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Abstract. We compute, in a stable range, the arithmetic p-adic étale cohomology of smooth
rigid analytic and dagger varieties (without any assumption on the existence of a nice integral
model) in terms of differential forms using syntomic methods. The main technical input is a
construction of a Hyodo—Kato cohomology and a Hyodo—Kato isomorphism with de Rham

cohomology.
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Let p be a prime. Let Ok be a complete discrete valuation ring of mixed
characteristic (0,p) with perfect residue field k& and fraction field K. Let F
be the fraction field of the ring of Witt vectors Op = W (k) of k. Let K be
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446 P. CoLMEZ AND W. NIZIOL

an algebraic closure of K and let C' = K be its p-adic completion; let % =
Gal(K/K). Let F™ be the maximal unramified extension of F' in K.

In a joint work with Gabriel Dospinescu [8, 9], we have computed the p-adic
(pro-)étale cohomology of certain p-adic symmetric spaces. A key ingredient of
these computations was a one-way (de Rham to étale) comparison theorem for
rigid analytic varieties over K with a semi-stable formal model over Ok that
allowed us to pass from (pro-)étale cohomology to syntomic cohomology and
then to a filtered Frobenius eigenspace associated to de Rham cohomology.

The main goal of this paper is to define all the cohomologies that will be
necessary for extending such comparison quasi-isomorphisms to all smooth
rigid analytic varieties over K or C' (without any assumption on the existence
of a nice integral model). We will focus on the arithmetic case and leave the
geometric case for the sequel of this paper [12].

1.1. Main results. We are mainly interested in partially proper rigid analytic

varieties. Since these varieties have a canonical overconvergent (or dagger)

structure, we are led to study dagger varieties.! This is advantageous: for

example, a dagger affinoid has de Rham cohomology that is a finite rank vector

space with its natural Hausdorff topology while the de Rham cohomology of

rigid analytic affinoids is, in general, infinite-dimensional and not Hausdorff.
Our first main result is the following theorem.

Theorem 1.1. To any smooth dagger variety X over L = K,C, there are
naturally associated:?

(1) A pro-étale cohomology RI proct (X, Qp(r)), v € Z. If X is partially
proper, this agrees with the pro-étale cohomology of X considered as a
rigid analytic variety.

(2) For L = C, a K-valued rigid cohomology RI';, (X) and a natural
strict quasi-isomorphism®

R‘Frig,?(X) ®% Cx~ R‘FdR(X)

This defines a natural K -structure on the de Rham cohomology.*

(3) A Hyodo—Kato cohomology RUuk (X). This is a dg F-algebra if L = K,
and a dg F**-algebra if L = C, equipped with a Frobenius ¢ and a mon-
odromy operator N. For L = C, we have natural Hyodo—Kato strict

IRecall that a dagger variety is a rigid analytic variety equipped with an overconvergent
structure sheaf. See [20] for the basic definitions and properties.

2A1 cohomology complexes live in the bounded below derived oo-category of locally
convex topological vector spaces over Qp. Quasi-isomorphisms in this category we call strict
quasi-isomorphisms.

3See Proposition 5.19 for the definition of the tensor product.

4By the same procedure one can define a F™"-valued rigid cohomology RI';ig pur (X) and
a natural strict quasi-isomorphism RI'ig, por (X) ®§m C ~ RI4r(X).
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quasi-isomorphisms:
LHK - RFHK (X) (/X\)Fnr ? l> RFrig,f(X)’
~R ~
tik : RTaK (X) @par C — Rgr(X).

(4) For L = K, a syntomic cohomology RT'syn (X, Qp(r)), r € N, that fits
into a distinguished triangle

(1.2) ROy (X, Q,(r) — [RTuk (X)]N=0¢=P" 2 RIP4R(X)/FT,
and a natural period morphism
ozt Rlsyn (X, Qp(r)) — RDprost (X, Qp(r))

that is a strict quasi-isomorphism after truncation T<,.

We also prove an analogous theorem for smooth rigid analytic varieties.

Our second main result is the following corollary of Theorem 1.1.

Theorem 1.3. Let X be a smooth dagger variety over K and let r > 0.
(1) For 1 < i < r — 1, the boundary map induced by the distinguished
triangle (1.2)

Or: Hyg (X) = Hirour (X, Qp(r)

is an isomorphism. In particular, the cohomology I}émét(X, Q,(r)) is
classical and it has a natural K -structure.
(2) We have long exzact sequences
rrr— r Or  T7r
0 — H" ' (RLar(X)/F") = Hyou (X, Qp(r))

p

— H"([RDyk (X)|V=0¢=7") 25 HT(RTar(X)/F"),
0 — Hig (X)#=" — H"([RTuk (X)|V=0=") — Hfj (X)N=09=2" - 0.
Moreover, the cohomology Hiy (X) is classical.

Here H refers to cohomology taken in the derived category of locally convex
topological vector spaces over Q, and “classical” means that the cohomology
H is isomorphic to the algebraic cohomology H equipped with its natural
quotient topology (very often this is equivalent to the natural topology on H
being separated). If X is proper, we have the isomorphisms

Hip'(X) & H'H(RUar(X)/F7),  Hip(X)/Q'(X) = H"(RTar(X)/F").
If X is Stein, we get the isomorphisms
H™ Y RI4r(X)/F") ~ Q"~Y(X)/imd,_1, H'(RTqr(X)/F")~0, i>r.

Hence the cohomology H™ ' (RTqr(X)/F") is classical.

We prove an analogous result in the case of smooth rigid analytic varieties
over K and this generalizes the computations [10, Cor. 3.16] done for smooth
affinoids with semi-stable reduction.
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Remark 1.4. For a smooth proper scheme X over K, the analog of the map
O HigH(X) — Hémét (X, Qp(r)) is a geometric incarnation of the Bloch-Kato

exponential. See [31, Remark 2.14], [13, Prop. 3.8], [32, Th. 3.1] for a detailed
discussion.

1.2. Proof of Theorem 1.1. We will now sketch how Theorem 1.1 is proved.
The pro-étale cohomology in (1) is defined in the most naive way: if X is a
smooth dagger affinoid with a presentation {X}}ren by a pro-affinoid rigid
analytic variety,” we set RI proct(X, Qp(r)) = hocolimy RT proct (Xn, Qp(7));
then we globalize. From this description it is clear that we have a natural map
RT prost (X, Qp(r)) = RI'prost (X, Qp(r)), where X is the completion of X (a
rigid analytic variety).

For the rest of Theorem 1.1, first we show that, using the rigid analytic étale
local alterations of Hartl and Temkin [22, 39], the étale topology on Xy, has a
base consisting of semi-stable weak formal schemes (always assumed to be of
finite type) over finite extensions of Ok. This allows us to define sheaves by
specifying them on such integral models and then sheafifying for the n-étale
topology.® For example, for (2), we define RI,;, 72(X) := RT (X, 7, %), for
a sheaf %igf induced from a presheaf assigning to a semi-stable model %
over O¢ coming by base change from a semi-stable model %, over O, [E :
K] < 00, the complex” hocolim RI'yig (%o, 0), Zey 0 is the special fiber of %,
where the homotopy colimit is taken over such models #,,. In an analogous
way, we define, for (3), the Hyodo—Kato cohomology using the overconvergent
Hyodo—Kato cohomology of Grosse—Klonne that, for a semi-stable model %
over Ok, is defined as RI'uyk (%)) := RFrig(%/ﬁ%); the Hyodo—Kato quasi-
isomorphism is induced from the one defined by Grosse-Klénne

LHK - RFrig(%/ﬁ%) l> RFrig(%/ﬁ;).

Here 0}, 09 denote the (weak formal) scheme associated to Ok with the
canonical and the induced by N — O, 1 +— 0, log-structure, respectively.

We define the syntomic cohomology in (4) in two different, but (non obvi-
ously) equivalent, ways. One definition is just as a homotopy fiber that yields
the distinguished triangle (1.2). The other, for dagger affinoids with a presen-
tation {Xp}ren, sets Rlsyn (X, Qp(r)) := hocolimy Rl'gyn (X4, Qp(r)). Here
the syntomic cohomology RIgyn(X#n, Qp(r)) of a rigid analytic variety X}, is
defined by n-étale descent, using the fact that semi-stable formal models form
a base for the étale topology of X, from the crystalline syntomic cohomology
of Fontaine-Messing. Recall that therlatter is defined as the homotopy fiber
Rlyn (2, Qp(r) := [F"RT(2") 2= RT(2)], where the crystalline coho-
mology is absolute (i.e., over Z,). The second definition works also for smooth
dagger varieties over C.

5Gee Section 3.2.1 for the definition of presentations.

6This construction mimics that of Beilinson in [2] done for algebraic varieties; here n-étale
means topology induced from the étale topology of the generic fiber.

TWe give here a rough definition; see Section 5.3 for a precise definition.
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It is quite nontrivial to show that these two definitions agree. Along the
way, we prove the main technical result of this paper:

Theorem 1.5. Let r > 0. Let X be a smooth dagger variety over K. There
is a natural morphism

RIyn (X, Qp(r)) — Rlsyn (X, Qp(r)).
It is a strict quasi-isomorphism if X is partially proper.

This theorem is proved by representing both sides of the morphism by means
of the crystalline and the overconvergent Hyodo-Kato cohomology, respec-
tively, then passing via Galois descent to X¢, and finally passing through the
crystalline and overconvergent Hyodo—Kato quasi-isomorphisms (that need to
be shown to be compatible) to the de Rham cohomology, where the result is
known.

To define the period map in (4), for L = K,C, we first define it for rigid
analytic varieties by the n-étale descent of the Fontaine-Messing period map
oy Rlsyn (27, Qp(r)) = Rl (X1, Qp(r)), for a semi-stable formal scheme 2
over 0. Then we use the second definition of syntomic cohomology and
the period maps a,: Rlgyn(Xp, Qp(r)) = RT(Xn, Qp(r)) to get the period
map «, in Theorem 1.1. The fact that it is a strict quasi-isomorphism in a
stable range follows from the computations of p-adic nearby cycles via syntomic
complexes done in [40] in the geometric case and in [10] in the arithmetic case.

Remark 1.6. For an algebraic variety X over L = K,C, a well-behaved
syntomic cohomology RI'syn (X, Qp(r)), r > 0, was defined in [31]. A more
conceptual definition was given in [13] but the approach in [31] is more concrete
and this is the one we mimic in this paper. For L = K and smooth X,
there exists a natural map RI'syn (X, Qp(r)) = RIsyn (X", Qp(r)), where X?"
denotes the analytification of X. This should be a strict quasi-isomorphism
if X is proper although we do not prove this in this paper.

Remark 1.7. Let 2" be a proper semi-stable scheme over Ok (we allow a
horizontal divisor at infinity). Ertl and Yamada [15] have extended Grosse—
Klonne’s definition of the Hyodo—Kato morphism to this setting and defined
the corresponding rigid syntomic cohomology by the defining property (1.2).
See [43] for a more conceptual definition in the case when there is no horizontal
divisor at infinity.

1.2.1. Notation and conventions. All formal schemes are p-adic. For a (weak
formal or formal) scheme %2 over Ok, we will denote by £, its reduction
modulo p™, n > 1, and by £ its special fiber.

We will denote by Ok, 0}, and 0%, depending on the context, the scheme
Spec(Ok) or the formal scheme Spf(0k ) with the trivial, the canonical (i.e.,
associated to the closed point), and the induced by N — Ok,1 — 0, log-
structure, respectively.

Definition 1.8. Let N € N. For a morphism f: M — M’ of Z,-modules,
we say that f is p™-injective (resp. p'-surjective) if its kernel (resp. its
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cokernel) is annihilated by p? and we say that f is a p™-isomorphism if it is
pN-injective and pN-surjective. We define in the same way the notion of p'¥-
distinguished triangle or pN-acyclic complez (a complex whose cohomology
groups are annihilated by p") as well as the notion of p" -quasi-isomorphism
(map in the derived category that induces a p¥-isomorphism on cohomology).

Unless otherwise stated, we work in the derived (stable) co-category Z(A)
of left-bounded complexes of a quasi-abelian category A (the latter will be
clear from the context). Many of our constructions will involve (pre)sheaves of
objects from Z(A). The reader may consult the notes of Illusie [25] and Zheng
[44] for a brief introduction to how to work with such (pre)sheaves and [29, 30]
for a thorough treatment.

We will use a shorthand for certain homotopy limits. Namely, if f: C — C’
is a map in the derived oo-category of a quasi-abelian category, we set

[C—1 '] = holim(C — ¢ « 0).

And we set

01 L) CQ
| | [=1la L) = (05 S ],

C3L>C4

for a commutative diagram (the one inside the large bracket) in the derived
oo-category of a quasi-abelian category.

2. AN EQUIVALENCE OF TOPOI

Let X be a smooth rigid analytic variety over K, resp. C. In this section,
we will show that the étale site of X has a base (in the sense of Verdier,
see [41]) built from semi-stable formal schemes over finite extensions of Ok,
resp. over Oc. We will show the same for smooth dagger spaces over K and C.

2.1. A general criterium. In [1, 2.1] Beilinson generalized a well-known cri-
terium of Verdier [41, 4.1] stating conditions under which one can change sites
while preserving their topoi. While Verdier assumed the functor F' below to
be fully faithful, Beilinson allows it to be just faithful.

We will briefly summarize [1, 2.1]. Let ¥ be an essentially small site and
let Sh(?') be the corresponding topos. A base for ¥ is a pair (%, F'), where
A is an essentially small category and F': 8 — ¥ is a faithful functor, which
satisfies the following property:

(x) For V € ¥ and a finite family of pairs (Ba, fa), Ba € B, fa: V —
F(B,), there exists a set of objects B/B € % and a covering family
{F(Bj) — V} such that each composition F(Bj) — V — F(B,) lies
in Hom(Bj, B,) C Hom(F(Bj), F(Ba))-
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Remark 2.1. (1) For the empty set of (Ba, fa)’s the above means that
every V € ¥ has a covering by objects F(B), B € #. If F is fully
faithful, then (%) is equivalent to this assertion.

(2) If # admits finite products and F' commutes with finite products, then
it suffices to check (%) for families (By, f) having < 1 elements.

(3) In the general case, it suffices to check (x) for families (B,, f») having
< 2 elements.

Let (A, F') be a base for ¥. Define a covering sieve in % as a sieve whose F'-
image is a covering sieve in ¥". The following proposition is proved by Beilinson
[1, 2.1].

Proposition 2.2. (1) Covering sieves in B form a Grothendieck topology
on A.
(2) The functor F: B — ¥V is continuous.
(3) F induces an equivalence of topoi Sh(%) = Sh(7).
We call the above topology on B the F-induced topology.

Remark 2.3. (1) If F is fully faithful, the above proposition is [41, 4.1].
(2) Let (F*,Fs): Sh(#) = Sh(¥) be the usual adjoint functors. For a
presheaf . on ¥, we have Fs(%%) = F,(%)?%, where F), is the push-
forward of presheaves and the subscript @ means “associated sheaf”.
(3) If (#A,F) is a base for ¥ and (#',F’) is a base for the F-induced
topology on £, then (%', FF') is a base for ¥.

2.2. Categories of formal models. We will show now that the étale site of
smooth rigid analytic varieties over K, resp. over C, admits a base built from
semi-stable formal schemes over finite extensions of Ok, resp. over O¢.

2.2.1. Models. Let L = K,C. A morphism of &p-schemes f: Y — X is called
n-étale, an n-isomorphism, etc., if its generic fiber fr, is étale, an isomorphism,
etc. An Or-scheme is admissible if it is flat and of finite type over &r. A formal
Or-scheme % is admissible if it is flat and of finite type over Spf(&y). For an
admissible formal & -scheme 27, we denote by 27, (or %) its rigid analytic
generic fiber. We say that a morphism % — 2" between admissible formal
O'r-schemes is n-étale if its generic fiber fr, (or f,) is étale. Similarly, we define
n-smooth morphisms.®

Let Smy be the category of smooth L-rigid varieties. We will consider
categories .# formed by semi-stable formal models of such varieties.

(a) K-setting: A model over K (a K-model) is an admissible formal O-
scheme 2. A formal scheme over Ok is called semi-stable if, locally for the
Zariski topology, it admits an étale morphism to a formal scheme of the form

Spf(Ok{X1,.... X} /(X1 X —w)), 0<m<I,

8In a more traditional language we would call such morphisms “rig-étale”, etc. However,
since it is becoming standard to use 1 to denote the rigid generic fiber, we have elected to
use n-étale in this paper.
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for a uniformizer w of Ok (we allow m = 0 just to get formal affine space
— when the formal scheme is smooth). A K-model 2 is called semi-stable
if it is semi-stable over O for a finite field extension E of K. In that case,
assume that 2% is connected (which is equivalent to 2 being connected), and
let K2 be the algebraic closure of K in I'(Zx, Oz, ) (note that E C Kg).
Then Ok, is the integral closure of Ok in I'(2", 02') and £ is semi-stable
over Ok, . We will say that 2" is split over K g .

Let .4k denote the category of K-models (morphisms are morphisms of
formal schemes over Ok ) and let .Z;F be its full subcategory of semi-stable
K-models.

(b) C-setting: A model over C' (a C-model) is an admissible formal O¢-
scheme 2. It is called semi-stable if, locally for the Zariski topology, it admits
an étale morphism to a formal scheme of the form

Spf(Oc{X1,...., X1} /(X1 X —w)), 0<m<I,

for 0 # w € O¢. It is called basic semi-stable if there exists a semi-stable
model 2" over O, E a finite extension of K, and a C-point a: E — C such
that 2 is isomorphic to the base change %, éc. Let .#¢ denote the category
of C-models and let ., 45" be its full subcategories of semi-stable and
basic semi-stable C-models, respectively.

We note that if we equip the formal schemes in .Z¢, és’b, and 2 with
the log-structure associated to the special fiber over the ring over which they
split, every map in these categories is a map of log-schemes. Warning: the
maps in the category %gs’b do not have to come from finite levels.

The K- and C-settings are connected by the base change functors

(2.4) MEP —— Sme

[ |

M —— Sy,

where the right vertical arrow is the base change (—)®xC and the left arrow
assigns to a K-model % semi-stable over O, L a finite extension of K, the
disjoint union of semi-stable models Z ®¢,,o Oc over C-points a: L — C.

2.2.2. Semistable reduction. We say that an admissible formal &-scheme 2
is algebraizable if it is isomorphic to the p-adic completion of an admissible
O1-scheme X. The well-known algebraization theorem of Elkik [14] yields the
following theorem.

Theorem 2.5 ([39, Th. 3.1.3]). Any affine n-smooth admissible formal O -
scheme % 1is algebraizable. MoreoveAr, we can find an affine n-smooth admis-
sible O -scheme X such that 2 ~ X.

We quote two results of Temkin which generalize results of Hartl [22, Th. 1.4]
(which works for complete discretely-valued fields) and Faltings [17, IIL.2] (see
[39, Th. 2.5.2] for an algebraic analog and [4] for a refined algebraic analog).
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Theorem 2.6 ([39, Th. 3.3.1]). Let 2" be an n-smooth admissible formal
scheme over Or,. Then there exists a finite field extension E/L and an n-étale
covering ' — X Qp, O such that ' is semi-stable over Of.

Corollary 2.7 ([39, Cor. 3.3.2]). Let X be a smooth qcqs rigid space over L.
There exists a finite extension E/L and an étale covering X' — X ®r F such
that X' is affinoid and has a semi-stable affine formal model.

Proof. Take an admissible formal model 2" of X (such a model exists by a
theorem of Raynaud [5, Th. 4.1]). Take E/L and 27/ — 2 ®¢, O as in
Theorem 2.6. We can refine 27 to make it affine. Then its generic fiber 27,
is affinoid and has 2" for a semi-stable model. O

2.2.3. An equivalence of topoi. Let .# be any category from Section 2.2 and
let F;, be the forgetful functor 2" — Z,. The main result of this section is
the following.

Proposition 2.8. If # is the category M or A3, then (A, F,) is a base
for Smg ¢y If A is Mc, //lés’b, or M, then (M, Fy) is a base for Sme .

Proof. Consider first the K-setting. We need to show that .#k satisfies con-
dition (%) from Section 2.1. For that, assume that X is a rigid analytic va-
riety over K and take a finite family® of K-models %, together with maps
fa: X = %o . We need to find an étale covering 7: X’ — X and a K-model
Z' of X’ such that every map f,m extends to a map 2/ — %,.

Replacing X by an affinoid admissible covering, we may assume that X is a
disjoint union of affinoids. By a theorem of Raynaud [5, Th. 4.1], we can find a
K-model of X. By [6, Lem. 5.6], this model can be modified by an admissible
blow-up to a K-model 2" of X such that there exists a dotted arrow that
makes the following diagram commute:

This is the model we wanted.

Now, to show that (.}, F,)) is a base, it suffices, by Remark 2.3, to show
that (A2, ¢), for the natural functor ¢: A3 — Mk, is a base of #. Since
¢ is fully faithful, by Remark 2.1, it suffices to check that, for every K-model
U € My, there exists a map of K-models %' — % such that %}, — Uk is
étale and %/’ is semi-stable. But this follows from Theorem 2.6.

For the C-setting the argument is analogous in the case of .#¢c and Z2.
For ///gs’b, since ///gs’b — A is fully faithful, by Remark 2.1, it suffices
to check that, for every C-model % € .4, there exists a map of C-models
U' — U such that %, — %c is étale and %’ is basic semi-stable. But this
can be achieved by taking for %’ a log-blow-up of % (see [35, Lem. 1.11]). O

9By Remark 2.1, we may assume that this family consists of one element.
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We call the topology induced by F), on the categories .# the n-étale topol-
ogy. The functors in (2.4) are continuous for the respective étale topologies.
By Section 2.1 and Proposition 2.8, F}, identifies étale sheaves on Smg, resp.
Sme, with n-étale sheaves on Ay, A, resp. Mc, //5“’, AME. We obtain
the étale localization functors

Psh(.#};) — Sh(Smg ¢), Psh(.#5) — Sh(Smee),

which assign to any presheaf .# on models the corresponding étale sheaf .~
viewed as an étale sheaf on varieties.

Remark 2.9. For any presheaf on .# or .#¢, its n-étale sheafification is the
same as the 7-étale sheafification of its restriction to resp. .#3* or //lés7b, ME .
Remark 2.10. In this paper we will use over and over again the following
procedure to define an étale sheaf .% on, say, Smg.

(1) (Local definition). We define a functorial #(Y), Y € .#}2.

(2) (Globalization). We sheafify the so defined presheaf in 7-étale topology.
This yields an étale sheaf .# on Smg (this notation is slightly abusive
but hopefully will not cause problems in understanding).

(3) (Local-global compatibility). We will often need to know that we have
n-étale descent, i.e., that, for Y € .}, the natural map #(Y) —
RI'¢(Yk,.Z) is a quasi-isomorphism.

2.3. Categories of weak formal models. In this section, we will show that
the étale site of smooth dagger varieties!? over K, resp. over C, admits a base
built from semi-stable weak formal schemes over finite extensions of Ok, resp.
over O¢.

2.3.1. Models. Let L = K,C. A weak formal O -scheme 2 is admissible if it
is flat and of finite type over &,. For an admissible weak formal &' -scheme 2",
we denote by 27, (or %) its dagger generic fiber. We say that a morphism
[+ % — Z between admissible weak formal & -schemes is n-étale if its generic
fiber fr, (or f,) is étale. Similarly, we define n-smooth morphisms.

Let SmTL be the category of smooth L-dagger varieties. We define the cat-
egories A/ z,///g’ss’b, and .}, formed by weak formal models, basic semi-
stable, and semi-stable weak formal models,!! respectively, of such varieties
in a similar way as in the rigid analytic case above. If we equip the weak
formal schemes in .Z £7ss with the log-structure associated to the special fiber
over the ring over which they split, every map in these categories is a map
of log-schemes. The functors .# g,ss — M 2, ///g’ss’b — ///g’ss are fully faith-
ful embeddings. The K- and C-settings are connected by the base change
functors.

10For basics on dagger (or overconvergent) varieties, we refer the reader to [20].

HGemistable weak formal schemes are defined by the same formulas as semi-stable formal
schemes with the ring of convergent power series 07 {X1,...,X;} replaced by the ring of
overconvergent power series O [X1, ..., X;].
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2.3.2. Semistable reduction. We say that an admissible weak formal &'7-scheme
X is algebraizable if it is isomorphic to the weak completion of an admissible
Spec(0r)-scheme X. The algebraization theorem, Theorem 2.5, combined
with the fact that, up to an isomorphism, there is a unique dagger structure
on every rigid analytic affinoid [18, Cor. 7.5.10], yields the following corollary.

Corollary 2.11. Any affine n-smooth admissible weak formal O -scheme Z
is algebraizable. Moreover, we can find an affine n-smooth admissible Op -
scheme X such that 2" ~ XT.

This corollary allows us to prove the following.

Corollary 2.12. (1) Let Z be an n-smooth admissible weak formal
scheme over 0. Then there exists a finite field extension E/L and
an n-étale covering X' — Z ®p, Or such that Z' is semi-stable
over Og.

(2) Let X a smooth qcgs dagger space over L. Then there exists a finite
extension E/L and an étale covering X' — X ®, E such that X' is a
dagger affinoid and has a semi-stable affine weak formal model.

Proof. For (1), having Corollary 2.11, Temkin’s proof of Theorem 2.6 goes
through. For (2), we modify the proof of Corollary 2.7 using the algebraization
result from Theorem 2.5. ]

2.3.3. An equivalence of topoi. Let .#T be any category from Section 2.3.1 and
let F, be the forgetful functor 2" +— Z7. The main result of this section is
the following.

Proposition 2.13. If .#T is the category ///IT{ or ///};SS, then (AT, F) is a
base for SmTK)ét. If A1 is J//é, %é’ss’b, or ML, then (M1, F,) is a base for
SmTC,ét'

Proof. Consider first the K-setting. Recall the following dagger version of
Raynaud’s theory of formal models of rigid analytic varieties:

Theorem 2.14 ([27]). There is an equivalence of categories between

(1) the category of quasi-paracompact admissible weak formal schemes over
Ok localized by the class of weak formal blow-ups,
(2) the category of quasi-separated quasi-paracompact K -dagger spaces.

It is now easy to see that the proof of Proposition 2.8 goes through in our
case with Raynaud’s theory replaced by this dagger analog.

For the C-setting the argument is analogous to the one used in the proof of
Proposition 2.8. (]

We call the topology induced by F), on the categories .# t the 7-étale topol-
ogy. The base-change functors are continuous for the respective étale topolo-
gies. By Section 2.3 and Proposition 2.13, F;, identifies étale sheaves on SmTK7
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resp. SmTC7 with 7-étale sheaves on ///IT{, ///};SS, resp. ///g, ///gss’b, //lgss.
We obtain the étale localization functors

Psh(./j) — Sh(Sml. ), Psh(.#%) — Sh(Sm. ).

which assign to any presheaf .# on weak formal models the corresponding
étale sheaf F™ viewed as an étale sheaf on dagger varieties. Moreover, for any
presheaf on ./Z IT( or ///g, its n-étale sheafification is the same as the n-étale
sheafification of its restriction to resp. %, AL™", or M.

3. PRO-ETALE COHOMOLOGY OF DAGGER VARIETIES

Let the base field L be K or C. Fix a pseudo-uniformizer w € L, i.e.,
an invertible, topologically nilpotent element. All the rigid analytic varieties
considered are over L; we assume that they are separated and taut.'?

The purpose of this section is to define the pro-étale cohomology of dagger
varieties. We will do it in the most naive way: for a dagger affinoid, we will
use its presentation of the dagger structure to define the pro-étale cohomology
of the dagger affinoid as the homotopy colimit of pro-étale cohomologies of
the (rigid) affinoids in the presentation; for a general dagger variety, we will
globalize the construction for dagger affinoids via Cech coverings.

3.1. Topology. Our cohomology groups will be equipped with a canonical
topology. To talk about it in a systematic way, we will work rationally in the
category of locally convex K-vector spaces and integrally in the category of
pro-discrete Ox-modules. We review here briefly the relevant basic definitions
and facts. For details and further reading and references, the reader may
consult [9, Section 2.1, 2.3].

3.1.1. Derived category of locally convex K -vector spaces. A topological K-
vector space'? is called locally convex (convez for short) if there exists a neigh-
borhood basis of the origin consisting of &x-modules. We denote by Ck the
category of convex K-vector spaces. It is a quasi-abelian category. Kernels,
cokernels, images, and coimages are taken in the category of vector spaces and
equipped with the induced topology. A morphism f: E — F'is strict if and
only if it is relatively open, i.e., for any neighborhood V of 0 in E, there is a
neighborhood V’ of 0 in F' such that f(V) D> V' N f(E).

The category Ck has a natural exact category structure: the admissible
monomorphisms are embeddings, the admissible epimorphisms are open sur-
jections. A complex E € C(Ck) is called strict if its differentials are strict.
There are truncation functors on C'(Ck)

TenB == E"? 5 E" ! S ker(d,) =0 — -+,

TZnE::---—>0---—>coim(dn_1)—>En—>E”+1_>...,

125¢e [23, Def. 5.6.6] for the definition of “taut”.
BFor us, a K -topological vector space is a K-vector space with a linear topology.
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with cohomology objects
H™(E) := 1<pm5n(E) = (coim(d,,_1) — ker(d,,)).

We note that here coim(d,,—1) and ker(d,) are equipped naturally with the
quotient and subspace topology, respectively. The cohomology H*(E) taken
in the category of K-vector spaces we will call algebraic and, if necessary, we
will always equip it with the sub-quotient topology.

We will denote the left-bounded derived oo-category of Cx by Z(Ck).
A morphism of complexes that is a quasi-isomorphism in Z(Ck), i.e., its cone
is strictly exact, will be called a strict quasi-isomorphism. We will denote by
D(Ck) the homotopy category of 2(Ck).

For n € Z, let D<,,(Ck) (resp. D>,(Ck)) denote the full subcategory of
D(Ck) of complexes that are strictly exact in degrees k > n (resp. k < n).
The above truncation functors extend to the truncation functors

T<n: D(CK) — Dgn(CK) and T>n': D(CK) — DZn(CK)

The pair (D<n(Ck), D>n(Ck)) defines a t-structure on D(Ck). The (left)
heart LH(Ck) is an abelian category: every object of LH(Ck) is represented
(up to equivalence) by a monomorphism f E — F, where F is in degree 0,

, it is isomorphic to a complex 0 — F Lro 0; if f is strict, this object
is albo represented by the cokernel of f (the whole point of this construction is
to keep track of the two possibly different topologies on E: the given one and
the one inherited by the inclusion into F').

We have an embedding I: Cx — LH(Ck), E — (0 — E), that induces
an equivalence D(Cg) — D(LH(Ck)) that is compatible with t-structures.
These t-structures pull back to t-structures on the derived dg categories 2(C ),
P(LH(Ckg)) and so does the above equivalence. There is a functor (the clas-
sical part) C: LH(Ck) — Ck that sends the monomorphism f: E — F to
coker f. We have CI ~ Id¢, and a natural epimorphism e: Idygcy) — IC.

We will denote by H" 2(Ck) — 2(LH(Ck)) the associated cohomological
functors. Note that CH™ = H™ and we have a natural epimorphism H" —
ITH™. If, evaluated on E, this epimorphism is an isomorphism, we will say that
the cohomology H™(E) is classical (in most cases this is equivalent to H™(E)
being separated).

3.1.2. The category of pro-discrete Ok -modules. Objects in the category PDg
of pro-discrete & x-modules are topological &x-modules that are countable in-
verse limits, as topological &x-modules, of discrete @x-modules M?, i € N. It
is a quasi-abelian category. It has countable filtered projective limits. Count-
able products are exact functors.

Inside the category PDg, we distinguish the category PCk of pseudocom-
pact Ox-modules, i.e., pro-discrete modules M ~ @z M; such that each M;
is of finite length (we note that if K is a finite extension of Q,, this is equiv-
alent to M being profinite). It is an abelian category. It has countable exact
products as well as exact countable filtered projective limits.
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There is a functor from the category of pro-discrete & x-modules to convex
K-vector spaces. Since K =~ hﬂ(ﬁ;{ 2 0ok 2 0x 2 --.), the algebraic
tensor product M ®¢, K is an inductive limit:

M ®p, K ~lim(M = M 5 M 5 ---).

We equip it with the induced inductive limit topology. This defines a tensor
product functor

(—)®KIPDK—>CK, MHM@@KK.

Since Ckx admits filtered inductive limits, the functor (—) ® K extends to a
functor (—) ® K: Ind(PDg) — Ck.

The functor (—) ® K is right exact but not, in general, left exact.'® For
example, after tensoring with Q,,, the short strict exact sequence

0= [[r'z, =5 [[20 — ][ Zo/p" — 0
i>0 i>0 i>0
is not costrict exact on the left (note that ([[,5,Zp/ p') ®Q, is not Hausdorff).
We will consider its (compatible) left derived functors

(-)®* K: 927 (PDk) — Pro(2~ (Ck)),
(-)®F K: 27 (Ind(PDg)) — Pro(2~ (Ck)).
The following fact will greatly simplify our computations.

Proposition 3.1 ([9, Prop. 2.6]). If E is a complex of torsion-free and p-
adically complete (i.e., E ~ @71 E/p™) modules from PDp, then the natural
map

E@IK - E®K

s a strict quasi-isomorphism.

3.2. Pro-étale cohomology of dagger varieties. In this section we will de-
fine the pro-étale cohomology of dagger varieties and study its basic properties.

3.2.1. Dagger varieties and pro-systems of rigid analytic varieties. We will
briefly review here the content of [42, Appendix]. Recall the following definition
42, Def. A.19):

Definition 3.2. Let X be a rigid analytic affinoid. A presentation of a dagger
structure on X is a pro-affinoid rigid variety { X}, h € N, where X and all X},
are rational subvarieties of X7 such that X € X411 € X} and the pro-system
is coinitial among rational subvarieties of X containing X in their interiors.?
A morphism of presentations between {X,} and {Y}} is a morphism of pro-
objects, i.e., an element of lim, lim, Hom(X}, Yz).

1yWe will call a functor F right exact if it transfers strict exact sequences 0 - A — B —
C — 0 to costrict exact sequences F(A) — F(B) — F(C) — 0.

15Recall that, for an open immersion X C Y of adic spaces over L, we write X € Y if
the inclusion factors over the adic compactification of X over L (see [23, Th. 5.1.5]).
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Example 3.3. Consider a rational inclusion X = X1(f1/g,-.., fm/9) € X3
of affinoid rigid varieties. We can write (see [42, Ex. A18])
O0(X1) = L{wn,...,wm}/1,
O(X)=L{m,....Tn,v1,-. ., vm}/(L, (vig = fi)1<i<m)-
Let X} be the rational subvariety of X; with
O0(Xyp) = L{w "y, ... o/, Mo, e Mo} (0ig — fi)i<icm)-

The pro-system { X}, } of rational subvarieties of X is a presentation of a dagger
structure on X. We have

hﬂﬁ(Xh) >~ L[Tl, ey T, U1y .. ,’Um]T/(I, (Uig — f@)lgigm),
which is a dagger algebra.

The following proposition clarifies the relationship between presentations of
dagger structures and dagger algebras.

Proposition 3.4 ([42, Prop. A.22]). Let X = Sp}A% be a rigid affinoid and let
{X4n} be a presentation of a dagger structure on X. We have

(1) R= h_n} O(Xn) is a dagger algebra dense in ﬁ,

(2) the functor {X,} — Sp' R induces an equivalence of categories between
dagger affinoid varieties and their presentations.

In fact, it is not hard to see that we have a functor pres: X — {X}
from dagger algebras to presentations of dagger structures (up to a unique
isomorphism) that is the right inverse (on the nose) of the functor in the above
proposition.

3.2.2. Etale topology of dagger varieties. For basic properties of dagger alge-
bras and varieties and morphisms between them, see [20]. For basic properties
of étale and smooth morphisms of dagger varieties, see [16]. We quote the
following result.

Proposition 3.5 ([16, Th. 2.3]). Let X be a dagger affinoid with comple-
tion X. We have a natural equivalence of étale topoi

Sh(Xer) = Sh(Xg).

One can promote the equivalence of categories between dagger spaces and
their presentations in Proposition 3.4 to an equivalence of topoi.

Definition 3.6 ([42, Def. A.24]). (i) Let P be a property of morphisms
of rigid analytic varieties. We say that a morphisms of pro-rigid va-
rieties ¢: X — Y has the property P if X ~ {X;},Y ~ {Y}} and
v = {¢n}, with ¢p: X — Y}, having property P.

(ii) We say that a collection {¢;: {Uin} — {Xn}}ier of morphisms of pro-
rigid spaces is a cover if X € |J;im(U;) for all h.
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In particular, one can define open immersions, smooth, and étale morphisms
of presentations of dagger affinoids which agree with the corresponding notions
for dagger affinoids. Since the morphisms X C X, are open immersions (hence
étale), we deduce that if a morphism X — Y is an open immersion (resp.
smooth, resp. étale), then so is the associated morphism XY,

e From now on we will use the following convention: if X is a smooth
dagger affinoid, the presentation X ~ {X}} will be assumed to have
all X}, smooth as well.

Corollary 3.7 ([42, Cor. A.28]). Let X be a dagger affinoid with a presenta-
tion {Xp}. We have a natural equivalence of étale topoi
Sh(Xet) = Sh({Xp}et)-
3.2.3. Definition of pro-étale cohomology. Let r € Z.
(i) Local definition. If {X},} is a pro-rigid analytic variety, we set
R prost ({ X1}, Z/p™(r)) := hocolimy, RT proet (X1, Z/p" (1))
]
hocolimy, RI‘étT(Xh, Z/p™(r))
Let X be a dagger affinoid. We define its pro-étale cohomology as
(3.8) RI prost (X, Z/p" (1)) := R pross (pres(X), Z/p™ (r)).
If the dagger affinoid X has a dagger presentation {X}}, then
RI¢ (X, Z/p™(r)) <= hocolimy, R (X}, Z/p"(r))
and we have a natural quasi-isomorphism
(3.9) RT¢ (X, Z/p™ (1)) = Rl prost (X, Z/p"(r)).
We make similar definitions for Z, and Q, coefficients. We have the natural
maps (note the direction of the second map)
RE proat (X, Zp(r)) — RDproet (X, Qp(r)),
RI prost (X, Zp (1)) — RTe(X, Zp (7).

The first map is a rational quasi-isomorphism. If the dagger affinoid X has
dagger presentation { X3}, then we define the second map in the following way:

(3.10)  RTproct(X, Zy(r)) = hocolimp, RTprost (Xn, Zy(r))
hocolimy, RT g (XI,? Zy(r))
hocolimy, holim,, l:|{|,rét (Xn,Z/p™(r))
holim,, hocolimy, ];lirét (Xn,Z/p"(r))
holim,, RT¢; (X, Z||/p"(7’)) <= Rl (X, Zy(r)).
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Here the second quasi-isomorphism holds because X}, is quasi-compact (cover
X}, with a finite number of affinoids and use the quasi-isomorphism (3.9)).

(ii) Topological issues. We need to discuss topology. Let, for a moment,
X be a rigid analytic variety over L. We equip the pro-étale and étale co-
homologies RI'pro6t (X, Qp(r)) and R (X, Qp(r)) with a natural topology by
proceeding as in [9, Section 3.3.2] by using as local data compatible Z/p™-free
complexes.'6 If X is quasi-compact, we obtain in this way complexes of Banach
spaces over Q. In that case the natural continuous map RIe (X, Qp(r)) —
RT proct (X, Qp(r)) is a strict quasi-isomorphism.

More precisely, we have

RT proct (X, Qp(r)) :=hocolim RT¢ (U., Qp (7)),

where the homotopy colimit is over étale quasi-compact hypercoverings'” of X .
Since all the complexes RI'¢(U., Qp(r)) are complexes of Fréchet spaces, all
the arrows in the colimit are strict quasi-isomorphisms. Hence we can compute
with any particular hypercovering.

Remark 3.11. We will often use the following simple observation. If X is
a smooth rigid analytic variety, then we can find an increasing quasi-compact
admissible covering {Up, }nen of X such that Uj; is contained in the relative inte-
rior of U;41. If X is moreover partially proper, we can assume that U; € U;41.
We have analogous statements for dagger varieties.

It follows that, for a general smooth rigid analytic variety X, we have an
increasing quasi-compact admissible covering {U, } nen of X, such that we have

(in 2(Cq,))
RI prost (X, Qp (1)) = holim,, RT'¢; (U, Qp(r)).
Hence we have the short exact sequence
0 — H' holim, Hi (Un, Qp(r)) = HRT proer (X, Qp(r))
— HOholim,, H, (Uy, Q,(r)) — 0.

If X is a dagger affinoid, its pro-étale cohomology acquires now natural
topology by taking the homotopy colimit in (3.8) in Z(Cq, ).

(iii) Globalization. For a general smooth dagger variety X, we have the
natural equivalence of analytic topoi

Sh((SmAf} /X 1)s) = Sh((Sm! /X 1)er),

where SmTL /X1, is the category of smooth morphisms of dagger varieties to
X and SmAffTL /X1, is its full subcategory of affinoid objects. Using this
equivalence, we define the sheaf .&7,10¢t (), 7 € Z, on X¢; as the sheaf associated

16Such complexes can be found, for example, by taking the system of étale hypercovers.
1"Here and below, we use “colimit over hypercoverings” as a shorthand for “colimit over
the filtered category of hypercoverings up to simplicial homotopy”.
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to the presheaf defined by U — RI'poet (U, Qp(r)), U € SmAffTL, U— X an
étale map. We define the pro-étale cohomology of X as

RFproét (X, Qp(’l")) = Rfét (X, dproét (’I")), r e Z.

We equip it with topology by proceeding as in the case of pro-étale cohomology
of rigid analytic varieties starting with the case of dagger affinoids that was
described above.

(iv) Local-global compatibility. This definition is consistent with the previous
definition:

Lemma 3.12. Let X be a dagger affinoid with the presentation {Xp}. Then
the natural map

Rrproét({Xh}a Qp(r)) — Rrét (X7 dproét (T))7 re Za
18 a strict quasi-isomorphism.

Proof. Set RI (X, Qu(r)) := Rl prost ({ X1}, Qp(r)). It suffices to show that,

proét
for any étale affinoid hypercovering U, of X, the natural map

RI* . (X, Qu(r) — RIE (UL, Qy(r))

is a strict quasi-isomorphism (modulo taking a refinement of U,). For that, it
suffices to show that, for any &k € N, the map

(3.13) TerRT o (X, Qu(r) = 7<kRTY . (T, Qu (1)),

where T = U,, is a strict quasi-isomorphism. Since, for that, it is enough to
work with the truncation 7<;417', we will assume that T is a finite hypercov-
ering and has a finite number of affinoids in every degree.

Take the dagger presentation X ~ {X},h € N. We can represent T by a
pro-system of hypercoverings {1}, — V4 }, Vi, C X, h € N, forming a dagger
presentation of T' degree-wise.'® We note that then Vi, .1 € Vj. From the
universal property of {X,} and the quasi-compactness of V3, we get that the
two pro-rigid varieties {X}} and {V},} are equivalent. It follows that we have
a natural strict quasi-isomorphism

hocolimy, RT¢:(Xr, Qp(7)) = hocolimy, RTg (Va, Q,(1)).

Hence the map (3.13) is represented by a composition

T<kRTE (X, Qp(r)) <= 7<k(hocolimy RTe (Viy, Qp(r)))
I
T<n(hocolimy, RTet (Th, Qp(r))) ~ 7<kRT% 4 (T, Qp(1)),

18This uses the simple observation that if a collection of morphisms of pro-rigid spaces
{pi: {Vin} — {Xn}}icr is an étale cover, then we can choose a subsequence { Xy, } of
{Xn} such that the pro-rigid spaces {V; , = Vin Xx, Xy, } form an étale cover of {X}}
and, moreover, all the maps {¢;: {Vj r, } = {X&, } }icr are étale covers (to see this use the
“initial” part of the definition of presentations).
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where the middle strict quasi-isomorphism follows from étale descent for rigid
analytic varieties. This finishes our proof of the lemma. U

Remark 3.14. For a smooth dagger variety X, we can define similarly the
integral pro-étale cohomology RI'prost (X, Zp (1)), r € Z. We have the natural
maps

RFproét (X; Zp(r)) — RFproét (Xa QP(T))a

RT prost (X, Zp(1)) —= ROee(X, Zp(r)) =5 RTUt(X, Zp (1)) =5 RT prose (X, Zip (7).
For X quasi-compact, the first map becomes a strict quasi-isomorphism after

tensoring with Qy; this is not the case for general X. The second map is a
globalization of maps for dagger affinoids defined in (3.10).

3.2.4. Comparison isomorphisms. Let L = K,C. For X € SmTL7 we have a
natural map

(315) Lproét - RFproét (Xv QP(T)) — RFproét ()?7 QP(T))

It is obtained by globalization of such maps for dagger affinoids: if the dagger
affinoid X has a dagger presentation {X}}, then

RFproét (Xv Qp (T)) = hOCOhmh RFproét (Xha Qp(r))

and tproét is the canonical map

can

hocolimy, RT proet (Xn, Qp(r)) — RI‘pmet(X Qp(r)).

Proposition 3.16. Let X be partially proper. Then the map (3.15) is a strict
quasi-isomorphism.

Proof. Since a partially proper smooth dagger variety is locally Stein, we can
assume X to be Stein. Choose an admissible covering of X by an increasing
sequence of dagger affinoids {U,}, n € N, strictly contained in each other.
Then the map tpro¢t from (3.15) can be written as the composition

RT prost (X, Qp(r)) = holim,, RT prost (Un, Qp(7))
l

hOlimn Rrproét (ﬁna Qp(r)) <i Rrproét (557 Qp(r))

and we need to show that the mlddle map is a strict qua51—1somorphlsm But
for every n > 1, the map U — Un 1 factorizes as U — pres(U,) — Un 1,
yielding the factorlzatlon

RFproét(ﬁn—la Q;D (T)) — RFproét (preS(Un)v Q;D (T)) — RFproét(ﬁn; Qp(r))
It follows that the prosystems

{REprot (Un, Qp(r))}s - {RT procs (pres(Un), Qp(r)) }

are equivalent. Since RT proct (Un, Qp(r)) <— RT proct (pres(Us), Qp(r)), we are
done. O
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4. RIGID ANALYTIC SYNTOMIC COHOMOLOGY

In this section we define syntomic cohomology for smooth rigid analytic vari-
eties over K or C by n-étale descent of the classical definition due to Fontaine—
Messing. We show that the computations of syntomic cohomology from [10]
done for rigid analytic varieties with semi-stable reduction generalize to all
smooth rigid varieties. We also introduce the Hyodo—Kato cohomology for
such varieties, prove that it satisfies Galois descent, and define the Hyodo—
Kato morphism (that is a quasi-isomorphism over C). Finally, over K, we
define the Bloch-Kato rigid analytic syntomic cohomology (built from Hyodo—
Kato and de Rham cohomologies) and show that it is quasi-isomorphic to the
rigid analytic syntomic cohomology.

4.1. Definition of rigid analytic syntomic cohomology. We define the
syntomic cohomology of smooth rigid analytic varieties by étale descent of
crystalline syntomic cohomology of semi-stable models.

Let % € .#}. We consider it as a log-formal scheme with the log-structure
associated to the special fiber. For r > 0, we have the mod p™, completed, and
rational absolute (i.e., over Zj) filtered crystalline cohomology

RO (%, 7, RUo(%, 7)) := holim, RTcr(%,, 7 ),

Rle(%, 7')q, =Rlu(, /') ®z, Q.

Here 7 [l denotes the r-th Hodge filtration sheaf. The corresponding n-étale
sheafifications on .} we will denote by F" .y, F" er, and F" .o q,. We
make analogous definitions for crystalline cohomology of basic semi-stable mod-
els over O¢ (see [2] for details).

For r > 0, define the mod p", completed, and rational crystalline syntomic
cohomology

REwn(% . Z/p" (1)) = [RTer(Z, #11) % RUet(%,)]
~ [[RTer(%)]77"" 2% RUor (%) /RY (%, 71,
RTayu(% . Zy(r)) := holim, RTuy(% . Z/p" (1),
Rayn(%, Zy(1))q, = Rlan(%, Zy(1)) €5, Q,
~ RT(%, 7M)q, 2=5 RTa(%)q, ).

The corresponding n-étale sheafifications on .#}° we will denote by @yn »(r),
oy (1), and yn(r)q,. We make analogous definitions for crystalline syn-
tomic cohomology of basic semi-stable models over . We have the distin-
guished triangles

DQ{syn,n(T) — FTDQ{cr,n u> JZ{cr,n;

Sognn(1) = AL = Ao | F,

where we set @Z9=P" = [Her n L e, Aoy ). Similarly for the completed and

cr,n

rational cohomology.
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For X € Smy, L = K,C, we define two rational (rigid analytic) syntomic
cohomologies:

RPuyn (X, Zy(1))q, = Rle(X, dyn(r) @7, Qp,
R syn (X, Qp(r)) := RTet (X, Fyn(r)q, )-

From now on, to simplify the notation, we will write (—)q, for (—) ®ép Qp;
similarly for coeflicients other than Q,. There is a canonical map

(4.1) Rlsyn (X, Zp(r))q, = RTsyn (X, Qp(r)).

It follows immediately from the definitions that, for X quasi-compact, this
is a quasi-isomorphism (but it is not so in general). By proceeding just as
in [9, Section 3.3.1] (using crystalline embedding systems), we can equip both
complexes in (4.1) with a natural topology for which they become complexes of
Banach spaces over Q,, in the case X is quasi-compact'® (and in that case the
quasi-isomorphism (4.1) is strict). We do the same for the crystalline complexes
involved in the definition of syntomic cohomology. We have distinguished
triangles in 2(Cq, ):

(42)  RTyn(X,Zy(r)q, = RTa(X, 7™ )q, = RTa(X, % /F')q,,
Rl yn (X, Qp(r)) = RTee(X, #5F ) = RTee(X, Herq, /F").

P

We will show later (see Corollary 4.32) that if X = 2%, for an admissible
semi-stable formal scheme 2~ over O, then the canonical map

Rlgyn (27, Qp(r)) — Rl syn (X, Qp(r))
is a strict quasi-isomorphism.
4.1.1. Rigid analytic de Rham cohomology. Let L = K,C. Consider the pre-
sheaf X — RIT4r(X) of filtered dg L-algebras on Smy. Let @/ir be its étale

sheafification on Smy. It is a sheaf of filtered L-algebras on Smp 4. For
X € Smp, we have the natural filtered quasi-isomorphism

RI4r(X) = R (X, S4R).

We equip RTggr(X) with the topology induced by the canonical topology on
affinoid algebras; we equip RIg (X, @4r) with topology using étale descent
as we did before. Then the above quasi-isomorphism is strict: sheaves of
differential forms satisfy étale descent in the strict sense.

Let X € Smy. We will need to understand the cohomology groups in degrees
r—1 and r of

RI4r(X)/FT ~RI(X, Ox — Q% — - = Q1)
To do that consider the distinguished triangle (in 2(Cp))
(43) 0 — ker dr[—T‘] — TSTQ_.X RN Q;{Tﬁl N O7

19%e note that & Kk being syntomic over O, all the integral complexes in sight are in
fact p-torsion-free.
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where d,: Q% — Qg;rl is the de Rham differential. It yields the long exact
sequence

0 — HizY(X) = H Y (RD4r(X)/F") — H" (X, kerd,[-r]) — Hip(X).
Or, since H"(X, ker d,.[—r]) = Q"(X)4=9, the short exact sequence
0 — Hiz'(X) = HY(RO4r(X)/F") = kerm — 0,

where 7 is the natural map Q" (X)?=0 — Hj(X). We have a monomorphism
imd,_1(X) < kerm.
The distinguished triangle (4.3) yields also the long exact sequence

0 — cokerm — H"(RTqr(X)/F") — HY (X, kerd,) — H"™ (X, 7<,.Q%).

Remark 4.4. (a) If X is proper, all the Hodge and de Rham cohomology
groups are classical (finite-dimensional vector spaces over K), the Hodge-de
Rham spectral sequence degenerates at E; [37, Cor. 1.8], and we get the
isomorphisms

Hip'(X) = H'™Y(RDar(X)/F7), Hig(X)/Q"(X) = H'(RTar(X)/F").

(b) If X is Stein, we have H'(X,Q%) = 0, i # 0, and all the de Rham
cohomology groups are classical (Fréchet spaces). We have

ROur(X)/F" = (6(X) = Q(X) = - = Q" (X))
with strict differentials. Hence we get the isomorphisms
H ' (RTar(X)/F") ~ Q" Y(X)/imdy—1, H'(RDqr(X)/F")~0, i>r.
Hence the cohomology H"*(RIgr(X)/F") is classical.

Proposition 4.5. Let X € Smg. Let r > 0. We have a canonical strict
quasi-isomorphism

Yr - RFdR(X)/FT l) RFét(X, Jchr’Qp/FT).
Proof. Let 2 be a quasi-compact semi-stable formal scheme over g, with
[E : K] < co. Recall that [31, Cor. 2.4] there exists a functorial and compatible
with base-change quasi-isomorphism

~

vr: RUar(Zx)/F" = RUe( 2,6/ 7 M)q, .

This quasi-isomorphism is in fact strict: this is not completely evident because
the integral version of the morphism is only a p~-quasi-isomorphism for some
constant N but can be seen by an argument identical to the one used at the
end of the proof of [9, Prop. 6.1]. By n-étale descent, we get the strict quasi-
isomorphism in the proposition. O
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4.1.2. Some computations. Recall that, in a stable range and up to some uni-
versal constants, crystalline syntomic cohomology has a simple relation to de
Rham cohomology. Let 2" be an affine semi-stable formal scheme over 0. Let
r > 0. We note that 7<,—1(RTex(27)/F") = Rl;(2")/F" and that the natu-
ral map 7<,41([RTer(2)]9=P") — [RT(2)]#=P" is a p*"-quasi-isomorphism
(since 1 — p®p, s > 1, is invertible on differentials in degree r + s).
Proposition 4.6 ([10, Prop. 3.12]). (i) The natural map
T<r+1Rsyn (2, Zp(1r)) = Rlsyn (2, Zp (1))
is a p>"-quasi-isomorphism and
H™  RUgyn (27, Zp(r)) = H™T([RDe(27)]97F").

(i) The complex T<,—1([RTer(2°)]?=P") is pN -acyclic, for a constant N =
N(e,d,p,r), where e = [K : F|, d = dim 2 /0k. Hence the nat-
ural map Rl (Z)/F" — 7<r—1(Rlsyn (2", Zp(r))[1]) is a pV-quasi-
isomorphism.

(iii) The above statements are valid also modulo p™. Moreover, étale locally
on X, HHH([RT o (2:,)]9=P") is pN -trivial, for a constant N = N(r).

Let X € Smg, r > 0. The distinguished triangle (4.2) and Lemma 4.5 yield
a natural map

Or: (RT4r(X)/F")[—1] = Rlgyn (X, Qp(r)).
Corollary 4.7. (1) Fori<r—1, the map
Or: Hig' (X) = Hiyn(X, Qp(r)

syn
is an isomorphism.
(2) We have the exact sequence

0 — H™ {(RTar(X)/F") 2% HL, (X, Qy(r))

syn

= HL(X, ) — B (RTar(X)/F7),

Proof. To prove the first claim, note that we have the long exact sequence

Hi N (X, 58 ) — H' ™ (RTar(X)/F7)

— H'RTyn(X, Qy(r)) — Hi (X, 5.

If i <7 — 1, then H"'RTqr(X) = H"Y(RTqr(X)/F") and (1) follows from
Proposition 4.6 (which implies Hi; (X, 75 g ) = 0 and H, (X, 727 ) = 0).

cr,Qp _
A similar argument shows that 8,: H™'(RCqr(X)/F") = HZ,, (X, Qy(r))
is injective, which yields the second claim of the corollary. O

4.2. Arithmetic rigid analytic Hyodo—Kato cohomology. We define
here Hyodo—Kato cohomology of smooth rigid analytic varieties over K as well
as a Hyodo—Kato morphism. We do it by n-étale descent of crystalline Hyodo—
Kato cohomology and the Hyodo—Kato morphism for semi-stable models.
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4.2.1. Hyodo—Kato cohomology. Let @k be the n-étale sheafification of the
presheaf 2" — RI'uk(20) := Rle(20/0%, )q, on 4;°. Here 2 is a semi-
stable formal model over &p, [L : K] < oo, L = K g, and Ff, is the maximal
absolutely unramified subfield of L. The sheaf o1k is a sheaf of dg F-algebras
on Smg ¢ equipped with a (p-action and a derivation N such that Ny = ppN.
For X € Smpg, set RIuk(X) := RIl¢ (X, @k). Equip it with a topology in
the usual way, via n-étale descent, from the natural topology on RI'uk (Z20).

4.2.2. Convergent cohomology. Let o/.on, be the n-étale sheafification of the
presheaf?’ 2"+ Rlcony(21/07), L = K4, on M3 - For X € Smy, we
set R cony(X) 1= Rt (X, Zeonv). It is a dg K-algebra. We equip it with the
topology induced by n-étale descent from the topology of the Rl ¢onv(21/07)’s.
We have natural (strict) quasi-isomorphisms,

JZ{conv ~ bQ{dR; RFconv(X) =~ RFdR(X)v

induced by the quasi-isomorphisms Rl ¢ony(21/07 ) ~ RI4r(£1) that hold
because 2 is log-smooth over 0.

4.2.3. Hyodo—Kato morphism. To define the Hyodo—Kato quasi-isomorphism,
we will use the original Hyodo—Kato quasi-isomorphism defined for quasi-
compact formal schemes in [24] (see also [34]). We will describe it now in
some detail. Denote by 7} the algebra Op[[T]] with the log-structure associ-
ated to T'. Sending 7" to p induces a surjective morphism r; — O} We denote
by r&P the p-adic divided power envelope of r; with respect to the kernel of
this morphism. Frobenius is defined by 7" — TP, monodromy is a Og-linear
derivation given by T +— T'. We will skip the subscript F' if there is no danger
of confusion.

(i) Local definition. Assume that we have an admissible semi-stable formal
scheme 2~ over 0. We will work in the classical derived category. Recall
that the Frobenius

g @reo R (20/7,,°) = REer(Z0 /"),
ﬁF,mga ®épn chr(%/ﬁg,n) — RPCT(%/ﬁg,n)7

has a pN-inverse, for N = N(d), d = dim 2. This is proved in [24, 2.24].
Recall also that the projection po: Rler(20/r,°) = Rler(20/0%.,,), T+ 0,
has a functorial (for maps between formal schemes and a change of n) and
Frobenius-equivariant p™:-section, N, = N(d),

tn: Rler(20/0%,,) = RDe(20/1°),

20Here Rl cony (21 /07) (and later Ry (21/07)) are defined following the construction
of Grosse-Klonne [21, 1.1-1.4] by taking rigid analytic tubes (resp. dagger tubes).
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i.e., potn, = p™e. This follows easily from the proof of [24, Prop. 4.13]; the
key point being that the Frobenius on R (20/0%,,) is close to a quasi-
isomorphism and the Frobenius on the PD-ideal of rFD is close to zero. More-
over, the resulting map

(4.8) bn - chr(%/ﬁ?«“,n) ®éan TED - RFcr(%/TED)

is a p™-quasi-isomorphism, N = N(d) (see [24, Lem. 5.2]), and so is the
composite
Pptn: Rler(20/0%,) = Rlee(20/ 0%,

where the projection p,: RI ¢, (20/rEP) — Rl (20/07,,) is defined by T'+— p.
Taking holim,, of the last map, we obtain a map

ppt: Rlee(20/0%) — Rl (Z0/OF)

that is a p™-quasi-isomorphism, N = N(d).
We define the Hyodo—Kato map as the composition (the dotted arrow)

(49)  wmk: RTa(20/0%)r L RT(20/ 0% ) p — RUer( 20/ Ok

Tt

RPdR(%K) L) chonv(%l/ﬁ;é) L) RPCOHV(%Q/ﬁ;é).

The fourth map is actually a natural isomorphism by the invariance under
infinitesimal thickenings of convergent cohomology [33, 0.6.1]. The induced
map gk : Rler(20/0%)F @ K — RIqr(ZK) is a strict quasi-isomorphism.

(ii) Globalization. Let now X be a smooth rigid analytic variety over K.
Since the computation in [24, Prop.4.13], leading to the existence of the sec-
tion ¢, can be done on the big topos as long as we can control the dimension of
the schemes involved, the above Hyodo—Kato map can be lifted to a Hyodo—
Kato map

LHK © YHK — YR

in the classical derived category of étale sheaves on X. It induces the Hyodo—
Kato map

LHK RFHK (X) — RFdR(X).

Proposition 4.10 (Local-global compatibility). For a semi-stable formal
scheme % over O, the canonical map

(4.11) RI'uk (Z0) = Rl'uk (2 )
is a strict quasi-isomorphism.

Proof. The proof of [31, Prop. 3.18] goes through practically verbatim. Key
points: the de Rham analog of (4.11) holds plus we have Galois descent for
both sides of (4.11) that allows us to deal with the field extensions appearing
in the construction of local semi-stable models. (]
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Remark 4.12. The above definition of the Hyodo—Kato quasi-isomorphism
was normalized (at p) so that it is functorial. A more customary definition
depends on the uniformizer @ (one basically proceeds as above but using the
PD-envelope of the map Or{T} — O, T + w, instead of r2P) and hence it
is not functorial.

4.2.4. Arithmetic r*P -cohomology. We define the rPP-cohomology of smooth
rigid analytic varieties over K by n-étale descent of the r"P-cohomology of
semi-stable models.

Let «%pp be the 7-étale sheafification of the presheaf 2” — RTc:(20/r7P)q,
on ;. Here & is an admissible semi-stable formal scheme over 0y, L =
Kg. We wrote 7EP for the rPP-ring corresponding to F. Let Z%P be the
n-étale sheafification of the presheaf 2~ — T‘E% on Ay . The sheaf opp
is a sheaf of dg %’(SD—algebras on Smp g equipped w1th a g-action and a
derivation N, compatible with the derivation on %PP, such that Ny = ppN.
For X € Smg, set R[pp(X) := Rl (X, 9%p). Equip it with a topol-
ogy in the usual way, via n-étale descent, from the natural topology on the
Rl (20/1L°)q,’s.

Proposition 4.13 (Local-global compatibility). For a semi-stable formal
model & over Ok, the canonical map

RLe:(20/75 ), — RUpp(ZK)
18 a strict quasi-isomorphism.

Proof. Tt suffices to show that, for any n-étale hypercovering %, of 2" from
AE (we may assume that in every degree of the hypercovering we have a
quasi-compact formal scheme), the natural map

chr(%/TPD)QP — chr(%O,O/TE.D)Qp

is a strict quasi-isomorphism (modulo taking a refinement of %,). Recall
that the p~-quasi-isomorphism ¢ from (4.8) yields a strict quasi-isomorphism
(®" denotes the right derived functor of the tensor product)

_ ~R ~
(4.14) s=p Neys RT'uk (20) @p TE(I?QP — Rfcr(%/rﬁ?)q

.
Using it, we get the following commutative diagram:
RFcr(%/T[P(D)Qp _— RFCT(%-,O/TEP)QP
?TS ZTS.
~R ~R
RFHK(%{)) Rp TE]?QP — RFHK(%.’O) ®FL. TERQP.
. ~R ~R .
Since RI'gx (% 0) ®@F, TE%p ~ Rluk(%.0) @F TIP(I?QP and since, by Propo-
sition 4.10, the natural map RI'uk(%Zo) — RIuk(%.,0) is a strict quasi-

isomorphism, so is the bottom map in the above diagram. It follows that
the top map is also a strict-quasi-isomorphism, as wanted. O
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4.3. Geometric rigid analytic Hyodo—Kato cohomology. We will now
define the Hyodo—Kato cohomology of smooth rigid analytic varieties over C.
We will do it by n-étale descent of crystalline Hyodo—Kato cohomology of basic
semi-stable models.

4.3.1. Definition and basic properties. Let f: 2" — Spf(0c)* be a semi-stable
formal model. Suppose that f is the base change of a semi-stable formal model
fr: Lo, — Spf(Or)* by 6: Spf(Oc)* — Spt(Or)*, for a finite extension
L/K. Thatis, we have amap 01,: 2" — Z¢, such that the square (f, f1,0,01)
is Cartesian. In the algebraic setting (algebraic schemes and K in place of C)
such data (L, Z¢,,01) clearly form a filtered set. In our analytic case, this is
also the case for the system

S={(L, Zo,,,00)}

corresponding to the reduction modulo p of such data,?! i.e., a system in which
objects are reductions (L, 24, ,,0r) modulo p of the tuples (L, Z¢,,01) as
above but morphisms are morphisms between the reduced objects.

(i) Hyodo—Kato cohomology. For a morphism of tuples (L’, 3@‘%“1, 0r,) —

(L, Zo, 1,01) from ¥, we have a canonical base change identification compat-
ible with ¢-action (crystalline unramified base change)

RTux (26,0 @r, Fro — RUuk(25,, o)-

We set??
RFHK(QH) = hOCOlimg RFHK(%ﬁL’O).

RIpk(27) is a dg F" -algebra®® equipped with a -action and a derivation
N such that Ny = ppN. It is functorial with respect to Z": note that the
restriction of a morphism 2 — % to a morphism 27 — %, is defined over
a finite extension of K. Let o4k be the n-étale sheafification of the presheaf
2 Rluk(21) on 45" For X € Sme, we set RUux (X) := R (X, k).
It is a dg F™"-algebra equipped with a Frobenius, monodromy action, and a
continuous action of ¥ if X is defined over K (this action is smooth, i.e., the
stabilizer of every element is an open subgroup of ¥, if X is quasi-compact;
in general, it is only “pro-smooth”). We equip it with the topology induced
by n-étale descent from the topology of the RI'nk (%o, ,0)’s.

(ii) Convergent cohomology. Let “eony be the n-étale sheafification of the
presheaf 2" — Rl conv(21/0%) on //[gsei For X € Sm¢, we set

chonv (X) = Rrét (Xa %onv)

21This is because the schemes Ze, ,1 from above are algebraic.

22Everything here and below is done in the derived oco-category @(CQP).

23The field Fo* is equipped with the inductive limit topology. Later on we will use the
same type of topology for K.
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It is a dg C-algebra equipped with a continuous action of ¥x. We equip
it with the topology induced by n-étale descent from the topology of the
Rl conv(21/0%)’s. We have natural (strict) quasi-isomorphisms

%onv = 'ddﬁa chonv(X) = RPdR(X)
Let &+ be the étale sheafification of the presheaf 2" +— Rl =(%1)

conv, K conv,K

s,b
on //fés,éca where we set

RI = (21) := hocolimy;, Rl conv (26, .1/ 07)

conv,K

in the notation from above. For X € Sm¢, we set

RI (X) := RIg (X7 “Q{conv,?) '

conv, K

It is a dg K -algebra equipped with a continuous action of ¥k if X is defined over
K (this action is smooth if X is quasi-compact). We equip it with the topol-
ogy induced by n-étale descent from the topology of the Rl cony(Zw,.1/0F )’s.
There are natural continuous morphisms

o, K - DQ{conva RT

conv,

(X) = Rl conv(X).

conv, K

Remark 4.15. Instead of RI',_ #(Z1) above, we could have used

conv, K
R cony, por (27) := hocolimys; R conv (25, ,1/@?]4).

This would give a natural F™-structure on de Rham cohomology (see Propo-
sition 4.22 below).

(iii) 7FP-cohomology. Let o%pp be the n-étale sheafification of the presheaf
Z — RIpp(£1) on ///éfébt, where we set
RIpp(21) := hocolims RTei (254, 0/7.")q,

in the notation from above. For X € Sm¢, we set RTpp (X) := RT¢ (X, D).
Set

T'%D = 'I"IP,-vD ®ﬁF ﬁFnr = M(T?D ®ﬁF ﬁFL)? [L : K] < 00.
L

RIpp(X) is a dg T%DQ -algebra equipped with a continuous action of ¥
1% p

if X is defined over K (this action is smooth if X is quasi-compact). We
equip it with the topology induced by n-étale descent from the topology of the
chr(%ﬁL,O/TED)Qp ’s.

4.3.2. Hyodo—Kato quasi-isomorphisms. We keep the set-up from Section 4.3.1.
The Hyodo-Kato morphisms from (4.9),

(416) LHK * RFHK(%ﬁIHO) — RPCOHV(%ﬁL7l/ﬁg)7
tk: RTuk(Z26,.0) ©F, L = Rlconv(26,.1/07),
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are compatible with morphisms in ¥ and taking the homotopy colimit of the
second one yields the first of the following two natural strict quasi-isomorphisms
(called again the Hyodo-Kato quasi-isomorphisms):

(4.17) LHK : RFHK(%—I)®Fanl> RI w=(21)

conv, K

= hocolimy; R cony(Z6,,1/ 07 ),
~R ~
LHK © RFHK(%l) & por C — RPdR(%C)-

By definition, RT' gk (21) @ par K := hocolimy, (R['gx (21) @pur L), the homo-
topy colimit taken over fields L, [L : F™] < co. We have RT'uk (21) @ pur K ~
hocolims, (RT'ak (£, 0) ®F, L). In the second Hyodo-Kato morphism in
(4.17), by definition,?*
~R i ~R
RI'uk(21) @ par C := hocolimy (RT'uk (26, ,0) @F, C).

We note that all the maps in the homotopy colimits are strict quasi-iso-
morphisms. The Hyodo—Kato morphism itself is induced from the Hyodo—Kato
strict quasi-isomorphism (4.16):

hocolimy (RT'uk (2%, 0) @?L C) = hocolims (Rl cony (Z26,.,1/07) @f C)
and the strict quasi-isomorphisms

hocolimy: (RT cony (25, .1/0%) &1 C) = RTcony(21/6%) ~ RTqr(2c).

The first quasi-isomorphism is given by base change. We note here that, since
Rl conv(Zo,,1/ 0] ) is a complex of Banach spaces, the completed tensor prod-
uct with C' is exact.

Similarly, for 2 as at the beginning of Section 4.3.1, the strict quasi-
isomorphism (4.14) yields a strict quasi-isomorphism

(4.18) S: RFHK(%l) ®§m T%]?Qp = RFPD(%),

where we set
Rk (21) <§>§m T‘%]?QP := hocolims;(RT'uk (Z&,,0) @?L rE%p).
We also get (T +— 0)
RI'pp(£27) ®T%>Qp F* ~ RT'uk (Z1),

where we set

RLpp(21) @pn P = hocolimy (R er (2, .0/m7P)q, B
"Qp

Drpry, FL)-

p
Varying £ in the above constructions, we obtain the (Hyodo-Kato) maps

LHK JZ{HK — o

conv, K

LHK : @HK — YR, S: DHK — DpD

2460 [9, Section 2.1] for a quick review of basic facts concerning tensor products in the
category Cq,,-
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of sheaves on Smc ;. We claim that, for X € Sm¢, they induce the natural
(Hyodo-Kato) strict quasi-isomorphisms

(4.19) ik Rluk (X) ®pne K =5 RT (X),

conv,K
~R ~
LHK * RFHK(X) & por C — RFdR(X),

~R ~
RI'uk (X) & par T%]?Qp — RI'pp (X)

Here we set?®
(4.20) RI'fk (X) @par K := hocolim((RCuk @ e K ) (% 1)),
Rlpc(X) & por C = hocolim((RT ik & pee C)(Zu 1)),

RPHK (X) @?nr T

) ~R
%],DQP := hocolim((RI'gk & par T%I?Qp)(%nl))’

where the homotopy colimit is taken over n-étale hypercoverings %, from //lés’b.
We note that we have

(4.21) chonv,?(X) ~ hocolim chonv,?(%nl)v
RPPD (X) ~ hocolim RFPD (%.’1).

Indeed, by Proposition 4.22 below (there is no circular reasoning here), we
have

hocolimRI' % (Z. 1) = hocolim RI . 7 (% 0)
hocolim RT'pp (%, 1) 5 hocolim RTpp (%..c).

Hence (4.21) follows from the fact that RI'. %(X) and RI'pp(X) satisfy
n-étale descent. Having (4.21), the first strict quasi-isomorphism in (4.19)
follows from the first Hyodo-Kato strict quasi-isomorphism in (4.17). The
second Hyodo-Kato strict quasi-isomorphism in (4.17) implies easily the sec-
ond strict quasi-isomorphism we wanted. The third strict quasi-isomorphism
follows from (4.18).

4.3.3. Local-global compatibility and comparison results. Having at our dis-
posal the quasi-isomorphisms (4.19), we can prove the following comparison
result (where the tensor products in (2) and (3) are defined as in (4.20)):

Proposition 4.22. (1) Let Z € J//és’b. The natural maps
Rluk(21) = Rluk(20),  RI ., %(21) = RL ., %(Z0),

chonv(%) — chonv(%C); RFPD(%) — RFPD(%C)

are strict quasi-isomorphisms.
(2) For X € Sm¢, we have natural strict quasi-isomorphisms

RI (X) % ¢ 25 Rl cony(X) ~ ROgr (X).

conv,K
25The notation is ad hoc and rather awful here but we hope that it is self-explanatory.
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(3) For X € Smg, we have a natural strict quasi-isomorphism
RT4r(X) ®x K ~ Rl 7 (X0).

Proof. For the first claim, it suffices to show that, for any n-étale hypercovering
U, of Z from //lés’b, the natural maps

(4.23) RI7(271) — RI2(%. 1), ?=HK,{conv, K },conv,PD,

are strict quasi-isomorphisms (modulo taking a refinement of %,). We may
assume that in every degree of the hypercovering we have a finite number of
formal models. For the Hyodo—Kato case, it suffices to show the strict quasi-
isomorphism after we tensor both sides with K over F™. But then we can use
the Hyodo—Kato quasi-isomorphism (4.17) to reduce to the case of {conv, K}
in (4.23).

For that case, note that our map is strictly quasi-isomorphic to a map

RI4r(Z21) ®L K — (RT'ar ®r, F)(%. L)

s

The rather ugly notation for the hypercovering just underscores the fact that
the field over which the particular formal schemes split varies. Passing to co-
homology (H (—)-cohomology) and then to a truncated hypercovering, we can
assume that all the rigid spaces and maps involved are defined over a common
field K, a finite extension of L. We get a strict quasi-isomorphism by étale de-
scent for de Rham cohomology. The cases of PD- and conv-cohomology, can be
reduced to that of Hyodo—Kato and de Rham cohomologies via the strict quasi-

isomorphisms RI'pp(X) ~ RI'yk (X) @?nr T‘%DQ and Rl cony (X) ~ RLgr(X),

respectively.
For the second claim of the proposition, it suffices to show that for an n-étale

hypercovering %, of X from ///gs’b, we have a strict quasi-isomorphism

(RD S C) (%) ~ RTar(Z..c)-

conw?
It suffices to argue degree-wise. Hence it to show that, for a semi-stable formal
model % over O, [E : L] < oo, the first top horizontal arrow in the following
diagram is a strict quasi-isomorphism:

RL. (Zop.1) & C —— R cone (%o 1) ——— RTar(Zc)

conv, K
?T / /
R cony (% 1) &g C —=— RTag (%op) &g C.

Since this diagram clearly commutes and the other arrows are strict quasi-
isomorphisms, this is evident.

For the third claim of the proposition, it suffices to show that, for any n-étale
hypercovering %, of X¢ from 4", the natural map

(4.24) RI4r(X) ®x K — R’ (% 1)

conv,K
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is a strict quasi-isomorphism (modulo taking a refinement of %,). We can
assume that %, has formal models in every degree. Then both sides of (4.24)

can be computed by (Rl'ar ®r, K)(%..r.), proving what we wanted. O

4.3.4. Galois descent. The following proposition shows that Hyodo—Kato co-
homology satisfies Galois descent.

Proposition 4.25. Let X € Smg. The natural projection €: Xc e — Xet
defines pullback strict quasi-isomorphisms

e*: RTuk (X) =5 ROk (Xo)¥*,
e": Rl conv (X) = chonm?(XC)gK’
e*: RTpp(X) = RTpp(Xco)?%.

Remark 4.26. We denoted by RI'yk(Xc)¥%, etc., the complex obtained
by taking the ¥x-fixed points of a representative of RI'yk(X¢). This def-
inition makes sense, that is, two strictly quasi-isomorphic complexes repre-
senting Rluk (X¢) give two strictly quasi-isomorphic complexes represent-
ing RTuk(Xc)¥<. Or, in other words , taking a cone of the given quasi-
isomorphism, for a complex T := T° — T! — T2 — ... such that each T? is a
direct sum of products of LB-spaces with a smooth action of ¥k, the complex
T9% is strictly exact. Indeed, since the complex T is strictly exact, for all i,
we have the strictly exact sequence

(4.27) 0 — kerd; — T% — kerd; 41 — 0,
and we need to show that the induced sequence
(4.28) 0 — (kerd;)?* — (T")?% — (kerd;,1)%* =0
is exact. We note that there exists a normalized trace function
, ) 1
trZTl%(TZ)gK, T — ]ﬂ m Z O'(x)

LCK g€Gal(L/K)

This is well-defined because 7" is a finite direct sum of products of smooth
“k-modules and on a smooth ¥x-module, the limit in the formula stabilizes.
Let now x € (kerd; 1)“<. Since the sequence (4.27) is exact, there exists
y € T mapping to . But then tr(y) maps to tr(z) = z. Since tr(y) € (T%)¥x,
this means that the sequence (4.28) is exact, as wanted.

Proof of Proposition 4.25. By n-étale descent, we may assume that X = 2k
for " € ;. Recall that the action of ¥k on RI'uk(X¢), Rl conv(X¢), and
RI'pp(X¢) is then smooth. We will prove only the first quasi-isomorphism —
the proof of the others being analogous.

Passing to a finite extension of the splitting field L of 27, if necessary,
we may assume that 2 is semi-stable over a finite Galois extension L of K.
Consider the following commutative diagram (we added the base K and L in
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the definition of the arithmetic Hyodo—Kato cohomology to stress that we are
working with the category .Z3 and .Z7°, respectively):

RI'uk(X/L) —— Rlux (X @1, C)%

| I

Rk (X/K) ——— Rlpx (X @5 C)9x.

By Proposition 4.10 and Proposition 4.22, the top horizontal map is quasi-
isomorphic to the map

£*: RPuk(20) — (RTuk(20) ®F, F™)%E,

which clearly is a quasi-isomorphism. Since X ®x C ~ (X ®1 C) x H, for
H = Gal(L/K), we have

Hence the right vertical map in the above diagram is a quasi-isomorphism as
well. It follows that so is the bottom horizontal map, as wanted. ([

4.4. Passage to Bloch—Kato arithmetic rigid analytic syntomic coho-
mology. Let X € Smg. Let » > 0. In this section, we define the Bloch—Kato
rigid analytic syntomic cohomology:

RIPK (X, Q, () 1= [Ruc (X)]V =07 15, RDy (X) /F7],

syn

where the map i}y is defined below, and we show that it is strictly quasi-
isomorphic to the rigid analytic syntomic cohomology of X:

Proposition 4.29. There is a natural strict quasi-isomorphism

Lo RPS%,E(X, Qp(/r)) = Rrsyn(Xv QP(T))

Proof. (i) Local definition. Let 2" be an admissible semi-stable formal scheme
over 0. We define a functorial strict quasi-isomorphism

(4.30) 12t RISN(27,Qp(r))
= [[RPer( 20/ 6%) p]N=0¢=P" 5, R 4r(2)/F"]
~ [[RTex(21/Or)p)?="" =% RTcr( 21/ 0% )k [ F"]

= Rrsyn(%, ZP(T))QP7
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by the following diagram:
(4.31)

Leo(21/0%)k 4—— RTar(Zk)

[chr(v{mfl/ﬁF i g conv %1/@]:‘ Lp P %chonv %1/ﬁ><)

U a* ZJ/i* KN

[chr(%/ﬁF)F]Lp:pr f% [chonv(%O/ﬁF)]tp:pr - RFconv(%O/ﬁ;é) L;{K

| \ \
[RTer(20/75P)q, 1N =0¢="" B RT(20/ 6% p +—— Rl conv (20/ 6F)

Po

~

[chr(%o/ﬁ%)F]N:Ow:pT'

The vertical left bottom map is a quasi-isomorphism by [26, Lem. 4.2]. The
map tx is defined by the zigzag in the diagram. The map po is a quasi-
isomorphism because Frobenius is highly nilpotent on 7. The slanted map
from the convergent to crystalline cohomology is a strict quasi-isomorphism
because the log-scheme 27 is log-smooth over ¢ ;. The two right maps ¢*
are strict quasi-isomorphisms (actually, natural isdmorphisms) by the invari-
ance of convergent cohomology under infinitesimal thickenings; the left map
i* is a quasi-isomorphism by a standard Frobenius argument (see the proof of
[10, Lem. 5.9]). We claim that the maps €1, g are strict quasi-isomorphisms.
Indeed, it suffices to check this for the second of the two maps and then it
follows from the commutative diagram

[RFcr(%O/ﬁF)F]Sa:pT <T [chonv(%O/ﬁF)]LPZPT

| |

[RPer(20/15)Q, )V =0¢="" ¢—— [RTcony (20 /r) V=097

Pol? Pol?

[RTex(20/ O%) p]N =277 T Rl conmy (20 OR)IN =09,

since the map £° is a strict quasi-isomorphism by the log-smoothness of the
log-scheme 2y over kY. Here #p := Op{T} and the right vertical maps are
strict quasi-isomorphisms by the same arguments as the left vertical maps.
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(i) Globalization. Let @/EK be the n-étale sheafification of the presheaf

syn

2 — RISR(Z, Qp(r)) on A 4. We have

syn

RD¢: (X, #/PK) ~ [RTe (X, @) V=09=F" 25, RD«((X, Har)/F"]

syn

~ [Rlgx (X)N=0¢=P" e, RI4r(X)/F"] ~ RTEE(X, Q,(r)).

syn

Since RIgyn (X, Qp(r)) = RI¢ (X, yn), by n-étale descent, the strict quasi-
isomorphisms ¢ from (4.30) can be lifted to a strict quasi-isomorphism

t2: RTyn (X, Qp(r)) = RTGH(X, Qp(r)),

as wanted. O

Let us state the following corollary of the above computations.

Corollary 4.32 (Local-global compatibility). Let r > 0. For a semi-stable
formal scheme X over Ok, the canonical map

RIayn (27, Qp(r)) = Rlsyn(2k, Qp(r))
is a strict quasi-isomorphism.

Proof. By construction and Proposition 4.29, we have compatible strict quasi-
isomorphisms

12t Rgyn( 2, Qp(r)) ~ [RTuic(25)| V=0 55 R p(25)/F'],

2t Ruyn (25, Qp(r)) ~ [[RTmk (25 )| V=07 5 RDyp (23)/F7].

It suffice now to note that the natural map RI'yk(Z2o) — RI'ak(Zk) is a
strict quasi-isomorphism by Proposition 4.10. (]

5. OVERCONVERGENT SYNTOMIC COHOMOLOGY

In this section we define syntomic cohomology for smooth dagger varieties
over K or C in two ways (yielding strictly quasi-isomorphic theories). Recall
that in [9] syntomic cohomology of semi-stable weak formal schemes is defined
as a homotopy fiber of a map from Frobenius eigenspaces of Hyodo—Kato coho-
mology to a filtered quotients of de Rham cohomology. By n-étale descent this
yields the first definition of syntomic cohomology for smooth dagger varieties.
For the second definition we take, for smooth dagger affinoids, the homotopy
colimits of syntomic cohomologies of the rigid analytic affinoids forming a pre-
sentation of the dagger structure, and then we globalize. The second definition
will allow us to define period maps to pro-étale cohomology.

To carry out the above, we introduce Hyodo—Kato cohomology for smooth
dagger varieties, prove that it satisfies Galois descent, and define the Hyodo—
Kato morphism (that is a strict quasi-isomorphism over C).
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5.1. Overconvergent de Rham cohomology. Let L = K,C. Consider
the presheaf X — RIgr(X) of filtered dg L-algebras on SmTL. Let @74r be
its étale sheafification. It is a sheaf of filtered L-algebras on SmLét. For
X e SmTL7 we have the filtered quasi-isomorphism RIqr(X) — RI¢ (X, Z4R)-
We equip RTgr(X) with the topology induced by the canonical topology on
dagger algebras; we equip RIg (X, @qr) with topology using étale descent as
we did before. Then the above quasi-isomorphism is strict: dagger differentials
satisfy étale descent in the strict sense. The de Rham cohomology H, éR(X ) is
classical: it is a finite-dimensional K-vector space with its natural Hausdorff
topology for X quasi-compact and a Fréchet space (a surjective limit of finite-
dimensional K-vector spaces) for a general smooth X (use Remark 3.11). See
the proof of Proposition 5.6 below for how this can be shown.

5.1.1. The complex RTar(X)/F". Let X € SmTL. The cohomology groups of
RT4r(X)/F" have the same description as their rigid analytic counterparts in
Section 4.1.1. That is, the distinguished triangle (in 2(CL))

(51) 0— kel‘dr[—’r] — TSTQB( N Q%rfl 0
yields the strict short exact sequence
0= Hig'(X) — H" Y (RDqr(X)/F") — kerm — 0,

where 7 is the natural map Q"(X)4=0 — H (X). We have a strict monomor-
phism im d,—1(X) < ker . We note that the cohomology H"~}(RL4r (X)/F")
is classical (as an extension of classical objects).

The distinguished triangle (5.1) yields also the strict long exact sequence

0 — cokerm — H"(RTar(X)/F") — HY (X, kerd,) — H"™ (X, 7<,.Q%).

5.2. Arithmetic overconvergent Hyodo—Kato cohomology. We define
the Hyodo—Kato cohomology of smooth dagger varieties over K by n-étale
descent of overconvergent Hyodo—Kato cohomology of semi-stable models.

5.2.1. Local definition. Let X be a log-smooth scheme over k°. The overcon-
vergent Hyodo—Kato cohomology of X is defined (by Grosse-Klonne in [21]) as
Rluk (X) := Rlux(X/OF) := Rlyig(X/0%). 1t is a dg F-algebra, equipped
with a ¢-action and a monodromy operator N such that Ny = ppN. We
equip it with a topology as in [9, Section 3.1].

Let X be a semi-stable scheme over k°. Recall that we have the Hyodo-Kato
morphism

(5.2) ik RTyig(X/0%) — RIyig(X/OF)

that is actually a strict quasi-isomorphism [9, Section 3.1.3]. We have cho-
sen here the functorial version of this morphism as defined by Ertl=-Yamada
[15, Prop. 2.5]: a combinatorial modification of the original morphism of
Grosse-Klonne yields easy functoriality on most of the data; full functoriality
is obtained by a coherent zigzag construction [15, Lem. 2.6].
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Remark 5.3. For the convenience of the reader we will describe in more detail
the constructions of Grosse-Klonne (see for details [9, Section 3.1.3]) and Ertl-
Yamada. Let {X;};cr be the irreducible components of X with the induced
log-structure. Denote by M, the nerve of the covering [[..; X; — X. By [9,
Lem. 3.8], the natural map

RTig(X/O) — RIvig(M./0), O = oY, O

el

is a strict quasi-isomorphism.

Let X be the log-scheme with boundary attached to X in [21]. It comes
equipped with a natural map M! < X, where M/ is a slight combinatorial
modification?® of M,: there is a natural map M, — M/ that induces a strict
quasi-isomorphism

Rl"rig(M:/ﬁ) — RIig (M, /0).

We have the following commutative diagram, where €0(0) = 6%, O(p) = O,
a =0, p, and p, is the map induced by T > a:

RI g (X/0(a)) = Ry (M!/0(a)) <= R4 (X /11

R (M./0/(a))
Pa PaT
R (M, /r}) \
R (X/7h) = ) ROy (M. /7}).

We wrote here rl, := @ [T]! with the log-structure associated to T; Frobenius
is defined by T' +— T, monodromy is the &p-linear derivation given by T — T'.
The Hyodo-Kato morphism (5.2) is now defined as the following composition:

v RDyig (X/69) =5 R4 (M) 69) <= Ry (X /11

. 13
ey
R»Irlg(4</6 FX) = RI rig(lmol/é FX)'

For another semi-stable scheme Y over k® and a map of log-schemes g: Y — X,
Ertl-Yamada define a pullback morphism ¢g*: R’ rig(Y/r%) — RT rig(V/TIp)
that makes (jjx functorial [15, Lem. 2.6].

In what follows, to simplify the notation, we will write

Pa: Rlwig(X/1]) =5 RT4ig (M /6(a)) <= RT4ig (X/0/(a)),
f1: RDyig(X /7)) = RDug (M. /7)) < RDyig(X/rh).

26We take the definition of Ertl-Yamada, which allows multiplicities in the index set,
rather than the original definition of Grosse—Klonne, which does not allow them.
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The above commutative diagram yields the functorial commutative diagram:

RL'yi(X/6/(a) o RDyiy (X /r})

ol

RT g (X /1)

If 2 is a semi-stable weak formal scheme over O, we define the Hyodo—
Kato map

LHK : RFHK(%O) — RFdR(%K)

as the following composition:

(5.4)  RDux(Z20) = RTug(20/0%) —55 RT,i,(25/07)

1
RDyig(20/6) = RU4r (X k).

Note that this definition works also for base changes (with respect to k)
of semi-stable weak formal schemes over Ok. Since the natural morphism
Rlig(20/07) @ K — RIyig(Z0/ 07 ) is a strict quasi-isomorphism, so is the
induced morphism

ik : RTuk(20) @ K = RLar( 2k ).

5.2.2. Globalization. Let @k be the n-étale sheafification of the presheaf 2" +—
Rlux(%£0/0F,), L = Ko, on ///};SS; this is an étale sheaf of dg F-algebras
on Smi‘K equipped with a yp-action and a derivation N such that Ny = ppN.
For X € Sm;{, set RIuk (X) := Rl (X, ouk). Equip it with a topology in
the usual way, via n-étale descent, from the topology on the RI'uk (Z0/0F, )’s.

Proposition 5.5 (Local-global compatibility). Let 2" be a semi-stable weak
formal scheme over Ok . Then the natural map

18 a strict quasi-isomorphism.

Proof. Same as the proof of Proposition 4.10. g

For X e SmTK7 we define natural F-linear maps (the overconvergent Hyodo—
Kato morphisms)

LHK MHK —)ddR, LHK : RPHK(X) — RPdR(X),
by the n-étale sheafification of the Hyodo—Kato map
LHK RFHK(%Q) — RPdR(%K)

and its globalization, respectively.
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5.2.3. Topology. We will now discuss topology in more detail.

Proposition 5.6. Let X be a smooth dagger variety over K.

(1) If X is quasi-compact, then I;fffIK(X) is classical. It is a finite-dimen-
sional F'-vector space with its unique locally convexr Hausdorff topology.

(2) For a general X, the cohomology Hiy (X) is classical. It is a Fréchet
space, a limit of finite-dimensional F-vector spaces.

(3) The endomorphism ¢ on Hfji(X) is a homeomorphism.

(4) If k is finite and X is quasi-compact, then Hjj(X) is a mized F-
isocrystal, i.c., the eigenvalues®” of ¢ are Weil numbers (if X is not
quasi-compact, then Hiy (X) is a product of mized F-isocrystals).

Proof. In the case X = 2k, for a semi-stable weak formal model £ over Ok,
and for fNIf_‘IK(%), this is [9, Prop. 3.2]. All algebraic statements concerning
cohomology in the proposition follow from that by using 7n-étale descent and
the quasi-isomorphism from Proposition 5.5.

We treat now the topological claims. For (1), we first use the n-étale descent
and the fact that claim (1) holds in the case X has a semi-stable model over
Ok to construct a filtration on the classical cohomology Hiyy (X) with graded
pieces finite rank vector spaces over F' with their canonical Hausdorff topology.
This implies that the natural topology on H{y (X) is also Hausdorff. It remains
to show that Hi(X) is classical. Take an n-étale hypercovering %, of X
built from objects of .# ;QSS. Assume that in every degree we have a finite
number of affine weak formal schemes (recall that X is quasi-compact). Then
the complex RI'nk(%.,0) is built from inductive limits of Banach spaces with
injective and compact transition maps. Using the fact that these are strong
duals of reflexive Fréchet spaces, we know that the kernels of the differentials
and their coimages have the same property. In particular, they are L B-spaces.
The cohomology Hiy (X) is represented by the pair coimd;_; — kerd; and
Hi(X) = kerd;/imd;_; with the induced topology. Let W be a subspace
of ker d; that maps onto Hj(X) and has the same rank as the latter. Then
the map coimd;_1 @ W — kerd; is a continuous map of L B-spaces that is an
algebraic isomorphism hence, by the open mapping theorem, it is a topological
isomorphism. Hence the map coimd;_1 — kerd; is strict and the cohomology
Hi (X) is classical.

A similar argument, using strong duals of reflexive Fréchet spaces, implies
that a map between two Hyodo—Kato complexes associated to two (different)
n-étale affine hypercoverings of X as above is a strict quasi-isomorphism. This
implies that, for X quasi-compact, the cohomology of RI'yk(X) is strictly
quasi-isomorphic to the cohomology of RI'uk (% o) for any n-étale affine hy-
percovering %, as above.

2TWe define the eigenvalues of ¢ in Q ® F* to be the s-th roots of the eigenvalues of ¢,
where s is any nonzero multiple of f for |k| = pf. We note that this definition is stable
under base change from F to F/, [F': F] < oco.
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To see that ¢ is a homeomorphism in (3), note that this is clear for quasi-
compact X by the above remarks. For a general X, as in the case of pro-étale
cohomology, cover it with an admissible increasing quasi-compact covering
{Un}nen. We obtain the exact sequence

0 — H'holim,, Hil (U,) = Hi (X) — H® holim,, Hiy (U,,) — 0.
But, by (1), the cohomologies ﬁﬁK(Un) are classical and finite-dimensional
over F. Hence, the cohomology H{j(X) is classical and we have
Hig (X) = @HﬁK(Un)
Hence it is Fréchet, as wanted. We have proved (2), and (4) follows now
trivially from (1). O

5.2.4. (¢, N)-cohomology. Let X € SmTK, r > 0. We will need to understand
the cohomology of [RI'gk (X)]V="¢=P". We have

RTpic(X) 2% RTpc (X)
e N L P
Rk (X) 225 RTuk (X)
This gives rise to a spectral sequence
(67) BV = B ([Hig (X))V=097") 5 HiH (RTp (X)N=007"),
where f]*([HIJ{K (X)]N=0-¢=P") is the cohomology of the complex

. prisa .
Hiji (X) — H{j (X)

5 5
j P —pp g
Hy (X) —— Hyp (X)
That is, we can compute it by the sequence

(N,p"—¢) —pp)—N

. . . ( i .
Higge(X) Hiio(X) @ Higge (X) =—"— Hippe(X).
The cohomology H*([Hiy (X)]N=0¢=") is classical and a Fréchet space. This
is because we can write naturally
Hi (X) = lim Hizy (Us,),

for an admissible increasing quasi-compact covering {U, }nen of X, and all the
cohomologies H{j (Uy,) are finite-dimensional over F.

Hence, in the spectral sequence (5.7), the terms are classical and Fréchet
spaces. Arguing by limits as above, we conclude that so is the abutment.

Remark 5.8. In the case when HIJ;IK(X) is a finite (¢, V')-module (for exam-
ple X quasi-compact), H*([Hy (X)|N=0¢=p") ~ Ext}, v (F, Hy (X){r}), the
Ext-groups in the category of finite (, N)-modules [2].
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Proposition 5.9. Let X € Sm}{, r>0.
(1) We have H'([RTgk (X)|N=0¢=P") =0 fori <r —1.
(2) There is a strict short exact sequence

(5.10) 0 — Hip (X)7=" — H' (R (X)|N=00=")
= Hip (X)V="7" 0.

Proof. To see that, we note that the slopes of Frobenius on Hi (X) are < i:
it is enough to show this for X with a semi-stable reduction, where we can use
the weight spectral sequence to reduce to showing that, for a smooth scheme Y’
over k, the slopes of Frobenius on the (classical) rigid cohomology H};, (Y/F)
are < ¢; but this is well known [7, Th. 3.1.2]. It follows that the morphism
¢ —p’ is an isomorphism on Hy (X) for i < j. Knowing that, we obtain both
claims of the proposition from the spectral sequence (5.7). (]

5.3. Geometric overconvergent Hyodo—Kato cohomology. We define
the Hyodo—Kato cohomology of smooth dagger varieties over C' by n-étale
descent of overconvergent Hyodo—Kato cohomology of semi-stable models.

5.3.1. Definition and basic properties. Let f: 2 — Spwf(Oc)* be a semi-
stable weak formal model. Suppose that f is the base change of a semi-stable
weak formal model fr: Zg, — Spwf(&OL)* over 0L by 6: Spwl(Oc)* —
Spwf (&), for a finite extension L/ K. That is, we have amap 0,: 2" — 2o,
such that the square (f, fr,0,0y) is Cartesian. Such data {(L, Z",0r)} reduced
modulo p form a filtered set ¥ (cf. Section 4.3.1).

(i) Hyodo-Kato cohomology. For a morphism of tuples (L', 2 , ,07,) —
(L, Z5, ,,01) from X, we have a canonical base change identification compat-
ible with ¢-action (unramified base change)

(5.11) Rluk (26, .0) @F, Fro = RFHK(%ﬂiL,7O).
We set

RFHK(QH) = hOCOlimg RFHK(%ﬁL’O).
It is a dg F""-algebra?® equipped with a ¢-action and a derivation N such that
N¢ = ppN. It is functorial with respect to Z: note that the restriction of a
morphism 2~ — % to a morphism 27 — % is defined over a finite extension
of K.

Let ok be the n-étale sheafification of the presheaf 2" — RI'uk(Z27)
on A5 For X € Sm},, we set

RFHK (X) = RFét (X, JZ{HK)
It is a dg F"'-algebra equipped with a Frobenius, monodromy action, and a

continuous action of ¥k if X is defined over K (this action is smooth if X is

28The field F™* is equipped here with the inductive limit topology in C'r. In particular, a
sequence (Zn)neN, of elements of F™' converges if and only if there exists a finite extension
L of F such that all z,, € L and the sequence (zy)neN converges inside L.
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quasi-compact). We equip it with the topology induced, by n-étale descent,
from the topology on the RI'uk(Z¢,.0)’s.

Proposition 5.12. Let X be a smooth dagger variety over C.

(1) If X is quasi-compact, then ﬁf{K(X) is classical. It is a finite-dimen-
stonal F"" -vector space with its natural topology.

(2) The cohomology f]f_‘IK(X) is classical. It is a limit (in Cr) of finite-
dimensional F™ -vector spaces.

(3) The endomorphism ¢ on Hjj(X) is a homeomorphism.

(4) If k is finite and X is quasi-compact, then H(X) is a mized F-
isocrystal, i.c., the eigenvalues® of ¢ are Weil numbers (if X is not
quasi-compact, then Hjj (X) is a product of mized F-isocrystals).

Proof. For claim (1), it suffices to show that, for every n-étale hypercovering
Y, of X from %g’ss’b, the cohomology ﬁﬁK(%.7c), i > 0, is classical and of
finite rank over F™. Since we can assume that the weak formal schemes in
every degree of the hypercovering are admissible, this follows immediately from
Proposition 5.6 and the quasi-isomorphism (5.11).

Claim (2) follows easily from claim (1). Claim (3) and (4) follow by the
same argument as claim (1). O

(i) Rigid cohomology. Let <7;; be the n-étale sheafification of the presheaf
X RU4ig(21/0F) on M5, For X € Sml,, we set

RTvig(X) := RT¢t (X, Hig)-

It is a dg C-algebra equipped with a continuous action of ¥k if X is defined
over K. We equip it with the topology induced, by n-étale descent, from the
topology on the RT'yig(21/0%)’s. We have natural (strict) quasi-isomorphisms

Ghig — Far, RIyig(X) = RTqr(X).
Let ;. 7 be the n-étale sheafification of the presheaf 2" — RI',;, z(%1)
t,s8,b
on A%, where we set

RT ;. %(271) := hocolimy RT i (20/O7).

For X € SmTC7 we set RI';, (X) = Rl« (X, o, ). It is a dg K-algebra
equipped with a continuous action of ¥k if X is defined over K (this action
is smooth if X is quasi-compact). We equip it with the topology induced, by
n-étale descent, from the topology on the RI'yig(Zs, 0)’s. There are natural
continuous morphisms

o,

rig, K - V(Mriga R‘Frig,f(X) - R‘Frig (X)

29The cohomology H{j (X) together with its Frobenius, a priori an F""-vector space of
finite rank, is obtained by a base change from a finite rank F’-vector space V, where [F’ :
F] < oo, equipped with a semilinear Frobenius, so we can use the definition of eigenvalues
of Frobenius from the footnote to Proposition 5.6.
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5.3.2. Galois descent. Again we have a Galois descent.

Proposition 5.13. Let X € SmTK, The natural projection €: Xc & — Xet
defines pullback quasi-isomorphisms

e*: Rl'uk (X) = Rk (Xo)?,  &*: RTar(X) = RI,,, 2 (Xo)7x.
Proof. We can use the proof of Proposition 4.25 almost verbatim?°. O

5.3.3. Hyodo—Kato quasi-tsomorphisms.
(i) Local definition. Let 2~ — Spwf(O¢)* be as above. The Hyodo-Kato
morphism from (5.4),

(514) LHK RFHK(%ﬁIHO) — Rrrig(%ﬁho/ﬁz),
ik : RUuk (26,,0) @, L = Rlvig(Z6,,0/07),

is compatible with the morphisms in ¥ and taking its homotopy colimit yields
the first of the following two natural strict quasi-isomorphisms (called again
the Hyodo-Kato quasi-isomorphisms):

(515) LHK : RFHK(%l) &) pnr K= hOCOlimE(RFHK(%ﬁL’O) ®Fy L)
K
RI,;, %(21) : = hocolims, RTyig (26, 0/ OF ),
~R ~
LHK © RFHK(%l) & por C — Rrrig(%l/ﬁé) ~ RPdR(%C)-
In the second Hyodo—Kato morphism, we set
~R . ~R
RI'uk(21) @ par C := hocolimy (RT'uk (26, ,0) @F, C),

where all the maps in the homotopy limit are strict quasi-isomorphisms. This
morphism is then defined as the composition

hocolimy (RT'uk (26, 0) @?L C) 5 hocolimy (R yig(Z6,,,0/ 07 ) ®
= RIyig(21/60F) = RLar(Z0c),

where we have used the Hyodo-Kato quasi-isomorphism from (5.14), the sec-
ond map is a strict quasi-isomorphism by base change. So the defined mor-
phism is clearly a strict quasi-isomorphism.

(ii) Globalization. Varying 2 in the above constructions, we obtain the
Hyodo-Kato maps

R
L C)

LHK : SHK — Yhig, HK: FHK — D4R

of sheaves on SmTc_ét. For X € SmTC7 they induce the natural Hyodo—Kato
strict quasi-isomorphisms

(5.16) ik : RTak(X) @ K = RFrig,?(X)v
~R ~
LHK - RFHK(X) & por C — RFdR(X)

30Note that Remark 4.26 applies to this setting.
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Here we set
(5.17) Rk (X) @pnr K = hocolim((RUCux @ g K ) (% ),

RIuk (X) @ e € := hocolim((RTik & e C)(Z.o)),

where the homotopy colimit is taken over 7-étale hypercoverings from .2
We note that

(5.18) RI;, 7(X) = hocolim RT' ;, (% 1)

This is because hocolimRI';, (%, 1) ~ hocolimRI',;, %(%. c), by Proposi-
tion 5.19 below (there is no circular reasoning here) and we have n-étale descent
for RT';, %(X). Having (5.18), the first strict quasi-isomorphism in (5.16) fol-
lows from the strict Hyodo-Kato quasi-isomorphism in (5.15). The latter also
imply easily the second strict quasi-isomorphism we wanted.

(iii) Local-global compatibility and comparison results. The Hyodo—Kato
quasi-isomorphisms allow us now to prove the following comparison result
(where the tensor products in (2) and (3) are defined as in (5.17).

Proposition 5.19. (1) Let 2 € MT5b. Then the natural maps
RI'uk(21) = Rl'ux(Zc), RIvig(21) = Rlvig(Zc),
Rl 7(21) = R, 2(Z20)

are strict quasi-isomorphisms.
(2) For X € SmTC, we have a natural strict quasi-isomorphism

~R , ~
Rl 7#(X) ®@x C — RIig(X) = Rlqr (X).
(3) For X € SmTK, we have a natural strict quasi-isomorphism
RT4r(X) ®x K ~ RT,;, (X0)-
Proof. The proof is almost verbatim the same as the proof of Proposition 4.22

(which contains analogous claims in the case of rigid analytic varieties), we
just need to replace RI'conyv used there with RI'yig. O

Remark 5.20. Much of what we have described above in Section 5.3 goes
through, with minimal changes, for X € Sm¢. Hence, working with formal
schemes instead of weak formal schemes, we have the geometric Hyodo—Kato
cohomology RFLK(X ). We wrote ' to distinguished this cohomology from the
geometric Hyodo—Kato cohomology RI'yk(X) defined in Section 4.3. It is a
dg F™-algebra equipped with a ¢-action, derivation NV such that Ny = ppN,
and a continuous action of ¥k (which is smooth when X is quasi-compact). It
has an arithmetic analogous that satisfies Galois descent of the type described
in Proposition 5.13. We also have the Hyodo—Kato quasi-isomorphism

LHK - RP“I—{K (X) @Fm‘ F l> Rrri&f(X)J

where the rigid cohomology is defined like its analog for dagger varieties.
If X is quasi-compact, the underlying isocrystal of H iRFLK(X ) should be
the one defined by Le Bras in [28].
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5.4. Arithmetic overconvergent syntomic cohomology. We define now
arithmetic overconvergent syntomic cohomology of smooth dagger varieties
over K by n-étale descent of overconvergent syntomic cohomology of semi-
stable weak formal models.

Let 2 be an admissible semi-stable weak formal scheme over 07, [L: K] <oo.
For r > 0, we define the overconvergent syntomic cohomology as

(521)  RTgu(2, Qu(r)) := [[RTux(Z0)V=0¢=F" ™ RT4r(21)/F"].

For a smooth dagger space X over K, we define the syntomic cohomology
eyn (1) as the n-étale sheafification of the above complexes on . [S?T; and we
define the syntomic cohomology of X as

Rsyn (X, Qp(r)) := Rlst(X, Doyn(r)).
We have the distinguished triangle
(5.22) Rl gyn (X, Q,(r) — [RDux (X)]V=09=P" M RDgr(X)/F.

Proposition 5.23 (Local-global compatibility). Let r > 0. Let £ be a semi-
stable weak formal scheme over Ok . Then the natural map

Rl (27, Qp(r)) = Rlsyn(Zk, Qp(r))
is a strict quasi-isomorphism.

Proof. Using the presentations of syntomic cohomology from (5.21) and (5.22)
we reduce to proving that the natural map RI'yk(2o) — Rluk(Zk) is a
strict quasi-isomorphism. But this we know to be true by Proposition 5.5. [

5.4.1. Examples. We will discuss a couple of examples.

(i) The closed ball. Let L = K,C. Let X, := B¢ (p) be the overconvergent
closed ball over L of dimension d and radius p € \/|L*|. Since H{y(X1) ~
L and H!y(Xy) = 0, i > 0, and we have the Hyodo-Kato isomorphism
Hix(Xc) ®pm C ~ Hiz(Xc) and the Galois descent Hijp(Xg) —
Hiw(Xco)?x, we get

, Fr ifi=0
Hi (B (p)) ~ ’
fik (BZ (p)) {0 ifi>1,
where Fo = F™ and Fix = F.
From the exact sequence (5.10), we get
HP([RLuk (X )V=09=) & Hijp (X )V=09=
Hyy (X5 )?~" = H'([RTux (Xg)]V=097P).
Hence, by the above,
Q, ifi=0,1,

Hi([RPHK(B}i((P))]N:OM:pi) = {0 ifi > 2.
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Let » > 0. By the triviality, in nonzero degrees, of the cohomology of
coherent sheaves on B% (p), we have
RIGR(Xg)/F" ~ 0(XK) = QXK) = - — Q7 HXg).
Hence HY(R[4r(Xk)/F") =0, for i > r, and
H™ Y RL4r(Xg)/F7) <~ QY Xk)/imd,—o ~ Q" (X )4=0.
From the definition of syntomic cohomology and the above computations, we
get the long exact sequence
H™ Y ([RDuk (Xg)]VN=09=P") - Q" Y(Xk)/imd, o
— HI (XK, Qp(r)) — H ([RDuk (Xx)]V=2¢=7") = 0

syn
Hence
Q if r =0,
H’_(B%(p), ~Q P
Sy“( w (), Qp(r) {Qr‘l(Bff{(p))/im dp_g ifr>2,

and, for r = 1, we get an extension

0= O(Bic(p)) = Hepn (B (p), Qp(1)) = Qp — 0.

1 e open ball. Let L = K,C. Le "(p) be the overconvergent open
i) Th ball. Let L = K,C. Let BY%(p) be th

ball over L of dimension d and radius p. Cover Bz’d(p) with an increasing
union of overconvergent closed balls {U, }nen. By the above example, we have

H%IK(B%UI(P)) ~ lim Hix(Uy,). Hence

Fr ifi=0,

Hirg (B (p)) = {0 Fie o

The rest of the computations is exactly the same as for the closed ball in the
first example (note that B?&d(p) is Stein) yielding the same final formulas for
HI (B (p), Qp(r)) (with B (p) in the place of B (p)).

syn

6. COMPARISON OF OVERCONVERGENT AND RIGID ANALYTIC ARITHMETIC
SYNTOMIC COHOMOLOGY

We define a map from syntomic cohomology of a smooth dagger variety
to syntomic cohomology of its completion. We show that it is a strict quasi-
isomorphism when the variety is partially proper.

6.1. Construction of the comparison morphism. Let X be a smooth
dagger space over K. We will now construct a functorial map

1 Rlgn (X, Qp(r) = R ayn(X, Qp(1))
from the syntomic cohomology of X to the syntomic cohomology of its com-

pletion X. This will be done by first constructing a map ¢1 to the Bloch-Kato
syntomic cohomology from Section 4.4:

11t Rlgyn (X, Qp(r)) = RIBK (X, Qp(r)),

syn

Miinster Journal of Mathematics VoL. 13 (2020), 445-507



COMPARISON THEOREMS FOR RIGID ANALYTIC VARIETIES 491

and then setting ¢ := 151, for the map ¢: RIDY (X, Q,(r)) ~ RFsyn()A(, Qp(r))
that was defined in Proposition 4.29.

(i) Local definition. Let 2 be a semi-stable weak formal scheme of finite
type over Ok . First, we define a functorial morphism

(6.1) 11 Rlyn(27,Qp(r)) = [[RTvig(20/03))9=" 455 RTar(Zk)/F"]
—+ [[RTer(20/6%) p|N=09=F" %, RD 0 (Z3)/ F7).

We use for that the following diagram (we note that all the terms in the first
two columns carry a monodromy operator and that all the maps between these
terms are compatible with the monodromy action)
(6.2)

[RLuig(20/09)]#=#" =

LHK
Po |

r Pp

Po ([RTvig (Z70/r}:)]#=7" =25 RIvig(20/ 0% ) — Rlwig(20/05) < RTar(2)

w2 | |

[Rrrig(%O/rIv)yp:pr Rlconv(20/6) — Rlconv (20/O) 4= Rl4r(2x)

L
r Pp

[RTer(20/rEP)Q, 1977 — Rl (20/07 ) F

Po [

[RTcr(Z0/0%) p)P=P".

The maps po,p, are defined by sending 7" to 0, p, respectively. The top tri-
angle defines the overconvergent Hyodo—Kato morphism tyk as explained in
Remark 5.3, where it is also shown that the maps pg, p, from 2y commute
with the ones from 2. The strict quasi-isomorphism between crystalline and
convergent cohomology holds because .25 is log-smooth over k°. The morphism
between de Rham cohomologies is compatible with Hodge filtrations.

(ii) Globalization. We define the functorial map

111 Rlgyn (X, Qp(r)) — RIEK(X, Q,(r))

by lifting the map (6.1) via n-étale descent.

6.2. A comparison result. We are now ready to prove our main comparison
theorem:

Theorem 6.3. Let X be a partially proper dagger space over K. The map

bt RTgyn (X, Qp(r)) — RTgyn(X, Qu(r))

is a strict quasi-isomorphism.
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Proof. By the construction of the maps t1,t2, it suffices to show that the
canonical maps

RL4r(X) = RLqr(X), [RTuax(X)]?=?" — [Ruxk (X)]#="

are (filtered) strict quasi-isomorphisms. The first map is an isomorphism in-
duced by the canonical identification of coherent cohomology of a partially
proper dagger variety and its rigid analytic avatar [20, Th. 2.26]. For the
second map, we will show that already the canonical map

(6.4) RIuk (X) — Rluk (X)

is a strict quasi-isomorphism. Our strategy is to pass to the geometric situ-
ation, where we can use the Hyodo—Kato isomorphisms to reduce to the de
Rham cohomology. The main difficulty in this approach lies in showing the
compatibility of the overconvergent and rigid analytic Hyodo—Kato isomor-
phisms.

(i) Passage to de Rham cohomology. We start with the passage to the
geometric cohomologies. Since we have compatible strict quasi-isomorphisms
(see Propositions 4.25 and 5.13)

RTuk(X) = RTuk(Xe)?%, RIux(X) = ROuk(Xeo)?x,

to show that the map (6.4) is a strict quasi-isomorphism, it suffices to show
that so is the canonical map

Remark 6.6. Now, if we were to argue in analogy with the algebraic situation,
we would use the following approach:
(1) We will prove the commutativity of the diagram

~R o~ ~R
RFHK(Xc) & par C— RFHK(Xc) & par C

Z\LLHK ZJ/LHK

Rl4r(X¢) —=— RTar(Xo).

This is not an easy task, since the constructions of the rigid and the crystalline
Hyodo—Kato maps are very different.

(2) The vertical arrows are the Hyodo-Kato quasi-isomorphisms (4.19) and
(5.16), and the bottom arrow is a strict quasi-isomorphism because X¢ is
partially proper. Hence the top arrow is a strict quasi-isomorphism. The
problem is that we do not know how to show that this implies the same for the
map (6.5). So, below, we use instead the K-Hyodo—Kato quasi-isomorphisms.
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Consider the diagram

(6.7) Rluk(X¢) ——— Rk (X¢)
N l . ‘1 J/
. ~ — B P —
RFHK(Xc) Qpnr K —— RPHK(Xc) R por K

Z\LLHK ?lLHK

’

B ~
Rl #(Xo) ——— R, #(Xc)

i 1
RFdR(X) @K F % RFdR()?) @)K ?

The maps «,& are the normalized trace maps, natural left inverses of the
canonical vertical maps. The top squares (the dotted and the non-dotted one)
commute. The bottom square clearly commutes. Its vertical maps are strict
quasi-isomorrphisms by Proposition 4.22 and Proposition 5.19. The bottom
map is a strict quasi-isomorphism because X is partially proper. It follows that
the map /' is a strict quasi-isomorphism. We will show below that the middle
square commutes on the level of (H-)cohomology. This will imply that the
map [ is a cohomological isomorphism. This in turn will imply immediately
that the map (6.5) is injective on cohomology level; we get its cohomological
surjectivity by using the maps a, a.

(ii) Comparison of Hyodo—Kato quasi-isomorphisms. Hence, it remains to
show that the middle square in the above diagram commutes on cohomology
level, or that the following diagram commutes:

(6.8) Hi{(RTuk (X¢) @pne K) — H (R (Xo) Spnr K)
?lLHK ZlLHK
ﬁriig,f (Xc) = ﬁzonmﬁ ()?C)

We claim that we can assume that X is quasi-compact and argue just on
the level of classical cohomology. Indeed, write X as an increasing union of
quasi-compact open sets {U,}, n > 0. Then we have

RIuk(Xc) @par K = holim,,(RTak (Un,c) @ por K).
This yields the exact sequence
0 — H*'holim, (Hi (Un.0) @pm K) — H (RPpk (X¢) @pur K)
— Hholim,, (Hiyx (Un.c) @pn K) — 0.

By Proposition 5.12, the cohomology ﬁf_IK(Unc) is classical and finite rank

over F™ . This implies that the cohomology H*(RI'uk (X¢) @ pnr K ) is classical
as well and

H'(RTgk (X¢) @pnr K) = HO holim,,(Hijx (Un.c) @pnr K).
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Similarly, we can show that the cohomology fNICionv ?()?c) is classical and we
have ’
Hg’onvf()?c) = HOholim, H' | (Un,c)-

Indeed, arguing as above we get the exact sequence

(6.9)  0— H'holim, H ' _(U,c) — H' _(X¢)

conv, K conv, K

— Hholim, H' __—(U,.¢) — 0.

conv, K

We note that the prosystems {Héonv,?(U"xC)}”EN and {Hjig,f(Un,C)}neN are

equivalent. This follows from the commutative diagram of prosystems

{ITP (ﬁn,C)}neN — {ﬁionv,f(Us,c)}neN

conv, K ¢

| |

{Hjig?(Un,C)}nGN —>N {Hllg’f(Us:Tc)}nGN

r

Here U denotes the rigid analytic space U°, the interior of U, equipped with
its canonical overconvergent structure. The horizontal equivalences are clear.
The right vertical map is an isomorphism degree by degree because U1 is
partially proper. This implies that the left vertical map is a an equivalence, as
wanted. _

Now, the cohomology H;, 7(Un,c) is classical and finite rank over K (it is
strictly quasi-isomorphic to Hji(U,) ®x K by Proposition 5.19). Hence the
term H'holim,, in the exact sequence (6.9) vanishes and we get our claim.

So, from now on, X is quasi-compact and we will show that the diagram (6.8)
commutes on the level of classical cohomology. We have

H(RTak(X¢) @pm K) ~ Hix(Xco) @pn K,

H (RTgk(X¢) @pm K) ~ Hix(Xco) @pn K .

Hence, we are reduced to showing that, for a quasi-compact X € Smg, the
following diagram commutes:

(6.10) Hi (Xo) —— Hipc(Xc)

‘LLHK J/LHK

Hjig,? (Xc) - Héonv,? (XC ) :
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Assume first that X has an admissible semi-stable weak formal model 2~ over
O, |L: K] < oo, and consider the diagram

(6.11) R@yig(20/0%,)

LHK
Po (2

o RDvig(Zo/r}) —— Rlvig(20/0F,)
Pp
f1 / l
Rrrig(%/rb RFCOHV(%O/ﬁ;L)
/\ lz
RT.(23/69, )a, < RTa(Z/1EP)q, —22 RTw ()05, )a,.

LHK

If we remove the section s (and hence also the bottom map tpk), the above
diagram commutes. For a general quasi-compact and smooth X, take first
a homotopy colimit of the above diagram (over L) and then glue by n-étale
descent. We obtain the following diagram:

(6.12) Rluk (Xc)

LHK
Po

po  ROue(Xe/rt) —e— Rlyg (Xo/O))

f1 / l
RI i (Xo/rT) RT cony (X /OF)

/S\‘ l?
RPuk (Xc) ¢—— RIpp(Xo) —— Rle(Xc/67).

LHK

The notation should be mostly self-explanatory: the cohomology complexes are
defined by the homotopy colimit and the étale descent from the corresponding
complexes in the diagram (6.11) following the procedure used in Section 5.3.1.
The groups in the right column are F™'-modules.

If we remove the section s, the above diagram commutes. To prove that
the diagram (6.10) commutes, by the diagram (6.2), it suffices to show that
so does, on the level of classical cohomology, the large round triangle,3! in the
diagram (6.12). For that, we note that we have the isomorphism

(6.13) st Hip (X)) @par g, Hjp(Xe).

31That is, the round triangle with vertices RTuk(Xc), RTuk ()?c), and RPPD(Xc).
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If X has a quasi-compact semi-stable formal model £  over &, this arises
from the pV-quasi-isomorphism, N = N(d), (see (4.8))

51 RTe(20/0%,) Bop, 1P = RTer(2p/rEP)

and the fact that RTe(20/ 0%, ) ®ep, 1.0 is p-adically derived complete and
rEa is free over Op, ,,. For a general quasi-compact and smooth X over K,
the above argument goes through yielding the isomorphism (6.13), as wanted.

Now, to show that the round triangle in the diagram (6.12) commutes,
consider the ideal

R a; R E L
L= { " T Jim ai =0},
i2p"

We have the exact sequence

PD nr
0—>IO—>rKQP—>F — 0.

The F™-linear and Frobenius equivariant section s: Hjx (Xe) — Hip (Xe)
of the projection pg satisfies

~

s(a) = ¢"o~"(a) mod Hiyx(X¢) @per I, a€ Hix(X),n >0,

where b, for b € Hij(X¢), is a lifting of b via py. This is because, for

any a € HI?IK()?C), we have s(a) = ¢"s(p™"(a)) and s(a) = ¢"p~"(a)
mod Hiy (X¢) @pnr Iy. And we also have ¢ () C I,.

Hence, to show that the round triangle in the diagram (6.12) commutes, it
suffices to show that the intersection of the submodules HI?IK()?C) Qpnr I,
n > 0, is trivial. But this is clear. OJ

6.3. Overconvergent syntomic cohomology via presentations of dag-
ger structures. In this section we introduce a definition of overconvergent
syntomic cohomology using presentations of dagger structures (see [42, Appen-
dix], Section 3.2.1). We show that so defined syntomic cohomology, a priori
different from the one defined in Section 5.4, is strictly quasi-isomorphic to it.

(i) Local definition. Let X be a dagger affinoid over L = K,C. Let
pres(X) = {X,}. Define

RT, (X, Qp(r)) == hocolimy RT gy (Xs, Qp(r)), 7€ N.
Let L = K. We have a natural map
(614) [’lyn : eryn (X7 QZD(T)) - RFSYU (X’ QP(T))
defined as the composition
(6.15) RI',, (X, Qp(r)) = hocolimy RTsyn (X, Qp(r))
=5 hocolimy, RTgyn (X7, Q, (1))
& hocolimp, RT gy (X171, Qp(r) = RTqyn (X, Q,(r)).
The third quasi-isomorphism holds by Theorem 6.3 because X} is partially

proper.
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(ii) Globalization. For a general smooth dagger variety X over L, using the
natural equivalence of analytic topoi
Sh(SmAff} ) = Sh(Sm] ,,),
we define the sheaf szsg,n(r), r € N, on Xg; as the sheaf associated to the
presheaf defined by U +— RFlyn(U, Q,(r), U e SmAffTL, U — X an étale map.

We define3?
RI (X, Qp(r)) i= Rla(X, 1, (r), reN.

syn syn

Globalizing the map Llyn from (6.14), we obtain a natural map

ynt REL (X, Qp(r) = RT gy (X, Qp(r)).
(iii) A comparison quasi-isomorphism.
Proposition 6.16. The above map Llyn is a strict quasi-isomorphism.

Proof. By étale descent, we may assume that X is a smooth dagger affinoid.
Looking at the composition (6.15) defining the map L;Tyn, we see that it suffices
to show that the natural map

hocolimy, RTgyn (X2, Qp () = Rlgyn(X, Q, (7))

is a strict quasi-isomorphism. Or, from the definitions of both sides, that we
have strict quasi-isomorphisms

RIuk (X) <= hocolimy, RTgx (X:"1),  RTar(X) <= hocolim, RTar (X 7).
This is clear in the case of the second map, since this map factors as
hocolimy, RCqr (X5) =+ hocolimy, RTar (Xpt1) = RLgr(X).

For the first map consider the commutative diagram

Rl (X)) «—— hocolimy, Rk (X ;1)

| |

RI 1k (X)) «— hocolimy, RUuk (Xj'5)“% < (hocolimy, RIuk (Xj't)) 9.

Here the vertical maps are strict quasi-isomorphisms by Proposition 5.13.
The horizontal map is a strict quasi-isomorphism because the prosystems
{RI‘HK(XZTC)} and {RT'ux(Xn,c)} are equivalent and the action of ¥x on
the terms of the last one is smooth. It suffices thus to show that the natural
map

RIuk (X¢) + hocolim, RTuk (X))

32We will show below (see Remark 6.17) that this definition of l%l“;L},r,(_>(7 Qp(r)), for a
smooth dagger affinoid X, gives an object naturally strictly quasi-isomorphic to the one
defined above.

Miinster Journal of Mathematics VoL. 13 (2020), 445-507



498 P. CoLMEZ AND W. NIZIOL

is a strict quasi-isomorphism. For that consider the following diagram:

Rk (X¢) ———— hocolimy, RCuk (X}F)

« ( l hocolimp, ap, (\ l

Rl (Xe) B K L hocolimy, RUyux (X{'L) @ por K

LHK‘LZ LHKJ/Z

f . o
RI;, %(X¢) ¢————— hocolimy, RT',;, (XL

2T5 ZThocolimh Bn

RFdR(X) @)K K <f—3 hocolimy, RFdR(XZ’T) @)K K

| I

(hocolimy, RTar (X3)) @k K —— hocolimy RTar(Xs) @k K.

The maps «, ay, are left inverses of the canonical vertical maps (used already in
the diagram (6.7)). The Hyodo-Kato morphisms are the ones from (5.16); they
are strict quasi-isomorphisms. The maps /3, £}, are those from Proposition 5.19;
they are strict quasi-isomorphisms as well. The diagram clearly commutes.
The strict quasi-isomorphism ~ uses the fact that Xj is quasi-compact. It
follows that the map f3 is a quasi-isomorphism and then that so is the map f;
and, finally, that so is the top horizontal map, as wanted. O

Remark 6.17. The above proof shows that, for a smooth dagger affinoid X
over K with a dagger presentation {X}}, the natural map

hocolimy, RTsyn (X#, Qp(r)) — Rl (X, (1))

syn

is a strict quasi-isomorphism. Hence the two definitions of RI‘lyn(X ,Qp(1))
that we gave above coincide.

7. ARITHMETIC p-ADIC PRO-ETALE COHOMOLOGY

We pass now to the computation of arithmetic p-adic pro-étale cohomology
of smooth dagger and rigid analytic varieties.

7.1. Syntomic period isomorphisms. First, we will use the comparison
theorem between syntomic complexes and p-adic nearby cycles from [10] to
define period maps for smooth rigid analytic and dagger varieties.

Let 2" be a semi-stable formal model over 0k. Recall that Fontaine—
Messing [19] and Kato [26] have constructed period morphisms

M S = T RILp () g T >0

rm

(i: Zo — Z,j: Zx — Z), from syntomic cohomology to p-adic nearby
cycles taken as complexes of sheaves on the étale site of Zy. Here we set
Zy(r) = ﬁz,,(r), for r = (p — a(r) + b(r), 0 < b(r) < p—1. The
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syntomic sheaf .7, (r) is associated to the presheaf % — RI'syn(%,Z/p" (1)),
for formally étale % — Z .
Recall the following comparison result.

Theorem 7.1 ([10, Th. 1.1]). For 0 < i <, consider the period map
(7.2) ay s HNS (1) ar) = T RGZ/p" (1) o,

rn

(i) If K has enough roots of unity,>> then the kernel and cokernel of this
map are annihilated by p™N" T for a universal constant N (not depending on
p, £, K, n orr) and a constant ¢, depending only on p (and d if p = 2).

(ii) In general, the kernel and cokernel of this map are annihilated by p™
for an integer N = N (e, p,r), which depends on e, r, but not on Z or n.

7.1.1. Ruigid analytic varieties. The above comparison quasi-isomorphism glob-
alizes easily to smooth rigid analytic varieties:

Corollary 7.3. For X € Smy, L = K, C, the period maps
ar: Rlgyn(X,Zy(r))q, — Rl (X, Qp(r)),
oyt Rlsyn (X, Qp(r)) — RIprogt (X, Qp(r))
are strict quasi-isomorphisms after truncation T<,.
Proof. Since both the domain and the target of the period maps satisfy n-étale
descent, we may assume that X has a semi-stable model over k. But in that

case this follows from Theorem 7.1 as in analogous claims in the geometric
setting in [9, Prop. 6.1, Cor. 3.46]. O

7.1.2. Dagger varieties. The comparison quasi-isomorphism (7.2) can also be
extended to smooth dagger varieties. Let X € Sm}(, r > 0. Define the period
map

(7.4) oy Rl gyn (X, Qp(1)) = Rl prost (X, Qp(r))

as the composition

~ of
Rl yn (X, Qp(r)) <— Rriyn (X, Qp(r)) = RIprost (X, Qp(r)),
where the first map is the map Llyn from Proposition 6.16 and the second map

is defined by globalizing the following map defined for X a dagger affinoid with
presentation {Xp}:

R, (X, Qu(r)) = hocolimy Rl gyn (Xp, Qp(r))

Jo-
hocolimy, R proet (Xn, Qp(1)) = R proct (X, Qp(7)).

Corollary 7.3 implies immediately the following result.

333ee [10, Section 2.2.1] for what it means for a field to contain enough roots of unity.
For any K, the field K({pn), for n > ¢(K) + 3, where ¢(K) is the conductor of K, contains
enough roots of unity.
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Corollary 7.5. For X € Sm;{, the period map
oyt Rlsyn (X, Qp(r)) = RDprost (X, Qp(r))
is a strict quasi-isomorphism after truncation T<,.

Remark 7.6. Let X be a smooth partially proper dagger variety over K. We
claim that the following diagram commutes:

RFSyn(Xa Qp(r)) — RIprogt (X, Qp ()

Ll? ['proétl/z

RTyn(X, Qp(r) — Rl prot (X, Qp(r)).

The map ¢ is the strict quasi-isomorphism from Theorem 6.3; the map tprost is
the strict quasi-isomorphism from Proposition 3.16. The period maps &, o,
are the ones defined above (we put hat above the rigid analytic period map to
distinguish it from the dagger period map).

It suffices to show that this diagram naturally commutes étale locally. So we
may assume that X is a smooth dagger affinoid. Then checking commutativity
is straight-forward from the definitions (if tedious).

7.2. Applications and Examples. We are now ready to list some applica-
tions of our computations and to discuss some examples of computations of
p-adic pro-étale cohomology.

7.2.1. Rigid analytic varieties. We start with the rigid analytic case. Let X €
Smpg, r > 0. The distinguished triangle (4.2), Lemma 4.5, and the period map
a, above yield a natural map

Or: (RLar (X)/F")[=1] = R proet (X, Qp(r))-

Theorem 7.7. Let X € Smg, r > 1.
(1) For1<i<r—1, the map

O Hig (X) = Hipoer (X, Qp(r))

is an isomorphism. In particular, the cohomology f]émét(X, Q,(r)) is
not, in general, classical.
(2) We have the short exact sequence

0— I?Tfl(RFdR(X)/FT) o ﬁgroét(X’ Qy (1))

— H"([RTuk (X)]N=0¢=F") - H"(RTqr(X)/F").

Proof. Corollary 7.3 allows us to pass (by the period map) to syntomic coho-
mology for which we have an analogous claim, with HJ, (X, ;afcfg; ) in place of

H"([RDuk (X))V=0-¢=P") by Corollary 4.7. That the latter two are isomorphic
follows from diagram (4.31). O
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7.2.2. Dagger varieties. Now we pass to the overconvergent case.
Let X € SmTK7 r > 0. The distinguished triangle (5.22) and the period
map «, from (7.4) yield a natural map

Or: (RLar(X)/F")[=1] = Rlproet (X, Qp(r))-

Theorem 7.8. Let X € SmTK, r>1.
(1) For 1 <i<r—1, the map

87’: ﬁéil(X) - géroét(Xv QZD(T))

is an isomorphism. In particular, the cohomology I}}iroét(X, Q,(r)) is
classical.
(2) We have the long exact sequence
rrr— r\ O Tpr
0 — H"(RLar(X)/F") =5 Hijoer (X, Qp(r))

— H"([RTuak (X)|N=0¢=P") 5, Og7(R[4r(X)/F").

Proof. For ¢ < r, from the definition of syntomic cohomology and Corollary 7.5,
we get the long exact sequence

RN ﬁi_l(RFdR(X)/FT) — ﬁiroét(X) Qy(1))

— H'([RPgk (X))V=0¢=") s HY(R[4r(X)/F") = --- .

For the first claim of the theorem, it suffices to show that, for i < r — 1,
Hi([RPug (X)|N=0%=r") = 0 and H.3'(X) = H"'(R[4r(X)/FT). The
second isomorphism is clear and the first one follows from Proposition 5.9.
For the second claim of the theorem, we note that the injectivity on the left is
implied by the fact that H"~!([R[gk (X)]N=%¥=P") = 0 (see Proposition 5.9).
The proof is complete. O

7.2.3. Qverconvergent balls. Let X be the overconvergent open or closed ball
over K of dimension d > 0 and radius p € y/|K*|. Using Corollary 7.5 and
Example 5.4.1, we get

Qp if’r:O,

roo(X ~
proat (X Qp(r) {Qr—l(x)/kerdr_l:QT(X)d—O if r > 2,

and, for r = 1, we get a strict exact sequence
0= O(X) = Hpou (X, Qp(1)) = Qp — 0.

For comparison, recall that, for the geometric pro-étale cohomology, we have
a topological isomorphism [11]

Q" NXe)/ kerdr—1 = Hloo(Xo, Qp(r)), 7> 1.
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7.2.4. Proper smooth rigid analytic varieties. Let X be a proper smooth dagger
variety over K (recall that every smooth proper rigid analytic variety over K
has a canonical dagger structure). For r > 1, Theorem 7.8 and Section 4.1.1
imply that the cohomology H} (X, Qy(r)) is classical for i < r and, since
H! (X, Qp(r)) = HL (X, Qp(r)) because X is proper, we have

proét
Hig'(X) = Hy (X, Qp(r)), 1<i<r—1,
and we have a strict exact sequence
0 — Hig'(X) = HL(X,Qy(r) = E(r) =0,
where E(r) is an extension

0= Hig (X)77"" 5 B(r) = Hie(X)N=0¢=" 0 07(X) — 0.

7.2.5. The Drinfeld half-space. Let d > 1 and let H% be the Drinfeld half-space
of dimension d, i.e.,

Hj =P\ | B
Hew

where S denotes the set of K-rational hyperplanes. We set G := GLg41(K).
For 1 < r < d, denote by Sp,(Q,) the generalized locally constant Steinberg
Q,-representation of G equipped with a trivial action of ¥k (for a definition
see [9, Section 5.2.1]).

Corollary 7.9. (1) For 0 < i < r, the cohomology ﬁ}éroét (HS, Q,(r)) is
classical.
(2) Fori <r—1, there is a natural G-equivariant topological isomorphism

Hyyoe (Hic, Qp(r) = Sp;_y (K)*.
(3) We have a G-equivariant diagram of strict exact sequences

0

!
Sprfl (QP)*
!
0— Q1 (HY)/ imdy—z — Hp o (H, Qp(r) — E(Qy) —— 0.
!
Spr(QP)*

1
0

Proof. Point (2) follows from Theorem 7.8 and the isomorphism fféR(H%) ~
Sp;(K)* of Schneider—Stuhler [36].
For point (3), since H% is Stein, by Section 4.1.1, we have

H™ Y (RTqr(HL)/FT) ~ Q'Y (HEL)/ imdy—s, H"(RTar(HL)/F") ~ 0.
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On the other hand, from (5.10), we get an exact sequence

(T10) 0 Al () - A (RO ()] =09 =")
 Hjy (V=04 0,
where all the cohomologies are classical. But, by [9, Lem. 5.11], we have a

G-equivariant isomorphism Hjy (H%)9=P" ~ Sp,(Q,)*. Since the monodromy
is trivial (see [9, Section 5.5]), (7.10) then yields an exact sequence

0= Sp,_1(Qp)" = H"([RTux (HE )] V="9="") = Sp,(Q,)* = 0.
Plugging the above computations into Theorem 7.8 and setting
E(Qp) := H"([RTux (Hf )| V=0¢=7"),

we get point (2).
Point (1) follows now trivially from points (2) and (3). O

Remark 7.11. (1) We note that we have the strict exact sequence

0 — B (HL) = O (HL)/ imdy_y 25 Q(HL )0 - By (HE) — 0

and that the two de Rham cohomology terms are topologically isomor-
phic to Sp,_;(K)* and Sp,(K)*, respectively.

(2) Tt would be interesting to understand the computations in this ex-
ample better. In particular, to describe the extensions of Steinberg
representations that appear.

Remark 7.12. It is interesting to link the computation of the arithmetic coho-
mology H} s (H%, Q,(r)) presented here to the computation of the geometric
cohomology H/, s (HE, Qp(r)) done in [9, Th. 5.15]. The following argument
would need to be made more precise but it shows that the two computations,
the arithmetic and the geometric one, are compatible.

We have the Hochschild—Serre spectral sequence

(7.13) H" (G, Hyproi (HE, Qp(r)) = Hypo (Hic, Qp(7))

(Only n = 0,1,2 can possibly give a nonzero contribution.) Now, the exact
sequence from [9, Th. 5.15] twisted by (j — k), yields an exact sequence of
Y x G-modules

0= C(j — k)®r (" (Hi)/ kerdi—1) = Hpoe(HE, Qp(4))
— Sp(Qp)*(J — k) = 0.

Hence the computation of H" (%, H' " (He, Q,(r))) will involve the groups

proét

H"(Yk,Qp(r —i+n)) and H™(9x,C(r —i+n)).
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Recall the following results of Tate and Bloch—Kato:

Qp iijO,
0 ifj>1,

. [K®q, itj=1,
HY (Y, ~ P
(Y, Qp(4)) {K > 2.

H* (95, Qu(5) =0 if j >2,

HO (e, C(j)) ~ {K fj=0,

(7.14) H®(Yr, Qp(j)) = {

0 ifj>1,

H (4, C(j)) ~ {f

H*(%k,C(j)) =0 if j >0.

Using them, we see that the nonzero terms of the spectral sequence (7.13)
contributing to Héroét (H%, Q,(r)), i < r, are the following: if i = r, we have
an exact sequence

0 — QN H)/ ker dioy — H° (9, Hypou(HE, Qp(r))) — Spi(Qp)" — 0,
and we have isomorphisms
H' (e, Hypooi(Ho, Qp(r)) = (K © Q) @q, Spi—1(Qy)” ifi=r,
HY (G, Hy . (He, Qp(r)) ~ K ®q, Sp;_1(Qp)* ~Sp;_1(K)*  ifi<r—1.
The above sequence is exact though (7.14) is not enough to ensure the surjec-
tivity of the map H® (%, Hémét(H‘é, Q,(7))) — Sp;(Qp)*. It yields however
the exact sequence

7 x O i—
HO(gKv Hproét(H(év QP(T))) - Spi(QP) = 1(H?()/kerdi—1'

Now the boundary map 0 is trivial by a representation theory argument: the
map 0 is continuous and G-equivariant, the G-smooth vectors are dense in
Sp;(Q,)*, but Q"1 (H%)/kerd;_1 does not have any nonzero G-smooth ele-
ments, since it injects into Q7 (H% ).

Hence, for 0 < i < r — 1, we get H}iroét(H‘}(,QP(T)) ~ Sp,_1(K)* as in
Corollary 7.9. For ¢ = r, we get the diagram of exact sequences

0
1
Q~YH%)/ ker d,—q
Sp, 1 ()" l
0— ® HH;roét(H?{’QP(T)) HHO(gKaH;roét(HéaQP(r))) — 0.
Sprfl(QP)*
Spr(QP)*
1
0
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To compare this with Corollary 7.9, note that we have an exact sequence

0 — Hig' (HY) — Q' (HE) /imd;_p — Q' (HE)/ ker d;—y — 0

and the Schneider—Stuhler isomorphism

éﬁl (H%) = Spi—l(K)*'

Hence Corollary 7.9 and the above computation via Galois descent give us
the same Jordan-Holder components of H, (H%, Q,(r)) but they are put
together in two different ways.
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