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Abstract
The rock-forming alkali feldspars belong to the most abundant minerals in the
Earth’s crust and are formed as a solid solution between the sodium (NaAlSi3O8,
albite) and potassium (KAlSi3O8, orthoclase) end-member compositions. Well-
founded knowledge of self-diffusion data in alkali feldspar is a prerequisite for
interpreting existing interdiffusion data that, in turn control re-equilibration
features in alkali feldspar that pertain to evolution and dynamics of the crust.
Sodium diffusivities in potassium-rich alkali feldspar single crystals originating
from the Eifel, Germany and Madagascar were measured with the radiotracer
technique using the 22Na isotope. It was found that the diffusion coefficients
follow linear Arrhenius relations with activation energies between 1.2 eV and 1.3 eV
(Eifel feldspars) and 2.0 eV (Madagascar feldspar) and with pre-exponential factors
between 2 × 10−8 m2/s and 8 × 10−8 m2/s (Eifel feldspars) and 2 × 10−6 m2/s
(Madagascar feldspar). The same Eifel feldspar was implanted with 43K at the
ISOLDE/CERN radioactive ion-beam facility normal to the (001) crystallographic
plane. Potassium diffusion coefficients are described by an activation energy of
2.4 eV and a pre-exponential factor of 5 × 10−6 m2/s, which is more than three
orders of magnitude lower than the 22Na diffusivity and rules out a vacancy-
controlled diffusion mechanism for alkali diffusion in alkali feldspar. Over the past
decades, there have been numerous Monte Carlo (MC) studies on diffusion by
the vacancy mechanism. These were motivated by the importance of vacancies
for atomic transport in many materials, particularly in metallic systems, and
further inspired by Manning’s random alloy model. However, MC investigations on
diffusion involving interstitialcy defects have remained extremely sparse, although
self-interstitials may play a crucial role in ionic crystals and semiconductor alloys.
In this work, some basic features of atomic (or ionic) movement mediated by
interstitialcies in binary random alloys AB with a simple cubic structure are
explored by MC simulations. The concepts and methods were also applied to the
monoclinic alkali feldspar in consideration of clustering on the Na-K sublattice,
revealing a predominance of indirect interstitial jumps over vacancy jumps. When
results for the Haven ratio are discussed, which relates the tracer diffusion
coefficients to the charge diffusivity as may be deduced from the ion conductivity
through the Nernst-Einstein equation, the findings give strong evidence for a
correlated motion of Na and K through the interstitialcy mechanism.
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Zusammenfassung
Die gesteinsbildenden Alkalifeldspate gehören zu den häufigsten Mineralien der
Erdkruste und bilden ein Mischkristallsystem mit einem natriumreichen (NaAlSi3O8,
Albit) und einem kaliumreichen Endglied (KAlSi3O8, Orthoklas). Die fundierte
Kenntnis von Selbstdiffusionsdaten ist Voraussetzung für die Interpretation der
Interdiffusion in Alkalifeldspat, die wiederum die Austauschrate mit der Umgebung
sowie die Kinetik der Entmischung und damit verbunden die Mikrostruktur
bestimmt. Die Na-Diffusion in kaliumreichen Feldspateinkristallen aus der Eifel
und aus Madagaskar wurde mit der Radiotracermethode und dem Isotop 22Na
gemessen. Die Diffusionskoeffizienten folgen linearen Arrheniusbeziehungen mit
Aktivierungsenergien zwischen 1.2 eV und 1.3 eV (Eifel-Feldspate) und 2.0 eV
(Madagaskar-Feldspat) und mit exponentiellen Vorfaktoren zwischen 2 × 10−8 m2/s
und 8×10−8 m2/s (Eifel-Feldspate) und 2×10−6 m2/s (Madagaskar-Feldspat). Der
selbe Eifel-Feldspat wurde mit 43K senkrecht zur kristallografischen (001)-Ebene
am ISOLDE Experiment am CERN implantiert. Die Kaliumdiffusionskoeffizienten
sind durch eine Aktivierungsenergie von 2.4 eV und einen exponentiellen Vorfaktor
von 5 × 10−6 m2/s charakterisiert, was über drei Größenordnungen unterhalb
der 22Na-Diffusion liegt und einen gemeinsamen leerstellenbasierten Mechanismus
der Alkalidiffusion ausschließt. Unzählige Monte-Carlo-Studien (MC-Studien) zur
Diffusion über den Leerstellenmechanismus sind motiviert von der Relevanz der
Leerstellen für den atomaren Transport in vielen Materialien, speziell in metallis-
chen Systemen, und basieren auf Mannings ‘random alloy’ Modell. MC-Studien
zur Analyse der Diffusion von Eigenzwischengitteratomen sind hingegen selten,
obwohl diese Defekte eine entscheidende Rolle bei der Diffusion in ionischen
Kristallen und halbleitenden Legierungen spielen können. In dieser Arbeit sind
einige grundlegende Eigenschaften des atomaren (und ionischen) Transports über
Eigenzwischengitteratome in binären Legierungen AB mit regelloser Ordnung in
einem einfach kubischen Gitter durch MC-Simulationen untersucht. Die Methoden
wurden weiterhin auf die monokline Struktur des Alkalifeldspats angewandt, wobei
Cluster auf dem Na-K Untergitter berücksichtigt wurden. Aus den Ergebnissen
kann auf eine überwiegende Beteiligung von interstitiellen Sprüngen gegenüber
Leerstellensprüngen geschlossen werden. Messdaten für das Haven-Verhältnis, das
einen Zusammenhang zwischen der Tracer- und Ladungsträgerdiffusion herstellt,
geben deutliche Hinweise für die korrelierte Diffusion von Na und K über den
indirekt-interstitiellen Diffusionsmechanismus.
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1. Introduction

Alkali feldspar is among the most abundant rock-forming minerals in the Earth’s
crust. The alkali feldspars form a solid-solution series along the binary join
between the sodium (NaAlSi3O8, albite) and potassium (KAlSi3O8, orthoclase) end
members. The crystal structure is comprised of a 3D framework of corner-sharing
[SiO4]4− and [AlO4]5− tetrahedra, and the alkali cations occupy large, irregularly
coordinated cavities (cf. Chapter 2, Fig. 2.3). As compared to Al and Si in the
tetrahedral framework, the alkali cations are relatively mobile. The interdiffusion
of Na+ and K+ in alkali feldspar plays a pivotal role in the reequilibration of
Na-K partitioning between alkali feldspar and other Na- and K-bearing minerals
and thus, for the reconstruction of formation conditions from phase equilibria [1].
Moreover Na-K interdiffusion controls microstructure and composition evolution
during cooling-induced exsolution of alkali or ternary feldspar leading to perthite
formation [2, 3, 4].
Diffusion of alkali cations in alkali feldspar has been investigated over several
decades now. Major contributions to this field date back to the 1970s comprising the
tracer diffusion measurements from Bailey [5], Lin and Yund [6], Petrović [7], Foland
[8] and Kasper [9]. In many of the previous studies grains from the mechanically
crushed starting material were exchanged with salt or salt solutions and the
diffusivities were analysed from the bulk exchange. Although these techniques were
state of the art at that time, the measurement of diffusional anisotropy is, a priori,
limited which may complicate the interpretation of the results. For a comprehensive
discussion of the previous studies the reader is referred to the review by Cherniak
[10].
In the last few years, much more information on the Na-K interdiffusion has become
available. Cation exchange experiments were carried out by the Vienna group
[11, 12, 13] using K-rich gem-quality sanidine and KCl salt melt. A field-emission
gun electron microprobe was employed to analyse the composition variation along
different directions. An example for the obtained interdiffusion coefficients at 850 ◦C
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1. Introduction

Figure 1.1.: Comparison of measurements of the Na-K interdiffusion coefficient D̃ by
Schaeffer [13] and predicted interdiffusion coefficients (dashed lines) based on the Nernst-
Planck equation for an ideal solid solution and using experimentally determined Na and
K tracer diffusion coefficients, D̂Na

1and D̂K, respectively. The tracer diffusion coefficients
were estimated over a wide composition range by interpolation (solid lines) of the bulk-
exchange data (solid circles) by Kasper [9] for albite and by Foland [8] for orthoclase;
edited after Petrishcheva et al. [11].

is given in Fig. 1.1 for the directions normal to (001) and normal to (010). The
findings from this study reveal systematic differences between the experimentally
determined Na-K interdiffusion coefficients and those calculated from inserting
published Na and K self-diffusion coefficients in theoretical interdiffusion models
[14, 15]. In particular, the experimentally determined composition dependence of
the interdiffusion coefficient deviates systematically from theoretical predictions.
Furthermore, Na-K interdiffusion is markedly direction dependent, whereas no
information on the direction dependence of Na and K tracer diffusion is available.
A comparison of the measured composition-distance data for the two investigated
directions showed that the concentration fronts are sharp along profiles normal
to (010) and comparatively broad in profiles measured normal to (001). It was

1To reduce the number of indices, the common asterisk for labelling tracer diffusivity (D∗) has
been replaced by the ‘hat’ symbol (D̂) throughout this work.
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later concluded from electron back-scatter diffraction measurements that diffusion
induced lattice strain may be the reason for the exceptionally sharp concentration
fronts normal to (010) that may act as self-induced diffusion barrier [16].
Based on the systematic of the available composition-distance data, it may be
assumed that a fast diffusing Na species becomes important at close to potassium
end-member compositions. In this composition domain, Na-K interdiffusion is
primarily controlled by the tracer diffusion of Na. At close to potassium-end-
member compositions, the total Na concentration in the crystal is low, and a
significant fraction of Na may be present on interstitial sites with high mobility.
Because the high Si-O bonding energies make Schottky defect formation extremely
unfavourable it was concluded by Behrens et al. [17] that likely Frenkel pairs are
the major point defects. It may therefore be concluded that diffusion via vacancies
or via self-interstitials is the rate determining process.
For better modelling of the Na-K interdiffusion process and thus for a proper
interpretation of composition patterns found in natural feldspar, the transport
properties on the alkali sublattice should be characterised comprehensively. One
necessary route to this goal involves determining accurate tracer diffusion coeffi-
cients for Na and K. Another route focuses on measuring the dc ionic conductivity
σ, which comprises the joint contributions of Na+ and K+ ions to overall charge
transport. A combination of reliable data on mass and charge transport obtained
for the identical feldspar mineral gives access to the Haven ratio that is inherently
connected to the correlation effects of the microscopic diffusion mechanism. Based
on this approach, a consistent physical picture has been obtained, e.g., for
some alkali halide crystals [18, 19]. Alkali feldspar bears, however, much more
structural complexity and the concomitant diffusion of Na and K sharing the same
sublattice must be considered. In particular, the Na tracer diffusion may experience
percolation problems – expressed through extremely small correlation factors f – if
the pathways for long-range diffusion are occupied by the slower moving K atoms.
There is a considerable amount of literature on diffusion correlation effects in
solids, mainly dealing with cubic crystals or other systems of high symmetry. For
example, correlation effects pertaining to diffusion via vacancies in binary alloys
were investigated with the aid of Monte Carlo simulations for a random bcc alloy
[20, 21, 22] and for a random fcc alloy [20, 22, 23, 24]. A comprehensive overview of
previous studies was given by LeClaire [25] and Murch [26]. The existing concepts
and methods have to be adapted to the monoclinic alkali sublattice of alkali

3



1. Introduction

feldspar to analyse the percolation behaviour which is inherently related to the
diffusion mechanism and structural properties such as the coordination number.
The combination of predicted percolation threshold values and Haven ratios with
measurements from tracer diffusion and ionic conductivity may prove as a powerful
method to elucidate the microscopic mechanism of diffusion which is the aim of
this thesis. In order to do so the following studies are presented:

(i) In Chapter 3 the tracer diffusion of 22Na is analysed using gem-quality single
crystal feldspar of different K-rich compositions to obtain information of the
composition-dependent Na self-diffusion.

(ii) Chapter 4 examines the 43K diffusion that was measured at the ISOLDE2

experiment at CERN using a gem-quality K-rich feldspar mineral. This
information is used to determine the diffusivity ratio D̂Na/D̂K.

(iii) Measurements of the ionic conductivity using the same feldspar mineral as
above are presented in Chapter 5 and results for the Haven ratio are reported.

(iv) A vacancy diffusion model of Na and K in alkali feldspar is presented in
Chapter 6 and tracer and vacancy correlation factors are analysed with Monte
Carlo simulations. In a similar way, the interstitialcy diffusion mechanism is
comprehensively investigated throughout the Chapters 7, 8 and 9.

The findings for both diffusion mechanisms can be compared with the measured
data which provides strong evidence that the interstitialcy diffusion mechanism is
the major mechanism of the Na diffusion in alkali feldspar.

2ISOLDE: Isotope Separator On Line DEvice.
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2. Fundamentals

2.1. Alkali feldspar

Most feldspars belong to a solid-solution series within a ternary join between
the calcium (CaAl2Si2O8, anorthite), sodium (NaAlSi3O8, albite) and potassium
(KAlSi3O8, orthoclase) end members (see Fig. 2.1). The binary join between the
albite (Ab) and orthoclase (Or) end members is denoted as alkali feldspar. The
phase diagram of alkali feldspar is displayed in Fig. 2.2 and it can be seen from
the figure that it is completely miscible at high temperatures. For temperatures
below ∼ 600 ◦C a miscibility gap can be observed and hence, feldspar separates
into a Na-rich and a K-rich phase. Stable phases of feldspar are, e.g., albite and
microcline which show a triclinic structure (C-1) and sanidine and orthoclase with
a monoclinic structure (C2/m).
The crystal structure of alkali feldspar is comprised of a 3D framework of corner-
sharing [SiO4]4− and [AlO4]5− tetrahedra. As illustrated in Fig. 2.3, it can be seen
that crankshaft-like chains are formed by the silicate framework. One unit cell
comprises 16 tetrahedra sites and four types of these sites can be distinguished,
i.e., T1(0), T1(m), T2(0) and T2(m). In the monoclinic case, only two types of sites
exist and the relations T1(0) ≡ T1(m) ≡ T1 and T2(0) ≡ T2(m) ≡ T2 hold. Each T-site
is occupied by either Si4+ or by Al3+ and the ordering degree for the monoclinic
structure is given by

t1 − t2

t1 + t2
, (2.1)

where t1 and t2 are site-occupancy probabilities for T1 and T2 sites, respectively.
Irregularly coordinated cavities in the framework structure are occupied by K+ and
Na+ cations with an ionic radius of 1.33 Å and 0.98 Å [30], respectively. K+ and Na+

can be substituted, e.g., by Rb+, Ca2+ or Ba2+ [31], whereas the Ba end member
BaAl2Si2O8, that is uncommon in nature, is denoted as celsian (Cs). As compared
to Al and Si in the tetrahedral framework, the alkali cations are relatively mobile.

5



2. Fundamentals

Figure 2.1.: Ternary phase diagram anorthite (An) - albite (Ab) - orthoclase (Or). The
miscibility gap is calculated for a pressure of 8 kbar after Elkins and Grove [27, 28].

Figure 2.2.: Subsolidus phase diagram for binary alkali feldspars. The alkali feldspars
are completely miscible for temperatures T above ∼ 600 ◦C. A large miscibility gab can
be observed for lower temperatures and accordingly, feldspars separate into a Na-rich
and a K-rich phase; edited after Okrusch [29].

6



2.1. Alkali feldspar

Figure 2.3.: Idealised illustration of the monoclinic feldspar structure projected onto
the (001) plane. Central tetrahedra sites (T) are occupied by Si4+ (open circles) and Al3+

(full circles) atoms. All Al3+ atoms are located on T1(0) sites which implies a complete
Al-Si ordering; illustrated by H. Kroll.

Sample material

In this thesis, three natural K-rich alkali feldspars from different localities are
considered, i.e., a sanidine from the Eifel region Rockeskyll, Germany (RK), a
sanidine from the Eifel region Volkesfeld (VF) and an orthoclase originating from
Madagascar (MO). The VF sanidine shows two colour variants, i.e., colourless
and smoky brown whereas the RK sanidine is colourless and the MO feldspar
shows a yellowish colour. All crystals show perfect (010) and (001) cleavage planes
and only the MO feldspar is cleavable along several further planes. The employed
feldspars are homogeneous down to the nanometre scale and detailed chemical
analyses have been reported earlier [32, 33, 12]. Table 2.1 compiles the averages of
several analysed MO, VF and RK crystals in numbers or fractions per formula unit,
which is based on normalisation to 8.00 oxygen atoms. The compositions of the MO
orthoclase is Or95Ab5 and the sanidines VF and RK are given by Or83Ab15Cs1 and
Or71Ab26Cs2, respectively. Minor elements are Fe in all three feldspars and Ba
which was only found in the Eifel sanidines (see Tab. 2.1). All feldspars have a
monoclinic structure characterised by the space group C2/m. On the tetrahedral
sites, Al and Si are highly disordered with 2t1 = 0.61 (VF) [32] and 2t1 = 0.58−0.62
(RK) [33] whereas the MO feldspar shows a slightly higher degree of ordering, i.e.,

7



2. Fundamentals

Table 2.1.: Mean stoichiometric composition of gem-quality single-crystal feldspar from
Madagascar (MO), Volkesfeld/East Eifel (VF) and Rockeskyller Kopf/West Eifel (RK)
normalised to 8.00 oxygen atoms per formula unit. The data refer to averages taken from
previous studies on samples of the same or similar large crystals [32, 33, 12]. Σcat denotes
the sum of the cation values. The general uncertainty of ±0.01 applies to every entry.

Element MO VF RK
Si 3.02 2.98 2.97
Al 0.93 1.02 1.02
Ti 0.00 0.00 0.00
Fe 0.04 0.01 0.01
Mg 0.00 0.00 0.00
Ca 0.00 0.00 0.00
Na 0.05 0.15 0.26
K 0.96 0.83 0.71
Rb n/a 0.00 n/a
Ba 0.00 0.01 0.02
Sr n/a 0.00 0.01
O 8.00 8.00 8.00
Σcat 5.00 5.00 5.00

2t1 = 0.70 [32]. Here 2t1 = 2t2 = 0.5 means according to Eq. 2.1 total disorder
and 2t1 = 1 reflects rigorous order. In the latter case all Al ions are uniformly
accommodated on T1 tetragonal sites, whereas the other half of the T1 tetrahedrons
and all T2 sites are occupied by Si (see Fig. 2.3). The mass density determined by
the Archimedes method was obtained as 2.54 gcm−3 for single-crystal VF which is
only slightly below the calculated value of 2.57 gcm−3. The mass density of RK and
MO feldspar was in both cases determined to 2.56 gcm−3, in good agreement with
the literature [32].
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2.2. Diffusion in single-crystalline solids

2.2. Diffusion in single-crystalline solids

Diffusion in the solid state comprises the random thermally activated movement
of atoms that results in the net displacement of atoms. In ionic conductors the
transport of matter is linked with charge transport which implies a close relation
between diffusion and ionic conduction. In contrast to diffusion in gasses or liquids,
diffusion in (single-crystalline) solids often involves point defects such as vacancies
or self-interstitials which may act as diffusion vehicle. The mobility of atoms
strongly depends on the atomic radius and on the diffusion mechanisms that are
involved. In the present section, a phenomenological description of the diffusion
process is given and models for the elementary microscopic displacements are
presented.

2.2.1. Fick’s laws and solutions of the diffusion equation

It was Fick (1855) who first recognised that diffusion is – in analogy to the transfer
of heat – mediated through random molecular motion. By adopting Fouriers (1822)
mathematical theory of heat conduction Fick derived a theory of diffusion in
isotropic media based on the hypothesis that the transfer rate of diffusing substance
through the unit area of a section (flux) is proportional to the concentration
gradient normal to the section. Ficks first law of diffusion is therefore given by

j⃗(x⃗, t) = −D · ∇c⃗(x⃗, t) , (2.2)

where j⃗ is a flux, c⃗ is a volume concentration, x⃗ is the space coordinate normal to
the section and D is a proportionality factor with an SI unit of m2s−1 denoted as
diffusion coefficient. In three dimensions the relation ∇c⃗(x⃗, t) ≡ ∂cx

∂x
+ ∂cy

∂y
+ ∂cz

∂z
holds.

Under the assumption that sinks or sources for diffusing particles can be neglected
the number of diffusing particles is conserved and the continuity equation

∂c⃗(x⃗, t)
∂t

+ ∇j⃗(x⃗, t) = 0 (2.3)

holds true. It is straightforward to show that combination of Eq. 2.2 and Eq. 2.3
gives Fick’s second law, i.e.,

∂c⃗(x⃗, t)
∂t

= ∇ · (D · ∇c⃗(x⃗, t)) . (2.4)
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2. Fundamentals

The above equation is a second-order partial differential equation involving space
and time that requires some initial and boundary conditions for the solution. A
common approach is the consideration of homogeneous and isotropic media that
implies for the diffusion coefficient

D(c⃗, x⃗, t) = D . (2.5)

Using the above relation, Fick’s second law of diffusion in any space direction x is
given by

∂c(x, t)
∂t

= D
∂2c(x, t)

∂x2 . (2.6)

Three relevant boundary conditions are discussed in the following.

Thin-film source conditions

For certain initial and boundary conditions exact formal solutions for Fick’s second
law of diffusion can be derived. For several one-dimensional diffusion processes the
initial condition may be given by

c(x, t = 0) = Mδ (x) , (2.7)

where M is the total amount of diffusing substance and δ (x) describes an infinitely
thin film on the surface (x = 0) of a medium. Under the assumption of a semi-
infinite extension of the medium the boundary conditions are given by

c(x, t) = 0 for x < 0
lim

x→∞
c(x, t) = 0 . (2.8)

For t > 0 the diffusing particles spread from the source into one half-space of the
medium and Ficks second law is described by a Gaussian behaviour, i.e., [34]:

c(x, t) = M√
πDt

exp
(

− x2

4Dt

)
. (2.9)

From the above relation 2
√

Dt can be interpreted as a characteristic diffusion length
which often occurs in diffusion problems.
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2.2. Diffusion in single-crystalline solids

Constant source conditions

In contrast to the previously discussed initial condition of an infinitely thin film the
source can be otherwise significantly extended. This may imply a constant surface
concentration for t > 0 if the source is not consumed by the medium during the
diffusion process and hence, the initial conditions are

c(x, t = 0) =

⎧⎪⎨⎪⎩c0 for x = 0

0 for x > 0
(2.10)

and the boundary conditions can be expressed as

c(x = 0, t) = c0

lim
x→∞

c(x, t) = 0 . (2.11)

The ansatz for solving Fick’s second law in Eq. 2.4 is based on an infinite number
of infinitely thin sources c0dξ which spread into a semi-infinite medium. According
to Eq. 2.9 the concentration for one infinitely thin source at a time t is given by

c(ξ, t) = M√
πDt

exp
(

− ξ2

4Dt

)
. (2.12)

From the summation over all elements dξ together with the initial and boundary
conditions Eqs. 2.10 and 2.11, respectively, it follows for the solution [34]

c(x, t) = c0

2
√

πDt

∫ ∞

x
exp

(
−ξ2/4Dt

)
dξ . (2.13)

By introducing the complementary error function, i.e., erfc x = 1 − erfx, Eq. 2.13
may be expressed as

c(x, t) = 1
2c0 erfc

(
x

2
√

Dt

)
, (2.14)

and the amount of diffusing particles per unit area is given by

M(t) = c0

√
Dt

π
. (2.15)
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2. Fundamentals

Exchange of the diffusant with the ambience

A variation from the thin-film solution is given if the diffusant exchanges with the
ambience which is, e.g., given if the source evaporates during the diffusion process.
Under the assumption that the initial condition is given in analogy to the thin-film
problem, i.e., c(x, t = 0) = 0 for x > 0, the boundary condition can be expressed
as [35]

∂c

∂x
(x = 0, t) = H [c(x = 0, t) − c0] , (2.16)

where c0 is a constant concentration of the diffusant in the ambience of the medium
and H quantifies the exchange between the source and the ambience with the SI
unit m−1. For c0 = 0 the solution of Fick’s second law is given by [35]

c(x, t) = M

[
1√
πDt

e− x2
4Dt − HeDtH2+Hx erfc

(
x

2
√

Dt
+ H

√
Dt

)]
. (2.17)

At the surface of the medium the projection of the flux jx to the x-direction is

jx = −D
∂c

∂x
>0

, (2.18)

which implies a characteristic peak concentration within the medium. In the
limiting case of H = 0 Eq. 2.17 is fully equivalent to the thin-film solution (see
Eq. 2.9).

2.2.2. Diffusion in anisotropic media

In anisotropic media, the diffusion coefficient is generally direction dependent and
given by a second-order tensor, i.e.,

D =

⎛⎜⎜⎜⎝
D11 D12 D13

D21 D22 D23

D31 D32 D33

⎞⎟⎟⎟⎠ . (2.19)
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2.2. Diffusion in single-crystalline solids

However, only four independent matrix elements have to be considered if the
medium shows a monoclinic symmetry. The matrix form of the diffusion tensor
is then given by

D =

⎛⎜⎜⎜⎝
D11 0 D13

0 D22 0
D31 0 D33

⎞⎟⎟⎟⎠ , (2.20)

where D13 = D31 holds. The latter relation stays without proof here because it has
been discussed in detail by Nye [36]. It is easy to find the corresponding polynomial
form, i.e.,

D11x
2
1 + D22x

2
2 + D33x

2
3 + 2D13x1x3 = 1 . (2.21)

Equation 2.21 describes a quadric surface which can be an ellipsoid or an
hyberboloid that is tilted around the x2-axis with the angle of rotation φ given
by

φ = 1
2 arctan 2D13

D11 − D33
. (2.22)

A rotation of the coordinate system around the diad-axis (in monoclinic systems
this is always the x2-axis) by the angle φ leads to the normal form of the diffusion
tensor

D =

⎛⎜⎜⎜⎝
D1 0 0
0 D2 0
0 0 D3

⎞⎟⎟⎟⎠ . (2.23)

The elements Di are called the principal diffusivities and can be identified as the
eigenvalues of the Matrix in Eq. 2.20. Along the direction x2 the obvious relation
D2 = D22 holds true. The remaining two principal diffusivities are related to the
matrix elements of the non-linearised form in Eqs. 2.20 and 2.21 by [36]

D1 = D11 + D33

2 +
√(

D33 − D11

2

)2
+ D2

13 , (2.24)

D3 = D11 + D33

2 −
√(

D33 − D11

2

)2
+ D2

13 . (2.25)

The coordinate system given by the principal axes of diffusion is shown in Fig. 2.4
together with a radius vector r⃗. The projection of any radius vector onto the axis
x1, x2 and x3, respectively is given by

r⃗ = 1√
D

(cos θ1, cos θ2, cos θ3) , (2.26)
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2. Fundamentals

Figure 2.4.: Orthonormal system x1, x2 and x3 representing the principal axes of
diffusion with an arbitrary vector r⃗ representing a considered diffusion direction.

where θ1, θ2 and θ3 is an angel between r⃗ and the principal axis, respectively, as
indicated in Fig. 2.4. The diffusion along an arbitrary direction is then given by

Dr = D1 cos2 θ1 + D2 cos2 θ2 + D3 cos2 θ3 . (2.27)

2.2.3. Basic atomic diffusion mechanisms and correlation
effects

The macroscopic diffusion of a tracer atom comprises a long sequence of elementary
microscopic jumps between local minima in the energy landscape of the host
lattice. Depending on the type of diffusant and on the host lattice crucial local
minima can be at substitutional (S) or interstitial (I) sites. The displacements
of a single tracer atom can be idealised by a random walk. However, Bardeen
and Herring [37] recognised that for certain types of mechanisms tracer diffusion
deviates from a purely random walk. In particular, if the jumps are mediated by
diffusion vehicles (e.g., vacancies and self-interstitials) a correlation between the
directions of successive jumps of a single tracer atom is predicted. This can be
understood as follows: A diffusion vehicle enters a nearest-neighbour site of a tracer
atom from a random direction. Assuming that a first reaction between the tracer
atom and the diffusion vehicle takes place the diffusion vehicle is still at a nearest-
neighbour position. A subsequent jump of the tracer atom therefore occurs with a
higher than statistical probability along a reversed direction. Only if the diffusion
vehicle escapes from the tracer atom and a new diffusion vehicle approaches from a
random direction the first and the second jump of the tracer atom are uncorrelated.
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2.2. Diffusion in single-crystalline solids

Figure 2.5.: Schematic two-dimensional representation of the direct interstitial diffusion
mechanism via subsequent I-I jumps of an atom.

Consequently, a so-called correlation factor f has to be taken into account that
depends on the available diffusion pathways and thus on the crystal structure and
diffusion mechanism. Three examples are discussed in the following.

Direct interstitial diffusion

If the diffusing atoms are small compared to the substitutional atoms, e.g, if
the diffusion of small foreign atoms is considered the mechanism may comprise
a sequence of direct steps from one interstitial site to another (direct interstitial
mechanism) [38, 39]. The distortion of the lattice during migration is influenced by
the atom radius and hence, small atoms diffuse more readily than larger atoms. As
illustrated in Fig. 2.5, no intrinsic point defects are involved in the direct interstitial
mechanism which implies that the jumps of an atom will not, in general, depend
on the preceding jumps. The jump of a tracer atom is therefore described by a
random walk and the value of the correlation factor equals unity (f = 1). Beyond
that, the diffusion coefficient is independent of the concentration of intrinsic point
defects.

Vacancy diffusion

A vacancy is a point defect in crystals that comprises an unoccupied substitutional
lattice site. Crystals inherently possess imperfections such as intrinsic vacancies
and in thermal equilibrium the vacancy concentration is a constant that depends
on temperature (cf. Eq. 2.34). The vacancy diffusion mechanism takes place if a
substitutional atom jumps into a neighbouring vacant lattice site. This process is
displayed in Fig. 2.6 and it can be seen that the atom and the vacancy migrate
in opposite directions. In the limit of low vacancy concentrations and for a high
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2. Fundamentals

Figure 2.6.: Exchange of a substitutional tracer atom with a vacancy located at a
nearest-neighbour site in a two-dimensional square lattice.

symmetry the displacement of the vacancy can be described as a random-walk if
the substitutional atoms are indistinguishable and all lattice sites are equivalent. In
contrast, the subsequent jumps of a tracer atom are generally correlated (f < 1).
Some examples for tracer correlation factors in simple three-dimensional structures
were reported by Montet [40], i.e., f = 0.6531 for a simple cubic lattice, f = 0.7272
for a body centred cubic lattice and f = 0.7815 for a face centred cubic lattice.

Interstitialcy diffusion

Interstitial atoms are point defects in crystals which can be seen as counterpart
of vacancy defects. Although substitutional lattice sites are energetically more
favourable self-interstitials occur in thermal equilibrium with a constant concen-
tration, e.g., through the production of Frenkel pairs. If the lattice distortion for
direct jumps between interstitial sites is too large self-interstitials may migrate via
interstitial-substitutional exchange (I-S) as illustrated in Fig. 2.7. In the so called
interstitialcy (or indirect interstitial) diffusion mechanism an interstitial atom
pushes one of its nearest-neighbour substitutional atoms into another interstitial
site and, in turn, occupies the lattice site of the displaced atom. In general, two
types of interstitialcy jumps can be distinguished, i.e., collinear and non-collinear
jumps. If the jump vector of the interstitial atom has the same direction as the
jump vector of the substitutional atom the mechanism is denoted as collinear (see
Fig. 2.7) and it is termed non-collinear if the directions differ. Although two atoms
are involved in an elementary interstitialcy step a generalised interstitial defect I
can be defined that is represented by the atom which is located at an interstitial
site. If all substitutional atoms are indistinguishable and the symmetry is high the
diffusion of I is uncorrelated in the limit of low defect concentrations. Subsequent
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2.2. Diffusion in single-crystalline solids

Figure 2.7.: A self-interstitial atom (crosshatched circle) jumps via I-S exchange to
a substitutional site. The substitutional atom moves in a collinear jump to an empty
interstitial site.

jumps of a tracer atom are, however, dependent on the preceding jumps and the
correlation factor is smaller than unity. For example, the collinear interstitialcy
diffusion mechanism is related to a correlation factor of f = 6

7 for diffusion in a
simple cubic lattice and f = 4

5 for a face centred cubic lattice [41].

2.2.4. Microscopic migration energy

According to the above diffusion mechanisms thermally activated migration of
atoms in a crystal occurs in a sequence of subsequent discrete jumps from one
equilibrium position (lattice site or interstitial site) to the next. For example, the
energy for a single jump of a substitutional atom (S) to a neighbouring interstitial
site (I) is schematically illustrated in Fig. 2.8 as a function of distance. During the
migration from the substitutional site (energy ES) to the interstitial site (energy EI)
the jumping atom provokes a distortion of the surrounding lattice which can be
expressed as a saddle point energy, ESP. Accordingly, the energy required for this
elementary step is given by the migration barrier, i.e., Em = ESP−ES (see Fig. 2.8).
This energy is usually large compared to the thermal energy given by kBT , where
kB is the Boltzmann constant and T is a temperature. A thermal oscillation of
the atoms around their equilibrium positions is therefore much more frequent than
successful jumps between sites. The rate at which atoms migrate between sites was
described by Vineyard [42], i.e.,

w = ν0 exp
(

Sm

kB

)
exp

(
− Em

kBT

)
, (2.28)
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Figure 2.8.: Schematic representation of an energy profile during migration of a
substitutional atom (S) via a saddle-point (SP) to an empty interstitial site (I).

where ν0 is an attempt frequency on the order of the Debye frequency that
characterises the lattice vibrations. At high enough temperatures T ≫ hνmax/2kB,
where h is the Planck constant and νmax is the maximum phonon frequency, the
temperature dependence of ν0 can be neglected [43, 44]. The entropy of migration
Sm relates to the change in lattice vibrations associated with the displacement of
the jumping atom from its initial equilibrium configuration to the saddle point
configuration.

2.3. Diffusion in binary alloys

In alkali feldspar, the location of substitutional K+ and Na+ atoms is restricted to
cation sites within the anionic framework structure. It seems therefore attractive
to consider the alkali sublattice in feldspar as a binary alloy with negligible inter-
actions with the surrounding framework. Under this assumption well-established
methods and conceptions for binary alloys may be transferred to the present
diffusion problem.
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2.3.1. Random alloy model

An important model to describe disordered multicomponent alloys was introduced
by Manning [14, 45] which is called the random alloy model. For a binary alloy
of the components i = A, B the atoms are randomly mixed and the probability
to find an atom of species i on any lattice site is given under the assumption of
negligibly low defect concentrations by its site fraction Ci, where CA + CB = 1
holds true. The random alloy model assumes that the rate at which an atom of
species i exchanges with a vacancy is given by wi, whereas this rate only depends
on the identity of i and not on the identity of other neighbouring atoms nor on the
lattice site. The total vacancy jump frequency is then given by

wV = z (CAwA + CBwB) , (2.29)

where z is the number of nearest-neighbour atoms to a vacancy (coordination
number). The diffusion of each species is related to a correlation factor, i.e., fi.
In crystals having sufficient symmetry, the general expression for fi can be given
by [14, 45]

fi = Hi/ (2wi + Hi) , (2.30)

where Hi is the frequency for an effective escape of the vacancy after it has
exchanged with an atom of type i. Assuming the general case that wA ̸= wB

holds, also the subsequent jumps of the vacancy depend on the preceding jumps
and hence, a correlation factor for the vacancy, fV ̸= 1, can be introduced.
Based on this physical model Manning was able to derive mathematical expressions
for the correlation factors fA, fB and fV that only hold to a fair approximation.
For example, an estimate for the threshold composition for site-percolation
(wA/wB → ∞) is given by 1 − f0 where f0 is the geometrical correlation factor
of tracer atoms in the corresponding pure crystal. Moreover, the tracer correlation
factors are related to the vacancy correlation factors according to fi = f0f

i
V, where

f i
V is a partial vacancy correlation factor of the species i. Only in the dilute extremes

this relation holds and it is violated in the domain of concentrated alloys. In general,
the vacancy correlation factors are therefore predicted with a higher accuracy and
the Manning model overestimates the tracer correlation factors. In contrast to
Manning’s analytical framework tracer correlation factors can be computed for the
random alloy model, e.g., by Monte Carlo simulations to any desired degree of
accuracy.
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2.3.2. Frenkel Pair formation

The production of Frenkel defects introduces both vacancies and self-interstitials
in a crystal. In terms of quasi-chemical reactions, the Frenkel pair production for
a binary alloy AB is given by the reactions

EI + AS 
 AI + V (2.31)
EI + BS 
 BI + V , (2.32)

where EI denotes an empty interstitial site, V is a randomised alkali vacancy, AS

and BS are sublattice ions, and AI and BI are interstitial ions. Assuming that
extrinsic defects and similar effects on charge balance can be neglected the charge
neutrality condition causes the concentrations of vacancies and interstitials to be
equal, so that

CV = CI = CA,I + CB,I (2.33)

holds true. Here, CA,I and CB,I are the concentrations of self-interstitial AI and
BI atoms, respectively and their concentrations may considerably differ, i.e.,
CA,I ̸= CB,I. Applying the mass action law to Eq. 2.31 yields

CA,ICV = kF1 = CA,S exp (−GF1/kBT ) , (2.34)

where kF1 is a reaction constant, GF1 is a free enthalpy of Frenkel pair production
and CA,S is a site fraction of substitutional AS atoms. For simplicity, equal numbers
of interstitial and substitutional sites are assumed. For Eq. 2.32, mass action law
predicts in a similar way

CB,ICV = kF2 = CB,S exp (−GF2/kBT ) . (2.35)

With the aid of the charge neutrality condition in Eq. 2.33, summation of Eqs. 2.34
and 2.35 gives

CVCI = CA,S exp (−GF1/kBT ) + CB,S exp (−GF2/kBT ) , (2.36)

CI = CV =
[
CA,S exp (−GF1/kBT ) + CB,S exp (−GF2/kBT )

]1
2 . (2.37)
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By substituting Eq. 2.37 into Eq. 2.34 follows an expression for the concentration
of self-interstitials AI, i.e.,

CA,I = kF1

CV
= CA,S exp (−GF1/kBT )[

CA,S exp (−GF1/kBT ) + CB,S exp (−GF2/kBT )
]1

2
, (2.38)

and in a similar way by substituting Eq. 2.37 into Eq. 2.35 gives

CB,I = kF2

CV
= CB,S exp (−GF2/kBT )[

CA,S exp (−GF1/kBT ) + CB,S exp (−GF2/kBT )
]1

2
. (2.39)

Finally, the ratio of self-interstitial AI and BI is then given by

CA,I

CB,I
= CA

CB
exp [− (GF1 − GF2) /kBT ] . (2.40)

21





3. Sodium self-diffusion in
single-crystal alkali feldspar

Diffusion of alkali cations in alkali feldspar has been investigated over several
decades now, but still bears several unresolved problems. Fundamental questions
have arisen in the course of recent work by the Vienna group [11, 12, 13] which
reveals systematic differences between the experimentally determined Na–K inter-
diffusion coefficients and those calculated from inserting published Na and K self-
diffusion coefficients in theoretical interdiffusion models [14, 15]. In particular, the
experimentally determined composition dependence of the interdiffusion coefficient
disagrees with the theoretical predictions (cf. Fig. 1.1). In addition, the Na–K
interdiffusion is markedly direction dependent, whereas the respective Na tracer
diffusion coefficient has so far mainly been investigated by means of bulk diffusion
methods applied to grained natural feldspar that do not discriminate between
crystal orientations. These discrepancies may indicate that the models in use do
not fully account for the complexity of Na–K interdiffusion in alkali feldspar and
furthermore, motivate the need for additional direction-dependent self-diffusion
data.
Frenkel pairs are likely to be the major point defects in the feldspar structure
because the high Si-O bonding energies make Schottky defect formation extremely
unfavourable [17]. In general, the vacancy mechanism and the interstitialcy
mechanism should therefore be considered as predominant in alkali diffusion
processes. Based on the systematic of the available interdiffusion data, it may
be hypothesised that the fast tracer diffusion of Na becomes important at close
to potassium end-member compositions. In this composition domain, the total
Na concentration in the crystal is low and a significant fraction of Na may be
present on interstitial sites with high mobility. To enhance modelling of the Na-K
interdiffusion process the transport properties on the alkali sublattice should be
characterised comprehensively. This involves accurate measurements of the tracer
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3. Sodium self-diffusion in single-crystal alkali feldspar

diffusion coefficients, which will be presented in the present chapter for Na diffusion
and in the following chapter for K diffusion.
In this study of Na diffusion in alkali feldspar the radiotracer technique was applied
with benefit from 22Na to three natural single-crystal feldspars of different close to
potassium end-member compositions, i.e., in the range from 71 % to 95 % K on
the alkali sublattice. Data were obtained in the temperature range from 603 K to
1173 K and for three orientations (⊥ (001) , ⊥ (010) and ∥ [100]). It will be shown
that the results reveal a consistent picture in terms of temperature, orientation, and
composition dependence. In particular, a distinctly higher self-diffusion coefficient
is observed in the ⊥ (001) and ⊥ (010) directions when compared to the direction
[100]. The composition dependence suggests that considerable correlation effects
diminish Na diffusion when the Na concentration is below a percolation threshold.

3.1. Experimental procedures

3.1.1. Radiotracer diffusion method

The method of radiotracer diffusion has been established over decades and has
been widely used in materials physics to investigate diffusion in various solid
materials. The technique is dependent on the availability of suitable radionuclides
of the relevant element that offer a reasonable long half-life time of typically a few
days and longer. Radionuclides are primarily produced in high energy reactions in
cyclotron or reactor facilities and to some extend commercially or non-commercially
offered and shipped to other institutes. This study of self-diffusion in alkali feldspar
via radiotracer diffusion was performed using the isotope 22Na

(
t1/2 = 950 d

)
that

was commercially obtained from Perkin Elmer with an initial specific activity of
830 mCi/mg. A liquid solution of the NaCl salt was further diluted in bi-distilled
water to an activity of several kBq/µl to make it readily consumable. A key benefit
of radiotracer diffusion is that only extremely small amounts of the tracer are
required and that low concentrations (on the order of ppm) of the tracer can reliably
be detected quantitatively after a diffusion experiment. The sample material may
therefore be considered as chemically unchanged which considerably simplifies the
evaluation of a self-diffusion experiment when compared to chemical diffusion.
The steps of the radiotracer diffusion technique are consecutively (cf. Fig. 3.1):
(i) Deposition of the radiotracer on the polished sample surface normal to the
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Figure 3.1.: Schematic presentation of the radiotracer diffusion method that comprises
the following steps: (a) Deposition of the radiotracer diluted in water with a pipette on
the sample surface. (b) Temperature treatment for activation of diffusion processes in a
tube or mirror furnace. (c) Serial sectioning of the sample by mechanical grinding or ion
beam sputtering. (d) Analysis of the sections activity and evaluation of the depth profile
to determine the diffusion coefficient D.

(virtually one dimensional) diffusion direction. (ii) Isothermal diffusion treatment
at an annealing temperature T for a suitable length of time t. (iii) Serial sectioning
of the sample parallel to the front surface accompanied by a determination of the
mass loss after each repetition. (iv) Analysis of the individual sections in a gamma
radiation detector. The thereby determined activity of each section can directly be
related to the relative tracer concentration within this section. This relative tracer
concentration as a function of penetration depth is referred to as the diffusion
profile and can be evaluated by a suitable solution of the diffusion equation, that
is in most cases either a Gaussian or a complimentary error function depending
on the boundary conditions. Least-square fitting of either of these functions to the
measured diffusion profile yields the diffusion coefficient D. Most consistent results
are commonly obtained by using the logarithmic form of the diffusion equation for
fitting procedures.

Diffusion Annealing

The isothermal treatment applied in this study is divided into two methods. For
long-time temperature treatments ≥ 3 h annealing in a commercially available tube
furnace was preferred. Prior to the annealing the sample material was encapsuled in
a quartz ampule under Ar atmosphere to protect the sample from oxidation and the
furnace from evaporation of the radioactive substances. At the end of the annealing
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3. Sodium self-diffusion in single-crystal alkali feldspar

Figure 3.2.: Temperature-time profile of a thermal treatment performed with an alkali
feldspar sample at 500 ◦C and a diffusion time of 5 minutes in a custom-built mirror
furnace. The nominal annealing time of tnom = 6 minutes is marked with a dashed line.

the ampule was quenched in water for rapid abortion of the diffusion process.
Although the heating-up procedure may take several minutes by this method, the
experimental error in diffusion time only amounts to a few percent for the shortest
annealing duration.
For a short annealing duration of down to 5 min a custom-built mirror furnace that
offers rapid heating and cooling properties was used. The samples were contained in
custom boron-nitride crucibles and placed on top of a Pt-PtRd thermocouple in a
vertically mounted quartz ampule. During the isothermal treatment, the quartz
ampule was evacuated to medium vacuum conditions of p < 10−1 mbar. Four
industrial 2 kW lamps are each mounted in the focal point of a paraboloid and
operated by a PID controller to obtain a rapid heating. The quartz ampule is flushed
with LN2 to stop the diffusion process. Figure 3.2 shows a typical temperature-
time profile that was recorded with the time interval ∆t by the internal Pt-PtRd
thermocouple. It is representative for a diffusion annealing at 500 ◦C for 5 minutes.
Based on a well-known temperature activation of the diffusivity D (T ), the effective
annealing time may be given by [46]
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D (Tnom) tdiff =
∞∑

t=0
D(T (t))∆t (3.1)

→ tdiff =
( ∞∑

t=0
exp

(
− ∆H

kBT (t)

)
∆t

)
/ exp

(
− ∆H

kBTnom

)
,

where ∆H denotes an activation energy and kB is the Boltzmann constant.
According to Eq. 3.1 a rule of thumb for the effective diffusion time was found
to be tdiff = tnom − 1 min for diffusion runs on the order of 5 minutes. For longer
run times of tdiff ≥ 10 min the relation tdiff = tnom − 30 s holds.

Serial Sectioning

Depending on the estimated volume penetration depth
√

Dt (D is the bulk diffusion
coefficient and t is the annealing time) of a diffusion experiment one of two
different serial sectioning techniques was applied to achieve depth profiling. For
diffusion coefficients of roughly D ≥ 10−15 m2/s the penetration depth ranged from
approximately 10 µm to 100 µm and the precision grinding technique was employed.
Small sections of a few µm thickness were cut in parallel to the front surface by
machine-support and collected on the lapping film. The residual mass of the sample
material was measured with a micro balance (Sartorius, readability of 0.1 µg) to
determine the thickness pertaining to each section via the sample’s surface area
and its density.
For smaller penetration depths of 1 µm to 4 µm that are usually connected to
diffusion coefficients of D ≤ 10−15 m2/s a high-resolution depth profiling was
achieved by ion beam sputtering of the sample material. A unique apparatus was
designed and built at the Institut für Materialphysik for this purpose [47] that
comprises the following features: (i) A commercially available 3 cm dc ion beam
source operated at beam voltages of up to 1.2 kV. (ii) A chilled Cu sample holder
that is constantly rotated during depth profiling that improves uniform removal of
the sample surface. (iii) A Mylar film is used as substrate for the removed sample
material. It is automatically transported by an electronic tape station to achieve
discrete sample sections. (iv) A dedicated slow control to operate the depth profiling
with a minimum of user interaction.
In contrast to mechanical serial sectioning the sample material is continuously
removed during this procedure which does not allow for mass measurements of
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each single section. The ion beam is therefore operated for 30 min prior to the
actual depth profiling while the sample is covered by a shutter in order to maintain
stable beam conditions. The sample’s complete mass loss is then determined by
measurements before and after sputtering. Calibration of the length axis is achieved
by considering all sections equal in mass and with the knowledge of the material
density. A steel capsule with a fixed aperture that is mounted on top of the sample
during depth profiling determines the sample area. To avoid any influences from
the residual tracer source on the diffusion profile the source was removed from the
sample surface by wiping with a cotton stick and ethanol.

Gamma Analysis

After depth profiling each section was put in a vial for further analysis in a 3′′ × 3′′

well-type (4π) NaI-detector. A gamma energy spectrum that is representative for
the decay of 22Na measured by this detector is shown in Fig. 3.3a. Three isotope
specific peaks at energies of 511 keV, 1022 keV and 1275 keV are observed which can
be attributed to the decay scheme (cf. Fig. 3.3b) of 22Na as follows: The 511 keV
peak results from positron annihilation due to the 90 % probability [48] of an β+

decay of 22Na into 22Ne∗ which produces two events related to the mass of one
electron and one positron, respectively. In the case of a simultaneous absorption
of both photons in the detector (i.e., when electron and positron annihilate in the
detector’s centre) this event cannot be discriminated from a single photon with
twice of the energy. These events produce a sum peak at an energy of 1022 keV.
The excited state of 22Ne∗ turns into its ground-state under emission of a single
photon with the energy of 1275 keV and results the photopeak. The net peak areas
N511, N1022 and N1275 were evaluated after N = 20000 total detector events and
the activity was given by

A =
(

N511 + N1022

1.8η511
+ N1275

η1275

)
t−1 , (3.2)

where t is the total counting time and η511 and η1275 are the energy-dependent
detector efficiencies for the energy of 511 keV and 1275 keV, respectively. The
detector efficiencies were analysed with the aid of suitable calibration sources and
the experimental uncertainty resulting from the gamma analysis can be estimated
by

√
N/N to 3 % for the 511 keV peak.
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3.1. Experimental procedures

Figure 3.3.: (a) Gamma ray spectrum of 22Na measured in a 3′′ × 3′′ well-type NaI
detector after t = 12 s counting time. The activity is representative for a surface near
section after diffusion annealing. Three major peaks at 511, 1022 and 1275 keV are
observed, that can be attributed to positron annihilation, the sum peak for simultaneous
detection of this process and the photopeak, respectively. (b) A schematic view of the
decay from 22Na into 22Ne∗ and 22Ne with the according decay probabilities and photon
energy [48].
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3.1.2. Sample Preparation

Macroscopically large samples are required for the radiotracer diffusion method
in order to deposit the tracer solution in the centre of the front surface and to
avoid diffusion across the edges. The minimum sample dimension in diffusion
direction should favourably be several times larger than the intended volume
penetration depth

√
Dt, which is typically smaller than 100 µm in the present

study. Furthermore, should the sample surface be polished and cleaned before the
radiotracer is deposited because the surface roughness has an impact on diffusion
profiles for small penetration length (cf. Eschen et al. [49]).
The sample material was prepared from large single crystals of natural feldspars
at the University of Vienna. The lattice orientation was determined with a four-
circle goniometer and the samples where cut from the large crystal to plates of
approximately 8 mm in diameter and 2 mm in height, with a surface corresponding
either to the (001) or (010) plane or to a plane that is normal to the [100]
direction. Subsequently, the samples were pre-polished by hand on a diamond
polishing disc and finally polished on a silk cloth with a 1 µm diamond powder
suspension. Because only a small volume of the sample was destructed during
each depth profiling and the sample dimension along the diffusion direction was
sufficiently large, several radiotracer diffusion experiments were performed with
each sample. After each depth profiling the sample surface was repeatedly cut until
no measurable activity was contained in the sample and then polished with 3 µm
SiC lapping film.

3.2. 22Na diffusion results

Three natural feldspars from different localities and with different compositions
were chosen for the radiotracer diffusion experiments. Ordered according to
increasing K-concentration these are (i) a sanidine from the Eifel region Rockeskyll,
Germany (RK) with the chemical composition Or71Ab26Cs2 and with a minor
FeO concentration of about 0.1 to 0.2 weight%. (ii) A sanidine from the Eifel
region Volkesfeld (VF) with the composition Or83Ab15Cs1 and with a similar FeO
concentration as the RK sanidine. (iii) An orthoclase from Madagascar (MO) with
a low Ba concentration and a composition given by Or95Ab5 that contains about
1 weight% FeO. The detailed chemical analysis and structural properties of these
feldspars are described in Section 2.1. The study of Na-diffusion in MO feldspar
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3.2. 22Na diffusion results

Figure 3.4.: Diffusion profiles of 22Na in alkali feldspar Or83Ab15Cs1 from Volkesfeld
(VF) normal to (001) for different annealing temperatures T . To enhance visibility of
all slopes the relative concentrations are individually shifted along the ordinate. (a) The
profiles are representative for depth profiling by micro grinding and solid lines are fitted
to the measured profiles by a Gaussian function. (b) Ion beam sputtered depth profiles
are fitted with a complementary error function (solid lines).

⊥ (001) and ⊥ (010) was conducted in the framework of the master thesis of B. Tas
Kavakbasi [50] whereas the Na-diffusion in MO feldspar along the direction [100]
and in RK feldspar ⊥ (001) and ⊥ (010) was investigated in the master thesis of
A. Knieschewski [51].
The results for 75 radiotracer diffusion experiments in a temperature interval from
603 K to 1173 K are listed in Tab. A.1 (cf. Appendix A). For a reliable determination
of the Na self-diffusion coefficients1 D̂Na, tracer penetration profiles were analysed
over an activity range of at least a factor of 20 and in most cases over roughly
two orders of magnitude. Examples of measured profiles that are representative for
serial sectioning by grinding are shown in Fig. 3.4a. To prevent overlapping and
intersecting data, the measured profiles were individually shifted along the ordinate.
Since thin-film source conditions are expected for high annealing temperatures,
a Gaussian solution of the diffusion equation is applied to the diffusion profiles

1To reduce the number of indices, the common asterisk for labelling tracer diffusivity (D∗) has
been replaced by the ‘hat’ symbol (D̂) throughout this work.
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3. Sodium self-diffusion in single-crystal alkali feldspar

(cf. Eq. 2.9). In some cases, evaporation of the tracer from the surface, which is
expressed by a characteristic concentration decline towards the sample surface can
be observed and an adapted function given by Eq. 2.17 is applied.
Depth profiling by ion beam sputtering was employed for penetration lengths on the
order of

√
Dt = 1 µm and an example of representative diffusion profiles is shown

in Fig. 3.4b. Because of smaller
√

Dt values the boundary conditions of diffusion
are better described by a constant source and hence fitting to the measured profiles
is achieved by a complementary error function (cf. Eq. 2.14). In some cases, a low
constant background concentration is observed, that can be caused by residual
22Na from previous radiotracer diffusion experiments. For these cases the diffusion
profiles are well described by a complementary error function that is extended with
a constant concentration term. The derived diffusion coefficients for Na-diffusion in
RK, VF and MO are listed in Tab. A.1 together with the corresponding annealing
temperatures T and time durations t.
The temperature dependence of self-diffusion can be described by the Arrhenius
relation

D̂Na (T ) = D0 exp
(

−∆H

kBT

)
, (3.3)

where D0 is a pre-exponential factor, kB is the Boltzmann constant and ∆H denotes
an activation energy. In Fig. 3.5 the Na self-diffusion coefficients for diffusion in
RK, VF and MO normal to (001) and in MO in the direction [100] are shown
on a logarithmic scale as a function of the inverse temperature together with the
Arrhenius relations that are fitted to the data points. Accordingly, in Fig. 3.6 the Na
diffusion in RK, VF and MO normal to (010) is presented with the fitted Arrhenius
relations. All slopes represent the diffusion data fairly well or well. However,
for VF normal to (001) the data at T = 673 and 723 K were neglected in the
fitting procedure because of deviations that are considerably higher than statistical
uncertainties. The resulting activation energies and pre-exponential factors for all
Arrhenius relations are presented in Tab. 3.1.
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3.2. 22Na diffusion results

Figure 3.5.: Arrhenius plot of the diffusion coefficients of 22Na in the alkali feldspars
RK (open circles [51]), VF (full triangles, open triangles were neglected in the fitting
procedure) and MO (solid squares [50]) normal to (001) and in MO parallel to [100]
(open squares [51]). Solid and dashed lines correspond to fitting to the experimental data
with the Arrhenius relation in Eq. 3.3. The experimental uncertainties of 30 % are smaller
than the symbol size.

Figure 3.6.: Arrhenius plot of the diffusion coefficients of 22Na in the alkali feldspars
RK (open circles [51]), VF (full triangles) and MO (solid squares [50]) normal to (010).
Solid lines correspond to fitting to the experimental data with the Arrhenius relation in
Eq. 3.3. The experimental uncertainties of 30 % are smaller than the symbol size.
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Table 3.1.: Activation energies and pre-exponential factors related to Na self-diffusion
in single-crystal alkali feldspar.

Feldspar Direction D0/m2s−1 ∆H/eV

RK ⊥ (001)
(
2.3+1.4

−0.9

)
× 10−8 1.20 ± 0.04

RK ⊥ (010)
(
1.7+0.8

−0.6

)
× 10−8 1.19 ± 0.03

VF ⊥ (001)
(
8.0+2.4

−1.9

)
× 10−8 1.27 ± 0.03

VF ⊥ (010)
(
5.8+4.4

−2.5

)
× 10−8 1.26 ± 0.04

MO ⊥ (001)
(
4.1+2.6

−1.6

)
× 10−6 2.00 ± 0.04

MO ⊥ (010)
(
1.5+3.2

−1.1

)
× 10−6 1.92 ± 0.10

MO [100]
(
2.1+2.6

−1.2

)
× 10−6 2.05 ± 0.07

3.3. Conclusions

3.3.1. Diffusion anisotropy

The direction dependence of Na self-diffusion shows consistent results along the
three investigated feldspars RK, VF and MO. In all cases the Arrhenius relation
for the direction normal to (001) is equal to the corresponding relation for the
direction normal to (010) within the range of experimental uncertainties. For
the K-rich MO feldspar it was additionally possible to prepare samples with a
surface that corresponds to the plane normal to the [100] direction. The diffusion
coefficients that were obtained for this direction are three to four times smaller
along the investigated temperature range when compared with the direction normal
to (001). In contrast to the self-diffusion results, the Na-K interdiffusion that has
been investigated recently by the Vienna group shows a considerable anisotropy
between the directions normal to (001) and normal to (010) i.e. D̃⊥(001) ≈ 10D̃⊥(010)

[11, 12, 13]. It can therefore be concluded that this clear anisotropy is rather caused
by diffusion induced lattice strain [16] or by a hypothetically strong anisotropy of
the K self-diffusion than from direction effects of the Na self-diffusion.
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3.3.2. Composition dependence of Na self-diffusion

Interestingly, the Na self-diffusion exhibits a considerable dependence on compo-
sition. Despite the different composition of VF sanidine (Or83Ab15Cs1) compared
to RK sanidine (Or71Ab26Cs2) the corresponding diffusion coefficients virtually
overlap. For the most K-rich MO feldspar under investigation the diffusion
coefficients are 20 to 900 times smaller than those observed for the Eifel sanidines
VF and RK. The activation energy of MO feldspar is increased by ∼ 0.7 eV when
compared to the Eifel sanidines, which goes along with a significantly increased
value of D0 (cf. Tab. 3.1). For many thermally activated processes the relation
of an increased pre-exponential factor with increasing activation energy has been
observed and is denoted as compensation or Meyer-Neldel rule. This rule states
that D0 and ∆H obey the equation ln D0 = a + b∆H for large activation energies
of ∆H ≥ 1 eV [52]. From a microscopic point of view this can be interpreted as
an exponential relation between the number of different paths to the final state
and ∆H. The composition dependence of the activation energy could result from
several contributions that are discussed in detail.

Effects resulting from different unit cell volumes

From simple elastic considerations, it can be expected that differences in the unit
cell volume cause changes in the migration barrier for atomic migration. In alkali
feldspar the unit cell parameter a increases from the Na-rich albite (8.16 Å) to
the K-rich sanidine (8.60 Å) by approximately 5 %, whereas the same but weaker
effect is observed for the cell parameters b and c that is on the order of 1 % [53].
The larger cell volume reduces the energy barrier of atomic migration in feldspar
considerably, which has been demonstrated by Jones et al. for a vacancy mediated
diffusion mechanism [54]. In this study, the bottleneck widths for three different
ion pathways within the (010) plane were calculated with the according migration
barriers for K+ ions by molecular dynamics methods. Significant differences for
the migration barriers that range from 0.99 eV to 2.92 eV were found, whereat
it should be noted that long range diffusion can only occur if ions subsequently
migrate via all three pathways. Unfortunately, the study specifies the analogue
Na migration barriers only for the energetically most favourable pathway and
conclusions on the total activation energy of Na diffusion via a vacancy diffusion
mechanism would therefore be vague. However, the decreased migration barrier
for the energetically most favourable pathway from 1.31 eV for albite compared to

35



3. Sodium self-diffusion in single-crystal alkali feldspar

Table 3.2.: Calculated energy barriers and bottleneck widths for vacancy diffusion of
Na and K in albite and K-feldspar after Jones et al. [54].

Interstitial ion Energy / eV Bottleneck width / Å
at saddlepoint Unrelaxed Relaxed∗

K+ ion in albite 1.86 4.57 5.22
Na+ ion in albite 1.31 4.57 4.70
K+ ion in K-feldspar 0.99 5.57 5.65
Na+ ion in K-feldspar 0.70 5.57 5.30
∗ Ion at saddlepoint

0.70 eV for K-feldspar that is caused by the volume gain can be assumed to have a
clear effect on the composition dependence of Na self-diffusion (cf. Tab. 3.2). In the
relatively narrow composition range from MO to VF the same positive correlation
would be expected between the migration energy and the Na concentration, but
with a weaker expression than in Jones calculations. The present experimental
observations, however, are in clear contradiction to this effect. Consequently, an
opposed effect which superposes the influence of the composition-dependent unit
cell volume on the activation energy must exist.

Effects from Frenkel pair production

Behrens et al. recognized that Frenkel pairs (FP) are energetically more favourable
in feldspar than Schottky pairs and are therefore the major point defects [17].
Since the self-diffusion coefficient behaves proportional to the defect concentration,
this quantity should be estimated for MO and VF feldspar to obtain further
assumptions on the differences in Na diffusivities. The reaction rates for FP
production are

EI + KS 
 KI + V (3.4)
EI + NaS 
 NaI + V , (3.5)

where EI denotes an empty interstitial site, V is a randomized alkali vacancy, KS

and NaS are sublattice ions, and KI and NaI are interstitial ions. Applying mass
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action law to this equation yields an expression for the sum of concentrations of
interstitial KI and NaI defects, i.e., (cf. Section 2.3.2)

CK,I + CNa,I =
[
CK exp

(
−GFP

K /kBT
)

+ CNa exp
(
−GFP

Na/kBT
)]1/2

, (3.6)

where, e.g., GFP
Na = HFP

Na − TSFP
Na can be decomposed into the corresponding

enthalpy and entropy contributions and CK and CNa are the relative concentration
of substitutional K and Na atoms on the alkali sublattice, respectively. It may be
further assumed that (dissociated) NaI–V pairs can be more easily formed than
the corresponding KI–V pairs, so that very likely HFP

K > HFP
Na holds. For a virtual

CNa-independent value of GFP
Na it can be estimated

CVF
Na,I/CMO

Na,I ≈
(
CVF

Na /CMO
Na

)1/2
= (0.15/0.05)1/2 ≈ 1.7 ,

where CVF
Na and CVF

MO are related to VF and MO feldspar, respectively. It is therefore
unlikely that this effect accounts for the clearly different Na diffusion coefficients
between MO and the Eifel sanidines.

Correlation effects

From early studies on the correlation effects in a random bcc alloy [20, 21, 22]
and in a random fcc alloy [20, 22, 23, 24] it can be deduced that the Na diffusion
in the investigated feldspars is affected by considerable correlation effects, if the
alkali sublattice is characterised as a random alloy of K and Na atoms that do not
interact with the framework silicate. This effect is particularly pronounced if the
jump frequencies of Na and K are largely different, i.e., if wNa ≫ wK holds. Under
this assumption the Na diffusion can be interpreted by the percolation theory in
which the present diffusion problem corresponds to site-percolation. According to
this, long-range diffusion of Na under the hypothetical assumption of virtually
immobile K ions wK = 0 can only occur if CNa is equal or larger than a threshold
concentration. A giant component of connected Na sites always exists under this
circumstance and the vertex degree in this theory can be interpreted as the number
of nearest-neighbour sites z of a substitutional atom. Unfortunately, an exact and
general solution for the percolation on graphs is not known so far and hence this
problem has to be treated with numerical methods. However, it may tentatively
be concluded from these considerations that the significant increase in activation
energy from VF to MO feldspar is caused by a transition from percolated to non-
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percolated diffusion that leads to a strong reduction of the correlation factor f that
is related to Na self-diffusion. The correlation factor f in binary or multicomponent
alloys has an effect on the activation energy according to ∆H = Hm + 1

2Hf
FP + Qf ,

where Hm is the migration enthalpy of atomic jumps, Hf
FP is the Frenkel pair

formation enthalpy and Qf = −kB ln f/ ln 1/T holds. The present thesis therefore
has a focus on the calculation of correlation effects, which will be systematically
addressed using the example of a simple cubic random alloy in Chapters 6, 7 and 8
and more specifically for the alkali feldspar structure in Chapters 6 and 9.
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K-rich single-crystal alkali feldspar

Most studies on alkali diffusion in alkali feldspar concern the sodium component
because of the availability of the radioisotope 22Na with a half-life of t1/2 = 2.6 a and
its suitability for the radiotracer method (see, e.g., the review by Cherniak [55]).
Potassium self-diffusion has hitherto been investigated by Lin and Yund [6] by using
the long-lived radioisotope 40K

(
t1/2 = 1.3 × 109 a

)
and by Foland [8] by using the

stable isotope 41K (natural abundance of 6.7 %). In both studies, a bulk-exchange
method was employed to investigate grains from crushed feldspar. An advantage of
this method is that there is no need for large and almost perfect single-crystal alkali
feldspar samples, which are rare in nature and cannot be synthesised. However,
this method is unable to provide any information about tracer depth distributions
and suitable diffusion models must therefore be presumed, making it non-sensitive
to inherent features such as diffusion anisotropy or structural inhomogeneities.
Moreover, these minerals have not been investigated by impedance spectroscopy
and therefore, these diffusion coefficients cannot be compared to ionic conductivity
data.
The diversity of investigated alkali feldspars and applied methods has made it dif-
ficult to reliably link existing studies with each other and to discuss the underlying
mechanisms of alkali diffusion based on sound arguments. So far, it was found that
activation energies of K and Na self-diffusion clearly differ so that the ratio of
diffusion coefficients D̂Na/D̂K

1 is approximately 1000/1 at 1000 ◦C [17] for the K-
rich orthoclase and approximately 600/1 at 800 ◦C [9] for the Na-rich albite. Frenkel
pairs are likely to be the major point defects in the feldspar structure because the
high Si-O bonding energies make Schottky defect formation extremely unfavourable
[17]. In general, the vacancy mechanism and the interstitialcy mechanism should

1To reduce the number of indices, the common asterisk for labelling tracer diffusivity (D∗) has
been replaced by the ‘hat’ symbol (D̂) throughout this work.
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therefore be considered as predominant in alkali diffusion processes. In the latter
mechanism, an interstitial NaI or KI atom moves by ”pushing” a substitutional
alkali ion to a neighbouring interstitial site. A further crucial diffusion mechanism is
based on direct interstitial jumps of an interstitial ion to a neighbouring interstitial
site without exchanging with substitutional atoms of the alkali sublattice.
Self-diffusion of atoms in binary (Na, K sublattice) or multicomponent systems is
generally affected by correlation effects among individual atomic movements. The
jump direction of a labelled self-atom (tracer) depends on the relative position of
the point defect next to it. After a first exchange, the atom is still in direct vicinity
to the point defect and therefore has an increased probability for a consecutive
jump in reversed direction. This geometric correlation effect is influenced by the
diffusion mechanism as well as the pertaining crystal structure and can be expressed
by correlation factors f in the range 1

3 ≤ f ≤ 1 [19]. In addition, the distribution of
Na and K atoms in the environment of a tracer atom causes a physical correlation
effect that arises from differences in the temperature dependent jump frequencies
(wK/wNa ≪ 1) of these components. Influenced by chemical composition and the
diffusion mechanism this correlation is potentially strong since both components
share the same sublattice. Below a certain site fraction of Na, commonly referred
to as percolation threshold pc, diffusion pathways of the faster moving ions (Na)
lose their percolation ability and the Na diffusion coefficient becomes dependent on
the jump frequencies of the slower ions (K). A quantitative analysis of correlation
effects (e.g. through Monte Carlo simulations which will be presented in Chapters
6, 7, 8 and 9) is an approach to unravel the underlying diffusion mechanisms of
alkali diffusion in alkali feldspar, but requires the most precise experimental results
available.
The present results on potassium self-diffusion are based on direction-sensitive
serial sectioning of gem-quality single-crystal alkali feldspar and the use of 43K(
t1/2 = 22.3 h

)
as radiotracer. A natural sanidine from Volkesfeld (VF), Germany,

that was also investigated in the previous Chapter 3 about Na self-diffusion in
the same crystallographic direction, i.e., normal to (001), and in one recent study
on ionic conductivity by El Maanaoui et al. [56], as well as for ionic conductivity
measurements that will be presented in Chapter 5 was selected as sample material.
This allows us to compare alkali transport properties with ionic conductivity in a
reliable way. The present study has been published in Physics and Chemistry of
Minerals, 2017 [57].

40



4.1. Experimental procedures

4.1. Experimental procedures

4.1.1. Sample material

In the present chapter, radiotracer measurements of the 43K-diffusion in the frame-
work silicate alkali feldspar (K,Na) [AlSi3O8] are demonstrated. The investigated
material is a natural sanidine from the Eifel, Germany, that was also used for
Na self-diffusion measurements (cf. Chapter 3) and is denoted as Volkesfeld (VF)
feldspar. For alkali feldspar from the VF provenance the detailed chemical analysis
was given by Hofmeister and Rossman [58] and by Demtröder [33] based on electron
microprobe analyses (EMPA). The chemical composition of the alkali sublattice
is of special interest when K and Na self-diffusion and the diffusion correlation
effects pertaining to this are interpreted. Based on the EMPA data the K to cation
ratio is approximately CK = cK/ (cNa + cK + cBa + cFe) = 0.83 (and accordingly
CNa = 0.15) , where C is a site fraction of atoms and c is a concentration in atoms
per volume.
The sample pieces where cleaved from a large single crystal along the (001) cleavage
plane, cut to a size of approximately 8 mm in diameter and 2 mm in height,
pre-polished by hand on a diamond polishing disc and finally polished on a silk
cloth with a 1 µm diamond powder suspension. The samples did not intendedly
undergo any thermal treatment2 before the 43K implantations were carried out.
After completion of the radiotracer experiments the samples were examined by
energy-dispersive X-ray spectroscopy (EDS) for signs of Na-K interdiffusion. Since
only a limited volume of the samples was destructed by radiotracer depth-profiling,
the near-surface chemistry could be measured and compared to the chemistry at
the floor of the etch crater. The resulting EDS maps showed no traceable changes
in Na and K concentrations, which indicates that the self-diffusion experiments
were not influenced by interdiffusion of these components with the ambience.
For further validation, the sample that was annealed at the lowest temperature,
i.e., 1021 K, was subjected to depth-profiling by secondary ion mass spectrometry
(ToF-SIMS) at the TU Vienna. This measurement showed no considerable changes
in sample chemistry along the investigated depth range. However, ToF-SIMS

2 [59] reported an unusual fast Al-Si exchange of the VF feldspar compared to other alkali
feldspars when heated dry. This effect disappears when the VF feldspar is heated at elevated
temperatures ≥ 1050 ◦C for several days. In the present study, any thermal pre-treatment is
refrained in order to investigate the VF feldspar under its natural condition, just as in the
previous measurements of Na diffusion.
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measurements of the 1173 K sample revealed a considerable depletion of Na towards
the sample surface whereas K, Al and Si signals remained almost constant over the
investigated depth range. By further EDS measurements it could be demonstrated
that this observation is probably related to the fact that the investigated spot
was in direct contact to a Macor ceramic sample holder during an earlier diffusion
experiment using the opposite side of the same sample, and hence this finding does
not relate to the sample chemistry within the volume that was examined by the
radiotracer experiments.

4.1.2. Implantation and radiotracer experiments

Implantations of 43K with an energy of 50 keV were carried out at the radioactive
ion-beam facility ISOLDE at CERN with doses of 4.0 × 1011 atoms cm−2. The
collimated ion beam was cut to a size of 5 mm × 5 mm and γ-ray spectra
showed no contamination with other γ-emitting isotopes. The corresponding
projected range x0 of 43K in alkali feldspar was determined with an implanted,
but otherwise thermally untreated control sample (the same method as for the
diffusion measurements was applied and is described below). The measured depth
distribution is fairly well described by a Gaussian function

C (x) = C0 exp
(

−(x − x0)2

2σ2

)
(4.1)

with a peak concentration C0 at x0 = 54 nm and a mean width of σ = 26 nm.
In Fig. 4.1 this result is compared to the calculated ion distribution in feldspar
obtained by the SRIM software package (version 2013.00) developed by Ziegler et
al. [60]. The calculated distribution shows a Gaussian shape and the corresponding
values for x0 and σ (cf. Tab. 4.1) fall closely to those obtained by fitting to the
experimental data. The peak concentration C0, however, slightly differs but it is
used as a free fitting parameter in the analysis that is presented in Section 4.2. After
implantation, each sample was annealed at temperatures between 1169 K to 1021 K
for times between 20 min and 3.2 h in an integral high vacuum3 diffusion facility that

3Vacuum conditions of p ≤ 1 mPa were maintained during the experiments for ion-beam
operation in the employed integral diffusion chamber comprising furnace heating, sputter-
sectioning and radioactivity counting. Under these conditions, the sample material was also
protected from oxidation during high temperature treatment.
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Figure 4.1.: Concentration of implanted 43K as a function of penetration depth obtained
by serial sectioning (circles) and by SRIM simulations (triangles) for an implantation
energy of 50 keV. A Gaussian function (Eq. 4.1) was fitted to the data points (lines) to
determine the mean ion range x0 and implantation width σ. The area of both distributions
was normalized to the ion dose of 4 × 1011 atoms cm−2.

was constructed at the University of Saarbrücken [61]. Sample temperatures were
continuously recorded to determine the effective annealing time (21 min to 192 min,
cf. Tab. 4.1) during each experiment. After thermal treatment, the samples were
sectioned by ion-beam sputtering with a step size of 24 nm to 90 nm, depending on
the predefined sputtering time per section. Each section was separately collected
on a Kapton film and transported to a NaI-detector to determine its γ-ray count
rate. The time between implantation and detection was less than three half-lives
in all cases. An appropriate short-lived correction [62] for 43K

(
t1/2 = 22.3 h

)
was

applied to each γ−ray spectrum to determine the relative tracer concentration.
The diffusion profiles, i.e., the relative tracer concentrations as a function of
depth x, were then obtained by measuring the total profile depth. This was done
by mechanical surface profiling of the samples after sputtering.
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Table 4.1.: Diffusion coefficients of 43K in alkali feldspar normal to (001) according to
fitting of Eq. 4.2 to the diffusion profiles (cf. Fig. 4.2). The initial tracer distribution after
implantation is given by the Gaussian function (Eq. 4.1) with the parameters x0 and σ.

T / K t / s x0 / nm σ / nm k D̂K / (m2/s)
1169 1244 50.7 19.7 -0.96 (1.9 ± 0.6) × 10−16

1123 1847 50.7 19.7 -0.94 (1.0 ± 0.4) × 10−16

1073 3795 50.7 19.7 -0.95 (4.2 ± 1.2) × 10−17

1021 11,540 50.7 19.7 -0.94 (5.8 ± 1.5) × 10−18

4.2. 43K diffusion results

The results of four 43K depth distributions in alkali feldspar after diffusion
annealing are presented in Fig. 4.2 together with results for the as-implanted sample
(cf. Fig. 4.1). To prevent overlapping and intersecting data, the measured profiles
were individually shifted along the ordinate. It can be seen from the figure that
the diffusion length is at least ten times larger than the mean implantation depth
x0 = 54 nm, in all cases. Consequently, the uncertainty in x0 and σ (cf. Fig. 4.1)
has negligible effects on the deduced values of D̂K. Furthermore, a characteristic
decline in tracer concentration towards the surface is observed in all experiments.
It seems less likely that this effect is based on a supersaturation of vacancies
due to implantation damage, since at the high temperatures employed a virtually
immediate equilibration is expected. A suitable solution of the diffusion equation
should converge to the initial tracer distribution described by Eq. 4.1 for negligibly
short annealing times t. The solution used for fitting to all diffusion profiles is given
by [63]

C (x, t) = C0/2(
1 +

(
2D̂t/σ2

))1/2

⎡⎣erfc

⎛⎜⎜⎝− (x0/2σ2) −
(
x/4D̂t

)
√

(1/2σ2) +
(
1/4D̂t

)
⎞⎟⎟⎠ exp

(
− (x − x0)2

2σ2 + 4D̂t

)

+k erfc

⎛⎜⎜⎝− (x0/2σ2) +
(
x/4D̂t

)
√

(1/2σ2) +
(
1/4D̂t

)
⎞⎟⎟⎠ exp

(
− (x + x0)2

2σ2 + 4D̂t

)⎤⎦ ,

(4.2)
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Figure 4.2.: Diffusion profiles of 43K in alkali feldspar normal to (001) for different
annealing temperatures T . Solid lines represent fittings to the data points according to
Eq. 4.2. To enhance visibility of all slopes the relative concentrations are shifted along
the ordinate. The 43K distribution as-implanted is shown for comparison (open circles).

where x is a depth normal to the surface, C0 is a maximum surface concentration
of the implantation profile and D̂ is a self-diffusion coefficient. The parameter k

accounts for the fact that the surface can act as a perfect reflector for the atoms
(k = +1) or as a perfect sink (k = −1), or as a boundary with mixed reflector/sink
properties (−1 < k < 1). The derived diffusion coefficients are listed in Tab. 4.1
together with the corresponding parameters x0 and σ characterizing the initial
tracer distribution. According to the concentration decline at the surface, the
deduced k-values are as low as −0.95 and the surface is almost a perfect sink
for 43K. The temperature dependence of self-diffusion is commonly described by
the Arrhenius relation

D̂K (T ) = D0 exp
(

−∆H

kBT

)
, (4.3)

where D0 is a pre-exponential factor, kB is the Boltzmann constant and ∆H denotes
an activation energy. In Fig. 4.3, the resulting K self-diffusion coefficients D̂K

normal to (001) are shown on a logarithmic scale as a function of 1/T . It can
be seen that the D̂K-values are fairly well described by the Arrhenius equation
with ∆H = (2.4 ± 0.4) eV and log10 (D0/m2s−1) = −5.3 ± 1.7. The relatively large
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4. Potassium self-diffusion in a K-rich single-crystal alkali feldspar

Figure 4.3.: Arrhenius plot of the diffusion coefficients of 43K in alkali feldspar
from Volkesfeld (VF), Germany (bars). Corresponding results for the diffusion of 22Na
(triangles) are included for comparison [64], as well as the Arrhenius relation for the 41K
diffusion from [8] in a more K-rich orthoclase from Benson Mines (BM), USA (solid line,
based on a cylindrical grain model).

uncertainties in ∆H and D0 = 5×10−6 m2/s relate to the fairly narrow temperature
range (1021 − 1169 K), which is constrained both at high and low T by the specific
conditions of the experiments (short half-life time, lower limit of annealing time,
surface acting as a sink). However, the present results for D̂K are sufficiently reliable
and accurate to compare with Na self-diffusion data pertaining to the same alkali
feldspar and the same crystallographic direction as will be done in the following
sections and to data on ionic conductivity that will be presented in Chapter 5.

4.2.1. Comparison of Na and K self-diffusion

In Fig. 4.3, the Na self-diffusion coefficients D̂Na for Volkesfeld feldspar normal to
(001) from Chapter 3 are included for comparison. It can be seen that D̂Na ≫ D̂K

is fulfilled over the whole investigated temperature range and that, e.g., at 1173 K
the ratio D̂Na/D̂K derived from the fitted Arrhenius equation is 1230/1. Since
both alkali components share the same sublattice, this finding suggests that
the pertaining atomic jump frequencies are greatly different, i.e., wNa ≫ wK.
Under this assumption, point-defect-based diffusion mechanisms are subject to
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significant atomic correlation effects, especially when a K-rich feldspar such as
VF is considered. This conclusion can be understood as follows: Below a certain
Na site fraction referred to as percolation threshold pc, long-range diffusion via
the vacancy or the interstitialcy mechanism also requires atomic jumps via slow
substitutional K atoms. The diffusion coefficient D̂Na is then coupled to D̂K because
both components share the same type of defect acting as a diffusion vehicle.
Regardless of the ratio wNa/wK this results in an upper limit for the ratio D̂Na/D̂K.
For a vacancy-based diffusion model in alkali feldspar, a previous Monte Carlo (MC)
study by Wilangowski and Stolwijk [64] determined this ratio to be D̂Na/D̂K ≤ 3.12
for a VF-like K site fraction (cf. Chapter 6). This finding is in clear contrast with the
experimental data presented in Fig. 4.3 and rules out the possibility that both Na
and K diffusion are controlled by vacancies. It can therefore be predicted that the
major diffusion mechanism of Na must be less correlated than a vacancy diffusion
mechanism and that the percolation threshold pertaining to this mechanism is at
a K site fraction which is beyond that of a VF-like feldspar.
An alternative interpretation of the greatly different diffusivities of Na and K is that
Na diffusion occurs primarily via a direct interstitial mechanism, which is related to
a correlation factor of f = 1. It is therefore important to find experimental evidence
for the order of the correlation factor f . The comparison of self-diffusion data with
data on ionic conductivity gives direct access to the so-called Haven ratio HR and
allows for a reliable distinction whether a direct interstitial diffusion mechanism
or a diffusion vehicle based mechanism predominantly occurs. The corresponding
conductivity measurements and analysis are presented and discussed in Chapter 5.

4.2.2. Concentration dependence of K self-diffusion
41K diffusion experiments were reported by Foland [8] who used a natural orthoclase
from Benson Mines (BM), USA, with a K site fraction that is CK ≈ 0.94 and
therefore, different from VF with CK = 0.83. The activation energy pertaining
to K self-diffusion in BM is ∆H = 2.95 eV, which is somewhat above the value
of 2.4 eV that is obtained for VF in the present work. However, this difference is
not significant because of the appreciable uncertainties in ∆H both in this work
(±0.4 eV) and in the work of Foland (±0.2 eV, based on an estimation from his
reported data). A direct comparison between the K diffusion coefficients of both
studies at 1073 K (this is the only coincident temperature) gives D̂K,VF/D̂K,BM ≈
1.8 (cf. Fig. 4.3). It should be noted that Foland’s evaluation of D̂K,BM is based on
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two different feldspar grain geometries, a spherical and a cylindrical one, leading
to the relationship Dcylindrical ≈ 2.2 Dspherical (and hence D̂K,VF/D̂K,BM ≈ 4.0 for
the spherical grain model). The following discussion is based on the values from
the cylindrical diffusion model.
The good agreement between the two D̂K values observed for the VF (CK = 0.83)
and BM (CK ≈ 0.94) feldspars requires further explanations of the concentration
dependent effects that control the K self-diffusion. Two major effects are considered:
Under the assumption of a non-collinear interstitialcy diffusion mechanism the
concentration dependence of correlation factors fK may be estimated from a Monte
Carlo study (cf. Chapter 8 and [65]). The slower moving K ions are subject
to correlation effects with a weak concentration dependence in the composition
range from CK = 0.83 to 0.94, and it can be found fK,VF/fK,BM ≈ 2/1. A
second effect on concentration dependence is the concentration of self-interstitials
Ci acting as diffusion vehicles. In a recent study about ionic conductivity in
feldspar by el Maanaoui et al. [56] it was shown that the concentration of Na self-
interstitials CNa,i dominates over K self-interstitials CK,i by orders of magnitude
in the composition regime under discussion. It can therefore be estimated Ci ≈[
CNa exp

(
GFP

Na/kBT
)]1/2

, where GFP
Na is a virtual CNa-independent free enthalpy of

Frenkel pair formation and find CVF
i /CBM

i =
(
CVF

Na /CBM
Na

)1/2
= (0.15/0.06)1/2 ≈

1.6. Combination of the two effects gives D̂K,VF/D̂K,BM ≈ 3, which is in sufficient
agreement with the experimental results when large uncertainties are considered.
However, it should be noted that the composition of feldspar may have an effect on
atomic potentials and hence on atomic jump frequencies ω, which is not considered
here.

4.3. Summary and conclusions

This chapter examined self-diffusion of K in natural alkali feldspar from Volkesfeld,
Germany normal to (001) by the radiotracer method after implantation with 43K.
It was shown that within the investigated temperature range, i.e., from 1169 K to
1021 K, the diffusivity D̂K is described by an Arrhenius equation with activation
energy ∆H = (2.4 ± 0.4) eV and the pre-exponential factor log10 (D0/m2s−1) =
−5.3 ± 1.7. The 43K diffusion coefficients were compared to those of 22Na in
the same alkali feldspar and the same crystallographic direction (cf. Chapter 3).
The diffusivity ratio D̂Na/D̂K is 1230/1 at 1173 K, which is in good agreement
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with previous observations from Behrens et al. [17]. From this finding and from
previous MC simulations of correlation effects pertaining to a vacancy mechanism
in alkali feldspar by Wilangowski and Stolwijk (see Chapter 6 and [64]) it can
be concluded that the Na self-diffusion cannot be controlled by a vacancy type of
diffusion mechanism, but rather by an interstitialcy (or direct interstitial) diffusion
mechanism.
The reported D̂K,VF results from this study agree fairly well with D̂K,BM data that
were reported by Foland [8] for a similar natural orthoclase but with a higher
K site fraction of CK ≈ 0.94. The virtual independence of D̂K from the K site
fraction cannot be explained a priori because the following effects account for a
concentration dependence on K self-diffusion:
(i) The concentration of self-interstitials Ci is primarily determined by the
concentration of interstitial Na atoms CNa,i. For a virtual CNa-independent free
enthalpy of Frenkel pair formation a positive correlation between the K diffusivity
D̂K and the Na site fraction exists.
(ii) Considering a non-collinear interstitialcy diffusion mechanism, the correlation
factor of K self-diffusion fK is positively correlated with the Na site fraction.
(iii) The volume gain of the unit cell with decreasing Na site-fraction (cf.
Section 3.3) results in a negative correlation between D̂K and the Na site-fraction.
In the investigated composition regime, however, this relation is hypothetically
small and cannot be quantified by simple elastic models.
The effects (i) and (ii) were estimated and in total only minor differences of D̂K

result from the differing K site fractions of the two compared alkali feldspars.
Beyond that, these small differences fully comply with the measured values of
D̂K,VF and D̂K,BM at a temperature of 1073 K when the uncertainties that result
from the choice of grain model in Foland’s analysis are considered.
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5. Ionic conductivity in single-crystal
alkali feldspar

The previous Chapters 3 and 4 focused on the self-diffusion of Na and K ions in
alkali feldspar. Another property which is intimately related to self-diffusion is the
dc ionic conductivity σ, which comprises the joint contributions of Na+ and K+

ions to overall charge transport. A combination of reliable data on mass and charge
transport may lead to a consistent physical picture of the diffusion mechanism as
has been obtained, e.g., for some alkali halide crystals [18, 19].
The dc ionic conductivity in alkali feldspar for various compositions has so far been
systematically observed primarily for synthesized minerals. Published work [66, 67]
concerns the conductivity of alkali feldspar at high pressure between 873 K and
1173 K in hot-pressed sintered solid solutions covering the full composition range
from albite to K-feldspar. Hu et al. have found a monotonic conductivity increase
with increasing Na content of about a factor of 5 from Or100 to Ab100 [66, 67]. The
temperature dependence for each composition is well described by an Arrhenius
equation yielding activation energies between 0.84 eV (Ab100) and 0.99 eV (Or100).
However, the polycrystallinity of the samples with grain sizes below 74 µm (200
mesh) obscures any anisotropy of σ. Other complications inherent to this study
[66, 67] are possible effects because of non-uniform concentrations, the presence of
grain boundaries, and high-pressure conditions during the measurement (1.0 GPa).
The ionic dc conductivity of two natural and K-rich alkali feldspars has been
investigated in a recent study [56] in the temperature range from 573 K to 1173 K
and in the directions normal to (001) and normal to (010). El Maanaoui et al. used
the same gem-quality crystals as in the present tracer diffusion studies referred
to as VF (Or83Ab15Cs1, cf. Chapters 3 and 4) and RK feldspar (Or71Ab26Cs3, cf.
Chapter 3). For most accurate and reliable results two measuring facilities were
employed and consistent results have been reported showing a linear Arrhenius
behaviour over the full range of temperature with activation energies close to 1.2 eV.
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The composition dependence is weak but a remarkably pronounced anisotropy is
observed with σ data normal to (001) that exceed σ normal to (010) by up to one
order of magnitude. In contrast to this study, radiotracer diffusion measurements
of Na self-diffusion show only a weak anisotropy between these directions (see
Chapter 3). A complexity inherent to the ionic conductivity measurements is that
the transport of other ions than Na+ and K+, e.g., H+ adds to the total conductivity.
The amount of residual water should be carefully monitored because even trace
amounts increase the electrical conductivity [68, 69, 70, 71]. An alternative
approach is the pre-annealing of the minerals at elevated temperature to avoid
any water related influence. Due to the absence of the aforementioned methods it
has been discussed whether the increased conductivities normal to (001) may result
from effects of residual water in this study [56]. Although sound arguments against
this assumption have been presented the main motivation of the present study lies
in the strict exclusion of any possible effects of water on ionic conductivity.
In this chapter, the ionic dc conductivity of gem-quality alkali feldspar from
Volkesfeld, Germany (VF) in the orientation normal to (001) will be presented
after the feldspar was pre-annealed at 1323 K for 4 days. Data were obtained from
ac impedance spectroscopy at temperatures varying from 673 K to 1053 K. It will
be shown that the pre-annealing procedure significantly reduces the conductivity
when compared to an untreated sample. A comparison with 22Na and 43K tracer
diffusion coefficients (cf. Chapters 3 and 4) based on the Nernst-Einstein equation
will provide evidence for the dominant role of Na+ ions in mass and charge transport
at the investigated feldspar composition.

5.1. Experimental procedures

5.1.1. Sample material and preparation

The investigated mineral was a gem-quality sanidine from the Eifel (Germany),
which originated from the locality Volkesfeld (VF). The same optically clear
single-crystal mineral has been used in the previous chapters for self-diffusion
measurements of Na and K (cf. Chapter 3 and 4). The chemistry and microstructure
of the VF feldspar was extensively analysed in previous studies by the Vienna group
[11, 12] using scanning electron microscopy and electron microprobe analysis. The
selected feldspar proves to be chemically homogeneous within the resolution of
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the applied methods and is free of twins, exsolutions, second phase precipitates,
microcracks or any other structural flaws or heterogeneities. A detailed chemical
analysis of the employed feldspar has been reported earlier [12, 33] and is presented
in Section 2.1. The compositions of the VF sanidine is Or83Ab15Cs1 with minor iron
contents of about 0.1 to 0.2 weight percent Fe2O3. On the tetrahedral sites, Al and
Si are highly disordered with 2t1 = 0.61 (cf. Fig. 2.3) [32]. Here 2t1 = 2t2 = 0.5
means total disorder and 2t1 = 1 reflects rigorous order. In the latter case, all Al
ions are uniformly accommodated on T1 tetragonal sites, whereas the other half of
the T1 tetrahedrons and all T2 sites are occupied by Si. For details on the crystalline
structure of alkali feldspars the reader is referred to the review of Kroll and Ribbe
[72]. The mass density determined by the Archimedes method was obtained as
2.54 gcm−3 for single-crystal VF, in good agreement with literature data [33].
Pieces of single-crystal feldspar were oriented on an X-ray diffractometer and
subsequently cut into plane-parallel plates of ∼ 0.6 mm thickness and with (001)
surfaces. Disc-like samples were machined to an octagonal shape of about 8 mm
diameter to approximate an ideal cylindrical geometry. Both faces were polished
with diamond paste on a silk cloth down to a finish of 1 µm using a rotary polishing
machine. The samples were sealed in a quartz ampule under Ar atmosphere and
pre-annealed at 1323 K for 4 days. This is particularly important for two reasons:
(i) Freer et al. reported an unusual fat Al-Si exchange for the VF sanidine compared
to other K feldspars. After such pre-anneal the Al-Si exchange is as slow as the rate
in other feldspars [59]. However, this procedure was omitted in the present Na and
K self-diffusion studies. (ii) To preclude any influence of H on the measurements
residual water must be effectively removed prior to the impedance analysis because
the water content was not monitored in the present work.
A platinum layer of about 100 nm was deposited on both sample faces to warrant
optimal electrical contact to the electrodes during the conductivity measurements.
This treatment was carried out in a magnetron sputtering system (Bestec GmbH)
under ultra-high vacuum conditions. The sample was protected by a cover with
circular aperture of 5 mm in diameter during the sputtering procedure to produce
well-defined Pt contacts in the centre of the surfaces. This was essential to avoid
short-circuiting of the two surfaces through Pt that would otherwise also be
sputtered on the sample sides.
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5.1.2. Electrochemical impedance spectroscopy (EIS)

Figure 5.1.: Schematic view of the sample assembly used for the impedance spectroscopy
analysis, edited after [73].

The EIS facility shown in Fig. 5.1 consists of an ac signal generator with an
integrated impedance analyser (HP Agilent 4192A LF), a movable resistance-heated
furnace with temperature controller (Eurotherm), a sample holder with plan-
parallel metal electrodes, and a computer with Novocontrol WinDeta software for
measurement control and data acquisition. The W disc electrodes with a thickness
of 3 mm and a diameter of 9 mm were placed on each end of the sample (Pt
coated) and a 0.8 mm Cu wire was connected with each electrode. Temperature
was measured by a Ni/NiCr (type K) thermocouple, the end of which was placed
in direct contact with one of the electrodes, which are electrically isolated from
the rest of the assembly by boron nitride disks. Because the assembly (cf. Fig. 5.1)
consists of temperature-resistant metal parts the measurement had to be performed
under inert gas atmosphere, which was established by a continuous flow of argon
inside a quartz-tube encapsulation [74]. After completing the sample assembly, it
was heated to 673 K and held for 1 h before the conductivity measurements. The
measuring run started at 673 K with a constant ramp of 0.5 K/min, which was
maintained up to the highest temperature of 1053 K. Impedance measurements
were done under continuous heating at set-point intervals of 10 K with an applied
rms voltage amplitude of 1.0 V. Because a full frequency scan in the range between
5 Hz and 2 MHz only takes about 1 minute, the T -variation within one measurement
is well within 1 K. The completed heating cycle was immediately followed by a
cooling cycle at the same rate of T -change to the lowest temperature of 673 K. This
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Figure 5.2.: Real part of the conductivity σ′ as a function of the ac frequency ω from
EIS analysis of VF feldspar normal to (001). The plotted data show monotonic behaviour
referring upon heating from 673 K to 1053 K

was followed by a second heating cycle without any manipulation of the sample
assembly. Electrochemical impedance spectra were fitted using an equivalent circuit
contained in the Zview software.

5.2. Analysis and results

5.2.1. Frequency dependence

The impedance spectra obtained from EIS measurements for the VF feldspar
normal to (001) at various temperatures between 673 K and 1053 K are shown as
Bode plots in Fig. 5.2. At all temperatures, the double-logarithmic plots reveal a
broad plateau-like behaviour of the real part of the complex conductivity σ′ (ω)
at the low-frequency side, which reflects long-range ionic transport. At higher
frequencies, a dispersion region of positive correlation between σ′ and the frequency
ω is observed for all temperatures. It can be clearly seen from Fig. 5.2 that σ′

increases with temperature for fixed frequencies.
Figure 5.3 shows examples of typical Nyquist plots for temperatures between 673 K
and 1023 K. The appearance of a single arc at each temperature is consistent
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Figure 5.3.: Nyquist plots representing impedance spectra of VF feldspar normal to
(001), as measured at various temperatures between 873 and 1023 K. Z ′ and Z ′′ are the
real and imaginary part of the complex impedance for ac frequencies between 5 Hz and
2 MHz.

with the absence of grain boundaries and with a minor role of electrode effects.
All Nyquist plots were analysed by fitting of an equivalent circuit model shown
in Fig. 5.4 using the Zview software. The capacitance behaviour of the sample
is simulated with a constant phase element (CPE), with the impedance of such
element given by

ZCPE = 1
Q (iω)α , (5.1)

where Q has the numerical value of the admittance at ω = 1 rad/s and 0 ≤ α ≤ 1.
In the equivalent circuit model R1 is the sample resistance, CPE1 represents the
sample capacitance and CPE2 is the capacitance of the sample-electrode interface.
A summary of the findings for the first heating cycle is presented in Tab. 5.1.
Although not the full range of the Nyquist plots is accurately represented by fitting
of this simple circuit model (solid lines in Fig. 5.3), it is fully suitable and accurate
to analyse the sample resistance R1. This is reflected by a good agreement between
the plateau values of the conductivity σ′ and the extracted conductivities from the
corresponding circuit model analysis.

56



5.2. Analysis and results

Figure 5.4.: Equivalent circuit model used for fitting to EIS data consisting of the
sample resistance R1, the sample capacitance represented by the constant phase element
CPE1 and the interface capacitance CPE2.

Table 5.1.: EIS parameters for the first heating cycle of VF feldspar obtained from using
the equivalent circuit shown in Fig. 5.4.

T/K R1 / MΩ Q1 / S sα1 α1 Q2 / S sα2 α2

673 86.9 45.6 × 10−12 0.80 3.4 × 104 1.00
723 20.7 60.2 × 10−12 0.80 3.5 × 105 1.00
773 59.3 × 10−1 89.1 × 10−12 0.78 2.3 × 10−7 1.00
823 19.7 × 10−1 12.1 × 10−11 0.77 1.1 × 10−6 0.73
873 76.8 × 10−2 14.2 × 10−11 0.77 5.9 × 10−6 0.34
923 34.7 × 10−2 26.8 × 10−11 0.74 1.2 × 10−5 0.32
973 17.5 × 10−2 70.7 × 10−11 0.68 2.0 × 10−5 0.35
1023 98.1 × 10−3 19.2 × 10−10 0.63 2.0 × 10−5 0.56
1053 69.3 × 10−3 26.1 × 10−10 0.62 2.1 × 10−5 0.62
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Figure 5.5.: Comparison of the dc conductivity in VF feldspar as a function of inverse
temperature for consecutive measurement cycles of the same sample. Data result from
EIS analysis upon continuous heating from 673 K to 1053 K, which was immediately
followed by a continuous cooling cycle down to 673 K and a second heating cycle up to
1053 K.

5.2.2. Temperature dependence

The temperature dependence of the dc conductivity σ with an interval of 10 K for
the consecutive heating, cooling and heating cycles is presented in Fig. 5.5. It can be
seen that the variation between the three cycles at nominally the same temperature
is within ∼ 10 %. In Fig. 5.6, the results are averaged over all cycles and σT is shown
on a logarithmic scale versus 1/T with an interval of 20 K. This accounts for the fact
that – according to the Nernst-Einstein equation – σT rather than σ is proportional
to a diffusivity. In addition, it is commonly assumed that diffusivities represent
proper T activated processes which obey the Arrhenius law with a constant (T
independent) pre-exponential factor. Indeed, the EIS data (triangles) are well fitted
by the Arrhenius expression (solid line)

σT = A exp
(

−∆H

kBT

)
, (5.2)
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Figure 5.6.: Arrhenius plot of σT normal to (001) in VF feldspar (triangles). Data
result from averaging over three EIS analysis cycles of the same sample (heating, cooling
and heating, cf. Fig. 5.5). For better clarity, only every second data point is shown. The
solid line represents a fit of the Arrhenius equation (Eq. 5.2) to the data points. For
comparison, the reported results from El Maanaoui et al. [56] for σT in the same VF
feldspar and direction but without thermal pre-treatment and from Hu et al. [67] for a
polycrystalline feldspar with a similar K site fraction CK = 0.8 are shown (dashed lines).

where A is a pre-exponential factor, kB is the Boltzmann constant and ∆H denotes
an activation energy. Least-square fitting of the logarithmic form of Eq. 5.2 to σT

yields

∆H = (1.226 ± 0.004) eV ,
ln
(
A/m2s−1

)
= 3.49 ± 0.07 .

The results are compiled in Fig. 5.6 with σT data from two recent studies by Hu
et al. [67] and by El Maanaoui et al. [56] (dashed lines). Hu analysed a synthesized
and hence polycrystalline feldspar with the composition Or80Ab20, similar to that
of VF feldspar and the study does a priori not reveal a hypothetical anisotropy. The
results fall close to those of the present study, although a slightly smaller activation
energy of ∆H = (0.99 ± 0.03) eV is reported.
El Maanaoui investigated the same VF feldspar in the direction normal to (001) as
in the present study, but his feldspar underwent no pre-annealing procedure. It can
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be seen from Fig. 5.6 that the activation energies almost perfectly agree, whereas his
reported σT data exceeds the present data by a factor of ∼ 2 over the investigated
range of temperature. This is especially interesting since the same impedance
analyser, sample assembly and heating/cooling procedures were employed in both
studies. A motivation of the present study is to clarify whether H diffusion has a
significant influence on total conductivity in feldspar, which would lead to a more
complex situation for the interpretation and comparison between EIS analysis and
Na self-diffusion data. In detail, the following aspects have to be considered:
(i) Both samples were coated with a ∼ 100 nm Pt layer. However, in El Maanaoui’s
study the Pt layer covered the whole sample and thus had to be removed from
the side surface to avoid direct electrical contact between the two electrodes. In
contrast, disks of 5 mm in diameter were sputtered onto the centre of the two
plane-parallel sample surfaces in the present study.
(ii) El Maanaoui’s samples were used consecutively for several EIS analyses because
of the limitation of available sample material. It may therefore have suffered from
first approaches because in-diffusion of the electrode material into the bulk sample
could have an effect on conductivity. However, the surface layers of these samples
were subsequently grinded and polished after these preliminary experiments.
(iii) In El Maanaoui’s study, the content of water in the minerals stays undeter-
mined and no high temperature treatment was performed prior to the EIS analysis
[56]. However, the high temperatures that occurred during preliminary heating and
cooling cycles prior to the final measurement should be sufficient to remove residual
water from the sample and it is reported that water is therefore expected to have
a negligible effect on conductivity. Beyond that, it might be expected that the
H+ charge transport is connected to a different activation energy than Na and K
transport and thus kinks or curvatures in the Arrhenius plot should be expected
when a large temperature range is observed.
(iv) The thermal pre-treatment at 1323 K for 4 days has an influence on the Al-Si
ordering in the feldspar sample of the present study. Although the VF feldspar is
already highly disordered (2t1 = 0.61 [32]) a change in the ordering state might also
have an influence on the Na diffusion but this effect has so far not been investigated
systematically.
In total, the disparity of the two studies may therefore not be given by a single
convincing reason, such as different water contents.
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5.2. Analysis and results

5.2.3. Comparison of mass and charge transport

For alkali feldspar, it is assumed that positively charged monovalent Na+ and K+

ions form a binary sublattice within a negatively charged rigid silicate framework.
Beyond that, it is assumed that all other impurity ions in VF feldspar (e.g., Ba2+,
Sr2+) have low, essentially negligible mobility and do not significantly contribute
to the conductivity. These effects can be described through the Nernst-Einstein
equation by the charge or conductivity diffusivity Dσ, i.e., [75]

Dσ = kBT

e2Nion
σ = CIDI , (5.3)

where Nion = NNa + NK is the volume concentration of ions, CI = CNa,I + CK,I

is the site fraction of self-interstitials and DI denotes the diffusion coefficient of
the generalized interstitial carrying a charge unit e. It should be emphasized that
Dσ generally differs from the (alkali) ion tracer diffusivity because of diffusion
correlation effects pertaining to a certain diffusion mechanism [19, 76]. The
quantitative differences between mass and charge transport can be expressed by
the Haven ratio HR, which for the interstitialcy mechanism in binary lattices is
generally given by

HR = D̂

Dσ

= CNaD̂Na + CKD̂K

CIDI
, (5.4)

where D̂ = CNaD̂Na + CKD̂K has been introduced as a mean tracer diffusivity1

and CNa and CK is the site fraction of Na and K, respectively [75, 76]. It can
be seen from Eq. 5.4 that Dσ has the dimension of a transport coefficient and
should be compared to CNaD̂Na and CKD̂K rather than to the associated self-
diffusion coefficients. In Fig. 5.7 the transport data is shown together with Dσ

based on the ion concentrations NK = 4.67×1021 cm−3 and NNa = 8.01×1020 cm−3

for VF feldspar. It can be seen that although NNa < NK holds true for the ion
concentrations, the transport coefficient of Na clearly dominates over K over the
whole temperature range, i.e. CNaD̂Na ≫ CKD̂K. The influence of the K transport
coefficient to the total ion transport may therefore be neglected. Furthermore, the

1To reduce the number of indices, the common asterisk for labelling tracer diffusivity (D∗) has
been replaced by the ‘hat’ symbol (D̂) throughout this work.

61



5. Ionic conductivity in single-crystal alkali feldspar

Figure 5.7.: Arrhenius plot of the transport coefficients for VF feldspar normal to (001)
related to ionic conductivity Dσ, Na self-diffusion CNaD̂Na and K self-diffusion CKD̂K, as
indicated. Dσ is derived according to Eq. 5.3. It can be seen that the ionic conductivity
is primarily connected to Na ions because the associated transport data exceeds the K
transport by more than two orders of magnitude.

partial Haven ratios HR,Na and HR,K may be introduced, so that HR = HR,Na+HR,K

holds, and it can be found

HR ≈ HR,Na = CNaD̂Na

CIDI
. (5.5)

From Fig. 5.7 it can be inferred that CNaD̂Na < Dσ, which can be expressed as
HR < 1. The results derived for HR from Eq. 5.4 are shown in Fig. 5.8 as a
function of T . Open symbols represent data points that were obtained by inserting
extrapolated conductivity data according to Eq. 5.2 into Eq. 5.4. Uncertainties
in HR are based on the experimental uncertainties of the radiotracer diffusion
measurements and of the EIS analysis given by 30 %, each. It can be seen that HR

is in the range from 0.11 to 0.40 and that HR slightly increases with increasing T .
A direct interstitial mechanism operating alone predicts a Haven ratio of HR = 1,
which implies that charge and mass transport are equal [77]. It should therefore
be concluded that such a mechanism does not dominate the diffusion of Na atoms.
Apparently, direct interstitial (I-I) jumps are much less frequent than interstitialcy
(I-S/S-I) jumps for Na in VF feldspar.
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5.3. Summary and conclusions

Figure 5.8.: Haven ratio HR for VF feldspar normal to (001) as a function of temperature
T derived from the present EIS analysis and from Na self-diffusion results (cf. Section 3.2)
according to Eq. 5.4. Solid circles represent HR from direct insertion of data into Eq. 5.4,
whereas open squares are based on extrapolated σ values according to Eq. 5.2.

The results and considerations demand an explanation for HR ≈ 0.2 within
a suitable diffusion model because the Haven ratio is intimately connected
with correlation effects. The development of such model and calculations of the
correlation effects pertaining to it is presented along the following chapters. This
implies practical attempts to reproduce the D̂Na/D̂K ratios and HR values that are
found experimentally.

5.3. Summary and conclusions

The dc ionic conductivity in natural alkali feldspar from Volkesfeld, Germany
normal to (001) was examined by EIS analysis after pre-annealing at 1323 K for
4 days. It was shown that within the investigated temperature range varying
from 673 K to 1053 K, the product σT is described by an Arrhenius equation
with an activation energy ∆H = (1.226 ± 0.004) eV and a pre-exponential factor
ln (A/m2s−1) = 3.49 ± 0.07. The findings are in good agreement with the reported
conductivity data [67] for a polycrystalline feldspar with the composition Or80Ab20,
although the activation energy of ∆H = (0.99 ± 0.03) eV slightly differed.
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5. Ionic conductivity in single-crystal alkali feldspar

El Maanaoui et al. [56] investigated the ionic dc conductivity of the same VF
feldspar as in the present study but they refrained from annealing the minerals at
an elevated temperature prior to the EIS analysis. A comparison of the conductivity
normal to (001) between the untreated and the pre-annealed mineral showed a
significant decline by a factor of ∼ 2 due to the pre-annealing procedure. The
disparity may be caused by the out-diffusion of H from the mineral at elevated
temperatures. However, El Maanaoui et al. suggested that an effect of H+ charge
transport to the total conductivity causes kinks or curvatures in the Arrhenius plot,
which was not observed in their experimental data [56]. Another property that could
have an influence on the Na charge transport after the thermal pre-treatment is the
ordering state of Al-Si. However, the difference in the ordering state might affect
the potential barriers for Na jumps and hence, also show an effect on the activation
energy rather than shifting σ along the ordinate. The disparity of the two studies
may therefore not be given by a single convincing reason.
Based on the Nernst-Einstein equation the charge diffusivity Dσ was determined
and compared with tracer diffusion data for 22Na and 43K (see Chapters 3 and 4).
The Na transport data exceeded the K data by orders of magnitude, suggesting a
dominant role of Na+ ions in overall mass and charge transport at the investigated
feldspar composition. The so-called Haven ratio HR is intimately connected with
correlation effects pertaining to a certain diffusion mechanism. For VF feldspar
HR ranges from 0.11 to 0.40 in the direction normal to (001) (cf. Fig. 5.8).
The deviation from HR = 1 gives strong evidence that the Na self-diffusion is
significantly correlated and implies that direct interstitial jumps are much less
frequent than those jumps related to an exchange with a diffusion vehicle, e.g.,
interstitialcy jumps. In the following chapters, the tracer and defect correlation
factors are analysed in detail for a vacancy diffusion mechanism (cf. Chapter 6)
and for a collinear (cf. Chapter 7) and non-collinear (cf. Chapter 8) interstitialcy
diffusion mechanism. This analysis enables to compare the experimental results
for the Have-ratio with calculated data from Monte Carlo simulations for either
diffusion mechanism, which is an important contribution to the interpretation of
the predominant mechanism of the alkali diffusion in alkali feldspar.
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6. Vacancy-related diffusion
correlation effects in a simple
cubic random alloy and on the
Na-K sublattice of alkali feldspar

Diffusion correlation effects play an important role in concentrated alloys and other
binary or multi-component material systems [19]. Most prominent and frequent
cases concern diffusion via the vacancy mechanism. In this mechanism, the tracer
correlation factor of a constituent element takes into account that a subsequent
atom-vacancy exchange has a higher than statistical probability to reverse the
former exchange of the atom with the same vacancy. In elemental crystals, the
tracer correlation factor is a dimensionless geometrical quantity, which for the
simple cubic lattice results as f0 = 0.6531 [78]. However, in binary systems AB
the tracer correlation factors of A and B atoms take different values between 0 and
1, so that commonly fA ̸= fB. Moreover, diffusion correlation effects are in general
composition dependent implying that fA and fB are functions of the mole fraction
CB = 1 − CA. As these correlation factors may become extremely small at low
temperatures, they are relevant for the analysis of tracer self-diffusion experiments
in binary and multi-component materials.
In the vacancy mechanism, the tracer correlation factors fA and fB have to be
distinguished from the vacancy correlation factor fV. In a pure crystal, vacancy
migration is a fully random process. This reference case is characterised by the
absence of correlation effects as expressed for cubic lattices by fV = 1. In
binary systems, however, fV is usually less than unity and it may adopt very
low values for large differences between the atom-vacancy jump rates wA and
wB [21]. Consideration of fV is important for the evaluation of ion conductivity
measurements in ionic systems, where electrical current is mediated by mobile
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6. Vacancy-related diffusion correlation effects

vacancies carrying an effective charge [76, 79]. It can be noted that fV is a special
case of the so-called physical correlation factor [23, 76], which reflects the variety
of jump rates of the diffusion vehicle and the binding states of the components but
no geometrical effects, at least in highly symmetric lattices. Moreover, fV can be
derived from the collective correlation factors introduced by Allnatt [79, 80, 81].
There is a vast literature on diffusion correlation effects in solids, mainly dealing
with cubic crystals or other systems of high symmetry. In the present chapter,
correlation effects in alkali feldspar are investigated to analyse and interpret mass
and charge transport date including 22Na tracer diffusion coefficients (see Chapter 3
and [64]), 43K diffusion coefficients (see Chapter 4 and [57]) and ion conductivity
results (see Chapter 5 and [56]). In the case of alkali feldspar a supposedly
disordered Na-K sublattice is considered which shares the monoclinic symmetry
of the alumino-silicate framework structure. It seems plausible that transport
processes on the alkali sublattice are mediated by point defects originating
from Frenkel pair formation. However, whether vacancies or interstitials are the
dominating diffusion vehicles is subject to the present work. The calculation of
correlation factors fNa, fK and fV on the Na-K sublattice in monoclinic alkali
feldspar is a first step to unravel a complex situation of ion conduction and ionic
self-diffusion.
An important step forward in the treatment and understanding of diffusion
correlation effects was the introduction of the random alloy model by Manning
[14, 45]. In this context, it has to be distinguished between the underlying
physical model on one hand and the analytical framework to derive mathematical
expressions for the pertinent correlation factors on the other. Manning’s physical
model foots on the assumption that all interactions among atoms (A,B) and
between atoms and vacancies (V) can be neglected, which implies the total absence
of short- and long-range ordering effects. Provided that the vacancy concentration
CV (site fraction) is negligibly low, this random alloy is further characterised by its
composition CB = 1 − CA and the atom-vacancy exchange frequencies wA and wB,
which do not depend on the actual nearest-neighbour environment of the jumping
atom.
In addition, Manning’s analytical framework provides the mathematical equations
to calculate the correlation factors fA, fB, and fV [14, 45]. The formalism is based
on reasonable assumptions, which partly are intuitive and partly hold to a fair
approximation only. For example, Manning supposes that the effective escape
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frequency of the vacancy (termed H) from the atom it just exchanged with is
independent of the type of atom (A or B). However, the relationship H = HA = HB

has shown to be poorly obeyed in the range of concentrated alloys [21].
Thus, although Manning’s analytical expressions include some fundamental fea-
tures of diffusion in disordered concentrated alloys, they are not exact. This has
become clear over the years by comparison with Monte Carlo (MC) simulations
of binary cubic lattices with random order. In principle, Monte Carlo simulation
enables us to compute correlation factors within Manning’s physical model to any
desired degree of accuracy, provided that enough computer capacity is available.
Specifically, it was recognised over the last decades – along with the progress
in computer technology – that Manning’s analytical expressions do not provide
good approximations to fA and fB in the concentrated alloy regime, except for
small differences in jump frequencies (0.1 < wA/wB < 10) [20, 82, 21, 22]. For
fV, the agreement between MC simulation and Manning’s derivations is much
better [23, 82, 21]. Nevertheless, the numerical evaluation of fV values by MC
methods has been an issue of concern for many years [23, 82, 21]. Established
MC calculation schemes for unbiased fV results may involve collective correlation
factors [81, 79] or simulated electric fields [21]. Still there seems to be a lack of
reliable fV data for (random) alloy structures, at least for large differences between
wA and wB.
The present study, which has been published in Philosophical Magazine, 2015
[83] and in Defect and Diffusion Forum, 2015 [64] aims to understand and to
quantify diffusion correlation effects on the Na-K sublattice of alkali feldspar by MC
simulation of the vacancy mechanism. To the best of our knowledge, this is the first
MC study of this type dealing with a binary monoclinic structure. The only related
MC report so far concerns foreign-atom diffusion in (monoclinic) naphtalene [84].
Based on the symmetry relations of the monoclinic Bravais lattice, alkali diffusion
in alkali feldspar can be described by a second rank tensor with four independent
matrix elements [11, 12]. Therefore, the correlation factors to be calculated depend
in principle on crystallographic direction.
To check the validity and reliability of the MC procedures, test simulations were
performed on a simple cubic lattice with random order. During this test period
efficient schemes for the calculation of fV, were developed which also involve
the evaluation of the partial correlation factors (PCFs) fA

V and fB
V [85, 14, 45].

Comparing the results from the novel schemes with published fV data on cubic
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6. Vacancy-related diffusion correlation effects

random alloys reveals some shortcomings of the earlier MC work. Furthermore,
the present fV data enable us to derive accurate values for the site-percolation
threshold and the corresponding critical exponent, both in the simple cubic case
and for the monoclinic structure.

6.1. Computational procedures

The present calculations are based on an atomistic Monte Carlo approach by
computer simulations. Initially, each atom in the simulation box was determined to
be of type A or B by a random number generator and the site-occupancy probability
pA = 1 − pB = NA/N , where NA is the number of A atoms and N is the total
number of lattice sites. For a simple cubic lattice of dimensions 160a×160a×160a,
where a is the lattice parameter, this box contained N = 4.096 × 106 sites with
one vacant lattice site at a particular initial position. The vacancy moves through
site exchange with one of its nearest-neighbour atoms. In the sc random alloy,
the exchange frequency of an atom with the vacancy only depends on the atomic
species (wA ̸= wB). The identity of the six adjacent atoms determines the individual
exchange probability pi ∈ [0, 1) for atom i as pi = wi/

∑6
j wj. The effective exchange

was then assigned to one atom by a pseudo-random number r ∈ [0, 1) generated
by the Mersenne Twister algorithm [86].
Periodic boundary conditions were applied in all simulations. The number of
exchanges and displacements relative to the initial site were saved in the computer
memory for each atom individually and for the vacancy. For each composition and
jump frequency ratio, a Monte Carlo run with up to nV = 1011 (but at least 1010)
vacancy jumps was executed. This routine was properly tested for sc and fcc lattices
by calculating tracer correlation factors and the results were in excellent agreement
with reported data [22].

6.1.1. General calculation schemes for correlation factors

In general, the correlation factor is defined as the ratio f = ⟨X2⟩uncorr/⟨X2⟩corr

of the correlated to the uncorrelated mean square displacement of a particle. A
common approach in calculating tracer correlation factors is based on the relation

fA = lim
nA→∞

⟨X2
A⟩/⟨nA⟩λ2, (6.1)
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where ⟨nA⟩ is the mean number of jumps of length λ and ⟨X2
A⟩ is the mean square

displacement of all atoms of type A. Thus, in this so-called displacement method
the displacements of each A atom are monitored individually to determine fA.
This procedure has proven to be highly efficient in numerous MC simulations for
computing tracer correlation factors. In the above formulation, it is implicitly made
allowance for the direction dependence of diffusion by considering displacements
along a chosen x-axis. In cubic crystals, however, it is more economic to replace
⟨X2⟩ by the corresponding 3D quantity ⟨R2⟩.
In more complicated situations involving, e.g., different jump types the calculation
of partial correlation factors (PCFs) may provide some additional insight into the
diffusion correlation effects [87, 88]. PCFs may be also useful to check the results
obtained by the displacement method. To evaluate PCFs, Eq. 6.1 has to be extended
in terms of projections xi of individual atomic jumps on the x-axis [85]

fA = 1 + 2
∞∑

i=1
⟨xixi+1 + xixi+2 + ...⟩/

∞∑
i=1

⟨x2
i ⟩, (6.2)

where xi+j is the jth step after jump i of an atom of species A. Using this general
expression PCFs were introduced by Howard [89] as

fα = 1 + 2⟨Sα⟩/⟨nα⟩x2
α , (6.3)

where Sα = ∑
i

∑
j (xα,ixα,i+j) contains xα,i+j being the jth displacement after the

ith jump of type α. The total tracer correlation factor fA can be calculated as a
weighted sum of the PCFs for different jump types.
In calculations of fα with Eq. 6.3, Sα has to be determined for each particle
individually. Moreover, in a long sequence of jumps of a particle a large number of
jumps of type α occur. For each of these jumps all terms xαxα,j with j ∈ [α+1, ∞)
add to the sum Sα. An example of Sα with the first, third and fifth jump being of
type α is given by

Sα = xαx2 + xαx3 + xαx4 + xαx5 + xαx6 + xαx7 + · · · (6.4)
+xαx4 + xαx5 + xαx6 + xαx7 + · · ·

+ xαx6 + xαx7 + · · ·
... .
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The summation Sα was executed by a convenient algorithm that caused no
significant increase in computation time compared to the displacement method.
This novel scheme is based on the fact, that all terms xαxα,j are contained in
the sequence of jumps after the first jump of type α of a certain particle. Sα was
therefore calculated by firstly executing the operation Sα = Sα + nαxα · x at each
atomic exchange during the simulation run, where x is the current jump vector,
and secondly, by increasing the counter nα when a new jump of type α occurred.
All counters were properly initialised at the beginning of a Monte Carlo run.
Essentially, the calculation of Sα relies on the summation of scalar products, which
in turn involve the cosine of the angle between jumps of the same atom. The
introduction of these cosines in MC simulations was first done by Kelly and Sholl
[41] and further pursued by Qin and Murch [90, 91].
The displacement and PCF method can also be employed for the MC calculation
of vacancy correlation factors fV. However, since only one vacancy is contained in
the simulation box, fV cannot be obtained by averaging over many particles at the
end of a MC run. Instead a long vacancy trajectory of length nV was divided into
Nrun sequences of nL jumps, each. Then the best estimate for fV is the mean value
over Nrun runs. Unless otherwise specified, the simulations were performed with
Nrun = 5 × 105 and nL = 2 × 104.
An additional feature of vacancy correlation is that a distinction can be made
between the PCFs fA

V and fB
V , where A and B refer to the first exchange in a long

vacancy trajectory, respectively. The overall correlation factor is a weighted sum of
these PCFs, i.e.,

fV = rAfA
V + rBfB

V , (6.5)

where for a random alloy, e.g., rA is given by [14]

rA = CAwA

CAwA + CBwB
. (6.6)

In turn, fA
V and fB

V can be further decomposed in jump-type-specific PCFs (e.g.,
fA

V,α) depending on the crystal structure. Conversely, jump-type-specific PCFs fV,α

calculated without discrimination of the atom type (A, B) making the first exchange
are the weighted sum of the corresponding atom-specific PCFs of vacancy diffusion,
i.e., – in self-explanatory notation – fV,α = rA

α fA
V,α + rB

αfB
V,α.
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Figure 6.1.: Illustration of the Na-K sublattice of alkali feldspar that comprises a C2
symmetry. Along the c⋆-axis, a vacancy can exchange with four nearest-neighbour atoms
in negative direction and with one such atom in positive direction. The signs of these
directions alter with each jump. The monoclinic system discriminates between four types
of jump (α = 1 to 4) with the corresponding frequency wα.

6.1.2. Calculation scheme for monoclinic feldspar

Compared to cubic structures the monoclinic alkali sublattice of feldspar is more
complex and correlation effects are generally not isotropic. Correlation factors then
have to be determined in the directions of the principal axes of the diffusion tensor
D. Since only diffusion in the b-direction (⊥ (010)) and c⋆-direction (⊥ (001)) have
experimentally been investigated hitherto [64], the simulations are restricted to
these two directions. The simulated alkali lattice was composed of 80a × 80b × 80c

unit cells, each containing four alkali atoms. The K and Na atoms were randomly
distributed and several jump frequency ratios wK/wNa < 1 were investigated. The
following considerations apply both to tracer and vacancy correlation factors.
Figure 6.1 shows that a vacancy has five nearest-neighbour alkali atoms, which –
by assumption – do not interact with the AlSi3O8 network structure. Depending
on its position relative to the vacancy an atom performs one out of four jump types
α(= 1 to 4) with the corresponding frequency wα. The two atoms adjacent to the
vacancy that have a non-zero displacement λb = b/2 along the b-axis both perform
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6. Vacancy-related diffusion correlation effects

the same type of jump (α = 4), since b is the axis of two-fold symmetry in the
monoclinic structure. Correlation factors in b-direction were determined by

fb = 1 + 2⟨Sb⟩/⟨nb⟩λ2
b , (6.7)

with Sb successively updated during a diffusion run according to Sb = Sb +
λb

(
n+

b − n−
b

)
·x. In Eq. 6.7, the total number of jumps with non-zero b-component,

nb = n+
b + n−

b , is decomposed into jumps in the same (n+
b ) and opposite direction

(n−
b ) regarding the first jump.

For diffusion along the c⋆-axis all four types of jumps do contribute with their
projected lengths λ1 = 4.692 Å and λ2 = λ3 = λ4 = 1.764 Å. In monoclinic feldspar
(Fig. 6.1), the jump types α = 2 and α = 3 refer to two sublattice sites with a
major displacement along the a-axis. Although their projected jump lengths on the
b-axis (λb = 0) and the c⋆-axis (λ2 = λ3) are equal, this is not true for projections
on the a-axis and thus w2 ̸= w3 in general. Another structural feature is that two
types of alkali lattice sites with symmetry C2 have to be distinguished and that
for a moving particle the type of site alters with each nearest-neighbour exchange.
Consequently, the vacancy can perform either one of four jumps in negative c⋆-
direction or one jump of type α = 1 in positive c⋆-direction. Thus, after each jump
of an atom, regardless of which type, the signs of these directions are interchanged.
The PCF for each jump type α is given by

fc⋆,α = 1 + 2⟨Sα⟩/⟨nα⟩λ2
α, (6.8)

where Sα = Sα + λα (n+
α − n−

α ) · x. The PCFs are weighted by

rα = kαwαλ2
α/
∑

i

kiwiλ
2
i (6.9)

in order to obtain the total correlation factor as

fc⋆ =
4∑

α=1
rαfc⋆,α . (6.10)

In Eq. 6.9, kα accounts for the fact that the feldspar structure includes twice as
many jumps of type α = 4 than all other jump types and hence k4 = 2 while
k1 = k2 = k3 = 1. Eqs. 6.7 to 6.10 were used to calculate vacancy correlation
factors by averaging over Nrun sequences of vacancy jumps.
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Figure 6.2.: Tracer correlation factor fB as a function of composition CB in the simple
cubic random alloy for two different values of wA/wB. Circles: MC simulations (this work,
every second data point); triangles: previous MC simulations [22]; Solid lines: formalism
of Moleko et al. [92]; Dashed lines: Manning’s formalism [14, 45].

6.2. Results and discussion

6.2.1. Correlation factors in a simple cubic alloy

Tracer correlation factors

To verify the correctness of the computational procedures, the diffusion by the
vacancy mechanism in a sc random alloy AB was simulated. Figure 6.2 displays
the tracer correlation factor as a function of composition CB for two greatly
different jump frequency ratios, i.e., wA/wB = 1000 and wA/wB = 0.001. The data
were obtained by the displacement method for CB steps of 0.01 over the whole
composition range. In contrast to common practice, fB is plotted on a logarithmic
scale. This representation has the advantage that several orders in magnitude of the
correlation factor can be clearly displayed. In particular, also the low fB values near
CB = 0 can be read from Fig. 6.2 with satisfactory accuracy. Another benefit is that
deviations and errors are displayed in relative proportions, as ∆ ln fB ≈ ∆fB/fB.
Therefore, logarithmic plotting is preferred throughout this work.
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The utmost right-hand side CB = 1 corresponds to B self-diffusion. Here, the true
geometrical fB value, f0 = 0.6531 [78] is reproduced within 3 digits. It is seen
that the present data (circles) match the MC simulation results of Belova and
Murch [22] (triangles), which could be taken with sufficient accuracy from their
corresponding linear plot (Fig. 5 in [22]) only for fV > 0.01. Figure 6.2 further
shows that Manning’s analytical results (dashed lines) substantially deviate from
the MC simulations, especially in the central composition range. However, the
formalism of Moleko et al. [92] (solid lines) yields a much better approximation.
These findings have been extensively discussed in the literature [82, 21, 22].

Vacancy correlation factors

Vacancy correlations factors in the sc lattice were also determined by MC simulation
in this work. An extreme case is shown in Fig. 6.3 representing fV for wA/wB =
10−5. The initial division of the composition axis consisted of 101 equidistant points.
Additional simulations were done at intermediate compositions where the slope in
the fV-versus-CB plot is very steep, i.e, near CB = 0 and CB = 0.3. All simulation
data in Fig. 6.3 were obtained by the displacement method for the same total
number of vacancy jumps nV = 1011. Reliable results were obtained for the division
of nV in Nrun = 103 runs of nL = 108 jumps, as shown by the open circles. Figure
6.3 also reveals that other splitting of nV in number of runs and run length produce
strong deviations for CB ≤ 0.35. This feature will be obscured by a linear fV plot,
as has been published for fcc [82] and bcc [21] random alloys. It is further seen
that Manning’s formalism leads to an excellent match in wide ranges of either B-
rich or B-poor compositions. It can be noted that in the case of fV the Moleko
formalism coincides with Manning’s expressions [24]. However, clear discrepancies
between MC simulation and the analytical results appear near CB ≈ 0.3. This
finding apparently relates to the occurrence of a site-percolation threshold close to
CB = 0.3 in the sc lattice. By contrast, both the Manning and Moleko theories
place the percolation threshold at 1−f0 [23], which equals 0.3469 for the sc lattice.
Indeed, the derivation of the solid line in Fig. 6.3 yields a maximum at CB = 0.347.
The percolation topic will be further discussed in Sect. 6.2.3.
It can be noted that the optimal choice of Nrun and nL within a given total number
of vacancy jumps is found to depend on composition. It may be recognised from
Fig. 6.3 that for relatively high Nrun values and corresponding short run lengths
the data (squares, triangles) show less scatter than for the reverse reference case
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6.2. Results and discussion

Figure 6.3.: Vacancy correlation factor fV as a function of composition CB in the simple
cubic random alloy for the jump frequency ratio wA/wB = 10−5. The symbols represent
MC simulations for different numbers of runs (Nrun) and run lengths (nL) with the same
total number of jumps (1011), as indicated. For clarity, every second circle has been
omitted. The solid line reproduces the coinciding analytical results of Manning [14, 45]
and Moleko et al. [92].

(circles). Thus, if B is the much more mobile component (e.g. wA/wB = 10−5), short
run lengths obviously yield unbiased results [93] for B-rich compositions while a
large Nrun value leads to the reduction of the statistical error. However, short run
lengths start to produce systematically too high fV values upon approaching the
percolation limit near CB = 0.3 from the B-rich side.
This behaviour is demonstrated in Fig. 6.4 for a series of simulations at the
composition CB = 0.3 with a fixed number of runs (Nrun = 1000) and with the
run length increasing from nL = 103 to 108. The MC data suggest an exponential
decay of fV with increasing nL for the shorter runs, and moreover, illustrate the final
convergence towards the true value of 5×10−5 for the longer runs with nL ≈ 5×106

jumps or larger. The Manning result of fV = 2 × 10−5 is also indicated in Fig. 6.4.
It can be noted that the data on the left-hand side in Fig. 6.4 show appreciable
scatter, which relates to the small values of both Nrun and nL. Altogether, the
picture provided by Fig. 6.4 confirms the validity of the data for long runs in
Fig. 6.3 (circles, nL = 108). Mishin and Farkas [21] used nL = 103 together with
Nrun = 106 for fV simulation in bcc random alloys with wA/wB = 10−5. Based on
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6. Vacancy-related diffusion correlation effects

Figure 6.4.: Vacancy correlation factor fV as a function of run length nL for the sc
random alloy with CB = 0.3 and wA/wB = 10−5. Each data point results from MC
simulation by averaging over 1000 consecutive runs of length nL. The analytical result of
Manning [14, 45] is reproduced by the dashed line.

the present analysis, it can be concluded that their fV data for CB near and below
the percolation limit suffer from a bias towards the high value range.
It seems reasonable to assume that for a reliable determination of fV also the

less mobile component, in this case A, should make a sufficient number of jumps.
In a random alloy, the fraction of A jumps equals rA given by Eq. 6.6. Thus, for
wA/wB = 10−5 and CB = 0.3 it follows rA ≈ 2.3 × 10−5. Hence, in a single vacancy
run of nL jumps the number of exchanges with A amounts to rAnL. According to
Fig. 6.4, fV attains its true plateau value for nL near 5 × 106 implying that about
100 A jumps per run are required. Numbers of this order of magnitude are also
necessary for the reliable determination of fA, as has been reported previously [22].
In view of the above argument, it may surprise that for CB-rich alloys rather
short run lengths of 1000 jumps are enough to evaluate fV with negligible error
(cf. Fig. 6.3). However, this can be rationalised by the different situations below
and beyond the percolation threshold near CB = 0.3. Below the percolation
threshold, vacancy migration proceeds mainly through B-rich clusters that are
poorly connected among each other. With small nL values, the vacancy is not able
to escape from these clusters. Then the simulation is biased to B-rich environments,
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6.2. Results and discussion

Figure 6.5.: Partial and total vacancy correlation factors as a function of composition
CB in the simple cubic random alloy for the jump frequency ratio wA/wB = 10−2. The
total correlation factor fV (solid line) calculated from fA

V (triangles) and fB
V (squares)

via the PCF method coincides with fV directly simulated by the displacement method.
For clarity, every second symbol has been omitted.

where fV locally adopts higher values (triangles, left-hand side of Fig. 6.3). With
sufficiently long trajectories, the vacancy is able to break free from the B-rich
clusters giving rise to unbiased statistical sampling and eventually determination
of the true correlation factor (circles, left-hand side of Fig. 6.3). By contrast, for B
concentrations sufficiently far above the percolation limit there is a well-connected
network of B-rich regions. In this situation, the main effect of A atoms is site-
blocking, which constraints the choice of trajectories available to the vacancy and
thereby causes fV to be smaller than unity. Then, the influence of some rare A
jumps among many B-V exchanges may apparently be neglected.

Partial correlation factors of vacancy diffusion

In the ‘PCF method’ described in Sect. 6.2.1 fV is evaluated by suitable monitoring
and bookkeeping of the two-jump scalar products appearing in the expression for
the partial correlation factors fA

V and fB
V (cf. Eqs. 6.3 and 6.4). The results of this

PCF method are exemplarily displayed for the sc random alloy with wA/wB = 0.01
in Fig. 6.5. It is seen that fA

V (triangles), associated with the less mobile component,
assumes values greater than unity, i.e., from 1 to about 1.5. This is no contradiction,

77



6. Vacancy-related diffusion correlation effects

Figure 6.6.: Partial and total vacancy correlation factors as a function of composition
CB in the simple cubic random alloy for the jump frequency ratio wA/wB = 10−2 (same
data points as in Fig. 6.5). Solid and dashed lines: f0-normalized tracer correlation factor
fA and fB, respectively, as derived within Manning’s formalism [14, 45].

since PCFs are calculatory quantities without obvious physical meaning [94]. The
fA

V results for CB > 0.8 suffer from poor statistics and are therefore omitted in Fig.
6.5. In contrast, the fB

V data (squares), related to the more mobile component and
spanning the range from about 0.03 to 1, are reliable for all compositions.
According to Eq. 6.5 the total vacancy correlation factor is a weighted sum of
the two PCFs [14] and represented by the solid line in Fig. 6.5. It should be
emphasised that this line perfectly coincides with the fV data directly obtained
by the displacement method (circles). It may therefore be concluded that the PCF
method is fully equivalent to the displacement method, both in terms of reliability
and computing time. However, the PCF method provides some additional insight
into the correlations that mostly contribute to fV. Figure 6.5 reveals that for
CB > 0.4 fV coincides with fB

V , which relates to the fact that rA is very small
in this region (cf. Eq. 6.6).
Figure 6.6 exhibits the same data points as Fig. 6.5 but they are now used for a
comparison with Manning’s analytical expressions. In particular, Fig. 6.6 bears out
the notion that fA/f0 analytically derived within the Manning formalism (solid
line) well approximates the simulated fA

V data for wA/wB = 0.01. The same is
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6.2. Results and discussion

true for fB/f0 (dashed line) with respect to the fB
V data. It is worth noting that

the agreement shown in Fig. 6.6 for the PCFs is distinctly better than Manning’s
predictions for the simulated (or true) atomic correlation factors fA and fB. A
direct comparison of the latter kind for the sc random alloy with wA/wB = 0.01
has been published by Belova and Murch [22] (see also Fig. 6.2). This leads to the
conclusion that the Manning formalism yields – first and foremost – good estimates
for the vacancy correlation factors. However, Manning’s predictions for the tracer
correlation factors are much less accurate. Obviously, the relationships fA = fA

V f0

and fB = fB
V f0 playing a crucial role in his theory are only very approximate.

Vacancy correlation factors and PCFs can also be calculated from the so-called
collective correlation factors (CCFs), as shown in detail in the literature [79, 24].
In fact, fBB and fAA were determined from simulations within the sc random alloy
with wA/wB = 0.01 in the present study. Using published equations [79, 24], fA

V ,
fB

V , and fV can be derived from the simulated fBB data in excellent agreement
with the results from the PCF and displacement method. However, the evaluation
of CCFs required 20 times longer CPU times than the other methods. Hence, after
this first proof of consistency the CCF route was refrained.

6.2.2. Correlation factors on the alkali sublattice in feldspar

Vacancy and tracer correlation factors on the Na-K sublattice of alkali feldspar
were simulated by the computational procedures described in Section 6.1 for the
directions b and c⋆. Since pertinent experimental or theoretical data on atom-
vacancy exchange rates are lacking, differences between wNa and wK were allowed
but it is assumed that both of them are independent of jump type α = 1 to 4
(wi,1 = wi,2 = wi,3 = wi,4 = wi for i = K,Na).

Mono-atomic case

First, the fundamental case of a mono-atomic sublattice was examined, which
may refer to pure K-feldspar. The results for the tracer correlation factor are
f0,b = 0.5909 and f0,c⋆ = 0.5634 for diffusion in b- and c⋆-direction, respectively.
Furthermore, the vacancy correlation factors were obtained as fV,b = 1.0000 and
fV,c⋆ = 0.9676. The latter result is remarkable, as in other mono-atomic structures
fV has always been found to be equal to unity, that is, in the limit of low vacancy
concentrations. This finding is attributed to a different number of positively and
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6. Vacancy-related diffusion correlation effects

negatively directed jumps along the c⋆-axis (see Fig. 6.1). The fV results can be
readily checked analytically by using Howard’s matrix method [85]. Indeed, this
rigorous derivation yields fV,c⋆ = 0.96757, in excellent agreement with the simulated
value.
Also, vacancy-related PCFs in c⋆-direction for the different jump types α in the
pure monoclinic sublattice with uniform vacancy exchange rates were calculated.
The PCF related to jump type 1 was found as f 1

V,c⋆ = 1.101 ± 0.001. For the
other PCFs a uniform value resulted, which is given by f i

V,c⋆ = 0.732 ± 0.001 with
i = 2, 3 or 4.

Na-K sublattice with random order

To investigate the orientation dependence of fV in alkali feldspar MC simulations
were performed as a function of composition CNa. Figure 6.7 compares the results
for the directions ⊥ (001) (c⋆) and ⊥ (010) (b) in the case when wK/wNa = 0.01
holds. It is seen that fV anisotropy is a uniform feature over the whole composition
range and characterised by the ratio fV,c⋆/fV,b = 0.9676. Figure 6.7 also shows
the PCFs in c⋆-direction for initial vacancy exchanges of type 1 to 4. Here, no
discrimination was made between the types of atom (Na, K) making the first jump.
In each case examined, the full consistency between displacement and PCF method
was confirmed.
In further analysis, the simulations of fV in the c⋆-direction (⊥ (001)) of feldspar
were extended to jump frequency ratios spanning the range from wK/wNa = 0.1 to
10−5. For the latter frequency ratio, nL was chosen as 2 × 107. The results shown
in Fig. 6.8 clearly demonstrate that correlation effects may become very strong in
the concentrated regime with CNa < 0.4. As a consequence, the ionic conductivity
based on the vacancy mechanism can be reduced by many orders of magnitude.
Obviously, this phenomenon relates to vacancy percolation via the more mobile Na
atoms and the site-blocking effect of the less mobile K atoms.
Figure 6.8 also exhibits the prediction from Manning’s equations using f0,c⋆ =
0.5634 and applying a correction factor of 0.9676 which accounts for the fact that
in the mono-atomic case fV deviates from unity (cf. Sect. 6.2.2). Good agreement
is obtained for either Na-rich or K-rich compositions but not in the CNa-range
between about 0.3 and 0.5.
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6.2. Results and discussion

Figure 6.7.: Partial and total vacancy correlation factors from MC simulations as a
function of composition CNa on the Na-K sublattice of alkali feldspar for the jump
frequency ratio wK/wNa = 10−2. The total fV values for the b-direction (open squares)
are compared with those for the c⋆-direction (solid circles). The PCFs in c⋆-direction for
the four different jump types (α = 1 to 4) are also displayed (open triangles).

Figure 6.8.: Vacancy correlation factors fV in c⋆-direction as a function of composition
CNaon the Na-K sublattice of alkali feldspar for different jump frequency ratios wK/wNa.
Solid line: Manning’s formalism for wK/wNa = 10−5 using the MC results for f0 and fV
in the mono-atomic case.
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6. Vacancy-related diffusion correlation effects

Figure 6.9.: Ratio of Na and K diffusivities D̂Na/D̂K as a function of wNa/wK in alkali
feldspar with diffusion by the vacancy mechanism. Note that for wNa > wK all curves
fall below the dashed line, which represents the hypothetical case with fNa = fK = 1.

Beyond the effect of fV on ionic conductivity, also the tracer diffusion coefficients1

of the more mobile Na component D̂Na can be reduced by orders of magnitude in
the concentrated regime. Taking the example of Volkesfeld feldspar (VF) with an
alkali sublattice that supposedly consists of Na and K atoms only (CNa + CK =
1, CNa = 0.15) the diffusivity ratio as a function of jump frequencies wNa/wK can
be derived from the tracer correlation factors fNa, fK according to

D̂Na

D̂K
= fNawNa

fKwK
. (6.11)

In Fig. 6.9 tracer diffusivity ratios are presented over a wide range of jump
frequencies from wNa/wK = 1 to 104. The findings are compared with data obtained
for a second composition of CNa = 0.05 which represents diffusion in the more K-
rich Madagascar orthoclase (MO). It can be seen that the diffusivity ratios of
VF and MO feldspar reach an upper limit for roughly wNa/wK ≥ 100, that is
D̂Na/D̂K ≤ 3.12 for VF and D̂Na/D̂K ≤ 2.57 for MO, respectively. With reference

1To reduce the number of indices, the common asterisk for labelling tracer diffusivity (D∗) has
been replaced by the ‘hat’ symbol (D̂) throughout this work.
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to Chapter 4 where experimental tracer diffusion results for 43K and 22Na were
presented, the diffusivity ratio for VF feldspar D̂Na/D̂K is 1230/1 at 1173 K –
more than two orders of magnitude above the upper limit pertaining to a vacancy
diffusion mechanism. Obviously, the upper limits for vacancy diffusion in VF and
MO feldspar are associated with the occurrence of a site-percolation threshold at a
composition somewhere above CNa = 0.15. The percolation behaviour will be more
accurately analysed in the next section.

6.2.3. Vacancy percolation behaviour

As indicated above, fV will be small in binary random systems when the choice
of ‘fast’ vacancy migration paths along chains and clusters of the more mobile
component (B) becomes very restricted. In the limiting case, wA/wB = 0, the
slower component (A) is fully immobile. This leads to the occurrence of a threshold
composition Cp

B below which long-range diffusion is not possible (fV = 0). The
concentration dependence of fV just above the percolation threshold Cp

B may be
described by [23, 21]

fV = k(CB − Cp
B)δ, CB ≥ Cp

B , (6.12)

where δ is a critical exponent and k a dimensionless proportionality constant. It
can be noted that the parameters entering this expression have been determined
for the fcc random alloy with wA/wB = 0 by a number of different MC calculation
schemes [23]. Mishin and Farkas [21] have shown for the bcc lattice that k, Cp

B, and
δ may be also estimated from MC simulations of fV for extremely small values of
wA/wB. This approach will be used for the sc random alloy and the alkali sublattice
of feldspar in the following sections.

Vacancy percolation in the sc random alloy

Vacancy percolation behaviour in the sc random alloy was analysed by using the
fV data for wA/wB = 10−5 depicted in Fig. 6.3. To this aim, the data in a narrow
concentration interval above CB ≈ 0.3 were fitted with Eq. 6.12, as illustrated
in Fig. 6.10. Most consistent results were obtained by fitting of ln fV using the
logarithmic form of Eq. 6.12 (dashed line in Fig. 6.10). The best estimates of Cp

B,
δ, and k are compiled in Tab. 6.1.
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6. Vacancy-related diffusion correlation effects

Figure 6.10.: Vacancy correlation factors fV in the sc random alloy and on the Na-K
sublattice of alkali feldspar in b-direction as a function of composition near the respective
percolation thresholds. The data are representative of wK/wNa = 10−5 as also displayed
in Fig. 6.3 (sc, circles) and Fig. 6.8 (feldspar, squares). The dashed and solid line are fits
based on Eq. 6.12 to the solid symbols for sc and feldspar, respectively.

It can be noted that the value obtained for Cp
B, 0.310 ± 0.001, is very close to the

literature value of the sc site-percolation threshold pc = 0.3116 [95]. The critical
exponent δ = 1.67 ± 0.06 may be compared with similar values for fcc (δ = 1.45
[23]) and bcc (δ = 1.326 [21]) random alloys. Also the prefactor k = 9.8 ± 1.6 is of
similar magnitude as reported for the bcc lattice (k = 5.65 [21]). These results, in
particular the Cp

B value, support the reliability of the present simulation procedures.

Alkali vacancy percolation in monoclinic feldspar

The composition dependence of fV in feldspar can also be described by the general
expression in Eq. 6.12, i.e., by replacing CB and Cp

B with CNa and Cp
Na, respectively.

This is demonstrated for the b-direction by the good agreement between the MC
data and the fitted solid line. The resulting parameter values are listed in Tab. 6.1
together with similar data for the c⋆-direction.
For both directions, the percolation threshold is obtained as Cp

Na = 0.360 within a
small error tolerance of ±0.001. Presumably, this is the first report of a percolation
limit in the monoclinic structure. The present finding implies that for CNa < 0.36
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Table 6.1.: Parameter values characterizing the vacancy percolation behaviour in the
simple cubic random alloy and on the Na-K sublattice of alkali feldspar in two different
directions; cf. Eq. 6.12.

Case Cp
B, Cp

Na δ k

simple cubic 0.310 ± 0.001 1.67 ± 0.06 9.8 ± 1.6
feldspar: b-direction 0.360 ± 0.001 1.67 ± 0.06 8.7 ± 1.2
feldspar: c⋆-direction 0.360 ± 0.001 1.65 ± 0.06 8.1 ± 1.0

the diffusion of the relatively mobile Na atoms will be highly correlated with that
of the much slower moving K atoms [64]. Moreover, the ion conductivity due to the
vacancy mechanism is predicted to be strongly reduced for K-rich compositions.
The critical exponents δ = 1.67 and 1.65 found for the b- and c⋆-direction,
respectively, agree well within their error bounds of ±0.06. Furthermore, these
values virtually coincide with the sc result (cf. Tab. 6.1). This may point to a
structure-independent generality of the critical behaviour near vacancy diffusion
percolation limits. The proportionality constant k has been derived with greater
uncertainties. Nonetheless, the values obtained are of closely similar magnitude in
all three cases (cf. Tab. 6.1). The small difference between the b- and c⋆-direction
in feldspar, k = 8.7 ± 1.2 and 8.1 ± 1.0, respectively, may be largely due to the
difference in the magnitude of fV given by the ratio 1/0.9645 (cf. Fig. 6.7 and
Section 6.2.2), which adds to some scatter in δ. Altogether, the consistency among
the individual results lends credibility to the employed calculation schemes.

6.3. Summary and conclusions

This work focused on the calculation of vacancy correlation factors fV for diffusion
in binary atomic or ionic systems with random order using Monte Carlo simulation
techniques. Efficient computation schemes were tested on simple cubic alloys and
then for the first time used for the evaluation of vacancy correlation effects on the
Na-K sublattice in the monoclinic structure of alkali feldspar. The results of this
study may be summarised as follows:
(i) A numerical Monte Carlo procedure devised for the efficient calculation of fV

includes the determination of partial correlation factors (PCFs) – either jump-type
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or atom-type specific – without significant additional costs in terms of CPU time.
(ii) The unbiased and accurate evaluation of fV within a sufficiently large total
number of vacancy jumps (e.g., 1011) requires a suitable splitting in run length and
number of runs. The best choice is found to depend on composition (CB) and jump
frequency ratio (wA/wB).
(iii) The Manning random alloy model accurately describes fV in the sc lattice both
for A-rich and B-rich compositions. However, deviations from the simulated data
appear in the concentrated alloy regime roughly between CB = 0.2 and CB = 0.6.
These deviations increase with decreasing jump frequency ratio wA/wB.
(iv) Analysis of the vacancy percolation behaviour from the simulated fV data in
the sc lattice yields values for the compositional percolation limit (Cp

B = 0.310) and
the corresponding critical exponent (δ = 1.67) that closely agree with literature
data.
(v) The reduced atomic correlation factors fA/f0 and fB/f0 (with correlation factor
f0 = 0.6531 for a pure sc crystal) analytically derived within the Manning formalism
well approximate the vacancy-related PCFs fA

V and fB
V obtained by MC simulation.

(vi) The calculation of fV through the simulation of collective correlation factors
leads to fully consistent results but is costly in terms of computer time.
(vi) For the Na-K sublattice in monoclinic alkali feldspar, simulations were carried
out for different compositions CNa and various jump frequency ratios wK/wNa but
with uniform frequencies of the different jump types for either component.
(vii) The alkali tracer correlation factor in the pure feldspar sublattice results as
f0 = 0.5634 for the crystallographic c⋆-direction (⊥ (001)) and as f0 = 0.5909 for
the b-direction (⊥ (010)).
(viii) Simulations of fV in monoclinic alkali feldspar also show differences between
different crystallographic orientations. For the c⋆-direction fV is smaller than unity
even for the pure sublattice (CNa = 0 or 1).
(ix) The total correlation factor fV along the c⋆-direction is the weighted sum of four
PCFs associated with the different types of jump on the Na-K lattice in feldspar
(x) Within the pertinent simulation model, alkali vacancy diffusion in alkali
feldspar is characterised by a percolation threshold of Cp

Na = 0.360 independent
of crystallographic orientation.
The results and considerations from this chapter include important aspects for an
interpretation of the diffusion mechanism that controls Na self-diffusion and ionic
conductivity in alkali feldspar. From experimental data of the K-rich VF feldspar it
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was demonstrated in Chapter 4 that the Na diffusivity D̂Na exceeds D̂K by several
orders of magnitude with a difference in activation energy of ∆HK−∆HNa = 1.1 eV.
This observation indicates that the Na self-diffusion is not subject to site-blocking
effects of the less mobile K atoms. A common vacancy mechanism of Na and K,
however, is characterised by a percolation threshold Cp

Na = 0.360 and hence, the
Na diffusivity via vacancies is significantly reduced in VF feldspar. Moreover, the
activation energies of Na and K self-diffusion via vacancies can be expected to be
almost balanced in VF feldspar due to correlation effects. In conclusion, the Na
self-diffusion is controlled by another less correlated diffusion mechanism such as
an interstitialcy mechanism. This mechanism has so far been investigated primarily
in the mono-atomic case and basic studies concerning self-diffusion and ionic
conductivity in binary AB alloys are an important approach for the development
of a microscopic diffusion model in alkali feldspar. These studies concern diffusion
via the collinear interstitialcy mechanism in the simple cubic (sc) structure (see
Chapter 7) and diffusion via the non-collinear interstitialcy mechanism with
allowance for direct-interstitial jumps in the sc lattice (see Chapter 8). It will be
demonstrated in Chapter 9 that based on the groundwork concerning the sc lattice
an interstitialcy diffusion model can be successfully developed for monoclinic alkali
feldspar.
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7. Monte Carlo simulation of
diffusion and ionic conductivity in
a simple cubic random alloy via
the interstitialcy mechanism

In the past, numerous studies on correlation factors including Monte Carlo
(MC) simulation focused on diffusion via lattice vacancies, which is the most
prominent mobile point defect in metals. The vacancy-related correlation effects
on the monoclinic Na-K sublattice of alkali feldspar were extensively investigated
and discussed in the previous Chapter 6. For a general survey on this matter
the reader is referred to textbooks and reviews papers [19, 96]. In contrast,
correlation effects related to the interstitialcy diffusion mechanism have been only
sparsely investigated so far. Some pertinent examples concern self-diffusion in non-
stoichiometric uranium oxide [97] and other ionic crystals, such as NaCl, AgCl
and CaF2 [98, 99]. Because of the low packing density of crystals based on the
diamond lattice, self-interstitials play an important role as diffusion vehicles in
some elemental (Si) and compound (e.g., GaAs) semiconductors [100, 38, 101] and
in the completely miscible SiGe random alloy semiconductor system [102, 103]. A
corresponding early evaluation of the tracer correlation factor f0 = 0.727 for self-
diffusion by the interstitialcy mechanism in the diamond structure was reported by
Compaan and Haven [104]. An analytical calculation of a similar correlation factor
in the simple cubic lattice yields f0 = 6

7 [105]. Another study presents a combination
of theoretical and MC calculations for interstitialcy diffusion in a two-dimensional
triangular lattice [106]. However, to our knowledge there is no other published
report dealing with the interstitialcy mechanism in a binary or multicomponent
(sub)lattice. It is this gap that the present work – published in Journal of Physics:
Condensed Matter, 2015 [75] – intends to bridge.
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The present MC study is motivated by the wish to identify the mechanisms of cation
diffusion in single-crystal alkali feldspar from experimental data on the 22Na tracer
diffusivity (see Chapter 3 and [64]), 43K diffusivity (see Chapter 4 and [57]) and the
ionic conductivity (see Chapter 5 and [56]). It is known from Chapter 4 and from
early tracer experiments [107, 9] that Na diffusion is several orders of magnitude
faster than K diffusion in alkali feldspar. However, this observation cannot be
reconciled with a common vacancy mechanism of the two species, as was shown by
the MC simulations presented in Chapter 6. Therefore, it seems natural to explore
whether the interstitialcy mechanism could be able to explain the experimental
findings. It is not easy, however, to start from scratch with such interstitialcy
MC simulations because of the low symmetry of the monoclinic structure and
the concomitant direction dependence of diffusion. For these reasons, this chapter
focuses on the simple cubic (sc) lattice, which may be considered as a first step
to reveal some major characteristics of interstitialcy diffusion in a binary random
alloy.
In the interstitialcy mechanism, the point defect acting as diffusion vehicle
(self-interstitial) is simultaneously a constituent atom of the host lattice. This
native interstitial atom migrates by replacing an adjacent substitutional atom.
The replaced atom in turn is forced to occupy an adjacent interstitial site and
subsequently exchanges with a neighbouring atom. In this chapter, it is only
dealt with the collinear interstitialcy mechanism. In this case, the interstitial
and substitutional sites involved in a single migration event are aligned in one
crystallographic direction. For the sc lattice this is a ⟨111⟩ direction. In the non-
collinear interstitialcy mechanism, treated in Chapter 8, the replaced substitutional
atom may be ‘kicked-out’ toward different adjacent interstitial sites.
The correlation effect of the interstitialcy mechanism takes into account that the
initially interstitial atom has a higher than statistical probability to return to
its previously occupied interstitial site by successively exchanging with the same
atom. Moreover, in a binary alloy AB the probability for such a reverse jump
may be increased compared to a single-component structure. This process can be
illustrated, e.g., by considering one interstitial and one adjacent substitutional atom
of the same species B in the vicinity of only A atoms. If the exchange rate of B
atoms is high compared to the exchange rate of A atoms, there is a high probability
for a long sequence of exchanges exclusively between the two B atoms.
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For an atom starting at a substitutional site of an elemental crystal, the geometrical
correlation of interstitialcy diffusion is interrupted immediately after the first jump.
This is because the second jump, now as self-interstitial, can take place in each
nearest-neighbour direction with equal probability. However, what remains in a
binary alloy is the physical correlation effect [76], which relates to the different jump
frequencies of A and B atoms. Commonly, physical correlation is much stronger
than geometrical correlation [76].
Considering self-diffusion in a binary random sc alloy, the interstitialcy mechanism
seems more complicated than the vacancy mechanism, i.e., for the following
reasons. (i) Two types of site exchanges have to be distinguished: interstitial-to-
substitutional and substitutional-to-interstitial. (ii) Each interstitialcy exchange
involves two atomic jumps. (iii) The jump length of the interstitialcy considered
as interstitial defect or charge carrier is twice as large as the jump length of the
two participating atoms. (iv) The point defect acting as diffusion vehicle appears
in two different forms: as A-type or B-type interstitial.
It will be shown in the present MC study that the special features of the
interstitialcy mechanism give rise to distinctive correlation effects which greatly
differ from those of the vacancy mechanism. The composition dependence of
the correlation factors appears to be strongly affected by a peculiar percolation
behaviour for the interstitialcy type of diffusion. In particular, there is a shift
of the site-percolation threshold to lower concentration compared to the vacancy
mechanism and a virtual second-order percolation threshold which relates to the
abundance of different jump types.

7.1. Theoretical background

7.1.1. Random alloy model with interstitialcy diffusion

The random alloy model was introduced by Manning to study diffusion by the
vacancy mechanism in binary and multicomponent alloys [14, 45]. His work focused
on the calculation of tracer and vacancy correlation factors, which play a crucial
role in the description of atomic transport processes in alloy systems. A distinction
has to be made between Manning’s general physical model and his analytical
framework pertaining to diffusion via vacancies in particular. In the present work,
only Manning’s physical model of a binary random alloy AB is considered which will
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be adapted to the special requirements of diffusion via the interstitialcy mechanism.
Manning’s physical model foots on the assumption that all interactions among
atoms (A,B) can be neglected, which implies the total absence of short- and long-
range ordering effects. Thus, the distribution of A and B atoms over the lattice
sites is purely statistical. Since the concentration of point defects is supposed to be
negligibly low, the random alloy AB is characterised by its composition CB = 1−CA

expressed in site fractions. The only relevant type of point defect considered in this
study is the interstitial defect or interstitialcy rather than the vacancy. However, in
an AB alloy it has to be distinguished between interstitials of type A and B, that is,
between AI and BI, respectively, which both may act as diffusion vehicle. Another
crucial assumption of the random alloy model is that the interaction between atoms
and the point defects acting as diffusion vehicle can be ignored. In the present case,
this implies that the elementary diffusion step, i.e., the collinear exchange between
the interstitialcy and a nearest-neighbour substitutional atom, is independent of
the type of interstitial. Therefore, the exchange frequency is only determined by
the identity (A or B) of the jumping substitutional atom and only two different
exchange frequencies, wA and wB, enter the calculations.
Under these conditions, diffusion may be described in terms of quasichemical
reactions, which for tracer atoms ÂS and ÂI can be written as

ÂI + AS 
 ÂS + AI (7.1)

and
ÂI + BS 
 ÂS + BI . (7.2)

It is implied that the interstitial (index I) and substitutional (index S) atoms are
at nearest-neighbour positions. Similar reactions can be given if the diffusion of
B atoms is considered. In the collinear variant of the interstitialcy mechanism,
the positions of all particles involved in a single reaction step are located along
a ⟨111⟩ direction of the sc lattice. The reaction rates of I-S interchange have to
be identified with the jump frequencies wA and wB introduced above, which only
depend on the type of the participating S-atom. Accordingly, in Eq. 7.1 both the
forward and reverse reaction rate is determined by wA. In Eq. 7.2, however, the
reaction rates are different and given by wB and wA for the forward and reverse
direction, respectively.
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In thermal equilibrium, the concentrations of products and educts in a reaction are
interrelated through the reaction rates. Specifically, based on Eq. 7.2 mass action
law predicts

rA

rB
= CA,I

CB,I
= CAwA

CBwB
, (7.3)

where CA,I(CB,I) is the concentration (site fraction) of AI (BI). Moreover, rA

designates the normalised or relative concentration of A-type interstitials, i.e.,

rA = CA,I

CA,I + CB,I
= CA,I

CI
= 1 − rB . (7.4)

Another useful expression is

rA = CAwA

CAwA + CBwB
. (7.5)

It can be noted that rA may be interpreted as the probability that a ‘generalised
interstitial defect’ I with concentration CI = CA,I +CB,I is of type AI. In particular,
CA,I and CB,I can be conveniently expressed in terms of the total concentration of
interstitials as

CA,I = rACI , CB,I = rBCI . (7.6)

It can be noted that CI in a binary random alloy with interstitialcy diffusion is the
counterpart of CV in the same alloy with vacancy (V) diffusion.

7.1.2. Tracer diffusion coefficients

The tracer diffusion coefficient1 of A atoms is given by

D̂A = lim
t→∞

⟨X2
A⟩

2t
= fA

⟨X2
A⟩uncorr

2t
, (7.7)

where t is a sufficiently long time and ⟨X2
A⟩ denotes the mean square displacement in

x-direction within this time. The right-hand side of this equation implicitly defines

1To reduce the number of indices, the common asterisk for labelling tracer diffusivity (D∗) has
been replaced by the ‘hat’ symbol (D̂) throughout this work.
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the tracer correlation factor fA by introducing the (hypothetical) uncorrelated mean
square displacement as

⟨X2
A⟩uncorr = ⟨nAA + nAB⟩l2

x

= ⟨(nIS
AA + nSI

AA) + (nIS
AB + nSI

AB)⟩l2
x . (7.8)

Thus, fA accounts for the fact that in the interstitialcy mechanism subsequent
jumps of the same atom are generally correlated. In Eq. 7.8, nIS

AA and nSI
AA, for

example, are the number of ÂI-AS and ÂS-AI interstitialcy events, respectively,
and the ⟨ ⟩ brackets stand for expectation value (ensemble average). Furthermore,
all atomic jump lengths along the x-axis of the sc lattice are equal to lx = a/2,
with lattice constant a.
In a long sequence of jumps of a single tracer atom Â, it has to be taken into
account that the probabilities pA,I and pA,S to be at interstitial and substitutional
sites, respectively, differ from each other. In fact, pA,I is given by

pA,I = CA,I

CA,I + CA,S
≈ CA,I

CA
, (7.9)

whereas
pA,S = 1 − pA,I ≈ 1 . (7.10)

The right-hand sides of these equations rely on the assumption that CA,I ≪ CA,S

holds to a very good approximation. This complies with the concept of a random
alloy with negligibly low defect concentrations, so that CA,S and CB,S are virtually
equal to CA and CB, respectively.
With the quantities introduced above and using Eq. 7.6, both ⟨nIS

AA⟩/t = pA,ICAwAz

and ⟨nSI
AA⟩/t = pA,SCA,IwAz are equal to wArAzCI, which leads to

⟨nAA⟩/t = 2wArAzCI . (7.11)

Similarly, by using Eq. 7.3 the relations ⟨nIS
AB⟩/t = pA,ICBwBz = wArBzCI and

⟨nSI
AB⟩/t = pA,SCB,IwAz = wArBzCI are obtained, so that

⟨nAB⟩/t = 2wArBzCI (7.12)
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holds true. With the aid of Eqs. 7.7, 7.8, 7.11, and 7.12 and using rA + rB = 1 the
tracer diffusivity of component A results as

D̂A = 1
2fA(2wA)zCIl

2
x = 2fAwACIa

2 . (7.13)

A similar expression holds for D̂B, so that the diffusivity ratio for the two
components is given by

D̂A

D̂B
= fAwA

fBwB
. (7.14)

7.1.3. Tracer correlation factors

For each jump type of either component a partial tracer correlation factor (PCFT)
can be introduced as f IS

jk or fSI
jk with j, k = A,B. Thus, f IS

AB refers to jump sequences
of A atoms, where the first exchange takes place from an interstitial site (AI) to
a substitutional site initially occupied by a B atom (BS; cf. Eq. 7.2). So, for both
A and B atoms there exist four different PCFTs at the base level of jump-type
discrimination. Averaging over I-S and S-I exchanges yields for j, k = A,B

fjk =
⟨nIS

jk⟩f IS
jk + ⟨nSI

jk⟩fSI
jk

⟨nIS
jk⟩ + ⟨nSI

jk⟩
= 1

2(f IS
jk + fSI

jk) , (7.15)

because ⟨nIS
jk⟩ = ⟨nSI

jk⟩ in thermal equilibrium. With these definitions, it is easy to
derive that the total correlation factor of A tracer atoms may be obtained as

fA = ⟨nAA⟩fAA + ⟨nAB⟩fAB
⟨nAA⟩ + ⟨nAB⟩

= rAfAA + rBfAB . (7.16)

In a similar way, fB takes the form

fB = rAfBA + rBfBB . (7.17)

In the mono-atomic case (CB, rB = 0), the tracer correlation factor reduces to
fA = (f IS

AA + fSI
AA)/2.
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7.1.4. Interstitialcy diffusivity and related correlation factors

In the interstitialcy mechanism, the interstitialcy diffusivity DI is the analogon
of the vacancy diffusivity DV in case of the vacancy mechanism. Both diffusion
coefficients appear as crucial quantities in the evaluation of ionic conductivity data
in binary or multicomponent crystalline systems [76]. Interstitials in binary ionic
sublattice AB carry an effective charge, which may be independent of the type
of interstitial, AI or BI. Thus, according to the Nernst-Einstein equation the dc
conductivity σ may be written in terms of generalised monovalent interstitials I as
[108]

σ = e2

kBT
NIDI = e2N0

kBT
CIDI , (7.18)

where e is the electronic charge, NI is the volume concentration of interstitials
(number density) and N0 denotes the volume concentration of interstitial sites and
kB is the Boltzmann constant. It can be noted that in the sc lattice the number
of interstitial (I) and substitutional (S) sites are equal. Furthermore, the Nernst-
Einstein equation applies to non-interacting particles (charge carriers), as is true
for the extremely low I concentrations (CI ≪ 1) considered in this study.
Using similar concepts and derivations as in Sect. 7.1.2, DI can be expressed as

DI = 1
2fIwIzl2

I,x = 4fIwIa
2 , (7.19)

where fI is the interstitialcy correlation factor and wI is the mean interstitial jump
frequency given by

wI = CAwA + CBwB . (7.20)

In Eq. 7.19 it is used that the interstitial jump length along the principal x-axis,
lI,x = a, is twice as large as the atomic jump distance lx. Moreover, compared to
Eq. 7.7 the factor 2 preceding the jump frequency is missing. This relates to the
fact that one interstitialcy exchange involves two atom jumps.
The total interstitialcy correlation factor fI may be decomposed into 4 partial
correlations factors (PCFIs) denoted as fk

I,j with j, k = A,B. For example, fB
I,A

refers to a PCFI for which the interstitial is of type AI and the first jump takes
place toward a nearest-neighbour BS site. The frequency of each interstitial jump
type is given by

⟨njk
I ⟩/t = rjCkwk , with j, k = A,B . (7.21)
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Combining fA
I,A and fA

I,B to a PCFI of higher level yields

fA
I = rAfA

I,A + rBfA
I,B , (7.22)

where it is used that ⟨nA
I,A⟩ + ⟨nA

I,B⟩ = CAwAt. Similarly, it is obtained

fB
I = rAfB

I,A + rBfB
I,B . (7.23)

It can be noted that fA
I (fB

I ) relates to correlated jump sequences starting with
an AS (BS) atom displaced by a generalised interstitial I. Thus, fA

I and fB
I are

the counterparts of fA
V and fB

V in case of a random alloy with vacancy-mediated
diffusion [14, 83] (see Chapter 6). A further PCF recombination results in the total
correlation factor of the interstitialcy, i.e.,

fI = rAfA
I + rBfB

I , (7.24)

because, e.g., ⟨nA
I ⟩ = ⟨nA

I,A⟩ + ⟨nA
I,B⟩ is proportional to CAwA.

7.2. Computational methods

All calculations presented here are based on an atomistic MC method by computer
simulation. Correlation effects were investigated for an alloy of two randomly
ordered atomic species in a sc structure. The atoms migrate by the collinear
interstitialcy mechanism as described in the previous section. The numerical
diffusion system was constructed from two interpenetrating sc lattices, both of
size 160a × 160a × 160a, where a is the lattice constant. In some cases, the size
was extended to 400a × 400a × 400a lattice sites to perform the most demanding
simulations with high accuracy.
The ‘substitutional’ lattice is completely occupied by the A and B atoms with
concentrations CA + CB = 1. The ‘interstitial’ lattice, which is shifted by
(a/2, a/2, a/2) relative to the substitutional lattice, contains only vacant sites
except for one site that is occupied. The atom residing here can be either of species
A or B and represents the interstitialcy defect I. In the present model, the I-S
exchange rate only depends on the substitutional species involved (wA ̸= wB) but
neither on the identity of the interstitial nor on that of the atoms adjacent to the
exchanging ones. However, the identities of the z = 8 S-atoms in the vicinity of
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the I-atom determine the individual exchange probability pi ∈ [0, 1) for S-atom i as
pi = wi/

∑8
j wj. The effective jump is then assigned to one S-atom by a randomly

generated number. Immediately after this first jump of the I-atom to the MC-
selected S-site, the S-atom that previously occupied this site is pushed to an
adjacent I-site. In the collinear mechanism under consideration, the I-S and S-I
exchanges of the two atoms participating in one migration step proceed in the
same direction. Hence, the displaced S-atom is able to attain only one adjacent
I-site.
The calculation of the correlation factors for one distinct concentration CB and one
set of exchange rates wA/wB was based on at least n = 1010 (but up to 5 × 1011)
exchanges of the interstitialcy defect. Hence, suitable periodic boundary conditions
were applied to the finite volume of the simulation box. Total correlation factors
were then calculated by the displacement method, based on the relation

fA = lim
nA→∞

⟨X2
A⟩/⟨nA⟩l2

x, (7.25)

where ⟨nA⟩ is the mean number of jumps of projected length lx per A atom. To
analyse partial correlation factors, the so-called PCF-method was employed [83].
The scalar products of jump vectors given by Sα = ∑

i

∑
j (xα,i · xα,i+j), where

xα,i+j denotes the jth jump after the ith exchange of type α, were simultaneously
computed during each simulation run by a simple and efficient algorithm [83]. The
PCFs were then calculated using the relation

fα = 1 + 2⟨Sα⟩/⟨nα⟩ · x2
α, (7.26)

where ⟨nα⟩ is the number of jumps of type α averaged over all particles of the same
species and xα is the projected length of this jump type in x-direction.

7.3. Results and Discussion

Simulations were carried out for jump ratios wA/wB ranging from 10−1 to 10−5 for
all alloy compositions CB between 0 and 1. Tracer and interstitialcy correlation
factors (fA, fB, and fI) were calculated by the displacement method, whereas the
associated PCFs were evaluated during the same simulation runs by the PCF-
method. The results are presented and discussed in the two following subsections,
after which the percolation behaviour revealed by the correlation effects will be
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analysed in detail. A further subsection deals with the differences between the
diffusion coefficient of the mobile (B) and less mobile (A) component as a function
of composition. Finally, the consequences for the Haven ratio are elaborated,
which compares mass and charge transport in the simulated random-alloy diffusion
system.

7.3.1. Tracer correlation factors

Composition dependence of fA

The results of fA and fB for wA/wB = 10−2 are presented in Fig. 7.1 together with
the corresponding PCFTs. The data points are equally spaced in steps of 0.02 over
the composition axis. Additional simulations were done for compositions where the
slope of fA is steep, i.e., for CB < 0.02. In Fig. 7.1a, the fSI

AA data for CB > 0.8 are
omitted because of a too low number of nSI

AA jumps. The same is true for f IS
AA beyond

CB = 0.9. Moreover, ‘mixed-atom PCFs’ in Fig. 7.1a involving both A and B are
not well-defined for CB = 0, which corresponds to a pure A lattice. Here, the data
shown at the outermost left-hand side were calculated for the limiting composition
CB = 10−3. In the case of A self-diffusion, the true geometrical correlation factor
f0 = 6

7 in the sc lattice [105] is reproduced by fA within an accuracy of 0.03 %.
According to Eqs. 7.5, 7.15 and 7.16, this value is a plain average of the two PCFs
f IS

AA = 5
7 and fSI

AA = 1. This result can be understood as follows: In self-diffusion,
a S-atom that just has jumped to an I-site will not be affected by correlation
(fSI

AA = 1), since its next exchange occurs randomly with one of 8 adjacent S-
atoms. In contrast, the I-atom that has just exchanged with the S-atom will be in
direct proximity to the new interstitial atom. In this situation, there is a higher
than statistical probability that the next jump of this original I-atom occurs in the
opposite direction to the first jump. The net probability for the forward jump is
tf = P+ − P− = −1

7 [105] and therefore f IS
AA = 1 + 2tf = 5

7 [14, 19].
Starting from the lowest CB value, fA steeply decreases towards a global minimum
with increasing B concentration. This finding can be explained by the concentration-
dependent contribution of the four PCFTs. All associated PCFTs are weighted
according to Eqs. 7.15 and 7.16 by rA or rB yielding fA as solid line in Fig. 7.1a.
The fact that this line intersects the fA data obtained by the displacement method
demonstrates the consistency of the calculations. Despite a low concentration of B
atoms, rB can be relatively large because of a high jump frequency (wB = 100wA,
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Figure 7.1.: Total tracer correlation factors fA (a) and fB (b) and the associated partial
correlation factors (PCFTs) for wA/wB = 10−2 as a function of composition CB. For
clarity, every second data point has been omitted, except for parts where the gradient is
high. Circles: fA and fB directly calculated via the displacement method. Solid lines: fA
and fB calculated from the weighted PCFT contributions according to Eq. 7.16 and 7.17.
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cf. Eq. 7.5). It turns out that the occurrence of a minimum in fA relates to a
transition from ⟨nAA⟩ > ⟨nAB⟩ to ⟨nAA⟩ < ⟨nAB⟩. Since at higher CB diffusion of
A atoms mainly takes place by exchanges of A with B, the total correlation factor
fA is controlled by the two PCFTs fSI

AB and f IS
AB. These A-B exchanges are strongly

correlated over a large range of compositions and fSI
AB becomes even negative for

CB < 0.2 with a limiting value of -0.656 for CB → 0. This reflects that in this
B-poor composition range an AS atom that has just interacted with a BI atom has
a high probability to immediately exchange with the same B atom again.
It should be emphasised that the occurrence of a global minimum in the fA-versus-
CB plot signifies a clear difference with regard to the vacancy mechanism, where
the correlation factor of the less mobile component exhibits monotonic behaviour
between f0 and 1 over the whole composition range [22, 83]. The interstitialcy-
related minimum observed here seems to be related to a second-order percolation
threshold, which will be discussed in more detail in Sect. 7.3.3.
The right-hand side in Fig. 7.1a corresponds to A diffusion in a B-rich host crystal.
Here, except for fSI

AA all PCFTs and fA increase towards a value of 1. As indicated
above, the fSI

AA data are omitted for CB > 0.8 because of substantial scatter due
to poor statistics. However, at high B concentrations fSI

AA is apparently limited
by a value of ∼ 1.36. This value greater than unity can be interpreted by the
small probability of an AS atom to exchange with the same A atom after its initial
exchange with AI. In contrast, there is a high probability for the atom to exchange
with one of the numerous B atoms. Therefore, the next jump of an original AS

atom will be in the same direction as the first jump with a higher than statistical
probability.

Composition dependence of fB

Tracer correlation factors related to diffusion of B atoms were also calculated within
the same MC simulation runs. The fB results are represented in Fig. 7.1b as a
function of composition CB. In analogy to fA, the outermost right-hand side (rhs)
of the plot corresponds to B self-diffusion which implies the same geometrical value
f0 = 6

7 as for A self-diffusion (lhs of Fig. 7.1a). Similar identity relations are:
fSI

BB(CB → 1) = fSI
AA(CB → 0) = 1 and f IS

BB(CB → 1) = f IS
AA(CB → 0) = 5

7 .
For B-rich compositions, only a minor influence of B-A exchanges to the total
correlation factor fB is observed. Instead B-B interactions comprise most of the
B diffusion over a wide range of compositions. However, for low CB the PCFTs
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associated with B-B exchanges are significantly reduced which even leads to fSI
BB

values falling below zero. This behaviour is caused by a site-percolation effect close
to CB = 0.2 related to B-B constellations, and will be further discussed in Sect.
7.3.3. In the extremely B-poor range of CB ≤ 0.02, the proportion of B-A exchanges
is significantly enhanced (CAwA > CBwB), which results in an increase of rA and a
concomitant weak increase of fB for CB → 0.
The PCFTs fSI

BA and f IS
BA can be interpreted in close analogy to the previous

discussion on fSI
AA and fSI

AB, respectively. The approximate limiting values of these
correlation factors are found to be fSI

BA = 1.64 for CB → 1 and f IS
BA = −0.88 for

CB → 0.

Dependence of fA and fB on the jump frequency ratio

The previous discussion on tracer correlation effects applies to the jump frequency
ratio wA/wB = 10−2 of the two components. In addition, MC simulations were
done for a wide range of exchange-rate differences ranging from wA/wB = 10−5 to
105. The results for fB are given in Fig. 7.2 on a logarithmic scale as a function
of CB (data points spaced by 0.02, additional data near CB = 0.02, terminal lhs
composition CB = 10−3). Special attention should be given to the data for wA/wB =
105 because in this case B is the slower moving species by exception. Here, only
minor correlation effects of the B atoms are observed except for compositions in
close vicinity to the percolation threshold related to B-A exchanges (cf. Section
7.3.3). It should be noted that this percolation effect occurs at the right-hand side
of Fig. 7.2 due to the inverse identity of the faster moving species. The lowest
fB value appears at CB ≈ 0.98 and has a deviation from the geometrical value
of more than three orders of magnitude. Less extreme cases with B as the slower
component (wA/wB = 101 to 104) show a similar fB behaviour, however, with less
pronounced minima at the B-rich side. In all cases with B as the faster moving
species (wA/wB = 10−1 to 10−5), minor correlation effects are found in the range
from intermediate to high CB. For CB ≤ 0.25 the correlation factor fB shows a clear
dependence on the jump frequency ratio. This effect is linked to the percolation
threshold for B diffusion via B-B exchanges. For wA/wB = 10−3 and less, the
additional influence of a second-order percolation effect related to B-A exchanges
can be observed. Going from CB ≈ 0.2 to zero concentration, this is manifested
by a local plateau followed by a second steep decrease of fB, which subsequently
passes through a minimum.
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Figure 7.2.: Tracer correlation factor fB as a function of composition CB for jump
frequency ratios wA/wB ranging from 105 to 10−5, as indicated. For clarity, every second
data point has been omitted, except for parts where the gradient is high. Steep gradients
are indicative of percolation effects related to consecutive B-B or B-A exchanges.

7.3.2. Interstitialcy correlation factors

To calculate correlation factors related to the diffusion of the interstitialcy defect,
the two atomic exchanges I-S and S-I that simultaneously occur with a displacement
length a are considered as one jump of length 2a (cf. Sect. 7.1.4). Since only
one interstitial atom exists at a time in the present MC simulations, the total
trajectory was split into Nrun sequences of nL jumps. The correlation factor was then
calculated by averaging over Nrun sequences at the end of one long simulation run
consisting of up to 5×1011 jumps. Figure 7.3 presents simulated fI values obtained
by the displacement method for wA/wB = 10−2 and sequences of nL = 2×104 jumps
(but up to 107 in some cases). The four basic PCFIs were simultaneously calculated
by applying the PCF-method. At the outermost left-hand side of Fig. 7.3, the three
PCFIs involving B jumps were evaluated for concentrations as low as CB = 4×10−3.
In the case of self-diffusion (CB = 0, 1) no correlation is observed because fI = 1,
which implies that the walk of the interstitial atom is completely random. For small
CB, a steep decrease towards a global fI minimum appears in Fig. 7.3. This effect is
can be rationalised by the contributions of the four PCFIs to the total correlation
factor, which greatly differ near the fI minimum. According to Eqs. 7.22, 7.22 and
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Figure 7.3.: Total interstitialcy correlation factor fI and its associated partial correlation
factors (PCFIs) as a function of composition CB for wA/wB = 10−2, as indicated. For
clarity, every second data point has been omitted, except for parts where the gradient is
high. Circles: fI directly calculated via the displacement method. Solid line: fI calculated
from the weighted PCFI contributions according to Eqs. 7.22 and 7.24.

7.24 these contributions are weighted through rA and rB by CAwA and CBwB,
respectively. As discussed in Sect. 7.3.1 for fA, diffusion of A atoms by AI-AS ex-
changes is predominant for CB < 0.02. Here, A-A exchanges virtually occur without
correlation, whereas exchanges of two (highly mobile) B atoms are mostly reversed
during the next jump leading to fB

I,B → 0. For CB → 0, the limiting value for fA
I,B is

∼ −0.88. It should be noted that this value converges to −1 for increasingly larger
differences of the exchange rates. This obviously relates to the fact that an BI atom,
that just has exchanged with AS, has an extremely high probability to subsequently
exchange with the same atom because there are no other B atoms in the vicinity. It
should be noted that Eq. 7.26 permits negative values for partial correlation factors.
In fact, the lower limit −1 applies to ⟨nα⟩ → 1 and a truncation of correlated ex-
change after the reverse jump. In this case, ⟨Sα⟩ simplifies to a single scalar product.
For intermediate to high CB values, B-B-interactions occur with the highest
probability of all types of exchange. Consequently, the simulated fA

I,A data suffer
from scatter and are therefore omitted in Fig. 7.3 for CB > 0.24. The same applies
to fB

I,A and fA
I,B for CB > 0.80. It can be observed that fA

I,A and fB
I,A reach values

greater than unity. However, their contribution to fI is only very minor.
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Figure 7.4.: Comparison of the tracer correlation factors fA (triangles) and fB (squares)
with the correlation factor related to the interstitialcy defect fI (circles) for the jump
frequency ratio wA/wB = 10−5.

7.3.3. Percolation behaviour

As shown above, tracer correlation factors for diffusion via interstitialcies can
become very small in binary random alloys, if the jump rates of the two components
differ considerably. This is also true for the ‘physical correlation factor’ fI which
enters the ion conductivity of a disordered ionic AB system [76] (cf. Sect. 7.3.5).
Figure 7.4 presents a comparison of fA, fB, and fI for wA/wB = 10−5 as a function
of composition (0 ≤ CB ≤ 0.4). As indicated before, distinct steps appearing in
these plots may relate to the percolation of atoms or defects along chains and
clusters of the more mobile atoms. In this section, this percolation behaviour is
analysed in more detail, especially with the aid of the simulated fI data. To reduce
statistical scatter, fI values close to threshold compositions are based on longer
sequences of nL = 107 interstitialcy jumps within a larger simulation box of up
to 400a × 400a × 400a atoms. Moreover, to accurately describe the correlation
behaviour in cases approaching diffusion in pure A, the fI values comprise very low
concentrations down to CB = 10−5.
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Figure 7.5.: Interstitialcy correlation factors fI in the sc random alloy as a function
of composition for CB ≤ 0.4 revealing two distinct percolation thresholds. The data are
representative of wA/wB = 10−5 as also displayed in Fig. 7.4 (circles). The short- and
long-dashed lines are separate fits to the solid symbols based on Eq. 7.27.

Constellations of type B-B

It is seen in Fig. 7.4 that fI and fB exhibit a similar variation with composition.
Both plots show steep gradients near CB = 0.02 and near CB = 0.2. Also, fA

shows steep gradients near CB = 0.02 but near CB = 0.2 it reveals only a weak
composition dependence. This indicates that in the latter concentration range fI

and interstitialcy diffusion are not affected by site-percolation of the ‘slower’ A
atoms but rather by the percolation along chains and clusters of the ‘faster’ B
atoms. In the limiting case, wA/wB = 0, the A atoms are completely immobile
and hence neither B-A nor A-B exchanges occur. This leads to the appearance
of a first-order threshold composition Cp

B, below which long-range diffusion is not
possible (fI = 0, fB = 0).
The concentration dependence of fI just above the percolation threshold Cp

B may
be described – in analogy to diffusion via vacancies – by [23, 21]

fI = k(CB − Cp
B)δ, CB ≥ Cp

B , (7.27)
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where δ is a critical exponent and k is a dimensionless proportionality constant.
As an approximation to the case of fully immobile A atoms, Eq. 7.27 was fitted
in the narrow range CB ∈ [0.2, 0.35] to the fI data for wA/wB = 10−5, which is
illustrated at the right-hand side of Fig. 7.5. Most consistent results were obtained
by fitting of ln (fI) using the logarithmic form of Eq. 7.27. The best estimates
of Cp

B, δ and k are compiled in Tab. 7.1, and compared with corresponding data
related to vacancy diffusion in an sc structure.The findings from this analysis can be
summarised as follows: The present threshold, Cp

B(I) = 0.1885, is distinctly lower
than the vacancy-related value Cp

B(V) = 0.3116 [95, 83]. This may relate to the
higher coordination number for the interstitialcy mechanism, z(I) = 8, compared
to the vacancy mechanism, z(V) = 6. The critical exponent δ(I) is slightly smaller
than δ(V) [83], which leads to a stronger curvature of the fI plot at compositions
close to the percolation threshold. The fitted proportionality constant k(I) is only
about half of the k(V) value [83], causing a weaker composition dependence for
CB ≫ Cp

B. Altogether, I-related correlation is less pronounced than V-related
correlation far above the pertaining site-percolation threshold but more significant
in the proximity of Cp

B.
In an attempt to rationalise the simulated Cp

B(I) value of 0.1885 by geometrical
arguments, a two-dimensional (2D) sc lattice is considered consisting of two
randomly ordered species AB. As illustrated in Fig. 7.6, an interstitialcy defect
I surrounded by z = 4 nearest-neighbour (NN) S-atoms is able to reach z I-sites
(squares) via I-S exchange. In a subsequent jump, the defect can either exchange
with the same atom, or attain another I-site by exchanging with one of the z2 − z

next-nearest-neighbour (NNN) atoms of the initial defect site. To estimate Cp
B, the

minimum number of B atoms must be found that is necessary to enable diffusion
along chains consisting of two adjacent B atoms. It can be assumed that for each
dimension, at least two chains (one in positive and one in negative direction) are
needed for site-percolation. In the 2D case, these are z′ = 4 chains consisting of
two B atoms each in a lattice area of z2 = 16 atoms. With the dimension number
d this reasoning leads to the expressions

Cp
B = 2z′

z2 = 4d

4d
, (7.28)

yielding the 2D result as Cp
B = 0.5. This value is in excellent agreement with
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7.3. Results and Discussion

Figure 7.6.: 2D-analogon of a simple-cubic lattice (square lattice) including z2 = 16
substitutional atoms (S) and one interstitialcy defect (I). The defect is able to attain
four interstitial sites (squares) via a first I-S exchange. Each of these sites must be in
the proximity of a second mobile B atom to establish fast pathways that lead to further
interstitial sites (diamonds). The threshold composition according to Eq. 7.28 is Cp

B = 0.5.

0.500 ± 0.002 that was obtained in this work by MC simulation in a square lattice
(cf. Tab. 7.1).
In the 3D case, the percolation threshold is determined by z = 8 NN atoms and
z′ = 6 chains and thus, Cp

B = 0.1875. This result agrees within error tolerance with
the MC value (0.1885) obtained from the composition dependence of fI (cf. Tab.
7.1). Also, the 1D threshold, Cp

B = 1, is correctly predicted by the above expression.
Nonetheless, it should be noted that Eq. 7.28 stays without rigorous proof here.

Constellations of type A-B

At compositions close to CB = 0.02 all three total correlation factors show a steep
gradient towards a global minimum (cf. Fig 7.4). This effect can be observed for
wA ̸= 0 only, because otherwise fB and fI are equal to zero below the percolation
threshold for B-B constellations (CB < 0.1885). The coherent correlation behaviour
of A, B and I suggests, that this effect is based on a second-order percolation
threshold (Cp,2

B ) involving chains of type A-B-A-B ...
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7. Correlation effects of the interstitialcy mechanism – sc random alloy

At compositions just above the threshold value, diffusion occurs to a significant
proportion along chains of alternating A and B atoms, since no ’fast’ pathways of
connected B atoms are available. A restricted choice of these A-B migration paths
leads to the occurrence of a threshold composition Cp,2

B , below which long-range
diffusion occurs via the ‘slow’ A-A exchanges only. The concentration dependence
of fI just above the percolation threshold Cp,2

B may be described in a similar way
as in the preceding case pertaining to B-B chains. Hence, Eq. 7.27 was fitted for
CB ∈ [0.04, 0.15] to the fI data obtained for wA/wB = 10−5 (cf. Fig. 7.5). The
best estimates of Cp,2

B , δ and k characterizing this quasi-percolation behaviour are
compiled in Tab. 7.1. Specifically, the threshold value results as Cp,2

B = 0.0376,
which is just above the fI minimum in Fig. 7.4.
In analogy to the discussion on B-B percolation, it can be assumed that the actual
value for the threshold composition can be deduced from simple arguments. It
can be noted that the following reasoning holds both for 2D and 3D. It is based
on the hypothesis that quasi-percolation requires at least z′ chains consisting of
alternating A and B atoms embedded in an A-rich lattice domain. Again, it has to
be found the number of atoms that possibly interact with the interstitialcy defect I
along its walk. Thus, to imply two B atoms per chain, four I-S exchanges have to be
taken into account. I is assumed to be of type B and the first exchange necessarily
occurs with one of the z NN atoms. In a second I-S exchange, z2 − z new atoms
can be attained, leading to z2 possible ’target atoms’ after two I-S exchanges.
After these two exchanges, the interstitialcy I will be of type B again (because of
alternating A-B) and occupies one of z′ possible I-sites. In the subsequent two I-S
exchanges again z2 atoms can be reached per I-site, which makes up z′ × z2 atoms
in total. However, z2 of these atoms have already been considered for the first two
I-S exchanges, and are therefore counted twice. Altogether, regarding a random
walk of four I-S exchanges I has the possibility to exchange with (z′ − 1) z2 atoms
yielding

Cp,2
B = 2z′

(z′ − 1) z2 = 4d

[1 + 2(d−1)]4d
. (7.29)

Here, the factor 2 preceding z′ accounts for two B atoms per chain. Similar to B-B
site-percolation (cf. Eq. 7.28) the required number of A-B percolation chains z′ is
taken as 4 in 2D and 6 in 3D. In the denominator on the right-hand side of Eq. 7.29,
the factor z′ − 1 = 2d − 1 was changed to [1 + 2(d−1)] = 1 + z/2, which does not
affect the 2D and 3D case. In the latter form, however, Eq. 7.29 reproduces also
the correct 1D value, i.e., Cp,2

B = 0.5.
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7.3. Results and Discussion

Figure 7.7.: Tracer diffusivity ratio D̂B/D̂A as a function of jump frequency ratio wB/wA
in a random binary AB alloy with diffusion by the interstitialcy mechanism. Note that
for wB > wA all curves fall below the dashed line, which represents the hypothetical case
with fA = fB = 1.

The results obtained by Eq. 7.29 are compiled in Tab. 7.1. For 3D, the estimate
of Cp,2

B (calc.) = 0.0375 is almost equal to the simulated value of 0.0376. To check
the accuracy of the estimated expression in 2D, Cp,2

B = 0.1667, additional MC
simulations of interstitialcy diffusion on a square lattice were carried out. Then
correlation factor analysis like that shown in Fig. 7.5 yields Cp,2

B (calc.) = 0.1664.
Again, the values agree within the numerical uncertainty. Nonetheless, this cannot
be seen as a proof for the rigorous correctness of Eq. 7.29.

7.3.4. Comparison of tracer diffusion coefficients

The ratio of the higher to the lower tracer diffusivity is according to Eq. 7.14
given by D̂B/D̂A = wBfB/(wAfA). The MC data for fA and fB were used as key
parameters to calculate this ratio as a function of wB/wA ranging from 1 to 105.
Figure 7.7 displays the results for four different compositions CB that each represent
a distinct regime of diffusion correlation. First, CB = 0.7 specifies a B host crystal
with a substantial amount of less mobile A atoms. Minor correlation effects are
observed for the diffusion of both A and B atoms. Hence, in Fig. 7.7 the diffusivity
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7. Correlation effects of the interstitialcy mechanism – sc random alloy

ratio (down-triangles) is slightly below the dashed line with slope 1 representing
uncorrelated diffusion (fA = fB = 1). Second, the composition CB = 0.2 is close
to the threshold for site-percolation regarding B-B occurrences. A significant effect
on the diffusivity ratio can be observed in Fig. 7.7 (circles) but no limitation on
the D̂B/D̂A value is apparent. In contrast, for a third composition given by CB =
0.1 (squares), which is below the site-percolation threshold Cp

B, a limiting value
of D̂B/D̂A ≈ 15 is found. Finally, the same behaviour is displayed by the data
representing CB = 0.02 (up-triangles), that is, a composition even below the second-
order threshold Cp,2

B . In this case, the diffusivity ratio slightly increases for wB/wA >

104, which, however, may be an artefact due to simulation runs of insufficient length.

7.3.5. Comparison of mass and charge transport

To compare tracer diffusion coefficients with the ionic conductivity these quantities
have to be transformed to the same dimensionality. Using the Nernst-Einstein
equation, the measured tracer diffusivity of A atoms (ions), D̂A, may be converted
into a conductivity σ̂A,, i.e.,

σ̂A = e2

kBT
NAD̂A = e2N0

kBT
CAD̂A , (7.30)

where NA = N0CA is the number density of A atoms, kB is the Boltzmann constant
and e is the charge unit. A similar expression holds for the partial conductivity σ̂B

deduced from the B tracer diffusivity, so that the total ‘tracer-derived’ conductivity
σ̂ is given by

σ̂ = σ̂A + σ̂B (7.31)

Alternatively, based on the Nernst-Einstein relation the ionic conductivity may be
converted to the so-called charge diffusivity Dσ, i.e.,

Dσ = kBT

e2Nion
σ = CIDI , (7.32)

where Nion = NA + NB is the total ion density. Hence, Dσ reflects the mean effect
of A and B ions. The right-hand side equality of Eq. 7.32 follows from Eq. 7.18 and
Nion = N0. In addition, a mean tracer diffusivity can be introduced, i.e.,

D̂ = CAD̂A + CBD̂B . (7.33)
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Figure 7.8.: Haven ratio HR calculated with Eqs. 7.35 and 7.36 as a function of
composition CB for interstitialcy diffusion in the sc lattice. Data points represent the
results for various jump frequency ratios wA/wB, as indicated.

With the quantities defined above, mass and charge transport can be compared in
terms of the Haven ratio [76], i.e.,

HR = σ̂

σ
= D̂

Dσ

= CAD̂A + CBD̂B

CIDI
. (7.34)

Using Eqs. 7.13, 7.19 and 7.20, this expression simplifies to

HR = 2 f̂

fI

l2
x

l2
I,x

= 0.5 f̂

fI
, (7.35)

with
f̂ = rAfA + rBfB . (7.36)

The fact that Eq. 7.35 reproduces the well-known expression for the mono-ionic
case [76] may be taken as a proof of consistency.
The results following from the present simulations are displayed in Fig. 7.8
over the composition range from 0.02 to 0.5 for different jump frequency ratios.
The data show only rather small (negative) deviations from the mono-ionic case
(HR = f0/2 = 0.4286) for most compositions and wA/wB values. However, in the
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7. Correlation effects of the interstitialcy mechanism – sc random alloy

proximity of the site-percolation threshold Cp
B = 0.1885, a global minimum appears

and HR is strongly diminished for greatly different exchange rates. Specifically, for
wA/wB = 10−4 the Haven ratio results as HR ≈ 0.14, which means a reduction by
a factor of ∼ 3. Another minimum, local in nature, develops for decreasing wA/wB

near the second-order percolation threshold Cp,2
B = 0.0376. Altogether, HR exhibits

capricious behaviour over the range of compositions poor in the highly mobile
component B, which will be most relevant for the interpretation of experimental
data.It may be interesting to determine the relative contributions of either ionic
species to σ̂ and σ (or to D̂ and Dσ). This can be done by means of the ratios

σ̂A

σ̂A + σ̂B
= CAD̂A

CAD̂A + CBD̂B
= rAfA

f̂
(7.37)

and
σA

σA + σB
= CAwAfA

I
CAwAfA

I + CBwBfB
I

= rAfA
I

fI
, (7.38)

where with reference to Eq. 7.18 the relation σ = σA+σB obviously holds. Equation
7.38 is further based on Eqs. 7.19, 7.20 and 7.24. Experimental studies of ionic
transport properties in solids often rely on measurements of the conductivity and
self-diffusion coefficients as a function of temperature. If only tracer diffusion data
of one component, say A, is available it makes sense to determine the ratio

σ̂A

σ
= CAD̂A

CIDI
= 0.5CAfAwA

fIwI
= 0.5rAfA

fI
. (7.39)

Like in Eq. 7.35, the factor 0.5 results from differences in jump length and jump
frequency between atom A and defect I. Simulated data were employed to calculate
σ̂A/σ according to Eq. 7.39 as a function of composition. Figure 7.9 shows the
results for different jump frequency ratios. It is found that for A-rich compositions
with CB < Cp

B the conductivity relies on substantial contributions from the
less mobile A-type ions. By contrast, for compositions above the site-percolation
threshold σ̂A/σ becomes increasingly smaller for decreasing values of wA/wB.
Conversely, this means that for CB > Cp

B charge transport is almost completely
carried by the highly mobile ionic component, in this case the B component. This
conclusion is meaningful for the combined analysis of self-diffusion and conductivity
data in ionic crystals.
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Figure 7.9.: Ratio σ̂A/σ according to Eq. 7.39 for various jump frequency ratios wA/wB,
as indicated. Above the threshold for site-percolation, Cp

B = 0.1885, the conductivity σ
appears to be controlled by the diffusion of the more mobile B atoms(ions).

7.4. Summary and conclusions

The main features and results of this work may be summarised as follows:
(i) Diffusion and ionic conduction by the collinear interstitialcy mechanism in a
random AB alloy was analysed in the limit of low interstitialcy concentration by
means of Monte Carlo simulation.
(ii) Tracer and interstitialcy correlation factors (fA, fB and fI) were calculated as
a function of composition (CB) and jump frequency ratio (wA/wB).
(iii) An analytical framework was established to describe partial correlation factors
on various levels of discrimination.
(iv) Analysis of the interstitialcy percolation behaviour from the simulated fI data
yields an estimate for the first-order site-percolation limit (Cp

B = 0.1885) related
to unbroken chains of the mobile component in the sc lattice.
(v) The same type of analysis reveals a second-order percolation threshold
(Cp,2

B = 0.0376), which relates to the abundance of nearest-neighbour A-B occur-
rences.
(vi) For both percolation thresholds simple analytical estimations are given that
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reproduce the corresponding numerical values within the uncertainty of the Monte
Carlo results.
(vii) In sc random alloys, correlation effects and tracer diffusivity ratios (D̂B/D̂A)
related to the interstitialcy mechanism may significantly differ from those related
to the vacancy mechanism.
(viii) Simple expressions are given that allow for comparing the tracer diffusion
coefficients with the ionic conductivity and to quantify the partial contribution of
either component to overall charge transport.
(ix) Above the site-percolation threshold Cp

B, the ionic conductivity is controlled
by the transport properties of the more mobile component.
This basic study concerning correlation effects by the collinear interstitialcy
diffusion mechanism in a sc random alloy displays important features for the
reconstruction of the diffusion mechanism acting in alkali feldspar. Assuming
that the B component is representing the more mobile Na in alkali feldspar
(and A is representing K) it was demonstrated that the site-percolation threshold
associated with the interstitialcy mechanism is considerably shifted towards lower
Na concentrations compared to the vacancy mechanism (Cp

B = 0.310 in a
hypothetical sc structure of alkali feldspar). The experimental data for tracer
diffusion (see Chapter 4) suggested that the Na diffusivity is not diminished due to
site-blocking effects from slower moving K atoms in VF feldspar with the Na site-
fraction CNa = 0.15. In conclusion, the diffusion mechanism acting in VF feldspar
should be associated with a site-percolation threshold Cp

Na ≤ CNa (VF) = 0.15.
The presented collinear interstitialcy mechanism in a sc lattice still bears a slightly
larger threshold value of Cp

B = 0.1885. It is well known [109, 110, 111, 112] that
the threshold value intimately depends on the coordination number z pertaining
to a specific crystal lattice, that is z = 8 for interstitialcy diffusion in the sc
structure. In addition, also the number of sites z2 from which a second exchange of
the interstitialcy I can occur following an arbitrarily chosen first jump determines
the number of available pathways and hence, has an influence on Cp

B. This number
accounts for zc

2 = 7 in the collinear case and znc
2 = 15 in a pure non-collinear case.

It will therefore be investigated in the following Chapter 8 how non-collinear jumps
affect the percolation behaviour in a randomly ordered sc lattice. This study will
be an important step in the interpretation of the diffusion mechanism controlling
self-diffusion and ionic conductivity in alkali feldspar.
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8. A Monte Carlo study of ionic
transport in a simple cubic
random alloy via the interstitialcy
mechanism: Effects of
non-collinear and direct
interstitial jumps

The previous MC simulations of diffusion by the interstitialcy mechanism were
confined to the simplest possible 3D crystallographic structure and a single
elementary type of atomic jumps (see Chapter 7 and [75]). Specifically, a simple
cubic lattice AB with exclusively collinear interstitialcy site-exchange showed
a number of remarkable features with regard to correlation effects and their
consequences for tracer diffusivity and ionic conductivity. The most important
results can be summarised as follows: (i) Correlation factors fB of the more mobile
component B adopt very low values for extreme differences in jump frequency
(wA/wB < 10−2), when the alloy composition falls below the B-site percolation
limit Cp

B = 0.1885 (site-fraction units). (ii) All correlation factors (fA, fB, and fI

pertaining to the ‘generalised interstitialcy defect’ I) reveal a pronounced minimum
near a second-order percolation limit Cp,2

B = 0.0376, which relates to the occurrence
of non-interrupted A-B chains. (iii) Comparing the tracer diffusivity of A and B,
differences in jump frequency are generally levelled off by correlation effects. In
particular, for CB < Cp

B the tracer diffusivity1 ratio D̂B/D̂A approaches an upper
limit close to 15 for wB/wA going to values of 104 and higher. (iv) Above the site-

1To reduce the number of indices, the common asterisk for labeling tracer diffusivity (D∗) has
been replaced by the ‘hat’ symbol (D̂) throughout this work.
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percolation threshold Cp
B, the ionic conductivity almost fully relies on the transport

properties of the more mobile B component.
The question arises how this clear-cut picture will change when some of the model
restrictions are relieved. A natural extension of the model can be obtained by taking
into account additional jump types. Apart from the collinear exchange, where the
two atomic displacements involved in an interstitialcy event are aligned along the
same ⟨111⟩ direction, the sc lattice allows for a number of different non-collinear
jumps. This work is restricted to the most likely variant, for which the deviation
in jump direction between the two atoms displaced in conjunction is the smallest.
This non-collinear variant has a multiplicity of three in the sc structure.
Another extension of an interstitialcy-type diffusion scheme takes into consideration
the occurrence of direct interstitial jumps. Having interstitial atoms mediating
diffusion through I-S and S-I exchange, it seems natural to additionally conceive
of I-I jumps. These jumps will provide alternative pathways and thus, become
particularly important in cases when diffusion via the true interstitialcy mechanism
is severely hampered because of percolation problems. Therefore, it may be
expected that I-I jumps will have a strong impact for the (more mobile, smaller)
B atoms in B-poor compositions even when the probability of these jumps is
comparatively low. Consequently, the diffusion properties may greatly change as
a function of CB due to the competition between direct and indirect interstitial
exchange.
This study – published in Philosophical Magazine, 2016 [65] – successively explores
the influence of non-collinear and direct interstitial jumps on mass and charge
transport via the collinear interstitialcy mechanism. More specifically, it will be
shown that both extensions of the jump-type variety lead to reduced diffusion
correlation effects and thus, to (partly considerable) increases of the pertinent
correlation factors fA, fB, and fI. These findings have serious consequences for
the composition dependence of the individual tracer self-diffusion coefficients, the
charge diffusivity, and the appearance of percolation thresholds. Moreover, shifts
in the proportions of mass to charge transport lead to remarkably high values of
the Haven ratio. In general, the present results for the sc lattice have an exemplary
character and will be significant for the interpretation of experimental data on
alkali feldspar.
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8.1. Theoretical background

8.1.1. Random alloy model with diffusion via self-interstitials

Starting point of the calculations is Manning’s physical model of a binary random
alloy AB [14, 45], in which atomic interactions are completely negligible. As
a consequence, the distribution of A and B atoms over the lattice sites is
purely statistical and thus, not subject to any ordering tendency. The atomic
concentrations (in site-fractions) obey the relationship CA + CB = 1, which implies
a negligibly low concentration of point defects. In this work, self-interstitials are
considered as the only relevant point defects and the characteristics of their
operation in mass and charge transport is explored. In particular, it has to be
distinguished between self-interstitials of type A and B, that is, AI and BI,
respectively, which both may act as diffusion vehicle. Another crucial assumption of
the random alloy model is that the interaction between atoms and point defects can
be ignored. Moreover, the extremely low concentrations of AI and BI prevent any
interference among these interstitials, e.g., by crossing-over of diffusion pathways.
Diffusion via the interstitialcy mechanism in a random alloy AB may be described
in terms of quasichemical reactions, which for tracer atoms B̂S and B̂I can be written
as

B̂I + BS 
 B̂S + BI (8.1)

and
B̂I + AS 
 B̂S + AI . (8.2)

Here, it is implied that the interstitial (index I) and substitutional (index S) atoms
are at nearest-neighbour positions. Similar reactions can be given if the diffusion
of A atoms is considered.
In the previous Chapter 7 the collinear variant of the interstitialcy mechanism was
considered in which the positions of all particles involved in a single reaction step are
located along a ⟨111⟩ direction of the sc lattice; see Fig. 8.1b. For simplicity and in
consistency with the random-alloy concept, it was assumed that there are only two
different jump frequencies, i.e., wA and wB, depending on the substitutional atom
involved in I-S exchange. Thus, the jump probability is in all cases independent of
the type of the participating interstitial, AI or BI.
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Figure 8.1.: Direct interstitial (a) and interstitialcy (b) jumps in a simple cubic
structure. Two types of interstitialcy exchange are indicated: collinear exchange (I-S
full/solid arrow with subsequent S-I open/dashed arrow) and non-collinear exchange
entailing an oblique angle (109.47◦) between the partial steps (I-S full/solid arrow
together with one of three equivalent S-I simple arrows).

Accordingly, in Eq. 8.1 wB determines both the forward and reverse collinear
reaction rate. However, in Eq. 8.2 the opposite collinear reaction rates are different
and given by wA and wB for the forward and reverse direction, respectively.

8.1.2. Interstitialcy diffusion mechanism including non-collinear
exchange

Jump types and basic quantities

In the present study, allowance is made for non-collinear exchanges in such a
way that the total jump frequencies wA and wB related to the S-atoms do not
change. Starting from an interstitial at the position (0,0,0) the sc lattice with
lattice constant a offers - apart from, e.g., the a(1,1,1) target position of the
I-atom related to the collinear exchange - three other target positions a(1,1,0),
a(1,0,1) and a(0,1,1) defining three mutually equivalent non-collinear interstitialcy
jumps. This situation is schematically displayed in Fig. 8.1b. The (oblique) angle
between the partial I-S and S-I steps within these non-collinear exchanges amounts
invariantly to 109.47◦. Other possible non-collinear jumps entailing smaller angles
are considered as less likely and therefore neglected in this work. Thus, wB splits
up in collinear (index c) and non-collinear (index nc) contributions according to

wc,nc
B = wc

B + 3wnc
B ≡ wB(pc + 3pnc) , (8.3)
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where the sum of the probabilities (pc, pnc) equals unity, so that wc,nc
B = wB holds

true. Similar quantities and relationships are adopted for component A. It is noted
that the distribution among c- and nc-jumps is the same for both components, as
expressed by the common probabilities pc and pnc which are independent of A or
B.
In thermal equilibrium, the concentrations of products and educts in a reaction are
interrelated through the reaction rates. Specifically, based on Eq. 8.2 mass action
law predicts

rB

rA
= CB,I

CA,I
= CBwB

CAwA
, (8.4)

where CB,I (CA,I) is the concentration (site fraction) of BI (AI). Moreover, rB

designates the normalised or relative concentration of B-type interstitials, i.e.,

rB = CB,I

CA,I + CB,I
= CB,I

CI
= 1 − rA . (8.5)

Another useful expression for rB is

rB = CBwB

CAwA + CBwB
= CBwB

w̄
, (8.6)

which contains the mean atomic jump frequency

w̄ = CAwA + CBwB . (8.7)

It is noted that rB may be interpreted as the probability that a generalised
interstitial defect I with concentration CI = CA,I + CB,I is of type BI. In particular,
CA,I and CB,I can be conveniently expressed in terms of the total concentration of
interstitials as

CA,I = rACI and CB,I = rBCI . (8.8)

Tracer diffusion coefficients

The tracer diffusion coefficient of B atoms is defined as

D̂B = lim
t→∞

⟨X2
B⟩

2t
= lim

t→∞
fB

⟨X2
B⟩uncorr

2t
, (8.9)

where t is a sufficiently long time and ⟨X2
B⟩ denotes the mean square displacement in

x-direction within this time. The right-hand side of this equation contains the tracer

121



8. Effects of non-collinear and direct interstitial jumps

correlation factor fB and the uncorrelated mean square displacement ⟨X2
B⟩uncorr,

which includes contributions of both collinear and non-collinear jumps. In the
previous chapter, the collinear contribution was decomposed in (mean) numbers of
different jump types multiplied by the square of their common jump length in x-
direction, i.e., lx = a/2. For B atoms, this leads to a sequence of terms comprising B-
A and B-B exchanges both of I-S and S-I type. Extending this procedure to include
non-collinear jumps, it can be made use of the fact that each atomic displacement
in such interstitialcy event is also of length lx. Then, it can be readily shown that
the tracer diffusion coefficient of component B is given by2

D̂c,nc
B = 1

2f c,nc
B 2(wc

B + 3wnc
B )zISCIl

2
x = 2f c,nc

B wBCIa
2 , (8.10)

with coordination number zIS = 8. The correlation factor f c,nc
B , now involving

collinear and non-collinear jumps, has to be calculated by Monte Carlo methods. A
similar expression holds for D̂c,nc

A , so that the diffusivity ratio of the two components
reads

D̂c,nc
B

D̂c,nc
A

= f c,nc
B wB

f c,nc
A wA

. (8.11)

Charge or conductivity diffusion coefficient

The occurrence of non-collinear jumps may also affect the ionic conductivity,
when it is assumed that A and B are positively charged, monovalent ions and
the considered sc random alloy forms a sublattice in a crystal structure with a
negatively charged rigid framework. These effects can be described through the
Nernst-Einstein equation by the charge or conductivity diffusivity Dσ, i.e., [75]

Dσ = kBT

e2Nion
σ = CIDI , (8.12)

where Nion = NA +NB is the total number density of ions, DI denotes the diffusion
coefficient of the generalised interstitial carrying a charge unit and kB is the
Boltzmann constant. In analogy to the simplest case only allowing for collinear

2To reduce the number of indices, the common asterisk for labelling tracer diffusivity (D∗) has
been replaced by the ‘hat’ symbol (D̂) throughout this work.
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jumps [75], it is easy to derive that the interstitial diffusivity for mixed c-nc
exchanges can be written as

Dc,nc
I = 1

2f c,nc
I (wc

I + 2wnc
I )zISl2

I,x = 4f c,nc
I wc,nc

I a2 . (8.13)

Here, f c,nc
I denotes the interstitialcy correlation factor and wnc

I is the mean partial
I jump frequency for one out of three possible nc target positions given by

wnc
I = CAwnc

A + CBwnc
B . (8.14)

A similar definition holds for wc
I . In Eq. 8.13 it is used that the jump length of I

along a principal axis, e.g., lI,x, equals the lattice constant a. However, only 2 out of
3 different nc-jumps have a displacement component in x-direction. This explains
the term 2wnc

I compared to similar terms 3wnc
B in Eqs. 8.3 and 8.10; thus, the mean

total I jump frequency wc,nc
I is obtained as

wc,nc
I = wc

I + 2wnc
I . (8.15)

Quantitative differences between mass and charge transport can be expressed by
the Haven ratio HR, which for the interstitialcy mechanism in binary lattices is
generally given by3

HR = D̂

Dσ

= CAD̂A + CBD̂B

CIDI
, (8.16)

where D̂ = CAD̂A +CBD̂B has been introduced as a mean tracer diffusivity [76, 75].
With the extension to non-collinear jumps and using Eqs. 8.10, 8.13 and 8.14 the
Haven ratio can be written as

Hc,nc
R = f c,nc

2f c,nc
I

· wc
I + 3wnc

I
wc

I + 2wnc
I

, (8.17)

with f c,nc = rAf c,nc
A + rBf c,nc

B . Thus, the Haven ratio is essentially determined
by correlation effects, whereas the last factor in Eq. 8.17 takes values between 1
(wnc

I = pnc = 0) and 3
2 (wc

I = pc = 0).

3Minor changes to Eq. 8.16 are necessary if the number of lattice sites and interstices are different.
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8. Effects of non-collinear and direct interstitial jumps

In addition to the overall Haven ratio of Eqs. 8.16 and 8.17, the partial Haven
ratios HR,A and HR,B may be introduced as

HR,A = CAD̂A

CIDI
HR,B = CBD̂B

CIDI
, (8.18)

so that HR = HR,A + HR,B holds true.

8.1.3. Interstitialcy diffusion with allowance for direct
interstitial jumps

Tracer correlation factors

Having the interstitialcy mechanism with self-interstitials as diffusion vehicles, it
seems natural to consider I-I jumps in addition to I-S/S-I exchanges, as depicted
in Fig. 8.1a. In this case, the uncorrelated squared displacement of a B atom in
x-direction has to be extended, i.e.,

⟨X2
B⟩uncorr = ⟨nBA + nBB⟩l2

x + ⟨ni
B,x⟩(li

x)2 . (8.19)

Here, the first term refers to collinear interstitialcy exchanges (both I-S and S-I)
with their number of occurrences ⟨nBA⟩ = 2wBrAzISCIt and ⟨nBB⟩ = 2wBrBzISCIt

within diffusion time t [75], all of which have a component lx in x-direction. The
second term in Eq. 8.19 accounts for I-I jumps in x-direction (index i) having a
greater length li

x = a, where

⟨ni
B,x⟩ = 2pB,ICEuBt = 2wB

w̄
CIuBt . (8.20)

In the derivation of this equation it was used that the I-I jump frequency uB is
independent of direction in the sc lattice and that from each I-site 2 opposite jumps
along the x-axis are possible. Virtually all I-sites are empty, so that the lattice-
site normalised concentration CE acting as probability equals 1. Furthermore, the
probability that a B atom resides on a I-site, pB,I ≡ CB,I/CB, results as (wB/w̄)CI

by using Eqs. 8.6 and 8.8.
With the aid of Eqs. 8.9, 8.19 and 8.20 the B tracer diffusivity D̂c,i

B is obtained as

D̂c,i
B = 2f c,i

B wB

(
1 + uB

2w̄

)
CIa

2 , (8.21)
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where the upper index c,i refers to taking into account both collinear (c)
interstitialcy exchanges and direct interstitial (i) jumps. Compared to the reference
case with uB = 0 [75] the tracer diffusivity is affected by a higher jump frequency
due to the factor in parentheses and by a different correlation factor (f c,i

B ). Assuming
that for the larger A atom (ion) I-I jumps may be neglected (uA = 0) the diffusivity
ratio can be written as

D̂c,i
B

D̂c,i
A

= f c,i
B wB

f c,i
A wA

(
1 + uB

2w̄

)
. (8.22)

This expression reflects that through correlation effects also the tracer diffusivity
of A (f c,i

A ) may be affected by I-I jumps of B.

Charge or conductivity diffusion coefficient

With the extension to direct interstitial B jumps the uncorrelated squared
displacement in x-direction obtains an additional contribution, which is equal to
rBuBa2. Thus, the charge diffusivity takes the form

Dc,i
σ = 4f c,i

I wI

(
1 + rBuB

4wI

)
CIa

2 , (8.23)

where wI = w̄, as for the exclusively collinear interstitialcy case [75]. For the Haven
ratio, it can be readily derived

Hc,i
R = f c,i

2f c,i
I

· 1 + 2(f c,i
B /f c,i)αB

1 + αB
, (8.24)

with f c,i = rAf c,i
A + rBf c,i

B and αB = rBuB/4w̄.

8.2. Numerical procedures

The numerical model is based on the conception that an interstitialcy defect I
performs I-S jumps with frequencies (wA, wB) that do not depend on the type
of defect, but rather on the type of its neighbouring atoms (cf. Sect. 2.1).
Initially, the I atom is set in the centre of a simple cubic ’interstitial’ lattice
that is otherwise completely empty. A second, ’substitutional’ lattice is shifted
by (a/2, a/2, a/2) relative to the ’interstitial’ lattice and both lattices are of size
160a×160a×160a. All atoms of type A and B are tagged and randomly distributed
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8. Effects of non-collinear and direct interstitial jumps

within the ’substitutional’ lattice according to their concentrations CA and CB,
respectively. The total jump frequency of I is then evaluated by examining the
type of neighbouring S-atoms and given by ∑8

i wi with wi = wA, wB, respectively.
In cases when allowance for direct interstitial jumps of the B atoms is made, the
total jump frequency of a BI defect is increased by 6uB because of six possible
I-I jump directions. One jump direction is chosen by a random number generator
(RNG) according to the individual jump probabilities. After an I-S exchange, the
directions of the consecutive S-I jump are weighted by a given ratio pc/3pnc (the
three non-collinear jumps have equal probabilities) and subjected to RNG selection,
as well. Sufficiently long runs of I jumps need to be executed to compute correlation
factors with acceptably small uncertainties. It has been proven effective to introduce
periodic boundary conditions to sustain runs of necessary length, i.e., consisting of
n = 5 × 1010 jumps.
In all simulations, partial correlation factors (PCFs) were computed first by
evaluating the scalar product of jump vectors for each atom, given by Sα =∑

i

∑
j (xα,i · xα,i+j), where xα,i+j denotes the jth jump after the ith exchange of

type α [83]. By averaging over Sα for all atoms of the same type the corresponding
PCF is given by

f̃α = 1 + 2⟨Sα⟩/⟨nα⟩ · x2
α, (8.25)

where ⟨nα⟩ is the number of jumps of type α and xα is the projected length. Total
correlation factors are then obtained by weighted averages of the pertaining PCFs.
For instance, in the case of B atoms subject to both collinear interstitialcy and
direct interstitial exchange the relation

f c,i
B =

f̃ c
B⟨nBB + nBA⟩l2

x + f̃ i
B⟨ni

B,x⟩(li
x)2

⟨nBB + nBA⟩l2
x + ⟨ni

B,x⟩(li
x)2 = 2w̄f̃ c

B + uBf̃ i
B

2w̄ + uB
(8.26)

holds true. Here, the calculation of f̃ c
B relies on sequences starting with an I-S or

S-I exchange. By contrast, f̃ i
B refers to jump sequences, in which the first jump

is of type I-I. This PCF-based scheme has been proven to be as effective as the
usually employed displacement method [75, 83]. An advantage of PCF calculations
is, however, that they provide more detailed information being useful in complex
situations.
Interstitialcy correlation factors fI were calculated by the same PCF-scheme, except
for the averaging over many particles (at any time, there is only one I defect in
the simulation box). Instead, the total run made up of n jumps was split into Nrun
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sequences of nL jumps and fI was obtained by averaging over all sequences. fI

values were first calculated as a function of nL during trials. The data converged
for nL ≥ 2 × 106 and hence, all present data points are based on this choice of nL.

8.3. Results and discussion

8.3.1. Effects of non-collinear exchange

Tracer correlation factors

Figure 8.2a shows the effects of non-collinearity on the tracer correlation factor fA

as a function of CB for wA/wB = 10−5. It is generally observed that the allowance
for non-collinear jumps leads to higher fA values in the B-poor alloy regime (note
the truncation of the concentration axis at CB = 0.41). Particularly, replacing
only 1 percent of the collinear exchanges by the non-collinear variant (pc/3pnc =
0.99/0.01) results in an increase of the minimum fA value by about a factor of 6
(left-hand side of Fig. 8.2a. At the same time this minimum shifts to a smaller CB

value, i.e., from about 0.02 to 0.003. A further drastic increase of the non-collinear
contribution to 75 % (pc/3pnc = 0.25/0.75) is accompanied by another increase of
the fA minimum by somewhat more than a factor of 3, whereas its position only
minimally shifts to a lower B concentration. A final change to the fully non-collinear
case with pc = 0 does not significantly alter the fA behaviour anymore. For B-rich
compositions the changes due to nc-jumps are minor and fA converges to unity for
CB → 1.
Similar observations are made for fB in Fig. 8.2b. Also for the B atoms a 1 %
admixture of nc-jumps causes an increase of the tracer correlation factor, which
is particularly strong for CB < 0.2. Further increasing the nc contribution goes
along with higher fB values but the relative increment becomes gradually smaller.
However, the fully non-collinear fB values (c/nc = 0/100) are found to fall below
those representing c/nc = 25/75. This relates to the fact that in the nc-only case the
number of target positions in the interstitialcy exchange is less than in the mixed
c/nc modes, which reduces the number of diffusion pathways. Interestingly, the
two-step behaviour of the c-only plot exhibited by the logarithmic representation of
Fig. 8.2b is found to disappear with increasing substitution of nc-jumps. Referring
to the previous Chapter 7 these observations can be elucidated by inspecting the
percolation behaviour for the different simulated cases.
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8. Effects of non-collinear and direct interstitial jumps

Figure 8.2.: Tracer correlation factors fA (a) and fB (b) for diffusion by the interstitialcy
mechanism in a sc random alloy AB with wA/wB = 10−5 as a function of composition
CB ≤ 0.4. The data pertain to different proportions of collinear (c) to non-collinear jumps
(nc) as indicated by c/nc ratios in percent.
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Figure 8.3.: Interstitialcy correlation factors fI in the sc random alloy AB with wA/wB =
10−5 as a function of composition CB ≤ 0.4 for different proportions c/nc of collinear
to non-collinear jumps, as indicated by solid and open symbols. Dashed and solid lines
represent individual fits to the solid symbols based on Eq. 8.27 and their intersections
with the CB-axis mark percolation thresholds.

Percolation behaviour

Figure 8.3 displays a selection of interstitialcy correlation factors fI for wA/wB =
10−5, which are associated with some of the fA and fB plots in Fig. 8.2. It should
be noted that for all c/nc ratios fI converges to unity for CB approaching 0 and 1.
As discussed in Chapter 7, distinct steps in such plots for extreme jump frequency
ratios may relate to the percolation along chains and clusters of the (much more)
mobile atoms, which is characterised by a specific percolation threshold Cp

B [21, 75].
In the purely collinear case (100/0) fI reveals two steps (circles in Fig. 8.3), which
were each fitted by the equation [23, 21, 75]

fI = k(CB − Cp
B)δ, CB ≥ Cp

B , (8.27)

where δ is a critical exponent and k is a dimensionless proportionality constant.
The same equation was used for fitting the observed single fI step in the 25/75 and
0/100 cases. The resulting parameter values are listed in Tab. 8.1.
Passing from B-rich to B-poor alloy compositions the first percolation threshold Cp,1

B
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8. Effects of non-collinear and direct interstitial jumps

Table 8.1.: Parameter values resulting from MC simulations characterizing the
interstitialcy percolation behaviour in the simple cubic random alloy for different
proportions c/nc of collinear (c) to non-collinear (nc) jumps; cf. Eq. 8.27.

c/nc Cp,1
B δ k Reference

100/0 0.1885 ± 0.0011 1.23 ± 0.05 4.0 ± 0.4 [75]
25/75 0.109 ± 0.002 1.03 ± 0.04 2.8 ± 0.3 This work
0/100 0.122 ± 0.002 1.07 ± 0.04 3.4 ± 0.3 This work

is connected with the disappearance of uninterrupted B-B chains. At this critical
composition, fI and concomitantly the ionic conductivity (or Dσ) totally vanish for
wA/wB converging to zero. Going from collinear-only (100/0) to non-collinear-
only (0/100) exchange Cp,1

B shifts from 0.1885 to 0.122, whereas δ (from 1.23
to 1.07) and k (from 4.0 to 3.4) remain closely similar, respectively. The lower
Cp,1

B value for the nc-only case is due to a higher number of (different) sites from
which a second exchange of the interstitialcy I can occur following an arbitrarily
chosen first jump (znc

2 /zc
2 = 15/7). However, the mixed case 25/75 shows an even

smaller Cp,1
B value (0.109). Obviously, this relates to the slightly higher second-

jump coordination number in a mixed c/nc situation, i.e., zc,nc
2 = 16. Apparently,

substituting a substantial fraction of c-jumps for nc-jumps in an nc-only starting
situation (from 0/100 to 25/75) has rather minor effects on the correlation and
percolation behaviour. Conversely, substituting nc- for c-jumps has a strong impact,
as shown by Fig. 8.2b.
In Fig. 8.3, the second fI step appearing for the c-only mode (100/0) yielded a
second(-order) percolation threshold Cp,2

B = 0.0376, which reflects the disruption
of connected A-B chains upon progressing CB decrease [75]. Cp,2

B appears for small
values of wA/wB (̸= 0) and marks a strong decrease in ionic conductivity, which
below this threshold concentration is governed by the low mobility of A ions. Cp,2

B

seems to be absent in the nc-only (0/100) and the mixed (25/75) modes (see open
symbols in Fig. 8.3).
More insight into the Cp,2

B behaviour may be gained from inspecting the composition-
dependence of fA for the various c/nc cases. In the purely collinear mode it was
observed that the Cp,2

B -related decrease of fI with decreasing B concentration
is mimicked by a similar decrease of fA (cf. Fig. 7.4 in Chapter 7). This can
be understood from the notion that for compositions just above this A-B chain
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related percolation threshold most atomic jumping takes place in domains which
are comparatively rich in B. This is due to the fact that the defect I kinetically
bounds to the B atoms with their much higher mobility. Thus, a jump sequence
of an arbitrarily selected A atom (tracer) involves a large number of reverse jumps
(fA ≪ 1) within B-rich domains of limited size but still forming a connected
network through A-B bridges and chains. Further lowering of CB towards Cp,2

B

leads to smaller domains and consequently to lower fA values. Finally, the domain
connectivity gets lost at the A-B percolation limit and fA passes through a
minimum at a composition close to Cp,2

B . To demonstrate the close connection
between fA and fI for the 100/0 mode the CB-dependence of fA was fitted in the
relevant composition range by Eq. 8.27. Indeed, the resulting fA-related threshold
concentration of 0.034±0.002 is only slightly smaller than the fI-related, ‘true’ A-B
percolation limit Cp,2

B = 0.0376 ± 0.0004 [75]). Moreover, the critical exponents δ

reflecting the curvatures of the plots near Cp,2
B (cf. Fig. 8.2a for fA) are similar in

both cases and take values close to 1.0.
Analysing the fA data for the 0/100 mode (cf. Fig. 8.2a) in a similar way as for
the 100/0 mode given above produces best Cp,2

B values that deviate from zero by at
most ∼ 0.001. Also for 25/75, fits of fA versus CB with Eq. 8.27 yield a threshold
value Cp,2

B that cannot be distinguished from zero within statistical uncertainty.
Indeed, for all examined cases containing nc jumps it was verified that fA can be
similarly well described by Eq. 8.27 when Cp,2

B = 0 enters the fitting procedure as a
fixed value. Apparently, the occurrence of Cp,2

B within the sc random alloy regime
is a special feature of the collinear-only interstitialcy mode.

Tracer diffusivities and transport coefficients

Figure 8.4 displays the tracer diffusivity ratio D̂nc
B /D̂nc

A for the purely non-
collinear mode as a function of wB/wA ranging from 1 to 5 × 105. According
to Eq. 8.11 this diffusivity ratio depends on ‘effective jump frequencies’ (fw)
containing the corresponding correlation factor (f) as multiplication variable.
For all compositions, correlation leads to an attenuation of the differences in
diffusivity with respect to the differences in jump frequency. For a B-rich alloy
with CB = 0.70, this attenuation is weak, amounting to fnc

B /fnc
A = 0.95 for

wB/wA = 105. For a composition just beyond the percolation threshold Cp,1
B , i.e.,

CB = 0.15, the attenuation factor reduces to about 0.16 at the same jump frequency
ratio. Nonetheless, D̂nc

B /D̂nc
A appears to increase monotonically with wB/wA for
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Figure 8.4.: Tracer diffusivity ratio D̂B/D̂A as a function of jump frequency ratio wB/wA
in a sc random binary alloy AB subject to diffusion by the interstitialcy mechanism.
Symbols represent data of the non-collinear (nc) mode for the compositions CB = 0.70,
0.15, and 0.05. Dashed lines reproduce data of the collinear (c) mode for the compositions
CB = 0.20 and 0.10 [75]. Solid line represents a hypothetical ‘uncorrelated case’ with
fA = fB = 1, which is independent of concentration.

CB > Cp,1
B , which agrees with similar observations for the collinear case [75]. Below

the percolation threshold, however, D̂nc
B /D̂nc

A converges to a maximum value when
wB/wA becomes increasingly larger. Figure 8.4 shows that for CB = 0.05 this
maximum is close to 210. A similar behaviour was also found for the collinear case
[75], but there the limiting value for the subthreshold concentration CB = 0.10
was obtained to be as low as ∼ 15 (cf. solid line in Fig. 8.4). In general, it is
observed that D̂nc

B /D̂nc
A exceeds D̂c

B/D̂c
A at the same values of wB/wA for comparable

compositions. Thus, diffusion correlation appears to have a less strong attenuating
effect on jump frequency differences when non-collinear jumps are compared with
collinear ones. This can be understood from the three-fold multiplicity of the nc-
exchange leading to a greater variety of diffusion pathways.
Additional insight may be obtained by examining the physical quantities directly
connected with transport of mass and charge in a narrower sense. To this aim,
Fig. 8.5 shows the transport coefficients CAD̂nc

A and CBD̂nc
B in comparison to

CID
nc
I = Dnc

σ for wA/wB = 10−5. The data are plotted in dimensionless units with
wB = CI = a = 1. It is seen that for all compositions transport of B atoms/ions
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Figure 8.5.: Transport coefficients and Haven ratios in the sc random alloy AB with
wA/wB = 10−5 as a function of composition CB. Symbols represent (dimensionless)
transport data for the non-collinear case with wB = CI = a = 1, as indicated. The
pertaining Haven ratios were calculated based on Eqs. 8.16 to 8.18.

is more effective than that of A atoms/ions by one to many orders of magnitude.
Moreover, CBD̂nc

B and CID
nc
I do not greatly differ in this logarithmic plot and

exhibit a similar composition dependence. These observations strongly indicate
that for low values of wA/wB charge transport is governed by B ions, even for B-
poor compositions. This finding for the nc-mode contrasts with that for the c-mode,
because there it is observed (but not shown) that CAD̂c

A starts to exceed CBD̂c
B for

compositions falling below the second-order percolation threshold Cp,2
B [75].

Relations between mass to charge transport are usually discussed in terms of Haven
ratios. Figure 8.5 shows that Hnc

R,A ≪ Hnc
R,B holds for all compositions, so that the

overall Haven ratio Hnc
R virtually coincides with its B-related component Hnc

R,B. This
is just another representation of the nc-transport picture outlined above. More
interesting is the composition dependence of Hnc

R , which exhibits a pronounced
maximum of 4.9 at CB = 0.11. Specifically, Hnc

R adopts values greater than unity
over the range 0.001 < CB < 0.13 which is close to and below the percolation
threshold Cp,1

B = 0.122. In contrast, Hnc
R < 1 prevails for all other concentrations.

For instance, near the end-member compositions Hnc
R results as 0.96 (CB → 0) and

0.73 (CB → 1).
It is sometimes believed that the Haven ratio should be less than unity. This is
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probably true for the vacancy mechanism and only one diffusing component, but it
is not necessarily the case for all diffusion mechanisms in crystalline materials [99].
LeClaire [25] has indeed shown that with cation interstitialcy exchange in AgCl and
CsCl structures, HR can reach values as large as 1.4464 and 1.8240, respectively,
when specific non-collinear jump types are considered4. Now, even higher HR values
for the nc interstitialcy mechanism in a random binary sc structure are found. It
can be noted that similar findings were made for the mixed c/nc modes examined
(99/1, 90/10, and 25/75; not shown) but not for the c-only mode (cf. Fig. 8.11).

8.3.2. Effects of direct interstitial exchange

Tracer and partial correlation factors

Additional I-I jumps with jump frequency uB affect diffusion correlation in an
otherwise collinear interstitialcy mode. In Fig. 8.6a, this is illustrated for fA in
the case when wA/wB equals 10−5 and for uB/wB = 3 × 10−6 and 3 × 10−2. In
the composition domain well above the percolation threshold of the reference mode
(uB/wB = 0, dashed line in Fig. 8.6a), the influence tends to be very minor. Indeed,
all three data plots converge to fA = 1 for CB → 1 (note the truncation of the
concentration axis at CB = 0.41). However, appreciable increases of fA are observed
in the B-poor region below about Cp,1

B = 0.122. Apparently, the fA minimum,
originally located at CB ≈ 0.02 shifts to lower B concentrations (0.001-0.003). For
CB → 0, fA consistently attains the value 6

7 for self-diffusion in a pure sc lattice
[105].
Figure 8.6b shows the even more drastic effects of uB on fB for wA/wB = 10−5.
Also in this case, substantial changes of the correlation factor are confined to
compositions being poor in B. It is seen that fB monotonically increases with
uB/wB increasing from 3×10−6 to 3×10−2. Furthermore, the two-step character of
the collinear reference data (uB/wB = 0, dashed line in Fig. 8.6b) fully disappears
yet for the smallest uB value in the simulations. Instead, a single broad minimum
evolves, which at the B-poor side is bounded by a steep rise up to fB = 0.98 for
the lowest CB value (0.0003) and the two highest uB values.
Some deeper insight into correlation effects may be gained by inspecting individual
PCFs (cf. Sect. 8.2). In fact, f̃ c

B and f̃ i
B were extracted from the simulations with

4In the terminology of LeClaire [25], the present collinear and non-collinear jumps are denoted
as direct and indirect interstitialcy jumps

134



8.3. Results and discussion

Figure 8.6.: Tracer correlation factors fA (a) and fB (b) for diffusion by the interstitialcy
mechanism in a sc random alloy AB with wA/wB = 10−5 as a function of composition
CB ≤ 0.4. Data pertain to the collinear interstitialcy mode in conjunction with direct
interstitial jumps of B atoms of varying frequency uB, as indicated. The reference case
uB = 0 (dashed lines) was taken from Chapter 7.
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8. Effects of non-collinear and direct interstitial jumps

Figure 8.7.: Correlation factors for diffusion in a sc random alloy AB as a function of
composition CB demonstrating the contribution of PCFs (f̃ c

B, f̃ i
B) to the total correlation

factor (fB) based on Eq. 8.26. Data pertain to the collinear interstitialcy mechanism (c)
with wA/wB = 10−5 in conjunction with direct interstitial jumps of B atoms (i) with
uB/wB = 3 × 10−5, as indicated.

wA/wB = 10−5 and uB/wB = 3 × 10−5. Figure 8.7 shows that f̃ i
B = 1 holds within

statistical error for all compositions. This complies with the notion that I-I jumps
take place with equal probability in the six directions along the principal axes of
the sc lattice. On the other hand, the partial correlation factor f̃ c

B (circles) exhibits
a distinct composition dependence, which for CB > 0.1885 virtually coincides with
fB (crosses). This overall correlation factor was calculated by a weighted sum of the
PCFs according to Eq. 8.26. What may be learned from Fig. 8.7 is the circumstance
that additional I-I jumps with wA < uB ≪ wB have significant influence on B
diffusion only for compositions below or near the collinear percolation threshold.
This influence may even become predominant for very low B concentrations, as
indicated by the steep increase of fB for CB < 0.02 towards f̃ i

B.

Percolation behaviour

Whereas diffusion via the (collinear) interstitialcy mechanism in a binary random
alloy is greatly affected by percolation, direct interstitial diffusion is not. This
relates to the fact that the interstices are virtually empty, so that mobile BI
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8.3. Results and discussion

Figure 8.8.: Interstitialcy correlation factors fI for diffusion by the interstitialcy
mechanism in a sc random alloy AB as a function of composition CB ≤ 0.5. Data pertain
to the collinear interstitialcy mode with wA/wB = 10−5 or wA/wB = 0 in conjunction
with direct interstitial jumps of B atoms of varying frequency uB, as indicated. The
reference case uB = 0 (dashed lines) was taken from Chapter 7.

atoms cannot be blocked by immobile A atoms. Therefore, when combining the two
mechanisms it may be expected that the strict percolation threshold pertaining to
the collinear IS/SI diffusion component (Cp,1

B = 0.1885) will be bypassed through
I-I jumps of the B atoms. This is exactly the picture emerging from the fI plots in
Fig. 8.8.
As argued before [21, 75], diffusion percolation behaviour in the present case is
reflected by the composition dependence of fI for extreme differences in the mobility
of A and B atoms. Such plots are displayed in Fig. 8.8 for wA/wB = 10−5 and
different values of uB/wB ranging from 0 to 3 × 10−3. In all cases with uB ̸= 0, the
second-order threshold (related to AS-BS chains) close to the fI global minimum
for the pure IS/SI case (uB = 0) has disappeared. However, the impact of the first
threshold Cp,1

B = 0.1885 (related to BS − BS chains) is still strong for low uB values
but becomes weaker for higher ones. In particular, the following observations seem
to be important: (i) For B-poor alloys, fI monotonically increases with increasing uB

suggesting the significant role of I-I jumps in this concentration region. (ii) (Pseudo-
)percolation thresholds evaluated from the (steep) decrease of fI in appropriate
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8. Effects of non-collinear and direct interstitial jumps

Figure 8.9.: Tracer diffusivity ratio D̂B/D̂A as a function of jump frequency ratio wB/wA
in a sc random binary alloy AB simultaneously subject to diffusion by the collinear
interstitialcy mechanism and to B diffusion by direct interstitial jumps with uB/wB =
3 × 10−6. Symbols represent data for the compositions CB = 0.70, 0.20, and 0.10, as
indicated. Dashed lines reproduce data of the collinear interstitialcy mode (uB = 0) for
the compositions CB = 0.20 and 0.10 (see Chapter 7). Solid line represents a hypothetical
‘uncorrelated case’ with fA = fB = 1, which is independent of concentration.

composition ranges (cf. Eq. 8.27 and Fig. 8.4) are compatible with Cp,1
B = 0.1885

for uB = 0 within the pertaining error bounds. (iii) A direct fI comparison for
uB/wB = 3 × 10−4 between wA/wB = 10−5 (triangles) and wA/wB = 0 (crosses)
in Fig. 8.8 shows virtually no difference. Thus, percolation is given despite the
immobility of A atoms. Altogether, it may be concluded that the percolation
behaviour can be well understood based on the individual characteristics of the
combined diffusion mechanisms.

Tracer diffusivities and transport coefficients

Figure 8.9 reveals the changes to D̂B/D̂A of a collinear interstitialcy mechanism
caused by taking into account I-I jumps of low frequency. Specifically, D̂B/D̂A is
plotted as a function of wB/wA for a fixed value of uB/wB = 3 × 10−6 and for
three different compositions. For B-rich compositions, e.g. CB = 0.70, the effect
is negligibly small. For compositions well below the I-S/S-I percolation threshold,
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8.3. Results and discussion

Figure 8.10.: Transport coefficients and Haven ratios in the sc random alloy AB as a
function of composition CB. Symbols represent (dimensionless) transport data (setting
wB = CI = a = 1) for the collinear case with wA/wB = 10−5 in conjunction with direct
interstitial jumps of B atoms with uB/wB = 3×10−4, as indicated. The pertaining Haven
ratios were calculated based on Eqs. 8.16 to 8.18.

e.g., CB = 0.10, a distinct increase of D̂B/D̂A is visible for wB/wA > 104. For
a composition just above the I-S/S-I percolation threshold, e.g., CB = 0.20, the
impact of I-I jumps becomes already manifest for wB/wA ≈ 102, reaching D̂B/D̂A

enhancement factors of ∼ 3 for much higher jump frequency ratios. According
to Eq. 8.22 the changes observed for D̂B/D̂A in Fig. 8.9 must be essentially due
to correlations effects, because uB/w̄ ≪ 1 is small for all cases displayed. Indeed,
further examination for CB = 0.20 reveals (not shown here) that f c,i

B /fB is distinctly
larger than f c,i

A /fA, which is only slightly greater than unity for all wB/wA. Here
fA and fB refer to the mere collinear case (uB = 0).
Transport coefficients and Haven ratios for wA/wB = 10−5 and uB/wB = 3 × 10−4

are displayed in Fig. 8.10 by setting wB = CI = a = 1. It is found that
CBD̂c,i

B ≫ CAD̂c,i
A for all compositions. To be specific, B transport exceeds A

transport by at least two orders of magnitude, even for alloys poor in B. Moreover,
charge transport represented by CID

c,i
I is larger than CBD̂c,i

B by a factor of 3 for
B-rich systems. However, upon going to low B contents CID

c,i
I starts to fall below

CBD̂c,i
B at CB ≈ 0.08, thereby approaching CAD̂c,i

A for CB → 0. This behaviour is
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8. Effects of non-collinear and direct interstitial jumps

Figure 8.11.: Haven ratios HR for diffusion in a sc random alloy AB as a function of
composition CB. Data pertain to the collinear interstitialcy mode with wA/wB = 10−5

in conjunction with direct interstitial jumps of B atoms of varying frequency uB, as
indicated. For clarity, the number of data points at the right-hand side has been reduced.

also reflected by the partial and overall Haven ratios depicted in Fig. 8.10. In the
B-rich region, Hc,i

R converges to the theoretical value 0.4286 holding for the collinear
case (uB = 0) [75]. For CB getting lower than 0.1, Hc,i

R exceeds its common limit
of 1.0 and increases up to 115 for the lowest composition investigated, i.e., at
CB = 0.0003.
Figure 8.11 presents in a double-logarithmic form an expansion of the Hc,i

R results
for the B-poor domain. Apart from the case depicted in Fig. 8.10, the composition
dependence for uB/wB = 0, 3 × 10−6, and 3 × 10−2 is depicted. The plots indicate
that Hc,i

R passes through a maximum clearly larger than unity in all simulations
with uB > 0. Here, the location and height of the maximum appear to shift
systematically with the uB value. However, the observed behaviour is not monotonic
but exhibits a reversal. However, the Haven ratio minimum close to CB = 0.20
gradually disappears with increasing uB. Thus, the introduction of I-I jumps has a
substantial impact on transport coefficients and Haven ratios in B-poor alloys.
It can be noted that the range of extremely low B concentrations has not
been sufficiently explored in this study. Letting CB → 0 entails the transition
across the kick-out diffusion regime, in which BS exceeds BI and AI in terms
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of solubility (CB,S ≫ CB,I, CA,I) and BI dominates over AI in terms of transport
capacity (CB,IDB,I ≫ CA,IDA,I) [113, 100]. Within the present formalism, the latter
requirement (with CA,IDA,I ≈ CIDI for CB sufficiently small) can be expressed as
Ceq

B,SwBuB/(2wA)2 ≫ 1, where Ceq
B,S is the BS impurity concentration settled at the

surface under the prevailing diffusion conditions. Upon B tracer diffusion into a
virtually perfect (sink-free) crystal of pure A, these conditions may give rise to
an depth-dependent AI supersaturation, which can be recognised by penetration
profiles of particular shape [114, 19].

8.4. Summary and conclusions

In this chapter, the effects of additional atomic jump types on diffusion by
collinear interstitialcy exchange in a simple cubic random binary alloy AB were
studied by Monte Carlo simulation. The considered jump types were either non-
collinear interstitialcy jumps which partly or totally replaced the collinear ones or
supplementary direct interstitial jumps of the more mobile B atoms. It was shown
that in both cases pronounced changes to the collinear reference model occurred
for B-poor alloys, i.e., with B concentrations near and below the (collinear) site-
percolation threshold (Cp,1

B = 0.1885) related to B-B chains.
A basic observation was the reduction of diffusion correlation effects, as revealed
by the strong increase of the tracer correlation factor for B atoms, which exceeded
a corresponding but smaller increase for A atoms. Consequently, the tracer
diffusivity ratio D̂B/D̂A increased for either added jump type under consideration.
Nonetheless, at compositions poor in B this ratio converged to a maximum value
(≪ wB/wA) for increasing jump frequency ratios wB/wA ≫ 1.
Addition of either jump type caused the disappearance of second-order percolation
threshold that relates to the occurrence of uninterrupted A-B chains (Cp,2

B =
0.0375). Moreover, replacement of collinear by non-collinear jumps shifts Cp,1

B to
lower values, where the partly replacement has an even stronger effect than the
total one. By contrast, the superposition of direct interstitial jumps circumvents
the strict B-B percolation threshold of the collinear model when A atoms are totally
immobile.
Mass and charge transport coefficients were calculated and compared with each
other by deducing Haven ratios. It was found that highly mobile B atoms dominate
over lowly mobile A atoms in terms of mass transport over the whole composition
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8. Effects of non-collinear and direct interstitial jumps

range. Remarkably, both extensions of the collinear model, either by non-collinear
or direct interstitial jumps, lead to overall Haven ratios distinctly larger than unity
in certain ranges of low B concentration.
Although this study pertains to a random binary alloy of simple cubic structure
the major results obtained may be exemplary for multi-component crystalline
materials in which diffusion by the interstitialcy mechanism plays a prominent
role. More specifically, the experimental tracer diffusion results for Na and K in
VF feldspar (cf. Chapters 3 and 4) may be interpreted by a similar mechanism
because the largely different diffusivities comply, e.g., with a percolation threshold
Cp,1

B = 0.122 of the sc non-collinear-only case. The associated Haven ratio was
found to be HR ∼ 0.7 in the near to VF composition regime which is smaller than
unity but significantly larger than the experimentally observed values ranging from
HR = 0.11 to 0.40 normal to (001). It will therefore be an essential demand for a
microscopic diffusion model for alkali feldspar to feature small values of HR as well
as a percolation threshold at a close to K end-member composition. In the following
Chapter 9, it will be demonstrated that these effects may not be expressed in the
framework of a randomly ordered sublattice model but rather by considering an
effective short-range interaction energy between the cations. This expansion of the
present interstitialcy diffusion model will be successfully transferred to the more
complex monoclinic feldspar structure.
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9. Monte Carlo simulation of
diffusion and ionic conductivity
on the Na-K sublattice of alkali
feldspar via the interstitialcy
mechanism

The discussion about the main diffusion mechanism of alkali atoms in alkali feldspar
has been focused over the last decades on the analysis of experimental data on a
macroscopic scale from self-diffusion and ionic conductivity [7, 8, 9, 17, 66, 67]. So
far, only Jones et al. [54] studied jump barriers for the vacancy diffusion mechanism
within the (010) plane of albite and K-feldspar via molecular dynamics methods
and found good agreement with data from dielectric spectroscopy. Inherent features
of long-range diffusion stay, however, unconsidered in their study. On the one
hand, long-range diffusion in feldspar via the vacancy mechanism relies on the
contribution from different jump types (see Chapter 6 and [83]). On the other hand,
correlation effects in binary or multicomponent alloys may strongly affect diffusion
coefficients if the migration of one component is hampered by site-blocking effects
(see Chapter 7 and [75]). The analysis of correlation effects is therefore a promising
approach to elucidate a microscopic model of diffusion, which was presented in
Chapter 6 for a vacancy type of mechanism.
The correlation effects in binary alloys via the interstitialcy diffusion mechanism
were presented in Chapter 7 and 8 for the simple cubic (sc) structure. This
pathbreaking work demonstrates that the existence of a percolation threshold
for the interstitialcy mechanism in the sc reference structure complies with
experimental data on tracer diffusion in feldspar (see Chapter 3). An interstitialcy
type of mechanism therefore seems to be the most promising candidate to act as
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9. Interstitialcy diffusion in alkali feldspar

predominating mechanism for Na and/or K diffusion. In the present chapter, the
concepts and methods to compute the correlation factors by Monte Carlo (MC)
simulations will be transferred to a more complex monoclinic structure of feldspar.
Having measured ionic conductivity and self-diffusion the experimental values for
the Haven ratio normal to (001) were determined, i.e., HR ranges from 0.11 to 0.40
(see Chapter 5). The lower limit obtained for HR disagrees with the computed
numerical values for collinear and non-collinear diffusion in the sc reference
structure (cf. Chapters 7 and 8). An essential demand for the present interstitialcy
diffusion model therefore is to reflect these numerical values within experimental
uncertainties. One approach will be the extension of the regular I-S interstitialcy
scheme by I-S-S double interstitialcy jump types. Almost collinear chains of one
interstitial and two substitutional atoms enhance the ionic conductivity, which
implies a reduction of the numerical value for HR. A second approach comprises the
analysis of short-range ordering effects on the sublattice of feldspar. An abundance
of studies concerning correlation factors in binary or ternary alloys with long- and
short-range order exists [115, 116, 117, 97, 118, 93, 119] and similar concepts will be
used to analyse the correlation effects on the sublattice of feldspar as a function of
the interaction energy. It will be shown that both extensions are essential features of
the present interstitialcy diffusion model in order to successfully link the computed
diffusivities with the experimental data on self-diffusion and ionic conductivity from
previous studies.

9.1. Theoretical background

9.1.1. Random alloy model for diffusion via self-interstitials

Starting point of the present approach is once again Manning’s random alloy model
[14, 45] that proved to be useful for the analysis of correlation effects in the
simple cubic structure (cf. Chapters 6, 7 and 8). In a hypothetical binary alloy
AB short- and long-range interactions between the atoms are neglected, which
implies the absence of ordering effects and thus, a purely statistical distribution of
A and B atoms over the lattice sites. Only one type of point defect is considered,
i.e., the interstitial defect I. Interstitials of type A and B, however, have to be
distinguished that are denoted as AI and BI, respectively. Both may act as diffusion
vehicles for the surrounding nearest-neighbour substitutional atoms. In general,
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jump frequencies for AI and BI jumps can be different and, e.g., for an exchange with
a substitutional AS atom are denoted as wAA and wBA, respectively. The difference
between wAA and wBA has, however, not been quantified by, e.g., molecular
dynamics calculations so far. The most basic assumption of equal jump frequencies
for AI and BI is therefore considered and the elementary jump frequencies are only
determined by the type of substitutional atom AS or BS. Accordingly, two different
I-S exchange rates wA and wB exist. The concentration of point defects is supposed
to be low (CI ≪ 1), which implies that interactions between the defects can be
neglected and the alloy is characterized by its composition CA = 1 − CB.
The interstitialcy diffusion mechanism may be described in terms of quasichemical
reactions

ÂI + AS 
 ÂS + AI (9.1)

and
ÂI + BS 
 ÂS + BI , (9.2)

where ÂS and ÂI relate to tracer atoms1. A precondition for these reactions is that
the substitutional atom is in direct proximity to the interstitial atom. In analogy
to Eqs. 9.1 and 9.2 similar relations for the B component hold. In Eq. 9.1, the
exchange rate for both forward and reverse reaction is wA. In contrast, the type of
S atom is altered in Eq. 9.2 and the forward and reverse exchange rates have to be
distinguished, i.e., wB and wA, respectively.
The so called stoichiometric coefficient η A of component A (and η B of component B)
can be introduced to classify quasichemical reactions. This coefficient is positive if,
globally, the species is produced and negative if the species is consumed. Non-zero
values for η A and η B occur for the reaction given in Eq. 9.2, which implies that the
concentrations of interstitial A atoms, CA,I (site fraction), and interstitial B atoms,
CB,I, are controlled by the related forward and reverse exchange rates. In thermal
equilibrium and based on Eq. 9.2 mass action law predicts

rA

rB
= CA,I

CB,I
= CAwA

CBwB
, (9.3)

1To reduce the number of indices, the common asterisk for labelling tracer diffusivity (D∗) has
been replaced by the ‘hat’ symbol (D̂) throughout this work.
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9. Interstitialcy diffusion in alkali feldspar

where rA designates the normalised or relative concentration of A-type interstitials,
i.e.,

rA = CA,I

CA,I + CB,I
= CA,I

CI
= 1 − rB . (9.4)

Another useful expression for rA – also denoted as the probability that a ‘generalised
interstitial defect’ I with concentration CI = CA,I + CB,I is of type AI – is

rA = CAwA

CAwA + CBwB
. (9.5)

It is straightforward to show that CA,I and CB,I can be expressed in terms of the
total concentration of interstitials as

CA,I = rACI , CB,I = rBCI . (9.6)

9.1.2. Interstitialcy diffusion in alkali feldspar along the b-axis

Correlation effects for diffusion on the monoclinic sublattice of alkali feldspar
are analysed in the present study. For non-cubic systems correlation effects are
generally non-isotropic and projections of diffusivities and correlation factors to
a direction of particular interest are therefore discussed. The b-axis, i.e., in the
direction normal to (010) shows a two-fold symmetry and is one of the principal
axes of diffusion in monoclinic feldspar. A schematic view of the b-c-plane is given
in Fig. 9.1 where displacements of the substitutional atoms along the a-axis are not
considered. As illustrated in the figure, the interstitial sites are located at

(
0, 0, 1

2

)
and equivalent positions [7]. An interstitial defect may jump to four substitutional
sites via I-S exchange as far as only jumps with a non-zero displacement along
the b-axis are considered. In an exemplary elementary jump step (see Fig. 9.1) the
interstitial atom AI jumps to a neighbouring site ‘a’ along a trajectory l7. The
substitutional atom AS that is initially located at ‘a’ simultaneously jumps to an
empty interstitial site ‘b’ along l8 and adopts the role of AI. In total, zb = 4 paths for
the same geometrical type of non-collinear I-S jump are found with the projected
length of the jump vectors l7 and l8 to the b-axis given by lb.
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Figure 9.1.: Schematic view of the b-c-plane in alkali feldspar according to Phillips
and Ribbe [120]. For clarity, only atoms of the alkali sublattice are illustrated (solid
circles) together with empty interstitial sites (open circles). One central interstitial atom
(crosshatched circle) jumps via the interstitialcy mechanism to a substitutional site ‘a’
along a trajectory l, as indicated. In turn, the atom initially located at ‘a’ jumps to an
empty interstitial site ‘b’.

Tracer and interstitialcy diffusion coefficients

The formalism for a hypothetical alloy AB is now transferred to the specific problem
of a Na-K sublattice in alkali feldspar with K ≡ A and Na ≡ B. The tracer diffusion
coefficient of Na atoms is then given by

D̂Na,b = lim
t→∞

⟨X2
Na⟩

2t
= fNa,b

⟨X2
Na⟩uncorr

2t
, (9.7)

where t is a sufficiently long time and ⟨X2
Na⟩ denotes the mean square displacement

in b-direction within this time. By introducing the (hypothetical) uncorrelated
mean square displacement on the right-hand side of this equation the tracer
correlation factor fNa,b is implicitly defined, which accounts for a correlated motion
of subsequent jumps of the same atom. The mean square displacement of Na atoms
may be decomposed into the numbers of events involving interstitialcy jumps of
two Na atoms, nNa,Na, and into those jumps comprising a Na and a K atom, nNa,K.
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Taking advantage of the fact that all projected jump vectors to the b-axis are of
equal length lb the resulting expression is

⟨X2
Na⟩uncorr = ⟨nNa,Na + nNa,K⟩l2

b

= ⟨(nIS
Na,Na + nSI

Na,Na) + (nIS
Na,K + nSI

Na,K)⟩l2
b . (9.8)

In this equation, nNa,Na for example is further decomposed into the numbers of
N̂aI + NaS and N̂aS + NaI interstitialcy events, i.e., nIS

Na,Na and nSI
Na,Na, respectively,

and ⟨ ⟩ brackets indicate the ensemble average.
Taking a single tracer atom N̂a into account it is obvious that during a long sequence
of jumps both I and S sites will be occupied. The probabilities pNa,I and pNa,S to
be at interstitial and substitutional sites, respectively, differ from each other and
are given by

pNa,I = CNa,I

CNa,I + CNa,S
≈ CNa,I

CNa
, (9.9)

whereas
pNa,S = 1 − pNa,I ≈ 1 . (9.10)

These equations take advantage of the concept of very low defect concentrations
(CI ≪ 1), which implies that the quantities CNa,S and CK,S are virtually equal to
CNa and CK, respectively and CNa,I ≪ CNa,S holds to a very good approximation.
Combining the relations CK,I = rKCI and CNa,I = rNaCI (cf. Eq. 9.6) together with
Eq. 9.3 and the quantities introduced above gives the formal solution

⟨nIS
Na,Na⟩/t = pNa,ICNawNazb = rNawNazbCI (9.11)

⟨nSI
Na,Na⟩/t = pNa,SCNa,IwNazb = rNawNazbCI

⟨nIS
Na,K⟩/t = pNa,ICKwKzb = rKwNazbCI

⟨nSI
Na,K⟩/t = pNa,SCK,IwNazb = rKwNazbCI .

With rK + rNa = 1 and with the aid of Eqs. 9.7, 9.8 and 9.11 the diffusivity D̂Na,b

is given by

D̂Na,b = 1
2fNa,b 2wNazbCIl

2
b (9.12)

= 4fNa,b wNaCIl
2
b .
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In analogy to the above equation it is now straightforward to derive an expression
for the diffusion coefficient of the K component, i.e.,

D̂K,b = 1
2fK,b 2wKzbCIl

2
b

= 4fK,b wKCIl
2
b . (9.13)

A crucial quantity for a quantitative comparison of the tracer diffusion coefficient
with the ionic conductivity is the interstitialcy diffusivity DI [76]. Interstitial atoms
as well as substitutional atoms of the alkali sublattice carry an effective charge that
is independent of the type of cation Na+ or K+. In terms of ‘generalised monovalent
interstitials’ I the conductivity can be expressed according to the Nernst-Einstein
relation as [108, 75]

σ = e2

kBT
NIDI = e2N0

kBT
CIDI , (9.14)

where e is the electronic charge, NI is the volume concentration of interstitials
(number density), kB is the Boltzmann constant, and N0 denotes the volume
concentration of interstitial sites. It should be noted that the Nernst-Einstein
equation holds for non-interacting charge carriers, which is fulfilled by the very
low I concentrations (CI ≪ 1) considered in the present model.
Using the formalism and similar concepts as for the tracer diffusion coefficients
derived above DI can be expressed as

DI,b = 1
2fI,b 4wIzbl

2
b = 8fI,bwIl

2
b , (9.15)

where fI,b is the interstitialcy correlation factor and wI is the mean interstitial jump
frequency given by

wI = CNawNa + CKwK . (9.16)

Division of the sum of Na and K transport products by CIDI,b gives the Haven
ratio for the direction along the b-axis according to

HR,b = CNaD̂Na,b + CKD̂K,b

CIDI,b
(9.17)

= 0.5rNafNa,b + rKfK,b

fI,b
. (9.18)

It can be noted that the factor 0.5 in the above equation is well-known from early
diffusion studies [108, 121]. It results from the fact that the generalised interstitial I
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performs one jump of length 2lb whereas two tracer atoms each jump along the
distance lb at the same time. Furthermore, the squared displacements enter the
diffusion equation (Eq. 9.7), which gives a constant geometrical contribution of 0.5
to HR,b.

9.1.3. Interstitialcy diffusion along the c∗-axis including double
interstitialcy jumps

The direction along the c∗-axis, i.e., normal to (001) is of particular interest
because several experimental studies refer to diffusion or ionic conductivity along
this direction [11, 12, 13, 56, 64]. In addition to jumps within the b-c-plane of
alkali feldspar (see Section 9.1.2) also jumps within the a-c-plane have to be
considered. These jumps exhibit a higher degree of complexity because in addition
to interstitialcy I-S jumps also double interstitialcy I-S-S jumps involving chains of
two neighbouring substitutional atoms may appear.
The interstitialcy diffusion mechanism can be described in terms of quasichem-
ical reactions, which are compiled in Tab. 9.1 together with the corresponding
stoichiometric coefficients η K and η Na and reaction rates. In analogy to Eqs. 9.1
and 9.2 the reactions n = 1 to 4 refer to interstitialcy I-S diffusion and the jump
frequencies depend only on the type of the substitutional atom. In consistency
with the considerations for diffusion along the b-axis (cf. Eq. 9.3) mass-action law
predicts for thermal equilibrium the relative concentrations of interstitials, i.e.,

rK

rNa
= CK,I

CNa,I
= CKwK

CNawNa
. (9.19)

The state of equilibrium in the above equation is an inherent property of the
I-S interstitialcy diffusion model. Under the reasonable assumption that Eq. 9.19
globally holds for all quasichemical reactions double interstitialcy I-S-S jumps
may be introduced. In analogy to the above conception for I-S jumps only the
configuration of the two substitutional atoms that are involved in an I-S-S jump
determine the jump frequency. Moreover, it is presumed that the jump frequency
for I-S-S jumps involving only substitutional Na atoms (n = 6 and 12 in Tab. 9.1)
is equal to the jump frequency for the corresponding I-S reaction (n = 2), i.e.,
wNa. Based on this assumption and with the help of Eq. 9.19 the jump frequencies
for the reactions n = 7, 8, 10 and 11 are given by wK. In contrast, the reactions
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9. Interstitialcy diffusion in alkali feldspar

Figure 9.2.: Schematic view of the a-c-plane in alkali feldspar according to Phillips
and Ribbe [120]. Only atoms of the alkali sublattice are illustrated (solid circles) for
clarity together with empty interstitial sites (open circles). One central interstitial atom
(crosshatched circle) jumps via the double interstitialcy mechanism to a substitutional
site ‘1’ along a trajectory l, as indicated. In turn, the atom initially located at ‘1’ jumps
to a neighbouring substitutional site ‘2’ and a second substitutional atom jumps from ‘2’
to an empty interstitial site ‘3’ in the same elementary step.

n = 5 and 9 both comprise jumps of two substitutional KS atoms and a third jump
frequency, wK

2/wNa, is introduced according to Eq. 9.19.
A schematic view of the substitutional and interstitial sites in the a-c-plane
of feldspar is displayed in Fig. 9.2. It is observed that one interstitial atom
(crosshatched circle) can jump to 6 neighbouring substitutional sites via the
interstitialcy mechanism as far as only jumps with a zero displacement along
the b-axis are considered. In non-collinear I-S interstitialcy jumps an atom that
is initially located at a substitutional site subsequently occupies one of two empty
interstitial sites. Apart from that, the substitutional atom can participate in double
interstitialcy I-S-S jumps and subsequently move to another substitutional site. An
example of this mechanism is illustrated in Fig. 9.2 where the interstitial atom AI

jumps to a neighbouring site ‘1’ along a trajectory l1. The substitutional atom AS

that is initially located at ‘1’ jumps to another substitutional site ‘2’ along l2 and,
in turn, a second substitutional atom moves from ‘2’ to an empty interstitial site
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9.1. Theoretical background

‘3’ via l1 and adopts the role of AI. In total, four types of I-S interstitialcy jumps
exist for diffusion along the c∗-axis (one type of jump has a non-zero displacement
along the b-axis, see Fig. 9.1) with a multiplicity given by zIS

c∗ = 4. Beyond that,
three types of I-S-S jumps within the a-c-plane are observed with a multiplicity of
zISS

c∗ = 2 each.
In general, also I-S jumps involving one displacement within the a-c-plane in
combination with one displacement that is perpendicular to this plane can be found
(e.g., l1+l7). These jumps show, however, a strong non-collinearity and should occur
much less frequently. In MC simulation, it was found that the allowance for these
non-collinear jumps leads to enhanced values for the Haven ratio and to a diffusion
anisotropy ratio that is D̂Na,b/D̂Na,c∗ ∼ 3. This observation is in clear contrast to
the measured anisotropy ratio that is discussed in Section 9.3.3 and it is therefore
assumed that l1 + l7 and equivalent jumps occur with a negligibly small frequency.

I-S related tracer and interstitialcy diffusion coefficients

In analogy to the concepts used to derive diffusion coefficients for the direction
along the b-axis (see Section 9.1.2) similar relations are derived for a projection to
the c∗-axis. Accordingly, the tracer diffusion coefficient of Na atoms is given by

D̂Na,c∗ = lim
t→∞

⟨X2
Na⟩

2t
= fNa,c∗

⟨X2
Na⟩uncorr

2t
, (9.20)

where ⟨X2
Na⟩ denotes the mean square displacement in c∗-direction within a

sufficiently long time t. It is helpful to discriminate I-S and I-S-S interstitialcy
jumps by introducing the corresponding diffusivities D̂IS

Na,c∗ and D̂ISS
Na,c∗ , respectively.

Considering D̂IS
Na,c∗ , the mean square displacement may be decomposed into nNa,Na

and nNa,K jump events with the corresponding projected jump lengths li,c∗ where i

represents the ith type of jump vector. With the aid of the reaction rates2 given in

2It should be noted that the reaction rates are connected to the transport product (e.g., CNaD̂Na)
whereas mean square displacements per time are considered to derive diffusivities. Therefore,
both expressions vary in a factor CNa or CK for Na and K diffusion, respectively.
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9. Interstitialcy diffusion in alkali feldspar

Tab. 9.1 and by using the multiplicity zIS
c∗ = 4 it is easy to derive the Na diffusivity

given by

D̂IS
Na,c∗ = 1

2f IS
Na,c∗ wNaz

IS
c∗ CI

[(
l2
1,c∗ + l2

3,c∗

)
+
(
l2
1,c∗ + l2

5,c∗

)
+

+
(
l2
3,c∗ + l2

5,c∗

)
+
(
l2
7,c∗ + l2

8,c∗

) ]
= 4f IS

Na,c∗ wNaCI
(
l2
1,c∗ + 3l2

3,c∗

)
,

(9.21)

where use was made of the fact that the projected lengths of jump type 3, 5, 7 and
8 have the same numerical value. A similar expression holds for diffusion of the K
component, i.e.,

D̂IS
K,c∗ = 4f IS

K,c∗ wKCI
(
l2
1,c∗ + 3l2

3,c∗

)
. (9.22)

The interstitialcy diffusion coefficient can be derived with the same concepts and
reaction rates given in Tab. 9.1. However, a striking property is that I-S jumps
involving the jump vectors l5 combined with −l3 and equivalent jumps (see Fig. 9.2)
effectively show a zero displacement of the charge carrier for the diffusion along the
c∗-axis. The same is true for I-S jumps via l7 in combination with l8 and equivalent
trajectories (see Fig. 9.1), which gives the expression

D̂IS
I,c∗ = 1

2f IS
I,c∗ wIz

IS
c∗

[
(l1,c∗ + l3,c∗)2 + (l1,c∗ + l5,c∗)2

]
(9.23)

= 4f IS
I,c∗ wI (l1,c∗ + l3,c∗)2 .

Based on Eqs. 9.21, 9.22 and 9.23 the Haven ratio for I-S jumps is then given by

H IS
R,c∗ =

CNaD̂
IS
Na,c∗ + CKD̂IS

K,c∗

CIDIS
I,c∗

(9.24)

= f IS

f IS
I,c∗

(
l2
1,c∗ + 3l2

3,c∗

)
(l1,c∗ + l3,c∗)2 = 0.8014 f IS

f IS
I,c∗

,

where f IS = rNaf
IS
Na,c∗ + rKf IS

K,c∗ is a mean correlation factor of Na and K tracer
atoms. On the right-hand side of Eq. 9.24 the numerical value for a purely
geometrical contribution to HR is indicated. Because of the two types of jumps
that do not contribute to diffusion of the charge carriers, i.e., l3 − l5, l7 + l8 and
equal jumps, this value is enhanced compared to the diffusion along the b-axis, i.e.,
0.8014 > 0.5.
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9.1. Theoretical background

I-S-S related tracer and interstitialcy diffusion coefficients

Similar relations can be derived for diffusion via the I-S-S double interstitialcy
mechanism. Starting with D̂ISS

Na,c∗ , the mean square displacement is decomposed
into contributions that result from the reactions n = 5 to 12 comprised in Tab. 9.1.
Considering, e.g., the reaction n = 6 that involves only Na atoms the numbers of
events can be further decomposed into contributions from S-S, I-S and S-I jumps
given by

⟨nSS
Na,Na,Na⟩/t = pNa,SCNaCNa,IwNaz

ISS
c∗ = rNaCNawNaz

ISS
c∗ CI (9.25)

⟨nIS
Na,Na,Na⟩/t = pNa,ICNaCNawNaz

ISS
c∗ = rNaCNawNaz

ISS
c∗ CI

⟨nSI
Na,Na,Na⟩/t = pNa,SCNaCNa,IwNaz

ISS
c∗ = rNaCNawNaz

ISS
c∗ CI ,

respectively. On the right-hand side of the above equations use of the relations
comprised in Eqs. 9.6, 9.9 and 9.10 was made. Similar relations to Eq. 9.25 can be
found for the remaining reactions (n = 5, 7, 8, 9, 10, 11 and 12). With respect to
the different jump vectors l the Na diffusivity can then be expressed according to
Eq. 9.20 by

D̂ISS
Na,c∗ = 1

2f ISS
Na,c∗ zISS

c∗ CI

[
(CNawNa + CKwK)

(
l2
2,c∗ + l2

4,c∗ + l2
6,c∗

)
+

+
(
CKwK (rNa + 2) + CNawNa (rNa + 1)

(
l2
1,c∗ + l2

3,c∗ + l2
5,c∗

)) ]
= f ISS

Na,c∗CI

[
(CNawNa + CKwK)

(
l2
2,c∗ + 2l2

4,c∗

)
+

+
(
CKwK (rNa + 2) + CNawNa (rNa + 1)

)(
l2
1,c∗ + 2l2

3,c∗

) ]
,

(9.26)

where the relations zISS
c∗ = 2, l2

4,c∗ = l2
6,c∗ and l2

3,c∗ = l2
5,c∗ were used. Accordingly,

the diffusion coefficient for K tracer atoms is given by

D̂ISS
K,c∗ = f ISS

K,c∗CI

[(
CNawK + CKwK

wK
wNa

) (
l2
2,c∗ + 2l2

4,c∗

)
+

+
(
CNawK (rK + 2) + CKwK

wK
wNa

(rK + 1)
)(

l2
1,c∗ + 2l2

3,c∗

)
,

(9.27)

and the interstitialcy diffusion coefficient by

D̂ISS
I,c∗ = f ISS

I,c∗

[
2CNaCKwK + C2

NawNa + C2
KwK

wK
wNa

]
[
(2l1,c∗ + l2,c∗)2 + 2 (2l3,c∗ + l4,c∗)2

]
.

(9.28)
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9. Interstitialcy diffusion in alkali feldspar

With the aid of Eqs. 9.26, 9.27 and 9.28, an expression for the Haven ratio can be
given by

H ISS
R,c∗ =

CNaD̂
ISS
Na,c∗ + CKD̂ISS

K,c∗

CIDISS
I,c∗

(9.29)

= f ISS

f ISS
I,c∗

(
l2
2,c∗ + 2l2

4,c∗

)
+ 2

(
l2
1,c∗ + 2l2

3,c∗

)
(2l1,c∗ + l2,c∗)2 + 2 (2l3,c∗ + l4,c∗)2 = 0.336f ISS

f ISS
I,c∗

.

A noticeable result in Eq. 9.29 is that the constant geometrical contribution to
HR,c∗ is significantly lower than the corresponding value for the I-S interstitialcy
mechanism. The finding is related to the occurrence of nearly collinear chains within
the a-c-plane (see Fig. 9.2) with a stronger contribution to D̂ISS

I,c∗ than to D̂ISS
Na,c∗ . It

may therefore be assumed that the allowance for double interstitialcy I-S-S jumps
shows a crucial effect on HR.

9.1.4. Effective short-range interaction between cations

In MC simulations based on a randomly ordered sublattice numerical HR values on
the order of ∼ 0.6 are observed. In contrast, the experimentally obtained values for
HR, ranging from 0.11 to 0.40 (see Fig. 5.7), are significantly below the MC findings,
which suggests that the atoms could be subject to short-range ordering and deviate
from a completely random distribution. The location of alkali sites in feldspar is
primarily determined by interactions of K and Na atoms with the neighbouring O
atoms of the silicate framework. Beyond that, different types of cations may show
a minor effect on the potential landscape of neighbouring cations, which leads
to an effective interaction between cations and hence, to a short-range ordering
(or disordering) tendency. Phillips et al. [122] measured the Na-K distribution
after annealing at 803 K of a Or49Ab51 feldspar by NMR spectroscopy and found
experimental evidence for a Na clustering tendency. This observation was further
corroborated by heat capacity measurements [123] and density functional theory
calculations of heat capacities of alkali feldspar [124].
To investigate the influence on correlation effects the previously discussed hypothet-
ical random alloy is therefore extended by interactions between nearest-neighbour
atoms with the effective interaction energies −vK,K, −vNa,Na and −vNa,K (vNa,K > 0).
According to Stolwijk [93] a so-called ordering energy v can be introduced, i.e.,

v = vNa,K − 1
2 (vNa,Na + vK,K) , (9.30)
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9.1. Theoretical background

Figure 9.3.: View of the monoclinic a-c-plane of feldspar showing only substitutional
(NaS, KS) atoms of the alkali sublattice. Effective interaction energies between one
Na atom and three neighbouring atoms are considered with the associated interaction
parameters vNa,Na and vNa,K, as indicated.

whereby the equilibrium state is fully determined by v/kBT . Another useful
expression is given by

U = vNa,Na − vK,K

2v
, (9.31)

where U indicates the variation of interaction energies between Na-Na and K-K
pairs. In the present model, Na-Na and K-K bonds are formed at the expense of
Na-K bonds if v < 0 holds (clustering). The opposite case, i.e., v > 0 is referred
to as ordering because globally more Na-K bonds are formed than in the random
alloy reference case. According to Fig. 9.1, the distance between nearest-neighbours
within the same a-c-plane is significantly smaller than along the b-axis. Hence, only
those three bonds within the same a-c-plane are considered as illustrated in Fig. 9.3.
The equilibrium state is also expressed through the migration energies of the
interstitialcy mechanism. In the random alloy reference case, the jump frequencies
only depend on the type of the substitutional atom involved in an I-S interstitialcy
jump. For example, the jump frequency of Na atoms is

wIS
Na = ν0 exp

(
Sm

Na
kB

)
exp

(
−Hm

Na
kBT

)
, (9.32)

where Sm
Na is the migration entropy of Na atoms, Hm

Na is the migration enthalpy
of Na atoms and ν0 is an attempt frequency on the order of the Debye frequency.
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9. Interstitialcy diffusion in alkali feldspar

In contrast to Eq. 9.32, the introduction of interaction energies shows an influence
depending on the nearest-neighbour environment according to

wIS
Na = ν0 exp

(
Sm

Na
kB

)
exp (− (Hm

Na + bNa,NavNa,Na + bNa,KvNa,K) /kBT ) , (9.33)

where bNa,Na and bNa,K are the numbers of Na-Na and Na-K bonds, respectively. For
I-S interstitialcy jumps the relation bNa,Na + bNa,K = 3 is valid. A similar relation is
given for I-S interstitialcy jumps of K atoms, i.e.,

wIS
K = ν0 exp

(
Sm

K
kB

)
exp (− (Hm

K + bK,KvK,K + bK,NavNa,K) /kBT ) , (9.34)

where Sm
K and Hm

K are the migration entropy and enthalpy of K atoms, respectively
and bK,K is the number of K-K bonds of a substitutional K atom. The jump
frequencies of I-S-S interstitialcy jumps are affected in a similar way. As an example,
the jump frequency for double interstitialcy jumps through the reaction n = 10 (see
Tab. 9.1) is given by

wISS
K,Na = ν0 exp

(
Sm

K
kB

)
exp (− (Hm

K + bNa,NavNa,Na + bNa,KvNa,K + bK,KvK,K) /kBT ) ,

(9.35)
and the relation bNa,Na + bNa,K + bK,K = 5 holds.
The introduction of interaction energies also affects the diffusivities discussed
in Sections 9.1.2 and 9.1.3. For example, the probability that a certain type of
substitutional atom is neighbouring another substitutional atom in Eq. 9.25 is not
reflected by the concentrations CK and CNa as is true for the random alloy reference
case. Moreover, the jump frequencies for each combination of neighbouring atoms
have to be distinguished. A more convenient method to calculate diffusivities is
to extract the mean square displacements directly from MC simulations and, for
example, the Na diffusivity along the b-axis is then given by Eqs. 9.7 and 9.8. This
method is preferred throughout the present study for all calculations of diffusivities.

9.2. Numerical procedures

To calculate tracer and interstitialcy correlation factors in the monoclinic structure
of feldspar, the same numerical approach was employed as in the previous chapters
to calculate correlation factors in the simple cubic structure. Adaptions were made
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9.2. Numerical procedures

to allow for double interstitialcy I-S-S jumps within the a-c-plane (cf. Section 9.1.3)
and for considering an effective interaction energy given by v < 0 (clustering)
between the cations (cf. Section 9.1.4). The numerical model is based on the
conception that an interstitialcy defect I performs either I-S jumps or I-S-S jumps
with frequencies that do not depend on the type of defect, but rather on the
type of its neighbouring atoms. These frequencies are for the random alloy (RA)
reference case wNa and wK for I-S jumps and wNa, wK and wK

2/wNa for I-S-S jumps,
respectively (see Tab. 9.1). Initially, the I atom was set in the centre of a monoclinic
‘interstitial’ lattice consisting of

(
0, 0, 1

2

)
and equivalent sites that was otherwise

completely empty. The ‘substitutional’ lattice, in contrast, was completely filled
with tagged atoms of type K and Na that were randomly distributed according
to their concentrations CK and CNa, respectively. In all cases the simulation box
had a size of 20a × 20b × 20c unit cells (32,000 substitutional atoms). This was
found to be the minimum box size for results that remain unbiased by the periodic
boundaries, i.e., the box was surrounded by copies of itself on all sides.
To allow the sublattice to establish thermodynamic equilibrium the well known
Metropolis algorithm was applied [125, 126] before the computation of correlation
factors. In a first step of this procedure the initial energy of the sublattice given by

E = −vNNa,K (9.36)

was determined by counting the number of unlike K-Na bonds NK,Na throughout the
box according to Fig. 9.3. The following steps of the Metropolis algorithm were then
applied repeatedly: (i) Two atoms were randomly selected from the substitutional
lattice. The procedure was repeated until an unlike K-Na pair was found. (ii) The
three atoms neighbouring the K atom were examined and the numbers of K and
Na bonds, bK,K and bK,Na, respectively, were determined. Accordingly, the bonds
of the Na atom, bNa,Na and bNa,K, were identified. (iii) Interchanging the K-Na pair
has an effect on the total number of unlike bonds, NK,Na, according to

∆NK,Na = 2 (bK,K − bNa,K + δ) , (9.37)
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9. Interstitialcy diffusion in alkali feldspar

where δ is unity if the pair atoms are neighbours of themselves and zero if not.
The interchange was carried out if ∆NK,Na ≤ 0. If ∆NK,Na > 0 a random number
r ∈ [0, 1) was compared with the Boltzmann factor

fBoltzmann = exp
[(

v

kBT

)
∆NK,Na

]
, for v < 0 (9.38)

and the interchange was carried out if r ≤ fBoltzmann. If r > fBoltzmann the initial
state was retained and the procedure was repeated from step (i) onwards. The
Metropolis algorithm was suspended when the system was safely assumed to be in
thermal equilibrium.
After the substitutional lattice was created the calculations of correlation factors
started by evaluating the total jump frequency of the interstitial atom I. All ten
nearest-neighbour S-atoms and those six second-nearest-neighbour atoms that can
be involved in I-S-S jumps were examined (see Figures 9.1 and 9.2). Jumps of the
same S-atom to different I-sites (or to one S-site in case of an I-S-S exchange)
were considered as independent of each other and counted as a single jump. The
total jump frequency is then given by ∑22

i wi with the individual frequencies of
the RA reference case wi = wNa, wK and wK

2/wNa, respectively. Variations of the
individual jump frequencies from the reference case occurred when effective short-
range interactions were considered, i.e., v ̸= 0, which is discussed in Section 9.1.4.
According to the individual jump probabilities one jump direction was chosen by
a random number generator (RNG) and the exchange was executed. Sufficiently
long runs of I jumps were executed to compute correlation factors with acceptably
small uncertainties, i.e., between n = 5 × 1010 and 5 × 1011 jumps.
For the numerical calculation of correlation factors a partial correlation factors
method (PCF) – which was introduced in Chapter 6 – was employed. The PCFs
were computed by evaluating the scalar product of jump vectors for each atom and
each type of jump α, given by Sα = ∑

i

∑
j (xα,i · xα,i+j). Here, xα,i+j denotes the

jth jump after the ith exchange of type α with xα being the projected length of
the jump vector lα to the direction under investigation. The PCF corresponding to
α jumps is then given by averaging over all atoms of the same type, according to

f̃α = 1 + 2⟨Sα⟩/⟨nα⟩ · x2
α, (9.39)

where ⟨nα⟩ is the average number of jumps of type α. Total correlation factors are
then obtained by weighted averages of the associated PCFs.
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9.3. Results and discussion

Interstitialcy correlation factors fI related to diffusion of the generalised interstitial
defect I were obtained by the same PCF method. Because only one single defect
was present in the simulation box at any time the correlation factors could not
be averaged over many particles. Instead, the total run made up of n jumps was
split into Nrun sequences of nL jumps and fI was obtained by averaging over all
sequences. A sequence length consisting of nL = 2×106 jumps was found to produce
unbiased results and was therefore selected for all presented simulations.

9.3. Results and discussion

9.3.1. Percolation behaviour

As discussed in the previous Chapters 7 and 8, the tracer correlation factors for
diffusion via interstitialcies can become very small on the binary sublattice of
feldspar if the jump rates of Na and K differ considerably. This is also true for the
‘physical correlation factor’ fI that is closely related to the tracer correlation factor
of the more mobile component (fB or fNa, respectively) over a large composition
range (see e.g. Fig. 7.4 in Chapter 7). In this section, this percolation behaviour is
analysed based on a randomly ordered sublattice with the aid of simulated fI data
for the monoclinic alkali sublattice. Figure 9.4 presents fI for wNa/wK = 10−5 in
the direction normal to (001) as a function of composition (0 ≤ CNa ≤ 0.45). The
fI values are based on n = 5 × 1010 interstitialcy jumps per simulation run split
up into sequences of nL = 2 × 106 jumps. It is seen in Fig. 9.4a that fI shows a
steep gradient near CNa ∼ 0.12. In the limiting case, wNa/wK = 0, the Na atoms
are completely immobile leading to the appearance of a threshold composition Cp

Na

below which long-range diffusion is not possible (fI = 0, fNa = 0).
The concentration dependence of fI just above the percolation threshold Cp

Na may
be described – in analogy to diffusion via vacancies and self-interstitials on the
simple cubic lattice (see Chapters 6 and 7) – by [23, 21]

fI = k(CNa − Cp
Na)δ, CNa ≥ Cp

Na , (9.40)

where δ is a critical exponent and k is a dimensionless proportionality constant. As
an approximation to the case of fully immobile Na atoms, Eq. 9.40 was fitted in the
narrow range CNa ∈ [0.13, 0.28] to the fI data for wNa/wK = 10−5. Most consistent
results were obtained by fitting of ln (fI) using the logarithmic form of Eq. 9.40
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9. Interstitialcy diffusion in alkali feldspar

Figure 9.4.: Interstitialcy correlation factors fI (circles) and vacancy correlation factors
fV (squares) as a function of composition CNa (a) and as a function of ln (CNa − Cp

Na)
(b) for the monoclinic alkali sublattice of feldspar in the direction normal to (001) for
the jump frequencies wNa/wK = 10−5. Solid lines are separate fits to the solid symbols
based on Eq. 9.40.
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Table 9.2.: Parameter values characterizing the vacancy and interstitialcy percolation
behaviour on the Na-K sublattice of alkali feldspar; cf. Eq. 9.40 and Chapter 6.

Diffusion mechanism Cp
Na δ k

vacancy 0.360 ± 0.001 1.65 ± 0.06 8.1 ± 1.0
interstitialcy 0.124 ± 0.002 1.35 ± 0.07 4.8 ± 0.7

(see Fig. 9.4b). The best estimates for Cp
Na, δ and k are compiled in Tab. 9.2, and

compared with corresponding data related to vacancy diffusion in the monoclinic
structure (cf. Chapter 6 and square symbols in Fig. 9.4).
In summary, the findings may be interpreted as follows: The present threshold for
interstitialcy diffusion, Cp

Na(I) = 0.124, is distinctly lower than the vacancy-related
value Cp

Na(V) = 0.360 (cf. Chapter 6). On the one hand, this may relate to the
higher coordination number for the interstitialcy mechanism, z(I) = 10, compared
to the vacancy mechanism z(V) = 5. On the other hand, the number of sites from
which a second exchange of the generalised interstitial may occur is even larger
than the coordination number in the interstitialcy case, i.e., z < z2 = 14, whereas
these numbers cannot be distinguished in the vacancy case. The critical exponent
δ(I) is slightly smaller than δ(V) [83], which leads to a stronger curvature of the fI

plot at compositions close to the percolation threshold. The fitted proportionality
constant k(I) is only about half of the k(V) value [83], causing a weaker composition
dependence for CNa ≫ Cp

Na. In analogy to those results found for diffusion
in the simple cubic structure, I-related correlation is less pronounced than V-
related correlation far above the pertaining site-percolation threshold but more
significant in the proximity of Cp

Na. Most importantly, Cp
Na(I) fully complies with

the experimental tracer diffusion data obtained for VF feldspar (see Chapter 4). A
common interstitialcy mechanism of Na and K may therefore be a suitable model
to describe the alkali diffusivities on the sublattice of VF feldspar in more detail,
which will be presented along the following sections.
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9.3.2. Dependence on effective short-range interactions
between cations

In contrast to the previous section where a randomly ordered sublattice was
considered the influence of effective short-range interactions between nearest-
neighbour cations on the Na and K diffusivities and on the Haven ratio is
analysed. The equilibrium state of the sublattice, fully characterised according to
Section 9.1.4 by v/kBT , is established as a function of v for a constant temperature
and with the parameter U = 1.2, which was a standard case in early correlation
studies [117, 118]. It should be noted that according to Eqs. 9.30 and 9.31 the
interaction energies −vK,K, −vNa,Na and −vNa,K are not unambiguously defined by
the selection of v and U . A simple model assumption – without any influence on the
ordering state of the system – based on non-interacting K-K pairs, vK,K = 0 meV,
is therefore discussed.
The main objective of this study is to determine suitable parameters for the
interstitialcy diffusion model to reproduce the experimental data found for D̂K,
D̂Na and Dσ. A full set of these quantities is, so far, only available for the VF
feldspar (see Chapters 3, 4 and 5) and the VF composition is therefore selected as
a starting point for the MC simulations. As an approximation to the real mineral
with the composition Or83Ab15Cs1 the alkali sublattice is considered as a binary
alloy consisting only of K and Na atoms with the concentrations CK = 0.85
and CNa = 0.15, respectively. The simulations were carried out for interaction
energies v ranging from −5 meV to −90 meV at a fixed temperature of T = 1173 K.
The jump frequencies, initially undetermined for this temperature, were set to
wNa/wK = 5×10−4, which is a reasonable first assumption according to the findings
from the following Section 9.3.3. In Fig. 9.5 computed results for D̂Na/D̂K for the
direction normal to (001) are displayed as a function of −v (circles, left-hand side
(lhs) ordinate). It can be observed that D̂Na/D̂K increases linearly from ∼ 200
to ∼ 500 with decreasing values for the interaction energy v from −5 meV down
to −50 meV. For lower values of v ranging from −50 meV to −90 meV the slope
of D̂Na/D̂K becomes steeper and reaches a maximum value of ∼ 2400 for the
lowest v value under investigation. The global trend of increasing D̂Na/D̂K can be
understood by considering, e.g., the jump frequencies pertaining to I-S jumps of
Na and K in Eqs. 9.33 and 9.34, respectively. For vK,Na < 0 and vNa,Na < 0 the
Na jump frequency increases with the absolute values for the interaction energies.
In contrast, the K jump frequency is only influenced by the interaction energy for
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Figure 9.5.: Ratio of the diffusivities D̂Na/D̂K (circles, lhs ordinate) and Haven ratio
HR (squares, rhs ordinate) as a function of the interaction energy v. The results are
derived from MC simulations with wNa/wK = 5 × 10−4 and T = 1173 K for diffusion
in alkali feldspar normal to (001). The numerical values obtained for D̂Na/D̂K and HR
from RTD and EIS analyses at 1173 K are represented by the dashed line (cf. Chapters
4 and 5).

K-Na bonds, vK,Na, and K-K bonds show a priori no effect on the frequency due to
the selection for vK,K = 0, which leads to the observed D̂Na/D̂K behaviour.
On the right-hand side (rhs) of Fig. 9.5 the Haven ratio HR obtained for the
direction normal to (001) is shown on a second ordinate as a function of −v (square
symbols). It can be seen that HR decreases for increasing values of −v from 0.62 to
0.32. If v is negative a number of Na-Na bonds larger than random will be formed
at the cost of K-Na bonds. It may therefore be expected that the probability for
double interstitialcy I-S-S jumps via Na-Na pairs is increased compared to the RA
case. The overall jump rates wNa and wI increase with the numerical value of −v

because of the negative interaction energies. This effect is even stronger for wI than
for wNa and hence, HR decreases towards the geometrical value for I-S-S jumps,
i.e., HR = 0.336 (cf. Eq. 9.29).
The experimental data for HR in VF feldspar were analysed in Chapter 5. For
all temperatures under investigation values in the range from 0.11 to 0.40 were
observed. For the presently discussed temperature of T = 1173 K the Haven ratio
was calculated based on extrapolated data for Dσ, i.e., HR = 0.27 ± 0.12. As a
reference case for the simulated data a numerical value of HR = 0.40 may therefore
be seen as the upper limit for HR in VF feldspar. This experimental value is
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Table 9.3.: Best estimates for the energy parameters in VF feldspar under the
presumptions of non-interacting K-K pairs and U = 1.2.

v / meV U vK,Na / meV vK,K / meV vNa,Na / meV
-72.0 1.2 -158.4 0 -172.8

represented by the dashed line in Fig. 9.5 and it can be seen that it complies
with the simulated data for v < −65 meV. From corresponding tracer diffusion
experiments with 22Na and 43K (see Chapters 3 and 4, respectively) the diffusivity
ratio for VF feldspar at T = 1173 K was measured, i.e., D̂Na/D̂K = 1/1230. The
scale of the lhs ordinate in Fig. 9.5 was adapted that this upper limit is reflected
by the horizontal dashed line, which also indicates the upper limit for HR. It can
be seen from the figure that it complies with the simulated data for an interaction
parameter somewhere between −70 meV and −75 meV. The best estimate for the
interaction parameter, i.e., v = −72.0 meV, is therefore selected for the following
analysis and the complete set of interaction parameters is compiled in Tab. 9.3.
According to the previous Section 9.3.1, the percolation behaviour can now
be analysed with regard to effective short-range interactions (clustering) based
on calculations of fI normal to (001) for extremely low K jump frequencies
wNa/wK = 10−5 and for a constant hypothetical temperature of 1173 K. Fitting
of the logarithmic form of Eq. 9.40 in the narrow range CNa ∈ [0.12, 0.26] to the
results gives Cp

Na(I) = 0.103±0.005. A slightly shifted percolation threshold towards
a smaller absolute value is observed when compared to the random alloy reference
case (Cp

Na(I) = 0.124 ± 0.002) whereas the parameter k is 8.4 ± 4.2 and the critical
exponent is δ(I) = 2.8 ± 0.3. However, if the percolation threshold is derived from
fI normal to (010) the findings agree with the random alloy reference case within
the numerical uncertainties. In general, it can be hypothesised that the percolation
behaviour should be independent of the direction and hence, it seems likely that
this minor disagreement of the percolation threshold results from underestimated
uncertainties of Cp

Na(I) when effective short-range interactions are considered.

166



9.3. Results and discussion

9.3.3. Dependence of jump frequencies from temperature

The temperature dependence of the jump frequencies wNa/wK can be determined
based on measured tracer diffusivity ratios D̂Na/D̂K for VF feldspar normal to
(001) with interaction energies according to Tab. 9.3. Two data points, i.e.,
T = 1173 K and 1023 K, are analysed and the corresponding diffusivity ratios from
tracer diffusion experiments are D̂Na/D̂K = 1/1230 and 1/5990, respectively (cf.
Chapter 4). An iterative method with simulation runs of at least 500 jumps per K
atom was employed until the experimental D̂Na/D̂K data was reproduced within
10 % tolerance to determine wNa/wK. The best estimates are wNa/wK = 5.32×10−4

and 1.33×10−4 for T = 1173 K and 1023 K, respectively. Based on an interpolation
of the two data points and under the assumption of an Arrhenius behaviour the
temperature dependence of the jump frequencies is given by

wNa/wK = exp
(

∆Sm

kB

)
exp

(
−∆Hm

kBT

)
, (9.41)

with ∆Sm = 1.92+1.03
−1.26 kB and ∆Hm = 0.96+0.10

−0.26 eV.

The tracer correlation factors for K and Na diffusion, fK and fNa, respectively, are
presented on an Arrhenius plot in Fig. 9.6 for the temperature range from 1023 K to
1248 K in steps of 25 K. The corresponding jump frequencies wNa/wK according to
Eq. 9.41 are given on a second abscissa. The data points – based on averaging over
three simulations runs – are displayed for the direction normal to (001) (triangle
symbols) and (010) (square and circle symbols). It can be seen from the figure that
the correlation factors are ranging from 1.6 × 10−3 to 0.5 and that fK ≫ fNa. In
general, correlation factors of the slower moving species are expected to be higher
than those of the faster moving species because they are not influenced by site-
blocking effects (compare, e.g., with Fig. 7.4 concerning interstitialcy diffusion in a
simple cubic random alloy). For both species, K and Na, correlation factors normal
to (010) significantly exceed the corresponding correlation factors normal to (001).
This behaviour can be understood as follows: The negative interaction energies have
an increasing effect on the jump rates wK and wNa, which was discussed earlier. This
influence is primarily observed for diffusion normal to (001), because only nearest-
neighbour interactions within the a-c-plane are considered (cf. Section 9.1.4). The
enhanced jump rates for diffusion normal to (001) compared to diffusion normal
to (010) are, however, counterbalanced by the pertaining correlation factors. In

167



9. Interstitialcy diffusion in alkali feldspar

Figure 9.6.: Arrhenius plot of tracer correlation factors for K and Na diffusion via the
interstitialcy mechanism in VF feldspar for the directions normal to (010) and normal
to (001). Jump frequencies wNa/wK are indicated on the top abscissa. Solid lines refer
to linear fitting to the computed data with a temperature dependence Qf according to
Eq. 9.43. The findings for Qf are summarised in Tab. 9.4.

summary, although the correlation factors may be greatly different this must not
be true for the diffusivities, which will be demonstrated in the following section.
It can be seen from Fig. 9.6 that the correlation factors increase with increasing
temperature. This behaviour is well described by Arrhenius relations that are
represented by the solid lines. The total activation energy of a diffusion process
can be expressed as

∆H = 1
2Hf

FP + Hm + Hb + Qf , (9.42)

where Hf
FP is the Frenkel pair formation enthalpy, Hm is the migration enthalpy,

Hb is the binding energy and

Qf = −kB
∂ ln f

∂ (1/T ) (9.43)

is the temperature dependence of a correlation factor [19]. The results obtained
from fitting Eq. 9.43 to the correlations factors are compiled in Tab. 9.4. It
can be seen that correlation factors normal to (010) show a weaker temperature
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Table 9.4.: Temperature dependence of the tracer correlation factors for Na and K
diffusion in VF feldspar normal to (010) and normal to (001). The results are derived
according to Eq. 9.43.

Species Direction Qf / eV
K ⊥ (010) 0.009 ± 0.002
K ⊥ (001) 0.13 ± 0.01
Na ⊥ (010) 0.08 ± 0.03
Na ⊥ (001) 0.33 ± 0.03

dependence than normal to (001) which may relate to the occurrence of short-
range interactions. Beyond that, the faster moving Na atoms are subjected to
the strongest temperature dependence of correlation factors which complies with
observations from earlier studies (see, e.g., Chapter 7).
The temperature dependence of correlation effects has been calculated earlier,
e.g., by Divinski et al. for the Ni self-diffusion in NiAl [127]. The authors
reported that the general Ni self-diffusion behaviour agrees with the triple defect
diffusion mechanism for Al-rich, stoichiometric and slightly Ni-rich (≤ 52 at. %)
compositions. The temperature dependence of the triple defect mechanism in NiAl
is given by Qf = 0.18 eV, which is about half of the value obtained for Na diffusion
in feldspar normal to (001).

Comparison with tracer diffusion measurements

So far, tracer correlation factors fK and fNa for negligibly low defect concentrations
(CI ≪ 1) were determined by MC simulations for the sublattice of alkali feldspar
in the range from 1023 K to 1248 K. The absolute numerical values of diffusion
coefficients D̂K and D̂Na from tracer diffusion measurements with VF feldspar are
now replicated by MC simulations. According to, e.g., Eq. 9.7 the tracer diffusion
coefficients D̂ are given by a correlation factor f and by a mean square displacement
of particles per time ⟨X2⟩/2t. The latter quantity is directly accessible because of
a detailed accounting during the MC runs and hence, D̂ can be extracted from
the simulations. In order to fit computed diffusivities (index ‘MC’) to experimental
data (index ‘exp’) the migration enthalpy and entropy for one species as well as
the Frenkel pair formation enthalpy Hf

FP and entropy Sf
FP are determined by the
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following procedure:

(i) The diffusivities are computed by MC simulations based on the parameters

1
2Hf

FP + Hm
Na = 0 and ν0 exp

[(
1
2Sf

FP + Sm
Na

)
/kB

]
= 1.

(ii) The expression ⏐⏐⏐⏐⏐12
(

D̂K,MC

D̂K,exp
+ D̂Na,MC

D̂Na,exp

)
− 1

⏐⏐⏐⏐⏐ ≥ 0 (9.44)

is evaluated for T = 1023 K and 1173 K. Initially, the absolute values deviate
for obvious reasons from zero.

(iii) The parameters introduced in (i) are adjusted in order to minimize Eq. 9.44
for the data points 1023 K and 1173 K.

According to the above procedure, the parameters are given by

ν0 exp
⎛⎝ 1

2Sf
FP + Sm

Na

kB

⎞⎠ = 13.7+73.8
−11.6 THz

and 1
2Hf

FP + Hm
Na = (1.93 ± 0.18) eV .

The computed diffusivities from MC simulations are well described by linear
Arrhenius relations. In Fig. 9.7 the results for K and Na (lines) in the direction
normal to (001) and normal to (010) are displayed on an Arrhenius plot and
compared to the experimentally obtained diffusion coefficients (symbols). The
figure demonstrates a generally good agreement between simulated and measured
data, which may be seen as an indication for the suitability of the present
interstitialcy diffusion model. In accordance to the measurements only a weak
anisotropy of the Na diffusion is observed, which decreases with increasing
temperature and achieves parity for T = 1248 K. In contrast, a significant
anisotropy for the K diffusion is shown, i.e, D̂K is larger normal to (001) than
normal to (010) by a factor ranging from 2.5 to 13.0. However, no experimental
data is so far available for K diffusion normal to (010) and the presented anisotropy
effects are influenced by the selection of interaction energies.
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Figure 9.7.: Arrhenius plot of tracer diffusion coefficients D̂K and D̂Na in VF feldspar
based on a fitting of simulation results (lines) to data obtained from tracer diffusion
experiments (symbols, cf. Chapters 3 and 4).

Comparison of the Haven ratio from MC simulations and from
measurements

In addition to tracer correlation factors fK and fNa also interstitialcy correlation
factors fI were computed by MC simulations. Based on the findings for VF feldspar
normal to (001) and together with the corresponding fK and fNa data the Haven
ratio HR is determined by

HR = CNaD̂Na + CKD̂K

CIDI
. (9.45)

The results are presented in Fig. 9.8 as a function of temperature ranging from
1023 K to 1248 K and compared with experimentally obtained data for HR. It
can be seen from the figure that the computed HR results increase linearly with
increasing temperature (solid line) with the numerical values ranging from 0.29
to 0.45. The observed temperature dependence is not related to a temperature
dependence of the jump frequencies but rather to a temperature dependence of
correlation factors. The correlation behaviour is characterised by a deviation of
fNa/fI from 0.84 to 1.23 for T = 1023 K and T = 1248 K, respectively, and the
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Figure 9.8.: Haven ratio HR as a function of temperature T from MC simulations for
VF feldspar normal to (001) (open circles). The solid line represents linear fitting to the
data points. HR data obtained from measurements of D̂Na and Dσ (see Chapters 3 and 5)
is shown for comparison (solid symbols). Data points for T ≤ 643 K and T ≥ 1073 K are
based on extrapolated Dσ results (open squares).

empirical relation HR ≈ 0.35fNa/fI holds true over the investigated temperature
range. It can be concluded that the geometrical contribution to HR is mainly
influenced by double interstitialcy I-S-S jumps with a theoretical geometrical value
of 0.336. A comparison with experimental HR data in Fig. 9.8 demonstrates the
consistency with the computed results within experimental uncertainties.
The Haven ratio may also be determined for the direction normal to (010) over
a wide range of temperature based on the ionic conductivity measurements by
El Maanaoui et al. [56]. With the aid of 22Na tracer diffusion measurements (see
Chapter 3) and Eq. 9.45 the absolute value of the Haven ratio is, e.g., given by
HR = 0.51 ± 0.28 for T = 1023 K. For comparison, the computed Haven ratio from
MC simulations is 0.23 ± 0.01 for the same temperature, which is consistent within
the experimental uncertainty. However, it should be noted that the experimental
data suffers from considerable scatter and thus need to be interpreted with the
utmost caution. More experimental evidence is therefore needed to demonstrate
whether the present interstitialcy diffusion model sufficiently describes the Haven
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ratio also in the direction normal to (010). As a consequence, adaptions of
this simple model could be required if HR significantly differs from the current
observation.

9.3.4. Correlation effects below the percolation threshold

The occurrence of a percolation threshold is, in general, related to the complete
immobility (site-blocking) of one species of an alloy (e.g. wK = 0). Under this
circumstance, the migration of other species is restricted to clusters of finite size and
long-range diffusion is therefore impossible. However, in the real feldspar mineral
the slower moving K-atoms are not fully immobile but rather significantly slower
than the Na atoms so that the jump frequencies range from wNa/wK = 1.3 × 10−4

to 9.4 × 10−4 for 1023 K and 1248 K, respectively (see Fig. 9.6). The faster moving
Na atoms may therefore escape from finite clusters via slow exchanges with K
atoms and the long-range diffusion of Na is then bounded to the K diffusivity.
This situation of diffusion below the virtual percolation threshold (CNa < Cp

Na)
is inspected in the present section by MC simulations of tracer correlation
factors. A natural orthoclase mineral originating from Madagascar (MO) with
the composition Or95Ab5 is a suitable reference case under this requirement and
experimental data for 22Na tracer diffusion in MO were presented and discussed
in Chapter 3. However, experimental data for K diffusion in MO feldspar is
lacking which, in turn, may in good approximation be provided from corresponding
measurements from VF feldspar. A comparison of this data with the data from
Foland’s study [8] of alkali diffusion in a feldspar from Benson Mines gives evidence
that D̂K is subject to only minor composition effects for 0.95 ≥ CK ≥ 0.85,
which was discussed in Chapter 4. The assumption of a composition independent
behaviour of D̂K therefore seems to be justified in good approximation.
Because of virtual site-blocking effects from K atoms for a composition below
the percolation threshold the activation energies for Na and K diffusion appear
to be similar in tracer diffusion measurements, i.e., ∆H = (2.00 ± 0.04) eV
and ∆H = (2.4 ± 0.4) eV, respectively. The quality for a determination of jump
frequencies wNa/wK in MO feldspar based on this weak temperature dependence
of D̂Na/D̂K is, a priori, restricted because correlation factors compensate for
differences in jump frequencies. Hence, the same temperature relation as for VF
feldspar according to Eq. 9.41 with ∆Sm = 1.92 kB and ∆Hm = 0.96 eV must be
presumed which holds, beyond doubt, only for a rough estimate.
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Table 9.5.: Temperature dependence of the tracer correlation factors for Na and K
diffusion in MO feldspar normal to (010) and normal to (001). The results are derived
according to Eq. 9.43.

Species Direction Qf / eV
K ⊥ (010) 0.020 ± 0.004
K ⊥ (001) 0.26 ± 0.01
Na ⊥ (010) 1.32 ± 0.01
Na ⊥ (001) 1.78 ± 0.01

Tracer correlation factors were computed for a simulation box with the composition
CNa = 0.05 and CK = 0.95 and with the energy parameters for short-range
interactions according to Tab. 9.3. For T = 1173 K simulation boxes ranging
from 20a × 20b × 20c (32,000 substitutional atoms) to 40a × 40b × 40c (256,000
substitutional atoms) were analysed and no dependence between box size and MC
results could be observed. The following findings are therefore based on simulation
boxes of 20a × 20b × 20c in all cases. In Fig. 9.9, the results – based on averaging
over three simulations runs – for fK and fNa in the direction normal to (010) and
normal to (001) are displayed on an Arrhenius plot for temperatures varying from
1023 K to 1223 K. The associated jump frequencies wNa/wK are indicated on a
second abscissa. It can be seen from the figure that the correlation factors are
increasing with increasing temperature and cover a range from 2.4 × 10−6 to 0.2.
When compared with the correlation factors for diffusion in VF feldspar in Fig. 9.6
the same behaviour of larger numerical f values for diffusion normal to (010) than
normal to (001) are observed. However, the correlation factors in MO feldspar are
considerably reduced compared to VF feldspar, which clearly relates to percolation
problems.
The temperature dependence of the correlation factors is well described by a
linear relation on the Arrhenius plot with a slope Qf given by Eq. 9.43. In
Table 9.5 the results for fitting of the ‘activation energy’ Qf to the computed
data is summarised. A distinct increase of Qf for diffusion in MO feldspar is
observed compared to VF feldspar, which particularly concerns the Na diffusion.
The observed ‘activation energies’ on the order of 1 eV seem to be a characteristic
property for the Na diffusion for a feldspar composition of CNa < Cp

Na. Beyond
that, the findings give reason for the numerical value found for D̂Na/D̂K from
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Figure 9.9.: Arrhenius plot of tracer correlation factors for K and Na diffusion via the
interstitialcy mechanism in MO feldspar for the directions normal to (010) and normal to
(001). Jump frequencies wNa/wK are indicated on the top abscissa and derived from the
analysis of correlation effects in VF feldspar (see Section 9.3.3). Solid lines refer to linear
fitting to the computed data with a temperature dependence Qf according to Eq. 9.43.
The findings for Qf are compiled in Tab. 9.5.

tracer diffusion measurements, i.e., between 46 and 81 for T = 1173 K and 1023 K,
respectively. According to the analysis for VF feldspar also absolute numerical
values of diffusivities for MO feldspar can be replicated. Fitting of jump frequencies
to experimental data for Na diffusion in MO feldspar and K diffusion in VF feldspar
in a direction normal to (001) according to Eq. 9.44 gives

ν0 exp
⎛⎝ 1

2Sf
FP + Sm

Na

kB

⎞⎠ = 1.4+19.9
−1.3 THz

and 1
2Hf

FP + Hm
Na = (1.45 ± 0.26) eV.

The computed diffusivities for MO feldspar are well described by linear Arrhenius
relations. In Fig. 9.10 the results for K and Na (lines) in the direction normal to
(001) and normal to (010) are shown on an Arrhenius plot and compared to the
experimentally obtained diffusion coefficients (symbols). The Na diffusivity normal
to (001) exceeds the diffusivity normal to (001) by a factor of ∼ 2, which is revealed
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Figure 9.10.: Arrhenius plot of tracer diffusion coefficients D̂K and D̂Na in MO feldspar.
The results are based on a fitting of computed data (lines) to data obtained from 22Na
tracer diffusion experiments in MO feldspar and 43K experiments in VF feldspar (symbols,
cf. Chapters 3 and 4) under the assumption of a negligibly small composition dependence
of K self-diffusion.

in the figure. In contrast, no significant anisotropy is observed for the K component.
From the experimental D̂Na data a corresponding anisotropic behaviour may not
be safely concluded because statistical scatter of the data points could obscure
hypothetical variations between the two directions. The computed data agree well
with the experimental data and deviations that particularly result from statistical
scatter of the experimental data amount to less than 50 %.

9.4. Summary and conclusions

In the present chapter, diffusion on the alkali sublattice of monoclinic feldspar
via the interstitialcy mechanism with additional double interstitialcy jumps was
studied by Monte Carlo (MC) simulations. Correlation factors were computed
with a convenient and effective partial correlation factors (PCF) method that
was also employed in Chapters 6, 7 and 8. From computed fI data a numerical
value for the site-percolation threshold of Cp

Na = 0.124 ± 0.002 was observed if
short-range interactions between the cations are neglected. The findings from the
present analysis demonstrate the consistency of an interstitialcy diffusion model in
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alkali feldspar with experimental data over a composition range from CNa = 0.15 to
0.05. This regime is of special interest because a transition from percolated to non-
percolated Na diffusion is observed that is in accordance with the demonstrated
correlation effects.

Based on the concepts of the Ising model short-range interactions between
nearest-neighbour atoms were considered for a negative ordering energy, i.e.,
v = −72.0 meV. With the help of this approach diffusivities derived from tracer
diffusion experiments in VF feldspar (Or83Ab15Cs1) were successfully replicated
by MC simulations. The temperature dependence of jump frequencies is well
described by wNa/wK = exp (∆Sm/kB) exp (∆Hm/kBT ) with ∆Sm = 1.92+1.03

−1.26 kB

and ∆Hm = 0.96+0.10
−0.26 eV. In addition, the jump rate for Na atoms is given

by ν0 exp
((

1
2Sf

FP + Sm
Na

)
/kB

)
= 13.7+73.8

−11.6 THz and the corresponding enthalpies
by 1

2Hf
FP + Hm

Na = (1.93 ± 0.18) eV. Similar concepts were used to link MC
data with measured Na diffusivities obtained for MO feldspar (Or95Ab5). The
determination of wNa/wK was restricted due to a weak temperature depen-
dence of D̂Na/D̂K and hence, the same results as for VF feldspar were pre-
sumed. Based on this approximation, the jump rate for Na atoms is given by
ν0 exp

((
1
2Sf

FP + Sm
Na

)
/kB

)
= 1.4+19.9

−1.3 THz and the corresponding enthalpies by
and 1

2Hf
FP + Hm

Na = (1.45 ± 0.26) eV.

A comparison of the derived enthalpies for Na diffusion in MO feldspar and
VF feldspar shows that 1

2Hf
FP + Hm

Na decreases towards the K-rich end-member
composition. This result is remarkable because tracer diffusion experiments suggest
the contrary behaviour of a higher activation energy for Na diffusion in MO feldspar
than in VF feldspar. In conclusion, the activation energies derived from tracer
diffusion experiments can be obscured from extremely large correlation effects,
which is the case for Na diffusion in MO feldspar. Furthermore, these findings
corroborate predictions from Jones et al. [54] who reported a similar behaviour
for the migration energy via vacancies from molecular dynamics computations (see
Tab. 3.2).

From measured ionic conductivity (see Chapter 5) and tracer diffusion (see
Chapter 3) the experimentally obtained Haven ratio for the direction normal to
(001) was reported to range from 0.11 to 0.40. This observation is in good agreement
with computed values for the Haven ratio obtained from MC simulations, i.e.,
between 0.29 and 0.45. It seems therefore rather unlikely that direct-interstitial I-I
jumps of Na atoms occur at a significant rate since these jumps show an enhancing
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9. Interstitialcy diffusion in alkali feldspar

effect on HR as demonstrated in Chapter 8. It can be concluded that the present
interstitialcy diffusion model with the extension of I-S-S double interstitialcy jumps
and short-range interactions is consistent with the percolation behaviour and with
HR for alkali diffusion in alkali feldspar.
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10. Summary & Outlook

The present thesis focuses on a comprehensive analysis of the Na and K transport on
the sublattice of alkali feldspar. Self-diffusion measurements, dc ionic conductivity
measurements and Monte Carlo simulations were employed to elucidate the
microscopic diffusion mechanism and to interpret the characteristic composition
dependent effects of the Na self-diffusion.
The tracer diffusion of 22Na was analysed for three single crystalline alkali feldspar
minerals in the composition range from 71 % to 95 % K on the alkali sublattice
(cf. Chapter 3). In all cases the Arrhenius relation for the direction normal to
(001) is equal to the corresponding relation for the direction normal to (010)
within the range of experimental uncertainties, whereas the Na-K interdiffusion
is markedly direction dependent [11, 12, 13]. A striking feature of the Na diffusion
is the considerable composition dependence from the VF feldspar (Or83Ab15Cs1)
to the most K-rich MO feldspar (Or95Ab5). Depending on the temperature the
Na diffusivities are 20 and 900 times smaller than those observed for the VF
Eifel sanidine at 1173 K and 773 K, respectively. The observed behaviour might
be interpreted as being a result of severe percolation problems at the close-to-
potassium end-member composition. Furthermore, the activation energy found
for the MO feldspar is increased by ∼ 0.7 eV compared to the RK and VF Eifel
sanidines, which could be a result of a different temperature activation of the
pertaining correlation factors.
For the VF feldspar measurements of the 43K tracer diffusion normal to (001)
were performed after isotope implantation at the ISOLDE facility at CERN (cf.
Chapter 4). The activation energy of the K self-diffusion is (2.4 ± 0.4) eV, which
is considerably higher than the activation energy of the Na self-diffusion in the
same mineral, i.e., (1.27 ± 0.03) eV. Accordingly, the diffusivity ratio D̂Na/D̂K

ranges from 1230/1 to 5990/1 at 1173 K and 1023 K, respectively. The Arrhenius
relation agrees well with the findings from Foland [8] for the K self-diffusion in
the more K-rich BM feldspar (CK ≈ 0.94), suggesting that the K self-diffusion is
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10. Summary & Outlook

affected by rather minor composition dependent effects. This finding corroborates
the interpretation that the slow Na self-diffusion in MO feldspar is caused by
severe percolation problems instead of increased migration barriers. So far, there
is a deficiency of direction dependent measurements of the K self-diffusion in
alkali feldspar, which is important for the interpretation of the markedly direction
dependent Na-K interdiffusion data. The investigations into this area are in progress
at the University of Vienna with direction dependent measurements of the 41K
diffusion in alkali feldspar.
The ionic conductivity was measured in VF feldspar normal to (001) between 673 K
and 1053 K (cf. Chapter 5). Effects of water were precluded by high temperature
pre-annealing at 1323 K for 4 days. The temperature behaviour is well described
by an Arrhenius equation with an activation energy of ∆H = (1.226 ± 0.004) eV,
similar to the activation energy of the Na self-diffusion in the same mineral. This
implies a dominant role of the Na+ ions in overall mass and charge transport. The
Haven ratio HR for VF feldspar was found to range from 0.11 to 0.40 in the direction
normal to (001). The significant deviation from HR = 1 gives strong evidence that
the Na self-diffusion is correlated, which implies that direct interstitial jumps are
much less frequent than those jumps related to an exchange with a diffusion vehicle,
e.g., interstitialcy jumps. In conclusion, the experimental data on self-diffusion
of Na and K as well as the ionic conductivity data give good evidence that the
migration of Na and K is characterised by a correlated diffusion mechanism with
a virtual percolation threshold within the composition range 0.05 < Cp

Na < 0.15.
By using Monte Carlo simulations tracer correlation factors for the vacancy diffu-
sion mechanism in the Na-K sublattice were computed for different compositions
CNa and various jump frequency ratios wK/wNa but with uniform frequencies of
the different jump types for either component (cf. Chapters 6). Vacancy jumps
to z = 5 nearest-neighbour atoms were considered in the pertinent simulation
model and the alkali vacancy diffusion is characterised by a percolation threshold of
Cp

Na = 0.360 independent of crystallographic orientation. This percolation threshold
clearly disagrees with the above findings from Na tracer diffusion measurements
and hence, the diffusion via vacancies has probably a rather minor contribution to
the overall alkali transport in the K-rich composition domain.
Manning’s random alloy model – originally developed for diffusion via vacancies –
was adapted to the special requirements of diffusion via the interstitialcy mech-
anism (cf. Chapter 7 and 8). In a first approach, the correlation factors for the
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interstitialcy diffusion in a randomly ordered simple cubic alloy AB were calculated
based on this adapted model via Monte Carlo simulations. It was demonstrated that
correlation effects and tracer diffusivity ratios (D̂B/D̂A) related to the interstitialcy
mechanism may significantly differ from those related to the vacancy mechanism,
which is expressed, e.g., by a different percolation threshold. Interestingly, a second-
order percolation threshold was observed which is related to the abundance of
nearest-neighbour A-B occurrences.
The methods and concepts were adapted to the more complex monoclinic Na-
K sublattice of alkali feldspar with

(
0, 0, 1

2

)
and equivalent interstitial sites (cf.

Chapter 9). Among the I-S interstitialcy jumps to ten nearest-neighbour atoms
additional double interstitialcy (I-S-S) jumps within the a-c-plane were considered
in the investigated diffusion model. The basic assumption of uniform frequencies of
the different I-S jump types for either component (Na and K) was considered and
the pertinent percolation threshold of Cp

Na = 0.124 ± 0.002 was observed, which
is in excellent agreement with the experimental data (cf. Section 3.2). Behrens et
al. [17] recognised that beside the

(
0, 0, 1

2

)
interstitial sites further interstitial sites

at
(

1
2 , 0, 1

2

)
and equivalent positions can be identified in the feldspar structure.

Elementary jumps from these sites, however, do not lead to an increased number
of pathways for interstitialcy exchange and therefore, the correlation factors are
unaffected by this property. An analysis whether these sites can be occupied by
NaI and KI self-interstitials might be feasible via state of the art transmission
electron microscopy (e.g., FEI Titan Themis G3 300).
Phillips et al. [122] measured the Na-K distribution in alkali feldspar via nu-
clear magnetic resonance spectroscopy and found experimental evidence for the
clustering tendency of Na atoms. Effective short-range interactions between the
cations were therefore considered in the diffusion model comprising three nearest-
neighbour bonds within the a-c-plane. Tracer and interstitialcy correlation factors
were computed via Monte Carlo simulations as a function of the ordering energy v.
When compared with the experimental findings most consistent results for HR

and D̂Na/D̂K were obtained for v = −0.072 meV (clustering) with HR ranging
between 0.29 and 0.45 in the direction normal to (010). Based on this model, the
diffusivities D̂Na and D̂K obtained from the Monte Carlo simulations were fitted
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to the experimental data for VF feldspar. The findings comprise the temperature
dependence of jump frequencies, which is well described by

wNa/wK = exp (∆Sm/kB) exp (∆Hm/kBT ) ,

with ∆Sm = 1.92+1.03
−1.26 kB and ∆Hm = 0.96+0.10

−0.26 eV. The jump rate for Na atoms is
given by

ν0 exp
((

1
2Sf

FP + Sm
Na

)
/kB

)
= 13.7+73.8

−11.6 THz

and the corresponding enthalpies by

1
2Hf

FP + Hm
Na = (1.93 ± 0.18) eV .

In a similar way, the diffusion coefficients were fitted to the experimental data for
the more K-rich MO feldspar, providing a good agreement between the simulated
and the measured diffusivities. The temperature dependence of the correlation
factor is considerably higher for MO feldspar, i.e., Qf = (1.78 ± 0.01) eV in
the direction normal to (001), compared to the findings for VF feldspar that
is given by Qf = (0.33 ± 0.03) eV. Based on this study it is conceivable that
the Na and K atoms migrate via a common interstitialcy mechanism on the
Na-K sublattice of alkali feldspar. For compositions below a virtual percolation
threshold CNa < Cp

Na = 0.124 ± 0.002 the transport of Na is affected by severe
percolation problems, which implies a considerably higher temperature activation
of the pertinent correlation factors.
The presented conception is based on the most basic assumption of uniform jump
frequencies of the different jump types because of deficient information concerning
the migration barriers of the Na and K diffusion. Future work could refine this
picture, e.g., through molecular dynamic simulations of the migration barriers,
defect formation energies and ordering energies. The limitation of the present
study comprising equal jump frequencies for NaI and KI jumps (the elementary
jump frequencies are only determined by the type of substitutional atom) could
probably be solved with the aid of such calculations. Furthermore, interactions
with the silicate framework structure might be considered to analyse possible effects
from the Al-Si ordering degree on the Na and K diffusion in alkali feldspar.
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A. 22Na tracer diffusion coefficients

Table A.1.: Diffusion coefficients D̂Na of 22Na in alkali feldspars of three different
compositions RK (Or71Ab26Cs2), VF (Or83Ab15Cs1) and MO Or95Ab5 normal to (001),
normal to (010) and in the direction [100] (only MO). The D̂Na values were determined by
fitting either a Gaussian or a complementary error function (erfc) to the diffusion profiles.
Uncertainties are based on an estimated statistical variation of 30 % for all radiotracer
diffusion experiments.

Feldspar Direction T/K tdiff/min Function D̂Na/m2s−1 Reference

RK ⊥ (001) 1073 32 Gauss (4.0 ± 1.2) × 10−14 [51]
RK ⊥ (001) 1023 70 Gauss (2.3 ± 0.7) × 10−14 [51]
RK ⊥ (001) 973 130 Gauss (1.3 ± 0.4) × 10−14 [51]
RK ⊥ (001) 923 300 Gauss (5.5 ± 1.7) × 10−15 [51]
RK ⊥ (001) 923 300 Gauss (2.6 ± 0.8) × 10−15 [51]
RK ⊥ (001) 873 5 erfc (1.2 ± 0.4) × 10−15 [51]
RK ⊥ (001) 823 7 erfc (2.5 ± 0.8) × 10−16 [51]
RK ⊥ (001) 773 12 erfc (6.4 ± 1.9) × 10−17 [51]
RK ⊥ (001) 723 20 erfc (1.0 ± 0.3) × 10−16 [51]
RK ⊥ (001) 673 100 erfc (2.2 ± 0.7) × 10−17 [51]
RK ⊥ (001) 643 360 erfc (8.8 ± 2.6) × 10−18 [51]

RK ⊥ (010) 1073 60 Gauss (7.6 ± 2.3) × 10−14 [51]
RK ⊥ (010) 1023 120 Gauss (3.3 ± 1.0) × 10−14 [51]
RK ⊥ (010) 973 160 Gauss (1.1 ± 0.4) × 10−14 [51]
RK ⊥ (010) 923 300 Gauss (5.6 ± 1.7) × 10−15 [51]
RK ⊥ (010) 873 5 erf (4.8 ± 1.4) × 10−15 [51]
RK ⊥ (010) 823 4 erfc (1.7 ± 0.6) × 10−15 [51]
RK ⊥ (010) 773 4 erfc (8.4 ± 2.6) × 10−16 [51]
RK ⊥ (010) 723 18 erfc (3.8 ± 1.1) × 10−16 [51]
RK ⊥ (010) 723 80 erfc (9.7 ± 2.9) × 10−17 [51]
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A. 22Na tracer diffusion coefficients

Feldspar Direction T/K tdiff/min Function D̂Na/m2s−1 Reference

RK ⊥ (010) 673 90 erfc (2.1 ± 0.7) × 10−17 [51]
RK ⊥ (010) 643 360 erfc (1.0 ± 0.4) × 10−17 [51]

VF ⊥ (001) 1173 5 Gauss (3.1 ± 1.0) × 10−13 [64]
VF ⊥ (001) 1123 60 Gauss (1.7 ± 0.5) × 10−13 [64]
VF ⊥ (001) 1073 90 Gauss (9.5 ± 2.8) × 10−14 [64]
VF ⊥ (001) 1023 120 Gauss (4.7 ± 1.4) × 10−14 [64]
VF ⊥ (001) 973 135 Gauss (2.0 ± 0.6) × 10−14 [64]
VF ⊥ (001) 923 135 Gauss (1.0 ± 0.4) × 10−14 [64]
VF ⊥ (001) 873 180 Gauss (3.9 ± 1.2) × 10−15 [64]
VF ⊥ (001) 823 5 erf (1.8 ± 0.6) × 10−15 [64]
VF ⊥ (001) 773 5 erfc (4.1 ± 1.2) × 10−16 [128]
VF ⊥ (001) 723 5 erfc (1.8 ± 0.6) × 10−16 [128]
VF ⊥ (001) 723 10 erfc (2.0 ± 0.6) × 10−16 this work
VF ⊥ (001) 673 15 erfc (5.5 ± 1.7) × 10−17 this work
VF ⊥ (001) 673 150 erfc (9.2 ± 2.8) × 10−17 [128]
VF ⊥ (001) 643 120 erfc (8.4 ± 2.5) × 10−18 [128]
VF ⊥ (001) 603 2880 erfc (1.4 ± 0.5) × 10−18 this work

VF ⊥ (010) 1173 5 Gauss (2.6 ± 0.8) × 10−13 [128]
VF ⊥ (010) 1123 60 Gauss (1.4 ± 0.5) × 10−13 [128]
VF ⊥ (010) 1073 90 Gauss (7.2 ± 2.2) × 10−14 [128]
VF ⊥ (010) 1023 60 Gauss (3.2 ± 1.0) × 10−14 [128]
VF ⊥ (010) 1023 120 Gauss (2.7 ± 0.9) × 10−14 [128]
VF ⊥ (010) 1023 540 Gauss (3.7 ± 1.1) × 10−14 this work
VF ⊥ (010) 973 135 Gauss (1.2 ± 0.4) × 10−14 [128]
VF ⊥ (010) 923 135 Gauss (6.5 ± 2.0) × 10−15 [128]
VF ⊥ (010) 873 180 Gauss (3.9 ± 1.2) × 10−15 [128]
VF ⊥ (010) 823 5 Gauss (1.8 ± 0.6) × 10−15 [128]
VF ⊥ (010) 773 5 erfc (4.1 ± 1.2) × 10−16 [128]
VF ⊥ (010) 723 5 erfc (1.8 ± 0.6) × 10−16 [128]
VF ⊥ (010) 673 10 erfc (9.2 ± 2.8) × 10−17 [128]
VF ⊥ (010) 623 12 erfc (8.4 ± 2.5) × 10−18 [128]

MO ⊥ (001) 1173 30 Gauss (1.1 ± 0.4) × 10−14 [50]
MO ⊥ (001) 1123 20 Gauss (5.3 ± 1.6) × 10−15 [50]
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Feldspar Direction T/K tdiff/min Function D̂Na/m2s−1 Reference

MO ⊥ (001) 1073 480 Gauss (2.7 ± 0.8) × 10−15 [50]
MO ⊥ (001) 1023 1440 Gauss (4.8 ± 1.4) × 10−16 [50]
MO ⊥ (001) 973 4320 Gauss (1.9 ± 0.6) × 10−16 [50]
MO ⊥ (001) 923 180 erfc (4.9 ± 1.5) × 10−17 [50]
MO ⊥ (001) 873 180 erfc (1.4 ± 0.5) × 10−17 [50]
MO ⊥ (001) 823 4320 erfc (2.2 ± 0.7) × 10−18 [50]
MO ⊥ (001) 773 5760 erfc (4.6 ± 1.4) × 10−19 [50]
MO ⊥ (010) 1173 90 Gauss (8.8 ± 2.6) × 10−15 [50]
MO ⊥ (010) 1123 180 Gauss (4.9 ± 1.5) × 10−15 [50]
MO ⊥ (010) 1073 10 Gauss (1.9 ± 0.6) × 10−15 [50]
MO ⊥ (010) 1023 2880 Gauss (5.7 ± 1.7) × 10−16 [50]
MO ⊥ (010) 973 180 Gauss (9.1 ± 2.7) × 10−17 [50]
MO ⊥ (010) 923 240 Gauss (2.1 ± 0.7) × 10−17 [50]
MO ⊥ (010) 873 240 erfc (1.9 ± 0.6) × 10−17 [50]
MO ⊥ (010) 823 1440 erfc (3.0 ± 0.9) × 10−18 [50]
MO ⊥ (010) 773 5760 erfc (5.0 ± 1.5) × 10−19 [50]

MO [100] 1173 90 erfc (3.8 ± 1.1) × 10−15 [51]
MO [100] 1073 23 Gauss (4.9 ± 1.5) × 10−16 [51]
MO [100] 973 60 Gauss (6.1 ± 1.8) × 10−17 [51]
MO [100] 873 240 erfc (2.3 ± 0.7) × 10−18 [51]
MO [100] 773 8640 Gauss (1.1 ± 0.4) × 10−19 [51]
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