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Summary

The Hopfield model is an artificial neural network which is able to operate as an auto-
associative memory. To achieve a larger storage capacity in this model, Krotov and
Hopfield suggest in [KH16] to change the interaction function of its dynamics. We prove
that the storage capacity increases from N/c log(N) to Nn−1/cn log(N) if the interaction
function x2 of the standard Hopfield model is changed to xn. This statement considers
patterns which are chosen uniformly at random from {−1, 1}N . Furthermore, if the
patterns are generated by a Curie-Weiss model with β < 1 and the interaction function
is equal to xn for n odd, we show that the same order for the storage capacity can be
obtained. Moreover, an exponential interaction function, which can be seen as a “limit
of the polynomial version” if the degree goes to infinity, leads to an even higher storage
capacity. For this interaction function we prove that the network is able to store at least
exp(αN) i.i.d. generated patterns with a positive basin of attraction.

In the last chapter we introduce a Hopfield model where the strength of the interaction
between each pair of neurons can be influenced through weights. For this model we prove a
lower bound for the storage capacity with the same methods as in the standard Hopfield
model. Furthermore, we adopt the idea of the hierarchical Hopfield model and choose
weights which depend on the graph distance between the nodes. For a regular graph
and a lattice graph on a torus we calculate a lower bound for the storage capacity. In
both examples we obtain similar results as in the standard Hopfield model if the weights
decrease slower with the distance than the neighbourhood of a node grows. The storage
capacity is lower if the weights are chosen to decrease faster. If the weights decline too
fast, we cannot guarantee that the network is able to store any pattern. At last, we show
that the root node in a Galton-Watson tree suggests a similar storage capacity as the root
node in a regular tree.
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Prof. Dr. Matthias Löwe bedanken. Du hast dir stets Zeit für meine Anliegen genommen
und mich mit deinen hilfreichen Ideen unterstützt. Darüber hinaus möchte ich mich
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1. Introduction to the standard
Hopfield model

The standard version of the Hopfield model was first introduced in 1982 by John J.
Hopfield [Hop82]. In a similar way as simple electric circuits can be combined to build a
computer solving complex tasks, Hopfield asks if there is a natural way how a large number
of simple components can build collective computational power. Inspired by biological
processes of brain cells and the way they transfer information via electrochemical signals,
the author postulates a mathematical model where these collective effects occur. The
model is not meant to explain the functionality of the brain, but rather to show how
simple dynamics on a microscopic level can lead to more powerful computations on a
macroscopic level.

The brain consists of a huge amount of electrically excitable cells called neurons [Pur+13].
These neurons are connected to each other via synapses and communicate with the help
of neurotransmitters. The so-called resting potential of each neuron can be affected by
incoming signals of other neurons. When the resulting postsynaptic potential reaches a
certain level, the neuron is triggered to send signals itself. While the computational power
of a single neuron is rather limited, the brain as a collection of neurons is able to solve a
variety of complex tasks. It is by far not trivial how this functionality emerges from the
interaction of neurons.

The model which Hopfield described in his paper [Hop82] shows how an algorithm defined
on the level of neurons generates a specific behaviour of the whole network. The Hopfield
model consists of N neurons, where each of them takes a value in a binary state space S.
Originally, Hopfield used the set {0, 1} as a state space but for a cleaner notation we will
continue with S = {−1, 1}. These values correspond to the neuron “not firing” (−1) and
“firing at a maximal rate” (1) [Hop82]. As time goes by, the configuration of the network
changes based on its current state. In each time step a neuron is chosen uniformly at
random and readjusts its value. The updating procedure works as follows: Assuming the
current configuration is given by σ = (σj)j ∈ SN , then neuron i ∈ {1, . . . , N} is updating
to

σnewi =

{
1, if hi(σ) :=

∑
j 6=i

Wijσj > θi

−1, if hi(σ) < θi
.

1



1. Introduction to the standard Hopfield model

Here, hi(σ) is a weighted sum of input signals from other neurons and is called postsynaptic
potential. This potential triggers the neuron to fire if it is above a certain level θi,
and can be seen as a simplified version of the observations from neuroscience. The key
factor to create a collective behaviour is the right choice of weights. Alternatively to the
sequential/asynchronous updating procedure described above, all neurons can be updated
at the same time step. This is called a parallel/synchronous dynamics.

The Hopfield model is an auto-associative memory. This means information can be stored
in the net, and even if the input is incomplete or contains corrupted parts, the memory is
able to retrieve the correct data. The information we want the net to store is encoded into
bit strings of length N , which we denote by ξ1, . . . , ξM . These so-called patterns ξ1, . . . , ξM

are often chosen uniformly at random from the configuration space SN = {−1, 1}N . By
generating the information randomly, one hopes for typical or even more difficult data
than in a real world application. Alternatively, the patterns can be generated such that
different patterns or the bits within a pattern are correlated. This will be of interest in
Chapter 3.

The random variables are defined on a probability space (Ω,F ,P). One way to consider
a configuration to be stored in the memory is to require the pattern to be a fixed point of
the dynamics. In other words, all neurons need to keep their initial value in case they are
updated. Additionally, the feature to correct errors and missing data will be induced by
a basin of attraction around each pattern. In this case, configurations close to a pattern
become successively corrected and end up as one of the patterns.

To achieve this memory functionality, the weight between two neurons is assigned to the
correlation of their spins in all patterns. This rule is called Hebb rule [Heb49] and is based
on the neurobiological observation that the connection between neurons grows stronger if
the cells are often firing simultaneously. For each i, j ∈ {1, . . . , N} with i 6= j set

Wij =
M∑
µ=1

ξµi ξ
µ
j (1.1)

and Wii = 0 for all i. If the neurons i and j have the same sign in a pattern, the weight
increases by one. For each pattern where the neurons have opposed signs, the weight
decreases. Because of the symmetric setting the thresholds (θi)i≤N are all chosen to be
zero. This leads to the dynamics T : SN → SN , whose i-th vector entry Ti maps a
configuration σ to the value neuron i is having after its update. The vector entries of
T = (Ti)1≤i≤N are defined by

Ti(σ) = sgn

(∑
j 6=i

(
M∑
µ=1

ξµi ξ
µ
j

)
σj

)
, (1.2)

where sgn is the signum function. With this definition a neuron has a tendency to align
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1.1. Storage capacity of the standard Hopfield model for a perfect retrieval

with neurons which often share the same sign in the patterns (Wij > 0) and avoid aligning
to others (Wij < 0).

After proving that the algorithm with asynchronous updating always converges to a stable
state, Hopfield stated that the model can store αcN patterns with αc ≈ 0.14 before severe
errors occur. His conclusions about the storage capacity were based on Monte-Carlo
simulations [Hop82]. Some years later Amit et al. showed in [AGS85a; AGS85b; AGS87]
that αc ≈ 0.138 with the help of the non-rigorous replica trick. Rigorous results were
then obtained by Newman in [New88]. He proved that the model can store αN patterns
with α ≤ 0.056 if you allow a small fraction of errors at the end of the retrieval. This was
done by analysing the energy landscape of the model and proving the existence of energy
barriers around each pattern. Further improvements to the lower bound of αc were made
by Loukianova (α ≤ 0.071) in [Lou97] and Talagrand (α ≤ 0.08) in [Tal98].

A more restrictive concept of storage capacity is considered if you ask the patterns to
be fixed points and corrupted patterns to be retrieved perfectly. Results for this perfect
retrieval of patterns were obtained by McEliece et al. in [McE+87]. They were able to
show that the Hopfield model can store at least N/c log(N) patterns for an appropriate
constant c. We will see more about this in Section 1.1, especially in Theorem 1.1. Results
about sharp upper bounds were shown by Bovier in [Bov99]. Komlós and Paturi in
[KP88] and Burshtein in [Bur94] extended the results on the radius of attraction and on
the number of iterations in a multi-step setting.

1.1. Storage capacity of the standard Hopfield model for
a perfect retrieval

We now have a look at the results for a perfect retrieval of patterns. First, let us introduce
the Hamming distance as a metric on the configuration space {−1, 1}N . The distance
between x, y ∈ {−1, 1}N is defined by

d(x, y) =
N∑
i=1

|xi − yi|
2

=
1

2

(
N −

N∑
i=1

xiyi

)

and counts the number of vector entries which differ from each other. A sphere around
x with radius r is denoted by S(x, r). In the context of an auto-associative memory,
an element of the sphere around a pattern with radius r represents corrupted data with
exactly r wrong bits. As long as r is reasonably small, the configuration should evolve
from the sphere to the centre driven by the dynamics of the net described in Chapter 1.

In the following theorem a lower bound for the storage capacity is stated in the case,
where we require the patterns to be fixed points of the dynamics and having a non-trivial
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1. Introduction to the standard Hopfield model

radius of attraction. These statements hold with a probability converging to one while the
number of neurons tends to infinity. The results go back to Komlós and Paturi [KP88],
McEliece et. al. [McE+87] and Petritis [Pet96]. The theorem is cited from the chapter
“On the Storage Capacity of the Hopfield Model” by Matthias Löwe in the book [BP97].

Theorem 1.1
Let ρ ∈ [0, 1

2
) and, for each ν = 1, . . . ,M(N), let ξ̃ν be an element of S(ξν , ρN). Assume

that M(N) = (1− 2ρ)2 N
c log(N)

. Then,

(1) if c > 2,

P
(
T (ξ̃ν) = ξν

)
= 1−RN

with limN→∞RN = 0.

(2) if c ≥ 4,

P
(M(N)⋂

µ=1

T (ξ̃µ) = ξµ
)

= 1−RN

with limN→∞RN = 0.

(3) if c > 6,

P
(

lim inf
N→∞

(M(N)⋂
µ=1

T (ξ̃µ) = ξµ
))

= 1

that is, the noised patterns are almost surely attracted.

In the proof of Theorem 1.1 we want to work out how the Hopfield model is able to
reconstruct the correct patterns and why there are limitations on the amount of patterns
which can be stored. Additionally, we set ourselves into the scenario of independent and
identical distributed spins, and the proof provides insights which will be important in the
upcoming sections. Results of Chapter 2 (see Theorem 2.1) can be seen as a generalization
of this theorem and therefore imply statements from above. Since the proof for ρ > 0
works analogously, we keep the notations clear and only proof the case ρ = 0.

Proof. Suppose we want to store pattern ξ1 and the net is currently updating neuron i.
A close look at the event leads to a necessary condition and therefore an upper bound for
the probability of updating neuron i to the wrong value. If the current configuration is

4



1.1. Storage capacity of the standard Hopfield model for a perfect retrieval

σ, then

{
Ti(σ) 6= ξ1

i

}
=

{
sgn

(∑
j 6=i

(
M∑
µ=1

ξµi ξ
µ
j

)
σj

)
6= ξ1

i

}

⊆

{
M∑
µ=1

ξ1
i ξ
µ
i

∑
j 6=i

ξµj σj ≤ 0

}
. (1.3)

For each µ ∈ {1, . . . ,M} we call

mµ
i (σ) =

1

N − 1

N∑
j=1
j 6=i

ξµj σj ∈ [−1, 1] (1.4)

the overlap of pattern ξµ with configuration σ (without spin i). Therefore, the net weights
each overlap with a sign (ξ1

i ξ
µ
i ) to account for an alignment with ξ1

i , and assign neuron i
to the value where the sum of overlaps is stronger.

If the initial configuration is ξ1 (or on a sphere close to ξ1), then the overlap with this
pattern is deterministic and equal (or close) to one. On the other hand, the sum of the
remaining terms forms a random distraction. In this case we call m1

i (ξ
1) the signal term

and

M∑
µ=2

ξ1
i ξ
µ
i (N − 1) mµ

i (ξ1)

the noise term.

From these insights we can conclude that the probability of updating a fixed neuron to
the wrong signal is bounded by the probability of a large deviation event of the noise
term:

P
(
Ti(ξ

1) 6= ξ1
i

)
≤ P

(
−

M∑
µ=2

ξ1
i ξ
µ
i

∑
j 6=i

ξµj ξ
1
j ≥ N − 1

)
.

A standard way to handle this expression is to use an exponential Chebyshev inequality
with parameter t > 0. Thus,

P
(
Ti(ξ

1) 6= ξ1
i

)
≤ exp (−t(N − 1))E

[
exp

(
−t(N − 1)

M∑
µ=2

ξ1
i ξ
µ
i m

µ
i (ξ1)

)]
. (1.5)

The moment generating function of the noise term for the scenario of independent and
identically distributed (i.i.d.) patterns is easier to handle with the following observation:

5



1. Introduction to the standard Hopfield model

Lemma 1.2
Let (ξµj )

µ∈{1,...,M}
j∈{1,...,N} be i.i.d. Rademacher-distributed random variables, i.e.

P
(
ξ1

1 = 1
)

=
1

2
= P

(
ξ1

1 = −1
)
.

For µ ∈ {2, . . . ,M} and j ∈ {1, . . . , N} set ζµj := ξ1
j ξ
µ
j and ζµ = (ζµj )j. Then (ζµ)µ∈{2,...,M}

is distributed as (ξµ)µ∈{2,...,M}. Hence, for every f : RN×(M−1) → R

E
[
f(ζ2, . . . ζM)

]
= E

[
f(ξ2, . . . , ξM)

]
.

Proof of Lemma 1.2. The statement is a simple consequence of the independent and
symmetric distributed spins. With these arguments, it is easy to show that for a set
A ⊆ {−1, 1}N×(M−1)

P
(
(ζ2, . . . , ζM) ∈ A

)
= P

(
(ξ2, . . . , ξM) ∈ A

)
is true. The rest of the proof is a simple consequence of the transformation formula.

If we apply Lemma 1.2 and use the independence of spins in eq. (1.5), it follows that

P
(
Ti(ξ

1) 6= ξ1
i

)
≤ exp (−t(N − 1))E

[
exp

(
−t

M∑
µ=2

ξµi
∑
j 6=i

ξµj

)]
≤ exp (−t(N − 1)) cosh(t)(N−1)(M−1)

≤ exp (−t(N − 1)) cosh(t)NM .

Here, cosh is the hyperbolic cosine function, which can be characterized as

cosh(x) =
1

2

(
ex + e−x

)
.

The hyperbolic cosine is bounded from above by exp( x
2

2
). Together with t = 1

M
as well

as the identity M = (1− 2ρ)2 N
c log(N)

, we conclude that

P
(
Ti(ξ

1) 6= ξ1
i

)
≤ exp

(
−tN +

t2

2
NM + t

)
= exp

(
−1

2

N

M
+ t

)
= N−

c
2 (1 + o(1)).

The statements (1) and (2) of Theorem 1.1 follow with a simple union bound argument.
An application of the Borel-Cantelli lemma proves Statement (3).

6



1.2. The standard Hopfield model as a spin glass model

The proof suggests that if the number of patterns grows too fast in N , then the neural
network could be distracted by many small deviations whose probability is not vanishing
fast enough. Therefore, M cannot grow arbitrarily fast in N if we want to store and
retrieve patterns with a high probability. The techniques we used to prove Theorem 1.1
just allow a statement about the lower bound of the storage capacity. Rigorous results
about the upper bound were also done. Bovier showed in [Bov99] that the choice of M
in statement (1) is sharp for this definition of storage capacity.

In the proof of Theorem 1.1 we worked with the overlap of configurations. Because of the
dynamics, a self-coupling is not possible. Therefore, the spin of the updated neuron is
excluded. In general an overlap is defined as follows:

Definition 1.3
For each µ ∈ {1, . . . ,M} we call

mµ(σ) =
1

N

N∑
j=1

ξµj σj ∈ [−1, 1] (1.6)

the overlap of pattern ξµ with configuration σ. Furthermore, we denote by mµ
i (σ) the

overlap without index i, i.e.

mµ
i (σ) =

1

N − 1

N∑
j=1
j 6=i

ξµj σj ∈ [−1, 1]. (1.7)

These overlaps play a crucial role when the Hopfield model is considered as a spin glass
model.

1.2. The standard Hopfield model as a spin glass model

Another approach to study the Hopfield model is to define it as a spin glass model (see
[PF77; Tal98], Chapter 5 in [Tal03] or Part 1 in [BP97]). These models are interacting
particle systems, which are originally used in physics to describe magnetic spins and their
behaviour in different temperature regimes. Famous examples of spin glasses are the
Ising model and the Curie-Weiss model (see Chapter IV in [Ell85]). The latter one will be
relevant in Chapter 3 to analyse whether and how correlations affect the storage capacity
of the Hopfield model. Furthermore, ideas and results about spin glasses will be helpful
in Chapter 2 to handle a more general dynamics.

A spin system is defined on a lattice Λ ⊆ Zd where each site has a spin from the local
spin space S. The behaviour of the spin glass is characterized through a Hamiltonian

7



1. Introduction to the standard Hopfield model

function HΛ : SΛ → R, which assigns an energy value to each configuration σ ∈ SΛ.
Then the Hamiltonian function is used to define the finite volume Gibbs measure µβ,Λ on
(SΛ,B(SΛ)) by

µβ,Λ(σ) =
2−N

Zβ,Λ
exp (−βHΛ(σ)) . (1.8)

The parameter β ∈ [0,∞) represents the inverse temperature of the system and the
normalizing constant

Zβ,Λ = 2−N
∑

σ̃∈{−1,1}Λ
exp (−βHΛ(σ̃))

is called partition function. From eq. (1.8) we see that the system favours configurations
with low energy values.

In models of statistical physics one often uses order parameters (e.g. the mean magne-
tization) to analyse the behaviour of the system for |Λ| → ∞. These order parameters
describe fundamental properties of the system from a macroscopic point of view. For the
Hopfield model ξ1, . . . , ξM are chosen uniformly at random from {−1, 1}N and are then
considered to be fixed for the spin glass. Because of this, the order parameters and the
Hamiltonian are random variables on the probability space (Ω,F ,P). A natural choice of
order parameters for ω ∈ Ω is the vector of overlaps m[ω](σ), which is defined by

m[ω](σ) = (m1[ω](σ), . . . ,mM [ω](σ))

(see Definition 1.3) for every σ ∈ SΛ. As Hamiltonian function we define HN,M [ω](σ) to
be

HN,M [ω](σ) = −N
2

M∑
µ=1

mµ[ω](σ)2 − hNm1[ω](σ) (1.9)

= −N
2
‖m[ω](σ)‖2

2 − hNm1[ω](σ)

= − 1

2N

N∑
i,j=1

(
N∑
µ=1

ξµi [ω]ξµj [ω]

)
σiσj − h

N∑
j=1

ξµj [ω]σj

for h ≥ 0 (see eq. (1.2) in [BG97] or eq. (1.2) in [Tal98]). With ‖x‖2 we denote the
`2-norm of x.

The spins are interacting with the whole net through the macroscopic parameter rather
than with local spins. This is the reason why the lattice structure can be ignored. We are
dropping Λ and use |Λ| := N instead. If h > 0, the last part represents a local field added
to the spin glass. This is used to give pattern ξ1 a special role. Low energy values can be

8



1.2. The standard Hopfield model as a spin glass model

reached if the configuration aligns with the previously generated patterns and especially
if pattern ξ1 is included.

The connection between the Hopfield model defined by the dynamics in eq. (1.2) and
the spin glass with the Hamiltonian given in eq. (1.9) can be seen if we consider two
configurations σ and σ̃. Let these configurations be equal for all but for one spin, which
we denote by σk. We think of σ̃ as the starting configuration and σk as the spin after
updating neuron k. The difference of their energy values (assuming h = 0) is given by

HN,M [ω](σ)−HN,M [ω](σ̃) = − 1

2N

N∑
i,j=1

Wij (σiσj − σ̃iσ̃j) = − 2

N
σk ·

(
N∑
j=1

Wkjσ̃j

)
.

Here, we used that the weights (see eq. (1.1)) are chosen to be symmetric (Wij = Wji)
and without self-coupling (Wii = 0) as well as the identity

σiσj − σ̃iσ̃j =


0, if i 6= k and j 6= k

0, if i = j = k

2σiσj, else

.

Furthermore, the dynamics T ensures that the new value of neuron k is equal to

σk = Tk(σ̃) = sgn

(
N∑
i=1

Wkjσ̃j

)
.

Therefore, an update according to T never increases the energy value of the configuration.
If the configurations σ and σ̃ have the same energy value, it follows that the postsynap-
tic potential needs to be zero. Since the Hamiltonian is bounded from below and we
set sgn(0) = 1, the algorithm will always converge to a local minimum of the energy
landscape.

9





2. Generalized Hopfield model with
i.i.d. patterns

We already learned that each pattern influences the dynamics of the net through its
overlap with the current configuration. If we want the net to retrieve a specific pattern,
the corresponding overlap pushes the net to the right behaviour. But with an increasing
number of patterns, the net gets distracted by other patterns if the overall contribution
has the same order as the signal term. To reach a larger storage capacity, the order of
the overlaps needs to grow faster while two configurations get close to each other. If we
can ensure this, the order of the signal and noise term should be distinguishable even
for a larger number of patterns. In context of spin glasses, this means the energy value
should decrease faster while the network approaches the correct pattern. Based on this
observation, Krotov and Hopfield suggested a modification of the dynamics in their work
[KH16]:

Define T̂ = (T̂i)1≤i≤N by

T̂i(σ) = sgn

[
M∑
µ=1

(
F
(
1 · ξµi +

∑
j 6=i

ξµj σj
)
− F

(
(−1) · ξµi +

∑
j 6=i

ξµj σj
))]

, (2.1)

where F : R→ R is some smooth function.

The suggested dynamics in eq. (2.1) can be seen as a more general version of the dynamics
in the standard Hopfield model. If we choose F (x) = x2, the original dynamics can be
regained because neuron i is then updated to the sign of

M∑
µ=1

(
F
(
1 · ξµi +

∑
j 6=i

ξµj σj
)
− F

(
(−1) · ξµi +

∑
j 6=i

ξµj σj
))

=
M∑
µ=1

(
1 + 2

∑
j 6=i

ξµi ξ
µ
j σj +

(∑
j 6=i

ξµj σj

)2

− 1 + 2
∑
j 6=i

ξµi ξ
µ
j σj −

(∑
j 6=i

ξµj σj

)2
)

= 4
M∑
µ=1

∑
j 6=i

ξµi ξ
µ
j σj.

11



2. Generalized Hopfield model with i.i.d. patterns

This again emphasizes the connection between the dynamics of the Hopfield model and
the energy landscape of the spin glass model. We can interpret −

∑
µ F (mµ(σ)) as an

energy value of a configuration σ. Then eq. (2.1) describes exactly the behaviour to switch

neuron i to the configuration with a lower energy level. The advantage of T̂ is that we
can determine, with the help of F , how fast the energy decreases when the net approaches
a specific pattern. A natural choice to enforce a faster decreasing energy function would
be F (x) = xn for n ≥ 2. By using this function, overlaps of higher orders are used to
measure how close a configuration is to one of the patterns:

mµ(σ)n−1 =

(
1

N

N∑
j=1

ξµj σj

)n−1

=
1

Nn−1

∑
j1,...,jn−1

ξµj1 . . . ξ
µ
jn−1

σj1 . . . σjn−1 . (2.2)

For larger n, the energy decreases faster if a configuration comes close to the pattern.
Therefore, the storage capacity for this kind of dynamics is expected to be higher.

Similar to this approach, in [New88] Newman used overlaps of higher orders but with a
different definition of storage capacity. He demanded that there exists an energy barrier
around each pattern, which guarantees that a local minimum is in a close neighbourhood.
His main theorem states that the probability of

H(y) > H(ξµ) + εN l for every y in S(ξµ, δ)

converges to one, where H(y) = −
∑M

µ=1 m
µ(σ)l. This implies that the net is allowed to

end up in a configuration which still has a small amount of errors. In this scenario, he
showed that the storage capacity increases to M ≈ αN l−1 instead of M ≈ αN . Burshtein
proved in [Bur98] that the storage capacity for a perfect retrieval increases if the network
is asked to reach the correct pattern after multiple iterations of the synchronous dynamics.
His results coincide with our lower bound for the storage capacity. Other results which use
higher order overlaps can be found in relation to spin glass models (see [Tal00b; Tal00a;
BN01; BKL02]). In the present thesis, we want to show that the storage capacity can
be increased if we consider higher order overlaps with a perfect retrieval of patterns. In
contrast to [Bur98], in our results the net evolves in one synchronous step to the desired
pattern.

The choice of F (x) = xn causes another interesting change. A closer look at the postsy-
naptic potential shows that the contribution of each pattern to this potential can be split
into two parts:

M∑
µ=1

(1 · ξµi + (N − 1)mµ
i (σ))n − ((−1) · ξµi + (N − 1)mµ

i (σ))n

12



=
M∑
µ=1

n∑
k=0

(
n

k

)(
1− (−1)k

)
(ξµi )k ((N − 1)mµ

i (σ))n−k

= 2
M∑
µ=1

ξµi sgn (mµ
i (σ))n−1

︸ ︷︷ ︸
sign of the data

·
n∑

k=0,
k odd

(
n

k

)
(N − 1)n−k |mµ

i (σ)|n−k

︸ ︷︷ ︸
strength of the data

. (2.3)

One part of the postsynaptic potential is called “strength of the data” because it mea-
sures how much information the current configuration provides about each pattern. The
absolute value of the overlap shows how close the configuration is either to the pattern
ξµ itself or to its negative counterpart −ξµ. From both possibilities, being close to ξµ and
being close to −ξµ, the net receives valuable indications about the correct value of neuron
i. Thus, it is reasonable that patterns with a large strength term have a significant impact
on the postsynaptic potential and therefore on the next value of neuron i. Whether the
patterns hint to a value of 1 or −1 for neuron i is solely determined by the “sign of the
data”. The strength of the data is always non-negative.

First, let us assume that n−1 is an odd number. This case contains the standard Hopfield
model (n = 2). The sign of the data suggests a value of ξµi if the configuration is close to
ξµ and it suggests −ξµi if the configuration is close to −ξµ. This behaviour is well-known
from the standard Hopfield model and leads to the fact that together with a pattern the
net always stores its negative counterpart.

On the other hand, assume that n−1 is an even number. Since the sign function is either
1 or −1 and the exponent is even, the signal of the data is equal to the spin ξµi . In this case
the neural net interprets a configuration close to the negative counterpart of a pattern,
namely −ξµ, as a hint to ξµi . Therefore, the net does not store negative counterparts of
the patterns but rather takes a step in the direction of ξµ.

As eq. (2.3) shows, the strength term in the postsynaptic potential is rather complex
and maybe difficult to handle. Since we are interested in results for N large, the most
important contribution is coming from the highest order overlap. In our case, this is
mµ
i (σ)n−1 and as long as N is large, the difference should be negligible. That is the reason

why we replace the strength term in eq. (2.3) by the highest order overlap mµ
i (σ)n−1. We

consider the dynamics T̃ = (T̃i)i≤N on {−1,+1}N , where T̃i is defined by

T̃i(σ) := sgn

 ∑
j1,...,jn−1

σj1 · . . . · σjn−1Wi,j1,...,jn−1

 (2.4)

13



2. Generalized Hopfield model with i.i.d. patterns

with

Wi1,...,in =
1

Nn−1

M∑
µ=1

ξµi1 · . . . · ξ
µ
in
. (2.5)

The summation in eq. (2.4) goes from 1 to N and excludes indices where jk = i for some
k.

To see that the dynamics T̃ in eq. (2.4) really results from replacing the strength term in
eq. (2.3), we write:

T̃i(σ) = sgn

 ∑
j1,...,jn−1

σj1 · · · σjn−1Wi,j1...jn−1


= sgn

 M∑
µ=1

ξµi
∑

j1,...,jn−1

ξµj1σj1 · . . . · ξ
µ
jn−1

σjn−1


= sgn

(
M∑
µ=1

ξµi (N − 1)n−1mµ
i (σ)n−1

)
(2.6)

= sgn

(
M∑
µ=1

ξµi · sgn
(
mµ
i (σ)

)n−1

︸ ︷︷ ︸
sign of the data

· (N − 1)n−1 ·
∣∣mµ

i (σ)
∣∣n−1

︸ ︷︷ ︸
strength of the data

)
.

From now on, as long as we are interested in results about the limiting case N →∞, we
will avoid to distinguish between N and N − 1 or M and M − 1. These differences are
negligible in the limit.

2.1. Generalized dynamics with a polynomial interaction
function

In this section the data is given by M bit strings of length N which are chosen uniformly
at random from the configuration space {−1, 1}N . As before the patterns ξ1, . . . , ξM are
defined as ξµ = (ξµj )1≤j≤N where (ξµj )µ=1,...,M

j=1,...,N is a family of i.i.d. random variables on
(Ω,F ,P) with

P(ξµj = 1) = P(ξµj = −1) =
1

2

14



2.1. Generalized dynamics with a polynomial interaction function

for all µ = 1, . . . ,M and all j = 1, . . . , N . The network updates neurons according to
the dynamics (T̃i)i≤N (see eq. (2.4)). For a perfect retrieval, we consider a pattern to be
stored if the pattern itself is a fixed point of the dynamics. Additionally, we expect a
positive basin of attraction. That means a corrupted input string evolves through the net
to the desired pattern after each neuron has been updated at least once.

The following theorem shows that our dynamics with higher order overlaps is capable
of storing more patterns than the standard Hopfield model. Moreover, there is still a
positive basin of attraction. The following result was published in [Dem+17].

Theorem 2.1
Let M = Nn−1

cn log(N)
and let ξ1, . . . , ξM be M independent patterns chosen uniformly at

random from {−1,+1}N . The Hopfield model with dynamics T̃ can store at least M
patterns for cn > 2(2n−3)!! if one wants a fixed pattern to be a fixed point of the dynamics
with a probability converging to one.

Moreover, fix ρ ∈ [0, 1
2
). If cn >

2(2n−3)!!

(1−2ρ)2(n−1) , then for any ξ̃ν taken uniformly at random

from S(ξν , ρN), where ρN is assumed to be an integer, it follows that

P
(
T̃ (ξ̃ν) = ξν

)
= 1−RN

with limN→∞RN = 0.

Furthermore, if cn >
2n(2n−3)!!

(1−2ρ)2(n−1) then

P
(
∀µ ≤M : T̃ (ξ̃µ) = ξµ

)
= 1−RN

with limN→∞RN = 0.

Proof. For ease of notation we assume that the network consists of N + 1 (instead of N)

neurons. For fixed ρ ∈ [0, 1
2
) we choose input data ξ̃1 ∈ S(ξ1, ρ(N + 1)) and show that

pattern ξ1 can be stored (ρ = 0) resp. corrected (ρ > 0) with high probability if N tends

to infinity. We start with the dynamics T̃ as stated in eq. (2.6). By multiplying with ξ1
i ,

we conclude that a necessary condition for a false update of neuron i, namely T̃i(ξ̃
1) 6= ξ1

i ,
is given by

M∑
µ=1

ξ1
i ξ
µ
i N

n−1
(
mµ
i (ξ̃1)

)n−1

≤ 0. (2.7)
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2. Generalized Hopfield model with i.i.d. patterns

We split the sum into signal (µ = 1) and noise (µ 6= 1) term. The signal slightly differs
whether the bit of neuron i itself is corrupt or not:

Nn−1m1
i (ξ̃

1)n−1 =
(∑

j 6=i

ξ1
j ξ̃

1
j

)n−1

=
(

(N + 1)(1− 2ρ)− ξ1
i ξ̃

1
i

)n−1

.

A lower bound for the signal is given by

Nn−1m1
i (ξ̃

1)n−1 > (1− 2ρ)n−1Nn−1u(N),

where u(N) = 1−2ρ(1−2ρ)−1N−1. The term u(N) converges to one for N to infinity and
therefore will be negligible in the limit. A necessary condition for the event in eq. (2.7) is

−
M∑
µ=2

ξ1
i ξ
µ
i N

n−1mµ
i (ξ̃1)n−1 ≥ (1− 2ρ)n−1Nn−1u(N).

Hence, the probability for a false update at neuron i can be bounded by

P
(
T̃i(ξ̃

1) 6= ξ1
i

)
≤ P

(
−

M∑
µ=2

ξ1
i ξ
µ
i N

n−1mµ
i (ξ̃1)n−1 ≥ (1− 2ρ)n−1Nn−1u(N)

)
.

For t > 0 we use the exponential Chebyshev inequality and conclude

P
(
T̃i(ξ̃

1) 6= ξ1
i

)
≤ e−t(1−2ρ)n−1Nn−1u(N) E

[
exp

(
−t

M∑
µ=2

ξ1
i ξ
µ
i N

n−1mµ
i (ξ̃1)n−1

)]
. (2.8)

The moment generating function in eq. (2.8) can be handled in a similar way as in the
proof of the standard Hopfield model (see Theorem 1.1). There we used Lemma 1.2 and
with the independence and symmetric distribution of the spins, this lemma is applicable
even though we are working with ξ̃1. Together with the independence of patterns and
after integration with respect to ξ2

i , the moment generating function equals

E

[
exp

(
−t

M∑
µ=2

ξ1
i ξ
µ
i N

n−1mµ
i (ξ̃1)n−1

)]
= E

[
exp

(
−t ξ2

iN
n−1m2

i (1)n−1
)]M−1

= E

cosh

tN n−1
2

(
1√
N

∑
j 6=i

ξ2
j

)n−1
M−1

.
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2.1. Generalized dynamics with a polynomial interaction function

All in all, the probability of updating neuron i to the wrong spin is bounded by

P
(
T̃i(ξ̃

1) 6= ξ1
i

)
≤ e−t(1−2ρ)n−1Nn−1u(N) E

cosh

tN n−1
2

(
1√
N

∑
j 6=i

ξ2
j

)n−1
M . (2.9)

In eq. (2.9) we clearly see the similarity to the standard Hopfield model, but because
of F (x) = xn−1 the signal term is stronger in this scenario. The noise term is random
and has a wider range than before which leads to problems if we would use worst case
boundaries. While we have a signal term of order Nn−1, the scaled noise term for large
N is close to a standard normal distribution. So the noise term has fluctuations of order
N

n−1
2 .

Define

m :=
1√
N

∑
j 6=i

ξ2
j

and write the expectation as a sum over all possible values x ∈ {0,± 1√
N
, . . . ,±

√
N}:

E

cosh

tN n−1
2

(
1√
N

∑
j 6=i

ξ2
j

)n−1
 =

∑
x

cosh
(
tN

n−1
2 xn−1

)
· P(m = x).

We split the sum into two parts, where the first consists of large outliers of m beyond
log(N)τ for a fixed τ > 1

2
. Observe that x cannot grow faster than

√
N and together with

cosh(z) ≤ exp(|z|) we conclude that∑
x:log(N)τ<|x|≤

√
N

cosh
(
tN

n−1
2 xn−1

)
· P(m = x)

≤ 2 cosh
(
tNn−1

)
P(m > log(N)τ )

≤ 2 exp
(
tNn−1

)
exp

(
−1

2
log(N)2τ

)
.

In the last line we used an exponential bound for the probability of i.i.d. Rademacher
spins to exceed a certain value. This is stated in Lemma A.5 with a =

√
N log(N)τ and

is a simple application of the exponential Chebyshev inequality.

Now set t = an
M

for an > 0 and recall that M = (N+1)n−1

cn log(N+1)
then

t =
ancn log(N + 1)

(N + 1)n−1
≤ ancn log(N)

Nn−1
,
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2. Generalized Hopfield model with i.i.d. patterns

and thus,

2 exp
(
tNn−1

)
exp

(
−1

2
log(N)2τ

)
≤ 2 exp

([
ancn −

1

2
log(N)2τ−1

]
log(N)

)
=: 2 exp (h1(N)) . (2.10)

Since τ > 1
2
, this part of the expectation converges to zero for N →∞ because the term

in brackets can be bounded from above by a negative value if N is large enough.

The second part of the sum consists of the critical values of m. We use the inequality
cosh(z) ≤ exp( z

2

2
) and write the exponential function in its Taylor expansion:∑

x:|x|≤log(N)τ

cosh
(
tN

n−1
2 xn−1

)
P(m = x)

≤
∑

x:|x|≤log(N)τ

e
t2

2
Nn−1x2(n−1)P(m = x)

=
∑

x:|x|≤log(N)τ

(
1 +

t2

2
Nn−1x2(n−1) +

∞∑
k=2

1

2k
(t2Nn−1x2(n−1))k

k!

)
P(m = x).

The distribution of m converges to a standard normal distribution and its moments can
be bounded by the moments of the latter. For l ∈ N let κ2l = (2l − 1)!! be the 2l-th
moment of a standard normal distribution. For N large enough, we derive the upper
bound

∑
x:|x|≤log(N)τ

(
1 +

t2

2
Nn−1x2(n−1) +

∞∑
k=2

1

2k
(t2Nn−1x2(n−1))k

k!

)
P(m = x)

≤ 1 +
t2

2
Nn−1κ2(n−1) +

∑
x:|x|≤log(N)τ

∞∑
k=2

1

2k

(
t2Nn−1x2(n−1)

)k
k!

· P(m = x). (2.11)

In the higher order terms of the Taylor expansion, we bound x by its highest possible
value log(N)τ and the probability by one. Hence, the series has an upper bound which is
given by

∑
x:|x|≤log(N)τ

∞∑
k=2

1

2k

(
t2Nn−1x2(n−1)

)k
k!

· P(m = x)

≤
∞∑
k=2

1

2k

(
t2Nn−1 log(N)2τ(n−1)

)k
k!

· P(|m| ≤ log(N)τ )
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2.1. Generalized dynamics with a polynomial interaction function

≤
∞∑
k=2

1

2k
(t2Nn−1 log(N)2τ(n−1))k

k!

≤ t4

4
N2(n−1) log(N)4τ(n−1)

∞∑
k=0

1

2k
(t2Nn−1 log(N)2τ(n−1))k

k!
. (2.12)

Recall that t = an
M

, where an > 0 is not yet specified, and M = (N+1)n−1

cn log(N+1)
. With these

identities

t ≤ ancn log(N)

Nn−1
, (2.13)

and thus, for N large enough,

t2Nn−1 log(N)2τ(n−1) ≤ a2
n log(N)2τ(n−1)−2

Nn−1
< 1.

This guarantees that the series in eq. (2.12) can be bounded by e. Therefore, an upper
bound for the series of higher order terms is given by:

∑
x:|x|≤log(N)τ

∞∑
k=2

1

2k

(
t2Nn−1x2(n−1)

)k
k!

· P(m = x) ≤ t4

4
N2(n−1) log(N)4τ(n−1)e. (2.14)

As long as N is large enough, the sum with the critical values of m has the following
upper bound (see eqs. (2.11) and (2.14)):∑

x:|x|≤log(N)τ

cosh
(
tN

n−1
2 xn−1

)
P(m = x)

≤ 1 +
t2

2
Nn−1κ2(n−1) +

t4

4
N2n−2 log(N)4τ(n−1)e

≤ exp

(
t2

2
Nn−1κ2(n−1) + t4N2(n−1) log(N)4τ(n−1)

)
=: exp (h2(N)) . (2.15)

In the last line we applied the inequality 1 + x ≤ ex and used that e
4
≤ 1.

The moment generating function was split into two parts. The first part consists of large
outliers of m. With the help of the exponential Chebyshev inequality, we derived the
upper bound 2 exp(h1(N)) (see eq. (2.10)), which converges to zero. The second part
contains the critical values of m and is bounded by exp(h2(N)) (see eq. (2.15)), which
converges to one if N tends to infinity. Now we claim that the moment generating function
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2. Generalized Hopfield model with i.i.d. patterns

to the power of M can be bounded by

E

cosh

tN n−1
2

(
1√
N

∑
j 6=i

ξ2
j

)n−1
M ≤ exp (Mh2(N)) (1 + o(1)). (2.16)

To prove this, we need to make sure that(
1 + 2 exp

(
h1(N)− h2(N)

))M
= (1 + o(1))

or, equivalently, that its logarithm converges to zero. By using 1+x ≤ exp(x), the identity
for t (see eq. (2.13)) and exp(−h2(N)) ≤ 1, we conclude that

M log (1 + 2 exp (h1(N)− h2(N))) ≤ 2 M exp (h1(N)− h2(N))

≤ 2 M exp (h1(N))

= 2
(N + 1)n−1

cn log(N + 1)
exp

([
ancn −

1

2
log(N)2τ−1

]
log(N)

)
= 2

(N + 1)n−1

cn log(N + 1)
Nancn− 1

2
log(N)2τ−1

= o(1).

The convergence in the last line follows because τ > 1
2

and as a consequence

ancn −
1

2
log(N)2τ−1 ≤ −(n− 1)

if N is large enough.

We apply the statement of eq. (2.16) to eq. (2.9) and derive

P(T̃i(ξ̃
1) 6= ξ1

i ) ≤ exp
(
−t(1− 2ρ)n−1Nn−1u(N)

)
exp (M h2(N)) (1 + o(1)) (2.17)

with h2(N) = t2

2
Nn−1κ2(n−1) + t4N2(n−1) log(N)4τ(n−1) and M = (N+1)n−1

cn log(N+1)
. We already

mentioned that u(N) goes to one for N tending to infinity. For every 0 < ε < 1 we can
choose N large enough such that

u(N)
log(N + 1)

log(N)

( N

N + 1

)n−1

≥ (1− ε). (2.18)

The parameter introduced by the Chebyshev inequality is set to

t =
an
M
≤ ancn log(N)

Nn−1
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2.1. Generalized dynamics with a polynomial interaction function

for an > 0. Hence, the term in eq. (2.17) is bounded from above by

exp

(
−t(1− 2ρ)n−1Nn−1(1− ε) +

t2

2
Nn−1κ2(n−1)M + t4N2(n−1) log(N)4τ(n−1)M

)
= exp

(
−ancn log(N)(1− 2ρ)n−1(1− ε) +

1

2
a2
ncn log(N)κ2(n−1) + o(1)

)
= exp

([
−ancn

(
(1− 2ρ)n−1(1− ε)−

an κ2(n−1)

2

)]
log(N)

)
(1 + o(1)).

The fourth order term is negligible because

t4N2(n−1) log(N)4τ(n−1)M ≤ a4
nc

3
n log(N)4τ(n−1)+3

Nn−1
→ 0

if N goes to infinity. Now we choose an = (1−2ρ)n−1(1−ε)
κ2(n−1)

then

−ancn
(

(1− 2ρ)n−1(1− ε)−
an κ2(n−1)

2

)
= −cn

(1− 2ρ)2(n−1)(1− ε)2

2κ2(n−1)

.

Thus, for all 0 < ε < 1

P
(
∃i ≤ N : T̃i(ξ̃

1) 6= ξ1
i

)
≤ N exp

([
−cn

(1− 2ρ)2(n−1)(1− ε)2

2κ2(n−1)

]
log(N)

)
(1 + o(1))

= exp

([
1− cn

(1− 2ρ)2(n−1)(1− ε)2

2κ2(n−1)

]
log(N)

)
(1 + o(1)),

which converges to zero for N to infinity as long as

cn >
2(2n− 3)!!

(1− 2ρ)2(n−1)(1− ε)2
.

For every cn >
2(2n−3)!!

(1−2ρ)2(n−1) there exists a ε > 0 such that

cn >
2(2n− 3)!!

(1− 2ρ)2(n−1)(1− ε)2
>

2(2n− 3)!!

(1− 2ρ)2(n−1)
(2.19)

and this proves the first statement.

The second statement of Theorem 2.1 involves all patterns. A union bound argument and
the previous bound for the probability lead to

P
(
∃µ ≤M : ∃i ≤ N : T̃i(ξ̃

1) 6= ξ1
i

)
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2. Generalized Hopfield model with i.i.d. patterns

≤ NM exp

([
−cn

(1− 2ρ)2(n−1)(1− ε)2

2κ2(n−1)

]
log(N)

)
(1 + o(1)) (2.20)

= exp

(
n

[
1− cn

(1− 2ρ)2(n−1)(1− ε)2

2nκ2(n−1)

]
log(N)− log(cn log(N))

)
(1 + o(1)),

which converges to zero for N to infinity as long as

cn >
2n(2n− 3)!!

(1− 2ρ)2(n−1)(1− ε)2
.

Equation (2.20) is true for all 0 < ε < 1. This proves the second statement because ε can
again be chosen appropriately (similar to eq. (2.19)).

2.2. Generalized dynamics with an exponential
interaction function

In the previous section we saw that a polynomial function F in the dynamics

T̂i(σ) = sgn

[
M∑
µ=1

(
F (1 · ξµi +

∑
i 6=j

ξµj σj)− F ((−1) · ξµi +
∑
j 6=i

ξµj σ)
)]

(2.21)

can increase the storage capacity of the model. If we choose F (x) = x2, the dynamics is
equivalent to the dynamics of the standard Hopfield model. A result for the more general
approach F (x) = xn was shown in Theorem 2.1. As a next step, we consider the function
F (x) = exp(x), which can be seen as a “limit of the polynomial functions” where n tends
to infinity. The following result is cited from [Dem+17].

Theorem 2.2
Consider the generalized Hopfield model with the dynamics described in eq. (2.21) and

interaction function F given by F (x) = ex. For a fixed 0 < α < log(2)
2

let M = exp (αN)+1
and let ξ1, . . . , ξM be M patterns chosen uniformly at random from {−1,+1}N . Moreover,

fix ρ ∈ [0, 1
2
). For any µ and any ξ̃µ taken uniformly at random from S(ξµ, ρN), where

ρN is assumed to be an integer, it holds that

P
(
∃µ ∃i : T̂i

(
ξ̃µ
)
6= ξµi

)
→ 0,

if α is chosen in dependence of ρ such that

α <
1

2
min

{
I(1− 2ρ), I

(
1− 2ρ− α + I(1− 2ρ− α)

)}
(2.22)
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2.2. Generalized dynamics with an exponential interaction function

with

I(x) =

{
1
2

(
(1 + x) log(1 + x) + (1− x) log(1− x)

)
, if x ∈ [−1, 1]

∞, else
.

Note that Theorem 2.2 in particular implies that

P
(
∃µ ∃i : T̂i (ξ

µ) 6= ξµi

)
→ 0

as N →∞, i.e. with a probability converging to 1, all the patterns are fixed points of the
dynamics.

Proof. Starting in one of the patterns (without loss of generality in ξ1), we want to prove
that it is an attractive fixed point of the update dynamics, i.e. we need to show that
T̂ (ξ1) = ξ1 with a probability converging to one. Additionally, we want the model to
correct ρN random errors by updating each of the neurons once.

Recall that we can interpret −
∑

µ F (mµ(σ)) as the energy value of a configuration σ.
Equation (2.21) shows that the neural net switches a neuron to the spin which results in
a lower energy value. We denote by

∆iE(σ) :=
M∑
µ=1

(
F

(
σiξ

µ
i +

∑
j 6=i

ξµj σj

)
− F

(
−σiξµi +

∑
j 6=i

ξµj σj

))
(2.23)

the energy difference between the configuration σ and its counterpart where the sign of
neuron i is switched. For now let us exclude the event where ∆iE(σ) = 0 because in
the limit N → ∞ this will be negligible. An equivalent formulation to the dynamics in
eq. (2.21) is to say that neuron i remains unchanged after an application of the update
rule as long as the difference is positive, i.e. ∆iE(σ) > 0. The spin of neuron i will be
changed if ∆iE(σ) is negative.

Since the input is an element of the sphere around ξ1, the overlap with the desired pattern
is given by m1(ξ̃1) = (1 − 2ρ). To calculate the energy values of the two configurations,
one for each possible value of neuron i, it is important to know the initial value of neuron
i. The indices with false signals are chosen uniformly at random. Thus, neuron i could
possibly start with a corrupted signal. In the different cases we get

−ξ̃1
i ξ

1
i +

N∑
j 6=i

ξ̃1
j ξ

1
j = Nm1(ξ̃1)− 2ξ̃1

i ξ
1
i =

{
N(1− 2ρ)− 2 if neuron i is correct

N(1− 2ρ) + 2 if neuron i is false
. (2.24)
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2. Generalized Hopfield model with i.i.d. patterns

The summand in eq. (2.23) where µ = 1 can be interpreted as signal term and together
with eq. (2.24) we observe that

F
(
Nm1(ξ̃1)

)
− F

(
Nm1(ξ̃1)− 2ξ̃1

i ξ
1
i

)
=

{
F (N(1− 2ρ))− F (N(1− 2ρ)− 2) if neuron i is correct

F (N(1− 2ρ))− F (N(1− 2ρ) + 2) if neuron i is false
.

Therefore, the signal term pushes the net to the right behaviour because

F
(
N(1− 2ρ)

)
− F

(
N(1− 2ρ)− 2

)
≥ 0 on the one hand, and

F
(
N(1− 2ρ)

)
− F

(
N(1− 2ρ) + 2

)
≤ 0 on the other hand

depending on whether neuron i is correct or incorrect. Now we are able to derive a
necessary condition for the event that the noise term becomes big enough to distract the
neural net. In the case of ξ̃1

i = ξ1
i (correct signal), we see that Ti(ξ̃

1) 6= ξ1
i is equivalent to

∆iE(ξ̃1) =
M∑
µ=1

(
F
(
Nmµ(ξ̃1)

)
− F

(
Nmµ(ξ̃1)− 2ξ̃1

i ξ
µ
i

))
< 0

which is the same as

M∑
µ=2

(
F
(
− ξ1

i ξ
µ
i +

∑
j 6=i

ξµj ξ̃
1
j

)
− F

(
ξ1
i ξ
µ
i +

∑
j 6=i

ξµj ξ̃
1
j

))
> F

(
N(1− 2ρ)

)
− F

(
N(1− 2ρ)− 2

)
. (2.25)

In the case of ξ̃1
i = −ξ1

i (corrupted signal), the event of Ti(ξ̃
1) 6= ξ1

i is true if and only if

∆iE(ξ̃1) =
M∑
µ=1

(
F (Nmµ(ξ̃1))− F (Nmµ(ξ̃1)− 2ξ̃1

i ξ
µ
i )
)
> 0

which is equivalent to

M∑
µ=2

(
F
(
− ξ1

i ξ
µ
i +

∑
j 6=i

ξµj ξ̃
1
j

)
− F

(
ξ1
i ξ
µ
i +

∑
j 6=i

ξµj ξ̃
1
j

))
> F

(
N(1− 2ρ) + 2

)
− F

(
N(1− 2ρ)

)
. (2.26)
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2.2. Generalized dynamics with an exponential interaction function

For both of these conditions (see eqs. (2.25) and (2.26)) a necessary event is given by

M∑
µ=2

(
F
(
− ξ1

i ξ
µ
i +

∑
j 6=i

ξµj ξ̃
1
j

)
− F

(
ξ1
i ξ
µ
i +

∑
j 6=i

ξµj ξ̃
1
j

))
≥ F (N(1− 2ρ))− F (N(1− 2ρ)− 2)

which equals

M∑
µ=2

(
exp

(
− ξ1

i ξ
µ
i +

∑
j 6=i

ξµj ξ̃
1
j

)
− exp

(
ξ1
i ξ
µ
i +

∑
j 6=i

ξµj ξ̃
1
j

))
≥ eN(1−2ρ)

[
1− e−2

]
(2.27)

for our choice of F (x) = exp(x). The event in eq. (2.27) also covers the possibility that
∆iE(σ) = 0. Thus, it follows that

P
(
T̂i
(
ξ̃1
)
6= ξ1

i

)
≤ P

(
M∑
µ=2

(
exp

(
− ξ1

i ξ
µ
i +

∑
j 6=i

ξµj ξ̃
1
j

)
− exp

(
ξ1
i ξ
µ
i +

∑
j 6=i

ξµj ξ̃
1
j

))
≥ c eN(1−2ρ)

)
(2.28)

with c = (1− e−2). With the observation that

exp
(
− ξ1

i ξ
µ
i +

∑
j 6=i

ξµj ξ̃
1
j

)
− exp

(
ξ1
i ξ
µ
i +

∑
j 6=i

ξµj ξ̃
1
j

)
= exp

(
Nmµ(ξ̃1)

) [
exp

(
−ξµi ξ1

i − ξ
µ
i ξ̃

1
i

)
− exp

(
ξµi ξ

1
i − ξ

µ
i ξ̃

1
i

)]
≤ e2c exp

(
Nmµ(ξ̃1)

)
the probability in eq. (2.28) can be bounded by

P
(
T̂i
(
ξ̃1
)
6= ξ1

i

)
≤ P

(
M∑
µ=2

exp
(
Nmµ(ξ̃1)

)
≥ eN(1−2ρ)−2

)
. (2.29)

The main contribution to the noise term stems from the overlaps between ξµ and ξ̃1 for
µ 6= 1. The patterns are generated as i.i.d. random variables and Lemma 1.2 proves that
the overlap behaves in the same way as i.i.d. Rademacher-distributed random variables.
In the rest of the proof we want to use a large deviation principle to show that the impact
of a small number of patterns cannot be large enough to eliminate the signal. On the
other hand, the choice of α guarantees that M does not grow fast enough so that the
noise term reaches the order of the signal by adding up a lot of small deviations.

Define A = {µ ∈ {2, . . . ,M} : mµ(ξ̃1) ≥ β} for β > 0. The noise term would reach a
similar strength as the signal if each pattern would contribute an amount of

1

M − 1
eN(1−2ρ)−2 = e(1−2ρ−α)N−2 (2.30)
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2. Generalized Hopfield model with i.i.d. patterns

to the sum in eq. (2.29). Here, we used M − 1 = exp (αN). Set 0 < β < 1− 2ρ− α then
the random set A contains all patterns whose contribution to the noise term is above the
average. The random set A provides a partition:

P

(
M∑
µ=2

exp(Nmµ(ξ̃1)) > eN(1−2ρ)−2

)

=
∑

X⊆{2,...,M}

P

({
M∑
µ=2

exp(Nmµ(ξ̃1)) > eN(1−2ρ)−2

}
∩ {A = X}

)

=
∑

X⊆{2,...,M}

P (A = X) · P

({
M∑
µ=2

exp(Nmµ(ξ̃1)) > eN(1−2ρ)−2

} ∣∣∣ {A = X}

)
.

The distribution of A can be simplified by the fact that all patterns are generated as
i.i.d. random variables. Similar to the standard Hopfield model, we can get rid of the
random distraction through ξ̃1 with the help of Lemma 1.2. With this insight and the
independence of patterns, we set

p = P (2 ∈ A) = P
(
m2(ξ̃1) ≥ β

)
(2.31)

and see that the probability for A to be a fixed set X ⊆ {2, . . . ,M} equals the probability
of a specific coin toss realization. Thus,

P

(
M∑
µ=2

exp(Nmµ(ξ̃1)) > eN(1−2ρ)−2

)

=
M−1∑
k=0

∑
X∈Pk({2,...,M})

pk(1− p)M−1−k · P

(
M∑
µ=2

exp(Nmµ(ξ̃1)) > eN(1−2ρ)−2
∣∣∣ A = X

)
,

where Pk denotes all the subsets of size k. Because of the i.i.d. setting the probabilities only
vary with the size of A. Without loss of generality we are allowed to use X̄ = {2, . . . , k+1}
if |A| = k for fixed k and conclude

P

(
M∑
µ=2

exp(Nmµ(ξ̃1)) > eN(1−2ρ)−2

)

=
M−1∑
k=0

(
M − 1

k

)
pk(1− p)M−1−k · P

(
M∑
µ=2

exp(Nmµ(ξ̃1)) > eN(1−2ρ)−2
∣∣∣ A = X̄

)
.

(2.32)

The contribution of patterns in Ac to the noise term are bounded by eβN . As a quick
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2.2. Generalized dynamics with an exponential interaction function

reminder, by definition pattern ξ1 cannot be part of A or Ac. Therefore, |Ac| = M−1−|A|.
Thus,

P

(
M∑
µ=2

exp(Nmµ(ξ̃1)) > eN(1−2ρ)−2
∣∣∣ A = X̄

)

≤ P

∑
µ∈X̄

exp(Nmµ(ξ̃1)) > eN(1−2ρ)−2 − (M − 1− k) exp(βN)
∣∣∣ A = X̄

 .

To shorten the equations set

c̃(k) := eN(1−2ρ)−2 − (M − 1− k)eβN . (2.33)

With a union bound argument, the event that the term exceeds c̃(k) can be bounded by
an event that a large deviation of one pattern occurs:

P

∑
µ∈X̄

exp(Nmµ(ξ̃1)) > c̃(k)
∣∣∣ A = X̄


≤ P

(
max
µ∈X̄

exp
(
Nmµ(ξ̃1)

)
>
c̃(k)

k

∣∣∣ A = X̄

)
≤ |X̄| · P

(
exp

(
Nm2(ξ̃1)

)
>
c̃(k)

k

∣∣∣ A = X̄

)
= k · P

(
exp

(
Nm2(ξ̃1)

)
>
c̃(k)

k

∣∣∣ 2 ∈ A
)
. (2.34)

Now define

r(k) := P
(

exp
(
Nm2(ξ̃1)

)
>
c̃(k)

k

)
(2.35)

and together with p = P (2 ∈ A) (see eq. (2.31)) it follows that

P
(

exp
(
Nm2(ξ̃1)

)
>
c̃(k)

k

∣∣∣ 2 ∈ A
)

≤
P
({

exp
(
Nm2(ξ̃1)

)
> c̃(k)

k

}
∩ {2 ∈ A}

)
P (2 ∈ A)

≤ r(k)

p
. (2.36)
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2. Generalized Hopfield model with i.i.d. patterns

The estimates in eqs. (2.34) and (2.36) change eq. (2.32) into

P
(
T̂i
(
ξ̃µ
)
6= ξµi

)
= P

(
M∑
µ=2

exp(Nmµ(ξ̃1)) > eN(1−2ρ)−2

)

≤
M−1∑
k=0

(
M − 1

k

)
pk(1− p)M−1−kk

r(k)

p

=
M−1∑
k=0

k

(
M − 1

k

)
pk−1(1− p)M−1−kr(k). (2.37)

In eq. (2.37) we derived an upper, bound which only depends on probabilities involving

the overlap of ξ̃1 with one single pattern (here without loss of generality ξ2). These
probabilities are p (see eq. (2.31)) and r(k) (see eq. (2.35)).

The random set A contains patterns whose contribution to the noise term is bigger than
what on average is needed to exceed the signal term. In eq. (2.37) the size of A is denoted
by k. With M − 1 = exp(αN) and the definition of c̃(k) in eq. (2.33), we see that

c̃(k)

k
=

1

k

(
eN(1−2ρ)−2 − (M − 1− k)eβN

)
=

1

k

(
eN(1−2ρ)−2 − (M − 1)eβN

)
+ eβN

=
1

k

(
eN(1−2ρ)−2 − e(α+β)N

)
+ eβN

=
1

k
eN(1−2ρ)−2

(
1− e(α+β−(1−2ρ))N+2

)
+ eβN ,

(2.38)

which is decreasing in k because β < 1− 2ρ−α. This means if more patterns are allowed
to have a contribution above the average, each of them needs to have a lower impact
to cause the net to fail an update. As a consequence, the probability r(k) to reach this

barrier c̃(k)
k

is increasing in k. In other words, if more patterns are contained in A, it is

more likely for the overlap of a pattern to exceed the critical value, namely 1
N

log( c̃(k)
k

).

Because |A| is binomial distributed with parameters p and M − 1, the expected size of A
is p(M − 1). Let us first consider the scenario where the size of A is not unusually big. In
context of eq. (2.37), that means we concentrate on the sum over indices k which are less
than 2p(M − 1). Later we will see that sizes of A beyond 2p(M − 1) can be eliminated
with a large deviation argument about the binomial distribution.

The integer part of a number x is denoted by bxc. With the fact that r(k), and therefore
kr(k), is increasing in k, we conclude for the sum with indices up to b2p(M − 1)c that

b2p(M−1)c∑
k=0

(
M − 1

k

)
kr(k)pk−1(1− p)M−1−k
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2.2. Generalized dynamics with an exponential interaction function

≤ 1

p
max

l≤b2p(M−1)c
lr(l)

b2p(M−1)c∑
k=0

(
M − 1

k

)
pk(1− p)M−1−k

≤ 1

p
b2p(M − 1)c r(b2p(M − 1)c)

≤ 2(M − 1) r(2p(M − 1)).

In the second line, the series is equal to a probability of a binomial distribution and can
be bounded by one. Furthermore, we used b2p(M − 1)c ≤ 2p(M − 1) and the fact that
r(k) is increasing in k.

Again with the arguments around Lemma 1.2, the overlap m2(ξ̃1) is distributed like a
sum of Rademacher spins. This justifies that we apply Cramér’s theorem (see Theorem

A.1 and Theorem A.3) to m2(ξ̃1) and deduce for y > 0

P
(
m2(ξ̃1) ≥ y

)
≤ exp (−NI(y)) , (2.39)

where I is the rate function of Rademacher spins. The rate function I is equal to

I(x) =
1

2

(
(1 + x) log ((1 + x)) + (1− x) log (1− x)

)
(2.40)

for x ∈ [−1, 1] (see Example A.2 b). Cramér’s theorem applied to p leads to

1

p
=

1

P
(
m2(ξ̃1) ≥ β

) ≥ exp(NI(β)). (2.41)

Recall from eq. (2.35) that

r(k) = P
(

exp
(
Nm2(ξ̃1)

)
>
c̃(k)

k

)
with c̃(k) = eN(1−2ρ)−2 − e(α+β)N + keβN . The identity M − 1 = exp(αN) and the
application of Cramér’s theorem on 1

p
as stated in eq. (2.41) bounds the probability

r(2p(M − 1)) by

r(2p(M − 1)) = P
(

exp
(
Nm2(ξ̃1)

)
>

1

2p(M − 1)

(
eN(1−2ρ)−2 − e(α+β)N

)
+ eβN

)
= P

(
exp

(
Nm2(ξ̃1)

)
>

1

2p

(
eN(1−2ρ−α)−2 − eβN

)
+ eβN

)
≤ P

(
exp

(
Nm2(ξ̃1)

)
>

1

2

(
eN(1−2ρ−α+I(β))−2 − eN(β+I(β))

))
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2. Generalized Hopfield model with i.i.d. patterns

Since β < 1− 2ρ− α, the dominating term is eN(1−2ρ−α+I(β))−2 and it follows that

r(2p(M − 1)) ≤ P
(

exp
(
Nm2(ξ̃1)

)
> eN(1−2ρ−α+I(β))−(2+log(2)) (1 + o(1))

)
= P

(
Nm2(ξ̃1) > N

(
1− 2ρ− α + I(β)− 2 + log(2)

N

)
+ o(1)

)
. (2.42)

The upper bound of r(2p(M − 1)) corresponds to a large deviation event of m2(ξ̃1) and
as long as we can choose β < 1− 2ρ− α such that there exists γ with

0 < γ ≤ 1− 2ρ− (α− I(β))− 2 + log(2)

N
, (2.43)

we can conclude with eq. (2.39) that

r(2p(M − 1)) ≤ e−I(γ)N . (2.44)

Therefore, the first part of eq. (2.37) is bounded by

b2p(M−1)c∑
k=0

(
M − 1

k

)
kr(k)pk−1(1− p)M−1−k ≤ 2(M − 1) exp (−NI(γ)) (2.45)

under the assumption that the parameters β and γ can be chosen appropriately (see
eq. (2.43)). The right choice of β and γ will be discussed at the end of the proof.

Back to eq. (2.37), for the sum with indices above b2p(M − 1)c, we are using the identity
k
(
M−1
k

)
= (M − 1)

(
M−2
k−1

)
and bound the probability r(k) by one. Thus,

M−1∑
k=b2p(M−1)c+1

k

(
M − 1

k

)
pk−1(1− p)M−1−kr(k)

≤ (M − 1)
M−2∑

k=b2p(M−1)c

(
M − 2

k

)
pk(1− p)M−2−k

= (M − 1) P (SM−2 ≥ b2p(M − 1)c)

≤ (M − 1) P
(
SM−2 ≥

3

2
p(M − 2)

)
. (2.46)

Here, SM−2 denotes a binomial distributed random variable with parameters M − 2 and
p. The last line follows because b2p(M − 1)c ≥ 3

2
p(M − 2) if and only if Mp ≥ 2(1− p).

This is fulfilled because Mp grows to infinity if α is small enough, which we will see at
the end of the proof.

The probability in eq. (2.46) can be bounded by Lemma A.4, which provides an exponen-
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2.2. Generalized dynamics with an exponential interaction function

tial bound for a large deviation event of a binomial distribution. The lemma states that
for a binomial distributed random variable Sn and ε > 0

P (Sn ≥ n(p+ ε)) ≤ exp

(
−n ε2

(2p+ ε)

)
.

Thus, by Lemma A.4 with ε = p
2
, we obtain the following bound for the second part of

the sum:

M−1∑
k=b2p(M−1)c+1

k

(
M − 1

k

)
pk−1(1− p)M−1−kr(k) ≤ (M − 1) exp

(
− p(M − 2)

10

)
. (2.47)

The eqs. (2.45) and (2.47) bound the probability to update neuron i to the wrong spin
and together with M − 1 = exp (αN), we conclude that

P
(
∃µ ∃i : T̂i

(
ξ̃µ
)
6= ξµi

)
≤ N ·M · P

(
T̂i
(
ξ̃µ
)
6= ξµi

)
≤ N ·M ·

(
2(M − 1) exp

(
−NI(γ)

)
+ (M − 1) exp

(
− p(M − 2)

10

))

≤ N
M

M − 1

[
2 exp (−N(I(γ)− 2α)) + exp

(
2αN − M − 2

M − 1
· p(M − 1)

10

)]
. (2.48)

It remains to prove that the bound in eq. (2.48) converges to zero if N tends to infinity.
To achieve this, we show that the parameters β and γ can be chosen in such a way that
the previously made assumption in eq. (2.43) is fulfilled, I(γ) − 2α > 0 and p(M − 1)
grows faster to infinity than N does.

The rate function I on [0, 1] is a strictly increasing function. Define β0 := I−1(α) > 0.
If β < β0, then η := 1

2
(α − I(β)) > 0. Cramér’s theorem (see Theorem A.1) provides a

lower bound for p: For N large enough we deduce that

p = P
(
m2(ξ̃1) ≥ β

)
≥ exp (−N (I(β) + η))

= exp

(
−N

2
(I(β) + α)

)
.

The lower bound for p together with the identity M − 1 = exp(αN) leads to

p(M − 1) ≥ exp

(
N

(
α− 1

2
(I(β) + α)

))
= exp

(
N

2
(α− I(β))

)
for N large enough. The lower bound goes exponentially fast to infinity if α − I(β) > 0.

31



2. Generalized Hopfield model with i.i.d. patterns

If we ensure that β < β0 = I−1(α), then the second term of eq. (2.48) is bounded from
above by

N exp
(

2αN − M − 2

M − 1
· p(M − 1)

10

)
≤ exp

(
log(N) + 2αN − 1

10
(1 + o(1)) exp

(
α− I(β)

2
N

))
N→∞−→ 0. (2.49)

Now it remains to show that I(γ) − 2α > 0 while γ is restricted by eq. (2.43). For N
large enough eq. (2.43) is fulfilled if

0 < γ < 1− 2ρ− α + I(β). (2.50)

Since I is an increasing function on [0, 1], we want to choose β as large as possible, but
the two constraints, namely β < 1− 2ρ− α and β < β0 = I−1(α), are limiting this. The
first constraint was used in eqs. (2.30), (2.38) and (2.42). The second one was important
in eq. (2.49). Altogether, the choice of β is limited by min{1 − 2ρ − α, β0}. The value
of the minimum depends on ρ and α, which are fixed by the theorem. By assumptions
ρ ∈ [0, 1

2
) and

α <
1

2
min

{
I(1− 2ρ), I

(
1− 2ρ− α + I(1− 2ρ− α)

)}
. (2.51)

We distinguish between the two cases whether min{1− 2ρ−α, β0} is equal to 1− 2ρ−α
or equal to β0.

(1) Let 1−2ρ−α be smaller or equal to β0. Then min{1−2ρ−α, β0} = 1−2ρ−α and

we need to ensure that β < 1− 2ρ− α. Since I(x) ≤ x, we know from α < I(1−2ρ)
2

that α < 1− 2ρ. According to eq. (2.51) we know that

α <
I(1− 2ρ− α + I(1− 2ρ− α))

2
.

Due to these conditions and because of the continuity of I, there exists 0 < β <
1− 2ρ− α with

2α < I(1− 2ρ− α + I(β)) < I(1− 2ρ− α + I(1− 2ρ− α)).

Here, it is important that β can be chosen to be arbitrarily close to 1 − 2ρ− α. In
the same way there exists 0 < γ < 1− 2ρ− α + I(β) such that

2α < I(γ) < I(1− 2ρ− α + I(β)).

Thus, I(γ)− 2α > 0.
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2.2. Generalized dynamics with an exponential interaction function

We need to be careful if 1 − 2ρ − α + I(1 − 2ρ − α) > 1 because in this case
I(1 − 2ρ − α + I(1 − 2ρ − α)) = ∞. But since this condition is equivalent to the
first inequality of 2ρ + α < I(1 − 2ρ − α) < I(1), we can choose β < I−1(2ρ + α)
such that

2α < I(1− 2ρ− α + I(β)) < I(1)

because 2α < I(1− 2ρ− α) < I(1). Then β < 1− 2ρ− α is fulfilled. Additionally,
we can choose 0 < γ < 1− 2ρ− α + I(β) such that

2α < I(γ) < I(1− 2ρ− α + I(β))

because I is continuous and 1 − 2ρ− α > 0.

(2) Let α be smaller than I(1−2ρ−α). It follows that β0 = I−1(α) < 1−2ρ−α, which
is equivalent to min{1 − 2ρ − α, β0} = β0. In this case we only need to guarantee
that β < β0. Thus, β can be chosen such that α − I(β) is positive but arbitrarily
small. By assumptions (see eq. (2.51))

α <
I(1− 2ρ)

2
.

Because of the continuity of I there exists β such that

2α < I(1− 2ρ− α + I(β)) < I(1− 2ρ). (2.52)

To achieve the inequality in (2.52), it is important that β is allowed to be close to
β0. Then β can be chosen such that 1− 2ρ− α+ I(β) is arbitrarily close to 1− 2ρ.
In the same way there exists γ such that

2α < I(γ) < I(1− 2ρ− α + I(β)).

Thus, I(γ)− 2α > 0 and all conditions are met.

This proves that the first term in eq. (2.48) converges to zero even if multiplied by N . All
in all, we showed that

P
(
∃µ ∃i : Ti

(
ξ̃µ
)
6= ξµi

)
→ 0.

Figure 2.1 shows a plot of the function

fρ(α) =
1

2
min {I(1− 2ρ), I(1− 2ρ− α + I(1− 2ρ− α))} − α
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2. Generalized Hopfield model with i.i.d. patterns

for different values of ρ. For fixed ρ Theorem 2.2 states that α can be chosen such that
the function fρ(α) is positive. Therefore, the root of fρ(α) determines the upper bound
for α to obtain a storage capacity of M = exp(αN).

All in all, Theorem 2.2 showed that by changing the dynamics such that the energy
decreases exponentially fast while approaching a pattern, the net is able to store at least
M = exp(αN) patterns. This includes the stability of patterns and a positive basin of
attraction.
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3. Generalized Hopfield model with
Curie-Weiss patterns

In Chapter 2 we derived lower bounds for the storage capacity of the Hopfield model
with a polynomial and an exponential dynamics. In the next step, we investigate how
the dynamics treat spatially dependent patterns. This means that different patterns are
still independent but distinct spins of the same pattern are allowed to be dependent.
Results with spatially dependent patterns for the standard Hopfield model were shown in
[Löw98; LV05]. Löwe and Vermet showed in [LV05] that a moderate deviations principle
is sufficient to prove a storage capacity of similar order as in the case of i.i.d. generated
patterns. This was demonstrated with patterns created by a Curie-Weiss model and by an
Ising model. In the following section, we give an introduction to the Curie-Weiss model
and derive some results needed to calculate a storage capacity for a Hopfield model with
a polynomial dynamics and Curie-Weiss patterns.

3.1. Introduction to the Curie-Weiss model

Spin glass models were introduced in Section 1.2. The Curie-Weiss model is a mean field
model where all spins interact with the mean magnetization. Thus, we do not need to
consider any lattice structure. The Hamiltonian of the Curie-Weiss model is given by

HCW
N (σ) = − 1

2N

N∑
i,j=1

σiσj = −N
2

(
1

N

N∑
j=1

σj

)2

(3.1)

with σ ∈ {−1, 1}N . Therefore, the finite volume Gibbs measure equals

µβ,N(σ) =
2−N

Zβ,N
exp

(
−βHCW

N (σ)
)

=
2−N

Zβ,N
exp

βN
2

(
1

N

N∑
j=1

σj

)2
 , (3.2)

where Zβ,N is the partition function with

Zβ,N = 2−N
∑

σ̃∈{−1,1}N
exp

(
−βHCW

N (σ̃)
)
. (3.3)
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3. Generalized Hopfield model with Curie-Weiss patterns

In this chapter we want the patterns to be generated according to a Curie-Weiss model.
In the previous part of the work, we introduced ξ := ξ1 = (ξj)j≤N as a vector of i.i.d.
spins on the probability space (Ω,F ,P) with

P(ξ1 = 1) =
1

2
= P(ξ1 = −1).

Now we denote by PCWβ the probability measure on (Ω,F) such that the push-forward
measure of ξ is equal to the Gibbs measure of the Curie-Weiss model, i.e.

PCWβ (ξ ∈ dσ ) = µβ,N( dσ ). (3.4)

The expectation value with respect to PCWβ is labelled ECW [·]. A pattern with i.i.d. spins
from the previous section is connected to a pattern according to a Curie-Weiss model by
a simple change of measure:

PCWβ (ξ ∈ dσ ) =
1

Zβ,N
exp

(
−βHCW

N (σ)
)
P(ξ ∈ dσ ), (3.5)

where

Zβ,N = E
[
exp

(
−βHCW

N (ξ)
)]
. (3.6)

In the same way as before, let ξ1, . . . , ξM be independent copies of ξ. To avoid that the
probability space depends on N one can define (ξj)j∈N on (Ω,F ,P) and work with the
projection to the first N coordinates.

3.2. Results about the Curie-Weiss model

The Curie-Weiss model is a good first approach for spatially dependent patterns because
the spins are exchangeable and the model parameter β can be used to adjust the cor-
relation of spins. A deeper analysis of the model shows that for 0 < β < 1 the mean
magnetization converges to zero and the correlation between spins vanishes if N is going
to infinity. In this case the spins are not independent but in the limit their behaviour
is very similar to independent spins. For β > 1 the correlation between spins is strong
enough such that non-trivial solutions for the mean magnetization appear. A result about
the correlation of spins will be derived in Theorem 3.15. For results about the mean mag-
netization the reader is referred to chapter IV in [Ell85].
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3.2. Results about the Curie-Weiss model

3.2.1. Central Limit Theorem for the magnetization

For i.i.d. patterns a useful tool to derive a lower bound for the storage capacity was Lemma
1.2, which shows that the overlap is distributed like a sum of single spins. Standard tools
of probability theory, like the Central Limit Theorem, were then used to approximate the
limiting behaviour. In the case of Curie-Weiss patterns for 0 < β < 1, we are able to
show a Central Limit Theorem for the sum of spins. Since the Curie-Weiss model was
introduced to mimic a ferromagnet, the sum of spin is called magnetization.

Definition 3.1
Let ξ = (ξj)j≤N be generated by a Curie-Weiss model. We call SN =

∑N
j=1 ξj the magne-

tization of the model.

Results about the magnetization in a Curie-Weiss model and its fluctuations were derived
by Ellis, Newman and Rosen in [EN78a; EN78b; ENR80]. They proved a Law of Large
Numbers and a Central Limit Theorem for SN . In [Ell85] Ellis applied the theory of large
deviations to models of statistical mechanics including the Curie-Weiss model. These
results were extended by Eichelsbacher and Löwe in [EL04], who proved a moderate
deviations principle for SN . Rates of convergence were achieved with the help of Stein’s
method in [EL10; CS11]. For our purposes, it is important that the magnetization obeys
a Central Limit Theorem if β < 1:

Theorem 3.2 (see Theorem V.9.4 in [Ell85])
Let ξ = (ξj)j≤N be generated by a Curie-Weiss model with 0 < β < 1. The scaled
magnetization 1√

N
SN converges in distribution to a normal distribution with expectation

value 0 and variance σ2
CW := (1− β)−1.

Proof. The key observation is that a Central Limit Theorem is valid for (ξj)j≤N under P
because these are i.i.d. random variables. We need to show that

PCWβ
(
SN√
N
∈ ·
)
⇒ N

(
0, σ2

CW

)
,

which means that for every bounded and continuous function f (short: f ∈ Cb(R))∫
Ω

f

(
SN√
N

)
dP CW

β
n→∞−→ E[f(Y )] (3.7)

needs to hold. Here, Y is a (0, σ2
CW )-normal distributed random variable. The observation

in eq. (3.5) leads to the following representation of the integral∫
Ω

f

(
SN√
N

)
dP CW

β =
1

ZN,β

∫
Ω

f

(
SN√
N

)
exp

(
β

2

(
SN√
N

)2
)

dP .
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3. Generalized Hopfield model with Curie-Weiss patterns

The convergence in eq. (3.7) follows if we can verify the statements∫
Ω

f

(
SN√
N

)
exp

(
β

2

(
SN√
N

)2
)

dP N→∞−→
∫
R
f(y)

1√
2π

exp

(
−(1− β)y2

2

)
dy

and

ZN,β =

∫
Ω

exp

(
β

2

(
SN√
N

)2
)

dP N→∞−→
∫
R

1√
2π

exp

(
−(1− β)y2

2

)
dy = σCW .

Both statements would be an immediate consequence of the weak convergence of 1√
N

∑N
j=1 ξj

under P if the function g(x) = f(x) exp(β
2
x2) would be bounded. Instead, we utilize that

g is a continuous function and claim that (g(
√
N
−1
SN))N∈N is uniformly integrable (see

Definition A.7). The weak convergence and uniform integrability is enough to deduce the
convergence which is left to show (see Theorem A.9). Thus, Theorem A.9 together with

Lemma 3.3, which proves the uniform integrability of (g(
√
N
−1
SN))N∈N, completes the

proof.

Lemma 3.3 (see proof of Theorem 9.4 in Chapter V in [Ell85])
Let 0 < β < 1. Define (WN)N∈N by

WN = exp

(
β

2

(
SN√
N

)2
)

= exp

β
2

(
1√
N

N∑
j=1

ξj

)2
 .

Then (WN)N∈N is uniformly integrable under P.

Proof. We need to show that

sup
N≥1

∫
{WN≥α}

WN dP α→∞−→ 0.

By calculating the expected value of WN 1{WN≥α} with a standard integral formula, it
follows that∫

{WN≥α}
WN dP =

∫ α

0

P(WN 1{WN≥α} ≥ t) dt +

∫ ∞
α

P(WN 1{WN≥α} ≥ t) dt

= αP(WN ≥ α) +

∫ ∞
α

P(WN 1{WN≥α} ≥ t) dt

= αP(WN ≥ α) +

∫ ∞
α

P(WN ≥ t) dt . (3.8)
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3.2. Results about the Curie-Weiss model

For the tail probability of WN we derive the following upper bound

P(WN ≥ α) = P

exp

β
2

(
1√
N

N∑
j=1

ξj

)2
 ≥ α


= P

(∣∣∣ 1√
N

N∑
j=1

ξj

∣∣∣ ≥ (2 log(α)

β

) 1
2

)

= P

(∣∣∣ 1√
N

N∑
j=1

ξj

∣∣∣ ≥ x

)

= 2 P

(
1√
N

N∑
j=1

ξj ≥ x

)

≤ 2 exp
(
−x2

)
E

[
exp

(
x

1√
N

N∑
j=1

ξj

)]
,

where x =
(

2 log(α)
β

) 1
2
> 0. In the last line we used an exponential Chebyshev inequality

with t = x. Under P the spins ξ1, . . . , ξN are independent and identically Rademacher-
distributed. Thus,

E

[
exp

(
x

1√
N

N∑
j=1

ξj

)]
= cosh

(
x√
N

)N
≤ exp

(
x2

2

)

because cosh(y) ≤ exp(y
2

2
) for all y ∈ R. Together, the tail event of WN is bounded by

P(WN ≥ α) ≤ 2 exp

(
−x

2

2

)
= 2α−

1
β , (3.9)

which does not depend on N and follows with the identity for x. By using the bound
from eq. (3.9) in eq. (3.8), we conclude for β < 1 that∫

{WN≥α}
WN dP = αP(WN ≥ α) +

∫ ∞
α

P(WN ≥ t) dt

≤ α 2α−
1
β +

∫ ∞
α

2t−
1
β dt

= 2α1− 1
β + 2

1
1
β
− 1

α1− 1
β = 2

1

1− β
α1− 1

β = O(α1− 1
β ).
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Therefore,

sup
N≥1

∫
{WN≥α}

WN dP ≤ O(α1− 1
β ),

which converges to 0 for α→∞ because of β < 1. Thus, (WN)N is uniformly integrable.

A simple consequence of Lemma 3.3 is the uniform integrability of the following family of
random variables:

Corollary 3.4
For every k ∈ N the family (Y k

N)N∈N, where Y k
n is defined by

Y k
N :=

(
SN√
N

)k
exp

(
β

2

(
SN√
N

)2
)
,

is uniformly integrable under P.

Proof. Lemma 3.3 showed that for every 0 < β < 1 the exponential part in Y k
n is uniformly

integrable. But the polynomial part of Y k
N is negligible. Let 0 < ε < 1 − β then there

exists γk > 0 such that Ak := {x ∈ R : k log(|x|) > 1−ε−β
2

x2} ⊆ {x ∈ R : |x| ≤ γk}. On

the event
{
SN√
N
∈ Ack

}
=
{∣∣∣ SN√

N

∣∣∣ > γk

}
we know that

∣∣∣ SN√
N

∣∣∣k ≤ exp

(
1− ε− β

2

(
SN√
N

)2
)

and therefore {∣∣∣ SN√
N

∣∣∣k exp

(
β

2

(
SN√
N

)2
)
≥ α,

SN√
N
∈ Ak

}

=

{∣∣∣ SN√
N

∣∣∣k exp

(
β

2

(
SN√
N

)2
)
≥ α,

∣∣∣ SN√
N

∣∣∣ ≤ γk

}
= ∅

if α is large enough. Thus,

lim
α→∞

sup
N∈N

∫
{|Y kN |≥α}

|Y k
N | dP

= lim
α→∞

sup
N∈N

∫
|Y k
N | · 1

∣∣∣ SN√
N

∣∣∣k exp

(
β
2

(
SN√
N

)2
)
≥α, SN√

N
∈Ack


dP
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≤ lim
α→∞

sup
N∈N

∫
{

exp

(
1−ε

2

(
SN√
N

)2
)
≥α
} exp

(
1− ε

2

(
SN√
N

)2
)

dP = 0.

The last term is equal to zero because of Lemma 3.3 with β̃ = 1− ε.

Corollary 3.4 is helpful to show the convergence of moments in a Curie-Weiss model with
0 < β < 1:

Lemma 3.5
Let ξ = (ξj)j≤N be a Curie-Weiss pattern for 0 < β < 1 and let σ2

CW = (1− β)−1. Then

the k-th moment of
√
N
−1
SN under PCWβ converges to the k-th moment of a N (0, σ2

CW )
distribution, i.e.

ECW
[(

SN√
N

)k]
= ECW

( 1√
N

N∑
j=1

ξj

)k
→ {

σkCW (k − 1)!!, if k is even

0, if k is odd
.

Proof. The Central Limit Theorem states that
√
N
−1
SN ⇒ N (0, 1) under P and from

Corollary 3.4 we know that Y k
N is uniformly integrable under P. Theorem A.9 then states

the following convergence:

ECW
[(

SN√
N

)k]
=

1

ZN,β
E

[(
SN√
N

)k
exp

(
β

2

(
SN√
N

)2
)]

=
1

ZN,β
E
[
Y k
N

] N→∞−→ 1

σCW
E
[
Zk exp

(
β

2
Z2

)]
with Z ∼ N (0, 1). The partition function was handled in the proof of Theorem 3.2, where

we saw that ZN,β
N→∞−→ σCW . A simple calculation shows that

E
[
Zk exp

(
β

2
Z2

)]
=

{
σk+1
CW · (k − 1)!! k even

0 k uneven
,

where (k − 1)!! = (k − 1) · (k − 3) · . . . · 3 · 1. Thus,

ECW
[(

SN√
N

)k]
N→∞−→

{
σkCW · (k − 1)!! k even

0 k uneven
.
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3.2.2. The Gibbs measure of a Curie-Weiss model as a de Finetti
type measure

In the last section we proved a Central Limit Theorem for the magnetization. Now we
want to calculate the correlation between spins and then prove a Central Limit Theorem
for the overlap of two independent Curie-Weiss patterns. For this task it is helpful to
use another representation of the Gibbs measure. We show that the Gibbs measure is
a de Finetti type measure, which is by de Finetti’s theorem (see [Ald85]) connected to
exchangeable sequences of random variables. Since the density in a Curie-Weiss model
(see eq. (3.2)) only depends on the magnetization, the distribution of a configuration is
invariant under a permutation of its entries. Random variables with this characteristic
are called exchangeable. We denote by L(X) the law of a random variable X.

Definition 3.6 (see [Ald85])
A finite sequence (X1, . . . , Xn) of random variables is called exchangeable if

L(X1, . . . , Xn) = L(Xπ(1), . . . , Xπ(n))

for each permutation π of {1, . . . , n}.
An infinite sequence (X1, X2, . . .) of random variables is called exchangeable if

L(X1, X2, . . .) = L(Xπ(1), Xπ(2), . . .)

for each finite permutation π of N. A permutation of N is finite if |{i : π(i) 6= i}| <∞.

For an infinite sequence which is exchangeable de Finetti’s theorem states that this se-
quence can be written as a mixture of i.i.d. random variables (see [Ald85]). In general
this is not true for finite sequences, but we will show that the vector of Curie-Weiss spins
can still be written as such a mixture of i.i.d. random variables.

Definition 3.7 (see Definition 17 in [HKW15])
Let µ be a probability measure on [−1, 1]. We say {−1, 1}-valued random variables X1, . . . , Xn

are of de Finetti type if

P(X1 = a1, . . . , Xn = an) =

1∫
−1

Pt((a1, . . . , an))dµ(t),

where

Pt((a1, . . . , an)) =
1

2n
(1 + t)n+(a1,...,an)(1− t)n−(a1,...,an) (3.10)

with n+(a1, . . . , an) and n−(a1, . . . , an) counting the occurrences of +1 resp. −1. µ is
called the de Finetti measure.
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The Gibbs measure of a Curie-Weiss model is a measure of de Finetti type.

Theorem 3.8 (see Theorem 20 in [HKW15])
If PCWβ denotes the Gibbs measure on {−1, 1}N of a Curie-Weiss model for β > 0, then

PCWβ ((ξj)j≤N = σ) = Z−1

1∫
−1

Pt(σ1, . . . , σN) Q(d t),

where

Q(d t) =
exp(−N

2
Fβ(t))

1− t2
d t

with

Fβ(t) =
1

β

(
1

2
log

(
1 + t

1− t

))2

+ log
(
1− t2

)
(3.11)

and

Z =

1∫
−1

exp(−N
2
Fβ(t))

1− t2
d t.

Pt is defined as in eq. (3.10).

A helpful tool to prove Theorem 3.8 is the Hubbard-Stratonovich transformation. This
transformation can be used to convert the density function to a simpler form such that
we can easily use the independence of spins under P.

Theorem 3.9 (Hubbard-Stratonovich transformation)
For a > 0 and b ∈ R √

π

a
exp

(
b2

4a

)
=

∞∫
−∞

exp
(
−as2 + bs

)
ds . (3.12)

Proof. Based on the Gaussian density function we know that

1√
2πσ2

∞∫
−∞

exp

(
−(s− µ)2

2σ2

)
ds = 1
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for µ ∈ R and σ > 0. The identity(√
as− b

2
√
a

)2

= as2 − 2
√
as

b

2
√
a

+
b2

4a

= as2 − bs+
b2

4a

transforms the right side of eq. (3.12) into

∞∫
−∞

exp
(
−as2 + bs

)
ds =

∞∫
−∞

exp

(
−
(√

as− b

2
√
a

)2
)

exp

(
b2

4a

)
ds

= exp

(
b2

4a

) ∞∫
−∞

exp

(
−a
(
s− b

2a

)2
)

ds

= exp

(
b2

4a

)√
π

a

∞∫
−∞

√
a

π
exp

(
−

(s− b
2a

)2

2 1
2a

)
ds

=

√
π

a
exp

(
b2

4a

)
.

In the last step we integrate the density function of a normal distribution with µ = b
2a

and σ2 = 1
2a

. Thus, the integral is equal to one.

Proof of Theorem 3.8. Let σ be in {−1, 1}N . We need to convert the probability

PCWβ (ξ = σ) = 2−NZ−1
β,N exp

β
2

(
1√
N

N∑
j=1

σj

)2


into the desired form needed for a de Finetti type measure. The Hubbard-Stratonovich
transformation (see Theorem 3.9) applied to the density function of PCWβ , i.e.

a =
1

2
and b =

√
β

N

N∑
j=1

σj,

leads to the identity

exp

β
2

(
1√
N

N∑
j=1

σj

)2
 =

1√
2π

∞∫
−∞

exp

(
−s

2

2
+ s

√
β

N

N∑
j=1

σj

)
ds .

46



3.2. Results about the Curie-Weiss model

Now we are able to transform the exponential of the sum into a product of exponentials.

Together with a change of variables y = s
√

β
N

, we get

1√
2π

∞∫
−∞

exp

(
−s

2

2
+ s

√
β

N

N∑
j=1

σj

)
ds

=

√
N

2πβ

∞∫
−∞

exp

(
−N

2β
y2

) N∏
j=1

exp (σjy) dy

=

√
N

2πβ

∞∫
−∞

exp

(
−N

(
1

2β
y2 − log(cosh(y))

)) N∏
j=1

exp (σjy)

cosh(y)
dy . (3.13)

Additionally, we corrected the exponential functions by a cosh-term. With the symmetry
of cosh, we conclude that for every σj ∈ {−1, 1}

eσjy

cosh(y)
=

eσjy

cosh(σjy)
=

1

2

(eσjy + e−σjy) + (eσjy − eσjy)
cosh(σjy)

=
1

2

cosh(σjy) + sinh(σjy)

cosh(σjy)

=
1

2
(1 + tanh(σjy)) =

1

2
(1 + σj tanh(y)) .

After a change of variables t = tanh(y), the product in eq. (3.13) already has the form of
Pt:

N∏
j=1

exp (σjy)

cosh(y)
=

N∏
j=1

1

2
(1 + σj tanh(y))

=
1

2N

N∏
j=1

(1 + σjt) = Pt(σ1, . . . , σN). (3.14)

It remains to show that the de Finetti measure Q and the function Fβ is as stated in the
theorem. For this we use that

y = tanh−1(t) =
1

2
log

(
1 + t

1− t

)
as well as

log(cosh(tanh(t))) = −1

2
log(1− tanh(y)2) = −1

2
log(1− t2)
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to deduce

1

2β
y2 − log(cosh(y)) =

1

2β
tanh−1(t)2 − log(cosh(tanh−1(t)))

=
1

2β

(
1

2
log

(
1 + t

1− t

))2

+
1

2
log(1− t2)

=
1

2
Fβ(t). (3.15)

Here, tanh−1 is the inverse hyperbolic tangent. Equation (3.15) applied to eq. (3.13) leads
to

exp

β
2

(
1√
N

N∑
j=1

σj

)2
 =

√
N

2πβ

1∫
−1

exp
(
− N

2
Fβ(t)

)
1− t2

Pt(σ) dt

=

√
N

2πβ

1∫
−1

Pt(σ) Q( dt ). (3.16)

The term

dt

dy
= (1− tanh(y)2) = (1− t2)

occurs because of the change of variables. The identity in eq. (3.16) applied to ZN,β shows
that

ZN,β =
∑

(σj)j∈{−1,1}N
2−N exp

β
2

(
1√
N

N∑
j=1

σj

)2


= 2−N

√
N

2πβ

1∫
−1

∑
(σj)j∈{−1,1}N

Pt(σ) Q(d t). (3.17)

With the identity for Pt(σ) stated in eq. (3.14), we see that the sum over Pt(σ) can be
expressed as an expectation value of i.i.d. Rademacher spins:∑

(σj)j∈{−1,1}N
Pt(σ) =

(
E[(1 + ξ1t)]

)N
= 1. (3.18)
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All in all, this proves

ZN,β = 2−N

√
N

2πβ
Z,

and together with eq. (3.16), we proved

PCWβ ((ξj)j≤N = σ) =
1

Z

1∫
−1

exp
(
−N

2
Fβ(t)

)
(1− t2)

Pt(σ) dt .

3.2.3. Laplace’s method and the correlation of spins

The expectation of a product of spins is easy to calculate if we work with independent
spins. In a Curie-Weiss model the spins are not independent, but the representation as a
de Finetti measure can be interpreted as a mixture of independent variables. This can be
used to show the following formula to calculate the correlation of spins.

Proposition 3.10 (see Proposition 18 in [HKW15])
For Curie-Weiss spins (ξj)j≤N the correlation can be calculated as

ECW [ξ1 · . . . · ξk] = Z−1

1∫
−1

tk
exp(−N

2
Fβ(t))

1− t2
dt ,

where Fβ is given by eq. (3.11).

Proof. We use Theorem 3.8 and conclude that for every β > 0

ECW [ξ1 · . . . · ξk] =
∑

(σj)j∈{−1,1}N

(
k∏
i=1

σi

)
PCWβ (σ1, . . . , σN)

=
∑

(σj)j∈{−1,1}N

(
k∏
i=1

σi

)
Z−1

1∫
−1

Pt(σ1, . . . , σn) Q(d t)

= Z−1

1∫
−1

∑
(σj)j∈{−1,1}N

(
k∏
i=1

σi

)
Pt(σ1, . . . , σn) Q(d t).
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3. Generalized Hopfield model with Curie-Weiss patterns

Similar to eq. (3.18), the sum can be expressed as an expectation value of independent
Rademacher spins:

∑
(σj)j∈{−1,1}N

(
k∏
i=1

σi

)
Pt(σ1, . . . , σn) =

(
E[ξ1(1 + ξ1t)]

)k(
E[(1 + ξ1t)]

)N−k
= tk.

This proves

ECW [ξ1 · . . . · ξk] = Z−1

1∫
−1

tk
exp(−N

2
Fβ(t))

1− t2
dt .

As a simple consequence of the formula in Proposition 3.10, we get a first result about
the correlation of spins:

Corollary 3.11
Let β > 0. For every k ∈ N

ECW [ξ1 · . . . · ξk] ≥ 0

and for k odd

ECW [ξ1 · . . . · ξk] = 0.

Proof. Proposition 3.10 and the identity for F (see eq. (3.11)), especially the fact that F
is symmetric, i.e. F (t) = F (−t) for all t > 0, shows that for k odd

ECW [ξ1 · . . . · ξk] = Z−1

1∫
−1

tk
exp(−N

2
Fβ(t))

1− t2
dt = 0.

If k is even, the integrand is non-negative. Thus, the expectation is non-negative.

To calculate the order of the correlation with an even number of spins, we introduce
Laplace’s method. With this method we can determine the behaviour of integrals of the
form ∫ d

c

e−NF (x)φN(x) dx

through the minimal points of F . In our case this means we need to calculate the minimum
of Fβ to get an approximation. For a general version of Laplace’s method one needs several
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assumptions to guarantee that the dominating contribution comes from the exponential
part. But as long as F is continuously differentiable and an integrability condition is
fulfilled, Laplace’s method provides a statement strong enough for our purposes. A more
general version can be found in [Olv74; Won01; Kir15]. In the following we prove a version
of Laplace’s method together with its application to the Curie-Weiss model.

Definition 3.12
The Gamma function is defined by

Γ(x) =

∞∫
0

tx−1e−t dt

for x > 0.

The following theorem is adapted from Proposition 24 in [HKW15] and Theorem 5.10 resp.
Corollary 5.12 in [Kir15]. For more details on Laplace’s method the reader is referred to
[Olv74].

Theorem 3.13 (Laplace’s method (see Theorem 5.10 and Corollary 5.12 in [Kir15]))
Suppose F : (c, d)→ R (with c ∈ R∪{−∞} and d ∈ R∪{∞}) is (k+1)-times continuously
differentiable for an even k and assume that for some a ∈ (c, d):

F (a) = F ′(a) = . . . = F (k−1)(a) = 0 and F (k)(a) > 0

and F ′(x) 6= 0 for x 6= a. Suppose furthermore that φ : (c, d) → R is continuous at a
with φ(a) 6= 0 and such that

d∫
c

e−F (x)
∣∣φ(x)

∣∣ ∣∣x− a∣∣l dy <∞. (3.19)

Then

(1) For l even

lim
N→∞

N
l+1
k

d∫
c

e−
N
2
F (x)(x− a)lφ(x) dx = 2 φ(a)

(
k!

F (k)(a)

) l+1
k 2

l+1
k

k
Γ

(
l + 1

k

)
.

(2) For l odd

lim
N→∞

N
l+1
k

d∫
c

e−
N
2
F (x)(x− a)lφ(x) dx = 0.
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Proof. With the assumptions on F , especially that F (k)(a) > 0 for k even, it follows that
F has a unique minimum in a, i.e.

inf
|x−a|≥δ

F (x) > F (a) = 0

for every δ > 0. For a fixed δ > 0 there is a B > 0 such that F (x) ≥ B > 0 for all x > δ.

Without loss of generality a = 0 because we are always able to do a change of variables
in the integral. Let us first concentrate on the integral over the positive line. For δ > 0
we split the integral into a part close to the minimal point at a = 0 and a part bounded
away from the critical point:

d∫
0

e−
N
2
F (x)xlφ(x) dx =

δ∫
0

e−
N
2
F (x)xlφ(x) dx +

d∫
δ

e−
N
2
F (x)xlφ(x) dx .

In the second integral F can be bounded from below by B and with the integrability from
eq. (3.19) we conclude that

d∫
δ

e−
N
2
F (x)xlφ(x) dx ≤ e−

N−2
2
B

d∫
δ

e−F (x)xlφ(x) dx

≤ e−
N−2

2
B

d∫
c

e−F (x)|x|l|φ(x)| dx

≤ Ce−
N−2

2
B,

which converges to zero for N →∞ even if multiplied by N
l+1
k for any l, k ∈ N.

For the integral considering values close to the minimum of F , we use Taylor’s theorem
(see Theorem A.10). Close to a = 0 the function F can be approximated by a polynomial
of order k

F (x) =
F (k)(0)

k!
xk + r(x),

where r is the remainder term with |r(x)| ≤ C|x|k+1 if x ≤ δ and δ small enough. Here,
it is important that the first k − 1 derivatives vanish at a. Thus, with δ small enough

δ∫
0

e−
N
2
F (x)xlφ(x) dx =

δ∫
0

e−
N
2
F (k)(0)
k!

xk+r(x)xlφ(x) dx .
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Set A = f (k)(0)
k!

then a change of variables y = (NA)
1
kx leads to

δ∫
0

e−
N
2
F (k)(0)
k!

xk+r(x)xlφ(x) dx

= (NA)−
l+1
k

δ(NA)1/k∫
0

e−
1
2
ykyle

−N
2
r

(
y

(NA)1/k

)
φ

(
y

(NA)1/k

)
dy

= (NA)−
l+1
k

∞∫
0

e−
1
2
ykyl 1[0,δ(NA)1/k] (y) e

−N
2
r

(
y

(NA)1/k

)
φ

(
y

(NA)1/k

)
dy .

The function φ is continuous in x = 0 and therefore

φ

(
y

(NA)
1
k

)
→ φ(0)

for N →∞. Taylor’s theorem states that |r(x)| ≤ C|x|k+1 for x ≤ δ. Thus,

∣∣∣r( y

(NA)
1
k

)∣∣∣ ≤ C
∣∣∣ yk+1

(NA)1+ 1
k

∣∣∣ = C̃|y|k+1N−(1+ 1
k

) (3.20)

and because this is decreasing faster than N , we conclude that

exp

(
−N

2
r

(
y

(NA)
1
k

))
→ 1

for N → ∞. Using dominated convergence and assuming that the requirements are
fulfilled, it follows that

lim
N→∞

N
l+1
k

d∫
0

e−
N
2
F (x)xlφ(x) dx

= lim
N→∞

A−
l+1
k

∞∫
0

e−
1
2
ykyl 1[0,δ(NA)1/k] (y) e

−N
2
r

(
y

(NA)1/k

)
φ

(
y

(NA)1/k

)
dy

= φ(0)

(
k!

f (k)(0)

) l+1
k

∞∫
0

e−
yk

2 yl dy .
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Additionally, with a change of variables, it can easily be shown that

∞∫
0

e−
yk

2 yl dy =
2
l+1
k

k
Γ

(
l + 1

k

)
.

If we consider the integral from c to 0 and change variables y = −x, we see that with the
same arguments as above in the case of l even

lim
N→∞

N
l+1
k

0∫
c

e−
N
2
F (x)xlφ(x) dx = φ(a)

(
k!

F (k)(a)

) l+1
k 2

l+1
k

k
Γ

(
l + 1

k

)

and for l odd

lim
N→∞

N
l+1
k

0∫
c

e−
N
2
F (x)xlφ(x) dx = −φ(a)

(
k!

F (k)(a)

) l+1
k 2

l+1
k

k
Γ

(
l + 1

k

)
.

Here, it is important to mention that the function F was approximated by a polynomial
of even order. Therefore, the transformation does not affect the exponential function.
This proves the statement of the theorem as long as we can justify the application of the
dominated convergence.

The dominated convergence is applicable because eq. (3.20) and y ≤ δ(NA)
1
k show that

a dominating and integrable function is given by

g(y) = Dyle−
yk

4 .

Some analytical calculations provide the minima of Fβ in different regimes of β.

Lemma 3.14 (see Proposition 5.16 in [Kir15])
Let Fβ be the function in eq. (3.11):

Fβ(t) =
1

β

(
1

2
log

(
1 + t

1− t

))2

+ log
(
1− t2

)
.

(1) If β < 1, then Fβ has a unique minimum at t = 0. Furthermore, F ′(0) = 0 and
F ′′(0) = 2( 1

β
− 1) > 0.

(2) If β = 1, then Fβ has a unique minimum at t = 0 with F ′(0) = F ′′(0) = F ′′′(0) = 0
and F (iv)(0) = 4 > 0.
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(3) For β > 0 the function Fβ has a unique minimum in [0, 1) at t0 > 0 and a unique
minimum in (−1, 0] at −t0 < 0. F ′β(t0) = F ′β(−t0) = 0 and F ′′β (t0) = F ′′β (−t0) > 0.
t0 is the unique strictly positive solution of t = tanh(βt). Fβ has a local maximum

at t = 0 with F ′β(0) = 0 and F ′′β (0) = 2
(

1
β
− 1
)
< 0.

The proof can be found in the appendix, see Lemma A.12.

We introduced the tools to derive the asymptotic behaviour of the correlation between
Curie-Weiss spins. Let aN , bN be sequences of real numbers. We write aN ≈ bN if
aN
bN

N→∞−→ 1. With the help of Laplace’s method (see Theorem 3.13) and the result about
Fβ (see Lemma 3.14), we are able to prove the following theorem:

Theorem 3.15 (see Corollary 28 in [HKW15])
Let ξ = (ξ1, . . . , ξN) be generated by a Curie-Weiss model with β > 0. Let l be an even
integer. Then,

(1) if β < 1:

ECW [ξ1 · . . . · ξl] ≈ (l − 1)!!

(
β

1− β

) l
2

N−
l
2 .

(2) if β = 1:

ECW [ξ1 · . . . · ξl] ≈ clN
− l

4 .

(3) if β > 1:

ECW [ξ1 · . . . · ξl] ≈ m(β)l,

where t = m(β) is the strictly positive solution of tanh(βt) = t.

Proof. We define

ZN(l) :=

1∫
−1

e−
N
2
Fβ(x)xl

1

1− x2
dx .

The partition function ZN,β of the Curie-Weiss model equals ZN(0) and Proposition 3.10
states that the correlation of spins can be expressed through ZN(l) as

ECW [ξ1 · . . . · ξl] =
ZN(l)

ZN(0)
. (3.21)
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We apply Laplace’s method to ZN(l) and use the insights about Fβ from Lemma 3.14.
For β ≤ 1, a = 0 and φ(x) = 1

1−x2 the requirements of Theorem 3.13 are fulfilled because

1∫
−1

exp (−Fβ(x))
1

1− x2
dx =

1∫
−1

exp

(
− 1

β
tanh−1(x)2

)
1

(1− x2)2
dx <∞.

If β < 1, we set k = 2 and with Theorem 3.13 and F ′′(0) = 21−β
β

, we conclude

N
l+1
2 ZN(l) ≈ 2φ(0)

(
2!

F ′′(0)

) l+1
2 2

l+1
2

2
Γ

(
l + 2

2

)
=

(
β

1− β

) l+1
2

Γ

(
l + 1

2

)
2
l+1
2 .

This leads to

ZN(l) ≈
(

β

1− β

) l+1
2

Γ

(
l + 1

2

)
2
l+1
2 N−

l+1
2 .

Together with eq. (3.21) we showed that

ECW [ξ1 · . . . · ξl] =
ZN(l)

ZN(0)
≈
(

β

1− β

) l
2

2
l
2

Γ
(
l+1
2

)
Γ
(

1
2

) N− l
2 .

With integration by parts it can be verified that Γ(x + 1) = xΓ(x) and by induction it
follows that for l even

2
l
2

Γ
(
l+1
2

)
Γ
(

1
2

) = (l − 1)!!.

This proves the first part.

Now assume that β = 1 and set k = 4 then with F
(iv)
β (0) = 4 Laplace’s method states

ZN(l) ≈ 2

(
4!

F
(iv)
β (0)

) l+1
4

2
l+1
4

4
Γ

(
l + 1

4

)
N−

l+1
4

=
1

2
12

l+1
4 Γ

(
l + 1

4

)
N−

l+1
4
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and in the same way as before

ECW [ξ1 · . . . · ξl] =
ZN(l)

ZN(0)
= clN

− l
4

with cl = 12
l
4 Γ
(
l+1
4

)
Γ
(

1
4

)−1
.

For β > 1 Lemma 3.14 states that Fβ has its minima at t0 and −t0. The binomial identity
leads to

1∫
0

e−
N
2
Fβ(x)xlφ(x) dx =

1∫
0

e−
N
2
Fβ(x)(x− t0 + t0)lφ(x) dx

=
l∑

j=0

(
l

j

)
tl−j0

1∫
0

e−
N
2
Fβ(x)(x− t0)jφ(x) dx (3.22)

and

0∫
−1

e−
N
2
Fβ(x)xlφ(x) dx =

l∑
j=0

(
l

j

)
(−t0)l−j

0∫
−1

e−
N
2
Fβ(x)(x− (−t0))jφ(x) dx . (3.23)

Because of the symmetry of Fβ and φ, a change of variables shows that

0∫
−1

e−
N
2
Fβ(x)(x+ t0)jφ(x) dx = (−1)j

1∫
0

e−
N
2
Fβ(x)(x− t0)jφ(x) dx . (3.24)

Since l is even, the identities in eqs. (3.22) and (3.23) together with eq. (3.24) prove that

ZN(l) =

1∫
−1

e−
N
2
Fβ(x)xlφ(x) dx = 2

l∑
j=0

(
l

j

)
tl−j0

1∫
0

e−
N
2
Fβ(x)(x− t0)jφ(x) dx .

In this form we apply Laplace’s method (see Theorem 3.13) with k = 2 and a = t0. The
requirements are fulfilled because∫ 1

0

exp
(
− 1

β
tanh−1(t)2

) |x− t0|
(1− x2)2

dx <∞.

Thus, the integrals where j is an odd number converge to zero even if multiplied by N
j+1

2 .
If j is even, the integrals multiplied by N

j+1
2 converge to different constants. In the limit
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N →∞ the integral with j = 0 is the leading term and we conclude that

ZN(l) ≈ 2tl0

1∫
0

e−
N
2
Fβ(x)φ(x) dx . (3.25)

Equation (3.25) in combination with Equation (3.21) proves the statement

ECW [ξ1 · . . . · ξl] =
ZN(l)

ZN(0)
≈ tl0.

3.2.4. Central Limit Theorem for the overlap of spins

From Theorem 3.15 we learn that the correlation vanishes if β ≤ 1 and N is going to
infinity. This is an important insight and possibly explains why the standard Hopfield
model is able to store Curie-Weiss patterns for β ≤ 1. In a large network the correlation
of spins is not strong enough to fundamentally change the functionality of the network.
Furthermore, we see that higher order correlations vanish even faster than lower order
correlations. We want to use Theorem 3.15 to prove a Central Limit Theorem for the
overlap of two independent copies of Curies-Weiss patterns.

Theorem 3.16 (Central Limit Theorem for the overlap of Curie-Weiss patterns)
Let ξ1, ξ2 be two independent copies of Curie-Weiss patterns for 0 < β < 1. The scaled
overlap m1(ξ2) obeys a Central Limit Theorem that means

1√
N
m1(ξ2) =

1√
N

N∑
j=1

ξ1
j ξ

2
j ⇒ N (0, 1)

Proof. We want to use the method of moments (see Theorem 30.2 in [Bil95]). For this,
we need to verify that all moments of the scaled overlap converge to the moments of a
standard normal distribution. Let k ∈ N be an odd number. The moment of the overlap
can be written as

E

( 1√
N

N∑
j=1

ξ1
j ξ

2
j

)k
 = N−

k
2

∑
i1,...,ik

E[ξ1
i1
· . . . · ξ1

ik
· ξ2

i1
· . . . · ξ2

ik
]

= N−
k
2

∑
i1,...,ik

(
E[ξ1

i1
· . . . · ξ1

ik
]
)2

.
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Here, we sum over all i1, . . . , ik ∈ {1, . . . , N}. It is possible that the same index appears
multiple times. Because of ξµj ∈ {−1, 1}, every time a particular spin appears twice or an
even number of times it is equal to one. Nevertheless, there always remain an odd number
of spins because k is odd. For every combination of indices i1, . . . , ik ∈ {1, . . . , N} there
exists an odd integer l(i1, . . . , ik) such that(

E[ξ1
i1
· . . . · ξ1

ik
]
)2

=
(
E[ξ1

1 · . . . · ξ1
l ]
)2

= 0.

The last equality follows with Theorem 3.15 because l is odd. With this we get

E

( 1√
N

N∑
j=1

ξ1
j ξ

2
j

)k
 = N−

k
2

∑
i1,...,ik

(
E[ξ1

i1
· . . . · ξ1

ik
]
)2

= 0

and showed that all odd moments are equal to zero.

It remains to show that for k ∈ N the moment

E

( 1√
N

N∑
j=1

ξ1
j ξ

2
j

)2k
 = N−k

∑
i1,...,i2k

(
E[ξ1

i1
· . . . · ξ1

i2k
]
)2

converges to (2k − 1)!! if N tends to infinity.

There are three aspects which determine the behaviour of the moment for N going to
infinity:

(1) The first one is the normalizing factor N−k.

(2) The second part refers to the expectation values of the form E[ξ1
i1
· . . . · ξ1

i2k
]. Here,

the tricky part is that the order of E[ξ1
i1
· . . . · ξ1

i2k
] depends on the amount of distinct

indices in i1, . . . , i2k which appear odd number of times. Again, spins which occur
in pairs and therefore have an even exponent, get cancelled out. In this case with 2k
indices there always remains an even number (including zero) of spins. In contrast
to the odd moments, the order of E[ξ1

1 · . . . · ξ1
l ] (with l even) now changes with β as

seen in Theorem 3.15.

(3) For the last one we have to consider the number of combinations to draw indices
i1, . . . , i2k out of {1, . . . , N} with the constraint that a specific number of distinct
indices have an odd exponent.

To analyse
∑(

E[ξ1
i1
· . . . · ξ1

i2k
]
)2

, we split the sum in parts where the number of distinct
indices occurring in i1, . . . , i2k is fixed. Because of the identical distribution of spin vectors
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with the same length, we can write:

∑
i1,...,i2k

(
E[ξ1

i1
· . . . · ξ1

i2k
]
)2

=
2k∑
m=1

∑
i1,...,i2k∈{1,...,N}
|{i1, . . . , i2k}| = m

(
E[ξ1

i1
· . . . · ξ1

i2k
]
)2

=
2k∑
m=1

(
N

m

) ∑
i1,...,i2k∈{1,...,m}
|{i1, . . . , i2k}| = m

(
E[ξ1

i1
· . . . · ξ1

i2k
]
)2

.

The factor
(
N
m

)
can be split into N !

(N−m)!
, which has the order Nm and is competing with

the factor N−k, and 1
m!

, which will be important to get a convergence to (2k − 1)!!. An
even moment has the form

E

( 1√
N

N∑
j=1

ξ1
j ξ

2
j

)2k
 = N−k

2k∑
m=1

N !

(N −m)!

1

m!

∑
i1,...,i2k∈{1,...,m}
|{i1, . . . , i2k}| = m

(
E[ξ1

i1
· . . . · ξ1

i2k
]
)2

=
2k∑
m=1

Nm−k (1 + o(1))
1

m!

∑
i1,...,i2k∈{1,...,m}
|{i1, . . . , i2k}| = m

(
E[ξ1

i1
· . . . · ξ1

i2k
]
)2

.

There are three regimes, 1.) m < k, 2.) m > k and 3.) m = k, with different sorts of
behaviour for N going to infinity:

(1) The number of distinct indices m in i1, . . . , i2k is less than k:

In the easiest case m is less than k and with this Nm−k goes to zero. The expected
value is bounded by one. Therefore, the inner sum can be bounded by a con-
stant C(k,m) counting the possible permutations to draw indices i1, . . . , i2k from
{1, . . .m} where all m indices occur at least once. Thus,

0 ≤
k−1∑
m=1

Nm−k(1 + o(1))
1

m!

∑
i1,...,i2k∈{1,...,m}
|{i1, . . . , i2k}| = m

(
E[ξ1

i1
· . . . · ξ1

i2k
]
)2

≤ Nm−k (k − 1)
C(k,m)

m!
(1 + o(1)) −→ 0

These arguments are valid for all β > 0.

(2) The number of distinct indices m appearing in i1, . . . , i2k is greater than
k:

The problem in this case is, that the number of combinations to choose m indices
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out of {1, . . . , N} is of order Nm beating the normalizing factor N−k. On the other
side, with the constraint that all of these m indices need to appear, there are less
indices left to cancel out spins in the expectation value. This leads the expectation
values to decrease faster to zero while N is going to infinity.

In the inner sum we draw exactly 2k times and need to have m distinct indices.
Thus, at most 2k −m ≥ 0 indices can be drawn at least twice. Therefore, at least
2k − 2(2k − m) = 2(m − k) ≥ 2 > 0 (2k at all and 2k − m twice) indices have
an odd exponent. From Theorem 3.15 it follows that E[ξ1

i1
· . . . · ξ1

i2k
]2 is at most of

order O(N−2(m−k)) (meaning that it could have an order O(N−l) with l > 2(m−k))
because at least 2(m− k) spins remain with an odd exponent. So as long as β < 1,
we get

0 ≤
2k∑

m=k+1

Nm−k(1 + o(1))
1

m!

∑
i1,...,i2k∈{1,...,m}
|{i1, . . . , i2k}| = m

(
E[ξ1

i1
· . . . · ξ1

i2k
]
)2

≤
2k∑

m=k+1

Nm−k O(N−2(m−k))
C(k,m)

m!
(1 + o(1))

=
2k∑

m=k+1

O(N−(m−k))
C(k,m)

m!
(1 + o(1)) −→ 0.

Therefore, this part of the sum is of order O(N−(m−k)) = o(1) with m− k > 0.

(3) The number of distinct indices m in i1, . . . , i2k is equal to k:

Form = k the normalizing factor and the number of combinations to draw m distinct
indices cancel each other out. The expectation values determine the behaviour for
large N . In all combinations where at least one spin remains (and because 2k is
even at least two spins remain) with an odd exponent, the expectation value is of

order O(N−2) = o(N−1) for β < 1 (and O(N−
1
2 ) = o(1) for β = 1). The number of

permutations for indices i1, . . . , i2k out of {1, . . . ,m} with at least one index with
an odd exponent is independent of N . Thus, for β ≤ 1

(1 + o(1))
1

m!

∑
i1,...,i2k∈{1,...,m}
|{i1, . . . , i2k}| = m

(
E[ξ1

i1
· . . . · ξ1

i2k
]
)2

= o(1) + (1 + o(1))
1

m!

∑
i1,...,ik∈{1,...,m}
|{i1, . . . , ik}| = m

(
E
[(
ξ1
i1

)2 · . . . ·
(
ξ1
ik

)2
] )2

= o(1) + (1 + o(1))
1

m!
C(m,m).
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The summand with m = k converges to a constant which is determined by the
number of choices to draw 2k indices out of {1, . . . ,m} such that each of k distinct
indices appear exactly twice. To quantify C(m,m), we change the perspective and
draw k times the two spots out of {1, . . . , 2k} for each index. Therefore,

C(k, k) =

(
2k

2

)(
2k − 2

2

)
. . .

(
2

2

)
=

(2k)!

2k
.

With this, we showed that the summand for m = k is equal to

o(1) + (1 + o(1))
1

m!
C(k, k) =

(2k)!

2kk!
(1 + o(1))

= (2k − 1)!!(1 + o(1)).

Altogether, we showed that

E

( 1√
N

N∑
j=1

ξ1
j ξ

2
j

)2k
 = (2k − 1)!! (1 + o(1))

for β < 1 and for all k ∈ N. With the convergence of all moments to the moments of
a standard normal distributed random variable, we proved a Central Limit Theorem for
the overlap of two independent Curie-Weiss patterns if β < 1.

3.3. Main Result for Curie-Weiss patterns and the
polynomial dynamics

Let ξ1, . . . , ξM be independent copies of ξ, which is generated according to a Curie-Weiss
model for β < 1. An important aspect of the proof in Theorem 2.1 was the large deviation
principle of the overlap. Since we proved a Central Limit Theorem (see Theorem 3.16),
we expect that the overlap of Curie-Weiss patterns in a large network behaves in a similar
way as in the independent case. Therefore, we hope that an exponential bound for a
tail event can be found in this setting and helps to prove a lower bound for the storage
capacity with Curie-Weiss patterns. The next theorem states such an exponential bound
for a tail event of an overlap.

Theorem 3.17
Let ξ1 be a Curie-Weiss pattern for β < 1. Then for γ > 0

PCWβ
(√

Nm1(τ) > γ
)
≤ 1

ZN,β
√

1− β
exp

(
−(1− β)γ2

2

)
.
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for every τ ∈ {−1, 1}N .

Proof. First, we derive an upper bound for the moment generating function

ECW
[
exp

(
t
√
Nm1(τ)

)]
= ECW

[
exp

(
t√
N

N∑
j=1

ξ1
j τj

)]
,

where t > 0 and τ = (τj)j≤N ∈ {−1, 1}N is a fixed configuration. Denote by k the amount
of positive spins in τ . Without loss of generality we set τj = 1 for j ≤ k and τj = −1 for
k < j ≤ N . For a configuration σ = (σj)j≤N ∈ {−1, 1}N define

y1(σ) :=
1√
N

k∑
j=1

σj and y2(σ) :=
1√
N

N∑
j=k

σj.

as well as y(σ) := y1(σ) + y2(σ). The probability of ξ1 to be equal to a specific spin
configuration σ in the Curie-Weiss model is given by

PCWβ
(
ξ1 = σ

)
=

2−N

ZN,β
exp

β
2

(
1√
N

N∑
j=1

σj

)2
 =

2−N

ZN,β
exp

(
β

2
y(σ)2

)
.

(see eq. (3.5)). With this we get

ECW
[

exp

(
t√
N

N∑
j=1

ξ2
j τj

)]

= ECW
[

exp

(
t√
N

(
k∑
j=1

ξ2
j −

N∑
j=k+1

ξ2
j

))]

=
∑

σ∈{−1,1}N
exp

(
t
(
y1(σ)− y2(σ)

)) 2−N

ZN,β
exp

(
β

2
y(σ)2

)
.

The Hubbard-Stratonovich transformation (see Theorem 3.9) for a = 1
2

and b =
√
βy

justifies the equation

ECW
[

exp

(
t√
N

N∑
j=1

ξ1
j τj

)]

=
2−N

ZN,β

∑
σ∈{−1,1}N

exp
(
t
(
y1(σ)− y2(σ)

)) ∞∫
−∞

1√
2π

exp

(
−1

2
s2 + y(σ)s

√
β

)
ds .
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We sum over a finite number of indices and the linearity of the integral leads to

1√
2π

2−N

ZN,β

∞∫
−∞

∑
σ∈{−1,1}N

exp
(
t
(
y1(σ)− y2(σ)

))
exp

(
−1

2
s2 + y(σ)s

√
β

)
ds

=
1√
2π

2−N

ZN,β

∞∫
−∞

∑
σ∈{−1,1}N

exp
(

(t+ s
√
β)y1(σ)

)
exp

(
(−t+ s

√
β)y2(σ)

)
e−

s2

2 ds

=
1√
2π

2−N

ZN,β

∞∫
−∞

∑
(σj)j≤k

exp
(

(t+ s
√
β)y1(σ)

) ∑
(σj)j>k

exp
(

(−t+ s
√
β)y2(σ)

)
e−

s2

2 ds .

For every spin we sum over the two possible states −1 and 1 therefore the exponential
becomes a disturbed version of the cosh-term, which appeared in the case of independent
patterns (see proof of Theorem 2.1) before:

∑
σ1∈{−1,1}

exp

(
(t+ s

√
β)

σj√
N

)
= 2 cosh

(
(t+ s

√
β)√

N

)
.

This leads to

1√
2π

2−N

ZN,β

∞∫
−∞

(
2 cosh

(
t+ s

√
β√

N

))k (
2 cosh

(
−t+ s

√
β√

N

))N−k
e−

s2

2 ds

=
1√
2π

1

ZN,β

∞∫
−∞

cosh

(
t+ s

√
β√

N

)k
cosh

(
−t+ s

√
β√

N

)N−k
e−

s2

2 ds .

For every t ∈ R we can bound cosh(t) ≤ exp
(
t2

2

)
and conclude that the moment gener-

ating function is bounded by

ECW
[

exp

(
t√
N

N∑
j=1

ξ1
j τj

)]

≤ 1√
2π

1

ZN,β

∞∫
−∞

exp

(
k

2N

(
t+ s

√
β
)2

+
N − k

2N

(
−t+ s

√
β
)2
)
e−

s2

2 ds .

If we expand the quadratic terms, we get

1√
2π

1

ZN,β

∞∫
−∞

exp

(
k

2N

(
t2 + 2ts

√
β + s2β

)
+
N − k

2N

(
t2 − 2ts

√
β + s2β

))
e−

s2

2 ds
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=
1√
2π

1

ZN,β

∞∫
−∞

exp

(
1

2

(
t2 + s2β

)
− N − 2k

N
ts
√
β − 1

2
s2

)
ds .

In the next step we use the Hubbard-Stratonovich transformation (see Theorem 3.9 with
a = 1−β

2
and b = −N−2k

N
t
√
β) and form the integral back to an exponential term:

1√
2π

1

ZN,β
exp

(
t2

2

) ∞∫
−∞

exp

(
−1

2
s2(1− β)− N − 2k

N
ts
√
β

)
ds

=
1√
2π

1

ZN,β
exp

(
t2

2

)√
2π

1− β
exp

((
N − 2k

N

)2
βt2

2(1− β)

)

=
1√

1− βZN,β
exp

(
t2

2

[
1 +

(
N − 2k

N

)2
β

1− β

])
.

The number of negative spins in τ was denoted by k ∈ {0, . . . , N}. Thus, N − 2k ∈
{−N, . . . , N} as well as

(
N−2k
N

)2 ∈ [0, 1]. An upper bound is therefore

1√
1− βZN,β

exp

(
t2

2

[
1 +

β

1− β

])
=

1√
1− βZN,β

exp

(
1

1− β
t2

2

)
because 0 < β < 1. The proof of the theorem is completed after using an exponential
Chebyshev inequality. With cN = (

√
1− βZN,β)−1 and t = (1− β)γ, we conclude that

PCWβ
(√

Nm1(τ) > γ
)
≤ exp (−γt)ECW

[
exp

(
t√
N

N∑
j=1

ξ1
j τj

)]

≤ cN exp

(
−γt+

1

1− β
t2

2

)
= cN exp

(
−(1− β)γ2

2

)
.

In Theorem 3.2 we proved that ZN,β → σCW =
√

1− β−1
. Thus, cN converges to one for

N →∞.

With the help of Theorem 3.17, we are able to calculate a lower bound for the storage
capacity of the Hopfield model with polynomial dynamics T̃ (see eq. (2.4)) and patterns
which are generated according to a Curie-Weiss model with 0 < β < 1 as long as n− 1 is
chosen to be even.
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Theorem 3.18
Let M = Nn−1

cn log(N)
and let ξ1, . . . , ξM be M independent patterns chosen according to Curie-

Weiss model with β < 1. Let n− 1 be an even integer. The Hopfield model with dynamics
T̃ can store at least M patterns for cn > 2(2n− 3)!!σ

2(n−1)
CW if one wants a fixed pattern to

be a fixed point of the dynamics with a probability converging to one.

Moreover fix ρ ∈ [0, 1
2
). If cn >

2(2n−3)!!σ
2(n−1)
CW

(1−2ρ)2(n−1) , then for any ξ̃ν taken uniformly at random

from S(ξν , ρN), where ρN is assumed to be an integer, it follows that

PCWβ
(
T̃ (ξ̃ν) = ξν

)
= 1−RN ,

where RN → 0 for N →∞.

Furthermore, if cn >
2n(2n−3)!!σ

2(n−1)
CW

(1−2ρ)2(n−1) , then

PCWβ
(
∀µ ≤M : T̃ (ξ̃µ) = ξµ

)
= 1−RN ,

where RN → 0 for N →∞.

Proof. Similarly to the proof of Theorem 2.1, we assume that the network consists of
N + 1 (instead of N) neurons. Without loss of generality we focus on pattern ξ1 resp.

ξ̃1 ∈ S(ξ1, ρN). Now with the same arguments which we used to derive an upper bound
in the case of i.i.d. patterns (see eq. (2.8)), we can conclude that

PCWβ
(
Ti(ξ̃

1) 6= ξ1
i

)
≤ e−t(1−2ρ)n−1Nn−1u(N) ECW

[
exp

(
−t

M∑
µ=2

ξ1
i ξ
µ
i N

n−1mµ
i (ξ̃1)n−1

)]
,

(3.26)

where u(N)
N→∞−→ 1. In contrast to the proof of Theorem 2.1, the spins in one pattern are

not independent. Thus, we cannot use a statement like Lemma 1.2. But for the moment
generating function conditioned on ξ1 and ξ̃1, we can use the independence of patterns
ξ2, . . . , ξM :

ECW
[

exp

(
−t

M∑
µ=2

ξ1
i ξ
µ
i N

n−1mµ
i (ξ̃1)n−1

)]

= ECW
[
ECW

[
exp

(
−t

M∑
µ=2

ξ1
i ξ
µ
i N

n−1mµ
i (ξ̃1)n−1

) ∣∣∣ ξ1, ξ̃1

]]

= ECW
[
ECW

[
exp

(
−tξ1

i ξ
2
iN

n−1m2
i (ξ̃

1)n−1
) ∣∣∣ ξ1, ξ̃1

]M−1
]
.
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The strategy is to show that the conditional moment generating function can still be
bounded similar to the i.i.d. case. By Theorem 3.17 the probability of large values for
the overlap decays exponentially fast for every realization of ξ1 resp. ξ̃1. Furthermore,
higher order terms of the Taylor expansion can be bounded with the help of a truncation
argument and for the critical values we use that the sum of spins obey a Central Limit
Theorem (see Theorem 3.2).

We want to work with an arbitrary realization of ξ̃1 and separate large values of the
overlap through the random set

A = Aξ̃1 =

{
(σj)j≤N :

∣∣∣ 1√
N

∑
j 6=i

ξ̃1
jσj

∣∣∣ ≤ γ

}

for γ > 0. The moment generation function conditioned on ξ1 and ξ̃1 can be split into
parts where {ξ2 ∈ A} respectively {ξ2 ∈ Ac} holds:

ECW
[
exp

(
−tξ1

i ξ
µ
i N

n−1m2
i (ξ̃

1)n−1
) ∣∣∣ ξ1, ξ̃1

]
= ECW

[
exp

(
−tξ1

i ξ
µ
i N

n−1m2
i (ξ̃

1)n−1
) (

1{ξ2∈Ac} + 1{ξ2∈A}
) ∣∣∣ ξ1, ξ̃1

]
. (3.27)

In the first part of eq. (3.27) we bound the exponential function by its maximal value:

ECW
[
exp

(
−tξ1

i ξ
2
iN

n−1m2
i (ξ̃

1)n−1
)
1{ξ2∈Ac}

∣∣∣ ξ1, ξ̃1
]

≤ exp
(
tNn−1

)
PCWβ

(
ξ2 ∈ Ac

∣∣∣ ξ1, ξ̃1
)
. (3.28)

The conditional probability can be handled with the help of Theorem 3.17, which provides
a large deviation estimate for the overlap with an arbitrary deterministic configuration.
Whether the summation includes i or not makes no difference. Thus, applying Theorem
3.17 leads to

PCWβ
(
ξ2 ∈ Ac

∣∣∣ ξ̃1
)

= PCWβ

(
1√
N

∑
j 6=i

ξ̃1
j ξ

2
j > γ

∣∣∣ ξ̃1

)
+ PCWβ

(
1√
N

∑
j 6=i

(
−ξ̃1

j

)
ξ2
j > γ

∣∣∣ ξ̃1

)

≤ 2c̃N exp

(
−(1− β)γ2

2

)
, (3.29)

where c̃N = (ZN,β
√

1− β)−1. The estimates in eqs. (3.28) and (3.29) show that

ECW
[
exp

(
−tξ1

i ξ
2
iN

n−1m2
i (ξ̃

1)n−1
)
1{ξ2∈Ac}

∣∣∣ ξ1, ξ̃1
]
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≤ 2c̃N exp

(
tNn−1 − (1− β)γ2

2

)
. (3.30)

Choose t = an
M

for an > 0 and γ = log(N)τ for a fixed τ > 1
2
. Then

t =
ancn log(N + 1)

(N + 1)n−1
≤ ancn log(N)

Nn−1

and the bound in eq. (3.30) is smaller than

2c̃N exp

(
tNn−1 − (1− β)γ2

2

)
= 2c̃N exp

(
log(N)

[
ancn −

1− β
2

log(N)2τ−1

])
.

Because of 0 < β < 1 and τ > 1
2

we know that 2τ − 1 > 0. Thus, for large N the term in
brackets can be bounded from above by a constant less than zero. With this we showed
that

ECW
[
exp

(
−tξ1

i ξ
2
iN

n−1m2
i (ξ̃

1)n−1
)
1{ξ2∈Ac}

∣∣ ξ1, ξ̃1
]

≤ 2c̃N exp

([
ancn −

1− β
2

log(N)2τ−1

]
log(N)

)
(3.31)

= 2c̃N exp (h1(N)) = o(1),

where h1(N) = (ancn − 1−β
2

log(N)2τ−1) log(N).

For the second part of eq. (3.27) we use the Taylor expansion of the exponential function:

ECW
[
exp

(
−t ξ1

i ξ
2
iN

n−1m2
i (ξ̃

1)n−1
)
1{ξ2∈A}

∣∣∣ ξ1, ξ̃1
]

= ECW
[(

1 +
∞∑
k=1

(−t)k

k!

(
ξ1
i

)k (
ξ2
i

)k
Nk(n−1)m2

i (ξ̃
1)k(n−1)

)
1{ξ2∈A}

∣∣∣ ξ1, ξ̃1

]

≤ 1 +
∞∑
k=1

(−t)k

k!

(
ξ1
i

)k · ECW [(ξ2
i

)k
Nk(n−1)m2

i (ξ̃
1)k(n−1)

1{ξ2∈A}

∣∣∣ ξ1, ξ̃1
]
.

Large outliers of the overlap are eliminated by the indicator function for the event {ξ2 ∈ A}
and this truncation guarantees that

|m2
i (ξ̃

1)| ≤ N−
1
2γ = N−

1
2 log(N)τ .

Together with ξ1
i , ξ

2
i ≤ 1 and PCWβ

(
ξ2 ∈ A

∣∣∣ ξ1, ξ̃1
)
≤ 1, we can deduce for the higher
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order terms that

∞∑
k=3

(−t)k

k!

(
ξ1
i

)k · ECW [(ξ2
i

)k
Nk(n−1)m2

i (ξ̃
1)k(n−1)

1{ξ2∈A}

∣∣∣ ξ1, ξ̃1
]

≤
∞∑
k=3

tk

k!
·N

k(n−1)
2 γk(n−1)

≤

(
tN

n−1
2 γn−1

)3

6

∞∑
k=0

(
tN

n−1
2 γn−1

)k
k!

≤ t3N3n−1
2 γ3(n−1).

For N large the series is bounded by e because with t ≤ ancn log(N)
Nn−1 and γ = log(N)τ we

have that

tN
n−1

2 γn−1 ≤ ancn log(N)

Nn−1
N

n−1
2 log(N)τ(n−1) = ancnN

−n−1
2 log(N)τ(n−1)+1 → 0

as N tends to infinity. Thus, tN
n−1

2 γn−1 ≤ 1 for N large enough.

For the first order term it is important that n − 1 is an even number. Corollary 3.11
states that the expectation value of an odd number of spins is equal to zero because of
their symmetric distribution. We know that k(n− 1) + 1 is an odd number. Thus, for all
k odd, especially for k = 1, it follows with Corollary 3.11 that

− t
(
ξ1
i

)k ECW
[(
ξ2
i

)k
Nk(n−1)m2

i (ξ̃
1)k(n−1)

∣∣∣ ξ1, ξ̃1
]

= − t
∑

j1,...,jk(n−1)

ξ1
i ξ̃

1
j1
· . . . · ξ̃1

jk(n−1)
· ECW

[
ξ2
i ξ

2
j1
· . . . · ξ2

jk(n−1)

∣∣∣ ξ1, ξ̃1
]

= 0.

The second order term of the Taylor expansion is bounded by

t2

2
ECW

[
N2(n−1)m2

i (ξ̃
1)2(n−1)

1{ξ2∈A}

∣∣∣ ξ1, ξ̃1
]
≤ t2

2
Nn−1 (2n− 3)!! σ

2(n−1)
CW (1 + ε),

which follows with the fact that for every ε > 0 and N large enough

ECW
[
N (n−1)m2

i (ξ̃
1)2(n−1)

1{ξ2∈A}

∣∣∣ ξ1, ξ̃1
]

= N−(n−1)
∑

j1,...,j2(n−1)

ξ̃1
j1
· . . . · ξ̃1

j2(n−1)
· ECW

[
ξ2
j1
· . . . · ξ2

j2(n−1)
1{ξ2∈A}

∣∣∣ ξ1, ξ̃1
]
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≤ ECW
( 1√

N

∑
j 6=i

ξ2
j

)2(n−1)
 ≤ κ2(n−1) σ

2(n−1)
CW (1 + ε).

Here, we bounded the spins by one and used Lemma 3.5. Furthermore, σ2
CW = (1− β)−1

and κ2l = (2l − 1)!!.

Altogether, we showed for the second part of eq. (3.27) that

ECW
[
exp

(
−t ξ1

i ξ
2
iN

n−1m2
i (ξ̃

1)n−1
)
1{ξ2∈A}

∣∣∣ ξ1, ξ̃1
]

≤ 1 +
t2

2
Nn−1κ2(n−1)σ

2(n−1)
CW (1 + ε) +

(
tN

n−1
2 γn−1

)3

≤ exp

(
t2

2
Nn−1κ2(n−1)σ

2(n−1)
CW (1 + ε) +

(
tN

n−1
2 γn−1

)3
)

= exp (h2(N)) , (3.32)

where h2(N) = t2

2
Nn−1κ2(n−1)σ

2(n−1)
CW (1 + ε) +

(
tN

n−1
2 γn−1

)3

.

We know that

M exp (h1(N)) =
Nn−1

cn log(N)
exp

([
ancn −

1− β
2

log(N)2τ−1

]
log(N)

)
= o(1) (3.33)

because with τ > 1
2

and for N large enough

ancn −
1− β

2
log(N)2τ−1 ≤ −(n− 1)

is true. Similar to the case of i.i.d. patterns (see eq. (2.16)), the statement in eq. (3.33) is
sufficient to conclude that the term in eq. (3.32) determines the order of the upper bound
for the moment generating function:

ECW
[
ECW

[
exp

(
−tξ1

i ξ
2
iN

n−1m2
i (ξ̃

1)n−1
) ∣∣∣ ξ1, ξ̃1

]M]
≤ exp (Mh2(N)) (1 + o(1)).

Going back to eq. (3.26), we showed with the previous calculations that

PCWβ
(
Ti(ξ

1) 6= ξ1
i

)
≤ exp

(
−t(1− 2ρ)n−1Nn−1u(N)

)
· exp (Mh2(N)) · (1 + o(1))

= exp
(
− t(1− 2ρ)n−1Nn−1u(N) +

t2

2
MNn−1κ2(n−1)σ

2(n−1)
CW (1 + ε) +M

(
tN

n−1
2 γn−1

)3

+ o(1)
)
.

Analogously to the proof of Theorem 2.1 (see eq. (2.18)), we know that for every 0 < ε̃ < 1
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we can choose N large enough such that

u(N)
log(N + 1)

log(N)

( N

N + 1

)n−1

≥ (1− ε̃).

Hence, we deduce that for all ε, ε̃ > 0 and N large enough

PCWβ
(
Ti(ξ

1) 6= ξ1
i

)
≤ exp

(
−ancn(1− 2ρ)n−1 log(N)(1− ε̃) +

a2
ncn
2

(2n− 3)!!σ
2(n−1)
CW (1 + ε) log(N) + o(1)

)
= exp

([
−ancn

(
(1− 2ρ)n−1(1− ε̃)− an(2n− 3)!!σ

2(n−1)
CW (1 + ε)

2

)]
log(N) + o(1)

)
.

We use a similar argumentation as in the independent case. First choose

an =
(1− 2ρ)n−1

(2n− 3)!!σ
2(n−1)
CW

(1− ε̃)
(1 + ε)

.

Then, the term in brackets equals

−ancn

(
(1− 2ρ)n−1(1− ε̃)− an(2n− 3)!!σ

2(n−1)
CW (1 + ε)

2

)
= − cn(1− 2ρ)2(n−1)

2(2n− 3)!!σ
2(n−1)
CW

(1− ε̃)2

(1 + ε)
.

These observations are true for all ε, ε̃ > 0 and N large enough. Therefore, we conclude
that

PCWβ
(
∃i ≤ N : Ti(ξ

1) 6= ξ1
i

)
≤ exp

(
log(N)

[
1− cn(1− 2ρ)2(n−1)

2(2n− 3)!!σ
2(n−1)
CW

]
+ o(1)

)
,

which converges to zero due to the assumption that

cn >
2 (2n− 3)!! σ

2(n−1)
CW

(1− 2ρ)2(n−1)
.

The last statement of the theorem follows with

PCWβ
(
∃µ ≤M, ∃i ≤ N : Ti(ξ

1) 6= ξ1
i

)
≤ exp

(
log(N)

[
1− cn(1− 2ρ)2(n−1)

2(2n− 3)!!σ
2(n−1)
CW

]
+ (n− 1) log(N)− log(cn log(N)) + o(1)

)

≤ exp

(
log(N)

[
n− cn(1− 2ρ)2(n−1)

2(2n− 3)!!σ
2(n−1)
CW

]
+ o(1)

)
,
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which converges to zero as long as

cn >
2n (2n− 3)!! σ

2(n−1)
CW

(1− 2ρ)2(n−1)
.

3.4. Conclusions about the polynomial dynamics

Theorem 2.1 and Theorem 3.18 proved that the Hopfield model with a polynomial dy-
namics T̃ is able to store at least Nn−1

cn log(N)
patterns. This fits to the results of Newman in

[New88], where the storage capacity increased from αN to αN l−1 by using higher order
overlaps. In contrast to Newman, our results consider a perfect retrieval of patterns.
Additionally to the stability of the patterns, the net is able to correct an error rate of
ρ ∈ [0, 1

2
).

Furthermore, with Theorem 3.18 we showed that the network is able to store patterns with
correlated spins. A result for the standard Hopfield model (n = 2) and a more general
setting of correlated patterns were achieved in [LV05]. In contrast to these results, we
considered a more general version of the dynamics and proved results for a polynomial
interaction function xn with n odd but only for Curie-Weiss patterns with β < 1. The
assumption that n is an odd integer was an important argument to achieve a symmetric
distribution in the first order term of the Taylor expansion. While using higher order
overlaps, a distinction between an odd and an even exponent and a different behaviour of
the net resp. spin glass in these two cases were also observed in [Tal00b; BN01].
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4. Generalized Hopfield model with
weights

The standard Hopfield model allows all neurons to communicate with each other and there
are no further restrictions on the interaction between them. The underlying structure
of the model is a complete graph. Furthermore, the influence between two neurons is
symmetric and only depends on the patterns ξ1, . . . , ξM (see eq. (1.1)). In a more general
approach one can define the Hopfield model on an arbitrary graph G = (V,E). Here, V is
a set containing all neurons and E is a set of undirected edges, which determine whether
two neurons interchange signals or not. Results about Hopfield models on random graphs
can be found for example in [BG92; BG93; KP93; LV11; LV15]. These models allow
neurons to interact with each other only if they are directly connected in the underlying
graph. A slightly different idea is used in the hierarchical Hopfield model in which they
only have to be connected through a path of any length. In this approach neurons influence
each other although they are separated by several edges. Direct neighbours interact in
the same way as before, but neurons which are more than one edge apart have a weaker
signal strength. For this purpose a new parameter ϕ is introduced, which determines
the decrease of the signal strength at greater distances. Agliari et. al. introduce the
hierarchical Hopfield model in their publications [Agl+15a; Agl+15b] through recursively
defined Hamiltonians.

4.1. The hierarchical Hopfield model

Set H0(σ) = 0 for σ ∈ {−1, 1}. For k ≥ 1 and a configuration σ = (σj)1≤j≤2k+1 define the
Hamiltonian recursively through

Hk+1(σ) = Hk(σ1) +Hk(σ2)− 1

22ϕ(k+1)

2k+1∑
i<j=1

(
M∑
µ=1

ξµi ξ
µ
j

)
σiσj, (4.1)

where σ1 = (σj)1≤j≤2k and σ2 = (σj)2k+1≤j≤2k+1 . As mentioned before, ϕ ∈ (1
2
, 1) is the

parameter to weaken the influence of signals at greater distances. The patterns ξ1, . . . , ξM

are assumed to be independent with independent spins where each spin is chosen uniformly
at random from {−1, 1}.
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4. Generalized Hopfield model with weights

The basic idea is that in each iteration we combine two copies of the previous network
(represented by the configurations σ1 and σ2), including their existing connections, and
build a new network by linking these two copies together (see fig. 4.1). All paths between
the nodes have weights assigned to them. These weights consist of two parts: a term
representing the influence through the patterns (Hebb rule, see eq. (1.1)) and a discount
factor. The discount factor depends on the iteration at which the path is firstly built.
Thus, the signal they share is weaker if they are firstly connected to each other at a
later step of the iteration. In fig. 4.1 the black connections are built in the first step,
the red connections are built in the second step and the blue connections are built in
the third step of the iteration. The form of the discount factor and the similarity of

k = 1

σ1

σ2

k = 2

σ1

σ2

k = 3

σ1

σ2

Figure 4.1.: Recursion of the Hamiltonian of the hierarchical Hopfield model (adapted
from Figure 1 in [Agl+15b])

the hierarchical Hopfield model to the standard Hopfield model is easier to see if the
Hamiltonian is written down explicitly. For this, we denote the first iteration where the
nodes i and j are connected by dij.

Theorem 4.1
Let Hk be recursively defined through eq. (4.1). For every k ∈ N and σ ∈ {−1, 1}2k the
Hamiltonian after k iterations is equal to

Hk(σ) = −
∑
i<j

Jijσiσj (4.2)

with

Jij = J(dij, k, ϕ) =
4−ϕ(dij−1) − 4−ϕk

4ϕ − 1

M∑
µ=1

ξµi ξ
µ
j . (4.3)

Proof. The statement can be proven by induction. With the initial value H0(σ) = 0 and
k = 1, the recursive formula in eq. (4.1) leads to

H1(σ) = H0(σ1) +H0(σ2)− 1

22ϕ

2∑
i,j=1
i<j

Wij σiσj = − 1

4ϕ

2∑
i,j=1
i<j

Wij σiσj.

74



4.1. The hierarchical Hopfield model

Wij is defined as in eq. (1.1). The two available nodes are connected in the first step of
the iteration, and thus, dij = 1. The fact that

4−ϕ(dij−1) − 4−ϕk

4ϕ − 1
=

4−ϕ(1−1) − 4−ϕ

4ϕ − 1
=

1− 4−ϕ

4ϕ − 1
=

1

4ϕ

proves the statement for k = 1.

Assume that eq. (4.2) is true for an arbitrary but fixed k. With the recursion rule it
follows that

Hk+1(σ) = Hk(σ1) +Hk(σ2)− 1

22ϕ(k+1)

2k+1∑
i,j=1
i<j

Wijσiσj, (4.4)

where Hk(σ1) resp. Hk(σ2) each depend on one half of the nodes. In the same way we
split the last sum of eq. (4.4) into

2k+1∑
i,j=1
i<j

Wijσiσj =
2k∑

i,j=1
i<j

Wijσiσj

︸ ︷︷ ︸
spins of σ1

+
2k+1∑

i,j=2k+1
i<j

Wijσiσj

︸ ︷︷ ︸
spins of σ2

+
∑

1≤i≤2k

2k+1≤j≤2k+1

Wijσiσj

︸ ︷︷ ︸
connections between σ1, σ2

.

Together with the induction hypothesis for Hk(σ1), we conclude

Hk(σ1)− 1

22ϕ(k+1)

2k∑
i,j=1
i<j

Wijσiσj = −
2k∑

i,j=1
i<j

(
4−ϕ(dij−1) − 4−ϕk

4ϕ − 1
+

1

22ϕ(k+1)

)
Wijσiσj

= −
2k∑

i,j=1
i<j

4−ϕ(dij−1) − 4−ϕ(k+1)

4ϕ − 1
Wijσiσj.

The same equality can be shown for Hk(σ2) and the spins of σ2. All connections between
σ1 and σ2 appear for the first time at iteration k + 1. For these i, j’s we have dij = k + 1
and in this case

4−ϕ(dij−1) − 4−ϕ(k+1)

4ϕ − 1
=

1

22ϕ(k+1)
.
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Altogether this proves

Hk+1(σ) = Hk(σ1)− 1

22ϕ(k+1)

2k∑
i,j=1
i<j

Wijσiσj +Hk(σ2)− 1

22ϕ(k+1)

2k+1∑
i,j=2k+1
i<j

Wijσiσj

− 1

22ϕ(k+1)

∑
1≤i≤2k

2k+1≤j≤2k+1

Wijσiσj

= −
∑
i<j

4−ϕ(dij−1) − 4−ϕ(k+1)

4ϕ − 1
Wijσiσj = −

∑
i<j

J(dij, k + 1, ϕ) σiσj.

The explicit formula in eq. (4.2) for the Hamiltonian of the hierarchical Hopfield model
compared to the Hamiltonian of the standard Hopfield model (see eq. (1.9) with h = 0)
shows the additional discount factor which comes into play:

4−ϕ(dij−1) − 4−ϕk

4ϕ − 1
. (4.5)

The (Jij)i,j from eq. (4.3), which are equal to the discount factor multiplied by the weight
according to the Hebb rule, determine the influence of one neuron to another. In eq. (4.5)
we see that for fixed k the value of the discount factor decreases if the distance (measured
through dij) increases. In the next chapter we define a Hopfield model with inhomogeneous
weights to prove a lower bound for the storage capacity of this model. Then we adopt
the idea of the hierarchical Hopfield model and analyse the storage capacity on different
graphs, where the weights depend on the graph distance between the nodes.

Agliari et. al. focused in [Agl+15a; Agl+15b] on another aspect of the model. Since the
last connection which is added in a step of the recursion always has the smallest discount
factor and wires two strongly interconnected parts of the network together, the network
can work as a serial and parallel processor. This means, additionally to the retrieval of
one pattern, the model can for example retrieve two patterns, one on each subnetwork,
at the same time. For detailed results the reader is referred to [Agl+15a].

4.2. The inhomogeneous Hopfield model

Let G = (V,E) be a simple graph, which means there are neither multi-edges nor loops.
V is a set of vertices and E represents a set of undirected edges. We assume that N :=
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|V | <∞. On this graph we want to define a Hopfield model with weights decreasing with
the distance between two nodes.

The patterns we want the net to store are denoted by ξ1, . . . , ξM . We assume that these
patterns are independent and each pattern is chosen uniformly at random from the config-
uration space {−1, 1}N . Furthermore, let w = (wij)i,j∈V be weights for which we assume
that wij ≥ 0 and wij = wji for all i, j ∈ V . For each i ∈ V we set wi = (wij)j∈V . We
define the dynamics Tw = (Twi )i∈V through

Twi (σ) = sgn

(∑
j∈V

wij

(
M∑
µ=1

ξµi ξ
µ
j

)
σj

)
. (4.6)

This corresponds to the standard Hopfield model with additional weights for each connec-
tion. Indeed, with wij = 1 for all i, j we retrieve the dynamics of the standard Hopfield
model.

Theorem 4.2
For weights (wij)i,j∈V as defined above, set

M(N) =
mini∈V Wi

c log(N)

with

Wi =

(∑
j∈V ωij

)2(∑
j∈V ω

2
ij

) .
(1) If c > 2, then for any ν = 1, . . . ,M

P (Tw(ξν) = ξν) = 1−RN

with limN→∞RN = 0.

(2) If c ≥ 4, then

P (∀µ ≤M : Tw(ξµ) = ξµ) = 1−RN

with limN→∞RN = 0.

Proof. The proof goes along the lines as the one of Theorem 1.1. The initial configuration
is ξ1 which corresponds to the case of ρ = 0 in the setting of Theorem 1.1. With the
exponential Chebyshev inequality, an upper bound for the probability of a false update
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is given by

P(Twi (ξ1) 6= ξ1
i ) ≤ P

(
−

M∑
µ=2

ξ1
i ξ
µ
i

∑
j∈V

ωijξ
1
j ξ
µ
j ≥

∑
j∈V

ωij

)

≤ exp

(
− t
∑
j∈V

wij

)
E

[
exp

(
− t

M∑
µ=1

ξ1
i ξ
µ
i

∑
j∈V

wijξ
1
j ξ
µ
j

)]

≤ exp

(
− t
∑
j∈V

wij

)
E

[∏
j∈V

cosh

(
− t wij ξ1

j ξ
µ
j

)]M

≤ exp

(
− t
∑
j∈V

ωij

)
exp

(
t2

2

∑
j∈V

ω2
ij

)M

.

The arguments are known from the previous proof: We used Lemma 1.2 and the inequality
cosh(x) ≤ exp(x

2

2
). If we choose

t =
1

M

(∑
j∈V ωij

)
(∑

j∈V ω
2
ij

) ,
the bound is equal to

P(Twi (ξ1) 6= ξ1
i ) ≤ exp

(
− 1

2

(∑
j∈V ωij

)2(∑
j∈V ω

2
ij

) 1

M

)
= exp

(
−1

2

Wi

M

)
.

Because of the weights, we do not have a uniform bound for the probability anymore. We
see that the term Wi determines how fast the probability for a wrong update of neuron i
is decreasing. Thus, Wi can be seen as a measurement of the susceptibility to errors for
neuron i. Boole’s inequality together with the minimal value of Wi as an upper bound
leads to

P
(
∃i ∈ V : Twi (ξ1) 6= ξ1

i

)
≤ N max

i∈V
exp

(
−1

2

Wi

M

)
(4.7)

≤ exp

(
log(N)− 1

2

mini∈V Wi

M

)
≤ exp

(
− log(N)

[
1

2

mini∈V Wi

M log(N)
− 1

])
.
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Since

M =
mini∈V Wi

c log(N)

for c > 2, we conclude that

P(∃i ∈ V : Twi (ξ1) 6= ξ1
i ) ≤ N1− c

2
N→∞−→ 0.

This proves the first statement. For the second statement, we use Boole’s inequality again
and conclude that

P(∃µ ≤M : Tw(ξµ) 6= ξµ) ≤M N1− c
2 . (4.8)

Now let ‖ · ‖1 and ‖ · ‖2 denote the `1-norm resp. `2-norm on Rn, i.e. for x ∈ Rn

‖x‖2 =

√√√√ n∑
i=1

x2
i and ‖x‖1 =

√√√√ n∑
i=1

|xi|. (4.9)

and write

Wi =

(∑
j∈V wij

)2∑
j∈V w

2
ij

=

(
(‖wi‖1)2

‖wi‖2

)2

.

Since Wi, and therefore miniWi, is invariant under scaling the weights by any factor, we
can assume that 0 ≤ wij ≤ 1 for all i, j. Now with the Cauchy-Schwarz inequality (see
proof of Lemma A.11) as well as 0 ≤ wij ≤ 1, we know that∑

j∈V

ωij ≤ Wi ≤ N.

Therefore, the bound for the storage capacity of the standard Hopfield model is an upper
bound for the number of patterns in this setting, i.e.

M ≤ N

c log(N)
.

Thus, the probability in eq. (4.8) can be bounded by

P(∃µ : Tw(ξµ) 6= ξµ) ≤M N1− c
2 ≤ N2− c

2

c log(N)
.

If c ≥ 4, this converges to zero and proves the second statement.
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4. Generalized Hopfield model with weights

First, we notice that the storage capacity of the Hopfield model with weights can be
bottlenecked by a single neuron. The value of M in Theorem 4.2 depends on the smallest
of all Wi, i ∈ V . This is reasonable and can be compared to results about the Hopfield
model on random graphs. To get a decent storage capacity, the random graph needs
to have a uniform connectivity. This requirement is met by making assumptions on the
minimal degree, the average degree and the spectral gap of the graph (see [KP93; LV15]).
Graphs with bottlenecks cause problems and can prevent the net from storing any pattern.
The same problem can occur for the Hopfield model with inhomogeneous weights.

Additionally, if we set wij = 1 for all i, j, we retrieve the dynamics of the standard Hopfield
model. It follows that Wi = N for all i ∈ V and that the lower bound for the storage
capacity from Theorem 4.2 coincides with the bound from Theorem 1.1. As we have seen
in the proof of Theorem 4.2 the storage capacity of the standard Hopfield model is an
upper bound for the storage capacity with weights.

4.3. The Hopfield model with weights on a deterministic
graph

With Theorem 4.2 we derived a lower bound for the storage capacity in a Hopfield model
with weights. The new terms which appear in the result, namely Wi for i ∈ V , are difficult
to calculate for arbitrary weights. Based on the idea of a hierarchical Hopfield model,
in this section we choose weights which decrease with the distance between two nodes
and calculate the asymptotic behaviour of Wi for certain graphs. As a metric we use the
graph distance dg(i, j) between two nodes i 6= j, which is equal to the number of edges in
the shortest path connecting them. On a disconnected graph the model can be analysed
separately on each component. Because of this, we assume that the graph G is connected.
Thus, dg(i, j) <∞ for all pairs of nodes.

4.3.1. Lattice structure on a torus

The Hopfield model with weights is defined on a finite graph. For the first application we
define G

(1)
k = (V

(1)
k , E

(1)
k ) to be the graph Z2 ∩ [−k, k] with periodic boundary conditions.

This means G
(1)
k is a subgraph of the lattice Z2 and for every m ∈ Z∩ [−k, k] the vertices

(m, k) and (k,m) are connected to the vertices (m,−k) resp. (−k,m). The total amount

of vertices of G
(1)
k is equal to N := |V (1)

k | = (2k + 1)2.

This graph is chosen to be the first example because its structure is very homogeneous.
If we denote by Zl(i) the number of vertices at distance l from the vertex i ∈ V , then

Z0(i) = 1, (4.10)
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4.3. The Hopfield model with weights on a deterministic graph

Figure 4.2.: Lattice on a torus

Zl(i) = 4l if 1 ≤ l ≤ k,

Zl(i) = 4(l − 1) = 4k if l = k + 1,

and Zl(i) = 4k − 4(l − k − 1) = 4(2k − l + 1) if k + 2 ≤ l ≤ 2k.

This does not depend on the choice of i and since we want the weights to depend only
on the distance between nodes, the factor Wi has the same value for all i ∈ V (1)

k . It is
important to mention that each vertex is only counted once because just the shortest
connection determines the distance between two nodes. This fits to the Hopfield model
where we want to consider each signal only once. Furthermore, the decreasing number
of nodes for large l is a technical phenomenon. Since we need a finite graph, the growth
of the graph gets cut off at some point. On the infinite lattice graph Z2 the number of
nodes at distance l grows like 4l for all l ∈ N.

For ϕ > 0 and nodes i, j with dg(i, j) = l > 0 we set the weight wij equal to

wl := wij = l−ϕ (4.11)

and wii = 0 for all i ∈ V (1)
k . Compared to the discount factor in the hierarchical Hopfield

model (see eq. (4.3)), in this approach the discount factor is of a simpler form. In both
models, larger values of ϕ lead to a faster decrease of signals at greater distances. Addi-
tionally, the parameter ϕ allows us to compensate for the increasing number of nodes.

As mentioned before, since Zl(i) does not depend on i, the value of Wi is constant in i.
Thus, to determine miniWi, we need to calculate

Wi =

(∑
j∈V wij

)2∑
j∈V w

2
ij

=

(∑2k
l=0 Zl l

−ϕ
)2

∑2k
l=0 Zl l

−2ϕ
. (4.12)
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4. Generalized Hopfield model with weights

An important observation is that the numerator and the denominator in eq. (4.12) are
of the same structure. To determine the asymptotic behaviour of Wi, it is sufficient to
calculate the asymptotics of

∑2k
l=0 Zl l

−ϕ for an arbitrary ϕ > 0. Together with the
insights about Zl from eq. (4.10), we need to analyse the asymptotic order of

2k∑
l=0

Zll
−ϕ =

k∑
l=1

4l1−ϕ +
k+1∑
l=k+1

4(l − 1)l−ϕ +
2k∑

l=k+2

4(2k − l + 1) l−ϕ (4.13)

= 4

(
k∑
l=1

l1−ϕ + k1−ϕ
(

1 +
1

k

)−ϕ
+ (2k + 1)

2k∑
l=k+2

l−ϕ −
2k∑

l=k+2

l1−ϕ

)

for ϕ > 0. The sums appearing in eq. (4.13) can be bounded from below and from above
by an appropriate integral. To do so, we use the function xτ on the positive half-line,
which is increasing if τ ≥ 0 and decreasing otherwise. For every a, b ∈ N with 2 ≤ a < b
the sum for τ ≥ 0 is bounded from above by

b∑
l=a

lτ ≤
∫ b+1

a

xτ dx =
1

1 + τ

(
(b+ 1)1+τ − a1+τ

)
(4.14)

and from below by

b∑
l=a

lτ ≥
∫ b

a−1

xτ dx =
1

1 + τ

(
b1+τ − (a− 1)1+τ

)
. (4.15)

In the case of τ < 0 an upper bound for the sum is

b∑
l=a

lτ ≤
∫ b

a−1

xτ dx =


1

1 + τ

(
b1+τ − (a− 1)1+τ

)
if τ 6= −1

log(b)− log(a− 1) if τ = −1
(4.16)

and as a lower bound we have

b∑
l=a

lτ ≥
∫ b+1

a

xτ dx =


1

1 + τ

(
(b+ 1)1+τ − a1+τ

)
if τ 6= −1

log(b+ 1)− log(a) if τ = −1
. (4.17)

These four inequalities (eqs. (4.14) to (4.17)) can be used to analyse the sums involved in

eq. (4.13). We write ak ≈ bk if ak
bk

k→∞−→ 1.

(1) In the first sum we exclude the index l = 1 to avoid problems with the integrability

82



4.3. The Hopfield model with weights on a deterministic graph

of the upper bound. Applying the statements in eqs. (4.16) and (4.17) leads to

1 +
k∑
l=2

l1−ϕ ≤


1 +

1

2− ϕ
(
(k + 1)2−ϕ − 22−ϕ) , if 0 < ϕ ≤ 1

1 +
1

2− ϕ
(
k2−ϕ − 12−ϕ) , if 1 < ϕ and ϕ 6= 2

1 + log(k), if ϕ = 2

≈


1

2− ϕ
k2−ϕ, if 0 < ϕ < 2

log(k), if ϕ = 2

1, if ϕ > 2

and

1 +
k∑
l=2

l1−ϕ ≥


1 +

1

2− ϕ
(
k2−ϕ − 12−ϕ) , if 0 < ϕ ≤ 1

1 +
1

2− ϕ
(
(k + 1)2−ϕ − 22−ϕ) , if 1 < ϕ and ϕ 6= 2

1 + (log(k + 1)− log(2)) , if ϕ = 2

≈


1

2− ϕ
k2−ϕ, if 0 < ϕ < 2

log(k), if ϕ = 2

1, if ϕ > 2

Since the asymptotic behaviour of both bounds coincide, the asymptotics of the first
sum is equal to

k∑
l=1

l1−ϕ ≈


1

2− ϕ
k2−ϕ, if 0 < ϕ < 2

log(k), if ϕ = 2

1, if ϕ > 2

.

(2) With the same arguments applied to the second sum, we get an upper bound

2k∑
l=k+2

l−ϕ ≤


1

1− ϕ
(
(2k)1−ϕ − (k + 1)1−ϕ) , if ϕ > 0 and ϕ 6= 1

(log(2k)− log(k + 1)) , if ϕ = 1
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and a lower bound

2k∑
l=k+2

l−ϕ ≥


1

1− ϕ
(
(2k + 1)1−ϕ − (k + 2)1−ϕ) , if ϕ > 0 and ϕ 6= 1

(log(2k + 1)− log(k + 2)) , if ϕ = 1

.

Asymptotically both bounds have the same behaviour. Thus,

2k∑
l=k+2

l−ϕ ≈


(21−ϕ − 1)

1− ϕ
k1−ϕ, if 0 < ϕ, ϕ 6= 1

log(2), if ϕ = 1

.

Additionally, we need to consider the factor (2k + 1) in front of the sum. Taking
this into account, we conclude that

(2k + 1)
2k∑

l=k+2

l−ϕ ≈


2(21−ϕ − 1)

1− ϕ
k2−ϕ, if 0 < ϕ, ϕ 6= 1

2 log(2)k, if ϕ = 1

.

Here, we need to mention that k2−ϕ goes to zero if ϕ > 2 and k tends to infinity.

(3) The third sum is similar to the first one but it has a different range of indices. By
using eqs. (4.14) to (4.17) we derive the following inequalities:

2k∑
l=k+2

l1−ϕ ≤


1

2− ϕ
(
(2k + 1)2−ϕ − (k + 2)2−ϕ) , if 0 < ϕ ≤ 1

1

2− ϕ
(
(2k)2−ϕ − (k + 1)2−ϕ) , if 1 < ϕ and ϕ 6= 2

log(2k)− log(k + 1), if ϕ = 2

and

2k∑
l=k+2

l1−ϕ ≥


1

2− ϕ
(
(2k)2−ϕ − (k + 1)2−ϕ) , if 0 < ϕ ≤ 1

1

2− ϕ
(
(2k + 1)2−ϕ − (k + 2)2−ϕ) , if 1 < ϕ and ϕ 6= 2

log(2k + 1)− log(k + 2), if ϕ = 2

.

For ϕ 6= 2 we see that

(2k + 1)2−ϕ − (k + 2)2−ϕ ≈ (22−ϕ − 1)k2−ϕ

and the same asymptotics is true for (2k)2−ϕ−(k+1)2−ϕ. If ϕ = 2, both bounds con-
verge to log(2) for k →∞. Therefore, the third sum in eq. (4.13) is asymptotically
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equivalent to

2k∑
l=k+2

l1−ϕ ≈


(22−ϕ − 1)

2− ϕ
k2−ϕ, if 0 < ϕ, ϕ 6= 2

log(2), if ϕ = 2

.

These insights are enough to calculate the asymptotic behaviour of the term in eq. (4.13)
for k → ∞. In the case where ϕ 6∈ {1, 2}, we observe that the term grows to infinity if
0 < ϕ < 2 and converges to a constant in the case of ϕ > 2:

4

(
k∑
l=1

l1−ϕ + k1−ϕ
(

1 +
1

k

)−ϕ
+ (2k + 1)

2k∑
l=k+2

l−ϕ −
2k∑

l=k+2

l1−ϕ

)

≈ 4

(
1 +

1

2− ϕ
k2−ϕ + k1−ϕ

(
1 +

1

k

)−ϕ
+

2(21−ϕ − 1)

1− ϕ
k2−ϕ − 22−ϕ − 1

2− ϕ
k2−ϕ

)

= 4 +
4

2− ϕ
k2−ϕ

(
1 +

1

k

(
1 +

1

k

)−ϕ
+ 2(21−ϕ − 1)

2− ϕ
1− ϕ

−
(
22−ϕ + 1

))

= 4 +
4

2− ϕ
k2−ϕ

(
2(21−ϕ − 1)

1

1− ϕ
+

1

k

(
1 +

1

k

)−ϕ)

≈ 4 +
8

2− ϕ
21−ϕ − 1

1− ϕ
k2−ϕ (4.18)

The special case where ϕ = 1 is just a technical difficulty and shows the same behaviour

4

(
k∑
l=1

l1−ϕ + k1−ϕ
(

1 +
1

k

)−ϕ
+ (2k + 1)

2k∑
l=k+2

l−ϕ −
2k∑

l=k+2

l1−ϕ

)

≈ 4

(
1

2− ϕ
k2−ϕ + k1−ϕ

(
1 +

1

k

)−ϕ
+ 2 log(2)k − 22−ϕ − 1

2− ϕ
k2−ϕ

)

=
4

2− ϕ
k2−ϕ

(
1

k

(
1 +

1

k

)−ϕ
+ 2 log(2)−

(
22−ϕ + 2

))

= 8 log(2)k

(
1 +

1

8 log(2)

1

k

(
1 +

1

k

)−1
)

≈ 8 log(2)k. (4.19)

Even the constant fits perfectly to the results from before because

lim
ϕ→1

21−ϕ − 1

1− ϕ
= log(2).
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In between the diverging case ϕ < 2 and the converging case ϕ > 2, we have ϕ = 2 where
the term also goes to infinity but only in logarithmic speed:

4

(
k∑
l=1

l1−ϕ + k1−ϕ
(

1 +
1

k

)−ϕ
+ (2k + 1)

2k∑
l=k+2

l−ϕ −
2k∑

l=k+2

l1−ϕ

)

≈ 4

(
log(k) + k1−ϕ

(
1 +

1

k

)−ϕ
+

2(21−ϕ − 1)

1− ϕ
k2−ϕ − log(2)

)

= 4 log(k)

(
1 +

1

k log(k)

(
1 +

1

k

)−2

+
1

log(k)
− log(2)

log(k)

)
≈ 4 log(k). (4.20)

The asymptotic equivalences we showed in eqs. (4.18) to (4.20) can be used to derive the
asymptotic behaviour of Wi by applying them to the numerator and denominator (using
2ϕ for the latter one).

(1) If 0 < ϕ < 1 and ϕ 6= 1
2
, the asymptotics of the numerator and the denominator are

given in eq. (4.18). Thus,

min
i
Wi ≈

(
8

2−ϕ
21−ϕ−1

1−ϕ k2−ϕ
)2

8
2−2ϕ

21−2ϕ−1
1−2ϕ

k2−2ϕ
=

16(21−ϕ − 1)2

(21−2ϕ − 1)

(1− 2ϕ)

(2− ϕ)2(1− ϕ)
k2

≈ 4(21−ϕ − 1)2

(21−2ϕ − 1)

(1− 2ϕ)

(2− ϕ)2(1− ϕ)
N.

In the last line we used that the lattice graph on a torus has a total number of nodes
of N := |V | = (2k + 1) ≈ 4k2. This makes the results comparable to former results
and fits to the notation of the standard Hopfield model.

(2) If ϕ = 1
2
, the asymptotics of the numerator is given in eq. (4.18) and the asymptotics

of the denominator is given in eq. (4.19). Thus,

min
i
Wi ≈

(
8

2−ϕ
21−ϕ−1

1−ϕ k2−ϕ
)2

8 log(2)k
=

128(
√

2− 1)2

9 log(2)
k2

≈ 32(
√

2− 1)2

9 log(2)
N.

(3) If ϕ = 1, the asymptotics of the numerator is given in eq. (4.19) and the asymptotics
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of the denominator is given in eq. (4.20). Thus,

min
i
Wi ≈

(8 log(2)k)2

4 log(k)
= 4 log(2)2 4k2

log(k)

≈ 8 log(2)2 N

log(N)
.

Here, we used that log(k) ≈ 1
2

log(N).

(4) If 1 < ϕ < 2, the asymptotics of both, numerator and denominator, are given in
eq. (4.18). In the denominator the term k2−2ϕ converges to zero because 2ϕ > 2.
Therefore, the denominator converges to a constant. Thus,

min
i
Wi ≈

(
8

2−ϕ
21−ϕ−1

1−ϕ k2−ϕ
)2

4 + 8
2−2ϕ

21−2ϕ−1
1−2ϕ

k2−2ϕ
≈

(
8

2−ϕ
21−ϕ−1

1−ϕ k2−ϕ
)2

4

=
16(21−ϕ − 1)2

(2− ϕ)2(1− ϕ)2
k2(2−ϕ)

≈ 4ϕ(21−ϕ − 1)2

(2− ϕ)2(1− ϕ)2
N2−ϕ.

(5) If ϕ = 2, the asymptotics of the numerator is given in eq. (4.20) and the asymptotics
of the denominator is given in eq. (4.18). Thus,

min
i
Wi ≈

(4 log(k))2

4 + 8
2−2ϕ

21−2ϕ−1
1−2ϕ

k2−2ϕ
=

(4 log(k))2

4
= 4 log(k)2 ≈ log(N)2

(6) If ϕ > 2, the asymptotics of both, numerator and denominator, are given in
eq. (4.18) and for ϕ > 2 both terms converge to a constant. Thus,

min
i
Wi ≈

(
4 + 8

2−ϕ
21−ϕ−1

1−ϕ k2−ϕ
)2

4 + 8
2−2ϕ

21−2ϕ−1
1−2ϕ

k2−2ϕ
=

42

4
= 4.

In Theorem 4.2 the amount of patterns were chosen to be equal to

M =
miniWi

c log(N)
.

Since we calculated the asymptotic behaviour of miniWi, we proved the following theo-
rem:
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Theorem 4.3
Consider a Hopfield model on a torus G = (V,E) with dynamics Tw = (Twi )i∈V defined as
in eq. (4.6) and weights according to eq. (4.11). Then there exist constants c0(ϕ), . . . , c4(ϕ)
such that

min
i
Wi ≈



c0(ϕ)N, if 0 < ϕ < 1

c1(ϕ)
N

log(N)
, if ϕ = 1

c2(ϕ)N2−ϕ, if 1 < ϕ < 2

c3(ϕ) log(N)2, if ϕ = 2

c4(ϕ), if ϕ > 2


=: W̃ (ϕ).

In particular, for M = W̃ (ϕ)
c log(N)

and ξ1, . . . , ξM chosen uniformly at random from {−1, 1}N ,
it follows that:

(1) If c > 2 and ϕ ≤ 2, then for any ν = 1, . . . ,M

P (Tw(ξν) = ξν) = 1−RN

with limN→∞RN = 0.

(2) If c ≥ 4 and ϕ ≤ 2, then

P (∀µ ≤M : Tw(ξµ) = ξµ) = 1−RN

with limN→∞RN = 0.

The lower bounds for the storage capacity can be summarized as

0 < ϕ < 1 ϕ = 1 1 < ϕ < 2 ϕ = 2 ϕ > 2

M N
c0 log(N)

N
c1 log(N)2

N(2−ϕ)

c2 log(N)
c3 log(N) 0

where c0, . . . , c4 are positive constants.

The lattice graph is a homogeneous example and works as a basis for the Hopfield model
with weights. The parameter ϕ can be used to control the decay of signals from far
away. If ϕ is too large, the incoming signals are not strong enough to preserve the storage
capacity. For ϕ > 2 we cannot guarantee that the net is able to store any pattern. A
special feature of the lattice graph is that the observable neighbourhood is the same for
each node. This made the calculations easier. In the next example this is will not be true
and we need to analyse how Wi behaves for different i.
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4.3.2. Regular tree graph

For the next example, we take a look at a µ-regular tree graph. Starting with the root,
in this graph each vertex has exactly µ ∈ N descendants. Let G

(2)
k = (V

(2)
k , E

(2)
k ) be

a µ-regular tree graph up to generation k. In contrast to the previous example, the
amount of nodes with a specific distance to a fixed vertex now varies with its generation.
At generation zero we only have the root node. By construction, the root has µ direct
neighbours and with each step one node arises µ new vertices. Thus, for all 0 ≤ l ≤ k,
the amount of nodes at distance l to generation 0 is equal to Zl(0) = µl. Therefore, the

total number of vertices in G
(2)
k is given by

N := |V (2)
k | =

k∑
l=0

µl =
µk+1 − 1

µ− 1
≈ µk

µ

µ− 1
. (4.21)

For a node at an arbitrary generation n, 0 ≤ n ≤ k, the number of vertices at distance l,
0 ≤ l ≤ 2k, can be expressed as

Zl(n) = µl 1{0≤l≤k−n}︸ ︷︷ ︸+ 1{1≤l≤n}︸ ︷︷ ︸+
n+1∑
j=2

µl−j 1{j≤l≤k−n+2j−2}︸ ︷︷ ︸ . (4.22)

With the help of fig. 4.3, we see that the first term (green nodes) is counting the vertices
of the µ-regular subtree starting at generation n. The red nodes are included in the
second term and to each of these red nodes there is another µ-regular subtree connected
(blue nodes). The blue subtrees have different heights because they are starting at each
generation from 1 to n and all are ending at generation k. The blue nodes are covered by
the third term, where each summand corresponds to one of the subtrees. For example,
the smallest subtree is represented by the term with j = 2. Each subtree contains nodes
whose distance from the fixed vertex at generation n is between j and k− n+ 2j − 2.

In the previous example (Torus, see Section 4.3.1), Zl grew linearly in l and the weights
were set to wij = l−ϕ. In the case of a tree graph, we observe an exponential growth of
Zl(n) in l. For this reason, we define the weight as follows: For ϕ > 0 and nodes i, j with
dg(i, j) = l ≥ 0 let wij be equal to

wl := wij = µ−ϕl. (4.23)

The weights only depend on the distance between nodes, and since all nodes within the
same generation are exposed to the same neighbourhood structure, we are now interested
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Generation 0

Generation n

Generation k
j = 2 j = 3 j = 4

Figure 4.3.: A 2-regular tree up to generation k = 5.

in the asymptotic behaviour of

Wn =

(
2k∑
l=0

Zl(n) µ−ϕl
)2

2k∑
l=0

Zl(n) µ−2ϕl

as k →∞. Here, n denotes the generation of the fixed neuron which is updated and can
be a function of k. For example, for a leaf node n would be equal to k.

A good strategy in the previous example was to first derive the asymptotic behaviour of
the numerator of Wn. Let 0 ≤ n ≤ k, ϕ > 0 and µ ∈ N, then with the help of eq. (4.22)
we conclude that

2k∑
l=0

Zl(n)µ−ϕl =
2k∑
l=0

(
µl 1{0≤l≤k−n} + 1{1≤l≤n} +

n+1∑
j=2

µl−j 1{j≤l≤k−n+2j−2}

)
µ−ϕl

=
k−n∑
l=0

µ(1−ϕ)l +
n∑
l=1

µ−ϕl +
2k∑
l=2

n+1∑
j=2

µ(1−ϕ)lµ−j 1{j≤l≤k−n+2j−2} . (4.24)

The value of a geometric series can be calculated explicitly. Thus, we are not forced to
find upper and lower bounds as before. For τ 6= 0 and 0 ≤ a < b we use the identity

b∑
l=a

µlτ = µaτ
µ(b−a+1)τ − 1

µτ − 1
=
µ(b+1)τ − µaτ

µτ − 1
(4.25)
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and every time the exponent appears to be zero, the corresponding value can be calculated
with the help of continuity arguments. If ϕ 6= 1, for the first sum in eq. (4.24) we conclude
that

k−n∑
l=0

µ(1−ϕ)l =
µ(1−ϕ)(k−n+1) − 1

µ(1−ϕ) − 1
, (4.26)

and for all ϕ > 0 the second sum in eq. (4.24) equals

n∑
l=1

µ−ϕl = µ−ϕ
µ−ϕn − 1

µ−ϕ − 1
. (4.27)

The third term is easier to handle if we swap the two sums. This means, instead of
collecting all nodes with the same distance to the fixed generation, we focus on the (blue)
subtrees (see fig. 4.3) first and then sum over all subtrees. This leads to

2k∑
l=2

n+1∑
j=2

µ(1−ϕ)lµ−j 1{j≤l≤k−n+2j−2} =
2k∑
l=2

n+1∑
j=2

µl−jµ−ϕl 1{j≤l≤k−n+2j−2}

=
n+1∑
j=2

2k∑
l=2

µl−jµ−ϕl 1{j≤l≤k−n+2j−2}

=
n+1∑
j=2

k−n+2j−2∑
l=j

µl−jµ−ϕl

=
n+1∑
j=2

k−n+j−2∑
l=0

µlµ−ϕ(l+j)

=
n+1∑
j=2

µ−ϕj
k−n+j−2∑

l=0

µ(1−ϕ)l

= µ−2ϕ

n−1∑
j=0

µ−ϕj
k−n+j∑
l=0

µ(1−ϕ)l.

The index j is still referring to the different subtrees and each of them has a contribution
in form of a geometric sum. Because of the different heights of the subtrees their values
depend on j. If we use eq. (4.25), it follows that

k−n+j∑
l=0

µ(1−ϕ)l =
1

µ(1−ϕ) − 1

(
µ(1−ϕ)(k−(n−1))µ(1−ϕ)j − 1

)
,
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and thus,

µ−2ϕ

n−1∑
j=0

µ−ϕj
k−n+j∑
l=0

µ(1−ϕ)l =
µ−2ϕ

µ(1−ϕ) − 1

n−1∑
j=0

µ−ϕj
(
µ(1−ϕ)(k−n+1)µ(1−ϕ)j − 1

)
=

µ−2ϕ

µ(1−ϕ) − 1

(
µ(1−ϕ)(k−n+1)

n−1∑
j=0

µ(1−2ϕ)j −
n−1∑
j=0

µ−ϕj

)
.

As long as we exclude that ϕ = 1
2
, we can use eq. (4.25) again to derive

n−1∑
j=0

µ(1−2ϕ)j =
1

µ(1−2ϕ) − 1

(
µ(1−2ϕ)n − 1

)
(4.28)

and

n−1∑
j=0

µ−ϕj =
1

µ−ϕ − 1

(
µ−ϕn − 1

)
. (4.29)

With eqs. (4.28) and (4.29) and for ϕ 6∈
{

1
2
, 1
}

the third sum can be written as

µ−2ϕ

µ(1−ϕ) − 1

(
µ(1−ϕ)(k−n+1)

n−1∑
j=0

µ(1−2ϕ)j −
n−1∑
j=0

µ−ϕj

)

=
µ−2ϕ

µ(1−ϕ) − 1

(
µ(1−ϕ)(k−n+1) 1

µ(1−2ϕ) − 1

(
µ(1−2ϕ)n − 1

)
− 1

µ−ϕ − 1

(
µ−ϕn − 1

))
=

µ−2ϕ

µ(1−ϕ) − 1

[
1

µ(1−2ϕ) − 1

(
µ(1−ϕ)(k−n+1)+(1−2ϕ)n − µ(1−ϕ)(k−n+1)

)
− 1

µ−ϕ − 1
(µ−ϕn − 1)

]
=

µ(1−3ϕ)

(µ(1−ϕ) − 1)(µ(1−2ϕ) − 1)
µ(1−ϕ)k

(
µ−ϕn − µ−(1−ϕ)n

)
− µ−2ϕ

(µ(1−ϕ) − 1)(µ−ϕ − 1)
(µ−ϕn − 1),

(4.30)

where we used that

(1− ϕ)(k − n+ 1) + (1− 2ϕ)n = (1− ϕ)k + (1− ϕ)− ϕn.

The numerator of Wn in the case of a µ-regular tree graph can be calculated with the
help of eqs. (4.26), (4.27) and (4.30). For ϕ 6∈

{
1
2
, 1
}

we conclude that

2k∑
l=0

Zl(n)µ−ϕl
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=
k−n∑
l=0

µ(1−ϕ)l +
n∑
l=1

µ−ϕl +
2k∑
l=2

n+1∑
j=2

µ(1−ϕ)lµ−j 1{j≤l≤k−n+2j−2}

=
µ(1−ϕ)(k−n+1) − 1

µ(1−ϕ) − 1
+ µ−ϕ

µ−ϕn − 1

µ−ϕ − 1
+

µ(1−3ϕ)µ(1−ϕ)k

(µ(1−ϕ) − 1)(µ(1−2ϕ) − 1)

(
µ−ϕn − µ−(1−ϕ)n

)
− µ−2ϕ

(µ(1−ϕ) − 1)(µ−ϕ − 1)
(µ−ϕn − 1)

= C1(ϕ, µ) + µ(1−ϕ)(k−n)C2(ϕ, µ) + µ−ϕnµ(1−ϕ)kC3(ϕ, µ) + µ−ϕnC4(ϕ, µ),

where the constants are given by

C1 = C1(ϕ, µ) = − 1− µ+ µ2ϕ

(µϕ − 1)(µ− µϕ)
C2 = C2(ϕ, µ) = − µ(1− µ+ µ2ϕ)

(µ− µϕ)(µ− µ2ϕ)

C3 = C3(ϕ, µ) =
µ

(µ− µϕ)(µ− µ2ϕ)
C4 = C4(ϕ, µ) = − −1 + µ− µ−ϕ

(µϕ − 1)(µ− µϕ)
.

To verify this identity, we need to rearrange the parts according to their dependency on
n and k and simplify them. The constant terms lead to the value of C1(ϕ, µ) through

− 1

µ(1−ϕ) − 1
− µ−ϕ

µ−ϕ − 1
+

µ−2ϕ

(µ(1−ϕ) − 1)(µ−ϕ − 1)

= − µϕ

µ− µϕ
+

1

µϕ − 1
− 1

(µ− µϕ)(µϕ − 1)

= − (µϕ(µϕ − 1)− (µ− µϕ) + 1)

(µϕ − 1)(µ− µϕ)

= − 1− µ+ µ2ϕ

(µϕ − 1)(µ− µϕ)
= C1(ϕ, µ).

C2(ϕ, µ) collects all terms which depend on µ−(1−ϕ)(k−n):

µ(1−ϕ)

µ(1−ϕ) − 1
− µ(1−3ϕ)

(µ(1−ϕ) − 1)(µ(1−2ϕ) − 1)
=

µ

(µ− µϕ)
− µ

(µ− µϕ)(µ− µ2ϕ)

= − −µ(µ− µ2ϕ) + µ

(µ− µϕ)(µ− µ2ϕ)

= − µ(1− µ+ µ2ϕ)

(µ− µϕ)(µ− µ2ϕ)
= C2(ϕ, µ).

In the same manner, C3(ϕ, µ) is the prefactor of µ(1−ϕ)k−ϕn and is equal to

µ(1−3ϕ)

(µ(1−ϕ) − 1)(µ(1−2ϕ) − 1)
=

µ

(µ− µϕ)(µ− µ2ϕ)
= C3(ϕ, µ).
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C4(ϕ, µ) collects all terms with µ−ϕn:

µ−ϕ

µ−ϕ − 1
− µ−2ϕ

(µ(1−ϕ) − 1)(µ−ϕ − 1)
= − 1

µϕ − 1
+

1

(µ− µϕ)(µϕ − 1)

= − (µ− µϕ)− 1

(µϕ − 1)(µ− µϕ)

= − −1 + µ− µ−ϕ

(µϕ − 1)(µ− µϕ)
= C4(ϕ, µ).

From the proof of Theorem 4.2 we know that Wn measures how fast the probability
to update a neuron at generation n to the wrong bit decreases (see eq. (4.7)). In the
following, we analyse the asymptotic behaviour of the terms in Wn for different regimes
of n. We distinguish three cases:

(a) n is bounded in k.

(b) n and k − n grow to infinity with k and n
k
→ α ∈ [0, 1].

(c) n grows like k meaning that n
k
→ 1 but n− k is bounded in k.

The aim is to determine how Wn grows with k, and for this we will write C as a represen-
tative for all terms which do not depend on k or do not grow with k. The explicit value
of C depends on the regime and the values of ϕ, µ and n. For b.) and c.) we assume that
n is a sequence in k for which n

k
converges. Since 0 ≤ n ≤ k, the sequence n

k
has values in

[0, 1] and due to the compactness of [0, 1] we can always choose a suitable subsequence.

Regime (a):
This case includes the root node and the generations close to the root. For the different
values of ϕ the numerator of Wn behaves asymptotically as follows:

(1) If 0 < ϕ < 1, the only term which grows with k is µ(1−ϕ)k. Therefore,

C1(ϕ) + µ(1−ϕ)(k−n)C2(ϕ) + µ−ϕnµ(1−ϕ)kC3(ϕ) + µ−ϕnC4(ϕ) ≈ µ(1−ϕ)kC (4.31)

with C = C2(ϕ)µ(1−ϕ)n + C3(ϕ)µ−ϕn. Since n is bounded in k, the constant C
includes terms depending on n.

(2) If ϕ > 1, the convergence of µ(1−ϕ)k to zero leads to

C1(ϕ) + µ(1−ϕ)(k−n)C2(ϕ) + µ−ϕnµ(1−ϕ)kC3(ϕ) + µ−ϕnC4(ϕ) ≈ C (4.32)

with C = C1(ϕ) + C4(ϕ)µ−ϕn.

The results from eqs. (4.31) and (4.32) can be used to derive the asymptotic behaviour
of Wn:
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4.3. The Hopfield model with weights on a deterministic graph

(1) If 0 < ϕ < 1
2
, both, numerator and denominator, can be handled with eq. (4.31):

Wn ≈
µ2(1−ϕ)k

µ(1−2ϕ)k
C = µkC

with C =
(C2(ϕ)+µ(1−ϕ)n+C3(ϕ)µ−ϕn)

2

C2(2ϕ)+µ(1−2ϕ)n+C3(2ϕ)µ−2ϕn .

(2) If 1
2
< ϕ < 1, the denominator is converging to a constant (see eq. (4.32)). Thus,

Wn ≈ µ2(1−ϕ)kC

with C =
(C2(ϕ)+µ(1−ϕ)n+C3(ϕ)µ−ϕn)

2

C1(2ϕ)+C4(2ϕ)µ−2ϕn . Because of ϕ > 1
2

we have 2(1− ϕ) < 1. Thus,

Wn grows with a lower rate than in the case of 0 < ϕ < 1
2
.

(3) If 1 < ϕ, we apply the result of eq. (4.32) to both and get

Wn ≈ C

with C =
(C1(ϕ)+C4(ϕ)µ−ϕn)

2

C1(2ϕ)+C4(2ϕ)µ−2ϕn .

Regime (b):
This case contains all nodes with an appropriate distance to the root and to the leaf
nodes. Since n is growing with k, we assume that n

k
converges to α ∈ [0, 1]. Even if

α = 1, the constraint that n − k tends to infinity states that the distance to the leafs is
getting arbitrarily large. This is relevant for the asymptotic behaviour of the numerator
and denominator as well as for Wn itself.

(1) If 0 < ϕ < 1
2
, the term µ−ϕn converges slower to zero than µ−(1−ϕ)n does, i.e.

µ−(1−ϕ)n

µ−ϕn
= µ−(1−2ϕ)n k→∞−→ 0.

Therefore,

C1(ϕ) + µ(1−ϕ)(k−n)C2(ϕ) + µ−ϕnµ(1−ϕ)kC3(ϕ) + µ−ϕnC4(ϕ)

= µ(1−ϕ)k−ϕn (C1(ϕ)µ−k+ϕ(k+n) + µ−(1−2ϕ)nC2(ϕ) + C3(ϕ) + µ−(1−ϕ)kC4(ϕ)
)
.

Since n grows at most like k and ϕ < 1
2
, we know that

µ−k+ϕ(k+n) k→∞−→ 0.
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Hence,

C1(ϕ) + µ(1−ϕ)(k−n)C2(ϕ) + µ−ϕnµ(1−ϕ)kC3(ϕ) + µ−ϕnC4(ϕ) ≈ µ(1−ϕ)k−ϕnC (4.33)

with C = C3(ϕ).

(2) If 1
2
< ϕ < 1, the term µ−(1−ϕ)n converges slower to zero than µ−ϕn does, i.e.

µ−ϕn

µ−(1−ϕ)n
= µ−(2ϕ−1)n k→∞−→ 0.

As mentioned before, in this regime k − n grows to infinity. Thus,

C1(ϕ) + µ(1−ϕ)(k−n)C2(ϕ) + µ−ϕnµ(1−ϕ)kC3(ϕ) + µ−ϕnC4(ϕ)

= µ(1−ϕ)(k−n)
(
C1(ϕ)µ−(1−ϕ)(k−n) + C2(ϕ) + µ−(2ϕ−1)nC3(ϕ) + µ−(1−ϕ)k−(2ϕ−1)nC4(ϕ)

)
≈ µ(1−ϕ)(k−n)C (4.34)

with C = C2(ϕ) because

µ−(1−ϕ)(k−n) k→∞−→ 0

and

µ−(1−ϕ)k+(1−2ϕ)n = µ−(1−ϕ)k−(2ϕ−1)n k→∞−→ 0.

(3) If 1 < ϕ, the term converges to a constant:

C1 + µ−(1−ϕ)nµ(1−ϕ)kC2 + µ−ϕnµ(1−ϕ)kC3 + µ−ϕnC4 ≈ C (4.35)

with C = C1(ϕ) because n and k − n grow to infinity.

These results lead to the following asymptotic behaviour of Wn:

(1) If 0 < ϕ < 1
4
, with eq. (4.33) we conclude that

Wn ≈
µ2(1−ϕ)k−2ϕn

µ(1−2ϕ)k−2ϕn
C = µkC

with C = C3(ϕ)2

C3(2ϕ)
.

(2) If 1
4
< ϕ < 1

2
, we use eq. (4.34) to handle the denominator and eq. (4.33) to handle

the numerator. Thus,

Wn ≈
µ2(1−ϕ)k−2ϕn

µ(1−2ϕ)(k−n)
C ≈ µk(1−(4ϕ−1)α)C
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with C = C3(ϕ)2

C2(2ϕ)
.

(3) If 1
2
< ϕ < 1, the denominator converges to a constant (see eq. (4.35)) and the

numerator can be treated with eq. (4.34):

Wn ≈ µ2(1−ϕ)k(1−n
k )C ≈ µ2(1−ϕ)k(1−α)C

with C = C2(ϕ)2

C1(2ϕ)
.

(4) If 1 < ϕ, both, denominator and numerator, converge to a constant (see eq. (4.35)).
Therefore,

Wn ≈ C

with C = C1(ϕ)2

C1(2ϕ)
.

Regime (c):
In this case we do not allow the distance between the fixed neuron and the last generation
to grow arbitrary large. This regime contains all nodes which are close to the leafs. By the
geometric growth of the graph, the majority of nodes can be found within a small number
of generations away from the leafs. The results are similar to the results of regime (b),
but terms depending on n−k can be considered to be constant or at least to be bounded.
We assume n− k to be constant to avoid a distinction of further cases.

(1) If 0 < ϕ < 1
2

and n grows with the same speed as k, then

µ(1−ϕ)k−ϕn = µk(1−ϕ(1+n
k )) k→∞−→ ∞.

The asymptotics are the same as in regime (b) and with n
k
→ 1 we get

C1(ϕ) + µ(1−ϕ)(k−n)C2(ϕ) + µ−ϕnµ(1−ϕ)kC3(ϕ) + µ−ϕnC4(ϕ) ≈ µk(1−2ϕ)C (4.36)

with C = C3(ϕ).

(2) If 1
2
< ϕ, we see that

µ(1−ϕ)k−ϕn = µk(1−ϕ(1+n
k )) k→∞−→ 0

and in contrast to regime (b), ϕ > 1
2

is enough for this term to converge to a
constant:

C1(ϕ) + µ(1−ϕ)(k−n)C2(ϕ) + µ−ϕnµ(1−ϕ)kC3(ϕ) + µ−ϕnC4(ϕ) ≈ C (4.37)

with C = C1(ϕ) + µ(1−ϕ)(k−n)C2(ϕ). This C does not grow with k because we
assumed n− k to be constant.
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The results lead to the following asymptotic behaviour of Wn:

(1) If 0 < ϕ < 1
4
, we get the same result for Wn as in regime (b):

Wn ≈
µ2(1−2ϕ)k

µ(1−4ϕ)k
C = µkC

with C = C3(ϕ)2

C3(2ϕ)
.

(2) If 1
4
< ϕ < 1

2
, the denominator converges to a constant (see eq. (4.37)). We still

have the same growth rate for Wn as in regime (b) but with a different constant:

Wn ≈ µ2(1−2ϕ)kC

where C = C3(ϕ)2

C1(2ϕ)+µ(1−ϕ)(k−n)C2(2ϕ)
.

(3) If 1
2
< ϕ, the term Wn converges to a constant

Wn ≈ C

with C = C1(ϕ)+µ(1−ϕ)(k−n)C2(ϕ)2

C1(2ϕ)+µ(1−2ϕ)(k−n)C2(2ϕ)
.

The lower bound for the storage capacity in the sense of Theorem 4.2 is equal to the
minimal value of Wn divided by c log(N). Here, N is the total number of nodes in the
finite graph Gk. The value of minnWn and the generation where the minimum is attained
are hard to calculate analytically for all values of ϕ and µ. But since we are interested in
results for large networks, we see that regime (c) leads to the smallest growth in k. Thus,
if k is large enough, the storage capacity is determined by the nodes which are close to
the leafs.

Since we calculated the asymptotic behaviour of miniWi, we proved the following theo-
rem:

Theorem 4.4
Consider a Hopfield model on a µ-regular tree G = (V,E) with dynamics Tw = (Twi )i∈V
defined as in eq. (4.6) and weights according to eq. (4.23). Then there exist constants
c0(ϕ), c1(ϕ), c2(ϕ) such that

min
i
Wi ≈


c0(ϕ)N, if 0 < ϕ <

1

4

c1(ϕ)N2(1−2ϕ), if
1

4
< ϕ <

1

2

c2(ϕ), if ϕ >
1

2


=: W̃ (ϕ).
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In particular, for M = W̃ (ϕ)
c log(N)

and ξ1, . . . , ξM chosen uniformly at random from {−1, 1}N ,
it follows that:

(1) If c > 2 and ϕ ≤ 1
2
, then for any ν = 1, . . . ,M

P (Tw(ξν) = ξν) = 1−RN

with limN→∞RN = 0.

(2) If c ≥ 4 and ϕ ≤ 1
2
, then

P (∀µ ≤M : Tw(ξµ) = ξµ) = 1−RN

with limN→∞RN = 0.

The lower bounds for the storage capacity can be summarized as

Regime (c) 0 < ϕ < 1
4

1
4
< ϕ < 1

2
ϕ > 1

2

M N
c0 log(N)

N2(1−2ϕ)

c1 log(N)
0

where c0, c1, c2 are positive constants.

The storage capacity of the net is determined by the minimum of all Wn but we can still
do the same calculations for the other two regimes. For regime (a) the results are

Regime (a) 0 < ϕ < 1
2

1
2
< ϕ < 1 ϕ > 1

Wn

c log(N)
N

c̃0 log(N)
N2(1−ϕ)

c̃1 log(N)
0

where c̃0, c̃1, c̃2 are positive constants. The signal strength for nodes in the first part of
the graph is stronger because regime (a) would lead to a higher storage capacity than
regime (c). The functionality of the neural network in (c) decreases faster resp. collapses
earlier than in (a). This is due to the growth rate of the neighbourhood structure. The
number of vertices at distance l to the root grows like µl whereas the number of vertices
at distance l to a leaf only grows with a rate of µ

l
2 (see eq. (4.22)).

To complete the picture, the regime (b) leads to

Regime (b) 0 < ϕ < 1
4

1
4
< ϕ < 1

2
1
2
< ϕ < 1 ϕ > 1

Wn

c log(N)
N

ĉ0 log(N)
N1−(4ϕ−1)α

ĉ1 log(N)
N2(1−ϕ)(1−α)

ĉ2 log(N)
0

where ĉ0, ĉ1, ĉ2 are positive constants and α is the limit of n
k
.
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4.4. Conclusions about the inhomogeneous Hopfield
model on a deterministic graph

The examples above showed that the most decisive topological quantity that influences
the storage capacity is the overall growth rate of the neighbourhood structure. As long as
the decrease of the signal strength is sufficiently lower than this growth rate, the model
behaves very similar to the standard Hopfield model and reaches a comparable storage
capacity. Raising the parameter leads to a loss of storage capacity without immediately
destroying the functionality of the net. If the parameter ϕ exceeds a certain bound, the
lower bound for the storage capacity is equal to zero.

Furthermore, in this model each node has a different probability to get updated to the
wrong bit because, depending on the graph, they can be exposed to different neighbour-
hood structures. A good example for this is the regular tree graph. A closer look to
eq. (4.22) shows that the growth rate for a leaf is of order µ

l
2 and the root has a growth

rate of order µl. This explains why the storage capacity in regime (a) is higher than in
regime (c).

4.5. The Hopfield model with weights on a random graph

In the previous section we successfully derived a lower bound for the storage capacity of
two deterministic graphs: the lattice on a torus and the regular tree graph. In these exam-
ples the most decisive quantity was the difference between the growth rate of neighbours
and the rate at which the weights decline at greater distances. This raises the question
how important the regularity of a graph is and if fluctuations in the neighbourhood struc-
ture have an impact on the results. To answer this question, we generate a graph with
the help of a Galton-Watson process and analyse the Hopfield model on a realization of
this random graph. Our aim is to compare the storage capacity which is suggested by the
root node of a Galton-Watson tree to the storage capacity in regime (a) of a regular tree
graph.

In the following section we introduce the Galton-Watson process and state some results
about its asymptotic growth rate. For these results we refer the reader to [AN72] and
[Als].

4.5.1. General results about the Galton-Watson process

Definition 4.5 (see Chapter I in [AN72])
Let (Λ, A, Q) be a probability space. A Galton-Watson process with offspring distribution
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(pj)j≥0 is a Markov-Chain (Zn)n∈N on the non-negative integers such that

Q (Zn+1 = j |Zn = i) = p
?(i)
j ,

where p
?(i)
j is the i-fold convolution of (pj)j≥0.

In Definition 4.5 the i-fold convolution of (pj)j≥0 in the case of i = 0 is equal to the Dirac
measure in 0.

Let (Zn)n∈N be a Galton-Watson process with offspring distribution (pj)j≥0 and Z0 = 1.
Furthermore, we assume that the expectation value and the variance of (pj)j≥0 is finite.
Each realization of a Galton-Watson process can be represented as a tree graph (see
[Ott49; Jan12]). This graph is infinite if and only if the Galton-Watson process survives,
i.e. Zn > 0 for all n ∈ N. The Hopfield model can be defined on a finite graph. We denote
by G

(3)
k = (V

(3)
k , E

(3)
k ) the graph which is generated by a Galton-Watson process (Zn)n∈N

up to generation k. Since we are interested in the asymptotic behaviour in the case where
the number of nodes grows to infinity, we want the Galton-Watson process to generate
an infinite graph. We assume that p0 = 0 to assure this. Additionally, we assume that
p1 < 1 because otherwise the graph is just a 1-regular tree graph. The expectation value
of the offspring distribution with this assumptions is greater than one:

µ := E[Z1] =
∞∑
j=1

j pj >
∞∑
j=1

pj = 1.

The Galton-Watson process is said to be in the supercritical case.

Lemma 4.6
Let (Zn)n∈N be a Galton-Watson process with µ < ∞. Then the process (Yn)n∈N defined
by

Yn =
Zn
µn

is a non-negative martingale and converges almost surely to a random variable Y .

Proof. The process is clearly non-negative. The Markov property leads to

E[Zn+m |Zn = in, . . . , Z0 = i0] = E[Zn+m |Zn = in] = in E[Zm |Z0 = 1] = inµ
m.

Therefore,

E[Yn+m |Y0, . . . Yn] = Yn a.s.
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The existence of Y and the convergence Yn → Y a.s. is a consequence of the martingale
convergence theorem.

From Lemma 4.6 we see that Zn(ω) grows like µnY (ω). This is very helpful for our
purposes as long as Y (ω) > 0. Surely, if (Zn)n∈N gets extinct, the limit Y needs to be
zero. But the opposite implication is not true since Y can be zero just because the scaling
factor µn is too strong. A result by Kesten and Stigum [KS66] provides a condition which
ensures that the events {Y = 0} and {Zn →∞} almost surely coincide. Denote by q the
extinction probability of a Galton-Watson process, i.e. q = Q(limn Zn = 0).

Theorem 4.7 (Kesten, Stigum)
Let (Zn)n∈N be a supercritical Galton-Watson process with Z0 = 1 and µ ∈ (1,∞). Then
the following statements are equivalent

(1) Q(Y = 0) = q

(2) E[Y ] = 1

(3) E[Z1 log(Z1)] =
∑
l≥1

pkk log(k) <∞.

The last statement is often called Z log(Z) condition.

For the proof we refer to [KS66] and [Als]. A probabilistic proof can be found in [LPP95].

Our assumptions eliminate the possibility for the Galton-Watson process to die out, i.e.
q = 0. Thus, with Theorem 4.7 and the Z log(Z) condition, it is true that Y > 0 a.s.
Even if the Z log(Z) condition is not fulfilled there exists a normalizing sequence such that
the limit is zero with probability q. This result goes back to Heyde and Seneta [Sen68;
Hey70b; Hey70a]:

Theorem 4.8 (Heyde, Seneta, Part I Theorem 10.3 in [AN72])
Let (Zn)n∈N be a supercritical Galton-Watson process with Z0 = 1 and µ ∈ (1,∞). Then,
there always exists a sequence of constants (Cn)n∈N with Cn → ∞ and C−1

n Cn−1 → µ as
n→∞, such that the random variable Y ∗n := C−1

n Zn converges a.s. to a random variable
Y ∗ with Q(Y ∗ > 0) = 1− q.

For the proof we refer to [AN72] and [Sen68; Hey70b; Hey70a].

In our context, Theorem 4.7 and Theorem 4.8 show the existence of a scaling sequence such
that the limit is a.s. positive. If the Z log(Z) condition is fulfilled, µn is an appropriate
choice. If the condition (3) in Theorem 4.7 is not true, there exists a sequence which at
least fulfils C−1

n Cn−1 → µ as n→∞. These results allow us to show the following lemma,
which is a modified version of Theorem 10.2(a) in [Als]:
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Lemma 4.9
Let Y and Y ∗ be the limits of (Yn)n∈N resp. (Y ∗n )n∈N. For every ϕ ∈ [0, 1)

µ−(1−ϕ)k

k∑
l=0

Zlµ
−ϕl → Y

µ(1−ϕ)

µ(1−ϕ) − 1
a.s.

and

C
−(1−ϕ)
k

k∑
l=0

ZlC
−ϕ
l → Y ∗

µ(1−ϕ)

µ(1−ϕ) − 1
a.s.

as k →∞.

Proof. We only prove the second statement because the first one is a consequence of
the same and partially easier arguments. Let f be the generating function of Z1 and
fn the n-th fold composition of f . Let gn be the inverse function of fn on the interval
[q, 1]. A proof of Theorem 4.8 (see proof of Theorem 6.1 in [Als]) shows that we can
choose Cn = (1− gn(s))−1 for s ∈ (q, 1), n ≥ 0 as a norming sequence. Additionally, the
sequence satisfies

µn−j0 ≤ 1− gj(s)
1− gn(s)

=
Cn
Cj
≤ µn−j (4.38)

for all µ0 ∈ (1, µ) and all n ≥ j ≥ J(s, µ0), where J(s, µ0) ∈ N0 is chosen appropriately.
For ε ∈ (0, µ − 1) let J = J(s, µ − ε) and define τ = sup{l ∈ N : Y ∗l ≥ (1 + ε)Y ∗} ∨ J .
The idea is that the first summands until τ are negligible compared to µ−(1−ϕ)k. But τ
is chosen in a way such that Yl for l ≥ τ is close to its limit and C−1

k Cl is close to µj−k.
Therefore the summands above τ are close to a geometric sum. To prove the statement,
we split the sum at τ

C
−(1−ϕ)
k

k∑
l=0

ZlC
−ϕ
l =

τ∑
l=0

Y ∗l
C

(1−ϕ)
l

C
(1−ϕ)
k

+
k∑

l=τ+1

Y ∗l
C

(1−ϕ)
l

C
(1−ϕ)
k

.

The first term converges a.s. to zero with k →∞ because C
(1−ϕ)
k

k→∞−→ ∞. The inequality
in (4.38) leads to an upper bound of the second term, which is given by

k∑
l=τ+1

Y ∗l
C

(1−ϕ)
l

C
(1−ϕ)
k

≤ (1 + ε)Y ∗
k∑

l=τ+1

C
(1−ϕ)
l

C
(1−ϕ)
k

≤ (1 + ε)Y ∗
k∑

l=τ+1

(µ− ε)l−k
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= (1 + ε)Y ∗
(µ− ε)(1−ϕ)

(µ− ε)(1−ϕ) − 1

(
1− (µ− ε)−(1−ϕ)(k−τ)

)
.

For k large enough we showed that for every ε ∈ (0, µ− 1)

C
−(1−ϕ)
k

k∑
l=0

ZlC
−ϕ
l ≤ Y ∗

(1 + ε)(µ− ε)(1−ϕ)

(µ− ε)(1−ϕ) − 1

and conclude that

lim sup
k→∞

C
−(1−ϕ)
k

k∑
l=0

ZlC
−ϕ
l ≤ Y ∗

µ(1−ϕ)

µ(1−ϕ) − 1
.

Since all summands are positive, we know that for m ≥ 0

lim inf
k→∞

C
−(1−ϕ)
k

k∑
l=0

ZlC
−ϕ
l ≥ lim inf

k→∞

k∑
l=k−m

Y ∗l
C

(1−ϕ)
l

C
(1−ϕ)
k

=
m∑
l=0

lim inf
k→∞

Y ∗k−l
C

(1−ϕ)
k−l

C
(1−ϕ)
k

.

From eq. (4.38) we know that

Ck−l
Ck

=
Ck−l
Ck−l+1

· . . . · Ck−1

Ck
≥ µ−l

for k large enough and together with Y ∗k−l
k→∞−→ Y ∗ it follows that

lim inf
k→∞

C
−(1−ϕ)
k

k∑
l=0

ZlC
−ϕ
l ≥ Y ∗

m∑
l=0

µ−l(1−ϕ) (4.39)

for all m ≥ 0. Because of

∞∑
l=0

µ−l(1−ϕ) =
1

1− µ−(1−ϕ)
=

µ(1−ϕ)

µ(1−ϕ) − 1

and eq. (4.39) for all m ≥ 0, we showed that

lim inf
k→∞

C
−(1−ϕ)
k

k∑
l=0

ZlC
−ϕ
l ≥ Y ∗

µ(1−ϕ)

µ(1−ϕ) − 1

which completes the proof.

For our purpose Lemma 4.9 has two applications. If we set ϕ = 0, the lemma gives a
statement about the asymptotic behaviour of the total number of nodes in a Galton-
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Watson tree:

N ≈ Y ∗Ck
µ

µ− 1
a.s. (4.40)

Furthermore, for an arbitrary ϕ ∈ [0, 1) the lemma can be used to calculate the asymptotic
behaviour of Wi.

4.5.2. The inhomogeneous Hopfield model on a Galton-Watson tree

Let (Zn)n∈N be a Galton-Watson process with the assumptions made in Section 4.5.1 and

G
(3)
k = (V

(3)
k , E

(3)
k ) be the corresponding random graph up to generation k. The Galton-

Watson process represents the neighbourhood structure from the perspective of the root.
The previous example (see Section 4.3.2) showed that the number of neighbours with a
specific distance, and therefore the value of Wn for an arbitrary generation n, can be very
difficult to calculate. In a Galton-Watson tree it is not true that every neuron in one
generation leads to the same value for Wi. In this section we determine the asymptotic
behaviour of the storage capacity from the perspective of the root node similar to the
regime (a) of the previous example. In general, the storage capacity in the sense of
Theorem 4.2 for an arbitrary generation is expected to be worse. The same behaviour
was observable in the case of a regular tree graph.

The random graph does not have a fixed number of descendants for each generation. From
Theorem 4.7 and Theorem 4.8 we learned that the best approximation for the growth rate
is given by µk resp. Ck depending on whether the Z log(Z) condition is fulfilled or not.
If we keep in mind that in the first case Ck can be set to µk, we define the weights for the
Hopfield model as follows: For ϕ > 0 and nodes i, j with dg(i, j) = l ≥ 0 we set wij equal
to

wl := wij = C−ϕl , (4.41)

where (Cn)n∈N is the sequence from the proof of Lemma 4.9. This definition coincides
with eq. (4.23) but instead of the deterministic number of descendants we are using the
corresponding asymptotic growth rate Cl. All in all, the setting is quite similar to the
regular tree with the difference that the amount of nodes in a generation is a random
variable. With this, we observe random fluctuations around the expected number of
descendants in every generation. This difficulty can be handled with the results from
Section 4.5.1.
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We are interested in the asymptotic behaviour of

W0 =

(
k∑
l=0

Zl C
−ϕ
l

)2

k∑
l=0

Zl C
−2ϕ
l

=

(
k∑
l=0

Y ∗l C
(1−ϕ)l
l

)2

k∑
l=0

Y ∗l C
(1−2ϕ)l
l

for k → ∞. If 0 < ϕ < 1, the convergence from (Y ∗l )l∈N to Y ∗, combined with the fact
that the number of nodes in the last generations dominates all former generations, can
be used to derive the asymptotics of the numerator. This was done in Lemma 4.9, which
states that

k∑
l=0

Zl C
−ϕ
l ≈ Y ∗C

(1−ϕ)
k

µ(1−ϕ)

µ(1−ϕ) − 1
a.s. (4.42)

Therefore, if 0 < ϕ < 1
2
, we get

W0 =

(
k∑
l=0

Zl C
−ϕ
l

)2

k∑
l=0

Zl C
−2ϕ
l

≈

(
Y ∗C

(1−ϕ)
k

)2

Y ∗C
(1−2ϕ)
k

µ2(1−ϕ)
(
µ(1−2ϕ) − 1

)
µ(1−2ϕ) (µ(1−ϕ) − 1)

2

= Y ∗Ck
µ2(1−ϕ)

(
µ(1−2ϕ) − 1

)
µ(1−2ϕ) (µ(1−ϕ) − 1)

2 = Y ∗Ck C(ϕ, µ) a.s.

with C(ϕ, µ) =
µ2(1−ϕ)(µ(1−2ϕ)−1)
µ(1−2ϕ)(µ(1−ϕ)−1)

2 . Together with the representation of the total number of

nodes from eq. (4.40) we can write

W0 ≈ NC̃(ϕ, µ)

with C̃(ϕ, µ) = µ−1
µ
C(ϕ, µ).

A different behaviour can be observed for larger values of ϕ. For ϕ > 1 the numerator of
W0 converges to finite random variable:

k∑
l=0

Zl C
−ϕ
l

k→∞−→
∞∑
l=0

Zl C
−ϕ
l =: S∞(ϕ) a.s. (4.43)

This random variable strongly depends on the fluctuations in the first generations. For
ε ∈ (0, µ − 1) define τ = sup{l ∈ N : Y ∗l 6∈ [(1 − ε)Y ∗, (1 + ε)Y ∗]} ∨ J with J as in the
proof of Lemma 4.9. By the convergence of (Y ∗l )l∈N (see Theorem 4.8) we know that τ is
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a.s. finite. If we write

S∞(ϕ) =
∞∑
l=0

Zl C
−ϕ
l =

τ∑
l=0

Y ∗l C
(1−ϕ)
l +

∞∑
l=τ+1

Y ∗l C
(1−ϕ)
l ,

the first sum is finite and does not grow with k. In the second sum Y ∗l is close to Y ∗ and
Cl can be bounded as in eq. (4.38) since l ≥ τ . An upper bound is given by

∞∑
l=τ+1

Y ∗l C
(1−ϕ)
l ≤ Y ∗(1 + ε)

∞∑
l=τ+1

C
(1−ϕ)
l

= Y ∗(1 + ε)C
(1−ϕ)
τ+1

∞∑
l=τ+1

(
Cl−1

Cl
· . . . · Cτ+1

Cτ+2

)ϕ−1

≤ Y ∗(1 + ε)C
(1−ϕ)
τ+1

∞∑
l=0

(µ− ε)(1−ϕ)l

≤ Y ∗(1 + ε)C
(1−ϕ)
τ+1

(µ− ε)(1−ϕ)

(µ− ε)(1−ϕ) − 1
,

and with the same calculations the term is bounded from below by

∞∑
l=τ+1

Y ∗l C
(1−ϕ)
l ≥ Y ∗(1− ε)C(1−ϕ)

τ+1

µ(1−ϕ)

µ(1−ϕ) − 1
.

If 1
2
< ϕ < 1, applying eq. (4.42) to the numerator and eq. (4.43) to the denominator

leads to

W0 ≈ C
2(1−ϕ)
k

(
Y ∗µ(1−ϕ)

)2

S∞(2ϕ) (µ(1−ϕ) − 1)
2 ,

and by eq. (4.40) the term can represented through N as

W0 ≈ N2(1−ϕ) Y ∗µ2(1−ϕ)(µ− 1)

S∞(2ϕ)µ (µ(1−ϕ) − 1)
2 a.s.

In the last case, which is ϕ > 1, W0 converges a.s. to a finite random variable. Thus,

W≈
S∞(ϕ)2

S∞(2ϕ)
a.s.

All in all, the calculations of W0 would lead to a bound for the storage capacity in sense
of Theorem 4.2 as follows
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0 < ϕ < 1
2

1
2
< ϕ < 1 1 < ϕ

W0

c log(N)
N

C0 log(N)
N2(1−ϕ)

C1 log(N)
0

where C0, C1, C2 are positive random variables not depending on N .

4.6. Conclusions about the inhomogeneous Hopfield
model on a Galton-Watson tree

Similar to the deterministic graphs, we identified a regime where the signal strength
decreases slow enough to obtain results, which would lead to the storage capacity of the
standard Hopfield model. Except from the fact that the total number of nodes is random,
and therefore the storage capacity contains randomness, we basically got the same results
as in the regular tree graph and regime (a). The fluctuations of the random graph make a
difference for larger values of ϕ because the constants mainly depend on the realization of
the first generations. But since values of ϕ greater than one do not lead to a functioning
neural network, this does not play a very import role. In the case of a Galton-Watson
tree, we only analysed the value of W0. Thus, to state a theorem similar to Theorem 4.3
or Theorem 4.4 one needs to evaluate Wi for an arbitrary neuron i. Especially neurons
close to the leafs would be interesting, since they determine the storage capacity in a
µ-regular tree.
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A.1. Large Deviation Theory

Theorem A.1 (Cramér, see Chapter 2.2 in [DZ98])
Let X1, X2, . . . be independent and identical distributed (i.i.d.) real-valued random vari-
ables. Denote by µn the pushforward measure of 1

n
Sn := 1

n

∑n
i=1 Xi and define Λ∗ as the

Legendre transform of the cumulant generating function:

Λ∗(x) := sup
λ∈R

{
λx− log

(
E
[
eλX1

])}
.

The sequence {µn}n satisfies a Large Deviation Principle (LDP) with the convex rate
function Λ∗(·), namely:

(1) For any closed set F ⊆ R,

lim sup
n→∞

1

n
log (µn(F )) ≤ − inf

x∈F
Λ∗(x).

(2) For any open set G ⊆ R,

lim inf
n→∞

1

n
log (µn(G)) ≥ − inf

x∈G
Λ∗(x).

Example A.2
We are interested in an application of Theorem A.1 in the following two settings:

(1) Let X1, X2, . . . be i.i.d. Ber(p)-distributed random variables for p ∈ [0, 1]. Then the
rate function is

Λ∗(x) = x log

(
x

p

)
+ (1− x) log

(
1− x
1− p

)
.

Proof. First we calculate the cumulant generating function:

log
(
E
[
eλX1

])
= log

(
eλp+ (1− p)

)
.
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Then simple analysis shows that λx− log
(
E
[
eλX1

])
is maximal at

λ∗ = log

(
1− p
p

x

1− x

)
Together,

Λ∗(x) = x log

(
1− p
p

x

1− x

)
− log

(
(1− p) x

1− x
+ (1− p)

)
= x log

(
x

p

)
+ (1− x) log

(
1− x
1− p

)
.

(2) Let Y1, Y2, . . . be i.i.d. random variables with P(Y1 = 1) = p = 1 − P(Y1 = −1) for
p ∈ [0, 1]. Then the rate function is

Λ∗(x) =
1

2

(
(1 + x) log

(
(1 + x)

2p

)
+ (1− x) log

(
1− x

2(1− p)

))
,

especially if p = 1
2

Λ∗(x) =
1

2
((1 + x) log (1 + x) + (1− x) log (1− x)) .

This is a simple consequence of the example in (a) and the transformation Xi =
1
2
(1 + Yi).

Lemma A.3
Let Sn be a sum of i.i.d. random variables Xi with P(X1 = 1) = p = 1−P(X1 = −1). Let
Λ∗ be as in Theorem A.1. Then for x > 2p− 1, we have:

P (Sn ≥ nx) ≤ exp (−nΛ∗(x)) , (A.1)

where Λ∗(x) = 1
2

(
(1 + x) log

(
(1+x)

2p

)
+ (1− x) log

(
1−x

2(1−p)

))
.

Proof. The exponential Chebyshev inequality with t > 0 leads to

P (Sn ≥ nx) ≤ exp(−tnx)E [exp (tSn)] = exp
(
−n
(
tx− log

(
E
[
eλX1

])))
.

Since this is true for all t > 0, we know that

P (Sn ≥ nx) ≤ exp

(
−n sup

t>0

{
tx− log

(
E
[
etX1

])})
.
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For x > 2p− 1 the eq. (A.1) follows with

exp
(
− n sup

t>0

{
tx− log

(
E
[
etX1

])} )
= exp

(
− nΛ∗(x)

)
,

which is true because the term has its maximum at

t =
1

2
log
(1 + x

1− x
1− p
p

)
.

This value is positive if x > 2p− 1.

Lemma A.4
Let Sn be a binomially distributed random variable with parameters n and p. Then for
ε > 0, we have:

P (Sn ≥ n(p+ ε)) ≤ exp

(
−n ε2

(2p+ ε)

)
Proof. The exponential Chebyshev inequality provides an upper bound for the probability
of a tail event:

P (Sn ≥ n(p+ ε)) ≤ exp(−tn(p+ ε)) E[exp(tSn)].

The moment generating function can be bounded with the help of the inequality 1 + x ≤
exp(x) for all x ∈ R. Thus,

E[exp(tSn)] = (etp+ (1− p))n = (1 + p(et − 1))n ≤ exp(np(et − 1)).

Together with t = log(1 + ε
p
), we know that the probability is bounded from above by

P (Sn ≥ n(p+ ε)) ≤ exp(−tn(p+ ε) + np(et − 1))

= exp
(
− log

(
1 +

ε

p

)
n(p+ ε) + nε

)
.

The logarithm can be bounded from below by

x

1 + x
2

≤ log(1 + x)

for all x ≥ 0. Altogether, this leads to

P (Sn ≥ n(p+ ε)) ≤ exp
(
− log

(
1 +

ε

p

)
n(p+ ε) + nε

)
≤ exp

(
− ε

p+ ε
2

n(p+ ε) + nε
)
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= exp
(
− n ε2

2p+ ε

)
.

Lemma A.5
Let Sn be a sum of i.i.d. random variables Xi with P(X1 = 1) = 1

2
= 1 − P(X1 = −1).

Then for any a > 0

P (Sn ≥ a) ≤ exp

(
− a

2

2n

)
.

Proof. Let a > 0 and define t = a
n
> 0. With the exponential Chebyshev inequality, it

follows that

P (Sn ≥ a) ≤ exp(−ta)E [exp (tSn)] = exp(−ta) cosh(t)n.

Here, cosh(x) = 1
2
(ex + e−x). Since cosh(t) ≤ exp( t

2

2
) for t > 0, we conclude that

P (Sn ≥ a) ≤ exp

(
−ta+

t2

2
n

)
= exp

(
− a

2

2n

)
because of t = a

n
.

A.2. Weak Convergence

Theorem A.6 (see Theorem 3.4 in [Bil99])
Let X be a random variable and (Xn)n∈N be a family of random variables. If Xn ⇒ X,
i.e. Xn converges weakly to X, then E|X| ≤ lim infn E[|Xn|].

Proof. By the continuous mapping theorem we know that |Xn| ⇒ |X|. Therefore,
P(|Xn| > t)

n→∞−→ P(|X| > t) for all but countably many t ≥ 0. With Fatou’s Lemma we
get

E[|X|] =

∫ ∞
0

P(|X| > t) dt =

∫ ∞
0

lim
n→∞

P(|Xn| > t) dt

≤ lim inf
n→∞

∫ ∞
0

P(|Xn| > t) dt = lim inf
n→∞

E[|Xn|].
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Definition A.7
A family of random variables {Xi : i ∈ I} satisfying

sup
i∈I

∫
{|Xi|≥α}

|Xi| dP
α→∞−→ 0.

is called uniformly integrable.

Corollary A.8
A family of uniformly integrable random variables has bounded expectation values.

Proof. If α is large enough such that supi∈I
∫
{|Xi|≥α} |Xi| dP ≤ 1, then

sup
i∈I

E|Xn| ≤ 1 + α <∞

Theorem A.9 (see Theorem 3.5 in [Bil99], Theorem A.8.6 in [Ell85])
Suppose that (Xn)n∈N converges weakly to a random variable X and let h : R → R be a
continuous function such that (h(Xn))n∈N is uniformly integrable then

En[h(Xn)]
n→∞−→ E[h(X)].

Proof. h is a continuous function. Thus, with Xn ⇒ X, we deduce h(Xn) ⇒ h(X) by
the continuous mapping theorem. With Theorem A.6 we know that h(X) is integrable
because (h(Xn))n∈N are uniformly integrable. Therefore, supn∈N E[|h(Xn)|] <∞.

With the continuous mapping theorem, we know that h(Xn)+ ⇒ h(X)+ and h(Xn)− ⇒
h(X)−. Thus, we can assume without loss of generality that (h(Xn))n∈N and h(X) are
non-negative.

We show that for every ε > 0 there exists a N ∈ N such that |E[h(Xn)]−E[h(X)]| ≤ ε for
all n ≥ N . We know that (h(Xn))n∈N and h(X) are uniformly integrable so there exists
a α > 0 such that for all n ∈ N

E[h(Xn)1{h(Xn)≥α} ] ≤ ε

3
and E[h(X)1{h(X)≥α} ] ≤ ε

3
.

Therefore, we get the following inequality∣∣∣E[h(Xn)]− E[h(X)]
∣∣∣ ≤ ∣∣∣E[h(Xn)1{h(Xn)<α} ]− E[h(X)1{h(X)<α} ]

∣∣∣
+
∣∣∣E[h(Xn)1{h(Xn)≥α} ]

∣∣∣+
∣∣∣E[h(X)1{h(X)≥α} ]

∣∣∣
≤
∣∣∣E[h(Xn)1{h(Xn)<α} ]− E[h(X)1{h(X)<α} ]

∣∣∣+
2

3
ε
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With the identities

E[h(Xn)1{h(Xn)<α} ] =

∫ ∞
0

P(h(Xn)1{h(Xn)<α} > t) dt

=

∫ α

0

P(t < h(Xn) < α) dt

and

E[h(X)1{h(X)<α} ] =

∫ α

0

P(t < h(X) < α) dt

the last part of the proof is completed by using h(Xn)⇒ h(X) together with dominated
convergence theorem and the fact that α can be chosen such that P(h(X) = α) = 0.
We have 1[0,α] as integrable dominating function. Thus, with dominated convergence

lim
n→∞

∣∣∣E[h(Xn)1{h(Xn)<α} ]− E[h(X)1{h(X)<α} ]
∣∣∣

=
∣∣∣ ∫ α

0

lim
n→∞

(P(t < h(Xn) < α)− P(t < h(X) < α)) dt
∣∣∣

≤
∫ α

0

lim
n→∞

(|P(h(Xn) ≤ α)− P(h(X) ≤ α)|+ |P(h(Xn) ≤ t)− P(h(X) ≤ t)|) dt = 0

because the weak convergence is equivalent to the convergence of the distribution function
for all continuous points.

A.3. Analysis

Theorem A.10 (Taylor series, see Theorem 1 in Chapter 22 in [For11])
Let f : I → R be a (k+ 1)-times continuously differentiable function and a ∈ I. Then for
all x ∈ I

f(x) =
k∑
l=0

f (l)(a)

l!
(x− a)l +Rk+1(x)

where

Rk+1 =
1

k!

x∫
a

(x− t)kf (k+1)(t) dt

and f (l) denotes the lth derivative of f .
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Lemma A.11
Let ‖ · ‖1 and ‖ · ‖2 denote the `1-norm resp. `2-norm on Rn. For x ∈ Rn

‖x‖2 ≤ ‖x‖1 ≤
√
n‖x‖2

Proof. Let x ∈ Rn. Since |xi| · |xj| ≥ 0, we conclude that

‖x‖2
1 =

( n∑
i=1

|xi|
)2

=
n∑

i,j=1

|xi| · |xj| ≥
n∑
i=1

|xi|2 = ‖x‖2
2.

Taking the square root on both sides proves the first inequality.

By using the Cauchy-Schwarz inequality, we know that

‖x‖1 =
n∑
i=1

|xi| · 1 ≤

√√√√ n∑
i=1

x2
i

√√√√ n∑
i=1

12 =
√
n‖x‖2.

This proves the second inequality.

A.4. Auxiliary Results

Lemma A.12 (see Proposition 5.16 in [Kir15])
Let Fβ be the function in eq. (3.11):

Fβ(t) =
1

β

(
1

2
log

(
1 + t

1− t

))2

+ log
(
1− t2

)
.

(1) If β < 1, then Fβ has a unique minimum at t = 0. Furthermore, F ′(0) = 0 and
F ′′(0) = 2( 1

β
− 1) > 0.

(2) If β = 1, then Fβ has a unique minimum at t = 0 with F ′(0) = F ′′(0) = F ′′′(0) = 0
and F (iv)(0) = 4 > 0.

(3) For β > 0 the function Fβ has a unique minimum in [0, 1) at t0 > 0 and a unique
minimum in (−1, 0] at −t0 < 0. F ′β(t0) = F ′β(−t0) = 0 and F ′′β (t0) = F ′′β (−t0) > 0.
t0 is the unique strictly positive solution of t = tanh(βt). Fβ has a local maximum

at t = 0 with F ′β(0) = 0 and F ′′β (0) = 2
(

1
β
− 1
)
< 0.

Proof. The derivative of Fβ is equal to

F ′β(t) =
2

β

(1

2
log
(1 + t

1− t

))1

2

1− t
1 + t

2

(1− t)2
− 2t

1− t2
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=
1

1− t2
( 1

β
log
(1 + t

1− t

)
− 2t

)
,

where we used that for g(t) := 1+t
1−t

g′(t) =
2

(1− t)2
.

The second derivative of Fβ is equal to

F ′′β (t) = 2
1

β

1

(1− t2)2

(
1 + t log

(1 + t

1− t

))
− 2

1 + t2

(1− t2)2

=
2

(1− t2)2

[ 1

β
− (1 + t2) +

1

β
t log

(1 + t

1− t

)]
.

With the identity

1

2
log
(1 + t

1− t

)
= tanh−1(t),

we see that

F ′β(t) =
2

1− t2
( 1

β
tanh−1(t)− t

)
and

F ′′β (t) =
2

(1− t2)2

[ 1

β
− (1 + t2) +

2t

β
tanh−1(t)

]
. (A.2)

Thus, it follows that F ′β(t) T 0 is equivalent to

t T tanh(βt).

The critical points (F ′β(t) = 0) are the same as the solutions to the equation

tanh(βt) = t. (A.3)

For all β a solution of eq. (A.3) is given by t = 0. The second derivative at this point is
equal to

F ′′β (0) = 2
( 1

β
− 1
)

> 0, if β < 1

= 0, if β = 1

< 0, if β > 1

.
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If β < 1 then t > tanh(βt) for all t ∈ (0, 1). Thus, the derivative F ′β(t) is positive and Fβ(t)
is strictly monotone on (0, 1). Together with the symmetry of Fβ, i.e. Fβ(t) = Fβ(−t),
this shows that for β < 1 Fβ has a unique minimum at t = 0.

In the case β > 1 the function Fβ has a local maximum at t = 0. Let f(t) = tanh(βt)
then f(0) = 0, f ′(0) = β > 1 and f(t) → 1. Let g(t) = t then g(0) = 0, g′(0) = 1
and g(t) → ∞. Therefore, there exists a positive solution t0 ∈ (0, 1) to eq. (A.3). The
statement t0 < 1 is a consequence of tanh(βt) < 1 for all t. Since

f ′(t) =
β

cosh(βt)2

is decreasing the solution t0 is unique. Because of βt0 = tanh(t0), we know from eq. (A.2)
that

F ′′β (t0) =
2

(1− t20)2

[ 1

β
− (1 + t20) +

2t0
β
βt0

]
=

2

(1− t20)2

[ 1

β
− 1 + t20

]
> 0.

Due to the symmetry of Fβ the same statements are true for −t0.

For β = 1 a straightforward calculation leads to

F ′′′β (t) =
4t3 − 2 (3t2 + 1) log

(
1+t
1−t

)
(t2 − 1)3

and

F (iv)(t) =
4
(
−3t4 + 6 (t3 + t) log

(
1+t
1−t

)
+ 1
)

(t2 − 1)4 .
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[EL04] P. Eichelsbacher and M. Löwe. “Moderate deviations for a class of mean-field
models”. In: Markov Process. Related Fields 10.2 (2004), pp. 345–366.
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List of symbols

S = {−1, 1}, SN Binary state space S and configuration space SN .
N,M Number of neurons in a neural network and number of patterns.
(Wij)i,j Weights of the neural network.
Wi1,...,in Weights for the Hopfield model with polynomial dynamics, see

eq. (2.5).
θi Threshold for neuron i.
hi(σ) =

∑
jWijσj Postsynaptic potential of neuron i.

sgn(x) Signum function sgn(x) = 1{x≥0} − 1{x<0} .
ξ1, . . . , ξM Patterns which we want the neural network to store. ξ1, . . . , ξM

are i.i.d.
(Ω,F) Probability space of ξ1, . . . ξM .
L(X) Law of a random variable X.
P,E[·] Probability measure and corresponding expectation value. Un-

der P ξ1 has i.i.d. Rademacher spins.
PCWβ ,ECW [·] Probability measure and corresponding expectation value. Un-

der PCWβ ξ1 is generated according to a Curie-Weiss model with
parameter β.

σ2
CW = (1− β)−1 Variance for the Curie-Weiss magnetization.
T = (Ti)i≤N Transfer function of the standard Hopfield model, see eq. (1.2).

T̂ = (T̂i)i≤N Transfer function of the generalized Hopfield model, see eq. (2.1).

T̃ = (T̃i)i≤N Transfer function of the Hopfield model with polynomial dynam-
ics, see eq. (2.4).

Tw = (Twi )i≤N Transfer function of the Hopfield model with weights, see
eq. (4.6).

d(x, y) Hamming distance between x, y ∈ {−1, 1}N .
S(x, r) Sphere around x with radius r with respect to the Hamming

distance.
|| · ||1, || · ||2 l1- resp. l2-norm.

ξ̃1 ∈ S(ξ1, ρN) Corrupted version of the pattern ξ1.
mµ(σ),mµ

i (σ) Overlap of pattern ξµ with configuration σ with and without
neuron i, see Definition 1.3.

Λ, β Lattice Λ ⊆ Zd and the inverse temperature β.
κ2l = (2l − 1)!! 2l-th moment of a standard normal distribution.
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List of symbols

SΛ,B(SΛ) Configuration space and the corresponding Borel-σ-algebra.
HΛ(σ), Zβ,Λ Hamiltonian function and partition function of a spin glass

model.
HN,M [ω](σ) Hamiltonian function of the standard Hopfield model, see

eq. (1.9).
HCW
N (σ), Zβ,N Hamiltonian function and partition function of the Curie-Weiss

model, see eqs. (3.1) and (3.3).
h Local field of a spin glass model.
µβ,Λ(σ) Gibbs measure, see eq. (1.8).
µβ,N(σ) Gibbs measure of the Curie-Weiss model, see eq. (3.2).

SN =
∑N

j=1 ξj Magnetization in a Curie-Weiss model, see Definition 3.1.

HCW (σ) Hamiltonian function of the Curie-Weiss model.
µβ,N(σ) Gibbes measure of the Curie-Weiss model.
Γ(x) Gamma function, see 3.12.
cosh(x) Hyperbolic cosine.
tanh(x), tanh−1(x) Hyperbolic tangent and inverse hyperbolic tangent.
I(x) Rate function of Rademacher spins.
Xn ⇒ X Weak convergence of Xn to X.
Cb(R) Set of continuous and bounded functions on R.
an ≈ bn Asymptotic equivalence, meaning that an

bn

n→∞−→ 1.

f(x) = O(g(x)) Notation for lim supx
∣∣f(x)
g(x)

∣∣ <∞
f(x) = o(g(x)) Notation for limx

f(x)
g(x)

= 0 if g(x) 6= 0.

G = (V,E) Graph with vertex set V and set of edges E.

G
(1)
k = (V

(1)
k , E

(1)
k ) Lattice on a torus.

G
(2)
k = (V

(1)
k , E

(2)
k ) µ-regular graph up to generation k.

G
(3)
k = (V

(1)
k , E

(3)
k ) Galton-Watson tree up to generation k.

w = (wij)i,j∈V Weights for each connection in the inhomogeneous Hopfield
model.

wi = (wi,j)i∈V Weights of neuron i in the inhomogeneous Hopfield model.
(wl)l∈N Weights which only depend on the distance between nodes.

Wi =
(
∑
j∈V wij)

2∑
j∈V w

2
ij

Factor in the storage capacity of the inhomogeneous Hopfield
model, see Theorem 4.2.

Wn Factor Wi for a neuron i at generation n.
Zl(i), Zl(n) Number of vertices at a distance l to node i resp. to a node at

generation n.
(Zn)n∈N Galton-Watson process.
Yn = Zn

µn
→ Y Martingale of a Galton-Watson process and its limit Y .

Y ∗n = Zn
Cn
→ Y ∗ Martingale of a Galton-Watson process and its limit Y ∗.

f, fn Generating function of Z1, where (Zn)n is Galton-Watson pro-
cess, and the n-th fold composition of f .
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