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How to recognize a 4-ball when you see one

Hansjörg Geiges and Kai Zehmisch

(Communicated by Burkhard Wilking)

Abstract. We apply the method of filling with holomorphic discs to a 4-dimensional sym-
plectic cobordism with the standard contact 3-sphere as one convex boundary component.
We establish the following dichotomy: either the cobordism is diffeomorphic to a ball, or
there is a periodic Reeb orbit of quantifiably short period in the concave boundary of the
cobordism. This allows us to give a unified treatment of various results concerning Reeb dy-
namics on contact 3-manifolds, symplectic fillability, the topology of symplectic cobordisms,
symplectic nonsqueezing, and the nonexistence of exact Lagrangian surfaces in standard
symplectic 4-space.

1. Introduction

Ever since the work of Hofer [24] on the Weinstein conjecture for overtwisted
contact 3-manifolds, it has been a recurrent theme in symplectic and contact
topology that the noncompactness of certain moduli spaces of holomorphic
discs translates into the existence of periodic Reeb orbits. For recent work in
this direction see for instance [2].

The inspiration for Hofer’s approach came from Eliashberg’s method of fill-
ing with holomorphic discs [11]. In [20] we gave a detailed discussion of that
method in a moduli-theoretic framework. As had been observed by Eliashberg,
a filling of the 4-ball D4 by holomorphic discs adapted to a contactomorphism
of the boundary 3-sphere S3 yields a simple proof of Cerf’s theorem that every
diffeomorphism of S3 extends to a diffeomorphism of D4.

In the present paper we generalize the moduli-theoretic setup from [20]
to a disc-filling of a symplectic cobordism that has the standard contact 3-
sphere (S3, ξst) as one convex boundary component. Our main result, which
we shall refer to as the “ball theorem”, then says the following. Either the
corresponding moduli space of holomorphic discs is compact, in which case the
symplectic cobordism has to be the 4-ball, or there is noncompactness caused
by bubbling-off of holomorphic discs or breaking, in which case there have to
be periodic Reeb orbits in the concave boundary of the symplectic cobordism.
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Energy estimates on the holomorphic discs give rise to estimates on the periods
of these Reeb orbits.

This ball theorem may be regarded as a generalization of the following
fundamental results in 4-dimensional symplectic resp. 3-dimensional contact
topology:

• Existence of periodic Reeb orbits on star-shaped hypersurfaces in R
4,

hypersurfaces of contact type, and overtwisted contact 3-manifolds
(Rabinowitz, Viterbo, Hofer).

• Topology of symplectic fillings of (S3, ξst) (Gromov, Eliashberg, Mc-
Duff).

• Tightness of weakly symplectically fillable contact structures (Gromov,
Eliashberg).

• Nonexistence of exact Lagrangian surfaces in R4 (Gromov).

Indeed, all these results become straightforward consequences of the ball the-
orem.

Our methods also yield some new results on the existence of contractible
periodic Reeb orbits. Moreover, our ball theorem allows us to define a sym-
plectic capacity via the periods of Reeb orbits on contact type hypersurfaces.
A simple computation of this capacity for the 4-ball and the cylinder over the
2-ball leads to a proof of

• Symplectic nonsqueezing (Gromov).

Conversely, this capacity can be used to give estimates on the shortest Reeb
period. We recover some examples of Frauenfelder–Ginzburg–Schlenk and pro-
vide additional information about the periods of contractible orbits.

A precise description of the symplectic cobordisms we are considering is
given in Section 2, which also contains the statement of the ball theorem, in-
cluding a variant for symplectic cobordisms with an exact symplectic form.
Various corollaries of the ball theorems, including the ones we just mentioned,
will be proved in Section 3. The proof of the ball theorems is given in Section 4,
subject to a compactness result for the relevant moduli space of holomorphic
discs. This compactness result is proved in Section 6 after a brief discussion of
the Hofer energy in Section 5. It is worth pointing out that the larger part of
our compactness proof only involves classical bubbling-off analysis as in [24];
the new aspect here is that we have to deal with bubbling at the boundary.
For the interior bubbling-off of spheres we rely on the more sophisticated com-
pactness results from [5]. In a final section we give a brief sketch how the filling
with holomorphic discs can be applied to weak symplectic fillings of S2 × S1

with its standard contact structure; as in the case of S3 this allows one to
classify such fillings up to diffeomorphism.

The setup here is parallel to our previous paper [20]; it therefore seems
opportune to list some minor corrections to that paper in an appendix to the
present one. As in [20] we write D ⊂ C and H ⊂ C for the closed unit disc
and upper half-plane, respectively. In [21] we extend the results of the present
paper to higher dimensions.
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2. The ball theorems

We begin with a description of the specific symplectic cobordisms that form
the setting of our main theorems; see Figure 1. For the basics of symplectic
cobordisms cp. [19, Chap. 5].

Let (M±, ξ± = kerα±) be two closed 3-dimensional contact manifolds, ori-
ented by the volume forms α± ∧ dα±. The symplectic cobordisms (W,ω) we
want to consider are compact, connected symplectic 4-manifolds, oriented by
the volume form ω2, with the following properties:

(C1) (W,ω) is minimal, i.e. does not contain symplectically embedded 2-
spheres of self-intersection −1 (so-called exceptional spheres).

(C2) The boundary of W equals

∂W = M− ⊔M+ ⊔ S3

as oriented manifolds, where M− denotes M− with the reversed orienta-
tion. One or both of M± may be empty, and they need not be connected.

(C3) The restriction of ω to (the tangent bundle of) M− equals dα−.
(C4) The restriction of ω to the 2-plane field ξ+ = kerα+ on M+ is positive.
(C5) A neighborhood of S3 ⊂ ∂W in (W,ω) looks like a neighborhood of S3 =

∂D4 in D4 with the standard symplectic form ωst = dx1∧dy1+dx2∧dy2.
Condition (C4), with the orientation condition (C2), says that (M+, ξ+) is a

weakly convex boundary component of (W,ω); cp. [19, Chap. 5] for the various
notions of convex resp. concave boundaries of symplectic manifolds. The choice
of contact form α+ defining the given ξ+ is irrelevant for our purposes.

Let

λst :=
1

2
(x1 dy1 − y1 dx1 + x2 dy2 − y2 dx2)

be the standard primitive of the symplectic form ωst, and set αst = λst|TS3 .
Condition (C5) says that S3 with its standard contact structure ξst = kerαst

is a strongly convex boundary of (W,ω), with a Liouville vector field Y for ω
(i.e. LY ω = ω) defined near S3 ⊂ W , pointing out of W , and such that iY ω
restricts to the contact form αst on S3. This condition on the induced contact
form, together with condition (C3), serves to normalize the contact form α−,
which allows us to speak in quantitative terms about the Reeb dynamics of α−.

Finally, condition (C3) can be read as saying that (M−, ξ−) is a strongly
concave boundary of (W,ω). This is well known and can best be seen with the
help of relative de Rham cohomology. With U denoting a collar neighborhood
of M− in W , the relative de Rham cohomology group H2

dR(U,M−) is trivial.
From the definition of relative de Rham cohomology, cp. [4, p. 78], one finds a
1-form β on U which restricts to α− on (the tangent bundle of) M− and such
that ω = dβ on U . The vector field Y on U defined by iY ω = β is then a
Liouville vector field for ω that induces α− on M− and points inward by the
orientation condition (C2).

Recall that the Reeb vector field R = Rα of a contact form α is defined by
the equations iRdα = 0 and α(R) = 1.
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Figure 1. Might this be a 4-ball?

Notation. We write inf(α) for the infimum of all positive periods of closed
orbits of the Reeb vector field Rα. With inf0(α) we denote the infimum of all
positive periods of contractible closed Reeb orbits.

Remark 2.1. An argument as in [26, p. 109] shows that both infima are
minima, and in particular positive, unless the relevant set of Reeb orbits is
empty and the infimum equal to ∞.

We can now state our two main theorems, whose essence is the following:
unless W is a 4-ball (and in particular M± are empty), there must be a short
Reeb orbit on (M−, α−).

Theorem 2.2 (The ball theorem). Let (W,ω) be a symplectic cobordism satis-
fying conditions (C1) to (C5). Then either inf(α−) ≤ π or W is diffeomorphic
to a 4-ball.

Remark 2.3. In the case that W is a 4-ball, a theorem of Gromov [23, p. 311]
implies that (W,ω) is actually symplectomorphic to (D4, ωst).

The following version of the ball theorem sharpens the dichotomy under the
additional requirement that the symplectic form have a suitable primitive.

Theorem 2.4 (The exact ball theorem). Let (W,ω = dλ) be a symplectic
cobordism satisfying conditions (C1) to (C5), and with λ|TM−

= α−. Then
either inf0(α−) ≤ π or W is diffeomorphic to a 4-ball.

By the theorem of Stokes there are no symplectically embedded 2-spheres
in an exact symplectic manifold, so condition (C1) is automatic in the exact
case.

The dichotomy in the ball theorems can be exploited either way: from
the nonexistence of short periodic Reeb orbits (e.g. when M− is empty) one
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can deduce topological information about symplectic cobordisms; conversely,
topological information about a symplectic cobordism can be used to detect a
short closed Reeb orbit. A number of such results will be derived in Section 3.
In several of these corollaries the following concept and the construction that
we shall describe presently play an important role.

Definition. Let (M±, ξ±) be closed 3-dimensional contact manifolds. A com-
pact symplectic 4-manifold (W,ω) with oriented boundary ∂W = M− ⊔ M+

is called a Liouville cobordism from M− to M+ if the symplectic form ω
is exact and its primitive can be chosen as a contact form for ξ±, i.e. ω = dλ
with ker(λ|TM±

) = ξ±.

The following example (also observed by Wendl [43]) shows that a sym-
plectic cobordism with an exact symplectic form is not, in general, a Liouville
cobordism.

Example. By the Weinstein tubular neighborhood theorem [41], the com-
plement of a tubular neighborhood of a Lagrangian 2-torus in (D4, dλst) is a
strong symplectic cobordism from (T 3, ker(cos θ dx− sin θ dy)) to (S3, ξst). By
the exact ball theorem, however, there can be no Liouville cobordism, since
the periodic Reeb orbits of the contact form cos θ dx− sin θ dy are all noncon-
tractible.

Remark 2.5. Given a symplectic cobordism (W,ω) with a weakly convex
boundary component (M+, ξ+) and a symplectic form that is exact near M+,
a construction of Eliashberg [13], cp. [18], allows one to modify the primitive
λ of ω (defined in a neighborhood of M+) in such a way that ker(λ|TM+

) =
ξ+. As the preceding example shows, such a modification is not possible,
in general, at a concave end. Moreover, one can then arrange λ to equal a
given contact form α+ on M+ up to a constant scale factor by first taking the
symplectic completion of (W,ω) along M+, i.e. adding a cylindrical end of the
form ([0,∞) × M+, d(e

sλ|TM+
)), and then replacing M+ ≡ {0} × M+ by a

suitable graph in this cylindrical end.

Strong symplectic and Liouville cobordisms can be glued together (along
a convex and a contactomorphic concave end) by using the Liouville vector
field to define collar neighborhoods of the boundaries. This may require the
rescaling of one of the symplectic forms by a constant and the insertion of a
cylindrical tube, see [19, Prop. 5.2.5].

3. Corollaries of the ball theorems

3.1. Topology of symplectic cobordisms. Our first corollary was originally
proved by McDuff [30, Thm. 1.2].

Corollary 3.2 (McDuff). If (W,ω) is a compact symplectic 4-manifold with
weakly convex boundary components only, and one of the boundary components
is (S3, ξst), then the boundary is connected.
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Proof. After blowing down exceptional spheres in (W,ω), cp. [31, Chap. 7],
we may assume that (W,ω) is minimal. Since H2

dR(S
3) = 0, the symplectic

form ω is exact in a neighborhood of the boundary component S3. Hence, by
Remark 2.5, ω can be modified in that neighborhood so that condition (C5)
from Section 2 is satisfied (up to a constant scale factor). We are then in the
situation of Theorem 2.2 with M− = ∅. This implies inf(α−) = ∞, and so the
theorem tells us that W ∼= D4, which means M+ = ∅. �

This proof also yields the following variant of a result due to Gromov [23,
p. 311], Eliashberg [11, Thm. 5.1] and McDuff [29, Thm. 1.7].

Corollary 3.3 (Gromov, Eliashberg, McDuff). Any minimal weak symplectic
filling of (S3, ξst) is diffeomorphic to the 4-ball. �

Before we turn to the next corollary, we recall a statement about symplectic
cobordisms that will be used in the proof of that and other corollaries. This
statement is originally due to Etnyre–Honda [15]; here we give a proof based
on the surgery presentation theorem [7] for contact 3-manifolds.

Theorem 3.4 (Etnyre–Honda). Let (Mot, ξot) be an overtwisted contact 3-
manifold, and (M, ξ) any contact 3-manifold, where both manifolds are as-
sumed to be closed and connected. Then there is a Liouville cobordism from
(Mot, ξot) to (M, ξ).

Proof. It suffices to show that (M, ξ) can be obtained from (Mot, ξot) by a
sequence of Legendrian surgeries (or contact (−1)-surgeries in the sense of [7]),
since such surgeries translate into a Liouville cobordism from the original to
the surgered manifold.

By the classical surgery presentation theorem for 3-manifolds due to Licko-
rish and Wallace, there is a sequence of integer surgeries that gets us from Mot

to M . By a result of Eliashberg [12], cp. [19, Chap. 6.3], in an overtwisted con-
tact manifold we can choose a Legendrian realization of the surgery link in such
a way that the desired integer surgeries correspond to contact (−1)-surgeries
along the components of the Legendrian link. This yields a Liouville cobordism
from (Mot, ξot) to (M, ξ′), where ξ′ is some contact structure on M . By adding
homotopically trivial Lutz twists on (Mot, ξot) away from the surgery link (this
does not change ξot by Eliashberg’s classification [10] of overtwisted contact
structures), we can ensure that ξ′ is likewise overtwisted. This means that ξ′

can be obtained from ξ by performing topologically trivial Lutz twists, which
can be realized as contact (+1)-surgeries [7]. Conversely, by the cancellation
lemma from [7, Sec. 3], cp. [19, Prop. 6.4.5], (M, ξ) is obtained from (M, ξ′)
by contact (−1)-surgeries. �

The part of the next corollary concerning overtwisted contact structures is
contained in the work of Hofer [24].

Corollary 3.5 (Hofer). If ξ− is a contact structure on a closed 3-manifold
M− that can be defined by a contact form α− without contractible periodic
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Reeb orbits, then there is no Liouville cobordism from (M−, ξ−) to a not nec-
essarily connected contact 3-manifold with at least one overtwisted component.
In particular, ξ− = kerα− is tight, i.e. not overtwisted.

Proof. Suppose (M−, ξ− = kerα−) admits a Liouville cobordism to a contact
manifold having an overtwisted component (Mot, ξot). According to Theo-
rem 3.4, there is a Liouville cobordism from (Mot, ξot) to (S3, ξst). By gluing
this Liouville cobordism to the given one (and modifying the boundaries inside
the symplectic completion as in Remark 2.5), we obtain a cobordism as in the
exact ball theorem, up to constant scale of the contact forms on the boundary.
That theorem then guarantees the existence of a contractible periodic Reeb
orbit for α−. �

Remark 3.6. Observe that the essence of Corollary 3.5 is that any contact
form defining an overtwisted contact structure on a closed 3-manifold has a
contractible periodic Reeb orbit.

3.7. Tightness and fillability. The following corollary belongs to Gromov
[23, 2.4.D′

2] and Eliashberg [9, Thm. 3.2.1].

Corollary 3.8 (Gromov, Eliashberg). Let ξ be a contact structure on a closed
3-manifold M . If (M, ξ) is weakly symplectically fillable, then ξ is tight.

Proof. We argue by contradiction. Assume that we have a weak symplectic
filling (W1, ω1) of an overtwisted contact 3-manifold (M, ξ). Let (W2, ω2) be
a compact symplectic 4-manifold with disconnected boundary of contact type
(i.e. a strong filling), as constructed in [30] or [17]. Take the boundary con-
nected sum of (W1, ω1) with (W2, ω2) along (M, ξ) and one of the boundary
components of (W2, ω2). The result will be a weak symplectic filling of a dis-
connected contact manifold, one of whose components is an overtwisted contact
manifold (Mot, ξot).

The Liouville cobordism from (Mot, ξot) to (S3, ξst) from Theorem 3.4 is
made up of symplectic 2-handles; by [19, Lemma 6.5.2] such a cobordism can
also be attached to a weak filling. The resulting symplectic manifold contra-
dicts Corollary 3.2. �

3.9. Lagrangian surfaces in R4. Let i : Σ →֒ (W,ω = dλ) be a Lagrangian
embedding into an exact symplectic manifold, i.e. i∗ω = 0, which means that
i∗λ is closed, and dimΣ = (dimW )/2. Such an embedding is called exact if
i∗λ is an exact 1-form.

Gromov [23, Cor. 2.3.B2] has shown that there are no closed exact La-
grangian submanifolds in R2n with its standard symplectic structure. The
exact ball theorem allows us to prove this result in (R4, dλst).

Corollary 3.10 (Gromov). There are no closed exact Lagrangian surfaces in
standard symplectic 4-space.

Proof. A bundle-theoretic argument shows that a necessary condition for a
closed surface Σ to admit a Lagrangian embedding in R4 is that Σ be a torus or
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a nonorientable surface of Euler characteristic divisible by 4, cp. [3, Sec. 3.2].
Moreover, all these surfaces, except the Klein bottle, actually admit a La-
grangian embedding [22, 34, 38].

We prove the corollary by contradiction. Our argument applies to all sur-
faces of genus at least 1, which by the foregoing remark covers all potential
cases. Thus, suppose that i : Σ →֒ (R4, dλst) is an exact Lagrangian embed-
ding of such a surface Σ. Write i∗λst = df for some smooth function f on Σ.
By Weinstein’s neighborhood theorem [41], a small tubular neighborhood U of
i(Σ) in (R4, ωst) may be identified symplectomorphically with a neighborhood
of the zero section in the cotangent bundle T ∗Σ with its standard symplectic
form dλ0, where λ0 is the Liouville 1-form p dq (in local coordinates q on Σ
and their dual coordinates p).

Under the identification provided by Weinstein’s theorem, we regard λ0 as
a 1-form defined on U ⊂ R4. Equip Σ with the Riemannian metric of constant
curvature K ≤ 0 (here we use the genus restriction); this induces a bundle
metric on T ∗Σ. Choose a smaller tubular neighborhood U0 that corresponds
to a disc neighborhood {‖p‖ < ε} in the Weinstein model and whose closure
is contained in U . Then the boundary ∂U0 is transverse to the radial Liouville
vector field p ∂p for dλ0 in the Weinstein model. In particular, the restriction
of λ0 to T∂U0 is a contact form.

We have d(λst −λ0) = 0 on U . This implies that the 1-form λst − λ0 repre-
sents a de Rham cohomology class [λst − λ0] ∈ H1

dR(U) ∼= H1
dR(Σ). Moreover,

we have i∗λst = df and i∗λ0 = 0, hence i∗[λst − λ0] = 0 ∈ H1
dR(Σ). It follows

that [λst − λ0] = 0 ∈ H1
dR(U), so there is a smooth function g on U such that

λst − λ0 = dg. Let g̃ be a smooth interpolation between 0 on U0 and g near
the boundary of U . Then λ0+dg̃ defines a primitive of ωst that coincides with
λ0 on U0, and with λst near the boundary of U , and so extends to a global
primitive λ of ωst.

Now let S3
R ⊂ R4 be the sphere of radius R (centred at 0), where R is chosen

so large that U is contained in the interior of S3
R. Then the complement of

U0 in the 4-ball D4
R of radius R with the symplectic form dλ constitutes a

Liouville cobordism between (∂U0, λ0|T∂U0
) and (S3, R2αst). So the desired

contradiction will follow from the exact ball theorem, provided we can show
there are no contractible periodic Reeb orbits on ∂U0.

The Reeb flow on ∂U0 corresponds to the geodesic flow on the unit tangent
bundle of Σ, cp. [19, Thm. 1.5.2]. Hence, a contractible periodic Reeb orbit
would correspond to a contractible closed geodesic on Σ, which in turn would
lift to a closed geodesic on the universal cover of Σ. This is clearly impossible
when that cover is the Euclidean or hyperbolic plane. �

3.11. Reeb dynamics. In [37] Rabinowitz showed the existence of periodic
solutions of the Hamiltonian equation on R

2n on any star-shaped level surface
of any given Hamiltonian function. This led Weinstein [42] to conjecture (in
modern parlance) the existence of closed Reeb orbits on arbitrary contact type
hypersurfaces in symplectic manifolds.
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In dimension 3 this conjecture has been resolved positively by Taubes [39],
using Seiberg–Witten–Floer theory. Our ball theorems allow us to retrace most
of the earlier results in the history of the Weinstein conjecture, and they yield
new existence statements about contractible periodic orbits.

Corollary 3.12 (Rabinowitz). Let S ⊂ R4 be a smooth hypersurface bounding
a domain star-shaped with respect to 0 ∈ R4. Then the contact form λst|TS

has a closed and obviously contractible Reeb orbit.

Proof. Let S3
R ⊂ R4 be the sphere of radius R (centred at 0), where R is chosen

so large that S is contained in the interior of S3
R. Then the region W between

S and S3
R with the symplectic form dλst constitutes a symplectic cobordism

between (S, λst|TS) and (S3, R2αst) as in the ball theorems. �

The contact structure ker(λst|TS) in the theorem of Rabinowitz is always
diffeomorphic to the standard tight contact structure ξst on S3. Hofer [24] was
the first to prove the Weinstein conjecture for arbitrary contact forms on S3.

Corollary 3.13 (Hofer). The Reeb vector field of any contact form on S3 has
a periodic Reeb orbit.

Proof. For contact forms defining an overtwisted contact structure, this is con-
tained in Corollary 3.5.

For tight contact structures one has the following argument from [24]. As
shown by Eliashberg [14], there is a unique positive, (co-)oriented tight contact
structure on S3 up to isotopy. Thus, if α is a contact form defining any tight
contact structure, there is a diffeomorphism ϕ of S3 such that ϕ∗α = fαst for
some smooth function f : S3 → R+.

Now consider the star-shaped hypersurface

S := {
√
f(p) p | p ∈ S3}.

According to Corollary 3.12, the contact form λst|TS has a periodic Reeb orbit.

Under the map S3 → S, p 7→
√
f(p) p, the 1-form λst|TS pulls back to fαst.

So fαst and hence α likewise have periodic Reeb orbits. �

In a different direction, the result of Rabinowitz has been extended by
Viterbo [40].

Definition. A hypersurface M in a symplectic manifold (W,ω) is said to be
of contact type (or locally ω-convex) if there is a Liouville vector field for ω
defined near and transverse to M . The hypersurface is said to be of restricted
contact type (or globally ω-convex) if the Liouville vector field is defined on
all of W .

Viterbo proved the Weinstein conjecture for compact contact type hyper-
surfaces in standard symplectic R2n. Our ball theorem covers this result in
dimension 4.
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Corollary 3.14 (Viterbo). Let M− ⊂ (R4, ωst) be a smooth compact hypersur-
face and Y a Liouville vector field for ωst defined near and transverse to M−.
Then the contact form α− := (iY ωst)|TM−

has a periodic Reeb orbit.

Proof. Without loss of generality we take M− to be connected. Then this
hypersurface separates R4 into a bounded and an unbounded part. Choose
a large sphere S3

R containing M− in the interior, and write W for the part
between M− and S3

R.
The Liouville vector field Y near M− points into W , otherwise Corollary 3.2

would be violated. So the ball theorem applies. �

Remark 3.15. A neighborhood of M− ⊂ (R4, ωst) looks like a neighborhood
of {0} × M− in the symplectization (R × M−, d(e

sα−)). So we can form the
symplectic manifold (−∞, 0]×M− ∪M−

W , with W as in the preceding proof
and symplectic form d(esα−) on (−∞, 0]×M−. Any contact form defining the
contact structure kerα− can be realized, up to a constant scale, on a graph in
this half-symplectization. So the theorem holds for any such contact form.

For hypersurfaces of restricted contact type we get a stronger result.

Corollary 3.16. Let M− ⊂ (R4, ωst) be a smooth compact hypersurface and Y
a Liouville vector field for ωst defined on all of R4 and transverse to M−. Then
the contact form α− := (iY ωst)|TM−

has a contractible periodic Reeb orbit.

Proof. Choose S3
R as in the preceding proof. The symplectic form ωst has

the two global primitives iY ωst and λst. Since H1
dR(S

3
R) = 0, the difference

iY ωst − λst is exact in a neighborhood of S3
R. So we can easily construct a

primitive of ωst that coincides with iY ωst near M− and with λst near S3
R.

Then the result follows from the exact ball theorem. �

Implicit in that argument is the simple observation that a hypersurface of
contact type with H1

dR = 0 is automatically of restricted contact type. But
there are examples of hypersurfaces of restricted contact type with H1

dR 6= 0,
for instance the connected sum of copies of S2 × S1; this example can be
constructed with the help of [28, Théorème 1]. So the existence of a contractible
periodic orbit is not just a consequence of topology. On the other hand, the
connected sum of copies of S2 × S1 has nontrivial second homotopy group.
So here the existence of a contractible periodic Reeb orbit also follows from
Hofer’s work [24, Thm. 9].

The next proposition gives a further surgical construction of contact mani-
folds having contractible periodic Reeb orbits.

Proposition 3.17. Let (M, ξ) be a closed contact 3-manifold that is obtained
from (S3, ξst) by contact (+1)-surgery along a Legendrian link. Then every
contact form defining ξ has a contractible periodic Reeb orbit.

Proof. By the cancellation lemma [19, Prop. 6.4.5] the assumption of the
proposition is equivalent to saying that (S3, ξst) can be obtained from (M, ξ)
by contact (−1)-surgeries. This means that there is a Liouville cobordism
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from (M, ξ) to (S3, ξst). As described at the end of Section 2, this allows us to
build a cobordism as in the exact ball theorem for any choice of contact form
defining ξ. �

Here are three examples to which this proposition applies.

Examples. (1) Contact (+1)-surgery on (S3, ξst) along a standard Legen-
drian unknot yields S2 × S1 with its standard contact structure (as described
in Section 7 below), see [8, Lemma 4.3]. For this example the existence of a
contractible periodic Reeb orbit also follows directly from [24], where Hofer
proved the Weinstein conjecture for 3-manifolds with nontrivial second homo-
topy group.

(2) Contact (+1)-surgery on the Legendrian realization of the right-handed
trefoil as in Figure 2 (showing the front projection of that Legendrian knot)
produces a tight contact structure on the Brieskorn manifold Σ(2, 3, 4) with
the opposite of its natural orientation, see [36, p. 206]. The universal cover
is S3, see [33], so Σ(2, 3, 4) has trivial second homotopy group.

+1

Figure 2. A tight contact structure on Σ(2, 3, 4).

(3) Figure 12.4 of [36] gives an example of a tight contact structure on the
circle bundle of Euler number 2 over the torus, obtained by performing contact
(+1)-surgeries on a Legendrian link in (S3, ξst). The second homotopy group
of this manifold is trivial, since its universal cover is R3.

Remark 3.18. Example (2) is finitely covered by the 3-sphere; example (3) is
virtually overtwisted, i.e. finitely covered by an overtwisted contact manifold.
On these covers, a contractible Reeb orbit is guaranteed by Corollaries 3.13
and 3.5, respectively. This implies the existence of a contractible periodic
Reeb orbit downstairs. This contractible orbit may be a multiply covered one.
In example (3) even the singly covered orbit will be contractible, since the
fundamental group is torsion-free.

3.19. Capacities and nonsqueezing. Let (V, ω) be any 4-dimensional sym-
plectic manifold. The manifold V may be noncompact and disconnected. For
simplicity we assume that V does not have boundary; otherwise replace V by
IntV in the following definitions. We define the following symplectic invariant
of (V, ω):

c(V, ω) := sup
(M,α)

{inf(α) | ∃ contact type embedding (M,α) →֒ (V, ω)}.
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Here the supremum is taken over all closed, but not necessarily connected
contact 3-manifolds (M,α). By a contact type embedding j : (M,α) →֒ (V, ω)
we mean that there is a Liouville vector field Y for ω defined near j(M) such
that j∗(iY ω) = α.

When ω = dλ is exact, we can define the following invariant:

c0(V, λ) := sup
(M,α)

{inf0(α) | ∃ embedding j : (M,α) →֒ (V, dλ) with j∗λ = α}.

In other words, here the supremum is taken over (M,α) admitting a restricted
contact type embedding j into (V, dλ), where the global primitive λ is fixed a
priori.

In R4 with the standard symplectic form ωst = dλst let B4
r be the open 4-

ball of radius r and Zr = B2
r ×R2 the cylinder over the open 2-ball of radius r.

For r = 1 we simply write B4 and Z, respectively.

Proposition 3.20. The invariants c(V, ω) and c0(V, λ) are symplectic capa-
cities, i.e. they satisfy the following axioms:

Monotonicity: If there exists a symplectic embedding (V, ω) →֒ (V ′, ω′),
then c(V, ω) ≤ c(V ′, ω′); similarly c0(V, λ) ≤ c0(V

′, λ′) if there exists
a symplectic embedding (V, dλ) →֒ (V ′, dλ′) pulling back λ′ to λ.

Conformality: c(V, aω) = a c(V, ω) and c0(V, aλ) = a c0(V, λ) for any
a ∈ R+.

Normalization: c(B4) = c0(B
4) = c(Z) = c0(Z) = π.

Proof. Monotonicity and conformality are obvious from the definition. Write
S3
r for the 3-sphere of radius r, and denote λst|TS3

r
by αr. The Reeb vector

field Rr of αr is given by

Rr =
2

r2
(x1 ∂y1

− y1 ∂x1
+ x2 ∂y2

− y2 ∂x2
);

this has length 2/r. All the orbits of Rr are closed of length 2πr, so the period
is πr2. Since (S3

r , αr) for r < 1 has a (strict) contact type embedding into the
four manifolds we are considering (with the symplectic form ωst and the global
primitive λst), all four capacities are bounded from below by π.

Suppose we have a (strict) contact type embedding j : (M,α) →֒ B4. Then
we get a cobordism from j(M) to S3 as in the (exact) ball theorem, and these
theorems tell us that inf(α), inf0(α) ≤ π, since the cobordism is not a ball.
This concludes the proof of c(B4) = c0(B

4) = π.
If we have a (strict) contact type embedding j : (M,α) →֒ Z, the image

j(M) is contained inside an ellipsoid

E(1, b) =

{
x2
1 + y21 +

x2
2 + y22
b2

≤ 1

}

for b > 0 sufficiently large. The boundary of this ellipsoid has a foliation by
2-dimensional ellipsoids Et := ∂E(1, b) ∩ {y2 = t}, t ∈ (−b, b), outside the two
singular points (0, 0, 0,±b), just as the foliation of S3 by 2-spheres St that we
are going to consider in the proof of the ball theorems in the next section.
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Moreover, the relevant energy estimate in Proposition 5.1 below only depends
on the fact that the projection of St to the x1y1-plane is contained in the
unit disc, which is also true for the projection of Et. In other words, the ball
theorems remain true with the convex boundary component S3 replaced by
∂E(1, b). Now, as before, this gives the upper bound π on the two capacities
of Z and completes the proof of the proposition. �

For a survey on other types of symplectic capacities see [6].

Remark 3.21. The same proof applies to show that c0(B, λ) = π for any
primitive λ of ωst with λ = λst near ∂B4. For λ = λst near ∂Z one can only
deduce c0(Z, λ) ≤ π.

Gromov’s celebrated nonsqueezing theorem [23, p. 310] is now, in dimen-
sion 4, an immediate consequence of Proposition 3.20.

Corollary 3.22 (Gromov). There is a symplectic embedding B4
r →֒ ZR if and

only if r ≤ R.

Proof. The 4-ball B4
r with the symplectic form ωst is symplectomorphic to the

unit ball with the symplectic form r2ωst. Hence c(B4
r ) = πr2 by conformality.

Similarly we have c(ZR) = πR2. Now the result follows from monotonicity. �

3.23. Quantitative Reeb dynamics. With the capacities introduced in the
preceding section we can derive some simple quantitative results on shortest
Reeb orbits. Frauenfelder, Ginzburg and Schlenk [16, Rem. 1.13.3] show that
an upper bound on the period of the shortest closed Reeb orbit on a compact
hypersurface M ⊂ (R2n, ωst) of diameter diam(M) is π(diam(M))2. We re-
cover their result in dimension 4, where we improve the constant by a reference
to [27].

Corollary 3.24. Let (M,α) ⊂ (R4, ωst) be a compact hypersurface of contact
type. Then inf(α) ≤ (2/5)π(diam(M))2.

Proof. Since the symplectic form ωst is translation-invariant, we have a contact
type embedding of (M,α) into B4

r for any r greater than the circumradius ofM ,

which by [27, p. 257] is (in dimension 4) at most equal to
√
2/5 diam(M).

Hence

inf(α) ≤ c(B4
r ) = πr2 for any r >

√
2/5 diam(M). �

Remark 3.25. The upper bound
√
2/5 diam(M) for the circumradius (in

dimension 4) is optimal; it is attained for the regular 4-simplex.

In view of Remark 3.21, the same argument with the capacity c replaced by
c0 gives the next corollary.

Corollary 3.26. Let (M,α) ⊂ (R4, ωst) be a compact hypersurface of restricted
contact type. Then inf0(α) ≤ (2/5)π(diam(M))2. �

For star-shaped hypersurfaces we have an alternative estimate.
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Corollary 3.27. On the star-shaped hypersurface

S := {
√
f(p) p | p ∈ S3} ⊂ R

4,

with f : S3 → R+ a smooth function, we have inf0(λst|TS) ≤ πmax f . �

Remark 3.28. As shown in [26, Sec. 3.5], on convex hypersurfaces in R2n the
minimal period inf(α) equals the Hofer–Zehnder capacity. In particular, this
provides a lower bound on inf(α) in terms of the inradius, i.e. the radius of the
largest ball that can be embedded in the domain bounded by the hypersurface.
The example of the “Bordeaux bottle” loc.cit. shows that for the class of star-
shaped hypersurfaces there is no lower bound on inf(α) in terms of the inradius.

4. Proof of the ball theorems

Let (W,ω) be a symplectic cobordism as in one of the ball theorems. For
the time being, only the conditions (C1) to (C5) on (W,ω) common to both
theorems will be relevant. On some collar neighborhood [0, ε) × M− ⊂ W
of the strongly concave boundary M− the symplectic form can be written as

ω = d(esα−). We define a family of symplectic completions (W̃ , ωτ ) of (W,ω)
along M− similar to [25, Sec. 2.2] as follows. Consider the family of functions

T :=
{
τ ∈ C∞

(
(−∞, ε),R+

)
| τ ′ > 0, τ(s) = es for s ∈ [0, ε)

}
.

Let W̃ be the manifold obtained from W by attaching infinite half-cylinders
along the boundary M−, i.e.

W̃ := (−∞, 0]×M− ∪M−
W,

whereM− ⊂ ∂W is identified with {0}×M− in the half-cylinder (−∞, 0]×M−.

Then define the symplectic form ωτ on W̃ by

ωτ :=

{
ω on W,

d(τα−) on (−∞, 0]×M−.

Next we choose an almost complex structure J on W̃ compatible with each
ωτ and subject to the following conditions:

(J1) Under the identification of a collar neighborhood of S3 ⊂ W in (W,ω)
with a neighborhood of S3 = ∂D4 in (D4, ωst), as stipulated by condition
(C5), J looks like the standard complex structure on C2.

(J2) On the cylindrical end (−∞, ε) × M−, the almost complex structure is
cylindrical and symmetric in the sense of [5, p. 802, 807], i.e. it preserves
ξ− and satisfies J∂s = Rα−

.
(J3) Extend ξ+ to a rank-2 distribution (still denoted ξ+) in the tangent bundle

TW over a neighborhood of M+ in W such that ω|ξ+ > 0. Choose J on
this neighborhood such that ξ+ and its ω-orthogonal complement are
J-invariant. In particular, the boundary M+ is then J-convex.
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(J4) Outside the regions described in (J1) to (J3), the almost complex struc-
ture is required to be chosen in such a way that J is regular for spheres

(globally on W̃ ) in the sense of [32, Def. 3.1.4], cp. the following re-
mark (2).

Remarks 4.1. (1) By [20, Rem. 4.3], condition (J3) implies that M+ can be
written as the level set of a smooth function on W that is strictly plurisubhar-
monic in a neighborhood of M+. Then the maximum principle holds in that
neighborhood.

(2) A choice of J as required by (J4) is possible by [32, Rem. 3.2.3]. By that
remark, all that is required to achieve regularity for spheres is that no sphere
lie entirely in the regions where J is prescribed by one of the conditions (J1) to
(J3). Indeed, no such sphere can exist, since in all these regions the maximum
principle applies. The proof of the relevant result [32, Thm. 3.1.5] only needs

to be modified in one place in order to account for the noncompactness of W̃ :
instead of requiring the condition ‖du‖∞ ≤ K (condition (3.2.3) in [32]) to
hold globally, we only impose this condition on curves u with image in the
subset [−K, 0] × M− ∪M−

W . On each of these compact manifolds one has
an open and dense set of regular almost complex structures, and one can then
pass to the intersection of these sets over all K > 0 as in [32].

(3) According to [32, Thm. 3.1.5], the dimension of the moduli space of
simple J-holomorphic spheres (quotiented by the 6-dimensional automorphism
group of S2 = CP 1) in the homology class A is given by 2c1(A) − 2. Hence,

if A ∈ H2(W̃ ;Z) is represented by a nonconstant holomorphic sphere, then
c1(A) ≥ 1.

We now want to introduce a moduli space of J-holomorphic discs in W̃
whose boundary is required to lie in S3 ⊂ ∂W (subject to a varying totally
real boundary condition). For this we need to recall some notation from [20].

We begin with the unit sphere S3 in C2 with complex Cartesian coordinates
(z1 = x1 + iy1, z2 = x2 + iy2). Let H be the height function on S3 given by
projection onto the y2-coordinate. For t ∈ (−1, 1) the level sets St := H−1(t)
define a smooth foliation of S3 \ {(0, 0, 0,±1)} by 2-spheres. We regard the
points

qt± := (0, 0,±
√
1− t2, t)

as the poles of these 2-spheres.
This family of poles, together with the two poles (0, 0, 0,±1) of S3, forms

an unknot

K :=
{
(0, 0,±

√
1− t2, t) | t ∈ [−1, 1]

}

in S3. The complement S3 \K is foliated by circles that bound holomorphic
discs

Dt
s := D4 ∩

(
C× {x2 = s, y2 = t}

)
, |t| < 1, |s| <

√
1− t2.

For each t ∈ (−1, 1), the circles ∂Dt
s foliate the punctured 2-sphere St \ {qt±}.
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For |t| < 1 and |s| <
√
1− t2 define a smooth real-valued function

θ(s, t) :=
t

2
√
1− t2

· ln
(√

1− t2 + s√
1− t2 − s

)
.

For each t this defines a diffeomorphism from (−
√
1− t2,

√
1− t2) to R. Now

consider the parametrizations

ut
s(z) :=

(√
1− s2 − t2 · eiθ(s,t) · z, s, t

)
, z ∈ D,

of the holomorphic discs Dt
s. The rotation factor eiθ(s,t) has been chosen in

such a way that for each fixed t ∈ (−1, 1) and z ∈ D, the map s 7→ ut
s(z),

|s| <
√
1− t2, is a parametrization of a leaf of the characteristic foliation on

St \ {qt±} induced by the standard contact structure ξst on S3. The three

leaves corresponding to z = ik, k = 0, 1, 2, will be denoted by ℓtk. These leaves
will be used to put a restriction on three marked points of the holomorphic
discs in our moduli space, which amounts to quotienting out the noncompact
3-dimensional automorphism group of D.

For |s| sufficiently close to
√
1− t2, the image of the holomorphic disc

ut
s will lie in the neighborhood of S3 ⊂ D4 that has been identified with

a neighborhood of S3 ⊂ W̃ . These discs define a relative homotopy class

At ∈ π2(W̃ , St \ {qt±}). We now always take the holomorphic identification

between a neighborhood of S3 = ∂D4 in D4 and S3 ⊂ ∂W̃ in W̃ for granted.

Definition. A t-level Bishop disc is a smooth (up to the boundary) J-holo-
morphic map

ut : (D, ∂D) −→ (W̃ , St \ {qt±}),
i.e. a solution of the Cauchy–Riemann equation

∂xu+ J(u)∂yu = 0,

satisfying the following conditions:

(D1) [ut] = At ∈ π2(W̃ , St \ {qt±}).
(D2) ut(ik) ∈ ℓtk, k = 0, 1, 2.

The collection

W :=
{
ut | t ∈ (−1, 1), ut is a t-level Bishop disc

}

of all such discs is the moduli space of Bishop discs.

For δ ∈ (0, 1) we define a neighborhood of the unknot K ⊂ S3 by

Uδ := K ∪
{
ut
s(z) | z ∈ ∂D, 1− δ < s2 + t2 < 1

}
⊂ S3.

We choose δ so small that the holomorphic discs Dt
s = ut

s(D) with boundary

in Uδ
(i.e. with 1 − δ ≤ s2 + t2 ≤ 1) lie entirely in the neighborhood of S3 in

D4 that has been identified holomorphically with a neighborhood of S3 in W̃ .

This allows us to regard those ut
s as holomorphic discs in W̃ . Then, according

to [20, Cor. 4.9], any t-level Bishop disc whose boundary meets the set U δ
is
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one of the standard Bishop discs ut
s. As in our previous paper, we can therefore

introduce the following subset of the moduli space W .

Definition. The truncated moduli space is

Wδ :=
{
ut | t ∈ [−

√
1− δ,

√
1− δ],

ut is a t-level Bishop disc such that ut(∂D) ⊂ S3 \ Uδ
}
.

The following statements from [20, Sec. 4], where such Bishop discs were
studied for W = D4, carry over to the present setting.

Proposition 4.2.

(a) Every Bishop disc has Maslov index 2, i.e. µ(At) = 2 for all t ∈ (−1, 1).
(b) All Bishop discs are embedded and mutually disjoint. �

The same arguments as in [20] apply to prove transversality, i.e. that the
moduli space W is a manifold; but see the appendix at the end of this paper.

In Section 6 we shall establish compactness for the truncated moduli space
Wδ under the assumption inf(α−) > π or, in the exact case, inf0(α−) > π.
Thus, provided there are no short Reeb orbits for α−, the truncated moduli
space is a compact manifold with boundary. Then the proof of [20, Prop. 5.1]
goes through unchanged; this result says the following.

Proposition 4.3. Let (W,ω) be a symplectic cobordism as in the ball theorems.
If inf(α−) > π, or inf0(α−) > π in the exact case, the evaluation map ev1 :
u 7→ u(1) defines a diffeomorphism

ev1 : Wδ −→ {ut
s(1) | s2 + t2 ≤ 1− δ} =: Qδ

between Wδ and the closed 2-disc Qδ ⊂ S3. �

It is now a simple matter to prove Theorems 2.2 and 2.4.

Proof of the ball theorems. Under the assumption inf(α−) > π or inf0(α−) >
π, respectively, and hence with Wδ being established as a closed disc by the
preceding proposition, one can define an embedding

F :
(
D× IntD, ∂D× IntD

)
−→ (W̃ \K,S3 \K)

as in [20, Sec. 5] by setting

F (z, s, t) =

{(
ev−1

1

(
ut
s(1)

))
(z) on D× {s2 + t2 ≤ 1− δ},

ut
s(z) on D× {1− δ ≤ s2 + t2 < 1}.

We also have the standard embedding

Fst :
(
D× IntD, ∂D× IntD

)
−→ (D4 \K,S3 \K)

given by Fst(z, s, t) = ut
s(z). Both F and Fst are holomorphic fillings of S3 in

the sense of [20, Def. 5.2], and they obviously coincide for 1− δ ≤ s2 + t2 < 1.
It follows that the map F ◦F−1

st , a priori defined on D4 \K, equals the identity
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in a neighborhood of S3 ⊂ D4, and hence extends in the obvious way to an
embedding

(D4, S3) −→ (W̃ , S3),

which by the compactness of D4 must be a diffeomorphism. �

5. The Hofer energy

The compactness proof for the truncated moduli space Wδ is based on en-
ergy estimates for holomorphic discs and spheres in the almost complex mani-

fold (W̃ , J). The following notion of energy is essentially the one introduced
in [24, Sec. 3.2].

Definition. Let Σ be a Riemann surface (potentially noncompact or with

boundary) and u : Σ → W̃ a J-holomorphic curve. The Hofer energy of u is

E(u) := sup
τ∈T

∫

Σ

u∗ωτ .

The Hofer energy of the holomorphic discs ut
s in the standard holomorphic

filling of S3 ⊂ C2 is uniformly bounded, cp. [20, Sec. 2.4]. We now prove a

sharp estimate for the energy of Bishop discs in W̃ .

Proposition 5.1. The Hofer energy of the Bishop discs in W̃ is uniformly
bounded by π, i.e. E(u) ≤ π for all u ∈ W.

Proof. Let u = ut be a t-level Bishop disc. Choose a function τ ∈ T . We want
to estimate

∫
D
u∗ωτ .

By Proposition 4.2 the Bishop disc u is an embedding, hence
∫

D

u∗ωτ =

∫

u(D)

ωτ .

The boundary u(∂D) of the Bishop disc is contained in St \{qt±} ⊂ S3. The
2-sphere St is naturally oriented as the unit sphere in x1y1x2-space. Let D

t be
the 2-disc in St (with the induced orientation) whose oriented boundary equals
u(∂D); the disc Dt is characterized by the condition qt+ ∈ Dt. The 2-discs u(D)

and Dt both represent the relative homotopy class At ∈ π2(W̃ , St \ {qt±}), and
they coincide along the boundary. Since ωτ is exact near St (and closed on all

of W̃ ) it follows that
∫

u(D)

ωτ =

∫

Dt

ωτ =

∫

Dt

ωst.

On TSt we have ωst = dx1 ∧ dy1. So the integral of ωst over a subset of
St measures the area of the projection of that subset to the x1y1-plane, where
the regions in the upper hemisphere {x2 ≥ 0} are counted positively; those in
the lower hemisphere, negatively. It follows that

∫
Dt ωst, and hence

∫
D
u∗ωτ ,

is bounded above by π(1 − t2). �
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6. Compactness

We now want to show that the truncated moduli space Wδ is compact. The
basic setup is similar to [20, Sec. 6]. We equip Wδ with the topology induced

by the W 1,p-norm, p > 2, on maps D → W̃ ; in [20, Sec. 6] the range was
D4 ⊂ C2.

Proposition 6.1. If inf(α−) > π, or inf0(α−) > π in the exact case, the
truncated moduli space Wδ is compact.

Proof. Let (uν) be a sequence in Wδ, where uν is of level tν . After passing to
a subsequence we may assume that tν → t0 ∈ [−

√
1− δ,

√
1− δ]. As in [20]

we want to apply [32, Thm. B.4.2] in order to prove compactness, i.e. to find a
converging subsequence of (uν) with respect to the W 1,p-norm. This requires
the following:

(i) There is a uniform Lp-bound for the sequence (|∇uν |), where the norm

is taken with respect to some complete metric on W̃ . We claim that the
sequence (|∇uν |) is uniformly bounded even in the supremum norm on
the closed disc D. This part of the argument is to some extent parallel
to [20]. In some places we need to invoke additional energy estimates to
compensate for the lack of compactness of the range of our holomorphic
discs. Extra care needs to be taken with potential bubbling at interior

points, because we no longer have a global maximum principle on W̃ that
would preclude spheres.

(ii) The image uν(D) stays inside a fixed compact subset of W̃ for all ν.

First we notice that (ii) is a straightforward consequence of the bounds
we establish in (i). Indeed, with the help of the mean value theorem the
uniform C0-bound on the image uν(D) follows from the uniform bound on
the supremum norm of |∇uν |, together with the fact that uν(∂D) stays in

the compact subset S3 ⊂ ∂W̃ of W̃ (and the assumption that the metric be
complete).

Arguing by contradiction, assume that there is no uniform bound (in ν ∈ N)
on maxz∈D |∇uν(z)|. We can then find a sequence of points zν → z0 in D such
that |∇uν(zν)| → ∞. We distinguish the cases z0 ∈ ∂D and z0 ∈ IntD.

Case 1: z0 ∈ ∂D. Choose a conformal map from H ∪ {∞} to D that sends
0 to z0 and ∞ to −z0. Subject to this conformal identification, we regard the
uν as maps

uν : (H,R) −→ (W̃ , Stν \ {qtν± }),
and the sequence (zν) as a sequence in H converging to 0, still satisfying

Rν := |∇uν(zν)| → ∞.

As shown in the proof of [20, Prop. 6.1] (by an argument going back to Hofer),
after passing to a subsequence of (uν) one can find a sequence εν ց 0 such
that

• ενRν → ∞,
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• |∇uν(z)| ≤ 2Rν for all z ∈ H with |z − zν| ≤ εν ,
• Rνyν → r for some r ∈ [0,∞], where zν = xν + iyν .

Case 1.1: r < ∞. Here the argument is largely analogous to that in [20].
One considers the rescaled sequence (wν) on H, defined by

wν(z) := uν(xν + z/Rν), z ∈ H.

The only issue to take care of is the noncompactness of the range W̃ of the
wν . In fact, this does not cause any problems, since there is a uniform bound
on the gradient of the wν , and the wν send R = ∂H to the compact subset

S3 ⊂ ∂W̃ . So there is a C0
loc-bound on the wν , which allows us to apply [32,

Thm. B.4.2] as in [20]. As there we then find a subsequence of (wν) (after
a modification replacing the varying boundary condition by a varying almost
complex structure) that converges in C∞

loc to a nonconstant J-holomorphic map

w : (H,R) −→ (W̃ , St0 \ {qt0±}).
We now need to show that the singularity of w at ∞ can be removed, i.e.

that w extends to an honest holomorphic disc

(D, ∂D) −→ (W̃ , St0 \ {qt0±}).
Such a disc would have contradictory properties as in [20].

For this removal of singularities, it is again the noncompactness of W̃ that
forces us to take extra care. Write | . |τ for the norm induced by the (incom-
plete) metric gτ := ωτ ( . , J . ). The Dirichlet energy of w is defined by

1

2

∫

H

|∇w|2τ dvolH =
1

2

∫

H

(
|∂sw|2τ + |∂tw|2τ

)
ds ∧ dt,

where z = s+it. Since w is holomorphic for the ωτ -compatible almost complex
structure J , the Dirichlet energy of w equals its symplectic energy

∫
H
w∗ωτ , see

[32, p. 21]. These energies are invariant under conformal reparametrizations,
so Proposition 5.1 and the C∞

loc-convergence of the sequence (wν) yield the
estimate

1

2

∫

H

|∇w|2τ dvolH ≤ π.

Finiteness of the Dirichlet energy is one of the conditions in the theorem on
removal of singularities [32, Thm. 4.1.2]. In addition, that theorem requires
the image of w to lie in a compact manifold and w(∂H) to lie in a Lagrangian
submanifold with respect to a symplectic form taming J .

We first address the latter point. Choose a Riemannian metric g on W̃ such
that J is orthogonal with respect to g, and such that J maps each tangent space

of the totally real submanifold L := St0 \U δ/2
to its g-orthogonal complement;

this is possible by a lemma of Frauenfelder, see [32, Lemma 4.3.3]. Define a

nondegenerate 2-form σ on W̃ by σ := g(J . , . ). Then the pullback of σ to L
vanishes identically, and J is σ-compatible.

The usual proof of Weinstein’s Lagrangian neighborhood theorem, see [31,
Thm. 3.33], allows one to find a diffeomorphism φ from a neighborhood of L
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in W̃ to a neighborhood of the zero section in the cotangent bundle T ∗L such
that the pullback ωL := φ∗(dp ∧ dq) of the canonical symplectic form on T ∗L

coincides with σ on TW̃ |L. In particular, J is tamed by ωL on TW̃ |L, and
hence in a neighborhood of L. So ωL is the desired symplectic form.

It remains to show that points in H sufficiently close to ∞ are mapped by w
into that neighborhood of L. By precomposing with the conformal equivalence

C ⊃ R× [0, π] −→ H \ {0}, s+ it 7→ es+it,

we may regard w|H\{0} as a J-holomorphic map defined on R × [0, π] ⊂ C.
In this parametrization, neighborhoods of the singular point are of the form
{s > R}.

For s ∈ R set

γs(t) := w(s+ it), t ∈ [0, π].

The length l(s) of γs with respect to the metric gτ is

l(s) =

∫ π

0

|γ̇s|τ dt;

the energy e(s) of γs we define as

e(s) =

∫ π

0

|γ̇s|2τ dt.

The Cauchy–Schwarz inequality gives

l(s)2 ≤ πe(s).

Since w maps R × {0} and R × {π} to the compact set St0 \ Uδ ⊂ L, the
fact that w maps a neighborhood of the singularity to a neighborhood of L is
a consequence of the following Courant–Lebesgue type lemma.

Lemma 6.2. lims→∞ l(s) = 0.

Proof. Since J is ωτ -compatible and w is J-holomorphic, we have

|γ̇s|τ = |∂tw|τ = |∂sw|τ .
We now compute

∫ R

−∞

e(s) ds =

∫ R

−∞

∫ π

0

|γ̇s|2τ dt ds

=
1

2

∫ R

−∞

∫ π

0

(
|∂sw|2τ + |∂tw|2τ

)
dt ds

≤ 1

2

∫

H

|∇w|2τ dvolH

=

∫

H

w∗ωτ ≤ E(w) ≤ π.

It follows that lims→∞ e(s) = 0, and hence lims→∞ l(s) = 0. �
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Case 1.2: r = ∞. In this case, again as in [20], we define the rescaled
sequence (wν) by

wν(z) := uν(zν + z/Rν) for z = x+ iy with y ≥ −yνRν .

Then |∇wν(0)| = 1, the Dirichlet energy of the wν is bounded by π, and we
have the uniform estimate

|∇wν(z)| ≤ 2 for all z ∈ C with |z| ≤ ενRν and y ≥ −yνRν .

Case 1.2.a: The sequence (wν(0) = uν(zν)) converges (after passing to a
subsequence).

Because of the uniform bound |∇wν | ≤ 2 on the exhausting sequence

Kν := {z ∈ C | |z| ≤ ενRν , y ≥ −yνRν}

of compact subsets of C, the convergence of (wν(0)) implies that we have a
C0-bound on wν on the compact set Kν , which allows us again to apply [32,
Thm. B.4.2]. This now gives us a subsequence of (wν) that converges in C∞

loc

to a nonconstant holomorphic map w : C → W̃ with E(w) ≤ π. So w is a
finite energy plane in the sense of [25].

By [25, Prop. 2.11] we now have the following alternative:

(A1) A sphere bubbles off: the image of w is bounded, and w has a smooth
extension over ∞ to a holomorphic sphere.

(A2) A plane bubbles off: the image of w is unbounded, and there exists an
r0 > 0 such that

w(z) =: (a(z), f(z)) ∈ (−∞, 0]×M− for |z| ≥ r0.

Moreover, in the case of alternative (A2), there exists a sequence rµ → ∞,
rµ ≥ r0, and a negative number T < 0 such that

a(rµe
2πit) → −∞ and γµ(t) := f(rµe

2πit) → γ(T t)

in C∞(R/Z, (−∞, 0]) and C∞(R/Z,M−), respectively, for some |T |-periodic
Reeb orbit γ of α−.

The next lemma is essentially contained in [24, Thm. 31], but we give a
more direct proof in the present context.

Lemma 6.3. The period |T | in alternative (A2) satisfies |T | ≤ π.

Proof. For each µ ∈ N we choose a compactly supported function

τµ ∈ C∞
(
(−∞, ε),R+

0 )

with the following properties:

(i) τ ′µ ≥ 0,
(ii) τµ(s) = es for s ∈ [0, ε),
(iii) τµ = 1− 1/µ on a({|z| = rµ}).
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Notice that τµ is an element of the C∞-closure of the set T of functions used
to define the Hofer energy.

We then compute

E(w) ≥
∫

|z|≥rµ

w∗ωτµ =

∫

|z|≥rµ

w∗(d(τµα−))

= −
(
1− 1

µ

) ∫

|z|=rµ

f∗α−

= −
(
1− 1

µ

) ∫

γµ

α− = −
(
1− 1

µ

) ∫ 1

0

α−(γ̇µ(t)) dt

µ→∞−→ −
∫ 1

0

α−(T γ̇(T t)) dt

= −T = |T |,
where we have used the theorem of Stokes in the second line. Since E(w) ≤ π,
this proves the lemma. �

This lemma shows that our assumption inf(α−) > π in Proposition 6.1
precludes alternative (A2). In the exact case, where we only require inf0(α−) >
π, we rule out (A2) as follows. Define the collar neighborhood [0, ε)×M− ⊂ W
of M− by the flow of the Liouville vector field Y given by iY dλ = λ. Then λ

on W and τµα− on (−∞, 0]×M− glue to a global primitive λµ of ωτµ on W̃ .
Under alternative (A2), the 2-form w∗ωτµ = w∗(dλµ) on C would be compactly
supported, hence ∫

|z|≥τµ

w∗ωτµ ≤
∫

C

w∗(dλµ) = 0

by the theorem of Stokes, which would imply T = 0 by the computation in the
preceding lemma.

In the exact case, alternative (A1) is likewise impossible, since by Stokes
there are no nonconstant holomorphic spheres in an exact symplectic manifold.

This concludes the discussion of Case 1.2.a, except for the potential bubbling
of spheres in the nonexact case.

Case 1.2.b: The sequence (wν(0)) is of the form wν(0) = (aν(0), fν(0)) ∈
(−∞, 0]×M− (in the notation of alternative (A2)) with aν(0) → −∞ (again
possibly after passing to a subsequence).

In this case we use a trick from [25] to produce a finite energy plane in
the symplectization (R×M−, d(e

sα−)) of M−. Let R
′
ν be the maximal radius

≤ ενRν such that with Kν as in Case 1.2.a and

K ′
ν := Kν ∩ {|z| ≤ R′

ν}
we have

wν(K
′
ν) ⊂ (−∞, 0]×M−.

Because of ενRν → ∞, the uniform estimate |∇wν | ≤ 2 on Kν , and aν(0) →
−∞, the mean value theorem implies R′

ν → ∞.
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Now consider the shifted sequence

(aν − aν(0), fν) ∈ C∞(K ′
ν ,R×M−).

We continue to write (wν) for this sequence. By the compactness of M− the
sequence (wν(0)) in {0} × M− has a convergent subsequence, so just as in
Case 1.2.a we may now apply [32, Thm. B.4.2] to obtain a finite energy plane
w : C → R×M−. Specifically, with the Hofer energy now defined as

E(w) = sup
τ

∫
w∗d(τα−),

where the supremum is taken over the set

{τ ∈ C∞(R, [0, 1]) | τ ′ ≥ 0},
we have E(w) ≤ π.

This places us, once again, in the setting of [25, Prop. 2.11]. In the symplec-
tization (R×M−, d(e

sα−)) the maximum principle holds, so alternatives (A1)
and (A2) are excluded; instead we must have the following, where w = (a, f):

(A3) Breaking: there exists a sequence rµ → ∞ and a positive number T > 0
such that

a(rµe
2πit) → ∞ and γµ(t) := f(rµe

2πit) → γ(T t)

in C∞(R/Z,R) and C∞(R/Z,M−), respectively, for some T -periodic
Reeb orbit γ of α−.

Notice that this γ is now a contractible periodic orbit, since the whole energy
plane can be projected into M−. Next we estimate the symplectic energy by
choosing τ to be identically equal to 1:

E(w) ≥
∫

|z|≤rµ

w∗(dα−) =

∫

|z|=rµ

f∗α−
µ→∞−→ T.

This implies that the assumption inf0(α−) > π suffices to rule out alterna-
tive (A3).

Case 2: z0 ∈ IntD. This case is completely analogous to Case 1.2.

Thus, at this point we have completed the proof of Proposition 6.1 in the
exact case, and hence the proof of Theorem 2.4. In the nonexact case it still
remains to show that no spheres can bubble off, i.e. that alternative (A1) in
Case 1.2.a or Case 2 never happens.

Since the maximum principle applies near the convex boundary of W̃ , all po-
tential bubbling spheres have to be disjoint from a neighborhood of that bound-
ary. Moreover, our arguments have shown that no breaking or bubbling-off of
planes can occur, in particular near the boundary. Therefore the compactness
result [5, Thm. 10.2] for an almost complex manifold without boundary and
with cylindrical ends applies to our situation (modulo a remark that we shall
make presently). That compactness result says that the sequence (uν) has a
subsequence convergent to a holomorphic building of height k−|1 with k− ≥ 0.
Any holomorphic building coming from a disc and having height k−|1 with
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k− > 0 would contain at least one finite energy plane, whose existence we have
excluded. So the limit is a holomorphic building of total height 1. In other
words, the subsequence is Gromov-convergent to a stable J-holomorphic map
{uj}j=0,...,n in the sense of [32, Def. 5.1.1]. Here our labelling is chosen such
that u0 is a J-holomorphic disc, and u1, . . . , un are J-holomorphic spheres.
The disc and spheres form a bubble tree; in particular each sphere has at least
one point of intersection with some other sphere or the disc.

Remark 6.4. The compactness theorem from [5] only applies in the case that
α− is nondegenerate (i.e. the linearized Poincaré return map along closed Reeb
orbits of α−, including multiples, does not have an eigenvalue 1).

If α− is a degenerate contact form with inf(α−) > π, we argue as in the
final paragraph of [1]. Choose a sequence of smooth functions f (µ) : M− → R+

converging in C∞ to the constant function 1 and with f (µ)α− nondegenerate
for all µ ∈ N. If inf(f (µ)α−) ≤ π for all µ, then the argument in [1] would
show that, likewise, inf(α−) ≤ π, contradicting our assumption. So we find a
function f arbitrarily C∞-close to 1 with fα nondegenerate and inf(fα−) > π.
This contact form can be realized on the boundary M− of the cobordism W
by a small modification of W in a collar neighborhood of M− ⊂ W (after
adding a small piece (−ε, 0] × M− of the symplectization to W ). Then the
whole argument (including the part that follows below) can be applied to this
modified W , showing W to be a 4-ball.

Returning to our purported bubble tree, we now compute with intersection
numbers as in [44] in order to show that such a bubble tree (with n ≥ 1)
cannot exist. Arguing by contradiction, we assume n ≥ 1, i.e. that at least one
sphere bubbles off. Each disc uν represents a relative homotopy class Atν ∈
π2(W̃ , Stν \ {qtν± }) whose self-intersection number (as defined in [20, Sec. 8])
is Atν •Atν = 0; see the proof of [20, Prop. 4.5]. Gromov convergence implies

that, for ν large enough, the homotopy class of uν in π2(W̃ , S3 \ K) equals
that represented by the limiting bubble tree. For the purpose of computing
intersection numbers we may assume that the bubble tree and the uν represent

the same class A ∈ π2(W̃ , St0 \ {qt0±}) for some t0 (since for discs in different
levels we are back to classical intersection theory at interior points).

By positivity of intersections [20, Thm. 9.2] and uν • uν = 0 we have

uj • uν ≥ 0 for j = 0, . . . , n.

Since the intersection product is a homotopy invariant, we have

uj •A ≥ 0 for j = 0, . . . , n.

From

0 = A •A =
n∑

j=0

uj •A ≥ 0

we conclude uj •A = 0, j = 0, . . . , n.
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Again by positivity of intersections we have u1 • uk ≥ 0 for k = 0, 2, . . . , n,
and at least one of these intersection numbers (corresponding to a neighbor of
u1 in the bubble tree) is positive. Hence u1 • u1 < 0. Beware that the inter-
section number in [20] is weighted differently from the standard intersection
number of closed submanifolds, but the inequality u1 • u1 < 0 remains true if
• is now interpreted in that standard way.

Without loss of generality we may assume that u1 is simple, i.e. not multiply
covered (otherwise apply the following argument to the corresponding simple
sphere). Then the adjunction inequality [32, Thm. 2.6.4] says that

u1 • u1 − c1(u
1) + 2 ≥ 0,

with equality if and only if u1 is embedded. By Remark 4.1 (3) we have
c1(u

1) ≥ 1, and hence u1 • u1 ≥ −1.
We conclude that u1 • u1 = −1. Then further c1(u

1) = 1, and equality
holds in the adjunction formula. This means that u1 is an exceptional sphere

in (W̃ , ωτ ) for any choice of τ ∈ T . If we take τ(s) = es on (−∞, ε), for
instance, the vector field ∂s is a Liouville vector field for ωτ on (−∞, ε)×M−,
and its flow can be used to push u1 into (W,ω). Exceptional spheres in (W,ω),
however, are excluded by assumption (C1).

This finishes the proof of Proposition 6.1 and hence that of Theorem 2.2. �

7. Symplectic fillings of S2 × S1

An obvious strong symplectic filling of S2×S1 ⊂ R3×S1 with its standard
contact structure ξst = ker

(
λst|T (S2×S1)

)
, where

λst :=
1

2
(xdy − y dx) + z dθ,

is given by (D3×S1, dx∧dy+dz∧dθ). The following result is implicit in [11]; for
the uniqueness of the filling up to symplectic deformation equivalence see [35].
For more on the topology of symplectic and Stein fillings see [36, Chap. 12].

Theorem 7.1. Any minimal weak symplectic filling of (S2×S1, ξst) is diffeo-
morphic to D3 × S1.

Proof. We only present the main outline of the argument; the details are then

completely analogous to those used for the holomorphic filling of (W̃ , J) in
Section 4.

The contact manifold (S2 × S1, ξst) is foliated by the 2-spheres Sθ := S2 ×
{θ}, whose characteristic foliation looks like that of the level spheres St in
Section 4. The singular points qθ± of these characteristic foliations form two
circles {z = ±1} × S1.

Suppose (W,ω) is a weak symplectic filling of (S2 × S1, ξst). Choose an
almost complex structure J on W that satisfies conditions (J3) and (J4). In
order to define θ-level Bishop discs, we formulate a condition analogous to
(D2) by choosing three leaves of the characteristic foliation of the Sθ (in an
S1-invariant family, say). As regards the homotopical condition (D1), a priori
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we may have to consider two families of relative homotopy classes Aθ
± defined

by standard Bishop discs in (W,J) near the singular points qθ±. Because of

Aθ
+ • Aθ

− = 0 and positivity of intersections, however, it follows that any two
θ-level Bishop discs in these two families are either disjoint or they coincide.
This implies that it suffices to formulate (D1) only in terms of Aθ

+, say.
The corresponding truncated moduli space can then be shown to be dif-

feomorphic to S1 ×D1 via the evaluation map ev1 just as in Proposition 4.3,
and the proof then concludes like that of the ball theorems. The compactness
argument remains unchanged; a suitable replacement for the bound π in the
energy estimate in Proposition 5.1 is provided by max

θ

∫
S2×{θ} |ω|. �

We close with a computation of the capacities c, c0 in this context.

Proposition 7.2. Let (V, ω) be a minimal strong symplectic filling of the mani-
fold (S2 × S1, αst), i.e. there is a Liouville vector field Y defined near and
pointing outwards along ∂V = S2 × S1 such that (iY ω)|T (S2×S1) = αst. Then
c(V, ω) = π. If, moreover, ω = dλ with λ|T (S2×S1) = αst, then c0(V, λ) = π.

Proof. By assumption the symplectic form ω is the standard one near the
boundary S2 × S1, so in this case we actually have the bound π in the energy
estimate in Proposition 5.1. The filling result above implies that any closed
hypersurface M in IntV is separating. The analogues of the ball theorems for
the resulting cobordism from M (which has to be a concave end) to S2 × S1

show that the capacities c, c0 are at most equal to π. On the other hand, the
Reeb vector field of αst is given by

Rαst
=

2

1 + z2
(x∂y − y ∂x + z ∂θ),

whose minimal period is equal to π, corresponding to the contractible orbits

γ(t) = (cos 2t, sin 2t, 0, θ0) ∈ S2 × S1 ⊂ R
3 × S1, t ∈ [0, π].

For r < 1 sufficiently close to 1 we have a (strict) contact type embedding of
S2
r ×S1 (with the contact form induced by λst) into (V, ω). So the lower bound

π on the capacities in question follows from an exhaustion argument as in the
proof of Proposition 3.20. �
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Appendix

Here are some corrections to our previous paper [20].
(1) In the first case, step (ii), of the proof of Proposition 6.1, u should be replaced

by w in three instances.
(2) In the second case of the proof of Proposition 6.1, the uniform estimate

|∇wν(z)| ≤ 2 holds on the set Kν defined in Case 1.2.a of the present paper.
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(3) Proposition 7.3 states that the space B of level-preserving discs (D, ∂D) →
(R4, St \ {qt±}), t ∈ (−1, 1), with the homotopical boundary condition (D1) from
Section 4 above, is a Banach manifold. This statement is correct; the proof in [20]
shows that it is a Banach manifold modelled on the Banach space of W 1,p-sections
η of u∗(TR4, TS3), where u is a W 1,p-map (D, ∂D) → (R4, S3 \K), that satisfy the
additional requirement

〈∇H ◦ u|∂D, η|∂D〉 ≡ const.,

with H the height function on S3 as in Section 4.

In the proof of that Proposition 7.3 in [20] we tried to show more, namely, that

B is a Banach submanifold of the Banach manifold C of all W 1,p-maps (D, ∂D) →

(R4, S3 \ K) satisfying the corresponding homotopical boundary condition. This

would require the subspace TuB ⊂ TuC to split. Since solutions of the boundary

value problem (P) in [20] need not be of class W 1,p, our argument does not prove

the existence of a splitting. This stronger statement, however, is never used in [20]

or the present paper.
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E-mail: geiges@math.uni-koeln.de, kai.zehmisch@math.uni-koeln.de

Münster Journal of Mathematics Vol. 6 (2013), 525–554


