choice of the vector norm, compare

the remark at the end of this chapter. The constraint for the dual variable g in (5.84)

is a consequence of the exact (dual) definition of total variation (5.6).
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The dual problem (5.84) is a (weighted) quadratic optimization problem with a non-

linear inequality constraint. Hence, for the computation of the optimal dual variable

g̃, we use the Karush-Kuhn-Tucker (KKT) conditions (cf. e.g. [100, Theorem 2.1.4,

p. 305]), which yields the existence of a Lagrange multiplier λ(x) ≥ 0 for almost

every x ∈ Ω such that

−∇(β h∇ · g − q)(x) + λ(x) g(x) = 0 , ∀x ∈ Ω , (5.85)

and

λ(x) ( |g(x)|2ℓ2 − 1 ) = 0 , ∀x ∈ Ω . (5.86)

The multiplier λ can be specified explicitly from the complementarity condition

(5.86), which yields λ(x) > 0 and |g(x)|ℓ2 = 1, or λ(x) = 0. Thus, in any case we

obtain from (5.85),

λ(x) = |λ(x) g(x)|ℓ2 = |∇(β h∇ · g − q)(x)|ℓ2 , ∀x ∈ Ω .

We can write (5.85) as a fixed point equation for g and iterate

gn+1(x) =
gn(x) + τ (∇(β h∇ · gn − q)(x))

1 + τ |∇(β h∇ · gn − q)(x)|ℓ2
, ∀x ∈ Ω . (5.87)

In a standard discrete setting on pixels with unit size and first derivatives com-

puted by one-sided differences the convergence result in [42, Theorem 3.1] can be

transferred to the weighted ROF problem (5.80), such that we can guarantee the

convergence to a solution if the damping parameter τ satisfies

0 < τ ≤ 1

4 d β ||h||∞
.

The weight h in (5.80) can also be interpreted as an adaptive regularization, because

the regularization parameter β is weighted in (5.87) by the function h.

Remarks and Extensions. Finally, we point out that the total variation definition

(5.6) is not unique for d > 1. Depending on the definition of the supremum norm

||g||∞ = ess supx∈Ω |g(x)|ℓp for g ∈ C∞
0 (Ω, Rd) and 1 ≤ p <∞, we obtain a family of

total variation seminorms. The most common formulations are the isotropic total

variation (p = 2) that we used here, see the minimization constraint in (5.84), and

the anisotropic total variation (p = ∞). Different definitions of TV have effects

on the structure of minimizers of (5.80). In the case of the isotropic TV, corners

in the edge set will not be allowed, whereas orthogonal corners are favored by the

anisotropic variant. For a detailed analysis, we e.g. refer to [124], [171], [67], [21].
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5.6 Contrast Enhancement via Bregman Iterations

In this section we apply the idea of primal Bregman iteration and the new idea of

dual Bregman iteration to reconstruction problems with non-standard noise models.

Analog to the previous sections we on 3D imaging we concentrate on the case of

Poisson noise. This means, we have the Kullback-Leibler distance as the underlying

data fidelity and consider Bregman distance regularization regarding total variation.

5.6.1 Primal Bregman-EM-TV

The presented FB-EM-TV algorithm (5.25) solves the problem (5.18) and delivers

cartoon-like reconstructions with sharp edges. However, the realization of TV correc-

tion steps via the weighted ROF model (5.26) has the drawback that reconstructed

images suffer from contrast reduction [124], [134]. Thus, we propose to extend (5.18)

and therewith FB-EM-TV by iterative regularization to a simultaneous contrast cor-

rection. More precisely, we perform a constrast enhancement by inverse scale space

methods and by using the Bregman iteration. These techniques have been derived

in [134], with a detailed analysis for Gaussian-type problems (5.4), and have been

generalized to time-continuity [34] and Lp-norm data fitting terms [33]. Following

these methods, an iterative refinement is realized by a sequence of modified EM-TV

problems based on (5.18).

The inverse scale space methods concerning TV, derived in [134], follow the con-

cept of iterative regularization by Bregman distance [27]. In case of the Poisson

model, the method initially starts with a simple FB-EM-TV algorithm, i.e. it con-

sists in computing a minimizer u1 of (5.18), respectively (5.19). Then, updates are

determined successively by considering variational problems with a shifted TV term,

ul+1 = argmin
u ∈BV (Ω)
u≥ 0 a.e.

{
DKL(f,Ku) + α ( |u|BV (Ω) − 〈pl, u〉 )

}
, (5.88)

where pl ∈ ∂ |ul|BV (Ω) and α > 0. The mentioned Bregman distance with respect to

| · |BV (Ω) is defined via

Dp̃

|·|BV (Ω)
(u, ũ) := |u|BV (Ω) − |ũ|BV (Ω) − 〈p̃, u− ũ〉 , p̃ ∈ ∂ |ũ|BV (Ω) ⊆ (BV (Ω))∗ ,

where 〈·, ·〉 denotes the standard duality product. The introduction of this definition

allows to characterize the sequence of modified variational problems (5.88) by adding

of constant terms as

ul+1 = argmin
u ∈BV (Ω)
u≥ 0 a.e.

{

DKL(f,Ku) + α Dpl

|·|BV (Ω)
(u, ul)

}

, pl ∈ ∂ |ul|BV (Ω) . (5.89)
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The first iterate u1 can also be realized by the variational problem (5.88) or (5.89),

if u0 is constant and p0 := 0 ∈ ∂ |u0|BV (Ω).

The Bregman distanceDp̃

|·|BV (Ω)
does not represent a distance in the common (metric)

sense, since D is not symmetric in general and the triangle inequality does not hold.

However, the formulation in (5.89) has the advantage over (5.88), that Dp̃

|·|BV (Ω)
is a

distance measure in the following sense

Dp̃

|·|BV (Ω)
(u, ũ) ≥ 0 and Dp̃

|·|BV (Ω)
(u, ũ) = 0 for u = ũ .

Besides, the Bregman distance is convex in the first argument because | · |BV (Ω) is

convex. In general, i.e. for any convex functional J , see e.g. [33], the Bregman dis-

tance can be interpreted as the difference between J in u and the Taylor linearization

of J around ũ if, in addition, J is continuously differentiable.

From the point of view of the statistical problem formulation in Section 5.2.2, the

Bregman regularized variational problem (5.89) uses in (2.6) an adapted a-priori

probability density p(u). Instead of a zero-centered a-priori probability with J(u) =

|u|BV (Ω) as in case of the FB-EM-TV algorithm, here we consider in every Bregman

refinement step a new a-priori probability which is related to a shifted total variation,

i.e. we use the Gibbs function (2.6) with

J(u) = Dpl

|·|BV (Ω)
(u, ul) .

This means that images with smaller total variation and a close distance to the

maximum likelihood estimator ul of the previous FB-EM-TV problem are preferred

in the minimization (5.89).

Before deriving a two-step iteration corresponding to (5.25), we will motivate the

contrast enhancement by iterative regularization in (5.89). The regularization with

TV in (5.19) prefers functions with only few oscillations, ideally piecewise constant

functions. As a consequence, the reconstruction results suffer from a loss of con-

trast. The iterative Bregman regularization has the advantage that, with ul as an

approximation to the possible solution, additional information is available. The

variational problem (5.89) can be interpreted as follows: search for a solution that

matches the Poisson distributed data after applying K and simultaneous minimizes

the residual of the Taylor approximation of | · |BV (Ω) around u
l. This form of regu-

larization hardly changes the position of gradients with respect to the last iterate ul,

but that an increase of intensities is permitted. This leads to a noticeable contrast

enhancement.

For designing a two-step iteration analogous to FB-EM-TV algorithm, we consider

the first order optimality condition for the variational problem (5.89). Due to the
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convexity of the Bregman distance in the first argument, we can determine the sub-

differential of (5.89). Analogous to the derivation of the FB-EM-TV iteration, due

to the continuity of the Kullback-Leibler functional, we can split the subdifferential

of a sum of functions to a sum of subdifferentials and the subdifferential of the KL

functional can be expressed formally by the Fréchet derivatives like to (5.20). Since

∂ (− 〈pl, u〉 ) =
{
−pl

}

holds, the first order optimality condition of (5.89) for a positive solution ul+1 is

given by

0 ∈ K∗1Σ − K∗

(
f

Kul+1

)

+ α (∂ |ul+1|BV (Ω) − pl ) , pl ∈ ∂ |ul|BV (Ω) . (5.90)

For u0 constant and p0 := 0 ∈ ∂ |u0|BV (Ω) this condition delivers a well defined

update of the iterates pl,

pl+1 := pl − 1

α

(

K∗1Σ − K∗

(
f

Kul+1

) )

∈ ∂ |ul+1|BV (Ω) .

Analogous to the FB-EM-TV algorithm, we can apply the idea of the nested iteration

(5.25) in every refinement step, l = 1, 2, · · · . Thus, for the solution of (5.89), the

condition (5.90) yields a strategy consisting of an EM-step ul+1
k+ 1

2

followed by solving

the adapted weighted ROF problem

ul+1
k+1 = argmin

u ∈BV (Ω)







1

2

∫

Ω

K∗1Σ (u − ul+1
k+ 1

2

)2

ul+1
k

+ α ( |u|BV (Ω) − 〈pl, u〉 )






.

(5.91)

Following [134], [34], [33], we provide an opportunity to transfer the shift term 〈pl, u〉
to the data fidelity term. This approach facilitates the implementation of contrast

enhancement with Bregman distance via a slightly modified FB-EM-TV algorithm.

With the scaling K∗1Σ v
l := α pl and (5.90) we obtain the following update formula

vl+1 = vl −
(

1 − K∗

K∗1Σ

(
f

Kul+1

) )

, v0 = 0 . (5.92)

Using this scaled update we can rewrite the second step (5.91) to

ul+1
k+1 = argmin

u ∈BV (Ω)







1

2

∫

Ω

K∗1Σ ( (u − ul+1
k+ 1

2

)2 − 2uul+1
k vl )

ul+1
k

+ α |u|BV (Ω)






.

Note that

(u − ul+1
k+ 1

2

)2 − 2uul+1
k vl = ( u − (ul+1

k+ 1
2

+ ul+1
k vl) )2 − 2ul+1

k+ 1
2

ul+1
k vl + (ul+1

k )2(vl)2
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holds, where the last two terms are independent of u. Hence (5.91) simplifies to

ul+1
k+1 = argmin

u ∈BV (Ω)







1

2

∫

Ω

K∗1Σ (u − (ul+1
k+ 1

2

+ ul+1
k vl))2

ul+1
k

+ α |u|BV (Ω)






, (5.93)

i.e. the second step (5.91) can be realized by a minor modification of the TV step

introduced in (5.26).

The update variable v in (5.92) is an error function with respect to the optimality

condition of the unregularized log-likelihood functional (5.15). In every refinement

step of the Bregman iteration vl+1 differs from vl by the current error in the opti-

mality condition (5.15). Within the TV step (5.93) one observes that an iterative

regularization with the Bregman distance leads to contrast enhancement. Instead of

fitting to the EM solution ul+1
k+ 1

2

in the weighted norm, we use a function in the fidelity

term whose intensities are increased by the error function vl. Resulting from the idea

of adaptive regularization vl is weighted by ul+1
k , too. Following [124] or [182] the

elements of the dual space of BV (Ω), pl = K∗1Σ

α
vl ∈ ∂ |ul+1|BV (Ω) ⊂ (BV (Ω))∗,

can be characterized as textures respectively strongly oscillating patterns. Based

on this interesting interpretation, it makes sense to consider vl as the current error

function of the log-likelihood functional (5.15).

In the previous section we additionally introduced a damped variant of the FB-

EM-TV algorithm. This damped strategy can be also realized very easily in each

Bregman iteration step. With the abbreviation

ql+1 := ωl+1
k ul+1

k+ 1
2

+ ωl+1
k ul+1

k vl + (1− ωl+1
k )ul+1

k ,

the TV step (5.93) simply needs to be adapted to

ul+1
k+1 = argmin

u ∈BV (Ω)

{
1

2

∫

Ω

K∗1Σ (u − ql+1)2

ul+1
k

+ ωl+1
k α |u|BV (Ω)

}

. (5.94)

As usual for iterative methods the described reconstruction method by iterative reg-

ularization needs a stopping criterion. The latter should stop at an iteration offering

a solution that approximates the true image as good as possible. This is necessary

to prevent that too much noise arises by the inverse scale space strategy. In the

case of Gaussian noise, the discrepancy principle is a reasonable stopping criterion,

i.e. the procedure would stop if the residual
∥
∥Kul − f

∥
∥
2
reaches the variance of the

noise. In the case of Poisson noise, however, it makes sense to stop the Bregman

iteration if the Kullback-Leibler distances of Kul and the given data f reach the

noise level. For the synthetic data the noise level δ is naturally given by the KL

distance between Kū and f , i.e.

δ = DKL(f,Kū) ,
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5.6 Contrast Enhancement via Bregman Iterations

where ū denotes the true, noise-free image. For experimental data it is necessary to

find a suitable estimate for the noise level δ from data counts. Assuming that such

an estimate is available and based on the observations in this section we can use

Algorithm 2 to solve the problem (5.89).

Algorithm 2 Bregman-EM-TV

1. Parameters: f, α > 0, ω ∈ (0, 1], maxBregIts > 0, δ > 0, maxEMIts >

0, tol > 0

2. Initialization: k = 0, l = 0, u10 = u0 = c > 0, v0 = 0

while (DKL(f,Ku
l) ≥ δ and l ≤ maxBregIts) do

while (k ≤ maxEMIts and (optk ≥ tol or u optk ≥ tol or p optk ≥ tol))

do ⊲ (5.30), (5.31)

Compute ul+1
k+ 1

2

via EM step analogous to (5.25) with ul+1
k instead of uk.

Set ωl+1
k = ω.

Compute ul+1
k+1 via modified ROF model (5.94). ⊲ Section 5.5

k ← k + 1

end while

Compute update vl+1 via (5.92).

Set ul+2
0 = ul+1

l← l + 1;

end while

return ul

Alternative, a dual inverse scale space strategy based on Bregman iterations can

be used to obtain simultaneous contrast correction, see Subsection 3.3.3. However,

both inverse scale space methods compute very similar iterates and we could not

recognize a difference in the performance so far, but in the case of the dual approach

we can provide error estimates and convergence rates for exact and noisy data.

Inspired by the works of [134], [34], [33], one can also think of modeling a contrast

correction by iterative refinement inside the FB-EM-TV algorithm. On the basis of

the two step iteration (5.25), the TV correction step can be realized by a sequence

of modified ROF problems based on (5.26). More precisely, for any fixed k, uk+1 is
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determined via a sequence of minimization problems

ul+1
k+1 = argmin

u ∈BV (Ω)

{

1

2

∫

Ω

K∗1Σ (u − uk+ 1
2
)2

uk
+ α ( |u|BV (Ω) − 〈pl, u〉 )

}

,

(5.95)

pl ∈ ∂ |ulk+1|BV (Ω) ,

with u0k+1 constant and p0 := 0 ∈ ∂ |u0k+1|BV (Ω). Analogous to [134] and the deriva-

tion above, the scaling vl := α uk

K∗1Σ
pl transfers the shift term 〈pl, u〉 to the data fidelity

term in such a way that (5.95) can be rewritten similar to (5.93),

ul+1
k+1 = argmin

u ∈BV (Ω)

{

1

2

∫

Ω

K∗1Σ (u − (uk+ 1
2
+ vl))2

uk
+ α |u|BV (Ω)

}

with the following update formula

vl+1 = vl + (uk+ 1
2
− ul+1

k+1) , v0 = 0 ,

which seems rather related to an additive than a multiplicative setting and hence

less promising for our setting. Computational experiments indeed confirm that the

inner correction leads to worse reconstructions than the outer one.

5.6.2 Dual-Bregman-EM-TV

In Section 3.3.3 we presented a dual inverse scale space method in terms of an

iterative Bregman regularization technique for general, convex data fidelities and

regularization terms. This strategy based on a dual representation of the initial

variational problem (3.3.1). A bidual formulation of the dual inverse scale space

strategy offers a simple interpretation in terms of a familiar (primal) problem (3.11).

In the special case of Poisson noise modeling and TV regularization, this reads as

follows

ul+1 = argmin
u∈BV (Ω)

u≥0

{∫

Σ

(Ku+ rl − f log(Ku+ rl)) dµ + α|u|BV

}

, (5.96)

with the update of the residual function rl (see (3.12))

rl+1 = rl +Kul+1 − f , with r0 = 0 . (5.97)

Now we can compare the variational problem in (5.96) with the Kullback-Leibler

TV problem in (5.18) concerning an inverse problem with a background model b, i.e.

150



Ku+ b = f . This reveals that the noise function rl serves as a dynamically updated

background model instead of a time-constant background b. Shifting the argument

of the data fidelity with rl in that appropriate way, leads to the expected contrast

enhancing behavior in each time step l → l + 1.

Although the minimization problem (5.96) for a specific l can intuitively be imple-

mented similarly to the splitting strategy of EM-TV,







uk+ 1
2

= ukK
∗

(
f

Kuk + rl

)

(EM step)

uk+1 = uk+ 1
2
− α uk pk+1 (TV step)

,

we need to be aware of division-by-zero problems in the EM step. For the dual inverse

scale method, we can overcome this problem by a partially explicit approximation.

For this sake we rewrite the optimality condition in the following way, usingK∗1 = 1,

1−K∗

(
f

Ku+ r

)

+ αp = 0

=⇒ 1− f

Ku+ r
+ α(K∗)−1p = 0

=⇒ Ku+ r − f + α(K∗)−1p(Ku+ r) = 0

=⇒ K∗

(

1− f − r − αr(K∗)−1p

Ku

)

+ αp = 0

=⇒ 1−K∗

(
f − r(1 + α(K∗)−1p)

Ku

)

+ αp = 0 .

Now we use an approximation of the first term including the subgradient p from the

last Bregman step and obtain

uk+1 = ukK
∗

(
f − rl(1 + ql)

Kuk

)

− αuk pk+1 ,

with ql = α(K∗)−1pl. Note that ql does not need to be computed by inverting K∗,

but can be obtained from the update formula

ql+1 =
f − rl(1 + ql)

Kul+1
− 1. (5.98)

Based on these observations we can use Algorithm 3 to realize the dual inverse

scale space method in (5.96) and (5.97).
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3D Reconstruction in Nanoscopy and PET

Algorithm 3 Dual Bregman-EM-TV

1. Initialization : u00 := c > 0, r0 = 0, q0 = 0

2. For l = 0, 1, 2, ... :

Compute ul+1 via iteration scheme 2. in

Algorithm 1, but with f − rl(1 + ql)

instead of f in EM steps .

Then update ql+1 via (5.98) .

Then update the residual rl+1 via (5.97) .
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3D Reconstruction in Nanoscopy and PET

6.1 Applications

In this section we will illustrate the proposed algorithms and we will test the the-

oretical results by 2D and 3D synthetic and experimental results in high resolution

fluorescence microscopy and positron emission tomography.

6.1.1 Optical Nanoscopy

In recent years revolutionary imaging techniques have been developed in light mi-

croscopy with enormous importance for biology, material sciences, and medicine.

The technology of light microscopy has been considered to be exhausted for a couple

of decades, since the resolution is basically limited by Abbe’s law for diffraction of

light. By developing stimulated emission depletion (STED)- and 4Pi-microscopy [97]

now resolutions are achieved that are way beyond this diffraction barrier [112, 96].

STED-microscopy [191] takes an interesting laser sampling approach, which in prin-

ciple would even allow molecular resolutions. Fluorescent dyes are stimulated by a

small laser spot and are directly quenched by an additional interfering laser spot.

Since this depletion spot vanishes at one very small point in the middle, fluorescence

of the simulating spot is only detected at this tiny position. Hence, data with pre-

viously unknown resolution can be measured. However, by reaching the diffraction

limit of light, measurements suffer from blurring effects and in addition suffer from

Poisson noise due to laser sampling.

In the case of optical nanoscopy the linear, compact operator K describes a convo-

lution operator with a kernel k ∈ C(Ω ⊂ R
d)

(Ku)(x) = (k ∗ u)(x) :=

∫

Ω

k(x− y) u(y)dy . (6.1)
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Figure 6.1: Optical system of a STED microscopy, MPI Göttingen

The kernel is often referred to as the point spread function (PSF), whose Fourier

transform is called object transfer function. From a computational point of view, it

is important to say that the convolution operator in the proposed algorithms can be

computed efficiently by FFT following the Fourier convolution theorem,

k ∗ u = F−1 (F(k) · F(u)) .

6.1.2 Positron Emission Tomography (PET)

Positron emission tomography (PET) is a biomedical imaging technique, which en-

ables to visualize biochemical and physiological processes, such as glucose metabolism,

blood flow, or receptor concentrations, see e.g. [189], [178], [10]. This modality is

mainly applied in nuclear medicine and can be used for instance to detect tumors, lo-

cate areas of the heart affected by coronary artery disease and identify brain regions

influenced by drugs. Therefore, PET is categorized as a functional imaging method

and differs from methods such as X-ray computed tomography (CT) that depicts

priori anatomy structures. The data acquisition in PET is based on weak radioac-

tively marked pharmaceuticals, so-called tracers, which are injected into the blood

circulation, and bindings dependent on the choice of the tracer to the molecules

to be studied. Used markers are suitable radio-isotopes which decay by emitting

a positron, which annihilates almost immediately with an electron. The resulting

emission of two photons is detected by detector rings surrounding the patient. Due to

the radioactive decay, measured data can be modeled as an inhomogeneous Poisson

process with a mean given by the X-ray transform of the spatial tracer distribution.

The X-ray transform maps a function on R
d into the set of its line integrals. More

precisely, if θ ∈ Sd−1 and x ∈ Ω,

(Ku)(θ, x) =

∫

R

u(x + t θ) dt , x + t θ ⊆ Ω ,
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is the integral of u over the straight line through x with direction θ. Up to notation,

in the 2-dimensional case the X-ray transform is equivalent to the more popular

Radon transform.

6.2 Results

6.2.1 2D Deconvolution in Optical Nanoscopy

Synthetic Results (2D):

To get an impression of images suffering from blurring effects and Poisson noise, we

refer to Figure 6.3. Exemplary, you can see a synthetic data set in 6.3(a) regarding

a special 4Pi convolution kernel, see Figure 6.3(b), (c). Compared to standard

convolution kernels, e.g. of Gaussian-type, the latter bears an additional challenge

since it varies considerably in structure. This leads to side lobes in the object

structure of the measured data 6.3(d), (e). In practice, this type of convolution can

be found for instance in 4Pi microscopy [97], since two laser beams interfere in the

focus. Under certain circumstances, convolution kernels can also be locally varying,

such that blind deconvolution strategies are in need. In this case, an additional

unknown phase variable φ influences the structure of the underlying convolution

kernel, see Figure 6.2. For blind deconvolution strategies cf. [Stück and Hohage].

Figure 6.2: Convolution kernels in 4Pi microscopy for different phases

In this section we assume a 4Pi convolution kernel in the form

h(x, y) ∼ cos4
((

2Π

λ

)

y

)

e
−( x

σx
)
2
−
(

y
σy

)2

, (6.2)

with the standard deviations σx and σy, and where λ denotes the refractive index

characterizing the doubling properties.
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6. 3D Reconstruction in Nanoscopy and PET

At the beginning we will illustrate our proposed techniques for the introduced syn-

thetic object (cf. Figure 6.3(a)), blurred with the introduced 4Pi convolution kernel

(6.2). The given data additionally suffer from Poisson noise, see Figure 6.3(e).
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Figure 6.3: 2D synthetic data with 4Pi blurring and Poisson noise: (a) De-

sired image (ground truth), resolution |Ω| = 2002; (b) Assumed 4Pi

microscopy PSF with parameters λ = 0.12, σx = 0.02, σy = 0.07; (c)

3d visualization of the 4Pi PSF; (d) Convolved using 4Pi PSF, and (e)

Given data, convolved with 4Pi PSF and in addition suffering from Pois-

son noise.

In Figure 6.4 we present EM reconstructions following algorithm (5.17) and we

present the corresponding multiplicative residual images uEM

uexact
for different numbers

of iterations. Early stopping leads to natural regularization and undesired side lobes

remain in the EM reconstruction. A higher number of iterations leads to the well

known, undesired checkerboard effect. In Figure 6.4(g), (h) we display the KL-

distances in the data and image domain. The former decreases and reaches the

exact reference distance H(f,KuEM) approximately after 50 iterations, whereas

the latter starts to increase again after initial decrease. In Figure 6.5 and Figure

6.6 we illustrate different FB-EMTV reconstructions following (5.25) and statistical
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investigations concerning optimality. In comparison to EM, FB-EMTV deconvolves

the given data without remaining side lobes and reduces noise and oscillations very

well, see 6.5(a),(b),(c) and the slices in (g). For α = 0.04 the reconstruction is slightly

under-smoothed, whereas for α = 0.2 the computed image is over-smoothed. A

visually reasonable reconstruction can be obtained for α = 0.02. The corresponding

plots of the optimality condition, the functional values and the Kullback-Leibler

measurements show an expected decreasing behavior. In 6.6(h) we visualize different

values of the regularization parameter α versus the KL-distances due to FB-EMTV

reconstructions with α. Although the underlying object can be reconstructed quite

well with FB-EMTV, we can observe a natural loss of contrast as mentioned in 5.6.1.

Parts of the test object cannot be separated sufficiently. One possibility to overcome

this problem is the use of inverse scale space methods.

In Section 5.3.2 and 5.4.4 we found out that a damping strategy in FB-EMTV

is in general necessary to guarantee convergence. For deblurring our testobject

the necessity of damping can be observed for higher values of the regularization

parameter α. In Figure 6.7 we compare functional values for different damping

parameters ω in the case of α = 10. Without damping (ω = 1) we obtain oscillations

in Figure 6.7(a), whereas for ω = 0.07 a monotone descent in the objective functional

can be achieved 6.7(c). However, due to our numerical tests in many cases damping

is not needed to achieve a convergent behavior of the FB-EMTV algorithm.

The Bregman-EMTV strategy proposed in Section 5.6.1 improves the reconstruction

considerably due to simultaneous contrast enhancement, see Figure ... . This aspect

is underlined by the values of the KL-distance for the different reconstructions.

Experimental Results in Optical Nanoscopy (2D):

In Figure 6.9 we illustrate our techniques by reconstructing Syntaxin [191], a mem-

brane integrated protein participating in exocytosis. Here, the contrast enhancing

property of Bregman-EM-TV is observable as well, compared to EM-TV. It is pos-

sible to preserve fine structures in the image.

6.2.2 2D PET Reconstruction in Nuclear Medicine

In figure 6.10, we illustrate our techniques by evaluation of cardiac H2
15O measure-

ments obtained from PET. This tracer is used for the quantification of myocardial

blood flow [162]. This quantification needs a segmentation of myocardial tissue, left

and right ventricle [162], [19], which is usually extremely difficult to realize due to

very low SNR of H2
15O measurements. In order to obtain the tracer intensity in the
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right and left ventricle we take a fixed 2D layer in two different time frames (25 and

45 seconds after tracer injection in the blood circulation).

6.2.3 2D Primal and dual Bregman in Optical Nanoscopy

In this section we present the performance of the proposed techniques by recon-

structing synthetic and experimental data. Figure 6.11 illustrates our techniques at

a simple synthetic object by applying a 4Pi convolution and adding Poisson noise.

With EM-TV (see 6.11(c) and 6.11(g)) we get rid of noise and oscillations, but we are

not able to separate the objects sufficiently. Using Bregman-EM-TV a considerable

improvement resulting from contrast enhancement can be achieved. This aspect is

underlined by the values of the KL-distance for the different reconstructions. In Fig-

ure 6.13 we compare the primal and dual inverse scale space strategy using the same

synthetic object, but in this case with a Gaussian convolution kernel. As expected,

both inverse scale space strategies compute very similar iterates and we can observe

a decrease of the Kullback-Leibler distance between u and ũ until the noise level is

reached. Taking a closer look at the distance measurements reveals a slightly better

decrease in the case of Dual-Bregman-EM-TV.

Figure 6.12, (a)-(c) demonstrate the protein Bruchpilot [110] and its EM-TV and

Bregman-EM-TV reconstruction. Particularly, the latter delivers well separated

object segments and a high contrast level. It is possible to preserve fine structures

in the image. Due to the Fourier convolution theorem, the convolution operator

(6.1) can be computed efficiently via FFT

k ∗ u = F−1 (F(k) · F(u)) ,

such that the EM steps in the proposed algorithms can be performed quickly.

6.2.4 3D Deconvolution in Optical Nanoscopy
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Figure 6.4: EM reconstructions: (a)-(c) Reconstructions following algorithm

(5.17) stopped at different iterations numbers; (d)-(f) Corresponding

residuals uEM

uexact
, scaled to [0, 1]; (g) Data KL-distance H(f,KuEM) for

100 iterations (blue dashed line) and reference value H(f,Kuexact) (ma-

genta dash-dot line), and (h) Image KL-distanceH(uEM , uexact) for 10000

iterations.
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Figure 6.5: FB-EMTV reconstructions: (a)-(c) Reconstructions following algo-

rithm (5.25) for different regularization parameters α, and (d)-(f) Cor-

responding residuals uEMTV

uexact
, scaled to [0, 1].

160



4D Imaging

0 10 20 30 40 50 60 70 80 90 100
−2.5

−2

−1.5

−1

−0.5

0

(a) Optimality
0 10 20 30 40 50 60 70 80 90 100

−2.5

−2

−1.5

−1

−0.5

0

0.5

(b) Optimality p
0 10 20 30 40 50 60 70 80 90 100

−2.5

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

(c) Optimality u

0 10 20 30 40 50 60 70 80 90 100
0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

(d) Functional Values
0 10 20 30 40 50 60 70 80 90 100

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

(e) KL-distance H(f,KuEMTV )
0 10 20 30 40 50 60 70 80 90 100

0

50

100

150

200

250

300

(f) KL-distance

H(uEMTV , uexact)

0 20 40 60 80 100 120 140 160 180 200
0

50

100

150

200

250

300

(g) Slices
0 0.002 0.004 0.006 0.008 0.01 0.012 0.014 0.016 0.018 0.02

41

41.5

42

42.5

43

43.5

44

44.5

(h) α vs. H(uα, uexact)

Figure 6.6: EM-TV Reconstructions, Statistics
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Figure 6.7: Damping in FB-EMTV: iterations vs. values of the objective func-

tional for different values of the damping parameter ω for α = 10.
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Figure 6.8: Bregman-EM-TV:
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Figure 6.9: 2D experimental data: (a) Protein Syntaxin in cell membrane, fixed

mammalian (PC12) cell; image size: 1000 x 1000; (b) 3D visualization of

the used point spread function; (c) EM-TV reconstruction; and (d) 3rd

iterate u3 of the Bregman-EM-TV algorithm.
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(a) (b) (c)

(d) (e) (f)

Figure 6.10: Cardiac H2
15O PET measurements: results of different reconstruction

methods in two different time frames.
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(a) (b)

(c) (d)

(e)

(f)

(g) (h)

Figure 6.11: Synthetic data: (a) raw data using 4Pi PSF; (b) EM reconstruction,

20 its, KL-distance: 3.20; (c) EM-TV, α = 0.04, KL-distance: 2.43;

(d) Bregman-EM-TV, α = 0.1, after 4 updates, KL-distance: 1.43; (e)

true image; (f)-(h) horizontal slices EM, EM-TV and Bregman-EM-TV

compared to true image slice. 165
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(a) (b)

(c)

Figure 6.12: Experimental data: (a) Protein Bruchpilot in active zones of neuromus-

cular synapses in larval Drosophila; (b) EM-TV; (c) Bregman-EM-TV;
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

(i) (j)

Figure 6.13: Synthetic data: Comparison of primal and dual inverse scale space

methods; (a): true image; (b): raw data f using Gaussian PSF;

(c)-(d): KL-distance between u and ũ for Bregman-EM-TV resp.

Dual-Bregman-EM-TV, blue line: distance at all 250 iterations, red

marker: distance at every Bregman step (intervals of 50 interior itera-

tions)(e),(g),(i): iterates u1,u3 and u5 of Bregman-EM-TV; (f),(h),(j):

iterates u1,u3 and u5 of Dual-Bregman-EM-TV.
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(a) (b)

Figure 6.14: 3D experimental data
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7.1 Introduction

This chapter serves as a ”bridge”between 3D static image reconstruction and 4D time

dependent imaging. In the previous chapters we studied models and algorithms for

3D static image reconstruction in the applications tomography and high resolution

fluorescence microscopy. In the second part of this thesis we will extend 3D image

reconstruction to 4D image sequence reconstruction. Instead of a static inverse

problem, Ku = f , we now have to solve inverse problems in space and time, i.e.

K̃(ρ(x, t)) = f(x, t), (x, t) ∈ Ω× [0, T ] ⊂ R
3 × R .

For fixed time steps t = t0, intuitively, one may take into account the application

of static reconstruction techniques similarly to the first part of the thesis. However,

since we talk about time dependent inverse problems, we have to consider that ”life

is always in motion”. In particular, in our applications in 4D medical imaging and

video fluorescence microscopy we can observe natural motion effects. For example

in positron emission tomography we have to consider natural patient motion like

breathing or beating of the heart. To be more precise, in clinical studies it has been

found that the breathing motion of the diaphragm can range from 4 mm to 38 mm,

cf. [179].

Similarly, in dynamic fluorescence microscopy (e.g. dynamic STED) we can think of

reconstructing videos in live cell imaging. Here we have motion effects for instance

due to the migration of single cells or proteins. In optical nanoscopy time dependent

reconstruction algorithms and tracking techniques are becoming more and more

important. For example, recently, biophysicist achieved to observer and study living

cells in nano-scale, cf. [95, 115].
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For the reconstruction of 4D data in medical imaging or video microscopy standard

methods as simple generalizations of 3D reconstruction algorithms can be applied,

but usually they do not incorporate time dependent motion models. However, in

dynamic tomography, e.g. in positron emission tomography (PET), motion is a

well-known source of degradation of reconstruction results. Hence reconstruction

models without incorporating motion models can cause significant blurring effects

in resulting image sequences, especially at object boundaries, cf. Figure 7.1 (artifacts

at the cardiac wall in the bottom image). Here we can see undesired doubling effects.

Figure 7.1: Comparison of a PET sequence reconstruction with and without motion

modeling; Blurring effects due to motion artifacts in the bottom image.

The data is from the European Institute for Molecular Imaging (EIMI).

The blurring effects on the PET images usually are proportional to the magnitude

of the motion. In the literature it is well-known that these motion artifacts can

cause significant errors in a later quantification. For example motion artifacts can

cause a wrong staging of tumors, cf. [135, 66], or they can cause incorrect uptake

values, cf. [132], and it can also happen that small tumors may remain undetected

[137]. Therefore, the combination of parameter estimation models or motion models

and reconstruction techniques is an interesting recently growing research area, cf.

[123, 144, 80, 54, 147, 181].

As a consequence, our first goal for the rest of this thesis is to study and charac-

terize various models for motion estimation and optimal transport. Our final goal

is to combine the concepts of motion estimation and optimal transport with the

reconstruction ideas of the first part of the thesis to build a joint 4D model for

simultaneous image reconstruction, total variation regularization and optimal trans-

port (including mass conservation), see Figure 7.1. In the following sections we will
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give a short introduction on motion models and optimal transport and touch on the

new joint 4D model for simultaneous motion estimation and image reconstruction.

7.2 Optical Flow and Tracking

In computer vision optical flow estimation deals with the computation of visual mo-

tion information in image sequences. For a given video ρ(x, t) a common assumption

for estimating the optical flow is brightness constancy,

ρ(x+ v, t+ δt)
!
= ρ(x, t) ,

i.e. following the desired velocity field v, the pixel intensity should not change. By

using a Taylor expansion this assumption implies the following PDE, the so-called

optical flow constraint (OFC),

∂tρ+ v ∇Ωρ = 0 .

Hence, a standard model for optical flow estimation reads as follows,

min
v
‖∂tρ+ v ∇Ωρ‖22 + α J(u) ,

where the first term, the data fidelity term, penalizes deviations from the OFC

and where J(u) denotes a regularization term penalizing deviations from a certain

smoothness of the flow field. In the following chapter 8 we will discuss different
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motion models based on optical flow further in detail. We will discuss different

data fidelities and different smoothing terms for the flow field. In particular, we

will combine optical flow techniques with total variation regularization and splitting

techniques, and we will present results in high resolution computed tomography

(CT) and tracking applications.

For dynamic tomography data of the heart we basically have two types of motion.

On the one hand motion due to the respiratory displacement and on the other hand

motion due to the cardiac contraction. We will point out that the optical flow

concept only takes into account incompressible flows, whereas mass conservation is

more general and also takes into account compressible flows which will be useful

e.g. for cardiac contraction. In other words, mass conservation allows significant

density changes due to time, whereas the mass is preserved. Hence, we pass over to

continuity equations and optimal transport.

7.3 Optimal Transport and Mass Conservation

In Chapter 9 we will give an introduction to basic concepts of continuum mechan-

ics. Based on this, we will study mass conservation and optimal transport further

in detail. Particularly with regard to our joint 4D reconstruction model we will

concentrate the following model for optimal transport with mass conservation

inf
ρ,v

T

∫ T

0

∫

Ω

ρ(x, t) |v(x, t)|2 dx dt

subject to ∂tρ+∇Ω · (ρ v) = 0 (mass conservation)

ρ(·, 0) = ρ0

ρ(·, T ) = ρT ,

which was introduced by Benamou and Brenier in [17, 18]. The main idea of this

constraint optimization problem is to find an optimal transport ”plan” v, to move a

given start density ρ0 to a given end density ρT (the original problem of Monge [128]

was to move a heap of sand into a hole of the same size). The continuity equation

is the transport equation and the integral represents the transport cost.

Models for optical flow computation and models for mass conservation respectively

optimal transport are directly related to standard models for image registration, see

e.g. [126, 127, 91, 90, 92, 159]. One main difference of standard registration tech-

niques and the flow techniques presented above lies in the use of different coordinates.
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In image registration one is usually interested in finding a grid transformation, which

is related to the so-called Euler coordinates, whereas in the methods above one is

interested in the flow that ”drives” the intensities, which is related to the so-called

material or Lagrangian coordinates.

7.4 Full Joint 4D Model

At the end of this thesis in Chapter 10 we will present our new 4D model for joint

image reconstruction, spatio-temporal regularization and optimal transport, which

reads as follows

Model 7.4.1. General 4D Reconstruction & Optimal Transport

min
ρ,v

∫ T

0

Hf(·,t) (Kρ(·, t)) dt + α

∫ T

0

J(ρ(·, t)) dt +
β

2

∫ T

0

∫

Ω

ρ |v|2 dx dt (7.1)

s.t. ∂t ρ + ∇Ω · (ρ v) = 0 in Q := Ω× [0, T ]

ρ ≥ 0 .

On the one hand, this model computes a sequence of reconstructed images ρ from

the sequence of given data f in the sense of inverse problems while regarding an

optimal transport scheme. On the other hand, the model simultaneously estimates

the motion field v in the sequence, which can be used later on e.g. for registration

or tracking purposes. The first term of the objective functional is a data fidelity

term Hf in space and time, which depends on the given image sequence f , on a

compact operator K and on the desired density sequence ρ. The compact operator

K is assumed to have the same structure in all time steps t. Which makes sense

for various applications since detector systems like microscopes or tomographs will

not change their properties due to time. In analogy to static reconstruction, dif-

ferent data fidelities will result from different noise models using Bayes theory and

MAP estimation. The second term of the objective functional is a time dependent

regularization term. J can for example be a quadratic regularization term or the

total variation. The third term and the constraint is related to the optimal transport

scheme with mass conservation we introduced above. The main difference to optimal

transport is the fact that we do not have a given start or end density. Initial values

for the transport equation automatically arise from the given data of the inverse

problem. In addition, we need to add a positivity constraint to the model since we

consider density images.

For this general formulation we will study different variants including TV regulariza-

tion in space and time. We will provide a detailed analysis including existence and
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uniqueness proofs. To overcome the large amount of data we will propose two types

of numerical realizations based on preconditioning and splitting techniques to facili-

tate parallelization and efficiency. On the one hand we will present a preconditioned

Newton-SQP method with integrated line-search. On the other hand, for the case of

TV, we will present a special splitting technique based on inexact Uzawa techniques

that is highly parallelized and where each of the resulting substeps in the algorithm

is an efficient shrinkage or an efficient DCT inversion, which can additionally be

parallelized on GPUs.
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In this chapter we will introduce motion fields and general optical flow models for

motion estimation in image processing, respectively in imaging. We will introduce

the models in a variational setting with data fidelities and regularization techniques.

After presenting a global variational framework for optical flow estimation we will

concentrate on vectorial TV regularization for 3D motion estimation. We will present

a 3D optical flow TV algorithm based on fast split Bregman techniques and show

computed tomography (CT) results for heart structure analysis. Furthermore, we

will compare optical flow techniques with mass conservation in the sense of com-

pressible and incompressible flows.

8.1 Introduction

Optical flow estimation deals with the determination of visual motion information

in image sequences. Let us assume we have a video, in particular a sequence of gray

value images,

ρ(x, t), Ort x ∈ Ω ⊂ R
d , time t ∈ [0, T ] ⊂ R (8.1)
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(a) t0 (b) t0 + δt

(c) t0 + 2 δt (d) optical flow

Figure 8.1: Hamburg cab sequence and the computed optical flow

Then we search for the optical flow, the velocity field

v := (v1, v2, v3) with v1, v2, v3 : Ω→ R, (8.2)

each time between two images ρ(x, t) and ρ(x, t+ δt). The desired optical flow is a

vector field with directional information and velocity and ideally should match the

real motion in a scene. Figure 8.1 illustrates a part of the Hamburg cab sequence.

An estimation of the optical flow between the two images regarding time t0 and

t0 + δt is depicted in Figure 8.1(d).

In the following we will present a simple and illustrative derivation of variational

methods for optical flow as an image processing task. We establish a connection

between motion fields and gray value changes, and point out fundamental properties

and difficulties with the concept optical flow.

For t ∈ [0, T ] let

ρ (·, t) : Ω→ [0, 1] (8.3)

be gray value images, more precisely, bounded and measurable functions. For exam-

ple, imagine you took a sequence of images of a real 3D scene. Such as the airplane

in Figure 8.1 objects are able to move over time. Let us take a fixed position on the
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Figure 8.2: Pinhole camera model, from [7], Section 5.1

3D-surface of the airplane. Following this point over time, we track a 3D pathline

S(t) with a specific 3D position at every time step t ∈ [0, T ]. The well-known pinhole

camera model explains the projection of a 3D scene to the 2D image domain. Still

following the point on the airplane, the latter now tracks a 2D path after projection

v(t) = (v1(t), v2(t)). (8.4)

An additional difficulty arises if the person recording the movie itself is sitting in the

moving object, for example in a car. In other words, ego motion is an issue in real

camera scenes. For instance, if you think of robot or vehicle control, this is an aspect

one needs to consider. Starting from a 2D path, we obtain the current displacement

field, respectively the vectorial velocity of a point on the 2D path at time t̂ ∈ [0, T ]

by the time derivation of the trajectory

vm(x̂) :=
∂x

∂t
(t̂) , for x̂ = x(t̂). (8.5)

A vector field of 2D velocities of visual surface points is called motion field. Very

simple examples of motion fields are rotation, translation or zoom. In this context,

it is important to lay emphasis on the connection between displacement field, gray

value changes and optical flow. The barber’s pole illusion is a useful tool to explain

this issue. The barber’s pole illusion in Figure 8.1 is an counterclockwise rotating

cylinder with stripes revolving around similar to a bandage. In this case the (real)

displacement field is a translation of visual surface points to the right side. But since

we have a visual illusion here, observed gray value variations during the rotation

imply an optical flow tending upwards. Gray value changes cannot only be induced

by moving objects, but also by camera motion and outside influences like illumination

or contrast changes. For instance in registration of MRT images changing contrast

can be an issue. We conclude that the optical flow and the displacement field are

not identical in general. In the next subsection we will see how different variational
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(a) (b) (c)

Figure 8.3: Basic motion fields

models can take into account different motion types and illuminations. The concept

of optical flow is an estimation based on a-priori assumptions on intensity changes

due to time. In general, the goal is to compute an approximation of the displacement

field by time-varying image intensities. A fundamental problem in optical flow is the

so called aperture problem. For estimating the optical flow we use spatial and

temporal gray values, which are determined via a local operator. For a sufficiently

small stencil of the local operator we can only reach a small detail of the object similar

to an aperture. Hence we cannot collect enough information on the motion. Simply

the components of the motion vector perpendicular to a contour line of the image (i.e.

a line with the same intensity value) can be determined. The components parallel to

the contour line remain undetected. In Figure 8.1 a view on the aperture gives the

impression that the grid moves in bottom-right direction. But in general it could be

possible that the grid only moves downwards or only rightwards. Hence the aperture

problem is a special case of a correspondence problem. The ambiguity of motion

vectors can only be resolved if one can observe ”corners” of objects through the

aperture, that is the local operator. In the next subsection we will come back to this

Figure 8.4: Barber’s pole illusion
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fundamental issue and will verify it mathematically in the sense of ill-posedness and

regularity. In this subsection we give an overview of variational methods for optical

flow estimation. Starting from the concept of optical flow, we will provide a simple

derivation of variational methods and their relation to applications. Based on this,

we will deal with the structure of variational methods, in particular data fidelities and

regularization terms, similarly to the reconstruction modeling in chapter 5. Major

focus will be put on an abstract presentation to give a general overview of existing

models for optical flow estimation.

8.2 Model Derivation

A common assumption for estimating optical flow is the preservation of intensity

values following motion from one image to the next (brightness constancy). Under

the assumption that δt is sufficiently small and that we follow a displacement field

vm, we obtain:

ρ (x, t) = ρ (x+ vm(x), t+ δt) (8.6)

where x = (x1, x2)
T ∈ Ω ⊂ R

2 and where vm : Ω→ R
2 denotes a 2D-velocity field.

A disadvantage of this brightness constancy assumption is the missing invariance

under changing illumination. However, in order to guarantee an optimal environment

for these assumptions one can create artificial scenes with the following properties:

• We do not have reflections.

• The light-source is far away and punctiform.

• We do not have rotations of objects.

Figure 8.5: Aperture problem
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• We only have one source of light.

Obviously these assumptions for brightness constancy are not in line with reality.

However, amazingly one can achieve excellent results with this model for several

applications. In the course of this subsection we will study more complex assump-

tions. The latter will show more invariance towards environmental properties and

will support various types of motion. To guarantee a good optical flow approxima-

tion to the real displacement field it is reasonable in general to assume moderate

changes in illumination and distance of camera, light sources or objects. Starting

with the brightness assumption, we now want to derive an estimation v of the 2D

displacement field vm. The aim is to find a PDE system for computing the optical

flow under this assumption. Let ρ be sufficiently regular, such that we can apply

the multidimensional Taylor expansion to the image ρ(x + vm, t + δt), whose grid

has been transformed by the displacement field vm.

ρ(x, t)
(8.6)
= ρ(x+ vm, t+ δt)

Taylor
= ρ(x, t) + vm

T ∇2ρ(x, t) + ρt(x, t) + O(D2ρ)
(8.7)

with ∇2ρ = (ρx1 , ρx2)
T as spatial derivative and ρt as temporal derivative. Thus,

considering the brightness constancy approximatively implies a basic constraint for

computing the optical flow v:

v(x, t)T ∇2ρ(x, t) + ρt(x, t) = 0. (8.8)

We obtain a gradient condition for the optical flow, the so-called optical flow con-

straint (OFC). The underlying operator

D

Dt
:=

∂

∂t
+ v · ∇

is called Lagrange operator oder material derivative and is often used in fluid me-

chanics and classical mechanics. This point of view is related to compressible and

incompressible flows, see Section 8.7.

The optical flow constraint relates the optical flow v to spatial and temporal deriva-

tives of the density image ρ. Since v is a vector field

v := (v1, v2)
T : R

2 ⊃ Ω→ R
2 ,

we seek a solution of one functional equation with two unknowns. We have an

under-determined system of equations and v cannot be determined uniquely from the

optical flow constraint itself. The gradient constraint equation restricts the optical

flow to a straight line. The underdetermination of the equation is related to the
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aperture problem we introduced in the previous subsection. Under this assumptions

we speak of an ill-posed problem. Following Hadamard a problem is well-posed if

the following conditions are fulfilled:

• There exists a solution of the problem. (existence)

• The solution is unique. (uniqueness)

• The solution depends continuously on the given data. (stability)

Obviously, the uniqueness condition is broken in our case. As illustrated in Figure

Figure 8.6: Missing uniqueness due to the aperture problem

8.6, we can only obtain the components of v in direction of ∇ρ, that is the normal

to the contour lines of the image,

vn =
−ρt
|∇2ρ|

∇2ρ

|∇2ρ|
. (8.9)

To penalize deviations from the optical flow constraint in 8.8, variational methods

are based on minimizing a data fidelity with the Lp-norm of this equation,

(vT ∇2ρ+ ρt)
2 . (8.10)

The locality of the neighborhood does not yield a unique solution for the optical

flow. Hence we seek a vector field v which minimizes the error in the data fidelity. If

one allows more than two or more gradient directions, then the various intersecting

”condition lines” can form a unique condition for the flux vector v. This leads to

higher order data fidelities, which we will formalize and classify in a global frame-

work. Similarly to ill-posed inverse problems, here one can overcome the locality

problem, i.e. the aperture problem, by introducing regularization terms. The latter

propagate information in a sufficiently global sense (sufficiently smooth solutions).

In Subsection 8.4 we will study flow regularization terms in further detail. The fol-

lowing part deals with the structure of functionals for variational problems in optical

flow estimation. To simplify notation we introduce multiindices:
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Definition 8.2.1 (Multiindex). Let ρ : Rd ⊃ Ω→ R. For k ∈ N an element of the

set

Ak := {a = (a1, ..., ad), ai ∈ N, |a| =
d∑

i=1

ai = k}

is called multiindex of order k. For a ∈ Ak we write

Daρ := Da1
1 ...D

ad
d ρ =

∂|a|

∂x1a1 ...∂xdad
.

Furthermore, let ∇kρ := (Daρ)a∈Ak
, i.e. ∇kρ contains all partial derivatives of

order k of the function ρ.

To compute the optical flow v = (v1, v2, v3)
T we minimize the following objective

functional for a given density ρ:

min
v

∫

Ω

m(∇kρ, v) dx

︸ ︷︷ ︸

data fidelity

+ µ

∫

Ω

r(∇2ρ, ∇2v1, ∇2v2) dx

︸ ︷︷ ︸

regularization term

(8.11)

x := (x1, x2)
T ∈ Ω space

∇2 := ∇(x1,x2) = (∂x1 , ∂x2)
T .

In general, a data fidelity term m(·, ·) consists of (mixed) partial derivatives of

gray value intensities with order k, which are related to v via a constraint. In

other words, the minimization of a data fidelity penalizes deviations from a specific

constancy assumption. We use this general formulation with order k to include

various types or data models in the next subsection. However, a regularization term

r(·, ·) penalizes deviations from the smoothness of the flux. In subsection 8.4 and

8.5 we will present various flow regularization techniques including total variation.

Similarly to reconstruction problems the parameter α is a weighting parameter to

control the influence of the two components. Here we have d = 2, i.e. we have

multiindices of the form a = (a1, a2) ∈ N
2
0 and the following holds:

Daρ := Da1
1 D

a2
2 ρ =

∂|a|ρ

∂x1a1 ∂x2a2
. (8.12)

Derivations of an order smaller than 2 we can reach by corresponding zero values

in the multiindex. For example one can define the first partial derivatives via unit

vectors as multiindices:

Diρ = Deiρ =
∂ρ

∂si
. (8.13)

With respect to 4D image reconstruction in Chapter 10, it is useful to consider the

optical flow problem as a time dependent problem. This extension to 3D + 1D mo-

tion estimation means the following: Instead of considering only two D-dimensional
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densities and their derivatives, one considers a whole sequence of D-dimensional den-

sities and additionally temporal derivatives of the flux. This extension to space-time

motion estimation can simply be incorporated into our framework above. Instead of

a spatial domain Ω ⊂ R
d we pass over to a space-time domain Q := Ω× [t0, t1]. For

a given sequence of density images ρ : Ω× [t0, t1] → R variational problems for the

optical flow in general have the following structure:

min
v

∫

Q

m(∇kρ, v) dx̃

︸ ︷︷ ︸

data fidelity

+ α

∫

Q

r(∇3ρ, ∇3v1, ∇3v2) dx̃

︸ ︷︷ ︸

regularization term

(8.14)

x̃ := (x1, x2, t)
T ∈ Ω× [t0, t1] =: Q space-time

∇3 := ∇(x1,x2,t) = (∂x1 , ∂x2 , ∂t)
T .

Here we have d = 3, i.e. the multiindices are extended by one dimension to a =

(a1, a2, a3) ∈ N
3
0, and we obtain:

Daρ := Da1
1 D

a2
2 D

a3
3 ρ =

∂|a|ρ

∂x1a1 ∂x2a2 ∂ta3
. (8.15)

In the literature there are some papers on optical flow estimation that present im-

proved quality achieved by space-time modeling. However, in such a case, one has

to get along with an additional dimension and more data computationally. In the

last chapter on 4D image reconstruction we use a space-time motion model in terms

of optimal transport. For simplicity reasons, we will restrict ourselves to the motion

computation between two D-dimensional density images for the rest of this chapter,

i.e. we write

ρ(x) for ρ(x, 0) and ∇vi for ∇2vi, i = 1, 2 .

As a simple example for optical flow estimation, we consider the variational method

by Horn and Schunck, see [103, pages 81-87],

min
v

∫

Ω

( ρv1(x) v1(x) + ρv2(x) v2(x) + ρt(x) )
2 dx

+

∫

Ω

|∇v1(s)|2 + |∇v2(x)|2 dx . (8.16)

This is a global method with brightness constancy as data fidelity m and a simple

quadratic, homogeneous regularization term r if one uses the general notation from

above.
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8.3 Data Fidelities

In this section we concentrate on the structure of data fidelity term for motion

estimation.

min
v

∫

Ω

m(∇kρ, v) dx + ”Regularizer” (8.17)

Analogous to the derivation of the optical flow constraint ṽT∇3ρ = 0, starting

from brightness constancy, we can design gradient constraints of higher order. For

this purpose, one assumes the preservation of intensity derivatives from one frame

to another while following the motion. For example the preservation of intensity

derivatives of first order (gradient constancy),

ρx1 (x, t)
!
= ρx1 (x+ vm(s), t+ δt) ,

ρx2 (x, t)
!
= ρx2 (x+ vm(s), t+ δt) ,

(8.18)

leads analogously to the following PDEs

v(x, t)T ∇ρx1(x, t) + ρx1,t(x, t) = 0 ,

v(x, t)T ∇ρx2(x, t) + ρx2,t(x, t) = 0 .
(8.19)

Hence, the corresponding data fidelities are given by the L2 norm of the left hand

side of the stationary equation in (8.19). Regarding the ambiguity in the aperture

problem (8.6) this is an advantage as we have more constraint equations available for

the estimation. In the following table we list different data fidelities and their corre-

sponding constancy assumptions. In the following let ṽ = (v1, v2, 1)
T . Actually the

Type of Constancy Data Fidelity Type of Motion

gradient
2∑

i=1

(ṽT∇3ρxi
)2 translation, zoom-out,

slow rotation

2nd derivatives
2∑

i=1

2∑

j=1

(ṽT∇3ρxixj
)2 translation, zoom-out,

slow rotation

Table 8.1: Motion depending constancy assumptions and their data fidelities

terms in Table 8.2 are invariant under all motion types. Theoretically, data fidelities

of higher order can be used to take into account every differentiable image property.

However, using derivatives of higher order can cause more sensitivity difficulties due

to disturbances. For example, the gradient constancy implies that the motion field

should not have deformations of first order. Conversely, the brightness constancy

assumption only requires a certain smoothness due to the transition between two
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8.3 Data Fidelities

Type of Constancy Data Fidelity Type of Motion

absolute value of

gradient (ṽT∇3|∇2ρ|)2 all

Laplacian (ṽT∇3 ∆ρ)2 all

Table 8.2: Motion invariant constancy assumptions and their data fidelities

frames. Considering different data fidelities reveals a common structure. Thus, sim-

ilarly to combining different noise models in one image reconstruction model, we can

combine different constancy assumptions and their data fidelities. This leads to a

notation via motion tensors, as they have been proposed in [28] the first time. For

constancy assumptions p1, .., pn with weights γ1, .., γn ∈ R we obtain

n∑

i=1

γi(ṽ
T∇3pi)

2 = ṽT

(
n∑

i=1

γi∇3pi(∇3pi)
T

)

ṽ = ṽT M(∇3p1, ..,∇3pn)
︸ ︷︷ ︸

motion tensor

ṽ .

(8.20)

A weighted combination of data fidelities is interesting because they can be written

in a unified quadratic form. This notation offers a whole framework of different

possible data fidelities.

Type of Constancy pi Motion Tensor M(∇3p1, ..,∇3pn)

brightness M(∇3ρ) = ∇3ρ(∇3ρ)
T

gradient M(∇3ρx1 ,∇3ρx2) =
2∑

i=1

(∇3ρxi
)(∇3ρxi

)T

2nd derivatives M(∇3ρx1x1 , ..,∇3ρx2x2) =
2∑

i=1

2∑

j=1

(∇3ρxixj
)(∇3ρxixj

)T

absolute value of

gradient M(∇3|∇2ρ|) =
(ρx1
∇3ρx1

+ ρx2
∇3ρx2

)(ρx1
∇3ρx1

+ ρx2
∇3ρx2

)T

ρ2
x1

+ ρ2
x2

Laplacian M(∇3∆ρ) = (∇3

2∑

i=1

ρxixi
)(∇3

2∑

i=1

ρxixi
)T

Table 8.3: Constancy assumptions and their corresponding motion tensors

To classify the previously introduced constancy assumptions in this notation, we list

the motion tensors regarding specific data fidelities in Table 8.3.
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8. Optical Flow and Tracking

Example:

The motion tensor for preserving the absolute value of the gradient of intensities can

be computed in the following way:

∇3|∇2ρ| =
∇3(ρ

2
x1

+ ρ2x2
)

2|∇2ρ|
linear
=
∇3ρ

2
x1

+∇3ρ
2
x2

2|∇2ρ|
chain rule

=
ρx1∇3ρx1 + ρx2∇3ρx2

|∇2ρ|
,

which implies the quadratic form

ṽT
(
(∇3|∇2ρ|)(∇3|∇2ρ|)T

)
ṽ =

ṽT

(
(ρx1∇3ρx1 + ρx2∇3ρx2)(ρx1∇3ρx1 + ρx2∇3ρx2)

T

ρ2x1
+ ρ2x2

)

︸ ︷︷ ︸

=M(∇3|∇2ρ|)

ṽ .

8.3.1 Robustness

Before going over to regularization terms, we will concentrate on robustness of data

fidelities. We suggest two principles for reducing the influence of outliers in the

data. These techniques are known as low-pass filters. High frequencies are filtered,

whereas low frequencies in the data are allowed to pass.

The first approach we consider is the well-known method for optical flow computation

by Lucas and Kanade [121], [120]. In this case the quadratic form

min
v

ṽTMσ(∇3ρ) ṽ (8.21)

is minimized using a filter Mσ(∇3ρ) := Kσ ∗ (∇3ρ (∇3ρ)
T ) with a Gaussian kernel

Kσ (scale σ > 0). In comparison to global variational methods we do not minimize

an integral over the whole space but only locally. A motion tensor is filtered locally

by a Gaussian kernel Kσ. A computational advantage of simple Gaussian filtering

results from the fact that it can be realized via a simple multiplication in a Fourier

space (convolution theorem). A local method has the advantage of being robust

towards outliers in the data, but has the drawback that resulting optical flow fields

are not dense. However global methods compute dense vector fields but are more

sensitive towards noise. Bruhn, Weickert and Schnörr suggested a combination

of local and global methods [29] attaining robust variational methods.

min(v)

∫

Ω

ṽTMσ(∇3ρ) ṽ dx

︸ ︷︷ ︸

robust data fidelity

+ ”Regularizer” (8.22)

In addition, a computational advantage results from the fact, that the convolution

is only related to single partial density derivatives. Hence, the convolution can be

done in a preprocessing step. Now we proceed to the second component of variational

methods for optical flow estimation, the regularization techniques.
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8.4 Regularization

8.4 Regularization

In this section deals with the vector field regularization in variational methods for

optical flow computation. Consider a variational problem of the form

min
v

”Data fidelity” + α

∫

Ω

r(∇2ρ, ∇v1, ∇v2) dx .

As described in 8.3, with data fidelities, e.g. the term (vT ∇2ρ+ρt)
2 (brightness con-

stancy, OFC), the optical flow cannot be determined uniquely in general. We have to

make use of additional prior information to work against the aperture problem and

to ensure well-posedness. Hence, as common for variational methods in imaging,

the optical flow methods introduced here are based on regularization. In general

one assumes a certain smoothness of the optical flow. The parameter α is a control

parameter weighting the influence of data fidelity, respectively regularization term.

r denotes a regularization term and usually depends on derivatives of the optical

flow field v or possibly, in addition, from intensity derivatives. In the following we

study different types of regularization terms. The methods of Horn and Schunck

(8.16) is a prototype for homogeneous regularization. Their smoothness constraints

are based on quadratic regularization terms, i.e.

spatial homogeneous smoothness : rH := |∇v1|2 + |∇v2|2

spatio-temporal homogeneous smoothness : rH3D := |∇3v1|2 + |∇3v2|2 .

A lot of different regularization techniques are related to or can be motivated by

diffusion processes. A diffusion process is part of a diffusion-reaction system and

describes the temporal evolution process, which is in our case reflects the process of

smoothing the unknown velocity field. One can think of a scale space method. The

Euler-Lagrange equations for such a problem can be seen as the stationary elliptic

equation of the corresponding parabolic equation. Now we will have a closer look on

the diffusion part. For the homogeneous method above, the corresponding diffusion

process reads as follows:

∂vi
∂τ

= ∇ · (Id ∇vi), i = 1, 2 (8.23)

where τ denotes a time step (diffusion time) and Id the identity matrix. The smooth-

ness is called homogeneous since the diffusivity has value 1 everywhere.

8.4.1 Image-Driven Regularization

Tracking and segmentation of moving objects is an interesting aspect in motion

computation. For example one can think of pedestrian motion, traffic motion or
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8. Optical Flow and Tracking

cell migration. In such applications one is usually more interested in ”motion edges”

(motion segmentation) rather than ”density edges” (density segmentation). In some

way it is reasonable to see the discontinuities in the motion field as a subset of the

discontinuities in the density. An easy way to reduce smoothing at motion edges

(discontinuities in the optical flow) is the introduction of a weighting function g in

the homogeneous regularization term

rBρ(∇2ρ, ∇v1, ∇v2) := g(|∇2ρ|2)
2∑

i=1

|∇vi|2 . (8.24)

Let the weighting function g be a positive and monotone decreasing function which

takes small values at intensity edges (discontinuities in density images). This type of

regularization has been suggested by Alvarez et al. [2]. The underlying diffusion

process reads as follows

∂vi
∂τ

= ∇ · (g(|∇2ρ|2) ∇vi), i = 1, 2 . (8.25)

Obviously, the diffusion is dependent on intensity edges, however it implies a di-

rection independent smoothing (isotropic diffusion). Thus, the result in 8.24 is

generated by an inhomogeneous, image-driven and isotropic regularization term.

Charbonnier et al. [44] proposed the function g as :

g(s2) :=
1

√

1 + s2

δ2s

, (8.26)

where δs is a relaxation parameter. An image-driven isotropic regularization term

avoids smoothing near intensity edges, however it does not allow for the direction of

intensity derivatives, see Figure 8.4.1 (a). The basic idea of an anisotropic method

is to avoid smoothing across edges, whereas smoothing along edges is preferred. In

motion estimation one of the first techniques of this type has been suggested in [130].

They defined regularization terms in the following way

rBA(∇2ρ, ∇v1, ∇v2) :=
2∑

i=1

(∇vi)T DifNE(∇2ρ) ∇vi , (8.27)

where DifNE(∇2ρ) :=
1

|∇ρ|2 + 2ǫ2s

(

ρ2x2
+ ǫ2s −ρx1x2

−ρx1x2 ρ2x1
+ ǫ2s

)

ǫs > 0 is a parameter, which ensures the regularity of the matrix.
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Figure 8.7: image-driven regularization in the new-marbled-block -sequence

(a) image-driven, isotropic (b) image-driven, anisotropic

The diffusion process for this kind of regularization is given by:

∂vi
∂τ

= ∇ · (DifNE(∇2ρ) ∇vi), i = 1, 2 . (8.28)

Taking a look at the eigenvectors and the corresponding eigenvalues of DifNE one

can read out the desired behavior at edges considering |∇2ρ| → 0 and |∇2ρ| →
∞. The described properties are presented in Figure 8.4.1 (b). Similar properties

are known from anisotropic diffusion filters [186]. Homogeneous and image-driven

isotropic regularizations are special cases of (8.27), simply choose

DifNE(∇2ρ) := ρ resp. DifNE(∇2Id) := g(|∇2ρ|2)Id ,

where Id denotes the identity matrix.

8.4.2 Flow-Driven Regularization

In image-driven regularization the smoothness of motion fields is influenced by in-

tensity gradients. Particularly for objects with numerous and intense textures, e.g.

see the surface of the block in 8.4.1, this means we have to expect a textured mo-

tion estimation. We obtain much more intensity edges than motion edges. If one

is primarily interested in discontinuities of the optical flow, for example in track-

ing applications, than this effect is not desired. To overcome this ”drawback” one

can go over to flow-driven regularization terms. Flow-driven regularization meth-

ods predominantly take into account discontinuities in the motion field. Analog to
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8. Optical Flow and Tracking

the previous subsection we distinguish between isotropic and anisotropic methods.

Isotropic flow-driven methods are roughly based on the idea of adding a filter func-

tion to the homogeneous regularization term, eliminating outliers in |∇x1|2+ |∇x2|2,

rFρ(∇v1,∇v2) := Ψ(|∇v1|2 + |∇v2|2) , (8.29)

where Ψ denotes a positive and increasing function with values in R.

A prototype for Ψ is

Ψ(s2) =
√
s2 + ǫ , (8.30)

which leads to an approximated isotropic total variation regularization of the flow

with relaxation parameter ǫ > 0. Analog to scalar total variation this model is

related to lagged diffusivity regarding the additional parameter ǫ. In general one can

expect a nearly piecewise constant behavior in each component of the velocity field.

Analog to robust data fidelity terms, we introduced in section (8.3.1), penalizing

with such a function Ψ can be seen as a statistically robust error measure [104]. The

corresponding diffusion process reads as follows

∂vi
∂τ

= ∇ · (Ψ′(|∇v1|2 + |∇v2|2) ∇vi), i = 1, 2 . (8.31)

The diffusivity decreases with its argument. Hence smoothing at discontinuities of

the optical flow is avoided. An alternative approximation of TV regularization was

proposed in [188]. Rotationally invariant approximations can be found in [46], [56]

or [113].

The second class of flow-driven vector field regularization is the anisotropic one. In

the isotropic case the non-quadratic real-valued function Ψ penalizes the absolute

value of the flow derivatives. Here we extend the function Ψ to a matrix valued

transformation Ψm. We can apply this transformation on

2∑

i=1

∇vi (∇vi)T , (8.32)

which contains additional directional information. The transformation can be de-

fined in the following way

Ψm(A) :=
2∑

i=1

Ψ(σi) ωiω
T
i , (8.33)

where ωi are orthogonal eigenvectors and σi are corresponding eigenvalues for a sym-

metric matrix A ∈ R
2 × R

2. The matrix (8.32) is a symmetric positive semidefinite

matrix. The application of Ψm yields a partition of the eigenvalues. Using the trace
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of Ψm we obtain the sum of eigenvalues (8.32). With

rFA(∇v1,∇v2) := trace (Ψm(
2∑

i=1

∇vi (∇vi)T )) (8.34)

we finally obtain a regularization term which adjusts to the local orientation of the

optical flow. Following [187], this type of regularization implies the diffusion process

Figure 8.8: flow-driven regularization in the new-marbled-block -sequence

(a) flow-driven, isotropic (b) flow-driven, anisotropic

∂vi
∂τ

= ∇ · (Dif(∇v1,∇v2) ∇vi), i = 1, 2, (8.35)

where Dif(∇v1,∇v2) = Ψ′
m(

2∑

i=1

∇vi (∇vi)T ) .

Analog to the image-driven case, the additional consideration of local orientation

leads to a smoothing behavior along motion edges but not across motion edges. For

further insight on anisotropic filters in image processing we refer to [186]. Figure

8.8 illustrates results using flow-driven isotropic and anisotropic regularization. In

Table 8.4 we give an overview of the four described regularization classes.
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Table 8.4: Classes of Flow Regularization Techniques

Regularization Smoothing Term

homogeneous
2∑

i=1

|∇vi|2

image-driven, isotropic g(|∇2ρ|2)
2∑

i=1

|∇vi|2

image-driven, anisotropic
2∑

i=1

(∇vi)TDif(∇2ρ) ∇vi

flow-driven, isotropic Ψ(
2∑

i=1

|∇vi|2)

flow-driven, anisotropic trace (Ψm(
2∑

i=1

∇vi (∇vi)T ))

8.5 3D Optical Flow-TV

In this section we consider an optical flow model with the standard brightness con-

stancy assumption and vector field regularization with total variation. We will apply

the Split Bregman algorithm to obtain a fast computational method.

8.5.1 Model: Optical Flow-TV

Model 8.5.1.

min
v=(v1,v2,v3)

{
1

2

∫

Ω

(ρt + v · ∇ρ)2 dx + α

∫

Ω

|∇v1|+ |∇v2|+ |∇v3| dx
}

This variational problem is based on a data fidelity and a vector field regularization

term that penalizes deviations from the smoothness of the optical flow. The data

fidelity is based on the optical flow constraint regarding the brightness constancy

assumption, as introduced in section 8.3 above. The regularization term can be clas-

sified as anisotropic and flow-driven due to the terminology of the previous section.

In addition, we have another isotropy/anisotropy choice for each of the lp norms

of the vector field components, i.e. analoguous to scalar TV regularization we can

choose for instance

|∇vi|l2 or |∇vi|l1 ,

for the isotropic, respectively the anisotropic case.
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In the following we want to applied a convex splitting algorithm to find a solution

of this variational problem for 3D optical flow TV computation. First of all we have

to decouple the functional similarly to the idea of splitting techniques we introduced

in Chapter 4. By adding new (artificial) primal variables z1, z2, z3 we obtain a

constrained optimization problem that is equivalent to Model 8.5.1:

min
v=(v1,v2,v3)

{
1

2

∫

Ω

(ρt + v · ∇ρ)2 dx + α

∫

Ω

|z1|+ |z2|+ |z3| dx
}

s.t. z1 = ∇v1, z2 = ∇v2, z3 = ∇v3 .

The augmented Lagrangian for this constrained optimization problem reads as fol-

lows

Lµ(v1, v2, v3, z1, z2, z3; p1, p2, p3)

=
1

2

∫

Ω

(ρt + v · ∇ρ)2 + α (|z1|+ |z2|+ |z3|) dx + 〈p1,∇v1 − z1〉 +
µ

2
‖∇v1 − z1‖22

+ 〈p2,∇v2 − z2〉 +
µ

2
‖∇v2 − z2‖22 + 〈p3,∇v3 − z3〉 +

µ

2
‖∇v3 − z3‖22 ,

where µ is a penalty parameter for the quadratic relaxation terms, and where the

new dual variables p1, p2, p3 are Lagrange multipliers corresponding to the three

constraints.

8.5.2 Algorithm: Split Bregman Optical Flow-TV

After a suitable decoupling of a variational problem, the main idea of Split Bregman

(respectively of alternating direction method of multipliers (ADMM) and Douglas-

Rachford-Splitting (DRS)) is to alternatively minimize the augmented Lagrangian

regarding primal and dual variables. In the case of 3D optical flow with total varia-

tion we obtain the following primal-dual update scheme:

Primal updates:

vk+1 = argmin
v=(v1,v2,v3)

Lµ(v1, v2, v3, z
k
1 , z

k
2 , z

k
3 ; p

k
1, p

k
2, p

k
3) (I)

zk+1
1 = argmin

z1

Lµ(vk+1
1 , vk+1

2 , vk+1
3 , z1, z

k
2 , z

k
3 ; p

k
1, p

k
2, p

k
3) (II)

zk+1
2 = argmin

z2

Lµ(vk+1
1 , vk+1

2 , vk+1
3 , zk+1

1 , z2, z
k
3 ; p

k
1, p

k
2, p

k
3) (II)

zk+1
3 = argmin

z3

Lµ(vk+1
1 , vk+1

2 , vk+1
3 , zk+1

1 , zk+1
2 , z3; p

k
1, p

k
2, p

k
3) (IV)
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Dual updates:

pk+1
1 = pk1 + µ ∂p1L

µ(vk+1
1 , vk+1

2 , vk+1
3 , zk+1

1 , zk+1
2 , zk+1

3 ; p1, p
k
2, p

k
3)

= pk1 + µ
(
∇vk+1

1 − zk+1
1

)
(V)

pk+1
2 = pk2 + µ ∂p2L

µ(vk+1
1 , vk+1

2 , vk+1
3 , zk+1

1 , zk+1
2 , zk+1

3 ; pk+1
1 , p2, p

k
3)

= pk2 + µ
(
∇vk+1

2 − zk+1
2

)
(VI)

pk+1
3 = pk3 + µ ∂p3L

µ(vk+1
1 , vk+1

2 , vk+1
3 , zk+1

1 , zk+1
2 , zk+1

3 ; pk+1
1 , pk+1

2 , p3)

= pk3 + µ
(
∇vk+1

3 − zk+1
3

)
. (VII)

The dual updates can be computed very efficiently since we only have to apply

gradients. We now take a closer look at the primal iterates. Without affecting

minimizers, we obtain the following subproblems for the primal iterates:

Primal updates:

vk+1 = argmin
v=(v1,v2,v3)

{
1

2

∫

Ω

(ρt + v · ∇ρ)2 +
〈
pk1,∇v1 − zk1

〉
+

µ

2

∥
∥∇v1 − zk1

∥
∥
2

2

+
〈
pk2,∇v2 − zk2

〉
+

µ

2

∥
∥∇v2 − zk2

∥
∥
2

2
+
〈
pk3,∇v3 − zk3

〉
+

µ

2

∥
∥∇v3 − zk3

∥
∥
2

2

}

= argmin
v=(v1,v2,v3)

{

1

2

∫

Ω

(ρt + v · ∇ρ)2 +
µ

2

∥
∥
∥
∥
zk1 −∇v1 −

1

µ
pk1

∥
∥
∥
∥

2

2

(I)

+
µ

2

∥
∥
∥
∥
zk2 −∇v2 −

1

µ
pk2

∥
∥
∥
∥

2

2

+
µ

2

∥
∥
∥
∥
zk3 −∇v3 −

1

µ
pk3

∥
∥
∥
∥

2

2

}

zk+1
1 = argmin

z1

{

µ

2

∥
∥
∥
∥
z1 −

(

∇vk+1
1 +

1

µ
pk1

)∥
∥
∥
∥

2

2

}

+ α

∫

Ω

|z1| (II)

zk+1
2 = argmin

z2

{

µ

2

∥
∥
∥
∥
z2 −

(

∇vk+1
2 +

1

µ
pk2

)∥
∥
∥
∥

2

2

}

+ α

∫

Ω

|z2| (III)

zk+1
3 = argmin

z3

{

µ

2

∥
∥
∥
∥
z3 −

(

∇vk+1
3 +

1

µ
pk3

)∥
∥
∥
∥

2

2

}

+ α

∫

Ω

|z3| , (IV)

where we mainly shifted the scalar products to the quadratic relaxation terms. Note

that the z-updates are simple sparsity regularization functionals we introduced in

Section 4.4.3. Thus, a solution can be computed explicitly and very efficiently via

thresholding using the following soft shrinkage formula:

zk+1
i = S

(

∇vk+1
i +

1

µ
pki ,

α

µ

)

, for i = 1, .., 3 .
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For the computation of v we will apply a Jacobi iteration. The optimality system

for (I) reads as follows







0 =
(
ρt + vk+1∇ρ

)
ρx1 + µ∇ ·

(

zk1 −∇vk+1
1 − 1

µ
pk1

)

0 =
(
ρt + vk+1∇ρ

)
ρx2 + µ∇ ·

(

zk2 −∇vk+1
2 − 1

µ
pk2

)

0 =
(
ρt + vk+1∇ρ

)
ρx3 + µ∇ ·

(

zk3 −∇vk+1
3 − 1

µ
pk3

)

.

To derive a Jacobi iteration in this case, we have to select a discretization of the

Laplacian of a scalar field u. Here we choose a 5 point star in 2D, respectively a 7

point star in 3D, i.e.

[∆u]i,j,k = ui+1,j,k + ui,j+1,k + ui,j,k+1 + ui−1,j,k + ui,j−1,k + ui,j,k−1 − 6 ui,j,k

=: ū− 6 ui,j,k .

Thus, we have to solve the following linear system of equations






ρ2x1
+ 6µ ρx1ρx2 ρx1ρx3

ρx1ρx2 ρ2x2
+ 6µ ρx2ρx3

ρx1ρx3 ρx2ρx3 ρ2x3
+ 6µ











vk+1
1

vk+1
2

vk+1
3




 =








−ρx1ρt − µ∇ ·
(

zk1 − 1
µ
pk1

)

− µ v̄1k

−ρx2ρt − µ∇ ·
(

zk2 − 1
µ
pk2

)

− µ v̄2k

−ρx3ρt − µ∇ ·
(

zk3 − 1
µ
pk3

)

− µ v̄3k







.

Applying Cramer’s rule we obtain the following formulas for the vector field compo-

nents

vk+1
1 =

det(Ak
1)

det(A)
, vk+1

2 =
det(Ak

2)

det(A)
, vk+1

3 =
det(Ak

3)

det(A)
,

where A denotes the matrix above, and where Ai denotes A with the i-th column

replaced by the right hand side. The determinant of A can be computed in advance,

which improves efficiency significantly. The Jacobi iteration updating v1, v2 and v3
in an alternating manner can be repeated several times. However, in most of our

test cases we needed only one inner iteration. In the following section we will apply

this algorithm to 2D and 3D synthetic and real life applications.

8.6 Numerical Results

8.6.1 Results in Computed Tomography

In this subsection we present results in Computed Tomography (CT) for heart struc-

ture analysis. The following structural motion results have been developed in col-

laboration with Paul Lunkenheimer from the university hospital in Münster. We
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acknowledge the SCANCO Medical AG in Bruettisellen, Switzerland for providing

medical imaging data.

The cardiac muscle, called myocardium is a type of involuntary striated muscle found

in the walls of a heart. To analyze the structure of the cardiac muscle we investigated

high resolution 3D data sets of a heart. The data size is 2304× 2304× 1336.

Figure 8.9: Decrease of functional values

8.7 Compressible versus Incompressible Flows

Similarly to decomposition models for images (scalar fields), e.g. cartoon-texture de-

composition, there exists a (natural) decomposition of vector fields. More precisely,

we have an orthogonal decomposition of L2(Ω)2, a so-called Hodge-decomposition of

L2(Ω)2,

L2(Ω)2 = H ⊕ ∇H1
0 (Ω) ⊕ ∇⊥H1

0 (Ω) ,

where the gradient and curls of H1 are characterized by

∇⊥H1(Ω) := {v ∈ H(div; Ω) | div(v) = 0}
∇H1(Ω) := {v ∈ H(curl; Ω) | curl(v) = 0} ,

and where

H := {v ∈ H(div; Ω) ∩H(curl; Ω) | div(v) = curl(v) = 0} ,

196



8.7 Compressible versus Incompressible Flows

denotes the space of harmonic vector fields, i.e. those with ∆v = 0. The Hodge

decomposition results from two Helmholtz-decomposition of L2(Ω)2. For further

technical details we refer to [196, 195, 52]

In other words, we can characterize a vector field v by a sum of a divergence part, a

curl part and harmonic part. The curl of a flow field describes the vorticity, whereas

the divergence ∇·v is characterized by sources and sinks. For example take a look at

the simple vector fields in Figure 8.3 at the beginning of this chapter in Section 8.1.

The rotation example is divergence-free, the zoom-in is curl-free and the translation

has no rotation and not sources or sinks.

In fluid mechanics, or more generally, continuum mechanics, an incompressible flow

(more precisely an isochoric flow) is a solid or a fluid flow in which the divergence

of the velocity is zero, i.e.

∇ · v = 0 ,

i.e. one does not allow any source or sinks in the flow. At the beginning of this

chapter we saw that the common brightness constancy assumption in optical flow

leads to the optical flow constraint concerning v, i.e.

ρ(x+ v, t+ δt)
!
= ρ(x, t) (8.36)

Taylor
; ∂tρ+ v ∇ρ = 0 . (8.37)

This is equivalent to saying that the material derivative D
Dt

of the density ρ is zero.

Now we go over to a more general equation, the so-called continuity equation,

∂tρ+∇ · (ρv) = ∂tρ+ v∇ρ+ ρ∇ · v = 0 (mass conservation) . (8.38)

We will study this equation further in detail in the following chapter in the context

of continuum mechanics. The Figure 9.2 in the following chapter illustrates the

different view points of optical flow and mass conservation. The red-marked term

in 8.38 is equal to the rate of brightness formation from the sources or sinks in an

image flow. If we compare 8.38 and 8.37, the optical flow model assumes

ρ∇ · v = 0 .

Hence, optical flow models are suitable for estimating incompressible flows, i.e. where

the corresponding density does not change due to time. That is one reason why

optical flow is useful for tracking problems, e.g. for car traffic scenes.

However, for instance in cardiac gate positron emission tomography (PET) in nuclear

medicine, we can observe that densities can change intensively due to time. For

example take a look at the two time steps of a pumping heart sequence in Figure

8.22.
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Figure 8.22: Two time steps of a cardiac gated PET data set; conservation of mass

concerning the injected tracer, but large density changes due to time

Nevertheless, we can expect a conservation of mass due to time concerning an in-

jected tracer. The continuity equation from above 8.38 allows compressible flows,

i.e. it allows density changes of investigated objects due to time, whereas the mass

is preserved. As a consequence, mass conservation is a reasonable motion model for

PET images, in particular for cardiac data sets. In the following chapter we will see

that the continuity equation can be seen as a fundamental part of optimal trans-

port models. The allowance of compressible flows and the relation to continuum

mechanics are reasons why we decided to combine 4D image reconstruction with op-

timal transport models in Chapter 10. Now we proceed with continuum mechanics,

conservation laws and optimal transport.
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Figure 8.11: Slice 633 of 1336 in z-direction

Figure 8.12: Slice 634 of 1336 in z-direction
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Figure 8.13: Optical flow v in colorful orientation plot between slice 633 and 634

Figure 8.14: Optical flow v in vector plot between slice 633 and 634
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Figure 8.15: Magnitude of the optical flow v between slice 633 and 634

Figure 8.16: Slice 633 and overlay of vector field v between slice 633 and 634
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Figure 8.17: Optical flow v in colorful orientation plot between slice 634 and 635

Figure 8.18: Optical flow v in colorful orientation plot between slice 635 and 636
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Figure 8.19: Optical flow v in colorful orientation plot between slice 636 and 637

Figure 8.20: Optical flow v in colorful orientation plot between slice 637 and 638

203



Optimal Transport

Figure 8.21: Optical flow v in colorful orientation plot between slice 638 and 639

Figure 8.22: Optical flow v in colorful orientation plot between slice 639 and 640
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9
Optimal Transport

In this chapter we will introduce a fundamental equation of continuum mechanics

to motivate optimal transport. Then we will relate optimal transport to optical flow

estimation from the previous chapter. In the following chapters optimal transport

with mass conservation will serve as a conceptional ingredient of 4D imaging.

9.1 Continuum mechanics

Continuum mechanics is a branch of mechanics that deals with the analysis of the

kinematics and the mechanical behavior of materials modeled as a continuum. Mod-

eling an object as a continuum assumes that the substance of the object completely

fills the space it occupies. In the following we will concentrate on fluid mechanics,

a branch of continuum mechanics. For detailed models of solid mechanics, which is

an other branch of continuum mechanics, we refer e.g. to [174].

Fluid mechanics is the study of fluids and the forces on them. Fluid flows can be seen

as physical mass continua, in other words, objects in the Euclidean space which can

be seen as the set of their particles or mass points. The derivation of the equations

of fluid dynamics are based on the following main physical principles:

• For all times t > 0, there exists a well-defined mass density ρ(x, t), such that

the mass m(Ω, t) in the region Ω at time t is given by

m(Ω, t) =

∫

Ω

ρ(x, t)dx (9.1)

• Mass is neither created nor destroyed. (mass conservation)
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• The changes of the momentum in a fluid region equals the attached forces.

(momentum conservation)

• Energy is neither created nor destroyed. (energy conservation)

These assumptions are called continuum hypothesis. These foundational axioms of

fluid dynamics are the conservation laws, specifically, conservation of mass, conser-

vation of linear momentum (also known as Newton’s second law of motion), and

conservation of energy (also known as first law of thermodynamics).

Let Ω ⊂ R
d be the region occupied by the fluid. Let x ∈ Ω and consider the

fluid particle X, which moves at time t though position x. For describing the mass

continuum, x are called spatial or Euler coordinates, whereas X are termed material

or Lagrangian coordinates. Let W0 ⊂ Ω be a subset at time t = 0. The function

φ : W × R
+ → R

d describes the change of the particle position

Wt := {φ(X, t) : X ∈ W0} = φ(W0, t) .

The pathline is the set of space points x(X0, t) that is taken by a particle X0 at

X

x

Phi(X,t)

Omega0

Omegat

different times t. In other words, pathlines are the trajectories that fluid particles

follow.

A streamline is a curve that is instantaneously tangent to the velocity vector of the

flow. This shows the direction a fluid element will travel in at any point in time (see

Fig. 9.1). Streamlines represent contours of the velocity field showing the motion of

the whole field at the same time. In the case of stationary flow fields, that is

Streaklines are the locus of points of all the fluid particles that have passed contin-

uously through a particular spatial point in the past. For example a dye steadily

injected into a fluid at a fixed point extends along a streakline. Appropriate to the

previous section on optical flow the velocity of a particle will be denoted by u(x, t)

in the following. For fixed time t, u(x, t) is a vector field on Ω. Then

x : R
+ → R

d

t 7→ φ(X, t)
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����x
u

Figure 9.1: A streamline and the flow field u

Figure 9.2: Pathline(red dot), streamlines(dashed lines) and streaklines(blue dot)

is the particle path line and the velocity field u is given by

u(x, t) =
∂φ

∂t
(X, t), with x = φ(X, t) .

The acceleration of a particle is obtained from deriving the velocity field and by use

of the chain rule

d

dt
u(x, t) =

d

dt
u(φ(X, t), t)

=
∂

∂t
u(φ(X, t), t) +

d∑

i=1

∂u

∂xi
(φ(X, t), t)

∂φi

∂t
(X, t)

︸ ︷︷ ︸

=ui(x,t)

=
∂

∂t
u(x, t) +

d∑

i=1

ui(x, t)
∂u

∂xi
(x, t)

=
∂u

∂t
+ (u · ∇)u .

The resulting operator
D

Dt
:=

∂

∂t
+ u · ∇

is known as the material derivative towards t.
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W

n

u

9.2 Mass conservation

In this section we derive a motion equation from the mass conservation assumption

in the continuum hypothesis from above. Therefore we fix a region W ⊂ Ω. ∂W

denotes the boundary of W , let n be an outer normal vector and dS describes the

area element on ∂Ω. Assuming differentiability of the integrand and integrability of

the derivative, the variation of mass in W is given by

d

dt
m(W, t)

(9.1)
=

d

dt

∫

W

ρ(x, t) dx (9.2)

=

∫

W

∂

∂t
ρ(x, t) dx . (9.3)

As u and n are perpendicular the volumetric flow rate towards ∂W equals u ·n. It is
the volume of fluid that passes through a unit area of the boundary per unit time.

The corresponding mass flow rate is ρu · n. Hence the mass flow rate towards ∂W

is given by ∫

∂W

ρ u · n dS .

True to the motto ”Nothing can come of nothing” the principle of mass conservation

means that a variation of mass inW equals the mass flow rate towards the boundary

∂W (introversive), more precisely

d

dt

∫

W

ρ dV
!
= −

∫

∂W

ρ u · n dS Gauss
= −

∫

W

u ∇ρ −
∫

W

ρ ∇ · u .

Hence equation (9.3) and Gauss’s integral theorem imply
∫

W

(
∂ρ

∂t
+∇ · (ρu)

)

dx = 0 .

Since we started with an arbitrary subset W , we can conclude the PDE form of the

continuity equation.
∂ρ

∂t
+∇ · (ρu) = 0 .

Alternatively, this conservation law can be obtained from discrete particle mechanics

models by passing over to the continuum, i.e. number of mass points N →∞.
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Figure 9.4: The optical flow approach

Figure 9.5: The transport theory approach
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9. Optimal Transport

9.3 Monge´s Transport Problem

The original transport problem can be traced back to a work of the French mathe-

matician Gaspard Monge published in 1781 [128].

The basic idea of his problem was to find a minimal-cost transport strategy for mov-

ing a heap of sand into a hole of the same size. To give a mathematical description

of the Monge problem we first of all have to introduce pushforward operators .

Definition 9.3.1 (Pushforward operator). Given measurable space (X, d) and (Y, d),

a measurable function r : X → Y be an injective transformation. The pushforward

of µ through r

r∗(B) := µ(r−1(B)) = ν(B), ∀ measurable B ⊂ Y

For given µ and ν the Monge problem reads as follows

inf
r

{∫

X

d(x, r(x)) dµ(x) | r∗µ = ν

}

.

The interpretation of this minimization problem is to find a transformation r under

the push forward constraint such that the transportation cost is minimal. The

problem of this formulation is the fact that neither existence nor uniqueness of a

solution can be expected. Simple examples with Dirac delta distributions show

that the pushforward operator does not allow to ”split” densities. To overcome this

problem Kantorovich suggested a relaxed formulation of the model,

1

2

∫

Ω×Ω

|x− y|2dΠ(x, y) + ǫE(u)→ min
Π,u

,

subject to
∫

A×Ω

dΠ(x, y) =

∫

A

dν(y)

∫

Ω×A

dΠ(x, y) =

∫

A

u(x)dx
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for all A ⊂ Ω measurable, where u is a probability density in the domain of E and

Π is a probability measure on Ω× Ω.

The Wasserstein metric is a distance function defined between probability distribu-

tions on a given metric space. If we interpret each distribution as a unit mass piled

on a domain X, the metric is the cost of turning one pile into the other. This cost

is assumed to be the amount of mass that needs to be moved times the distance it

has to be moved. Due to this analogy the metric is sometimes called earth mover’s

distance.

Definition 9.3.2 (p-Kantorovich-Wasserstein distance). Let (X, d) be a separable

metric space and µ ∈ P(X) a probability measure on X. Let further X satisfy the

Radon property, i.e.,

∀B ∈ B(X), ǫ > 0 there exists an Kǫ ⊂⊂ B : µ(B \Kǫ) ≤ ǫ,

and let p ≥ 1. The (p − th) Wasserstein distance between two probability measures

µ1, µ2 ∈ Pp(X) (the space of all probability measures on X with µ-integrable p − th
moments) is defined by

Wp(µ
1, µ2)p := min

Π∈Γ(µ1,µ2)

∫

X2

d(x, y)p dΠ(x, y).

Here Γ(µ1, µ2) denotes the class of all transport maps γ ∈ P(X2) such that

π1
#γ = µ1, π2

#γ = µ2,

where πi : X2 → X, i = 1, 2, are the canonical projections on X, and πi
#γ ∈ P(X)

is the push-forward of γ through πi.

In our setting, i.e. in the case of transporting 2D oder 3D density images, Ω ⊂ R
d is

an open and bounded domain and |·| is the usual Euclidean distance on R
d. Hence,

the assumptions for the Wasserstein distance above are fulfilled.

I will shortly summarize the Monge-Kantorovich framework for our needs in imaging:

For two positive densities ρ0(x) ≥ 0 and ρT (x) ≥ 0 with x ∈ Ω ⊂ R
d, which have a

total mass bounded by one, i.e.
∫

Rd

ρ0(x) dx =

∫

Rd

ρT (x) dx = 1 ,

we are interested in computing the Lp-Kantorovich-Wasserstein distance

Wp(ρ0, ρT )
p := inf

M

∫

|M(x)− x|p ρ0(x) dx .
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9.4 The Benamou-Brenier Formulation

To compute the L2-Kantorovich-Wasserstein distance, Benamou and Brenier [17, 18]

suggested an equivalent formulation in the year 2000. They transferred the problem

into a continuum mechanics framework which we have introduced in the first section

of this chapter to some extent.

Benamou and Brenier fixed an time interval [0, T ] and assumed two given densities

ρ0 and ρT as initial and final condition. They considered all possible, sufficiently

smooth, time dependent densities and velocity fields, ρ(x, t) ≥ 0, v(x, t) ∈ R
d,

subject to the continuity equation for 0 < t < T and x ∈ Ω ⊂ R
d. Benamou and

Brenier proved that computing the L2-Wasserstein distanceW2(ρ0, ρT )
2 is equivalent

to solving the following constraint optimization problem

inf
ρ,v

T

∫ T

0

∫

Ω

ρ(x, t) |v(x, t)|2 dx dt

subject to ∂tρ+∇Ω · (ρ v) = 0 (mass conservation)

ρ(·, 0) = ρ0

ρ(·, T ) = ρT .

This transport model is based on mass conservation as a motion model. The ob-

jective functional couples the density ρ and the velocity field v, and minimizes the

cost of a transport plan. The result of this continuum mechanics formulation is a

time interpolant ρ(x, t) of the given data ρ0 and ρT , and a velocity field v(x, t) ∈ R
d

which moves ρ0 toward ρT .

It is interesting to see that a continuum mechanics formulation was already implicitly

contained in the original work of Monge we described in the previous section. In his

original work [128] eliminating the time variable was just a clever way of reducing

the dimension of the problem. In physics the product of density and velocity j := ρv

is well known as the momentum. As mentioned in the continuum hypothesis in

Section 9.1, the momentum is in general a conserved quantity, too. This means, the

total momentum of any closed system (one not affected by external forces) cannot

change.

From a computational point of view the introduction of the momentum allows to

solve a convex (although not quadratic) space-time minimization problem in the

variables ρ and j,

inf
ρ,j

T

∫ T

0

∫

Ω

|j(x, t)|2
ρ(x, t)

dx dt
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subject to ∂tρ+∇Ω · j = 0 (mass conservation)

ρ(·, 0) = ρ0

ρ(·, T ) = ρT .

The convexity results from the convexity of quadratic-over-linear functions, see Sec-

tion 3.2, and the linearity of the constraints. Benamou and Brenier solved the

space-time minimization problem above as a saddle point problem for a suitable

Lagrangian. Recently, for image registration purposes, sophisticated numerical real-

izations of the L2 optimal mass transfer problem have been proposed e.g. by [92]. An

alternative to the Benamou-Brenier approach is to solve the Monge-Ampere partial

differential equation,

det(∇M(x)) ρT (M(x)) = ρ0(x) .

directly. To gain a deeper insight into optimal transport models with more general

measures and related analysis we refer to [3]. The somehow artificial interpolation

time, which has been introduced for this continuum mechanics formulation, will be

very useful for our 4D image reconstruction algorithms in the next chapter. In our

practical applications in computer vision we will identify this (artificial) time with

the ”real” time in a given video sequence of densities. Hence, our motion model is

motivated by optimal transport but is different in the sense that usually no initial

or final densities are given.
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4D Image Reconstruction in Nanoscopy and PET

In this section we will present 4D imaging models, more precisely, joint models in-

cluding 4D image reconstruction, space-time regularization, and optimal transport

techniques. Our models will reconstruct space-time densities in the sense of regu-

larized inverse problems and simultaneously compute motion information regarding

mass conservation. Particularly, in the interesting case of space-time TV density

regularization we will provide a detailed analysis of our model including existence

and uniqueness of a solution.

Moreover, this chapter deals with numerical methods for these joint 4D reconstruc-

tion models. The first numerical approach deals with the case of L2 regularization.

Here we follow the concept of ”first discretize and then optimize”and derive Newton-

SQP methods with line-search strategies and multigrid preconditioning. The second

numerical approach follows the concept ”first optimize and then discretize” and is

strongly connected to convex splitting methods and fast Bregman techniques, see

Chapter 4. These splitting strategies are based on inexact Uzawa type methods

for the augmented Lagrangian. In the fashion of algorithms like Split Bregman or

Bregmanized Operator Splitting, we apply suitable decoupling and preconditioning

concepts. As as result, we obtain splitting algorithms for our 4D-TV model, where

all subproblems are solvable very efficiently by FFT, respectively DCT or shrinkage

and main parts of the implementation can be parallelized on GPUs.

10.1 4D Model - Reconstruction and Optimal

Transport

Inspired by commonly used 3D image reconstruction models and the optimal trans-

port formulation of Benamou and Brenier [17] presented in Section 7.2 we present



10. 4D Image Reconstruction in Nanoscopy and PET

the following constrained minimization problem. As an example, let us assume we

have a given noisy and blurred image sequence in the sense of a time dependent

inverse problem,

f(·, t) = Kρ(·, t) + ”noise” . (10.1)

Our new 4D imaging model reconstructs the density image sequence ρ from given

data f in the sense of regularized inverse problems. Simultaneously, the under-

lying motion field v of the density is computed regarding optimal transport. For

parameters α, β ≥ 0 our general model reads as follows

Model 10.1.1. General 4D Reconstruction & Optimal Transport

min
ρ, v

∫ T

0

Hf(·,t) (Kρ(·, t)) dt + α

∫ T

0

J(ρ(·, t)) dt +
β

2

∫ T

0

∫

Ω

ρ |v|2 dx dt (10.2)

s.t. ∂t ρ + ∇Ω · (ρ v) = 0 in Q := Ω× [0, T ]

ρ ≥ 0 .

The first term of the objective functional is a space-time data fidelity term H, which

depends on the given image sequence f , on a compact operator K and on the desired

density sequence ρ. For simplicity, the compact operator K is assumed to have the

same structure in all time steps t. In analogy to static reconstruction, different data

fidelities result from different noise models using Bayes theory and MAP estimation.

Hence in the cases of Gaussian noise and Poisson noise we get a L2 norm, respectively

a Kullback-Leibler data fidelity at each time step t in our model, i.e.

Hf(·,t) (Kρ(·, t)) :=
1

2
‖Kρ(·, t)− f(·, t)‖2L2(Σ) (Gaussian noise) (10.3)

Hf(·,t) (Kρ(·, t)) :=

∫

Σ

Kρ(·, t)− f(·, t) log(Kρ(·, t)) (Poisson noise) . (10.4)

The second term of the objective functional in Model 10.2 is a time dependent

regularization term. In the simple case of quadratic regularization we define J as

J(ρ(·, t)) :=
1

2
‖∇ρ(·, t)‖22 . (10.5)

In the interesting case of space-time TV regularization we will choose J as

J(ρ(·, t)) :=
1

p
( |ρ(·, t)|BV (Ω) )

p . (10.6)

The third term in the objective functional and the mass conservation constraint

build an incorporated optimal transport scheme. The third term is a coupling term

that relates the density to the magnitude of the flow field in space-time. The term
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can be interpreted as a weighted space-time regularization of the velocity field. The

continuity equation is used to model the motion of the reconstructed density due

to time. In comparison to an optical flow constraint as a motion model, the mass

conservation is more general and also allows compressible flows. From an analyt-

ical point of view our 4D model is different from optimal transport, since usually

no initial and final densities are given. Our density in the mass conservation is

simultaneously ”generated” via the data fidelity. With this in mind, our model is

more related to analysis in mean field games. Furthermore, we lay emphasis on

the positivity constraint. In optimal transport one usually starts with nonnegative

initial values and consequently obtains nonnegative densities for all times from the

transport model. Here we we need to enforce nonnegativity of the whole density in

numerical algorithms.

10.2 4D Model - Space-Time L2 Regularization

Here we start with our joint model in the case of the L2 data fidelity, see (10.3) and

a quadratic regularization, see (10.5),

Model 10.2.1. Joint 4D Model with L2 Regularization

min
ρ, v

1

2

∫ T

0

‖Kρ− f‖2L2(Σ) dt +
α

2

∫ T

0

‖∇ρ‖22 dt +
β

2

∫ T

0

∫

Ω

ρ |v|2 dx dt

s.t. ∂t ρ + ∇Ω · (ρ v) = 0 in Q := Ω× [0, T ]

ρ ≥ 0 .

This model computes a reconstructed sequence of density images and simultaneously

the motion in the whole sequence. The first term of the objective functional is

a space-time data fidelity for the inverse problem in 10.1 concerning an additive

Gaussian noise modeling. The term that couples ρ and v and the continuity equation

represent the optimal transport scheme. The quadratic regularization term favors

smooth density images in each time step in a spatial-homogeneous sense, i.e. for

instance edges in the density images are not taken into account in a specific way.

In general, this constrained optimization problem is not convex. Hence, from a

numerical and analytical point of view, it is reasonable to reformulate the model

via the momentum substitution j := ρv. In physics the momentum is a well-known

term, particularly in continuum mechanics, see Chapter 9. Since we simply multiply

v with a scalar field ρ, the momentum j has the same direction as the motion field
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and we can easily resubstitute after computing a solution. With this substitution

the system reads as follows

Model 10.2.2. Joint 4D Model with L2 Regularization

min
ρ, j

1

2

∫ T

0

‖Kρ− f‖2L2(Σ) dt +
α

2

∫ T

0

‖∇ρ‖22 dt +
β

2

∫ T

0

∫

Ω

| j |2
ρ

dx dt

s.t. ∂t ρ + ∇Ω · j = 0 in Q := Ω× [0, T ]

ρ ≥ 0 .

This problem is convex. The objective functional is convex, since the coupling term

is a quadratic-over-linear function, see 3.1.1, and the constraints are convex since

the mass conservation constraint is linear in ρ, respectively j. This problem will be

solved numerically via a Newton-SQP algorithm in Section 10.4.

Existence and Uniqueness

With the quadratic regularization term we have an a-priori estimate for

ρ in Lp(0, T ;W 1,2(Ω)) ,

and with an additional substitution w :=
√
ρv we obtain an a priori estimate for

w in L2((0, T )× Ω) .

Thus, following the proofs in the next section on TV regularization and replacing BV

byW 1,2(Ω), the same arguments may yield existence and uniqueness of a minimizer.

10.3 4D Model - Space-Time TV regularization

Inspired by the optimal transport formulation of Benamou and Brenier [17] presented

in Section 7.2 and commonly used image reconstruction models based on total vari-

ation regularization (compare with the static reconstruction models in Section 5),

we consider the following constrained minimization problem,

Model 10.3.1. Joint 4D Model with Space-Time TV Regularization

min
ρ, v

1

2

∫ T

0

‖Kρ− f‖2L2(Σ) dt +
α

p

∫ T

0

( |ρ|BV (Ω) )
p dt +

β

2

∫ T

0

∫

Ω

ρ |v|2 dx dt

s.t. ∂t ρ + ∇Ω · (ρ v) = 0 in Q := Ω× [0, T ]

ρ ≥ 0 .
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with α, β ≥ 0. This model is a 4D model for joint image reconstruction, space-time

total variation regularization and optimal transport. With the same arguments as in

the previous section the momentum formulation of this model is a convex problem,

since the total variation is convex. Due to the space-time TV regularization term

we have an a priori estimate for

ρ in Lp(0, T ;BV (Ω)) .

From an analytical as well as from the application point of view, the choice of p in

the outer Lp norm is an interesting question. Can we expect a solution for p = 1?

Now we proceed with verifying the existence of a solution of the problem aiming this

question.

10.3.1 Existence

Theorem 10.3.2 (Existence of a Minimizer). Let p > 0. Then there exists a density

function ρ ∈ Lp(0, T ;BV (Ω)) and a velocity field v as a solution of the constraint

optimization problem in Model 10.3.1.

Proof. To prove the existence of a solution ρ,v of our 4D-TV model above we have to

prove strong compactness of sublevel-sets. For an arbitrary level c ∈ R we consider

density functions ρ from the sublevel-set

Sc :=

{

ρ |
∫ T

0

( |ρ|BV (Ω) )
p dt ≤ c

}

in the following. A key idea of this proof is the simple transformation w :=
√
ρ v.

Hence, the third term in the functional above, coupling ρ and v, can be rewritten as

∫ T

0

∫

Ω

ρ |v|2 =

∫ T

0

∫

Ω

|w|2 .

This means we have an a-priori estimate for

w in L2((0, T )× Ω) . (10.7)

In other words, we obtain a weak sequential compactness for w. The space-time

regularization term, which depends the total variation in space, implies an a-priori

estimate for

ρ in Lp(0, T ;BV (Ω)) .

In addition, for the time derivative ∂tρ an a-priori estimate is given by

∂tρ in Lq(0, T ;W−1,s(Ω)) .
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Then for r > 1 with r < d
d−1

we obtain BV ⊂ Lr ⊂ W−1,s with the compact

embedding BV →֒ Lr and the continuous embedding Lr →֒ W−1,s. An adaption of

the Aubin-Lions Lemma in [169, Chapter III, Prop. 1.3], gives strong compactness

of

ρ in Lp(0, T ;Lr(Ω)) . (10.8)

The Lemma and its proof can be extended to the case of BV embeddings and

weak* convergence instead of weak convergence. Thus (10.8) yields the strong

compactness of the square-root of ρ,

√
ρ in L2p(0, T ;L2r(Ω)) . (10.9)

Finally we can combine (10.7) and (10.9) and get a weak convergence of the product

√
ρ w in Lq(0, T ;Ls(Ω)) .

In order to prove the compactness of sublevel-sets we have to find an estimate for

the latter coupling term
√
ρw in its corresponding space-time norm. In other words,

keeping the a-priori estimates from above and an sublevel element ρ in mind, we

need a condition for q, such that

∫ T

0

(∫

Ω

| √ρw |s dx
) q

s

dt =

∫ T

0

(∫

Ω

| |w|s · ρ s
2 | dx

) q
s

dt

can be bounded from above. Obviously, 2
s
and 2

2−s
are Hölder conjugates,

1
(

2
2−s

) +
1
(
2
s

) = 1 .

Hence, Hölder´s inequality applied to the inner integral yields

∫ T

0

(∫

Ω

| |w|s · ρ s
2 | dx

) q
s

dt

Hölder

≤
∫ T

0

((∫

Ω

(|w |s) 2
s dx

) s
2

·
(∫

Ω

(
ρ

s
2

) 2
2−s dx

) 2−s
2

) q
s

dt

=

∫ T

0

(∫

Ω

|w |2 dx
) q

2

·
(∫

Ω

ρ
s

2−s dx

) (2−s)q
2s

dt .

Applying Hölder´s inequality with the conjugates 2
q
and 2

2−q
with

1
(

2
q

) +
1

(
2

2−q

) = 1
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once more, we obtain

Hölder

≤
(∫ T

0

∫

Ω

|w |2 dx dt
) q

2

︸ ︷︷ ︸

< ∞

·
(
∫ T

0

(∫

Ω

ρ
s

2−s dx

) (2−s)q
s(2−q)

dt

) 2−q
2

.

The left factor is bounded since w ∈ L2((0, T ) × Ω), see 10.7. Now we concentrate

on the space-time integral in the right factor. We know ρ is in Lp(0, T ;Lr(Ω)), see

10.8. That is why we need s
2−s

!
= r and (2−s)q

s(2−q)

!
= p. Combining these conditions we

can deduce conditions on s, q and p to get strong compactness:

r
!
=

s

2− s ⇒ s =
2r

1 + r
> 1, since r > 1 .

p
!
=

(2− s)q
s(2− q) =

q

(2− q)r ⇒ p r (2− q) = q

⇒ q =
2 p r

1 + p r
> 1

This means we obtain q > 1 if p r > 1, which in turn is fulfilled if p > 1 since

r > 1. Finally we can conclude strong compactness for
√
ρw in Lq(0, T ;Ls(Ω)) and

therewith the existence of a solution if p is chosen larger than one.

Interpretation:

Hence we could see that the analysis of existence relies on the superlinear growth of

the TV regularization term inside the time integral

∫ T

0

( |ρ|BV (Ω) )
p dt ,

although p = 1 seems a reasonable choice. Choosing p = 1 would imply that we

seek a minimal L1 norm of the vector of total variations. Similarly to the standard

spatial case of TV this strategy favors sparsity, i.e. solutions with very large total

variation are allowed at some time step, whereas small total variation is favored in

the other time steps. In the extreme case, one can think of staircasing in space and

time. For some applications time dependent sparsity regularization could be very

useful. For example in meteorology, one can be interested in analyzing sharp shock

fronts for weather forecast due to time, see for instance [73]. In the following sections

on numerical results of this model we will give some indications of this effect.
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10.3.2 Uniqueness

Now we pass over to the uniqueness of a solution ρ,v of Model 10.3.1. First of all, we

reformulate our problem in Model (10.3.1) via the momentum substitution j := ρv,

and obtain an equivalent problem dependent on ρ and j.

Model 10.3.3. Joint 4D Model with Space-Time TV Regularization

min
ρ, j

1

2

∫ T

0

‖Kρ− f‖2L2(Σ) dt +
α

p

∫ T

0

( |ρ|BV (Ω) )
p dt +

β

2

∫ T

0

∫

Ω

| j |2
ρ

dx dt

s.t. ∂t ρ + ∇Ω · j = 0 in Q := Ω× [0, T ]

ρ ≥ 0 .

This optimization problem is strictly convex, because the functional is strictly convex

and the constraint is linear, hence convex. For the proof we basically follow concepts

of uniqueness proofs in mean-field games, see [114].

Theorem 10.3.4 (Uniqueness of a Minimizer). Let p > 0. Then there exists at

most one density function ρ ∈ Lp(0, T ;BV (Ω)) and at most one velocity field v as

a minimizer of the constraint optimization problem in Model 10.3.1.

Proof. The Lagrangian of the new constrained optimization problem is given by

L(ρ, j;λ) =
1

2

∫ T

0

‖Kρ− f‖2L2(Ω) dt +
α

p

∫ T

0

( |ρ|BV (Ω) )
p dt (10.10)

+
β

2

∫ T

0

∫

Ω

| j |2
ρ

dx dt + 〈 λ , ∂t ρ + ∇Ω · j 〉Q , (10.11)

where λ denotes a Lagrange multiplier function for the mass conservation constraint.

Note that the existence of a Lagrange multiplier function is not obvious.

However, if we assume the existence of a Lagrange multiplier, we can formally write

the optimality system for an optimal solution (ρ, j, λ), i.e. the Euler-Lagrange equa-

tions for the Lagrangian above, are given by

∂L

∂j
= β

j

ρ
−∇λ = 0 (10.12)

∂L

∂ρ
= K̃∗

(

K̃ρ− f
)

+ ξ − β | j |2
2 ρ2

− ∂t λ = 0 (10.13)

with a subgradient ξ ∈ ∂L2(ρ), where L2 is the TV regularization term in the

Lagrangian including α. We assume a rescaling of the Lagrange multiplier λ,

λ(0) = λ(T ) = 0 .
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The first equation of our optimality system (10.12) is equivalent to

j =
1

β
ρ∇λ . (10.14)

Thus we can plug (10.12) in (10.13) and obtain a combined form of the optimality

system:

K̃∗K̃ρ− K̃∗f + ξ
︸ ︷︷ ︸

=: q ∈ ∂(L1+L2)(ρ)

− 1

2
|∇λ|2 − ∂t λ = 0 , (10.15)

where L1 denotes the data fidelity in the Lagrangian above. The equation (10.15)

does no longer depend on j directly, but an optimal j fulfills the mass conserva-

tion constraint in our original problem (10.3.1). Using (10.14) we obtain another

optimality equation regarding ρ and the dual variable λ,

∂t ρ + ∇Ω · (ρ∇λ) = 0 . (10.16)

With (10.15) and (10.15) we now have two equations dependent on ρ and λ only. Let

(ρ1, j1, λ1) and (ρ2, j2, λ2) be two solutions of our minimization problem in (10.11).

To prove uniqueness we show that these solutions are one and the same. Writing the

equations in (10.15) and (10.16) for both solutions and subtracting the corresponding

ones we get

q1 − q2 −
1

2

(
|∇λ1|2 − |∇λ2|2

)
− ∂t (λ1 − λ2) = 0

∂t (ρ1 − ρ2) + ∇Ω · (ρ1 ∇λ1 − ρ2 ∇λ2) = 0

Multiplying the first equation with (ρ1 − ρ2), multiplying the second equation with

(λ1 − λ2), integrating both equations over Ω × (0, 1) and subtracting them we can

deduce

0 = 〈q1 − q2 , ρ1 − ρ2〉Q −
1

2

〈
|∇λ1|2 − |∇λ2|2 , ρ1 − ρ2

〉

Q
(10.17)

− 〈∂t (λ1 − λ2) , ρ1 − ρ2〉Q − 〈∂t (ρ1 − ρ2) , λ1 − λ2〉Q (10.18)

+ 〈ρ1 ∇λ1 − ρ2 ∇λ2 , ∇λ1 −∇λ2〉Q . (10.19)

The last addend results from using Gauss’s theorem. Applying Gauss’s theorem in

line (10.18) once more, the terms cancel each other. The first term in (10.17) is a

symmetric Bregman distance regarding the functional with the data fidelity and the

TV regularization term L1 + L2, i.e.

〈q1 − q2 , ρ1 − ρ2〉Q = Dsymm
L1+L2

(ρ1, ρ2) ≥ 0 .

Hence the resulting equality reads as follows

0 = Dsymm
L1+L2

(ρ1, ρ2) +
1

2

∫

Q

(
ρ2
(
|∇λ1|2 − |∇λ2|2

)
− ρ1

(
|∇λ1|2 − |∇λ2|2

)

+2ρ1
(
|∇λ1|2 −∇λ1∇λ2

)
− 2ρ2

(
∇λ1∇λ2 − |∇λ2|2

) )
.
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Application of the binomial theorem implies

0 = Dsymm
L1+L2

(ρ1, ρ2) +
1

2

∫

Q

(ρ1 + ρ2) (∇λ1 −∇λ2)2
︸ ︷︷ ︸

≥ 0

.

To identify our two solutions ρ1 and ρ2 with each other, we use some error estimation

techniques and the linearity of K:

≥ Dsymm
L1+L2

(ρ1, ρ2)

= 〈q1 − q2 , ρ1 − ρ2〉Q
(10.15)
=

〈

K̃∗K̃ (ρ1 − ρ2) , ρ1 − ρ2
〉

Q
+
〈(

−K̃∗f1 + ξ1

)

−
(

−K̃∗f2 + ξ2

)

, ρ1 − ρ2
〉

Q

=
∥
∥
∥K̃ (ρ1 − ρ2)

∥
∥
∥

2

2
︸ ︷︷ ︸

≥ 0

+ Dsymm

(−〈K̃ ·,f〉+L2)
(ρ1, ρ2)

︸ ︷︷ ︸

≥ 0

.

If the linear compact operator K is injective, we can finally conclude ρ1 = ρ2 and

j1 = j2 using (10.14) - (10.16).

10.4 Numerical Realization: Newton-SQP for the L2

case

In this section we present a Newton-SQP algorithm for solving Model 10.2.1. From a

numerical point of view it is reasonable to reformulate the model via the momentum

substitution j := ρv. With this substitution the system reads as follows

Model 10.4.1. Joint 4D Model with L2 Regularization

min
ρ, j

1

2

∫ T

0

‖Kρ− f‖2L2(Σ) dt +
α

2

∫ T

0

‖∇ρ‖22 dt +
β

2

∫ T

0

∫

Ω

| j |2
ρ

dx dt

s.t. c(j, ρ) := ∇Q ·
(

j

ρ

)

= 0 in Q := Ω× [0, T ]

ρ ≥ 0 .

This problem is convex. The objective functional is convex, since the coupling term

is a quadratic-over-linear function, see 3.1.1, and the constraints are convex since the

mass conservation constraint is linear in ρ, respectively j. The continuity equation

”reduces” to a space-time divergence for the joint function (j, ρ) which is very useful

for concise implementations. Newton-SQP methods are based on the Jacobian of
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the optimality system. Hence, they can be quadratically convergent and are very

useful for computing solutions of high accuracy.

In this section we follow the concept ”first discretize and then optimize”, i.e. we first

discretize the objective functional and the constraints and then build the discretized

Karush-Kuhn-Tucker (KKT) optimality system which is solved numerically.

10.4.1 Optimality Conditions - KKT System

Discretization:

In following let us assume Ω ⊂ R
2 for the spatial domain to simplify the notation

and illustration of the discretization. In the following we assume the step size

hx =
1

nx

, hy =
1

ny

and ht =
1

nt

,

where nx and ny denote the spacial dimension and nt denotes the temporal dimen-

sion. Let h := hx hy ht. In order to derive a stable discretization of our objective

functional and the constraint, we define the density ρ and the momentum j on a

staggered grid, see Figure 10.4.1.

jx

jy

ρ(x, t = 1)

ρ(x, t = 2)

Hence, in order to evaluate ρ and j in the cell center, we need to define averaging

operators. With the averaging stencil,

Anx
=

1

2












1 1

1 1 0
. . . . . .

0 1 1

1 1












∈ R
nx×(nx−1) ,
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the spacial averaging matrix for the momentum is defined as

AΩ := [Ax Ay] ,

where

Ax = Int
⊗
(
Iny
⊗ Anx

)
and Ay = Int

⊗
(
Any
⊗ Inx

)
.

The temporal averaging matrix for the density ρ is defined as

At = Ant
⊗
(
Iny
⊗ Inx

)
.

In order to define derivatives in space, we take the forward difference matrix with

Neumann boundary conditions

Dnx
=












−1 1

−1 1 0
. . . . . .

0 −1 1

−1 1












∈ R
nx×(nx−1) ,

and thus can define the discretized gradient matrix in space as

DΩ :=

(

Iny
⊗ Dnx

Dny
⊗ Inx

)

.

Then (−DΩ)
T DΩ is the central difference matrix for second order derivatives in

space. Now, we have the main ingredients to define the discretized objective func-

tional and the discretized constraint.

For α, β ≥ 0 the discretized version of the objective functional in Model 10.4.1 reads

as follows

F (j, ρ) := h

[
∑

t

∑

i,j

[
R.2
]

ijt
+

α

2
D̃T

Ω D̃Ω +
β

2

∑

t

∑

i,j

[
AΩ(j.

2)⊙ At(ρ.
−1)
]

ijt

]

,

where we used a time-extended spatial residual vector R and a time-extended spatial

derivative D̃Ω, defined as

R =






[Kρ− f ]t=1
...

[Kρ− f ]t=nt+1




 and D̃Ω =






DΩ [ρ]t=1
...

DΩ [ρ]t=nt+1




 .

In order to discretize the constraint (the continuity equation) in Model 10.4.1, we

define the divergence matrix in space-time, i.e.

DQ := h [Dx,Dy,Dt] ,

226



10.4 Numerical Realization: Newton-SQP for the L2 case

where

Dx = Int
⊗
(

Iny
⊗ 1

hx
Dnx+1

)

,

Dy = Int
⊗
(

1

hy
Dny+1 ⊗ Inx

)

and Dt =
1

ht
Dnt+1 ⊗

(
Iny
⊗ Inx

)
,

denote the discretized derivatives in space-time. Hence, the discretized constraint

simply is given by

C(j, ρ) = DQ

(

j

ρ

)

.

Thus, we can formulate the Lagrangian of the system,

L(j, ρ, λ) = F (j, ρ) + (C(j, ρ))T λ ,

where λ ≥ 0 denotes a Lagrange multiplier due to the constraint. With

dR =






[
KT (Kρ− f)

]

t=1
...

[
KT (Kρ− f)

]

t=nt+1




 and ∆̃ =






DΩ
TDΩ [ρ]t=1

...

DΩ
TDΩ [ρ]t=nt+1




 ,

an optimal solution z := (j, ρ, λ) of our problem minimizes the Lagrangian and fulfills

the following

KKT system:

0 =






Lj(j, ρ, λ)

Lρ(j, ρ, λ)

Lλ(j, ρ, λ)




 =






h
[
β diag(j) AT

ΩAt (ρ.
−1)
]
+ (C(j, ρ))T λ

h
[

dR − α∆̃ − β diag(ρ.−2) AT
ΩAt (j.

2)
]

C(j, ρ)




 := F (z) .

The positivity constraint of our density ρ can be controlled via a selection rule in a

line search strategy for the Newton step size.

10.4.2 Newton-SQP Algorithm

With z = (j, ρ, λ) a Newton iteration for determining zeros of F , resulting from

Taylor linearization, reads as follows

zk+1 = zk − F ′(zk)−1 · F (zk) .
Equivalently, we have to solve the following system of linear equations in each iter-

ation step





Ljj(j
k, ρk, λk) Ljρ(j

k, ρk, λk)

Lρj(j
k, ρk, λk) Lρρ(j

k, ρk, λk)
C ′(jk, ρk)T

C ′(jk, ρk) 0











dkj
dkρ
dkλ




 = −






Lj(j
k, ρk, λk)

Lρ(j
k, ρk, λk)

Lλ(j
k, ρk, λk)




 ,

(10.20)

227



10. 4D Image Reconstruction in Nanoscopy and PET

where dj denotes the search direction regarding j.

For solving this system of linear equations in each Newton iteration, we use a pre-

conditioned GMRES solver, implemented in MATLAB. After computing the new

search directions dkz = (dkj , d
k
ρ, d

k
λ) we obtain the new primal and dual iterates by the

following updates

jk+1 = jk + σk dkj

ρk+1 = ρk + σk dkρ

λk+1 = λk + σk dkλ .

This method is called Newton-SQP method because we have to solve a sequence of

quadratic problems. In the k-th Newton step the system of equations above (10.20)

represents the optimality condition of a quadratic problem with linear constraints.

10.4.3 Line-Search and Multigrid Preconditioning

Positivity via Line-Search

The iteration point zk is not necessarily feasible for the original problem for exam-

ple regarding positivity and dk is in general not a feasible descent direction of the

objective in zk. Therefore the step size σ in each step is determined via a line search

strategy. We use a merit function and an Armijo type rule to obtain an efficient step

size. Thus we get a sufficient descent of the merit function in zk. The initial step

size for the line search strategy is chosen such that positivity of ρ is guaranteed.

Preconditioning via Multigrid

For the solution of the large linear system of equations in each Newton step, we used

the GMRES solver implemented in MATLAB with different preconditioning strate-

gies. We compared a simple Schur complement preconditioner, a preconditioner

presented in [85] and a multigrid preconditioner. We implemented the multigrid

with V-cycles and a relaxation via SOR. For our test cases the multigrid precondi-

tioner worked best.

The Newton-SQP method can be quadratically convergent. Compared to the first

order splitting methods in the following section we only needed 20 preconditioned

Newton iteration steps for most of our test cases to reach a sufficient accuracy.

However, for higher dimensional 3D and 4D data sets the sub-steps in the precondi-

tioned GMRES solver reached memory limits quite early and the cost per iteration

was quite high. This could be improved by the application of domain decomposition

methods or the parallelization of GMRES on GPUs.
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10.5 Numerical Realization: Splitting Methods for

the TV case

In this section we will present an efficient splitting method to solve the joint 4D

reconstruction Model 10.3.1 with spatio-temporal TV regularization. Our goal is to

find a numerical splitting algorithm, where each of the resulting sub-steps can be

computed very efficiently, needs only a small amount of system resources and may

be parallelized. To derive and realize this numerical strategy, we make extensive use

of the concepts we presented in Chapter 4 and computational science.

For computational reasons we follow the idea of split Bregman and further substitute

the gradient in the TV terms for an auxiliary function z. Hence, an equivalent

constrained optimization problem that is equivalent to Model 10.3.1 reads as follows

min
ρ, j

1

2

∫ T

0

‖Kρ− f‖2L2(Ω) dt +
α

p

∫ T

0

(

∫

Ω

|z| dx )p dt +
β

2

∫ T

0

∫

Ω

|ν|2
w

dx dt

s.t. ∂t ρ + ∇Ω · j = 0 in Q

∀t ∈ [0, T ] : ∇Ω ρ = z in Ω

w = ρ in Q

ν = j in Q

ρ ≥ 0 in Q .

It turned out that the coupling of the momentum j and the density ρ in the third

term of the objective functional is a difficulty concerning the derivation of efficient

splitting schemes. Thus, in order to obtain a sufficiently decoupled system for the

momentum j and the density function ρ, we decided to introduce additional auxiliary

functions w and ν.

By introducing dual variables, Lagrange multiplier, the Lagrangian for this decou-

pled system reads as follows:

L(ρ, j, z, w, ν; q, y, r, η)

=
1

2

∫ T

0

‖Kρ− f‖2L2(Ω) dt +
α

p

∫ T

0

(

∫

Ω

|z| dx )p dt +
β

2

∫ T

0

∫

Ω

ν2

w
dx dt

+ 〈q , ∂t ρ + ∇Ω · j〉Q +

∫ T

0

〈y , ∇Ω ρ− z〉Ω dt + 〈r , w − ρ〉Q + 〈η , ν − j〉Q

where ρ, j, z, w and ν denote the primal variables, q, y, r and η denote the Lagrange

multipliers respectively the dual variables. Following the idea of augmented La-

grangian methods and inexact Uzawa algorithms we define the corresponding aug-

mented Lagrangian Lµ with an additional preconditioning norm for the primal func-

tion ρ.
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Augmented Lagrangian:

Lµ(ρ, ρk, j, z, w, ν; q, y, r, η)

=
1

2

∫ T

0

‖Kρ− f‖2L2(Ω) dt +
α

p

∫ T

0

(

∫

Ω

|z| dx )p dt +
β

2

∫ T

0

∫

Ω

ν2

w
dx dt

+ 〈q , ∂t ρ + ∇Ω · j〉Q +
µ1

2
‖∂t ρ + ∇Ω · j‖2L2(Q)

+

∫ T

0

(

〈y , ∇Ω ρ− z〉Ω +
µ2

2
‖z −∇Ω ρ‖2L2(Q)

)

dt

+ 〈r , w − ρ〉Q +
µ3

2
‖w − ρ‖2L2(Q)

+ 〈η , ν − j〉Q +
µ4

2
‖ν − j‖2L2(Q) +

1

2

∥
∥ρ− ρk

∥
∥
2

Pδ(Q)
.

Similarly to the alternative direction minimization algorithm (ADMM), Douglas-

Rachford splitting or Split Bregman (see Subsection 4.4.2), the basic idea of the

following splitting strategies is to alternatively minimize the augmented Lagrangian

with respect to the primal variables and to update the Lagrange multipliers sub-

sequently. The main difference of our approach compared to these methods is the

introduction of preconditioning techniques in the sense of inexact Uzawa algorithms

(or Bregmanized operator splitting (BOS), see Subsection 4.4.3).

10.5.1 Inexact Uzawa & Bregmanized Operator Splitting

The basic idea of inexact Uzawa methods respectively Bregmanized operator split-

ting is to add a preconditioning term to the augmented Lagrangian, see the last term

in the augmented Lagrangian above, which depends on Pδ,

∥
∥ρ− ρk+1

∥
∥
2

Pδ
=
〈
ρ− ρk, Pδ(ρ− ρk)

〉
.

This term relates subsequent primal iterates in a specific, controllable way.

Hence, the following splitting algorithm is an inexact Uzawa method applied to the

augmented Lagrangian:

Algorithm 10.5.1 (Inexact Uzawa Algorithm for Model 10.3.1).
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Primal updates:

ρk+1 = argmin
ρ

Lµ(ρ, ρk, jk, zk, wk, νk, qk, yk, rk, ηk) (I)

jk+1 = argmin
j

Lµ(ρk+1, ρk, j, zk, wk, νk, qk, yk, rk, ηk) (II)

zk+1 = argmin
z

Lµ(ρk+1, ρk, jk+1, z, wk, νk, qk, yk, rk, ηk) (III)

wk+1 = argmin
w

Lµ(ρk+1, ρk, jk+1, zk+1, w, νk, qk, yk, rk, ηk) (IV)

νk+1 = argmin
ν

Lµ(ρk+1, ρk, jk+1, zk+1, wk+1, ν, qk, yk, rk, ηk) (V)

Dual updates:

qk+1 = qk + µ1 (∂tρ
k+1 +∇Ω · jk+1) (VI)

yk+1 = yk + µ2 (∇Ω ρ
k+1 − zk+1) ∀t ∈ [0, T ] (VII)

rk+1 = rk + µ3 (w
k+1 − ρk+1) (VIII)

ηk+1 = ηk + µ4 (ν
k+1 − jk+1) (IX)

The dual update can be computed efficiently, because they only depend on sim-

ple differential operators that are applied. For the rest of this subsection we will

concentrate on the minimization problems in the primal updates.

By transferring terms from the scalar products to the L2 norms and by leaving

terms that are independent of the minimization function, we obtain the following

variational problems, which need to be solved in each iteration,

ρk+1 = argmin
ρ

{
1

2

∫ T

0

‖Kρ− f‖2L2(Ω) dt +
〈
qk, ∂tρ

〉

Q
+

µ1

2

∥
∥∂tρ+∇Ω · jk

∥
∥
2

L2(Q)

(I)

+

∫ T

0

(〈
yk , ∇Ω ρ

〉

Ω
+

µ2

2

∥
∥∇Ω ρ− zk

∥
∥
2

L2(Ω)

)

dt +
〈
rk , −ρ

〉

Q

+
µ3

2

∥
∥ρ− wk

∥
∥
2

L2(Q)
+

1

2

∥
∥ρ− ρk

∥
∥
2

Pδ(Q)

}

= argmin
ρ

{

1

2

∫ T

0

‖Kρ− f‖2L2(Ω) dt +
µ1

2

∥
∥
∥
∥
∂tρ+∇Ω · jk +

1

µ1

qk
∥
∥
∥
∥

2

L2(Q)

+
µ2

2

∫ T

0

∥
∥
∥
∥
∇Ω ρ− zk +

1

µ2

yk
∥
∥
∥
∥

2

L2(Ω)

dt +
µ3

2

∥
∥
∥
∥
ρ− wk − 1

µ3

rk
∥
∥
∥
∥

2

L2(Q)

+
1

2

∥
∥ρ− ρk

∥
∥
2

Pδ(Q)

}
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jk+1 = argmin
j

{〈
qk , ∇Ω · j

〉

Q
+

µ1

2

∥
∥∂t ρ

k+1 + ∇Ω · j
∥
∥
2

L2(Q)
(II)

+
〈
ηk , −j

〉

Q
+

µ4

2

∥
∥νk − j

∥
∥
2

L2(Q)

}

= argmin
j

{

µ1

2

∥
∥
∥
∥
∇Ω · j+ ∂t ρ

k+1 +
1

µ1

qk
∥
∥
∥
∥

2

L2(Q)

+
µ4

2

∥
∥
∥
∥
j− νk − 1

µ4

ηk
∥
∥
∥
∥

2

L2(Q)

}

zk+1 = argmin
z

{ ∫ T

0

(
α

p
(

∫

Ω

|z| dx )p +
〈
yk , −z

〉

Ω
+

µ2

2

∥
∥z −∇Ω ρ

k+1
∥
∥
2

L2(Ω)

)

dt

}

(III)

= argmin
z

{
∫ T

0

(

α

p
(

∫

Ω

|z| dx )p +
µ2

2

∥
∥
∥
∥
z −

(

∇Ω ρ
k+1 +

1

µ2

yk
)∥
∥
∥
∥

2

L2(Ω)

)

dt

}

wk+1 = argmin
w

{

β

2

∫ T

0

∫

Ω

∣
∣νk
∣
∣
2

w
dx dt +

〈
rk , w

〉

Q
+

µ3

2

∥
∥w − ρk+1

∥
∥
2

L2(Q)

}

(IV)

= argmin
w

{

β

2

∫ T

0

∫

Ω

∣
∣νk
∣
∣
2

w
dx dt +

µ3

2

∥
∥
∥
∥
w − ρk+1 +

1

µ3

rk
∥
∥
∥
∥

2

L2(Q)

}

νk+1 = argmin
z

{

β

2

∫ T

0

∫

Ω

|ν|2
wk+1

dx dt + 〈η , ν〉Q +
µ4

2

∥
∥ν − jk+1

∥
∥
2

L2(Q)

}

(V)

= argmin
z

{

β

2

∫ T

0

∫

Ω

|ν|2
wk+1

dx dt +
µ4

2

∥
∥
∥
∥
ν − jk+1 +

1

µ4

ηk
∥
∥
∥
∥

2

L2(Q)

}

.

The optimality conditions of these variational problems lead to the following update

formulas of the primal variables.

Primal updates:

ρk+1 =
(

K̃∗K̃ + µ3 − µ1∂
2
t − µ2∆Ω + Pδ

)−1

(I)
(

K̃∗f + ∂t(µ1∇Ω · jk + qk) +∇Ω(y
k − µ2z

k) + µ3w
k + rk + Pδ · ρk

)

jk+1 = (µ1∇Ω (∇Ω · )− µ4)
−1 (−∇Ω (µ1 ∂tρ

k+1 + qk)− µ4ν
k − ηk

)
(II)

zk+1 = S

(

∇Ω ρ
k+1 +

1

µ2

yk ,
α

µ2

(∫

Ω

|zk|dx
)p−1

)

∀t ∈ [0, T ] (Shrinkage) (III)

0 = (wk+1)3 + (
rk

µ3

− ρk+1) · (wk+1)2 − β

µ3

∣
∣νk
∣
∣
2

(Cubic Equation) (IV)

νk+1 =
µ4 j

k+1 − ηk
β

wk+1 + µ4

, (V)
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where K̃ denotes the operator that is defined as Kρ(·, t) in each time step t ∈ [0, T ].

In the following we will take a closer look at each of the primal updates (I)-(V):

In step (I) we need to invert K̃∗K̃, which is a problem in ill-posed inverse problems,

in particular if the underlying operator K cannot be diagonalized. However, here

we make use of the preconditioning in the inexact Uzawa algorithm, see Pδ in (I).

By choosing

Pδ =
1

δ
− K̃∗K̃ ,

we get a simplified update for the primal variable ρ without the inversion of K̃∗K̃:

ρk+1 =

(
1

δ
+ µ3 − µ1∂

2
t − µ2∆Ω

)−1

(I)

(

K̃∗f + ∂t(µ1∇Ω · jk + qk) +∇Ω(y
k − µ2z

k) + µ3w
k + rk + Pδ · ρk

)

This inversion can be computed efficiently via DCT, since the remaining operators

are standard differential operators.

In the second step (II) we have a grad-div operator that needs to be inverted.

Note that this operator has a non-empty null space. Hence, we have to select the

parameters µ1 and µ4 carefully. The momentum is a large vector field concerning

4D data. Nevertheless, we can compute this second sub-step efficiently via DCT

inversion. Moreover, we can improve the performance of this step by reducing the

dimension and by parallelization, see the next subsection.

The variational problem in step (III) is a denoising problem with sparsity regular-

ization. In comparison to standard sparsity regularization as presented in Section

4.4.3, we have an additional outer Lp norm here. Nevertheless, we can compute a

solution efficiently via a generalized shrinkage formula. For p = 1 we obtain a full

4D-TV regularization strategy and a full 4D shrinkage formula, see below.

Since we started with a completely decoupled problem, step (IV) results in a simple

cubic equation. Similarly to quadratic equations, we can compute a solution of

this equation by an explicit formula (including some case differentiations in the

implementation).

Step (V) is an explicit update term with pointwise division.

Conclusion: Every step of the algorithm is explicit, DCT inversion or

shrinkage. Hence, we obtained a splitting algorithm, where each sub-step can be

computed very easily and very efficiently.
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Positivity: For simplicity reasons we omitted the positivity constraint due to ρ

in the latter presentation. But since we have splitting structure, we can simply

extend the algorithm to preserve positivity. The convex positivity constraint can be

handled by adding an indicator function 1ρ≥0 to the objective functional in decoupled

problem above. With an additional artificial constraint ρ+ = ρ, we simply have to

add the step,

ρk+1
+ = argmin

ρ+

{

1ρ≥0(ρ+) +
1

µ5

∥
∥bk + ρk+1 − ρ+

∥
∥
2

2
,

}

after the ρ update, and we have to add

bk+1 = bk + µ5(ρ
k+1 − ρk+1

+ )

to the dual updates.

Special case: 4D-TV: In the special case of p = 1 we obtain a full 4D-TV regu-

larization. Although the analysis we presented relies on the superlinear growth of

the TV terms, p = 1 seems a reasonable choice. Similarly to the standard spatial

case of TV this strategy favors sparsity, i.e. solutions with very large total variation

are allowed at some time step, whereas small total variation is favored in the other

time steps.

ρk+1 =
(

K̃∗K̃ + µ3 − µ1∂
2
t − µ2∆Q + Pδ

)−1

(I)
(

K̃∗f + ∂t(µ1∇Q · jk + qk) +∇Q · (yk − µ2z
k) + µ3w

k + rk + P · ρk
)

zk+1 = S(∇Q ρ
k+1 +

1

µ2

yk ,
α

µ2

) (Shrinkage) (III)

10.5.2 DCT and CUDA and Parallelization

Every step of the presented algorithm is explicit or can be realized via a DCT

inversion or shrinkage, i.e. simple thresholding. Hence, every step is very efficient

and needs only a minimal amount of memory in each step. Since the system is

completely decoupled the resulting sub-steps are highly parallelizable.

As indicated in the previous subsection, the most expensive step resulting in this

splitting scheme is the DCT inversion of the grad-div operator in the update of

the momentum j in step (II) of the primal updates. However, we can apply two

additional techniques to achieve further efficiency improvements. On the one hand,

we can apply a matrix identity, the so-called Woodbury identity, cf. [140],

(A+ UCV )−1 = A−1 − A−1U(C−1 + V A−1U)−1V A−1,
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with operators A,U,C and V .

In our case we set A := −µ4, C := µ1, U := ∇Ω , V := ∇Ω · , and obtain

jk+1 = (µ1∇Ω (∇Ω · )− µ4)
−1 (g)

= (−µ4 + µ1∇Ω (∇Ω · ))−1 (g)

= − 1

µ4

g +
1

µ4

∇Ω

[(
1

µ1

I − µ4∇Ω · ∇Ω

)−1

(− 1

µ4

∇Ω · g)
]

,

where

g := −∇Ω (µ1 ∂tρ
k+1 + qk)− µ4ν

k − ηk .
Consequently, this operator identity reduces the dimension of the operator that

needs to be inverted via DCT significantly. At the end we just have to deal with a

(standard) Laplacian.

In addition to this modification, we implemented the DCT via FFT and used the

Mex interface in Matlab to communicate with the CUDA FFT library in C++.

Hence, for large data sets we can parallelize the most expensive step on GPUs.

10.5.3 Results - Denoising

In this subsection we will present results of our joint model in the case of K = I,

i.e. in the case of denoising. We can easily change between isotropic or anisotropic

TV in our shrinkage method in step (II). Here we used anisotropic TV.

10.5.4 Results - Deblurring

In this subsection we illustrate the performance of our splitting algorithm in the case

where K is a blurring operator and where the data is additionally affected by noise.

10.5.5 Results - Tomography

In this subsection we present mass conservation results in PET imaging. The given

data set is of size 175× 175× 47× 10.
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Figure 10.1: Exact sequence of densities ˆρ(x, t) for t = 1...8 (ground truth)
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Figure 10.2: Given noisy sequence of densities f(x, t) for t = 1...8
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Figure 10.3: Reconstructed sequence of densities ρ(x, t) for t = 1...8 using

the splitting algorithm for reconstruction, total variation and optimal

transport.
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Figure 10.4: Simultaneously computed motion field v(x, t) for t = 1...7 using the

splitting algorithm including the optimal transport scheme (vector

plot).
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Figure 10.5: Simultaneously computed motion field v(x, t) for t = 1...7 using the

splitting algorithm including the optimal transport scheme (colorful

orientation plot).
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Figure 10.6: Simultaneously computed sequence of densities ρ(x, t) and motion

field v(x, t) for t = 1...7 in one illustration. The velocity field indicates

in which way the reconstructed density is transported between each

frame. This is very useful for registration purposes.

241



Summary and Open Questions

 

 

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(a)
 

 

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(b)

 

 

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(c)
 

 

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(d)

 

 

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(e)
 

 

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(f)

 

 

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(g)
 

 

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(h)

Figure 10.7: Exact sequence of densities ˆρ(x, t) for t = 1...8 (ground truth)
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Figure 10.8: Given blurred and noisy sequence of densities f(x, t) for t = 1...8
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Figure 10.9: Reconstructed sequence of densities ρ(x, t) for t = 1...8 using

the splitting algorithm for reconstruction, total variation and optimal

transport.
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Figure 10.10: Simultaneously computed motion field v(x, t) for t = 1...7 using the

splitting algorithm including the optimal transport scheme (vector

plot).
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Figure 10.11: Simultaneously computed motion field v(x, t) for t = 1...7 using the

splitting algorithm including the optimal transport scheme (colorful

orientation plot).
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Figure 10.12: Simultaneously computed sequence of densities ρ(x, t) and motion

field v(x, t) for t = 1...7 in one illustration. The velocity field indicates

in which way the reconstructed density is transported between each

frame. This is very useful for registration purposes.
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(a) Given cardiac data

(b) Registration to diastole (c) Target diastole

(d) Registration to systole (e) Target systole

Figure 10.13: Registration results using flow computations via mass conservation.

(a)

(b) (c)

Figure 10.14: Density ρ with computed motion field v
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11
Summary and Open Questions

This thesis contributes to models, analysis and algorithms for 3D static and 4D

time-dependent inverse problems in nanoscopy and tomography.

In the first part of this thesis we have considered the static inverse problem

Ku(x) = f(x), x ∈ Ω ,

where only noisy data f were available. For the linear compact operator K we as-

sumed convolution operators in the case of optical nanoscopy and the Radon trans-

form in the case of positron emission tomography (PET). We concentrated on 3D

reconstruction models with total variation regularization in the presence of Poisson

noise. We proposed an accurate, fast and robust EM-TV algorithm for efficient

noise removal and for computing reconstructions facilitating post-segmentation. We

studied extensions to simultaneous contrast enhancement via Bregman iterations.

From a more general point of view, we answered the question of iterative Bregman

regularization for general data fidelities by a new dual Bregman iteration scheme.

Motivated by natural motion effects, e.g. heart beat or breathing in positron emission

tomography or living cells in optical nanoscopy, we have considered time-dependent

inverse problems,

K̃(ρ(x, t)) = f(x, t), (x, t) ∈ Ω× [0, T ] ⊂ R
3 × R ,

in the second part of this thesis. Before we started with a specific modeling for this

type of problems, we studied and characterized various models for motion estimation

and optimal transport. We pointed out that optical flow techniques only take into

account incompressible flows, whereas mass conservation is more general and also

takes into account compressible flows. This consideration was useful, in particular

for cardiac contraction data in PET imaging. Consequently, we introduced basic



11. Summary and Open Questions

concepts of continuum mechanics and optimal transport problems based on mass

conservation. We combined the concepts of motion estimation and optimal transport

with the reconstruction ideas of the first part of the thesis, to build a joint 4D model

for simultaneous image reconstruction, total variation regularization and optimal

transport (including mass conservation).

In Chapter 2 to Chapter 4 we introduced basic analytical as well as numerical con-

cepts, which have been applied throughout the whole thesis. In Chapter 2 we in-

troduced variational methods for inverse problems via MAP estimation and the

Bayesian model, discussed different functions spaces including the space BV , intro-

duced total variation and studied basics of differentiability and optimality. Chapter

3 has been dedicated to convex analysis and Bregman distances. We studied the

primal and a new dual Bregman iteration for simultaneous contrast enhancement in

the case of general variational problems. Moreover, we proved error estimates and

revealed interesting properties of Bregman iterations like error forgetting. Splitting

methods in convex optimization have been studied in Chapter 4 and have exten-

sively been applied in this thesis. Based on saddle point formulations, augmented

Lagrangian methods and inexact Uzawa algorithms, we provided an overview of

important splitting techniques in literature, which will be used in this thesis. For

example we used forward-backward splitting for solving 3D TV reconstruction prob-

lems in Chapter 5, the Split Bregman method for optical flow computations with

TV regularization in Chapter 8 or preconditioned inexact Uzawa strategies for our

4D TV reconstruction algorithm in Chapter 10.

In Chapter 5 we studied 3D TV reconstruction problems in the case of Poisson noise.

Besides extensions to simultaneous contrast enhancement via Bregman iterations,

we presented a detailed analysis of models and the related EM-TV algorithm.

In Chapter 6 the methods on 3D TV reconstruction in the presence of Poisson noise

have been applied to 2D and 3D reconstruction problems in optical nanoscopy and

positron emission tomography.

After motivating 4D reconstruction via applications, we discussed different motion

models based on optical flow in Chapter 8 further in detail. We characterized dif-

ferent data fidelities and different smoothing terms for the flow field. In particular,

we combined optical flow techniques with total variation regularization and splitting

techniques, and we presented results in high resolution computed tomography (CT).

In Chapter 9 we gave an introduction to basic concepts of continuum mechanics.

Based on this, we studied mass conservation and optimal transport problems.

Chapter 10 has been dedicated to the joint 4D image reconstruction model with

total variation and optimal transport. We provided a detailed analysis including ex-

istence and uniqueness proofs. To overcome the large amount of data we proposed

two types of numerical realizations based on preconditioning and splitting techniques
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to facilitate efficiency and parallelization. On the one hand we presented a precondi-

tioned Newton-SQP method with integrated line-search. On the other hand, in the

case of total variation, we presented a special splitting technique based on inexact

Uzawa methods that is highly parallelized and where each of the resulting sub-steps

only consists of shrinkage formulas or DCT inversions, which in addition could be

parallelized on GPUs.

To summarize, in this thesis we provided several models and algorithms in 3D and

4D image reconstruction including motion estimation, a detailed analysis for dif-

ferent models, as well as a wide range of numerical realizations and results in real

applications.

In the following we will give some hints on further research ideas, which have been

beyond the scope of this thesis: The connection between preconditioned inexact

Uzawa algorithms and Bregmanized operator splitting techniques may possibly open

some new insights on error estimation.

A combination of our joint 4D reconstruction models with nonlinear physiological

models, to obtain 5D reconstructions, would be an interesting field of future research.

The dual Bregman iteration we proposed in this thesis is a promising approach with

nice properties. A further investigation of these properties and an interpretation in

terms of optimization would be very interesting.

Total variation regularization and extensions became a quasi standard for static

image reconstruction problems and static inverse problems over the past years (resp.

decades). However, time-dependent TV-based or, more general, time-dependent

sparsity-based reconstruction problems, their analysis and corresponding algorithms

have not been considered in detail in literature. This is another interesting field of

future research.
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K. Schäfers, A continuity equation based optical flow method for cardiac motion

correction in 3D PET data, Tech. report, submitted to MICCAI Medical Image

Computing and Computer Assisted Intervention, Mai 2010.
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