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Abstract. In this expository note, we explain how Nori’s theory of motives and periods can
be understood as a Galois theory of periods. We examine the period conjecture abstractly
and also go through the known cases.

1. Introduction

We are interested in the period algebra P , a countable subalgebra of C. Its
elements are roughly of the form

∫
σ
ω,

where ω is a closed differential form over Q or Q and σ a suitable domain of
integration also defined over Q or Q. All algebraic numbers are periods in this
sense. Moreover, many interesting transcendental number like 2πi, log(2), or
ζ(3) are also period numbers.

In this mostly expository note, we want to explain how the work of Nori
extends Galois theory from the field extension Q/Q to P/Q, at least conjec-
turally. This realizes and generalizes a vision of Grothendieck that usually
goes under the name of period conjecture. A detailed account of its history
was recently given by André in a letter to Bertolin, see [7].

As explained in more detail below, we should formulate Galois theory as
saying that the natural operation

Gal(Q/Q) × Spec(Q) → Spec(Q)
is a torsor, see Section 4.4 for more details. By the period conjecture (in
Kontsevich’s formulation in [18]), we should also have a torsor structure

Gmot(Q) × Spec(P) → Spec(P),
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where Gmot(Q) is Nori’s motivic Galois group of Q. This is a pro-algebraic
group attached to the rigid tensor category of mixed motives over Q. By Tan-
naka theory, rigid tensor subcategories of the category of motives correspond
to quotients of Gmot(Q). The case of Artin motives gives back ordinary Galois
theory. In particular, there is a natural exact sequence

0→ Gmot(Q) → Gmot(Q) → Gal(Q/Q) → 0.

It corresponds to the inclusion Q ⊂ P .
It is a nice feature of Nori’s theory (and a key advantage over the older

approach) that it works for any abelian category of motives, even if it is not
closed under tensor product. We get a weaker structure that we call semi-
torsor, see Definition 4.2. Hence, we also have a (conjectural) generalization
of Galois theory to sub-vector-spaces of P . It is unconditonal in the case of
1-motives.

While not bringing us closer to a proof of the period conjecture in general,
the theory has structural consequences: for example, the period conjectures
for intermediate fields Q ⊂ K ⊂ Q are equivalent. Another direct consequence
is the fully faithfulness of the functor attaching to a Nori motive M the pair
(HdR(M),Hsing(M), φ) of its realizations linked by the period isomorphism.
As stressed by André in [3], this observation connects the period conjecture to
fullness conjectures in the spirit of the Hodge or Tate conjecture. One such
was recently formulated by Andreatta, Barbieri-Viale and Bertapelle, see [2].
As explained below, their conjecture has overlap with the period conjecture,
but there is no implication in either direction.

Actual evidence for the period conjecture is weak. The 0-dimensional case
amounts to Galois theory. The 1-dimensional case has now been completed by
the author and Wüstholz in [17], generalizing work by Lindemann, Gelfond,
Schneider, Siegel, Baker and Wüstholz.

The idea of the present paper was conceived after my talk at the 2017
workshop “Galois Theory of Periods and Applications” at MSRI. It does not
aim at proving new results, but rather at making key ideas of the long texts
[15] and [17] more accessible. We also take the opportunity to discuss the
relation between the various period conjectures in the literature.

Structure of the paper. We start by giving several, equivalent definitions of
the period algebra. We then turn to the period conjecture. We explain Kont-
sevich’s formal period algebra P̃ in terms of explicit generators and relations.
The period conjecture simply asserts that the obvious surjective map P̃ → P
is also injective. We then give a reinterpretation of P̃ as a torsor. Thus, the
main aim of the note is achieved: a (conjectural) Galois theory of periods.

The following sections make the connections to Grothendieck’s version of the
period conjecture and the more recent cycle theoretic approach of Bost/Charles
and Andreatta/Barbieri-Viale/Bertapelle.
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The last section inspects some examples of special period spaces studied in
the literature: Artin motives (Q), mixed Tate motives (multiple zeta-values)
and 1-motives (periods of curves).

2. Period spaces

When we talk about periods, we mean a certain countable subalgebra P
of C. It has several, surprisingly different, descriptions. Roughly, a period is a
number of the form

∫
σ
ω,

where both ω and σ are something defined over Q or Q.
There are many possible ways to specify what ω and σ to use. We will

go through a list of possible choices: nc-periods (or just periods) in Sec-
tion 2.2, Kontsevich–Zagier periods in Section 2.9, cohomological periods in
Section 2.12, and periods of motives in Section 2.15. In most cases, we will
define the subalgebra Peff of effective periods and then pass to P ∶= Peff[π−1].
In particular, π will be an element of Peff .

Good to know:

Metatheorem 2.1. All definitions describe the same set.

Throughout, we fix an embedding Q → C. Let Q̃ = Q ∩R. We denote by K

a subfield of Q.

2.2. First definition. Let X be a smooth algebraic variety over K of dimen-
sion d, D ⊂X a divisor with normal crossings (also defined over K), ω ∈ Ωd

X(X)
a global algebraic differential form, σ = ∑aiγi a differentiable relative chain,
i.e., ai ∈ Q, γi∶∆d → Xan a C∞-map on the d-simplex such that ∂σ is a chain
on Dan. Then

∫
σ
ω ∶= ∑ai ∫

∆d
γ∗i ω

an

is a complex number.

Definition 2.3. The set of these complex numbers is called the set of effective
periods Peff .

They appear as nc (for normal crossings) periods in [15, Section 11.1].

Example 2.4. The algebraic number α satisfying the nontrivial polynomial
P ∈ K[t] is an effective period as the value of the integral

∫
α

0
dt,

with X = A1, D = V (tP ), ω = dt, σ = γ the standard path from 0 to α ∈ D(K)
in A1(C) = C.
Example 2.5 (Cauchy’s integral). The number 2πi is an effective period as
the value of the integral

∫
S1

dz

z
,

with X = Gm, D = ∅, ω = dz/z, σ = γ∶ [0,1]→ C∗ given by γ(t) = exp(2πit).
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Lemma 2.6. The set Peff is a Q-algebra. It is independent of the choice of K.

Proof. See [15, Prop. 11.1.7]. �

In particular, π ∈ Peff .

Definition 2.7. We define

P ∶= Peff[π−1].
Remark 2.8. (i) In the above definition, it even suffices to restrict to

affine X .
(ii) We may also relax the assumptions: X need not be smooth, D only a

subvariety, ω ∈ Ωn(X) not necessarily of top degree but only closed.
(iii) We may also allow ω to have poles on X . We then need to impose

the condition that the integral is absolutely convergent. This is the
version given by Kontsevich and Zagier in [19].

These implications are not obvious, but see [15, Thm. 12.2.1].

2.9. Semi-algebraic sets. The easiest example of a differential form is dt1 ∧
⋅ ⋅ ⋅ ∧ dtn on An with coordinates t1, . . . , tn. Actually, this is the only one we
need.

Definition 2.10. An effective Kontsevich–Zagier period is complex number
whose real and imaginary part can be written as difference between the volumes
of Q-semi-algebraic subsets of Rn (of finite volume).

Note that a subset of Rn is Q-semi-algebraic if and only if it is Q̃-semi-
algebraic.

Proposition 2.11. The set of effective Kontsevich–Zagier periods agrees with

Peff .

Proof. See [15, Prop. 12.1.6], combined with [15, Thm. 12.2.1]. �

2.12. Cohomological periods. The definition becomes more conceptual
when thinking in terms of cohomology. Chains define classes in (relative)
singular homology and differential forms define classes in (relative) algebraic
de Rham cohomology. The definition of algebraic de Rham cohomology is
very well-known in the case of a single smooth algebraic variety. There are
different methods of extending this to the singular and to the relative case,
see [15, Chap. 3]. Singular cohomology and algebraic de Rham cohomology
become isomorphic after base change to the complex numbers. By adjunction
this defines the period pairing.

Let X/K be an algebraic variety, Y ⊂X a subvariety. Let

∫ ∶Hi
dR(X,Y ) ×Hsing

i (X,Y ;Q) → C

be the period pairing.

Definition 2.13. The numbers in the image of ∫ (for varying X , Y , i) are
called effective cohomological periods.
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Proposition 2.14 ([15, Thm. 11.4.2]). The set of effective cohomological pe-

riods agrees with Peff .

2.15. Periods of motives. The insistance that we need to invert π in order
to get a good object becomes clear from the motivic point of view.

Two kinds of motives are relevant for our discussions:

(i) Voevodsky’s triangulated categories of (effective) geometric motives

DM
eff
gm(K,Q) and DMgm(K,Q);

(ii) Nori’s abelian categoryMMNori(K,Q) of motives over K with respect
to singular cohomology and its subcategory of effective motives.

Theorem 2.16 (Nori, Harrer [14, Thm. 7.4.17]). There is a natural contravari-

ant trianguled tensor-functor

DM
eff
gm(K,Q)→Db(MMeff

Nori(K,Q))
compatible with the singular realization. It extends to non-effective motives.

All motives have singular and de Rham cohomology and hence periods. We
formalize as in [15, Section 11.2].

Definition 2.17. Let (K,Q)−Vect be the category of tuples (VK, VQ, φ), where
VK is a finite-dimensional K-vector space, VQ a finite-dimensional Q-vector
space and φ ∶ VK ⊗K C → Vsing ⊗Q C an isomorphism. Morphisms are given by
pairs of linear maps such that the obvious diagram commutes.

Given V ∈ (K,Q)−Vect, we define the set of periods of V as

P(V ) = Im(VK × V
∨
Q → C), (ω,σ)↦ σC(φ(ωC)),

and the space of periods P⟨V ⟩ as the additive group generated by it. If C ⊂
(K,Q)−Vect is a subcategory, we put

P(C) = ⋃
V ∈(K,Q)−Vect

P(V ).

Remark 2.18. (i) If C is additive, then P(C) is a K-vector space. In
particular, P⟨V ⟩ agrees with P(⟨V ⟩), where ⟨V ⟩ is the full abelian
subcategory of (K,Q)−Vect closed under subquotients generated by V .

(ii) If C is an additive tensor category, then P(C) is a K-algebra.

By the universal property of Nori motives, there is a faithful exact functor

MMNori(K,Q)→ (K,Q)−Vect.
This defines periods of Nori motives, and by composition withM↦⊕Hi

Nori(M)
also periods of geometric motives.

Definition 2.19. A complex number is called an (effective) motivic period if
is the period of an (effective) motive.

Every Nori motive is a subquotient of the image of a geometric motive,
hence is does not matter whether we think of geometric or Nori motives in the
above definition.
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Proposition 2.20 ([15, Prop. 11.5.3]). The set of effective motivic periods

agrees with Peff . The set of all motivic periods agrees with P. In particular,

both are independent of the choice of K.

As a consequence, we see that both Peff and P are Q-algebras. Of course
this is also easy to deduce directly from any of the other descriptions.

There is a big advantage of the motivic description: any type of structural
result on motives has consequences for periods. One such are the bounds on
the spaces of multiple zeta-values by Deligne–Goncharov. Another example
are the transcendence results for 1-motives as discussed below.

In particular, the motivic point of view allows us (or rather Nori) to give a
structural reinterpretation of the period conjecture.

2.21. Comparison. We conclude by putting all information together:

Theorem 2.22 (Proposition 2.11, 2.14, 2.20). The following sets of complex

numbers agree:

(i) the set of periods in the sense of Definition 2.7;

(ii) the set of Kontsevich–Zagier periods, see Definition 2.10;

(iii) the set of cohomological periods, see Definition 2.13;

(iv) the set of all motivic periods, see Definition 2.19.

Moreover, they are independent of the field of definition Q ⊂ K ⊂ Q and form

a countable Q-algebra.

3. Formal periods and the period conjecture

In reverse order to the historic development, we start with Kontsevich’s
formulation and discuss the Grothendieck conjecture afterwards.

3.1. Kontsevich’s period conjecture. We take the point of view of coho-
mological periods. At this point we restrict to K = Q for simplicity. There are
obvious relations between periods:

● (Bilinearity). Suppose that ω1, ω2 ∈ Hi
dR(X,Y ), α1, α2 ∈ Q, σ1, σ2 ∈

H
sing
i (X,Y ;Q), a1, a2 ∈ Q. Then

∫
a1σ1+a2σ2

(α1ω1 + α2ω2) =
2

∑
i,j=1

aiαj ∫
σi

ωj.

● (Functoriality). For f ∶ (X,Y ) → (X ′, Y ′), ω′ ∈ Hi
dR(X ′, Y ′) and σ ∈

H
sing
i (X,Y ;Q), we have

∫
f∗σ

ω′ = ∫
σ
f∗ω′.

● (Boundaries). For every triple Z ⊂ Y ⊂X , ∂∶Hi
dR(Y,Z)→Hi+1

dR (X,Y ),
δ∶H

sing
i+1 (X,Y ;Q)→H

sing
i (Y,Z;Q), ω ∈Hi

dR(Y,Z), σ ∈Hsing
i+1 (X,Y ;Q),

we have

∫
δσ

ω = ∫
σ
∂ω.
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Definition 3.2 (Kontsevich). The space of formal effective periods P̃eff is
defined as the Q-vector space generated by symbols

(X,Y, i, ω, σ),
with X an algebraic variety over Q, Y ⊂ X a closed subvariety, i ∈ N0, ω ∈
Hi

dR(X,Y ), σ ∈ Hsing
i (X,Y ;Q) modulo the space of relations generated by

bilinearity, functoriality and boundary maps as above.
It is turned into a Q-algebra using the external product induced by the

Künneth decomposition

H∗(X,Y )⊗H∗(X ′, Y ′) ≅H∗(X ×X ′, Y ×X ′ ∪ Y ′ ×X).
Let 2π̃i be the class of the symbol (Gm,{1}, dz/z,S1). The space of formal

periods P̃ is defined as the localization

P̃ = P̃eff[π̃−1].
Remark 3.3. (i) P̃eff and P̃ are even Q-algebras. We define the scalar

multiplication by α(X,Y, i, ω, σ) = (X,Y, i,αω,σ) for α ∈ Q.
(ii) We do not know if it suffices to work with X smooth, D a divisor

with normal crossings as Kontsevich does in [18]. As explained in [15,
Rem. 13.1.8], these symbols generate the algebra, but it is not clear if
they also give all relations. Indeed, Kontsevich only imposes relations
in an even more special case.

(iii) It is not at all obvious that the product is well defined. This fact
follows from Nori’s theory, see [15, Lem. 14.1.3].

There is a natural evaluation map

P̃eff → C, (X,Y, i, ω, σ) ↦ ∫
σ
ω.

By definition, its image is the set of effective cohomological periods, hence
equal to Peff .

Conjecture 3.4 (Kontsevich). The evaluation map

P̃ → P
is injective. In other words, all Q-linear relations between periods are induced

by the above trivial relations.

3.5. Categorical and motivic description. The above description is “min-
imalistic” in using a small set of generators and relations. The downside is
that it is somewhat arbitrary. We now explain alternative descriptions. Let
again K ⊂ Q be a subfield. Recall that we have fixed an embedding Q ⊂ C.
Definition 3.6. Let C be an additive category, T ∶ C → (K,Q)−Vect an addi-
tive functor. We define the space of formal periods of C as the Q-vector space
P̃(C) generated by symbols (M,σ,ω), with M ∈ C, σ ∈ T (M)∨Q, ω ∈ T (M)K,
with relations

● bilinearity in σ and ω,
● functoriality in M .
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We are going to apply this mainly to subcategories of MMNori(K,Q) or
DMgm(K,Q).
Theorem 3.7. We have

P̃(DMgm(K,Q)) = P̃(MMNori(K,Q)) = P̃,
independent of K.

Proof. This is only implicit in [15]. It is a consequence of Galois theory of
periods as discussed in the next section. We defer the proof. �

Remark 3.8. In particular, the validity of the period conjecture does not
depend on K ⊂ Q. This is the reason that it was safe to consider only K = Q
in Definition 3.2.

The evaluation map (K,Q)−Vect→ C induces linear maps

P̃(C)→ C.

We denote the image by P(C).
Definition 3.9. We say that the period conjecture holds for C if the map
P̃(C)→ P(C) is injective.

In the case C =MMNori(K,Q), we get back Kontsevich’s Conjecture 3.4.
We are going to study the relation between the period conjecture for C and
subcategories of C below using a Galois theory for formal periods.

4. Galois theory of (formal) periods

4.1. Torsors and semi-torsors.

Definition 4.2. Let k be a field.

(i) A torsor in the category of affine k-schemes is an affine scheme X with
an operation of an affine k-group G

G ×X →X

such that there is an affine S over k and a point x ∈ X(S) such that
the morphism

GS →XS , g ↦ gx,

induced by the operation is an isomorphism.
(ii) A semi-torsor over k is a k-vector space V together with a coalgebra A

and a right co-operation

V → V ⊗A

such that there is a commutative k-algebra K and a k-linear map
V →K such that the map

VK → AK

induced by the comodule structure is an isomorphism.

Münster Journal of Mathematics Vol. 13 (2020), 573–596
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Remark 4.3. (i) The isomorphism makes X a torsor in the fpqc-topo-
logy because k → K is faithfully flat. See also [15, Section 1.7] for an
extended discussion of different notions of torsors.

(ii) The second notion is newly introduced here. A torsor gives rise to
a semi-torsor by taking global sections. A semi-torsor is a torsor if,
in addition, A is a Hopf algebra, V a k-algebra and the structure
map is a ring homomorphism. Hence, a semi-torsor only has half
of the information of a torsor. Note that an operation G × X → X

that gives rise to a semi-torsor, is already a torsor because an algebra
homomorphism which is a vector space isomorphism is also an algebra
isomorphism.

(iii) If B is a finite-dimensional k-algebra, N a left-B-module that is fpqc-
locally free of rank 1 (i.e., here is a commutative k-algebraK such that
K⊗kN is free of rank 1), then N∨ ∶= Homk(N,k) is a semi-torsor over
the coalgebra B∨.

(iv) Once there is one x satisfying the torsor condition, all elements ofX(S)
for all S will satisfy the condition. This is not the case for semi-torsors.

4.4. Galois theory revisited. As promised in the introduction, we want to
formulate Galois theory in torsor language.

Let Γ = Gal(Q/Q). It is profinite, hence pro-algebraic, where we view
abstract finite groups as algebraic groups over Q. Indeed, we identify a finite
group G with the algebraic group given by Spec(Q[G]∨). Let X0 = Spec(Q).
We view it as a pro-algebraic variety over Q. There is a natural operation

Γ ×X0 →X0.

We describe it on finite level. Let K/Q be Galois. Then

Gal(K/Q)× Spec(K)→ Spec(K)
is given by the ring homomorphism

Q[Gal(K/Q)]∨ ⊗K ←K

adjoint to

K ← Q[Gal(K/Q)]⊗K,

induced by the defining operation of the abstract group G(K/Q) on K.

Theorem 4.5 (Galois theory). The space X0 is a torsor under Γ. More

precisely, the choice id ∈X0(Q) induces an isomorphism

Γ
Q
→ (X0)Q.

Proof. We check the claim on the isomorphism on finite level. Let K/Q be a
finite Galois extension. The projection X0 → Spec(K) amounts to fixing an

embedding K ⊂ Q.
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We want to study the base change of

Gal(K/Q)× Spec(K)→ Spec(K)
to Q. On rings, this is

(1) Q[Gal(K/Q)]∨ ⊗
Q
(K ⊗Q) ←K ⊗Q.

On the other hand, consider the map

K ⊗Q→Map(Hom(K,Q),Q) ≅ Q[Hom(K,Q)]∨, λ⊗ a ↦ (σ ↦ aσ(λ)).
It is Galois equivariant. As K/Q is separable, it is an isomorphism. Hence,
our map (1) can be written as

(2) Q[Gal(K/Q)]∨ ⊗Q[Hom(K,Q)]∨ ← Q[Hom(K,Q)]∨.
It is obtained by duality from the right operation

(3) Gal(K/Q)×Hom(K/Q)→ Hom(K/Q).
By Galois theory, this operation is simply transitive. By evaluating on the
fixed inclusion K ⊂ Q, we get a bijection

Gal(K/Q)→ Hom(K,Q)
translating to the isomorphism

Q[Gal(K/Q)]∨ ←K ⊗Q

that we needed to show. �

4.6. Nori’s semi-torsor. We return to the situation of Section 3.5. We want
to explain how formal periods are a semi-torsor or even torsor.

Let K ⊂ C, C an additive category,

T ∶C → (K,Q)−Vect, M ↦ (T (M)K, T (M)Q, φM),
an additive functor. From now on we write

TdR(M) ∶= T (M)K, Tsing(M) ∶= T (M)Q.
Both TdR and Tsing are additive functors to K−Vect and Q−Vect, respectively.
In the Tannakian spirit we call them fiber functors.

We first give an alternative description of the formal period space. For
a fixed M , the Q-vector space generated by the symbols (M,σ,ω) with the
relation of bilinearity is nothing but

TdR(M)⊗Q Tsing(M)∨ ≅ TdR(M)⊗K T ∨sing(M)K
≅ HomK(TdR(M), Tsing(M)K)∨.

Hence, we have an alternative description of the space of formal periods

P̃(C) = ( ⊕
M∈C

Hom
Q
(TdR(M), Tsing(M))∨)/functoriality.

Note that the Q-sub vector space of relations induced by functoriality is even
a K-vector space. This makes it clear that P̃(C) is a K-vector space.

Münster Journal of Mathematics Vol. 13 (2020), 573–596
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In the next step, we introduce the coalgebra (or even affine K-group) under
which the formal period space is a semi-torsor (or even torsor). Actually, its
definition is parallel to the definition of the formal period space, but with one
fiber functor instead of two.

Definition 4.7. For M ∈ C put

A(M) = EndQ(Tsing(M))∨

and

A(C) = ( ⊕
M∈C

A(M))/functoriality.

Note that A(M) and A(C) are Q-coalgebras.

Remark 4.8. This object is at the very heart of Nori’s work. It is an explicit
description of the coalgebra that Nori attaches to the additive functor Tsing∶C →
Q−Vect.

We extend scalars to K:

A(C)K = ( ⊕
M∈C

EndK(Tsing(M)K))
∨

/functoriality.

The left-module structure

EndK(Tsing(M)K, Tsing(M)K) ×HomK(TdR(M), Tsing(M)K)
→ HomK(TdR(M), Tsing(M)K)

induces a right-comodule structure

HomK(TdR(M), Tsing(M)K)∨ →A(M)K ⊗HomK(TdR(M), Tsing(M)K)∨

and hence

P̃(C)→ A(C)K ⊗K P̃(C) ≅ A(C)⊗Q P̃(C).
Recall that T takes values in (K,Q)−Vect, hence we have a distinguished
isomorphism of functors φT ∶ TdR(M)C → Tsing(M)C. It is an element of
HomC(TdR(M)C, Tsing(M)C) or, equivalently, a linear map

HomK(TdR(M), Tsing(M)K)∨ → C.

Hence, this is precisely the data that we need for a semi-torsor. Indeed, because
φT is an isomorphism, it induces an isomorphism

P̃(C)C → A(C)C.
We have shown:

Proposition 4.9. The space P̃(C) is a K-semi-torsor over A(C)K in the sense

of Definition 4.2.

Definition 4.10. Let C(C, Tsing) be the category of A(C)-comodules finite-
dimensional over Q.

This is nothing but Nori’s diagram category, see [15, Section 7.1.2].
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Theorem 4.11 (Nori, see [15, Thm. 7.1.13]). There is a natural factorization

Tsing∶C → C(C, Tsing)
T̃singÐÐÐ→ Q−Vect,

with C(C, Tsing) abelian and Q-linear, the functor T̃ faithful and exact, and the

category is universal with this property.

Remark 4.12. In particular, C is equivalent to C(C, Tsing) if C is itself abelian
and Tsing faithful and exact.

Proposition 4.13. We have

P̃(C) ≅ P̃(C(C, Tsing)).
Proof. We use the semi-torsor structure to reduce the claim to the comparison
of the diagram algebra. It remains to check that the natural map

A(C)→ A(C(C, Tsing))
is an isomorphism. This is only implicit in [15, Section 7.3]. Here is the
argument: By construction, A(C) = limiAi for coalgebras finite-dimensional
over Q of the form Ai = E∗i for a Q-algebra Ei. We also have C(C, Tsing) =
⋃iEi−Mod, the category of finitely generated Ei-modules. Hence, it suffices
to show that

Ei ≅ A(Ei−Mod)∨.
The categoryEi−Mod has the projective generatorEi. By [15, Lem. 7.3.14], we
have A(Ei−Mod)∨ ≅ End(Tsing∣Ei

). The latter means all Q-linear maps Ei →
Ei commuting with all Ei-morphisms Ei → Ei. We have EndEi−Mod(Ei) = E○i
(the opposite algebra of Ei) and hence End(Tsing∣Ei

) = Ei, as claimed. �

4.14. The Tannakian case. Assume now that, in addition, C is a rigid tensor
category and T a faithfully exact tensor functor. Using Tsing as fiber functor,
this makes C a Tannakian category. By Tannaka duality, it is equivalent to the
category of finite-dimensional representations of a pro-algebraic group G(C).
There is a second fiber functor given by TdR. Again by Tannaka theory, the
comparison of the two fiber functors defines a pro-algebraic affine scheme X(C)
over K such that

X(S) = {Φ∶Tsing( ⋅ )S → TdR( ⋅ )S ∣isom. of tensor functors}.
It is a torsor under G(C)

G(C) ×X(C)→X(C).
When passing to the underlying semi-torsor, these objects are identical to the
ones considered before.

Proposition 4.15 ([15, Section 7.1.4]). There are natural isomorphisms

O(X) ≅ P̃(C) and O(G(C)) ≅ A(C).
Proof. The case of the group is [15, Thm. 7.1.21]. The same arguments also
applies to X(C), see also [15, Rem. 8.2.11]. �
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Remark 4.16. The above presentation that sees the Tannakian case as a
special case of the abelian case is ahistorical. The interpretation of periods
as functions on the torsor of isomorphisms between two fiber functors of a
Tannakian category has long been known, see, for example, [3] or [13]. The
insight is originally due to Grothendieck.

4.17. The case of motives. We consider a particularly interesting case, that
is, C =MMNori(K,Q). Put

Gmot(K) ∶= Spec(A(MMNori(K,Q))),
X(K) ∶= Spec(P̃(MMNori(K,Q))).

Then

Gmot(K)K ×K X(K)→X(K)
is a torsor. We use this to give the proof of Theorem 3.7 that was left open.

Proof of Theorem 3.7. FixK ⊂ Q. Let ANori(K) be the coalgebra defined using
the same data as in Definition 3.2, but with Hi

dR replaced by Hi
sing and with

base field K instead of Q.
The considerations of the present section also apply to this case and show

that ANori(K) is nothing but Nori’s diagram coalgebra for the diagram of
pairs, see [15, Def. 9.1.1]. By definition, see [15, Def. 9.1.3], the category
MMNori(K,Q) is the category of representations ofGmot(K)=Spec(ANori(K)).
Hence, ANori(K) ≅ A(MMNori(K,Q)).

By [15, Cor. 10.1.7], we also have ANori(K) ≅ A(DMgm(K,Q)). By Galois
theory of periods, i.e., the torsor property, this also implies

P̃(K) ≅ P̃(MMNori(K,Q)) ≅ P̃(DMgm(K,Q)).
We now have to compare different K’s. Let K/k be an algebraic extension

of subfields of Q. The comparison

P̃(K) ≅ P̃(k)
is claimed in [15, Prop. 13.1.11]. Unfortunately, the argument is not complete.
It only shows that the map induced by base change

P̃(k)→ P̃(K)
is surjective. We are going to complete the argument now. It suffices to
consider the case K/k finite and Galois. In this case, there is a natural short
exact sequence

0→ Gmot(K)→ Gmot(k) → Gal(K/k)→ 0

by [15, Thm. 9.1.16]. Moreover, we have torsor structures

Gmot(k)K ×K X(k)K →X(k)K ,

Gmot(K)K ×K X(K)→X(K).
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We have Q ⊂ P̃(K) as formal periods of zero-dimensional varieties. Hence, the
structure morphism X(k)→ Spec(k) factors via Spec(K). We write X ′(k) for
X(k) viewed as K-scheme. Then

X(k)K =X(k) ×k K ≅X ′(k) ×K (Spec(K) ×k Spec(K)) ≅ ∐
σ∈Gal(K/k)

X ′(k).

Comparing with the structure of Gmot(k), we deduce the torsor

Gmot(K)K ×K X ′(k)→X ′(k).
Hence, the natural map X ′(k)→X(K) is an isomorphism. �

5. Consequences for the period conjecture

5.1. Abstract considerations. As before, let C be an additive category and
T ∶C → (K,Q)−Vect an additive functor and C(C, Tsing) the diagram category.

Proposition 5.2. The period conjecture for C is equivalent to the period con-

jecture for C(C, Tsing).
Proof. The formal period algebras agree by Proposition 4.13. �

Hence, we only need to consider abelian categories and faithful exact func-
tors T when analyzing the period conjecture.

Proposition 5.3. Let C be an abelian, Q-linear category. Let C′ ⊂ C be an

abelian subcategory such that the inclusion is exact. The following are equiva-

lent:

(i) the category C′ is closed under subquotients in C;
(ii) the map P̃(C′) → P̃(C) is injective.

Proof. Injectivity can be tested after base change to C, hence the second as-
sertion of equivalent to the injectivity of A(C′) →A(C). The implication from
(i) to (ii) is [15, Prop. 7.5.9].

For the converse, consider K = ker(A(C′) →A(C)). It is an A(C)-comodule,
but not an A(C′)-comodule. By construction, A(C′) is a direct limit of coal-
gebras finite over Q. Hence, K is a direct limit of A(C)-comodules of finite
dimension over Q. They cannot all be A(C′)-comodules, hence we have found
objects of C that are not in C′. �

Corollary 5.4. Suppose C is abelian and T faithful and exact. If the period

conjecture holds for C, then T ∶C → (K,Q)−Vect is fully faithful with image

closed under subquotients.

Proof. We view C as a subcategory of (K,Q)−Vect via T . Let C̃ be its closure

under subquotients. Note that the periods of C agree with the periods of C̃.
By assumption, the composition

P̃(C)→ P̃(C̃)→ P(C)
is injective. Hence, the first map injective. By Proposition 5.3 this implies that
C is closed under subquotients in (Q,Q)−Vect. Let X,Y ∈ C and f ∶X → Y
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a morphism in (Q,Q)−Vect. Then its graph Γ ⊂ X × Y is a subobject in

(Q,Q)−Vect, hence in C. This implies that f is in C. Hence, C is a full
subcategory. �

Corollary 5.5. Let C′ ⊂ C be a full abelian subcategory closed under subquo-

tients. If the period conjecture holds for C, then it holds for C′.
Proof. We have P̃(C′) ⊂ P̃(C) → C. If the second map is injective, then so is
the composition. �

5.6. The case of motives. We now specialize to C =MMNori(K,Q).
Definition 5.7. Let M ∈MMNori(K,Q). We denote by ⟨M⟩ the full abelian
subcategory ofMMNori(K,Q) closed under subquotients generated by M .

Proposition 5.8. The following are equivalent:

(i) The period conjecture holds for MMNori(K,Q).
(ii) The period conjecture holds for ⟨M⟩ for all M ∈MMNori(K,Q).
Note that P(⟨M⟩) = P⟨M⟩ in the notation of Definition 2.17.

Proof. We have P̃(⟨M⟩) ⊂ P̃(MMNori(K,Q)) because the subcategory is full
and closed under subquotients. Hence,

P̃ = P̃(MMNori(K,Q)) = ⋃
M

P̃(⟨M⟩).

The map P̃ → C is injective if and only if this is true for all P̃(⟨M⟩). �

Proposition 5.9. Let M ∈MMNori(K,Q). Let P⟨M⟩ ⊂ C be the subgroup

(hence Q-vector space) generated by P(M). The period conjecture holds for

⟨M⟩ if and only if

dim
Q
P⟨M⟩ = dimQA(⟨M⟩).

Proof. We have P⟨M⟩ = P(⟨M⟩). By definition, the map P̃(⟨M⟩) → P(⟨M⟩)
is surjective. Hence, the period conjecture for ⟨M⟩ is equivalent to

dim
Q
P(⟨M⟩) = dim

Q
(P̃(⟨M⟩).

As a semi-torsor, it has the same Q-dimension as A(⟨M⟩)
Q
. �

5.10. Grothendieck’s period conjecture. In the previous section, we did
not make use of the tensor product on motives. Indeed, by Section 4.17 we
have the torsor

Gmot(K)K ×K X(K)→X(K).
Corollary 5.11 (Nori). If the period conjecture holds, then P is a Gmot(K)K-
torsor.

Definition 5.12. LetM ∈MMNori(K,Q). We put ⟨M⟩⊗,∨ ⊂MMNori(K,Q),
the full abelian rigid tensor subcategory closed under subquotients generated
by M . We denote G(M) its Tannaka dual.
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Proposition 5.13. The following are equivalent:

(i) the period conjecture holds for MMNori(K,Q);
(ii) the period conjecture holds for ⟨M⟩⊗,∨ for all M ∈MMNori(K,Q).

Proof. Same proof as for Proposition 5.8. �

The scheme X(M) ∶= Spec(P̃⟨M⟩⊗,∨) is a G(M)-torsor. Hence, it inherits
all properties of the algebraic group G(M) that can be tested after a faithfully
flat base change. In particular, it is smooth.

Conjecture 5.14 (Grothendieck’s period conjecture). Let M ∈MMNori(K,Q).
Then X(M) is connected and

dimG(M) = trdegQQ(P(M)).
In the case of pure motives, this is the formulation of André in [3, Chap. 23].

Proposition 5.15 ([15, Conj. 13.2.6]). The following are equivalent:

(i) the period conjecture holds for ⟨M⟩⊗,∨;
(ii) the point ev ∈ X(M)(C) is generic and X(M) is connected;

(iii) Grothendieck’s period conjecture holds for M .

Proof. See the proof of equivalence in [15]. The crucial input is that X(M) is
smooth. Hence, being connected makes it integral, so that there is only one
generic point. Moreover, X(M) and G(M) have the same dimension. �

6. Cycles and the period conjecture

We now discuss the relation between conjectures on fullness of cycle class
maps and the period conjecture. The relation to algebraic cycles goes a long
time back. In fact, it appears in the first published account of Grothendieck’s
period conjecture in Lang’s [20, Chap. IV, Historical Notes]. The conceptual
interpretation in terms of pure motives and Tannaka theory is explained in [3].
He stresses the analogy with the Hodge conjecture and the Tate conjecture.
What we add here is the case of an abelian category without tensor products.

Proposition 6.1. Let C ⊂MMNori(K,Q) be a full abelian category closed un-

der subquotients. If the period conjecture holds for C, then H ∶C → (K,Q)−Vect
is fully faithful with image closed under subquotients.

Proof. This is a special case of Corollary 5.5. �

By definition H is faithful, hence the interesting part about this is fullness.
This point is taken up in a version of the period conjecture formulated by Bost
and Charles in [9] and generalized by Andreatta, Barbieri-Viale and Bertapelle
in [2]. We formulate the latter version. Recall from [14] the realization functor

DMgm(K,Q)→Db(MMNori(K,Q)).
By composition withMMNori(K,Q)→ (K,Q)−Vect this gives us a functor

H0
∶DMgm(K,Q)→ (K,Q)−Vect.
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Definition 6.2. We say that the fullness conjecture holds for C ⊂ DMgm(K,Q)
if

H0
∶C → (K,Q)−Vect

is full.

Conjecture 6.3 ([2, Section 1.3]). Let C ⊂ DMgm(K,Q) be a full additive

subcategory. Then the fullness conjecture holds for C.
Remark 6.4. (i) Andreatta, Barbieri-Viale and Bertapelle also consider

refined integral information. We do not go into this here.
(ii) This terminology deviates from [2], where the term period conjecture

is used.

Arapura established in [8] (see also [15, Thm. 10.2.7]) that the category of
pure Nori motives is equivalent to André’s abelian category AM of motives via
motivated cycles.

Proposition 6.5 (Cf. [3, Prop. 7.5.2.2]). If the period conjecture holds for

pure Nori motives and the Künneth and Lefschetz standard conjectures are

true, then the fullness conjecture holds for Chow motives.

Proof. The functor from Chow motives to Grothendieck motives is full by
definition. The Künneth and Lefschetz standard conjectures together imply
that the category of Grothendieck motives is abelian and agrees with AM,
hence with the category of pure Nori motives. By the period conjecture, the
functor to (Q,Q)−Vect is full. Together these arguments prove fullness of the
composition. �

A similar result actually holds for the full category of geometric motives.
Its assumptions are very strong, but are indeed expected to be true.

Proposition 6.6. We assume

(i) the period conjecture holds for all Nori motives;

(ii) the category DMgm(K,Q) has a t-structure compatible with the singular

realization;

(iii) the singular realization is conservative;

(iv) the category DMgm(K,Q) is of cohomological dimension 1.

Then the fullness conjecture holds for DMgm(K,Q).
Proof. The period conjecture gives again fullness of MMNori(K,Q) →
(K,Q)−Vect. It remains to check surjectivity of

(*) HomDMgm(K,Q)(M1,M2)→ HomMMNori(K,Q)(H0
Nori(M1),H0

Nori(M2))
for all M1,M2 ∈ DMgm(K,Q).

LetMM be the heart of the t-structure. By conservativity, H0 is faithful
on MM. By the universal property of Nori motives, this implies MM ≅
MMNori(K,Q). As the cohomological dimension is 1, this implies that we
have DMgm(K,Q) ≅ Db(MMNori(K,Q)). It also implies that every object of
DMgm(K,Q) is (uncanonically) isomorphic to the direct sum of its cohomology

Münster Journal of Mathematics Vol. 13 (2020), 573–596



590 Annette Huber

objects. Hence, it suffices to consider M1 = N1[i1], M2 = N2[i2] for N1,N2 ∈
MM, i1, i2 ∈ Z. We have H0(Mk) = 0 unless 0 = ik. Hence, surjectivity in (*)
is trivial for i1 ≠ 0 or i2 ≠ 0. In the remaining case i1 = i2 = 0, we have equality
in equation (*), so again, the map is surjective. �

Remark 6.7. The converse is not true, the fullness conjecture does not imply
the period conjecture. An explicit example is given in [17, Rem. 7.6]. See also
the case of mixed Tate motives, Proposition 7.5.

On the other hand, the condition on the cohomological dimension is nec-
essary if we want to conclude from fully faithfulness on the level of abelian
categories to the triangulated category. Note that (K,Q)−Vect has cohomo-
logical dimension 1.

Answering a question of Andreatta, we can clarify the relation between the
fullness conjecture and the period conjecture for mixed motives further.

Proposition 6.8. Let C ⊂MMNori(K,Q) be a full subcategory closed under

subquotients and extensions. If the fullness conjecture holds for all ⟨M⟩ ⊂ C
such that M is an extension of two simple objects, then it holds for C.
Proof. Let M,N be objects of C. We are going to show surjectivity of

HomMMNori(K,Q)(M,N) → Hom(K,Q)−Vect(V (M), V (N))
(injectivity holds by assumption) and injectivity of

Ext1MMNori(K,Q)(M,N)→ Ext1(K,Q)−Vect(V (M), V (N)).
Note that

Ext2(K,Q)−Vect(V (M), V (N)) = 0
by the explicit computation in [16, Prop. 4.3.2, 4.2.3].

We argue by induction on the number of simple constituents of M and N .
Hence, assume first that M and N are simple. The bijectivity on Hom holds
by the assumption for ⟨M ⊕N⟩. Let

0→ N → E →M → 0

be in the kernel of the map on Ext1. This implies that there is a section
V (M) → V (E). By assumption, the fullness conjecture holds for ⟨E⟩, hence
the splitting is induced by a morphism in C. Hence, E is split as well.

For the inductive step let

0→ N ′ → N → N ′′ → 0

be a nontrivial decomposition. By inductive assumption, the two properties
hold for N ′ and N ′′. We compare the long exact sequences for Hom(M, ⋅ ) and
Hom(V (M), ⋅ ). By a straight-forward diagram chase, the conclusions also hold
for N . (Note the additional surjectivity on Hom uses the injectivity on Ext1

and the additional injectivity on Ext1 uses the surjectivity on Hom.) Now let

0→M ′ →M →M ′′ → 0
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be a nontrivial decomposition. The same argument works. (Note that injec-

tivity on Ext1 uses the vanishing of Ext2 in the category (K,Q)−Vect.) �

Remark 6.9. In particular, the period conjecture for all extensions of two
simple motives implies the fullness conjecture for all motives. It does not
imply the period conjecture for all motives. There are periods that are not
linearly dependent on periods of motives whose weight filtration has length 1.

7. Examples

7.1. Artin motives. The category of Artin motives over K can be described
as the full subcategory of MMNori(K,Q) generated by motives of 0-dimen-
sional varieties. The Tannakian dual of this category is nothing but Gal(K̄/K).
The space of periods is Q. The torsor structure is the one described in Sec-
tion 4.4. For more details see also [15, Section 13.3].

Remark 7.2. The period conjecture and the fullness conjecture hold true for
Artin motives.

7.3. Mixed Tate motives. Inside the triangulated category of geometric mo-
tives DMgm(Spec(Q),Q), let DMT be the full thick rigid tensor triangulated
subcategory generated by the Tate motive Q(1). Equivalently, it is the full
thick triangulated subcategory generated by the set of Q(i) for i ∈ Z. By deep
results of Borel, it carries a t-structure, so that we get a well-defined abelian

category MT of mixed Tate motives over Q, see [21]. Deligne and Gocha-

narov found a smaller abelian tensor subcategoryMT f of unramified mixed
Tate motives, see [12]. Its distinguishing feature is that

Ext1MT f (Q(0),Q(1)) = Z∗ ⊗Z Q = 0 ⊊ Ext1MT (Q(0),Q(1)) = Q∗ ⊗Z Q.

By [12], the periods ofMT f are precisely the famous multiple zeta values. The

Tannaka dual ofMT f is very well understood. Using Galois theory of periods,
this information translates into information on P̃(MT f). The surjectivity of

P̃(MT f) → P(MT f) then yields upper bounds on the dimensions of spaces
of multiple zeta values. For more details, see [12] or [15, Chap. 15].

Remark 7.4. The period conjecture and the fullness conjecture are open for
MT f .

Indeed, the period conjecture forMT f implies statements like the algebraic
independence of the values of Riemann ζ-function ζ(n) for n ≥ 3 odd that are
wide open. The fullness conjecture is a lot weaker.

Proposition 7.5. The fullness conjecture holds for DMT if and only if ζ(n)
is irrational for n ≥ 3 odd.

Proof. Assume the irrationality condition. By [12], the category MT has
cohomological dimension 1 and Db(MT ) is equivalent to DMT. Hence, we
can use the same reasoning as in the proof of Proposition 6.6. It suffices to
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show that MT → (Q,Q)−Vect is fully faithful. We apply the criterion of
Proposition 6.8. It remains to check injectivity of

Ext1MT (Q,Q(n))→ Ext1(Q,Q)−Vect(Q,Q(n))
for all n ∈ Z. Here Q(n) ∈ (Q,Q)−Vect denotes the object of rank 1 given by
Q(n)dR = Q, Q(n)sing = (2πi)nQ and the natural comparison isomorphism.

By Borel’s work, the left-hand side is known to vanish for n ≤ 0 and n ≥ 2
even, hence it suffices to consider n = 2m−1 for m ≥ 1. By [16, Prop. 4.3.2 and
4.2.3],

Ext1(Q,Q)−Vect = coker(Q(n)dR ⊕Q(n)sing → C) = C/⟨1, (2πi)n⟩Q.
This is a quotient of

(4) Ext1MHSQ
(Q,Q(n)) ≅ C/(2πi)nQ.

We first consider n =m = 1, the Kummer case. The left-hand side isQ∗⊗Q, and
the map is the Dirichlet regulator u↦ log∣u∣. The prime numbers give a basis

of Q∗ ⊗Q. By Baker’s theorem, their logarithms are Q-linearly independent.
They are also real whereas 2πi is imaginary. Hence, the regulator map (4) is
injective.

Now let m ≥ 2. ¿From the well-known explicit computation of the Deligne
regulator, we know that the image of a generator of Ext1MT (Q,Q(2m − 1)) is
given by ζ(2m − 1) ∈ C/⟨1, (2πi)2m−1⟩. It is real hence Q-linearly independent
of (2πi)2m−1 ∈ iR. If it is irrational, then it is Q-linearly independent of 1 as
well.

Now assume conversely that the fullness conjecture holds for DMT. This
implies thatMT → (Q,Q)−Vect is fully faithful. We claim that (4) is injective.
Take an element on the right, i.e., a short exact sequence

0→ Q(n)→ E → Q(0)→ 0

inMT whose image in (Q,Q)−Vect is split. This means that there is a splitting
morphism Q(0)→ E in (Q,Q)−Vect. By fullness it comes from a morphism in
MT . This shows injectivity of (4). By the explicit computation this implies
that ζ(2m − 1) is Q-linearly independent of 1, i.e., irrational. �

We see again that the fullness statement is a lot weaker that than the period
conjecture. There are even partial results due to Apéry and Zudilin.

7.6. The case of 1-motives. The situation for 1-motives is quite similar to
the case of 0-motives: there is an abelian category 1−MotK of iso-1-motives
over K. It was originally defined by Deligne, see [11]. Its derived category is
equivalent the subcategory of DMgm(K,Q) generated by motives of varieties of
dimension at most 1. This result is due to Orgogozo, see [22], see also Barbieri-
Viale and Kahn [10]. There is a significant difference to the 0-dimensional case,
though 1−MotK is not closed under tensor products, so it does not make sense
to speak about torsors. However, our notion of a semi-torsor is built to cover
this case: P̃(1−MotK) is semi-torsor under the coalgebra A(1−MotK)K.

The main result of [17] settles the period conjecture:
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Theorem 7.7 ([17]). The evaluation map P̃(1−Mot
Q
) → P(1−Mot

Q
) is in-

jective, i.e., the period conjecture holds for 1−Mot
Q
.

This is first and foremost a result in transcendence theory. With a few extra
arguments, it implies the following corollary.

Corollary 7.8 ([17, Thm. 7.10]). Let X be a smooth projective algebraic curve

over Q, ω ∈ Ω1
Q(X) a meromorphic algebraic differential form, σ = ∑n

i=1 aiγi a

singular chain avoiding the poles of ω and with ∂σ a divisor on X(Q). Then

the following are equivalent:

(i) the number ∫σ ω is algebraic;

(ii) we have ω = df + φ with ∫φ φ = 0.
This contains the previously known results on transcendence of π or values

of log in algebraic numbers as well as periods of differential forms over closed
paths. The really new case concerns differential forms of the third kind (so
with non-vanishing residues) and nonclosed paths. This settles questions of
Schneider that had been open since the 1950s. Here is a very explicit example:

Example 7.9 ([17, Thm. 10.6]). Let E/Q be an elliptic curve. Recall the

Weierstrass ℘-, ζ- and σ-function for E. Let u ∈ C such that ℘(u) ∈ Q and

expE(u) is non-torsion in E(Q). Then
uζ(u) − 2 log(σ(u))

is transcendental.

In the spirit of Baker’s theorem, Theorem 7.7 also allows us to give an
explicit formula for dim

Q
P⟨M⟩ for all 1-motives M .

Corollary 7.10 ([17, Cor. 3.10]). Let M ∈ 1−Mot
Q
and P⟨M⟩ ⊂ C the subgroup

(hence Q-vector space) generated by P(M). Then

dim
Q
P⟨M⟩ = dimQA(⟨M⟩),

with A(⟨M⟩) as in Definition 4.7.

Proof. This is a special case of Proposition 5.9. �

It is possible to make this explicit in terms of M , but not easy to state. So
we simply refer to [17, Chap. 9].

On the other hand, Theorem 7.7 has consequences for the various conjec-
tures discussed before. In [1], Ayoub and Barbieri-Viale show that 1−Motk is a

full subcategory closed under subquotients inMMeff
Nori(k,Q). They also give

description of A(1−Motk) in terms of generators and relations. Together with
Theorem 7.7, this implies Kontsevich’s period conjecture for curves.

In detail, following [17, Def. 6.6], we call a period number of curve type if
it is a period of a motive of the form H1(C,D) with C a smooth affine curve

over Q and D ⊂ C is a finite set of Q-valued points.
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Corollary 7.11 ([17, Thm. 7.3]). All relations between periods of curve type

are induced by bilinearity and functoriality of pairs (C,D) → (C′,D′) with

C,C′ smooth affine curves and D ⊂ C, D′ ⊂ C′ finite sets of points.

In a different direction, we have the following corollary:

Corollary 7.12 ([17, Thm. 7.4], [2]). The functor 1−Mot
Q
→ (Q,Q)−Vect is

fully faithful.

Proof. This is Corollary 5.5. An independent proof was given by Andreatta,
Barbieri-Viale and Bertapelle. �

On the other hand, Orgogozo [22], and Barbieri-Viale and Kahn [10] showed
that the derived category of 1−Motk is a full subcategory of DMgm(k,Q).
Corollary 7.13. The fullness conjecture holds for d≤1DMgm(Q,Q).
Proof. By [22, Prop. 3.2.4], the category d≤1DMgm(Q,Q) ≅ Db(1−Mot

Q
) has

cohomological dimension 1. We can now use the same argument as in the proof
of Proposition 6.6, unconditionally. �

Corollary 7.14 ([17, Thm. 7.4]). The natural functors

● 1−Mot
Q
→MMNori(Q,Q) (non-effective Nori motives),

● 1−Mot
Q
→MHS

Q
(mixed Hodge structures over Q)

are full.

Proof. Their composition with the functor to (Q,Q)−Vect is full. �

A much stronger version of the above was recently shown by André, by
comparing the Tannakian dual of the tensor category generated by 1-motives
to the Mumford-Tate group.

Theorem 7.15 (André [6, Thm. 2.0.1]). Let k ⊂ C be algebraically closed.

Let 1−Mot⊗k ⊂MMNori(k,Q) be the full Tannakian subcategory closed under

subquotients generated by 1−Motk. Then the functor

1−Mot⊗k →MHS

is fully faithful.

In the case k = Q, this means that the Q-structure can actually be recovered
from the Hodge- and weight filtration—and conversely. His result also gives
fullness of 1−Motk →MMNori(k,Q) for all algebraically closed k ⊂ C (actually
he has to show this on the way).
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