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Tag der Promotion: 15.06.2009



Contents

1 Introduction 1
1.1 Electronic and vibronic states of the Buckminster Fullerene . . . . . . 2

1.1.1 Fullerite . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.1.2 Influence of nuclear motion . . . . . . . . . . . . . . . . . . . . 5
1.1.3 Dynamics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
1.1.4 Thin films on Cu(111) . . . . . . . . . . . . . . . . . . . . . . 10

1.2 Electronic states in C60 . . . . . . . . . . . . . . . . . . . . . . . . . . 10
1.2.1 Photoemission . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
1.2.2 Time-resolved 2PPE from C60 . . . . . . . . . . . . . . . . . . 14

1.2.2.1 Two-photon absorption . . . . . . . . . . . . . . . . 14
1.2.2.2 Two-photon absorption in a statistical ensemble . . . 15
1.2.2.3 Simulation: Solving the rate equations . . . . . . . . 16

1.2.3 Inverse photoemission in combination with UPS . . . . . . . . 19
1.2.4 Electrostatic effects . . . . . . . . . . . . . . . . . . . . . . . . 19

2 Experiment 23
2.1 Sample preparation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.1.1 Calibration of the film thickness . . . . . . . . . . . . . . . . . 28
2.2 Laser system . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

2.2.1 Optical parametric oscillator . . . . . . . . . . . . . . . . . . . 32
2.2.2 Optical parametric amplifier . . . . . . . . . . . . . . . . . . . 33

2.3 Photoemission . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
2.3.1 Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
2.3.2 Set-up . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
2.3.3 Measurement software . . . . . . . . . . . . . . . . . . . . . . 38
2.3.4 Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

2.3.4.1 Photodiode signals . . . . . . . . . . . . . . . . . . . 38
2.3.4.2 Separation of time-delay spectra into states . . . . . 39
2.3.4.3 Positive populations . . . . . . . . . . . . . . . . . . 41
2.3.4.4 Minimum of a function . . . . . . . . . . . . . . . . . 42
2.3.4.5 Fitting the simulation to the measured state dynamics 43

3 Two-photon photoemission on fullerite films 45
3.1 Spectroscopic results . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
3.2 Time-resolved results . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
3.3 Warm preparation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

3.3.1 Singlet exciton . . . . . . . . . . . . . . . . . . . . . . . . . . 51

v



Contents

3.3.1.1 Efficacy and lifetime dependencies . . . . . . . . . . 59
3.3.1.2 Interstate rate . . . . . . . . . . . . . . . . . . . . . 66
3.3.1.3 Comparison with the literature and conclusions . . . 67

3.3.2 Triplet exciton . . . . . . . . . . . . . . . . . . . . . . . . . . 68
3.3.2.1 Dependence on film thickness and temperature . . . 71

3.4 Cold preparation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
3.4.1 Efficacy dependence on photon energy . . . . . . . . . . . . . 76
3.4.2 Improved beam overlap . . . . . . . . . . . . . . . . . . . . . . 79
3.4.3 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

4 Summary 83
4.1 German translation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

A Ellipsometry details 87

B References 89

C Lebenslauf 99

D Acknowledgment 100

vi



1 Introduction

The low-energy vibronic excitations of the 4x4 reconstruction of C60 thin films on

Cu(111) are investigated by time-resolved two-photon photoelectron spectroscopy

in this thesis. Carbon atoms have been known for a long time to condense in crystal

forms as graphite and as diamond, which is metastable at a temperature of 300K and

a pressure of 101 kPa [1]. A wide variety of non-crystalline structures is commonly

known as soot or coal.

Figure 1.1: The geometric structure of C60 is a truncated icosahedron.

One special non-crystalline form is C60. The basic geometric structure is, as

shown in figure 1, a truncated icosahedron. This structure has been discussed by

Archimedes, Euler, and Kepler [2]. In their 1985 Noble Prize winning investigation

Kroto and coworkers [3] found C60 using mass spectroscopy of soot. Starting from

initial guesses it was eventually proven to have that specific geometric structure

of a truncated icosahedron and the molecule was named “Buckminster Fulleren”.

C60 molecules condense — this time by means of van der Waals bindings — into a

crystal which is called fullerite. Fullerite is a semiconductor and thus may be useful

in electronics [4, 5] and solar cells [6–9]. In the present investigation, the electronic

structure of up to 100monolayers (ML) fullerite on Cu(111) is studied. The focus is

on the low-lying, long-living excited states, especially the triplet exciton for which

up to now no lifetime τ is known. Gruen and coworkers [10] measured a lifetime of

400µs for C60 dissolved in toluene at a temperature of 9K. For photopolymerized

fullerite (especially above 260K an absorbed photon can lead to a formation of

a covalent bond between neighbouring C60 molecules) Kabler and coworkers [11]

measured a lifetime of 15µs at 300K. In fullerite this excitation is mobile and

thus can drift to and onto adsorbed molecules, which has been investigated by

Marzok [12], Hoger [13] and Grimmer [14]. Different photon energies were used to
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1 Introduction

excite fullerite, but no quantitative comparison of the efficacy in the case of time-

resolved two-photon photoemission has been published. In the present investigation

the pump photon energy is varied by means of a tunable optical parametric amplifier

and the efficacy is derived from the results of measurements in the range of 373 to

432 nm (2.87 to 3.33 eV). Lifetimes of excited states are measured by time-resolved

two-photon photoemission (2PPE) using an opto-mechanical and an electronic delay.

1.1 Electronic and vibronic states of the Buckminster

Fullerene

This is an experimental one, yet some theory is necessary to introduce the common

language which describes the electronic states of C60 and fullerite. In comparison,

many analytical steps can be used to simplify the problem in case of the electronic

states of the hydrogen atom so that the final numerical evaluation of energies has

a low computional effort and a high accuracy. This is not possible for C60. In

this section the approach to the electronic states of C60 is based on the Slater

determinant [15], which is a well known [16–18] description for a subset of all

many-electron wave functions. The Hartree-Fock method allows one to numerically

and iteratively evaluate the Slater determinant with the lowest energy, which is an

approximation to the electronic ground state. Each molecular orbital (MO) of C60 is

further approximated by a linear combination of atom centred orbitals (LCAO) and

the analytical problem is transferred into a linear algebra equation. Atom centred

orbitals for C60 are inspired by the hydrogen orbitals and adopt the s, p, or d [19]

angular parts and have up to three radial parts [20]. Famous results of LCAO are the

sp2-hybridisation in graphite and the sp3-hybridisation in diamond [21]. The many-

electron wave function is approximated by a single Slater determinant [15] of MOs.

Starting from pure s and p atomic orbitals the Hartree-Fock method iteratively

yields occupied MOs (OMO) which have a Slater determinant with decreasing energy

approaching the ground state of the system. From this Slater determinant the energy

of the real ground state can be estimated by modifying the Hamilton matrix in

the Hartree-Fock equation. For this the local density approximation (LDA) within

the Kohn-Sham density functional theory (DFT) defines at each point in space

a potential, which is a function of the electron density at that point and in the

order of ±1 eV [22]. This function is optimized to simulate the effect of correlation,

which cannot be expressed by the Slater determinant. Often it is used to replace

the exchange energy calculation of the Hartree-Fock method, which demands a high

computional effort. Gensterblum [22] notes that the results reported in literature for

C60 mostly agree no matter whether obtained by the Hartree-Fock method without

LDA or by LDA without Hartree-Fock exchange energy.

Inserting all ground state OMOs into the (modified) Hartree-Fock equation the

unoccupied MOs (UMOs) are given by the eigenvectors of this equation.
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1.1 Electronic and vibronic states of the Buckminster Fullerene

Removing one electron from one of the highest 120 occupied MOs , thus creating

a hole, and placing the electron into one of the lowest 120 unoccupied MOs [23]

generates a singly excited state. The 120 ·120 = 14400 possible singly excited states

are no eigenstates of the symmetry matrices of C60 and thus are no eigenvectors of

the Hamilton matrix. But linear combinations of singly excited states are eigenstates

of the symmetry matrices. For example, the 5-fold degenerate HOMO and the 3-

fold degenerate LUMO allow to create 15 singly excited states. Suitable linear

combinations lead to a 3-fold (triplet) F1g, a 3-fold (triplet) F2g, a 4-fold Gg and a

5-fold Hg degenerate eigenvector of the symmetry matrices (3 + 3 + 4 + 5 = 5 · 3)

[24, 25]. Hara and coworkers [26] calculated that the eigenvalues of F1g and the

F2g are lower than the eigenvalues of Gg and Hg. In the eigenvectors F1g, F2g, Gg

and Hg the electron and the hole are correlated. By definition from Frenkel and

Wannier [27, 28] an exciton is a Coulomb-correlated electron-hole pair. Yet this

definition is usually [10, 29–31] not used if only free or isolated (in buffer gas, in

solution, or matrix isolated) C60 is discussed.

The completely filled OMOs have a total spin S = 0. With a hole in the shell

the spin of the remaining electrons in this shell couples to S = 1/2, and this spin

is then assigned to the hole. The possible direct product wave functions of two

S = 1/2 particles (the hole and the electron) are no eigenvectors of the rotation

matrices and thus are no eigenvectors of the Hamilton matrix. But suitable linear

combination leads to a singlet (S: S = 0 = 1/2 − 1/2) state and a triplet (T:

S = 1 = 1/2 + 1/2) eigenvector (1 + 3 = 2 · 2) of the rotation matrices. The triplet

state consists of 3 magnetic substates. Furthermore, due to electrons being Fermions

the total wave function is antisymmetric. For the symmetric triplet state the wave

function in position space is antisymmetric. This wave function has a lower energy

(0.4 eV in the calculation of Hara and coworkers, 0.3 eV in experiments on fullerite in

the present investigation), because the Coulomb repulsion between the electrons is

reduced or in other words the Coulomb attraction between the hole and the electron

is increased.

1.1.1 Fullerite

Condensed C60 (fullerite) is shown in figure 1.2. The molecular and crystal structure

of fullerite was established by X-ray diffraction [22]. The energies of the electronic

states shift up to 1 eV as was calculated using LDA [22]. Troullier and Martins [32]

used a linear combination of up to 110000 plane waves and Shirley and Louie [33]

used a linear combination of 27000 plane waves to express the delocalised electronic

states. They applied the so called GW approximation to their 2400 conduction band

states (LUMO, LUMO+1) and a not mentioned number of valence band states

(HOMO) to calculate the band structure of a free electron or a free hole under

the influence of the dynamical screening due to the bound electrons. The results

are listed in table 1.1. The valence band and the conduction band are separated

3



1 Introduction

Figure 1.2: Buckminster Fullerene condensed on a copper substrate.

energetically by a gap of 2.5 eV, thus fullerite is a semiconductor and not a metal.

Based on this band structure they simulated the effect of disorder in the crystal and

extracted hopping integrals [33], but without reporting numbers.

Andersen and coworkers [19] used linear muffin-tin orbitals and estimated [34] the

hopping integrals within C60 to be 2.59 eV (626THz) for the single bond and 2.78 eV

(672THz) for the double bond. The hopping integral between two C60 molecules

for the face-centered cubic (fcc) structure is 0.84 eV (203THz). From this hopping

integrals they calculated the electronic structure for different crystals structures,

and Sawatzky and coworkers [25] derived hopping strengths between C60 molecules

of less than 10meV (2THz) for both HOMO (valence band) and LUMO.

In agreement with the theoretical results Gensterblum and coworkers [35]

measured a hole bandwidth in the HOMO of 0.4 eV. Smalley and coworkers [36]

measured an electron bandwidth in the LUMO of 0.5 eV. Gensterblum and

coworkers [37] measured an electron bandwidth in the LUMO of 0.26 eV. In figure 1.3

the impulse averaged energies of these bands are shown on the left.

Based on their GW approximation results Shirley and Louie [54] used linear

combinations of singly excited states in fullerite to describe excitons. Their singly

excited states were generated by exciting one electron from the HOMO of one

molecule, and placing it into the LUMO of the same or a neighbouring molecule.

They found an infinite, discrete series of 20meV wide bands starting from the lowest
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1.1 Electronic and vibronic states of the Buckminster Fullerene
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Figure 1.3: Electronic structure of fullerite. 1E=singlet exciton, 3E=triplet exciton.
The horizontal lines represent band minima. On the right hand side they also
represent metastable excitons. The graded shading represents the higher excitons.

triplet exciton with a band minimum of 1.3 eV [33] (experimental value: 1.4 eV in

table 4.1) and ending at the conduction band gap at 2.5 eV [33] (experimental value:

2.3 eV in table 1.1). Excited excitons are typically larger.

From their hopping integrals Sawatzky and coworkers [25,53] derived a bandwidth

in the order of 80meV for the excitons.

The electronic structure resulting from this theory and from experiment is shown

in figure 1.3. On the left side energies of the free charge carriers are shown. On

the right side the excitons are shown, where the series of bands is indicated by the

shaded area. Additionally the vacuum energy EVac of the fullerite (111) surface is

shown. For reference in table 1.1 the individual values reported in the literature are

listed and compared to the results of the present investigation.

1.1.2 Influence of nuclear motion

Allowing nuclear motion three effects appear which are important for the present

investigation.

In quantum mechanics the nuclei are described by a wave function. The Frank-
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1 Introduction

LUMO chemical LUMO LUMO+1 LUMO+2 method or
lowest potential excited band exciton band exciton figure

triplet singlet µ singlet minimum centre
exciton excitons

1.9 2.18 2.2 3.0 4 TR2PPE [38]
1.55 1.8 2.18 2.2 3.0 TR2PPE [39]
1.54 1.87 2.0 TR2PPE [40]

2.87 4 2PPE [41]
1.55 1.8 2.2 EELS [31]
1.54 EELS [42]

2.1 2.7 AS [43,44]
1.83 SFG [45]

< 1.99 < 2.36 PC [46]
1.85 2.5 PC [47]

1.6 2.25 PC [48]
2.2 2.35 2.9 PC, PS [49]

1.871 PS [50]
1.50 TRPS [51]
1.45 1.6 TRPS [52]

2.3 4.7 UPS, IPE [53]
1.30 1.58 2.5 theory [33, 54]

Table 1.1: Energetic positions / eV referenced to the HOMO inferred
by different experiments and calculations. 2PPE: two-photon photoemission,
TR2PPE: time-resolved 2PPE, EELS: electron energy loss spectroscopy, AS:
absorption spectroscopy, SFG: sum frequency generation, PC: photoconductivity,
PS: photoluminescence spectroscopy, TRPS: time-resolved PS, UPS: ultraviolet
photoelectron spectroscopy, IPE: inverse photoelectron spectroscopy. Additionally,
an exciton composed of a hole in the HOMO-1 and an electron in the LUMO is
visible in AS at 2.7 eV [44].

Condon principle assumes that at a change of the electronic state the nuclear

wave function stays fixed. This is a good approximation because many electronic

transitions are faster than than many nuclear transitions.

After the electronic transition the forces upon the nuclei do not add up to zero

any more, and the nuclei are accelerated. This means an electronic transition

in a molecule always excites a vibration. A detailed calculation shows that the

electronic transition instantaneously leads to an energy uncertainty of the nuclear

wave function. However, this would violate energy conservation and thus it is

concluded that the instantaneous transition is only a mathematical tool. In reality all

transitions are vibronic. They change the electronic state and the vibrational state.

In C60 all vibronic transitions which are composed of the same electronic transition

span an energy range of about 0.4 eV. The vibrational states are approximately

40meV apart [55] and are partly resolved in photoemission spectroscopy [22].

In fullerite the vibrational states become phonons, which cannot be resolved in

photoemission spectroscopy of fullerite [35, 40].

The HOMO-LUMO transition does not have an electric dipole moment. Due

to the Herzberg-Teller effect [56, 57] the HOMO-LUMO transition is still visible
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1.1 Electronic and vibronic states of the Buckminster Fullerene

in absorption spectroscopy and one can excite fullerite with readily available

radiation with a wavelength of 532 nm (2.33 eV) as is mentioned by Dresselhaus and

coworkers [58] and Gensterblum and coworkers [35]. In contrast to fullerite free C60

is usually excited by radiation with a wavelength of 355 nm (3.49 eV). The absorption

in fullerite may be more effective due to transitions between delocalised states which

may have an electric dipole moment if the C60 molecules oscillate out of phase [44].

Chergui and coworkers [59] depicted the Herzberg-Teller effect schematically and

Hara and coworkers [60] briefly reviewed the mathematical formulation before they

applied it to C60: a vibration of the nuclear positions leads to a periodic change of the

electronic wave function. The Rayleigh Schrödinger perturbation theory expresses

the perturbed wave function in the basis of the unperturbed Hamiltonian. Though

this theory is time-independent the mathematical derivation leads to a resonance

like denominator:
1

E1 − E0

Here E0 is the energy of the applied photons and a transition without an electric

dipole moment and E1 is the energy of a transition with an electric dipole. From

this it can be concluded that energetically close electronic states exert a stronger

perturbation on a vibronic state. Considering an electronic transition in a vibrating

molecule, it is a superposition of transitions between all the electronic states which

are involved due to the perturbation. Even if the transition between the unperturbed

electronic states does not have a dipole moment, the other transitions may do.

Although in perturbation theory the perturbation is assumed to be small, Hara

and coworkers [60] calculated that in C60 the Herzberg-Teller effect leads to an

oscillator strength of 0.001484, significantly larger than the multipole moments of

the unperturbed electronic transition, which are of the order of 10−5.

The triplet exciton leads to the Jahn-Teller effect. With the triplet exciton one

electron is in the 3-fold degenerate LUMO (corresponding to the 3-fold rotational

axes in figure 1) and one hole is in the 5-fold degenerate HOMO (corresponding

to the 5-fold rotational axes in figure 1). The nuclei move away a bit from the

symmetric position because this allows to lower the energy of some of the originally

degenerate substates. In a quasi-classical view each molecule undergoes spontaneous

symmetry breaking. Two molecules may decide to break the symmetry in different

ways and multiple molecules form a statistical ensemble. Looking at the time axis, a

single molecule may be excited into the symmetric position and then de-excited into

another symmetry breaking position. In the quantum mechanical view an individual

molecule is in a superposition of the two degenerate states with the superposition

being symmetric again. The lowest triplet state lives long enough for a complete

nuclear motion. In fullerite the triplet exciton can only hop to the next molecule if

the modified nuclear wave function hops as well. This was introduced by Kuzmany

and coworkers [61] mentioned by Wang and coworkers [55] and later verified by

Tosatti and coworkers [62]. This reduces the hopping rate and thus reduces the

7



1 Introduction

chance of the triplet exciton to be lost to the copper substrate [11].

At a temperature of 140K, at which the the present investigation is performed,

the C60 molecules rotate around one axis. Neighbouring molecules try to align their

rotation axis and orientation to minimize their energy, and cooling below 90K they

completely stop rotating [58].

1.1.3 Dynamics

In this section the dynamics is described which is initiated by absorption of a photon.

Echt and coworkers [29] indirectly excited the lowest singlet state of free C60,

which then decays into the lowest triplet state. The lifetime of the lowest triplet

state is reduced with increased internal energy. Energy conservation holds and the

energy can only be rearranged between different nuclear and electronic degrees of

freedom. Still this energy can be interpreted as a mean energy, which allows to assign

a temperature [63], which in turn allows the following model: the comparatively slow

decay rate of the lowest triplet state and the comparatively fast rates between the

excited states leads to a Fermi-Dirac distribution of the population in the excited

states. This opens up new decay channels and measurably shortens the lifetime of

the triplet states for temperatures above 4K. The present investigation does also

aim at measuring the temperature dependence of a lifetime of a state with a spin

triplet.

Isolated C60 is in contact to a heat bath and assumes its temperature, thus local

energy conservation does not hold. Chergui and coworkers [64] reported that the

absorption of a photon with an energy of 3 eV excites C60 into an excited singlet

state, which decays within 20 ps into the lowest singlet state. This is faster than the

laser pulse duration in the current work, and thus only the lowest excited singlet

state needs to be considered in figure 1.3. The lowest singlet state cannot decay to

the ground state by means of electric dipole radiation, and it is nearly in resonance

with a triplet state, into which it can relax by means of spin orbit interaction [65].

Kao and coworkers [66] reported that the singlet state almost exclusively decays into

a triplet state. The excited triplet states decay to the lowest triplet state, which in

turn decays into the ground state of C60 with a very low rate due to the necessary

spin flip.

As already discussed in section 1.1.1 in fullerite excited states are not only

delocalised over a single molecule, but over multiple molecules forming excitons,

which can also be spin singlets or spin triplets. Optical absorption in fullerite is

best described by the creation of an exciton. An exciton does have an impulse, but

the creating photon delivers only a small impulse and the exciton slows down, so

after 1 ps it is certainly in the band minimum [39]. Thus, for the present investigation

this band minimum is important as depicted in figure 1.3. The triplet exciton may

be trapped at a defect [50] leading to a slightly lower energy.

Eberhardt and coworkers [39] reported that an electron excited from the HOMO

8



1.1 Electronic and vibronic states of the Buckminster Fullerene

to the LUMO+1 decays into the LUMO with decay time of 1.1 ps. Sawatzky and

coworkers [45] noted that the electron in the LUMO+1 belonging to the exciton

lies energetically within the band of free electrons in the LUMO and thus in the

course of the photo absorption 1% of the excitons dissociate [11, 46]. The precise

percentage depends on the temperature and the applied electric field. Eberhardt

and coworkers [39] reported that a lifetime of 134 ps can be assigned to the free

electrons in the LUMO band. Henninger and coworkers [46] reported that in the

ps and ns time regime the number of free electrons decays proportional to 1/t,

with t being the time, which they explained by the spatial distribution of traps

and electron hopping. Kabler and coworkers [11] determined a lifetime of 25 ns in

photopolymerised fullerite at 81K. 35% of the singlet excitons decay into the triplet

exciton with an intersystem crossing time of 2.5 ns. Eberhardt and coworkers [39]

found a singlet exciton lifetime of 998 ps without resolving the decay channels.

Kabler and coworkers [11] determined that at fluences higher than 1mJ/cm2 triplet

exciton creation due to collision between a free carrier and a singlet exciton becomes

important. A free carrier colliding with a triplet exciton allows a decay of the triplet

exciton into the ground state without a spin flip. The lifetime of the triplet exciton

and the influence of the fluence is also investigated in the present investigation.

As mentioned in the last section, in fullerite a strong electron-phonon coupling

is present. Chulkov and coworkers [67] calculated the electron-phonon coupling

at metal surfaces using the Debye approximation. They used the Fermi-Dirac

distribution to express that the system is not in the electronic ground state and they

used the Bose-Einstein distribution to express that the vibrational system is not in

its ground state. They showed that the temperature dependence of the linewidth

in 2PPE experiments (see section 1.2) can be characterized by a single parameter,

the electron-phonon coupling constant. Lizzit and coworkers [68] removed the free

electrons from this theory and applied it to the temperature dependence of the

linewidth of ARUPS of the band-insulator C60K8. Their equation reads:

Γ = Γ0 + λ · 2π~

∫ ωD

0

(

ω

ωD

)2 (

1 +
2

e~ω/kT − 1

)

dω

Here Γ is the linewidth, and T is the temperature. These two parameters are used to

fit the equation to the experimental results. π, ~, e, k are the well known constants,

ωD is the Debye frequency in the original theory. Below 9K fullerite can be described

by the Debye model and the Debye temperature is in the order of 190K (16meV,

3.0 · 1014 rad/s) [69]. Lizzit and coworkers achieved good results in the range 30 to

700K by inserting the maximum phonon frequency for fullerite, 200meV, instead. λ

is the hole-phonon coupling constant, which is to be fitted. The measured linewidth

increases from 0.57 eV at 40K to 0.58 eV at 300K and to 0.66 eV at 600K. The

hole-phonon coupling parameter was fitted to λ = 1.15 ± 0.05.

In the present investigation 2PPE spectra are taken in the temperature range

from 140K to 300K and thus a linewidth change due to electron-phonon coupling

9



1 Introduction

of about 1% is expected.

1.1.4 Thin films on Cu(111)

Tsuei and coworkers [70, 71] measured ultraviolet photoemission (UP) spectra of

thin fullerite films and observed for the first ML that the states near the Fermi level

are highly hybridized between the surface and the molecule. Further MLs show

the spectrum of fullerite. In 2004 Louie and coworkers [72] calculated by means

of DFT the electron redistribution for the adsorption of a single C60 molecule on

Au(111) and on Ag(100). Similarly Wang and Cheng [73] calculated the electron

redistribution for the adsorption of one ML on Cu(111). The charge redistribution

integrated in planes parallel to the surface is a function of the distance between the

chosen plane and the position of the metal nuclei. In all three investigation this

function changes its algebraic sign many times. The electric field is related to this

distribution by Gauss’s law,

∇ · E =
ρ

ε0
,

where ∇ denotes the divergence, E is the electric field, ρ is the electric charge density,

and ε0 is the vacuum permittivity. Integration of this field into a potential yields a

nearly unchanged work function. Integration of the charge redistribution yields the

net charge transfer into C60 as a function of the definition of the precise position of

the interface between Cu(111) and C60. The range of values of this integral explains

the range of the reported charge transfers which is 0.8 [73] to 2.0 [74] electrons per

C60 molecule.

Eberhardt and coworkers [38] observed the LUMO+1, the LUMO and the singlet

exciton in a 3 nm thick fullerite film on Ag(100). They determined the lifetime of

the LUMO+1 to be 300 ps for a film of 20 nm thickness, 268 ps for 10 nm, 107 fs for

3 nm and 60 fs for 1 nm. Dutton and Zhu [41] showed that the lifetimes of excitations

involving the LUMO+2 and LUMO+1 exhibits an exponential dependence on film

thickness which is in agreement with charge diffusion into the copper substrate.

Kern and coworkers [75] used a spacer layer of alkanethiol between C60 and gold

and silver. By means of surface SHG they showed that down to a distance of 1 nm

classic dipole-dipole damping mechanisms prevail and the non-radiative transfer rate

decreases with the cube of the distance.

1.2 Electronic states in C60

The electronic structure of C60 is investigated by multiple complementary methods.

Table 1.1 compares the energies of the electronic states of fullerite measured by these

methods. Methods using either free electrons or free photons or a combination

of both are briefly presented here together with their respective main result for
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1.2 Electronic states in C60

C60. Real measurements take the average over a large number of independent

micro experiments: electron and laser beams are assumed to consist of independent

electrons and photons, respectively, and single particle detection data are typically

averaged. The micro experiment view will be used in the following.

In absorption spectroscopy (AS) a photon flux is applied onto the sample and

the transmitted photon flux is detected. To isolate the micro experiments the

photon intensity needs to be low enough, on some materials below the intensity

of direct sunlight. Due to the measurement process in quantum mechanics repeated

micro experiments lead to different results, but the average converges to a well

defined absorption coefficient. In this way a transition from an OMO to an UMO is

directly visible as absorption as shown by measurements conducted by Eklund and

coworkers [44] and listed in table 1.1 under AS.

In photoluminescence spectroscopy (PS) the energy of the emitted photon differs

from the energy of the incoming photon. Performing time-resolved PS (TRPS) on a

fullerite single crystal Byrne and coworkers [52] found a state with a lifetime of 1.2 ns

around 1.6 eV and another state with a lifetime longer than 10 ns around 1.45 eV.

In a similar way Chergui and coworkers [76] determined the lifetime of the triplet

exciton at 4K to be 16µs in Xe and 60µs in Kr. Lee and coworkers [77] determined

the lifetime of the triplet exciton at 5K to be 90µs in Xe doped with Ne.

In time-resolved two-photon absorption (TR2PA) a photon flux is applied onto

the sample and the transmitted photon flux is detected. The photon intensity needs

to high enough that the so called probe photon has a good chance to hit a point

of the sample which has been excited by a so called pump photon. Gruen and

coworkers [10] excited the lowest singlet state in isolated C60 using 515 nm (2.41 eV)

radiation. By measuring the absorption from 400 to 580 nm (from 3.1 to 2.1 eV)

they determined a lifetime of 33 ps for the lowest singlet state. The corresponding

decay rate matched the formation rate of the lowest triplet state. For isolated C60 at

room temperature Koishi and coworkers [65] determined the lifetime of the singlet

exciton to be 1 ns and they showed that the lowest triplet state is populated by

intersystem crossing from the lowest singlet state.

The electron para-electric resonance (EPR) uses photons in the GHz range to

probe transitions between the magnetic substates of the triplet exciton. By using

an optical pump photon in a time-resolved set-up Gruen at al. [10] measured the

lifetime of the lowest triplet state in isolated C60 to be 470µs at 9K. Mehring and

coworkers [78] measured the lifetime of the lowest triplet state of isolated C60 to be

400µs at 9K.

In electron energy loss spectroscopy (EELS) electrons are shot through the

sample and their energy loss is detected. The EELS probes similar transitions like

absorption spectroscopy, but is not dependent on the dipole matrix element. Using

EELS Gensterblum and coworkers [79] measured the energy of the triplet exciton in

fullerite to be 1.5 eV.

In sum frequency generation (SFG) two photons are applied onto the sample

11
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and one photon having the sum frequency is detected. In this way Sawatzky and

coworkers [45,80] showed that the energy of the transition into the singlet exciton is

resonant to photons with an energy of 1.826 eV (666 nm). Kern and coworkers [75]

generated an exciton population by means of pulses with 3.49 eV photon energy

(355 nm). Their probe pulses had a photon energy of 1.17 eV (1060 nm) and

generated a surface second harmonic in the centrosymmetric fullerite. The photon

energy of 1.17 eV is resonant to transitions between the lowest excited singlet exciton

and a higher excited singlet exciton. Thus, the exciton population could be probed

by absorption and a lifetime of 560 ps for the singlet exciton was observed.

Applying a photon to the sample can lead to the desorption of an absorbed

molecule, which is then detected. In this respect, our group [13,81] investigated the

desorption of NO molecules from fullerite. The set-up allows to separate directly

desorbing molecules from molecules desorbing due to energy transfer from the triplet

exciton.

Absorption can create electron-hole pairs in semiconductors, which can lead to

photocurrent (PC) as explained in section 1.1.3. Photocurrent can discharge the

surface dipole of C60 which is visible in surface photovoltage spectroscopy [82]. In

this way Shapira and coworkers [48] detected occupied and unoccupied localized

states within the conduction band gap which they assumed are due to defects. With

increasing temperature the number of electrons and holes increases and leads to a

reduced resistance. From the resulting curve a conduction band gap of 1.85 eV was

deduced [83].

1.2.1 Photoemission

In photoemission one photon is applied onto the sample and an emitted electron

can be detected [84–86]. For the interpretation of PE experiments on condensed

matter the three-step model by Berglund and Spicer [87,88] has proven to be useful.

Step 1 is the absorption of a photon and the excitation of an electron. In the

present investigation final states for the electron with an energy ranging from 1.4

to 5.4 eV above the vacuum energy are populated. In this case fullerite offers a

high and relatively constant density of states, see also figure 1.6. Step 2 is the

propagation of conduction electrons in fullerite, which has already been introduced

in section 1.1.1. Half of the electrons propagate towards the surface. On the way to

the surface some electrons are inelastically scattered and lead to a background signal

in the measurement. Shirley [89] described the background simply as an indefinite

integral of the spectrum, integrating from high to low energies. This scattering

makes photoemission a surface sensitive technique. For example after absorption of

5 ML C60 no photoelectrons originating from the copper can be detected as can be

seen in figure 2.7.

Step 3 is the transmission of an electron across a surface into the vacuum. The

surface is assumed to be planar, thus the electron in the vacuum is best described by
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kmin

⊥,int

k⊥,int

surface

vacuum

solid

~n

e−

ϑ′
max

kext

k‖,ext

ϑ′

k‖,int

kint

Figure 1.4: The third step of the three-step model explicitly features the impulse
within the solid (after Courths and Hüfner [88]). Note that this figure contains two
axes in k-space, which are shifted with respect to each other to denote the impulse
of the electron inside the solid and outside of the solid.

plane waves which are infinite in space as requested for the general photoemission

and whose wave vector is proportional to the impulse of the electron. Only such

electrons which have an energy higher than the work function Φ can leave the solid.

In fullerite any energy is referenced relative to the HOMO and EVac = Φ + µ.

The energy centred view is supplemented by an impulse centred view in figure 1.4.

The impulse parallel to the surface is conserved. Only electrons whose momentum

perpendicular to the surface kint,⊥ is larger than

~
2k2

int,⊥

2me

> Φ,

are emitted.

Parallel to the surface the momentum is conserved p‖ = ~kext,‖ up to a reciprocal

lattice vector

kext,‖ = kint,‖ + G‖ .

From the minimum of the perpendicular component of kint and from

~
2k2

int
= ~

2k2
int,⊥ + ~

2k2
int,‖ = 2meEf
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follows a maximum of the component parallel to the surface

kmax

int,‖ =

√

2me

~2
(Ef − Φ) .

This corresponds to electrons emitted perpendicular to the surface. In vacuum

~
2k2

ext
= 2meEkin = ~

2k2
ext,⊥ + ~

2k2
ext,‖

holds, where Ekin is the kinetic energy of the emitted photoelectrons. These electrons

are transmitted through the surface if

k2
ext,⊥ =

2me

~2
Ekin − (k2

int,‖ + G‖)

is greater than zero. In other words, only electrons which have an impulse kint within

the cone with an opening angle of 2ϑ′
max

can be emitted.

1.2.2 Time-resolved 2PPE from C60

In two-photon photoemission (2PPE) two photons are applied and the emitted

photoelectron is detected. The electron emission and detection is practically

identical to one-photon photoemission, the remainder of this section discusses the

absorption of two photons in step 1 of the three step model. The discussion is

based on simple model systems. In the present investigation time-resolved 2PPE

(TR2PPE) is employed, where the two photons belong to different laser pulses with

a time delay in between.

1.2.2.1 Two-photon absorption

The absorption of two photons is described by the following two models. Göppert-

Mayer [90] deduced two-photon absorption from linearly perturbed matter and

quantum cavity electrodynamics. She showed that absorption can occur via

intermediate electronic states as long as the sum of the photon energies is equal to the

transition from the initial to the final state. The intermediate electronic states are

all other eigenstates of the unperturbed Hamiltonian of the matter. If the transition

from the initial state to the intermediate state is close to resonance with the applied

photon energy, the two-photon absorption is very efficient. For a semiconductor

all the states in the valence and the conduction band contribute to the two-photon

absorption from the valence band maximum to the conduction band minimum. This

process is still efficient enough for technical applications in short pulse lasers. Van

Stryland and coworkers [91] showed that two-photon absorption is related to the

nonlinear Kerr effect by the Kramers-Kronig relation. The Kerr effect is described

by a macroscopic nonlinear relation between the classical electric field strength and

the classical mean polarization of the matter. The same explanation is used for
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1.2 Electronic states in C60

Figure 1.5: Rate equation governed time-resolved 2PPE of a semiconductor.

second harmonic generation by Franken and coworkers [92], and in its original linear

relation it describes the refractive index. It is explained by the deformation of the

electron cloud around each atom and thus only uses the ground state of the atom

which is in contrast to the approach taken by Göppert-Mayer. In 1961 Kaiser and

Garrett [93] performed the first two-photon absorption experiment.

1.2.2.2 Two-photon absorption in a statistical ensemble

Up to now the theoretical description was based on ideal systems, which are

basically described by the Schrödinger equation, and where the perturbation by

the light can be calculated in the Dirac picture. In the experiment a decay of

excited states is observed, while the Schrödinger equation predicts excited states

with infinite lifetime. To the resolve this paradox, Ueba [94] applied the density

matrix, which was introduced by von Neumann and coworkers [95], to two-photon

photoemission. Von Neumann and coworkers showed that the dynamics of the

density matrix can be calculated in the Heisenberg picture of quantum mechanics.

Formally the resulting equation allows to add decay and dephasing terms, which are

then used to fit the theoretical results to the experimental results. If the laser

pulse duration is significantly longer than the dephasing time, the state of the

system can be approximated by populations and the dynamics is described by a

rate equation [96, 97] as depicted in figure 1.5.
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1.2.2.3 Simulation: Solving the rate equations

Following Ueba and Mii [94] and section 1.2.2.1, the 2PPE is based on a 3-level

system consisting of an initial occupied (Ψ0), an intermediate unoccupied (Ψ1) and

a final photoelectron state (Ψ2). In the present investigation the Ψs are populations.

The dynamics is expressed as a system of equations:

d

dt
Ψ0(t) = r0,0(t)Ψ0(t) + r0,1(t)Ψ1(t) + r0,2(t)Ψ2(t)

d

dt
Ψ1(t) = r1,0(t)Ψ0(t) + r1,1(t)Ψ1(t) + r1,2(t)Ψ2(t)

d

dt
Ψ2(t) = r2,0(t)Ψ0(t) + r2,1(t)Ψ1(t) + r2,2(t)Ψ2(t) (1.1)

Here r are the rates between the states.

For a weak pump pulse the occupied state can be assumed not to deplete, and for

a weak probe pulse the influence on all states but Ψ2(t) can be ignored, leading to

d

dt
Ψ0(t) = 0

d

dt
Ψ1(t) = r1,0(t)Ψ0(t) + r1,1Ψ1(t)

d

dt
Ψ2(t) = r2,1(t)Ψ1(t) ,

where r1,0(1) is the pump rate, r1,1 is the decay rate, and r2,1(t) is the probe rate.

This system of equations can be solved in the order: Ψ0, Ψ1, Ψ2. The first equation

expresses the non-depleting occupied state.Before solving Ψ1 some abbreviations are

introduced — r1,0(t)Ψ0 = S(t) (source), Ψ1(t) = Ψ, r1,1 = R (rate) — , yielding

Ψ̇(t) − RΨ = S(t) . (1.2)

In the frequency domain the population is defined as 1

Ψ(t) =

+∞
∫

−∞

Ψ(ω)eiωtdω . (1.3)

Equation 1.3 is applied to equation 1.2. For the first part this means that

Ψ̇(t) =
d

dt

+∞
∫

−∞

Ψ(ω)eiωtdω =

+∞
∫

−∞

Ψ(ω)(iω) · eiωtdω .

1Since in the current section all functions in the time domain always have their parameter, time (t),
explicitly written out and all functions in the frequency domain have the parameter, angular
frequency (ω), explicitly written out, the more proper designation by an additional index is
omitted.
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1.2 Electronic states in C60

Furthermore, substituting

S(t) =

+∞
∫

−∞

S(ω)eiωtdω

in equation 1.2 leads to

+∞
∫

−∞

Ψ(ω)(iω)eiωtdω − R

+∞
∫

−∞

Ψ(ω)eiωtdω =

+∞
∫

−∞

S(ω)eiωtdω .

This equation holds true if the integrands are already equal, thus transforming the

whole equation into the frequency domain:

Ψ(ω)(iω) − RΨ(ω) = S(ω)

Isolating the wave function yields

Ψ(ω) =
S(ω)

iω − R
.

This can also be read as a matrix equation in order to include multiple states like

the LUMO and the LUMO+1 in C60.

Ψ2 is solved by integration,

Ψ2(t) =

∫

R2,1(t)Ψ1(t)dt .

The experimental set-up measures approximately I = Ψ2(+∞), employs probe laser

pulses R2,1(t) = P1(t− t1) with a fixed shape, which are delayed by t1 relative to the

time basis. Then this delay is varied in a series of measurements. In the calculation

for each delay the already numerically evaluated Ψ1(ω) and Ψ1(t) are reused.

I(t1) =

∫ +∞

−∞

P1(t − t1)Ψ1(t)dt

Applying the convolution theorem yields

I(ω1) = 2πP1(ω1)Ψ1(ω1) . (1.4)

In the present investigation a laser pulse can well be modelled as a Gaussian pulse,

P (t2) = PAe−(
t2

w
)2 ,
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which is transformed into

P (ω2) =
1

2π

+∞
∫

−∞

P (t2)e
−iω2t2dt2 = PA

w√
2

e−(
wω2

4
)2 .

Substituting the factors on the right hand side of equation 1.4 for their definitions,

I(ω1) = 2πP1,A
w1√

2
e−(

w1ω2

4
)2 S(ω)

iω − R
,

substituting S for its definition,

= 2πP1,A
w1√

2
e−(

w1ω2

4
)2 R1,0(ω)Ψ0

iω − R
,

substituting R1,0 for a Gaussian,

= 2πP1,A
w1√

2
e−(

w1ω2

4
)2P0,A

w0√
2

e−(
w0ω2

4
)2 Ψ0

iω − R
,

and regrouping yields

I(ω1) = πP0,AP1,Aw0w1Ψ0e
−(w2

0
+w2

1
)(

ω2

4
)2 1

iω − R
.

To reduce the time needed for numerical evaluation within Matlab to an acceptable

level the frequency has to be rounded to 1MHz — equivalent to 1/20000 of the fitted

laser bandwidth of around 20GHz — and only frequencies up to 5 times the laser

bandwidth can be included, thus yielding a Fourier series:

I(t1) = 105πP0,AP1,Aw0w1Ψ0 ·
105

∑

f=−105

e−(w2
0
+w2

1
)( 2π

4MHz
f)2 1

i 2π
MHz

f − R
ei 2π

MHz
ft . (1.5)

Here f is an integer to help sum over the frequencies. For lifetimes above 7 ns the

repetitive nature of the Fourier series produces a positive baseline in front of the

laser pulse. This would be realistic for an experiment with a laser repetition rate

which equals the above mentioned 1MHz. Since in the present investigation the

laser has a repetition rate of 1 kHz, ideally the same rounding needs to be employed

in theory. Pragmatically a rounding precision above 1 kHz is sufficient if the baseline

is below 1% of the signal peak.

The resulting I(t1) can be plotted as continuous curves like in figure 3.15 (blue

and green curve) and the rates are fitted to the measured data which are plotted as

symbols. Later in section 2.3.4.5 the derivative of equation 1.5 with respect to its

parameters is useful.
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∆E

EV − E / eV
Figure 1.6: Combination of photoelectron spectroscopy of the valence bands
(21.2 eV) and inverse photoelectron spectroscopy at C60/Au(110). Ev = vacuum
level, ∆E = HOMO-peak to LUMO-peak distance, adapted from [31].

1.2.3 Inverse photoemission in combination with UPS

In inverse photoemission electrons are injected into the sample and photons are

detected. A combination of both inverse and direct photoemission was used by

Rudolf and coworkers [31] to present the occupied and unoccupied states of fullerite

together, as shown in figure 1.6. They stressed that ∆E is not the conduction band

gap. Sawatzky and coworkers [53] acknowledged that it is rather the energy needed

for a transition from the middle of the valence band to the middle of the conduction

band. For the conduction band gap the high energy onset of the HOMO and the low

energy onset of the LUMO have to be used. Additionally these onsets correspond to

the smallest energy lost to vibrations or other parasitic excitations. They presented

experimental spectra which merged into the noise level within 100meV, and thus

measured an energy difference with an uncertainty of about 144meV. Then they

simply subtracted the experimental energy resolution from this value to obtain a

realistic conduction band gap of 2.3 eV. To reduce the energy uncertainty Kabler

and coworkers [11] used a model theory, which they fitted to the whole lineshape.

1.2.4 Electrostatic effects

The elementary photoemission process creates a hole. In the case of a metallic

sample the hole is distributed across the whole macroscopic sample and is then

neutralized by the connection to electrical ground. In the present investigation a

thin film of fullerite is condensed onto a copper substrate. A hole in the fullerite film

needs some time to drift to the copper, and for multiple emission events the holes

can accumulate. Similarly, in any photoemission experiment there can be a large
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number of electrons in the vacuum. All these charge carriers interact electrostatically

leading to artefacts in the spectrum: the spectrum changes with fluence, the effective

extraction voltage is reduced and the spectrum shifts towards lower energies. None

of the effects mentioned above has been observed in the present investigation, which

uses single electron detection and thus naturally has a very low density of electrons

in the vacuum.

One result of the GW approximation is that the polarisability of the environment

has a strong influence on the energy needed to dissociate an electron-hole pair. This

energy is called the Hubbard U which is taken from the Hubbard model [98], where

it originally denotes the Coulomb energy of two electrons being on the same ion [99]

within a crystal. In the metal substrate the Hubbard model does not really apply

(U = 0.0 eV). The Hubbard U of fullerite can be estimated to U = 0.8 eV from the

conduction band gap and the lowest exciton energy. Zhu and coworkers [74] showed

that going from 20 to 2 ML fullerite on Cu(111) U decreases to 0.3 eV, which is in

agreement with figure 2.7. In the surface layer U is 1.0 eV [40, 100]. For a free C60

the Hubbard energy is U = 3.0 eV [31].

If an electron-hole pair is separated in such a way that the hole moves into the

metal and the electron moves into the fullerite an energy of U = 0.8/2 = 0.4 eV

is needed. The chemical potential of Cu(111) appears 2.1 eV above the HOMO

(figure 2.7) and does not shift with the adsorbation of fullerite. With the above

mentioned correction the chemical potential is placed 1.7 eV above HOMO. This is

above the middle of the conduction band gap and above the triplet exciton. Thus,

the triplet exciton may be obscured by gap states due to defects. Since the fullerite

is undoped and the conduction band gap is much larger than kT , with k being

the Boltzmann constant and T being the temperature, the positions of the HOMO

and the LUMO bands shift antisymmetric around the chemical potential with film

thickness and are determined by the interface only.

With PES the HOMO band can be probed. As already mentioned in 1.1.3 in

fullerite the absorption of a photon most of the time does not generate free charge

carriers and other effects obscure the conduction band gap in 2PPE, EELS, or AS

[41]. As pointed out by Sawatzky and coworkers [83] and Kabler and coworkers [40]

the conduction band gap is given by the onset of the PE spectra and the IPE spectra,

because the conduction electrons and holes have energies as close as possible to the

band gap.

In PES the LUMO band needs to appear above the chemical potential, otherwise

it would be populated in equilibrium. In figure 2.7 the chemical potential does not

shift with the adsorption of fullerite. PES out of the metal substrate leaves behind

a hole with an energy of 0.0 eV. PES out of the HOMO or one of the excitons leaves

behind a hole 2.0 eV below the chemical potential. This energy is lost for the kinetic

energy of the emitted electron.

X-rays can be used to excite an electron out of a 1s core state of the carbon atom

leaving behind a hole. In X-ray photoelectron spectroscopy (XPS) the electron
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is then emitted into the vacuum. In X-ray fluorescence a second electron falls

from a HOMO into the hole and the energy is used to emit an X-ray fluorescence

photon. In a competing decay channel, the Auger process, electrostatic interaction

between the electrons transfers the energy to a third electron in the HOMO, which

is then emitted. Brühwiler and coworkers [31] showed that the resulting spectrum

is well approximated by a self-convoluted PE spectrum shifted to lower energies by

a Hubbard U of 1.4 eV. The convolution is based on the following observation: in

the final state of the Auger process two holes are in the OMOs both reducing the

energy which is available for the emitted electron. The convolution then iterates

through all possible combinations of OMOs. The electric field to the one hole in the

1s orbital shifts all states to lower energies by U.

In a near edge X-ray absorption fine structure (NEXAFS) measurement the

electron is excited to the various LUMOs. In this way the absorption spectrum

depicts the LUMOs. The LUMOs are inside the electric field generated by the

core hole and may be distorted. In autoionisation an electron falls out of a HOMO

into this hole and the energy is used in the participator process to emit the first

electron from the LUMO and in the spectator process to emit a third electron from

the HOMO. By comparing autoionisation with Auger spectroscopy Sawatzky and

coworkers [53] determined the Hubbard energy U to be 1.6 eV. The participator

process leaves a hole in the HOMOs behind and, even though the process is very

complex, in the end the spectrum of direct photoemission out of the HOMO is

reproduced. In this way Brühwiler and coworkers [101] showed that only the

electronic structure of the first ML of fullerite on Au(111) is changed from the

bulk structure.

In fullerite the electron in the LUMO can hop to another molecule. After hopping

a spectrum similar to the photoemission experiment on a C+
60 ion is generated. The

fullerite spectrum is a superposition of two replica of the spectrum of isolated C60

shifted by U with respect to each other. The weighting of the two replica multiplied

with the core hole lifetime gives the hopping rate. Using this method, Rudolf and

coworkers [102] showed that the hopping rate for an electron in the LUMO+1 is

roughly equal to the core decay rate of 1.7·1014 Hz (6 fs) in the presence of a C 1s

hole, which is in rough agreement with the theoretical hopping rates in section 1.1.1.
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This experiment needs an atomically clean surface. This requires ultra high vacuum

(UHV) of about 10 nPa (10−10 mbar) or lower.

The chamber (see figure 2.1) is fitted with optical viewports, electrical feedthroughs

and manipulation devices, which are designed to enable precise relative motion via

edge welded bellows. The vacuum is established by two turbomolecular pumps

(Pfeiffer TPU 180H, H2 pressure ratio: 106), which are backed by a two-stage rotary

vane pump (Leybold Trivac D8B, pumping speed: 8m3/h). A detailed description

of the vacuum chamber has been given by Jabs [103] and Göhler [104].

2.1 Sample preparation

A copper single crystal cylinder with 5mm radius and 2mm thickness is mounted in

the middle of the chamber The Cu(111) surface has been polished to optical quality

and then introduced into the chamber where it is sputter annealed.

In figure 2.2 an angle resolved UP spectrum(ARUPS) of Cu(111) taken with a

photon energy of 8.24 eV is shown. The Shockley surface state is quite intense

compared to UP spectra taken with 21 eV [71].

As shown in figure 2.3, the C60 monolayers are prepared by vapour deposition. A

crucible is heated to 700K by 400 to 420 eV electron bombardment. The crucible

contains C60 powder (99.9%+ purity; Proteomics GmbH, Frankfurt; Alfa Aesar,

USA), and the C60 vapour pressure is 3.6mPa at a temperature of 700K following

the vapour pressure equation [105,106]:

log(p/Pa) = 23.23 − 20193/(T/K) 1

The electron beam evaporator is fabricated close to a commercial design. As the

vapour leaves the crucible it is partially ionised by the incoming electron beam.

Some of the ions will be collected by the flux monitor electrode, generating a small

positive current which is related in magnitude to the vapour flux.

The crucible is outgased at 430K for two days together with the chamber to

remove any solvents, then the heating voltage is calibrated to condense one ML every

300 s onto the sample (see section 2.1.1), which is comparable to one ML every 600 s

at 373K used by Koma and coworkers [107]). A quadrupole mass spectrometer

measures the evaporating CO, when the CO concentration has been below other

1The present work uses e as the basis for log.
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Figure 2.3: The design of the evaporation does not in principle prevent ions being
generated near the crucible and accelerated to 400 eV from hitting the film. The
light blue lines are field lines.
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residual gases in the chamber for 2 hours, the sample is placed in front of the

evaporator, flashed to a temperature of 1000K, and cooled down to 600K as shown

in figure 2.4.

Repp and coworkers [108] showed that on Cu(111) at a temperature of 5K C60

chemisorbs with a six-membered ring parallel to the surface at two different binding

sites. Two C60 molecules adsorbed at these different sites are rotated by 60◦ with

respect to each other. Above 100K C60 forms islands and decorates step edges on

Cu(111) [108, 109]. Tang and coworkers [110] showed that the 4x4 super structure

created by annealing at higher temperatures than 300K generates new step edges in

the Cu(111) substrate. As shown in figure 2.5 the UPS of one ML fullerite adsorbed

at 300K changes after annealing to 600K.

Both spectra are in agreement with a calculation by Wang and Cheng [73] for

the (4x4) superstructure. In agreement with Tsuei and coworkers [70, 71] the

Shockley surface state shows dispersion, but in the present investigation appears

enhanced compared to the Cu 3d bands at lower energies, which might be due to

the different probe photon energies. In both measurements the structures around

1 eV are enhanced by annealing and are only visible in normal emission.

In the present investigation the first ML grows in the 4x4 super structure and thus

exhibits domains, which have about 30 nm lateral extent on copper [11]. This extent

may be determined by the residual 4% lattice mismatch and not by the mobility of

the C60 molecules. The domain boundaries contain defects, so called X-traps [111].

Therefore, Eklund, Dresselhaus and coworkers [44] compared their measurement on

thin films with measurement on single crystals by Guss and coworkers [50]. Other

defects may be due to impurities like metal atoms or higher Fullerenes. Due to the

higher Hubbard U on the surface the excitons would be pushed into the bulk if it

was not for surface state like defects. Optionally, the temperature is then reduced

from 600K to 360K in order to allow molecules to land on the first ML and diffuse

to vacancies and increased back to 600K to anneal the ML and desorb residual gas.

The temperature is reduced to 360K, which will be called “warm” in the following.

Fartash [112] found that with a grow rate of one ML every 20 s the quality of the

film increases as the temperature was increased from 393K to 548K and observed

that the flux out of the crucible decreased due to powder deterioration (possibly a

reduction of the internal surface). Up to 20 MLs are adsorbed onto the substrate. To

prevent photopolymerization all viewports are blocked and all internal light sources

are turned off.

Eventually the temperature is reduced. At 260K fullerite undergoes a phase

transition which needs to be passed at a speed of less than 1 K/60 s to relax stress

in the fullerite. Finally the sample is cooled down to 140K for the measurement to

reduce photopolymerization.

Alternatively, evaporating the MLs onto a cold substrate with a temperature of

300K leads to clearly different results which are presented in section 3.4.

When not used, the fullerite in the crucible is protected by a shutter from the hard
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radiation generated by the ion gauge or the sputter gun. The preparation quality is

better for a crucible made of molybdenum than one made of copper. Fullerite from

another source of supply with nominal the same purity, but with a different colour,

yielded more defects.

2.1.1 Calibration of the film thickness

Since dependence of the spectra on film thickness is expected even for more than

10ML, this parameter has to be controlled to a precision of 1ML.

As shown in figure 2.3, the growth rate is always controlled and recorded indirectly

by measuring the ion current, which is regulated to 0.5 nA. The ratio of growth

rate and current is determined by evaporating in small steps and interlacing this

with photoelectron spectroscopy, the result is shown in figure 2.7. The spectra

are compared to the spectrum obtained by annealing the first ML and the sticking

coefficient is assumed to be 1.

Since the thickness of the film is very important for the present investigation,

ellipsometry using 532 nm is employed as a complementary measurement method.

Dresselhaus and coworkers [58] determined the thickness of one ML to be 0.82 nm

using X-ray diffraction on thick samples. This is used to calibrate the ellipsometry.

The set-up is shown in figure 2.8. The analysing polarizer is rotated a full circle

and the power on the photodiode on the right of the set-up is recorded. The resulting

graph is fitted by a theoretical curve given by the Jones calculus. From this curve

the values at the analysing polarizer positions depicted in the figure 2.8 (S, P, dia)

are used for the following analysis.

In 1887 Drude introduced ellipsometry and stated the relationship between

thickness of the film and the optical constants of the surface (or substrate) upon

which the film is deposited.

a3 =

(

r01 + r12P
2

1 + r12r01P 2

)

· a0 , (2.1)

with a3 being the amplitude of the light in front of the analyser, a0 being the

amplitude of the incoming light beam, P = exp(ik⊥z) with z being the fullerite

thickness, and r being the Fresnel reflection coefficients. This is described in detail

in [113] and in appendix A.

Behind the rotatable analyser these intensities are measured:

Ip = ‖ap3‖2

Is = ‖as3‖2

Idia = ‖ap3 + as3‖2

The calculation is carried out for different thicknesses to generate a look-up table.
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Figure 2.8: Ellipsometry set-up. The analysing polariser is rotated around the laser
beam axis, and measurements are taken in three positions: in plane of incidence (p),
vertical to the plane of inicidence (s), diagonal (d).

Furthermore, the viewports are included in the calculation by means of the Jones

calculus.

Theory depicts a change in the relative intensities in the order of 10%. Thus, it

should be a valid technique for measuring the film thickness, especially considering

that even thicker films are interesting to investigate. Figure 2.10 compares

ellipsometry with flux integration. Both are in the same order of magnitude.

Ellipsometry yields about 5ML thicker films. Omitting two data points at 4MLflux

it could also be interpreted in the way that ellipsometry predicts 1.5 times more

ML. Thus, the sticking coefficient is not less than one. The noise in the ellipsometry

may be reduced by classical null ellipsometry [113].

The ellipsometry offers higher ultimate precision, but critically depends on the

optical alignment. Thus it is only used as a global check as discussed above, while

in the following for individual preparations the thickness derived from the flux

measurements is stated.

2.2 Laser system

In the present investigation a laser system is used as a photon source for the

photoelectron spectroscopy, see figure 2.1. The laser system is described in detail

by Finsterbusch [114–116]. A mode-locked Nd:YLF laser (Quantronix 4216 DL)

generates pulses with a wavelength of 1053 nm, a duration of 50 ps and an energy of

190 nJ at a repetition rate of 76MHz. Each pulse is split into two replicas by

a half-reflective mirror. One replica seeds a regenerative amplifier (Quantronix

4417RG), increasing the energy to 2.5mJ at a reduced repetition rate of 1 kHz and

an increased pulse duration of 100 ps. The other replica pumps an optical parametric

oscillator (OPO) and generates synchronous pulses tuneable in the wavelength range

from 1460 to 1740 nm [115]. An optical parametric amplifier (OPA) is pumped by

the regenerative amplifier and seeded by the OPO [114]. The radiation is then
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quadrupled into the range from 365 to 435 nm (from 3.40 to 2.85 eV, 50 ps, 21µJ)

and used as the pump pulse for the C60. From the partly depleted pump pulse

the second (2.35 eV, 527 nm, 1.2mJ), third, fourth (4.71 eV, 263 nm, 120µJ), fifth

(5.88 eV, 211 nm, 23µJ), and the seventh harmonic (8.27 eV, 150 nm) are generated.

Here the seventh harmonic is generated by non-resonant four-wave mixing in a Xe

gas cell using the fundamental and the fourth harmonic [117].

To generate the µs delays the pump pulse from the Nd:YLF laser is replaced by a

pulse from a second laser, and an electronic delay between both lasers is employed.

This second laser is a Q-switched Nd:YAG laser from Laser Design. The laser

wavelength is 1064 nm (1.16 eV), and the pulse energy is set to 14mJ. Then the

pulse duration is 200 ns, and the jitter between the trigger pulse and the laser pulse

is 20 ns, and the relative pulse-to-pulse energy variation is 0.1, which is comparable

to the variation of the regenerative amplifier of the Nd:YLF laser system. The second

(140 ns, 532 nm, 2.33 eV, 1.6mJ) and third harmonics (120 ns, 355 nm, 3.49 eV, 9µJ)

are used in the experiment.

2.2.1 Optical parametric oscillator

The OPO is pumped synchronously and uses a periodically poled lithium niobate

crystal (PPLN) as nonlinear medium. This allows for quasi phase-matching (QPM)

which avoids walk-off over a large range of frequencies and allows to use the largest

nonlinear coefficients of the material. The damage threshold of lithium niobate

is relatively low with bulk damage occurring at 1.2GW/cm2 for 30 ns pulses at

1064 nm. This is mostly due to the photorefractive effect [116]. One countermeasure

is to heat the crystal, another one is to dope lithium niobate intentionally with MgO.

Therefore this OPO employs MgO:PPLN (GWU).

The OPO is tuned stepwise by changing the period length (Λ in figure 2.11)

and fine tuned by changing the temperature. Large spatial temperature gradients

break the crystal, thus the temperature is distributed evenly around the crystal

by a massive copper piece. A comparably small electrical heater and high oven

insulation prevent fast temperature changes. The insulation cannot prevent that

the temperature of the optical table below the oven rises by 5K.

The crystal features six period lengths of 28.5 < Λ < 31.0 µm. The plus signs

in figure 2.11 show measurements within the temperature range T = 373 to 443K.

Measurements are limited by the cavity mirrors to wavelengths in the range from

1460 to 1740 nm.

Jundt [118] published the temperature expansion of PPLN to be

TE(T ) = 1 + 1.54 · 10−5(T − 293.15) + 5.3 ·−9 (T − 293.15)2 ,
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and a Sellmeier equation

nz =

√

a1 + a2f (T ) +
a3 + a4f (T )

λ2 − (a5 − a6f (T ))2 +
a7 + a8f (T )

λ2 − a9
2

− a10λ2

with a temperature parameter f(T )(T − 298.65)(T + 643.97) .

The published values are used as start values for a fit to the measurements in

this investigation and listed in table 2.1. The coefficients which are multiplied with

the temperature parameter change completely, while the residual coefficients stay

within 15% of the original value. Note that lithium niobate is birefringent and only

the refractive index of the z-axis (nz = ne) is considered.

The cavity is almost confocal. To operate it within the stability region the set-

up is slightly asymmetric. If a temperature ramp is applied to the crystal, the

instantaneous frequency hops due to loss ripples, therefore, a birefringent filter is

added [116].

The output mirror transmits 0.2 of the energy. The OPO can be pumped with

up to 5W. Then it delivers 1.5W signal power corresponding to 30 nJ pulse energy

at the repetition rate of 76MHz. The OPO operates more efficiently if pump pulses

are shortened from 50 ps to 40 ps.

2.2.2 Optical parametric amplifier

The OPO pulses are amplified by an OPA using two potassium-titanyl-phosphate

(KTP) crystals as nonlinear medium. The pump pulses are derived from the Nd:YLF

regenerative amplifier. At a pump energy of 2.5mJ the signal pulses from the OPO

are amplified up to a signal pulse energy of 500µJ which corresponds to a quantum

efficiency of 0.45 [116]. At the repetition rate of 1 kHz this corresponds to 500mW

average power.

The signal is polarized extraordinarily, the pump and the idler are polarized

ordinary. Phase matching is achieved by rotating the KTP crystals around the

direction of the ordinary polarization thus changing the extraordinary refractive

index. The total length in KTP of 50mm leads to an angular acceptance of 1◦.

a1 a2 a3 a4 a5

Jundt 0.535583 · 10 1 0.4629 · 10−6 0.100473 0.3862 · 10 −7 0.20692

MgO 0.536874 · 10 1 −0.4055 · 10−5 0.090604 −0.6909 · 10−10 0.38728

a6 a7 a8 a9 a10

Jundt 0.89 · 10−8 100 0.2657 · 10−4 11 0.15334 · 10−1

MgO 0.88 · 10−6 89 0.1296 · 10−4 13 0.17902 · 10−1

Table 2.1: MgO-PPLN dispersion measured in the present work compared to PPLN
measured by Jundt [118].

33



2 Experiment

320 340 360 380 400 420 440 460
1400

1450

1500

1550

1600

1650

1700

1750

1800

Λ  =  28.5  µ m

Λ  =  29.0  µ m

Λ  =  29.5  µ m

Λ  =  30.0  µ m

Λ  =  30.5  µ m

Λ  =  31.0  µ m

T / K

λ si
gn

al
 / 

nm

Figure 2.11: Tuning of the OPO. Λ = grating constant, curves = theory,
plus signs = experiment. Note that the cavity mirrors limit the wavelengths.

The second crystal is rotated by 180◦ around the direction of the extraordinary

polarization relative to the first crystal to compensate the walk-off2 of the

extraordinary polarized signal and refraction on the surfaces. As shown in figure

Figure 2.12: KTP walk-off compensation.

2.12, the seed pulse enters the first crystal displaced relative to the pump beam [119].

It then walks across the whole pump beam profile, which has a diameter of 0.5mm,

producing an elliptic idler profile. In the second crystal the seed pulse walks back

across the whole pump beam profile.

In the first crystal the signal is focussed as much as permitted by the angle

acceptance so that the complete signal profile is evenly and strongly amplified near

(limited by walk-off) the centre of the pump profile.

In the second crystal the signal beam diameter is comparable to the pump beam

diameter so that the pump can be depleted. The idler is not removed between the

2walk-off means that the phase fronts are not orthogonal to the Poynting vector
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two crystals and can interact with the pump and the signal. In the 50mm air gap

between the two crystals the idler phase theoretically shifts by 20◦ relative to signal

and pump. The air space can be reduced as depicted in figure 2.12. Depending on

the relative orientation and twinning [120] 3 of the two crystals the signal beam can

shift the phase by 180◦ [121].

Starting with angle phase-matched crystals and then rotating both crystals at

once and monitoring the signal power the phase shift leads to two angles being

equally efficient and separated by a less efficient angle. At this less efficient angle in

the far field the signal beam profile is divided into two halves by a horizontal gap,

which has been observed.

The Gaussian temporal shape of the pump pulse leads to low amplification in the

tails of the Gaussian. This has no influence on the signal because the OPO pulses

are shorter by a factor of two. As a side effect a hole is burned into the temporal

shape of the pump pulse. Since the pump pulse is then used to generate the probe

pulse for the 2PPE experiment, a pronounced hole must be avoided and the OPA

must not to be aligned to the highest quantum efficiency.

For every new wavelength the OPO, OPA, and the fourth harmonic generator

(figure 2.1 in the middle column) are realigned. The transfer optic between laser

system and vacuum chamber is adjusted to correct for the chromatic error of the

lenses. Between parameter changes the laser system is controlled and readjusted

if necessary. Warming up of the laser system takes about 3 hours, mainly due to

the temperature stabilisation of the environment, which influences the temperature

distribution in the air conditioned laboratory.

2.3 Photoemission

In this section the 1PPE, the 2PPE, and the time-resolved 2PPE experiment are

described. The set-up, the data-acquisition approach and data-acquisition software,

and the analysis methods are covered.

2.3.1 Approach

Time-resolved 2PPE experiments require a defined delay between the pump and

the probe pulse. Eberhardt and coworkers [39] used a list of delays suited for a

logarithmic scale. The mechanical delay steps are chosen slightly shorter than the

laser pulse duration to reduce the width of the Poisson distribution.

Photon energies are covered in the range from 2.35 eV to 8.27 eV, and the flexible

optical set-up allows to employ the following, different variations of photon energies:

• The 8.27 eV (151 nm) photon energy is used to check the preparation for low

defect density and thickness, see figure 3.1.

3 Twinning is an abbreviation for a crystal showing twin domains. In the parametric oscillator
twin domains were introduced deliberately to shift the phase by 180◦
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• 4.71 eV (263 nm) and 5.88 eV (211 nm) photon energies are used to probe

excited states. See figure 3.21 and 3.5.

• 2.35 eV (527 nm) and 3.50 eV (355 nm) photon energies are used for time-

resolved 2PPE, see figure 3.5 and 3.6.

• The tunable radiation from the OPO is used to get a dynamic spectrum of

the transitions from the ground state to an excited state. See figure 3.21 and

figure 3.22.

The probe beam spot is adjusted to be within the pump beam spot by means of a

camera directed at a fluorescence screen (zinc silicate) replacing the sample. In the

initial experimental layout (prior to 2005) the adjustment of the pump-and-probe

overlap on the sample was achieved by positioning the pump beam profile (area:

2mm2) laterally in a 5 by 5 grid relative to the probe (area: 1mm2) profile. The

grid covered an area of 5mm by 10mm on the sample. Therefore in this initial

experiment a spot size larger than 1mm2 was chosen.

2.3.2 Set-up

The set-up has already been sketched in figure 2.1 and the major features important

for the 2PPE in particular are described in the following. The delay between pump

and probe pulses is adjusted by opto-mechanical or electronic means. The opto-

mechanical delay line spans 600 ps with a step size of 12 fs and is employed for the

pulses with a duration of 50 ps from the YLF laser system. The electronic delay

generator is part of the data acquisition board (Meilhaus Electronic ME-4610 1.2D

Typ ME-Jekyll) in the computer. It spans 6.5ms with a step size of 100 ns, and

is employed for the pulses with a duration of 120 ns from the YAG laser system.

Laser synchronous choppers are employed in the pump and the probe beam. The

photodiodes are mounted besides the laser beam. A reflex of the laser pulses from

the viewport is directed onto the photodiodes (see figure 2.1). Each laser pulse

intensity is recorded by photodiodes (PD0 and PD1 in figure 2.1) and converted to

an integer by an analog-to-digital converter (ADC, Meilhaus Electronic ME-4610

1.2D Typ ME-Jekyll).

The laser pulses are p-polarised with respect to the sample surface. A lens weakly

focuses the pump beam to a 0.25mm2 spot on the sample. This spot is elliptic due

to the 60◦ off-normal incidence. Photoelectrons emitted from the sample in normal

direction fly through a ToF tube and are detected after a distance of 405mm. The

ToF tube is aligned along the horizontal component of the earth magnetic field in the

laboratory, which amounts to 20µT. The vertical component of the earth magnetic

field amounts to 40µT. The magnetic field acting on the emitted electrons is reduced

by a µ-metal cylinder (thickness: 0.5mm [122], inner radius: 196mm) in the sample

chamber and a another µ-metal cylinder (thickness: 0.2mm, inner radius: 76.5mm)

around the ToF tube. Using a fluxgate magnetometer the residual vertical internal
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magnetic field was determined to be below 2µT. Considering as a worst case the

Lorentz force on an electron and the centripetal force needed to bring an electron

onto a circular path

mev
2/r = e0v × B

with me being the electron mass, v being the velocity of the electron, e0 being the

charge of the electron, and B being the above mentioned hypothetical magnetic field

of 2µT , an electron with the typical kinetic energy of 1 eV travels on a circular path

with a radius of about 2m. Since the distance between the sample and the micro

channel plates (MCP) is only 405mm, the electrons emitted in normal direction

deviate less than 41mm from the centre of the ToF tube, the angles in ARUPS are

shifting less than 11◦, and the electron path length variation to the MCP, which

has an active diameter of 40mm, is less than 8mm. The slowest electrons need

about 405 ns to pass the ToF distance. For these electrons the variation of their

ToF is in the order of the time resolution of the TDC (see below), and thus it can

be concluded that the shielding is sufficient.

Between the sample and the ToF tube a voltage is applied to extract the electrons.

The ToF tube starts with an inverted cone to achieve a fast reduction of this electric

field, and the ToF tube ends with a grid to shield it against electric fields in the

MCP assembly.

After the ToF tube each electron is multiplied in two MCPs operated at a

voltage of 850V each. The resulting electron cloud hits a 50Ω anode leading to

electrical pulses with 10mV pulse height. A cascade of 4 InGaP heterojunction

bipolar transistors (MAR by minicircuits with 1mV equivalent input noise) amplifies

these pulses to 3V pulse height. Jabs [103] measured the frequency response of 4

transistors of this type and determined a bandwidth of up to 2GHz.

A time-to-digital converter (TDC) with a quartz stabilized resolution of 125 ps

(ACAM AM-GP1) converts the delay between this pulse and an electrical pulse

supplied by the laser electronics into a 16-bit integer number. After a dead time of

20 ns the next delay can be determined. To reduce the chance that a second electron

reaches the detector within this time interval the average count rate is adjusted to

less than 0.5 electrons per laser pulse. The combined time resolution of the ToF

tube and the TDC is 4.7 ns leading to an energy resolution of 40meV [122]. In the

current investigation in figure 2.7 a FWHM of 133meV is measured on the Cu(111)

Shockley surface state, while A. Goldmann and coworkers [123] have measured a

better FWHM of about 40meV using a photon energy of 21 eV due to their better

angular resolution. The time resolution of the delay is given by the cross correlation

of the laser pulses, which can be determined to be 80 ps by means of the 2PPE

signal in the energy range of the LUMO+1. The measurements prior to 2005 were

recorded with a computer equipped with a Motorola CPU with 68000 architecture,

a VME bus, a LeCroy TDC, and a SCSI hard disk. The measurements since 2005

employ a standard PC with a 400 MHz 586 CPU.
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2.3.3 Measurement software

The measurement program reads out and stores the TDC and the ADC values

for each laser pulse. The ACAM TDC software allows precise timing by low-level

programming. The Meilhaus ADC driver uses an internal buffer. For performance

reasons the measurement program is written in C++, and inside the inner loop

exclusively 32-bit integers are used. Data array structures are accessed without

boundary checks and are programmed at a low level with bit operations and unitary

operators.

Prior to beginning the measurement a list of pump-probe delays with a fixed

interval is generated by the software and shuffled to quasi-random order. For the

measurement the software iterates repeatedly through this list.

2.3.4 Analysis

For each electron the time-of-flight (ToF) is measured, but for physical interpretation

the kinetic energy at the time of emission needs to be known and is calculated to

various degrees of accuracy as discussed by Göhler, Pauksch and Jabs [103, 104,

122]. To compare spectra taken with different photon energy, the photon energy

is subtracted from each spectrum. From a spectrum with a clearly visible fullerite

HOMO the energetic position of the HOMO peak is taken and subtracted from all

spectra [38].

To generate a spectrum of the kinetic energies of the electrons a histogram is

generated and drawn as a bar chart where the area of each bar is proportional to

the number of electrons in this energy range. Since in this investigation the bars of a

single histogram have variable widths, the height of the histogram is proportional to

the number of electrons in this energy range divided by the width of the energy range.

In the current investigation only the height of the bars is plotted and connected by

a line as a guide to the eye. Figure 2.6 is an example of histograms with constant

widths. Since kinetic energy cannot be negative, and due to the extraction voltage

between the sample and the ToF tube, the slowest electrons have a finite ToF. This

leads to a low energy cut-off [38, 124] in the histograms. For large delays dynamic

spectra measured at multiple delays are summed up before further processing to

reduce the width of the Poisson distribution even more as is visible for example

in figure 3.8 to 3.17. Dynamic spectra for different delays are composed into one

time-delay spectrum, which is a scalar valued function of a two dimensional vector.

Colour coding enables a 2-dimensional depiction (see figure 3.5 ).

2.3.4.1 Photodiode signals

The photodiode signals represent the laser pulse energies and are used for monitoring

choppers, the laser stability, compensation of laser fluctuation, and, after calibration,

determining the signal dependence on fluence.
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2.3 Photoemission

In the following sections the “pump-pulse only” dynamic spectrum and the

“probe-pulse only” dynamic spectrum are called figuratively mono-colour dynamic

spectra and the pump-probe dynamic spectrum is called the bi-colour dynamic

spectrum. Their respective integral amount of photoelectrons is in the same order

of magnitude. The switching between the three kinds of measurement is done by

choppers in the pump and the probe beam. To retrieve the pump-probe signal only,

the mono-colour spectra are subtracted from the bi-colour spectrum, sometimes

leading to negative values because of the still to be applied dead-time (see section

2.3.2) correction [125].

Histograms of the energy of the pump and the probe pulses are derived. From

the histogram ranges for the cases “laser pulse passed chopper” (for example

“0.030 < fluence / (mJ/cm2) < 0.065” in figure 3.8) and “laser pulse was blocked

by the chopper” are derived automatically4 to retrieve the mono-colour dynamic

spectra and the bi-colour dynamic spectrum. Extreme pulse energies are rejected

to avoid detrimental effects. For measurements showing low noise after background

subtraction the data is additionally sorted into low and high pulse fluence.

For every group of 100 000 laser pulses belonging to the same pump frequency

and the same delay the pump-only, probe-only, and pump-probe dynamic spectra

are normalized relative to photodiode values. The bi-colour signal is normalized

by the product of the signals from both photodiodes and the mono-colour signal is

normalized in different ways, depending on the photon energy. If the probe pulse

photon energy is 4.7 eV (263 nm) (see for example in figure 3.21), the square of the

photodiode PD0 signal is used. If the probe pulse photon energy is 5.9 eV (211 nm) as

in all other time-resolved measurements, the photodiode PD0 signal is used directly.

The pump pulse is always normalized by the square of the photodiode signal because

either the photon energy is high enough for 2PPE as in the triplet measurements

or in the singlet measurements with more than 3.0 eV (413 nm) photon energy or

the signal is so weak that a small error in the norm gets even smaller after error

propagation. More details are presented by Göhler [104].

Due to the large amount of subtracted mono-colour background the dynamic

spectra are noisier near the low energy cut-off than at high energies. In order to

achieve a levelled noise distribution across all slots, the dynamic spectra are weighted

appropriately and this is done in dialogue on the computer.

2.3.4.2 Separation of time-delay spectra into states

The experimental literature describes the electronic structure of C60 as a collection

of discrete excited states, each with their individual dynamic spectra (examples of

dynamic spectra are shown in some figures 3.7–3.16) and time state dynamics (some

examples of state dynamics are shown in some figures 3.8–3.17).

4because of laser drift no fixed ranges can be used
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2 Experiment

A cut through a time-delay spectrum along a fixed delay renders a good dynamic

spectrum for the lowest triplet exciton, but a bad dynamic spectrum for a short

living state due to temporal overlap, see for example in figure 3.5. A cut through

a time-delay spectrum along a fixed energy renders a good state dynamics for the

LUMO+1 exciton, but cannot separate the state dynamics of the lowest singlet

exciton from the excited singlet excitons due to spectral overlap. Though later a

computationally expensive method will be discussed which can fit two lifetimes to a

single cut, it is desirable to fully exploit the already stated properties of the electronic

structure of C60 before adding new assumptions. Eberhardt and coworkers [39] and

Kabler and coworkers [40] also did not rely on cuts alone and fitted a superposition

of dynamic spectra, Gaussians in Eberhardts case, to the time-delay spectrum.

Since no Gaussians are obvious in the present investigation and to ease the fitting

procedure, the dynamic spectra and state dynamics are expressed as matrices much

like in a cut. An artificial case with clearly separated spectral lines or events at

separated points in time may serve as a first test for the fit. A human would look

for spots in the time-delay spectrum and then cut through them. A human would

limit the cut length to only cut through one spot. To make the program robust

against noise and overlap, it does not scan through the time-delay spectrum value

by value, but the program is based on inversion of the superposition of states:

I(Ee−, t∆) =
m

∑

n=0

In(Ee−) · In(t∆)

The symbols are defined as follows: I = intensity, E = energy, e− = electron,

t = time, ∆ = difference, t∆ = delay.

• The graph of a typical function I(Ee−, t∆) called a time-delay spectrum is

plotted in figure 3.5. It will be abbreviated by I being a matrix.

• The corresponding functions In(Ee−) called dynamic spectra are plotted in

figure 3.16. It will be abbreviated by E being a matrix whose number of rows

corresponds to the number of states.

• The corresponding functions In(t∆) called the state dynamics are plotted

in figure 3.17. It will be abbreviated by ∆ being a matrix whose number

of columns corresponds to the number of states. This experimental result

corresponds to the theoretical curves I(t1) in section 1.2.2.3 and will be plotted

together for example in figure 3.15.

This leads to:

I = E • ∆ (2.2)

Here • denotes the matrix multiplication. The goal is now to extract E and ∆

from the given I. The singular value decomposition (SVD) appears to be quite
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2.3 Photoemission

suited to this task. Okamotoa and Sakurai [126] applied it to time-resolved X-ray

scattering and were able to determine the number of significant basic scattering

functions contained in the data set. Moffatt and coworkers [127] mentioned that

the SVD is commonly used in the analysis of time-resolved measurements and that

truncating the SVD result allows for an unbiased differentiation between signal and

noise.

The SVD is usually expressed as

A = U • S • V T .

Here A is a generic matrix, U is an orthonormal matrix, V is an orthonormal

matrix, S is a diagonal matrix (in this section: not source), and T denotes taking

the transpose. The two products of this equation are reduced to one product by

substituting
√

S •
√

S = S leading to A = U •
√

S •
√

S •V T . Using the associativity

of the matrix product this is rewritten as

A = (U •
√

S) • (
√

S • V T ) . (2.3)

By substituting I = A, E = (U •
√

S), ∆ = (
√

S • V T ) equation 2.2 is formally

reproduced, with different dimensions of E and (U •
√

S) though. The rear rows

of (U •
√

S) contain only zeros (except for noise). This is a test for the quality

of the data, the assumption on the number of states, and the general validity of

describing the system by a small number of states [127]. The zeros are cut off to

match the dimensions to I. The different energies in the time-delay spectrum need

to be weighted before the SVD. The weighting function is a compromise between

equalized noise across the spectrum and emphasis on already known state energies.

It is related to taking cuts in the sense that cutting means to put the full weight on

one energy and zero weight on all other energies. After the SVD the weighting is

undone to the dynamic spectra.

The SVD is computed using standard linear algebra algorithms, of which only

the outermost routine is of iterative nature [128]. For the low resolution data on

a 2006 personal computer the iteration takes only some seconds and no numerical

instabilities or excessive rounding errors occur.

2.3.4.3 Positive populations

As was mentioned before in section 1.2.2.2, the data in the current investigation

represent probabilities and populations, which are positive.

SVD is likely to create negative and positive numbers. Therefore, one usually

applies the SVD, truncates the result, reverses the SVD, and proceeds with cutting

through the time-delay spectrum at a specific delay or energy [126, 127]. In the

current investigation the SVD is not reversed. Instead a 1 (unity matrix) is formally

inserted into equation 2.3:
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A = (U •
√

S) • 1 • (
√

S • V T )

A = (U •
√

S) • B • B−1 • (
√

S • V T )

A = (U •
√

S • B) • (B−1 •
√

S • V T ) (2.4)

By substituting I = A, E = (U •
√

S • B), and ∆ = (B−1 •
√

S • V T ), equation 2.2

is reproduced.

The matrix B is then varied to make E and ∆ as positive as possible, which is

expressed as minimization of an exponential penalty function fp:

fp(E) =

j≤jE
∑

j=1

e−E(j) +

j≤j∆
∑

j=1

e−∆(j)

Since mono-colour and dark noise background subtraction already may lead to

negative population, perfectly positive functions are rarely to be gained. Rigorously

adhering to positive populations definitely limits the number of analysis methods.

Considering again the test case of clearly separated states and low noise, the

penalty function has as many symmetric global minima as there are permutations of

the states. After the minimizing fit converged into one of these minima the arbitrary

permutation is removed by sorting the states by their mean energy. Thus for the test

case this is an automated replacement for the manual cutting procedure. Like for

the cut it is possible to fit two lifetimes to each state dynamics. In a test with two

extracted states the fits yielded four lifetimes which were within the uncertainties

of the already known two lifetimes.

Unfortunately for many measured time-delay spectra the minimization needs to

be stabilized by blending it with a fit of the state dynamics and dynamic spectra

to the cuts. The lifetimes computed using the cut and the lifetimes computed

using the SVD based-analysis differ, sometimes by a factor of 10. Thus in the

present investigation both results are shown and compared with each other. The

reason is that the time-delay spectra contain three states and the minimization is

often only stable if separating into two states. To stabilize a fit of three states,

it is likely necessary to manually average over energy ranges. Then the dynamic

spectra would only contain about 5 data points. Still the SVD-based analysis is an

improvement over a simple cut because the SVD automatically counts the numbers

of states, only the SVD-based analysis separates overlapping states, and the stability

of the minimization gives additional feedback about the quality of the data and the

assumptions.

2.3.4.4 Minimum of a function

The optimization is based on finding the absolute minimum of a function (Rn → R),

see, for example, section 2.3.4.5. A large number of algorithms is documented in the
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2.3 Photoemission

literature, and the current investigation employs these four rather simple ones:

• sampling values on a regular grid

• the simplex method

• steepest descent

• the Gauss-Newton method .

If the first and second derivative of the function is readily available, the steepest

descent and Gauss-Newtons methods are combined into the Levenberg-Marquardt

method [129], and this combination is used, resulting in a fit parameter and its

uncertainty. Otherwise the grid search is used and the result is refined using the

simplex method. No uncertainty is available in this case.

To finish a minimization under one hour within Matlab it is necessary to use a

function which is quadratic with respect to some of its arguments. Then only a

small number of parameters need to be found by iteration. One needs to pass over

local minima along the nonlinear parameters. To find the optimal matrix B (from

equation 2.4) automatically, typically the values -1.5, -0.5, +0.5, +1.5 are tried out

for every element of B. This procedure is called sampling on a regular grid. In

contrast, the simulation is fitted manually to the state dynamics, and the result is

then refined by the simplex method.

2.3.4.5 Fitting the simulation to the measured state dynamics

In mathematics fitting is defined as minimizing the squared difference between the

simulation and the data by changing the parameters.

In case of the state dynamics, this is the function:

‖Ψ(R0) − ∆‖2 ≤ ‖Ψ(R) − ∆‖2 ∀ R

The parameters of the simulation (section 1.2.2.3) are the source S and rate R. In

this investigation a one-to-one relation between the simulated states and the states

extracted from the time-delay spectrum is implied. About half of the resulting state

dynamics show a bi-exponential decay. This applies to measurements done by means

of the mechanical and the electronic delay. For these cases multiple simulated states

are superimposed and then fitted to one state dynamics. A typical result is shown

in figure 3.11.

The state dynamics measured by means of the electronic delay are fitted to a single

exponential decay because the pulse duration is much shorter than the measured

delay range and multiple states with transitions between them are not expected, see

for example figure 3.28. The Levenberg-Marquardt method is used in this case and

errors for the fit parameters are available.
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The state dynamics measured by means of the opto-mechanic delay is fitted to

a rate equation because transitions between multiple states are reported in the

literature. Since the opto-mechanic delay steps are smaller (30 ps) than the laser

pump probe pulse correlation duration (
√

w2 + w2
P = 80ps), the impulse response

of the sample has to be convoluted with the Gaussian shape of the laser pulses. A

typical case is shown in figure 3.15. For convergence the baseline and the rate from

a lower state into a higher state have to be fixed at zero, the lower states have no

influence on higher states. The simplex method is used in this case and no errors

for the fit parameters are available. Kabler and coworkers [40] and Eberhardt and

coworkers [39] employed theories about the dynamic spectral shape of the emission.

In the present investigation this could be applied successfully to the dynamic spectra

in figure 3.16. In principle this allows to fit the simulation directly to the datasets

of individual electron ToFs.

The dependence of the fitted parameters on other parameters (than delay) like film

thickness, temperature, photon energy, or laser pulse fluence, are listed or plotted,

for example in figure 3.20. The spectra and the dynamics are manually inspected

to ensure that no characteristic is left out.
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3 Two-photon photoemission on

fullerite films

3.1 Spectroscopic results
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Figure 3.1: Photoemission spectra of fullerite using various photon energies. The
spectra 3.27 eV + 5.88 eV and 3.30 eV + 4.71 eV are background-subtracted pump-
probe spectra taken at zero delay. E is the kinetic energy of the emitted electrons. µ
is the chemical potential. The energy ranges marked as LUMO+x belong to excitons
with an electron in the respective state and a hole in the HOMO.

Figure 3.1 shows a combination of typical spectra, as measured, and two-colour
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3 Two-photon photoemission on fullerite films

photo-emissions dynamic spectra from which the mono-colour background is sub-

tracted. In the current 80-ps 2PPE investigation and in 120-fs 2PPE measurements

the LUMO+2 exciton appears at 4.0 eV and the LUMO+1 excitons appears at

2.8 eV. The singlet exciton energies are in overall agreement. Furthermore, in the

triplet dynamic spectrum in figure 3.27 4% of the electrons have energies in the

range from 1.7 to 2.7 eV. These probably originate close to the metal substrate and

thus have 0.8 eV higher energy (see section 1.2.4). The difference between the warm

(section 3.3) and the cold preparation (section 3.4.1) is more significant than the

difference between different film thicknesses, and therefore traps are needed as a

second source of these electrons. Trapping implies that for the exciton the energy is

lowered in the trap. Generally this could either mean a lower energy for the electron,

which would lead to lower kinetic energies in the spectrum, or it could mean a lower

energy for the hole maybe in combination with a slightly higher energy for the

electron, which would lead to higher kinetic energies in the spectrum. The latter

case is visible in the spectra. Also an improved polarizability of the trap and its

surrounding would lower the Hubbard U and lead to a higher kinetic energy of the

emitted electron. In the cold preparation both dynamic spectra, from the excited

exciton and from the lowest singlet exciton, have peak with a 0.8 eV long high energy

tail. The peak in the dynamic spectrum of the lowest triplet exciton also has such

a tail, which is visible in figure 3.33.

Though the appearance of a delay-dependent signal in two-pulse experiments is

sufficient to prove nonlinear effects, the pulse fluence is varied over one order of

magnitude to separate two-photon photoemission from third or even higher order

effects in a time integrated, mono-colour experiment. The corresponding result is

shown in figure 3.2. At low fluence gap states lead to one-photon photoemission

below 2.5 eV. The mean value above 2.9 eV is taken and plotted in figure 3.3, it

can be fitted to a parabola implying two-photon absorption. The dynamic spectra

normalized by this value are shown in figure 3.4. The high energy tail of the

LUMO+1 in the intermediate step, the peak of the LUMO+2 in the intermediate

step and the peak of the HOMO in the initial state are all probed by two-photon

photoemission. The low energy part of the LUMO+1 dynamic spectrum is assumed

to behave in the same way, but it overlaps with the one-photon background and

thus is not directly visible. The complete LUMO dynamic spectrum is hidden in

this one-photon background in this cold preparation (section 3.4). This background

cannot be a (pure) two-photon signal, because in figure 3.4 the spectra show a large

variance in the electron energy range between low energy cut-off and 2.5 eV.

At a fluence of 0.5mJ/cm2 the 20 ns dead time of the TDC leads to a saturation

of the signal. Note that low energies correspond to large delays. At higher fluence

the saturation evolves into a dip and grows to larger kinetic electron energies.
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fluence.
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3.2 Time-resolved results

The extraction voltage allows electrons to fly through the ToF tube which have

barely left the sample. Space charge within the ToF further reduces the speed of the

electrons in the tail of the electron pulse and these electrons appear below the low

energy cut-off (see section 2.3.4). In figure 3.4 the normalised signal below the low

energy cut-off is the same for all pulse energies. This implies that the normalised

signal increases quadratically, which is a typical space charge effect and does not

relate to spurious reflections within the ToF electronics, which would be linear, or

dark noise, which would be constant.

3.2 Time-resolved results

Figure 3.5 shows a time-delay spectrum taken with a pump photon energy of 2.36 eV

(527 nm) and a probe photon energy of 5.88 eV (211 nm). It incorporates delays of

up to 100 ns. At zero delay the dynamic spectrum extends from the low energy

cut-off at 1.3 eV to 2.3 eV, which is the pump photon energy. Above 1.7 eV the

dynamic spectrum is more intense by a factor of 8 (deducible from the colour scale)

when the laser pulses overlap. This is an indication that most of this signal is

generated by two-photon absorption without populating an intermediate state. As

mentioned in section 1.2.2, photons with an energy of 2.36 eV lead to a polarization

in the extreme tail of the lineshape of the first dipole-allowed transition, which in

combination with a probe photon excites an electron. Without population there

is no decay and like in figure 3.1 a replica of the spectrum of the HOMO appears

shifted to higher energies. Additionally the spectrum may be influenced by a larger

dipole moment of transitions out of the larger Wannier-Mott excitons. This is in

agreement with Kabler and coworkers [40], who strode to reveal the dependency of

the lifetime on excitation density. They used 75 ps long pulses in one set-up and

5 ns pulses in another, but did not report any differences of pump efficacy and they

only present results for the 5 ns laser pulses.

A further indication for this mechanism is that pumping is not as efficacious using

pulses with 100 ps duration and 2.33 eV photon energy at the same fluence. It is

unlikely that the small difference in photon energy is responsible for this effect. The

very weak signal above 2.33 eV confirms that the absorption of two pump photons

and one probe photon is unimportant at this intensity. This is in agreement with

the observation of Eklund and coworkers [44] that 2.33 eV photons are 8 times less

readily absorbed than 3.49 eV photons at such low intensities as offered by a thermal

tungsten light source.

A smaller part of the signal in 3.5 is generated by populated higher excitons which

decay into the lowest singlet exciton at 1.7 eV. This is indicated by the fact that the
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probe photon energy: 5.88 eV (λ : 211 nm).

−5 0 5 10 15 20 25 30
0.8

1  

1.2

1.4

1.6

1.8

2  

2.2

2.4

2.6

2.8

delay / µs

E
−

E
H

O
M

O
  /

 e
V

dN/dE  /  1/(eV µJ2/cm4)
−100 0   100 200 300 
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3.3 Warm preparation

maximum of the signal at that energy is delayed 30 ps with respect to the signal at

an energy of 2.1 eV. This exciton has a lifetime of 500 ps. That some of the radiation

has to be absorbed linearly is obvious because absorption was already measured by

means of thermal radiation [44], and the linear nature holds for all pulse energies

used in the present investigation as verified by Kabler and coworkers [40].

However, even 97.5 ns after pumping a dynamic spectrum is measured. A very

low background appears in the dynamic spectra taken before the pump pulse which

shows that the background subtraction works fine and that there are no excitation

pathways where the role of the pump and the probe are interchanged.

Figure 3.6 shows a time-delay spectrum taken with a pump photon energy of

3.49 eV and a probe photon energy of 5.88 eV. The pump pulse lasts 100 ns, which

is as long as the complete range of delays in figure 3.5. It shows delays up to 25µs.

At zero delay the spectrum extends from 1.1 eV to 2.5 eV. A state at delays up to

4µs and an initial electron energy of 1.5 eV is interpreted as the triplet exciton.

Additionally a non-decaying signal extends from 1.1 eV to 1.4 eV. This is further

analysed in figure 3.28 and in figure 3.17.

An alternative explanation [11] based on measurements which show no energetic

shift is that this state decays by exciton-exciton reaction, which leads to hyperbolic

state dynamics. A bi-exponential decay is observable in some measurements in the

present investigation, but hyperbolic state dynamics is never observable. Thus, this

alternative explanation can be discarded for the present investigation.

3.3 Warm preparation

3.3.1 Singlet exciton

The singlet exciton is investigated using the opto-mechanical delay and varying the

photon energy. For each measurement a fluence histogram across all pump fluences

is derived and the signals are sorted according to the laser fluences into above, below,

and median pump fluences.

Typical results are shown in figures 3.7– 3.10. The photon energy hν is 3.06 eV

(λ = 405.0 nm) and the temperature T is 140K. Two states, the lowest triplet

exciton (3E), and the singlet exciton (1E) can readily be observed.

In figure 3.7 the dynamic spectra of the lowest triplet exciton are smooth, at least

above 1.4 eV. The upper tenth-maximum (TM) of the peak of the lowest triplet

exciton is at 2.6 eV while in the other measurements of this series the upper TM
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3 Two-photon photoemission on fullerite films

is at 2.3 eV. In figure 3.8 the fit to the state dynamics results in lifetimes above

3 ns. Since the maximum measured delay is 0.45 ns, no upper limit for the lifetime

uncertainty can be given. A low population data point in the low energy data

corresponds to a high population data point in the high energy data and vice versa.

In figure 3.9 the dynamic spectrum of the singlet exciton has its upper TM at

2.1 eV, which is typical in this series. It extends down to the low energy cut-off

of the time-delay spectrum. In figure 3.10 the state dynamics exhibits a lifetime

shorter than the laser pulse length by more than a factor of ten, and no lower limit

of the lifetime uncertainty can be given.

In the dynamic spectrum in figure 3.12 the lowest triplet exciton peaks at 1.4 eV

and the singlet exciton exhibits a plateau extending from the low energy cut-off to

1.8 eV. In the state dynamics in figure 3.14 the singlet exciton has a lifetime shorter

than the laser pulse duration and the lowest triplet exciton has a lifetime longer

than the maximum delay.

In figure 3.13 the dynamic spectra of the lowest triplet exciton and the lowest

singlet exciton increases monotonously towards lower energies. The excited singlet

exciton peaks at 1.8 eV. In figure 3.15 the lifetime of the lowest triplet exciton is

much longer than the maximum delay. The lowest singlet exciton has a lifetime of

210 ps. The lifetime of the excited singlet exciton is much shorter than the laser

pulse duration.
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Figure 3.8: Typical state dynamics for the lowest triplet exciton. Pump photon
energy: 3.06 eV (λ = 405 nm). Probe photon energy: 5.88 eV (λ = 211 nm).
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Figure 3.9: Typical dynamic spectra for the singlet exciton. It does not resolve
between the lowest singlet exciton and the excited singlet excitons. Pump photon
energy: 3.06 eV (λ = 405 nm). Probe photon energy: 5.88 eV (λ = 211 nm).
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Figure 3.10: Typical state dynamics for the singlet exciton. It does not resolve
between the lowest singlet exciton and the excited singlet excitons. Pump photon
energy: 3.06 eV (λ = 405 nm). Probe photon energy: 5.88 eV (λ = 211 nm).
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Figure 3.11: The 2PPE signal at 1.9 eV above HOMO in figure 3.5 (black dots) is
fitted by a rate equation (black curve) with two states (blue and green), but without
interstate rates. Pump photon energy: 2.35 eV (λ = 527 nm). Probe photon energy:
5.88 eV (λ = 211 nm).

In figure 3.11 the 2PPE signal at 1.9 eV above HOMO is fitted by a rate equation

(marked as a black curve) with two states (marked as blue and green), but without

interstate rates [104]. The lowest singlet exciton has a lifetime of 1020 ps. The

excited singlet exciton has a lifetime of 80 ps.

From the time-delay spectrum in figure 3.5 dynamic spectra are extracted. They

are shown in figure 3.16 and exhibit clearly separated peaks with a FWHM of 0.5 eV.

The lowest triplet exciton is centred at 1.4 eV. The lowest singlet exciton is centred

at 1.7 eV, which is somewhat lower than reported values for the singlet exciton of

around 1.8 eV. The excited singlet exciton peaks at 2.0 eV, which is below reported

values for free electrons in the LUMO of 2.2 eV. The dynamic spectrum is cut off at

2.35 eV, which is the pump photon energy used in this measurement.

The corresponding state dynamics in figure 3.17 shows a lifetime of the lowest

triplet exciton, which is greater than the maximum delay of 97.5 ns. Any lifetime

much longer than the maximum measured delay has a large uncertainty. Therefore,

a longer electronic delay will be used in section 3.3.2. The lowest singlet exciton

has a lifetime of 399 ps. The excited singlet exciton has a lifetime of 11 ps, which

is below the laser pulse duration. In the case of the excited singlet exciton some

crosstalk from the lowest singlet exciton is visible.
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Figure 3.12: Pump pulse fluence integrated dynamic spectra. Pump photon energy:
3.06 eV (λ = 405 nm). Probe photon energy: 5.88 eV (λ = 211 nm). The blue
curve represents the excitons and the green curve represents the free electrons in the
LUMO band.
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Figure 3.13: Pump pulse fluence integrated dynamic spectra generated from the
same data as used for figures from 3.8 to 3.9 . Pump photon energy: 3.18 eV (λ =
390 nm). Probe photon energy: 5.88 eV (λ = 211 nm). The blue curve represents
the excitons and the green curve represents the free electrons in the LUMO band.
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Figure 3.14: Pump pulse fluence integrated state dynamics generated from the same
data as used for figures from 3.8 to 3.9 and 3.12. Pump photon energy: 3.06 eV
(λ = 405 nm). Probe photon energy: 5.88 eV (λ = 211 nm).
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Figure 3.15: Pump pulse fluence integrated state dynamics extracted from the same
data as used for figure 3.13. Pump photon energy: 3.18 eV (λ = 390 nm). Probe
photon energy: 5.88 eV (λ = 211 nm).
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Figure 3.16: Dynamic spectra extracted from the same data as used for figure 3.5.
Pump photon energy: 2.35 eV (λ = 527 nm) and a probe photon energy of 5.88 eV
(211 nm). The curves are Gaussian curves fitted to the data.
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3.3 Warm preparation

3.3.1.1 Efficacy and lifetime dependencies

Various time-delay spectra using different pump photon energies are measured. The

lifetimes derived from the time-delay spectra are analysed by means of SVD and by

means of a cut. Both results are plotted as a function of the pump photon energy in

figure 3.19 and 3.20. In case of the SVD the efficacy is the peak height of the curve

given by fitted rate equation, while in case of the cut the height at zero delay is

used. The dependence of the excitation efficacy on the pump-photon energy is also

plotted and saturation effects due to a high pump pulse fluences are analysed. In

the measurements by Eberhardt and coworkers [39] the time-resolved 2PPE clearly

shows a decay from the LUMO+1 into the LUMO within 1 ps. This is about 100

times faster then the laser pulse duration in this investigation, but might be visible

in the time-delay spectra if the signal to noise ration also exceeds 100.
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Figure 3.18: Mean dynamic spectra generated by SVD measured with mechanic
delay.

The mean dynamic spectra derived from the time-delay spectra from which the

values for figure 3.20 are extracted are shown in figure 3.18. The centre of the lowest

triplet exciton lies below 1.4 eV and the singlet exciton is centred around 1.8 eV and

reaches up to 2.8 eV, where the exciton with an electron in the LUMO+1 is expected.

From the lifetimes of figure 3.20 one may conclude that the lowest triplet and the

lowest singlet exciton are not separated perfectly.
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Figure 3.19: The 2PPE signal at 1.9 eV above HOMO fitted by a rate equation with
the two states lowest singlet exciton (lowest 1E) and excited singlet exciton (1E ),
but without interstate rates. The encircled numbers are explained in the text.
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Figure 3.20: The 2PPE signal generated by means of the mechanic delay analysed
by SVD and rate equation. The encircled numbers are explained in the text.
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Figure 3.18 shows that the spectral overlap between the lowest triplet exciton and

the singlet exciton is about 50% and the SVD still manages to separate these states

so clearly that a factor of 10 between the lifetimes of the lowest triplet exciton and

the singlet exciton results.

In figure 3.19 for each pump photon energy the 2PPE signal at 1.9 eV above

HOMO is fitted by a rate equation with two states (lowest singlet excution and

excited exciton), but without interstate rates. Lifetimes for the lowest singlet exciton

are above 0.8 ns and around 1.2 ns l0 , and lifetimes for the excited singlet exciton

are below 60 ps and around 37 ps l1 . As exceptions to this the lowest singlet exciton

at 378 nm has a short lifetime of 550 ps l2 , and the singlet exciton at 384 nm has

a long lifetime of 94 ps l3 .

In figure 3.20 the results of the SVD-based analysis of the same data are shown.

Lifetimes below 0.18 ps, which is far below the laser pulse duration of 120 ps, are

cut off. l0 . Lifetimes above 270 ns, which appear as a horizontal line in the state

dynamics, are also cut off l1 . The lifetimes for the lowest triplet exciton are above

600 ps l2 . The lifetimes for the singlet exciton are below 200 ps l3 . In each

time-delay spectrum the lowest triplet exciton lives at least 10 times longer than

the singlet exciton l4 . Only a very weak correlation to the preparation, which is

marked by the direction of the triangle, is observed.

Comparing figure 3.20 to figure 3.19 it can be concluded that the concentration on

a small part of the spectrum around 1.9 eV reduces the influence of the short living

excited singlet excitons and the influence of the long living trapped excitons on the

results. At the same time this means that each time-delay spectrum recorded using

the electronic delay always has to be analysed into three states. By coincidence,

in section 3.3.2.1 a method is introduced, which is more immune against noise,

but also more biased. Three states would be in agreement with Eberhardt and

coworkers [39], though they did not clearly separate the triplet exciton and use a

different state assignment for the states with lifetimes similar or shorter than the

laser pulse duration.

In figure 3.21 the 2PPE signal is integrated over the energy range of LUMO

and LUMO+1, respectively, and is plotted against the pump photon energy. The

probe photon energy is 4.71 eV (λ = 263 nm). This data is not used for any other

analysis in this investigation, because no time resolution is visible. Different symbols

mark different preparation runs. All preparations follow the same recipe. For

each preparation run a non-stop series of up to three 2PPE measurements with
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Figure 3.21: The efficacy extracted from the 2PPE signal integrated over the energy
range of the excited singlet exciton (1E) and excitons with an electron in the
LUMO+1, respectively. The probe photon energy is 4.7 eV (λ = 263 nm). Different
preparations are marked by different symbols.

multiple different pump photon energies is carried out. An increase of the efficacy

below 390 nm pump wavelength is visible, which is in agreement with absorption

measurements [59].

In figure 3.22 the pump pulse fluence amounts to 0.4 nJ/cm2 and the probe

photon energy amounts to 5.88 eV (211 nm), which is also the case in all remaining

figures in this section. The 2PPE signal is again integrated over the energy range

of LUMO and LUMO+1, respectively, and is plotted against the pump wavelength.

The intensity of the pump laser beam amounts to 50µJ/cm2. The large variation in

measurements with 5.88 eV probe photon energy were not expected as the variation

is small in the 8.24 eV UP spectra used to check each preparation.

The analysis by a cut is shown in figure 3.22 and analysis by SVD is shown in

figure 3.23. Considering the rather strong effects due to different preparations the

excitation efficacy does not depend on the pump photon energy. Extreme values

correlate with low quality raw data.
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Figure 3.22: The efficacy extracted from the 2PPE signal integrated over the energy
range of the excited 1E and excitons with an electron in the LUMO+1, respectively.
Probe photon energy: 5.88 eV (λ = 211 nm). Different symbols mark different
preparations.
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Figure 3.23: Analysis of the efficacy by SVD and rate equation. The probe photon
energy is 5.88 eV (λ = 211 nm). Different symbols mark different preparations..
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3 Two-photon photoemission on fullerite films

In figure 3.24, if examining each preparation independently, the lifetime of

the singlet exciton decreases with increasing pump pulse fluence for all but one

measurement. Within a single adjustment of the laser set-up the relative pump

pulse fluence variation amounts to less than 20%. A measurement done at higher

fluences supports the decrease of the lifetime of the singlet exciton with increased

pump fluence. It can be concluded that already at a fluence of 0.05mJ/m2 singlet-

singlet annihilation occurs, which is in agreement with Kabler and coworkers [11],

where below 0.1mJ/m2 already a slight decrease of the lifetime was determined. In

figure 3.25, if examining each preparation independently, the efficacy of the singlet

exciton decreases with increasing pump pulse fluence for all but two measurements.

Since some lifetimes are shorter than the duration of the laser pulse, the efficacy is

reduced. This effect would be absent, if the efficacy is defined more theoretically

as the rate r1,0 in equation 1.1. This effect is almost invisible in the photon energy

dependence figures in this section.
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Figure 3.24: Mechanic delay analysed by SVD and rate equation. Different symbols
mark different preparations.
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Figure 3.25: Mechanic delay analysed by SVD and rate equation. The signal is
normalized by the pulse fluence. Different symbols mark different preparations.
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3.3.1.2 Interstate rate
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Figure 3.26: The interstate rate (growth rate of 3E induced by the population in 1E)
obtained from the fit. For comparison the decay rate of 1E is plotted on the x-axis.
Cold preparations are marked blue, warm preparations are marked red. The black
line is a theoretical curve based on a simple model, which assumes that 1E decays
into 3E. This model does not agree with the experiment.

In figure 3.26 the interstate rates from the rate equation (Rn,m ∧ n 6= m) fits

are plotted. Generally the rates do not meet the theoretical curve. This curve is

derived from the assumption that the lowest singlet exciton decays exclusively into

the lowest triplet exciton. The fitted interstate rates are too small to account for

the decay in the lowest triplet exciton going so far that some interstate rates are

negative. Consulting equation 1.1 this does not imply that the electron population

flows upwards in energy. Instead it may be interpreted as a induced decay by a

scattering of free particles in fullerite as introduced in section 1.1.3. Small rates

with the right sign can be explained by a different efficacy of the photoemission

from both states, especially because one state is partly cut off. In this case the real

interstate rates are larger. Due to the preparation it could be that the underlying

copper shortens the lifetime of almost every state except triplet excitons trapped

on the surface and thus only two types of states are visible: trapped and free. This

would also explain the spectral width of the singlet exciton in many time-delay

spectra.
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3.3.1.3 Comparison with the literature and conclusions

The results of the current investigation are now compared to the measurements by

Eberhardt and coworkers [39], who used pump pulses with a duration of 150 fs and

a photon energy of 3 eV. In their dynamic spectra Gaussian peaks with FWHM of

0.5 eV and only very little noise are visible. The energetic positions of the peaks are

in accordance with 2PPE literature. The exciton with an electron in the LUMO+1,

the excited singlet exciton, and the lowest singlet exciton can be assigned to these

peaks. Gaussian curves are fitted to the peaks to obtain the state dynamics. Sample

charging is included by shifting the whole dynamic spectrum.

In the present investigation the measurement is performed on a cooled sample,

thus no photopolymerization is expected. The lowest singlet exciton is found

at 1.8 eV with a lifetime of 1020 ps in good agreement with Eberhardt and

coworkers [39] (1.8 eV, 998 ps). For the excited singlet exciton an energy of 2.1 eV

above HOMO and a lifetime from 30 to 40 ps is measured. In separate measurements

with higher intensities the exciton with an electron in the LUMO+1 is visible at

2.8 eV and the exciton with an electron in the LUMO+2 is visible at an energy of

4.0 eV above (HOMO). In both investigations, the present and the one by Eberhardt

and coworkers, a background of scattered photoelectrons appears in the dynamic

spectra near the low energy cut-off. The background is proportional to the integral

photoemission which itself is largest at zero delay.

In some time-delay spectra the lowest singlet exciton is missing. The reason may

be that the more mobile singlet excitons drift into the copper. Analogously Zhu and

coworkers [41] reported increased decay rates for LUMO+1 and LUMO+2 excitons,

if less than 5ML are prepared. Kabler and coworkers [40] reported that pulse fluences

above 0.1mJ/cm2 lead to shorter lifetimes of the lowest singlet exciton. This effect

could be relevant for the LUMO already at about 40µJ/cm2, due to the higher

mobility, though no corresponding fluence dependence is observed. Furthermore the

excited singlet exciton may have a larger probe efficacy (r2,1(t) in equation 1.1).

In agreement with photoabsorption measurements by Eklund and coworkers [44]

the pump efficacy measured in the current investigation is very low at 2.4 eV

(517 nm), is low and constant in the range from 2.9 to 3.3 eV (from 428 to 376 nm),

and high at 3.5 eV (354 nm). The likely reason is that the transition from the HOMO

to the LUMO+1 (2.8 eV) is just below and the transition from HOMO-1 into the

LUMO (3.3 eV) just above the investigated range of energies.
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3 Two-photon photoemission on fullerite films

3.3.2 Triplet exciton

The triplet exciton is visible with both delay lines (electronic and mechanic), the

lifetime is measured exclusively by means of the electronic delay. The delay step

duration of 100 ns is predetermined by the available electronics. The pump laser

pulse duration also is about 100 ns depending on power and adjustments. The triplet

exciton lives much longer then the laser pulse duration. Like in the opto-mechanic

delay measurements the SVD is used to separate a single time-delay spectrum into

multiple state dynamics with their respective dynamic spectra. This will be shown

in detail for the time-delay spectrum in figure 3.6.

The extracted dynamic spectra are shown in figure 3.27. For the trapped triplet

exciton the dynamic spectra extents from 1.1 eV up to 2.4 eV TM with the main

part between 1.2 eV and 1.5 eV. The high energy tail can be explained by high

lying traps. The free triplet exciton extends from 1.1 eV to 1.8 eV TM with the

main part energetically above the trapped triplet exciton. The dynamic spectrum

of the singlet exciton dominates around 1.8 eV. Like in the measurements using

the mechanic delay the short living state extends down to the low energy cut-off.

This may be due to the background mentioned in section 1.2.1. The signal at the

energy of the LUMO of 2.2 eV is one 50th of the signal at the singlet exciton energy.

Apparently, after excitation with 3.49 eV (355 nm) the LUMO+1 directly decays

into the singlet exciton. The lifetimes of the LUMO+1 and to a lesser degree of the

LUMO are much shorter than the singlet exciton lifetime, thus they are additionally

suppressed in the dynamic spectrum.

In figure 3.28 the state dynamics of the trapped triplet exciton has a baseline

at negative delays with a height of 0.2 times the height at large positive delays.

This shows the quality of the background subtraction in the analysis. The trapped

triplet exciton does not decay in the period of 25 µs scanned after excitation. This is

consistent with 400 µs lifetime measured by EPR. The free triplet exciton does have

a measurable lifetime of 5.0 µs which is rather short for a triplet exciton. The singlet

exciton is only populated at zero delay and the following two time slots. Regarding

the set-up the concentration of the signal at a single delay shows that the pulse

duration and also the overall jitter are below the delay step size.

From figure 3.6 three states can be extracted. From other measurements in this

series only two states can be extracted due to noise. In figure 3.28 the area below the

state dynamics of each triplet state is larger than the area below the singlet exciton

state dynamics. Thus the two dominant states are the triplet excitons. The SVD
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3.3 Warm preparation

automatically extracts these from the other time-delay spectra and mostly ignores

the singlet exciton. The remaining influence by the singlet exciton is further reduced

by simply ignoring delays shorter than 400 ns for the lifetime fit.

The pulse fluence is chosen so that in accordance with literature only marginal

triplet-triplet quenching occurs and appropriately the state dynamics is singly expo-

nential and cannot be fitted better by including triplet-triplet exciton annihilation

[11, 104]. This is verified for all measurements using the electronic delay.
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Figure 3.27: The dynamic spectra of three states extracted from a single time-delay
spectrum (figure 3.6) using the electronic delay. Pump photon energy: 3.49 eV
(355 nm). Probe photon energy: 5.88 eV (λ = 211 nm). Temperature: 140K.
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Figure 3.28: The state dynamics of three states extracted from a single time-delay
spectrum (figure 3.6). Pump photon energy: 3.49 eV (355 nm). Probe photon
energy: 5.88 eV (λ = 211 nm). Temperature: 140K.
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3.3.2.1 Dependence on film thickness and temperature

To measure the mobility of the triplet exciton, preparations of different thickness

(from 9 to 17ML) are compared. Due to the slow intrinsic decay of the triplet

exciton electron-phonon coupling is expected to be relevant. Therefore, the triplet

decay is measured at different sample temperatures. Reducing the pressure of liquid

nitrogen for the chiller allows the sample to heat up from 140K to 300K over a

period of 10 hours.

In figure 3.29 the thickness of the fullerite film is varied from 9.7ML to

19.3ML. The measurements at 9.7ML and at 13.7ML have the lowest noise. The

measurement at 10.7ML does not allow to fit two triplet states. The data point at

19.3ML is very uncertain and the mean lifetime thus probably too low. The lifetime

of the trapped triplet exciton is doubled with increasing the number of MLs from

10 to 14. As was discussed in subsection 1.1.4, an increase in lifetime is expected

because the additional decay into the copper substrate is hindered. This decay path

is of similar importance as the intrinsic decay for both triplet excitons and it is

thus concluded that the short living state also has a higher mobility. Considering

the thicknesses from 9.7ML to 16.6ML and the uncertainty bars the lifetime of the

trapped triplet exciton stays at 100µs and the lifetime of the free triplet exciton

stays at 3µs (uncertainty probably underestimated).

In the future measurements on fullerite films with an even lower number of MLs

need to be taken to see a clear reduction of the lifetime. Using larger delays it may

be possible to reduce the uncertainty in the lifetimes measured on larger number of

MLs and to more clearly resolve a saturation of the lifetime to the bulk value.

In figure 3.30 the efficacy seems to decrease with more MLs. This at least shows

that there is no significant decrease in efficacy if the number of MLs is reduced down

to 9ML.

Time-delay spectra taken on a 12ML thick film at two different temperatures

are analysed. The fit yields a trapped tripped exciton lifetime of 94µs at 140K and

of 47µs at 290K. In figure 3.31 the change of the lifetimes, when continuously

increasing the sample temperature from 140K to 295K, is shown. A special

analysis technique has to be employed because the measurements at intermediate

temperatures suffer from noise due to the short measurement time and lack of

experimental accuracy. Consequently larger uncertainty bars (in absolute numbers)

are assigned to the data points at intermediate temperatures: Each intermediate

time-delay spectrum is fitted by a linear combination of the already analysed time-
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Figure 3.29: Lifetime dependence on thickness determined using SVD. Three error
bars extend to extremely high values and are thus cut-off.
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Figure 3.30: Efficacy dependence on thickness determined using SVD.
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140 160 180 200 220 240 260 280 300
0

20

40

60

80

100

120

140

160

180

200

ef
fic

ac
y 

/ a
rb

.u
.

temperature / K

trapped 3E

3E

Figure 3.32: Efficacy dependence on sample temperature obtained by SVD.
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3 Two-photon photoemission on fullerite films

delay spectra. The lifetime is then generated by linear combination using the same

coefficients and shown in figure 3.31. As one result the trapped triplet exciton has a

lifetime of 210µs — the calculated lifetime has changed with the analysis method —

and the free triplet exciton exhibits a lifetime of 7µs, both at 140K. When increasing

the sample temperature from 140K to 260K, a constant lifetime of 7µs for the free

triplet exciton and a constant lifetime of 193µs for the trapped triplet exciton meet

the uncertainty-bars. When further increasing the sample temperature to 295K the

lifetime of the free triplet exciton is reduced from 7µs to 2µs and the lifetime of the

trapped triplet exciton is reduced from 193µs to 160µs.

As discussed in section 1.1.3 the lifetime decrease may be due to electron-

phonon coupling: a fit yields a very low coupling constant in the order of 10−9

and an unrealistic negative linewidth after subtraction of the electron phonon

coupling. Alternatively, the decreased lifetime may be due to increase rotation of the

molecules, or the measurement done on heating up to 295K and the measurement at

295K already polymerised the sample — which has not been cross-checked by any

complementary method. This would lead to the reduced lifetime of 15µs measured

by Kabler and coworkers [40] on polymerised fullerite. The results on fullerite

are in agreement with other measurements on C60. From an article by Echt and

coworkers [29] lifetimes of 47µs and 28µs for 140K and 295K respectively and can

be extrapolated for free C60 from measurements above 600K. From the review in an

article by Campbell and coworkers [30] 94µs and 54µs can be extracted for 140K

and 295K for isolated C60, though no saturation of the lifetime down to 4K is

visible. Therefore the saturation in fullerite needs to be confirmed by measurements

with delays even larger than 25µs.

The efficacy in figure 3.32 is so noisy that only general trends can be guessed: the

efficacy of the trapped triplet exciton increases with temperature, while the efficacy

of the free triplet exciton decreases. Theoretically the decrease of the lifetime of

the free triplet exciton can be explained by an increased drift velocity, leading to a

decay into the copper substrate and a more complete filling of all traps. Thus the

number of trapped triplet excitons increases.
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3.4 Cold preparation

3.4 Cold preparation

By modifying the preparation method for the C60 film described in section 2.1 the

electronic structure of the fullerite film can be influenced in a reproducibly. For

the measurements presented so far the temperature is reduced to 360K and then

up to 20ML are adsorbed onto the substrate. For the following measurements the

temperature is reduced down to 300K, which is refered to as “cold”, and then up

to 20ML are adsorbed onto the substrate.
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Figure 3.33: Mean cold preparation dynamic spectra. Probe photon energy: 4.71 eV.

The cold preparation is investigated using photons with 4.71 eV energy only. In

figure 3.33 the average of the resulting dynamic spectra are shown. They are very

stable across this series, thus taking the mean does not obscure any information.

The singlet exciton is cut off at an energy of 2.1 eV and is the dominant state up to

2.5 eV. As shown in figure 3.34 it lives for typically 429 ps. The dynamic spectrum of

the exciton having an electron in the LUMO+1 1 peaks at 2.8 eV. Due to scattering

during the photoemission process the spectrum extents down to zero kinetic energy.

Also around 2.3 eV the dynamic spectrum may be non-zero due to excited singlet

excitons, which also have a lifetime shorter than the laser pulse duration.

Using the cold preparation the lowest singlet exciton is visible applying 4.71 eV

photon energy. Theoretically this can be explained by traps. The lifetime could

increase because deep traps are available and prevent the lowest singlet exciton

from drifting into the copper substrate. The preparation does not influence the

1whose lifetime is far below the laser pulse duration
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Figure 3.34: Typical state dynamics measured on the cold preparation analysed by
SVD. Pump photon energy: 3.26 eV (λ = 380.0 nm). Probe photon energy: 4.71 eV.

excited singlet exciton. The fitted lifetime in figure 3.34 is, compared with the

warm preparation and the values reported in the literature, slightly too short for

the lowest singlet exciton and far to short for the triplet exciton. Thus it can be

concluded that the traps do not increase the lifetime. Rather the binding of the

hole to some traps is strong and can compensate anti-binding of the electron. This

electron then appears at a higher energy in the spectrum.

On the cold preparation and using 4.71 eV probe photon energy a series of pump

probe measurements with various pump photon energies is performed, which is

similar to the series with the warm preparation in figure 3.21.

For these measurements a slightly smaller range of delays is scanned. All

measurements described in this section are done on the same preparation. There

is no gradual decay over the measurements due to evaporation, polymerization, or

contamination.

3.4.1 Efficacy dependence on photon energy

In figure 3.35 the result of the pump tuning is presented. At 380 nm and 387 nm the

lifetime of the exciton with an electron in the LUMO+1 is only slightly below the

laser pulse duration. At all other wavelengths the lifetime is cut off by the lower limit

of the lifetime axis as marked by the small lines at the bottom of the figure. The

reasons for the short lifetime at other wavelengths may be an inhomogeneous pump

beam profile, which has a roughly doubled intensity in some spots, and a larger
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3.4 Cold preparation

pulse-to-pulse variance of the laser fluence. This reduces the lifetime of the excited

singlet exciton. This in turn enhances the dominance of the LUMO+1 exciton in

the time-delay spectrum. This in turn reduces the lifetime of the extracted state

dynamics even more. As can be seen in figure 3.36 the long lifetime correlates with a

high efficacy. Since the lifetime is shorter than the pulse duration, it is expected that

the peak height of the Gaussian is approximately proportional to the lifetime. This

already explains the variation of the efficacy and it can be concluded that excitation

efficacy is constant across the scanned pump-photon energies.
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Figure 3.35: Lifetimes of the long living state on the cold preparation measured by
the mechanical delay and analysed using the SVD. Some lifetimes are below 1 ps,
thus they are below the time resolution of the measurement, and are cut off to not
inflate the axis.
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3.4.2 Improved beam overlap

The following two measurements with a slightly varied pump photon energy were

performed in a second measurement campaign. Compared to the measurements on

the cold preparation in section 3.4.1 the beam overlap is improved as discussed in

section 2.3.1, but the preparation is nominally identical to that used in section 3.4.1.

The evaporator is freshly filled and calibrated and the preparation is 20ML thick.

The lower noise allows to isolate three states, which are the lowest triplet exciton,

the lowest singlet exciton, and collectively all higher excitons, which have lifetimes

shorter than the laser pulse duration. On this good preparation and using a photon

energy of 4.71 eV the background contributes only 1/4 to the measured spectrum at

zero delay. Therefore, it is justified to measure the background in between the delay

sweeps and to subtract the average from all delays. The sample is pumped with a

fluence of 0.4mJ/cm2, which is rather strong compared to section 3.3.

As shown in figure 3.37 the triplet exciton has a positive TM at 2.5 eV, which is

much higher than in other measurements or reported in the literature. This can be

explained by hole traps and by the probe fluence, which in this measurements leads

to significant mono-colour 2PPE out of the HOMO and thus also out of the triplet

exciton. This dynamic spectrum is also cut off and may extend well down to lower

energies. The singlet exciton dominates around 2.5 eV. The LUMO+1 dominates

around 2.8 eV.

In figure 3.38 the lowest free triplet exciton has a lifetime of 6.06 ns. Considering

that the largest applied delay is 400 ps, the real lifetime could be much larger. The

singlet exciton has a lifetime of 182 ps. The decay is not very clearly separated from

the decay of the other states, thus the lifetime has an uncertainty of about 30 ps.

The high fluence may reduce the lifetime of the singlet exciton. The exciton with

an electron in the LUMO+1 has a lifetime 8.37 ps. Considering the time resolution

of the set-up, the uncertainty range is from 0ps to 20 ps.

In figure 3.40 the triplet exciton has a lifetime of 40.7 ns, which is much larger

than the maximum delay. The singlet exciton has a lifetime of 97 ps and dominates

at a delay of 50 ps. The decay is not very clearly separated from the decay of the

other states, thus the lifetime has an uncertainty of about 30 ps. The exciton with

an electron in the LUMO+1 has a lifetime of 1 ps. As in the other measurements in

this section the uncertainty range is from 0ps to 20 ps.

In figure 3.39 all dynamic spectra show a low-energy cut-off at slightly higher

energies compared to figure 3.38, possibly due to a higher work function of the

specific preparation. All dynamic spectra increase monotonically towards lower

energies. The dynamic spectrum of the lowest triplet exciton dominates below
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Figure 3.37: Cold preparation time-delay spectrum separated into three dynamic
spectra. The corresponding state dynamics are shown in figure 3.38

−200 −100 0 100 200 300 400
−0.05

0

0.05

0.1

0.15

0.2

t / ps

po
pu

la
tio

n 
/ a

rb
. u

.

6.06 nsstate 1: τ = 

182 psstate 2: τ = 

8.37 psstate 3: τ = LUMO+1
1E

lowest 3E

Figure 3.38: Cold preparation state dynamics. The corresponding dynamic spectra
are shown in figure 3.37. Pump photon energy: 3.22 eV (λ = 385 nm). Probe photon
energy: 4.7 eV (λ = 263 nm).

80



3.4 Cold preparation

2 2.2 2.4 2.6 2.8 3 3.2 3.4 3.6 3.8
−1

0

1

2

3

4

5

6

E−E
HOMO

  / eV

dN
/d

E
 / 

ar
b.

 u
.

LUMO+1

1E

3E

Figure 3.39: Cold preparation time-delay spectrum separated into three dynamic
spectra. The corresponding state dynamics are shown in figure 3.40 .
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Figure 3.40: Cold preparation state dynamics. The corresponding dynamic spectra
are shown in figure 3.39. Pump photon energy: 3.19 eV. Probe photon energy 4.7 eV.
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3 Two-photon photoemission on fullerite films

2.4 eV. The dynamic spectrum of the singlet exciton dominates at 2.5 eV and at

energies above 3.0 eV. The dynamic spectrum of the exciton with an electron in the

LUMO+1 dominates above 2.6 eV and has its positive TM at 2.9 eV.

3.4.3 Conclusions

On the warm preparation and on the cold preparation the pump efficacy is very low

at 2.4 eV (517 nm), is low and constant in the range from 2.9 to 3.3 eV (from 428 to

376 eV), and high at 3.5 eV (354 nm).

On the coldly prepared fullerite sample a long lifetime state appears in the time-

delay spectrum at such high energy that it is visible using probe photons with an

energy of 4.71 eV.

The temperature of the substrate during the condensation of the C60 molecules

has a big influence on the creation of lattice defects, which in turn modifies the

electronic structure. These defects lead to defect states within the conduction band

gap and thus to a significant background signal in the two-photon photoemission.
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4 Summary

In the present investigation the electronic structure of a fullerite film on the Cu(111)

surface is investigated by means of two-photon photoemission. Electronic states

already reported in the literature are identified in the measurements. The dynamic

spectra of the states exhibit some differences to the dynamic spectra already reported

in literature, which also vary. Using 80 ps pulse duration and up to 97 ns delay

every time-delay spectrum is a superposition of the triplet exciton, the lowest

singlet exciton and the excited singlet exciton with overlapping dynamic spectra and

distinct state dynamics. Using 100 ns pulse duration the singlet excitons cannot be

separated any more. Using the 25µs delay, which are available only in this case, two

different triplet excitons can be separated. Thus also in this case every time-delay

spectrum is a superposition of three states with overlapping dynamic spectra and

distinct state dynamics.

The density of traps in thin films is high enough for them to be considered as

an integral part of the time-delay spectrum. Following known recipes the number

of different kinds of traps is kept low by using a single crystal substrate with low

lattice mismatch ( Cu(111) ), filling the crucible with the highest purity fullerite

powder commercially available, degassing it in UHV, condensing and annealing the

first monolayer (ML), and condensing the following ML at a minimal temperature of

360K with a controlled rate of 1/300ML/s (lower for lower pressure and higher for

higher sample temperature). For the photoemission the sample is cooled down to

140K to suppress photopolymerisation. It seems to be advantageous to cool down

LUMO chemical LUMO LUMO+1 LUMO+2 method or
lowest potential excited band exciton band exciton figure

triplet singlet µ singlet minimum centre
exciton excitons

1.9 2.8 3.9 figure 3.1
1.4 1.7 2.1 figure 3.16
1.3 1.8 figure 3.13
1.4 1.8 figure 3.7
1.4 1.8 figure 3.18
1.5 1.9 figure 3.28

2.1 2.7 figure 3.33

Table 4.1: Energetic positions / eV referenced to the HOMO inferred by different
experiments. Additionally, a HOMO-1 band is visible in UPS 1.2 eV below the
HOMO (in figure 1.6 and partly cut-off in figure 2.7).
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4 Summary

with maximal 1K/s until the phase transition is certainly passed, to reduce the

number of dislocations due to the sudden change of the lattice constant.

In table 4.1 the spectral position of the triplet exciton is 1.4 eV (886 nm) and

as such on the low energy side of the reported values in the literature. This may

be due to different traps present in the respective preparations or emphasised by

the respective measurement method. The average of the measured energies of the

lowest singlet exciton is 1.8 eV (689 nm), which is in agreement with the literature.

The dynamic spectra with a large signal around 2.3 eV (539 nm) are interpreted

as excited singlet excitons in agreement with the majority of the literature. No

compulsory reason for the interpretation as mainly free electrons [39] is found. The

strong signal of the excited excitons at low kinetic electron energies is interpreted

as due to the photoemission process. In separate measurements with higher fluence

the LUMO+1 exciton is visible at 2.8 eV and the LUMO+2 exciton is visible at an

energy of 3.9 eV, which is also in agreement with the known literature.

The lifetime of the triplet exciton is 94µs, and it stays constant if varying the

number of MLs between 9 and 19. This proves that the decay path into the

substrate does not reduce the lifetime of the trapped triplet exciton. Increasing

the temperature from 140K to 295K it is shown that above 200K the lifetime

decreases reaching 47µs at 295K. The publication coming closest to the present

investigation measured the triplet lifetime in photopolymerised fullerite at 81K and

yielded 15µs [40]. The measurements by Kabler and coworkers [40] are coming

closets in their intent to the present investigation and yielded a triplet lifetime in

photopolymerised fullerite at 81K of 15µs [40].

The lowest singlet exciton has a lifetime of 1020 ps in agreement with Eberhardt

and coworkers [39] (1.8 eV, 998 ps).

At no fluence the second order effects (2PPE) dominate over first-order effects

(PES) and higher-order effects are negligible. Therefore, the fluence of each laser

shot is recorded, and the fluence dependence can, if the fluence variation is high

enough, be separated into discrete orders by means of a polynomial fit. Regarding

the higher order effects, the decrease of the lifetime and the efficacy of the lowest

singlet exciton is in agreement with the results by Kabler and coworkers [11].

In agreement with photoabsorption measurements by Eklund and coworkers [44]

the efficacy is very low at a pump photon energy of 2.4 eV (517 nm), is low and

constant in the range from 2.9 to 3.3 eV (from 428 to 376 nm), and high at 3.5 eV

(354 nm). This can be rationalized by the following: The transition from the HOMO

to the LUMO+1 at 2.8 eV (443 nm) and the transition from HOMO-1 into the

LUMO at 3.3 eV (376 nm) photon energy lead to a double peak with a shallow

valley in between.
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4.1 German translation

4.1 German translation

In der vorliegenden Arbeit wird die elektronische Struktur von Fullerit-Filmen,

die auf einer Cu(111)-Oberfläche kondensiert sind, mittels zeitaufgelöster Zwei-

photonenphotoemission untersucht. Schon in der Literatur bekannte Zustände

können in den Messungen identifiziert werden. Die Form der Spektren der

Zustände weisen einige Unterschiede zu den Spektren in der Literatur auf, die sich

untereinander auch unterscheiden. Bei Verwendung von 80 ps dauernden Pulsen

und einer maximalen Verzögerung von 97 ns ist jedes Zeitverzögerungs-Spektrum

eine Überlagerung des Triplett-Exzitons, des niedrigsten Singlett-Exzitons und

der angeregten Singlett-Exzitonen mit überlappenden dynamischen Spektren und

unterscheidbarer Zustandsdynamik. Bei Verwendung von 100 ns dauernden Pulsen

können die Singlett-Exzitonen nicht mehr unterschieden werden, aber aufgrund der

dann möglichen maximalen Verzögerung von 25µs können dafür zwei verschiedene

Triplett-Exzitonen unterschieden werden. Also ist auch in diesem Fall jedes

dynamische Spektrum eine Überlagerung von drei Zuständen mit überlappenden

dynamischen Spektren und unterscheidbarer Zustandsdynamik.

Die Dichte der Gitterdefekte in dünnen Filmen ist hoch genug, um ihn als

integralen Bestandteil der Zeitverzögerungs-Spektrum zu betrachten. Bekannten

Rezepten folgend wird die Anzahl der Arten von Defekten gering gehalten durch

Verwendung eines Einkristall-Substrats mit geringer Gitterfehlanpassung ( Cu(111)

), Füllung des Tiegels mit Fullerite-Pulver von höchster kommerziell erhältlichen

Qualität, Ausgasen im UHV, Kondensation und Anlassen der ersten Monolage

und Kondensation der folgenden Monolagen bei einer Substrat-Temperatur von

mindestens 360K und einer kontrollierten Rate von einer Monolage jede 300 s

(niedriger bei niedrigeren Druck und höher bei höherer Probentemperatur). Für

die Photoemission wird die Probe auf 140K abgekühlt, um Photo-Polymerisation

zu unterdrücken. Dabei erscheint es vorteilhaft, mit maximal 1K/s abzukühlen bis

der Phasenübergang sicher vollzogen ist, um die Zahl der Versetzungen aufgrund

der sprungartige Änderung der Gitterkonstante gering zu halten.

In Tabelle 4.1 ist die spektrale Position des Triplett Exzitons mit 1,4 eV (886 nm)

eher auf der niedrigen Seite der in der Literatur bekannten Werte angesiedelt.

Das liegt wahrscheinlich an den energetischen Unterschieden der Bindungsstärke

an die verschiedenen Gitterdefekte und der Empfindlichkeit der verschiedenen

Messmethoden auf die verschiedenen Gitterdefekte. Das niedrigste Singlett-Exziton

liegt in Übereinstimmung mit der Literatur im Mittel bei 1,8 eV (689 nm). Die

dynamischen Spektren mit einem starken Signal bei 2,3 eV (539 nm) werden als

angeregte Singlett-Exzitonen interpretiert, was in Einvernehmen mit dem Großteil

der Literatur geschieht. Es konnte kein zwingender Grund gefunden werden für die

Interpretation, dass dieses Signal hauptsächlich von freien Elektronen [39] herrührt.

Das starke Signal der angeregten Exzitonen bei niedriger kinetischer Energie der
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4 Summary

Elektronen wird wahrscheinlich durch den Photoemissionsprozess erzeugt. In einer

getrennten Messung mit höherer Laserpuls-Fluenz erscheint das LUMO+1 Exziton

bei 2.8 eV und des LUMO+2 Exziton bei 3.9 eV, was auch mit der bekannten

Literatur übereinstimmt.

Die Lebenszeit des Triplett-Exzitons wird zu 94µs bestimmt, und sie bleibt

konstant, falls man die Zahl der Monolagen zwischen 9 und 19 variiert. Das

zeigt, dass der Zerfallskanal in das Substrat die Lebenszeit des Defekt-gebundenen

Triplett Excitons nicht reduziert. Bei Erhöhung der Temperatur von 140K auf

295K zeigt sich, dass sich ab 200K die Lebenszeit reduziert und bei 295K einen

Wert von 47µs erreicht. Die Messungen von Kabler und Mitarbeitern [40] kommen

in ihrer Zielsetzung der hier vorliegenden Arbeit am nächsten, und sie ergaben eine

Lebenszeit des Triplett-Exzitons in Photo-polymerisiertem Fullerite bei 81K [40]

von 15µs. Das niedrigste Singlett-Exziton hat eine Lebenszeit von 1020 ps, was

übereinstimmt mit dem Wert von Eberhardt und Mitarbeitern (1,8 eV, 998 ps).

Es existiert keine Fluenz bei der Effekte 2.Ordnung (Zweiphotonenphotoemission)

über Effekte 1.Ordnung (Photoemission) dominieren und Effekte höherer Ordnung

vernachlässigbar sind. Deshalb wird die Fluenz jedes Laserpulses mitgeschrieben

und die Fluenz-Abhängigkeit kann, bei genügender Fluenz-Varianz, in die ver-

schiedenen Ordnungen getrennt werden, indem man ein Polynom anfittet. Bezüglich

der höheren Ordnungen kann gesagt werden, dass die Abnahme der Lebenszeit und

der Pump-Wirksamkeit des niedrigsten Singlett-Exzitons übereinstimmt mit den

Ergebnissen von Kabler und Mitarbeitern [11].

In Übereinstimmung mit Photoabsorptionsmessungen von Eklund und Mitarbeit-

ern [44] ist die Pump-Wirksamkeit sehr niedrig bei 2,4 eV Photonenenergie (517 nm),

ist niedrig und konstant im Bereich der Photonenenergien von 2,9 bis 3,3 eV (428 bis

376 nm) und hoch bei 3,5 eV (354 nm). Das kann folgendermaßen erklärt werden:

Der Übergang vom HOMO in den LUMO+1 bei 2,8 eV (443 nm) und der Übergang

vom HOMO-1 in den LUMO bei 3,3 eV (376 nm) führen zu einer Doppelspitze mit

einem flachen Tal dazwischen.
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A Ellipsometry details

In this appendix some more details for section 2.1.1 are presented. The diagonal

polarizer leads to identical amplitudes in s and p polarization (with respect to the

sample):

as1 = ap1

Following the Jones calculus [130] this is expressed as a vector, and in ellipsometry

the intensity is typically normed (here to 2):

[

as1

ap1

]

=

[

1

1

]

The light is reflected by the sample. The rs and rp are calculated in a lengthy

way. The angle of incidence in the set-up in the present investigation is 60◦. l is the

index of the layer, where: 0 = vacuum, 1 = C60, 2 = Cu .

n =





1 + 0i

2.12 + 0.0327i

25.4 + 1.23i



 (A.1)

The refractive index of fullerite is taken from Ren and coworkers [43].

Definition of some abbreviations:

k = 2π/(532 nm)

s = sin(60◦/360◦ · 2π)

k⊥ = l → k
√

n2
l − s2

The transmission and reflection is described by Fresnel equations,

F = (k0, k1,
n1

n0
) →

[

rs01 ts01
rp01 tp01

]

=

[

k0 + k1 0

0 k0
n1

n0
+ k1

n0

n1

]−1 [

k0 − k1 2k0

k0
n1

n0
− k1

n0

n1
2k0

]

, (A.2)

with k being k⊥ in the indicated medium (0 or 1) and with n being the index

of refraction in the indicated medium (0 or 1). Note that these indices 0 and 1

are defined within this function and upon calling this function will be replaced
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A Ellipsometry details

with indices in accordance with equation A.1. Further note that r10 = −r01. The

propagator through the fullerite layer is given by P = exp(ik⊥z) with z being the

thickness. Let a1 denote the amplitude of the electric field of the wave propagating

into the fullerite film measured just below the surface. Let a2 denote the amplitude

of the electric field of the wave propagating out of the fullerite film measured just

above the interface to the Cu(111). The boundary conditions are expressed as

follows:





t01
0

r01



 • a0 =





−1 −P1r01 0

P1r12 −1 0

0 P1t10 −1



 •





a1

a2

a3





Here the polarization indices have been omitted. Matrix inversion yields

a3 =

(

r01 + r12(r
2
01 + t10t01)P

2

1 + r12r01P 2

)

· a0 .

One factor can be eliminated by inserting the Fresnel equations A.2 (note that

the second factor in the first line originally was the denominator):

(r2
01 + t10t01) ·

(

k0
m0

m1
+ k1

m1

m0

)2

=

(

k0
m1

m0
− k1

m0

m1

)2

+ 2k12k0

=

(

k0
m1

m0

)2

+

(

k1
m0

m1

)2

− 2k1k0 + 4k1k0

=

(

k0
m1

m0
+ k1

m0

m1

)2

Here:
m1

m0
=

{

1 s polarization
n1

n0
p polarization

.

This finally leads to equation 2.1.

88



B References

[1] S. Minomura, editor. Solid State Physics Under Pressure: Recent Advances

With Anvil Devices D Reidel Pub Co (Dordrecht, Boston, London), (1985)

[2] J. Kepler. Harmonice mundi Opera Omnia (Frankfurt) 5, 75–334 (1619)

[3] H. W. Kroto, J. R. Heath, S. C. O’Brien, R. F. Curl, and R. E. Smalley. C60:

Buckminsterfullerene Nature 318, 162 (1985)

[4] T.P.I. Saragi and J. Salbeck. Organic heterostructure field-effect transistors

using C60 and amorphous spirolinked compound Appl. Phys. Lett. 89, 253516

(2006)

[5] T.D. Anthopoulos, B. Sigh, N. Marjanovic, N.S. Sariciftci, A.M. Ramil,

H. Sitter, M. Cölle, and D.M. de Leeuw. High performance n-channel organic

field-effect transistors and ring oscillators based on C60 fullerene films Appl.

Phys. Lett. 89, 213504 (2006)

[6] G. Yu, J. Goa, J.C. Hummelen, F. Wudl, and A.J. Heeger. Polymer

photovoltaic cells: Enhanced efficiencies via a network of internal donor-

acceptor heterojunctions Science 270, 1789 (1995)

[7] A.K. Pandey and J.-M. Nunzi. Efficient flexible and thermally stable

pentacene/C60 small molecule based organic solar cells Appl. Phys. Lett. 89,

213506 (2006)

[8] C. L. Yang, Z. K. Tang, W. K. Ge, J. N. Wang, Z. L. Zhang, and X. Y. Jian.

Exciton diffusion in light-emitting organic thin films studied by photocurrent

spectra Appl. Phys. Lett. 83, 1737–1739 (2003)

[9] X. Y. Sun, B. F. Ding, Q. L. Song, X. Y. Zheng, X. M. Ding, and X. Y.

Hou. Dissociation of excitons in the C60 film studied by transient photovoltage

measurements Appl. Phys. Lett. 93, 063301 (2008)

[10] M.R. Wasielewski, M.P. O’Neil, K.R. Lykke, M.J Pellin, and D.M.Gruen

Gruen. Triplet states of Fullerenes C60 and C70: Electron paramagnetic

resonance spectra, photophysics, and electronic structures J. Am. Chem. Soc.

113, 2774 (1991)

89



B References

[11] J.P. Long, S.J. Chase, and M.N. Kabler. Photoelectron spectroscopy and

dynamics of excitons in C60 and photopolymerized C60 films Chem. Phys.

Lett. 347, 29 (2001)

[12] Carsten Marzok. Laserdesorption von NO von C60-Filmen Diplomarbeit

University of Münster (2004)

[13] T. Hoger, C. Marzok, R.T. Jongma, and H. Zacharias. Laser desorption of

NO from a thick C60 film Surf. Sci. 600, 3590 (2006)

[14] Daniel Grimmer. NO Laserdesorption von C60/Cu(111) Diplomarbeit

University of Münster (2006)

[15] J. C. Slater. The theory of complex spectra Phys. Rev. 34, 1293 (1929)

[16] C.C.J. Roothaan. New developments in molecular orbital theory Review of

Modern Physics 23, 69 (1951)

[17] G.G.Hall. The molecular orbital theory of chemical valency. viii. a method of

calculating ionization potentials Proc. R. Soc. A 205, 541–522 (1951)

[18] Wolfgang Nolting. Grundkurs Theoretische Physik 5 Quantenmechanik. Teil

2: Anwendungen Viewig, (1997)

[19] S. Satpathy, V. P. Antropov, O. K. Andersen, O. Jepsen, O. Gunnarsson,

and A. I. Liechtenstein. Conduction-band structure of alkali-metal-doped C60

Phys. Rev. B 46, 1773 (1992)

[20] G. E. Scuseria. Ab initio theoretical predictions of the equilibrium geometries

of C60, C60H60 and C60F60 Chem. Phys. Lett. 176, 423–427 (1991)

[21] Linus Pauling. The nature of the chemical bond. application of results obtained

from the quantum mechanics and from a theory of paramagnetic susceptibility

to the structure of molecules. J. Am. Chem. Soc. 53, 1367 (1931)

[22] G. Gensterblum. Structural, vibrational and electronic proerties of fullerene

and epitaxial C60 (111) films grown on GeS (001): a review J. Elect. Spec.

Rel. Ph. 81, 89 (1996)

[23] B. Friedman. Electronic absorption spectra in C−
60 and C+

60 Phys. Rev. B 48,

2743 (1993)

[24] K. Harigaya and S. Abe. Optical- absorption spectra in fullerenes C60 and C70:

Effects of Coulomb interactions, lattice fluctuations, and anisotropy Phys. Rev.

B 49, 16746–16753 (1994)

[25] R. Eder, A.-M. Janner, and G. A. Sawatzky. Theory of nonlinear optical

response of excitons in solid C60 Phys. Rev. B 53, 12786 (1996)

90



B References

[26] T. Hara, S. Narita, S. Kumei, and T. Shibuya. Complete TDA and RPA

calculations on the electronic transitions of Fullerene-C60 in the CNDO/S and

INDO/S approximations International J. of Quantum Chemistry 85, 136–161

(2001)

[27] J. Frenkel. On the transformation of light into heat in solids. I Phys. Rev. 37,

17 (1931)

[28] G. H. Wannier. The structure of electronic excitation levels in insulating

crystals Phys. Rev. 52, 191 (1937)

[29] O. Echt, S. Yao, and R. Deng. Vibrational energy dependence of the triplet

lifetime of isolated, photoexcited C60 J. Phys. Chem. A 108, 6944 (2004)

[30] M. Hedén, A. V. Bulgakov, K. Mehlig, and E. E. B. Campbell. Determination

of the triplet state lifetime of vibrationally excited C60 J. Chem. Phys. 118,

16 (2003)

[31] P. Rudolf, M.S. Golden, and P.A. Brühwiler. Studies of fullerenes by the
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toemission, autoionization, and X-ray-absorption spectroscopy of ultrathin-

film C60 on Au(110) Phys. Rev. B 49, 10717 (1994)
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