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Abstract. We carry out a detailed comparison of group cohomology and Lie algebra co-
homology in the context of a compact p-adic Lie group G admitting a p-valuation ω, using
Hochschild cohomology as an intermediary. As a result we provide a new spectral sequence
for Fp[[G]]-bimodules W which computes H∗(G,W ad) from an E1-page of Lie algebra co-
homology. This generalizes the May spectral sequence for (one-sided) Fp[[G]]-modules. We
believe our results are new even in the case where W is the trivial bimodule, in which case
we can quantify at which stage the spectral sequence collapses in terms of the amplitude
of ω. When G is equi-p-valued we recover the Lazard isomorphism with

∧
Hom(G, Fp) as

an edge map. We include various applications, such as the computation of the Hochschild
cohomology of the mod p Iwasawa algebra Fp[[G]] with coefficients in a discrete quotient

Fp[[G]]/I. The mod p cohomology of the p-adic quaternion group O×

D
is worked out in detail

for p > 3 as an example.

1. Introduction

The cohomology of Lie groups has a long history. One of the first results
is [1, Thm. 15.2] stating that H∗(G,R) ≃ H∗(g,R) for a connected compact
real Lie group G with Lie algebra g. This can be made more precise, and
more explicitly, H∗(G,R) is an exterior algebra

∧

(ξ1, . . . , ξl) on generators ξi
of various odd degrees 2di − 1. Here l = rank(G). The mod p cohomology
H∗(G,Fp) was understood much later by Kac in the eighties. In [9, p. 73] it is
shown that

H∗(G,Fp) ≃ Fp[x1, . . . , xr]/(x
pk1

1 , . . . , xpkr

r )⊗
∧

(ξ1, . . . , ξl)

for p > 2. Here deg(ξi) = 2di,p − 1 and deg(xi) = 2di,p, where the di,p are
defined in [9, Thm. 3], along with r and the ki. We should emphasize that
in this purely motivational paragraph, H∗(G,R) and H∗(G,Fp) indicate the
cohomology of G as a topological space, and not continuous group cohomology
which can be thought of as the cohomology of the classifying space BG. In that
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102 Claus Sorensen

regard one can identify H∗(BG,R) with a polynomial algebra R[x1, . . . , xl] in
variables of even degrees deg(xi).

Our main interest here is the mod p cohomology H∗(G,Fp) of a compact p-
adic Lie group G. We stress that from now on H∗(G,Fp) means the continuous
group cohomology, and not the cohomology of G as a topological space which is
rather unmanageable. Since p-adic Lie groups are totally disconnected, entirely
new methods are called for. Lazard and Serre were the pioneers in the subject,
and the monumental treatise [12] studied these questions systematically based
on the notion of a p-valuation on G, and on the completed group algebras
associated with G. Central to the theory is the graded Lie algebra g attached
to G, which shares many features with the classical theory. For instance,
H∗(g,Fp) determines H∗(G,Fp) for an arbitrary p-valued group G (as we will
show). When G is equi-p-valued, which means g is concentrated in a single
degree, Lazard showed that H∗(G,Fp) ≃

∧

H1(g,Fp). Lazard’s isomorphism
is central to this paper whose goal is to ”compute” H∗(G,Fp) for p-valued
groups G which are not equi-p-valued. In fact, we can deal with nontrivial
coefficients and “compute” H∗(G,M) for discrete G-modules M with pM = 0,
via a spectral sequence starting from H∗(g, grM). We give the precise result
later in this introduction.

It is known (due to Lazard) that any compact p-adic Lie group contains
an open equi-p-valuable subgroup, cp [12, Ch. V, 2.2.7.1]. This may give the
impression that the distinction between p-valued and equi-p-valued groups is
somewhat nuanced, which is true for questions regarding finite generation of
H∗(G,Fp), Poincaré duality, cohomological dimension, Euler characteristics,
for example. However, there are many examples of naturally occurring p-
valuable groups G which are not equi-p-valuable, where detailed information
about H∗(G,Fp) is paramount. For example, unipotent groups (i.e., the Zp-
points of the unipotent radical of a Borel in a split reductive group), Serre’s
standard groups with e > 1 as in [8, Lem. 2.2.2], pro-p Iwahori subgroups for
large enough p, and 1+mD, where D is the quaternion division algebra over Qp

for p > 3. The latter example 1+mD plays an important role both in number
theory (in the Jacquet–Langlands correspondence for instance) and algebraic
topology. In stable homotopy theory, 1 + mD is known as the (strict) Morava
stabilizer, and H∗(1 + mD,Fp) somehow controls certain localization functors
with respect to Morava K-theory, as explained in [6, 7]. In Section 6.6 we cal-
culate H∗((1+mD)

Nrd=1,Fp) explicitly to illustrate the use of our techniques,
assuming p > 3.

We now state our main result precisely. Let (G,ω) be a p-valued group,
and assume ω takes values in 1

eZ for some e ∈ N. Fix a perfect field k of
characteristic p and consider the completed group algebra Ω(G) = k[[G]]. The

p-valuation ω gives a filtration by two-sided ideals FiliΩ(G) (i = 0, 1, 2, . . .),
and the associated graded algebra grΩ(G) can be naturally identified with
U(g), where g = k ⊗Fp[π] grG is the graded Lie k-algebra attached to G as
in [12]. (Here the variable π acts by sending g 7→ gp.)
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Hochschild cohomology and p-adic Lie groups 103

Start with an arbitrary finite filtered Ω(G)-bimodule W . Thus W is finite-

dimensional over k and carries a filtration Fili W indexed by i ∈ Z such that
Fili W = W for i << 0 and FiliW = 0 for i >> 0. Moreover, the filtration is
compatible with the bimodule structure in the sense that

Fili Ω(G)× Filj W × Filk Ω(G) −→ Fili+j+k W.

With any such W we associate a G-module W ad and a g-module (grW )ad as
follows:
(i) The underlying k-vector space of W ad is that of W , and the G-action is

defined by the formula g •w = gwg−1 (where the right-hand side uses the
bimodule structure via G →֒ Ω(G)×).

(ii) As a k-vector space, (grW )ad is the same as grW . The latter carries a
U(g)-bimodule structure, and the g-action is given by the recipe ξ • w =
ξw − wξ (via the embedding g →֒ U(g)).

Our main theorem is the following spectral sequence computing the continuous
cohomology of W ad from the Lie algebra cohomology of (grW )ad.

Theorem 1.1. There is a convergent spectral sequence collapsing at a finite

stage,

Es,t
1 = Hs,t

(

g, (grW )ad
)

=⇒ Hs+t(G,W ad).

When W is equipped with a pairing W ⊗Ω(G) W → W of filtered Ω(G)-
bimodules, the spectral sequence is multiplicative.

(The bigrading Hs,t of the Lie algebra cohomology comes from the grading
of g. See Definition 4.4 and the discussion after Theorem 5.5 in the main text
for more details.)

Although the end result (1.1) does not mention Hochschild cohomology at
all, the latter plays a crucial role in its proof. In fact, Theorem 1.1 may be
reformulated using only (continuous) Hochschild cohomology, cp Theorem 5.4
for this version of the main result. The overall strategy behind the proof of
Theorem 1.1 is to relate group and Lie algebra cohomology using Hochschild
cohomology as a go-between:

H∗(G,W ad)
(1)
! HH∗(Ω(G),W )

(2)
! HH∗(grΩ(G), grW )

(3)
== HH∗(U(g), grW )

(4)
! H∗(g, (grW )ad).

Here step (1) is essentially what is known as Mac Lane isomorphism. We dis-
cuss it in detail in Section 3, where we also establish an adjunction between
pseudocompact Ω(G)-modules and pseudocompact Ω(G)-bimodules. In that
section we denote W ad by R(W ). Step (2) is the spectral sequence (cp Theo-
rem 5.4) obtained by filtering the Hochschild complex Homk(Ω(G)⊗•,W ) in a

natural way. Step (3) is Lazard’s identification grΩ(G)
∼
−→ U(g). Finally, step

(4) is a detailed study of the anti-symmetrization map relating the Hochschild
cohomology of U(g) to the Lie algebra cohomology of g. In Section 4 we give
a streamlined exposition of some of the arguments in [2, Ch. XIII], and ex-
tend some of their results for our needs. For instance, by analogy with the
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pseudocompact case, we give an adjunction between U(g)-modules and U(g)-
bimodules.

Taking W = k to be the trivial bimodule in Theorem 1.1 gives a multiplica-
tive convergent spectral sequence

Es,t
1 = Hs,t(g, k) =⇒ Hs+t(G, k),

and we can quantify at which stage it collapses. In Proposition 6.2 we show
that Er = E∞ in the range r ≥ rank(G) · e · amp(ω). Here the amplitude of ω
is the largest value of ω(gi) minus the smallest value for an ordered basis (gi).
When amp(ω) = 0, we have an equi-p-valued group, and the spectral sequence
collapses on the first page. In this case Theorem 1.1 boils down to Lazard’s
famous isomorphism, cp [12, p. 183]:

(1) H∗(G, k)
∼
−→

∧

Hom(g, k).

Curiously Lazard proves this without making explicit use of any spectral se-
quences whatsoever. We feel our proof is a bit more conceptual, and it allows
us to interpret the Lazard isomorphism as an edge map of a spectral sequence.

In Section 6.4 we apply Theorem 1.1 to compute the (truncated) Hochschild
cohomology of Ω(G) for equi-p-valued groups. This is an example of Theo-
rem 1.1 for a nontrivial bimodule of coefficients; one takes W to be a finite-
dimensional quotient of Ω(G). In this situation, the E1-page is closely related
to the Koszul resolution for the symmetric algebra S(g). We have not seen
this application mentioned anywhere, and we believe the result is new. See (4)
for the precise statement.

In the case of a p-valued group (G,ω) our Theorem 1.1 simplifies and gen-
eralizes what is referred to as the May spectral sequence in [22, Thm. 5.1.12].
See also May’s original paper [14]. Two key differences are (1) we work with
Ω(G)-bimodules instead of just modules, and (2) our Lie algebras and univer-
sal enveloping algebras are not p-restricted (our filtration of Ω(G) comes from
ω and is not given by powers of the augmentation ideal). On the other hand
[22, Thm. 5.1.12] applies to any finitely generated pro-p group.

Let us draw a more precise comparison between Theorem 1.1 and part (2) of
[22, Thm. 5.1.12]. Start with a discrete left Ω(G)-moduleM . There is a natural

way to endowM with a decreasing filtration by letting Filj M = M [Fil−j Ω(G)]
for j ≤ 0, cp (5.1.14) on [22, p. 399] which uses powers of the augmentation

ideal J , however. Let grM be the associated left module for grΩ(G)
∼
−→ U(g).

In the latter isomorphism one has to replace U(g) by the p-restricted variant
U [p](g) when Ω(G) is filtered by powers of J , see [12, App. A.2] and [17,
p. 412]. We promote M to a bimodule by letting Ω(G) act on the right via the
augmentation map ǫ : Ω(G) → k. Using this as our input W in Theorem 1.1,
the G-module W ad is simply M viewed as a (left) G-module since ǫ(g) = 1, so
g•w = gw. Similarly grM becomes a bimodule for U(g) where the right-action
is via ǫ : U(g) → k. Thus (grW )ad is simply grM viewed as a (left) g-module;
indeed, ǫ(ξ) = 0, so ξ • w = ξw for ξ ∈ g. In this case, Theorem 1.1 gives a
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Hochschild cohomology and p-adic Lie groups 105

spectral sequence

Es,t
1 = Hs,t(g, grM) =⇒ Hs+t(G,M)

for any discrete left Ω(G)-module M . This is exactly [22, Thm. 5.1.12 (2)] ex-
cept they have to replace Hs,t(g, grM) with the p-restricted Lie algebra coho-
mology Ext

s,t
U [p](g)(k, grM) since they filter by J-powers. We have no nwanalog

of part (1) of [22, Thm. 5.1.12], but we believe our method should work for
Hochschild homology as well. We should also point out that the aforemen-
tioned application to the Lazard isomorphism (1) is already mentioned in [22,
p. 401].

2. Basic notions in Lazard theory

Let (G,ω) be a p-valued group. Recall that a p-valuation on a group G is a
function ω : G\{1} → (0,∞) satisfying certain standard axioms which we will
not repeat here. We refer the reader to [19, p. 169]. For any number v > 0, we
introduce

Gv = {g ∈ G | ω(g) ≥ v}, Gv+ = {g ∈ G | ω(g) > v}.

The aforementioned axioms guarantee both Gv and Gv+ are normal subgroups
of G. We always assume G is profinite in the topology defined by ω. Hence the

subgroups Gv and Gv+ are open balls for the ultrametric d(g, g′) = 2−ω(g−1g′)

and G = lim
←−

G/Gv as topological groups; in particular, G must be a pro-p-

group since ω(gp) = ω(g) + 1.

Definition 2.1. grG =
⊕

v>0 grv G, where grv G = Gv/Gv+.

This is an Fp-vector space and will be denoted additively. It has more
structure. In fact, grG is a module over the polynomial algebra Fp[π] by letting
π : grv G → grv+1 G be the map gGv+ 7→ gpG(v+1)+. We always assume (G,ω)
is of finite rank d say, which means grG is finite free of rank d over Fp[π].
Furthermore, grG carries a Lie bracket induced by the group commutator
which turns it into a graded Lie algebra over Fp[π]. We refer to [19, Sections 23–
25] for details.

By our finite rank assumption (G,ω) admits an ordered basis. That is a
sequence (g1, . . . , gd) such that the map (x1, . . . , xd) 7→ gx1

1 · · · gxd

d defines a

bijection Zd
p

∼
−→ G and

ω(gx1
1 · · · gxd

d ) = min{v(xi) + ω(gi) | i = 1, . . . , d}.

This corresponds to an ordered Fp[π]-basis for grG consisting of homogeneous
elements σ(gi) = giGω(gi)+.

Throughout the paper we fix a perfect field k of characteristic p and let
O = W (k) be its ring of Witt vectors. Elements of the completed group
algebra Λ(G) = O[[G]] may be expressed as power series as follows. First
introduce bi = gi − 1 and bα = bα1

1 · · ·bαd

d for a multi-index α ∈ Nd. Sending
Xi 7→ bi determines an isomorphism of topological O-modules

O[[X1, . . . , Xd]]
∼
−→ Λ(G).
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106 Claus Sorensen

Thus an element λ ∈ Λ(G) has a unique expansion λ =
∑

α cαb
α which we use

to define the valuation ω̃ on Λ(G)\{0} by the formula

ω̃(λ) = min
α

(

v(cα) +

d
∑

i=1

αiω(gi)

)

.

It is known that ω̃ is multiplicative, independent of the choice of basis, and
ω̃(g−1) = ω(g), cp [19, Cor. 28.4–5]. By analogy to the Gv above, we introduce
a filtration of Λ(G) by two-sided ideals

Λ(G)v = {λ ∈ Λ(G) | ω̃(λ) ≥ v}, Λ(G)v+ = {λ ∈ Λ(G) | ω̃(λ) > v}.

More explicitly Λ(G)v can be identified with the smallest closed O-submodule
of Λ(G) containing all elements of the form pM (h1 − 1) · · · (hN − 1) satisfying

M +
∑N

i=1 ω(hi) ≥ v, see [19, Thm. 28.3].

Definition 2.2. grΛ(G) =
⊕

v≥0 grv Λ(G), where grv Λ(G) = Λ(G)v/Λ(G)v+.

This defines a graded grO-algebra, where grO =
⊕∞

i=0 p
iO/pi+1O. Note

that grO
∼
−→ k[π]. The following fundamental theorem relates grΛ(G) to the

universal enveloping algebra of grG.

Theorem 2.3 (Lazard). grO ⊗Fp[π] U(grG)
∼
−→ grΛ(G).

We refer the interested reader to [19, Thm. 28.3] for its proof.
Our main interest in this paper is the mod p completed group algebra

Ω(G) = k[[G]] which we may identify with Λ(G)/pΛ(G) and endow it with
the quotient filtration Ω(G)v (= the image of Λ(G)v). This gives a graded
k-algebra grΩ(G) as before. Letting g = k ⊗Fp[π] grG = k ⊗Fp

grG/π grG,
which is a graded Lie algebra over k, one easily deduces the mod p nwanalog
of Theorem 2.3:

Corollary 2.4. U(g) = k ⊗Fp[π] U(grG)
∼
−→ grΩ(G).

It is worthwhile to spell out the grading of U(g) in the previous result.
The Lie algebra g has a k-basis of vectors ξi = 1 ⊗ σ(gi). By Poincaré–
Birkhoff–Witt, the monomials ξα = ξα1

1 · · · ξαd

d form a k-basis for U(g). The
isomorphism in Corollary 2.4 takes ξi 7→ bi + Ω(G)ω(gi)+ and thus ξα 7→
bα + Ω(G)(

∑
d
i=1 αiω(gi))+. Therefore in the grading of the universal envelop-

ing algebra grv U(g) is the k-span of all monomials ξα satisfying the equality
∑d

i=1 αiω(gi) = v.
We say (G,ω) is equi-p-valued if it admits a basis (g1, . . . , gd) for which

ω(g1) = · · · = ω(gd) = τ . In this case all σ(gi) ∈ grτ G and, consequently,
g = gτ is concentrated in degree τ .

Any p-valuable group G admits a p-valuation ω with values in 1
eZ for some

e ∈ N, see [19, Cor. 33.3]. Suppose ω has this property. Eventually we will work
with spectral sequences so we need our filtrations to be indexed by integers.
We reindex the filtration of Λ(G) by letting

Fili Λ(G) = Λ(G) i
e
, i = 0, 1, 2, . . . .

Münster Journal of Mathematics Vol. 14 (2021), 101–122
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The corresponding graded ring is grΛ(G) =
⊕∞

i=0 gr
i Λ(G), where

gri Λ(G) = gr i
e
Λ(G) = Fili Λ(G)/Fili+1 Λ(G).

We adopt similar notation for G and Ω(G) (for example, Gi = G i
e
and analo-

gously for FiliΩ(G)).

3. Hochschild cohomology versus group cohomology

We endow k with the discrete topology. Then by its definition Ω(G) is
a pseudocompact k-algebra (meaning it is complete, Hausdorff, and has a
neighborhood basis at 0 consisting of open two-sided ideals I ⊂ Ω(G), for which
Ω(G)/I is finite-dimensional over k). We let PctΩ(G) be the category of left
pseudocompact Ω(G)-modules V (= inverse limits of finite length quotients).
This is an abelian category with enough projectives and exact inverse limits.
In fact, Pontryagin duality gives an anti-equivalence between PctΩ(G) and the
category of smooth G-representations on k-vector spaces, see [10, Thm. 1.5].

In this section we will relate PctΩ(G) to the category of pseudocompact
Ω(G)-bimodules W , which we may think of as PctΩ(G)e , where

Ω(G)e = Ω(G) ⊗̂k Ω(G)op

is the completed enveloping algebra (⊗̂k denotes the completed tensor product).
First, starting from an object W of PctΩ(G)e , we define R(W ) to be the under-

lying vector space of W with G-action g •w = gwg−1 (the right-hand side uses
the bimodule structure via G →֒ Ω(G)×). This extends uniquely to a jointly
continuous Ω(G)-module structure which makes R(W ) an object of PctΩ(G).
Going the other way, starting with an object V of PctΩ(G), we define L(V ) as

the tensor product V ⊗̂k Ω(G). Its right Ω(G)-module structure comes from
the second factor, and it gets a left Ω(G)-module structure by letting G act
diagonally—on both V and Ω(G) from the left. This defines two exact functors:

L : PctΩ(G) ⇄ PctΩ(G)e : R.

This pair gives an adjunction between the two categories.

Lemma 3.1. The functors (L,R) form a pair of adjoint functors, meaning

there is a natural isomorphism of k-vector spaces—functorial in both V and W :

HomΩ(G)e(L(V ),W )
∼
−→ HomΩ(G)(V,R(W )).

(Both Hom-spaces are taken in the respective categories of pseudocompact mod-

ules.)

Proof. We give ǫ : V → R(L(V )) and η : L(R(W )) → W , the two adjunction
morphisms. Firstly, as a vector space R(L(V )) equals V ⊗̂k Ω(G) and ǫ is
the map ǫ(v) = v ⊗ 1. Secondly, L(R(W )) is simply W ⊗̂k Ω(G) as a vector
space, and η is given by η(w ⊗ λ) = wλ. (One checks η is left G-linear.) It
follows straight from their definition that ǫ and η define mutually inverse maps
between the Hom-spaces in the usual way, cp [11, p. 29]; we leave the tedious
calculations to the reader. �
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The goal of this section is the next result (known as Mac Lane isomorphism,
cp [13, Prop. 7.4.2]). Here HHn refers to continuous Hochschild cohomology
as defined in [13, Section 1.5.12].

Proposition 3.2. HHn(Ω(G),W )
∼
−→ Hn(G,R(W )).

Proof. A formal argument using the exactness of both L and R shows that the
adjunction extends to Extn for all n. That is, there are functorial isomorphisms

ExtnΩ(G)e(L(V ),W )
∼
−→ ExtnΩ(G)(V,R(W )).

(Indeed, start with a projective resolution P • → V in PctΩ(G). Applying L
gives a projective resolution L(P •) → L(V ) in PctΩ(G)e by the exactness of
L and R, and the adjointness which guarantees L(P •) consists of projective
objects. Now apply Lemma 3.1 and pass to cohomology.) For now we are only
interested in the case where V = k is the trivial G-representation, in which
case L(k) = Ω(G). In this situation, ExtnΩ(G)(k,R(W )) is the same as the

continuous cohomology Hn(G,R(W )) from [23, Section 2], for example. This
fact is also noted in [12, Ch. V, Prop. 1.2.6]. Furthermore, the left-hand side
ExtnΩ(G)e(Ω(G),W ) coincides with the (continuous) Hochschild cohomology

HHn(Ω(G),W ) introduced in [13, Section 1.5.12] for instance. �

We wish to give a completely explicit description of the isomorphism in
Proposition 3.2. First of all, Hochschild cohomology is the cohomology of the
Hochschild complex C•(Ω(G),W ), which is

0 −→ W
d1−→ Homcts

k (Ω(G),W )
d2−→ Homcts

k (Ω(G)⊗̂2,W )
d3−→ · · · .

Here the coboundary map dn is determined by the formula below, cp [13, p. 37]:

dn(f)(λ1⊗· · ·⊗λn) = λ1f(λ2⊗· · ·⊗λn)+

n
∑

i=1

(−1)if(λ1⊗· · ·⊗λiλi+1⊗· · ·⊗λn),

if we interpret the nth term as (−1)nf(λ1 ⊗ · · · ⊗ λn−1)λn. We have Ω(Gn) ≃

Ω(G)⊗̂n, and thus we may identify the nth term of the Hochschild complex
with all continuous maps C(Gn,W ). In this realization, the coboundary map
dn becomes

dn(f)(g1, . . . , gn) = g1f(g2, . . . , gn) +
n
∑

i=1

(−1)if(g1, . . . , gigi+1, . . . , gn),

with a similar interpretation of the nth term of the sum. On the other hand,
continuous group cohomology Hn(G, V ) is the cohomology of the complex
C•(G, V ) given by

0 −→ V
∂1−→ C(G, V )

∂2−→ C(G2, V )
∂3−→ C(G3, V ) −→ · · · ,

where the coboundary map ∂n is given by the standard formula:

∂n(f)(g1, . . . , gn) = g1f(g2, . . . , gn) +
n
∑

i=1

(−1)if(g1, . . . , gigi+1, . . . , gn),

Münster Journal of Mathematics Vol. 14 (2021), 101–122
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where the nth term is now interpreted as (−1)nf(g1, . . . , gn−1). The two re-
sulting complexes are canonically isomorphic when V = R(W ).

Proposition 3.3. C•(Ω(G),W )
∼
−→ C•(G,R(W )).

Proof. Let V = R(W ) for simplicity. To a continuous function f ∈ C(Gn,W )

we associate the function f̃ ∈ C(Gn, V ) given by the formula

f̃(g1, . . . , gn) = f(g1, . . . , gn) · (g1 · · · gn)
−1.

(Here the right-hand side uses the bimodule structure of W .) A straight-
forward calculation, using the above formulas for the coboundary maps, shows

that ∂n+1(f̃) = ˜dn+1(f). We omit the details. �

Lastly, we observe that in the presence of cup products we get an isomor-
phism of differential graded algebras in Proposition 3.3: Suppose W carries a
continuous pairing W ⊗̂k W → W compatible with the Ω(G)-bimodule struc-
ture, meaning the following identities hold for all λ ∈ Ω(G) and w,w′ ∈ W :

λ(ww′) = (λw)w′, (wλ)w′ = w(λw′), (ww′)λ = w(w′λ).

As discussed in detail in [24, Rem. 1.3.4] for example, this gives a cup product
⌣ on the Hochschild complex C•(Ω(G),W ) turning it into a DGA (associative
and unital when W is and λ1W = 1Wλ). We may view our pairing as a G-
pairing V ⊗̂k V → V (as follows from the above identities) which gives rise to a
cup product ⌣ on C•(G, V ), as defined in [23, p. 259] for instance. Unwinding
all definitions, a somewhat dreary but easy computation shows that the cup
products correspond under the isomorphism in the proof of Proposition 3.3;

f̃ ⌣ f̃ ′ = f̃ ⌣ f ′ for all f ∈ C(Gn,W ) and f ′ ∈ C(Gm,W ). In other words,

f 7→ f̃ is an isomorphism of DGA’s.
Of course, all the results of this section are true for any profinite group G.

Unlike in Section 2, we do not need G to be p-valuable, or even pro-p.

4. Hochschild cohomology versus Lie algebra cohomology

Let ModU(g) denote the category of left g-modules. We identify ModU(g)e

with the category of U(g)-bimodules. Note that there is a natural isomorphism

U(g)
∼
−→ U(g)op of k-algebras induced by the map g →֒ U(g)op sending ξ 7→

−ξ. We will also need the composite k-algebra map

E : U(g)
∆
−→ U(g)⊗k U(g)

∼
−→ U(g)⊗k U(g)op = U(g)e,

where ∆ is induced by the diagonal map g → g⊕g. Thus E(ξ) = ξ⊗1−1⊗ξ for
vectors ξ ∈ g. We always regard U(g)e as a right U(g)-module via the map E,
which happens to be free as shown in the last paragraph of [2, p. 276]—verifying
their condition (E.2).

By analogy with the previous section we now proceed to define functors
(L,R). First, if W is a U(g)-bimodule, we associate the g-module R(W ) whose
underlying vector space is the same as that of W , but with g-action given by
ξ •w = ξw −wξ. Conversely, starting with a g-module V , we declare L(V ) to
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be U(g)e ⊗U(g) V . By the aforementioned freeness result, L is exact (and R is
trivially exact). These functors

L : ModU(g) ⇄ ModU(g)e : R

again give an adjunction between the two categories.

Lemma 4.1. (L,R) form a pair of adjoint functors; there is an isomorphism

functorial in V and W ,

HomU(g)e(L(V ),W )
∼
−→ HomU(g)(V,R(W )).

Proof. The adjunction maps ǫ : V → R(L(V )) and η : L(R(W )) → W are given
as follows. The first one is ǫ(v) = 1⊗ v, which is easily checked to be g-linear,
noting that ξ • (µ ⊗ v) = E(ξ)µ ⊗ v for µ ∈ U(g)e and v ∈ V . The second is
η(µ⊗w) = µw, which is trivially U(g)e-linear. Unwinding the definitions, it is
easy to check that R( · ) ◦ ǫ and η ◦ L( · ) give mutually inverse maps between
the Hom-spaces. �

This leads us to the key result of this section, cp [2, Ch. XIII, Thm. 5.1].
Here HHn refers to usual Hochschild cohomology (as opposed to the contin-
uous variant used earlier).

Proposition 4.2. HHn(U(g),W )
∼
−→ Hn(g, R(W )).

Proof. As in the proof of Proposition 3.2, the exactness of L and R shows that
the above adjunction extends to Extn. That is, there are functorial isomor-
phisms

ExtnU(g)e(L(V ),W )
∼
−→ ExtnU(g)(V,R(W )).

Taking V = k to be the trivial g-module, with U(g) acting on k via aug-
mentation, the right-hand side ExtnU(g)(k,R(W )) is exactly the Lie algebra

cohomology Hn(g, R(W )). On the left-hand side,

L(k) = U(g)e ⊗U(g) k ≃ U(g)e/U(g)eE(I),

where I = ker(U(g) → k). As shown on [2, p. 276]—verifying their condition
(E.1)—the ideal U(g)eE(I) coincides with the kernel of bimodule map U(g)e →
U(g) given by multiplication. We conclude that L(k) ≃ U(g), as bimodules,
and hence ExtnU(g)e(L(k),W ) coincides with HHn(U(g),W ). �

As in the previous section we would like a more precise and explicit result
at the level of complexes. Here the Hochschild complex C•(U(g),W ) is

0 −→ W
d1−→ Homk(U(g),W )

d2−→ Homk(U(g)⊗2,W )
d3−→ · · · ,

with coboundary maps dn as recalled earlier. On the other hand, Lie algebra
cohomology can be computed from the Chevalley–Eilenberg complex C•(g, V ),
which is

0 −→ V
∂1−→ Homk(g, V )

∂2−→ Homk

(

2
∧

g, V
)

∂3−→ Homk

(

3
∧

g, V
)

−→ · · · ,

where the ∂n are given by the usual formula, cp [2, p. 282].
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Proposition 4.3. There is a natural quasi-isomorphism C•(U(g),W ) −→
C•(g, R(W )).

Proof. Start with the standard resolution P • → k of the trivial g-module k by
finite free U(g)-modules:

· · · −→ U(g)⊗
3
∧

g −→ U(g)⊗
2
∧

g −→ U(g)⊗ g −→ U(g) −→ k −→ 0.

See [2, Ch. XIII, Thm. 7.1] for the explicit differentials. Applying the (exact)
functor L gives rise to a resolution of L(k) ≃ U(g) by finite free U(g)e-modules
L(P •). That is,

· · · −→ U(g)e⊗
3
∧

g −→ U(g)e⊗
2
∧

g −→ U(g)e⊗g −→ U(g)e −→ U(g) −→ 0.

Here the tensor products are still over k. On the other hand, U(g) has a
standard resolutionB• by free U(g)e-modules, see [24, Section 1.1] for instance,
where the differentials are made explicit,

· · · −→ U(g)e ⊗ U(g)⊗2 −→ U(g)e ⊗ U(g) −→ U(g)e −→ U(g) −→ 0.

Furthermore, HomU(g)e(B
•,W ) is naturally isomorphic to the Hochschild com-

plex C•(U(g),W ) as spelled out in [24, Section 1.1] for example. Also by the
(L,R)-adjunction, we have isomorphisms of complexes

HomU(g)e(L(P
•),W ) ≃ HomU(g)(P

•, R(W )) ≃ C•(g, R(W )).

To finish the proof all we have to do is write down a morphism of resolutions
L(P •) −→ B• (which automatically has a homotopy inverse by basic homo-
logical algebra). Once we do that, applying the functor HomU(g)e(−,W ) gives
the desired quasi-isomorphism. To construct the morphism between resolu-
tions take the n-fold tensor product of g →֒ U(g) and anti-symmetrize. This
gives a k-linear map

A :

n
∧

g −→ U(g)⊗n, A(x1 ∧ · · · ∧ xn) =
∑

γ∈Sn

sign(γ)(xγ(1) ⊗ · · · ⊗ xγ(n)).

Tensoring with U(g)e produces a map L(P •) → B•. The fact that the anti-
symmetrization maps are compatible with the differentials is essentially the
content of [2, Ch. XIII, Thm. 7.1]. �

Going through the steps of the previous proof shows that the quasi isomor-
phism of Proposition 4.3 is given by composition with the anti-symmetrization
map,

Homk(U(g)⊗n,W ) −→ Homk

(

n
∧

g, R(W )
)

, f 7→ f ◦A.

Suppose W comes with a pairing W ⊗k W → W which is compatible with
the U(g)-bimodule structure (in the sense discussed in Section 3). Then
C•(U(g),W ) carries a cup product ⌣ turning it into a DGA (associative and
unital when W is). Let V = R(W ) to simplify notation and view the pairing
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as a map β : V ⊗k V → V . The latter is a g-pairing in the sense that for all
x, y ∈ V and ξ ∈ g, we have the identity

β(∆(ξ)(x ⊗ y)) = β((ξ • x)⊗ y + x⊗ (ξ • y)) = ξ • β(x⊗ y).

This defines a cup product ⌣ on C•(g, V ) in a standard fashion. We refer the
reader to [2, p. 284] for the explicit formula in terms of shuffles. A technical
calculation, which we skip here, verifies that the morphism in Proposition 4.3
is a quasi-isomorphism of DGA’s.

Finally, suppose g = g
0 ⊕ g

1 ⊕ · · · is a graded Lie algebra. Then
∧n

g is
graded as well by letting

(2) grj
(

n
∧

g

)

=
⊕

j1+···+jn=j

g
j1 ∧ · · · ∧ g

jn .

Assume, moreover, that V is a Z-graded g-module. Then it follows that the
space Homk(

∧n
g, V ) inherits the Z-grading

Homk

(

n
∧

g, V
)

=
⊕

s∈Z

Homs
k

(

n
∧

g, V
)

,

where Homs
k represents the homogeneous k-linear maps of degree s, cp

[4, Lem. 4.2]. One checks easily that the coboundaries ∂n preserve the grading.
In other words, the Chevalley–Eilenberg complex breaks up as a direct sum
of subcomplexes grs C•(g, V ). Passing to cohomology gives a bigrading of Lie
algebra cohomology.

Definition 4.4. Hs,t(g, V ) = Hs+t(grs C•(g, V )).

Example 4.5. As a special case suppose g = g
ℓ is concentrated in a single

degree ℓ > 0. Note that g is then necessarily abelian [g, g] ⊂ g
2ℓ = 0. Then

∧n
g is concentrated in degree ℓn. If we take V = k to be the trivial g-module

(concentrated in degree 0), then obviously Homk(
∧n

g, k) is concentrated in
degree −ℓn. Consequently, Hn(g, k) =

∧n
g
∗ is concentrated in bidegree s =

−ℓn and t = (ℓ+ 1)n.

Similarly for Hochschild cohomology. First Tn(g) = g
⊗n is graded analo-

gously to (2). This gives a grading of T (g) and thus a grading of its quotient
U(g) (by a homogeneous ideal). Let us make grj U(g) more explicit. Choose
an ordered k-basis (ξ1, . . . , ξd) for g consisting of homogeneous vectors ξi ∈ g

ℓi .
By PBW, the monomials ξα = ξα1

1 · · · ξαd

d form a basis for U(g), and

grj U(g) = spank

{

ξα
∣

∣

∣

d
∑

i=1

αiℓi = j
}

.

In turn this gives a grading of U(g)⊗n by a formula similar to (2). Let
W be a Z-graded U(g)-bimodule, and consider the space of degree s maps
Homs

k(U(g)⊗n,W ). This defines a subcomplex of the Hochschild complex
C•(U(g),W ), which we denote grs C•(U(g),W ). Beware that the direct sum
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⊕

s∈Z Hom
s
k(U(g)⊗n,W ) may not exhaust Homk(U(g)⊗n,W ), since U(g) is

∞-dimensional. We let

∗ Homk(U(g)⊗n,W ) =
⊕

s∈Z

Homs
k(U(g)⊗n,W )

and define the graded subcomplex ∗C•(U(g),W ) accordingly. Its cohomology
is bigraded.

Definition 4.6. HHs,t(U(g),W ) = Hs+t(grs C•(U(g),W )).

We observe that the comparison isomorphism in Proposition 4.2 respects
the bigradings.

Proposition 4.7. HHs,t(U(g),W )
∼
−→ Hs,t(g, R(W )).

Proof. Unwinding all the gradings, it is trivial to check that the quasi-iso-
morphism f 7→ f ◦A sends

grs C•(U(g),W ) −→ grs C•(g, R(W )).

We are to show this morphism is still a quasi-isomorphism. Passing to Hn and
summing over s ∈ Z shows it suffices to check the inclusion ∗C•(U(g),W ) →
C•(U(g),W ) is a quasi-isomorphism (using Proposition 4.2 of course). As done
earlier, we may identify the Hochschild complex with HomU(g)e(B

•,W ), where

B• → U(g) is the standard resolution (B−n = U(g)e ⊗ U(g)⊗n). Under this
identification, Homs

k(U(g)⊗n,W ) corresponds to Homs
U(g)e(B

−n,W ). On the

other hand, U(g)e ≃ U(g ⊕ g) is Noetherian, see [15, Cor. 1.7.4] for instance,
so U(g) admits a resolution R• → U(g) by finite free U(g)e-modules R−n =
U(g)e ⊗ Xn, where Xn is a finite-dimensional graded k-vector space. Any
choice of homotopy equivalence R• → B• preserving the gradings gives quasi-
isomorphisms
• HomU(g)e(B

•,W ) −→ HomU(g)e(R
•,W ),

• ∗ HomU(g)e(B
•,W ) −→ ∗ HomU(g)e(R

•,W ).
However, since dimk Xn < ∞, we have the middle equality below for all n:

∗ HomU(g)e(R
−n,W ) = ∗ Homk(Xn,W )

= Homk(Xn,W ) = HomU(g)e(R
−n,W ).

Altogether this shows ∗C•(U(g),W ) −→ C•(U(g),W ) is a quasi-isomorphism,
as desired. �

As one last remark of this section we note that ⌣ is compatible with the
(s, t)-bigradings of Hochschild and Lie algebra cohomology when W comes
with a pairing W ⊗W → W of degree zero.

5. A spectral sequence for Hochschild cohomology

We return to the setting of Section 2. Thus (G,ω) is a p-valued group where
ω takes values in 1

eZ, and the completed group algebra Ω(G) = k[[G]] carries the
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filtration FiliΩ(G) = Ω(G) i
e
. We have the graded Lie algebra g = k⊗Fp[π]grG

with universal enveloping algebra U(g)
∼
−→ grΩ(G) by Corollary 2.4.

We are concerned with HH∗(Ω(G),W ) for an object W of PctΩ(G)e , but
now we are assuming that W is finite-dimensional and comes with a filtration
by Ω(G)e-submodules FiliW indexed by i ∈ Z such that

Fili Ω(G)× Filj W × Filk Ω(G) −→ Fili+j+k W.

Moreover, we assume the filtration is exhaustive and separated, so FiliW = W
for i << 0 and FiliW = 0 for i >> 0. We say W is finite filtered. We
associate the grΩ(G)-bimodule grW and consider its Hochschild cohomol-
ogy HH∗(gr Ω(G), grW ) with its bigrading discussed in the previous sec-

tion. Our goal in this section is to find a spectral sequence with Es,t
1 =

HHs,t(grΩ(G), grW ) converging to HHs+t(Ω(G),W ).
We identify the nth term of the Hochschild complex C•(Ω(G),W ) with

Homcts
k (Ω(G)⊗n,W ), where we take the actual tensor product ⊗ over k, and

not the completed one ⊗̂. An element hereof is a k-linear function f : Ω(G)⊗n →
W factoring through (Ω(G)/I)⊗n for some open two-sided ideal I ⊂ Ω(G).

Our next goal is to turn C•(Ω(G),W ) into a filtered complex. We first
endow Ω(G)⊗n with the tensor product filtration

Fili(Ω(G)⊗n) =
∑

i1+···+in=i

Fili1 Ω(G)⊗ · · · ⊗ Filin Ω(G).

The initial step is to identify the graded pieces gri(Ω(G)⊗n) for this filtration.

Lemma 5.1. Fix an i ≥ 0. Then the natural map
⊕

i1+···+in=i

gri1 Ω(G)⊗ · · · ⊗ grin Ω(G) −→ gri(Ω(G)⊗n)

is an isomorphism. In particular, (grΩ(G))⊗n ∼
−→ gr(Ω(G)⊗n) as graded vec-

tor spaces.

Proof. This is essentially the content of [20, Lem. A.1]. For convenience we
will give a rough outline of the argument. Since k is a field, we may split the
filtration. That is, write Filj Ω(G) = ∆j ⊕Filj+1 Ω(G) for all j for some vector
space complement ∆j . We keep our i ≥ 0 fixed and decompose Ω(G) as a

direct sum ∆0 ⊕ · · · ⊕∆i ⊕ Fili+1 Ω(G). Then Ω(G)⊗n decomposes as

Ω(G)⊗n =
(

⊕

i1+···+in≤i

∆i1 ⊗ · · · ⊗∆in
)

⊕ Fili+1(Ω(G)⊗n),

as checked in detail in [20]. It follows that gri(Ω(G)⊗n) =
⊕

i1+···+in=i∆
i1 ⊗

· · · ⊗∆in , and we are done by observing that grj Ω(G) ≃ ∆j for all j. �

For the remainder of this section we will just write C• for the Hochschild
complex C•(Ω(G),W ). It has a natural filtration defined below.

Definition 5.2. Fils Cn = {f | f(Fili Ω(G)⊗n) ⊂ Fili+s W for all i ≥ 0}.
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Clearly, Fils Cn = 0 for s >> 0. Furthermore, by the continuity assumption
on f ∈ Cn, the filtration is exhaustive (Cn =

⋃

s∈Z Fil
s Cn). Also there is

an inclusion dn(Fil
s Cn−1) ⊂ Fils Cn, so we get a subcomplex Fils C•. Thus

C• is a filtered complex. We first identify the associated graded complex
grC• =

⊕

s∈Z gr
s C•.

Lemma 5.3. grs Cn ∼
−→ Homs

k(gr(Ω(G)⊗n), grW )
∼
−→ grs Cn(grΩ(G), grW ).

Proof. This is of the same flavor as [20, Lem. A.2]. Any f ∈ Fils Cn defines a
k-linear degree s map gr(Ω(G)⊗n) → grW in the obvious fashion. This gives
an injection

grs Cn →֒ Homs
k(gr(Ω(G)⊗n), grW ).

To show surjectivity suppose we are given a collection of k-linear maps ψi :
gri(Ω(G)⊗n) → gri+s W for i ≥ 0. As in the proof of Lemma 5.1, we pick linear

complements Fili Ω(G)⊗n = ∇i ⊕ Fili+1 Ω(G)⊗n for all i ≥ 0, and choose lifts

Ψi : ∇i → Fili+s W of ψi. Pick a j large enough that ψj+1 = 0. Decompose

Ω(G)⊗n = ∇0 ⊕ · · · ⊕ ∇j ⊕ Filj+1 Ω(G)⊗n.

Define f : Ω(G)⊗n → W by declaring that f = 0 on Filj+1 Ω(G)⊗n and that
f = Ψi on ∇i for i ≤ j. By construction, f ∈ Fils Cn reduces to the collection
(ψi)i≥0, thereby showing bijectivity. The second isomorphism in the lemma
follows from Lemma 5.1. �

The spectral sequence of the filtered complex C• takes the following form.

Proposition 5.4. There is a convergent spectral sequence collapsing at a finite

stage,

Es,t
1 = HHs,t(grΩ(G), grW ) =⇒ HHs+t(Ω(G),W ).

Proof. We find [21, 12.22] to be a very useful reference for the spectral se-
quence of a filtered complex, and we adopt its conventions and terminology.
The standard construction gives a cohomological spectral sequence (Er , ∂r)r≥1

starting from E1 = ⊕Es,t
1 , where

Es,t
1 = Hs+t(grs C•) = HHs,t(gr Ω(G), grW ),

by Lemma 5.3. The induced filtration on Hn(C•) = HHn(Ω(G),W ) is given
by

Fils Hn(C•) = im
(

Hn(Fils C•) −→ Hn(C•)
)

.

We may identify Es,t
1 with Hs,t(g, R(grW )) by Corollary 2.4 and Proposi-

tion 4.7. Since H∗(g, R(grW )) is finite-dimensional and concentrated in de-
grees [0, d] the spectral sequence is bounded and collapses at a finite stage
(Er0 = Er0+1 = · · · = E∞). On the other hand, we may identify Hn(C•) with
Hn(G,R(W )), by Proposition 3.2. Since Ω(G) is Noetherian and of global
dimension ≤ d (see [19, Thm. 33.4] for example), H∗(G,R(W )) is also finite-
dimensional and concentrated in degrees [0, d]. It follows that Fils Hn(C•) =
Hn(C•) for s << 0 and Fils Hn(C•) = 0 for s >> 0. In particular, the spectral
sequence converges, cp [21, Lem. 12.22.13]; therefore grs Hn(C•) ≃ Es,n−s

∞ for
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all s ∈ Z and n ≥ 0 (“weak convergence”) and each Hn(C•) is finite filtered.
See [21, Def. 12.22.9]. �

As pointed out in the previous proof, the comparison results (Proposi-
tions 4.7 and 3.2) allow us to rephrase Proposition 5.4 as follows.

Theorem 5.5. There is a convergent spectral sequence collapsing at a finite

stage,

Es,t
1 = Hs,t(g, R(grW )) =⇒ Hs+t(G,R(W )).

When stated this way, there is no mention of Hochschild cohomology at all.
The latter serves as a go-between relating Lie algebra cohomology to group
cohomology. However, Theorem 5.5 applies only to finite-dimensional Ω(G)-
bimodules W ; not arbitrary G-modules.

Finally, suppose W comes with a pairing W ⊗Ω(G) W → W mapping

FiliW × Filj W → Fili+j W . Passing to graded spaces gives a degree zero
pairing grW⊗grΩ(G) grW → grW . In particular, C• = C•(Ω(G),W ) be-

comes a filtered DGA. Indeed it is easily verified that Fils Cn × Fils
′

Cn′ ⌣
−→

Fils+s′ Cn+n′

. Moreover, in Lemma 5.3 we get an isomorphism of DGA’s
grC• ∼

−→ C•(grΩ(G), grW ). In particular, the spectral sequences in The-
orems 5.4 and 5.5 become multiplicative. This means each sheet Er has a
multiplication Er ⊗Er → Er compatible with the (s, t)-bigrading and satisfy-
ing the Leibniz formula. Furthermore, H∗(Er) ≃ Er+1 as algebras. On E∞

the multiplication is compatible with the cup product on H∗(C•) in the sense
that the diagram below commutes.

Es,n−s
∞ ⊗ Es′,n′−s′

∞

≃

��

// Es+s′,n+n′−s−s′

∞

≃

��

grs Hn(C•)⊗ grs
′

Hn′

(C•) // grs+s′ Hn+n′

(C•).

6. Examples and applications

6.1. The trivial bimodule. The simplest case is the trivial bimodule W = k,
with Ω(G) acting from both sides via the augmentation map Ω(G) → k. We
filter k such that grk is concentrated in degree 0. In this case R(W ) is the
trivial G-module k, and R(grW ) is the trivial g-module k. Thus in this case
we have a convergent multiplicative spectral sequence

(3) Es,t
1 = Hs,t(g, k) =⇒ Hs+t(G, k).

Often one assumes grG is abelian. In fact, this can always be achieved by
perturbing ω and replacing it by ωC = ω − C for small enough C > 0, cp [19,
Lem. 26.13]. In this case g is of course also abelian and the E1-page has terms

Hs,t(g, k) = Homs
k(
∧s+t

g, k).
We wish to quantify at which stage (3) collapses.
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Proposition 6.2. Es,t
r ≃ Es,t

r+1, provided

r ≥ e(s+ t)
(

max
i

ω(gi)−min
i

ω(gi)
)

= e(s+ t)amp(ω).

Proof. Let g = gτ1 ⊕ · · · ⊕ gτb , where τ1 < · · · < τb denote the values ω(gi) in

increasing order, and without repetitions. Write τi =
fi
e for positive integers

f1 < · · · < fb. Recall our upper-numbering g
fi = gτi of the graded pieces of g.

Fix an n ∈ [0, d]. Note that grj(
∧n

g) = 0 unless j is an n-sum from
{f1, . . . , fb}. In particular,

∧n
g is supported in degrees [nf1, nfb]. It follows

that Homs
k(
∧n

g, k) = 0 unless −s is an n-sum from {f1, . . . , fb}. We infer that

Es,n−s
1 = 0 unless s belongs to the interval [−nfb,−nf1]. Thus the E1-page

is concentrated in a conic sector of the second quadrant. Drawing the picture
shows that all outgoing and incoming differentials at Es,n−s

r vanish provided
r ≥ n(fb − f1). This shows the result. �

In particular, Er = E∞ provided r ≥ ed · amp(ω).
When (G,ω) is equi-p-valued, amp(ω) = 0 and the spectral sequence col-

lapses already on the E1-page. In this case we recover the following celebrated
theorem of Lazard, cp [12, Ch. V, Prop. 2.5.7.1]:

Corollary 6.3 (“Lazard’s isomorphism”). Let (G,ω) be an equi-p-valued group.

Then there is an isomorphism of algebras

H∗(G, k) ≃
∧

g
∗.

Proof. As noted in Example 4.5 the Lie algebra g = g
ℓ is abelian andHn(g, k) =

∧n
g
∗ is concentrated in bidegree s = −ℓn and t = (ℓ+1)n. Consequently, the

filtration of Hn(G, k) only has one jump at s = −ℓn. Altogether we have the
following string of isomorphisms

Hn(G, k) = gr−ℓn Hn(G, k) ≃ E−ℓn,(ℓ+1)n
∞ = E

−ℓn,(ℓ+1)n
1 =

n
∧

g
∗.

As n varies this gives an isomorphism of algebras, since the spectral sequence
(3) is multiplicative. �

6.4. Quotients of the Iwasawa algebra. As another application we may
take W = Ω(G)/I for an open two-sided ideal I ⊂ Ω(G). This becomes an
Ω(G)-bimodule via Ω(G) → Ω(G)/I and multiplication on the quotient. For

simplicity we will take I = FilN Ω(G) for an N ≥ 0 fixed throughout this

section. Thus W gets the quotient filtration FiliW = (FiliΩ(G)+ I)/I, which

makes it a finite filtered Ω(G)-bimodule. Indeed, Fil0 W = W and FilN W = 0.
The corresponding grΩ(G)-bimodule is the truncated algebra

grW = gr<N Ω(G) ≃ grΩ(G)/ gr≥N Ω(G).

In this situation we prefer to keep HH∗(Ω(G),Ω(G)/I) instead of identifying
it with group cohomology; this makes the cup product more transparent. We
next unwind the E1-page of Theorem 5.4.
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Proposition 6.5. Let (G,ω) be equi-p-valued (with value τ = 1
e ). Then for

n ∈ [0, d] and s ∈ Z,

Es,n−s
1 =

{

∧n
g
∗ ⊗ Sn+s(g) if 0 ≤ n+ s < N,

0 otherwise.

Proof. We identify grW with the U(g)-bimodule U(g)<N via the isomorphism

grΩ(G)
∼
−→ U(g). Since g is abelian, U(g) is the symmetric algebra S(g), and

thus g acts trivially on R(grW ) = S(g)<N via the •-action (because S(g) is
commutative). Consequently,

Es,t
1 = Hs,t(g, R(grW )) = Homs

k

(

s+t
∧

g, S(g)<N
)

.

By assumption g = g 1
e
= g

1 is concentrated in degree one, so
∧s+t

g is con-

centrated in degree s+ t. Hence Es,t
1 consists of all k-linear maps from

∧s+t
g

to the degree 2s+ t component of S(g)<N . �

In summary, when (G,ω) is equi-p-valued, there is a multiplicative conver-
gent spectral sequence

(4) Es,t
1 =

s+t
∧

g
∗ ⊗ S2s+t(g) =⇒ HHs+t

(

Ω(G),Ω(G)/FilN Ω(G)
)

collapsing at a finite stage, with the understanding that Es,t
1 = 0 when 2s+ t

is negative or ≥ N .

6.6. Cohomology of quaternion groups. Let D be the central division al-
gebra over Qp of dimension n2 and invariant 1

n . The valuation v on Qp extends

uniquely to a valuation ṽ : D× → 1
nZ by the formula ṽ(x) = 1

nv(NrdD/Qp
(x)),

and the valuation ring OD = {x | ṽ(x) ≥ 0} is the maximal compact subring
of D. It is local with maximal ideal mD = {x | ṽ(x) > 0} and residue field

FD
∼
−→ Fpn . When we write Fpn below we really mean the residue field FD.

We may pick an element ̟D satisfying ṽ(̟D) = 1
n (“uniformizing parame-

ter”); then mD = ̟DOD = OD̟D. In fact, we may and will pick ̟D such
that p = ̟n

D. Indeed, OD has the following presentation, cp [6, 3.1.1]:

OD = W (Fpn)[̟D], ̟n
D = p, Frob(x) = ̟Dx̟−1

D for all x ∈ W (Fpn).

The commutation relation is essentially what it means that D has invariant 1
n ,

cp [16, p. 29].
Our main interest in this section is the mod p cohomology ring of the unit

groupO×
D. We consider its Sylow pro-p subgroup G̃ = 1+mD. The Teichmüller

lift F×
D → W (Fpn)× gives a (non-central) splitting, and we may thus factor

O×
D as a semi-direct product G̃ ⋊ F×

D. By a classical result of Nakaoka, the
Hochschild–Serre spectral sequence collapses on the first page and we get an
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isomorphism

H∗(O×
D,Fp) ≃ H∗(G̃⋊ F×

D,Fp)(5)

≃ H∗(F×
D, H∗(G̃,Fp))

≃ H0(F×
D, H∗(G̃,Fp))

≃ H∗(G̃,Fp)
F
×

D .

The second isomorphism above is Nakaoka’s theorem, see [3, Thm. 5.3.1] and
the discussion in [3, Section 7.1]. The third isomorphism follows from the
observation that |F×

D| is prime-to-p and annihilates all higher cohomology, see

[3, Ex. 2.1.1]. At least for n = 2 the F×
D-action on H∗(G̃,Fp) is understood

(and nontrivial)—see [7, Prop. 7, Part (b)] for a complete description.

Now on G̃ we define the function ω(g) = ṽ(g − 1). This gives a p-valuation,
provided 1

n > 1
p−1 . In other words, when p > n + 1. Under this assumption

our theory applies. First, the filtration of G̃ is given by the subgroups G̃i =
G̃ i

n
= 1 + m

i
D. As for the graded pieces, [16, Prop. 1.8] tells us that the

map 1 + x̟i
D 7→ x̄ (the reduction of x modulo mD) gives an isomorphism of

Fp-vector spaces

gri G̃ = gr i
n
G̃ = (1 +m

i
D)/(1 +m

i+1
D )

∼
−→ FD

for i > 0. Thus gr G̃ = FD ⊕ FD ⊕ · · · . Since we are assuming p > n + 1, the
Fp[π]-module structure is very simple. By [6, Lem. 3.1.4], the π-operator just

shifts the components of gr G̃ by degree 1. Also the Lie bracket can be made
very explicit. By [6, Lem. 3.1.4] or [16, Lem. 1.8], we have the formula

(6) [x̄, ȳ] = x̄ȳp
i

− ȳx̄pj

,

valid for x̄ ∈ gri G̃
∼
−→ FD and ȳ ∈ grj G̃

∼
−→ FD. Altogether this gives a very

simple model for the graded Lie algebra g̃ over Fp. Namely, g̃ = FD ⊕ · · ·⊕FD

is concentrated in degrees 1, 2, . . . , n, with Lie bracket given by (6) above; with
the understanding that [x̄, ȳ] = 0 when i+ j > n.

There is another reduction one can make by passing to the subgroup SL1(D)
= ker(NrdD/Qp

). It is well known that NrdD/Qp
maps 1 + mD onto 1 + pZp,

cp [16, Lem. 1.7] for example. We define the subgroup G by the short exact
sequence:

1 −→ G −→ 1 +mD
Nrd
−→ 1 + pZp −→ 1.

The sequence splits. The inequality p > n + 1 implies that 1
n ∈ Zp, so ( · )

1
n

makes sense on 1+pZp viewed as a central subgroup of 1+mD. Thus we break

up G̃ as a product G× (1 + pZp), and by Künneth,

H∗(G̃,Fp) ≃ H∗(G,Fp)⊗H∗(1 + pZp,Fp) ≃ H∗(G,Fp)⊗ Fp[ε],

with Fp[ε] denoting the dual numbers (ε2 = 0). The identification H∗(1 +
pZp,Fp) ≃ Fp[ε] can be viewed as a very special case of Corollary 6.3. The
real problem is to understand H∗(G,Fp). We may of course restrict ω and get
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a p-valuation on G. Then Gi = G i
n
= (1 + m

i
D)Nrd=1, and the graded pieces

are again given by [16, Prop. 1.8]:

gri G = gr i
n
G

∼
−→

{

FD, i 6≡ 0 mod n,

FTr=0
D , i ≡ 0 mod n.

By FTr=0
D we mean the kernel of the trace TrFD/Fp

. Thus g ⊂ g̃ is a codimension

one Lie subalgebra, namely, g = FD⊕· · ·⊕FTr=0
D . Still concentrated in degrees

1, 2, . . . , n and with Lie bracket given by (6). (One can easily check that indeed
[x̄, ȳ] has trace zero when i+ j = n.)

For the remainder of this section we assume n = 2. Thus D is the division
quaternion algebra over Qp for a prime p > 3. Our goal is to make the mod
p cohomology algebra of G = (1 +mD)Nrd=1 explicit. In the quaternion case,

FD
∼
−→ Fp2 and the Lie algebra g = FD ⊕ FTr=0

D sits in degrees 1, 2. The Lie
bracket is given by [x̄, ȳ] = x̄ȳp − ȳx̄p for any two x̄, ȳ ∈ FD of degree one. In
particular, [g, g] = FTr=0

D , and therefore H1(g,Fp) = g
ab = FD.

Remark 6.7. To add a few more details, the obvious inclusion [g, g] ⊆ FTr=0
D is

an equality for dimension reasons. (Both subspaces of FD are one-dimensional
over Fp since D is now a quaternion algebra.)

We first want to understand the bigrading of H1(g,Fp) = HomFp
(FD,Fp).

Clearly we must have s = −1 or s = −2, since Fp sits in degree 0. However,
H−2,3(g,Fp) = 0 as there is no nontrivial map g → Fp of degree s = −2
vanishing on all commutators. Consequently,

H1(g,Fp) = H−1,2(g,Fp) = HomFp
(FD,Fp).

Moreover, since
∧3

g ≃ Fp is concentrated in degree 1 + 1 + 2 = 4, the top
cohomology H3(g,Fp) ≃ Fp sits in bidegree (−4, 7). To summarize, we have

H3(g,Fp) = H−4,7(g,Fp) = Fp.

Obviously H0(g,Fp) = H0,0(g,Fp) = Fp. It remains to understand H2(g,Fp)
and its bigrading. We note that the Poincaré duality holds for Lie algebra
cohomology, see [5, p. 27]. Thus, as Fp-vector spaces,

H2(g,Fp) = H−3,5(g,Fp) = H−1,2(g,Fp)
∨ = HomFp

(FD,Fp)
∨ = FD.

In particular, (3) collapses on the E1-page. Via the trace pairing (x̄, ȳ) 7→

TrFD/Fp
(x̄ȳ), we have an Fp-linear isomorphism FD

∼
−→ HomFp

(FD,Fp) =

H1(g,Fp).
We may summarize our findings as an isomorphism of graded Fp-algebras

(where we view FD simply as an Fp-vector space):

(7) H∗(G,Fp) ≃ Fp ⊕ FD ⊕ FD ⊕ Fp.

Here the cup product H1(G,Fp)×H2(G,Fp) → H3(G,Fp) between the middle
factors corresponds to the trace pairing FD × FD → Fp, and the only other
interesting cup product H1(G,Fp) × H1(G,Fp) → H2(G,Fp) vanishes. (One
way to see this is to choose a basis {e1, e2} for H1(G,Fp) and let {e∗1, e

∗
2} be
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the dual basis for H2(G,Fp). Thus ei ⌣ e∗j = e∗j ⌣ ei = δijη for a fixed

choice of a nonzero η ∈ H3(G,Fp). By graded-commutativity, it suffices to
show e1 ⌣ e2 = 0. Expand e1 ⌣ e2 = Ae∗1 + Be∗2. Cupping with e1 and e2
shows that A = 0 and B = 0, respectively, since ei ⌣ ei = 0.)

The result in (7) independently confirms [7, Prop. 7]. Henn’s proof is dif-
ferent. Instead of passing to Lie algebra cohomology he works directly with
H∗(G i

2
,Fp) and uses that the subgroupG 1

2
is equi-p-valued. See also Ravenel’s

calculation [18, Thm. 6.3.22].
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