Aus dem Universitätsklinikum Münster Institut für Hygiene Direktor: Univ.-Prof. Dr. rer. nat. H. Karch

Molekulares Profil und phänotypische Analyse von enterohämorrhagischen und enteropathogenen *Escherichia coli* der Serogruppe O26

INAUGURAL-DISSERTATION zur Erlangung des doctor medicinae

der Medizinischen Fakultät der Westfälischen Wilhelms - Universität Münster

> vorgelegt von Geueke, Andrea Maria

> > Lennestadt 2008

Gedruckt mit Genehmigung der Medizinischen Fakultät der Westfälischen Wilhelms - Universität Münster.

Dekan: Univ.-Prof. Dr. med. V. Arolt Referent: Univ.-Prof. Dr. rer. nat. H. Karch Koreferent: Univ.-Prof. Dr. med. D. Harmsen Tag der mündlichen Prüfung: 13.03.2008 Aus dem Universitätsklinikum Münster, Institut für Hygiene Direktor: Univ.-Prof. Dr. rer. nat. H. Karch Referent: Univ.-Prof. Dr. rer. nat. H. Karch Koreferent: Univ.-Prof. Dr. med. D. Harmsen

> Zusammenfassung von Andrea Geueke

Molekulares Profil und phänotypische Analyse von enterohämorrhagischen und enteropathogenen *Escherichia coli* der Serogruppe O26

Enterohämorrhagische Escherichia coli (EHEC) und atypische enteropathogene Escherichia coli (aEPEC) gelten weltweit als Auslöser von Durchfallerkrankungen. EHEC können darüber hinaus das hämolytisch-urämische Syndrom (HUS) verursachen. Ein Unterscheidungskriterium zwischen EHEC und aEPEC ist die Fähigkeit zur Shiga Toxin-Produktion. Im Gegensatz zu typischen EPEC fehlt den aEPEC das EAF-Plasmid. Im Rahmen dieser Arbeit wurden EHEC und aEPEC der Serogruppe O26 molekularbiologisch und phänotypisch charakterisiert. Die Ergebnisse dieser Untersuchungen zeigen, dass beide Pathogruppen EHEC-Hämolysin produzieren und gegenüber Tellurit resistent sind. Die E. coli O26 Stämme waren nicht in der Lage Rhamnose zu fermentieren. Sowohl aEPEC als auch EHEC beherbergten das für Intimin kodierende $eae-\beta$ -Gen und trugen, unabhängig von ihrer Beweglichkeit, das für Flagellin kodierende fliCH11- Gen. Zudem zeigt sich, dass neben den bekannten Shiga Toxinen weitere potentielle Virulenzfaktoren in EHEC und aEPEC O26 vorkommen. Hierbei handelt es sich um Determinanten, die man zu den Familien der Zytolysine (EHEC-Hämolysin) und Adhäsine (Intimin) rechnet. Die alleinigen klassischen Methoden der Bakteriologie erweisen sich zunehmend als unzureichend, um das Gefährdungspotential dieser Erreger zu bestimmen. Diese Erkenntnisse erfordern die Erfassung zusätzlicher Virulenzmarker, um die Virulenz derartiger Stämme zu erkennen und die fortschreitende Entwicklung von neuen Pathogenen rechtzeitig zu entdecken. Tag der mündlichen Prüfung: 13.03.2008

Inhaltsverzeichnis

1	EINLEITUNG	1
2	ZIELSETZUNG	6
3	MATERIAL UND METHODEN	7
3.1	Material	7
3	1.1 Herkunft der verwendeten <i>E. coli</i> Stämme	7
3	1.2 Definition der Erkrankungen	8
3	1.4 Reagenzien und Verbrauchsmaterialien	9
3.2	Methoden	11
3	2.1 Phänotypische Untersuchung	11
3	2.2 Polymerasekellenreaklion 2.3 Agarosegel-Elektrophorese	15
3	2.4 Restriktionsanalyse	20
4	ERGEBNISSE	21
4.1	Phänotypische Untersuchung	21
4	1.1 Darstellung der biochemischen Reaktionen im API 20 E	21
4	1.2 Resistenzverhalten im Agardiffusionstest	25
4	.1.3 Untersuchung auf Hamolyse, Sorbitol- bzw. Rhamposefermentation und Telluritresistenz	27
		21
4.2	Molekularbiologische Untersuchungen	28
4	.2.1 Sicherung der Serotypie	28
4	2.2 Gendistribution von Pathogenitats- und Widerstandsfaktoren	30
5	DISKUSSION	32
6	LITERATURVERZEICHNIS	40
7	ANHANG	47
7.1	Abkürzungsverzeichnis	47
7.2	Abbildungsverzeichnis	49
7.3	Tabellenverzeichnis	50
8	LEBENSLAUF	51
9	DANKSAGUNG	52

1 Einleitung

Escherichia coli (*E. coli*) sind fakultativ anaerobe Bakterien, die als apathogene Keime die Darmflora des Menschen besiedeln. Zusätzlich zu diesen apathogenen Stämmen wurden in den letzten Jahrzehnten fünf weitere obligat pathogene *E. coli* Stämme identifiziert, die ein breites Krankheitsspektrum im menschlichen Körper verursachen können (48):

- Enteroaggregative *E. coli* (EAEC)
- Enteroinvasive *E. coli* (EIEC)
- Enterotoxische *E. coli* (ETEC)
- Enteropathogene E. coli (EPEC)
- Enterohämorrhagische E. coli (EHEC)

In dieser Studie wurden besondere Merkmale der enteropathogenen und enterohämorrhagischen *E. coli* (EPEC bzw. EHEC) untersucht um phylogenetische Rückschlüsse zu ermöglichen.

Das klinische Bild einer Infektion durch EHEC reicht von milden Durchfallerkrankungen über extraintestinale Infektionen, blutige Diarrhöen, thrombotisch-thrombozytopenische Purpura bis hin zum hämolytischurämischen Syndrom (HUS) (48). Eine EHEC-Infektion verläuft klinisch oft inapparent. In ca. einem Drittel der Erkrankungsfälle treten nach einer Inkubationszeit von drei bis vier Tagen Abdominalkrämpfe mit wässrigen Durchfällen auf, die sich in 90% zu blutigen Durchfällen entwickeln (3, 38). Dazu können Übelkeit und Erbrechen entstehen. Fieber wird dagegen selten beobachtet. 10-20% der Erkrankten, besonders Säuglinge und Kleinkinder, entwickeln als schwere Verlaufsform eine hämorrhagische Colitis (52). Das HUS tritt bei ca. 15% der Patienten unter 10 Jahren auf (63): Es kommt zur hämolytischen Anämie, Thrombozytopenie, und schließlich zu einem akuten Nierenversagen (24). Unter Kleinkindern ist das HUS der häufigste Grund eines akuten Nierenversagens und verläuft in bis zu 20% der Fälle tödlich (11, 36).

Therapeutisch sind bei einem HUS frühzeitige stationäre Aufnahme und strikt symptomatische Behandlungen wie balancierte Volumensubstitution, Erythrozytenersatz, forcierte Diurese und bei globaler Niereninsuffizienz eine Hämodialyse angezeigt (18, 66, 73).

1

Im Jahr 2003 entwickelten von 1137 durch EHEC infizierte Patienten 7,2% ein hämolytisch-urämisches Syndrom. Im Jahr 2004 wurden 819 Patienten gemeldet, von denen insgesamt 92 (11,2%) am HUS erkrankten. Diese Zahlen verdeutlichen die Zunahme der gefährlichen Komplikationsverläufe unter EHEC-Infektionen (52).

EHEC besitzen als Leitmerkmal die Fähigkeit, Shiga Toxin (Stx) zu produzieren. Im Jahr 1983 konnte erstmalig eine Verbindung zwischen STEC (Shiga Toxinproduzierende E. coli) und dem Auftreten von HUS bzw. anderen gastrointestinalen Erkrankungen hergestellt werden (39). Aufgrund dieser Krankheitsassoziation, ihrer Stx- und Hämolysinproduktion sind diese Bakterien seit 1987 als EHEC definiert (42). Neben der Stx-Produktion sind EHEC durch das Vorkommen einer Vielzahl weiterer Virulenzfaktoren gekennzeichnet (s. u.). Wichtigster Serovar unter den EHEC ist E. coli O157:H7, der weltweit die meisten Krankheitsausbrüche verursacht (2, 64, 70). In den letzten Jahren wurden zahlreiche Serovare identifiziert, die nicht dem Serovar O157:H7 angehören. Die häufigsten dieser Serovare sind O26:H11, O103:H2, O111:H8 und O145:H28 (12, 19), deren Verbreitung als Krankheitserreger weltweit zunimmt. Von diesen Serovaren ist E. coli O26:H11 am häufigsten verbreitet: Er gilt in Deutschland seit 1996 in ¹/₇ aller Erkrankungen an HUS als Verursacher (21, 24), in den USA wird er bei 50% der Patienten mit blutiger Diarrhoe isoliert (34).

EPEC gelten als Hauptursache von Durchfallerkrankungen bei Kindern unter 1 Jahr (71). Innerhalb der EPEC Stämme erfolgt eine Unterteilung in typische und atypische EPEC (aEPEC) (s. Tabelle 1). Der beiden EPEC Gruppen gemeinsame Pathomechanismus beruht, ähnlich dem der EHEC auf deren Fähigkeit, A/E Läsionen ("attaching and effacing lesion") im intestinalen Epithel verursachen zu können. Typische EPEC besitzen das Virulenzplasmid EAF ("EPEC adherence factor"), auf dem für die Genexpression des "locus of enterocyte effacement" (LEE-Insel) wichtige Regulationsgene kodiert sind. Dies sind u.a. die Gene *perA, B, C* ("plasmid-encoded regulator") und *bfp*. Das Gen *bfp* kodiert für **b**undle-forming-pili (BFP) dessen Expression für die initiale

Anheftung der Bakterie an die Zielzelle verantwortlich ist. Des Weiteren wird das *bfp*-Gen als Nachweis für das Vorhandensein des EAF-Plasmids genutzt (46, 48). Typischen und atypischen EPEC gemeinsam sind die oben genannte Fähigkeit zum Setzen von A/E Läsionen und das Fehlen jeglicher Shiga bzw. Verotoxinproduktion. Typische EPEC besitzen das EAF-Plasmid mit *bfp*-Expression, wohingegen aEPEC dieses EAF-Plasmid nicht aufweisen und auch LEE unabhängige Virulenzfaktoren besitzen, wie z.B. das *EhlyA*-Gen (28, 53, 71).

Tabelle 1: Zuordnung verschiedener *E. coli* Serotypen zu typischen bzw.atypischen EPEC

Stamm EPEC	Serotyp
typisch	u.a.: O55:H6, O86:H34, O111:H2, O142:H34/6
atypisch	u.a.: 026:H11 , O55:H7/34, O86:H8, O111:H9/25

(verändert nach Trabulsi et al., 2002)

E. coli stellen normalerweise nicht-invasive Bakterien dar. Erst die Fähigkeit der enterohämorrhagischen E. coli zur Shiga Toxin-Produktion ermöglicht die mikroangiopathischen, thrombotischen Endothelläsionen, wie sie bei Erkrankungen durch EHEC typisch sind (45). Die Shiga Toxine werden in zwei Hauptgruppen, Shiga Toxin 1 (Stx₁) und Shiga Toxin 2 (Stx₂), mit je eigenen Nebenvarianten unterteilt (22, 41, 77). Nach Bindung des Toxins an einen membranständigen Glykosphingolipid-Rezeptor (Gp3), der sowohl in Niere, Darm als auch dem Gehirn exprimiert wird, erfolgt die Toxinaufnahme durch Endozytose. In der Zielzelle kommt es durch die Spaltung von Adenosinresten in der rRNA zur Inhibierung der Proteinsynthese und schlussendlich zur Apoptose (49, 50). Neben der Zellzerstörung sind Shiga Toxine in der Lage, die Expression von Zytokinen, Transkriptionsfaktoren und Zelladhäsionsmolekülen zu steigern (8, 47, 69) und dadurch in die Immunantwort und Hämatopoese einzugreifen (25, 54). Durch diese Mechanismen nehmen Shiga Toxine einen entscheidenden Einfluss auf die Ausbildung der Krankheitssymptome, besonders des HUS, bei Infektionen durch EHEC. Die Auswirkungen des Stx₂ auf die Genregulation bzw. -expression der geschädigten Zellen sind erheblich

größer als die des Stx₁, wodurch die hohe Inzidenz der schweren Krankheitsverläufe durch Stx₂-produzierende EHEC begründet werden kann (45, 78). Ein weiterer Virulenzfaktor ist das attaching and effacing-Gen (eae-Gen), welches sowohl in EPEC als auch EHEC chromosomal auf der Pathogenitätsinsel "locus of enterocyte effacement" lokalisiert ist und für das

Membranprotein Intimin kodiert (35). Neben der Shiga Toxin-Produktion gilt dieses Intimin in der Gruppe der EHEC als auch unter den EPEC als Hauptvirulenzfaktor (16). Intimin fungiert als Adhäsionsvermittler zwischen Bakterium und Darmepithelzelle (46). die Grundlage der A/E Läsion, nach Nataro und Kaper, 1998). deren Pathomechanismus durch die folgenden Schritte charakterisiert ist: Zelladhäsion und Microvillizerstörung, mit anschließender Aggregation von polarisierten Zytoskelettstrukturen (59, 71), (siehe Abb. 1). Die A/E Läsion ist eine der Hauptursachen für das Entstehen der krankheitsdefinierenden Symptome einer E. coli Infektion. Insgesamt sind 14 eae-Genvarianten bekannt, die für unterschiedliche Intimintypen kodieren (9). In E. coli O26:H11 Isolaten wird hauptsächlich Intimin β 1 gefunden (76).

Durch Abbildung 1: Charakteristische EPEC-A/E-Läsion im lleum. Während der Adhäsion scheint das diese Adhäsion bildet das Protein Bakterium als typisches Merkmal wie auf einem Sockel an der Zellmembran zu sitzen (verändert

Atypische EPEC und EHEC O26:H11 enthalten ein ca. 104 kb großes Virulenzplasmid (48). Dieses Plasmid beherbergt das Gen hlyA, welches für ein porenbildendes Zytolysin, den Pathogenitätsfaktor EHEC-Hämolysin kodiert (56). Die Rolle des EHEC-Hämolysins bezüglich der Virulenz ist noch relativ unbekannt. Aus der Lyse der Erythrozyten resultiert eine erhöhte Konzentration an Häm und Hämoglobin, welche das Wachstum der E. coli verbessern. Außerdem beeinflussen diese Zytolysine sowohl Lympho- und Granulozyten als auch Tubulusepithelzellen der Niere (4, 13). Für α -Hämolysin konnte bereits

4

eine erhöhte Interleukin β -Produktion im Zielorganismus nachgewiesen werden (62). EHEC-Hämolysin bewirkt einen ähnlichen Effekt. Interleukin β steigert durch eine vermehrte Gp3-Expression die Toxizität von Shiga Toxinen (40). Dies deutet auf eine synergetische Funktion von Shiga Toxinen und EHEC-Hämolysin in Bezug auf die Zerstörung wichtiger Zellfunktionen hin. Die Tatsache, dass das EHEC-Hämolysin eng mit *stx*-positiven HUS Patienten assoziiert ist, unterstützt diese Vermutung zusätzlich (56).

Wichtige phänotypische Eigenschaften der *E. coli* sind die Zuckerfermentation und die Antibiotikaresistenz. Die klassische, phänotypische Identifizierung von *E. coli* erfolgt anhand des Nachweises typischer biochemischer Eigenschaften: Abbau von Mannit, Laktose und Glukose (unter Gasbildung), Indolbildung, fehlende Zitratverwertung und negative **V**oges-**P**roskauer-(VP)-Reaktion (Acetoinbildung). Durch die inkongruente Fermentation (Verstoffwechselung) von Rhamnose, Sorbitol und der Telluritresistenz können einzelne *E. coli* Serovare phänotypisch voneinander abgegrenzt werden. So sind EHEC O157:H7 nicht in der Lage, Sorbitol zu fermentieren (44). *E. coli* der Serogruppe O26 fermentieren keine Rhamnose, zeigen jedoch telluritresistentes Wachstum (32, 65). Diese Resistenz der *E. coli* gegen Tellurit korreliert eng mit dem Nachweis des *ter*-Gens (7, 68).

Die Zunahme von Antibiotikaresistenzen innerhalb der Spezies *E. coli* stellt ein wachsendes Problem dar (15). Bei vielen durch *E. coli* verursachten Infektionen wie unkomplizierten Zystitiden und Pyelonephritiden, sind z.B. Trimethoprim-Sulfamethoxazole und Cephalosporine der dritten Generation angezeigt (58). Obwohl bei *stx*-positiven *E. coli* eine antibiotische Therapie kontraindiziert ist, zeigen 40% der STEC eine Resistenz gegen Trimethoprim-Sulfamethoxazole (58). Durch Testung der Antibiotikaresistenz als phänotypische Eigenschaft werden weitere Vergleiche der untersuchten *E. coli* O26 Stämme ermöglicht.

2 Zielsetzung

Sind EHEC und aEPEC Stämme der Serogruppe O26 enger miteinander verwandt als bisher angenommen? Durch Multilocus Enzymelektrophorese bzw. Sequenztypisierung von Haushaltsgenanalysen konnte bereits gezeigt werden, dass viele chromosomale Regionen gemeinsam in EHEC und aEPEC O26 Stämmen vorliegen (17, 51, 72). In dieser Studie wurden EHEC und aEPEC O26:H11 sowohl phänotypisch als auch genotypisch vergleichend untersucht, pathogenitätsrelevante Gene identifizieren um zu und phylogenetische Zusammenhänge feststellen Die zu können. Typisierungsergebnisse sollen für epidemiologische Fragestellungen, aber auch zur klinischen Einschätzung des Erkrankungsverlaufs eingesetzt werden.

Trotz der großen Bedeutung als menschliche Krankheitserreger existiert bis zum heutigen Zeitpunkt keine Routinediagnostik, die beide, EHEC und aEPEC O26 Stämme, sicher nachweist, weswegen auch Aspekte zur Etablierung eines Isolationsmediums in diese Arbeit miteinbezogen werden.

3 Material und Methoden

3.1 Material

3.1.1 Herkunft der verwendeten E. coli Stämme

Die verwendeten *E. coli* Stämme wurden der Stammsammlung von Herrn Prof. Dr. H. Karch, Institut für Hygiene, Münster, entnommen. Es wurden fünf Paare *E. coli* der Serogruppe O26:H11, d.h. insgesamt zehn Stämme, untersucht. Diese wurden zwischen 1997 bis 1999 aus je zwei konsekutiven Stuhlproben von fünf Patienten isoliert. Das erste Isolat zeigte sich jeweils Shiga Toxinpositiv und das zweite Shiga Toxin-negativ (d.h. Stuhlprobe 1 = EHEC und Stuhlprobe 2 = aEPEC) (s. Tabelle 2).

Als Kontrollstämme dienten die in Tabelle 3 aufgeführten Stämme.

Tabelle 2: Aufführung der untersuchten E. coli Isolate

Für die Stuhlproben ist jeweils die Isolatnummer sowie die Fähigkeit der Shiga Toxinproduktion angegeben.

Patient	Stuhlprobe	Isolatnummer	Stx-Produktion
A	1	1530/99 (A1)	ја
	2	1676/99 (A2)	keine
В	1	5917/97 (B1)	ja
	2	318/98 (B2)	keine
С	1	1531/99 (C1)	ja
	2	1677/99 (C2)	keine
E	1	1532/99 (E1)	ja
	2	1679/99 (E2)	keine
F	1	249/98 (F1)	ja
	2	257/98 (F2)	keine

Isolatnummer	Seroaruppe
E-D31	O111:H-
DEC-8B	O111:H-
EDL-933	O157:H7
PMK 3	O103:H2
6061/96	O26:H11
5021/97	O26:H-
C 600	
5021/97	O26:H11
356/99	O26:H11
1541/01	O26:H11
EO2/695	O26:H11

Tabelle 3: Die verwendeten Kontrollstämme und deren Serogruppe:

3.1.2 Definition der Erkrankungen

Patienten mit Durchfall hatten mehr als drei wässrige Stuhlfrequenzen pro Tag, - blutig oder unblutig. HUS wurde als Kombination folgender Symptome festgelegt: mikroangiopathische hämolytische Anämie (Hämatokrit unter 30%), Thrombozytopenie (Thrombozytenzahl unter 150.000/mm³) und renale Insuffizienz (Serumkreatinin über dem höchstzulässigen Wert dem Patientenalter entsprechend).

3.1.3 Geräte

Vortexer	Bender und Hobein, Schweiz
Densimat	Biomérieux, Nürtingen
Flachbodengläser	Schott AG, Mainz
Brutschrank	Heraeus, Hanau
Sicherheitswerkbank	Heraeus, Hanau
Thermocycler,	
Version 1.259	BioRad, München
TGradient 96	Biometra, Göttingen
Zentrifuge,	
MiniSpin	Eppendorf, Hamburg

Kolbenhubpipette	Eppendorf,	Reference	mit	wählbarer
	Volumeneinste	llung, Hamburg	9	
Magnetrührer MR 3001	Heidoloph, Sch	wabach		
Spannungsgerät	Consort E 143			
Waage	Scout II OHAU	S		
Foto-Dokumenations-				
anlage	Kaiser, Hitachi,	, Mitsubishi		
Giesstand PhorCasterMidi	Biozym, Hessisch Oldendorf			
Flachgelelektrophoreseeinheit,				
Comphor Midi	Biozym, Hessis	sch Oldendorf		
Geldokumentationsanlage,				
GelDoc2000	BioRad, Hercul	les (CA/USA)		

3.1.4 Reagenzien und Verbrauchsmaterialien

Ösen	Nunc™, Rosklide, Dänemark				
API-SET	Biomérieux, Nürtingen				
Jamesreagenz°	Biomérieux, Nürtingen				
TDA-Reagenz	Biomérieux, Nürtingen				
VP1 und VP2	Biomérieux, Nürtingen				
Parafinum	Biomérieux, Nürtingen				
Isotone Kochsalz-Lösung	Eigenherstellung des Instituts für Med.				
	Mikrobiologie, Universitätsklinikum Münster				
Antibiotika	Oxoid, Wesel				
Müller-Hinton-Agarplatte	Heipha, Eppelheim				
Endoagarplatte	Heipha, Eppelheim				
Colombia-Blutagar	Heipha, Eppelheim				
Sorbitolhaltiger					
McConkey-Agar mit					
Cefixime und Tellurit					
(CT-SMAC)	Firma Oxoid, Hampshire				

Rhamnosehaltiger McConkey-Agar mit Cefixime und Tellurit (CT-RMAC) Firma Sifin, Berlin Reaktionspuffer Y PEQLAB Biotechnologie, Erlangen Enhancer Solution P PEQLAB Biotechnologie, Erlangen dNTP-Mix (Desoxyribonukleotide) PEQLAB Biotechnologie, Erlangen Primer Sigma ARK, Darmstadt Taq-DNA-Polymerase PEQLAB Biotechnologie, Erlangen passiv reverse Verotoxinproducing E. coli Latex Denka Seiken Co., Ltd., Tokyo, Japan Agglutination Sterile Wattestäbchen und Eigenherstellung des Instituts für Hygiene, Universitätsklinikum Münster Aqua destillata Molekulargewichtsstandard 1-kbp ladder/100bp ladder Initrogen, Carlsbad/USA **Xylencyanol** Merck, Darmstadt Merck, Darmstadt Borsäure BMA SeaKem LE-Agarose Biozym, Hessisch Oldendorf Trisborat-EDTA-Puffer (TBE) Roth, Karlsruhe Bromphenolblau Merck, Darmstadt Ethidiumbromid BioRad, Hercules (CA/USA) Tris Ultra Qualität Roth, Karlsruhe **EDTA** (Ethylendiamintetraacetat) Sigma Aldrich, Deisenhofen Glycerin Merck, Darmstadt Purified BSA **New England Biolabs** Restriktionsendonuklease Hha I New England Biolabs

Es wurden Standard-Kunststoffmaterialien von den Firmen Eppendorf (Hamburg) und Vitlab (Landmark Scientific Inc. USA) benutzt.

3.2 Methoden

3.2.1 Phänotypische Untersuchung

3.2.1.1 API 20 E

Der API 20 E ist ein standardisiertes System zur Identifizierung gramnegativer, nicht anspruchsvoller Stäbchen anhand biochemischer Reaktionen. Zunächst wird eine 0,5 McFarland (Einheit zur Konzentration der Bakterien in der Flüssigkeit) Keimsuspension aus Aqua destilata und einer auf Colombia-Blutagar 18-24 Stunden gewachsenen Bakterienkolonie hergestellt. Die Feuchtkammer des API-Sets wird mit H₂O gefüllt und der dazugehörige Teststreifen eingelegt. Anschließend werden die 20 Mikroreagenzröhrchen mit der Bakteriensuspension beimpft, wobei alle Reaktionen, die in Tabelle 4 mit * gekennzeichnet sind, mit Paraffinöl abgedeckt werden. Die in Tabelle 4 unterstrichenen Reaktionen werden bis zum Becher vollständig aufgefüllt. Nach einer Inkubation über 24 Stunden bei 37°C werden zu folgenden Mikroröhrchen weitere Reagenzien zugefügt:

- -TDA (= Prüfung auf biochemische Reaktion von Tryptophan): erhält TDA-Reagenz
- -IND (= Prüfung auf biochemische Reaktion von Indol): erhält James-Reagenz
- -VP (= Prüfung auf biochemische Reaktion von Acetoin): erhält VP 1 und VP 2, Beurteilung der Farbreaktion erst nach 10 min.

Die während der Inkubation entstandenen Stoffwechselprodukte bewirken Farbumschläge, entweder direkt oder nach der Reagenzzugabe. Anhand der folgenden Ablesetabelle (Tabelle 4) werden die Reaktionen bestimmt und durch eine Identifizierungssoftware mit Hilfe eines numerischen Profils analysiert.

	Aktive	Menge		Ergebnisse	
Test*	Bestandteile	(mg/	Reaktionen/Enzyme	Negativ	Positiv
		vert.)		_	
ONPG	2-Nitrophenyl-	0,223	β-Galaktosidase	Farblos	Gelb
	βD-				
	Galaktopyranosid			_	
<u>ADH</u>	L-Arginin	1,9	Arginindihydrolase	Gelb	Rot/Orange
LDC	L-Lysin	1,9	Lysindecarboxlase	Gelb	Rot/Orange
<u>ODC</u>	L-Ornithin	1,9	Ornithin-	Gelb	Rot/Orange
0174	- · · · · ·	0 750	decarboxylase		
CII*	Irinatriumcitrat	0,756	Citratverwertung	Hellgrun/ Gelb	Blau-Grun/ Blau
H ₂ S	Natriumthiosulfat	0,075	H ₂ S-Bildung	Farblos/	Schwarzer
			- 0	Grau	Nieder-
					schlag
<u>URE</u>	Harnstoff	0,76	Urease	Gelb	Rot/Orange
TDA	L-Tryptophan	0,38	Tryptophan-	Gelb	Rotbraun
			desaminase		
IND	L-Tryptophan	0,19	Indolbildung	Farblos	Rosa
				Hellgrün/	
				Gelb	
VP*	Natriumpyrovat	1,9	Acetoinbildung	Farblos	Rosa/Rot
GEL*	Gelantine	0,6	Gelatinase	Keine	Diffusion
				Diffusion	der
					schwarzen
	D. Clukese	10	Formantation	Dlau/	
GLU	D-Glukose	1,9	rennentation	Blau/	Gelb/
				Diau-Grun	Gelbyrau
MAN	D-Mannit	1,9	Fermentation	Blau/	Gelb
				Blau-Grün	
INO	Inosit	1,9	Fermentation	Blau/	Gelb
				Blau-Grün	
SOR	D-Sorbit	1,9	Fermentation	Blau/	Gelb
				Blau-Grün	
RHA	L-Rhamnose	1,9	Fermentation	Blau/	Gelb
0.4.0	D. Os a share a s	1.0		Blau-Grun	0
SAC	D-Saccharose	1,9	Fermentation	Blau/	Geib
	D Malibiana	10	Formontation	Blau-Grun	Calla
		1,9		Blau Grün	Geib
	Amvadalin	0.57	Fermentation	Blau/	Gelb
		0,07		Blau-Grün	Gein
ARA		1 9	Fermentation	Blau/	Gelb
		1,0		Blau-Grün	
OX	Oxidase		Cytochromoxidase	Siehe Oxid	aseanleitung
07	CARDESC		Cytochiomoxidase		ascamentung

Tabelle 4: Bestandteile und Auswertungsrichtlinien des API 20 E Tests

(* Bedeutung der Abkürzungen siehe Kapitel 3.1.1)

Oxidasetest: Auf ein Filterpapier wird ein Tropfen Oxidasereagenz gegeben und anschließend die zu testende Bakterienkolonie aufgetragen. Ein blauer Farbumschlag der Kolonie kennzeichnet eine positive Reaktion.

Neben den fünf korrespondierenden Bakterienpaaren (s. Tabelle 4) wurden die folgenden vier *E. coli* Stämme in der API 20 E Reihe als Kontrollen mituntersucht:

•	EO2/695	(O26:H11)	٠	356/99	(O26:H11)
•	5021/97	(O26:H11)	•	1541/01	(O26:H11)

3.2.1.2 Agardiffusionstest

Mit Hilfe der Agardiffusion wird die Antibiotikaempfindlichkeit eines Erregers untersucht. Eine 0,5 McFarland Bakteriensuspensionslösung wird im Rasenausstrich mit einem sterilen Wattetupfer auf eine Müller-Hinton (MH)-Agar-Platte beimpft. Anschließend werden mit einer definierten Menge von Antibiotika imprägnierte Filterscheiben steril auf die MH-Agar-Platte gelegt. Die Beschickung der Scheiben ist der Tabelle 5 zu entnehmen. Die Platten inkubieren bei 37°C für ca. 20 Stunden. Danach wird der Hemmhofdurchmesser in mm abgelesen und nach der DIN 58959/14 1997-06 (NCCLS) ausgewertet. Entsprechend dieser Richtlinie erfolgt eine Einteilung der Keime in sensibel, resistent (siehe 5). Ein Vergleich intermediär oder Tabelle des Resistenzverhaltens der getesteten E. coli Stämme ist nun möglich.

Antibiotikum	Abkürzung	Beschickung	Sensibel	Intermediär	Resistent
	-	(µg)	>	Sensibel	
Ampicillin	AMP	10	22	15-21	14
Amoxicilin/					
Clavulansäure	AMC	30	28	21-27	20
Piperacillin	PRL	30	22	13-21	12
Cefuroxim	CXM	30	25	19-24	18
Cefotaxim	CTX	30	23	15-22	14
Ceftazidim	CAZ	10	16	11-15	10
Cefsoludin	CFS	30	29	19-28	18
Erythromycin	Ш	15	21	17-20	16
Imipenem	IPM	10	23	20-22	19
Tetracyclin	TE	30	22	17-21	16
Gentamicin	CN	10	21	15-20	14
Tobramycin	TOB	10	19	16-18	15
Ofloxacin	OFX	5	22	18-21	17
Ciprofloxacin	CIP	5	23	19-22	18
Trim					
Sulfometoxacol	SXT	25	16	11-15	10
Colistin	CT	10	11	-	8
Mezlocilin	Mez	30	23	17-22	16
Amikacin	AK	30	20	14-19	13
Aztreonam	ATM	30	28	20-27	19
Rifampicin	RD	30	20	17-19	16

Tabelle 5: Bewertung der Hemmhofgröße (mm) des Agardiffusionstests auf MH-Agar nach DIN 58959/14 1997-06 für gramnegative Stäbchen

3.2.1.3 Weitere phänotypische Untersuchungen

CT-SMAC/RMAC Zusammensetzung: Die von der Firma Oxoid, Hampshire verwendeten Spezialagarplatten enthalten je 2,5mg/l Potassium-Tellurit und 0,05mg/l Cefixime.

Anhand von CT-SMAC- (Sorbitol-haltigem McConkey-Agar mit Potassium-Tellurit und Cefixime) und CT-RMAC- (Rhamnose-haltigem McConkey-Agar mit Potassium-Tellurit und Cefixime) Platten konnte sowohl die Zuckerfermentation der *E. coli* Stämme als auch deren Telluritresistenz überprüft werden, wobei die Bakterien je 24 Stunden bei 35°C auf den jeweiligen Agarplatten bebrütet wurden. Auch die Referenzstämme O111:H- E-D31, O111:H- DEC-8B, O157:H7 EDL 933 und O103:H2 wurden hinsichtlich dieser Stoffwechselleistungen getestet. Zum Nachweis der Hämolyse wurde Enterohämolysin-Agar genutzt, der aus 5% fibrinfreien und aufbereiteten, gewaschenen Schaf-Erythrozyten sowie 10mM CaCl2 hergestellt wurde. Mittels eines kommerziellen Latex Agglutinationstestes konnte die Stx-Produktion nachgewiesen werden (passiv reverse Verotoxin-producing *E. coli* Latex Agglutination). Reinheitskontrollen wurden parallel auf Endo-Agar-Platten mitgeführt.

3.2.2 Polymerasekettenreaktion

Die Aufgabe der Polymerasekettenreaktion (PCR) besteht darin, DNA-Sequenzen selektiv zu vervielfältigen. Hierzu müssen die Endsequenzen des zu amplifizierenden DNA-Abschnittes bekannt sein, da ein zu diesen komplementärer Primer nötig ist. Zu Beginn erfolgt eine initiale Denaturierung der DNA-Doppelhelix für 5 min bei 94°C. Anschließend beginnt der zyklische Ablauf im ersten Schritt mit einer Denaturierung für 1 min bei 94°C, danach wird im zweiten Abschnitt durch eine Temperatursenkung das Anlagern (Annealing) der Primer an die einzelsträngige Template (= zu testende) -DNA möglich. Von diesen ausgehend synthetisiert die hitzestabile DNA-Polymerase (Tag) im dritten Schritt komplementäre DNA-Stränge in beide Richtungen. Dieser Zyklus wird im Allgemeinen 30mal wiederholt. Um zum Schluss die Reaktion zu vervollständigen, findet eine 5 minütige Polymerisation bei 72°C statt. Zu beachten ist die sorgfältige Auswahl der Annealing-Temperatur der Primer, da sie entscheidend für die Spezifität der Primer-Template-Bindung ist. Die Wahl richtet sich hauptsächlich nach der Länge und dem G/C-Gehalt des verwendeten Primers.

Der PCR-Ansatz (Mastermix) von 50 µl wurde nach folgendem Schema angesetzt:

10x Reaktionspuffer Y	5µl
5x Enhancer Solution P	10µl
dNTP-Mix (10mM Stammlösung)	1µl
Upstream Primer (aus 30mM Stammlösung)	1µI

Downstream Primer (aus 30mM Stammlösung)	1µl
Taq-DNA-Polymerase	0,26µl
Bakteriensuspension (DNA-Template)	5µl
Aqua dest.	auf 50µl auffüllen

Die Bakteriensuspension wurde aus einer frischen Einzelkolonie und 25µl 0,9% NaCl hergestellt. Tabelle 7 zeigt die verwendeten Primersequenzen, die Reaktionsbedingungen und die Größe des Produktes. Als Positivkontrolle zum Nachweis der Genabschnitte *hlyA*, *ter* und *stx* wurde der Referenzstamm *E. coli* EDL 933 (O157:H7) verwendet. *E. coli* 6061/96 (O26:H11) diente als Positivkontrolle für den Nachweis der Gene *fliC*, *eae-β* und *rfb*O26. Für den *eae-β*-Gennachweis wurde als zusätzliche Positivreferenz *E. coli* 5021/97 (O26:H-) festgelegt. Als Negativkontrolle wurde bei jeder PCR *E. coli* C600 verwendet (siehe Tabelle 6).

Kontrollstämme	gesuchter Genabschnitt
Positivkontrolle	
O157:H7, EDL 933	EhlyA
O157:H7, EDL 933	stx
O157:H7, EDL 933	ter
O26:H11, 6061/96	fliC
O26:H11, 6061/96	eae-β
O26:H-, 5021/97	eae-β
O26:H11, 6061/96	rfbO26
Negativkontrolle	
C 600	für alle gesuchten Genloci

Tabelle 6: Aufführung der in der PCR genutzten Referenzstämme Zu den jeweiligen Referenzstämmen ist der gesuchte Genabschnitt angegeben. Sämtliche Stämme wurden auf das Vorhandensein folgender Pathogenitätsund Widerstandsfaktoren untersucht:

- *stx*₁*B*
- stx₂A,stx₂cA,stx₂dA,stx₂eA
- EHEC-hlyA
- eae
- eae-β
- ter F

Zusätzlich wurde bei allen Bakterien eine Sicherung der Serotypie auf das Vorliegen des O26-(*rfb*O26) und des H11-(*fliC*) Genotyps durchgeführt.

Tabelle 7: PCR-Primer und –Bedingungen

Es werden für jeden verwendeten Primer sowohl die Zielsequenz als auch die benötigten PCR-Bedingungen angegeben.

Primer	Primersequenz 5'3'	Ziel sequenz	PCR-Bedingungen			PCR- Produkt -	Referenz
			Denatu rierung	Annealing	Amplifi- zierung	länge (bp)	
KS7	ccc gga tcc atg aaa aaa aca tta tta ata	stx₁B	94°C/ 30 sec	52°C/ 60 sec	72°C/ 40 sec	258	(21)
N30	gag tca acg			50 Zykien			
LP43	atc cta ttc ccg gga gtt tac g	stx ₂ A, stx ₂ cA, stx ₂ dA	94°C/ 30 sec	57°C/ 60 sec	72°C/ 90 sec	584	(14)
LP44	gcg tca tcg tat aca cag gag c	stx ₂ eA		30 Zyklen			
HlyA1	ggt gca gca gaa aaa gtt gta g	EHEC-hlvA	94°C/	57°C/ 60 sec	72°C/	1550	(56)
HlyA4	tct cgc ctg ata gtg ttt ggt a		30 sec	30 Zyklen	90 860		()
FliC1	caa gtc att aat ac(a/c) aac agc c	flic	94°C/	55°C/ 60 sec	72°C/	1464	(43)
FliC2	gac at(a/g) tt(a/g) ga(g/a/c) act tc(g/c) gt		50 360	30 Zyklen	120 360		
SK1	ccc gaa ttc ggc aca agc ata agc	eae	94°C/ 30 sec	52°C/ 60 sec	72°C/ 60 sec	863	(55)
SK2	ccc gga tcc gtc tcg cca gta ttc g		00 000	30 Zyklen	00 000		
SK1	ccc gaa ttc ggc aca agc ata agc	eae-β	94°C/	55°C/ 60 sec	72°C/	2287	(76)
LP4	ccc gtg ata cca gta cca att acg gtc	,	30 sec	30 Zyklen	120 sec		
TerF1	tta caa too gga caa aac a	ter F	94°C/ 30 sec	53°C/ 60 sec 30 Zyklen	72°C/ 90 sec	280	(68)
A1	ctc tga tta tac aga agc a	rfb 026	94°C/	47°C/	72°C/		
A2	agt cgt aat atg agc ttt tc	110 020	30 sec	60 sec 30 Zyklen	60 sec	746	(43)

bp = Basenpaare

3.2.3 Agarosegel-Elektrophorese

Die Agarosegelelektrophorese dient zur Kontrolle und Analyse der in der PCR entstandenen DNA-Amplifikate. Durch das elektrische Feld in den Elektrophoresekammern kommt es zur Wanderung der negativ geladenen DNA entsprechend ihrer Größe und Ladung in Richtung Anode (Plus-Pol) und somit zu einer Auftrennung der DNA-Fragmente.

Zur Herstellung eines 1,5% Agaroseflachgels wird entsprechend Agarosepulver in 0,5fachem Trisborat-EDTA-Puffer (TBE) aufgekocht und so gegossen, dass ein 5 mm dickes Gel mit 10 bzw. 20 Taschen entsteht. 20µl des zu testenden Amplifikationsproduktes wurden mit 4µl eines 10fachen DNA-Probenpuffers (enthält Bromphenolblau) versetzt und zu je 10µl in diese Taschen pipettiert. Zusätzlich zu den PCR Produkten der zu untersuchenden Stämme wurde auf jedem Gel eine Positiv- und Negativkontrolle sowie ein Molekulargewichtsstandard ("1kb ladder") hinzugefügt.

Die Elektrophorese lief bei einer Spannung von 1,5 V/cm² für ca. 35 Minuten, bis die Bromphenolblau-Bande etwa 3/4 des Gels durchlaufen hatte. Danach erfolgte ein 20 minütiges Ethidiumbromid-Färbebad. Anschließend wurde das Gel in Aqua dest. gewaschen. Durch die Interkalierung des Farbstoffes in die DNA, fluoreszierten die Banden unter UV-Licht und konnten so ausgewertet bzw. zur Dokumentation fotografiert werden.

10x TBE-Puffer:

DNA-Probenpuffer (10fach):

0,89 M
0,89 M
25mM

Bromphenolblau:	0,1%(w/v)
Xylencyanol:	0,1%(w/v)
EDTA:	25mM
Glycerin:	50% (w/v)

Ethidiumbromid-Färbebad:

200µl Ethidiumbromid in 50ml H₂O

3.2.4 Restriktionsanalyse

Zur weiteren Analyse der PCR-Fragmente wurde die DNA mittels Restriktionsendonukleasen geschnitten. Diese Nukleasen erkennen eine Zielsequenz von mindestens vier Basenpaaren und trennen dort hydrolytisch die Phosphodiesterbindung des DNA-Doppelstranges.

Für die Analyse des in der PCR entstanden *fliC*-Fragments (siehe Tabelle 7, aus Kapitel 2.2.2) wurde aus folgenden Komponenten der zu verdauende Ansatz hergestellt:

- 15,0µl Amplifikat
- 2,0µl NE Puffer 4 (10x)
- 2,0µl Purified BSA 100x (10mg/ml) verdünnt 1:10
- 1,0µl *Hha I* (20.000 U/ml)

Die Proben inkubierten 2 Stunden bei 37°C. Nach Zugabe von je 2µl Stop-Mix wurden die Proben in einer Gelelektrophorese (siehe **2.2.3**) auf 2% Agarosegel getrennt und ausgewertet.

4 Ergebnisse

Ziel der vorliegenden Doktorarbeit ist es, durch molekularbiologische und phänotypische Untersuchungen Zusammenhänge im Verwandtschaftsgrad von EHEC und atypischen EPEC einer Serogruppe feststellen zu können, die aus konsekutiven Stuhlproben derselben Patienten isoliert werden konnten. Zudem werden Aspekte zur Etablierung eines Isolationsmediums für *E. coli* der Serogruppe O26 miteinbezogen. Sämtliche verwendete *E. coli* Stämme wurden hinsichtlich ihres Resistenzverhaltens mit unterschiedlichen Antibiotika, der Zuckerfermentation, weiterer biochemischer Reaktionen im API 20 E und dem Vorliegen der in 2.2.2 aufgeführten Pathogenitäts- und Widerstandsfaktoren untersucht. Des Weiteren wurde phänotypisch die Genexpression der Gene *ter* und *hlyA* überprüft.

4.1 Phänotypische Untersuchung

4.1.1 Darstellung der biochemischen Reaktionen im API 20 E

Wie erwartet zeigten die verwendeten O26:H11 Stämme die für *E. coli* typischen biochemischen Reaktionen: Fermentation von Glucose (unter Gasbildung), D-Mannit, D-Sorbit, D-Saccharose, D-Melibiose und L-Arabinose, Zudem kam es zur Indolbildung und negativer Voges-Proskauer-(VP)-Reaktion. Die Zitratverwertung fehlte (siehe Abb. 2).

Abbildung 2: API 20 E Testergebnisse des Bakterienstamms 318/98 (Probe B2). Die Gefäße 1 bis 20 untersuchen die verwendeten *E coli* Stämme auf Enzyme und Zuckerfermentation. Dies bildet eine Grundlage der taxonomischen Bestimmung. Gefäß 1: β -Galaktosidase (ONPG), Gefäß 2: Arginindihydrolase (ADH), Gefäß 3: Lysindecarboxlase (LDC), Gefäß 4: Ornithindecarboxylase (ODC), Gefäß 5: Citratverwertung (CIT), Gefäß 6: Schwefelwasserstoff (H₂S), Gefäß 7: Urease (URE), Gefäß 8: Tryptophandesaminase (TDA), Gefäß 9: Indolbildung (IND), Gefäß 10: Acetoinbildung (VP), Gefäß 11: Gelatinase (GEL), Gefäß 12: D-Glucose (GLU), Gefäß 13: D-Mannit (MAN), Gefäß 14: Inosit (INO), Gefäß 15: D-Sorbit (SOR), Gefäß 16: L-Rhamnose (RHA), Gefäß 17: D-Saccharose (SAC), Gefäß 18: D-Melibiose (MEL), Gefäß 19: Amygdalin (AMY), Gefäß 20: L-Arabinose (ARA).

Wie in Tabelle 8 ersichtlich, verhalten sich die korrespondierenden E. coli Stämme der Isolate eines Individuums (Stämme A1 / 2, B1 / 2, C1 / 2, E1 / 2, F1 / 2) in Bezug auf die durchgeführten biochemischen Reaktionen identisch. Auch wurden sämtliche untersuchten Stämme nach Erstellung des numerischen Profils mit einer Sicherheit von 99,8% von der Identifizierungssoftware als E. coli identifiziert.

Die biochemischen Reaktionen der vier Kontrollstämme 5021/97, 356/99, 1541/01 und EO2/695 zeigten im API 20 E geringfügige Unterschiede, welche Tabelle 9 zu entnehmen sind. Sie konnten von der Identifizierungssoftware ebenfalls zu 99,9 % als *E. coli* identifiziert werden.

	E. coli O26:H11 Isolate										
bio- chemische* Reaktionen	A1	A2	B1	B2	C1	C2	E1	E2	F1	F2	
ONPG	+	+	+	+	+	+	+	+	+	+	
ADH	-	-	-	-	-	-	-	-	-	-	
LDC	+	+	+	+	+	+	+	+	+	+	
ODC	+	+	+	+	+	+	+	+	+	+	
СІТ	-	-	-	-	-	-	-	-	-	-	
H2S	-	-	-	-	-	-	-	-	-	-	
URE	-	-	-	-	-	-	-	-	-	-	
TDA	-	-	-	-	-	-	-	-	-	-	
IND	+	+	+	+	+	+	+	+	+	+	
VP	-	-	-	-	-	-	-	-	-	-	
GEL	-	-	-	-	-	-	-	-	-	-	
GLU	+	+	+	+	+	+	+	+	+	+	
MAN	+	+	+	+	+	+	+	+	+	+	
INO	-	-	-	-	-	-	-	-	-	-	
SOR	+	+	+	+	+	+	+	+	+	+	
RHA	-	-	-	-	-	-	-	-	-	-	
SAC	+	+	+	+	+	+	+	+	+	+	
MEL	+	+	+	+	+	+	+	+	+	+	
AMY	-	-	-	-	-	-	-	-	-	-	
ARA	+	+	+	+	+	+	+	+	+	+	
OX	-	-	-	-	-	-	-	-	-	-	

Tabelle 8: Ergebnisse der Testungen der *E. coli* O26:H11 Isolate mittelsAPI 20 E Testsystem

+ = positive Reaktion, d.h. Enzym oder fraglicher Stoffwechsel sind vorhanden
- = negative Reaktion, d.h. Enzym oder fraglicher Stoffwechsel sind nicht vorhanden

*Abkürzungen der biochemischen Reaktionen siehe Unterschrift zu Abb 6

Tabelle 9: Ergebnisse der	Testungen der	Kontrollstämme mittels	API 20 E
	Testsyste	m	

,									
hia	E. coli O2	:H11 Isolate							
chemische * Reaktionen	5021/97	356/99	1541/01	E02/695					
ONPG	+	+	+	+					
ADH	-	-	-	-					
LDC	+	+	+	+					
ODC	+	+	-	+					
СІТ	-	-	-	-					
H2S	-	-	-	-					
URE	-	-	-	-					
TDA	-	-	-	-					
IND	+	+	+	+					
VP	-	-	-	-					
GEL	-	-	-	-					
GLU	+	+	+	+					
MAN	+	+	+	+					
	-	-	-	-					
SUK	+	+	+	+					
SAC	-	+							
MEL	+	+	_	+					
AMY	-	-	-	-					
ARA	+	+	+	+					
ох	-	-	-	-					

+ = positive Reaktion, d.h. Enzym oder fraglicher Stoffwechsel sind vorhanden
- = negative Reaktion, d.h. Enzym oder fraglicher Stoffwechsel sind nicht vorhanden

* Abkürzungen der biochemischen Reaktionen siehe Unterschrift zu Abb 6

4.1.2 Resistenzverhalten im Agardiffusionstest

Im Agardiffusionstest wurde nach NCCLS (siehe Tabelle 5, Kapitel 2) eine Zuordnung der Stämme in resistent, intermediär-sensibel und sensibel auf das jeweilige Antibiotikum vorgenommen (siehe Abb. 3). Tabelle 10 zeigt die

Abbildung 3: Hemmhofbildung des Isolats B2 (318/98) im Agardiffusionstest mit folgenden Antibiotika: AK:Amikain, Mez: Mezlocilin, ATM: Aztreonam, RD: Rifampicin.

Ergebnisse als Mittelwert aus drei Versuchsreihen. Die E. coli Stämme O26:H11, A1/2, B1/2, C1/2, E1/2 und F1/2 reagieren ohne Ausnahme sensibel auf: Piperacillin, Cefotaxim, Ceftazidim, Imipenem, Tetracyklin, Tobramycin, Ofloxacin, Ciprofloxacin, Trim.-Sulfometoxacol, Colistin, Mezlocilin, Amikacin und Aztreonam. Sie sind resistent gegen Cefsoludin sowie Erythromycin und verhalten intermediär-sensibel sich bei folgenden Antibiotika: Ampicillin, Amoxicilin, Cefuroxim, Gentamicin und Rifampicin.

Im Agardiffusionstest zeigen demnach die korrespondierenden *E. coli* Isolate der Gruppe 1 (EHEC) als auch diejenigen aus Gruppe 2 (aEPEC) dasselbe Verhalten bezüglich der jeweiligen Antibiotika.

Tabelle 10: Resistenzbestimmung der *E. coli* O26:H11 Isolate mittels Agardiffusionstest

Angaben der Hemmhofgröße in mm, Mittelwerte aus drei Versuchsreihen.

	E. coli O26:H11 Isolate									
Antibiotika/ Wirkstoff	A1	A2	B1	B2	C1	C2	E1	E2	F1	F2
Rifampicin	17,6	18,3	16,7	17,3	19,7	18,0	17,7	17,3	18,3	16,3
Ampicillin	20,5	21,0	20,0	20,0	19,7	19,3	18,7	19,0	19,3	20,5
Amoxicillin/ Clavulansäure	21,3	23,3	22,3	21,7	21,0	21,5	21,0	21,7	21,7	20,7
Piperacillin	23,6	24,3	24,0	24,3	23,7	24,3	24,0	23,8	24,0	25,3
Cefuroxim	22,6	23,6	22,3	23,7	23,3	22,3	23,3	22,7	23,5	24,7
Cefotaxim	32,0	32,0	32,3	31,7	31,7	31,7	32,3	32,0	31,7	32,7
Ceftazidim	29,0	29,6	30,0	30,8	30,2	30,0	29,3	29,7	29,3	30,0
Cefsoludin	14,3	13,3	13,0	13,0	13,3	13,3	12,7	12,3	13,0	13,3
Erythromycin	10,6	10,3	9,3	11,0	10,3	11,3	10,7	10,7	11,7	13,0
Imipenem	29,3	29,0	30,3	30,3	29,7	29,2	29,0	29,3	30,7	30,0
Tetracyclin	25,0	25,6	25,7	25,0	26,0	25,3	25,7	25,7	25,7	26,0
Gentamicin	19,3	19,1	19,0	20,0	20,0	19,5	20,2	20,0	20,3	20,0
Tobramycin	19,0	18,8	19,7	19,3	20,0	19,0	20,0	20,0	20,0	19,7
Ofloxacin	26,6	29,3	31,0	31,3	31,7	31,7	31,0	29,0	27,0	30,0
Ciprofloxacin	31,0	33,6	36,3	35,7	33,0	32,7	33,7	32,7	31,7	32,7
Trimeth Sulfa- methoxazol	27,6	29,0	29,3	30,7	30,7	29,0	29,0	29,7	28,7	28,7
Colistin	13,3	13,0	13,0	13,5	14,0	13,0	13,7	13,0	13,0	14,0
Mezlocillin	23,0	25,0	23,8	24,2	24,3	23,7	23,7	23,5	26,0	24,7
Amikacin	20,3	20,0	20,2	21,0	20,3	20,8	21,7	21,0	21,3	20,0
Aztreonam	30,6	30,3	30,7	30,3	30,0	30,7	30,3	30,3	31,7	30,7

4.1.3 Untersuchung auf Hämolyse, Sorbitol- bzw. Rhamnosefermentation und Telluritresistenz

Wie in Tabelle 11 ersichtlich, verstoffwechseln sämtliche untersuchten O26 Stämme und die Kontrollstämme DEC-8B (O111:H-), E-D31 (O111:H-) und PMK 3 (O103:H2) bis auf den Kontrollstamm EDL 933 (O157:H7) Sorbitol, wohingegen Rhamnose nur von den Kontrollstämmen, nicht aber von den

untersuchten Paaren der E. coli O26 Stämme fermentiert wird. Erwartungsgemäß waren die untersuchten Bakterienisolate der Gruppe 1 (stxpositiv, A1 – F1) resistent gegenüber Tellurit. Auch die aEPEC Isolate der Gruppe zwei (A2 – F2) zeigten telluritresistentes Wachstum (siehe Abb. 4). Die Fähigkeit zur Hämolyse konnte bei allen untersuchten E. coli Stämmen A1 bis F2 festgestellt werden. Bezüglich der oben aufgeführten Eigenschaften ist demnach phänotypisch kein Unterschied zwischen den Bakterienstämmen der ersten (A1-F1) und der zweiten (A2-F2) Gruppe festzustellen.

Abbildung 4: Telluritresistentes Wachstum und Fermentation der Bakterienprobe F2 (257/98) auf CT-SMAC.

E coli $\bigcirc 26 \cdot H11$	Formontation	Formontation		Tollurit
			112	
Isolate	aut CI-SMAC	auf CI-RMAC	Hamolyse	Resistenz
Stammnummer				
A1	+	-	+	+
A2	+	-	+	+
B1	+	-	+	+
B2	+	-	+	+
C1	+	-	+	+
C2	+	-	+	+
E1	+	-	+	+
E2	+	-	+	+
F1	+	-	+	+
F2	+	-	+	+
Kontrollstämme				
E-D31	+	+	nicht geprüft	+
(O111:H-)			-	
DEC-8B	+	+	nicht geprüft	+
(O111:H-)			-	
EDL 933	-	+	nicht geprüft	+
(O157:H7)				
PMK 3	+	+	nicht geprüft	+
(O103:H2)				

Tabelle 11: Ergebnisse der Untersuchungen der *E. coli* O26:H11 Isolate auf Hämolyse, Telluritresistenz und Sorbitol- bzw. Rhamnosefermentation

+ = positive Reaktion/ Fermentation bzw. Wachstum hat stattgefunden

- = negative Reaktion/ keine Fermentation bzw. kein Wachstum

CT-SMAC = Sorbitolhaltiger McConkey-Agar mit Cefixime und Tellurit

CT-RMAC = Rhamnosehaltiger McConkey-Agar mit Cefixime und Tellurit

4.2 Molekularbiologische Untersuchungen

4.2.1 Sicherung der Serotypie

Zur Sicherung der dokumentierten Serotypisierung wurde bei sämtlichen *E. coli* Stämmen der Patientenisolate mittels PCR das Vorliegen eines O26 (*rfb*O26) und eines H11 (*flic*-RFLP) Genotyps untersucht. Die genannten *E. coli* waren für *rfb*O26 positiv, so dass die Zugehörigkeit zum O26 Komplex gesichert werden konnte.

Das RFLP Muster der *fliC*-Produkte entsprach bei jedem dieser *E. coli* Stämme dem des Referenzstammes 6061/96, während der Stamm C 600 andere Fragmente zeigte. Hierdurch wurde das Vorliegen des H11-Genotyps bestätigt (siehe Tabelle 12 und Abb. 5).

Abbildung 5: Gelelektrophoretische Analyse des PCR-Produkts *fliC* und der anschließenden Restriktionsanalyse von neun untersuchten Patientenisolaten (Serotyp O26:H11). Die Auftrennung der DNA-Fragmente erfolgte mittels eines 2 %-Agarosegels. M=Molekulargewichtsstandard in Basenpaaren (bp) (1000 bp). Spur 1: Positivkontrolle (Isolatnummer: 6061/96), Spur 2: B1 (5917/97), Spur 3: B2 (318/98), Spur 4: C1 (1531/99), Spur 5: C2 (1677/99), Spur 6: E1 (1532/99), Spur 7: E2 (1679/99), Spur 8: F1 (249/98), Spur 9: F2 (257/98), Spur 10: Positivkontrolle 6061/96. Durch die PCR entsteht in der Positivkontrolle 6061/96 die erwartete Fragmentgröße von 1464 bp des *fliC*-Gens. Der Restriktionsverdau wurde mittels der Endonuklease *Hha* I durchgeführt. Schnittstellen und Fragmentgrößen sind Tabelle 12 zu entnehmen. Im Kontrollgel konnten die untersuchten *E. coli* Stämme als H11 Genotyp identifiziert werden.

Schnittstelle bp	Fragmentgröße bp
166	166
184	18
473	289
475	2
887	412
1324	437

Tabelle 12: Fragmentgrößen und Schnittstellen des Enzyms *Hha* I in dem *fliC-*Gen (1464 bp) der untersuchten O26:H11 Isolate.

4.2.2 Gendistribution von Pathogenitäts- und Widerstandsfaktoren

a) Nachweis des *eae-\beta*-Gens:

In sämtlichen untersuchten *E. coli* Stämmen O26:H11 (A1-F2) konnte das für Intimin β kodierende Virulenzgen *eae-\beta* nachgewiesen werden (siehe Abb. 6).

Abb. 6. Gelelektrophoretische Analyse des PCR-Produkts *eae-* β der zehn untersuchten Patientenisolate (Serotyp O26:H11). Die Auftrennung der DNA-Fragmente erfolgte mittels eines 1,5 % Agarosegels. M=Molekulargewichtsstandard (1000 bp) Spur 1: Patientenprobe A1 (Isolatnummer: 1530/99), Spur 2: A2 (1676/99); Spur 3: B1 (5917/97); Spur 4: B2 (318/98); Spur 5: C1 (1531/99); Spur 6: C2 (1677/99); Spur 7: E1 (1532/99); Spur 8: E2 (1679/99); Spur 9: F1 (249/98); Spur 10: F2 (257/98); Spur 11: Positivkontrolle I (6061/96); Spur 12: Positivkontrolle II (5021/97); Spur 13: Negativkontrolle (C 600). Durch die PCR entsteht in den zehn untersuchten Patientenisolaten die erwartete Fragmentgröße des *eae-* β -Gens von 2287 bp.

b) Nachweis weiterer Virulenzgene (*EhlyA*, ter, stx_{1/2}):

Ebenfalls positiv waren die untersuchten *E. coli* Stämme für das Toxinkodierende *EhlyA* und das für die Telluritresistenz kodierende *ter*-Gen (Umweltwiderstandsfaktor). In den getesteten EHEC Stämmen A1, B1, C1, E1 und F1 (=Gruppe 1) konnte ausschließlich die Shiga Toxin-Variante *stx*₂ nachgewiesen werden, wohingegen die Stämme A2, B2, C2, E2 und F2 (= Gruppe 2) **kein** *stx*-Gen enthielten.

Die Gendistribution der oben genannten Faktoren zeigt, dass das Vorhandensein des stx₂-Gens in den E. coli Stämmen der Gruppe 1 und dessen Fehlen in der zweiten Gruppe, den einzigen Unterschied zwischen 13 diesen Gruppen darstellt. Tabelle zeigt die Ergebnisse der molekularbiologischen Untersuchung.

Tabelle 13: Ergebnisse der PCR-Untersuchungen der *E. coli* O26:H11 Isolate auf das Vorhandensein der Genabschnitte *rfbO26, fliC, stx, eae, EhlyA, ter*

Patient	Isolat-	rfbO26	fliC	stx	eae	EhlyA	ter
	nummer						
A	1530/99	+	H11	2	β	+	+
	1676/99	+	H11	-	β	+	+
В	5917/97	+	H11	2	β	+	+
	318/98	+	H11	-	β	+	+
С	1531/99	+	H11	2	β	+	+
	1677/99	+	H11	-	β	+	+
E	1532/99	+	H11	2	β	+	+
	1679/99	+	H11	-	β	+	+
F	249/98	+	H11	2	β	+	+
	257/98	+	H11	-	β	+	+

5 Diskussion

Escherichia coli der Serogruppe O26:H11 werden, je nach Ausprägung ihrer Virulenz- bzw. phänotypischen Eigenschaften, entweder als atypische EPEC oder EHEC klassifiziert. Hauptunterschied zwischen aEPEC und EHEC ist die Fähigkeit zur Shiga Toxin-Produktion. aEPEC und EHEC beherbergen das für Intimin kodierende eae-Gen. Im Gegensatz zu typischen EPEC fehlt ihnen das EAF-Plasmid (EPEC adherence factor), welches für wichtige Adhäsionsmoleküle kodiert und über die Detektion des bfp-Gens identifiziert wird. Sowohl EHEC als auch aEPEC produzieren Hämolysin. EHEC und atypischen EPEC der Serogruppe O26:H11 ist zudem ihr Hauptreservoir, das Rind, gemeinsam (29, 30), die Übertragung der Keime auf den Menschen erfolgt überwiegend durch kontaminierte Lebensmittel und Trinkwasser (5, 33, 37). Als Reservoir typischer EPEC dient dagegen ausschließlich der Mensch (48). E. coli O157:H7 ist weltweit mit den meisten HUS- Ausbrüchen assoziiert und präsentiert den Prototypen der enterohämorrhagischen E. coli (67). Auch EHEC der Serogruppe O26:H11 verursachen als häufigste non-O157:H7 Vertreter ernste Erkrankungen (21, 34, 60). Mitte der 90er Jahre des letzten Jahrhunderts wurde innerhalb der EHEC-Stämme ein neuer Serovar, O26:H11, identifiziert, der als Toxin ausschließlich Stx₂ produziert und sehr häufig zu HUS- Erkrankungen führt (74). Die Produktion von Stx₂ ist bei allen EHEC verschiedener Serogruppen am häufigsten mit schweren Krankheitsverläufen, besonders dem Auftreten des hämolytisch-urämischen Syndroms bei den Infizierten assoziiert (21, 23).

In der vorliegenden Arbeit wurde eine phänotypische und genotypische Charakterisierung von aEPEC und EHEC der Serogruppe O26:H11 durchgeführt. Die Stämme unterschieden sich lediglich in der Fähigkeit zur Stx-Produktion. In den phänotypischen Untersuchungen zeigten diese Stämme bezüglich der Antibiotikaresistenz als auch in den biochemischen Reaktionen im API 20 E Test dasselbe Verhalten. Auch konnten keine Unterschiede im Wachstum auf CT-SMAC/RMAC Agarplatten oder der Fähigkeit zur Hämolyse gefunden werden. Auf genotypischer Ebene wurde das Vorhandensein des EHEC-Plasmids durch den Nachweis des *hlyA*-Gens (56) und der "LEE Insel" durch den *eae-* β -Gennachweis in sämtlichen untersuchten *E. coli* Stämmen bestätigt (48). Das Gen *ter* war entsprechend den Ergebnissen des Wachstums auf Tellurit-enthaltenden Nährböden bei allen getesteten *E. coli* O26:H11 Serovaren vorhanden (68). Hinsichtlich des phänotypischen Verhaltens sämtlicher untersuchter *E. coli* Stämme dieser Studie waren **keine** Unterschiede nachzuweisen. Die Shiga Toxin-2-Produktion stellt die **einzige** Abweichung zwischen den korrespondierenden *E. coli* Isolaten dar.

Nach Blank *et al.* (10) sind EHEC durch das Vorhandensein der "LEE Insel", dem *hly*A-Plasmid sowie deren Fähigkeit zur Shiga Toxin-Produktion und dem Fehlen des EAF-Plasmids definiert. Die Einteilung der aEPEC erfolgt anhand des Fehlens der Stx-Produktion sowie des Vorkommens der "LEE Insel" und des *hly*A-Plasmids. Im Gegensatz zu den typischen EPEC fehlt im Genom der aEPEC das EAF-Plasmid (10). Entsprechend dieser Definition ist anzunehmen, dass bei den untersuchten Patienten in dieser Studie eine Infektion mit dem EHEC O26:H11 Stamm erfolgte. In darauffolgenden Stuhlproben wenige Tage später wird in der Stuhlprobe derselben Patienten ausschließlich ein aEPEC der Serogruppe O26:H11 nachgewiesen. Als Ursache hierfür könnte eine Koinfektion der Patienten mit dem aEPEC O26:H11 Stamme mit Ausnahme der Stx₂-Produktion erscheint dies jedoch unwahrscheinlich. Daher muss es eine andere Erklärung für das Vorliegen der verschiedenen *E. coli* Serovare in den konsekutiven Patientenproben geben.

Die Zusammensetzung des Genoms der *E. coli* variiert stark und ist regelmäßigen Veränderungen durch horizontalen Gentransfer unterworfen (17). Durch den ständigen Gewinn bzw. Verlust von Genmaterial entwickelten sich die hoch virulenten EHEC und EPEC Stämme Berechnungen zufolge vor schätzungsweise 4,5 Millionen Jahren von einem gemeinsamen Vorläufer ausgehend (51). Die Virulenzfaktoren, welche zum großen Teil den Unterschied der Pathotypen der *E. coli* ausmachen, entstammen einer Vielzahl an Quellen

wie Plasmiden, Bakteriophagen und dem Genom anderer Bakterien. Durch den Erwerb mobiler Virulenzgene und deren Einbau in das fest etablierte Bakterienchromosom ist die genetische Vielfalt der heutigen pathogenen *E. coli* zu erklären. Zudem ermöglicht dieser Vorgang den Bakterienstämmen, neue pathogene Varianten zu bilden, die in weiteren Krankheitssymptomen für den Menschen münden können (17, 51).

Feng *et al.* (20) entwickelten auf der Basis der Multilocus Enzymelektrophorese ein phylogenetisches Modell zur Entstehung des heutigen *E. coli* O157:H7, wonach dessen Evolution von dem Serotyp O55:H7 ausgeht. Als gemeinsamer, vermuteter Ursprungsstamm wird ein EPEC ähnlicher Vorläuferklon angenommen (20). Untersuchungen der Genstrukturen mittels Multilocus Enzymelektrophorese von Whittam *et al.* (72) hatten schon 1993 gezeigt, dass Serotyp O157:H7 trotz unterschiedlicher O-Serogruppe genetisch eng mit *E. coli* O55:H7 verwandt ist. In Anlehnung an dieses Evolutionsmodell entwickelten Donnenberg und Whittam (17) eine Hypothese zur Entstehung des Serovars O26:H11 (siehe Abb. 7). Hiernach stammen atypische EPEC und EHEC O26:H11 von einem gemeinsamen EPEC-ähnlichen Ursprungstamm ab. Die in der Abbildung 7 rechtsstehenden Serogruppen wurden als EHEC und

EPEC Gruppe 2 definiert. Durch EAF-Plasmids konnte sich die Gruppe der typischen EPEC 2 (E. coli O111:H2 bzw. O128:H2) entwickeln, andererseits u.a. durch Gewinn der *stx*-Gene und des EHEC-Plasmids die Gruppe der EHEC 2 (E. coli O26:H11 bzw. O111:H8). Der Punkt A2 in der Abbildung 7 steht für den vermuteten Ursprungsstamm des EPEC O26:H11, der durch den Erwerb einer Shiga Toxin-1kodierenden Phage und dem EHEC- den Erwerb des *eae-\beta*-Gens und des

Abbildung 7: Evolutionsmodell der EPEC und EHEC Klone der Gruppe 2. Das Model basiert auf der Existenz des LEE auf der pheU Einheit. Die Äste zeigen den Erwerb der definierenden Hauptvirulenzfaktoren der EHEC und EPEC (verändert nach Donnenberg *et al.*, 2001).

Plasmid u.a. die Entwicklung des EHEC O26:H11 ermöglichte. Ein genetischer Shift der Shiga Toxin-Variante 1 zu 2 führte zu dem heutigen Serovar O26:H11 (stx_2). Gleichzeitig entwickelt sich (von Punkt A2 aus in Abb. 7) der atypische EPEC O26:H11, welcher lediglich die "LEE Insel" und das EHEC-Plasmid, nicht aber ein *stx*-Gen erwirbt (17).

Bereits 1996 konnten Giammanco et al. zeigen, dass die einzigen Differenzen der Virulenzfaktoren zwischen aEPEC und EHEC der Serogruppen O26, O111 und O128 das Vorhandensein von stx-Genen oder des EHEC-Plasmids waren, wodurch die These eines gemeinsamen Ursprungstammes der EHEC und aEPEC der Serogruppe O26 gefestigt wurde (26). Zudem ist sämtlichen Serovaren O26 (EHEC als auch aEPEC), deren Chromosom das eae-Gen beinhaltet, das fliC-Gen, welches für H11-Flagellin kodiert, ungeachtet dessen Expression, gemeinsam (74). Die Suche nach genetischen Differenzen stx-positiven E. coli O26:H11 Stämmen mittels Multilocus zwischen Sequenztypisierung (MLST) zeigte gut vergleichbare Ergebnisse, jedoch keine signifikanten genetischen Varianten innerhalb der einzelnen untersuchten E. coli O26:H11 Isolate. Auch diese Studie schlussfolgerte, dass stx-positive E. coli O26:H11 auf einen gemeinsamen Ursprungsstamm zurückzuführen sind, unter der Voraussetzung durch das MLST eine repräsentative Anzahl an Genloci examiniert zu haben (27). Diese Ergebnisse ermöglichen eine Zuordnung der untersuchten E. coli O26:H11 in drei Kategorien: Entweder sind eae-positive, stx-negative und EHEC-Plasmid positive O26:H11 Serovare aEPEC (48) oder sie stellen Shiga Toxin-produzierende EHEC dar, deren Chromosom das stx-Gen verloren hat. Als dritte Möglichkeit sind diese O26:H11 Stämme Vorläufer eines EHEC O26:H11 Klons, der durch Transduktion ein stx-Gen und damit die Fähigkeit zur Shiga Toxin-Produktion erhält (75).

Diese Einteilung wurde 2003 auch von Anjum *et al.* aufgenommen (1). Durch das Verfahren des "comparative genomic indexing" (CGI) wurde ein grundlegender Vergleich des Genoms der isolierten O26 Serotypen möglich. Als Ausgangsgenom, mit dem sämtliche getestete *E. coli* Genome verschiedener Serovare der Studie verglichen wurden, diente *E. coli* K-12. Mit

Hilfe des CGI konnte gezeigt werden, dass innerhalb der verschiedenen O-Serogruppen und dem K-12-Genom zu über 90% ein gemeinsamer Genpool vorliegt. Um als eine Spezies definiert werden zu können, scheint dieser gemeinsame Genpool die minimale Vorraussetzung für diese Bakteriengruppe darzustellen. Sämtliche *E. coli* der Serogruppe O26 der Studie von Anjum *et al.* (1) produzierten Intimin β und wurden konventionell anhand ihrer Virulenzeigenschaften in EHEC, EPEC und atypische EPEC eingeteilt. Das durchgeführte CGI zeigte, dass die Stx-positiven und –negativen *E. coli* O26 zu 92,7% ein ähnliches Genom aufweisen und sich speziell in einer Genregion (5,2-kb groß) unterschieden. Zusätzlich zu gemeinsamen Genregionen sowohl der EHEC als auch der aEPEC wurden deutlich variable Genregionen gefunden, deren Identifizierung in kommenden Studien die Fragen des Gentransfers und der daraus resultierenden Verwandtschaft der Serogruppen untereinander detaillierter klären könnte (1).

Eine umfassende Untersuchung von 102 stx-positiven bzw. stx-negativen E. coli O26:H11 auf ihre phänotypischen Eigenschaften als auch das Vorliegen von Virulenzgenen hin, zeigte abgesehen von dem stx-Gen, mehrheitlich identische und dauerhaft konservierte Chromosomenabschnitte der E. coli O26:H11 (6). Durch das CGI wurde neben der Multilocus Sequenztypisierung (27), der Multilocus Enzymelektrophorese (20, 72), dem Vergleich der "housekeeping genes" (51) und der Virulenzgene (6, 26, 74) die Annahme eines gemeinsamen Ursprungsstammes der aEPEC und EHEC der Serogruppe O26:H11, und deren daraus resultierende nahe Verwandtschaft, untermauert. Bei der MLST zur Analyse bakterieller Populationsstrukturen werden üblicherweise sechs bis acht interne Fragmente (ca. 500 bp) so genannter Haushaltsgene ("house-keeping genes"), die für den Organismus essenziell sind, sequenziert. Für jedes Gen werden hierbei den unterschiedlichen Allelen fortlaufende Nummern zugeordnet. Der numerische Sequenztyp (ST) als das Typisierungsergebnis setzt sich aus der Kombination der Allele der einzelnen Haushaltsgene zusammen. Die in einer Internet-basierten Datenbank verwalteten Allel- und Sequenzdaten ermöglichen den problemlosen Vergleich von weltweit gewonnenen Isolaten.

Auch die Ergebnisse dieser Studie unterstützen die These, dass der aEPEC O26:H11 der zweiten Stuhlprobe entweder ein Vorläufer des EHEC O26:H11 ist, dessen Chromosom durch Transduktion ein stx-Gen erhalten kann. Oder dieser Stamm O26:H11 ist ein EHEC, der sein Shiga Toxin-Gen verloren hat. Der Mechanismus des stx-Genverlusts aus dem Bakterienchromosom ist bislang noch ungeklärt. Stx-Gen enthaltende Bakteriophagen scheinen das entscheidende Element der Konversion der aEPEC in EHEC und umgekehrt zu sein. Schmidt et al. demonstrierten, dass eine stx2 übertragende Phage, isoliert aus einem E. coli O157, fähig ist, andere E. coli inklusive EHEC und EPEC der Serogruppe O26 zu infizieren (57). Umgekehrt kann der Verlust einer Stxkodierenden Phage in einem EHEC gleichzeitig zu dem Verlust des stx-Gens führen, mit resultierender Konversion in einen atypischen EPEC (61). Verschiedene Untersuchungen zur Stabilität des Phagengenoms im E. coli Chromosom zeigen, dass z. B. Antibiotika neben der erhöhten Shiga Toxin-Produktion des Bakteriums auch eine Exzision der Phage aus dem chromosomalen Bakteriengenom bewirken können (61).

Zusammenfassend kann festgestellt werden, dass ein ausschließliches Zuordnen der Bakterienisolate erkrankter Patienten aufgrund der Serogruppe und der Stx-Produktion irreführend und nicht ausreichend sein kann. Die enge Verwandtschaft und die Transformation innerhalb weniger Tage von einem EHEC zu aEPEC (s. Stuhlproben eins und zwei dieser Studie) machen die Variabilität des Genoms dieser *E. coli* in Bezug auf den *stx*-Abschnitt deutlich. Diese Erkenntnisse erfordern die Erfassung zusätzlicher Virulenzmarker, um die Virulenz derartiger Stämme zu erkennen und die fortschreitende Entwicklung von neuen Pathogenen rechtzeitig zu entdecken. Patienten mit Durchfallsymptomatik, in deren Stuhlproben ein atypischer EPEC O26:H11-Isolat identifiziert wird, müssen in Zukunft eventuell ebenso auf das Entstehen eines hämolytisch-urämischen Syndroms hin überwacht werden, wie es bislang nur bei an EHEC erkrankten Patienten erforderlich war.

Obwohl die klinische Bedeutung von E. coli O26 Isolaten weltweit zunimmt (31), existiert bis heute kein eindeutiges Selektivmedium für diese E. coli Stämme. Die Korrelation zwischen dem Vorkommen des ter-Gens in den untersuchten E. coli Stämmen dieser Studie und der Fähigkeit auf Tellurit enthaltenden Medien zu wachsen, deutet darauf hin, dass das ter-Gen der Serogruppe O26:H11 genauso wie jenes der EHEC der Serogruppe O157:H7 für die Telluritresistenz kodiert (7). Die etablierte Methode sorbitolfermentierende E. coli O157:H7 auf CT-SMAC zu isolieren (44), führt dazu, dass Sorbitol nicht-fermentierende E. coli O26:H11 auf CT-SMAC leicht von der Serogruppe O157:H7 zu unterscheiden sind, aber gleichzeitig nicht von den Bakterien der normalen Darmflora. EHEC der Serogruppe O26 fermentieren im Gegensatz zu den Serovaren O111, O157 und non-STEC keine Rhamnose. Durch ihre Telluritresistenz wachsen sie auch auf CT-RMAC. Sämtliche untersuchten E. coli Isolate dieser Studie zeigten das für E. coli der Serogruppe O26:H11 typische, nicht Rhamnose fermentierende, telluritresistente Wachstum. Das im Agar enthaltene Tellurit unterdrückt die Entwicklung anderer gramnegativer Bakterienkolonien der normalen Darmflora inklusive Pseudomonas aeruginosa. Cefixim in einer Konzentration von 0,05mg/l inhibiert Proteus spp. ohne Einfluss auf das Wachstum von E. coli der Serogruppe O26 (32). Diese Zusammenhänge werden in Tabelle 14 verdeutlicht.

		E. coli Isolate bzw. fäkale Bakterienstämme										
Nähr- medium		O26	O157	nonSTEC	Proteus spp.	Pseudomonas aer.	andere fäkale Bakterien					
	SMAC	positiv	negativ	positiv	-	-	positiv					
	RMAC	negativ	positiv	positiv			positiv					
	Tellurit	resistent	resistent	sensibel	resistent	sensibel	sensibel					
	Cefixim											

resistent

sensibel

Tabelle 14: Wachstum und Fermentation verschiedener *E. coli* Isolate bzw.fäkaler Bakterienstämme auf Nährmedien

verändert nach Hiramatsu et al., 2002,

resistent

(0,05mg/l) resistent

positiv = Fermentation negativ = keine Fermentation

resistent

resistent

Durch diese Eigenschaften wird aktuell der CT-RMAC als Selektivmedium für *E. coli* der Serogruppe O26 diskutiert (31, 32). Auch die Ergebnisse dieser Studie spiegeln die oben beschriebenen, phänotypischen Eigenschaften der EHEC und aEPEC O26:H11 als Grundlage für die Etablierung des Isolationsmediums wieder. Leider existieren in Deutschland und England Rhamnose nicht-fermentierende O157:H7 Serotypen, wodurch eine Trennung der Serogruppe O26:H11 von diesen nicht Rhamnose fermentierenden *E. coli* O157:H7 auf CT-RMAC nicht möglich ist (7). Eine prospektive Studie zur Möglichkeit des Routineeinsatzes des CT-RMAC als Isolationsmedium für *E. coli* O26 ist notwendig und wird zur Zeit am Institut für Hygiene der Universität Münster durchgeführt (6).

6 Literaturverzeichnis

- Anjum, M. F., Lucchini, S., Thompson, A., Hinton, J. C. D. and Woodward, M. J.. "Comparative genomic indexing reveals the phylogenomics of *Escherichia coli* pathogens." *Infect Immun*, 2003, 71(8): 4674-4683.
- Banatvala, N., Griffin, P. M., Greene, K. D., Barrett, T. J., Bibb, W. F., Green, J. H. and Wells, J. G.. "The United States National Prospective Hemolytic Uremic Syndrome Study: microbiologic, serologic, clinical, and epidemiologic findings." *J Infect Dis*, 2001, 183(7): 1063-1070.
- 3. Bell, B. P., Griffin, P. M., Lozano, P., Christie, D. L., Kobayashi, J. M. and Tarr, P. I.. "Predictors of hemolytic uremic syndrome in children during a large outbreak of *Escherichia coli* O157:H7 infections." *Pediatrics*, 1997, 100(1): E12.
- 4. Bhakdi, S., Muhly, M., Korom, S. and Schmidt, G. "Effects of *Escherichia coli* hemolysin on human monocytes. Cytocidal action and stimulation of interleukin 1 release." *J Clin Invest*, 1990, 85(6): 1746-1753.
- Bielaszewska, M., Janda, J., Blahova, K., Minarikova, H., Jikova, E., Karmali, M. A., Laubova, J., Sikulova, J., Preston, M. A., Khakhria, R., Karch, H., Klazarova, H. and Nyc, O.. "Human *Escherichia coli* O157:H7 infection associated with the consumption of unpasteurized goat's milk." *Epidemiol Infect*, 1997, 119(3): 299-305.
- Bielaszewska, M., Zhang, W. L., Tarr, P. I., Sonntag, A. K. and Karch H.. "Molecular Profiling and Phenotype Analysis of *Escherichia coli* O26:H11 and O26:NM: Secular and Geographic Consistency of Enterohemorrhagic and Enteropathogenic Isolates." *J Clin Microbiol*, 2005a, 43(8): 4225-4228.
- 7. Bielaszewska, M., Tarr, P. I., Karch, H., Zhang, W. L. and Mathys, W.. "Phenotypic and molecular analysis of tellurite resistance among enterohemorrhagic *Escherichia coli* O157:H7 and sorbitol-fermenting O157:NM clinical isolates." *J Clin Microbiol*, 2005b, 43(1): 452-454.
- Bitzan, M. M., Wang, Y., Lin, J. and Marsden, P. A.. "Verotoxin and ricin have novel effects on preproendothelin-1 expression but fail to modify nitric oxide synthase (ecNOS) expression and NO production in vascular endothelium." *J Clin Invest*, 1998, 101(2): 372-382.
- Blanco, M., Blanco, J. E., Mora, A., Rey, J., Alonso, J. M., Hermoso, M., Hermoso, J., Alonso, M. P., Dahbi, G., Gonzalez, E. A., Bernardez, M. I. and Blanco, J.. "Serotypes, virulence genes, and intimin types of Shiga toxin (verotoxin)-producing *Escherichia coli* isolates from healthy sheep in Spain." *J Clin Microbiol*, 2003, 41(4): 1351-1356.
- 10. Blank,T., Lacher, D., Scaletsky, I., Zhong, H., Whittam, T., Donnenberg, M.. "Enteropathogenic *Escherichia coli* O157 Strains from Brazil." *Emerg Infect Dis*, 2003, 9(1): 113-115.
- 11. Brandt, J. R., Fouser, L. S., Watkins, S. L., Zelikovic, I., Tarr, P. I., Nazar-Stewart, V. and Avner, E. D.. "Escherichia coli O 157:H7-associated

hemolytic-uremic syndrome after ingestion of contaminated hamburgers." *J Pediatr*, 1994, 125(4): 519-526.

- 12. Caprioli, A., Tozzi, A. E., Rizzoni, G. and Karch, H. "Non-O157 Shiga toxinproducing *Escherichia coli* infections in Europe." *Emerg Infect Dis*, 1997, 3(4): 578-579.
- Cavalieri, S. J., Bohach, G. A. and Snyder, I. S. "Escherichia coli alphahemolysin: characteristics and probable role in pathogenicity." *Microbiol Rev*, 1984, 48(4): 326-343.
- 14. **Cebula, T. A., Payne, W. L. and Feng, P.**. "Simultaneous identification of strains of *Escherichia coli* serotype O157:H7 and their Shiga-like toxin type by mismatch amplification mutation assay-multiplex PCR." *J Clin Microbiol*, 1995, 33(1): 248-250.
- 15. Cohen, M. L.. "Changing patterns of infectious disease." *Nature*, 2000, 406(6797): 762-767.
- Donnenberg, M. S., Tacket, C. O., James, S. P., Losonsky, G., Nataro, J. P., Wasserman, S. S., Kaper, J. B. and Levine, M. M.. "Role of the *eaeA* gene in experimental enteropathogenic *Escherichia coli* infection." *J Clin Invest*, 1993, 92(3): 1412-1417.
- 17. Donnenberg, M. S. and Whittam, T. S.. "Pathogenesis and evolution of virulence in enteropathogenic and enterohemorrhagic *Escherichia coli*." *J Clin Invest*, 2001, 107(5): 539-548.
- Dundas, S., Todd, W. T., Stewart, A. I., Murdoch, P. S., Chaudhuri, A. K. and Hutchinson, S. J.. "The central Scotland *Escherichia coli* O157:H7 outbreak: risk factors for the hemolytic uremic syndrome and death among hospitalized patients." *Clin Infect Dis*, 2001, 33(7): 923-931.
- Eklund, M., Scheutz, F. and Siitonen, A.. "Clinical isolates of non-O157 Shiga toxin-producing *Escherichia coli*: serotypes, virulence characteristics, and molecular profiles of strains of the same serotype." *J Clin Microbiol*, 2001, 39(8): 2829-2834.
- 20. Feng, P., Lampel, K.A., Karch, H., Whittam, T. S.. "Genotypic and phenotypic changes in the emergence of *Escherichia coli* O157:H7." *J. Infect. Dis*, 1998, 177: 1750-1753.
- 21. Friedrich, A. W., Bielaszewska, M., Zhang, W. L., Pulz, M., Kuczius, T., Ammon, A. and Karch, H.. "*Escherichia coli* harboring Shiga toxin 2 gene variants: frequency and association with clinical symptoms." *J Infect Dis*, 2002, 185(1): 74-84.
- 22. Friedrich, A. W., Borell, J., Bielaszewska, M., Fruth, A., Tschape, H. and Karch, H.. "Shiga toxin 1c-producing *Escherichia coli* strains: phenotypic and genetic characterization and association with human disease." *J Clin Microbiol*, 2003, 41(6): 2448-2453.

- 23. Fruth A., Prager R., Friedrich A., Kuczius T., Roggentin P., Karch H., Ammon A., Bockemühl J., Tschäpe H.. "EHEC infections in humans in the Federal Republic of Germany, 1998-2001. Prevalence and types of pathogens." *Bundesgesundheitsbl Gesundheitsforsch Gesundheitsschutz* 2002, 45: 715-721.
- 24. Gerber, A., Karch, H., Allerberger, F., Verweyen, H. M. and Zimmerhackl, L. B.. "Clinical course and the role of shiga toxin-producing *Escherichia coli* infection in the hemolytic-uremic syndrome in pediatric patients, 1997-2000, in Germany and Austria: a prospective study." *J Infect Dis*, 2002, 186(4): 493-500.
- 25. Ghosh, S., May, M. J. and Kopp, E. B.. "NF-kappa B and Rel proteins: evolutionarily conserved mediators of immune responses." *Annu Rev Immunol*, 1998, 16: 225-260.
- 26. Giammanco, A., Maggio, M., Giammanco, G., Morelli, R., Minelli, F., Scheutz, F. and Caprioli, A.. "Characteristics of *Escherichia coli* strains belonging to enteropathogenic *E. coli* serogroups isolated in Italy from children with diarrhea." *J Clin Microbiol*, 1996, 34(3): 689-694.
- 27. Gilmour, M. W., Tyler, C., Munro, J., Chui, L., Wylie, J., Isaac-Renton, J., Horsman, G., Tracz, D. M., Andrysiak, A. and Lai-King N.. "Multilocus Sequence Typing of *Escherichia coli* O26:H11 Isolates carrying *stx* in Canada does not identify genetic diversity." *J Clin Microbiol*, 2005, 43(10): 5319-5323.
- Goncalves, A. G., Campos, L. C., Gomes, T. A., Rodrigues, J., Sperandio, V., Whittam, T. S. and Trabulsi, L. R.. "Virulence properties and clonal structures of strains of *Escherichia coli* O119 serotypes." *Infect Immun*, 1997, 65(6): 2034-2040.
- 29. Gyles, C. "Escherichia coli in domestic animals." Wallingford, UK: CAB International, 1994.
- Hancock, D. D., Besser, T. E., Kinsel, M. L., Tarr, P. I., Rice, D. H. and Paros, M. G.. "The prevalence of *Escherichia coli* O157.H7 in dairy and beef cattle in Washington State." *Epidemiol Infect*, 1994, 113(2): 199-207.
- Hiramatsu, R., Matsumoto, M., Miwa, Y., Saito, M., Yatsuyanagi, J., Uchir, M., Kobayashi, K., Tanaka, H., Horikawa, K., Mori, R., Miyazaki, Y.. "Characterization of enterohemmorhagic *Escherichia coli* O26, development of its isolation media." *Kansenshogaku Zasshi*, 1999, 73(5): 407-413.
- Hiramatsu, R., Matsumoto, M., Miwa, Y., Suzuki, Y., Saito, M. and Miyazaki,
 Y.. "Characterization of Shiga toxin-producing *Escherichia coli* O26 strains and establishment of selective isolation media for these strains." *J Clin Microbiol*, 2002, 40(3): 922-925.
- 33. **Holme, R.**. "Drinking water contamination in Walkerton, Ontario: positive resolutions from a tragic event." *Water Sci Technol*, 2003, 47(3): 1-6.
- 34. Jelacic, J. K., Damrow, T., Chen, G. S., Jelacic, S., Bielaszewska, M., Ciol, M., Carvalho, H. M., Melton-Celsa, A. R., O'Brien, A. D. and Tarr, P. I.. "Shiga toxin-producing *Escherichia coli* in Montana: bacterial genotypes and

clinical profiles." J Infect Dis, 2003, 188(5): 719-729.

- 35. Jerse, A. E., Yu, J., Tall, B. D. and Kaper, J. B.. "A genetic locus of enteropathogenic *Escherichia coli* necessary for the production of attaching and effacing lesions on tissue culture cells." *Proc Natl Acad Sci U S A*, 1990, 87(20): 7839-7843.
- 36. Kaplan, B. S.. "Shiga toxin-induced tubular injury in hemolytic uremic syndrome." *Kidney Int*, 1998, 54(2): 648-649.
- Karch, H., Bielaszewska, M., Bitzan, M. and Schmidt, H. "Epidemiology and diagnosis of Shiga toxin-producing *Escherichia coli* infections." *Diagn Microbiol Infect Dis*, 1999, 34(3): 229-243.
- 38. Karch, H., Tarr, P. I. and Bielaszewska, M. "Enterohaemorrhagic *Escherichia coli* in human medicine." *Int J Med Microbiol*, 2005, 295(6-7): 405-418.
- Karmali, M. A., Petric, M., Lim, C., Fleming, P. C., Arbus, G. S. and Lior, H.. "The association between idiopathic hemolytic uremic syndrome and infection by verotoxin-producing *Escherichia coli*. 1985." *J Infect Dis*, 2004, 189(3): 556-563.
- 40. Kaye, S. A., Louise, C. B., Boyd, B., Lingwood, C. A. and Obrig, T. G.. "Shiga toxin-associated hemolytic uremic syndrome: interleukin-1 beta enhancement of Shiga toxin cytotoxicity toward human vascular endothelial cells in vitro." *Infect Immun*, 1993, 61(9): 3886-3891.
- Leung, P. H. M., Peiris, J. S. M., Ng, W. W. S., Robins-Browne, R. M., Bettelheim, K. A. and Yam, W. C.. "A newly discovered verotoxin variant, VT2g, produced by bovine verocytotoxigenic *Escherichia coli*." *Appl Environ Microbiol*, 2003, 69(12): 7549-7553.
- 42. Levine, M. M., Xu, J. G., Kaper, J. B., Lior, H., Prado, V., Tall, B., Nataro, J., Karch, H. and Wachsmuth, K.. "A DNA probe to identify enterohemorrhagic *Escherichia coli* of O157:H7 and other serotypes that cause hemorrhagic colitis and hemolytic uremic syndrome." *J Infect Dis*, 1987, 156(1): 175-182.
- 43. **Machado, J., Grimont, F. and Grimont, P. A.** "Identification of *Escherichia coli* flagellar types by restriction of the amplified *fliC* gene." *Res Microbiol*, 2000, 151(7): 535-546.
- March, S. B. and Ratnam, S. "Sorbitol-MacConkey medium for detection of Escherichia coli O157:H7 associated with hemorrhagic colitis." J Clin Microbiol, 1986, 23(5): 869-872.
- Matussek, A., Lauber, J., Bergau, A., Hansen, W., Rohde, M., Dittmar, K. E. J., Gunzer, M., Mengel, M., Gatzlaff, P., Hartmann, M., Buer, J. and Gunzer, F.. "Molecular and functional analysis of Shiga toxin-induced response patterns in human vascular endothelial cells." *Blood*, 2003, 102(4): 1323-1332.
- 46. McDaniel, T. K., Jarvis, K. G., Donnenberg, M. S. and Kaper, J. B.. "A genetic locus of enterocyte effacement conserved among diverse enterobacterial pathogens." *Proc Natl Acad Sci U S A*, 1995, 92(5): 1664-1668.

- 47. Morigi, M., Galbusera, M., Binda, E., Imberti, B., Gastoldi, S., Remuzzi, A., Zoja, C. and Remuzzi, G. "Verotoxin-1-induced up-regulation of adhesive molecules renders microvascular endothelial cells thrombogenic at high shear stress." *Blood*, 2001, 98(6): 1828-1835.
- 48. Nataro, J. P. and Kaper, J. B.. "Diarrheagenic *Escherichia coli*." *Clin Microbiol Rev*, 1998, 11(1): 142-201.
- 49. O'Brien, A. D., Tesh, V. L., Donohue-Rolfe, A., Jackson, M. P., Olsnes, S., Sandvig, K., Lindberg, A. A. and Keusch, G. T.. "Shiga toxin: biochemistry, genetics, mode of action, and role in pathogenesis." *Curr Top Microbiol Immunol*, 1992, 180: 65-94.
- 50. Proulx, F., Seidman, E. G. and Karpman, D. "Pathogenesis of Shiga toxinassociated hemolytic uremic syndrome." *Pediatr Res*, 2001, 50(2): 163-171.
- Reid, S. D., Herbelin, C. J., Bumbaugh, A. C., Selander, R. K. and Whittam, T. S. "Parallel evolution of virulence in pathogenic *Escherichia coli*." *Nature*, 2000, 406(6791): 64-67.
- 52. Robert Koch-Institut, Berlin." Infektionen durch enterohämorrhagische Escherichia coli." Ratgeber Infektionskrankheiten, 2003, Folge 6.
- Rodrigues, J., Scaletsky, I. C., Campos, L. C., Gomes, T. A., Whittam, T. S. and Trabulsi, L. R.. "Clonal structure and virulence factors in strains of *Escherichia coli* of the classic serogroup O55." *Infect Immun*, 1996, 64(7): 2680-2686.
- Santiago, F. S., Atkins, D. G. and Khachigian, L. M.. "Vascular smooth muscle cell proliferation and regrowth after mechanical injury in vitro are Egr-1/NGFI-A-dependent." *Am J Pathol*, 1999, 155(3): 897-905.
- 55. Schmidt, H., Russmann, H., Schwarzkopf, A., Aleksic, S., Heesemann, J. and Karch, H.. "Prevalence of attaching and effacing *Escherichia coli* in stool samples from patients and controls." *Zentralbl Bakteriol*, 1994, 281(2): 201-213.
- 56. Schmidt, H., Beutin, L. and Karch, H.. "Molecular analysis of the plasmidencoded hemolysin of *Escherichia coli* O157:H7 strain EDL 933." *Infect Immun*, 1995, 63(3): 1055-1061.
- 57. **Schmidt, H., Bielaszewska, M., Karch, H.**. "Transduction of enteric *Escherichia coli* isolates with a derivative of Shiga toxin 2 encoding bacteriophage φ 538 isolated from *Escherichia coli* O157:H7." *Appl Environ Microbiol*, 1999, 65: 3655-3661.
- 58. Schroeder, C. M., Meng, J., Zhao, S., DebRoy, C., Torcolini, J., Zhao, C., McDermott, P. F., Wagner, D. D., Walker, R. D. and White, D. G.. "Antimicrobial resistance of *Escherichia coli* O26, O103, O111, O128, and O145 from animals and humans." *Emerg Infect Dis*, 2002, 8(12): 1409-1414.
- 59. Schubert, S., Rakin, A., Karch, H., Carniel, E. and Heesemann, J.. "Prevalence of the "high-pathogenicity island" of Yersinia species among *Escherichia coli* strains that are pathogenic to humans." *Infect Immun*, 1998,

66(2): 480-485.

- Scotland, S. M., Smith, H. R., Cheasty, T., Said, B., Willshaw, G. A., Stokes, N. and Rowe, B.. "Use of gene probes and adhesion tests to characterise *Escherichia coli* belonging to enteropathogenic serogroups isolated in the United Kingdom." *J Med Microbiol*, 1996, 44(6): 438-443.
- Shaikh, N. and Tarr, P. I.. "Escherichia coli O157:H7 Shiga toxin-encoding bacteriophages: integrations, excisions, truncations, and evolutionary implications." J Bacteriol, 2003, 185(12): 3596-3605.
- Suttorp, N., Floer, B., Schnittler, H., Seeger, W. and Bhakdi, S. "Effects of Escherichia coli hemolysin on endothelial cell function." *Infect Immun*, 1990, 58(11): 3796-3801.
- Tarr, P. I., Neill, M. A., Clausen, C. R., Watkins, S. L., Christie, D. L. and Hickman, R. O.. "Escherichia coli O157:H7 and the hemolytic uremic syndrome: importance of early cultures in establishing the etiology." J Infect Dis, 1990, 162(2): 553-556.
- 64. **Tarr, P. I.** "*Escherichia coli* O157:H7: clinical, diagnostic, and epidemiological aspects of human infection." *Clin Infect Dis*, 1995, 20(1): 1-8; quiz 9-10.
- 65. Tarr, P. I., Bilge, S. S., Vary, J. C. Jr, Jelacic, S., Habeeb, R. L., Ward, T. R., Baylor, M. R. and Besser, T. E.. "Iha: a novel *Escherichia coli* O157:H7 adherence-conferring molecule encoded on a recently acquired chromosomal island of conserved structure." *Infect Immun*, 2000, 68(3), pp. 1400-1407.
- 66. Tarr, P. I. and Neill, M. A.. "Escherichia coli O157:H7." Gastroenterol Clin North Am, 2001, 30(3): 735-751.
- 67. Tarr, P. I., Gordon, C. A. and Chandler, W. L. "Shiga-toxin-producing *Escherichia coli* and haemolytic uraemic syndrome." *Lancet*, 2005, 365(9464): 1073-1086.
- Taylor, D. E., Rooker, M., Keelan, M., Ng, L. K., Martin, I., Perna, N. T., Burland, N. T. V. and Blattner, F. R. "Genomic variability of O islands encoding tellurite resistance in enterohemorrhagic *Escherichia coli* O157:H7 isolates." *J Bacteriol*, 2002, 184(17): 4690-4698.
- 69. Thorpe, C. M., Smith, W. E., Hurley, B. P. and Acheson, D. W.. "Shiga toxins induce, superinduce, and stabilize a variety of C-X-C chemokine mRNAs in intestinal epithelial cells, resulting in increased chemokine expression." *Infect Immun*, 2001, 69(10): 6140-6147.
- 70. Tozzi, A. E., Caprioli, A., Minelli, F., Gianviti, A., De Petris, L., Edefonti, A., Montini, G., Ferretti, A., De Palo, T., Gaido, M. and Rizzoni, G. "Shiga toxinproducing *Escherichia coli* infections associated with hemolytic uremic syndrome, Italy, 1988-2000." *Emerg Infect Dis*, 2003, 9(1): 106-108.
- 71. **Trabulsi, L. R., Keller, R. and Tardelli Gomes, T. A.** "Typical and atypical enteropathogenic *Escherichia coli*." *Emerg Infect Dis*, 2002, 8(5): 508-513.

- 72. Whittam, T. S., Wolfe, M. L., Wachsmuth, I. K., Orskov, F., Orskov, I. and Wilson, R. A.. "Clonal relationships among *Escherichia coli* strains that cause hemorrhagic colitis and infantile diarrhea." *Infect Immun*, 1993, 61(5): 1619-1629.
- 73. Wong, C. S., Jelacic, S., Habeeb, R. L., Watkins, S. L. and Tarr, P. I.. "The risk of the hemolytic-uremic syndrome after antibiotic treatment of *Escherichia coli* O157:H7 infections." *N Engl J Med*, 2000, 342(26): 1930-1936.
- 74. Zhang, W. L., Bielaszewska, M., Bockemuhl, J., Schmidt, H., Scheutz, F. and Karch, H.. "Molecular analysis of H antigens reveals that human diarrheagenic *Escherichia coli* O26 strains that carry the *eae* gene belong to the H11 clonal complex." *J Clin Microbiol*, 2000a, 38(8): 2989-2993.
- 75. Zhang, W. L., Bielaszewska, M., Liesegang, A., Tschape, H., Schmidt, H., Bitzan, M. and Karch, H.. "Molecular characteristics and epidemiological significance of Shiga toxin-producing *Escherichia coli* O26 strains." *J Clin Microbiol*, 2000b, 38(6): 2134-2140.
- 76. Zhang, W. L., Kohler, B., Oswald, E., Beutin, L., Karch, H., Morabito, S., Caprioli, A., Suerbaum, S. and Schmidt, H. "Genetic diversity of intimin genes of attaching and effacing *Escherichia coli* strains." *J Clin Microbiol*, 2002a, 40(12): 4486-4492.
- 77. **Zhang, W. L, Bielaszewska, M., Kuczius, T. and Karch, H.** "Identification, characterization, and distribution of a Shiga toxin 1 gene variant (stx(1c)) in *Escherichia coli* strains isolated from humans." *J Clin Microbiol*, 2002b, 40(4): 1441-1446.
- 78. Zoja, C., Angioletti, S., Donadelli, R., Zanchi, C., Tomasoni, S., Binda, E., Imberti, B., te Loo, M., Monnens, L., Remuzzi, G. and Morigi, M.. "Shiga toxin-2 triggers endothelial leukocyte adhesion and transmigration via NFkappaB dependent up-regulation of IL-8 and MCP-1." *Kidney Int*, 2002, 62(3): 846-856.

7 Anhang

7.1 Abkürzungsverzeichnis

%	Prozent
μl	Mikroliter
°C	Grad Celsius
Abb.	Abbildung
ADH	Arginindihydrolase
A/E Läsion	attaching and effacing lesion
AMY	Amygdalin
Aqua dest.	Aqua destillata
ARA	L-Arabinose
bfp	bundle-forming-pili-Gen
bp	Basenpaar
bzw.	beziehungsweise
ca.	Circa
CaCl ₂	Kalziumchlorid
CIT	Citrat
cm	Zentimeter
CT-SMAC	Sorbitolhaltiger McConkey-Agar mit
	Potassium-Tellurit und Cefixime
CT-RMAC	Rhamnose-haltiger McConkey-Agar mit
	Potassium-Tellurit und Cefixime
DNA	Desoxyribonucleinsäure
dNTP	Desoxyribonukleotide
eae	E. coli attaching and effacing-Gen
EAEC	enteroaggregative E. coli
EAF	EPEC adherence factor
E. coli	Escherichia coli
EDTA	Ethylendiamintetraacetat
EHEC	enterohämorrhagische E. coli
EhlyA	EHEC-Hämolysin-Gen
EIEC	enteroinvasive E. coli
EPEC	enteropathogene E. coli
et al.	et aliter (und andere)
ETEC	enterotoxische E. coli
Gb3	Globotriaosylceramid
G/C	Guanin/Cytosin
GEL	Gelatinase
GLU	D-Glucose
HC	hämorrhagische Kolitis
HPI	high pathogenicity island
HUS	hämolytisch-urämisches Syndrom
H ₂ O	Wasser
H ₂ S	Schwefelwasserstoff
IND	Indol

INO	Inosit
KatP	Katalase-peroxidase
kb	Kilobasenpaare
kDa	Kilo Dalton
I	Liter
	Lysindecarboxlase
IFF	locus of enterocyte effacement
MAN	D-Mannit
MEL	D-Melihiose
ma	Milligramm
мн	Müller-Hinton
min	Minuten
mm	Millimeter
mM	Millimolor
	Millinoldi maaaangar Dibanyalainaäyra
	Multileoue Seguenzturicierung
	Multilocus Sequenztypisierung
	Omitnindecarboxylase
ONPG	β-Galaktosidase
UX	Oxidase
PCR	Polymerasekettenreaktion
per	plasmid-encoded regulator-Gen
Pseudomonas aer.	Pseudomonas aeruginosa
RHA	L-Rhamnose
rRNA	ribosomal Ribonucleinsäure
RMAC	Rhamnose-haltiger McConkey-Agar
S	siehe
Sec	Sekunde
Saa	STEC autoagglutinating adhesin
SAC	D-Saccharose
SMAC	Sorbitol-haltiger McConkey-Agar
SOR	D-Sorbit
STEC	Shiga Toxin-produzierende E. coli
Stx	Shiga Toxin
TBE	Trisborat-EDTA-Puffer
TDA	Tryptophandesaminase
ter	Tellurit F-Gen
TNF	Tumornekrosefaktor
u.a.	unter anderem
URE	Urease
U.S.W.	und so weiter
UV	Ultraviolett
V	Volt
VP	Acetoinbildung
w/v	weight/volume (Gewicht/Volumen)
z B	zum Beispiel

7.2 Abbildungsverzeichnis

- Abbildung 1: Charakteristische EPEC-A/E-Läsion im Ileum (verändert nach Nataro und Kaper, 1998).
- Abbildung **2**: API 20 E, Testergebnisse des Bakterienstamms 318/98 (Probe B2).
- Abbildung **3:** Hemmhofbildung des Isolats B2 (318/98) im Agardiffusionstest mit folgenden Antibiotika: AK:Amikain, Mez: Mezlocilin, ATM: Aztreonam, RD: Rifampicin.
- Abbildung **4**: Telluritresistentes Wachstum und Fermentation der Bakterienprobe F2 (257/98) auf CT-SMAC.
- Abbildung 5: Gelelektrophoretische Analyse des PCR-Produkts *fliC* und der anschließenden Restriktionsanalyse von neun untersuchten Patientenisolaten (Serotyp O26:H11).
- Abbildung 6: Gelelektrophoretische Analyse des PCR-Produkts eae-β der zehn untersuchten Patientenisolate (Serotyp O26:H11).
- Abbildung **7**: Evolutionsmodell atypischer EPEC und EHEC der Serogruppe O26:H11.

7.3 Tabellenverzeichnis

- Tabelle 1: Zuordnung verschiedener *E. coli* Serotypen zu typischen bzw. atypischen EPEC.
- Tabelle **2**: Aufführung der untersuchten *E. coli* Isolate.
- Tabelle **3**: Die verwendeten Kontrollstämme und deren Serogruppe.
- Tabelle 4: Bestandteile und Auswertungsrichtlinien des API 20 E Tests.
- Tabelle 5: Bewertung der Hemmhofgröße (mm) des Agardiffusionstests auf MH-Agar nach DIN 58959/14 1997-06 für gramnegative Stäbchen.
- Tabelle 6: Aufführung der in der PCR genutzten Referenzstämme.
- Tabelle 7: PCR-Primer und –Bedingungen.
- Tabelle 8: Ergebnisse der Testungen der *E. coli* O26:H11 Isolate mittels API 20 E Testsystem.
- Tabelle 9: Ergebnisse der Testungen der Kontrollstämme mittels API 20 E Testsystem.
- Tabelle **10**: Resistenzbestimmung der *E. coli* O26:H11 Isolate mittels Agardiffusionstest.
- Tabelle **11**: Ergebnisse der Untersuchungen der *E. coli* O26:H11 Isolate auf Hämolyse, Telluritresistenz und Sorbitol- bzw. Rhamnosefermentation.
- Tabelle **12**: Fragmentgrößen und Schnittstellen des Enzyms *Hha I* in dem *fliC*-Gen (1464 bp) der untersuchten O26:H11 Isolate.
- Tabelle **13**: Ergebnisse der PCR-Untersuchungen der *E. coli* O26:H11 Isolate auf das Vorhandensein der Genabschnitte *rfbO26, fliC, stx, eae, EhlyA,* und *ter*.
- Tabelle **14**: Wachstum und Fermentation verschiedener *E. coli* Isolate bzw. fäkaler Bakterienstämme auf Nährmedien.

8 Lebenslauf

Persönliche Angaben	Andrea Geueke geboren am 05. Juni 1979 in Lennestadt
Schulausbildung	
1989 – 1998	Städt. Gymnasium Schmallenberg
1998	Allgemeine Hochschulreife
Universitäre Ausbildung	
1999 – 2001	Studium der Humanmedizin an der Philipps – Universität- Marburg
2001 – 2006	Studium der Humanmedizin an der Westfälischen Wilhelms-Universität-Münster
09/02 – 07/03	Studium der Humanmedizin an der Universität Nantes / Frankreich in Rahmen eines Erasmusstipendiums
11/2004	Beginn des Forschungsabschnitts dieser zur Dissertation eingereichten Arbeit
Praktisches Jahr (PJ)	
04/05- 08/05	Klinik für Anästhesiologie und operative Intensivmedizin des Universitätsklinikum Münster
08/05- 11/05	Chirurgie am Hopital Riviera, Site de Montreux, Universität Lausanne / Schweiz
11/05- 03/06	Innere Medizin am ev. Krankenhaus, Bergisch Gladbach, Lehrkrankenhaus der Universität Bonn
06/2006	Abschluss des Studiums, 3. Staatsexamen
Derzeitiger Tätigkeitsbereic	h
07/06- 03/07	Assistenzärztin in der Gemeinschaftspraxis für Allgemeinmedizin/Sportmedizin und Pädiatrie, Geueke/Seidel, Bad Fredeburg
seit 04/2007	Assistenzärztin in der Abteilung für Innere Medizin am Eduardus-Krankenhaus, Köln – Deutz
Fremdsprachen	

remusphaonen

Französisch, Englisch (fließend in Wort und Schrift)

Münster, 05.08.2007

9 Danksagung

An erster Stelle geht mein besonderer Dank an Herrn Prof. Dr. Helge Karch für seine engagierte Unterstützung und die hervorragende Betreuung bei dieser Promotionsarbeit. Danke für die große Chance, selbstständiges, wissenschaftliches Arbeiten erlernt zu haben.

Ein großes Dankeschön geht an meine Betreuerin Dr. Anne-Katharina Sonntag, für die unbezahlbaren Ermunterungen, kritischen Fragen und wichtigen Antworten. Für die tatkräftige Hilfe und die vielen freundschaftlichen Gespräche zu allen Lebenslagen.

Des weiteren danke ich Dr. Wen Lan Zhang und Dr. Martina Bielaszewska für die vielen Hilfestellungen im Laboralltag und die dauerhafte Bereitschaft, auf meine Fragen eine Antwort zu finden. Auch dem Laborteam der Krankenhaushygiene danke ich für die freundliche, entspannte Atmosphäre.

Sämtliche Abbildungen dieser Arbeit und der 1,5fache Zeilenabstand sind Anne Vollmers gewidmet. Danke für all das Lachen und eine 24 Stunden rund um die Uhr geschaltete Computerhotline. Danke für eine wundervolle Freundschaft und unsere unzähligen gemeinsamen Kapitel, unabhängig von Doktortiteln.

Ich danke Visvakanth Sivanathan, weil er immer da war und ist, von Anfang an. Weil mein Abschluss ohne ihn nur halb so schön wäre.

Von ganzem Herzen danke ich Dir, Matthias. Für jeden einzelnen, gemeinsamen Tag. Vergangen, gegenwärtig und zukünftig.

Nicht zuletzt gilt mein herzlichster Dank meiner Familie, meinen Eltern Arnold und Dorothee, Arno, Maximillian, Theo Schulte und Sigrid. Durch Euch und Eure bedingungslose Unterstützung stehe ich heute hier. Durch Euch erhält meine Welt Farbe und Freude.

Danke, Andrea.

Für Paula Schulte. Du fehlst.