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ABSTRACT

Based on work of Breuil and Schneider in [BrSch], we introduce crystalline
representations of an extension of the absolute Galois group of a local field of
mixed characteristic (0, p) by a finite cyclic group of order n ≥ 2 over a finite
extension of Qp on the one hand and weakly admissible 1

nZ-filtered isocrystals
with coefficients in the same finite extension of Qp on the other hand. Via
analogues of the functors Dcris and Vcris we study the relationship between the
categories consisting of these objects. In particular it will turn out that, in
contrast to the main result of [CoFo], these analogues will in general not induce
an equivalence between both categories.
Moreover, on the isocrystal side we transfer a result of Hellmann from [Hel]
on the algebraic nature of geometric parameter spaces of weakly admissible Z-
filtered isocrystals with prescribed characteristic polynomial of a certain power
of the Frobenius and prescribed filtration type to the context of 1

nZ-filtrations.

ZUSAMMENFASSUNG

Basierend auf Resultaten von Breuil und Schneider in der Arbeit [BrSch] führen
wir kristalline Darstellungen einer Erweiterung der absoluten Galoisgruppe eines
lokalen Körpers in gemischter Charakteristik (0, p) um eine endliche zyklische
Gruppe der Ordnung n ≥ 2 über einer endlichen Erweiterung von Qp einerseits
sowie schwach zulässig 1

nZ-filtrierte Isokristalle mit Koeffizienten in der selben
endlichen Erweiterung von Qp andererseits ein. Via Analoga der Funktoren Dcris

und Vcris studieren wir die Beziehung zwischen den Kategorien bestehend aus
diesen Objekten. Es wird sich insbesondere herausstellen, dass, im Gegensatz
zum Hauptresultat von [CoFo], diese Analoga im Allgemeinen keine Äquivalenz
zwischen beiden Kategorien induzieren.
Auf Seite der Isokristalle übertragen wir darüberhinaus ein Resultat von Hell-
mann aus [Hel] über die algebraische Natur geometrischer Parameterräume für
schwach zulässig Z-filtrierte Isokristalle unter Vorgabe des charakteristischen
Polynoms einer gewissen Potenz des Frobenius und des Filtrierungstyps in den
Kontext von 1

nZ-Filtrierungen.
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1 Introduction

1.1 Conventions and notations

All rings are commutative with unit 1. Ring homomorphisms preserve units.
A choice of an algebraic closure of a field F is denoted F .

The letter p stands for a rational prime. By L resp. K we denote two fixed finite
extensions of Qp (called base field resp. coefficient field), both contained in a
fixed algebraic closure Qp of Qp and such that [L : Qp] is equal to the number
of Qp-algebra homomorphisms from L to K. By L0 we denote the maximal
unramified extension of Qp in L. We define f := [L0 : Qp] and e := [L : L0].
The valuation on a finite extension of Qp that sends p to 1 will be written vp.
For any x in a finite extension of Qp we set |x|p := p−vp(x) ∈ pQ.
Whenever we index some expression by τ0 resp. τ without further comment, the
index set runs over all Qp-embeddings τ0 : L0 →֒ K resp. all Qp-embeddings
τ : L →֒ K.

For an object Z of a category and Z-objects g : X → Z, h : Y → Z let
X ×Z Y denote the fiber product with respect to g and h (if it exists). We
usually omit the morphisms g and h in this notation.

Locally ringed spaces are usually denoted by their underlying topological space.
The structure sheaf of a locally ringed space Y will be denoted by OY .
If X and Y are Z-schemes and Z = Spec(C) is affine we also denote the fiber
product of X and Y over Z by X×C Y . If additionally Y = Spec(B) is an affine
scheme we also write X ⊗C B. For general Z and Y = Spec(B) affine, the fiber
product of X and Y over Z is also denoted by X ⊗Z B.
For an arbitrary scheme Z and Z-schemes X and Y we write E ⊗Z F for the
tensor product of the inverse images p∗E ⊗OW

q∗F over W := X ×Z Y of an
OX -module E and an OY -module F . In case Z = Spec(C) this tensor product
will also be denoted by E ⊗C F .
If Y is a locally ringed space, y ∈ Y a point and F an OY -module, we let F(y)
denote the reduction of the stalk Fy of F at y by the maximal ideal of OY,y.

If S is a subset of R, r ∈ R and ∗ ∈ {≤, <,≥, >} then by s ∈ S∗r we mean that
simultaneously s ∈ S and s ∗ r hold true.

Cross-references to specific results that occur within this text are given solely
by their item number, e.g. “cf. 3.3.1”.
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The following is a list of notations that are used throughout the text.

Ad(K) category of adic spaces over the adic space associated
to Spec(K)

Alg(R) (R a ring) category of R-algebras

Grp category of groups

Γ(U,F) sections of a (pre-)sheaf F over an open subset U of
a topological space

k(x) residue field of a point x of an adic space

κ(x) residue field of a point x of a scheme

lrs category of locally ringed spaces

M̃ the quasi-coherent OSpec(R)-module associated
to a module M over a ring R

Mod(OY ) category of OY -modules over a locally ringed space Y

Mod(R) (R a ring) category of R-modules

µn(R) (R a ring, n ∈ Z>0) the set {x ∈ R | xn = 1}

OF (F a valued field) ring of integers of F with respect to the given valuation

Sch(R) (R a ring) category of Spec(R)-schemes

Sch(S) (S a scheme) category of S-schemes

Set category of sets

R× (R a ring) invertible elements of the monoid (R \ {0}, ·)

Vect(F ) (F a field) category of F -vector spaces

#S (S a finite set) cardinality of S
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1.2 Overview

One aspect of p-adic Hodge theory is the description of p-adic Galois repre-
sentations in terms of modules equipped with a semilinear operator φ and a
Z-filtration. Of particular interest is the class of weakly admissible modules
on which the operator and the filtration satisfy a certain numerical relation.
The representations corresponding to weakly admissible Z-filtered φ-modules
are called crystalline. The existence of this correspondence results from the
theory developed in [Fo2] and in [CoFo]
A major part of this thesis is devoted to the study of relations between a cate-
gory of certain representations of a group closely related to the absolute Galois
group Gal(Qp|L) of L and a category of modules equipped with a semilinear
operator and a filtration indexed by a certain subgroup of the rational numbers
strictly containing Z.
The motivation for our investigations originates from work of Breuil and Schnei-
der in [BrSch]. In their paper the authors study the connection between de
Rham and crystalline representations of Gal(Qp|L) over K and so-called locally-
algebraic representations of a general linear group in the framework of the p-adic
Langlands programme. In order to pass from the Galois side to the reductive
group side, the aforementioned functorial correspondence between the category
of crystalline Gal(Qp|L)-representations and the category of weakly admissible
Z-filtered φ-modules is used (cf. [BrSch, Corollary 3.3] where a sufficient crite-
rion for the existence of a crystalline representation in terms of the existence of
an invariant norm on a locally-algebraic representation is given). For technical
reasons Breuil and Schneider have to assume that, on the reductive group side,
half the sum of the positive roots of the group is an element of the integral
weight lattice ([BrSch, §6]). In order to drop this assumption a corresponding
construction on the Galois side is necessary. Hence, in [BrSch, §7], Breuil and
Schneider introduce a character with values in K× that is defined on a specific
extension GL,(2) of Gal(Qp|L) and whose square, under mild conditions on K,
coincides with the restriction of the p-adic cyclotomic character to Gal(Qp|L).
Moreover, the authors show how the theory of Colmez and Fontaine ([CoFo]) is
generalized to the setting of this bigger group. In particular, it is made precise
what it means for a representation of this group to be crystalline.
While the major first part of this text, in which we construct a suitable general-
ization the correspondence between crystalline representations of Gal(Qp|L) and
weakly admissible Z-filtered φ-modules, is dominated by (semi-)linear algebraic
methods, in the last section we focus on the concept of weak admissibility from
an algebraic-geometric angle. Our motivation is given by the following discus-
sion. The locus of points x in the L0-scheme parametrizing flags of a given type
µ (which for us is a finite increasing sequence of rational numbers encoding the
jump indices with respective multiplicities of the filtrations to be considered)
where a given φ-module over L0 is a weakly admissible filtered φ-module over
the residue field at x is not an open subscheme in general. The situation is im-
proved when analytical methods are applied. Namely, in the context of Tate’s
rigid-analytic spaces (respectively in the context of Berkovich spaces), the “locus
of weakly admissible points” is an admissible open (respectively analytic open)
subset in the associated analytic flag scheme, cf. [RaZi, Proposition 1.36] (re-
spectively [DOR, Proposition 8.2.1]). In Hellmann’s approach of the structural
investigation of the “weakly-admissible locus” for filtered φ-modules with coef-
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ficients in residue fields of points of adic spaces, the prescribed data essentially
consists of a tuple (c, µ) where c is a polynomial prescribing the characteristic
polynomial of the f -th power of the Frobenius and µ is a filtration type whose
members are integers (cf. [Hel, §5]).
A connection between this kind of data and weak admissibility was established
by Breuil and Schneider in [BrSch, §3]. In [loc. cit., Proposition 3.2], where
by assumption c ∈ K[X] decomposes into linear factors and the filtration is
given as a collection of ef full Z-filtrations on the isotypical components of the
underlying L ⊗Qp

K-module respectively, the authors prove that the existence
of a weakly admissible Z-filtered φ-module over L with coefficients in K such
that the characteristic polynomial of the f -th power of the associated operator
is equal to c and such that the associated filtration is of type µ is equivalent
with the validity of certain numerical relations between the valuations of the
zeros of c and the members of the filtration type.
In [Hel, Theorem 5.1, Proposition 5.2] the ground field L0 remains fixed and
the geometric objects that are of interest are defined over the coefficient field
(which in Hellmann’s case is Qp). If s denotes an integer ≥ 0, then these results
show that the locus of points inside the adic fiber over a point of (As×Qp

Gm)ad

where the universal Z-filtered isocrystal is weakly admissible is (a base change
of) the associated adic space of a quasi-projective Qp-scheme.

We now explain the contents of this thesis in more detail. Concerning nota-
tions, the first four sections are largely inspired by [BrSch, mainly §3 and §7].

In subsection 1.3 we give a condensed overview of the theory underlying
[CoFo, Théorèm A], fixing ideas and notations in the process. Since this sub-
section contains no proofs, we refer to [Fo1],[Fo2] and [CoFo] for more detailed
expositions.

In the first part of section 2, after fixing an integer n ≥ 2, elementary results
concerning 1

nZ-filtered φ-modules over L with coefficients in K are established.
We introduce the category of 1

nZ-filtered isocrystals in this framework and define
the concept of weak admissibility of (filtrations of) these objects, leading to the
abelian tensor category FICwa

L,K,n (cf. 2.2.6, (2.)). From assumption 2.2.7 on we
impose on the coefficient field K the condition that it contains an n-th root of
every element in Qp. This is necessary for our construction of the group GL,(n)

in the subsequent section. After introducing the full subcategory FICwa
L,K,(n)

of FICwa
L,K,n and stating a result on the structure of its objects (cf. 2.2.14),

section 2 ends with the discussion of an example due to Schneider (cf. 2.2.17).
The filtered isocrystal constructed in this example is contained in FICwa

Qp,K,n

but not in FICwa
Qp,K,(n). The existence of objects as in the example implies a

fundamental difference between our and the classical theory which will become
apparent in section 4.

In section 3 we introduce the group GL,(n) as a group-theoretic fiber product.
Under the assumption made on K, this group comes equipped with a character
with values in K× whose n-th power coincides with the restriction of the p-adic
cyclotomic character to Gal(Qp|L). Based on [BrSch, Lemma 7.5], we prove an
independent result which relates a splitting of the exact sequence induced by
the construction of GL,(n) to the degree [L : Qp] (cf. 3.1.7). The introduction
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of certain extensions Bcris,n and BdR,n of Fontaine’s period rings Bcris and BdR

together with an action of GL,(n) on the algebras Bcris,n⊗Qp
K and BdR,n⊗Qp

K
in subsection 3.2 then allows us to define the full abelian tensor subcategory con-
sisting of crystalline representations among all finite-dimensional K-linear con-
tinuous GL,(n)-representations V . This definition will be based on the relation
between the K-dimension of V and the finite L0 ⊗Qp

K-rank of the invariants

Dcris,n(V ) := ((Bcris,n ⊗Qp
K)⊗K V )GL,(n)

with respect to the diagonal action (cf. subsection 3.3 and the discussion before
3.4.1).

After introducing the functor Vcris,n on the category of all filtered φ-modules
over L with coefficients in K and studying its properties in subsection 4.1, in
subsection 4.2 we formulate and prove one of our main results:

Theorem 1.2.1. The functor Dcris,n induces an equivalence of tensor categories

Repcris
K (GL,(n)) →̃ FICwa

L,K,(n).

A quasi-inverse is given by the restriction of Vcris,n to FICwa
L,K,(n).

The weakly admissible filtered isocrystal in Schneider’s example from the
end of section 2 raises the question of the behaviour of the inverse functor
of this equivalence on the category FICwa

L,K,n. Establishing results towards
an answer to this question is what the third subsection of section 4 is about.
In particular, we will see that Vcris,n, restricted to FICwa

L,K,n, takes values in
Repcris

K (GL,(n)) (cf. 4.3.5) and conclude that a weakly admissible object D
does not lie in the essential image of Dcris,n if and only if the associated K-
linear GL,(n)-representation Vcris,n(D) has a K-dimension strictly smaller than
the L0 ⊗Qp

K-rank of D (cf. 4.3.6). In particular, the vector spaces underlying
the representations associated to the isocrystals from 2.2.17 turn out to be {0}.

The final section 5, which is more or less independent from the results from
the previous sections, is concerned with a description of the structure of ge-
ometric parameter spaces related to weakly admissible 1

nZ-filtered isocrystals
with coefficients. We chose to keep the first part of this section expository in
nature. It collects several well-known facts about representable functors on K-
schemes arising in the context of weak admissibility on the one hand and about
the functor “associated adic space” between K-schemes and adic spaces (in the
sense of Huber) over Spa(K,OK) on the other hand, thereby providing neces-
sary notation and background for the second part of this section. In the latter,
we present a modified definition of weak admissibility (cf. 5.2.4), in which the
coefficient field is any valued field extension of K. In 5.2.9, we state and exten-
sively prove an analogue of [Hel, Proposition 5.2] in the context of 1

nZ-filtrations.

Finally, in a short appendix we discuss the notion of Hodge-Tate weight
in 1

nZ for objects in FICL,K,n respectively in Repcris
K (GL,(n)), assuming the

notions and results up to (and including) subsection 4.2.

11



1.3 The classical case

One major result in p-adic Hodge theory is the proof of a conjecture by Fontaine
which predicts an equivalence between a specific category of representations of
the absolute Galois group of L and a specific category of semilinear algebra data
over L0 ([CoFo, Theorem A]). Since this result and the framework in which it was
established are part of the motivation for this thesis, we give a short overview
of the relevant aspects of the theory underlying the proof.

For any topological group G and any finite extension F of Qp denote by
RepF (G) the abelian category of continuous F -linear representations of G. Its
objects are tuples (V, ρ), where V is a finite-dimensional F -vector space (with
induced topology from F ) and ρ is a homomorphism G → AutF (V ). Morphisms
f : (V, ρ) → (V ′, ρ′) are morphisms of F -vector spaces that satisfy ρ′(g)(f(v)) =
f(ρ(g)(v)) for all g ∈ G, v ∈ V . Continuity means that

G× V → V, (g, v) 7→ gv := ρ(g)(v)

is a continuous map. Together with

• ⊗ := ⊗F , with the diagonal action of G on the tensor product and

• the functor
ω : RepF (G) → Vect(F ), (V, ρ) 7→ V,

one knows that continuous representations make up a neutral Tannakian cate-
gory over F (for a precise definition of this notion, cf. [DeMi, Definition 2.19]).
A unit object is F with trivial G-action.
If (V, ρ) is an object of RepF (G), we often omit either V or ρ from the notation
if it is clear which tuple is considered.

Let kL denote the residue field of L and let σ0 be the lift to L0 of the field
automorphism kL → kL, x 7→ xp. For brevity, denote by GL := Gal(Qp|L) the
absolute Galois group of L. Objects of the category Rep(GL) := RepQp

(GL)
are called p-adic representations of GL or p-adic Galois representations in case
the group is clear from the context. Within Rep(GL), certain distinguished
full subcategories are of particular interest. For example, the étale cohomology
groups H ·

ét(X ⊗L Qp,Qp), where X is a proper smooth algebraic variety over
L, naturally give rise to objects of these subcategories (see [Fo2, §6]). For
their investigation and for comparison of various cohomology theories, Fontaine
constructed in particular the topological Qp-algebras Bcris and BdR. On both
Bcris resp. BdR the group GL acts as ring automorphisms with invariant rings
BGL

cris = L0 resp. BGL

dR = L. With any p-adic representation V of GL, one
associates functorially objects of a linear-algebraic nature.

Definition 1.3.1. Let V be in Rep(GL). Define

Dcris(V ) := (Bcris ⊗Qp
V )GL , DdR(V ) := (BdR ⊗Qp

V )GL

as the respective GL-invariants with respect to the diagonal action on the tensor
product.
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Both are L0- resp. L-vector spaces, whose dimensions are bounded above by
dimQp

(V ). Of particular interest are those V for which the equality dimQp
(V )

= dimL0
(Dcris(V )) holds true. They are called crystalline and they make up

a full abelian subcategory of Rep(GL), denoted Repcris(GL). The category
RepdR(GL) of de Rham representations is defined analogously. Using the exis-
tence of an injective and GL-equivariant morphism of rings L⊗L0

Bcris → BdR,
via which Bcris is identified with a subring of the field BdR, one can prove the
following result.

Proposition 1.3.2. Every crystalline representation of GL is de Rham.

The ring Bcris carries an injective ring endomorphism ϕ0 induced by the
Frobenius morphism on the ring of Witt vectors W (kL). The field BdR is com-
plete discretely valued with value group Z. A uniformizer is given by any gener-
ator t of the rank one Zp-module Zp(1) := lim

←−n∈Z>0
µpn(Qp) ⊂ Bcris. We note

that ϕ0 sends such an element t to pt. The filtration (Bi
dR)i∈Z induced on BdR

by integral powers ti of t is by C-vector spaces, where C is the completion of
Qp with respect to the topology induced by the extension of vp. Recall that the
p-adic cyclotomic character χp : Gal(Qp|Qp) → Z×

p is given by the Gal(Qp|Qp)-
action on µpn(Qp). The group GL acts on Zp(1) via the restriction of χp to GL.
One then has the so-called fundamental exact sequence

0 → Qp → Bϕ0=1
cris → BdR/B

0
dR → 0 (1)

of Qp-vector spaces with respect to the obvious maps. Here, the middle term is
the subspace of Bcris consisting of those elements on which ϕ0 operates trivially.
Because of compatibility of the above algebraic structures with the GL-action,
they naturally carry over to Dcris(V ) and DdR(V ) in the following sense: the
former carries a σ0-semilinear automorphism and the latter induces a decreasing,
exhaustive and separated Z-filtration by L-subspaces on L⊗L0 Dcris(V ).

Definition 1.3.3. Denote by MFL the category whose objects are triples D :=
(D,φ, F •DL) consisting of a (not necessarily finite-dimensional) L0-vector space
D, a σ0-semilinear endomorphism φ : D → D, and a decreasing, exhaustive and
separated Z-filtration F •DL consisting of L-vector spaces on DL := L⊗L0

D.
Morphisms are L0-linear maps that are compatible with the semilinear endo-
morphisms and such that the induced morphism between L-vector spaces is a
morphism of filtered vector spaces. Write FICL for the full subcategory consist-
ing of those objects such that D is finite-dimensional over L0 and φ is bijective.
In this case, the operator φ is called Frobenius.

By setting D1 ⊗ D2 := (D1 ⊗L0
D2, φ1 ⊗ φ2, tensor product filtration) the

pair (FICL,⊗) becomes a tensor category with unit object (L0, σ0, F
1 = {0} ⊂

F 0 = L).
The Newton resp. Hodge numbers are numerical invariants assigned to (iso-
morphism classes of) objects of FICL, depending on the Frobenius resp. the
filtration. Both are additive on short exact sequences.
With respect to objects D of FICL, two concepts of admissibility were intro-
duced.

• On the one hand, weak admissibility expresses a numerical relationship be-
tween the Newton and the Hodge numbers attached to D and its Frobenius-
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invariant subspaces with induced filtration on the scalar extension to L.
Weakly admissible objects form a full abelian subcategory FICwa

L of FICL.

• On the other hand, an object D is admissible if it lies in the essential
image of the functor Dcris restricted to Repcris(GL).

It was long known that both concepts are related by the fact that every
admissible object is weakly admissible. The following result, established in
[CoFo], proves a conjecture of Fontaine concerning the converse implication
([Fo1, §5.2.6]).

Theorem 1.3.4 (Colmez-Fontaine). Every object of FICwa

L is admissible. In
other words, the functor Dcris induces an equivalence of abelian categories

Repcris(GL) → FICwa

L

respecting tensor products and unit objects. A quasi-inverse is

F 0(Bcris ⊗L0
D)ϕ0⊗φ=1 ←[ (D,φ, F •DL) : Vcris

where on the left hand side those ϕ0 ⊗ φ-invariant elements are meant whose
image lies in F 0(BdR ⊗L (L⊗L0

D)) under the map induced by L⊗L0
Bcris →֒

BdR.

Hence, via the equivalence from the theorem, crystalline representations of
GL can be described by data given in terms of semilinear algebra, in particular
by a specific relation between the Newton numbers and the Hodge numbers.
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2 Weakly admissible filtered isocrystals with coefficients

Fix once and for all an integer n ≥ 2. We set R(L0,K) := R := L0 ⊗Qp
K and

RL := L⊗Qp
K = L⊗L0 R. The ring R (resp. RL) naturally is an algebra over

L0 (resp. over L) via l 7→ l ⊗ 1 (in both cases). Both rings also have a natural
K-algebra structure via k 7→ 1⊗ k.

In [Fo1], Fontaine has developed a formalism of Z-filtered φ-modules over
a characteristic 0 field which is complete with respect to a discrete valuation
and which has perfect residue field of positive characteristic. In this section we
present basic constructions of a similar formalism within the class of 1

nZ-filtered
φ-modules over the ring R.

2.1 Filtered isocrystals

Definition 2.1.1. Let A be a ring and M an A-module. Let Λ be a subgroup
of the additive group of real numbers.

1. A decreasing Λ-filtration on M is a family (FλM)λ∈Λ of A-submodules of
M , such that FλM ⊇ FµM whenever µ ≥ λ.

2. Let (FλM)λ∈Λ be a decreasing Λ-filtration on M . An element λ ∈ Λ is
called a filtration index. A filtration index λ ∈ Λ is called jump if the
quotient A-module

grλM := FλM/
⋃

µ>λ

FµM

is not reduced to zero.

3. A decreasing Λ-filtration on M is exhaustive resp. separated if
⋃

λ∈Λ

FλM = M

resp. if
⋂

λ∈Λ

FλM = {0} .

Unless otherwise mentioned we mean decreasing, exhaustive and separated
Λ-filtration when we speak of a Λ-filtration. In case the group Λ is clear from
the context, a specific filtration on an A-module M will also be abbreviated by
F •M .
Let F •M be a Λ-filtration on the A-module M and M ′ ⊆ M be a submodule.
Then (FλM ∩M ′)λ∈Λ is a Λ-filtration on M ′. The filtration thusly obtained is
called the induced filtration on M ′ by F •M and also denoted by F •M ∩M ′ if
confusion is excluded.

Definition 2.1.2. A 1
nZ-filtered φ-module over R is a triple D := (D,φ, F •DL)

consisting of an R-module D equipped with a σ0⊗K-linear map φ : D → D and
a decreasing, exhaustive and separated 1

nZ-filtration F •DL by RL-submodules
on DL := L⊗L0 D

∼= RL ⊗R D.
A morphism (D1, φ1, F

•D1,L) → (D2, φ2, F
•D2,L) between two 1

nZ-filtered φ-
modules is an R-linear map h : D1 → D2, such that h(φ1(d)) = φ2(h(d)) for all
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d ∈ D1 and such that the induced map

hL := L⊗ h : D1,L → D2,L

satisfies hL(F
iD1,L) ⊆ F iD2,L for all i ∈ 1

nZ. With these notions 1
nZ-filtered

φ-modules over R are a category which we denote by MF
φ
L,K,n.

An isomorphism in MF
φ
L,K,n is a morphism which is an isomorphism on the un-

derlying R-modules and which induces isomorphisms of RL-modules F iD1,L
∼=

F iD2,L for all i ∈ 1
nZ.

A sequence of morphisms

0 → M ′ → M → M ′′ → 0

in MF
φ
L,K,n is called exact if the sequence of morphisms between underlying

R-modules is exact and if this sequence induces short exact sequences of RL-
modules between filtration steps with index i for all i ∈ 1

nZ.

Recall that semilinearity of φ with respect to σ0 ⊗ K as in the definition
means that φ is additive and that φ(rd) = (σ0 ⊗K)(r)φ(d) for all r ∈ R and all
d ∈ D. The latter property implies that φ[L0:Qp] is an R-linear map D → D.
We remark that for any subgroup Λ of the additive group of the real numbers
an analogue of the category MF

φ
L,K,n with respect to Λ-filtrations can be made

precise.

Remark 2.1.3.

1. For a ring A the following are equivalent:

a) The ring A is semisimple.

b) Every A-module is semisimple.

c) Every A-module is projective.

As a consequence, modules over a semisimple ring are flat. Note that the
ring R is semisimple because

ψ : R →
⊕

τ0

Kτ0 , x⊗ y 7→ (τ0(x)y)τ0

is an isomorphism of rings and the direct sum decomposition is a decom-
position into simple R-modules. Recall that the index set consists of all
Qp-embeddings L0 → K (equivalently, of the group Gal(L0/Qp)). The
τ0-isotypical component Kτ0 is the additive group K with L0-vector space
structure

L0 ×K → K, (x,m) 7→ τ0(x)m.

We observe that the map induced by x ⊗ y 7→ σ0(x) ⊗ y on R translates
to the map (mτ0)τ0 7→ (mτ0σ0

)τ0 on
⊕

τ0
Kτ0 via ψ.

By the same reasoning, the ring RL is semisimple and the family (Kτ )τ
forms a system of distinct representatives for isomorphism classes of simple
RL-modules.

2. Let Dτ0 := {d ∈ D | (l ⊗ 1)d = (1⊗ τ0(l))d for all l ∈ L0} be the τ0-isotypical
component of the underlying R-module of some (D,φ, F •DL) in MF

φ
L,K,n
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for some Qp-embedding τ0 : L0 → K. The K-vector space Dτ0 is equal to
ψ−1(eτ0)D where eτ0 ∈

⊕

τ ′
0
Kτ ′

0
is the idempotent (δτ0,τ ′

0
)τ ′

0
in terms of

the Kronecker symbol. Hence D is the direct sum of the Dτ0 .
Moreover, for every l ∈ L0, d ∈ Dτ0 we have

(l ⊗ 1)φ(d) = (σ0σ
−1
0 (l)⊗ 1)φ(d)

= φ((σ−1
0 (l)⊗ 1)d)

= φ((1⊗ τ0σ
−1
0 (l))d) = (1⊗ τ0σ

−1
0 (l))φ(d)

where the second equality holds by semilinearity of φ, and the fourth is
valid because φ is K-linear. It follows that φ(Dτ0) is contained in Dτ0σ

−1
0

for all τ0. Note that this generalizes the observation from the first part of
the remark.

Lemma/Definition 2.1.4. Let D := (D,φ, F •DL) and D′ := (D′, φ′, F •D′
L)

be objects in MF
φ
L,K,n.

1. Together with

φ⊕ φ′ : D ⊕D′ → D ⊕D′, (d, d′) 7→ (φ(d), φ′(d′))

and
F i((D ⊕D′)L) := η(F iDL ⊕ F iD′

L),

where η : DL ⊕ D′
L→̃(D ⊕ D′)L is the canonical isomorphism of RL-

modules, the direct sum D ⊕ D′ is an object in MF
φ
L,K,n, denoted by

D ⊕D′.

2. Let D′ be finitely generated over R. Together with the well-defined σ0⊗K-
linear map

φ⊗ φ′ : D ⊗R D′ → D ⊗R D′, d⊗ d′ 7→ φ(d)⊗ φ′(d′)

and the decreasing, exhaustive and separated 1
nZ-filtration defined by F i(D⊗R

D′)L :=

im




⊕

j∈ 1
n
Z

(F jDL ⊗RL
F i−jD′

L) → DL ⊗RL
D′

L→̃(D ⊗R D′)L





with respect to the composite of the canonical maps

(dj)j 7→
∑

j

dj resp. (r ⊗ d)⊗ (r′ ⊗ d′) 7→ (rr′)⊗ (d⊗ d′),

the tensor product D ⊗R D′ becomes an object of MF
φ
L,K,n, denoted by

D ⊗D′. We call the filtration on this object the tensor product filtration.

3. Together with σ0 ⊗K and

F •RL : F 0RL = RL ⊇ F
1
nRL = {0} ,
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the R-module R is a left unit and a right unit with respect to ⊗, denoted
by R.
An object with only one filtration jump at 0 is said to have trivial filtration.
Hence, the RL-modules DL together with the filtration associated with an
object D of MF

φ
L,K,n are modules over the trivially filtered ring RL.

Proof. Ad 1.: It is clear that φ⊕φ′ is σ0⊗K-linear. Applying η to the identities

F iDL ⊕ F iD′
L ⊇ F i+ 1

nDL ⊕ F i+ 1
nD′

L (i ∈
1

n
Z),

⋃

i∈ 1
n
Z

(F iDL ⊕ F iD′
L) = DL ⊕D′

L

and ⋂

i∈ 1
n
Z

(F iDL ⊕ F iD′
L) = {0} ,

one sees that F •(D ⊕D′)L has the desired properties.
Ad 2.: The map

D ×D′ → D ⊗R D′, (d, d′) 7→ φ(d)⊗ φ′(d′)

is R-balanced, so φ⊗φ′ is a well-defined σ0⊗K-linear endomorphism of D⊗RD
′.

Denote the canonical isomorphism DL⊗RL
D′

L→̃(D⊗RD′)L by η′. Let i ∈ 1
nZ.

Then for all j ∈ 1
nZ, we have inclusions of RL-modules

F jDL ⊗RL
F i−jD′

L ⊆ F j− 1
nDL ⊗RL

F i−jD′
L ⊆

∑

j′∈ 1
n
Z

F j′− 1
nDL ⊗RL

F i−j′D′
L

where the first is valid by flatness of F i−jD′
L (see 2.1.3, 1.)). Now applying η′

to ∑

j′∈ 1
n
Z

F j′DL ⊗RL
F i−j′D′

L ⊆
∑

j′∈ 1
n
Z

F j′− 1
nDL ⊗RL

F i−j′D′
L

shows that F •(D ⊗D′)L is decreasing.
Let x :=

∑

k η
′(ak ⊗ bk) ∈ (D⊗R D′)L with the ak ∈ DL, bk ∈ D′

L and where k
runs through a finite index set. Since F •DL resp. F •D′

L are exhaustive, all the
ak are contained in some F j1DL and all the bk are contained in some F j2D′

L.
It follows that x ∈ Fmin{j1,j2}(D ⊗R D′)L. Thus F •(D ⊗R D′)L is exhaustive.
Let

∑

k η
′(ak ⊗ bk) =: x ∈

⋂

i∈ 1
n
Z F

i(D⊗R D′)L where again ak ∈ DL, bk ∈ D′
L

and where k runs through a minimal finite index set. Such minimal represen-
tations exist although they need not be unique. Since F •DL is separated, for
every such representation there is a filtration index j maximal with the prop-
erty that all the ak are contained in F jDL. Since F •D′

L is separated and D′
L is

finitely generated, there is a sufficiently large index l, again dependent on the
representation, such that F lD′

L = 0. Suppose x 6= 0. By assumption, x is in
particular contained in Fm(D ⊗R D′)L = η′(

∑

r∈ 1
n
Z F

rDL ⊗RL
Fm−rD′

L) for

any m > j + l. If r ≤ j then m − r ≥ m − j > l and hence Fm−rD′
L = 0.

If r > j then not all ak are contained in F rDL, hence x would have a rep-
resentation of length smaller than the minimal one, which is a contradiction.
Therefore, F •(D ⊗R D′)L is separated.
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Ad 3.: Let D = (D,φ, F •DL) be in MF
φ
L,K,n. By 2.,

σ0 ⊗ φ : R⊗R D → R⊗R D, r ⊗ d 7→ σ0(r)⊗ φ(d)

is a well-defined σ0 ⊗ K-linear map. Then the canonical isomorphisms of R-
modules R ⊗R D ∼= D ∼= D ⊗R R induce natural isomorphisms R ⊗D ∼= D ∼=
D ⊗R in MF

φ
L,K,n.

By abuse of notation we also write the tensor product filtration of objects
in MF

φ
L,K,n as

F i(D ⊗R D′)L =
∑

j

F jDL ⊗RL
F i−jD′

L.

The content of the next proposition is to show how to consider Z-filtered
φ-modules as 1

nZ-filtered φ-modules via the ceiling function

R → Z, x 7→ ⌈x⌉ := the unique integer s such that x ≤ s < x+ 1.

.

Proposition 2.1.5. Let MF
φ
L,K denote the tensor category of Z-filtered φ-

modules. Then assigning to an object D = (D,φ, F •DL) in MF
φ
L,K the object

In(D) := (D,φ, F ⌈•⌉DL) and to a morphism f : D → E in MF
φ
L,K the mor-

phism In(f) : In(D) → In(E), d 7→ f(d) in MF
φ
L,K,n defines a fully faithful

functor In : MF
φ
L,K → MF

φ
L,K,n. This functor is compatible with ⊗ and unit

objects in the sense of 2.1.4.

Proof. Let (D,φ, F •DL) be in MF
φ
L,K . One easily sees that F ⌈•⌉DL gives

indeed a decreasing, exhaustive and separated 1
nZ-filtration on DL. Let i ∈ Z

be a jump of F •DL. Then

F ⌈i⌉DL = F iDL ) F i+1DL = F ⌈i+ 1
n⌉DL,

so the jumps of F •DL are also jumps of F ⌈•⌉DL. For the reverse inclusion,

let x ∈ 1
nZ and F ⌈x+ 1

n⌉DL ( F ⌈x⌉DL. Then necessarily ⌈x⌉ <
⌈
x+ 1

n

⌉
which

is equivalent to x being in Z. This implies that the above assignments indeed
define a fully faithful functor In : MF

φ
L,K → MF

φ
L,K,n which preserves unit

objects.
Let D,E be in MF

φ
L,K with E being finitely generated. On the one hand, the

i-th filtration step of the filtration attached to In(D ⊗ E) is

F ⌈i⌉(D ⊗R E)L =
∑

j∈Z

F jDL ⊗RL
F ⌈i⌉−jEL (2)

for any i ∈ 1
nZ.

On the other hand, the i-th filtration step of the filtration attached to In(D)⊗
In(E) is

∑

k∈ 1
n
Z

F ⌈k⌉DL ⊗RL
F ⌈i−k⌉EL (3)
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for any i ∈ 1
nZ. Let us justify that the right hand side of (2) and (3) agree for

every i ∈ 1
nZ.

Note that ⌈x+m⌉ = ⌈x⌉+m for any x ∈ R,m ∈ Z. Using this property, it follows
that the right hand side of (2) is contained in (3). To see the reverse inclusion,
fix j ∈ Z. For an integer s, the containment s ∈ {(j − 1)n + r | 1 ≤ r ≤ n} is
equivalent to

⌈
s
n

⌉
= j. In this case the possible values of

⌈
i− s

n

⌉
are contained

in {−j + ⌈i⌉ ,−j + 1 + ⌈i⌉} where both values are actually attained because
1 ≤ r ≤ n. But then

⌈
s
n

⌉
+

⌈
i− s

n

⌉
runs through {⌈i⌉ , ⌈i⌉ + 1}. Hence the

submodule of DL ⊗RL
EL generated by those F ⌈ s

n⌉DL ⊗RL
F ⌈i− s

n⌉EL such
that

⌈
s
n

⌉
= j is contained in F jDL ⊗RL

F ⌈i⌉−jEL. Since this holds true for all
j ∈ Z, we conclude that the functor In is compatible with ⊗.

The essential image of In consists of those objects (D,φ, F •DL) for which
the implication

F xDL/F
x+ 1

nDL 6= 0 ⇒ x ∈ Z

holds true whenever x ∈ 1
nZ. Via the functor In we consider Z-filtered φ-

modules as 1
nZ-filtered. If no confusion arises, we usually omit the explicit

mentioning of In from the notation.
Using the same arguments as in the proof, the statement of the proposition is
valid for φ-modules with Λ-filtration for any subgroup Λ ⊆ 1

nZ.

Proposition 2.1.6. Let D := (D,φ, F •DL) be a non-zero object in MF
φ
L,K,n.

Consider the statements:

1. The R-module D is free of finite rank.

2. The underlying L0-vector space of D is finite-dimensional.

Then statement 1. implies statement 2. If, moreover, φ is bijective the con-
verse also holds. In particular, under this latter condition, every φ-invariant
R-submodule is automatically free.

Proof. The implication "1. ⇒ 2." holds because of the identity dimL0
(D) =

dimL0
(R)·rankR(D).

Let φ be bijective and assume statement 2. holds. With the notation of 2.1.3 we
have φ(Dτ0) = Dτ0σ

−1
0

for all τ0. By finite-dimensionality, there exists s ∈ Z≥1

such that the multiplicity of every isotypical component of D is s. This implies
1.

Definition 2.1.7. Let D := (D,φ, F •DL) be in MF
φ
L,K,n, such that D is a

free R-module of finite rank and such that φ is bijective. Then we call D a 1
nZ-

filtered isocrystal over L with coefficients in K. The map φ is usually referred to
as the Frobenius of D. The full additive subcategory of MF

φ
L,K,n of 1

nZ-filtered
isocrystals over L with coefficients in K is denoted by FICL,K,n.

Let D = (D,φ, F •DL) be in FICL,K,n and denote by HomR(D,R) (resp.
HomRL

(DL, RL)) the dual R-module of D (resp. the dual RL-module of DL).
We have a canonical isomorphism of RL-modules

θ : RL ⊗R HomR(D,R) →̃ HomRL
(DL, RL),

a⊗ ψ 7→ [a′ ⊗ d 7→ (1⊗ ψ(d))
︸ ︷︷ ︸

∈RL=L⊗L0
R

aa′],
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where a′ ∈ RL and d ∈ D. Then D gives rise to the object D∨ := (D∨, φ∨, F •(D∨)L)
whose underlying R-module is D∨ := HomR(D,R). It is finitely generated free
with rank equal to that of D. By definition,

φ∨ : D∨ → D∨, ξ 7→
[
d 7→ (σ0 ⊗K)(ξ(φ−1(d)))

]

and
F i(D∨)L := θ−1(

{

ξ ∈ HomRL
(DL, RL) | ξ(F

1
n
−iDL) = 0

}

),

where we view RL as a trivially filtered RL-module. Then φ∨(ξ) is clearly
additive and it is R-linear because φ−1 is σ−1

0 ⊗ K-linear. Hence φ∨ is well-
defined.
Let r ∈ R, ξ1, ξ2 ∈ D∨. Then we have for all d ∈ D

φ∨(r · ξ1)(d) = ((σ0 ⊗K) ◦ (r · ξ1) ◦ φ
−1)(d)

= (σ0 ⊗K)(r ξ1(φ
−1(d))

︸ ︷︷ ︸

∈R

)

= (σ0 ⊗K)(r) · φ∨(ξ1)(d)

= ((σ0 ⊗K)(r) · φ∨(ξ1)
︸ ︷︷ ︸

∈D∨

)(d),

and

φ∨(ξ1 + ξ2)(d) = ((σ0 ⊗K) ◦ (ξ1 + ξ2) ◦ φ
−1)(d)

= ((σ0 ⊗K) ◦ ξ1(φ
−1(d)))(d) + ((σ0 ⊗K)(ξ2(φ

−1)))(d)

= φ∨(ξ1)(d) + φ∨(ξ2)(d),

which shows that φ∨ is σ0 ⊗K-linear.
It is clear that F •(D∨)L is a family of submodules of (D∨)L. To show that
it is decreasing, let θ−1(ξ) ∈ F i(D∨)L. Then ξ vanishes on F

1
n
−iDL hence

on F tDL for all t ∈ 1
nZ such that t ≥ 1

n − i. By definition this means that

θ−1(ξ) ∈ F
1
n
−t(D∨)L. Since 1

n − t ≤ i, F •(D∨)L is decreasing. It is exhaustive
because F •DL is separated and it is separated because F •DL is exhaustive.
The object thus obtained is called the dual of D. Hence we have proven part of
the following result.

Proposition 2.1.8. The category FICL,K,n is closed under the formation of
tensor products and duals in the sense just defined.

Proof. Concerning ⊗, note that the tensor product D1 ⊗R D2 of two free R-
modules of finite rank is again finite free over R. The tensor product filtration
is decreasing, exhaustive and separated, as we have seen before.

Let FICL,K denote the category of Z-filtered isocrystals over L with coeffi-
cients in K. The following statement is proved in the same way as 2.1.5.

Proposition 2.1.9. The functor In from proposition 2.1.5 restricts to a functor
FICL,K → FICL,K,n with the same properties.
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2.2 Weak admissibility

In [Fo2] to (the isomorphism classes of) objects D of FICL (cf. section 1.3) is
associated a pair of integers (tN (D), tH(D)) in order to define (weakly) admis-
sible objects in FICL. The notion of weak admissibility relates the Frobenius
and the filtration of such a D and can numerically be expressed in terms of the
functions tN and tH . In this subsection we introduce the corresponding invari-
ants and study the concept of weak admissibility for objects in FICL,K,n.
Let D = (D,φ, F •DL) be a non-zero object in FICL,K,n and set

h := dimL0(D) = [K : Qp] · rkR(D).

Then φ, as a σ0-linear automorphism of D as an L0-vector space via scalar
restriction along the ring map L0 → R, l 7→ l ⊗ 1, induces on the top exterior
power

∧h
D a bijective σ0-linear map

∧h
φ. Since

∧h
D is one-dimensional, for

every two elements x, y ∈
∧h

D\{0}, there exist a, b, c ∈ L×
0 with y = ax on the

one hand and (
∧h

φ)(x) = bx resp. (
∧h

φ)(y) = cy on the other hand. Hence
we obtain

cax = cy = (
h∧

φ)(y) = (
h∧

φ)(ax) = σ0(a)bx

which implies c = σ0(a)ba
−1. As both vp ◦σ0 and vp extend the p-adic valuation

on Qp we have vp ◦ σ0 = vp as functions from L×
0 to Z. Therefore the following

definition makes sense.

Definition 2.2.1. Let D, x and b be as in the previous discussion. We set

tN (D) := vp(b) ∈ Z.

This is the Newton number of D.

Remark 2.2.2.

1. The scalar b in the definition is equal to the determinant of the matrix
representing φ after choosing an L0-basis of D. The above considerations
then imply that the definition of tN (D) is independent of this choice.

2. If there is no risk of confusion, we frequently denote the Newton number
of D also as tN (D,φ) or simply as tN (D).

3. Using the behavior of the determinant of an endomorphism under scalar
restriction one checks that we have the equalities

tN (D) =
1

[L0 : Qp]
vp(detL0(φ

[L0:Qp])) = [K : L0] vp(detK(φ)) (4)

where detL0
resp. detK means the determinant of an L0-linear resp. of a

K-linear map (cf. also [BouA1, III, §9, no. 4, Proposition 6] and [SchT,
discussion after Proposition 5.2]).

Keep the notations as before. Via scalar restriction, DL is an h-dimensional
1
nZ-filtered L-vector space.
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Definition 2.2.3. We set

tH(D) :=
∑

i∈ 1
n
Z

i dimL(gr
iDL) ∈

1

n
Z.

This is the Hodge number of D.

Remark 2.2.4.

1. If there is no risk of confusion, we frequently denote the Hodge number of
D also as tH(DL, F

•) or simply as tH(D).

2. For the Hodge number as defined in 2.2.3 we have

tH(D) = [K : L]
∑

i∈ 1
n
Z

i dimK(griDL)

= [K : L]
∑

τ

∑

i∈ 1
n
Z

i dimK

[

(F iDL ∩DL,τ )/(F
i+ 1

nDL ∩DL,τ )
]

where the second equality uses semisimplicity of the ring L ⊗Qp
K as ex-

plained in 2.1.3.

Definition 2.2.5. An object D = (D,φ, F •DL) in FICL,K,n is called weakly
admissible if

tH(D) = tN (D)

and if for every φ-invariant L0-subspace D′ ⊆ D with induced filtration F •DL∩
D′

L we have
tH((D′

L, F
•DL ∩D′

L)) ≤ tN ((D′, φ|D′)).

Denote the full subcategory of weakly admissible objects in FICL,K,n by FICwa
L,K,n.

Also let FICadm
L,K denote the category of weakly admissible Z-filtered isocrystals

over L with coefficients in K.

Remark 2.2.6.

1. We set tN ({0}) := 0 and tH({0}) := 0. With this definition the zero
object is weakly admissible.

2. In the category consisting of triples (D,φ, F •DL) where D is a finite-
dimensional L0-vector space, φ is a σ0-linear automorphism of D and
F •DL is a decreasing, exhaustive and separated 1

nZ-filtration of DL by
L-subspaces, weakly admissible objects are defined as in 2.2.5. Then, by
[Men, Theorem 2.2 and Satz 5.5], the category consisting of the weakly-
admissible objects in this specific category is abelian and closed under the
formation of tensor products and duals. From this one can conclude that
the same is true for FICwa

L,K,n. In particular the existence of kernels and
cokernels of morphisms in FICwa

L,K,n follows from Frobenius-invariance and
the implication "2. ⇒ 1." in 2.1.6.

3. Let D be in FICL,K,n. Using the same arguments as in the proof of
[BrMe, Prop. 3.1.1.5], one sees that it suffices to check the condition con-
cerning weak admissibility on φ-invariant R-submodules of the underlying
R-module of D.
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4. The functor In from proposition 2.1.9 restricts further to a functor FICadm
L,K →

FICwa
L,K,n.

Assumption 2.2.7. We will assume from now on that

(K×)n contains Q×
p and that K contains all n-th roots of unity.

That such a K of finite degree over Qp with these properties exists follows
essentially from the finiteness of the group index [Q×

p : (Q×
p )

n]. Assumption
2.2.7 implies that the polynomial Xn − a ∈ K[X] splits completely for every
a ∈ Q×

p . Moreover, using this property,

we fix once and for all a root of Xn − p ∈ K[X] and denote it by p
1
n .

The multiplicative inverse of p
1
n is denoted by p−

1
n . Next we present two ex-

amples in which we apply the notions just introduced.

Example 2.2.8. The unit object R in FICL,K,n is weakly admissible since
detK(σ0 ⊗K) ∈ {−1, 1}.

Slightly less trivial is the following example which is inspired by the discus-
sion in [BrSch, Section 7, after Lemma 7.3] for the case n = 2. It describes a
“twist of the unit object from the previous example by 1

n ”. Here and afterwards
we sometimes denote the filtration associated with an object D of FICL,K,n by
F •D if there is no risk of confusion.

Example 2.2.9. Define the filtered isocrystal Kn having as underlying R-
module R, its Frobenius is σ0 ⊗ p−

1
n and the filtration F •Kn is given as

F− 1
nKn := RL ⊇ F 0Kn := {0} .

Then Kn is weakly admissible in FICL,K,n: via the isomorphism described
in 2.1.3, we transport the action of the Frobenius on R to

⊕

τ0
Kτ0 where it

translates to a permutation of the components Kτ0 followed by a multiplication
with p−

1
n ∈ K. Hence there are no proper Frobenius-invariant R-submodules.

To conclude that Kn is weakly admissible, we therefore only need to compute
tN (Kn) and tH(Kn). Setting h := [K : Qp] we get, using (4),

tN (Kn) = [K : L0] vp(ǫ · detK(R → R, x 7→ p−
1
nx))

= [K : L0] vp((p
− 1

n )f )

= −
h

n

=
∑

j∈ 1
n
Z

j dimL(gr
jRL) = tH(Kn)

where ǫ ∈ {−1, 1}.
The object K⊗n

n , the n-fold tensor product of Kn with itself, might not be
well-defined a priori. But by associativity of the tensor product all the objects
that arise are isomorphic via the canonical isomorphisms R⊗m→̃R (valid for
any m ≥ 1) and the fact that F •Kn has only one jump.
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We claim that the canonical R-module isomorphism R⊗n→̃R is an isomorphism

K⊗n
n →̃K

in FICwa
L,K,n, where K has underlying R-module R, its Frobenius is σ0 ⊗ p−1

and the filtration F •K is given as

F−1K := RL ⊇ F−n−1
n K := {0} .

Proof of claim. Note that K lies in the essential image of In: this can be seen
by applying this functor to the object in FICadm

L,K defined similarly as K with
minus first filtration step being equal to RL and with zeroth filtration step being
the zero module. It follows that K lies in FICwa

L,K,n.
The underlying R-module of K⊗n

n is free of rank 1. The Frobenius of this object
is

⊗n
i=1(li ⊗ ki) 7→ ⊗n

i=1(σ0(li)⊗ p−
1
n ki)

and it is compatible with R⊗n→̃R. As for the filtration, let us first remark that
for any D in MF

φ
L,K,n, the isomorphism R⊗n ⊗R D→̃D induces an isomorphism

of RL-modules between F j(K⊗n−1
n ⊗D) and F j+n−1

n D for all j ∈ 1
nZ. Now the

claim follows by setting D = Kn, by computing filtration steps for j = −1 resp.
j = −n−1

n and using the definition of the filtration associated with K.

Different choices of roots of Xn − p yield the objects

Kζ
n := (R, σ0 ⊗ ζp−

1
n , F− 1

nRL := RL ⊇ F 0RL := {0})

and isomorphisms

Kζ
n
∼= Kn ⊗ In((R, σ0 ⊗ ζ, F 0RL := RL ⊇ F 1RL := {0}))

in FICwa
L,K,n where ζ ∈ µn(K). The pairwise non-isomorphic objects Kζ

n are

“n-th tensor roots” of K in FICwa
L,K,n, in the sense that (Kζ

n)
⊗n and K are

isomorphic for all ζ ∈ µn(K).

The previous example motivates the following definition.

Definition 2.2.10. Let D be in MF
φ
L,K,n.

1. Let r ∈ Z≥0. Define the twist of D by r
n as D

〈
r
n

〉
:= K⊗r

n ⊗D, where we

set M⊗0 := R for any M in MF
φ
L,K,n (cf. 2.1.4).

2. Let r ∈ Z<0. Define the twist of D by r
n as D

〈
r
n

〉
:=

(
K∨

n

)⊗(−r)
⊗D.

In particular, R
〈
1
n

〉
∼= Kn and, in view of 2.2.9, we find

R 〈1〉 = R
〈
n
n

〉 2.2.10
= K⊗n

n ⊗R ∼= K.

A simple computation using the properties of the objects Kn and K∨
n allows

the following description of twists.
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Lemma 2.2.11. Let D = (D,φ, F •DL) be in MF
φ
L,K,n. Then we have for its

twists an isomorphism

D
〈
r
n

〉
∼= (D, (1⊗ (p

1
n )−r)φ, (F ′)•DL)

where (F ′)iDL := F i+ r
nDL for r ∈ Z. Moreover, for all objects D,E in

MF
φ
L,K,n and all i, j ∈ 1

nZ, there are canonical isomorphisms

D 〈i〉 ⊗ E 〈j〉 ∼= (D ⊗ E) 〈i+ j〉 ,

in particular
(D 〈i〉) 〈j〉 ∼= D 〈i+ j〉 .

Remark 2.2.12.

1. In MF
φ
L,K,n, the objects Kn from 2.2.9 and K∨

n = R
〈
− 1

n

〉
are mutually

inverse with respect to the tensor product, by which we mean that there
is an isomorphism Kn ⊗K∨

n
∼= R.

2. Let D be in FICL,K,n and let D′ denote any twist of D. On the one hand,
the Frobenius maps of both objects differ by composition with a K-linear
automorphism. On the other hand, the filtrations associated with both
objects determine each other by a shift of filtration indices of the form
i 7→ i + m, m ∈ 1

nZ. It follows that Frobenius-invariant submodules of
D with associated induced filtration are in bijective correspondence with
Frobenius-invariant submodules of D′ with associated induced filtration.
The effect of twisting by some j ∈ 1

nZ on the Newton and the Hodge
numbers of an object D = (D,φ, F •DL) in FICL,K,n is

tN (D 〈j〉) = tN (D)− rankR(D)[K : Qp]j

and similarly

tH(D 〈j〉) = tH(D)− rankR(D)[K : Qp]j.

Hence we find that D is weakly admissible if and only if D 〈j〉 is weakly
admissible for any j ∈ 1

nZ and that "twisting by j ∈ 1
nZ" induces a

faithfully exact functor

(−) 〈j〉 : FICwa
L,K,n → FICwa

L,K,n, D 7→ D 〈j〉

in the following sense: let ∆′,∆,∆′′ be in FICwa
L,K,n. Then a sequence of

morphisms in FICwa
L,K,n

0 → ∆′ f
→ ∆

g
→ ∆′′ → 0

is exact if and only if the associated sequence

0 → ∆′ 〈j〉
f〈j〉
→ ∆ 〈j〉

g〈j〉
→ ∆′′ 〈j〉 → 0.

is exact in FICwa
L,K,n for all j ∈ 1

nZ.

For later purposes we introduce a specific subcategory of the abelian category
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FICwa
L,K,n.

Definition 2.2.13. Let Kn be as in 2.2.9. Define FICwa
L,K,(n) := the full sub-

category of FICwa
L,K,n such that

• objects of FICadm
L,K are objects of FICwa

L,K,(n),

• all objects of FICwa
L,K,n isomorphic to Kn are objects of FICwa

L,K,(n),

• it is closed under (any finite combination of) the formation of ⊕, ⊗, duals
and subquotients (:= quotient objects of subobjects) and

• whenever there is an isomophism X → A in FICwa
L,K,n, A an object in

FICwa
L,K,(n), then X is in FICwa

L,K,(n).

Moreover, we require FICwa
L,K,(n) to be minimal with these properties.

In the definition, by a subobject of D in FICwa
L,K,n we mean a Frobenius-

invariant R-submodule of the underlying R-module D′ of D together with its
induced filtration such that the object induced by these data is again weakly
admissible (i.e. tN (D′) = tH(D′)).

Proposition 2.2.14. Let D be an object of FICwa
L,K,(n). Then there are objects

D0, . . . , Dn−1 in FICadm
L,K and a decomposition, unique up to isomorphism,

D =

n−1⊕

i=0

Di

〈
i
n

〉
.

Proof. Denote by Tn the full subcategory of FICwa
L,K,n whose objects are those

of FICwa
L,K,n which are isomorphic to one of the form

P (∆0, . . . ,∆n−1,Kn)

Here P is an element of Z [X1, . . . , Xn+1] with coefficients ≥ 0 and the ∆i are
objects in FICadm

L,K for i = 0, . . . , n− 1. Multiplication is to be interpreted as ⊗
and addition as ⊕. Then Tn is a subcategory of FICwa

L,K,(n) since, by definition,
the latter is closed under formation of objects of the kind just described. One
checks that Tn satisfies the first three properties of 2.2.13, so FICwa

L,K,(n) is a
full subcategory of Tn, hence both categories coincide.
Note that K ∼= K⊗n

n is an object in FICadm
L,K (Example 2.2.9) and K∨

n is isomor-
phic with K⊗n−1

n ⊗K∨so after reordering according to tensor powers of Kn, one
sees that objects in FICwa

L,K,(n) are isomorphic to those from the statement.

Note that all objects Kζ
n from 2.2.9 lie in FICwa

L,K,(n) where ζ ∈ µn(K).

Remark 2.2.15. Using the properties of twists with respect to ⊗ from 2.2.11,
the tensor product of two objects D = ⊕n−1

i=0 Di

〈
i
n

〉
and E = ⊕n−1

i=0 Ei

〈
i
n

〉
in
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FICwa
L,K,(n) may be computed as follows:

D ⊗ E ∼=
⊕

i,j

(Di〈
i
n 〉 ⊗ Ej〈

j
n 〉)

∼=
⊕

i,j

(Di ⊗ Ej)〈
i+j
n 〉

∼=

n−1⊕

k=0

⊕

i+j∈k+nZ

((Di ⊗ Ej)〈⌊
i+j
n ⌋〉)〈 kn 〉.

Here for any real number x, the expression ⌊x⌋ denotes the largest integer y
such that x− 1 < y ≤ x.
We will need this description of the tensor product in section 4.

Corollary 2.2.16. Let D = ⊕n−1
r=0Dr

〈
r
n

〉
be in FICwa

L,K,(n). For r = 0, . . . , n− 1,
let {jr,1, . . . , jr,k} denote the set of those jumps of F •D which are contained in
n−r
n +Z. Then this set coincides with the set of jumps of F •Dr

〈
r
n

〉
. With respect

to associated graded pieces of the respective filtrations we have the equalities

grjr,lD = grjr,lDr

〈
r
n

〉

for all l = 1, . . . , k.

Proof. Both statements follow from the description of twists in 2.2.11 combined
with the statement of 2.2.14.

We conclude this section by discussing an example which shows that there
exist objects in FICwa

L,K,n that are not objects in FICwa
L,K,(n) in general.

Example 2.2.17 (Schneider). Let L = Qp and consider the category FICQp,K,n.
We first observe that an object D in FICwa

Qp,K,n which has underlying one-
dimensional K-vector space must necessarily belong to FICwa

Qp,K,(n): indeed, we
have

tH(D) = j[K : Qp] = tN (D) ∈ Z

where j ∈ 1
nZ is the unique jump in the filtration associated with D. By 2.2.11

we have D ∼= (D 〈−⌈j⌉+ j〉) 〈⌈j⌉ − j〉. Note that D 〈−⌈j⌉+ j〉 is in FICadm
Qp,K

because the unique jump of the associated filtration of this object is ⌈j⌉. Thus
D lies in FICwa

Qp,K,(n) by 2.2.14.

Additionally let K be such that it does not contain a square root of p
1
n . Then

K ′ := K[X]/(X2 − p
1
n )K[X] is a field obtained by adjoining to K both square

roots of p
1
n . For any onedimensional K-subspace W ⊂ K ′ we define K ′

W :=
(K ′, x 7→ Xx,F •K ′) in FICQp,K,n where X := residue class of X in K ′ and

F jK ′ :=







K ′ j ≤ 0

W j = 1
n

0 j > 1
n .

The matrix of the Frobenius with respect to the K-basis {1, X} of K ′ is

(

0 p
1
n

1 0

)

,
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having determinant −p
1
n with respect to K. Its characteristic polynomial does

not split into linear factors over K by assumption, whence there are no proper
Frobenius-invariant K-subspaces of K ′. We compute

tN (K ′
W ) = [K : Qp] vp(−p

1
n ) =

[K : Qp]

n
.

The only summand contributing to the Hodge number of K ′
W is 1

n dimQp
(gr

1
nK ′) =

1
n [K : Qp], so

tH(K ′
W ) =

[K : Qp]

n
.

Hence K ′
W is weakly admissible for any W . It cannot, however, be (isomorphic

to) an object in FICwa
Qp,K,(n). If it were, K ′

W would necessarily decompose as
in proposition 2.2.14 into two non-zero direct summands corresponding to the
jumps 0 ∈ Z and 1

n ∈ 1
n +Z of the filtration associated with it (cf. also 2.2.16).

This would imply the existence of proper Frobenius-invariant K-subspaces of
K ′.
Similarly, the contradiction obtained by intersecting one of the direct summands
of a finite direct sum (K ′

W )⊕m (m ∈ Z≥1) with the Frobenius-invariant K-vector
space underlying Dn−1〈

n−1
n 〉 shows that (K ′

W )⊕m does not lie in FICwa
Qp,K,(n).
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3 Crystalline representations

We keep the notations and conventions of the previous section. In particular,
we remain in the situation of 2.2.7.
As explained in the introduction, there is an equivalence between the abelian
categories Repcris(GL) consisting of crystalline Qp-linear representations of
Gal(Qp|L) and FICwa

L consisting of weakly admissible Z-filtered isocrystals over
L. In order to establish a result in this direction with respect to the categories
introduced in the previous section, we now present corresponding necessary
constructions on the representation-theoretic side.

3.1 The category RepK(GL,(n))

For the construction of the group GL,(n), we need a slight modification of the
p-adic cyclotomic character χp.

Definition 3.1.1. Let Qp ⊆ E be a finite field extension contained in Qp.
Denote by εE : GE := Gal(Qp|E) → K× the continuous character obtained by
composing the restriction of χp to GE with the inclusions Z×

p ⊆ Q×
p ⊆ K×,

where GE has the profinite topology and K× has the induced topology of the
p-adic topology on K.

With respect to the following definition, we remark that in the category of
topological groups all fiber products exist.

Definition 3.1.2. Let Qp ⊆ E be a finite field extension contained in Qp.
Denote (GE,(n), εE,n : GE,(n) → K×, δE,n : GE,(n) → GE) the fiber product of

GE

εE
��

K×

−n
// K×

with respect to εE and

−n : K× → K×, λ 7→ λn.

In particular we obtain a continuous character εE,n.

Lemma 3.1.3. Let Qp ⊆ E be a finite field extension contained in Qp and let
GE,(n) be the fiber product as in the previous definition. Then the morphism
δE,n is surjective. Moreover, the subgroup Hn := ker(δE,n) is central in GE,(n)

and εE,n induces an isomorphism between Hn and µn(K).

Proof. We identify the group GE,(n) with the subgroup of the direct product
group K× × GE consisting of the pairs (λ, σ) such that λn = εE(σ). By 2.2.7
we have εE(GE) ⊆ (K×)n. Let σ ∈ GE and λ ∈ K× such that λn = εE(σ).
Hence (λ, σ) ∈ GE,(n) and δE,n((λ, σ)) = σ. This shows the first assertion.
The subgroup Hn is identified with {(λ, 1GE

) ∈ K× ×GE |λn = 1}. This si-
multaneously shows the second and third assertions.
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Remark 3.1.4. Let Qp ⊆ E be a finite field extension contained in Qp. The
lemma shows that we get a central extension

1 → Hn
⊆
→ GE,(n)

δE,n
→ GE → 1 (ExtE,n)

of GE by a group which is isomorphic with µn(K).

1. In an appendix to this subsection we give a criterion concerning a splitting
of (ExtE,n) in dependence of the degree of the field extension E|Qp.

2. Precomposition with δE,n induces an injective group homomorphism

{group homomorphisms GE → K×}

→ {group homomorphisms GE,(n) → K×}

under which εE is mapped to εnE,n : h 7→ εE,n(h)
n. Due to this fact, we

may refer to εE,n as an n-th root of εE .

From now on we focus on the case E = L and in particular on the category
of continuous finite-dimensional K-linear representations of GL,(n) which will
be denoted by RepK(GL,(n)).
Let (V, ρ) be in RepK(GL,(n)). The elements of the cyclic group ρ(Hn) are
diagonalizable, as Xn−1 factors completely over K with pairwise distinct roots.
Denote by X(Hn) the finite abelian group of characters χ : Hn → K× and
similarly for X(ρ(Hn)). Then precomposition with ρ induces an injective group
homomorphism X(ρ(Hn)) → X(Hn) by which we identify X(ρ(Hn)) with a
subgroup of X(Hn). The eigenspace decomposition of V with respect to the
elements of X(Hn)

V =
⊕

χ∈X(Hn)

Vχ, (5)

where Vχ := {v ∈ V | ρ(h)v = χ(h)v ∀h ∈ Hn} and Vχ := 0 if χ /∈ X(ρ(Hn))
will be used throughout in the following. Due to centrality of Hn in GL,(n), the
Vχ ⊆ V are K-subrepresentations of GL,(n). By the definition of morphisms in
RepK(GL,(n)), the association V 7→ Vχ is functorial in V for every χ ∈ X(Hn).

In the following, we write εn := εL,n and

χn,j := the restriction of ε−j
n to Hn (j = 0, . . . , n− 1).

With this notation we have

χ−1
n,j =

{

χn,0 j = 0

χn,j−1 1 ≤ j ≤ n− 1.

Since εn is an isomorphism between Hn and µn(K), the restrictions of the n
different elements ε−j

n to Hn yield n different elements of the cyclic group X(Hn)
(a generator is χn,1, for example). Hence equality (5) can be rewritten as

V =
n−1⊕

j=0

Vχn,j
.
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If (K,χ) and (U, ρ) are in RepK(GL,(n)), we write χ⊗U for the representation
(U, g 7→ [u 7→ χ(g)(ρ(g)u)]). We find that Hn operates trivially on εjn ⊗ Uχn,j

for all j = 0, . . . , n− 1 and hence these are naturally objects of RepK(GL).
If (V, ρ) is in RepK(GL,(n)), the tuple

(V ∨, ρ∨) := (K-vector space dual of V, g 7→ [ℓ 7→ [v 7→ ℓ(ρ(g−1)v)]])

is also in RepK(GL,(n)). Then one easily checks that the decomposition of (V, ρ)
into Hn-eigenspaces is related to that of (V ∨, ρ∨) by (Vχn,j

)∨ = (V ∨)χ−1
n,j

.

Remark 3.1.5. From now on, we ususally omit either the space or the group
homomorphism in the datum of a representation of a group when there is no
risk of confusion.

Appendix on the splitting of a sequence of the form (ExtE,n): The fol-
lowing discussion and the two subsequent results are inspired by [BrSch, Lemma
7.5]. Although interesting in their own right, these results will not be used in
the sequel.

Let Qp ⊆ E be a finite field extension contained in Qp. We recall that iso-
morphism classes of central extensions with outer parts Hn and GE as above are
in canonical bijection with elements of the Galois cohomology group H2(GE , µn)
[Mac, p. 112, discussion following Theorem 4.1] with law of composition written
additively. In particular, such an extension splits if and only if it is represented
by the trivial element in H2(GE , µn). By local class field theory, one has an iso-

morphism invE between the Galois cohomology group H2(GE ,Q
×

p ) and the ab-
solute Brauer group of E which is isomorphic to Q/Z. Hence, the invariant map
invE induces an isomorphism on n-torsion which implies H2(GE , µn) ∼=

1
nZ/Z

(cf. [GiSz, Corollary 4.4.9]).
The bifunctor “second Galois cohomology” H2(−,−) is contravariant in the first
argument, and the morphism induced by an inclusion of groups (but fixed Ga-
lois module) is the restriction. For the specific inclusion GE →֒ GQp

and the
induced restriction map, the class of (ExtQp,n) corresponds to that of (ExtE,n)
via this construction.
By one of the main theorems in local class field theory, the restriction induced
by GE →֒ GQp

is multiplication with [E : Qp] on (torsion subgroups of) Brauer
groups via the invariant map. Hence, we have

inv−1
E ◦ [E : Qp] ◦ invQp

(class of (ExtQp,n
))

= restriction(class of (ExtQp,n
)) = class of (ExtE,n).

Lemma 3.1.6. With the notations from the preceding discussion, the sequence
(ExtQp,n) does not split.

Proof. Recall that GQp,(n) is by definition the fibre product of K× and GQp

with respect to −n : K× → K× and εQp
.

Suppose, that (ExtQp,n) splits, with splitting s : GQp
→ GQp,(n). Let f be the

composite of εQp,n with s. Then we have f(h)n = εQp
(h) for all h ∈ GQp

which
for all h ∈ ker(εQp

) implies f(h) ∈ µn(K). Since εQp,n induces an isomorphism
of Hn with µn(K) we find that s(h) is contained in Hn for all h ∈ ker(εQp

).
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Since s is an injective group homomorphism and ker(εQp
) is not a finite group,

we arrive at a contradiction.

Proposition 3.1.7. Let Qp ⊆ E be a finite field extension contained in Qp.
Define cQp

:= invQp
(class of (ExtQp,n)) in 1

nZ/Z and analogously for cE. Then
the following are equivalent:

1. The extension (ExtE,n) splits.

2. The order of cQp
divides [E : Qp].

Proof. The element cQp
generates a subgroup of 1

nZ/Z which does not consist
of the unit element alone by 3.1.6. Then 1. holds if and only if the chain of
equalities 0 = cE = [E : Qp]cQp

is valid in 1
nZ/Z (by the discussion before 3.1.6)

if and only if 2. holds.

3.2 The rings BdR,n and Bcris,n

Via certain ring extensions of Bcris and BdR we aim to single out a specific class
of representations of GL,(n). In order to construct the ring extensions we fix a
Zp-generator t of Zp(1).
As one might expect, statements in this subsection and in the next section can
often be proved by refering to the validity of a corresponding statement in the
classical setting.

Definition 3.2.1. Define

BdR,n := BdR [X] /(Xn − t)BdR [X]

as the quotient of the polynomial ring in one variable over BdR modulo the ideal
generated by the polynomial Xn − t.

Lemma 3.2.2. The ring BdR,n is a field extension of BdR which is Galois of
degree n with Galois group isomorphic to Z/nZ. If α is a root of Xn − t in an
algebraic closure of BdR then BdR,n and BdR(α) are isomorphic as fields via

X := residue class of X 7→ α

and α is a uniformizer of the totally ramified extension BdR(α)|BdR.

Proof. By Eisenstein’s criterion with t as prime element, the polynomial Xn−t is
irreducible in BdR [X]. The irreducibility holds if and only if the ideal generated
by Xn − t in BdR [X] is maximal if and only if BdR,n is a field extension of BdR

of degree n. The zeros of Xn − t are (ζX)ζ∈µn(BdR) hence BdR,n|BdR is Galois.
Every automorphism of BdR,n which leaves BdR fixed is given by multiplication
with a fixed ζ ∈ µn(BdR) on the set of zeros of Xn − t. Hence the Galois group
of BdR,n|BdR is isomorphic to Z/nZ.
The remaining statements are proved in [FeVo, Proposition II.3.6].

Remark 3.2.3. The definition of BdR,n is independent of the choice of t: in-
deed, let t′ ∈ Zp(1) be another Zp-generator. Then there exists u ∈ Z×

p such
that t′ = ut. Since Qp ⊂ BdR, the field BdR,n contains all roots of the poly-
nomial Xn − u. Let v be one such root. It follows that (ζvX)n = t′ for
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any ζ ∈ µn(BdR). Thus, as ζ runs through µn(BdR), the elements ζvX run
through the different zeros of Xn − t′ which all lie in BdR,n. Therefore we have
BdR,n = BdR [X] /(Xn − t′)BdR [X].

Definition 3.2.4. Define

Bcris,n := Bcris [X] /(Xn − t)Bcris [X]

as the quotient of the polynomial ring in one variable over Bcris modulo the
ideal generated by the polynomial Xn − t.

The following result allows us to view Bcris,n as a subring of BdR,n.

Lemma 3.2.5. Let A be a subring of a field E. Moreover, let the integer d ≥ 2
and a ∈ A× be such that the polynomial h := Xn − a ∈ A [X] is irreducible in
E [X]. Then A [X] /hA [X] is identified with a subring of the field E [X] /hE [X].

Proof. We show that the kernel hE [X] ∩A [X] of the composite

A [X] →֒ E [X] ։ E [X] /hE [X] .

of the canonical ring maps is equal to the principal ideal hA [X]. Then the
statement follows from the homomorphism theorem for rings.
Let f ∈ hE [X]∩A [X]. There exists g :=

∑m
j=0 bjX

j ∈ E [X] with bm 6= 0 such
that f = hg. There are two possibilities. Assume first m < n. This means f
can be written as

f = hg = −
m∑

j1=0

abj1X
j1 +

m+n∑

j2=n

bn−j2X
j2 .

By looking at the right hand sum, it follows that g has coefficients in A whence
f ∈ hA [X].
Now let m ≥ n. Then

f = hg = −
n−1∑

j1=0

abj1X
j1 +

m∑

j2=n

(bj2−n − abj2)X
j2 +

m+n∑

j3=m+1

bj3−nX
j3 .

Recall that a ∈ A×. Hence for the sum indexed over j2 we get implications

(bj2−n − abj2), bj2−n ∈ A ⇒ bj2 ∈ A (j2 = n, . . . ,m).

Again we find f ∈ hA [X], and altogether hE [X] ∩ A [X] ⊆ hA [X]. Since the
reverse inclusion is trivial we get the statement of the lemma.

Corollary 3.2.6. The ring Bcris,n is a subring of BdR,n. In particular, Bcris,n

is an integral domain.

Proof. The statements follow from applying 3.2.5 with A = Bcris, E = BdR and
a = t.

Definition 3.2.7. We denote by tn the residue class of X ∈ BdR[X] in BdR,n.
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The set
{
1, tn, . . . , t

n−1
n

}
forms a basis of Bcris,n as a module over Bcris and

also a basis of BdR,n as a vector space over BdR. Denote by v the normalized
and discrete valuation on BdR with respect to integer powers of mBdR

= tB0
dR =:

F 1BdR (cf. subsection 1.3). Then the unique extension of v to BdR,n is w :=
1
nv ◦NBdR,n|BdR

, where NBdR,n|BdR
is the norm homomorphism. Since nw(tn) =

v(t) = 1, we have w(tn) =
1
n . The filtration on the field BdR,n induced by w is

thus given via

F rBdR,n = {y ∈ BdR,n |w(y) ≥ r} (r ∈ 1
nZ).

Let r ∈ 1
nZ and y =

∑n−1
i=0 bit

i
n ∈ F rBdR,n \ {0} with unique bi ∈ BdR. For

every index i such that bi 6= 0, the number w(bit
i
n) lies in i

n + Z. Since 1
nZ is

disjointly covered by the sets i
n + Z (i = 0, . . . , n− 1), there is a unique i′ such

that
w(bi′t

i′

n) = min
i∈{0,...,n−1|bi 6=0}

w(bit
i
n).

Therefore we have
r ≤ w(y) = w(bi′t

i′

n)

and this implies for all i = 0, . . . , n− 1 such that bi 6= 0 the leftmost inequality
in the string of equivalences

r ≤ v(bi) +
i

n
⇔ r −

i

n
≤ v(bi) ⇔ bi ∈ F ⌈r− i

n⌉BdR

(for notation concerning the right hand term, cf. 2.1.5). Thus we have proven
the following result.

Lemma 3.2.8. Let r ∈ 1
nZ. Then F rBdR,n decomposes as

F rBdR,n =

n−1⊕

i=0

(F ⌈r− i
n
⌉BdR)t

i
n.

Note that, in particular, tn is contained in F
1
nBdR,n but is not contained in

a filtration step with index strictly greater than 1
n .

Remark 3.2.9. The filtration F •BdR,n described above restricts to the filtra-
tion of BdR described in subsection 1.3. Whenever we speak of a filtration on
BdR,n (resp. BdR) without mentioning it explicitly, it is this filtration that we
have in mind.

Let ∗ ∈ {cris, dR}. Via the canonical ring homomorphism B∗ ⊗Qp
K →

B∗,n ⊗Qp
K, the ring B∗,n ⊗Qp

K becomes a free B∗ ⊗Qp
K-module of rank n

with basis tin ⊗ 1, i = 0, . . . , n− 1.
The formation of Bcris,n ⊗Qp

K is independent of the choice of t. To see this,
let t′ = ut where u ∈ Z×

p . Due to assumption 2.2.7, K contains an element v
with vn = u. Then

Bcris[X]/(Xn − t′)⊗Qp
K → Bcris,n ⊗Qp

K,

(
n−1∑

i=0

biX
i
)⊗ z 7→

n−1∑

i=0

(bit
i
n ⊗ viz)
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is a ring isomorphism with inverse

n−1∑

i=0

(ciX
i
⊗ v−iz′) ←[ (

n−1∑

i=0

cit
i
n)⊗ z′.

Recall that R (resp. RL) stands for L0 ⊗Qp
K (resp. L ⊗Qp

K). Elements
of the group GL,(n) act as RL-algebra automorphisms on the left tensor factor
of BdR ⊗Qp

K via δn := δL,n : GL,(n) → GL.

Proposition 3.2.10.

1. The map

GL,(n) × (BdR,n ⊗Qp
K) → BdR,n ⊗Qp

K,

(g,
n−1∑

i=0

bit
i
n ⊗ 1) 7→

n−1∑

i=0

[δn(g)(bi)]t
i
n ⊗ εin(g)

is well-defined and extends the action of GL on BdR⊗Qp
K by RL-algebra

automorphisms to an action of GL,(n) on BdR,n ⊗Qp
K by RL-algebra

automorphisms.

2. The map

ϕ̃0 : Bcris,n ⊗Qp
K → Bcris,n ⊗Qp

K

n−1∑

i=0

bit
i
n ⊗ 1 7→

n−1∑

i=0

ϕ0(bi)t
i
n ⊗ (p

1
n )i

is well-defined and extends the Frobenius ϕ0 : Bcris → Bcris to an injective
σ0 ⊗K-linear ring endomorphism of Bcris,n ⊗Qp

K.

Proof. Ad 1.: Let g ∈ GL,(n) and consider the composite morphism of rings

ψg : BdR ⊗Qp
K → BdR ⊗Qp

K →֒ (BdR ⊗Qp
K)[X]

where the first arrow is b⊗x 7→ (δn(g)(b))⊗x. By the universal property of the
polynomial ring in one variable, to the pair (ψg, (1⊗εn(g))X) there corresponds
a unique homomorphism of rings

Φg : (BdR ⊗Qp
K)[X] → (BdR ⊗Qp

K)[X]

with Φg(X) = (1⊗ εn(g))X and such that

ψg = Φg ◦ (BdR ⊗Qp
K →֒ (BdR ⊗Qp

K)[X]).

Then the association g 7→ Φg defines an action of the group GL,(n) on (BdR⊗Qp

K)[X] by RL-algebra automorphisms that preserves the ideal generated by Xn−
(t⊗ 1). By the homomorphism theorem,

[(BdR ⊗Qp
K)[X] ։ (BdR ⊗Qp

K)[X]/(Xn − (t⊗ 1))
︸ ︷︷ ︸

:=πg :=canonical projection

] ◦ Φg
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factorizes uniquely over πg, via a ring automorphism Φ̃g say. The assignment
g 7→ Φ̃g is then the GL,(n)-action which translates to the one on BdR,n ⊗Qp

K
from the statement via the natural isomorphism of BdR ⊗Qp

K-algebras

(BdR ⊗Qp
K)[X]/(Xn − (t⊗ 1)) ∼= BdR,n ⊗Qp

K.

Ad 2.: This is shown similarly as the first part. By the universal property, the
pair consisting of the ring homomorphism

Φ := (Bcris ⊗Qp
K →֒ (Bcris ⊗Qp

K) [X]) ◦ (ϕ0 ⊗K)

and of the element (1 ⊗ p
1
n )X ∈ (Bcris ⊗Qp

K) [X] corresponds uniquely to a
ring homomorphism Φ0 : (Bcris ⊗Qp

K) [X] → (Bcris ⊗Qp
K) [X] with Φ0(X) =

(1 ⊗ p
1
n )X and such that Φ0 ◦ (Bcris ⊗Qp

K →֒ (Bcris ⊗Qp
K) [X]) = Φ. The

morphism Φ0 is injective, σ0 ⊗ K-linear and preserves the ideal generated by
Xn − (t ⊗ 1). Hence, as in the first part of the proof, we get a unique ring
endomorphism Bcris,n⊗Qp

K → Bcris,n⊗Qp
K which is easily seen to be ϕ̃0 from

the statement.

Remark 3.2.11. The GL,(n)-action on BdR,n ⊗Qp
K restricts to an action by

R-algebra automorphisms on the subring Bcris,n ⊗Qp
K.

Via the injective ring homomorphism

L⊗L0 Bcris,n → BdR,n, l ⊗ (
∑

i

bit
i
n) 7→

∑

i

(lbi)t
i
n

we induce on L⊗L0
Bcris,n, and thus on RL ⊗R (Bcris,n ⊗Qp

K), a 1
nZ-filtration

(cf. also point 2. of the corollary below). Whenever we speak of a 1
nZ-filtration

on RL ⊗R (Bcris,n ⊗Qp
K) without mentioning it explicitly, it is this filtration

that we have in mind.

Corollary 3.2.12.

1. As respective GL,(n)-invariants for the action as in proposition 3.2.10 we
get

(BdR,n⊗Qp
K)GL,(n) = L⊗Qp

K and (Bcris,n⊗Qp
K)GL,(n) = L0⊗Qp

K.

2. The action of GL,(n) on BdR,n⊗Qp
K as in proposition 3.2.10 is compatible

with the decreasing, exhaustive and separated 1
nZ-filtration by (F 0BdR,n)⊗Qp

K-submodules defined as

F j(BdR,n ⊗Qp
K) := (F jBdR,n)⊗Qp

K (j ∈ 1
nZ),

i.e.

g(F j(BdR,n ⊗Qp
K)) = F j(BdR,n ⊗Qp

K) for all g ∈ GL,(n), j ∈ 1
nZ.

3. We have g(ϕ̃0(x)) = ϕ̃0(g(x)) for all x ∈ Bcris,n ⊗Qp
K, g ∈ GL,(n).
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Proof. Ad 1.: We only show the argument for BdR,n, the one for Bcris,n is
literally the same, noting that BGL

cris = L0.
We use the identity

(BdR,n ⊗Qp
K)GL,(n) = ((BdR,n ⊗Qp

K)Hn)GL .

The action of Hn on BdR and on K inside BdR,n ⊗Qp
K is trivial. On the

BdR ⊗Qp
K-basis (tin ⊗ 1)i=0,...,n−1, we have

h(tin ⊗ 1) = tin ⊗ εn(h)
i

for all h ∈ Hn and i = 0, . . . , n − 1. Since εn is not the trivial character on
Hn, we deduce that the Hn-invariants are equal to the subring BdR ⊗Qp

K. It
follows

(BdR ⊗Qp
K)GL = (BdR)

GL ⊗Qp
K = L⊗Qp

K.

Ad 2.: This is a consequence of the fact that the filtration of BdR with respect
to integer powers of its maximal ideal is preserved by the action of GL, hence
the action of GL,(n) on tin ⊗ 1 for i = 0, . . . , n − 1 preserves the filtration steps
of the filtration on BdR,n ⊗Qp

K as defined in the statement.
Ad 3.: This assertion follows by taking into account that the action of GL on
Bcris is commutes with ϕ0.

3.3 The functors DdR,n and Dcris,n

Let f : V→W be a morphism in RepK(GL,(n)). Denote by (BdR,n ⊗Qp
K)⊗ f

the linear extension of the map

(BdR,n ⊗Qp
K)⊗K V → (BdR,n ⊗Qp

K)⊗K W, b⊗ v 7→ b⊗ f(v)

to all of (BdR,n ⊗Qp
K)⊗K V and likewise for (Bcris,n ⊗Qp

K)⊗ f .

Definition 3.3.1. Let V be in RepK(GL,(n)).

1. Set

DdR,n(V ) :=
(
(BdR,n ⊗Qp

K)⊗K V
)GL,(n)

and

Dcris,n(V ) :=
(
(Bcris,n ⊗Qp

K)⊗K V
)GL,(n)

as the invariants for the respective diagonal actions of GL,(n).

2. Let f : V → W be a morphism in RepK(GL,(n)). Set

DdR,n(f) := ((BdR,n ⊗Qp
K)⊗ f)

∣
∣
DdR,n(V )

and
Dcris,n(f) := ((Bcris,n ⊗Qp

K)⊗ f)
∣
∣
Dcris,n(V )

as the restrictions of (BdR,n ⊗Qp
K) ⊗ f and (Bcris,n ⊗Qp

K) ⊗ f to the
respective GL,(n)-invariants.
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As in the classical case, both DdR,n(V ) and Dcris,n(V ) inherit structural
properties from BdR,n resp. Bcris,n.

Proposition 3.3.2. With the above notations, the assignments

V 7→ DdR,n(V ), [f : V → W ] 7→ DdR,n(f)

define a covariant functor from RepK(GL,(n)) to the category of finitely gener-
ated RL-modules which are equipped with a decreasing, exhaustive and separated
1
nZ-filtration. The assignments

V 7→ Dcris,n(V ), [f : V → W ] 7→ Dcris,n(f)

define a covariant functor from RepK(GL,(n)) to FICL,K,n.

Morphisms in the proclaimed target category of DdR,n are RL-module homo-
morphisms that respect the filtrations between source and target in the obvious
sense.

Proof. Throughout this proof, f : U → V denotes a morphism in RepK(GL,(n)).
Note that the GL,(n)-action on BdR,n ⊗Qp

V is RL-linear hence DdR,n(V ) is an
RL-module. By a similar argument, Dcris,n(V ) is an R-module.
Decomposing V into a direct sum of Hn-eigenspaces gives an RL-module de-
composition of DdR,n(V ) as

DdR,n(V ) =
(
((⊕n−1

i=0 BdRt
i
n)⊗Qp

K)⊗K (⊕n−1
j=0 Vχn,j

)
)GL,(n)

=

n−1⊕

i=0

((BdRt
i
n ⊗Qp

K)⊗K Vχn,i
)GL .

The second equality holds because

[(BdRt
i
n ⊗Qp

K)⊗K Vχn,j
]Hn = 0

in case i 6= j. When i = j however, Hn acts trivially on the whole summand.
The L-dimension of each such summand is bounded above by the Qp-dimension
of Vχn,i

. It follows that DdR,n(V ) is a finitely generated RL-module. The same
argumentation for Bcris,n shows that Dcris,n(V ) is a finitely generated R-module.
The RL-linear map DdR,n(f) maps to DdR,n(V ) by GL,(n)-equivariance of f .
Hence the covariance and the identity DdR,n(g ◦ f) = DdR,n(g) ◦ DdR,n(f)
for any morphism g : V → W in RepK(GL,(n)) follow. Trivially, we have
DdR,n(idV ) = idDdR,n(V ). The same properties with respect to morphisms are
valid for Dcris,n.
On the RL-module DdR,n(V ) there is a natural decreasing, exhaustive and sep-
arated 1

nZ-filtration by virtue of

F rDdR,n(V ) :=
(
F r(BdR,n ⊗Qp

K)⊗K V
)GL,(n)

since the action of GL,(n) is compatible with the filtration on BdR,n ⊗Qp
K by

3.2.12. It follows immediately from the definitions that

DdR,n(f)(F
rDdR,n(U)) ⊆ F rDdR,n(V ).
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On the R-module (Bcris,n⊗Qp
K)⊗K V , we have the injective σ0⊗K-linear map

ϕ̃0⊗V (cf. 3.2.10). It commutes with the diagonal action of GL,(n) because the
GL-action on Bcris commutes with ϕ0. Thus ϕ̃0⊗V restricts to a σ0⊗K-linear
injective R-module endomorphism of Dcris,n(V ). By finite-dimensionality over
L0, this endomorphism is actually bijective. Using 2.1.6 we see that Dcris,n(V )
is a free R-module of finite rank.
The injective ring homomorphism

L⊗L0 Bcris,n → BdR,n, l ⊗ (
∑

i

bit
i
n) 7→

∑

(lbi)t
i
n

induces an injection of RL-modules

RL ⊗R Dcris,n(V ) ∼= L⊗L0 Dcris,n(V )

= (((L⊗L0
Bcris,n)⊗Qp

K)⊗K V )GL,(n) →֒ DdR,n(V )

where the third term denotes the GL,(n)-invariants with respect to

l ⊗ x 7→ l ⊗ g(x), (l ∈ L, x ∈ (Bcris,n ⊗Qp
K)⊗K V, g ∈ GL,(n))

on elementary tensors. Now set for any r ∈ 1
nZ

F r(L⊗L0 Dcris,n(V )) := L⊗L0 Dcris,n(V ) ∩ F rDdR,n(V ).

Hence Dcris,n(V ) is an object of FICL,K,n. Validity of the equality

(restriction to Dcris,n(V ) of ϕ̃0 ⊗ V ) ◦ Dcris,n(f)

= Dcris,n(f) ◦ (restriction to Dcris,n(U) of ϕ̃0 ⊗ U)

as well as compatibility of the induced RL-module homomorphism with the
filtration steps are immediate. The proof is finished.

Note that, being composites of additive functors, both functors from the
proposition are additive. The proof of the proposition shows in particular that,
as RL-modules, we have a decomposition

DdR,n(V ) ∼=

n−1⊕

i=0

DdR(ε
i
n ⊗ Vχn,i

)

for any V in RepK(GL,(n)). In the following corollary, we summarize an analo-
gous decomposition for Dcris,n(V ) taking into account its structure as object of
FICL,K,n, using notation introduced in section 2.

Corollary 3.3.3. Let V be in RepK(GL,(n)). Then Dcris,n(V ) and

n−1⊕

i=0

Dcris(ε
i
n ⊗ Vχn,i

)
〈
− i

n

〉

are naturally isomorphic in FICL,K,n.

Example 3.3.4. 1. We compute Dcris,n(K), where here K denotes the triv-
ial GL,(n)-representation. Obviously, the only Hn-eigenspace is Kχn,0

=
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K. With 3.3.3 we see that

Dcris,n(K) = Dcris(K) = (Bcris)
GL ⊗Qp

K = R

as R-modules. Moreover, the Frobenius of Dcris,n(K) is σ0 ⊗ K and the
only jump in the filtration on RL ⊗R R ∼= RL is at 0.
Hence, Dcris,n(K) is identified with the unit object R of FICwa

L,K,(n) (cf.
2.2.5 and the example following it).

2. We compute Dcris,n(ε
i
n) for any 1 ≤ i ≤ n − 1. With the notations from

section 2 and 3.3.3 we get

Dcris,n(ε
i
n)

∼= Dcris(ε
n−i
n ⊗Kχn,n−i

)〈−n−i
n 〉

= Dcris(ε)〈−
n−i
n 〉

∼= K〈−n−i
n 〉 (by [BrSch, Lemma 7.3])

∼= R〈1〉〈−n−i
n 〉 ∼= K⊗i

n ,

where K is defined as in 2.2.9. Hence Dcris,n(ε
i
n) is naturally an object of

FICwa
L,K,(n).

Before we define crystalline representations of GL,(n), we end this subsec-
tion with a general observation on an analogue of the crystalline comparison
morphism. The properties of this morphism will be needed in the next section.

Lemma/Definition 3.3.5. Let V be in RepK(GL,(n)). The family of maps

(αV,n : (Bcris,n ⊗Qp
K)⊗R Dcris,n(V ) → (Bcris,n ⊗Qp

K)⊗K V, b⊗ d 7→ bd)V ,

where V runs through RepK(GL,(n)), defines a natural transformation

α•,n : (Bcris,n ⊗Qp
K)⊗R Dcris,n(−) → (Bcris,n ⊗Qp

K)⊗K (−)

between functors from RepK(GL,(n)) to Mod(Bcris,n ⊗Qp
K).

Proof. Let V be in RepK(GL,(n)). The fact that αV,n is well-defined follows
from the decompositions

(Bcris,n ⊗Qp
K)⊗K V ∼=

n−1⊕

i=0

((Bcris,n ⊗Qp
K)⊗K Vχn,i

)

and

Dcris,n(V ) =
n−1⊕

i=0

((Bcrist
i
n ⊗Qp

K)⊗K Vχn,i
)GL :

each summand ((Bcrist
i
n ⊗Qp

K)⊗K Vχn,i
)GL is a subset of (Bcris,n ⊗Qp

K)⊗K Vχn,i

hence Dcris,n(V ) is a subset of (Bcris,n ⊗Qp
K)⊗K Vχn,i

.
To see naturality of α•,n, let f : V → W be a morphism in RepK(GL,(n)) and
b⊗ d ∈ (Bcris,n ⊗Qp

K)⊗R Dcris,n(V ). Then on elementary tensors we have

(((Bcris,n ⊗Qp
K)⊗ f) ◦ αV,n)(b⊗ d) = ((Bcris,n ⊗Qp

K)⊗ f)(bd)

= b((Bcris,n ⊗Qp
K)⊗ f)(d) = αW,n(b⊗ Dcris,n(f)(d))

= (αW,n ◦ ((Bcris,n ⊗Qp
K)⊗ Dcris,n(f)))(b⊗ d)
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and the claim follows by extending linearly.

On (Bcris,n ⊗Qp
K) ⊗R Dcris,n(V ) we naturally have additional structures:

the group GL,(n) acts via g(b⊗ d) = g(b)⊗ d and a σ0 ⊗K-linear map is given
by b⊗ d 7→ ϕ̃0(b)⊗ (ϕ̃0 ⊗ V )(d). On the scalar extension over R to RL we have
a 1

nZ-filtration given by the tensor product filtration.
On (Bcris,n ⊗Qp

K)⊗K V , we have the diagonal GL,(n)-action. A σ0 ⊗K-linear
map and a 1

nZ-filtration are induced by the corresponding structures on the left
tensor factor Bcris,n ⊗Qp

K.
The assertions in the following statement all refer to the structures just de-
scribed.

Proposition 3.3.6. Let V be in RepK(GL,(n)). Then αV,n is an injective and
GL,(n)-equivariant morphism in MF

φ
L,K,n.

Essentially all statements use validity of the corresponding property of the
comparison morphism

Bcris ⊗L0 (Bcris ⊗Qp
W )GL → Bcris ⊗Qp

W

for p-adic Galois representations W .

Proof. We first introduce the auxiliary function

{0, . . . , n− 1}2 → {0, . . . , n− 1}2

(i, j) 7→ ([i+ j]n, j),

where [i+ j]n denotes the residue of the division of i+ j by n. This function is
bijective.
The domain of αV,n decomposes in MF

φ
L,K,n as

n−1⊕

i,j=0

(Bcrist
i
n ⊗Qp

K)⊗R Dcris(ε
j
n ⊗ Vχn,j

)〈− j
n 〉

︸ ︷︷ ︸

:=Aij

and the target of αV,n decomposes in MF
φ
L,K,n as

n−1⊕

i,j=0

(Bcrist
[i+j]n
n ⊗Qp

K)⊗K Vχn,j
︸ ︷︷ ︸

Bij

.

By the remark before the proof and the fact that tn ∈ B×
cris,n, αV,n restricts to

an injective R-linear map αV,n : Aij → Bij for all i, j = 0, . . . , n− 1.
The GL,(n)-equivariance follows by a direct computation noting that GL,(n) acts
on t via ε.
The operator ϕ̃0⊗ (ϕ̃0⊗V ) restricts to a σ0⊗K-linear endomorphism of Aij . It
is straightforward to check that αV,n is compatible with ϕ̃0 ⊗ (ϕ̃0 ⊗ V ) and the
restriction of ϕ̃0 ⊗ V on Bij for all i, j = 0, . . . , n− 1 using ϕ̃0(t⊗ 1) = p(t⊗ 1).
Let x ∈ 1

nZ. Using similar arguments as in the proof of 2.1.5 and the identity

(1⊗ t)F sBcris,L = F s+1Bcris,L (s ∈ Z)
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from the classical setting, one sees that, denoting by WL := L ⊗L0
W the

extension of scalars from an L0-vector space W to L, αV,n induces an RL-linear
map from

∑

l∈ 1
n
Z

n−1⊕

i=0

n−1⊕

j=0

(F ⌈l− i
n
⌉Bcris,L)t

i
n ⊗L

(

(F ⌈x−l− i
n
⌉Bcris,L)t

j
n ⊗Qp

Vχn,j

)GL

to
n−1⊕

i=0

n−1⊕

j=0

(

(F ⌈x− i
n
⌉Bcris,L)t

i
n ⊗Qp

Vχn,j

)

.

The upper RL-module is identified with

F x(RL ⊗R ((Bcris,n ⊗Qp
K)⊗R Dcris,n(V )))

while the lower RL-module is identified with

F x(RL ⊗R ((Bcris,n ⊗Qp
K)⊗K V )).

The proof is finished.

3.4 The category Repcris
K (GL,(n))

Let V =
⊕n−1

i=0 Vχn,i
be in RepK(GL,(n)). The theory of p-adic representations

of GL with coefficients in Qp yields the estimate

[K : Qp] · rankR(Dcris(ε
i
n ⊗ Vχn,i

)
〈
− i

n

〉
) = dimL0(Dcris(ε

i
n ⊗ Vχn,i

))

≤ dimQp
(Vχn,i

)

= [K : Qp] · dimK(Vχn,i
)

for all i = 0, . . . , n− 1 and thus

rankR(Dcris,n(V ))
3.3.3
=

n−1∑

i=0

rankR(Dcris(ε
i
n ⊗ Vχn,i

))

≤
n−1∑

i=0

dimK(Vχn,j
) = dimK(V ).

Those V whose associated filtered isocrystal Dcris,n(V ) is of maximal R-rank
make up the subcategory of RepK(GL,(n)) we are heading for.

Definition 3.4.1. We call V in RepK(GL,(n)) crystalline if

rankR(Dcris,n(V )) = dimK(V ).

The full subcategory of RepK(GL,(n)) consisting of crystalline representations
is denoted by Repcris

K (GL,(n)).

Remark 3.4.2. The defining condition for being a crystalline representation of
GL,(n) may equivalently be expressed as dimL0

(Dcris,n(V )) = dimQp
(V ). By the

above estimate, for V to lie in Repcris
K (GL,(n)) it is necessary and sufficient that
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all the εin⊗Vχn,i
lie in Repcris

K (GL). Note that Repcris
K (GL) consists by definition

of those W in RepK(GL) such that the representation obtained by forgetting the
K-vector space structure lies in Repcris(GL). Furthermore, by [CoFo, Theorem
A] all the εin⊗Vχn,i

lie in Repcris
K (GL) if and only if all the Dcris(ε

i
n⊗Vχn,i

) lie in
FICadm

L,K . In this case, the direct summands in the decomposition of Dcris,n(V )
from 3.3.3 are tensor products of objects in FICwa

L,K,(n). The latter category is
stable under tensor products and direct sums. It follows that Dcris,n restricts to
a functor

Dcris,n : Repcris
K (GL,(n)) → FICwa

L,K,(n).

Furthermore, again by [CoFo, Theorem A] and by 2.2.14, every object of FICwa
L,K,(n)

can be written uniquely (up to isomorphism) as a direct sum

n−1⊕

i=0

Dcris(Vi)〈
i
n 〉

for some Vi in Repcris
K (GL).

Example 3.4.3. According to 3.3.4, the representation εin lies in Repcris
K (GL,(n))

for all i = 0, . . . , n− 1.

Proposition 3.4.4.

1. The natural transformation α•,n from 3.3.5 is an isomorphism between
functors from Repcris

K (GL,(n)) to MF
φ
L,K,n.

2. Let V be in Repcris
K (GL,(n)). Any subquotient of V (as an object of

RepK(GL,(n))) is again an object of Repcris
K (GL,(n)). Therefore Repcris

K (GL,(n))
is an abelian category.

3. The restriction of Dcris,n to Repcris
K (GL,(n)) is exact and naturally com-

patible with the formation of direct sums, tensor products and duals (in
RepK(GL,(n)) resp. in FICL,K,n). Therefore Repcris

K (GL,(n)) is closed
under these constructions and in particular a tensor category.

Proof. Ad 1.: Let V be in Repcris
K (GL,(n)). Recall that the εin ⊗ Vχn,i

are
crystalline GL-representations. The maps αV,n,i from the proof of 3.3.6 are all
bijective. The maps induced by scalar extension yield RL-isomorphisms between
the filtration steps of the corresponding filtrations.
Ad 2.: We use a similar argument as in the proof of [Fo2, Proposition 1.5.2]. Let
V ′ ⊆ V be a subrepresentation. Applying Dcris,n to the canonical short exact
sequence induced by V ′, we get an exact sequence

0 → Dcris,n(V
′) → Dcris,n(V ) → Dcris,n(V/V

′)

in Mod(R) whose morphisms are compatible with the respective induced semi-
linear operators. Denote the image of the third arrow by D. By using that D
is Frobenius-invariant and hence free of finite rank by 2.1.6, we get the string
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of (in-)equalities

dimK(V ) = rankR(Dcris,n(V ))

= rankR(Dcris,n(V
′)) + rankR(D)

≤ dimK(V ′) + dimK(V/V ′) = dimK(V )

and one concludes that V ′ and V/V ′ are crystalline. Hence any subquotient of
V is crystalline.
Ad 3.: We first show exactness of Dcris,n. Let

0 → V ′ f
→ V

g
→ V ′′ → 0

be a short exact sequence in Repcris
K (GL,(n)). According to 2., what remains to

be shown is that the sequence obtained by applying the functor RL⊗RDcris,n(−)
to the above one is an exact sequence of RL-modules and that the RL-module
homomorphisms RL ⊗ Dcris,n(f) and RL ⊗ Dcris,n(g) are compatible with the
filtrations. This is equivalent to showing that for all j ∈ 1

nZ the sequences of
RL-modules

0 → F jDcris,n(V
′)L → F jDcris,n(V )L→F jDcris,n(V

′′)L → 0

are exact.
First note that, for any i ∈ {0, . . . , n − 1}, we obtain an exact sequence of
K-linear crystalline and hence de Rham GL-representations

0 → εin ⊗ V ′
χn,i

→ εin ⊗ Vχn,i
→ εin ⊗ V ′′

χn,i
→ 0

(cf. 1.3.2). Fix some j ∈ 1
nZ. Then there is i ∈ {0, . . . , n − 1} such that

j ∈ i
n + Z. By [Fo2, Théorèm 3.8], the sequence of associated graded pieces

0 → grjDcris(ε
i
n ⊗ V ′

χn,i
)L → grjDcris(ε

i
n ⊗ Vχn,i

)L → grjDcris(ε
i
n ⊗ V ′′

χn,i
)L → 0

is an exact sequence of RL-modules. The graded pieces are formed with respect
to the corresponding Z-filtrations, twisted by − i

n . Thus we obtain for the
dimensions of the underlying L-vector spaces

dimL(F
jDcris(ε

i
n ⊗ Vχn,i

)L)

=
∑

j′∈( i
n
+Z)≥j

dimL(gr
jDcris(ε

i
n ⊗ Vχn,i

)L)

=
∑

j′∈( i
n
+Z)≥j

dimL(gr
jDcris(ε

i
n ⊗ V ′

χn,i
)L)

+
∑

j′∈( i
n
+Z)≥j

dimL(gr
jDcris(ε

i
n ⊗ V ′′

χn,i
)L)

= dimL(F
jDcris(ε

i
n ⊗ V ′

χn,i
)L) + dimL(F

jDcris(ε
i
n ⊗ V ′′

χn,i
)L).

Now summation on both ends of this chain of equations over all i = 0, . . . , n− 1
and arguing similarly as in 2. yields the desired exactness.
Compatibility with direct sums is clear by additivity of Dcris,n.
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Let V,W be in Repcris
K (GL,(n)). The decomposition of V⊗W into Hn-eigenspaces

is

V ⊗W =
n−1⊕

i=0

n−1⊕

k=0

(Vχn,k
⊗Wχn,[i−k]

)

︸ ︷︷ ︸

=(V⊗W )χn,i

where again [i − k]n denotes the unique representative in {0, . . . , n− 1} of the
class (i− k) + nZ ∈ Z/nZ. Using 3.3.3 we obtain

Dcris,n(V ⊗W ) =
n−1⊕

i=0

[
n−1⊕

k=0

Dcris(ε
i
n ⊗ (Vχn,k

⊗Wχn,[i−k]
))]〈− i

n 〉.

We rewrite this double direct sum as

n−1⊕

l=0

n−1⊕

m=0

Dcris(ε
l+m
n ⊗ (Vχn,l

⊗Wχn,m
))〈− l+m

n 〉,

where we make use of the isomorphism in FICL,K

Dcris(ε⊗ Y ) → Dcris(Y )〈1〉,
∑

s

bs ⊗ ys 7→
∑

s

bst⊗ ys (Y in RepK(GL))

whenever l +m ≥ n for a pair of indices (l,m). By assumption on V and W ,
εln⊗Vχn,l

and εmn ⊗Wχn,m
lie in Repcris

K (GL) for every pair of indices (l,m). The
functor Dcris commutes with ⊗ on crystalline GL-representations. Therefore the
latter direct sum is isomorphic with

n−1⊕

l=0

n−1⊕

m=0

(Dcris(ε
l
n ⊗ Vχn,l

)〈− l
n 〉 ⊗ Dcris(ε

m
n ⊗Wχn,m

)〈−m
n 〉).

This is exactly the decomposition of Dcris,n(V )⊗Dcris,n(W ) into Hn-eigenspaces.
Comparing K-dimensions and R-ranks shows that V ⊗W is crystalline.
As for duals, for V in Repcris

K (GL,(n)) we compute on the one hand

Dcris,n(V )∨ ∼=

n−1⊕

i=0

Dcris(ε
i
n ⊗ Vχn,i

)〈− i
n 〉

∨ (6)

∼=

n−1⊕

i=0

Dcris(ε
i−n
n ⊗ Vχn,i

)〈n−i
n 〉∨ (7)

∼=

n−1⊕

i=0

Dcris(ε
n−i
n ⊗ (V ∨)χ−1

n,i
)〈−n−i

n 〉. (8)

The isomorphism in (6) is induced by the compatibility of the functor HomR(−, R)
with finite direct sums, in (7) the isomorphism in FICL,K

Dcris(Y ) ∼= Dcris(ε
−1 ⊗ Y )〈1〉 (Y in RepK(GL))
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was applied and in (8) we have used the compatibility of Dcris with duals of
crystalline representations of GL.
On the other hand we naturally have

Dcris,n(V
∨) ∼=

n−1⊕

i=0

Dcris(ε
i
n ⊗ (V ∨)χn,i

)〈− i
n 〉.

Up to order of the direct summands this is the decomposition of Dcris,n(V )∨

from above. We conclude that V ∨ is a crystalline representation of GL,(n). This
finishes the proof.
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4 Relating FICwa
L,K,n and Repcris

K (GL,(n))

Setup and the notations are the same as in the previous sections. We estab-
lish an equivalence between Repcris

K (GL,(n)) and FICwa
L,K,(n) induced by Dcris,n.

Moreover, we discuss differences with respect to the classical equivalence be-
tween the categories of K-linear crystalline GL-representations resp. weakly
admissible Z-filtered isocrystals over L with coefficients in K.

4.1 The functor Vcris,n

In this subsection a quasi-inverse to the restriction of Dcris,n to Repcris
K (GL,(n))

will be constructed.

Remark 4.1.1. Let D = (D,φ, F •DL) be in MF
φ
L,K,n. Then the object

((Bcris,n ⊗Qp
K)⊗R D, ϕ̃0 ⊗ φ, tensor product filtration)

lies in MF
φ
L,K,n, the filtration on RL ⊗R (Bcris,n ⊗Qp

K) being induced by the
injective ring homomorphism

(Bcris,n)L → BdR,n, l ⊗ b 7→ lb.

Setting D = R and using 3.2.8, one checks that

(Bcrist
i
n ⊗Qp

K, restriction of ϕ̃0, induced filtration)

is isomorphic to

(Bcris ⊗Qp
K,ϕ0 ⊗K, filtration induced by BdR ⊗Qp

K)〈− i
n 〉

in MF
φ
L,K,n for all i ∈ {0, . . . , n− 1}.

Definition 4.1.2. Let (D,φ, F •DL) be in MF
φ
L,K,n. We define

Vcris,n((D,φ, F •DL)) := Vcris,n(D) :=

the subset of (Bcris,n ⊗Qp
K)⊗R D consisting of the elements x

such that (ϕ̃0 ⊗ φ)(x) = x and such that 1⊗ x is contained in

F 0
(
(Bcris,n ⊗Qp

K)⊗R D
)

L
.

Lemma 4.1.3. The assignments (D,φ, F •DL) 7→ Vcris,n(D) and

[f : D → D′] 7→ restriction of
[
(Bcris,n ⊗Qp

K)⊗ f
]

to Vcris,n(D)

define a covariant functor from MF
φ
L,K,n to the category of K-vector spaces

with an action of GL,(n).

Proof. The K-vector space structure of Vcris,n(D) is obtained by restricting
scalars along the natural morphism K → R (resp. K → RL) given as x 7→ 1⊗x
in both cases. Then ϕ̃0 ⊗ φ is K-linear and the filtration steps of the tensor
product filtration associated with (Bcris,n ⊗Qp

K) ⊗R D are K-vector spaces.
The group GL,(n) acts K-linearly on (Bcris,n ⊗Qp

K)⊗R D via its action on the
left tensor factor. By compatibility of this action with ϕ̃0 ⊗ φ and the tensor
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product filtration, it restricts to an action on Vcris,n(D).
Applying the definition of a morphism f : D → D′ in MF

φ
L,K,n, one sees that

Vcris,n(f) is a K-linear map Vcris,n(D) → Vcris,n(D
′). The identity Vcris,n(idD) =

idVcris,n(D) and compatibility with composition of morphisms are immediate.

Remark 4.1.4. Let D be an object of FICadm
L,K . By [CoFo, Théorèm A], [Fo2,

Théorèm 5.3.5] and the same arguments from the above proof concerning the
K-vector space structure of Vcris,n(D), there is an object V in Repcris

K (GL)
together with isomorphisms

Dcris(V ) ∼= Dcris(Vcris(D)) ∼= D in Repcris
K (GL)

and
V ∼= Vcris(Dcris(V )) ∼= Vcris(D) in FICadm

L,K .

It follows that Dcris and Vcris are mutually quasi-inverse functors between Repcris
K (GL)

and FICadm
L,K .

Next we describe the restriction of the functor Vcris,n to the category FICwa
L,K,(n).

For this we recall the definition of separability of an algebra over a field (cf.
[BouA2, V, §15, no. 2, Definition 1]) and formulate several auxiliary results.

Definition 4.1.5. Let A be a ring. It is called reduced if for an element a ∈ A
and an integer m ≥ 1 the equality am = 0 always implies a = 0.
Let B be an algebra over a field E. Then B is called a separable E-algebra if
the ring B ⊗E E′ is reduced for every field extension E′ of E.

Remark 4.1.6. If B is an algebraic field extension of E then B is separable as
an E-algebra if and only if it is separable as an algebraic field extension of E.

Proposition 4.1.7. Let B,B′ be algebras over a field E. If B is a reduced ring
and B′ is separable then the tensor product B ⊗E B′ is a reduced ring.

Proof. This is [BouA2, V, §15, no. 2, Proposition 5].

Example 4.1.8. Setting E := Qp, B := Bcris, B
′ := K in 4.1.7 we see that

Bcris ⊗Qp
K is reduced.

Lemma 4.1.9. Let E be a field, B be an E-algebra and E′ be an arbitrary field
extension of E. Assume moreover that the underlying ring of B is a filtered ring
with a decreasing Z-filtration F •B by E-vector spaces. Then the tensor product
B⊗EE′ becomes a filtered ring with a decreasing Z-filtration by E′-vector spaces
via the definition

Fm(B ⊗E E′) := (FmB)⊗E E′ (m ∈ Z).

Proof. It is clear that the filtration steps of the tensor product are E′-vector
spaces. Let k, l be integers. Choose E-bases (bik)i∈Ik and (bil)i∈Il of F kB
and F lB respectively. Then for x =

∑

i∈Ik
bik ⊗ αi ∈ F k(B ⊗E E′) and y ∈

∑

j∈Il
bjl ⊗ βj ∈ F l(B ⊗E E′) we have

xy =
∑

i∈Ik,j∈Il

(bikbjl ⊗ αiβj) ∈ F k+l(B ⊗E E′)

since the containment is true for every single summand.
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We endow the ring Bcris ⊗Qp
K with the Z-filtration

F •(Bcris ⊗Qp
K) := [ρ−1(F •BdR)]⊗Qp

K.

Here ρ denotes the injective composite ring homomorphism

Bcris
ρ1
→ L⊗L0 Bcris

ρ2
→ BdR

with ρ1(b) = 1⊗ b and ρ2(l ⊗ b′) = lb′.
Moreover, for any r ∈ Z and λ ∈ Bcris ⊗Qp

K we define the set

F r(Bcris ⊗Qp
K)ϕ0=λ :=

{x ∈ Bcris ⊗Qp
K | ϕ0(x) = λx, x ∈ F r(Bcris ⊗Qp

K)}

Proposition 4.1.10. The functor Vcris,n restricts to a functor FICwa
L,K,(n) →

Repcris
K (GL,(n)) compatible with ⊗ in both categories.

Proof. Let D = (D,φ, F •DL) =
⊕n−1

j=0 (Dj , φDj
, F •Dj,L)

︸ ︷︷ ︸

=:Dj

〈 j
n 〉 in FICwa

L,K,(n)

where the Dj are in FICadm
L,K . Then (Bcris,n⊗Qp

K)⊗RD decomposes in MF
φ
L,K,n

as

(Bcris,n ⊗Qp
K)⊗R D ∼=

n−1⊕

i=0

n−1⊕

j=0

((Bcrist
i
n ⊗Qp

K)⊗R Dj)〈
j
n 〉

∼=

n−1⊕

i=0

n−1⊕

j=0

((Bcris ⊗Qp
K)⊗R Dj)〈

j−i
n 〉

︸ ︷︷ ︸

=:Mij

.

Hence, to any v ∈ Vcris,n(D) there corresponds a unique family (vij) of elements
vij ∈ Mij , each of which is invariant under the respective semilinear operator
and at the same time is contained in the zeroth filtration step of the scalar
extension to RL. Let i 6= j. We claim that in this case the intersection of
Vcris,n(D) with the filtered φ-submodule of (Bcris,n⊗Qp

K)⊗RD corresponding
to Mij under the above decomposition is {0}.
Proof of claim: Denote the corresponding φ-submodule also by Mij . There exist
Vj ∈ Repcris

K (GL) and isomorphisms between Dcris(Vj) and Dj in FICadm
L,K for

all j = 0, . . . , n − 1. By [Fo2, Proposition 5.3.6] we may therefore identify Mij

and ((Bcris ⊗Qp
K)⊗K Vj)〈

j−i
n 〉 in MF

φ
L,K,n and thus also the K-vector spaces

Vcris,n(D) ∩Mij and

F ⌈
j−i
n ⌉(Bcris ⊗Qp

K)ϕ0=1⊗p
j−i
n ⊗K Vj .

Note that the fractions j−i
n attain all values in the set

[(
1

n
Z)≥−n−1

n
∩ (

1

n
Z)≤n−1

n
] \ {0}

as i and j from the assumption of the claim run through {0, . . . , n − 1}. The
number ⌈ j−i

n ⌉ is therefore either 0 or 1, depending on whether j < i or j > i.
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We show that F ⌈
j−i
n ⌉(Bcris ⊗Qp

K)ϕ0=1⊗p
j−i
n is zero in both cases.

Let j < i and

x ∈ F ⌈
j−i
n ⌉(Bcris ⊗Qp

K)ϕ0=1⊗p
j−i
n = F 0(Bcris ⊗Qp

K)ϕ0=1⊗p
j−i
n .

Since the filtration on Bcris⊗Qp
K defined above satisfies the assumptions of 4.1.9

with E := Qp, B := Bcris and E′ := K, we obtain xn ∈ F 0(Bcris ⊗Qp
K)ϕ0=pj−i

.
Therefore we get

(ti−j ⊗ 1)xn ∈ F i−j(Bcris ⊗Qp
K)ϕ0=1

⊆ F 1(Bcris ⊗Qp
K)ϕ0=1

= (F 1Bcris)
ϕ0=1 ⊗Qp

K = {0}.

The last equality holds by [CoFo, Proposition 1.3 i)]. Now the element ti−j ⊗ 1
is invertible in Bcris ⊗Qp

K and therefore xn = 0. According to 4.1.8 it follows
that x = 0.
Let i < j and

x ∈ F ⌈
j−i
n ⌉(Bcris ⊗Qp

K)ϕ0=1⊗p
j−i
n = F 1(Bcris ⊗Qp

K)ϕ0=1⊗p
j−i
n .

Therefore we obtain xn ∈ Fn(Bcris ⊗Qp
K)ϕ0=pj−i

. Recall that n+ i− j ≥ 1 by
assumption whence

(ti−j ⊗ 1)xn ∈ Fn+i−j(Bcris ⊗Qp
K)ϕ0=1 ⊆ F 1(Bcris ⊗Qp

K)ϕ0=1.

As in the previous case we conclude that x = 0. The claim is proved.

We continue with the proof of 4.1.10. Taking into account the GL,(n)- action
on Bcrist

i
n ⊗Qp

K for i = 0, . . . , n − 1 as well as the claim just proved we find
the decomposition

Vcris,n(D) ∼=

n−1⊕

i=0

εin ⊗ Vcris(Di) ∼=

n−1⊕

i=0

εin ⊗ Vi,

whose direct summands are isomorphic with Vcris,n(Di〈
i
n 〉), respectively. Hence

Vcris,n restricted to FICwa
L,K,(n) naturally takes values in RepK(GL,(n)) (cf. also

[BriCo, Proposition 9.3.6]). In order to see that Vcris,n(D) lies in Repcris
K (GL,(n))

note that

Vcris,n(D)χn,i
=

{

Vcris(D0) i = 0

εn−i
n ⊗ Vcris(Dn−i) 1 ≤ i ≤ n− 1.
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Concerning R-ranks and K-dimensions we therefore obtain

rankR(Dcris,n(Vcris,n(D)))

=
n−1∑

i=0

rankR(Dcris(ε
i
n ⊗ Vcris,n(D)χn,i

))

= rankR(Dcris(Vcris(D0))) +
n−1∑

i=1

rankR(Dcris(Vcris(Dn−i)))

=
n−1∑

i=0

dimK(Vcris(Di))

= dimK(Vcris,n(D)),

so the restriction of Vcris,n to FICwa
L,K,(n) indeed takes values in Repcris

K (GL,(n)).
In the second equality, the identity rankR(Dcris(V )) = rankR(Dcris(ε ⊗ V ))
for V in Repcris

K (GL) is applied. In the third equality, the fact that all the
Vcris(Di) (i = 0, . . . , n− 1) are crystalline is used.
As for compatibility of Vcris,n with ⊗, let D =

⊕n−1
i=0 Di〈

i
n 〉 and E =

⊕n−1
i=0 Ei〈

i
n 〉

be in FICwa
L,K,(n). The functor Vcris is additive and commutes with ⊗ on

FICadm
L,K . We therefore get

Vcris,n(D ⊗ E) ∼= Vcris,n(
n−1⊕

k=0

⊕

i+j∈k+nZ

((Di ⊗ Ej)〈⌊
i+j
n ⌋〉)〈 kn 〉)

∼=

n−1⊕

k=0

⊕

i+j∈k+nZ

[εkn ⊗ ε⌊
i+j
n

⌋ ⊗ Vcris(Di ⊗R Ej)]

∼=

n−1⊕

i,j=0

(εi+j
n ⊗ Vcris(Di ⊗R Ej))

∼= [

n−1⊕

i=0

(εin ⊗ Vcris(Di))]⊗ [

n−1⊕

i=0

(εin ⊗ Vcris(Ei))]

∼= Vcris,n(D)⊗ Vcris,n(E).

In the first isomorphism we use the computation from 2.2.15 and in the second
line by a zeroth power of ε we mean the trivial GL-representation with under-
lying space K.
It remains to be seen that Vcris,n respects unit objects. Evaluating Vcris,n on R
(cf. 2.1.4) we find

Vcris,n(R) =
{
x ∈ Bcris,n ⊗Qp

K |x = ϕ̃0(x), 1⊗ x ∈ F 0
(
Bcris,n ⊗Qp

K
)

L

}

=
{
x ∈ Bcris ⊗Qp

K |x = (ϕ0 ⊗ 1)(x), 1⊗ x ∈ F 0
(
Bcris ⊗Qp

K
)

L

}

= the trivial GL,(n)-representation K.

The second equality follows from the above claim. The third equality follows
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from the fundamental exact sequence of Qp-vector spaces

0 → Qp → Bϕ0=1
cris → BdR/F

0BdR → 0.

This finishes the proof.

Example 4.1.11. The previous proposition and its proof yield

Vcris,n(K
⊗i
n ) ∼= εin ⊗ Vcris(R) ∼= εin

in Repcris
K (GL,(n)) for all i = 0, . . . n− 1.

4.2 An equivalence between Repcris
K (GL,(n)) and FICwa

L,K,(n)

First we prove a result similar to 3.4.4 with respect to the functor Vcris,n.

Proposition 4.2.1. The family of maps

(βD,n : (Bcris,n ⊗Qp
K)⊗K Vcris,n(D) → (Bcris,n ⊗Qp

K)⊗R D, b⊗ v 7→ bv)D,

where D runs through the category FICwa
L,K,(n), defines a natural isomorphism

β•,n : (Bcris,n ⊗Qp
K)⊗K Vcris,n(−) →̃ (Bcris,n ⊗Qp

K)⊗R (−)

of functors from FICwa
L,K,(n) to MF

φ
L,K,n. Every βD,n is GL,(n)-equivariant.

Proof. This is accomplished in a similar manner as the one used in 3.4.4, so we
only sketch the proof.
Let (D′, φ, F •D′

L) be in FICadm
L,K . By [Fo2, Proposition 5.3.6] and [CoFo, The-

orem A] the map

Bcris ⊗Qp
Vcris(D

′) → Bcris ⊗L0
D′, b⊗ d 7→ bd

is an isomorphism in MF
φ
L,K which is GL-equivariant.

Let D =
⊕n−1

i=0 Di〈
i
n 〉 in FICwa

L,K,(n). The domain of βD,n decomposes in

MF
φ
L,K,n as

n−1⊕

i,j=0

(Bcrist
i
n ⊗Qp

K)⊗K (εjn ⊗ Vcris(Dj))
︸ ︷︷ ︸

:=Aij

while the target decomposes in MF
φ
L,K,n as

n−1⊕

i,j=0

(Bcrist
[i+j]n
n ⊗Qp

K)⊗R Dj〈
j
n 〉

︸ ︷︷ ︸

:=Bij

.

Here [i+j]n denotes again the residue of i+j after division by n. By the inclusion
εjn ⊗ Vcris(Dj) ⊆ (Bcrist

j
n ⊗K K) ⊗R Dj〈

j
n 〉 (which holds by construction) and

by the classical situation described above, we find βD,n(Aij) = Bij , compatible
with the respective Frobenius and filtration structures on both sides for all
i, j = 0, . . . , n − 1. It follows that βD,n is a GL,(n)-equivariant isomorphism in

MF
φ
L,K,n.
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The GL,(n)-equivariance of βD,n is straightforward to check on the respective
restrictions of βD,n to Aij . The definition of Vcris,n(h) for a morphism h : D →
D′ in FICwa

L,K,(n) implies the identity

βD′,n ◦ ((Bcris,n ⊗Qp
K)⊗ Vcris,n(h)) = ((Bcris,n ⊗Qp

K)⊗ h) ◦ βD,n.

Now we prove one of our main results.

Theorem 4.2.2. The functor

Dcris,n : Repcris
K (GL,(n)) → FICwa

L,K,(n)

is an equivalence of tensor categories. A quasi-inverse is given by the restriction
of Vcris,n to FICwa

L,K,(n).

Proof. For any category C, denote by ✶C : C → C the identity functor of C.
We construct natural isomorphisms

τ• : Vcris,n ◦ Dcris,n→̃✶Repcris
K

(GL,(n))
, τ ′• : Dcris,n ◦ Vcris,n→̃✶FICwa

L,K,(n)
.

As for τ•, let f : V → W be a morphism in Repcris
K (GL,(n)). According to 3.4.4,

αV,n and αW,n are isomorphisms in MF
φ
L,K,n and the equality

αW,n ◦ ((Bcris,n ⊗Qp
K)⊗ Dcris,n(f)) = ((Bcris,n ⊗Qp

K)⊗ f) ◦ αV,n

holds true. Restricting both maps to Vcris,n(Dcris,n(V )) therefore yields a com-
mutative square of morphisms between K-vector spaces

Vcris,n(Dcris,n(V ))
Vcris,n(Dcris,n(f))

//

αV,n|Vcris,n(Dcris,n(V )) ∼=

��

Vcris,n(Dcris,n(W ))

αW,n|Vcris,n(Dcris,n(W ))∼=

��

F 0(Bcris,n ⊗Qp
K)ϕ̃0=1 ⊗K V // F 0(Bcris,n ⊗Qp

K)ϕ̃0=1 ⊗K W.

Here the filtration on Bcris,n ⊗Qp
K is given via

F •(Bcris,n ⊗Qp
K) := F •(Bcris,n)⊗Qp

K

and is induced from the one on BdR,n. From the proof of 4.1.10 we know that
F 0(Bcris,n⊗Qp

K)ϕ̃0=1 is canonically isomorphic to K, whence the vector spaces
in the lower row of the diagram are canonically isomorphic to V resp. W , say
via ξV resp. ξW . The latter isomorphisms yield the identity

ξW ◦ αW,n ◦ (Vcris,n(Dcris,n(f))) = f ◦ ξV ◦ αV,n|Vcris,n(Dcris,n(V ))

and the association

V 7→ τV := ξV ◦ αV,n|Vcris,n(Dcris,n(V ))
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is then a natural isomorphism τ• between the functors Vcris,n ◦ Dcris,n and
✶Repcris

K
(GL,(n))

.
The isomophism τ ′• is constructed similarly. Let g : D → E be a morphism in
FICwa

L,K,(n). The map βD,n from 4.2.1, being GL,(n)-equivariant, restricts to a
bijection between R-modules

βD,n|Dcris,n(Vcris,n(D)) : Dcris,n(Vcris,n(D))→̃(Bcris,n ⊗Qp
K)GL,(n) ⊗R D.

The right-hand side is naturally isomorphic with D by 3.2.12, via ηD say and
similarly for E and ηE . As in the first part of the proof this discussion yields
the identity

ηE ◦ βE,n ◦ Dcris,n(Vcris,n(g)) = g ◦ ηD ◦ βD,n|Dcris,n(Vcris,n(D))

The association
D 7→ τ ′D := ηD ◦ βD|Dcris,n(Vcris,n(D))

is then a natural isomorphism τ ′• between Dcris,n ◦ Vcris,n and ✶FICwa
L,K,(n)

.

Remark 4.2.3. The following direct calculations also make the equivalence
from the statement explicit, using methods and techniques from previous (sub)sections.
Let V be in Repcris

K (GL,(n)). Then in Repcris
K (GL,(n)) we have canonical iso-

morphisms

Vcris,n(Dcris,n(V )) ∼= Vcris,n(

n−1⊕

i=0

Dcris(ε
i
n ⊗ Vχn,i

)〈− i
n 〉)

∼=

n−1⊕

i=0

Vcris,n(Dcris(ε
i
n ⊗ Vχn,i

)〈−1〉〈n−i
n 〉)

∼=

n−1⊕

i=0

(εn−i
n ⊗ Vcris(Dcris(ε

i
n ⊗ Vχn,i

)〈−1〉))

∼=

n−1⊕

i=0

(εn−i
n ⊗ ε−1 ⊗ εin ⊗ Vχn,i

) ∼= V.

In the second line we have used that M ∼= M〈−1〉〈1〉 for an object M of MF
φ
L,K,n

while in the third line we have used that Vcris,n(M〈 i
n 〉)

∼= εin ⊗ Vcris(M) in
Repcris

K (GL,(n)) for any M in FICadm
L,K and any i ∈ {0, . . . , n− 1}.

Vice versa, let D = ⊕n−1
i=0 Di〈

i
n 〉 be in FICwa

L,K,(n). Then in FICwa
L,K,(n) we have

canonical isomorphisms

Dcris,n(Vcris,n(D)) ∼= Dcris,n(
n−1⊕

i=0

Vcris,n(D)χn,i
)

∼= Dcris(Vcris(D0))⊕
n−1⊕

i=1

Dcris(ε
i
n ⊗ (εn−i

n ⊗ Vcris(Dn−i)))〈−
i
n 〉

∼= D0 ⊕
n−1⊕

i=1

Dcris(Vcris(Dn−i))〈
n−i
n 〉 ∼= D.
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Here in the second line the isomorphism εn−i
n ⊗ Vcris(Dn−i) ∼= Vcris,n(D)χn,i

,
i ∈ {1, . . . , n− 1}, was used.

To summarize, the essential image of the restriction of Dcris,n to the category
of crystalline GL,(n)-representations with coefficients in K is exactly FICwa

L,K,(n),
which may be described as the Tannakian subcategory of FICwa

L,K,n generated by

FICadm
L,K and the object Kn. However, as we have seen in 2.2.17, the “inclusion”

of FICwa
L,K,(n) in FICwa

L,K,n is strict in general.

4.3 The relation between Repcris
K (GL,(n)) and FICwa

L,K,n

We keep the notations from the previous subsections and also refer to the no-
tations introduced in the appendix. As explained in 4.1.4, the functor Vcris

establishes an equivalence between the category of weakly admissible Z-filtered
isocrystals over L with coefficients in K and the category of crystalline K-linear
GL-representations. However, combination of 2.2.17 and 4.2.2 yields that "be-
ing weakly admissible" for an object of FICL,K,n is, in general, not equivalent
to lying in the essential image of Dcris,n. Up to now, we have almost exclusively
considered the restriction of Vcris,n to this essential image. This subsection is
therefore concerned with the study of the behaviour of Vcris,n on FICwa

L,K,n.

Let D = (D,φ, F •DL) be in FICL,K,n. On DL we have the map

v := vF•DL
: DL → 1

nZ ∪ {∞}

x 7→







∞ x = 0

min
τ :xτ 6=0

∑

j∈
1
nZ

j dimK(grjKxτ ) x 6= 0,

where the graded pieces are formed with respect to (F •DL)τ ∩ Kxτ for all τ .
The map v has the following properties.

Lemma 4.3.1. Let D and v = vF•DL
as before.

1. For x ∈ DL \ {0} we have

v(x) = min
τ :xτ 6=0

−HT (Kxτ ) = max{j ∈
1

n
Z | x ∈ F jDL},

where we refer to A.1 for the middle expression.

2. The map v is a valuation on the abelian group (DL,+) in the sense that
we have for all x, y ∈ DL

• v(x) = ∞ implies x = 0,

• v(−x) = v(x) and

• v(x+ y) ≥ min{v(x), v(y)} with equality if v(x) 6= v(y).

56



3. Let x1, . . . , xm be a finite family of elements in DL such that there exists
exactly one index 1 ≤ k ≤ m with v(xk) < v(xl) for all l = 1, . . . ,m and
l 6= k. Then

v(x1 + . . .+ xm) = v(xk).

4. For every j ∈ 1
nZ we have F jDL = {x ∈ DL | v(x) ≥ j}.

Proof. Ad 1.: This follows immediately from the definitions.
Ad 2.: The first two statements follow from the fact that F •DL is a separated
filtration by RL-submodules. As for the third statement, let x, y ∈ DL not both
be equal to 0. Then they are contained in Fmin{v(x),v(y)}DL. Again, since this is
an RL-submodule of DL, x+y is contained in Fmin{v(x),v(y)}DL. If v(x) < v(y)

then x + y cannot be contained in F v(x)+ 1
nDL for otherwise x would also be

contained in it.
Ad 3.: This is a formal consequence of 1. and follows by induction on m.
Ad 4.: The statement is obvious in case F jDL = {0}. So assume 0 6= x ∈ F jDL.
Then, using the description of v in 1., we find that x ∈ F jDL is equivalent with
v(x) ≥ j.

We make use of the map v in the formulation of the following result, which is
inspired by [Col, Lemma 10.9]. It shows that every object in FICwa

L,K,n contains
a Frobenius-invariant R-submodule such that the object obtained by restricting
the Frobenius and by inducing the filtration on the scalar extension to RL lies
in FICwa

L,K,(n) and which is moreover maximal with this property.

Proposition 4.3.2. Let D = (D,φ, F •DL) be in FICL,K,n such that tH(D′) ≤
tN (D′) for every φ-invariant R-submodule D′ ⊆ D with induced filtration on
D′

L. Then there exists a φ-invariant R-submodule D(wa) of D with the following
properties:

1. The filtered isocrystal D(wa) := (D(wa), φ|D(wa) , F •DL ∩ D
(wa)
L ) lies in

FICwa
L,K,(n).

2. For every φ-invariant submodule E ⊆ D such that E := (E, φ|E , F
•DL ∩

EL) lies in FICwa
L,K,(n), we have E ⊆ D(wa).

Remark 4.3.3. According to the assumption made on D in the lemma, an
object E as in the statement is weakly admissible if and only if tH(E) = tN (E).

Proof of 4.3.2. For every i ∈ {0, . . . , n−1} denote by Si the set of all φ-invariant
R-submodules E ⊆ D which satisfy the following two conditions:

• The triple E = (E, φ|E , F
•DL ∩ EL) is weakly admissible.

• We have v(F•DL)∩EL
(EL \ {0}) ⊆ i

n + Z.

Note that {0} ∈ Si and that Si is partially ordered with respect to inclusion for
all i.
For the moment, fix an arbitrary i ∈ {0, . . . , n − 1}. Let E,E′ ∈ Si. We claim
that the short exact sequence

0 → E ∩ E′ α
→E ⊕ E′ β

→ E + E′ → 0

x 7→(x, x)

(y, z) 7→ y − z
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in Mod(R) induces a short exact sequence in FICL,K,n. Here the filtrations
attached to E∩E′ and E+E′ respectively are the filtrations induced by F •DL.
To prove the claim, let

π : E ⊕ E′ → E ⊕ E′/α(E ∩ E′) =: Q

be the canonical projection and β : Q→̃E + E′ the canonical isomorphism of
R-modules induced by β. Note that Q naturally inherits a Frobenius and that
β is compatible with the Frobenius on source and target. We endow Q with the
quotient filtration

F •QL := [F •(E ⊕ E′)L + α(E ∩ E′)]/α(E ∩ E′).

With the structures just decribed, the sequence

0 → E ∩ E′ α
→ E ⊕ E′ π

→ Q → 0

is exact in FICL,K,n. Since β is an isomorphism of R-modules, by [DOR,
Lemma 1.1.12] we have tH(Q) ≤ tH(E + E′). This is an equality if and only
if β induces isomorphisms of RL-modules F jQL→̃F j(E + E′)L for all j ∈ 1

nZ.
Now we compute

tH(Q) ≤ tH(E + E′)

≤ tN (E + E′) (assumption on D)

= tN (Q) (Frobenius-compatibility of β)

= tN (E ⊕ E′)− tN (E ∩ E′)
(additivity of tN on short exact sequences)

≤ tH(E ⊕ E′)− tH(E ∩ E′)
(weak admissibility of E ⊕ E′ and assumption on D)

= tH(Q), (additivity of tH on short exact sequences)

hence equality holds throughout. In particular, the first inequality sign is an
equality and this implies the statement of the claim.
By additivity of tN and tH on short exact sequences and by the assumptions
made on D,E and E′, we find that E + E′ is weakly admissible. By the claim
just proved we have vF•DL

((E + E′)L \ {0}) ⊆ i
n + Z. This argumentation

shows that the set Si is closed under the formation of finite sums. By finite-
dimensionality of D over L0, every chain in Si may be assumed to be finite and
the union of all members of a chain is then an upper bound. By Zorn’s lemma,
Si has a maximal element D(wa)

i . It has the property that M ⊆ D
(wa)
i whenever

M ∈ Si. Indeed, we have just seen that M + D
(wa)
i ∈ Si. By maximality of

D
(wa)
i , we have M +D

(wa)
i = D

(wa)
i . This implies M ⊆ D

(wa)
i .

After carrying out this argument for every i = 0, . . . , n− 1, we set

D(wa) :=

n−1∑

i=0

D
(wa)
i

where the D
(wa)
i := (D

(wa)
i , φ|

D
(wa)
i

, F •DL∩D
(wa)
i,L ). The sum is actually a direct

58



sum: indeed, let d ∈ D
(wa)
i ∩

∑

j∈{1,...,n}\{i} D
(wa)
j for some i ∈ {0, . . . , n − 1}.

Invoking the third part of 4.3.1 we see that vF•DL
(1⊗d) ∈ ( i

n +Z∪{∞})∩( i
′

n +

Z ∪ {∞}) for some i′ ∈ {0, . . . , n− 1} \ {i}. Using that ( i
n + Z) ∩ ( i

′

n + Z) = ∅
for two different elements i, i′ ∈ {0, . . . , n − 1}, we find 1 ⊗ d = 0 in RL ⊗R D,
hence d = 0.
Property 1. of the assertion is clear if D(wa) = 0. Assume D(wa) 6= 0. Then, by
construction of the D

(wa)
i , for any i ∈ {0, . . . , n− 1} there is M i in FICadm

L,K and

an isomorphism in FICL,K,n between M i〈
n−i
n 〉 and D

(wa)
i . Hence D(wa) lies in

FICwa
L,K,(n).

As for property 2., let {0} 6= E ⊆ D be a φ-invariant R-submodule such that E
is in FICwa

L,K,(n), say E = ⊕n−1
i=0 Ei〈

i
n 〉. Then for all i ∈ {0, . . . , n− 1} such that

Ei〈
i
n 〉 6= {0} we have

vF•DL
(Ei〈

i
n 〉L \ {0}) ⊆ n−i

n + Z.

Therefore the φ-invariant submodule of D corresponding to the summand Ei〈
i
n 〉

of E is contained in S0 if i = 0 (resp. in Sn−i if i > 0). Hence said submodule
is contained in D

(wa)
0 (resp. D

(wa)
n−i ). This finishes the proof.

Corollary 4.3.4. Let D be in FICwa
L,K,n. Then the following statements are

equivalent:

1. D lies in FICwa
L,K,(n).

2. D(wa) = D.

Proof. Assume 1. We then have the decomposition D =
⊕n−1

i=0 Di〈
i
n 〉 where

the Di lie in FICadm
L,K . From the proof of 4.3.2 we see that D0 = D

(wa)
0 and

Di〈
i
n 〉 = D

(wa)
n−i if i > 0. This implies 2.

The reverse implication follows from the definition of D(wa).

With the subsequent result we can evaluate Vcris,n on all of FICwa
L,K,n.

Proposition 4.3.5. Let (D,φD, F •DL) be in FICwa
L,K,n. Then Vcris,n(D) =

Vcris,n(D
(wa)). In particular, Vcris,n(D) lies in Repcris

K (GL,(n)).

Proof. For i = 0, . . . , n − 1 denote by D〈− i
n 〉 the underlying R-module of

(D,φD, F •DL)〈−
i
n 〉. We have a decomposition as K[GL,(n)]-modules

Vcris,n(D)

=
n−1⊕

i=0

{v ∈ ((tinBcris ⊗Qp
K)⊗R D)ϕ̃0⊗φ=1 | 1⊗ v ∈ F 0((tinBdR ⊗Qp

K)⊗RL
DL)}

=
n−1⊕

i=0

Vn,i(D),

where the underlying set of a summand Vn,i(D) consists of those ϕ0 ⊗ φ
D〈−

i
n 〉

-

invariant elements v ∈ (Bcris⊗Qp
K)⊗RD〈− i

n 〉 such that 1⊗v lies in the zeroth
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filtration step of the associated filtration. The GL,(n)-action however is

g × (b⊗ d) 7→ εin(g)g(b)⊗ d

for b ∈ Bcris ⊗Qp
K, d ∈ D〈− i

n 〉. Then on εn−i
n ⊗ Vn,i(D) the group Hn acts

trivially.
By proceeding exactly as in the proof of [CoFo, Proposition 4.5], for each i =
0, . . . , n− 1 we find a φ

D〈−
i
n 〉

-invariant R-submodule Ei ⊆ D〈− i
n 〉 such that

Vn,i(D) =

εin ⊗{v ∈ ((Bcris ⊗Qp
K)⊗R Ei)

ϕ0⊗φEi
=1 | 1⊗ v ∈ F 0((BdR ⊗Qp

K)⊗RL
Ei,L)}

and such that the natural morphism in MF
φ
L,K,n

(Bcris⊗Qp
K)⊗K (εn−i

n ⊗Vn,i(D)) → (Bcris⊗Qp
(K⊗ε))⊗RD〈− i

n 〉, a⊗v 7→ av,

which is compatible with the GL-action on both sides, is injective and induces
an isomorphism of (Bcris ⊗Qp

K)-modules

(Bcris ⊗Qp
K)⊗K (εn−i

n ⊗ Vn,i(D))→̃(Bcris ⊗Qp
(K ⊗ ε))⊗R Ei.

Passing to GL-invariants, we obtain an isomorphism in FICL,K,n

((Bcris ⊗Qp
K)⊗K (εn−i

n ⊗ Vn,i(D)))GL→̃Ei〈1〉,

and thus

rankR(((Bcris ⊗Qp
K)⊗K (εn−i

n ⊗ Vn,i(D)))GL)

= rankR(Ei)

= rankBcris⊗QpK
((Bcris ⊗Qp

K)⊗R Ei)

= rankBcris⊗QpK
((Bcris ⊗Qp

K)⊗K Vn,i(D))

= dimK(Vn,i(D)).

It follows that εn−i
n ⊗Vn,i(D) lies in Repcris

K (GL) for i = 0, . . . , n−1, whence the
triples (Ei〈

i
n 〉, φD|

Ei〈
i
n 〉
, F •DL ∩ Ei〈

i
n 〉L) lie in FICwa

L,K,(n). The Hodge-Tate

weights of the latter (cf. A.1) are contained in i
n +Z, respectively. By 4.3.2, we

have Ei〈
i
n 〉 ⊆ D

(wa)
n−i for i = 1, . . . , n− 1 and E0 ⊆ D

(wa)
0 . Hence we obtain

Vcris,n(D) =
n−1⊕

i=0

Vn,i(D) =
n−1⊕

i=0

εin ⊗ Vcris(Ei)

=
n−1⊕

i=0

W (Ei) ⊆ Vcris,n(D
(wa)) ⊆ Vcris,n(D),

where the K-vector spaces W (Ei) in the second line denote

{v ∈ ((tinBcris⊗Qp
K)⊗REi〈

i
n 〉)

ϕ̃0⊗φ
Ei〈

i
n 〉

=1

| 1⊗v ∈ F 0((tinBdR⊗Qp
K)⊗RL

Ei〈
i
n 〉L)},
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respectively. This proves the first statement. The second statement of the
proposition follows from the first together with the fact that Vcris,n restricted
to FICwa

L,K,(n) has values in Repcris
K (GL,(n)). This finishes the proof.

Corollary 4.3.6. Let D be in FICwa
L,K,n. The following are equivalent:

1. D does not lie in the essential image of the restriction of Dcris,n to Repcris
K (GL,(n)).

2. The inequality
dimK(Vcris,n(D)) < rankR(D)

holds true.

Proof. Assume 1. According to the corollary to 4.3.2 we have a strict inclusion
D(wa) $ D. This implies by 4.3.5

dimK(Vcris,n(D)) = dimK(Vcris,n(D
(wa))) = rankR(D

(wa)) < rankR(D)

and therefore 2.
Assume 2. Suppose there exists V in Repcris

K (GL,(n)) and an isomorphism be-
tween Dcris,n(V ) and D in FICwa

L,K,n. Then, by 4.3.5 again, the contradiction

rankR(D) = rankR(Dcris,n(V ))

= rankR(D
(wa))

= dimK(Vcris,n(D)) < rankR(D)

implies 1.

Remark 4.3.7. Recall that the filtered isocrystal K ′
W examined in 2.2.17 does

not lie in the essential image of Dcris,n restricted to Repcris
K (GQp,(n)). Since the

underlying K-vector space has no non-trivial Frobenius-invariant subspaces it
follows that (K ′

W )(wa) = {0}. By 4.3.5 we get Vcris,n(K
′
W ) = {0}.
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5 Filtered isocrystals over schemes and adic spaces

We keep the setup and the notations from the previous sections. In particular
our assumption on K (cf. 2.2.7) is still valid.
The present section focuses on weakly admissible 1

nZ-filtered isocrystals parametrized
by points of schemes and adic spaces. Our study will mainly be based on the
assumptions made in the statement of [Hel, Proposition 5.2] although the co-
efficients of the filtered isocrystals that we consider will be in residue fields of
schemes and adic spaces defined over K. Throughout, we fix an integer d ≥ 0.

5.1 Notations and preliminary considerations

In this auxiliary subsection we recollect necessary algebraic-geometric results
and notation for later reference.

Some representable functors related with schemes If T is a scheme and
E is an OT -module, let AutOT

(E) denote the group of OT -module automor-
phisms of E . Inverse resp. direct image functors associated with an arbitrary
scheme morphism h will be denoted by h∗ resp. h∗.

Proposition 5.1.1 (Automorphism group scheme). Let T be a scheme and E
be a locally free OT -module of finite rank. The contravariant functor

Sch(T ) → Grp, (h : S → T ) 7→ AutOS
(h∗E)

is representable by an affine T -group scheme GL(E).

Proof. This is [EGAInew, I, Proposition (9.6.4)].

Proposition 5.1.2 (Weil restriction). Let A → A′ be a morphism of rings via
which A′ becomes a finitely generated projective A-module. Let Z be a quasi-
projective A′-scheme. The contravariant functor

Sch(A) → Set, Y 7→ HomSch(A′)(Y ⊗A A′, Z)

is representable by an A-scheme ResA′|A(Z). If additionally A and A′ are
Noetherian rings, then ResA′|A(Z) is a quasi-projective A-scheme.

Proof. As for representability of the functor in the statement, cf. [DeGa, I, §1,
no. 6, paragraph 6.6] and [Oes, A.2.14]. Suppose A and A′ are Noetherian.
By assumption, A′ is flat over A. Then [CGP, Proposition A.5.8] says that
ResA′|A(Z) is quasi-projective over A.

In the following, let D denote a free R-module of rank d+ 1.

Remark 5.1.3. Let T = Spec(R) and E = D̃ in 5.1.1 and let A = K,A′ = R
and Z = GL(D̃) in 5.1.2. Then combining both results yields bijections

HomSch(K)(Y,ResR|K(GL(D̃)))

∼= HomSch(R)(R⊗K Y,GL(D̃))

∼= AutOR⊗KY
(D̃ ⊗K OY ),
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natural in Y . Hence the affine K-scheme ResR|K(GL(D̃)) represents the con-
travariant functor

Sch(K) → Grp, Y 7→ AutOR⊗KY
(D̃ ⊗K OY ).

In particular, for every K-algebra A we have an isomorphism of groups

ResR|K(GL(D̃))(A) ∼= {R⊗K A-linear automorphisms of D ⊗K A},

natural in A. We identify Spec(R) with the disjoint union ∐τ0Spec(K). There-
fore GL(D̃) is the disjoint union (indexed over the τ0) of the fibers of the struc-
tural morphism GL(D̃) → Spec(R), which are affine K-schemes. By comparing
their functors of points, one finds that ResR|K(GL(D̃)) and the fiber prod-
uct of affine K-schemes×τ0

(GL(D̃) ⊗R K) are isomorphic. Thus the factor
of the latter indexed by some τ0 can be considered as representing the con-
travariant functor on K-schemes which sends a K-algebra A to the group of
A-automorphisms of the free module of rank d+ 1 Dτ0 ⊗K A.

We present another instance of a Weil restriction ResR|K that we are going
to use. It relates to values of Grassmann functors with respect to the OSpec(R)-
module D̃ (cf. [EGAInew, I, Section 9.7]) on R-schemes of the form R ⊗K Y ,
Y a K-scheme.

Proposition 5.1.4. For each i = 0, . . . , d+ 1, the association

Gi(D̃) : Y 7→ {OR⊗KY -submodules U ⊆ D̃ ⊗K OY such that the quotient

(D̃ ⊗K OY )/U is locally on R⊗K Y free of rank d+ 1− i}

defines a contravariant functor Sch(K) → Set. Each of these functors is rep-
resentable by a projective K-scheme.

Proof. Fix some i ∈ {0, . . . , d + 1}. For every morphism h : Y ′ → Y of K-
schemes we define Gi(D̃)(h) : Gi(D̃)(Y ) → Gi(D̃)(Y ′) as V 7→ (R ⊗K h)∗(V).
Since V is of finite type, this map is indeed well-defined by [GoeWe, Proposi-
tion 8.10]. Let Grassi,d+1(D̃) denote the projective R-scheme representing the
contravariant functor

Sch(R) → Set

[h : X → Spec(R)] 7→ {OX -submodules U ⊆ h∗D̃ such that the quotient

h∗D̃/U is locally on X free of rank d+ 1− i}.

Then ResR|K(Grassi,d+1(D̃)) exists, it is a quasi-projective K-scheme and it
represents Gi(D̃) by 5.1.2. The morphism of affine schemes corresponding to
K → R = L0 ⊗Qp

K, a 7→ 1 ⊗ a is étale whence ResR|K(Grassi,d+1(D̃)) is
proper over Spec(K) by [BLR, Proposition 7.6.5 f)]. Hence it is projective over
Spec(K).

Similary as for GL(D̃), each ResR|K(Grassi,d+1(D̃)) is naturally isomorphic
to a fiber product of projective K-schemes×τ0

Grassi,d+1(D̃) ⊗R K by [Oes,
A.2.8, A.2.14]. Using the proposition, we conclude that
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ResR|K(Grassi,d+1(D̃))(E) is canonically identified with the set of tuples of i-
dimensional E-subspaces in the isotypical components of D ⊗K E for any field
extension K ⊆ E. According to 2.1.6, a Frobenius-invariant R-submodule D′

of an object D in FICL,K,n is automatically free. This freeness is equivalent
to equidimensionality over K of the isotypical components of D′. Hence, if
rankR(D

′) = i, such a submodule can naturally be considered as an element of
ResR|K(Grassi,d+1(D̃))(K).

We recall representability of the functor of flags of a prescribed type on DL.

Definition 5.1.5. Let m ≥ 1 be an integer and let Λ be a subset of the real
numbers endowed with its induced ordering. We denote by Λm

+ the subset

{λ = (λ1, . . . , λm) | λ1 ≤ . . . ≤ λm}

of Λm ⊆ Rm. Let λ ∈ Λm
+ . The notation

λ = (λ(1)[m(λ(1))], . . . , λ(s)[m(λ(s))])

will mean that λ(1) < . . . < λ(s) are the different entries of λ with respective
multiplicities 1 ≤ m(λ(1)), . . . ,m(λ(s)).

We will only be interested in the case Λ = 1
nZ. The description of the functor

in the next proposition is based on the discussion in [DOR, beginning of II.1,
p.31 f.].

Proposition 5.1.6 (Flag scheme). Let V be a finite-dimensional K-vector space
which is not the zero vector space, let

λ = (λ(1)[m(λ(1))], . . . , λ(s)[m(λ(s))]) ∈

(
1

n
Z
)dimK(V )

+

and set λ(s + 1) := λ(s) + 1
n . Then the functor Flλ,V which assigns to a K-

algebra A the set

{decreasing families (Fλ(j)(V ⊗K A))1≤j≤s+1 of A-submodules in V ⊗K A

such that Fλ(1)(V ⊗K A) = V ⊗K A, Fλ(s+1)(V ⊗K A) = 0

and the quotient Fλ(r)(V ⊗K A)/Fλ(r+1)(V ⊗K A) is locally on Spec(A) free

of rank m(λ(r)) for all r = 1, . . . , s}

is representable by a projective K-scheme called Drap(λ, V ).

Proof. Let A be a K-algebra. The conditions concerning the ranks of the
Fλ(r)(V ⊗K A)/Fλ(r+1)(V ⊗K A) are equivalent to requiring that the quotient

V ⊗K A/Fλ(r)(V ⊗K A)

is locally on Spec(A) free of rank

dimK(V )− (m(λ(r)) + . . .+m(λ(s)))
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for all r = 2, . . . , s. Noting that

m :=(dimK(V )− (m(λ(2)) + . . .+m(λ(s))),

dimK(V )− (m(λ(3)) + . . .+m(λ(s))),

. . . ,

dimK(V )−m(λ(s)))

is an increasing sequence of positive integers, we see that Flλ,V is naturally
isomorphic with the functor of flags of type m from [EGAInew, I, (9.9.2)]) on
K-algebras. The latter functor is representable by a projective K-scheme by
[EGAInew, I, Proposition 9.9.3].

Definition 5.1.7. Let A be a K-algebra, V a finite-dimensional K-vector space

and λ ∈
(
1
nZ

)dimK(V )

+
. Elements of Drap(λ, V )(A) are called filtrations of V ⊗K

A of type λ.

As before, let D be a free R-module of rank d + 1. We want to apply
the previous considerations concerning filtrations to the RL-module DL and its
isotypical components.
Let A be a K-algebra with structure morphism f : K → A. Then f and the
decomposition

DL =
⊕

τ

DL,τ

of DL into τ -isotypical components (cf. the remark at the end of the first part
of 2.1.3) induce a decomposition

DL ⊗K A =
⊕

τ

(DL ⊗K A)τ .

Here (DL ⊗K A)τ denotes the A-submodule consisting of those c ∈ DL ⊗K A
on which L acts via the Qp-algebra homomorphism f ◦ τ . Then (DL ⊗K A)τ is
free of rank d+1 for all τ since (DL⊗K A)τ is identified with (DL,τ )⊗K A. We
get mutually inverse inclusion-preserving bijections

U 7−→ (U ∩ (DL ⊗K A)τ )τ

L⊗Qp
A -submodule generated by the Mτ ←− [ (Mτ )τ

between the set of all L ⊗Qp
A-submodules of DL ⊗K A and the set of tuples

(Mτ )τ such that Mτ is an A-submodule of (DL ⊗K A)τ .

Definition 5.1.8. Let µ = (µτ )τ be a family of tuples where µτ ∈
(
1
nZ

)d+1

+
for all τ . Let A be a K-algebra. Suppose moreover that, for each τ , we have a
filtration of type µτ on (DL ⊗K A)τ . This family of filtrations (or equivalently
the corresponding filtration of DL ⊗K A by L ⊗Qp

A-submodules) is called a
filtration of type µ of DL ⊗K A. We let Drap(µ,DL) denote the projective
K-scheme representing the contravariant functor

Sch(K) → Set, S 7→ {Filtrations of type µ on (DL)
∼ ⊗K OS}.

Recall that (DL)
∼ denotes the free OSpec(R)-module of rank d+1 associated to

DL. If no confusion about the RL-module can arise, we also denote this scheme
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by DrapL(µ).

Via 5.1.6 and the discussion prior to 5.1.8 we see that the above functor
sends an affine K-scheme Spec(A) to the set

{(F •
τ )τ | F •

τ ∈ Drap(µτ , DL,τ )(A)}

(in the notation of 5.1.7) and this functor is represented by the [L : Qp]-fold
fiber product of projective K-schemes×τ

Drap(µτ , DL,τ ).

Adic spaces (in the sense of Huber) The main references for the material
presented in this paragraph are [Hub2] and [Hub1].

By a totally ordered group Γ (with group law written multiplicatively) we
mean a group whose underlying set is totally ordered with respect to a binary
relation ≤ that satisfies ac ≤ bc and ca ≤ cb whenever a ≤ b for all a, b, c ∈ Γ.
If Γ is a totally ordered abelian group, Γ ∪ {0} denotes Γ with an element 0
added and the order extended by 0a = 0 = a0, 0 ≤ a for all a ∈ Γ ∪ {0}.

Remark 5.1.9. In the Q-vector space Γ ⊗Z Q all elements can be written as
elementary tensors. The additive law of composition is thus

(a⊗
1

m
) + (b⊗

1

n
) = anbm ⊗

1

mn

and scalar multiplication is

m

n
· (a⊗

1

l
) = am ⊗

1

nl
.

Moreover, the total order of Γ is extended by setting

a⊗
1

m
≤ b⊗

1

n
:⇔ an ≤ bm.

.

We recall the notion of valuation on a ring in the sense of [Hub2, (1.1.2)].

Definition 5.1.10. A valuation on a ring A with values in a totally ordered
abelian group Γ is a multiplicative map | · |A : A → Γ ∪ {0} satisfying

|0|A = 0,

|x+ y|A ≤ max{|x|A, |y|A}.

The subgroup of Γ generated by im(| · |A) \ {0} is denoted by Γ|·|A or by ΓA. If
A is a topological ring then a valuation | · |A : A → Γ ∪ {0} is called continuous
if {a ∈ A | |a|A < γ} is open for all γ ∈ Γ. Let i : A ⊆ B be an injective
homomorphism of rings and let | · | resp. | · |′ be valuations on A resp. B.
If there exists an injective homomorphism of totally ordered abelian groups
j : Γ|·| ∪ {0} → Γ|·|′ ∪ {0} such that |i(a)|′ = j(|a|) for all a ∈ A, the tuple
(i, j, | · |, | · |′) is called an extension of rings with valuation. The other pieces of
data being understood, we often simply refer to such an extension by i.

We will mostly consider the case where A and B are fields.
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Example 5.1.11. The extension Qp ⊂ K is an extension of fields with valuation
x 7→ p−vp(x) since by assumption (cf. 2.2.7) we have

ΓQp
= pZ ⊂ p

1
nZ ⊆ ΓK ⊂ R>0.

In case A = B in the definition, having isomorphic totally ordered abelian
groups Γ|·| ∪ {0} and Γ|·|′ ∪ {0} defines an equivalence relation on the set of all
valuations on A.

Definition 5.1.12. An adic space is a triple (X,OX , (| · |x)x∈X) such that
(X,OX) is a locally ringed space, | · |x is a representative of an equivalence class
of valuations on the stalk OX,x for all x ∈ X and which is locally an affinoid
adic space. The latter is a triple (Spa(A,A+),OA, (| · |x)x∈Spa(A,A+)) where
Spa(A,A+) is a topological space having as underlying set

{Equivalence classes of continuous valuations | · |A on A

such that |a|A ≤ 1 whenever a ∈ A+}.

Here A is a member of a certain class of topological rings and A+ is an open
integrally closed subring of A. Moreover OA is a sheaf of complete topological
rings on Spa(A,A+) and (| · |x)x∈Spa(A,A+) is a family of representatives of
equivalence classes of valuations on the stalks OA,x.
A morphism of adic spaces is a morphism of locally ringed spaces such that the
induced morphism on stalks is compatible with the valuations.

If OX is the structure sheaf of an adic space X and x ∈ X is a point, the
valuation | · |x on the stalk at x maps those and only those elements of the
maximal ideal of the local ring OX,x to zero. Therefore the map

k(x) → ΓOX,x
∪ {0}, residue class of s 7→ |s|x

naturally endows the residue field of x with a valuation, which is also denoted
| · |x.
Let Y be a K-scheme locally of finite type. The adic space

Y ad := Y ×Spec(K) Spa(K,OK)

is by definition the adic space associated to Y (for notation and explicit con-
struction cf. [Hub1, Proposition 3.8, Remark 4.6 i)]). As the notation suggests
the adic spaces Spec(K)ad and Spa(K,OK) (whose underlying spaces consist
of one point, respectively) can be identified. Denote by ℓ the forgetful functor
which assigns to an adic space (X,OX , (| · |x)x∈X) its underlying locally ringed
space (X,OX). To Y ad naturally is attached a morphism of locally ringed spaces
adY : ℓ(Y ad) → Y over Spec(K) such that for an adic space S over Spa(K,OK)
the map

HomAd(K)(S, Y
ad) → Homlrs(K)(ℓS, Y ), h 7→ adY ◦ ℓ(h)

is a bijection of sets, natural in S. Here lrs(K) denotes the category of lo-
cally ringed spaces whose structure sheaf is a sheaf of K-algebras. Hence Y ad
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represents the contravariant functor

Ad(K) → Set, S 7→ Homlrs(K)(ℓS, Y ).

Let f : Y → Z be a morphism of K-schemes locally of finite type. Since
f ◦ adY = adZ ◦ ℓ(fad) for a unique morphism fad : Y ad → Zad of adic spaces
over Spa(K,OK), (−)ad : Y 7→ Y ad is a covariant functor from the category of
K-schemes locally of finite type to the category of adic spaces over Spa(K,OK).
By [Hub1, Proposition 3.8], in Ad(K) there exists “the fibre product of Zad with
Y over Z with respect to adZ and f ”, denoted by Zad ×Z Y . By construction it
is an adic space over Zad and it is naturally isomorphic with Y ad.
The category of K-schemes locally of finite type is closed under fiber products.
Since this is also the fiber product in the category lrs(K), there is a natural
isomorphism (Y ×X Z)ad ∼= Y ad ×Xad Zad in Ad(K).

Example 5.1.13. Let Q denote the K-scheme

Ad
K ×K Gm,K

∼= Spec(K[X1, . . . , Xd+1, X
−1
d+1]).

Then for any adic space S over K we have natural bijections

HomAd(K)(S,Q
ad) ∼= Homlrs(K)(ℓS,Q) ∼= Γ(S,OS)

d × Γ(S,OS)
×.

The second isomorphism is given via [EGAInew, I, Proposition 1.6.3] since Q is
an affine scheme.

We collect two more necessary properties concerning fiber products of adic
spaces and the functor (−)ad.

Lemma 5.1.14. Let f : Y → Z be a morphism of K-schemes locally of finite
type and let z ∈ Zad a point of the underlying topological space of Zad.

1. Suppose f is an open immersion. Then the same is true for fad.

2. In Ad(K) there exists the fiber product of the adic spaces Y ad and Spa(k(z), k(z)+)
over Zad with respect to fad and the canonical morphism

canz : Spa(k(z), k(z)+) → Zad.

Let (fad)−1(z) denote this fiber product. The projection to Y ad induces a
homoeomorphism from (fad)−1(z) onto a topological subspace of Y ad.

Proof. The first part is combination of the results in [BGR, §9.3], [Hub2, (1.1.11)]
and [Hub1, Remark 4.6 (i)]).
The second part follows from [Hub2, 1.1.8, remark before 1.2.2, 1.2.4], using
that morphisms locally of finite type are locally of weakly finite type.

5.2 Weak admissibility revisited

Keeping the notations, we now connect the notions concerning schemes and adic
spaces from the previous subsection with the concept of weak admissibility.
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Let A be a K-algebra. We extend the ring automorphism

σ0 ⊗A : L0 ⊗Qp
A → L0 ⊗Qp

A, x⊗ y 7→ σ0(x)⊗ y

to a ring automorphism of the polynomial ring (L0 ⊗Qp
A)[X] resp. to a ring

automorphism of the ring of (d+1)×(d+1)-matrices with entries in L0⊗Qp
A by

X 7→ X resp. by acting componentwise. After choosing a basis, a (σ0⊗A)-linear
bijective map from a free L0⊗A-module of rank d+1 to itself corresponds to a
unique element in GLd+1(L0 ⊗Qp

A) and therefore to a unique L0 ⊗Qp
A-linear

automorphism g of this module (cf. 5.1.3). We frequently denote such a map
by g(σ0 ⊗A) in order to emphasize (σ0 ⊗A)-linearity.

Recall that f = [L0 : Qp] and that D denotes a free R-module of rank d+1.

Lemma 5.2.1. Let A be a K-algebra. Let ϕ : D⊗KA → D⊗KA be a (σ0⊗A)-
linear and bijective map. Then the characteristic polynomial cϕf of the bijective
L0⊗Qp

A-linear map ϕf (f -fold composition) has coefficients in A ⊂ (L0⊗Qp
A),

where we identify A with its image under the map A → L0 ⊗Qp
A, a 7→ 1⊗ a.

Proof. By (σ0 ⊗ A)-conjugacy, the result of the subsequent argument does not
depend on the choice of a specific L0 ⊗Qp

A-basis of D ⊗K A. Therefore let
e1, . . . , ed+1 be such a basis and denote by T the matrix of ϕ with respect to it.
The product

C := T (σ0 ⊗A)(T ) . . . (σ0 ⊗A)f−1(T )

is the matrix of ϕf . It satifies the identity

(σ0 ⊗A)(C) = T−1CT

and thus we get

cϕf (X) = det(XEd+1 − C)

= det(XEd+1 − T−1CT )

= det(XEd+1 − (σ0 ⊗A)(C)) = (σ0 ⊗A)(cϕf (X)).

Here Ed+1 denotes the (d + 1) × (d + 1)-unit matrix. Hence the coefficients of
cϕf are (σ0 ⊗A)-invariant. Now using that (L0 ⊗Qp

A)σ0⊗A=1 = A allows us to
conclude.

Corollary 5.2.2. Let A be a K-algebra and let Q be the K-scheme from 5.1.13.
The association

charf,A : ResR|K(GL(D̃))(A) → Q(A), g 7→ (a1, . . . , ad+1),

where

ai := coefficient of Xd+1−i of the characteristic polynomial of

the f -fold composition (g(σ0 ⊗A))f

(i = 1, . . . , d+ 1),

is well-defined and natural in A.
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Proof. Well-definedness follows from 5.2.1 and naturality is clear.

Remark 5.2.3. In the situation of the corollary, the last entry ad+1 is equal to
(−1)d+1detL0⊗QpA

[(g(σ0 ⊗A))f ] ∈ A×.

We now generalize our previous notion of filtered isocrystal with coefficients
following [Hel, §3]. Let K ⊆ E be an extension of fields with valuation such
that E becomes a topological field whose topology is defined by | · |E . Literally
as in the case E = K we define the category FICL,E,n but in order to define
weakly-admissible objects for general E we reformulate the definition of tN and
tH . For this, recall that e = [L : L0].

Definition 5.2.4. Let K ⊆ E be an extension of fields with valuation and let
D := (D,φ, F •DL) be in FICL,E,n.

i) The Newton and Hodge numbers of D with values in ΓE are defined as

tN (D) := |detE(φ)|
e
E and tH(D) := |p|

∑
j∈ 1

n
Z
j dimE(F jDL/F j+ 1

n DL)

E ,

respectively.

ii) The object D is called weakly admissible if tN (D) = tH(D) and if tN (D′) ≤
tH(D′) holds for every φ-invariant L0 ⊗Qp

E-submodule D′ with induced
filtration on D′

L = (L⊗Qp
E)⊗L0⊗QpE

D′.

As before let FICwa
L,E,n denote the full subcategory of FICL,E,n consisting of

weakly admissible objects.

Remark 5.2.5. Let D = (D,φ, F •DL) be in FICL,E,n and D′ denote an object
in FICL,E,n corresponding to a φ-invariant L0 ⊗Qp

E-submodule D′ ⊆ D with
induced filtration on D′

L.

i) In contrast to our former definition of weak admissibility, the inequality
sign in the condition between tN and tH is reversed because both assign-
ments take values in the multiplicative group ΓE .

ii) If E is of finite degree over K, then D is weakly admissible in the sense
of 5.2.4 if and only if it is weakly admissible in the sense of section 2.2 so
the above generalizes the classical formula for weak admissibility. Indeed,
let E be of finite degree over K and identify ΓE with a subgroup of pQ.
Then we obtain, using e = [E : L]−1[E : L0] and equation (4),

tN (D′) = p−[E:L]−1[E:L0]vp(detE(φ|D′ ))

= p−([E:L]f)−1vp(detL0
(φf |D′ ))

for any D′. The Hodge number is

tH(D′) = p
−

∑
j∈ 1

n
Z
j dimE(F jD′

L/F j+ 1
n D′

L)

= p
−[E:L]−1 ∑

j∈ 1
n

Z
j dimL(F jD′

L/F j+ 1
n D′

L)
.
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Hence tN (D′) ≤ tH(D′) holds if and only if

1

f
vp(detL0

(φf |D′)) ≥
∑

j∈ 1
n
Z

j dimL(F
jD′

L/F
j+ 1

nD′
L)

holds with equality for D = D′.

iii) We have the equalities

detE(φ|D′)f = Norm(L0⊗QpE)|E(detL0⊗QpE
(φf |D′)) = detL0⊗QpE

(φf |D′)f ,

the second because detL0⊗QpE
(φf |D′) ∈ E×, cf. 5.2.1.

Since detL0⊗QpE
(φf |D′)detE(φ|D′)−1 ∈ µf (E) and |ζ|E = 1ΓE

for any root
of unity ζ in E, we find

|detE(φ|D′)|E = |detL0⊗QpE
(φf |D′)|E .

Therefore, by definition, the object D is not weakly admissible if and only
if

|detL0⊗QpE
(φf )|eE < |p|

∑
j∈ 1

n
Z
j dimE(F jDL/F j+ 1

n DL)

E

or there exists a φ-invariant L0 ⊗Qp
E-submodule M ⊆ D such that

|detL0⊗QpE
(φf |M )|eE > |p|

∑
j∈ 1

n
Z
j dimE(F jML/F j+ 1

n ML)

E .

The following result shows that weak admissibility is invariant under exten-
sion of scalars with respect to fields with valuation.

Proposition 5.2.6. Let K ⊆ E ⊆ E′ be extensions of fields with valuation and
let D := (D,φ, F •DL) denote an object of FICL,E,n. Then D lies in FICwa

L,E,n

if and only if the object D ⊗E E′ := (D ⊗E E′, φ ⊗ E′, F •DL ⊗E E′) obtained
by extending scalars from E to E′ lies in FICwa

L,E′,n.

The statement of the propostion is [Hel, Corollary 3.22] for objects of slope
one. There also a detailed proof is given.

Sketch of proof. Let D⊗EE
′ be weakly admissible. For all φ-invariant L0⊗Qp

E-
submodules D′ ⊆ D we have

detE′((φ⊗ E′)|D′⊗EE′) = detE(φ|D′),

hence the values of tN on D′ and D′⊗EE′ coincide. By faithful flatness of vector
spaces over fields the same is true for tH . Therefore D is weakly admissible.
The reverse implication uses a slope theory as developed in [Hel, §3]: attached to
a filtered isocrystal ∆ with coefficients in any extension of fields with valuation
K ⊆ E is a uniquely determined finite family of invariants s1 < . . . < sr ∈
ΓE ⊗Z Q (cf. 5.1.9) and the so-called HN -filtration of ∆ which is a decreasing
family by r Frobenius-invariant L0 ⊗Qp

E-submodules with induced filtration
([Hel, Proposition 3.19]) for an integer r ≥ 1. This attached data has the
property that validity of

r = 1 and s1 = neutral element of ΓE ⊗Z Q
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is equivalent to weak admissibility of ∆, as follows from combination of [Hel,
Lemma 3.13, Definition 3.15, Proposition 3.19].
Now in the case at hand one shows by a descent argument that the HN -filtration
of D ⊗E E′ must be of the form

0 ⊂ D1 ⊗E E′ ⊂ . . . ⊂ Dr ⊗E E′ = D ⊗E E′,

where the D1, . . . , Dr = D are the members of the HN -filtration of D. By
assumption, r = 1 and s1 = neutral element of ΓE ⊗Z Q. By invariance of s1
under extension of scalars, r = 1 and s1 = neutral element of ΓE′ ⊗Z Q holds
for D ⊗E E′. Hence D ⊗E E′ is weakly admissible.

In what follows we write GD for ResR|K(GL(D̃)) for any finitely generated
free R-module D.

Definition 5.2.7. Let D be a finitely generated free R-module and let µ =

(µτ )τ where µτ ∈ ( 1nZ)
rankR(D)
+ for all τ . For any extension of fields with

valuation K ⊆ E we define (GD×KDrap(µ,DL))(E)wa as the subset of GD(E)×
Drap(µ,DL)(E) consisting of those pairs (g, F •) such that (D ⊗K E, g(σ0 ⊗
E), F •) lies in FICwa

L,E,n.

Remark 5.2.8. i) By 5.2.6 the definition of (GD ×K Drap(µ,DL))(E)wa is
functorial in E.

ii) In the situation of 5.2.7 let d + 1 be the R-rank of D and let E = K.
Assume moreover that for all τ we have µτ ∈ Zd+1

+ with

µτ,1 < . . . < µτ,d+1

(in particular, Drap(µ,DL) is the K-scheme whose K-valued points are
in natural bijection with families (F •

τ )τ of full filtrations of DL,τ of type
µτ respectively). Let c = Xd+1 + c1X

d + . . . + cdX + cd+1 ∈ K[X] split
completely into linear factors and moreover be such that cd+1 6= 0. Then
[BrSch, Proposition 3.2] characterizes non-emptyness of the intersection
inside (GD×KDrap(µ,DL))(K) between the set consisting of all K-valued
points (g, F •) of GD ×K Drap(µ,DL) such that (g(σ0 ⊗K))f has charac-
teristic polynomial c on the one hand and (GD×K Drap(µ,DL))(K)wa on
the other hand in terms of the existence of certain numerical (in)equalities
relating the valuations of the zeros of c and the entries of the µτ .

Let K ⊆ E be an extension of fields with valuation. Then the Hodge number
of any D in FICL,E,n whose associated filtration is of type µ = (µτ )τ is

tH(D) = |p|
∑

τ

∑d+1
i=1 µτ,i

E .

Hence the possible values for Hodge numbers of RL-submodules of DL with
induced filtration are finite in number. The following identity concerning the
exponent on the right hand side will be useful in the proof of 5.2.9: let a ∈ 1

nZ
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such that a ≤ minτ{µτ,1}. Then we have

∑

τ

d+1∑

i=1

µτ,i = a dimE(DL) +
1

n

∑

τ

∑

a<j

dimE(F
jDL,τ )

= a dimE(DL) +
1

n

∑

a<j

dimE(F
jDL).

Here F jDL,τ denotes the image of F jDL under the canonical projection DL →
DL,τ . Validity of the second equation is clear. In order to see validity of the
first one, fix any τ : L →֒ K. By the choice of a we may write

d+1∑

i=1

µτ,i =
∑

j∈ 1
n
Z

j dimE(F
jDL,τ/F

j+ 1
nDL,τ )

=
∑

a≤j

j dimE(F
jDL,τ/F

j+ 1
nDL,τ )

=
∑

a≤j

j dimE(F
jDL,τ )−

∑

a≤j

j dimE(F
j+ 1

nDL,τ )

=
∑

a≤j

j dimE(F
jDL,τ )−

∑

a≤j

(j +
1

n
) dimE(F

j+ 1
nDL,τ )

+
1

n

∑

a≤j

dimE(F
j+ 1

nDL,τ ).

In the last equality sign, we have used j = (j + 1
n ) −

1
n . After reindexing, the

second sum in the last expression is equal to

−
∑

a+ 1
n
≤j

j dimE(F
jDL,τ ).

We obtain
d+1∑

i=1

µτ,i = a dimE(DL,τ ) +
1

n

∑

a<j

dimE(F
jDL,τ )

and hence, after summing over all τ , the stated equation (cf. also [DOR, Lemma
1.1.11], [CoFo, Formula (3.1)]).

Now let m : S → (GD ×K Drap(µ,DL))
ad be a morphism in Ad(K) where

D is a free R-module of rank d + 1 and µ = (µτ )τ with µτ ∈ ( 1nZ)
d+1
+ for

all τ . If s ∈ S is a point with image s′ := (adGD×KDrap(µ,DL) ◦ ℓm)(s) ∈
GD ×K Drap(µ,DL), denote by (g(s′),F•(s′)) the pullback of the universal
element over GD ×K Drap(µ,DL) to Spec(κ(s′)). Considering the fields K and
k(s) as an extension of fields with valuation, it is reasonable to ask whether

(gs,F
•
s ) := (g(s′)⊗ k(s),F•(s′)⊗κ(s′) k(s))

lies in (GD ×K Drap(µ,DL))(k(s))
wa. The following result, whose statement

and proof are based on [Hel, Proposition 5.2], provides structural information
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on points in fibers over rigid points of the morphism

α := (charf ◦ projection to GD)ad : (GD ×K Drap(µ,DL))
ad → Qad

regarding this question. Here we denote by charf : GD → Q the morphism of
K-schemes corresponding to the natural transformation between the functors
of points of GD and Q described in 5.2.2.

Theorem 5.2.9. Notations as in the preceeding discussion, let x ∈ Qad be such
that k(x) is of finite degree over K. With m being the projection α−1(x) →
(GD ×K Drap(µ,DL))

ad (cf. 5.1.14/2.), define the weakly admissible locus in
α−1(x) as

α−1(x)wa := {z ∈ α−1(x) | (gz,F
•
z ) ∈ (GD ×K Drap(µ,DL))(k(z))

wa}.

Then there exists a quasi-projective k(x)-scheme M such that

Mad = α−1(x)wa.

Proof. By the assumption on x, the field k(x) is complete with respect to the
unique extension of | · |p and the equivalence class of this valuation is the unique
point of the underlying space of Spa(k(x), k(x)+) = Spa(k(x), Ok(x)).
We will prove the statement in several steps.
Step 1: The composite morphism of locally ringed spaces

adQ ◦ ℓ(canx) : ℓ(Spa(k(x), Ok(x))) → Q

corresponds to a unique element (c1, . . . , cd+1) ∈ k(x)d × k(x)× by 5.1.13. Let
c denote the polynomial Xd+1 + c1X

d + . . . + cdX + cd+1 ∈ k(x)[X]. In what
follows we may and will assume that

|cd+1|
e
p = p−

∑
τ

∑d+1
i=1 µτ,i

because in case the equality does not hold, α−1(x)wa is empty by definition of
weak admissibility (cf. also 5.2.5 iii) and the discussion after 5.2.8) and by the
equivalence

|cd+1|
e
z 6= |p|

∑
τ

∑d+1
i=1 µτ,i

z ⇔ |cd+1|
e
p 6= p−

∑
τ

∑d+1
i=1 µτ,i

for all z ∈ α−1(x).

For the following auxiliary constructions, we fix an integer i with 0 ≤ i ≤
d+ 1.

Step 2: Write GrR,i,D for the projective K-scheme ResR|K(Grassi,d+1(D̃))
from 5.1.4. The family of maps

ai,A : GD(A)×GrR,i,D(A) → GrR,i,D(A),

(g,U) 7→ g(σ0 ⊗A)U ,

as A runs through all K-algebras, defines a morphism of K-schemes ai : GD×K

GrR,i,D → GrR,i,D. Note that the occurence of σ0 ⊗A in the definition of ai,A
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induces a permutation of the factors of GrR,i,D (cf. the discussion subsequent
to 5.1.4). Let prGrR,i,D

: GD ×K GrR,i,D → GrR,i,D be the second projection.
The universal property of the fiber product GrR,i,D ×K GrR,i,D yields a unique
morphism of K-schemes (ai, prGrR,i,D

) : GD×K GrR,i,D → GrR,i,D×K GrR,i,D.
Denote by Zi,D the fiber product of GD ×K GrR,i,D and GrR,i,D with respect
to (ai, prGrR,i,D

) and the diagonal morphism ∆GrR,i,D
. Note that ∆GrR,i,D

is
projective since it is a closed immersion ([EGAII, 5.5.5 i)]). Hence, by stability
under base change and composition ([EGAII, 5.5.5 ii), iii)]), the composition of
projection morphisms Zi,D → GD ×K GrR,i,D → GD is projective.
Step 3: Let S be a K-scheme. We write σ0 ⊗ OS : OR⊗KS → OR⊗KS for the
inverse image of the morphism Spec(σ0⊗K) : OSpec(R) → OSpec(R) with respect
to the projection to Spec(R).
The scheme Zi,D (cf. Step 2) represents the contravariant functor which sends
a K-scheme S to the set of pairs (g,U) ∈ GD(S) × GrR,i,D(S) such that the
σ0 ⊗OS-linear endomorphism g(σ0 ⊗OS) : D̃⊗K OS → D̃⊗K OS restricts to a
semilinear endomorphism g(σ0 ⊗OS)|U : U → U . Pulling back to residue fields
of points of Yi,D := Zi,D ×K Drap(µ,DL) ⊆ GD ×K GrR,i,D ×K Drap(µ,DL)
the universal elements on Zi,D respectively on Drap(µ,DL) along the canonical
morphisms yields in particular a free L0⊗Qp

κ(y)-submodule Vi(y) ⊆ D⊗K κ(y)
of rank i and a filtration F•(y) of type µ of DL ⊗K κ(y) where y ∈ Yi,D.
According to the semicontinuity principle (cf. [EGAIII2, 7.6.9, (proof of) 7.7.5
(I)]), one finds that the function

hij : Yi,D → Z,

y 7→ dimκ(y)(Vi(y)L ∩ F j(y)) =
∑

τ

dimκ(y)(Vi(y)L,τ ∩ F j(y)τ )

is upper semicontinuous for all j ∈ 1
nZ

1. It follows that the same is true for

hi : Yi,D →
1

n
Z,

y 7→
∑

j∈ 1
n
Z

j dimκ(y)[(Vi(y)L ∩ Fj(y))/(Vi(y)L ∩ F j+ 1
n (y))]

since we have

hi(y) = a[L : Qp]i+
1

n

∑

a<j

hij(y)

by 5.2.8, ii), where y ∈ Yi,D and a is an arbitrary element in 1
nZ with a ≤

minτ{µτ,1}.
It follows that the functions had

ij := hij ◦ adYi,D
and had

i := hi ◦ adYi,D
are

upper semicontinuous on Y ad
i,D. For m,m′ ∈ 1

nZ with m′ ≥ m we therefore have
inclusions of closed subsets

{y | hi(y) ≥ m′} ⊆ {y | hi(y) ≥ m} ⊆ Yi,D

respectively
{z | had

i (z) ≥ m′} ⊆ {z | had
i (z) ≥ m} ⊆ Y ad

i,D.

1Here we call a function f : S → T from a topological space S to a totally ordered set T

upper semicontinuous if the subsets {s ∈ S|f(s) ≥ t} are closed for all t ∈ T .
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For each m ∈ 1
nZ, let Yi,m,D denote the reduced subscheme of Yi,D having as

underlying topological space the set {y | hi(y) ≥ m}. As a closed immersion,
the canonical inclusion Yi,m,D → Yi,D is proper. By stability under composition,
the same is true for the composite

Yi,m,D → Yi,D = Zi,D ×K Drap(µ,DL) → GD ×K Drap(µ,DL).

Note that by [Köpf, 2.17] and [Hub2, 1.3.19] the corresponding morphism Y ad
i,m,D →

(GD ×K Drap(µ,DL))
ad of adic spaces over Spa(K,OK) is proper.

Step 4: We need to introduce new notations with respect to some of the previ-
ous constructions. If (ηi,Wi) ∈ GD(Zi,D)×GrR,i,D(Zi,D) denotes the universal
element of Zi,D and pZi,D

is the projection R⊗K Zi,D → Zi,D, let di denote the
image of pZi,D,∗((ηi(σ0 ⊗OZi,D

))f |Wi
) in Γ(Zi,D,OZi,D

) under the composition
on global sections of the morphism of OZi,D

-modules

H omOZi,D
(pZi,D,∗Wi, pZi,D,∗Wi)

det
−−→ H omOZi,D

(

fi
∧

pZi,D,∗Wi,

fi
∧

pZi,D,∗Wi)

−̃→ OZi,D
.

The isomorphism on the right is given on open subsets of Zi,D by the map
[w 7→ uw] ←[ u (cf. [GoeWe, (7.20.7)]).
Let Fc be the splitting field of the polynomial c ∈ k(x)[X] determined by x ∈
Qad. If Sx denotes the fiber product of the morphisms Spec(k(x)) → Q and

(charf ◦ projection to GD) : GD ×K Drap(µ,DL) → Q,

let Ti,m,D denote the Fc-scheme

Yi,m,D ×GD×KDrapL(µ,DL) (Sx ⊗k(x) Fc) ∼= Yi,m,D ×Q Fc.

Step 5: With notations as before, we define for every m ∈ 1
nZ a subset of Ti,m,D

by Si,m,D := {y ∈ Ti,m,D | |di(y)|
e
p > p−m}. Here we write di(y) for the image

of di in the residue field at y and we claim that Si,m,D is a union of connected
components of Ti,m,D for all m ∈ 1

nZ.
Proof of claim: By construction and the third part of 5.2.5, the element di(y) is
the product of an f -th root of unity and the determinant of an automorphism on
a free (L0⊗Qp

κ(y))-module of rank i such that the characteristic polynomial of
this automorphism divides the polynomial c. Since di(y) can thus be considered
as an element of F×

c , the expression |di(y)|
e
p is actually well-defined.

Associated to the image of di in Γ(Ti,m,D,OTi,m,D
) is a unique morphism of

rings ρdi
: Fc[X] → Γ(Ti,m,D,OTi,m,D

) which corresponds to a unique morphism
of schemes

θdi
: Ti,m,D → Spec(Fc[X]) , y 7→ ker(ρdi,y).

Here ρdi,y denotes the composite of ρdi
with the canonical morphism from

Γ(Ti,m,D,OTi,m,D
) to κ(y). Hence ρdi,y sends a polynomial P to P (di(y)).

Let λ1, . . . , λd+1 ∈ F×
c denote the not necessarily distinct roots of c. Thus for

every y ∈ Ti,m,D there exists a subset Jy of {1, . . . , d+ 1} of cardinality i such
that di(y) ∈ (

∏

j∈Jy
λj)µf (Fc). It follows that the image of the morphism θdi
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is contained in the finite set

{(X + ǫζ
∏

j∈J

λj)Fc[X] | ǫ ∈ {±1}, J ⊆ {1, . . . , d+ 1},#J = i, ζ ∈ µf (Fc)}

of closed points of A1
Fc

. Hence θdi
is constant on connected components. Now

we find

Si,m,D =
⋃

ǫ∈{±1}

⋃

ζ∈µf (Fc)

⋃

J

θ−1
di

({(X + ǫζ
∏

j∈J

λj)Fc[X]})

where the third index set runs over all subsets J of {1, . . . , d+1} of cardinality
i such that |

∏

j∈J λj |
e
p > p−m. The claim is proved.

Note that Ti,m,D is of finite type over Fc, therefore Noetherian and hence has
only finitely many connected components. In particular, Si,m,D is a closed
subset of Ti,m,D for every m ∈ 1

nZ.
Step 6: There exists m0 ∈ 1

nZ such that

p−m0 > max{|
∏

j∈J

λj |
e
p | J ⊆ {1, . . . , d+ 1},#J = i}.

Hence Si,m,D is empty for all m ∈ 1
nZ such that m ≤ m0.

Let Ji denote the set of all families (Jτ )τ of subsets of {1, . . . , d+ 1} satisfying
∑

τ #Jτ = [L : Qp]i. If m1 ∈ 1
nZ is such that

m1 > max{
∑

τ

∑

j∈Jτ

µτ,j | (Jτ )τ ∈ Ji},

then the set underlying Yi,m,D is empty for all m ∈ 1
nZ such that m ≥ m1. It

follows that Si,m,D is also empty in this case.
Step 7: Now applying these considerations to all i ∈ {0, . . . , d+ 1} yields finite-
ness, hence closedness, of the union

d+1⋃

i=0

⋃

m∈ 1
n
Z

pr′i,m(Si,m,D) ⊆ Sx ⊗k(x) Fc.

Here pr′i,m denotes the base change to Ti,m,D of the proper morphism Yi,m,D →

GD ×K Drap(µ,DL) for all i ∈ {0, . . . , d+ 1} and all m ∈ 1
nZ.

Let s ∈ Sx⊗k(x) Fc be a point such that for (D⊗K κ(s), g(s)(σ0⊗κ(s)),F•(s)),
where (g(s),F•(s)) is the pullback to Spec(κ(s)) of the universal element on
GD×KDrap(µ,DL), there exists a g(s)(σ0⊗κ(s))-invariant L0⊗Qp

κ(s)-submodule

U of rank rU > 0 with |detκ(s)(g(s)(σ0 ⊗ κ(s))|fU )|
e
p > p−hU . Here we have set

hU :=
∑

τ

∑

j∈ 1
n
Z

j dimκ(s)(F
j(s)τ ∩ UL,τ/F

j+1(s)τ ∩ UL,τ ).

We remark that the same inequality is true with respect to any field extension
E of κ(s) and the corresponding submodule U⊗κ(s)E. The point s is contained
in pr′rU ,hU

(SrU ,hU ,D): indeed, a triple as above is a κ(s)-valued point of YrU ,D.
Letting y ∈ YrU ,hU ,D denote the image point, both s and y lie over the same point
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in GD×KDrap(µ,DL). Hence there exists t ∈ TrU ,hU ,D such that pr′rU ,hU
(t) = s

and therefore s ∈ pr′rU ,hU
(SrU ,hU ,D) by the remark just made.

Step 8: Since the field extension k(x) ⊆ Fc is finite, the projection morphism
q : Sx⊗k(x)Fc → Sx is proper. Let M denote the open subscheme of Sx induced
on the open subset

Sx \
d+1⋃

i=0

⋃

m∈ 1
n
Z

q(pr′i,m(Si,m,D)).

Denote by iM : M → Sx the canonical morphism of K-schemes.
The third point in the following claim uses notation from the discussion directly
before the theorem.
Claim: The following statements are equivalent for a point z ∈ α−1(x):
a) The point z is contained in Mad, considered as a subset of α−1(x) via iadM .
b) The point adSx

(z) is contained in M .
c) The pair (gz,F

•
z ) is contained in (GD ×K Drap(µ,DL))(k(z))

wa.
d) The point z is contained in α−1(x)wa.
Proof of claim: For the equivalence of a) and b) we identify Mad with α−1(x)×Sx

M in Ad(K). Then application of [Hub1, Proposition 3.9 ii)] to the equality
iM ◦ adM = adSx

◦ ℓ((iM )ad) yields for every s ∈ M and y ∈ α−1(x) with
iM (s) = adSx

(y) the existence of t ∈ Mad such that iadM (t) = y and adM (t) = s.
For the implication “b) ⇒ c)” assume that (gz,F•

z ) is not contained in (GD ×K

Drap(µ,DL))(k(z))
wa. The morphism qad is surjective. For y ∈ (Sx ⊗k(x) Fc)

ad

with qad(y) = z, the pair (gy,F•
y ) is not contained in (GD×KDrap(µ,DL))(k(y))

wa

by 5.2.6. Let y′ := adSx⊗k(x)Fc
(y). Restricting |·|k(y) to κ(y′) and using the nota-

tion from the previous step, we see that (D⊗K κ(y′)), g(y′)(σ0⊗κ(y)),F•(y′)) is
not weakly admissible. Hence, y′ = pr′i,m(t′) ∈ pr′i,m(Si,m,D) for a suitable pair
(i,m) and t′ ∈ Ti,m,D (cf. Step 7). But then adSx

(z) = adSx
(qad(y)) = q(y′) is

not contained in M .
For the implication “c) ⇒ b)” assume that adSx

(z) /∈ M . By surjectivity of q
there exists s ∈ ∪d+1

i=0 ∪m∈ 1
n
Z pr′i,m(Si,m,D) such that q(s) = adSx

(z). By [Hub1,

Proposition 3.9 ii)] again there exists t ∈ (Sx ⊗k(x) Fc)
ad with qad(t) = z and

adSx⊗k(x)Fc
(t) = s. The latter equality and the same argument used to show

equivalence of a) and b) imply that t is contained in the complement of the open
subspace

((Sx ⊗k(x) Fc) \
d+1⋃

i=0

⋃

m∈ 1
n
Z

pr′i,m(Si,m,D))ad ⊆ (Sx ⊗k(x) Fc)
ad.

This means there is a point t′ in some T ad
i,m,D with (pr′i,m)ad(t′) = t and

|di(t
′)|ek(t′) > |p|mk(t′). The latter implies that (gt′ ,F•

t′) /∈ (GD×KDrap(µ,DL)(k(t
′))wa.

The equality qad(t) = z together with 5.2.6 finally yield that (gz,F•
z ) /∈ (GD×K

Drap(µ,DL))(k(z))
wa and hence b). The equivalence of c) and d) holds by def-

inition. This proves the claim.

From the claim we finally conclude that

Mad = α−1(x)wa
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holds, which finishes the proof.

Remark 5.2.10. Taking into account the context of 1
nZ-filtrations, by an anal-

ogous reasoning as in the proof of [Hel, Theorem 5.1], the adic space α−1(x)wa

for general x ∈ Qad can be obtained as the fiber product of the adification of
a quasi-projective scheme over a finite intermediate extension of K in k(x) (as
constructed in the above proof) with Spa(k(x), k(x)+).

Example 5.2.11.

1. With notations from the proof, let n = 2, d = 2, e = f = 1, µ = (0, 1
2 , 1)

and suppose c = (X − 1)(X − p
1
2 )(X − p) ∈ K[X]. Then denoting by D

a three-dimensional K-vector space we find

M = Sx \ (pr′1, 12
(S1, 12 ,D

) ∪ pr′1,1(S1,1,D) ∪ pr′2,1(S2,1,D) ∪ pr′2, 32
(S2, 32 ,D

)).

In particular, a triple (D = Ke1⊕Ke2⊕Ke3, φ, F
•) with a K-linear map

φ : e1 7→ e1, e2 7→ p
1
2 e2, e3 7→ pe3

and a filtration F • of type µ on Ke1⊕Ke2⊕Ke3 by K-vector spaces lies
in the category FICwa

Qp,K,2 (and hence defines a K-valued point of M) if

and only if Ke1∩F
1
2 = 0 and (Ke1⊕Ke2)∩F 1 = 0. The set of filtrations

satisfying these conditions is not empty.
The object Ke1 ⊕Ke2 together with induced Frobenius and any induced
weakly admissible filtration lies in FICwa

Qp,K,2. It lies in FICwa
Qp,K,(2) if and

only if the non-trivial filtration step is equal to the Frobenius-invariant
subspace Ke2. Regarding the results from the previous sections, in this
case this object corresponds via Vcris,2, up to isomorphism, to the direct
sum of the trivial GQp,(2)-representation K with ε−1

2 . In all other cases,
the functor Vcris,2 sends this object to K.

2. Let d = 1, f = 1, c = (X−1)(X−p
1
n ) ∈ K[X] and µ = ((0, 1

n )τ )τ . Thus let
D be a two-dimensional K-vector space. We find that the underlying set
of M in this case is identified with the subset of those points y ∈ Sx such
that for the corresponding pair (gy,F•

y ) ∈ (GD×K Drap(µ,DL))(κ(y)) we
have: the τ -isotypical component of the scalar extension to L ⊗Qp

K of

the gy-eigenspace of 1 has trival intersection with F
1
n
y,τ for every τ .

79



A Rational Hodge-Tate weights

In this short appendix we introduce the notion of Hodge-Tate weight in 1
nZ. We

assume all notations and conventions up to section 4.2.

By the arguments given in 2.1.3, an RL-module M is the same as a family
⊕

τ Mτ of K-vector spaces made into a module over the ring
⊕

τ Kτ by com-
ponentwise addition and componentwise scalar multiplication.
This holds in particular for the RL-module DL associated with an object D of
FICL,K,n. For any x ∈ DL and any Qp-algebra homomorphism τ ′ : L → K,
let xτ ′ := πτ ′(x) where πτ ′ is the projection DL → DL corresponding to the
idempotent (δτ,τ ′)τ ∈

⊕

τ Kτ (in terms of the Kronecker delta). Then

DL,τ ′ := image(πτ ′) = {d ∈ DL | (l ⊗ 1)d = (1⊗ τ ′(l))d for all l ∈ L}

and each DL,τ ′ is naturally equipped with a decreasing, exhaustive and sepa-
rated 1

nZ-filtration by K-vector spaces via F •DL,τ ′ := (F •DL)τ ′ := πτ ′(F •DL).

Definition A.1. Let D be in FICL,K,n and let (F •DL,τ )τ be the family of
filtrations just described. A number h ∈ 1

nZ is called a Hodge-Tate weight of D
if there exists a Qp-algebra homomorphism τ : L → K such that gr−hDL,τ 6= 0.
The positive integer

∑

τ dimK(gr−hDL,τ ) is called the multiplicity of the Hodge-
Tate weight h. Thus we obtain a multituple

HT (DL) := HT (D) := (HT (D)τ )τ ∈ ((
1

n
Z)rankR(D))τ

where each (unordered) rankR(D)-tuple HT (D)τ contains those Hodge-Tate
weights of D contributed by DL,τ with respective multiplicity dimK(gr−hDL,τ ).
Let V be in Repcris

K (GL,(n)). We define the Hodge-Tate weights of V as being
those of Dcris,n(V ) and set HT (V ) := HT (Dcris,n(V )).

Note that the definition of Hodge-Tate weight depends only on the associated
filtration and not on the Frobenius of D. Hence non-isomorphic objects can
induce the same Hodge-Tate tuple (cf. also the examples below).

Example A.2.

1. Recall the object K ′
W from 2.2.17. Then HT (K ′

W ) = (0,− 1
n ). The mul-

tiplicity of both Hodge-Tate weights is one.

2. Let L = Qp. The object R⊕K∨
n is an object of FICwa

Qp,K,(n) and we find
HT (R ⊕K∨

n) = HT (K ⊕ ε−1
n ) = (0,− 1

n ). Again the multiplicity of both
Hodge-Tate weights is one.

3. Concerning the characters εrn (r ∈ Z) we have HT (εrn) = (( rn ), . . . , (
r
n )).

Hence in any case there is only one Hodge-Tate weight with respective
multiplicity [L : Qp]. In particular, HT (ε) = ((1), . . . , (1)).

With the notions from the definition and keeping in mind the effect of twist-
ing on Hodge-Tate weights, it is immediate that, if V is in Repcris

K (GL,(n)), all
Hodge-Tate weights of V are integers if and only if V is in Repcris

K (GL).
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