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Abstract. We compute, in a stable range, the arithmetic p-adic étale cohomology of smooth
rigid analytic and dagger varieties (without any assumption on the existence of a nice integral
model) in terms of differential forms using syntomic methods. The main technical input is a
construction of a Hyodo–Kato cohomology and a Hyodo–Kato isomorphism with de Rham
cohomology.

Contents

1. Introduction 445
2. An equivalence of topoi 450
3. Pro-étale cohomology of dagger varieties 456
4. Rigid analytic syntomic cohomology 464
5. Overconvergent syntomic cohomology 479
6. Comparison of overconvergent and rigid analytic arithmetic

syntomic cohomology 490
7. Arithmetic p-adic pro-étale cohomology 498

1. Introduction

Let p be a prime. Let OK be a complete discrete valuation ring of mixed
characteristic (0, p) with perfect residue field k and fraction field K. Let F
be the fraction field of the ring of Witt vectors OF = W (k) of k. Let K be
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an algebraic closure of K and let C = K̂ be its p-adic completion; let GK =
Gal(K/K). Let F nr be the maximal unramified extension of F in K.

In a joint work with Gabriel Dospinescu [8, 9], we have computed the p-adic
(pro-)étale cohomology of certain p-adic symmetric spaces. A key ingredient of
these computations was a one-way (de Rham to étale) comparison theorem for
rigid analytic varieties over K with a semi-stable formal model over OK that
allowed us to pass from (pro-)étale cohomology to syntomic cohomology and
then to a filtered Frobenius eigenspace associated to de Rham cohomology.

The main goal of this paper is to define all the cohomologies that will be
necessary for extending such comparison quasi-isomorphisms to all smooth
rigid analytic varieties over K or C (without any assumption on the existence
of a nice integral model). We will focus on the arithmetic case and leave the
geometric case for the sequel of this paper [12].

1.1. Main results. We are mainly interested in partially proper rigid analytic
varieties. Since these varieties have a canonical overconvergent (or dagger)
structure, we are led to study dagger varieties.1 This is advantageous: for
example, a dagger affinoid has de Rham cohomology that is a finite rank vector
space with its natural Hausdorff topology while the de Rham cohomology of
rigid analytic affinoids is, in general, infinite-dimensional and not Hausdorff.

Our first main result is the following theorem.

Theorem 1.1. To any smooth dagger variety X over L = K,C, there are

naturally associated:2

(1) A pro-étale cohomology RΓproét(X,Qp(r)), r ∈ Z. If X is partially

proper, this agrees with the pro-étale cohomology of X considered as a

rigid analytic variety.

(2) For L = C, a K-valued rigid cohomology RΓrig,K(X) and a natural

strict quasi-isomorphism3

RΓrig,K(X) ⊗̂
R
K C ≃ RΓdR(X).

This defines a natural K-structure on the de Rham cohomology.4

(3) A Hyodo–Kato cohomology RΓHK(X). This is a dg F -algebra if L = K,

and a dg F nr-algebra if L = C, equipped with a Frobenius ϕ and a mon-

odromy operator N . For L = C, we have natural Hyodo–Kato strict

1Recall that a dagger variety is a rigid analytic variety equipped with an overconvergent

structure sheaf. See [20] for the basic definitions and properties.
2All cohomology complexes live in the bounded below derived ∞-category of locally

convex topological vector spaces over Qp. Quasi-isomorphisms in this category we call strict

quasi-isomorphisms.
3See Proposition 5.19 for the definition of the tensor product.
4By the same procedure one can define a F nr-valued rigid cohomology RΓrig,Fnr(X) and

a natural strict quasi-isomorphism RΓrig,Fnr(X) ⊗̂
R
Fnr C ≃ RΓdR(X).
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quasi-isomorphisms:

ιHK : RΓHK(X) ⊗̂Fnr K
∼
−→ RΓrig,K(X),

ιHK : RΓHK(X) ⊗̂
R
Fnr C

∼
−→ RΓdR(X).

(4) For L = K, a syntomic cohomology RΓsyn(X,Qp(r)), r ∈ N, that fits

into a distinguished triangle

(1.2) RΓsyn(X,Qp(r)) −→ [RΓHK(X)]N=0,ϕ=pr ιHK−−→ RΓdR(X)/F r,

and a natural period morphism

αr : RΓsyn(X,Qp(r)) → RΓproét(X,Qp(r))

that is a strict quasi-isomorphism after truncation τ≤r.

We also prove an analogous theorem for smooth rigid analytic varieties.

Our second main result is the following corollary of Theorem1.1.

Theorem 1.3. Let X be a smooth dagger variety over K and let r ≥ 0.

(1) For 1 ≤ i ≤ r − 1, the boundary map induced by the distinguished

triangle (1.2)

∂r : H̃
i−1
dR (X) → H̃i

proét(X,Qp(r))

is an isomorphism. In particular, the cohomology H̃i
proét(X,Qp(r)) is

classical and it has a natural K-structure.

(2) We have long exact sequences

0 → H̃r−1(RΓdR(X)/F r)
∂r−→ H̃r

proét(X,Qp(r))

→ H̃r([RΓHK(X)]N=0,ϕ=pr

)
ιHK−−→ H̃r(RΓdR(X)/F r),

0 → H̃r−1
HK (X)ϕ=pr−1

→ H̃r([RΓHK(X)]N=0,ϕ=pr

) → H̃r
HK(X)N=0,ϕ=pr

→ 0.

Moreover, the cohomology H̃i
HK(X) is classical.

Here H̃ refers to cohomology taken in the derived category of locally convex
topological vector spaces over Qp and “classical” means that the cohomology
H̃ is isomorphic to the algebraic cohomology H equipped with its natural
quotient topology (very often this is equivalent to the natural topology on H
being separated). If X is proper, we have the isomorphisms

Hr−1
dR (X)

∼
−→ H̃r−1(RΓdR(X)/F r), Hr

dR(X)/Ωr(X)
∼
−→ H̃r(RΓdR(X)/F r).

If X is Stein, we get the isomorphisms

H̃r−1(RΓdR(X)/F r) ≃ Ωr−1(X)/ imdr−1, H̃i(RΓdR(X)/F r) ≃ 0, i ≥ r.

Hence the cohomology H̃r−1(RΓdR(X)/F r) is classical.
We prove an analogous result in the case of smooth rigid analytic varieties

over K and this generalizes the computations [10, Cor. 3.16] done for smooth
affinoids with semi-stable reduction.
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Remark 1.4. For a smooth proper scheme X over K, the analog of the map

∂r : H̃
i−1
dR (X) → H̃i

proét(X,Qp(r)) is a geometric incarnation of the Bloch–Kato

exponential. See [31, Remark 2.14], [13, Prop. 3.8], [32, Th. 3.1] for a detailed
discussion.

1.2. Proof of Theorem 1.1. We will now sketch how Theorem 1.1 is proved.
The pro-étale cohomology in (1) is defined in the most naive way: if X is a
smooth dagger affinoid with a presentation {Xh}h∈N by a pro-affinoid rigid
analytic variety,5 we set RΓproét(X,Qp(r)) := hocolimhRΓproét(Xh,Qp(r));
then we globalize. From this description it is clear that we have a natural map
RΓproét(X,Qp(r)) → RΓproét(X̂,Qp(r)), where X̂ is the completion of X (a
rigid analytic variety).

For the rest of Theorem 1.1, first we show that, using the rigid analytic étale
local alterations of Hartl and Temkin [22, 39], the étale topology on XL has a
base consisting of semi-stable weak formal schemes (always assumed to be of
finite type) over finite extensions of OK . This allows us to define sheaves by
specifying them on such integral models and then sheafifying for the η-étale
topology.6 For example, for (2), we define RΓrig,K(X) := RΓét(X,Arig,K), for
a sheaf Arig,K induced from a presheaf assigning to a semi-stable model Y

over OC coming by base change from a semi-stable model YOE
over OE , [E :

K] < ∞, the complex7 hocolimRΓrig(YOE ,0), YOE ,0 is the special fiber of YOE
,

where the homotopy colimit is taken over such models YOE
. In an analogous

way, we define, for (3), the Hyodo–Kato cohomology using the overconvergent
Hyodo–Kato cohomology of Grosse–Klönne that, for a semi-stable model Y
over OK , is defined as RΓHK(Y0) := RΓrig(Y0/O0

F ); the Hyodo–Kato quasi-
isomorphism is induced from the one defined by Grosse–Klönne

ιHK : RΓrig(Y0/O
0
F )

∼
−→ RΓrig(Y0/O

×
F ).

Here O×
K , O0

K denote the (weak formal) scheme associated to OK with the
canonical and the induced by N → OK , 1 7→ 0, log-structure, respectively.

We define the syntomic cohomology in (4) in two different, but (non obvi-
ously) equivalent, ways. One definition is just as a homotopy fiber that yields
the distinguished triangle (1.2). The other, for dagger affinoids with a presen-
tation {Xh}h∈N, sets RΓsyn(X,Qp(r)) := hocolimh RΓsyn(Xh,Qp(r)). Here
the syntomic cohomology RΓsyn(Xh,Qp(r)) of a rigid analytic variety Xh is
defined by η-étale descent, using the fact that semi-stable formal models form
a base for the étale topology of X , from the crystalline syntomic cohomology
of Fontaine–Messing. Recall that the latter is defined as the homotopy fiber

RΓsyn(X ,Qp(r) := [F rRΓcr(X )
ϕ−pr

−−−→ RΓcr(X )], where the crystalline coho-
mology is absolute (i.e., over Zp). The second definition works also for smooth
dagger varieties over C.

5See Section 3.2.1 for the definition of presentations.
6This construction mimics that of Beilinson in [2] done for algebraic varieties; here η-étale

means topology induced from the étale topology of the generic fiber.
7We give here a rough definition; see Section 5.3 for a precise definition.
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It is quite nontrivial to show that these two definitions agree. Along the
way, we prove the main technical result of this paper:

Theorem 1.5. Let r ≥ 0. Let X be a smooth dagger variety over K. There

is a natural morphism

RΓsyn(X,Qp(r)) → RΓsyn(X̂,Qp(r)).

It is a strict quasi-isomorphism if X is partially proper.

This theorem is proved by representing both sides of the morphism by means
of the crystalline and the overconvergent Hyodo–Kato cohomology, respec-
tively, then passing via Galois descent to XC , and finally passing through the
crystalline and overconvergent Hyodo–Kato quasi-isomorphisms (that need to
be shown to be compatible) to the de Rham cohomology, where the result is
known.

To define the period map in (4), for L = K,C, we first define it for rigid
analytic varieties by the η-étale descent of the Fontaine–Messing period map
αr : RΓsyn(X ,Qp(r)) → RΓét(XL,Qp(r)), for a semi-stable formal scheme X
over OL. Then we use the second definition of syntomic cohomology and
the period maps αr : RΓsyn(Xh,Qp(r)) → RΓét(Xh,Qp(r)) to get the period
map αr in Theorem 1.1. The fact that it is a strict quasi-isomorphism in a
stable range follows from the computations of p-adic nearby cycles via syntomic
complexes done in [40] in the geometric case and in [10] in the arithmetic case.

Remark 1.6. For an algebraic variety X over L = K,C, a well-behaved
syntomic cohomology RΓsyn(X,Qp(r)), r ≥ 0, was defined in [31]. A more
conceptual definition was given in [13] but the approach in [31] is more concrete
and this is the one we mimic in this paper. For L = K and smooth X ,
there exists a natural map RΓsyn(X,Qp(r)) → RΓsyn(X

an,Qp(r)), where X
an

denotes the analytification of X . This should be a strict quasi-isomorphism
if X is proper although we do not prove this in this paper.

Remark 1.7. Let X be a proper semi-stable scheme over OK (we allow a
horizontal divisor at infinity). Ertl and Yamada [15] have extended Grosse–
Klönne’s definition of the Hyodo–Kato morphism to this setting and defined
the corresponding rigid syntomic cohomology by the defining property (1.2).
See [43] for a more conceptual definition in the case when there is no horizontal
divisor at infinity.

1.2.1. Notation and conventions. All formal schemes are p-adic. For a (weak
formal or formal) scheme X over OK , we will denote by Xn its reduction
modulo pn, n ≥ 1, and by X0 its special fiber.

We will denote by OK , O×
K , and O0

K , depending on the context, the scheme
Spec(OK) or the formal scheme Spf(OK) with the trivial, the canonical (i.e.,
associated to the closed point), and the induced by N → OK , 1 7→ 0, log-
structure, respectively.

Definition 1.8. Let N ∈ N. For a morphism f : M → M ′ of Zp-modules,
we say that f is pN -injective (resp. pN -surjective) if its kernel (resp. its
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cokernel) is annihilated by pN and we say that f is a pN -isomorphism if it is
pN -injective and pN -surjective. We define in the same way the notion of pN -

distinguished triangle or pN -acyclic complex (a complex whose cohomology
groups are annihilated by pN) as well as the notion of pN -quasi-isomorphism

(map in the derived category that induces a pN -isomorphism on cohomology).

Unless otherwise stated, we work in the derived (stable) ∞-category D(A)
of left-bounded complexes of a quasi-abelian category A (the latter will be
clear from the context). Many of our constructions will involve (pre)sheaves of
objects from D(A). The reader may consult the notes of Illusie [25] and Zheng
[44] for a brief introduction to how to work with such (pre)sheaves and [29, 30]
for a thorough treatment.

We will use a shorthand for certain homotopy limits. Namely, if f : C → C′

is a map in the derived ∞-category of a quasi-abelian category, we set

[ C
f

// C′ ] := holim(C → C′ ← 0).

And we set



C1

��

f
// C2

��

C3
g

// C4


 :=

[
[C1

f
−→ C2] → [C3

g
−→ C4]

]
,

for a commutative diagram (the one inside the large bracket) in the derived
∞-category of a quasi-abelian category.

2. An equivalence of topoi

Let X be a smooth rigid analytic variety over K, resp. C. In this section,
we will show that the étale site of X has a base (in the sense of Verdier,
see [41]) built from semi-stable formal schemes over finite extensions of OK ,
resp. over OC . We will show the same for smooth dagger spaces overK and C.

2.1. A general criterium. In [1, 2.1] Beilinson generalized a well-known cri-
terium of Verdier [41, 4.1] stating conditions under which one can change sites
while preserving their topoi. While Verdier assumed the functor F below to
be fully faithful, Beilinson allows it to be just faithful.

We will briefly summarize [1, 2.1]. Let V be an essentially small site and
let Sh(V ) be the corresponding topos. A base for V is a pair (B, F ), where
B is an essentially small category and F : B → V is a faithful functor, which
satisfies the following property:

(⋆) For V ∈ V and a finite family of pairs (Bα, fα), Bα ∈ B, fα : V →
F (Bα), there exists a set of objects B′

β ∈ B and a covering family

{F (B′
β) → V } such that each composition F (B′

β) → V → F (Bα) lies

in Hom(B′
β , Bα) ⊂ Hom(F (B′

β), F (Bα)).

Münster Journal of Mathematics Vol. 13 (2020), 445–507
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Remark 2.1. (1) For the empty set of (Bα, fα)’s the above means that
every V ∈ V has a covering by objects F (B), B ∈ B. If F is fully
faithful, then (⋆) is equivalent to this assertion.

(2) If B admits finite products and F commutes with finite products, then
it suffices to check (⋆) for families (Bα, fα) having ≤ 1 elements.

(3) In the general case, it suffices to check (⋆) for families (Bα, fα) having
≤ 2 elements.

Let (B, F ) be a base for V . Define a covering sieve in B as a sieve whose F -
image is a covering sieve in V . The following proposition is proved by Beilinson
[1, 2.1].

Proposition 2.2. (1) Covering sieves in B form a Grothendieck topology

on B.

(2) The functor F : B → V is continuous.

(3) F induces an equivalence of topoi Sh(B)
∼
−→ Sh(V ).

We call the above topology on B the F -induced topology.

Remark 2.3. (1) If F is fully faithful, the above proposition is [41, 4.1].
(2) Let (F s, Fs) : Sh(B) ⇆ Sh(V ) be the usual adjoint functors. For a

presheaf F on V , we have Fs(F
a) = Fp(F )a, where Fp is the push-

forward of presheaves and the subscript a means “associated sheaf”.
(3) If (B, F ) is a base for V and (B′, F ′) is a base for the F -induced

topology on B, then (B′, FF ′) is a base for V .

2.2. Categories of formal models. We will show now that the étale site of
smooth rigid analytic varieties over K, resp. over C, admits a base built from
semi-stable formal schemes over finite extensions of OK , resp. over OC .

2.2.1. Models. Let L = K,C. A morphism of OL-schemes f : Y → X is called
η-étale, an η-isomorphism, etc., if its generic fiber fL is étale, an isomorphism,
etc. An OL-scheme is admissible if it is flat and of finite type over OL. A formal
OL-scheme X is admissible if it is flat and of finite type over Spf(OL). For an
admissible formal OL-scheme X , we denote by XL (or Xη) its rigid analytic
generic fiber. We say that a morphism Y → X between admissible formal
OL-schemes is η-étale if its generic fiber fL (or fη) is étale. Similarly, we define
η-smooth morphisms.8

Let SmL be the category of smooth L-rigid varieties. We will consider
categories M formed by semi-stable formal models of such varieties.

(a) K-setting: A model over K (a K-model) is an admissible formal OK -
scheme X . A formal scheme over OK is called semi-stable if, locally for the
Zariski topology, it admits an étale morphism to a formal scheme of the form

Spf(OK{X1, . . . , Xl}/(X1 · · ·Xm −̟)), 0 ≤ m ≤ l,

8In a more traditional language we would call such morphisms “rig-étale”, etc. However,
since it is becoming standard to use η to denote the rigid generic fiber, we have elected to
use η-étale in this paper.
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for a uniformizer ̟ of OK (we allow m = 0 just to get formal affine space
– when the formal scheme is smooth). A K-model X is called semi-stable

if it is semi-stable over OE for a finite field extension E of K. In that case,
assume that XK is connected (which is equivalent to X being connected), and
let KX be the algebraic closure of K in Γ(XK ,OXK

) (note that E ⊂ KX ).
Then OKX

is the integral closure of OK in Γ(X ,OX ) and X is semi-stable
over OKX

. We will say that X is split over KX .
Let MK denote the category of K-models (morphisms are morphisms of

formal schemes over OK) and let M ss
K be its full subcategory of semi-stable

K-models.
(b) C-setting: A model over C (a C-model) is an admissible formal OC -

scheme X . It is called semi-stable if, locally for the Zariski topology, it admits
an étale morphism to a formal scheme of the form

Spf(OC{X1, . . . , Xl}/(X1 · · ·Xm −̟)), 0 ≤ m ≤ l,

for 0 6= ̟ ∈ OC . It is called basic semi-stable if there exists a semi-stable
model X ′ over OE , E a finite extension of K, and a C-point α : E → C such
that X is isomorphic to the base change X ′

OC
. Let MC denote the category

of C-models and let M ss
C , M ss,b

C be its full subcategories of semi-stable and
basic semi-stable C-models, respectively.

We note that if we equip the formal schemes in M ss
K , M ss,b

C , and M ss
C with

the log-structure associated to the special fiber over the ring over which they
split, every map in these categories is a map of log-schemes. Warning: the

maps in the category M ss,b
C do not have to come from finite levels.

The K- and C-settings are connected by the base change functors

(2.4) M ss,b
C

// SmC

M ss
K

//

OO

SmK ,

OO

where the right vertical arrow is the base change (−)⊗̂KC and the left arrow
assigns to a K-model U semi-stable over OL, L a finite extension of K, the
disjoint union of semi-stable models U ⊗̂OL,α OC over C-points α : L → C.

2.2.2. Semistable reduction. We say that an admissible formal OL-scheme X
is algebraizable if it is isomorphic to the p-adic completion of an admissible
OL-scheme X . The well-known algebraization theorem of Elkik [14] yields the
following theorem.

Theorem 2.5 ([39, Th. 3.1.3]). Any affine η-smooth admissible formal OL-

scheme X is algebraizable. Moreover, we can find an affine η-smooth admis-

sible OL-scheme X such that X ≃ X̂.

We quote two results of Temkin which generalize results of Hartl [22, Th. 1.4]
(which works for complete discretely-valued fields) and Faltings [17, III.2] (see
[39, Th. 2.5.2] for an algebraic analog and [4] for a refined algebraic analog).
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Theorem 2.6 ([39, Th. 3.3.1]). Let X be an η-smooth admissible formal

scheme over OL. Then there exists a finite field extension E/L and an η-étale
covering X ′ → X ⊗OL

OE such that X ′ is semi-stable over OE .

Corollary 2.7 ([39, Cor. 3.3.2]). Let X be a smooth qcqs rigid space over L.
There exists a finite extension E/L and an étale covering X ′ → X ⊗L E such

that X ′ is affinoid and has a semi-stable affine formal model.

Proof. Take an admissible formal model X of X (such a model exists by a
theorem of Raynaud [5, Th. 4.1]). Take E/L and X ′ → X ⊗OL

OE as in
Theorem 2.6. We can refine X ′ to make it affine. Then its generic fiber X ′

E

is affinoid and has X ′ for a semi-stable model. �

2.2.3. An equivalence of topoi. Let M be any category from Section 2.2 and
let Fη be the forgetful functor X 7→ Xη. The main result of this section is
the following.

Proposition 2.8. If M is the category MK or M ss
K , then (M , Fη) is a base

for SmK,ét. If M is MC , M ss,b
C , or M ss

C , then (M , Fη) is a base for SmC,ét.

Proof. Consider first the K-setting. We need to show that MK satisfies con-
dition (⋆) from Section 2.1. For that, assume that X is a rigid analytic va-
riety over K and take a finite family9 of K-models Uα together with maps
fα : X → Uα,K . We need to find an étale covering π : X ′ → X and a K-model
X ′ of X ′ such that every map fαπ extends to a map X ′ → Uα.

Replacing X by an affinoid admissible covering, we may assume that X is a
disjoint union of affinoids. By a theorem of Raynaud [5, Th. 4.1], we can find a
K-model of X . By [6, Lem. 5.6], this model can be modified by an admissible
blow-up to a K-model X of X such that there exists a dotted arrow that
makes the following diagram commute:

X

��

X
∏

α
fα

��

?
_oo❴ ❴ ❴ ❴ ❴ ❴

∏
α Uα

∏
α Uα,K .?

_oo❴ ❴ ❴

This is the model we wanted.
Now, to show that (M ss

K , Fη) is a base, it suffices, by Remark 2.3, to show
that (M ss

K , ι), for the natural functor ι : M ss
K →֒ MK , is a base of MK . Since

ι is fully faithful, by Remark 2.1, it suffices to check that, for every K-model
U ∈ MK , there exists a map of K-models U ′ → U such that U ′

K → UK is
étale and U ′ is semi-stable. But this follows from Theorem 2.6.

For the C-setting the argument is analogous in the case of MC and M ss
C .

For M ss,b
C , since M ss,b

C →֒ M ss
C is fully faithful, by Remark 2.1, it suffices

to check that, for every C-model U ∈ M ss
C , there exists a map of C-models

U ′ → U such that U ′
C → UC is étale and U ′ is basic semi-stable. But this

can be achieved by taking for U ′ a log-blow-up of U (see [35, Lem. 1.11]). �

9By Remark 2.1, we may assume that this family consists of one element.
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We call the topology induced by Fη on the categories M the η-étale topol-
ogy. The functors in (2.4) are continuous for the respective étale topologies.
By Section 2.1 and Proposition 2.8, Fη identifies étale sheaves on SmK , resp.
SmC , with η-étale sheaves on MK , M ss

K , resp. MC , M ss,b
C , M ss

C . We obtain
the étale localization functors

Psh(M ?
K) → Sh(SmK,ét), Psh(M ?

C) → Sh(SmC,ét),

which assign to any presheaf F on models the corresponding étale sheaf F∼

viewed as an étale sheaf on varieties.

Remark 2.9. For any presheaf on MK or MC , its η-étale sheafification is the
same as the η-étale sheafification of its restriction to resp. M ss

K or M ss,b
C , M ss

C .

Remark 2.10. In this paper we will use over and over again the following
procedure to define an étale sheaf F on, say, SmK .

(1) (Local definition). We define a functorial F (Y ), Y ∈ M ss
K .

(2) (Globalization). We sheafify the so defined presheaf in η-étale topology.
This yields an étale sheaf F on SmK (this notation is slightly abusive
but hopefully will not cause problems in understanding).

(3) (Local-global compatibility). We will often need to know that we have
η-étale descent, i.e., that, for Y ∈ M ss

K , the natural map F (Y ) →
RΓét(YK ,F ) is a quasi-isomorphism.

2.3. Categories of weak formal models. In this section, we will show that
the étale site of smooth dagger varieties10 over K, resp. over C, admits a base
built from semi-stable weak formal schemes over finite extensions of OK , resp.
over OC .

2.3.1. Models. Let L = K,C. A weak formal OL-scheme X is admissible if it
is flat and of finite type over OL. For an admissible weak formal OL-scheme X ,
we denote by XL (or Xη) its dagger generic fiber. We say that a morphism
f : Y → X between admissible weak formal OL-schemes is η-étale if its generic
fiber fL (or fη) is étale. Similarly, we define η-smooth morphisms.

Let Sm†
L be the category of smooth L-dagger varieties. We define the cat-

egories M †
L,M

†,ss,b
C , and M †,ss

L , formed by weak formal models, basic semi-
stable, and semi-stable weak formal models,11 respectively, of such varieties
in a similar way as in the rigid analytic case above. If we equip the weak

formal schemes in M †,ss
L with the log-structure associated to the special fiber

over the ring over which they split, every map in these categories is a map

of log-schemes. The functors M †,ss
L → M †

L, M †,ss,b
C → M †,ss

C are fully faith-
ful embeddings. The K- and C-settings are connected by the base change
functors.

10For basics on dagger (or overconvergent) varieties, we refer the reader to [20].
11Semistable weak formal schemes are defined by the same formulas as semi-stable formal

schemes with the ring of convergent power series OL{X1, . . . ,Xl} replaced by the ring of
overconvergent power series OL[X1, . . . ,Xl]

†.
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2.3.2. Semistable reduction. We say that an admissible weak formal OL-scheme
X is algebraizable if it is isomorphic to the weak completion of an admissible
Spec(OL)-scheme X . The algebraization theorem, Theorem 2.5, combined
with the fact that, up to an isomorphism, there is a unique dagger structure
on every rigid analytic affinoid [18, Cor. 7.5.10], yields the following corollary.

Corollary 2.11. Any affine η-smooth admissible weak formal OL-scheme X
is algebraizable. Moreover, we can find an affine η-smooth admissible OL-

scheme X such that X ≃ X†.

This corollary allows us to prove the following.

Corollary 2.12. (1) Let X be an η-smooth admissible weak formal

scheme over OL. Then there exists a finite field extension E/L and

an η-étale covering X ′ → X ⊗OL
OE such that X ′ is semi-stable

over OE .

(2) Let X a smooth qcqs dagger space over L. Then there exists a finite

extension E/L and an étale covering X ′ → X ⊗L E such that X ′ is a

dagger affinoid and has a semi-stable affine weak formal model.

Proof. For (1), having Corollary 2.11, Temkin’s proof of Theorem 2.6 goes
through. For (2), we modify the proof of Corollary 2.7 using the algebraization
result from Theorem 2.5. �

2.3.3. An equivalence of topoi. Let M † be any category from Section 2.3.1 and
let Fη be the forgetful functor X 7→ XL. The main result of this section is
the following.

Proposition 2.13. If M † is the category M †
K or M †,ss

K , then (M †, F ) is a

base for Sm†
K,ét. If M † is M †

C , M †,ss,b
C , or M †,ss

C , then (M †, Fη) is a base for

Sm†
C,ét.

Proof. Consider first the K-setting. Recall the following dagger version of
Raynaud’s theory of formal models of rigid analytic varieties:

Theorem 2.14 ([27]). There is an equivalence of categories between

(1) the category of quasi-paracompact admissible weak formal schemes over

OK localized by the class of weak formal blow-ups,

(2) the category of quasi-separated quasi-paracompact K-dagger spaces.

It is now easy to see that the proof of Proposition 2.8 goes through in our
case with Raynaud’s theory replaced by this dagger analog.

For the C-setting the argument is analogous to the one used in the proof of
Proposition 2.8. �

We call the topology induced by Fη on the categories M † the η-étale topol-
ogy. The base-change functors are continuous for the respective étale topolo-

gies. By Section 2.3 and Proposition 2.13, Fη identifies étale sheaves on Sm†
K ,
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resp. Sm†
C , with η-étale sheaves on M †

K , M †,ss
K , resp. M †

C , M †,ss,b
C , M †,ss

C .
We obtain the étale localization functors

Psh(M ?
K) → Sh(Sm†

K,ét), Psh(M ?
C) → Sh(Sm†

C,ét),

which assign to any presheaf F on weak formal models the corresponding
étale sheaf F∼ viewed as an étale sheaf on dagger varieties. Moreover, for any

presheaf on M †
K or M †

C , its η-étale sheafification is the same as the η-étale

sheafification of its restriction to resp. M †,ss
K , M †,ss,b

C , or M †,ss
C .

3. Pro-étale cohomology of dagger varieties

Let the base field L be K or C. Fix a pseudo-uniformizer ̟ ∈ L, i.e.,
an invertible, topologically nilpotent element. All the rigid analytic varieties
considered are over L; we assume that they are separated and taut.12

The purpose of this section is to define the pro-étale cohomology of dagger
varieties. We will do it in the most naive way: for a dagger affinoid, we will
use its presentation of the dagger structure to define the pro-étale cohomology
of the dagger affinoid as the homotopy colimit of pro-étale cohomologies of
the (rigid) affinoids in the presentation; for a general dagger variety, we will
globalize the construction for dagger affinoids via Čech coverings.

3.1. Topology. Our cohomology groups will be equipped with a canonical
topology. To talk about it in a systematic way, we will work rationally in the
category of locally convex K-vector spaces and integrally in the category of
pro-discrete OK-modules. We review here briefly the relevant basic definitions
and facts. For details and further reading and references, the reader may
consult [9, Section 2.1, 2.3].

3.1.1. Derived category of locally convex K-vector spaces. A topological K-
vector space13 is called locally convex (convex for short) if there exists a neigh-
borhood basis of the origin consisting of OK-modules. We denote by CK the
category of convex K-vector spaces. It is a quasi-abelian category. Kernels,
cokernels, images, and coimages are taken in the category of vector spaces and
equipped with the induced topology. A morphism f : E → F is strict if and
only if it is relatively open, i.e., for any neighborhood V of 0 in E, there is a
neighborhood V ′ of 0 in F such that f(V ) ⊃ V ′ ∩ f(E).

The category CK has a natural exact category structure: the admissible
monomorphisms are embeddings, the admissible epimorphisms are open sur-
jections. A complex E ∈ C(CK) is called strict if its differentials are strict.
There are truncation functors on C(CK)

τ≤nE := · · · → En−2 → En−1 → ker(dn) → 0 → · · · ,

τ≥nE := · · · → 0 · · · → coim(dn−1) → En → En+1 → · · · ,

12See [23, Def. 5.6.6] for the definition of “taut”.
13For us, a K-topological vector space is a K-vector space with a linear topology.
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with cohomology objects

H̃n(E) := τ≤nτ≥n(E) = (coim(dn−1) → ker(dn)).

We note that here coim(dn−1) and ker(dn) are equipped naturally with the
quotient and subspace topology, respectively. The cohomology H∗(E) taken
in the category of K-vector spaces we will call algebraic and, if necessary, we
will always equip it with the sub-quotient topology.

We will denote the left-bounded derived ∞-category of CK by D(CK).
A morphism of complexes that is a quasi-isomorphism in D(CK), i.e., its cone
is strictly exact, will be called a strict quasi-isomorphism. We will denote by
D(CK) the homotopy category of D(CK).

For n ∈ Z, let D≤n(CK) (resp. D≥n(CK)) denote the full subcategory of
D(CK) of complexes that are strictly exact in degrees k > n (resp. k < n).
The above truncation functors extend to the truncation functors

τ≤n : D(CK) → D≤n(CK) and τ≥n : D(CK) → D≥n(CK).

The pair (D≤n(CK), D≥n(CK)) defines a t-structure on D(CK). The (left)
heart LH(CK) is an abelian category: every object of LH(CK) is represented
(up to equivalence) by a monomorphism f :E → F , where F is in degree 0,
i.e., it is isomorphic to a complex 0 → E

f
−→ F → 0; if f is strict, this object

is also represented by the cokernel of f (the whole point of this construction is
to keep track of the two possibly different topologies on E: the given one and
the one inherited by the inclusion into F ).

We have an embedding I : CK →֒ LH(CK), E 7→ (0 → E), that induces

an equivalence D(CK)
∼
−→ D(LH(CK)) that is compatible with t-structures.

These t-structures pull back to t-structures on the derived dg categoriesD(CK),
D(LH(CK)) and so does the above equivalence. There is a functor (the clas-

sical part) C : LH(CK) → CK that sends the monomorphism f : E → F to
coker f . We have CI ≃ IdCK

and a natural epimorphism e : IdLH(CK) → IC.
We will denote by H̃n : D(CK) → D(LH(CK)) the associated cohomological

functors. Note that CH̃n = Hn and we have a natural epimorphism H̃n →
IHn. If, evaluated on E, this epimorphism is an isomorphism, we will say that
the cohomology H̃n(E) is classical (in most cases this is equivalent to Hn(E)
being separated).

3.1.2. The category of pro-discrete OK -modules. Objects in the category PDK

of pro-discrete OK-modules are topological OK-modules that are countable in-
verse limits, as topological OK-modules, of discrete OK-modules M i, i ∈ N. It
is a quasi-abelian category. It has countable filtered projective limits. Count-
able products are exact functors.

Inside the category PDK , we distinguish the category PCK of pseudocom-
pact OK-modules, i.e., pro-discrete modules M ≃ lim

←−i
Mi such that each Mi

is of finite length (we note that if K is a finite extension of Qp, this is equiv-
alent to M being profinite). It is an abelian category. It has countable exact
products as well as exact countable filtered projective limits.
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There is a functor from the category of pro-discrete OK -modules to convex

K-vector spaces. Since K ≃ lim
−→

(OK
̟
→ OK

̟
→ OK

̟
→ · · · ), the algebraic

tensor product M ⊗OK
K is an inductive limit:

M ⊗OK
K ≃ lim

−→
(M

̟
→ M

̟
→ M

̟
→ · · · ).

We equip it with the induced inductive limit topology. This defines a tensor
product functor

(−)⊗K : PDK → CK , M 7→ M ⊗OK
K.

Since CK admits filtered inductive limits, the functor (−) ⊗ K extends to a
functor (−)⊗K : Ind(PDK) → CK .

The functor (−) ⊗ K is right exact but not, in general, left exact.14 For
example, after tensoring with Qp, the short strict exact sequence

0 →
∏

i≥0

piZp
can
−−→

∏

i≥0

Zp →
∏

i≥0

Zp/p
i → 0

is not costrict exact on the left (note that (
∏

i≥0 Zp/p
i)⊗Qp is not Hausdorff).

We will consider its (compatible) left derived functors

(−)⊗L K : D−(PDK) → Pro(D−(CK)),

(−)⊗L K : D−(Ind(PDK)) → Pro(D−(CK)).

The following fact will greatly simplify our computations.

Proposition 3.1 ([9, Prop. 2.6]). If E is a complex of torsion-free and p-
adically complete (i.e., E ≃ lim

←−n
E/pn) modules from PDK, then the natural

map

E ⊗L K → E ⊗K

is a strict quasi-isomorphism.

3.2. Pro-étale cohomology of dagger varieties. In this section we will de-
fine the pro-étale cohomology of dagger varieties and study its basic properties.

3.2.1. Dagger varieties and pro-systems of rigid analytic varieties. We will
briefly review here the content of [42, Appendix]. Recall the following definition
[42, Def. A.19]:

Definition 3.2. Let X be a rigid analytic affinoid. A presentation of a dagger

structure on X is a pro-affinoid rigid variety {Xh}, h ∈ N, where X and all Xh

are rational subvarieties of X1 such that X ⋐ Xh+1 ⋐ Xh and the pro-system
is coinitial among rational subvarieties of X1 containing X in their interiors.15

A morphism of presentations between {Xh} and {Yk} is a morphism of pro-
objects, i.e., an element of lim

←−k
lim
−→h

Hom(Xh, Yk).

14We will call a functor F right exact if it transfers strict exact sequences 0 → A → B →
C → 0 to costrict exact sequences F (A) → F (B) → F (C) → 0.

15Recall that, for an open immersion X ⊂ Y of adic spaces over L, we write X ⋐ Y if
the inclusion factors over the adic compactification of X over L (see [23, Th. 5.1.5]).
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Example 3.3. Consider a rational inclusion X = X1(f1/g, . . . , fm/g) ⋐ X1

of affinoid rigid varieties. We can write (see [42, Ex. A18])

O(X1) = L{̟τ1, . . . , ̟τn}/I,

O(X) = L{τ1, . . . , τn, v1, . . . , vm}/(I, (vig − fi)1≤i≤m).

Let Xh be the rational subvariety of X1 with

O(Xh) = L{̟1/hτ1, . . . , ̟
1/hτn, ̟

1/hv1, . . . , ̟
1/hvm}/(I, (vig − fi)1≤i≤m).

The pro-system {Xh} of rational subvarieties ofX1 is a presentation of a dagger
structure on X . We have

lim
−→

O(Xh) ≃ L[τ1, . . . , τn, v1, . . . , vm]†/(I, (vig − fi)1≤i≤m),

which is a dagger algebra.

The following proposition clarifies the relationship between presentations of
dagger structures and dagger algebras.

Proposition 3.4 ([42, Prop. A.22]). Let X̂ = Sp R̂ be a rigid affinoid and let

{Xh} be a presentation of a dagger structure on X̂. We have

(1) R = lim
−→

O(Xh) is a dagger algebra dense in R̂,

(2) the functor {Xh} 7→ Sp†R induces an equivalence of categories between

dagger affinoid varieties and their presentations.

In fact, it is not hard to see that we have a functor pres: X 7→ {Xh}
from dagger algebras to presentations of dagger structures (up to a unique
isomorphism) that is the right inverse (on the nose) of the functor in the above
proposition.

3.2.2. Étale topology of dagger varieties. For basic properties of dagger alge-
bras and varieties and morphisms between them, see [20]. For basic properties
of étale and smooth morphisms of dagger varieties, see [16]. We quote the
following result.

Proposition 3.5 ([16, Th. 2.3]). Let X be a dagger affinoid with comple-

tion X̂. We have a natural equivalence of étale topoi

Sh(X̂ét)
∼
−→ Sh(Xét).

One can promote the equivalence of categories between dagger spaces and
their presentations in Proposition 3.4 to an equivalence of topoi.

Definition 3.6 ([42, Def. A.24]). (i) Let P be a property of morphisms
of rigid analytic varieties. We say that a morphisms of pro-rigid va-
rieties ϕ : X → Y has the property P if X ≃ {Xh}, Y ≃ {Yk} and
ϕ = {ϕh}, with ϕh : Xh → Yh having property P .

(ii) We say that a collection {ϕi : {Uih} → {Xh}}i∈I of morphisms of pro-
rigid spaces is a cover if X ⋐

⋃
i im(Uih) for all h.
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In particular, one can define open immersions, smooth, and étale morphisms
of presentations of dagger affinoids which agree with the corresponding notions

for dagger affinoids. Since the morphisms X̂ ⊂ Xh are open immersions (hence
étale), we deduce that if a morphism X → Y is an open immersion (resp.

smooth, resp. étale), then so is the associated morphism X̂ → Ŷ .

• From now on we will use the following convention: if X is a smooth
dagger affinoid, the presentation X ≃ {Xh} will be assumed to have
all Xh smooth as well.

Corollary 3.7 ([42, Cor. A.28]). Let X be a dagger affinoid with a presenta-

tion {Xh}. We have a natural equivalence of étale topoi

Sh(Xét)
∼
−→ Sh({Xh}ét).

3.2.3. Definition of pro-étale cohomology. Let r ∈ Z.
(i) Local definition. If {Xh} is a pro-rigid analytic variety, we set

RΓproét({Xh},Z/p
n(r)) := hocolimh RΓproét(Xh,Z/p

n(r))

hocolimh RΓét(Xh,Z/p
n(r))

≀
OO

Let X be a dagger affinoid. We define its pro-étale cohomology as

(3.8) RΓproét(X,Z/pn(r)) := RΓproét(pres(X),Z/pn(r)).

If the dagger affinoid X has a dagger presentation {Xh}, then

RΓét(X,Z/pn(r))
∼
←− hocolimh RΓét(Xh,Z/p

n(r))

and we have a natural quasi-isomorphism

(3.9) RΓét(X,Z/pn(r))
∼
−→ RΓproét(X,Z/pn(r)).

We make similar definitions for Zp and Qp coefficients. We have the natural
maps (note the direction of the second map)

RΓproét(X,Zp(r)) → RΓproét(X,Qp(r)),

RΓproét(X,Zp(r)) → RΓét(X,Zp(r)).

The first map is a rational quasi-isomorphism. If the dagger affinoid X has
dagger presentation {Xh}, then we define the second map in the following way:

(3.10) RΓproét(X,Zp(r)) = hocolimh RΓproét(Xh,Zp(r))

hocolimh RΓét(Xh,Zp(r))

≀
OO

hocolimh holimn RΓét(Xh,Z/p
n(r))

��

holimn hocolimh RΓét(Xh,Z/p
n(r))

holimn RΓét(X,Z/pn(r))
∼
←− RΓét(X,Zp(r)).
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Here the second quasi-isomorphism holds because Xh is quasi-compact (cover
Xh with a finite number of affinoids and use the quasi-isomorphism (3.9)).

(ii) Topological issues. We need to discuss topology. Let, for a moment,
X be a rigid analytic variety over L. We equip the pro-étale and étale co-
homologies RΓproét(X,Qp(r)) and RΓét(X,Qp(r)) with a natural topology by
proceeding as in [9, Section 3.3.2] by using as local data compatible Z/pn-free
complexes.16 If X is quasi-compact, we obtain in this way complexes of Banach
spaces over Qp. In that case the natural continuous map RΓét(X,Qp(r)) →
RΓproét(X,Qp(r)) is a strict quasi-isomorphism.

More precisely, we have

RΓproét(X,Qp(r)) := hocolimRΓét(U•,Qp(r)),

where the homotopy colimit is over étale quasi-compact hypercoverings17 of X .
Since all the complexes RΓét(U•,Qp(r)) are complexes of Fréchet spaces, all
the arrows in the colimit are strict quasi-isomorphisms. Hence we can compute
with any particular hypercovering.

Remark 3.11. We will often use the following simple observation. If X is
a smooth rigid analytic variety, then we can find an increasing quasi-compact
admissible covering {Un}n∈N ofX such that Ui is contained in the relative inte-
rior of Ui+1. If X is moreover partially proper, we can assume that Ui ⋐ Ui+1.
We have analogous statements for dagger varieties.

It follows that, for a general smooth rigid analytic variety X , we have an
increasing quasi-compact admissible covering {Un}n∈N ofX , such that we have
(in D(CQp

))

RΓproét(X,Qp(r)) ≃ holimn RΓét(Un,Qp(r)).

Hence we have the short exact sequence

0 → H1 holimn H̃
i−1
ét (Un,Qp(r)) → H̃iRΓproét(X,Qp(r))

→ H0 holimn H̃
i
ét(Un,Qp(r)) → 0.

If X is a dagger affinoid, its pro-étale cohomology acquires now natural
topology by taking the homotopy colimit in (3.8) in D(CQp

).

(iii) Globalization. For a general smooth dagger variety X , we have the
natural equivalence of analytic topoi

Sh((SmAff†
L/XL)ét)

∼
−→ Sh((Sm†

L/XL)ét),

where Sm†
L/XL is the category of smooth morphisms of dagger varieties to

XL and SmAff†
L/XL is its full subcategory of affinoid objects. Using this

equivalence, we define the sheaf Aproét(r), r ∈ Z, on Xét as the sheaf associated

16Such complexes can be found, for example, by taking the system of étale hypercovers.
17Here and below, we use “colimit over hypercoverings” as a shorthand for “colimit over

the filtered category of hypercoverings up to simplicial homotopy”.
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to the presheaf defined by U 7→ RΓproét(U,Qp(r)), U ∈ SmAff†
L, U → X an

étale map. We define the pro-étale cohomology of X as

RΓproét(X,Qp(r)) := RΓét(X,Aproét(r)), r ∈ Z.

We equip it with topology by proceeding as in the case of pro-étale cohomology
of rigid analytic varieties starting with the case of dagger affinoids that was
described above.

(iv) Local-global compatibility. This definition is consistent with the previous
definition:

Lemma 3.12. Let X be a dagger affinoid with the presentation {Xh}. Then

the natural map

RΓproét({Xh},Qp(r)) → RΓét(X,Aproét(r)), r ∈ Z,

is a strict quasi-isomorphism.

Proof. Set RΓ♯
proét(X,Qp(r)) := RΓproét({Xh},Qp(r)). It suffices to show that,

for any étale affinoid hypercovering U• of X , the natural map

RΓ♯
proét(X,Qp(r)) → RΓ♯

proét(U•,Qp(r))

is a strict quasi-isomorphism (modulo taking a refinement of U•). For that, it
suffices to show that, for any k ∈ N, the map

(3.13) τ≤kRΓ
♯
proét(X,Qp(r)) → τ≤kRΓ

♯
proét(T,Qp(r)),

where T = U•, is a strict quasi-isomorphism. Since, for that, it is enough to
work with the truncation τ≤k+1T , we will assume that T is a finite hypercov-
ering and has a finite number of affinoids in every degree.

Take the dagger presentation X ≃ {Xh}, h ∈ N. We can represent T by a
pro-system of hypercoverings {Th → Vh}, Vh ⊂ Xh, h ∈ N, forming a dagger
presentation of T degree-wise.18 We note that then Vh+1 ⋐ Vh. From the
universal property of {Xh} and the quasi-compactness of Vh, we get that the
two pro-rigid varieties {Xh} and {Vh} are equivalent. It follows that we have
a natural strict quasi-isomorphism

hocolimh RΓét(Xh,Qp(r))
∼
−→ hocolimh RΓét(Vh,Qp(r)).

Hence the map (3.13) is represented by a composition

τ≤kRΓ
♯
proét(X,Qp(r))

∼
←− τ≤k(hocolimh RΓét(Vh,Qp(r)))

≀��

τ≤k(hocolimh RΓét(Th,Qp(r))) ≃ τ≤kRΓ
♯
proét(T,Qp(r)),

18This uses the simple observation that if a collection of morphisms of pro-rigid spaces
{ϕi : {Vih} → {Xh}}i∈I is an étale cover, then we can choose a subsequence {Xkh

} of
{Xh} such that the pro-rigid spaces {Vi,kh

:= Vih ×Xh
Xkh

} form an étale cover of {Xh}
and, moreover, all the maps {ϕi : {Vi,kh

} → {Xkh
}}i∈I are étale covers (to see this use the

“initial” part of the definition of presentations).
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where the middle strict quasi-isomorphism follows from étale descent for rigid
analytic varieties. This finishes our proof of the lemma. �

Remark 3.14. For a smooth dagger variety X , we can define similarly the
integral pro-étale cohomology RΓproét(X,Zp(r)), r ∈ Z. We have the natural
maps

RΓproét(X,Zp(r)) → RΓproét(X,Qp(r)),

RΓproét(X,Zp(r)) → RΓét(X,Zp(r))
∼
−→ RΓét(X̂,Zp(r))

∼
−→ RΓproét(X̂,Zp(r)).

For X quasi-compact, the first map becomes a strict quasi-isomorphism after
tensoring with Qp; this is not the case for general X . The second map is a
globalization of maps for dagger affinoids defined in (3.10).

3.2.4. Comparison isomorphisms. Let L = K,C. For X ∈ Sm†
L, we have a

natural map

(3.15) ιproét : RΓproét(X,Qp(r)) → RΓproét(X̂,Qp(r)).

It is obtained by globalization of such maps for dagger affinoids: if the dagger
affinoid X has a dagger presentation {Xh}, then

RΓproét(X,Qp(r)) = hocolimh RΓproét(Xh,Qp(r))

and ιproét is the canonical map

hocolimh RΓproét(Xh,Qp(r))
can
−−→ RΓproét(X̂,Qp(r)).

Proposition 3.16. Let X be partially proper. Then the map (3.15) is a strict

quasi-isomorphism.

Proof. Since a partially proper smooth dagger variety is locally Stein, we can
assume X to be Stein. Choose an admissible covering of X by an increasing
sequence of dagger affinoids {Un}, n ∈ N, strictly contained in each other.
Then the map ιproét from (3.15) can be written as the composition

RΓproét(X,Qp(r))
∼ // holimn RΓproét(Un,Qp(r))

��

holimn RΓproét(Ûn,Qp(r)) RΓproét(X̂,Qp(r))
∼oo

and we need to show that the middle map is a strict quasi-isomorphism. But,

for every n > 1, the map Ûn → Ûn−1 factorizes as Ûn → pres(Un) → Ûn−1,
yielding the factorization

RΓproét(Ûn−1,Qp(r)) → RΓproét(pres(Un),Qp(r)) → RΓproét(Ûn,Qp(r)).

It follows that the prosystems

{RΓproét(Un,Qp(r))}, {RΓproét(pres(Un),Qp(r))}

are equivalent. Since RΓproét(Un,Qp(r))
∼
←− RΓproét(pres(Un),Qp(r)), we are

done. �
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4. Rigid analytic syntomic cohomology

In this section we define syntomic cohomology for smooth rigid analytic vari-
eties over K or C by η-étale descent of the classical definition due to Fontaine–
Messing. We show that the computations of syntomic cohomology from [10]
done for rigid analytic varieties with semi-stable reduction generalize to all
smooth rigid varieties. We also introduce the Hyodo–Kato cohomology for
such varieties, prove that it satisfies Galois descent, and define the Hyodo–
Kato morphism (that is a quasi-isomorphism over C). Finally, over K, we
define the Bloch–Kato rigid analytic syntomic cohomology (built from Hyodo–
Kato and de Rham cohomologies) and show that it is quasi-isomorphic to the
rigid analytic syntomic cohomology.

4.1. Definition of rigid analytic syntomic cohomology. We define the
syntomic cohomology of smooth rigid analytic varieties by étale descent of
crystalline syntomic cohomology of semi-stable models.

Let U ∈ M ss
K . We consider it as a log-formal scheme with the log-structure

associated to the special fiber. For r ≥ 0, we have the mod pn, completed, and
rational absolute (i.e., over Zp) filtered crystalline cohomology

RΓcr(Un,J
[r]), RΓcr(U ,J [r]) := holimn RΓcr(Un,J

[r]),

RΓcr(U ,J [r])Qp
:= RΓcr(U ,J [r])⊗L

Zp
Qp.

Here J [r] denotes the r-th Hodge filtration sheaf. The corresponding η-étale
sheafifications on M ss

K we will denote by F rAcr,n, F
rAcr, and F rAcr,Qp

. We
make analogous definitions for crystalline cohomology of basic semi-stable mod-
els over OC (see [2] for details).

For r ≥ 0, define the mod pn, completed, and rational crystalline syntomic
cohomology

RΓsyn(U ,Z/pn(r)) :=
[
RΓcr(Un,J

[r])
pr−ϕ
−−−→ RΓcr(Un)

]

≃
[
[RΓcr(Un)]

ϕ=pr can
−−→ RΓcr(Un)/RΓcr(Un,J

[r])
]
,

RΓsyn(U ,Zp(r)) := holimn RΓsyn(U ,Z/pn(r)),

RΓsyn(U ,Zp(r))Qp
:= RΓsyn(U ,Zp(r)) ⊗

L
Zp

Qp

≃
[
RΓcr(U ,J [r])Qp

pr−ϕ
−−−→ RΓcr(U )Qp

]
.

The corresponding η-étale sheafifications on M ss
K we will denote by Asyn,n(r),

Asyn(r), and Asyn(r)Qp
. We make analogous definitions for crystalline syn-

tomic cohomology of basic semi-stable models over OC . We have the distin-
guished triangles

Asyn,n(r) → F rAcr,n
pr−ϕ
−−−→ Acr,n,

Asyn,n(r) → A ϕ=pr

cr,n → Acr,n/F
r,

where we set A ϕ=pr

cr,n := [Acr,n
pr−ϕ
−−−→ Acr,n]. Similarly for the completed and

rational cohomology.
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For X ∈ SmL, L = K,C, we define two rational (rigid analytic) syntomic
cohomologies:

RΓsyn(X,Zp(r))Qp
:= RΓét(X,Asyn(r)) ⊗

L
Zp

Qp,

RΓsyn(X,Qp(r)) := RΓét(X,Asyn(r)Qp
).

From now on, to simplify the notation, we will write (−)Qp
for (−) ⊗L

Zp
Qp;

similarly for coefficients other than Qp. There is a canonical map

(4.1) RΓsyn(X,Zp(r))Qp
→ RΓsyn(X,Qp(r)).

It follows immediately from the definitions that, for X quasi-compact, this
is a quasi-isomorphism (but it is not so in general). By proceeding just as
in [9, Section 3.3.1] (using crystalline embedding systems), we can equip both
complexes in (4.1) with a natural topology for which they become complexes of
Banach spaces over Qp in the case X is quasi-compact19 (and in that case the
quasi-isomorphism (4.1) is strict). We do the same for the crystalline complexes
involved in the definition of syntomic cohomology. We have distinguished
triangles in D(CQp

):

RΓsyn(X,Zp(r))Qp
→ RΓét(X,A ϕ=pr

cr )Qp
→ RΓét(X,Acr/F

r)Qp
,(4.2)

RΓsyn(X,Qp(r)) → RΓét(X,A ϕ=pr

cr,Qp
) → RΓét(X,Acr,Qp

/F r).

We will show later (see Corollary 4.32) that if X = XK , for an admissible
semi-stable formal scheme X over OK , then the canonical map

RΓsyn(X ,Qp(r)) → RΓsyn(X,Qp(r))

is a strict quasi-isomorphism.

4.1.1. Rigid analytic de Rham cohomology. Let L = K,C. Consider the pre-
sheaf X 7→ RΓdR(X) of filtered dg L-algebras on SmL. Let AdR be its étale
sheafification on SmL. It is a sheaf of filtered L-algebras on SmL,ét. For
X ∈ SmL, we have the natural filtered quasi-isomorphism

RΓdR(X)
∼
−→ RΓét(X,AdR).

We equip RΓdR(X) with the topology induced by the canonical topology on
affinoid algebras; we equip RΓét(X,AdR) with topology using étale descent
as we did before. Then the above quasi-isomorphism is strict: sheaves of
differential forms satisfy étale descent in the strict sense.

LetX ∈ SmL. We will need to understand the cohomology groups in degrees
r − 1 and r of

RΓdR(X)/F r ≃ RΓ(X,OX → Ω1
X → · · · → Ωr−1

X ).

To do that consider the distinguished triangle (in D(CL))

(4.3) 0 → ker dr[−r] → τ≤rΩ
•

X → Ω≤r−1
X → 0,

19We note that OK being syntomic over OF , all the integral complexes in sight are in
fact p-torsion-free.
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where dr : Ω
r
X → Ωr+1

X is the de Rham differential. It yields the long exact
sequence

0 → H̃r−1
dR (X) → H̃r−1(RΓdR(X)/F r) → H̃r(X, kerdr[−r]) → H̃r

dR(X).

Or, since H̃r(X, ker dr[−r]) = Ωr(X)d=0, the short exact sequence

0 → H̃r−1
dR (X) → H̃r−1(RΓdR(X)/F r) → kerπ → 0,

where π is the natural map Ωr(X)d=0 → H̃r
dR(X). We have a monomorphism

im dr−1(X) →֒ kerπ.
The distinguished triangle (4.3) yields also the long exact sequence

0 → cokerπ → H̃r(RΓdR(X)/F r) → H̃1(X, ker dr) → H̃r+1(X, τ≤rΩ
•

X).

Remark 4.4. (a) If X is proper, all the Hodge and de Rham cohomology
groups are classical (finite-dimensional vector spaces over K), the Hodge-de
Rham spectral sequence degenerates at E1 [37, Cor. 1.8], and we get the
isomorphisms

Hr−1
dR (X)

∼
−→ H̃r−1(RΓdR(X)/F r), Hr

dR(X)/Ωr(X)
∼
−→ H̃r(RΓdR(X)/F r).

(b) If X is Stein, we have Hi(X,Ωj
X) = 0, i 6= 0, and all the de Rham

cohomology groups are classical (Fréchet spaces). We have

RΓdR(X)/F r ≃ (O(X) → Ω(X) → · · · → Ωr−1(X))

with strict differentials. Hence we get the isomorphisms

H̃r−1(RΓdR(X)/F r) ≃ Ωr−1(X)/ imdr−1, H̃i(RΓdR(X)/F r) ≃ 0, i ≥ r.

Hence the cohomology H̃r−1(RΓdR(X)/F r) is classical.

Proposition 4.5. Let X ∈ SmK . Let r ≥ 0. We have a canonical strict

quasi-isomorphism

γr : RΓdR(X)/F r ∼
−→ RΓét(X,Acr,Qp

/F r).

Proof. Let X be a quasi-compact semi-stable formal scheme over OE , with
[E : K] < ∞. Recall that [31, Cor. 2.4] there exists a functorial and compatible
with base-change quasi-isomorphism

γr : RΓdR(XK)/F r ∼
−→ RΓcr(X ,O/J [r])Qp

.

This quasi-isomorphism is in fact strict: this is not completely evident because
the integral version of the morphism is only a pN -quasi-isomorphism for some
constant N but can be seen by an argument identical to the one used at the
end of the proof of [9, Prop. 6.1]. By η-étale descent, we get the strict quasi-
isomorphism in the proposition. �
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4.1.2. Some computations. Recall that, in a stable range and up to some uni-
versal constants, crystalline syntomic cohomology has a simple relation to de
Rham cohomology. Let X be an affine semi-stable formal scheme over OK . Let
r ≥ 0. We note that τ≤r−1(RΓcr(X )/F r)

∼
−→ RΓcr(X )/F r and that the natu-

ral map τ≤r+1([RΓcr(X )]ϕ=pr

) → [RΓcr(X )]ϕ=pr

is a p2r-quasi-isomorphism
(since 1− psϕ, s ≥ 1, is invertible on differentials in degree r + s).

Proposition 4.6 ([10, Prop. 3.12]). (i) The natural map

τ≤r+1RΓsyn(X ,Zp(r)) → RΓsyn(X ,Zp(r))

is a p2r-quasi-isomorphism and

Hr+1RΓsyn(X ,Zp(r))
∼
−→ Hr+1([RΓcr(X )]ϕ=pr

).

(ii) The complex τ≤r−1([RΓcr(X )]ϕ=pr

) is pN -acyclic, for a constant N =
N(e, d, p, r), where e = [K : F ], d = dimX /OK . Hence the nat-

ural map RΓcr(X )/F r → τ≤r−1(RΓsyn(X ,Zp(r))[1]) is a pN -quasi-

isomorphism.

(iii) The above statements are valid also modulo pn. Moreover, étale locally

on Xn, H
r+1([RΓcr(Xn)]

ϕ=pr

) is pN -trivial, for a constant N = N(r).

Let X ∈ SmK , r ≥ 0. The distinguished triangle (4.2) and Lemma 4.5 yield
a natural map

∂r : (RΓdR(X)/F r)[−1] → RΓsyn(X,Qp(r)).

Corollary 4.7. (1) For i ≤ r − 1, the map

∂r : H̃
i−1
dR (X) → H̃i

syn(X,Qp(r))

is an isomorphism.

(2) We have the exact sequence

0 → H̃r−1(RΓdR(X)/F r)
∂r−→ H̃r

syn(X,Qp(r))

→ H̃r
ét(X,A ϕ=pr

cr,Qp
) → H̃r(RΓdR(X)/F r).

Proof. To prove the first claim, note that we have the long exact sequence

H̃i−1
ét (X,A ϕ=pr

cr,Qp
) → H̃i−1(RΓdR(X)/F r)

→ H̃iRΓsyn(X,Qp(r)) → H̃i
ét(X,A ϕ=pr

cr,Qp
).

If i ≤ r − 1, then H̃i−1RΓdR(X)
∼
−→ H̃i−1(RΓdR(X)/F r) and (1) follows from

Proposition 4.6 (which implies H̃i−1
ét (X,A ϕ=pr

cr,Qp
) = 0 and H̃i

ét(X,A ϕ=pr

cr,Qp
) = 0).

A similar argument shows that ∂r : H̃
r−1(RΓdR(X)/F r) → H̃r

syn(X,Qp(r))
is injective, which yields the second claim of the corollary. �

4.2. Arithmetic rigid analytic Hyodo–Kato cohomology. We define
here Hyodo–Kato cohomology of smooth rigid analytic varieties over K as well
as a Hyodo–Kato morphism. We do it by η-étale descent of crystalline Hyodo–
Kato cohomology and the Hyodo–Kato morphism for semi-stable models.
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4.2.1. Hyodo–Kato cohomology. Let AHK be the η-étale sheafification of the
presheaf X 7→ RΓHK(X0) := RΓcr(X0/O0

FL
)Qp

on M ss
K . Here X is a semi-

stable formal model over OL, [L : K] < ∞, L = KX , and FL is the maximal
absolutely unramified subfield of L. The sheaf AHK is a sheaf of dg F -algebras
on SmK,ét equipped with a ϕ-action and a derivation N such that Nϕ = pϕN .
For X ∈ SmK , set RΓHK(X) := RΓét(X,AHK). Equip it with a topology in
the usual way, via η-étale descent, from the natural topology on RΓHK(X0).

4.2.2. Convergent cohomology. Let Aconv be the η-étale sheafification of the
presheaf 20 X 7→ RΓconv(X1/O

×
L ), L = KX , on M ss

K,ét. For X ∈ SmK , we

set RΓconv(X) := RΓét(X,Aconv). It is a dg K-algebra. We equip it with the
topology induced by η-étale descent from the topology of the RΓconv(X1/O

×
L )’s.

We have natural (strict) quasi-isomorphisms,

Aconv ≃ AdR, RΓconv(X) ≃ RΓdR(X),

induced by the quasi-isomorphisms RΓconv(X1/O
×
L ) ≃ RΓdR(XL) that hold

because X is log-smooth over O×
L .

4.2.3. Hyodo–Kato morphism. To define the Hyodo–Kato quasi-isomorphism,
we will use the original Hyodo–Kato quasi-isomorphism defined for quasi-
compact formal schemes in [24] (see also [34]). We will describe it now in
some detail. Denote by r+F the algebra OF [[T ]] with the log-structure associ-

ated to T . Sending T to p induces a surjective morphism r+F → O×
F . We denote

by rPD
F the p-adic divided power envelope of r+F with respect to the kernel of

this morphism. Frobenius is defined by T 7→ T p, monodromy is a OF -linear
derivation given by T 7→ T . We will skip the subscript F if there is no danger
of confusion.

(i) Local definition. Assume that we have an admissible semi-stable formal
scheme X over OK . We will work in the classical derived category. Recall
that the Frobenius

rPD
n,ϕ ⊗L

rPD
n

RΓcr(X0/r
PD
n ) → RΓcr(X0/r

PD
n ),

OF,n,ϕ ⊗L
OF,n

RΓcr(X0/O
0
F,n) → RΓcr(X0/O

0
F,n),

has a pN -inverse, for N = N(d), d = dimX0. This is proved in [24, 2.24].
Recall also that the projection p0 : RΓcr(X0/r

PD
n ) → RΓcr(X0/O0

F,n), T 7→ 0,

has a functorial (for maps between formal schemes and a change of n) and
Frobenius-equivariant pNι-section, Nι = N(d),

ιn : RΓcr(X0/O
0
F,n) → RΓcr(X0/r

PD
n ),

20Here RΓconv(X1/O
×
L
) (and later RΓrig(X1/O

×
L
)) are defined following the construction

of Grosse–Klönne [21, 1.1–1.4] by taking rigid analytic tubes (resp. dagger tubes).
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i.e., p0ιn = pNι . This follows easily from the proof of [24, Prop. 4.13]; the
key point being that the Frobenius on RΓcr(X0/O0

F,n) is close to a quasi-
isomorphism and the Frobenius on the PD-ideal of rPD is close to zero. More-
over, the resulting map

(4.8) ιn : RΓcr(X0/O
0
F,n)⊗

L
OF,n

rPD
n → RΓcr(X0/r

PD
n )

is a pN -quasi-isomorphism, N = N(d) (see [24, Lem. 5.2]), and so is the
composite

ppιn : RΓcr(X0/O
0
F,n) → RΓcr(X0/O

×
F,n),

where the projection pp : RΓcr(X0/r
PD
n )→RΓcr(X0/O

×
F,n) is defined by T 7→ p.

Taking holimn of the last map, we obtain a map

ppι : RΓcr(X0/O
0
F ) → RΓcr(X0/O

×
F )

that is a pN -quasi-isomorphism, N = N(d).
We define the Hyodo–Kato map as the composition (the dotted arrow)

(4.9) ιHK : RΓcr(X0/O0
F )F

��

p−Nιppι
// RΓcr(X0/O

×
F )F // RΓcr(X0/O

×
K)K

RΓdR(XK)
∼ // RΓconv(X1/O

×
K)

∼ // RΓconv(X0/O
×
K).

≀

OO

The fourth map is actually a natural isomorphism by the invariance under
infinitesimal thickenings of convergent cohomology [33, 0.6.1]. The induced
map ιHK : RΓcr(X0/O0

F )F ⊗F K → RΓdR(XK) is a strict quasi-isomorphism.

(ii) Globalization. Let now X be a smooth rigid analytic variety over K.
Since the computation in [24, Prop. 4.13], leading to the existence of the sec-
tion ι, can be done on the big topos as long as we can control the dimension of
the schemes involved, the above Hyodo–Kato map can be lifted to a Hyodo–
Kato map

ιHK : AHK → AdR

in the classical derived category of étale sheaves on X . It induces the Hyodo–
Kato map

ιHK : RΓHK(X) → RΓdR(X).

Proposition 4.10 (Local-global compatibility). For a semi-stable formal

scheme X over OK , the canonical map

(4.11) RΓHK(X0) → RΓHK(XK)

is a strict quasi-isomorphism.

Proof. The proof of [31, Prop. 3.18] goes through practically verbatim. Key
points: the de Rham analog of (4.11) holds plus we have Galois descent for
both sides of (4.11) that allows us to deal with the field extensions appearing
in the construction of local semi-stable models. �
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Remark 4.12. The above definition of the Hyodo–Kato quasi-isomorphism
was normalized (at p) so that it is functorial. A more customary definition
depends on the uniformizer ̟ (one basically proceeds as above but using the
PD-envelope of the map OF {T } → OK , T 7→ ̟, instead of rPD

F ) and hence it
is not functorial.

4.2.4. Arithmetic rPD-cohomology. We define the rPD-cohomology of smooth
rigid analytic varieties over K by η-étale descent of the rPD-cohomology of
semi-stable models.

Let APD be the η-étale sheafification of the presheaf X 7→ RΓcr(X0/r
PD
L )Qp

on M ss
K . Here X is an admissible semi-stable formal scheme over OL, L =

KX . We wrote rPD
L for the rPD-ring corresponding to FL. Let RPD be the

η-étale sheafification of the presheaf X 7→ rPD
L,Qp

on M ss
K . The sheaf APD

is a sheaf of dg RPD
Qp

-algebras on SmK,ét equipped with a ϕ-action and a
derivation N , compatible with the derivation on RPD, such that Nϕ = pϕN .
For X ∈ SmK , set RΓPD(X) := RΓét(X,APD). Equip it with a topol-
ogy in the usual way, via η-étale descent, from the natural topology on the
RΓcr(X0/r

PD
L )Qp

’s.
Proposition 4.13 (Local-global compatibility). For a semi-stable formal

model X over OK , the canonical map

RΓcr(X0/r
PD
K )Qp

→ RΓPD(XK)

is a strict quasi-isomorphism.

Proof. It suffices to show that, for any η-étale hypercovering U• of X from
M ss

K (we may assume that in every degree of the hypercovering we have a
quasi-compact formal scheme), the natural map

RΓcr(X0/r
PD)Qp

→ RΓcr(U•,0/r
PD
L•

)Qp

is a strict quasi-isomorphism (modulo taking a refinement of U•). Recall
that the pN -quasi-isomorphism ι from (4.8) yields a strict quasi-isomorphism
(⊗̂R denotes the right derived functor of the tensor product)

(4.14) s = p−Nιι : RΓHK(X0) ⊗̂
R
F rPD

K,Qp

∼
−→ RΓcr(X0/r

PD
K )Qp

.

Using it, we get the following commutative diagram:

RΓcr(X0/r
PD
K )Qp

// RΓcr(U•,0/r
PD
L•

)Qp

RΓHK(X0) ⊗̂
R
F rPD

K,Qp

//

s≀

OO

RΓHK(U•,0) ⊗̂
R
FL•

rPD
L•,Qp

.

s•≀

OO

Since RΓHK(U•,0) ⊗̂
R

FL
rPD
L,Qp

≃ RΓHK(U•,0) ⊗̂
R

F rPD
K,Qp

and since, by Propo-

sition 4.10, the natural map RΓHK(X0) → RΓHK(U•,0) is a strict quasi-
isomorphism, so is the bottom map in the above diagram. It follows that
the top map is also a strict-quasi-isomorphism, as wanted. �

Münster Journal of Mathematics Vol. 13 (2020), 445–507



Comparison theorems for rigid analytic varieties 471

4.3. Geometric rigid analytic Hyodo–Kato cohomology. We will now
define the Hyodo–Kato cohomology of smooth rigid analytic varieties over C.
We will do it by η-étale descent of crystalline Hyodo–Kato cohomology of basic
semi-stable models.

4.3.1. Definition and basic properties. Let f : X → Spf(OC)
× be a semi-stable

formal model. Suppose that f is the base change of a semi-stable formal model
fL : XOL

→ Spf(OL)
× by θ : Spf(OC)

× → Spf(OL)
×, for a finite extension

L/K. That is, we have a map θL : X → XOL
such that the square (f, fL, θ, θL)

is Cartesian. In the algebraic setting (algebraic schemes and K in place of C)
such data (L,XOL

, θL) clearly form a filtered set. In our analytic case, this is
also the case for the system

Σ =
{
(L,XOL,1 , θL)

}

corresponding to the reduction modulo p of such data,21 i.e., a system in which
objects are reductions (L,XOL,1 , θL) modulo p of the tuples (L,XOL

, θL) as
above but morphisms are morphisms between the reduced objects.

(i) Hyodo–Kato cohomology. For a morphism of tuples (L′,X ′
OL′ ,1, θ

′
L′) →

(L,XOL,1, θL) from Σ, we have a canonical base change identification compat-
ible with ϕ-action (crystalline unramified base change)

RΓHK(XOL,0)⊗FL
FL′

∼
−→ RΓHK(X

′
OL′ ,0).

We set22

RΓHK(X1) := hocolimΣRΓHK(XOL,0).

RΓHK(X1) is a dg F nr-algebra23 equipped with a ϕ-action and a derivation
N such that Nϕ = pϕN . It is functorial with respect to X : note that the
restriction of a morphism X → Y to a morphism X1 → Y1 is defined over
a finite extension of K. Let AHK be the η-étale sheafification of the presheaf

X 7→ RΓHK(X1) on M ss,b
C . ForX ∈ SmC , we set RΓHK(X) := RΓét(X,AHK).

It is a dg F nr-algebra equipped with a Frobenius, monodromy action, and a
continuous action of GK if X is defined over K (this action is smooth, i.e., the
stabilizer of every element is an open subgroup of GK , if X is quasi-compact;
in general, it is only “pro-smooth”). We equip it with the topology induced
by η-étale descent from the topology of the RΓHK(XOL,0)’s.

(ii) Convergent cohomology. Let Aconv be the η-étale sheafification of the

presheaf X 7→ RΓconv(X1/O
×
C ) on M ss,b

C,ét. For X ∈ SmC , we set

RΓconv(X) := RΓét(X,Aconv).

21This is because the schemes XOL,1 from above are algebraic.
22Everything here and below is done in the derived ∞-category D(CQp

).
23The field F nr is equipped with the inductive limit topology. Later on we will use the

same type of topology for K.
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It is a dg C-algebra equipped with a continuous action of GK . We equip
it with the topology induced by η-étale descent from the topology of the
RΓconv(X1/O

×
C )’s. We have natural (strict) quasi-isomorphisms

Aconv ≃ AdR, RΓconv(X) ≃ RΓdR(X).

Let Aconv,K be the étale sheafification of the presheaf X 7→ RΓconv,K(X1)

on M ss,b
C,ét, where we set

RΓconv,K(X1) := hocolimΣ RΓconv(XOL,1/O
×
L )

in the notation from above. For X ∈ SmC , we set

RΓconv,K(X) := RΓét(X,Aconv,K).

It is a dgK-algebra equipped with a continuous action of GK ifX is defined over
K (this action is smooth if X is quasi-compact). We equip it with the topol-
ogy induced by η-étale descent from the topology of the RΓconv(XOL,1/O

×
L )’s.

There are natural continuous morphisms

Aconv,K → Aconv, RΓconv,K(X) → RΓconv(X).

Remark 4.15. Instead of RΓconv,K(X1) above, we could have used

RΓconv,Fnr(X1) := hocolimΣRΓconv(XOL,1/O
×
FL

).

This would give a natural F nr-structure on de Rham cohomology (see Propo-
sition 4.22 below).

(iii) rPD-cohomology. Let APD be the η-étale sheafification of the presheaf

X 7→ RΓPD(X1) on M ss,b
C,ét, where we set

RΓPD(X1) := hocolimΣ RΓcr(XOL,0/r
PD
L )Qp

in the notation from above. For X ∈ SmC , we set RΓPD(X) := RΓét(X,APD).
Set

rPD
K

:= rPD
F ⊗OF

OFnr := lim
−→
L

(rPD
F ⊗OF

OFL
), [L : K] < ∞.

RΓPD(X) is a dg rPD
K,Qp

-algebra equipped with a continuous action of GK

if X is defined over K (this action is smooth if X is quasi-compact). We
equip it with the topology induced by η-étale descent from the topology of the
RΓcr(XOL,0/r

PD
L )Qp

’s.

4.3.2. Hyodo–Kato quasi-isomorphisms. We keep the set-up from Section 4.3.1.
The Hyodo–Kato morphisms from (4.9),

ιHK : RΓHK(XOL,0) → RΓconv(XOL,1/O
×
L ),(4.16)

ιHK : RΓHK(XOL,0)⊗FL
L

∼
−→ RΓconv(XOL,1/O

×
L ),
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are compatible with morphisms in Σ and taking the homotopy colimit of the
second one yields the first of the following two natural strict quasi-isomorphisms
(called again the Hyodo–Kato quasi-isomorphisms):

ιHK : RΓHK(X1)⊗Fnr K
∼
−→ RΓconv,K(X1)(4.17)

= hocolimΣ RΓconv(XOL,1/O
×
L ),

ιHK : RΓHK(X1) ⊗̂
R

Fnr C
∼
−→ RΓdR(XC).

By definition, RΓHK(X1)⊗Fnr K := hocolimL(RΓHK(X1)⊗Fnr L), the homo-
topy colimit taken over fields L, [L : F nr] < ∞. We have RΓHK(X1)⊗Fnr K ≃
hocolimΣ(RΓHK(XOL,0) ⊗FL

L). In the second Hyodo–Kato morphism in
(4.17), by definition,24

RΓHK(X1) ⊗̂
R

Fnr C := hocolimΣ(RΓHK(XOL,0) ⊗̂
R

FL
C).

We note that all the maps in the homotopy colimits are strict quasi-iso-
morphisms. The Hyodo–Kato morphism itself is induced from the Hyodo–Kato
strict quasi-isomorphism (4.16):

hocolimΣ(RΓHK(XOL,0) ⊗̂
R
FL

C)
∼
−→ hocolimΣ(RΓconv(XOL,1/O

×
L ) ⊗̂

R
L C)

and the strict quasi-isomorphisms

hocolimΣ(RΓconv(XOL,1/O
×
L ) ⊗̂

R

L C)
∼
−→ RΓconv(X1/O

×
C ) ≃ RΓdR(XC).

The first quasi-isomorphism is given by base change. We note here that, since
RΓconv(XOL,1/O

×
L ) is a complex of Banach spaces, the completed tensor prod-

uct with C is exact.
Similarly, for X as at the beginning of Section 4.3.1, the strict quasi-

isomorphism (4.14) yields a strict quasi-isomorphism

(4.18) s : RΓHK(X1) ⊗̂
R
Fnr rPD

K,Qp

∼
−→ RΓPD(X1),

where we set

RΓHK(X1) ⊗̂
R

Fnr rPD
K,Qp

:= hocolimΣ(RΓHK(XOL,0) ⊗̂
R

FL
rPD
L,Qp

).

We also get (T 7→ 0)

RΓPD(X1)⊗rPD
K,Qp

F nr ≃ RΓHK(X1),

where we set

RΓPD(X1)⊗rPD
K,Qp

F nr := hocolimΣ(RΓcr(XOL,0/r
PD
L )Qp

⊗̂
R

rPD
L,Qp

FL).

Varying X in the above constructions, we obtain the (Hyodo–Kato) maps

ιHK : AHK → Aconv,K , ιHK : AHK → AdR, s : AHK → APD

24See [9, Section 2.1] for a quick review of basic facts concerning tensor products in the
category CQp

.
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of sheaves on SmC,ét. We claim that, for X ∈ SmC , they induce the natural
(Hyodo–Kato) strict quasi-isomorphisms

ιHK : RΓHK(X) ⊗̂Fnr K
∼
−→ RΓconv,K(X),(4.19)

ιHK : RΓHK(X) ⊗̂
R

Fnr C
∼
−→ RΓdR(X),

RΓHK(X) ⊗̂
R

Fnr rPD
K,Qp

∼
−→ RΓPD(X).

Here we set25

RΓHK(X) ⊗̂Fnr K := hocolim((RΓHK⊗FnrK)(U•,1)),(4.20)

RΓHK(X) ⊗̂
R

Fnr C := hocolim((RΓHK ⊗̂
R

Fnr C)(U•,1)),

RΓHK(X) ⊗̂
R
Fnr rPD

K,Qp
:= hocolim((RΓHK ⊗̂

R
Fnr rPD

K,Qp
)(U•,1)),

where the homotopy colimit is taken over η-étale hypercoveringsU• from M ss,b
C .

We note that we have

RΓconv,K(X) ≃ hocolimRΓconv,K(U•,1),(4.21)

RΓPD(X) ≃ hocolimRΓPD(U•,1).

Indeed, by Proposition 4.22 below (there is no circular reasoning here), we
have

hocolimRΓconv,K(U•,1)
∼
−→ hocolimRΓconv,K(U•,C),

hocolimRΓPD(U•,1)
∼
−→ hocolimRΓPD(U•,C).

Hence (4.21) follows from the fact that RΓconv,K(X) and RΓPD(X) satisfy
η-étale descent. Having (4.21), the first strict quasi-isomorphism in (4.19)
follows from the first Hyodo–Kato strict quasi-isomorphism in (4.17). The
second Hyodo–Kato strict quasi-isomorphism in (4.17) implies easily the sec-
ond strict quasi-isomorphism we wanted. The third strict quasi-isomorphism
follows from (4.18).

4.3.3. Local-global compatibility and comparison results. Having at our dis-
posal the quasi-isomorphisms (4.19), we can prove the following comparison
result (where the tensor products in (2) and (3) are defined as in (4.20)):

Proposition 4.22. (1) Let X ∈ M ss,b
C . The natural maps

RΓHK(X1) → RΓHK(XC), RΓconv,K(X1) → RΓconv,K(XC),

RΓconv(X1) → RΓconv(XC), RΓPD(X1) → RΓPD(XC)

are strict quasi-isomorphisms.

(2) For X ∈ SmC , we have natural strict quasi-isomorphisms

RΓconv,K(X) ⊗̂
R

K C
∼
−→ RΓconv(X) ≃ RΓdR(X).

25The notation is ad hoc and rather awful here but we hope that it is self-explanatory.
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(3) For X ∈ SmK , we have a natural strict quasi-isomorphism

RΓdR(X) ⊗̂K K ≃ RΓconv,K(XC).

Proof. For the first claim, it suffices to show that, for any η-étale hypercovering

U• of X from M ss,b
C , the natural maps

(4.23) RΓ?(X1) → RΓ?(U•,1), ? = HK, {conv,K}, conv,PD,

are strict quasi-isomorphisms (modulo taking a refinement of U•). We may
assume that in every degree of the hypercovering we have a finite number of
formal models. For the Hyodo–Kato case, it suffices to show the strict quasi-
isomorphism after we tensor both sides with K over F nr. But then we can use
the Hyodo–Kato quasi-isomorphism (4.17) to reduce to the case of {conv,K}
in (4.23).

For that case, note that our map is strictly quasi-isomorphic to a map

RΓdR(XL)⊗L K → (RΓdR ⊗L•
K)(U•,L•

).

The rather ugly notation for the hypercovering just underscores the fact that
the field over which the particular formal schemes split varies. Passing to co-

homology (H̃(−)-cohomology) and then to a truncated hypercovering, we can
assume that all the rigid spaces and maps involved are defined over a common
field K ′, a finite extension of L. We get a strict quasi-isomorphism by étale de-
scent for de Rham cohomology. The cases of PD- and conv-cohomology, can be
reduced to that of Hyodo–Kato and de Rham cohomologies via the strict quasi-

isomorphisms RΓPD(X) ≃ RΓHK(X) ⊗̂
R
Fnr rPD

K,Qp
and RΓconv(X) ≃ RΓdR(X),

respectively.
For the second claim of the proposition, it suffices to show that for an η-étale

hypercovering U• of X from M ss,b
C , we have a strict quasi-isomorphism

(RΓconv,K ⊗̂
R

K C)(U•,1) ≃ RΓdR(U•,C).

It suffices to argue degree-wise. Hence it to show that, for a semi-stable formal
model U over OE , [E : L] < ∞, the first top horizontal arrow in the following
diagram is a strict quasi-isomorphism:

RΓconv,K(UOC ,1) ⊗̂
R

K C // RΓconv(UOC ,1)
∼ // RΓdR(UC)

RΓconv(UOE ,1) ⊗̂
R
E C

∼
44✐✐✐✐✐✐✐✐✐✐✐✐✐

≀

OO

∼ // RΓdR(UPD) ⊗̂
R
E C.

∼
55❧❧❧❧❧❧❧❧❧❧

Since this diagram clearly commutes and the other arrows are strict quasi-
isomorphisms, this is evident.

For the third claim of the proposition, it suffices to show that, for any η-étale

hypercovering U• of XC from M ss,b
C , the natural map

(4.24) RΓdR(X) ⊗̂K K → RΓconv,K(U•,1)
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is a strict quasi-isomorphism (modulo taking a refinement of U•). We can
assume that U• has formal models in every degree. Then both sides of (4.24)
can be computed by (RΓdR ⊗L•

K)(U•,L•
), proving what we wanted. �

4.3.4. Galois descent. The following proposition shows that Hyodo–Kato co-
homology satisfies Galois descent.

Proposition 4.25. Let X ∈ SmK . The natural projection ε : XC,ét → Xét

defines pullback strict quasi-isomorphisms

ε∗ : RΓHK(X)
∼
−→ RΓHK(XC)

GK ,

ε∗ : RΓconv(X)
∼
−→ RΓconv,K(XC)

GK ,

ε∗ : RΓPD(X)
∼
−→ RΓPD(XC)

GK .

Remark 4.26. We denoted by RΓHK(XC)
GK , etc., the complex obtained

by taking the GK-fixed points of a representative of RΓHK(XC). This def-
inition makes sense, that is, two strictly quasi-isomorphic complexes repre-
senting RΓHK(XC) give two strictly quasi-isomorphic complexes represent-
ing RΓHK(XC)

GK . Or, in other words , taking a cone of the given quasi-
isomorphism, for a complex T := T 0 → T 1 → T 2 → · · · such that each T i is a
direct sum of products of LB-spaces with a smooth action of GK , the complex
TGK is strictly exact. Indeed, since the complex T is strictly exact, for all i,
we have the strictly exact sequence

(4.27) 0 → ker di → T i → ker di+1 → 0,

and we need to show that the induced sequence

(4.28) 0 → (ker di)
GK → (T i)GK → (ker di+1)

GK → 0

is exact. We note that there exists a normalized trace function

tr : T i → (T i)GK , x 7→ lim
−→
L⊂K

1

[L : K]

∑

σ∈Gal(L/K)

σ(x).

This is well-defined because T i is a finite direct sum of products of smooth
GK-modules and on a smooth GK-module, the limit in the formula stabilizes.
Let now x ∈ (ker di+1)

GK . Since the sequence (4.27) is exact, there exists
y ∈ T i mapping to x. But then tr(y) maps to tr(x) = x. Since tr(y) ∈ (T i)GK ,
this means that the sequence (4.28) is exact, as wanted.

Proof of Proposition 4.25. By η-étale descent, we may assume that X = XK

for X ∈ M ss
K . Recall that the action of GK on RΓHK(XC), RΓconv(XC), and

RΓPD(XC) is then smooth. We will prove only the first quasi-isomorphism –
the proof of the others being analogous.

Passing to a finite extension of the splitting field L of X , if necessary,
we may assume that X is semi-stable over a finite Galois extension L of K.
Consider the following commutative diagram (we added the base K and L in
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the definition of the arithmetic Hyodo–Kato cohomology to stress that we are
working with the category M ss

K and M ss
L , respectively):

RΓHK(X/L)
ε∗ // RΓHK(X ⊗L C)GL

RΓHK(X/K)

≀

OO

ε∗ // RΓHK(X ⊗K C)GK .

OO

By Proposition 4.10 and Proposition 4.22, the top horizontal map is quasi-
isomorphic to the map

ε∗ : RΓHK(X0) → (RΓHK(X0)⊗FL
F nr)GL ,

which clearly is a quasi-isomorphism. Since X ⊗K C ≃ (X ⊗L C) × H , for
H = Gal(L/K), we have

RΓHK(X ⊗K C) ≃ RΓHK(X ⊗L C)×H.

Hence the right vertical map in the above diagram is a quasi-isomorphism as
well. It follows that so is the bottom horizontal map, as wanted. �

4.4. Passage to Bloch–Kato arithmetic rigid analytic syntomic coho-

mology. Let X ∈ SmK . Let r ≥ 0. In this section, we define the Bloch–Kato
rigid analytic syntomic cohomology:

RΓBK
syn(X,Qp(r)) := [[RΓHK(X)]N=0,ϕ=pr ι′HK−−→ RΓdR(X)/F r],

where the map ι′HK is defined below, and we show that it is strictly quasi-
isomorphic to the rigid analytic syntomic cohomology of X :

Proposition 4.29. There is a natural strict quasi-isomorphism

ι2 : RΓ
BK
syn(X,Qp(r)) ≃ RΓsyn(X,Qp(r)).

Proof. (i) Local definition. Let X be an admissible semi-stable formal scheme
over OK . We define a functorial strict quasi-isomorphism

ι2 : RΓ
BK
syn(X ,Qp(r))(4.30)

:=
[
[RΓcr(X0/O

0
F )F ]

N=0,ϕ=pr ι′HK−−→ RΓdR(XK)/F r
]

≃
[
[RΓcr(X1/OF )F ]

ϕ=pr can
−−→ RΓcr(X1/O

×
K)K/F r

]

≃ RΓsyn(X ,Zp(r))Qp
,
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by the following diagram:
(4.31)

RΓcr(X1/O
×
K)K RΓdR(XK)∼

oo

≀

��

≀

��

[RΓcr(X1/OF )F ]
ϕ=pr

can

66♠♠♠♠♠♠♠♠♠♠♠♠♠♠♠

i∗≀

��

[RΓconv(X1/OF )]
ϕ=pr

ε1

∼oo

i∗≀

��

// RΓconv(X1/O
×
K)

i∗≀

��

∼

hh◗◗◗◗◗◗◗◗◗◗◗◗◗◗◗

[RΓcr(X0/OF )F ]
ϕ=pr

((◗
◗◗

◗◗
◗◗

◗◗
◗◗

◗◗
◗◗

◗

≀

��

[RΓconv(X0/OF )]
ϕ=pr

((◗
◗◗

◗◗
◗◗

◗◗
◗◗

◗◗
◗◗

//
ε0

∼oo RΓconv(X0/O
×
K)

[RΓcr(X0/r
PD
F )Qp

]N=0,ϕ=pr pp
//

p0

∼
,,❳❳❳

❳❳❳
❳❳❳

❳❳❳
❳❳❳

❳❳❳
❳❳❳

❳❳❳
❳❳❳

RΓcr(X0/O
×
F )F RΓconv(X0/O

×
F )∼

oo

OO

[RΓcr(X0/O0
F )F ]

N=0,ϕ=pr

.

ι′HK

\\

The vertical left bottom map is a quasi-isomorphism by [26, Lem. 4.2]. The
map ι′HK is defined by the zigzag in the diagram. The map p0 is a quasi-
isomorphism because Frobenius is highly nilpotent on T . The slanted map
from the convergent to crystalline cohomology is a strict quasi-isomorphism
because the log-scheme X1 is log-smooth over O×

K,1. The two right maps i∗

are strict quasi-isomorphisms (actually, natural isomorphisms) by the invari-
ance of convergent cohomology under infinitesimal thickenings; the left map
i∗ is a quasi-isomorphism by a standard Frobenius argument (see the proof of
[10, Lem. 5.9]). We claim that the maps ε1, ε0 are strict quasi-isomorphisms.
Indeed, it suffices to check this for the second of the two maps and then it
follows from the commutative diagram

[RΓcr(X0/OF )F ]
ϕ=pr

≀
��

[RΓconv(X0/OF )]
ϕ=pr

ε0
oo

≀
��

[RΓcr(X0/r
PD
F )Qp

]N=0,ϕ=pr

p0 ≀
��

[RΓconv(X0/r̂F )]
N=0,ϕ=pr

ε
oo

p0 ≀
��

[RΓcr(X0/O0
F )F ]

N=0,ϕ=pr

[RΓconv(X0/O0
F )]

N=0,ϕ=pr

,
ε0

∼oo

since the map ε0 is a strict quasi-isomorphism by the log-smoothness of the
log-scheme X0 over k0. Here r̂F := OF {T } and the right vertical maps are
strict quasi-isomorphisms by the same arguments as the left vertical maps.
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(ii) Globalization. Let A BK
syn be the η-étale sheafification of the presheaf

X → RΓBK
syn(X ,Qp(r)) on M ss

K,ét. We have

RΓét(X,A BK
syn ) ≃ [RΓét(X,AHK)

N=0,ϕ=pr ι′HK−−→ RΓét(X,AdR)/F
r]

≃ [RΓHK(X)N=0,ϕ=pr ι′HK−−→ RΓdR(X)/F r] ≃ RΓBK
syn(X,Qp(r)).

Since RΓsyn(X,Qp(r)) = RΓét(X,Asyn), by η-étale descent, the strict quasi-
isomorphisms ι2 from (4.30) can be lifted to a strict quasi-isomorphism

ι2 : RΓsyn(X,Qp(r)) ≃ RΓBK
syn(X,Qp(r)),

as wanted. �

Let us state the following corollary of the above computations.

Corollary 4.32 (Local-global compatibility). Let r ≥ 0. For a semi-stable

formal scheme X over OK , the canonical map

RΓsyn(X ,Qp(r)) → RΓsyn(XK ,Qp(r))

is a strict quasi-isomorphism.

Proof. By construction and Proposition 4.29, we have compatible strict quasi-
isomorphisms

ι2 : RΓsyn(X ,Qp(r)) ≃
[
[RΓHK(X0)]

N=0,ϕ=pr ι′HK−−→ RΓdR(XK)/F r
]
,

ι2 : RΓsyn(XK ,Qp(r)) ≃
[
[RΓHK(XK)]N=0,ϕ=pr ι′HK−−→ RΓdR(XK)/F r

]
.

It suffice now to note that the natural map RΓHK(X0) → RΓHK(XK) is a
strict quasi-isomorphism by Proposition 4.10. �

5. Overconvergent syntomic cohomology

In this section we define syntomic cohomology for smooth dagger varieties
over K or C in two ways (yielding strictly quasi-isomorphic theories). Recall
that in [9] syntomic cohomology of semi-stable weak formal schemes is defined
as a homotopy fiber of a map from Frobenius eigenspaces of Hyodo–Kato coho-
mology to a filtered quotients of de Rham cohomology. By η-étale descent this
yields the first definition of syntomic cohomology for smooth dagger varieties.
For the second definition we take, for smooth dagger affinoids, the homotopy
colimits of syntomic cohomologies of the rigid analytic affinoids forming a pre-
sentation of the dagger structure, and then we globalize. The second definition
will allow us to define period maps to pro-étale cohomology.

To carry out the above, we introduce Hyodo–Kato cohomology for smooth
dagger varieties, prove that it satisfies Galois descent, and define the Hyodo–
Kato morphism (that is a strict quasi-isomorphism over C).
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5.1. Overconvergent de Rham cohomology. Let L = K,C. Consider
the presheaf X 7→ RΓdR(X) of filtered dg L-algebras on Sm†

L. Let AdR be
its étale sheafification. It is a sheaf of filtered L-algebras on Sm†

L,ét. For

X ∈ Sm†
L, we have the filtered quasi-isomorphism RΓdR(X)

∼
−→ RΓét(X,AdR).

We equip RΓdR(X) with the topology induced by the canonical topology on
dagger algebras; we equip RΓét(X,AdR) with topology using étale descent as
we did before. Then the above quasi-isomorphism is strict: dagger differentials
satisfy étale descent in the strict sense. The de Rham cohomology Hi

dR(X) is
classical: it is a finite-dimensional K-vector space with its natural Hausdorff
topology for X quasi-compact and a Fréchet space (a surjective limit of finite-
dimensional K-vector spaces) for a general smooth X (use Remark 3.11). See
the proof of Proposition 5.6 below for how this can be shown.

5.1.1. The complex RΓdR(X)/F r. Let X ∈ Sm†
L. The cohomology groups of

RΓdR(X)/F r have the same description as their rigid analytic counterparts in
Section 4.1.1. That is, the distinguished triangle (in D(CL))

(5.1) 0 → ker dr[−r] → τ≤rΩ
•

X → Ω≤r−1
X → 0

yields the strict short exact sequence

0 → Hr−1
dR (X) → H̃r−1(RΓdR(X)/F r) → kerπ → 0,

where π is the natural map Ωr(X)d=0 → Hr
dR(X). We have a strict monomor-

phism im dr−1(X) →֒ kerπ. We note that the cohomology H̃r−1(RΓdR(X)/F r)
is classical (as an extension of classical objects).

The distinguished triangle (5.1) yields also the strict long exact sequence

0 → cokerπ → H̃r(RΓdR(X)/F r) → H̃1(X, ker dr) → H̃r+1(X, τ≤rΩ
•

X).

5.2. Arithmetic overconvergent Hyodo–Kato cohomology. We define
the Hyodo–Kato cohomology of smooth dagger varieties over K by η-étale
descent of overconvergent Hyodo–Kato cohomology of semi-stable models.

5.2.1. Local definition. Let X be a log-smooth scheme over k0. The overcon-
vergent Hyodo–Kato cohomology of X is defined (by Grosse–Klönne in [21]) as
RΓHK(X) := RΓHK(X/OF ) := RΓrig(X/O0

F ). It is a dg F -algebra, equipped
with a ϕ-action and a monodromy operator N such that Nϕ = pϕN . We
equip it with a topology as in [9, Section 3.1].

LetX be a semi-stable scheme over k0. Recall that we have the Hyodo–Kato
morphism

(5.2) ιHK : RΓrig(X/O0
F ) → RΓrig(X/O×

F )

that is actually a strict quasi-isomorphism [9, Section 3.1.3]. We have cho-
sen here the functorial version of this morphism as defined by Ertl=-Yamada
[15, Prop. 2.5]: a combinatorial modification of the original morphism of
Grosse–Klönne yields easy functoriality on most of the data; full functoriality
is obtained by a coherent zigzag construction [15, Lem. 2.6].

Münster Journal of Mathematics Vol. 13 (2020), 445–507



Comparison theorems for rigid analytic varieties 481

Remark 5.3. For the convenience of the reader we will describe in more detail
the constructions of Grosse–Klönne (see for details [9, Section 3.1.3]) and Ertl–
Yamada. Let {Xi}i∈I be the irreducible components of X with the induced
log-structure. Denote by M• the nerve of the covering

∐
i∈I Xi → X . By [9,

Lem. 3.8], the natural map

RΓrig(X/O) → RΓrig(M•/O), O = O0
F ,O

×
F

is a strict quasi-isomorphism.
Let X be the log-scheme with boundary attached to X in [21]. It comes

equipped with a natural map M ′
•
→֒ X , where M ′

•
is a slight combinatorial

modification26 of M•: there is a natural map M• → M ′
•
that induces a strict

quasi-isomorphism

RΓrig(M
′
•
/O) → RΓrig(M•/O).

We have the following commutative diagram, where O(0) = O0
F , O(p) = O×

F ,
a = 0, p, and pa is the map induced by T 7→ a:

RΓrig(X/O(a))
∼ //

∼

))❙❙
❙❙

❙❙
❙❙

❙❙
❙

RΓrig(M
′
•
/O(a))

≀
��

RΓrig(X/r†F )
∼oo

��
✽
✽
✽
✽
✽
✽
✽
✽
✽
✽
✽
✽
✽
✽
✽
✽
✽
✽
✽
✽
✽
✽

RΓrig(M•/O(a))

RΓrig(M•/r
†
F )

pa

OO

RΓrig(X/r†F )
∼ //

∼
55❦❦❦❦❦❦❦❦❦❦

pa

OO

RΓrig(M
′
•
/r†F ).

∼

ll❳❳❳❳❳❳❳❳❳❳❳❳❳❳❳❳❳❳❳❳❳

pa

ee❑
❑
❑
❑
❑
❑
❑
❑
❑
❑
❑
❑
❑
❑
❑
❑
❑
❑
❑
❑
❑
❑
❑
❑
❑
❑
❑
❑
❑
❑
❑
❑
❑

We wrote here r†F := OF [T ]
† with the log-structure associated to T ; Frobenius

is defined by T 7→ T p, monodromy is the OF -linear derivation given by T 7→ T .
The Hyodo–Kato morphism (5.2) is now defined as the following composition:

ιHK : RΓrig(X/O0
F )

∼ //

**

RΓrig(M
′
•
/O0

F ) RΓrig(X/r†F )

≀
��

∼oo

RΓrig(X/O×
F )

∼ // RΓrig(M
′
•
/O×

F ).

For another semi-stable scheme Y over k0 and a map of log-schemes g : Y → X ,

Ertl–Yamada define a pullback morphism g∗ : RΓrig(X/r†F ) → RΓrig(Y /r†F )
that makes ιHK functorial [15, Lem. 2.6].

In what follows, to simplify the notation, we will write

pa : RΓrig(X/r†F )
∼
−→ RΓrig(M

′
•
/O(a))

∼
←− RΓrig(X/O(a)),

f1 : RΓrig(X/r†F ) → RΓrig(M
′
•
/r†F )

∼
←− RΓrig(X/r†F ).

26We take the definition of Ertl–Yamada, which allows multiplicities in the index set,
rather than the original definition of Grosse–Klönne, which does not allow them.
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The above commutative diagram yields the functorial commutative diagram:

RΓrig(X/O(a)) RΓrig(X/r†F )pa

∼oo

f1uu❧❧
❧❧
❧❧
❧❧
❧❧

RΓrig(X/r†F ).

pa

OO

If X is a semi-stable weak formal scheme over OK , we define the Hyodo–
Kato map

ιHK : RΓHK(X0) → RΓdR(XK)

as the following composition:

(5.4) RΓHK(X0) RΓrig(X0/O0
F )

ιHK // RΓrig(X0/O
×
F )

��

RΓrig(X0/O
×
K)

∼ // RΓdR(XK).

Note that this definition works also for base changes (with respect to OK)
of semi-stable weak formal schemes over OK . Since the natural morphism
RΓrig(X0/O

×
F )⊗F K → RΓrig(X0/O

×
K) is a strict quasi-isomorphism, so is the

induced morphism

ιHK : RΓHK(X0)⊗F K
∼
−→ RΓdR(XK).

5.2.2. Globalization. Let AHK be the η-étale sheafification of the presheaf X 7→
RΓHK(X0/OFL

), L = KX , on M †,ss
K ; this is an étale sheaf of dg F -algebras

on Sm†
K equipped with a ϕ-action and a derivation N such that Nϕ = pϕN .

For X ∈ Sm†
K , set RΓHK(X) := RΓét(X,AHK). Equip it with a topology in

the usual way, via η-étale descent, from the topology on the RΓHK(X0/OFL
)’s.

Proposition 5.5 (Local-global compatibility). Let X be a semi-stable weak

formal scheme over OK . Then the natural map

RΓHK(X0) → RΓHK(XK)

is a strict quasi-isomorphism.

Proof. Same as the proof of Proposition 4.10. �

For X ∈ Sm†
K , we define natural F -linear maps (the overconvergent Hyodo–

Kato morphisms)

ιHK : AHK → AdR, ιHK : RΓHK(X) → RΓdR(X),

by the η-étale sheafification of the Hyodo–Kato map

ιHK : RΓHK(X0) → RΓdR(XK)

and its globalization, respectively.
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5.2.3. Topology. We will now discuss topology in more detail.

Proposition 5.6. Let X be a smooth dagger variety over K.

(1) If X is quasi-compact, then H̃∗
HK(X) is classical. It is a finite-dimen-

sional F -vector space with its unique locally convex Hausdorff topology.

(2) For a general X, the cohomology H̃∗
HK(X) is classical. It is a Fréchet

space, a limit of finite-dimensional F -vector spaces.

(3) The endomorphism ϕ on H∗
HK(X) is a homeomorphism.

(4) If k is finite and X is quasi-compact, then H∗
HK(X) is a mixed F -

isocrystal, i.e., the eigenvalues27 of ϕ are Weil numbers (if X is not

quasi-compact, then H∗
HK(X) is a product of mixed F -isocrystals).

Proof. In the case X = XK , for a semi-stable weak formal model X over OK ,

and for H̃∗
HK(X0), this is [9, Prop. 3.2]. All algebraic statements concerning

cohomology in the proposition follow from that by using η-étale descent and
the quasi-isomorphism from Proposition 5.5.

We treat now the topological claims. For (1), we first use the η-étale descent
and the fact that claim (1) holds in the case X has a semi-stable model over
OK to construct a filtration on the classical cohomology Hi

HK(X) with graded
pieces finite rank vector spaces over F with their canonical Hausdorff topology.
This implies that the natural topology onHi

HK(X) is also Hausdorff. It remains
to show that H̃i

HK(X) is classical. Take an η-étale hypercovering U• of X
built from objects of M †,ss

K . Assume that in every degree we have a finite
number of affine weak formal schemes (recall that X is quasi-compact). Then
the complex RΓHK(U•,0) is built from inductive limits of Banach spaces with
injective and compact transition maps. Using the fact that these are strong
duals of reflexive Fréchet spaces, we know that the kernels of the differentials
and their coimages have the same property. In particular, they are LB-spaces.
The cohomology H̃i

HK(X) is represented by the pair coimdi−1 → ker di and
Hi

HK(X) = ker di/ im di−1 with the induced topology. Let W be a subspace
of ker di that maps onto Hi

HK(X) and has the same rank as the latter. Then
the map coim di−1 ⊕W → ker di is a continuous map of LB-spaces that is an
algebraic isomorphism hence, by the open mapping theorem, it is a topological
isomorphism. Hence the map coimdi−1 → ker di is strict and the cohomology
H̃i

HK(X) is classical.
A similar argument, using strong duals of reflexive Fréchet spaces, implies

that a map between two Hyodo–Kato complexes associated to two (different)
η-étale affine hypercoverings of X as above is a strict quasi-isomorphism. This
implies that, for X quasi-compact, the cohomology of RΓHK(X) is strictly
quasi-isomorphic to the cohomology of RΓHK(U•,0) for any η-étale affine hy-
percovering U• as above.

27We define the eigenvalues of ϕ in Q⊗F ∗ to be the s-th roots of the eigenvalues of ϕs,
where s is any nonzero multiple of f for |k| = pf . We note that this definition is stable
under base change from F to F ′, [F ′ : F ] < ∞.
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To see that ϕ is a homeomorphism in (3), note that this is clear for quasi-
compact X by the above remarks. For a general X , as in the case of pro-étale
cohomology, cover it with an admissible increasing quasi-compact covering
{Un}n∈N. We obtain the exact sequence

0 → H1 holimn H̃
i−1
HK (Un) → H̃i

HK(X) → H0 holimn H̃
i
HK(Un) → 0.

But, by (1), the cohomologies H̃i
HK(Un) are classical and finite-dimensional

over F . Hence, the cohomology H̃i
HK(X) is classical and we have

Hi
HK(X)

∼
−→ lim

←−
n

Hi
HK(Un).

Hence it is Fréchet, as wanted. We have proved (2), and (4) follows now
trivially from (1). �

5.2.4. (ϕ,N)-cohomology. Let X ∈ Sm†
K , r ≥ 0. We will need to understand

the cohomology of [RΓHK(X)]N=0,ϕ=pr

. We have

[RΓHK(X)]N=0,ϕ=pr

=




RΓHK(X)

N
��

pr−ϕ
// RΓHK(X)

N
��

RΓHK(X)
pr−pϕ

// RΓHK(X)


 .

This gives rise to a spectral sequence

(5.7) Eij
2 = H̃i([Hj

HK(X)]N=0,ϕ=pr

) ⇒ H̃i+j(RΓHK(X)N=0,ϕ=pr

),

where H̃∗([Hj
HK(X)]N=0,ϕ=pr

) is the cohomology of the complex



Hj
HK(X)

pr−ϕ
//

N
��

Hj
HK(X)

N
��

Hj
HK(X)

pr−pϕ
// Hj

HK(X)


 .

That is, we can compute it by the sequence

Hj
HK(X)

(N,pr−ϕ)
−−−−−−→ Hj

HK(X)⊕Hj
HK(X)

(pr−pϕ)−N
−−−−−−−−→ Hj

HK(X).

The cohomology H̃i([Hj
HK(X)]N=0,ϕ=pr

) is classical and a Fréchet space. This
is because we can write naturally

Hi
HK(X) ≃ lim

←−
n

Hi
HK(Un),

for an admissible increasing quasi-compact covering {Un}n∈N of X , and all the
cohomologies Hi

HK(Un) are finite-dimensional over F .
Hence, in the spectral sequence (5.7), the terms are classical and Fréchet

spaces. Arguing by limits as above, we conclude that so is the abutment.

Remark 5.8. In the case when Hj
HK(X) is a finite (ϕ,N)-module (for exam-

ple X quasi-compact), H∗([Hj
HK(X)]N=0,ϕ=pr

) ≃ Ext∗ϕ,N (F,Hj
HK(X){r}), the

Ext-groups in the category of finite (ϕ,N)-modules [2].

Münster Journal of Mathematics Vol. 13 (2020), 445–507



Comparison theorems for rigid analytic varieties 485

Proposition 5.9. Let X ∈ Sm†
K , r ≥ 0.

(1) We have Hi([RΓHK(X)]N=0,ϕ=pr

) = 0 for i ≤ r − 1.
(2) There is a strict short exact sequence

0 → Hr−1
HK (X)ϕ=pr−1

→ Hr([RΓHK(X)]N=0,ϕ=pr

)(5.10)

→ Hr
HK(X)N=0,ϕ=pr

→ 0.

Proof. To see that, we note that the slopes of Frobenius on Hi
HK(X) are ≤ i:

it is enough to show this for X with a semi-stable reduction, where we can use
the weight spectral sequence to reduce to showing that, for a smooth scheme Y
over k, the slopes of Frobenius on the (classical) rigid cohomology Hi

rig(Y/F )

are ≤ i; but this is well known [7, Th. 3.1.2]. It follows that the morphism
ϕ−pj is an isomorphism on Hi

HK(X) for i < j. Knowing that, we obtain both
claims of the proposition from the spectral sequence (5.7). �

5.3. Geometric overconvergent Hyodo–Kato cohomology. We define
the Hyodo–Kato cohomology of smooth dagger varieties over C by η-étale
descent of overconvergent Hyodo–Kato cohomology of semi-stable models.

5.3.1. Definition and basic properties. Let f : X → Spwf(OC)
× be a semi-

stable weak formal model. Suppose that f is the base change of a semi-stable
weak formal model fL : XOL

→ Spwf(OL)
× over OL by θ : Spwf(OC)

× →
Spwf(OL)

×, for a finite extension L/K. That is, we have a map θL : X → XOL

such that the square (f, fL, θ, θL) is Cartesian. Such data {(L,X , θL)} reduced
modulo p form a filtered set Σ (cf. Section 4.3.1).

(i) Hyodo–Kato cohomology. For a morphism of tuples (L′,X ′
OL′,1

, θ′L′) →
(L,XOL,1 , θL) from Σ, we have a canonical base change identification compat-
ible with ϕ-action (unramified base change)

(5.11) RΓHK(XOL,0)⊗FL
FL′

∼
−→ RΓHK(X

′
OL′ ,0).

We set
RΓHK(X1) := hocolimΣRΓHK(XOL,0).

It is a dg F nr-algebra28 equipped with a ϕ-action and a derivation N such that
Nϕ = pϕN . It is functorial with respect to X : note that the restriction of a
morphism X → Y to a morphism X1 → Y1 is defined over a finite extension
of K.

Let AHK be the η-étale sheafification of the presheaf X 7→ RΓHK(X1)

on M †,ss,b
C . For X ∈ Sm†

C , we set

RΓHK(X) := RΓét(X,AHK).

It is a dg F nr-algebra equipped with a Frobenius, monodromy action, and a
continuous action of GK if X is defined over K (this action is smooth if X is

28The field F nr is equipped here with the inductive limit topology in CF . In particular, a
sequence (xn)n∈N, of elements of F nr converges if and only if there exists a finite extension
L of F such that all xn ∈ L and the sequence (xn)n∈N converges inside L.
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quasi-compact). We equip it with the topology induced, by η-étale descent,
from the topology on the RΓHK(XOL,0)’s.

Proposition 5.12. Let X be a smooth dagger variety over C.

(1) If X is quasi-compact, then H̃∗
HK(X) is classical. It is a finite-dimen-

sional Fnr-vector space with its natural topology.

(2) The cohomology H̃∗
HK(X) is classical. It is a limit (in CF ) of finite-

dimensional F nr-vector spaces.

(3) The endomorphism ϕ on H∗
HK(X) is a homeomorphism.

(4) If k is finite and X is quasi-compact, then H∗
HK(X) is a mixed F -

isocrystal, i.e., the eigenvalues29 of ϕ are Weil numbers (if X is not

quasi-compact, then H∗
HK(X) is a product of mixed F -isocrystals).

Proof. For claim (1), it suffices to show that, for every η-étale hypercovering

U• of X from M †,ss,b
C , the cohomology H̃i

HK(U•,C), i ≥ 0, is classical and of
finite rank over F nr. Since we can assume that the weak formal schemes in
every degree of the hypercovering are admissible, this follows immediately from
Proposition 5.6 and the quasi-isomorphism (5.11).

Claim (2) follows easily from claim (1). Claim (3) and (4) follow by the
same argument as claim (1). �

(i) Rigid cohomology. Let Arig be the η-étale sheafification of the presheaf

X 7→ RΓrig(X1/O
×
C ) on M †,ss,b

C . For X ∈ Sm†
C , we set

RΓrig(X) := RΓét(X,Arig).

It is a dg C-algebra equipped with a continuous action of GK if X is defined
over K. We equip it with the topology induced, by η-étale descent, from the
topology on the RΓrig(X1/O

×
C )’s. We have natural (strict) quasi-isomorphisms

Arig
∼
−→ AdR, RΓrig(X)

∼
−→ RΓdR(X).

Let Arig,K be the η-étale sheafification of the presheaf X 7→ RΓrig,K(X1)

on M †,ss,b
C , where we set

RΓrig,K(X1) := hocolimΣRΓrig(X0/O
×
L ).

For X ∈ Sm†
C , we set RΓrig,K(X) := RΓét(X,Arig,K). It is a dg K-algebra

equipped with a continuous action of GK if X is defined over K (this action
is smooth if X is quasi-compact). We equip it with the topology induced, by
η-étale descent, from the topology on the RΓrig(XOL,0)’s. There are natural
continuous morphisms

Arig,K → Arig, RΓrig,K(X) → RΓrig(X).

29The cohomology H∗
HK

(X) together with its Frobenius, a priori an F nr-vector space of
finite rank, is obtained by a base change from a finite rank F ′-vector space V , where [F ′ :
F ] < ∞, equipped with a semilinear Frobenius, so we can use the definition of eigenvalues
of Frobenius from the footnote to Proposition 5.6.
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5.3.2. Galois descent. Again we have a Galois descent.

Proposition 5.13. Let X ∈ Sm†
K . The natural projection ε : XC,ét → Xét

defines pullback quasi-isomorphisms

ε∗ : RΓHK(X)
∼
−→ RΓHK(XC)

GK , ε∗ : RΓdR(X)
∼
−→ RΓrig,K(XC)

GK .

Proof. We can use the proof of Proposition 4.25 almost verbatim30. �

5.3.3. Hyodo–Kato quasi-isomorphisms.

(i) Local definition. Let X → Spwf(OC)
× be as above. The Hyodo–Kato

morphism from (5.4),

ιHK : RΓHK(XOL,0) → RΓrig(XOL,0/O
×
L ),(5.14)

ιHK : RΓHK(XOL,0)⊗FL
L

∼
−→ RΓrig(XOL,0/O

×
L ),

is compatible with the morphisms in Σ and taking its homotopy colimit yields
the first of the following two natural strict quasi-isomorphisms (called again
the Hyodo–Kato quasi-isomorphisms):

ιHK : RΓHK(X1)⊗Fnr K
∼

hocolimΣ(RΓHK(XOL,0)⊗FL
L)

≀
��

RΓrig,K(X1) : hocolimΣ RΓrig(XOL,0/O
×
L ),

(5.15)

ιHK : RΓHK(X1) ⊗̂
R

Fnr C
∼
−→ RΓrig(X1/O

×
C ) ≃ RΓdR(XC).

In the second Hyodo–Kato morphism, we set

RΓHK(X1) ⊗̂
R
Fnr C := hocolimΣ(RΓHK(XOL,0) ⊗̂

R
FL

C),

where all the maps in the homotopy limit are strict quasi-isomorphisms. This
morphism is then defined as the composition

hocolimΣ(RΓHK(XOL,0) ⊗̂
R

FL
C)

ιHK−−→ hocolimΣ(RΓrig(XOL,0/O
×
L ) ⊗̂

R

L C)
∼
−→ RΓrig(X1/O

×
C )

∼
−→ RΓdR(XC),

where we have used the Hyodo–Kato quasi-isomorphism from (5.14), the sec-
ond map is a strict quasi-isomorphism by base change. So the defined mor-
phism is clearly a strict quasi-isomorphism.

(ii) Globalization. Varying X in the above constructions, we obtain the
Hyodo–Kato maps

ιHK : AHK → Arig, ιHK : AHK → AdR

of sheaves on Sm†
C,ét. For X ∈ Sm†

C , they induce the natural Hyodo–Kato
strict quasi-isomorphisms

ιHK : RΓHK(X) ⊗̂Fnr K
∼
−→ RΓrig,K(X),(5.16)

ιHK : RΓHK(X) ⊗̂
R

Fnr C
∼
−→ RΓdR(X).

30Note that Remark 4.26 applies to this setting.
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Here we set

RΓHK(X) ⊗̂Fnr K := hocolim((RΓHK⊗FnrK)(U•,0)),(5.17)

RΓHK(X) ⊗̂
R

Fnr C := hocolim((RΓHK ⊗̂
R

Fnr C)(U•,0)),

where the homotopy colimit is taken over η-étale hypercoverings from M †,ss,b
C .

We note that

(5.18) RΓrig,K(X) ≃ hocolimRΓrig,K(U•,1).

This is because hocolimRΓrig,K(U•,1) ≃ hocolimRΓrig,K(U•,C), by Proposi-

tion 5.19 below (there is no circular reasoning here) and we have η-étale descent
for RΓrig,K(X). Having (5.18), the first strict quasi-isomorphism in (5.16) fol-

lows from the strict Hyodo–Kato quasi-isomorphism in (5.15). The latter also
imply easily the second strict quasi-isomorphism we wanted.

(iii) Local-global compatibility and comparison results. The Hyodo–Kato
quasi-isomorphisms allow us now to prove the following comparison result
(where the tensor products in (2) and (3) are defined as in (5.17).

Proposition 5.19. (1) Let X ∈ M †,ss,b. Then the natural maps

RΓHK(X1) → RΓHK(XC), RΓrig(X1) → RΓrig(XC),

RΓrig,K(X1) → RΓrig,K(XC)

are strict quasi-isomorphisms.

(2) For X ∈ Sm†
C , we have a natural strict quasi-isomorphism

RΓrig,K(X) ⊗̂
R
K C

∼
−→ RΓrig(X) ≃ RΓdR(X).

(3) For X ∈ Sm†
K , we have a natural strict quasi-isomorphism

RΓdR(X) ⊗̂K K ≃ RΓrig,K(XC).

Proof. The proof is almost verbatim the same as the proof of Proposition 4.22
(which contains analogous claims in the case of rigid analytic varieties), we
just need to replace RΓconv used there with RΓrig. �

Remark 5.20. Much of what we have described above in Section 5.3 goes
through, with minimal changes, for X ∈ SmC . Hence, working with formal
schemes instead of weak formal schemes, we have the geometric Hyodo–Kato

cohomology RΓ†
HK(X). We wrote † to distinguished this cohomology from the

geometric Hyodo–Kato cohomology RΓHK(X) defined in Section 4.3. It is a
dg F nr-algebra equipped with a ϕ-action, derivation N such that Nϕ = pϕN ,
and a continuous action of GK (which is smooth when X is quasi-compact). It
has an arithmetic analogous that satisfies Galois descent of the type described
in Proposition 5.13. We also have the Hyodo–Kato quasi-isomorphism

ιHK : RΓ†
HK(X) ⊗̂Fnr K

∼
−→ RΓrig,K(X),

where the rigid cohomology is defined like its analog for dagger varieties.

If X is quasi-compact, the underlying isocrystal of HiRΓ†
HK(X) should be

the one defined by Le Bras in [28].
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5.4. Arithmetic overconvergent syntomic cohomology. We define now
arithmetic overconvergent syntomic cohomology of smooth dagger varieties
over K by η-étale descent of overconvergent syntomic cohomology of semi-
stable weak formal models.

Let X be an admissible semi-stable weak formal scheme over OL, [L :K]<∞.
For r ≥ 0, we define the overconvergent syntomic cohomology as

(5.21) RΓsyn(X ,Qp(r)) :=
[
[RΓHK(X0)]

N=0,ϕ=pr ιHK−−→ RΓdR(XL)/F
r
]
.

For a smooth dagger space X over K, we define the syntomic cohomology

Asyn(r) as the η-étale sheafification of the above complexes on M ss,†
K ; and we

define the syntomic cohomology of X as

RΓsyn(X,Qp(r)) := RΓét(X,Asyn(r)).

We have the distinguished triangle

(5.22) RΓsyn(X,Qp(r)) → [RΓHK(X)]N=0,ϕ=pr ιHK−−→ RΓdR(X)/F r.

Proposition 5.23 (Local-global compatibility). Let r ≥ 0. Let X be a semi-

stable weak formal scheme over OK . Then the natural map

RΓsyn(X ,Qp(r)) → RΓsyn(XK ,Qp(r))

is a strict quasi-isomorphism.

Proof. Using the presentations of syntomic cohomology from (5.21) and (5.22)
we reduce to proving that the natural map RΓHK(X0) → RΓHK(XK) is a
strict quasi-isomorphism. But this we know to be true by Proposition 5.5. �

5.4.1. Examples. We will discuss a couple of examples.
(i) The closed ball. Let L = K,C. Let XL := Bd

L(ρ) be the overconvergent
closed ball over L of dimension d and radius ρ ∈

√
|L×|. Since H0

dR(XL) ≃
L and Hi

dR(XL) = 0, i > 0, and we have the Hyodo–Kato isomorphism

Hi
HK(XC) ⊗Fnr C ≃ Hi

dR(XC) and the Galois descent Hi
HK(XK)

∼
−→

Hi
HK(XC)

GK , we get

Hi
HK(B

d
L(ρ)) ≃

{
FL if i = 0,

0 if i ≥ 1,

where FC = F nr and FK = F .
From the exact sequence (5.10), we get

H0([RΓHK(XK)]N=0,ϕ=1)
∼
−→ H0

HK(XK)N=0,ϕ=1,

H0
HK(XK)ϕ=1 ∼

−→ H1([RΓHK(XK)]N=0,ϕ=p).

Hence, by the above,

Hi([RΓHK(B
d
K(ρ))]N=0,ϕ=pi

) ≃

{
Qp if i = 0, 1,

0 if i ≥ 2.
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Let r ≥ 0. By the triviality, in nonzero degrees, of the cohomology of
coherent sheaves on Bd

K(ρ), we have

RΓdR(XK)/F r ≃ O(XK) → Ω(XK) → · · · → Ωr−1(XK).

Hence Hi(RΓdR(XK)/F r) = 0, for i ≥ r, and

Hr−1(RΓdR(XK)/F r)
∼
←− Ωr−1(XK)/ im dr−2 ≃ Ωr(XK)d=0.

From the definition of syntomic cohomology and the above computations, we
get the long exact sequence

Hr−1([RΓHK(XK)]N=0,ϕ=pr

) → Ωr−1(XK)/ im dr−2

→ Hr
syn(XK ,Qp(r)) → Hr([RΓHK(XK)]N=0,ϕ=pr

) → 0

Hence

Hr
syn(B

d
K(ρ),Qp(r)) ≃

{
Qp if r = 0,

Ωr−1(Bd
K(ρ))/ im dr−2 if r ≥ 2,

and, for r = 1, we get an extension

0 → O(Bd
K(ρ)) → H1

syn((B
d
K(ρ),Qp(1)) → Qp → 0.

(ii) The open ball. Let L = K,C. Let B
o,d
L (ρ) be the overconvergent open

ball over L of dimension d and radius ρ. Cover B
o,d
L (ρ) with an increasing

union of overconvergent closed balls {Un}n∈N. By the above example, we have

Hi
HK(B

o,d
L (ρ)) ≃ lim

←−n
Hi

HK(Un). Hence

Hi
HK(B

o,d
L (ρ)) ≃

{
FL if i = 0,

0 if i > 0.

The rest of the computations is exactly the same as for the closed ball in the

first example (note that B
o,d
K (ρ) is Stein) yielding the same final formulas for

Hr
syn((B

o,d
K (ρ),Qp(r)) (with B

o,d
K (ρ) in the place of Bd

K(ρ)).

6. Comparison of overconvergent and rigid analytic arithmetic
syntomic cohomology

We define a map from syntomic cohomology of a smooth dagger variety
to syntomic cohomology of its completion. We show that it is a strict quasi-
isomorphism when the variety is partially proper.

6.1. Construction of the comparison morphism. Let X be a smooth
dagger space over K. We will now construct a functorial map

ι : RΓsyn(X,Qp(r)) → RΓsyn(X̂,Qp(r))

from the syntomic cohomology of X to the syntomic cohomology of its com-

pletion X̂. This will be done by first constructing a map ι1 to the Bloch–Kato
syntomic cohomology from Section 4.4:

ι1 : RΓsyn(X,Qp(r)) → RΓBK
syn(X̂,Qp(r)),
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and then setting ι := ι2ι1, for the map ι2 : RΓ
BK
syn(X̂,Qp(r)) ≃ RΓsyn(X̂,Qp(r))

that was defined in Proposition 4.29.
(i) Local definition. Let X be a semi-stable weak formal scheme of finite

type over OK . First, we define a functorial morphism

ι1 : RΓsyn(X ,Qp(r)) =
[
[RΓrig(X0/O

0
F )]

ϕ=pr ιHK−−→ RΓdR(XK)/F r
]

(6.1)

→
[
[RΓcr(X0/O

0
F )F ]

N=0,ϕ=pr ι′HK−−→ RΓdR(X̂K)/F r
]
.

We use for that the following diagram (we note that all the terms in the first
two columns carry a monodromy operator and that all the maps between these
terms are compatible with the monodromy action)
(6.2)

[RΓrig(X0/O0
F
)]ϕ=pr

��

ιHK

))❘
❘❘

❘❘
❘❘

❘❘
❘❘

❘❘
❘

ιHK

((
[RΓrig(X 0/r

†
F
)]ϕ=pr

p0 ≀

OO

f1

��

pp

∼
// RΓrig(X0/O

×
F
)

��

// RΓrig(X0/O
×
K
)

��

RΓdR(XK)

��

∼
oo

[RΓrig(X0/r
†
F
)]ϕ=pr

p0

@@

pp

55❧❧❧❧❧❧❧❧❧❧❧❧❧

��

RΓconv(X0/O
×
F
) //

≀

��

RΓconv(X0/O
×
K
) RΓdR(X̂K)

∼
oo

[RΓcr(X0/rPD
F )Qp

]ϕ=pr

p0 ≀

��

pp
// RΓcr(X0/O

×
F
)F

[RΓcr(X0/O0
F
)F ]ϕ=pr .

ι′HK

::

The maps p0, pp are defined by sending T to 0, p, respectively. The top tri-
angle defines the overconvergent Hyodo–Kato morphism ιHK as explained in
Remark 5.3, where it is also shown that the maps p0, pp from X 0 commute
with the ones from X0. The strict quasi-isomorphism between crystalline and
convergent cohomology holds because X0 is log-smooth over k0. The morphism
between de Rham cohomologies is compatible with Hodge filtrations.

(ii) Globalization. We define the functorial map

ι1 : RΓsyn(X,Qp(r)) → RΓBK
syn(X̂,Qp(r))

by lifting the map (6.1) via η-étale descent.

6.2. A comparison result. We are now ready to prove our main comparison
theorem:

Theorem 6.3. Let X be a partially proper dagger space over K. The map

ι : RΓsyn(X,Qp(r)) → RΓsyn(X̂,Qp(r))

is a strict quasi-isomorphism.
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Proof. By the construction of the maps ι1, ι2, it suffices to show that the
canonical maps

RΓdR(X) → RΓdR(X̂), [RΓHK(X)]ϕ=pr

→ [RΓHK(X̂)]ϕ=pr

are (filtered) strict quasi-isomorphisms. The first map is an isomorphism in-
duced by the canonical identification of coherent cohomology of a partially
proper dagger variety and its rigid analytic avatar [20, Th. 2.26]. For the
second map, we will show that already the canonical map

(6.4) RΓHK(X) → RΓHK(X̂)

is a strict quasi-isomorphism. Our strategy is to pass to the geometric situ-
ation, where we can use the Hyodo–Kato isomorphisms to reduce to the de
Rham cohomology. The main difficulty in this approach lies in showing the
compatibility of the overconvergent and rigid analytic Hyodo–Kato isomor-
phisms.

(i) Passage to de Rham cohomology. We start with the passage to the
geometric cohomologies. Since we have compatible strict quasi-isomorphisms
(see Propositions 4.25 and 5.13)

RΓHK(X)
∼
−→ RΓHK(XC)

GK , RΓHK(X̂)
∼
−→ RΓHK(X̂C)

GK ,

to show that the map (6.4) is a strict quasi-isomorphism, it suffices to show
that so is the canonical map

(6.5) RΓHK(XC) → RΓHK(X̂C).

Remark 6.6. Now, if we were to argue in analogy with the algebraic situation,
we would use the following approach:

(1) We will prove the commutativity of the diagram

RΓHK(XC) ⊗̂
R

Fnr C //

ιHK≀
��

RΓHK(X̂C) ⊗̂
R

Fnr C

ιHK≀
��

RΓdR(XC)
∼ // RΓdR(X̂C).

This is not an easy task, since the constructions of the rigid and the crystalline
Hyodo–Kato maps are very different.

(2) The vertical arrows are the Hyodo–Kato quasi-isomorphisms (4.19) and
(5.16), and the bottom arrow is a strict quasi-isomorphism because XC is
partially proper. Hence the top arrow is a strict quasi-isomorphism. The
problem is that we do not know how to show that this implies the same for the
map (6.5). So, below, we use instead the K-Hyodo–Kato quasi-isomorphisms.
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Consider the diagram

(6.7) RΓHK(XC) //

can
��

RΓHK(X̂C)

can
��

RΓHK(XC) ⊗̂Fnr K
β

//

ιHK≀
��

α

EE

RΓHK(X̂C) ⊗̂Fnr K

ιHK≀
��

α̂

EE

RΓrig,K(XC)
β′

∼
// RΓconv,K(X̂C)

RΓdR(X) ⊗̂K K
∼ //

≀

OO

RΓdR(X̂) ⊗̂K K.

≀

OO

The maps α, α̂ are the normalized trace maps, natural left inverses of the
canonical vertical maps. The top squares (the dotted and the non-dotted one)
commute. The bottom square clearly commutes. Its vertical maps are strict
quasi-isomorrphisms by Proposition 4.22 and Proposition 5.19. The bottom
map is a strict quasi-isomorphism becauseX is partially proper. It follows that
the map β′ is a strict quasi-isomorphism. We will show below that the middle
square commutes on the level of (H̃-)cohomology. This will imply that the
map β is a cohomological isomorphism. This in turn will imply immediately
that the map (6.5) is injective on cohomology level; we get its cohomological
surjectivity by using the maps α, α̂.

(ii) Comparison of Hyodo–Kato quasi-isomorphisms. Hence, it remains to
show that the middle square in the above diagram commutes on cohomology
level, or that the following diagram commutes:

(6.8) H̃i(RΓHK(XC) ⊗̂Fnr K) //

ιHK≀
��

H̃i(RΓHK(X̂C) ⊗̂Fnr K)

ιHK≀
��

H̃i
rig,K

(XC)
∼ // H̃i

conv,K
(X̂C).

We claim that we can assume that X is quasi-compact and argue just on
the level of classical cohomology. Indeed, write X as an increasing union of
quasi-compact open sets {Un}, n ≥ 0. Then we have

RΓHK(XC) ⊗̂Fnr K ≃ holimn(RΓHK(Un,C)⊗Fnr K).

This yields the exact sequence

0 → H1 holimn(H̃
i−1
HK (Un,C)⊗Fnr K) → H̃i(RΓHK(XC) ⊗̂Fnr K)

→ H0 holimn(H̃
i
HK(Un,C)⊗Fnr K) → 0.

By Proposition 5.12, the cohomology H̃i
HK(Un,C) is classical and finite rank

over F nr. This implies that the cohomology H̃i(RΓHK(XC) ⊗̂Fnr K) is classical
as well and

Hi(RΓHK(XC) ⊗̂Fnr K)
∼
−→ H0 holimn(H

i
HK(Un,C)⊗Fnr K).
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Similarly, we can show that the cohomology H̃i
conv,K

(X̂C) is classical and we
have

Hi
conv,K

(X̂C)
∼
−→ H0 holimn H

i
conv,K

(Ûn,C).

Indeed, arguing as above we get the exact sequence

0 → H1 holimn H̃
i−1

conv,K
(Ûn,C) → H̃i

conv,K
(X̂C)(6.9)

→ H0 holimn H̃
i
conv,K

(Ûn,C) → 0.

We note that the prosystems {H̃i
conv,K

(Ûn,C)}n∈N and {H̃i
rig,K

(Un,C)}n∈N are

equivalent. This follows from the commutative diagram of prosystems

{H̃i
conv,K

(Ûn,C)}n∈N
∼ // {H̃i

conv,K
(Uo

n,C)}n∈N

{H̃i
rig,K

(Un,C)}n∈N

OO

∼ // {H̃i
rig,K

(Uo,†
n,C)}n∈N.

≀

OO

Here Uo,† denotes the rigid analytic space Uo, the interior of U , equipped with
its canonical overconvergent structure. The horizontal equivalences are clear.
The right vertical map is an isomorphism degree by degree because Uo,† is
partially proper. This implies that the left vertical map is a an equivalence, as
wanted.

Now, the cohomology H̃i
rig,K(Un,C) is classical and finite rank over K (it is

strictly quasi-isomorphic to Hi
dR(Un) ⊗K K by Proposition 5.19). Hence the

term H1 holimn in the exact sequence (6.9) vanishes and we get our claim.
So, from now on,X is quasi-compact and we will show that the diagram (6.8)

commutes on the level of classical cohomology. We have

Hi(RΓHK(XC) ⊗̂Fnr K) ≃ Hi
HK(XC)⊗Fnr K ,

Hi(RΓHK(X̂C) ⊗̂Fnr K) ≃ Hi
HK(X̂C)⊗Fnr K .

Hence, we are reduced to showing that, for a quasi-compact X ∈ SmK , the
following diagram commutes:

(6.10) Hi
HK(XC) //

ιHK

��

Hi
HK(X̂C)

ιHK

��

Hi
rig,K

(XC) // Hi
conv,K

(X̂C).
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Assume first that X has an admissible semi-stable weak formal model X over
OL, [L : K] < ∞, and consider the diagram

(6.11) RΓrig(X0/O0
FL

)

��

ιHK

))❘
❘❘

❘❘
❘❘

❘❘
❘❘

❘❘
❘

RΓrig(X 0/r
†
L)

p0 ≀

OO

f1

��

pp
// RΓrig(X0/O

×
FL

)

��

RΓrig(X0/r
†
L)

p0

88

pp

66❧❧❧❧❧❧❧❧❧❧❧❧❧

��

RΓconv(X0/O
×
FL

)

≀

��

RΓcr(X0/O
0
FL

)Qp

ιHK

33

s

$$

RΓcr(X0/r
PD
L )Qpp0

oo
pp

// RΓcr(X0/O
×
FL

)Qp
.

If we remove the section s (and hence also the bottom map ιHK), the above
diagram commutes. For a general quasi-compact and smooth X , take first
a homotopy colimit of the above diagram (over L) and then glue by η-étale
descent. We obtain the following diagram:

(6.12) RΓHK(XC)

��

ιHK

((❘
❘❘

❘❘
❘❘

❘❘
❘❘

❘❘

RΓrig(XC/r
†)

p0 ≀

OO

f1

��

pp

∼
// RΓrig(XC/O

×
F )

��

RΓrig(XC/r
†)

p0

77

pp

66♠♠♠♠♠♠♠♠♠♠♠♠♠

��

RΓconv(X̂C/O
×
F )

≀

��

RΓHK(X̂C)

ιHK

44

s

!!

RΓPD(X̂C)p0

oo
pp

// RΓcr(X̂C/O
×
F ).

The notation should be mostly self-explanatory: the cohomology complexes are
defined by the homotopy colimit and the étale descent from the corresponding
complexes in the diagram (6.11) following the procedure used in Section 5.3.1.
The groups in the right column are F nr-modules.

If we remove the section s, the above diagram commutes. To prove that
the diagram (6.10) commutes, by the diagram (6.2), it suffices to show that
so does, on the level of classical cohomology, the large round triangle,31 in the
diagram (6.12). For that, we note that we have the isomorphism

(6.13) s : Hi
HK(X̂C) ⊗̂Fnr rPD

K,Qp

∼
−→ Hi

PD(X̂C).

31That is, the round triangle with vertices RΓHK(XC), RΓHK(X̂C), and RΓPD(X̂C ).
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If X̂ has a quasi-compact semi-stable formal model X over OL, this arises
from the pN -quasi-isomorphism, N = N(d), (see (4.8))

s : RΓcr(X0/O
0
FL

) ⊗̂OFL
rPD
L → RΓcr(X0/r

PD
L )

and the fact that RΓcr(X0/O
0
FL

) ⊗̂OFL
rPD
L is p-adically derived complete and

rPD
L,n is free over OFL,n. For a general quasi-compact and smooth X̂ over K,

the above argument goes through yielding the isomorphism (6.13), as wanted.
Now, to show that the round triangle in the diagram (6.12) commutes,

consider the ideal

In :=
{ ∑

i≥pn

ai

⌊i/e⌋!T
i, lim

i7→∞
ai = 0

}
.

We have the exact sequence

0 → I0 → rPD
K,Qp

→ F nr → 0.

The F nr-linear and Frobenius equivariant section s : Hi
HK(X̂C) → Hi

PD(X̂C)
of the projection p0 satisfies

s(a) = ϕnϕ̃−n(a) mod Hi
HK(X̂C) ⊗̂Fnr In, a ∈ Hi

HK(X̂), n ≥ 0,

where b̃, for b ∈ Hi
HK(X̂C), is a lifting of b via p0. This is because, for

any a ∈ Hi
HK(X̂C), we have s(a) = ϕns(ϕ−n(a)) and s(a) = ϕnϕ̃−n(a)

mod Hi
HK(X̂C) ⊗̂Fnr I0. And we also have ϕn(I0) ⊂ In.

Hence, to show that the round triangle in the diagram (6.12) commutes, it

suffices to show that the intersection of the submodules Hi
HK(X̂C) ⊗̂Fnr In,

n ≥ 0, is trivial. But this is clear. �

6.3. Overconvergent syntomic cohomology via presentations of dag-

ger structures. In this section we introduce a definition of overconvergent
syntomic cohomology using presentations of dagger structures (see [42, Appen-
dix], Section 3.2.1). We show that so defined syntomic cohomology, a priori
different from the one defined in Section 5.4, is strictly quasi-isomorphic to it.

(i) Local definition. Let X be a dagger affinoid over L = K,C. Let
pres(X) = {Xh}. Define

RΓ†
syn(X,Qp(r)) := hocolimh RΓsyn(Xh,Qp(r)), r ∈ N.

Let L = K. We have a natural map

(6.14) ι†syn : RΓ
†
syn(X,Qp(r)) → RΓsyn(X,Qp(r))

defined as the composition

RΓ†
syn(X,Qp(r)) = hocolimhRΓsyn(Xh,Qp(r))(6.15)

∼
−→ hocolimh RΓsyn(X

0
h,Qp(r))

∼
←− hocolimh RΓsyn(X

0,†
h ,Qp(r)) → RΓsyn(X,Qp(r)).

The third quasi-isomorphism holds by Theorem 6.3 because X0
h is partially

proper.
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(ii) Globalization. For a general smooth dagger variety X over L, using the
natural equivalence of analytic topoi

Sh(SmAff†
L,ét)

∼
−→ Sh(Sm†

L,ét),

we define the sheaf A †
syn(r), r ∈ N, on Xét as the sheaf associated to the

presheaf defined by U 7→ RΓ†
syn(U,Qp(r)), U ∈ SmAff†

L, U → X an étale map.

We define32

RΓ†
syn(X,Qp(r)) := RΓét(X,A †

syn(r)), r ∈ N.

Globalizing the map ι†syn from (6.14), we obtain a natural map

ι†syn : RΓ
†
syn(X,Qp(r)) → RΓsyn(X,Qp(r)).

(iii) A comparison quasi-isomorphism.

Proposition 6.16. The above map ι†syn is a strict quasi-isomorphism.

Proof. By étale descent, we may assume that X is a smooth dagger affinoid.
Looking at the composition (6.15) defining the map ι†syn, we see that it suffices
to show that the natural map

hocolimhRΓsyn(X
o,†
h ,Qp(r)) → RΓsyn(X,Qp(r))

is a strict quasi-isomorphism. Or, from the definitions of both sides, that we
have strict quasi-isomorphisms

RΓHK(X)
∼
←− hocolimh RΓHK(X

o,†
h ), RΓdR(X)

∼
←− hocolimh RΓdR(X

o,†
h ).

This is clear in the case of the second map, since this map factors as

hocolimh RΓdR(X
o,†
h )

∼
−→ hocolimh RΓdR(Xh+1)

∼
−→ RΓdR(X).

For the first map consider the commutative diagram

RΓHK(X)

≀
��

hocolimh RΓHK(X
o,†
h )oo

≀
��

RΓHK(XC)
GK hocolimh RΓHK(X

o,†
h,C)

GKoo ∼ // (hocolimhRΓHK(X
o,†
h,C))

GK .

Here the vertical maps are strict quasi-isomorphisms by Proposition 5.13.
The horizontal map is a strict quasi-isomorphism because the prosystems

{RΓHK(X
o,†
h,C)} and {RΓHK(Xh,C)} are equivalent and the action of GK on

the terms of the last one is smooth. It suffices thus to show that the natural
map

RΓHK(XC) ← hocolimh RΓHK(X
o,†
h,C)

32We will show below (see Remark 6.17) that this definition of RΓ†
syn(X,Qp(r)), for a

smooth dagger affinoid X, gives an object naturally strictly quasi-isomorphic to the one
defined above.
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is a strict quasi-isomorphism. For that consider the following diagram:

RΓHK(XC) //

��

hocolimh RΓHK(X
o,†
h,C)

��

RΓHK(XC) ⊗̂Fnr K

≀ιHK

��

α

EE

hocolimh RΓHK(X
o,†
h,C) ⊗̂Fnr K

f1oo

≀ιHK

��

hocolimh αh

GG

RΓrig,K(XC) hocolimh RΓrig,K(Xo,†
h,C)

f2oo

RΓdR(X) ⊗̂K K

≀ β

OO

hocolimh RΓdR(X
o,†
h ) ⊗̂K K

f3oo

≀ hocolimh βh

OO

(hocolimh RΓdR(Xh))⊗K K
∼

γ
//

≀

OO

hocolimh RΓdR(Xh)⊗K K.

≀

OO

The maps α, αh are left inverses of the canonical vertical maps (used already in
the diagram (6.7)). The Hyodo–Kato morphisms are the ones from (5.16); they
are strict quasi-isomorphisms. The maps β, βh are those from Proposition 5.19;
they are strict quasi-isomorphisms as well. The diagram clearly commutes.
The strict quasi-isomorphism γ uses the fact that Xh is quasi-compact. It
follows that the map f3 is a quasi-isomorphism and then that so is the map f1
and, finally, that so is the top horizontal map, as wanted. �

Remark 6.17. The above proof shows that, for a smooth dagger affinoid X
over K with a dagger presentation {Xh}, the natural map

hocolimh RΓsyn(Xh,Qp(r)) → RΓét(X,A †
syn(r))

is a strict quasi-isomorphism. Hence the two definitions of RΓ†
syn(X,Qp(r))

that we gave above coincide.

7. Arithmetic p-adic pro-étale cohomology

We pass now to the computation of arithmetic p-adic pro-étale cohomology
of smooth dagger and rigid analytic varieties.

7.1. Syntomic period isomorphisms. First, we will use the comparison
theorem between syntomic complexes and p-adic nearby cycles from [10] to
define period maps for smooth rigid analytic and dagger varieties.

Let X be a semi-stable formal model over OK . Recall that Fontaine–
Messing [19] and Kato [26] have constructed period morphisms

αFM
r,n : Sn(r)X → i∗Rj∗Z/p

n(r)′XK
, r ≥ 0

(i : X0 →֒ X , j : XK →֒ X ), from syntomic cohomology to p-adic nearby
cycles taken as complexes of sheaves on the étale site of X0. Here we set
Zp(r)

′ := 1
pa(r)Zp(r), for r = (p − 1)a(r) + b(r), 0 ≤ b(r) ≤ p − 1. The
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syntomic sheaf Sn(r) is associated to the presheaf U 7→ RΓsyn(U ,Z/pn(r)),
for formally étale U → X .

Recall the following comparison result.

Theorem 7.1 ([10, Th. 1.1]). For 0 ≤ i ≤ r, consider the period map

(7.2) αFM
r,n : H i(Sn(r)X ) → i∗Rij∗Z/p

n(r)′XK
.

(i) If K has enough roots of unity,33 then the kernel and cokernel of this

map are annihilated by pNr+cp for a universal constant N (not depending on

p, X , K, n or r) and a constant cp depending only on p (and d if p = 2).
(ii) In general, the kernel and cokernel of this map are annihilated by pN

for an integer N = N(e, p, r), which depends on e, r, but not on X or n.

7.1.1. Rigid analytic varieties. The above comparison quasi-isomorphism glob-
alizes easily to smooth rigid analytic varieties:

Corollary 7.3. For X ∈ SmL, L = K,C, the period maps

αr : RΓsyn(X,Zp(r))Qp
→ RΓét(X,Qp(r)),

αr : RΓsyn(X,Qp(r)) → RΓproét(X,Qp(r))

are strict quasi-isomorphisms after truncation τ≤r.

Proof. Since both the domain and the target of the period maps satisfy η-étale
descent, we may assume that X has a semi-stable model over OK . But in that
case this follows from Theorem 7.1 as in analogous claims in the geometric
setting in [9, Prop. 6.1, Cor. 3.46]. �

7.1.2. Dagger varieties. The comparison quasi-isomorphism (7.2) can also be

extended to smooth dagger varieties. Let X ∈ Sm†
K , r ≥ 0. Define the period

map

(7.4) αr : RΓsyn(X,Qp(r)) → RΓproét(X,Qp(r))

as the composition

RΓsyn(X,Qp(r))
∼
←− RΓ†

syn(X,Qp(r))
α†

r−−→ RΓproét(X,Qp(r)),

where the first map is the map ι†syn from Proposition 6.16 and the second map
is defined by globalizing the following map defined for X a dagger affinoid with
presentation {Xh}:

RΓ†
syn(X,Qp(r)) = hocolimh RΓsyn(Xh,Qp(r))

αr��

hocolimh RΓproét(Xh,Qp(r)) ≃ RΓproét(X,Qp(r)).

Corollary 7.3 implies immediately the following result.

33See [10, Section 2.2.1] for what it means for a field to contain enough roots of unity.
For any K, the field K(ζpn ), for n ≥ c(K) + 3, where c(K) is the conductor of K, contains

enough roots of unity.
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Corollary 7.5. For X ∈ Sm†
K , the period map

αr : RΓsyn(X,Qp(r)) → RΓproét(X,Qp(r))

is a strict quasi-isomorphism after truncation τ≤r.

Remark 7.6. Let X be a smooth partially proper dagger variety over K. We
claim that the following diagram commutes:

RΓsyn(X,Qp(r))
αr //

≀ι
��

RΓproét(X,Qp(r))

≀ιproét
��

RΓsyn(X̂,Qp(r))
α̂r // RΓproét(X̂,Qp(r)).

The map ι is the strict quasi-isomorphism from Theorem 6.3; the map ιproét is
the strict quasi-isomorphism from Proposition 3.16. The period maps α̂r, αr

are the ones defined above (we put hat above the rigid analytic period map to
distinguish it from the dagger period map).

It suffices to show that this diagram naturally commutes étale locally. So we
may assume that X is a smooth dagger affinoid. Then checking commutativity
is straight-forward from the definitions (if tedious).

7.2. Applications and Examples. We are now ready to list some applica-
tions of our computations and to discuss some examples of computations of
p-adic pro-étale cohomology.

7.2.1. Rigid analytic varieties. We start with the rigid analytic case. Let X ∈
SmK , r ≥ 0. The distinguished triangle (4.2), Lemma 4.5, and the period map
αr above yield a natural map

∂r : (RΓdR(X)/F r)[−1] → RΓproét(X,Qp(r)).

Theorem 7.7. Let X ∈ SmK , r ≥ 1.

(1) For 1 ≤ i ≤ r − 1, the map

∂r : H̃
i−1
dR (X) → H̃i

proét(X,Qp(r))

is an isomorphism. In particular, the cohomology H̃i
proét(X,Qp(r)) is

not, in general, classical.

(2) We have the short exact sequence

0 → H̃r−1(RΓdR(X)/F r)
∂r−→ H̃r

proét(X,Qp(r))

→ H̃r([RΓHK(X)]N=0,ϕ=pr

) → H̃r(RΓdR(X)/F r).

Proof. Corollary 7.3 allows us to pass (by the period map) to syntomic coho-

mology for which we have an analogous claim, with H̃r
ét(X,A ϕ=pr

cr,Qp
) in place of

H̃r([RΓHK(X)]N=0,ϕ=pr

), by Corollary 4.7. That the latter two are isomorphic
follows from diagram (4.31). �
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7.2.2. Dagger varieties. Now we pass to the overconvergent case.

Let X ∈ Sm†
K , r ≥ 0. The distinguished triangle (5.22) and the period

map αr from (7.4) yield a natural map

∂r : (RΓdR(X)/F r)[−1] → RΓproét(X,Qp(r)).

Theorem 7.8. Let X ∈ Sm†
K , r ≥ 1.

(1) For 1 ≤ i ≤ r − 1, the map

∂r : H̃
i−1
dR (X) → H̃i

proét(X,Qp(r))

is an isomorphism. In particular, the cohomology H̃i
proét(X,Qp(r)) is

classical.

(2) We have the long exact sequence

0 → H̃r−1(RΓdR(X)/F r)
∂r−→ H̃r

proét(X,Qp(r))

→ H̃r([RΓHK(X)]N=0,ϕ=pr

)
ιHK−−→ H̃r(RΓdR(X)/F r).

Proof. For i ≤ r, from the definition of syntomic cohomology and Corollary 7.5,
we get the long exact sequence

· · · → H̃i−1(RΓdR(X)/F r) → H̃i
proét(X,Qp(r))

→ H̃i([RΓHK(X)]N=0,ϕ=pr

) → H̃i(RΓdR(X)/F r) → · · · .

For the first claim of the theorem, it suffices to show that, for i ≤ r − 1,

H̃i([RΓHK(X)]N=0,ϕ=pr

) = 0 and H̃i−1
dR (X)

∼
−→ H̃i−1(RΓdR(X)/F r). The

second isomorphism is clear and the first one follows from Proposition 5.9.
For the second claim of the theorem, we note that the injectivity on the left is

implied by the fact that H̃r−1([RΓHK(X)]N=0,ϕ=pr

) = 0 (see Proposition 5.9).
The proof is complete. �

7.2.3. Overconvergent balls. Let X be the overconvergent open or closed ball
over K of dimension d ≥ 0 and radius ρ ∈

√
|K×|. Using Corollary 7.5 and

Example 5.4.1, we get

Hr
proét(X,Qp(r)) ≃

{
Qp if r = 0,

Ωr−1(X)/ kerdr−1 ≃ Ωr(X)d=0 if r ≥ 2,

and, for r = 1, we get a strict exact sequence

0 → O(X) → H1
proét(X,Qp(1)) → Qp → 0.

For comparison, recall that, for the geometric pro-étale cohomology, we have
a topological isomorphism [11]

Ωr−1(XC)/ kerdr−1
∼
−→ Hr

proét(XC ,Qp(r)), r ≥ 1.

Münster Journal of Mathematics Vol. 13 (2020), 445–507



502 P. Colmez and W. Nizio l

7.2.4. Proper smooth rigid analytic varieties. LetX be a proper smooth dagger
variety over K (recall that every smooth proper rigid analytic variety over K
has a canonical dagger structure). For r ≥ 1, Theorem 7.8 and Section 4.1.1
imply that the cohomology Hi

proét(X,Qp(r)) is classical for i ≤ r and, since
Hi

proét(X,Qp(r)) ≃ Hi
ét(X,Qp(r)) because X is proper, we have

Hi−1
dR (X) ≃ Hi

ét(X,Qp(r)), 1 ≤ i ≤ r − 1,

and we have a strict exact sequence

0 → Hr−1
dR (X) → Hr

ét(X,Qp(r)) → E(r) → 0,

where E(r) is an extension

0 → Hr−1
HK (X)ϕ=pr−1

→ E(r) → Hr
HK(X)N=0,ϕ=pr

∩ Ωr(X) → 0.

7.2.5. The Drinfeld half-space. Let d ≥ 1 and let Hd
K be the Drinfeld half-space

of dimension d, i.e.,

Hd
K := Pd

K \
⋃

H∈H

H,

where H denotes the set of K-rational hyperplanes. We set G := GLd+1(K).
For 1 ≤ r ≤ d, denote by Spr(Qp) the generalized locally constant Steinberg
Qp-representation of G equipped with a trivial action of GK (for a definition
see [9, Section 5.2.1]).

Corollary 7.9. (1) For 0 ≤ i ≤ r, the cohomology H̃i
proét(H

d
K ,Qp(r)) is

classical.

(2) For i ≤ r−1, there is a natural G-equivariant topological isomorphism

Hi
proét(H

d
K ,Qp(r)) ≃ Spi−1(K)∗.

(3) We have a G-equivariant diagram of strict exact sequences

0

��

Spr−1(Qp)
∗

��

0 // Ωr−1(Hd
K)/ im dr−2

// Hr
proét(H

d
K ,Qp(r)) // E(Qp) //

��

0.

Spr(Qp)
∗

��

0

Proof. Point (2) follows from Theorem 7.8 and the isomorphism H̃i
dR(H

d
K) ≃

Spi(K)∗ of Schneider–Stuhler [36].
For point (3), since Hd

K is Stein, by Section 4.1.1, we have

H̃r−1(RΓdR(H
d
K)/F r) ≃ Ωr−1(Hd

K)/ imdr−2, H̃r(RΓdR(H
d
K)/F r) ≃ 0.
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On the other hand, from (5.10), we get an exact sequence

0 → H̃r−1
HK (Hd

K)ϕ=pr−1

→ H̃r([RΓHK(H
d
K)]N=0,ϕ=pr

)(7.10)

→ H̃r
HK(H

d
K)N=0,ϕ=pr

→ 0,

where all the cohomologies are classical. But, by [9, Lem. 5.11], we have a
G-equivariant isomorphism H̃i

HK(H
d
K)ϕ=pi

≃ Spi(Qp)
∗. Since the monodromy

is trivial (see [9, Section 5.5]), (7.10) then yields an exact sequence

0 → Spr−1(Qp)
∗ → H̃r([RΓHK(H

d
K)]N=0,ϕ=pr

) → Spr(Qp)
∗ → 0.

Plugging the above computations into Theorem 7.8 and setting

E(Qp) := Hr([RΓHK(H
d
K)]N=0,ϕ=pr

),

we get point (2).
Point (1) follows now trivially from points (2) and (3). �

Remark 7.11. (1) We note that we have the strict exact sequence

0 → Hr−1
dR (Hd

K) → Ωr−1(Hd
K)/ imdr−2

dr−1
−−−→ Ωr(Hd

K)d=0 → Hr
dR(H

d
K) → 0

and that the two de Rham cohomology terms are topologically isomor-
phic to Spr−1(K)∗ and Spr(K)∗, respectively.

(2) It would be interesting to understand the computations in this ex-
ample better. In particular, to describe the extensions of Steinberg
representations that appear.

Remark 7.12. It is interesting to link the computation of the arithmetic coho-
mology Hi

proét(H
d
K ,Qp(r)) presented here to the computation of the geometric

cohomology Hi
proét(H

d
C ,Qp(r)) done in [9, Th. 5.15]. The following argument

would need to be made more precise but it shows that the two computations,
the arithmetic and the geometric one, are compatible.

We have the Hochschild–Serre spectral sequence

(7.13) Hn(GK , Hi−n
proét(H

d
C ,Qp(r))) =⇒ Hi

proét(H
d
K ,Qp(r))

(Only n = 0, 1, 2 can possibly give a nonzero contribution.) Now, the exact
sequence from [9, Th. 5.15] twisted by (j − k), yields an exact sequence of
GK ×G-modules

0 → C(j − k)⊗̂K(Ωk−1(Hd
K)/ kerdk−1) → Hk

proét(H
d
C ,Qp(j))

→ Spk(Qp)
∗(j − k) → 0.

Hence the computation of Hn(GK , Hi−n
proét(HC ,Qp(r))) will involve the groups

Hn(GK ,Qp(r − i+ n)) and Hn(GK , C(r − i+ n)).
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Recall the following results of Tate and Bloch–Kato:

H0(GK ,Qp(j)) ≃

{
Qp if j = 0,

0 if j ≥ 1,
(7.14)

H1(GK ,Qp(j)) ≃

{
K ⊕Qp if j = 1,

K if j ≥ 2,

H2(GK ,Qp(j)) = 0 if j ≥ 2,

H0(GK , C(j)) ≃

{
K if j = 0,

0 if j ≥ 1,

H1(GK , C(j)) ≃

{
K if j = 0,

0 if j ≥ 1,

H2(GK , C(j)) = 0 if j ≥ 0.

Using them, we see that the nonzero terms of the spectral sequence (7.13)
contributing to Hi

proét(H
d
K ,Qp(r)), i ≤ r, are the following: if i = r, we have

an exact sequence

0 → Ωi−1(Hd
K)/ ker di−1 → H0(GK , Hi

proét(H
d
C ,Qp(r))) → Spi(Qp)

∗ → 0,

and we have isomorphisms

H1(GK , Hi−1
proét(HC ,Qp(r))) ≃ (K ⊕Qp)⊗Qp

Spi−1(Qp)
∗ if i = r,

H1(GK , Hi−1
proét(HC ,Qp(r))) ≃ K ⊗Qp

Spi−1(Qp)
∗ ≃ Spi−1(K)∗ if i ≤ r − 1.

The above sequence is exact though (7.14) is not enough to ensure the surjec-
tivity of the map H0(GK , Hi

proét(H
d
C ,Qp(r))) → Spi(Qp)

∗. It yields however
the exact sequence

H0(GK , Hi
proét(H

d
C ,Qp(r))) → Spi(Qp)

∗ ∂
−→ Ωi−1(Hd

K)/ ker di−1.

Now the boundary map ∂ is trivial by a representation theory argument: the
map ∂ is continuous and G-equivariant, the G-smooth vectors are dense in
Spi(Qp)

∗, but Ωi−1(Hd
K)/ ker di−1 does not have any nonzero G-smooth ele-

ments, since it injects into Ωi(Hd
K).

Hence, for 0 ≤ i ≤ r − 1, we get Hi
proét(H

d
K ,Qp(r)) ≃ Spi−1(K)∗ as in

Corollary 7.9. For i = r, we get the diagram of exact sequences

0
��

Ωr−1(Hd
K)/ ker dr−1

��

0 //

Spr−1(K)∗

⊕
Spr−1(Qp)

∗

// Hr
proét(H

d
K ,Qp(r)) // H0(GK , Hr

proét(H
d
C ,Qp(r))) //

��

0.

Spr(Qp)
∗

��

0
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To compare this with Corollary 7.9, note that we have an exact sequence

0 → Hi−1
dR (Hd

K) → Ωi−1(Hd
K)/im di−2 → Ωi−1(Hd

K)/ ker di−1 → 0

and the Schneider–Stuhler isomorphism

Hi−1
dR (Hd

K) ∼= Spi−1(K)∗.

Hence Corollary 7.9 and the above computation via Galois descent give us
the same Jordan–Hölder components of Hr

proét(H
d
K ,Qp(r)) but they are put

together in two different ways.
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