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Abstract. We construct several infinite families of nonnegatively curved manifolds of low
cohomogeneity and small dimension which can be distinguished by their cohomology rings.
In particular, we exhibit an infinite family of eight-dimensional cohomogeneity one manifolds
of nonnegative curvature with pairwise nonisomorphic complex cohomology rings.

1. Introduction

In this paper we give new information on the “size” of the class of manifolds
of nonnegative sectional curvature. Here the size will be measured in terms
of the possible isomorphism types of cohomology rings. Our aim is to exhibit
among these manifolds infinite families of small dimension and large symme-
try which can be distinguished by their cohomology rings. In particular, we
present in Theorem 1.1 an infinite family of eight-dimensional cohomogeneity
one manifolds of nonnegative curvature with pairwise nonisomorphic complex
cohomology rings. Throughout the paper we will restrict to closed simply
connected manifolds. If not stated otherwise, curvature will refer to sectional
curvature.

To begin with, let us briefly recall some existence and obstruction results
for nonnegative curvature and a question of Grove which motivated our inves-
tigation.

Whereas only a few examples of manifolds with positive curvature are
known, many more nonnegatively curved examples have been constructed.
This can be explained by the fact that certain constructions for nonnegative
curvature do not hold, or are not known to hold, for positive curvature. In
particular, the property of having nonnegative curvature is preserved under
products and examples for nonnegatively curved manifolds are provided by
all homogeneous spaces and biquotients, which are quotients of compact Lie
groups. Moreover, Grove and Ziller [12] have shown that among cohomogeneity
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one manifolds (i.e. manifolds with an action of a Lie group with a codimension
one orbit) there exist many examples which admit invariant metrics with non-
negative curvature. Despite the discrepancy between positively and nonnega-
tively curved examples, it is an open question whether there exist nonnegatively
curved manifolds which do not admit a metric with positive curvature (recall
that we restrict to simply connected manifolds). For a survey on constructions
and examples we recommend [23, 24].

A few obstructions to the existence of a nonnegatively curved metric are
known. According to Böhm and Wilking [2] any nonnegatively curved metric
transforms under the Ricci flow to a metric of positive Ricci curvature, provided
the fundamental group is finite. Hence, a nonnegatively curved manifold must
satisfy the topological constrains imposed by positive Ricci and positive scalar
curvature.

By Gromov’s Betti number theorem [9] the sum of Betti numbers (with
respect to any field of coefficients) of a Riemannian manifold is bounded from
above by a constant depending only on the lower curvature bound, the upper
diameter bound and the dimension. In particular, in any fixed dimension the
sum of Betti numbers of nonnegatively curved Riemannian manifolds has a uni-
form upper bound. In other words the cohomology rings of such manifolds,
viewed as graded vector spaces, belong to a finite number of isomorphism types
and this number satisfies an upper bound which depends only on the dimen-
sion and is independent of the field of coefficients. The Betti number theorem
gives a strong restriction on the class of manifolds of nonnegative curvature.
A stronger restriction is implied by the so called Bott conjecture which states
that any nonnegatively curved manifold is elliptic or at least rationally elliptic.

In [10] Grove asked whether in any fixed dimension the class of closed sim-
ply connected Riemannian manifolds satisfying uniform lower curvature and
upper diameter bounds falls into only finitely many rational homotopy types.
It follows from the Betti number theorem that this is the case in dimension ≤ 5.

Grove’s question has been answered into the negative first by Fang and
Rong [7] for lower negative curvature and upper diameter bounds and shortly
after by Totaro [20] for nonnegatively curved manifolds. The examples of Fang
and Rong are in any dimension ≥ 22, satisfy uniform two-sided curvature
bounds and can be distinguished already by their complex cohomology rings.
Totaro’s examples start in dimension 6, which is the lowest possible dimen-
sion. His six-dimensional manifolds are nonnegatively curved biquotients with
pairwise nonisomorphic rational cohomology rings (and, hence, are of different
rational homotopy type). However, their real cohomology rings fall into only
finitely many isomorphism types. Totaro also exhibits an infinite family in
dimension 7 with uniform two-sided curvature and upper diameter bounds
and an infinite family in dimension 9 with nonnegative curvature and uniform
upper curvature and diameter bounds (see [20] for details). Again these man-
ifolds can be distinguished by their rational cohomology rings, but their real
cohomology rings fall into only finitely many isomorphism types.
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In view of the examples above the size of the class of six-dimensional mani-
folds of nonnegative curvature is large with regard to their rational cohomology
rings. The main purpose of this paper is to show that in slightly higher dimen-
sion this phenomenon already holds with regard to complex cohomology and
under additional assumptions on the cohomogeneity. More precisely, we show:

Theorem 1.1. There are infinitely many eight-dimensional simply connected
Riemannian manifolds with nonnegative curvature, an isometric cohomogene-
ity one action and with pairwise nonisomorphic complex cohomology rings.

By taking products—for example with spheres—one gets the corresponding
statement also in any dimension ≥ 10.

We remark that the theorem above is sharp in several respects.

Remarks 1.2.

(1) From the classification of low-dimensional simply connected homogeneous
spaces (resp. cohomogeneity one manifolds) by Klaus [17] (resp. Hoelscher
[16]) follows that the rational cohomology rings of simply connected ho-
mogeneous spaces (resp. cohomogeneity one manifolds) of dimension ≤ 8
(resp. ≤ 7) belong to only finitely many isomorphism types. Hence, the
conclusion of the theorem fails in dimension < 8 and fails for homogeneous
spaces of dimension ≤ 8.

(2) The bound on the curvature in the theorem above cannot be changed
from nonnegative to positive since Verdiani [21] has shown that an even-
dimensional manifold of positive curvature and isometric cohomogeneity
one action is equivariantly diffeomorphic to a compact rank one symmetric
space.

The manifolds in Theorem 1.1 are constructed as total spaces of CP 1-bun-
dles over the six-dimensional complex flag manifold. One can show that if one
replaces in the construction the base space by any other homogeneous space
of dimension ≤ 6, then the real (and, hence, complex) cohomology rings of the
total spaces fall into only finitely many isomorphism types.

It is not known (at least to the author) whether there exist infinite families of
nonnegatively curved manifolds in dimension 6 with pairwise nonisomorphic
real or complex cohomology rings. In dimension 7 the rational (resp. real)
cohomology rings of simply connected rationally elliptic manifolds fall into
infinitely (resp. only finitely) many isomorphism types (see [14]). Hence, in
view of the Bott conjecture one expects only finitely many real isomorphism
types for seven-dimensional manifolds.

All manifolds in Theorem 1.1 have second Betti number equal to 3. It is
not difficult to see that the construction does not lead to infinitely many real
isomorphism types if the second Betti number of the total space is less than 3
and the dimension is ≤ 8. For smaller second Betti number we can show the
following.
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Theorem 1.3. In dimension 8 (resp. 10) there are infinitely many simply
connected Riemannian manifolds with second Betti number equal to 2, nonneg-
ative sectional curvature, an isometric cohomogeneity two action and pairwise
nonisomorphic rational (resp. complex) cohomology rings.

By taking products—for example with spheres—one obtains correspond-
ing examples in higher dimensions. The manifolds in the theorem above are
total spaces of CP 2-bundles over complex projective spaces and examples of
so-called generalized Bott manifolds, a special class of torus manifolds (a torus
manifold is an orientable 2n-dimensional manifold with an effective action by
an n-dimensional torus with nonempty fixed point set). The isomorphism type
of the integral cohomology ring of such manifolds has been studied extensively
by Masuda and his coworkers in the context of cohomological rigidity problems
(see for example [5, 6]).

Remark 1.4. The manifolds in Theorem 1.3 can be described as quotients of
a product of two spheres by free isometric torus-actions (see Proposition 5.1).
This is no surprise since, according to recent work of Wiemeler [22, Thm. 1.2],
any simply connected nonnegatively curved torus manifold is diffeomorphic to
a quotient of a free linear torus action on a product of spheres.

The manifolds in Theorem 1.1 and Theorem 1.3 all have positive Euler
characteristic. By Cheeger’s finiteness theorem [4] they do not admit metrics
with uniform two-sided curvature and upper diameter bounds. We do not
know whether there exist families of manifolds in these dimensions for which
the conclusion in the theorems above still holds if one assumes in addition
uniform upper curvature and diameter bounds.

In the theorems above the manifolds have small positive cohomogeneity.
It would be interesting to determine the lowest possible dimension in which
there are infinite homogeneous families (i.e. of cohomogeneity zero) with pair-
wise nonisomorphic cohomology rings (for coefficients Q, R or C). Recently,
Herrmann [15] has shown, among other things, that there are infinitely many
simply connected thirteen-dimensional homogeneous manifolds with pairwise
nonisomorphic complex cohomology rings satisfying uniform upper curvature
and diameter bounds.

The paper is structured as follows. In Section 2 we describe an infinite family
{Mk,l} of eight-dimensional manifolds which is used in the proof of Theo-
rem 1.1. The family consists of quotients of SU(3) × SU(2) by free isometric
torus-actions. The geometrical and symmetry properties given in Theorem 1.1
follow from this description. Section 2 also contains a brief discussion of their
symmetry rank. The manifoldsMk,l can also be described as the total space of
projective bundles associated to the sum of two complex line bundles over the
complex flag manifold. In Sections 3 and 4 we show that their complex coho-
mology rings represent infinitely many isomorphism types, thereby completing
the proof of Theorem 1.1. In Section 5 we use CP 2-bundles over complex
projective spaces and some facts from number theory to prove Theorem 1.3.
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2. Geometric properties of the manifolds Mk,l

In this section we describe an infinite family {Mk,l} of eight-dimensional
manifolds used in the proof of Theorem 1.1 and show the geometrical and
symmetry properties stated. The manifoldsMk,l are quotients of SU(3)×SU(2)
by a free isometric action of a three-dimensional torus.

Let TSU(3) denote the standard maximal torus of SU(3) given by unitary

diagonal matrices of determinant one. We identify TSU(3) with the torus T 2 =

S1 × S1 via

T 2 → TSU(3), diag(λ1, λ2) 7→ diag(λ1, λ2, λ
−1
1 · λ−1

2 ).

Similarly, we identify the standard maximal torus TSU(2) of SU(2) with S
1.

We equip SU(3) and SU(2) with bi-invariant Riemannian metrics. For inte-
gers k, l, (k, l) 6= (0, 0), let ρk,l be the homomorphism

ρk,l : T
2 → SU(2), (λ1, λ2) 7→ diag(λk1 · λl2, λ−k

1 · λ−l
2 ).

Note that ρk,l surjects onto TSU(2)
∼= S1.

We next consider the action of the three-dimensional torus T 3 = T 2×S1 ∼=
TSU(3) × TSU(2) on SU(3)× SU(2) given by

T
3
× SU(3)× SU(2) → SU(3)× SU(2), (t, s)(U1, U2) := (U1 · t

−1
, ρk,l(t) · U2 · s

−1).

Note that T 3 acts freely and isometrically.
Let Mk,l be the quotient manifold. From the construction we see that

Mk,l can be described as the total space of a bundle over the six-dimensional
complex flag manifold SU(3)/TSU(3) with fiber S2. The bundle is associated

to the principal bundle SU(3) → SU(3)/TSU(3) and the action of TSU(3)
∼= T 2

on S2 = SU(2)/S1 induced by ρk,l.
We equip Mk,l and SU(3)/TSU(3) with the submersion metrics. This gives

the following sequence of Riemannian submersions:

SU(3)× SU(2)
T 3

−−→Mk,l
S2

−−→ SU(3)/TSU(3).

We will see below that the manifoldsMk,l are of cohomogeneity one (i.e. are
manifolds with an action of a Lie group G with one-dimensional orbit space).
Let us recall that any simply connected cohomogeneity one G-manifold admits
a decomposition M = G×K−

D− ∪ G×K+
D+ as a union of two disk bundles,

where H ⊂ {K+,K−} ⊂ G are isotropy subgroups of G and D± are disks
with ∂D± = K±/H . Conversely, a group diagram H ⊂ {K+,K−} ⊂ G where
K±/H are spheres, defines a cohomogeneity one manifold (see for example [12]
for details).

Proposition 2.1. The manifold Mk,l is an eight-dimensional Riemannian
manifold with nonnegative curvature and admits an isometric action by SU(3)
of cohomogeneity one.

Proof. By the O’Neill formulas [18] all spaces in the sequence of submersions
above have nonnegative curvature. In addition the submersions are equivariant
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with respect to the isometric action of SU(3) given by multiplication from
the left.

Since SU(3) acts transitively on SU(3)/TSU(3) and ρk,l(T
2) acts on S2 with

one dimensional orbit space, we see that the action of SU(3) on Mk,l is of
cohomogeneity one. More precisely, the isotropy groups are as follows.

Let N := ( 1 0
0 1 ) ·S1 and S := ( 0 1

−1 0 ) ·S1 denote the fixed points of the action
of ρk,l(T

2) on S2 and let sN and sS denote the corresponding sections in the
bundle Mk,l → SU(3)/TSU(3).

For a point which is in the image of the section sN or sS the isotropy is
non-principal and conjugate to TSU(3) in SU(3). Outside of the two sections

the isotropy is principal and conjugate to ρ−1
k,l ({±Id}) ⊂ T 2 ∼= TSU(3). �

The manifolds Mk,l can also be described as total spaces of projective bun-
dles associated to a sum of two complex line bundles over the complex flag
manifold SU(3)/TSU(3).

Let S1
i denote the ith factor in T 2, i = 1, 2, and let ξi be the principal

S1-bundle over the complex flag manifold associated to the principal torus
bundle SU(3) → SU(3)/TSU(3) and the projection TSU(3)

∼= T 2 → S1
i . In other

words, ξi is the principal S1-bundle SU(3)/S1
j → SU(3)/TSU(3), i 6= j. Note

that the principal torus bundle SU(3) → SU(3)/TSU(3) is isomorphic to the
sum of principal bundles ξ1 ⊕ ξ2.

Let Li denote the complex line bundle associated to ξi. Consider the com-

plex vector bundle E := Lk
1 ⊗ Ll

2 ⊕ Lk̂
1 ⊗ Ll̂

2 over SU(3)/TSU(3), k, l, k̂, l̂ ∈ Z.

By construction E is isomorphic to the bundle SU(3)×ρC
2 → SU(3)/TSU(3),

where T 2 ∼= TSU(3) acts on SU(3) by right multiplication and acts on C2 via

ρ : T 2 → U(2), diag(λ1, λ2) 7→ diag(λk1 · λl2, λk̂1 · λl̂2). Passing to projective bun-
dles we see that P (E) is isomorphic to SU(3)×ρ U(2)/TU(2) → SU(3)/TSU(3).

Next suppose that k̂ = −k and l̂ = −l. In this situation ρ takes values in
SU(2) and is equal to the homomorphism ρk,l. The total space of P (E) is
isomorphic to SU(3)×ρk,l

SU(2)/S1 which is equal to Mk,l. For later reference
we summarize the discussion in the following lemma.

Lemma 2.2. Every Mk,l can be described as the total space of a projective
bundle associated to the sum of a complex line bundle over the complex flag
manifold and its dual. �

Using this description we will show in the following two sections that the
complex cohomology rings of the Mk,l do not belong to finitely many isomor-
phism types.

We close this section with a brief discussion of the symmetry rank of the
manifolds Mk,l. Recall that the symmetry rank of a Riemannian manifold is
the rank of its isometry group [11].

Let us first note that the action of TSU(3) × TSU(3) on SU(3) by left and
right multiplication induces an ineffective isometric action on Mk,l with one-
dimensional kernel. This can be shown directly using the description ofMk,l as
total space of the fiber bundle SU(3)×ρk,l

SU(2)/S1 → SU(3)/TSU(3). Hence,
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the symmetry rank of Mk,l is at least three. It follows from recent work of
Wiemeler [22] that the symmetry rank cannot be larger for any Riemannian
metric on Mk,l.

To explain this let us first note that Mk,l is rationally elliptic since it is the
quotient of SU(3) × SU(2) by a free torus action. Also, it follows from the
description in Lemma 2.2 that the integral cohomology ofMk,l vanishes in odd
degrees. In particular, Mk,l has positive Euler characteristic.

Suppose Mk,l admits a smooth effective action by a four-dimensional torus.
Since the Euler characteristic is nonzero, the torus must act with fixed points.
Thus,Mk,l is a torus manifold which according to [22, Thm. 1.1] is homeomor-
phic to a quotient of a free linear torus action on a product of spheres. This
implies that SU(3) × SU(2), the 2-connected cover of Mk,l, is homeomorphic
to a product of spheres contradicting the classical fact that SU(3) is the total
space of the nontrivial S3-bundle over S5.

3. Cohomological properties of the manifolds Mk,l

In this section we begin to investigate the cohomology of the manifoldsMk,l.
Theorem 3.4 below rephrases the fact that their complex cohomology rings
represent infinitely many isomorphism types. This gives the cohomological
assertion of Theorem 1.1. This section contains some preliminary arguments.
The proof of Theorem 3.4 will be completed in the following section.

Recall from Lemma 2.2 that the manifoldsMk,l are total spaces of projective
bundles associated to a sum of two complex line bundles over the complex flag
manifold SU(3)/TSU(3). Their cohomology ring can be computed using the
Leray–Hirsch theorem. We will review this in the general situation first and
will specialize later to the projective bundles in question.

Let π : E → B be a complex vector bundle of rank (r+1) over a manifold B
and let P (E) be the projective bundle associated to E (here and in the following
we will allow ourselves to denote a bundle also by its total space). We also
denote by π the projection P (E) → B.

Recall the following classical fact: If L → B is a complex line bundle,
then the projective bundles P (E) and P (E ⊗ L) are canonically diffeomor-
phic. This follows directly using the description of vector bundles via cocycles,
cp. for example [8, p. 515] (or by choosing a no-where vanishing, maybe non-
continuous, section σ : B → L and by observing that the map E → E ⊗ L,
e→ e⊗σ(π(e)), defines a diffeomorphism P (E) → P (E⊗L) which covers idB
and is independent of the choice of σ).

We denote by y ∈ H2(P (E);Z) the negative of the first Chern class of the
canonical line bundle over P (E). By the Leray–Hirsch theorem H∗(P (E);Z) is
a free H∗(B;Z)-module (via π∗) with basis (1, y, y2, . . . , yr). The cohomology
ring H∗(P (E);Z) is isomorphic to (see for example [8, p. 606])

H∗(B;Z)[y]/(yr+1 + c1(E) · yr + c2(E) · yr−1 + · · ·+ cr(E) · y + cr+1(E)).

In the following we will assume that E splits as a sum of a complex line
bundle L and a complex vector bundle of rank r. Then the projection π admits
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a section s : B → P (E) defined by mapping b ∈ B to the fiber of L → B
over b. Using the section we can split the H∗(B;Z)-module H∗(P (E);Z) as
ker(s∗)⊕ im(π∗) ∼= ker(s∗)⊕H∗(B;Z).

As explained above P (E) and P (E⊗L−1) are canonically diffeomorphic. In
the cohomological computation for the projective bundles it will be convenient
to replace E by E ⊗ L−1. Doing so, we may assume that E contains a trivial
complex line bundle, denoted by L0, as a summand. Note that in this situation
cr+1(E) = 0 and s∗ : H∗(P (E);Z) → H∗(B;Z) is induced by y 7→ 0.

We now restrict to the situation where E is the sum of the trivial line bundle
L0 and a line bundle L1. Let u := c1(E) = c1(L1) be the first Chern class
and let Mu be the total space of the associated CP 1-bundle π : P (E) → B.
Note that the diffeomorphism type of Mu is uniquely determined by the class
u ∈ H2(B;Z).

We will always identify H∗(Mu;Z) with H
∗(B;Z)[y]/(y2 + u · y) using the

Leray–Hirsch theorem. More generally we will consider for any coefficient ring
R and any u ∈ H2(B;R) the graded ring H∗

u := H∗(B;R)[y]/(y2 + u · y).
Since we are interested in the isomorphism type of such rings, let us record the
following two elementary facts.

Lemma 3.1. Let λ ∈ R∗ be a unit. Then H∗
u
∼= H∗

λ·u.

Proof. Define Φ : H∗(B;R)[y] → H∗(B;R)[y] by y 7→ λ−1 · y and as identity
on H∗(B;R). Then Φ(y2 + u · y) = λ−2 · (y2 + λ · u · y). Hence, Φ induces
a well-defined isomorphism H∗

u → H∗
λ·u. �

We note that a diffeomorphism φ : B → B induces a bundle isomorphism
φ∗(E) → E covering φ, a diffeomorphism Mφ∗(u) → Mu and an isomorphism
H∗

u → H∗
φ∗(u). Similarly one has:

Lemma 3.2. Let f be an automorphism of H∗(B;R). Then H∗
u
∼= H∗

f(u).

Proof. Define Φ : H∗(B;R)[y] → H∗(B;R)[y] by y 7→ y and as f on H∗(B;R).
Then Φ(y2 + u · y) = (y2 + f(u) · y). Hence, Φ induces a well-defined isomor-
phism H∗

u → H∗
f(u). �

In the remaining part of this section we will assume that B is the complex
flag manifold SU(3)/TSU(3). The next lemma gives the connection to the man-
ifolds Mk,l. Let L1 and L2 be the line bundles defined in the previous section

and let L1 := L−2k
1 ⊗ L−2l

2 .

Lemma 3.3. The manifold Mk,l is diffeomorphic to Mu for u := c1(L1).

Proof. Recall from the last section thatMk,l
∼= P (Lk

1 ⊗Ll
2⊕L−k

1 ⊗L−l
2 ). Since

the latter is diffeomorphic to the projective bundle associated to

L0 ⊕ L1
∼= (Lk

1 ⊗ Ll
2 ⊕ L−k

1 ⊗ L−l
2 )⊗ (L−k

1 ⊗ L−l
2 ),

it follows that Mk,l and P (L0 ⊕ L1) are diffeomorphic. �
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From now on let R = C. Thus, H∗
u := H∗(SU(3)/TSU(3);C)[y]/(y

2 + u · y)
for u ∈ H2(SU(3)/TSU(3);C).

We define P := P (H2(SU(3)/TSU(3);C)) to be the space of complex lines

in H2(SU(3)/TSU(3);C). Note that P ∼= CP 1 since b2(SU(3)/TSU(3)) = 2. By
Lemma 3.1 the isomorphism type of the ring H∗

u, u 6= 0, only depends on the
line C〈u〉 ∈ P .

Two lines C〈u〉,C〈ũ〉 ∈ P are called equivalent if H∗
u
∼= H∗

ũ. Thus, the iso-
morphism types of the rings H∗

u, u ∈ H2(SU(3)/TSU(3);C), u 6= 0, correspond
to the equivalence classes in P . If u is an integral cohomology class we will call
C〈u〉 an integral line and the equivalence class of C〈u〉 an integral equivalence
class. We are now ready to state the main technical result of this paper.

Theorem 3.4. Every integral equivalence class in P contains only finitely
many integral lines.

The proof will be given in the next section. Assuming this theorem we now
prove Theorem 1.1.

Theorem 3.5. There are infinitely many eight-dimensional simply connected
Riemannian manifolds with nonnegative curvature, an isometric cohomogene-
ity one action and with pairwise nonisomorphic complex cohomology rings.

Proof. Consider the infinite family F of eight-manifolds {Mk,l}, where k and l
are coprime positive integers. By Proposition 2.1, Mk,l admits a Riemannian
metric with nonnegative curvature and isometric action by SU(3) of cohomo-
geneity one.

Recall from Lemma 3.3 thatMk,l is diffeomorphic toMu, where u := c1(L1)
and L1 := L−2k

1 ⊗ L−2l
2 . Thus, H∗(Mk,l;C) is isomorphic to H∗

u.
We note that H2(SU(3)/TSU(3);Z) is freely generated by c1(L1) and c1(L2).

Since k and l are coprime positive integers, we see that different u in this
construction belong to different lines in P . According to Theorem 3.4 the
equivalence class of C〈u〉 in P contains only finitely many integral lines. Hence,
for fixed u there are only finitely many manifolds in F with complex cohomol-
ogy ring isomorphic to H∗

u.
Since F is infinite, there exists an infinite subfamily with pairwise noniso-

morphic complex cohomology rings. �

We would like to remark that the manifolds Mk,l are closely related to
the Aloff–Wallach spaces. The passage from one family to the other may be
viewed as a sort of trade-off between good curvature/symmetry properties on
the one side and richness of the cohomological type on the other. To explain
this let us first recall that each Mk,l is the total space of the S2-bundle asso-
ciated to a certain principal S1-bundle over SU(3)/TSU(3) via the action of S1

on SU(2)/S1 ∼= S2 induced by λ 7→ diag(λ, λ−1) (this follows from the descrip-
tion given in Section 2). The total spaces of the S1-principal bundles all have
isomorphic rational cohomology rings and admit, as shown by Aloff and
Wallach [1], homogeneous metrics of positive curvature if k · l · (k + l) 6= 0.
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In contrast, the corresponding Mk,l represent infinitely many nonisomorphic
complex cohomology rings but have less good curvature/symmetry properties.

Before we begin with the proof of Theorem 3.4 we will first discuss some
properties of the cohomology ring of SU(3)/TSU(3) and the action of the Weyl
group.

We identify SU(3)/TSU(3) with U(3)/TU(3), where TU(3) denotes the stan-
dard maximal torus of U(3) given by unitary diagonal matrices. Let us recall
(cp. [3]) that H∗(BTU(3);Z) ∼= Z[x1, x2, x3], that the Weyl group W of U(3)
acts on H∗(BTU(3);Z) by permuting x1, x2, x3 and that the integral cohomol-
ogy of U(3)/TU(3) can be identified with the quotient of H∗(BTU(3);Z) by the
ideal generated by the Weyl-invariants of positive degree, i.e.

H∗(SU(3)/TSU(3);Z) ∼= H∗(U(3)/TU(3);Z) ∼= Z[x1, x2, x3]/(σ1, σ2, σ3),

where σi denotes the ith elementary symmetric function in x1, x2, x3.
Hence, in terms of the basis (x1, x2) of H2(SU(3)/TSU(3);Z) the integral

cohomology ring of SU(3)/TSU(3) is isomorphic to

Z[x1, x2]/(x
2
1 + x22 + x1 · x2, x21 · x2 + x1 · x22).

Note that x31, x
3
2 and x21 ·x22 belong to the ideal (x21+x

2
2+x1 ·x2, x21 ·x2+x1 ·x22),

and, hence, are zero in H∗(SU(3)/TSU(3);Z). In the following we will always
identify H∗(SU(3)/TSU(3);C) with

C[x1, x2]/(x
2
1 + x22 + x1 · x2, x21 · x2 + x1 · x22).

Any ring homomorphism H∗(SU(3)/TSU(3);C) → H∗(SU(3)/TSU(3);C) is

determined by its restriction to H2(SU(3)/TSU(3);C) and we will use this linear
map in the subsequent discussion. The latter will be described by a represent-
ing matrix ( a11 a12

a21 a22
) for the basis (x1, x2).

The action of the Weyl group W on H∗(BTU(3);Z) induces an action of
W on the cohomology rings H∗(SU(3)/TSU(3);Z) and H∗(SU(3)/TSU(3);C).
Let us mention for completeness a more direct description of this action: The
normalizer N of TSU(3) in SU(3) acts on SU(3)/TSU(3) via conjugation and
this action induces the action of the Weyl group W = N/TSU(3)

∼= S3 on the
cohomology of SU(3)/TSU(3).

For later reference we note that the action of the permutations

(1), (12), (13), (23), (123), (321) ∈W

on H2(SU(3)/TSU(3);C) is represented by

(
1 0
0 1

)
,
(
0 1
1 0

)
,
(
−1 0
−1 1

)
,
(
1 −1
0 −1

)
,
(
0 −1
1 −1

)
,
(
−1 1
−1 0

)
,

respectively.
The Weyl group acts by pre- and post-composition on the set of ring endo-

morphisms. The next two lemmas give representatives for the W ×W -orbits
which will be important in the proof of Theorem 3.4.
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Lemma 3.6. Let Ψ : H∗(SU(3)/TSU(3);C) → H∗(SU(3)/TSU(3);C) be a ring
homomorphism represented by ( a11 a12

a21 a22
). Then a11 · a21 · (a11 − a21) = 0 and

a12 · a22 · (a12 − a22) = 0.

Proof. Consider the equations

Ψ(x31) = (a11 · x1 + a21 · x2)3 and Ψ(x32) = (a12 · x1 + a22 · x2)3.
Using x31 = x32 = x21 · x2 + x1 · x22 = 0 it follows that a11 · a21 · (a11 − a21) = 0
and a12 · a22 · (a12 − a22) = 0. �

Lemma 3.7. Let Ψ : H∗(SU(3)/TSU(3);C) → H∗(SU(3)/TSU(3);C) be a ring
homomorphism. Then there exist two elements ω1, ω2 ∈ W such that ω1◦Ψ◦ω2

is represented by either λ·( 1 0
0 1 ), λ ∈ C∗, or by λ·( 1 ς

0 0 ), λ ∈ C, where ς satisfies
ς2 + ς + 1 = 0.

Proof. Suppose Ψ 6= 0. It is easy to check that there exist ω̃1, ω̃2 ∈ W such
that Ψ1 := ω̃1◦Ψ◦ω̃2 is represented by a matrix ( a11 a12

a21 a22
) with a11 6= 0, a12 6= 0

and a21 6= 0.
Since a11 6= 0 and a21 6= 0, we get a11 = a21 from the last lemma. Applying

the lemma to a12 and a22 we see that Ψ1 is either given by (
a11 a12

a11 0 ) or given
by ( a11 a12

a11 a12
).

In the first case a12 = −a11 (apply the last lemma to (
a11 a12

a11 0 ) · (−1 0
−1 1 )).

It follows that after composing Ψ1 from the right with the element of W
corresponding to ( 0 −1

1 −1 ) the homomorphism Ψ1 transforms to a homomorphism
represented by λ · ( 1 0

0 1 ), λ ∈ C∗.
In the second case Ψ1 can be transformed (by composition of Ψ1 from the left

with the element corresponding to ( 0 −1
1 −1 )) to a homomorphism Ψ2 represented

by ( a b
0 0 ), for some a, b ∈ C∗. Using Ψ2(x1)

2 + Ψ2(x2)
2 + Ψ2(x1) · Ψ2(x2) = 0

one finds that a2 + b2 + a · b = 0.
Hence, up to the factor a ∈ C∗ the homomorphism Ψ2 is represented by

( 1 ς
0 0 ), where ς satisfies ς

2 + ς + 1 = 0. �

4. Proof of Theorem 3.4

We want to show that every integral equivalence class in P contains only
finitely many integral lines. The idea of the proof is the following: Given
nonzero integral classes ũ, u and an isomorphism Φ : H∗

ũ → H∗
u we will use the

action of the Weyl group W to change Φ into an isomorphism ϕ : H∗
ṽ → H∗

v

which is in a suitable sense of standard form. Here ṽ and v are integral classes
which are in the same W -orbit as ũ and u, respectively. We then show that
C〈v〉 is determined by C〈ṽ〉 up to finite ambiguity. Since the Weyl group is
finite, we conclude that C〈u〉 is determined by C〈ũ〉 up to finite ambiguity.
Hence, the equivalence class of C〈ũ〉 contains only finitely many integral lines.

Before we go into the proof let us recall the following from the last section:
For any nonzero class u ∈ H2(SU(3)/TSU(3);C) the isomorphism type of H∗

u

only depends on the line C〈u〉 ∈ P (see Lemma 3.2). The Weyl group W acts
on H2(SU(3)/TSU(3);C) and on P . By Lemma 3.3 an element ω ∈ W maps
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H∗
u isomorphically to H∗

ω(u). In particular, two elements in P which belong to

the same W -orbit are equivalent.

Let ũ, u ∈ H2(SU(3)/TSU(3);Z) be nonzero classes such that C〈ũ〉 and C〈u〉
are equivalent, i.e. H∗

ũ and H∗
u are isomorphic. We will show that C〈u〉 is

determined by C〈ũ〉 up to finite ambiguity.
We denote by π̃∗ : H∗(SU(3)/TSU(3);C) → H∗

ũ the inclusion map and denote
by s∗ : H∗

u → H∗(SU(3)/TSU(3);C) the homomorphism induced by y 7→ 0.
Let Φ : H∗

ũ → H∗
u be an isomorphism. Define

Ψ := s∗ ◦ Φ ◦ π̃∗ : H∗(SU(3)/TSU(3);C) → H∗(SU(3)/TSU(3);C).

Since Φ is an isomorphism, Ψ does not vanish on H2(SU(3)/TSU(3);C). By
Lemma 3.7 there exist ω1, ω2 ∈ W and λ ∈ C∗ such that

ψ := ω1 ◦Ψ ◦ ω2 : H∗(SU(3)/TSU(3);C) → H∗(SU(3)/TSU(3);C)

is represented by either λ · ( 1 0
0 1 ) or by λ · ( 1 ς

0 0 ), where ς satisfies ς
2 + ς+1 = 0.

After rescaling Φ (i.e. replace Φ(x), x homogeneous, by λ− deg(x)/2 · Φ(x)) we
can assume that λ = 1.

Let ṽ := ω−1
2 (ũ), v := ω1(u) and let

ϕ := ω1 ◦ Φ ◦ ω2 : H∗
ṽ → H∗

ũ → H∗
u → H∗

v .

We note that ψ is the homomorphism induced by ϕ. Note also that ṽ and v
are integral cohomology classes.

The isomorphism ϕ is determined by its restriction to H2
ṽ = C〈x1, x2, y〉

which we represent by the matrix A with respect to the basis (x1, x2, y). From
the discussion above A takes the form

( 1 ς α1

0 0 α2

b1 b2 β

)
or

( 1 0 α1

0 1 α2

b1 b2 β

)
.

We will discuss the two cases separately.

Let us first assume that ϕ : H∗
ṽ → H∗

v is represented by

A :=
( 1 ς α1

0 0 α2

b1 b2 β

)
.

Since ϕ is an isomorphism, A is invertible. In particular, (b1, b2) 6= (0, 0).

Lemma 4.1. The line C〈u〉 is in the W -orbit of C〈x1〉, C〈x2〉, C〈x1 − x2〉,
C〈x1 + 2x2〉 or C〈2x1 + x2〉.

Proof. Suppose C〈u〉 is not in the W -orbit of C〈x1〉, C〈x2〉 and C〈x1 + 2x2〉.
Note that the same holds for C〈v〉 since C〈v〉 and C〈u〉 are in the sameW -orbit.
In particular, v is a linear combination γ1 · x1 + γ2 · x2 with γ1 and γ2 nonzero
integers satisfying 2γ1 − γ2 6= 0.

Consider the relation

0 = ϕ(x21 + x22 + x1 · x2)
= (x1 + b1 · y)2 + (ς · x1 + b2 · y)2 + (x1 + b1 · y) · (ς · x1 + b2 · y).
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Using y2 = −v · y, γ1 6= 0 and ς2 + ς + 1 = 0 one finds

b21 + b22 + b1 · b2 = 0, b2 = − 2 + ς

1 + 2ς
b1 and bi 6= 0.

Next consider the relation 0 = ϕ(x1)
3 = (x1 + b1 · y)3. Using bi 6= 0, γ2 6= 0,

2γ1 − γ2 6= 0 and y2 = −v · y one finds

b1 =
3

2γ1 − γ2
and (γ1 + γ2) · (γ1 − 2γ2) = 0.

Hence, C〈v〉 is equal to C〈x1−x2〉 or C〈2x1+x2〉. This proves the lemma. �

Let us now assume that ϕ : H∗
ṽ → H∗

v is represented by

A :=
( 1 0 α1

0 1 α2

b1 b2 β

)
.

Lemma 4.2. The line C〈u〉 is in the W -orbit of C〈ũ〉, C〈x1〉, C〈x1 − x2〉,
C〈x1 + 2x2〉, C〈2x1 + x2〉 or belongs to at most two other W -orbits.

Proof. We first consider the relation 0 = ϕ(y · (y + ṽ)). Let us write ϕ(y) =
z + β · y, where z := α1 · x1 + α2 · x2, and define γ ∈ C by ϕ(ṽ) = ṽ + γ · y.
Then the relation is equivalent to

z · (z + ṽ) = 0

and

(1) β · (β + γ) · v = β · ṽ + (2β + γ) · z.
If z = 0, we can conclude directly that β 6= 0 and C〈v〉 = C〈ṽ〉.

If z + ṽ = 0, we get β · (β + γ) · v = −(β + γ) · ṽ. Note that β + γ 6= 0 since

0 6= ϕ(ṽ + y) = ṽ + γ · y + z + β · y = (β + γ) · y.
Hence, C〈v〉 = C〈ṽ〉.

In both cases we see that C〈u〉 is in the W -orbit of C〈ũ〉.
Next consider the case z 6= 0 and z+ ṽ 6= 0. A computation (see Lemma 4.3)

shows that z = λ1 ·x± and z+ ṽ = λ2 ·x∓, where x± := x1 +
1
2 · (1±

√
−3) ·x2

and λi ∈ C∗.
Using the relation

0 = ϕ(x21 + x22 + x1 · x2)
= (x1 + b1 · y)2 + (x2 + b2 · y)2 + (x1 + b1 · y) · (x2 + b2 · y)

we find

(2) (b21 + b22 + b1 · b2) · v = (2b1 + b2) · x1 + (b1 + 2b2) · x2.
The remaining argument will be divided into two parts depending on

whether b21 + b22 + b1 · b2 vanishes or not.

Claim. If b21 + b22 + b1 · b2 = 0, then C〈u〉 belongs to at most two W -orbits.
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Proof of the claim. Suppose b21 + b22 + b1 · b2 = 0. Then we have b1 = b2 = 0.
Hence, ϕ(ṽ) = ṽ and γ = 0. Also, β 6= 0, since A is invertible.

Note that λ1 and λ2 are uniquely determined by ṽ since ṽ = λ2 ·x∓−λ1 ·x±
and x+, x− form a basis of H2(SU(3)/TSU(3);C). Hence, z is determined by ṽ
up to Z/2Z-ambiguity (more precisely, either z = λ1 · x+, where λ1 is deter-
mined by ṽ = λ2 · x− − λ1 · x+ or z = λ1 · x−, where λ1 is determined by
ṽ = λ2 · x+ − λ1 · x−).

Since γ = 0 and β 6= 0, equation (1) gives β ·v = ṽ+2z. Since z is determined
by ṽ up to Z/2Z-ambiguity, we see that the line C〈v〉 is determined by C〈ṽ〉 up
to Z/2Z-ambiguity. Hence, C〈u〉 belongs to at most two W -orbits in P . �

Claim. If b21+b
2
2+b1 ·b2 6= 0, then C〈u〉 is in the W -orbit of C〈x1〉, C〈x1−x2〉,

C〈x1 + 2x2〉 or C〈2x1 + x2〉.

Proof of the claim. Suppose b21 + b22 + b1 · b2 6= 0. By equation (2) we have

v =
(2b1 + b2) · x1 + (b1 + 2b2) · x2

b21 + b22 + b1 · b2
.

Suppose C〈u〉 is not in the W -orbit of C〈x1〉. Then the same holds for C〈v〉
since C〈v〉 and C〈u〉 are in the same W -orbit. In particular, v is a linear com-
bination γ1 · x1 + γ2 · x2 with γ1, γ2 ∈ Z and γ2 6= 0.

The relation 0 = ϕ(x31) is equivalent to

b1 · (3x21 − 3x1 · b21 · x1 · v + b21 · v2) = 0.

If b1 = 0, we have b2 6= 0 and v = 1
b2

· (x1 + 2x2). Hence, C〈v〉 = C〈x1 + 2x2〉.
Next assume b1 6= 0. Recall that v = γ1 · x1 + γ2 · x2 and γ2 6= 0. Suppose

C〈v〉 6= C〈x1 +2x2〉, i.e. 2γ1 − γ2. Using the same reasoning as in the proof of
Lemma 4.1 we conclude that the relation 0 = ϕ(x31) gives

(γ1 + γ2) · (γ1 − 2γ2) = 0.

Hence, C〈v〉 = C〈x1 − x2〉 or C〈v〉 = C〈2x1 + x2〉.
Thus, C〈u〉 is in theW -orbit of C〈x1〉, C〈x1−x2〉, C〈x1+2x2〉 or C〈2x1+x2〉

as claimed. �

In view of the two claims above C〈u〉 is in the W -orbit of C〈x1〉, C〈x1−x2〉,
C〈x1 + 2x2〉, C〈2x1 + x2〉 or belongs to at most two other W -orbits if z 6= 0
and z + ṽ 6= 0. This completes the proof of the lemma (modulo the proof of
Lemma 4.3). �

In summary we have shown that if H∗
ũ and H∗

u are isomorphic and ũ is
fixed, then C〈u〉 belongs to a finite number of W -orbits. Since the Weyl group
is finite, we conclude that C〈u〉 is determined by C〈ũ〉 up to finite ambiguity.
Hence, the equivalence class of C〈ũ〉 contains only finitely many integral lines.

In order to complete the proof of Theorem 3.4 we are left to show the
following lemma.
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Lemma 4.3. Let z1, z2 ∈ H2(SU(3)/TSU(3);C) be nonzero. If z1 · z2 = 0, then
z1 = λ1 · x± and z2 = λ2 · x∓, for some complex numbers λ1, λ2 ∈ C∗, where
x± := x1 +

1
2 · (1±

√
−3) · x2.

Proof. Let zi =: Ai · x1 + Bi · x2, i = 1, 2. Using zi 6= 0 and z1 · z2 = 0 one
finds Ai, Bi 6= 0 for i = 1, 2. Let z̃i := z/Ai =: x1 + Ci · x2. Then we have

z̃1 · z̃2 = 0 ⇐⇒ C1 · C2 = C1 + C2 = 1

⇐⇒ C1 =
1

2
· (1±

√
−3) and C2 =

1

2
· (1∓

√
−3). �

5. Projective bundles over projective space

In this section we prove Theorem 1.3. The manifolds which we will use are
projective bundles associated to a sum of complex line bundles over a complex
projective space. We begin with a more general description of some of their
geometric properties which might be of independent interest.

Proposition 5.1. Let E be a complex vector bundle over the complex projective
space CPm and let M = P (E) be the total space of the associated projective
bundle. Suppose E splits as a sum of r + 1 complex line bundles. Then M is
given as a quotient of S2r+1 × S2m+1 by a free action of a two-dimensional
torus T 2. Moreover, S2r+1 × S2m+1 admits a metric of nonnegative curvature
such that T 2 acts by isometries. The quotient M equipped with the submersion
metric has nonnegative curvature and carries an ineffective isometric action
by U(m+ 1)× T r+1 of cohomogeneity r.

For the manifolds used in the proof of Theorem 1.3 we will choose r = 2.
We remark that the description of M as a quotient of S2r+1 × S2m+1 in the
proposition above remains valid for any complex vector bundle E over CPm

of rank r + 1. As will be shown the splitting of E as a sum of complex line
bundles allows to exhibit an ineffective isometric action by U(m + 1) × T r+1

on M which is of cohomogeneity r.

Proof. We consider the principal T r+1-bundle P → CPm associated to the
direct sum decomposition of E into complex line bundles and identify M with
P ×T r+1 U(r + 1)/(U(r)× U(1)), where T r+1 acts on U(r + 1)/(U(r)× U(1))
from the left via the inclusion T r+1 →֒ U(r+1) of the standard maximal torus.

Note that the transitive U(m+ 1)-action on CPm from the left lifts canon-
ically to a left action on the Hopf line bundle over CPm and its powers
and, hence, to any principal S1-bundle over CPm. Thus, the homogeneous
U(m + 1)-action on CPm lifts to the principal T r+1-bundle P → CPm. The
existence of such a lift can also be deduced from general lifting properties in
principal torus bundles. However, in our situation everything can be made
completely explicit and geometric.

We note that the U(m + 1)-action and the principal T r+1-action combine
to a homogeneous U(m+ 1)× T r+1-action on P .
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Next consider the Hopf fibration π : S2m+1 → CPm. We recall that π is
the quotient map with respect to the action of the center S1 ⊂ U(m+ 1) and
that π is U(m+ 1)-equivariant.

Let P̃ := π∗(P ) be the total space of the pullback bundle. Then P̃ → S2m+1

is an U(m+1)-equivariant principal T r+1-bundle. Moreover, P̃ is homogeneous
with respect to the action of U(m+1)×T r+1. The bundle map P̃ → P is given
by taking the quotient with respect to the action of the center of U(m+ 1).

Note that P̃ → S2m+1 is trivial as a non-equivariant principal torus bundle,
i.e. isomorphic to S2m+1 × T r+1 → S2m+1, since H2(S2m+1;Zr+1) = 0.

Next consider the associated sphere bundle

S2r+1 →֒ P̃ ×T r+1 U(r + 1)/U(r) → S2m+1,

where T r+1 acts from the left on U(r + 1)/U(r) via the inclusion T r+1 →֒
U(r+1) of the standard maximal torus. From the above we conclude that the

total space N := P̃ ×T r+1 U(r + 1)/U(r) is non-equivariantly diffeomorphic
to S2m+1 × S2r+1. By construction N comes with a free T 2-action given by
the action of the center of U(m + 1) × U(r + 1). The quotient is equal to
P ×T r+1 U(r + 1)/(U(r) × U(1)). Hence, M is diffeomorphic to the quotient
of S2m+1 × S2r+1 by a free T 2-action.

Finally we observe that U(m+1)×T r+1 still acts (ineffectively) onM with
cohomogeneity r = dimR CP r − r.

Let us now come to the statement about the curvature. Recall that P̃ is
a homogeneous U(m+1)×T r+1-manifold. Hence, we can identify P̃ equivari-
antly with a quotient of U(m+1)×T r+1 and can equip P̃ with a homogeneous
metric of nonnegative curvature (e.g. the metric induced from a bi-invariant
metric for U(m+ 1)× T r+1).

Similarly we can choose a metric on U(r + 1)/U(r) with nonnegative cur-
vature such that T r+1 acts isometrically (e.g. take the round metric on S2r+1

∼= U(r + 1)/U(r)).

With this choices the quotients N = P̃ ×T r+1 U(r + 1)/U(r) ∼= S2m+1 ×
S2r+1 and M = P ×T r+1 U(r + 1)/(U(r) × U(1)) ∼= N/T 2 inherit a metric of
nonnegative curvature by the formulas of O’Neill. Moreover, the free T 2-action
on N and the cohomogeneity r action on M are by isometries. �

The manifolds which we use in the proof of Theorem 1.3 are CP 2-bundles
over CP 2 resp. CP 3 and are of the type considered in the previous proposi-
tion. Hence, these manifolds carry a metric of nonnegative curvature and an
isometric action of cohomogeneity two. The cohomological statement given in
Theorem 1.3 follows from the next two propositions.

Proposition 5.2. There exists an infinite family of complex vector bundles
Ek → CP 2, where each Ek is a sum of three complex line bundles, such that
the eight-dimensional manifolds Mk := P (Ek) have pairwise nonisomorphic
rational cohomology rings.
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Proof. We will use the following classical facts from number theory: Any prime
p ≡ 1 mod 3 is of the form d2 − d · e + e2 for some d, e ∈ Z (see [13, p. 287,
Thm. 254]). We also note that by Dirichlet’s theorem on arithmetic progres-
sions (see [19, Chap. VI, p. 74, Cor.]) there are infinitely many prime numbers
congruent to 1 modulo 3.

We choose an infinite strictly increasing sequence (pk)k among these primes.
For each k we fix integers dk, ek satisfying d2k − dk · ek + e2k = pk.

Let Ek be the sum of three complex line bundles L0, L1 and L2 over CP 2,
where L0 is the trivial line bundle and L1 and L2 have first Chern class equal to
dk ·x and ek ·x, respectively. Here x denotes a fixed generator of H2(CP 2;Z).
By the Leray–Hirsch theorem the integral cohomology ofMk := P (Ek) is given

by H∗(Mk;Z) ∼= Z[x, y]/(x3,
∏2

i=0(y + ui)), where u0 := 0, u1 := dk · x and
u2 := ek · x, i.e. ui = c1(Li).

We want to show that the Mk have pairwise nonisomorphic rational coho-
mology rings. Let Mk̃ be another manifold, k̃ 6= k, and let dk̃, ek̃, ũi denote
the corresponding parameters.

Suppose Φ : H∗(Mk̃;Q) → H∗(Mk;Q) is a ring isomorphism. The restric-

tion of Φ to H2(Mk̃;Q) = Q〈x, y〉 defines a ring isomorphism

Φ̂ : Q[x, y] → Q[x, y]

which maps the ideal (x3,
∏2

i=0(y + ũi)) onto (x
3,
∏2

i=0(y + ui)) and induces Φ.
Note that the ideals are generated by homogeneous elements of (cohomological)
degree 6.

Let a, b ∈ Q be defined by Φ(x) = a · x+ b · y. Then Φ̂(x3) = (a · x+ b · y)3
must be of the form λ · x3 + µ ·∏2

i=0(y + ui) for some rational numbers λ, µ.
This gives

a3 = λ, b3 = µ, 3a2 · b = b3 · dk · ek and 3a · b2 = b3 · (dk + ek).

If b 6= 0, then the last two equations imply dk = ek = 0 which gives a contra-
diction since d2k − dk · ek + e2k = pk. Hence, b = 0 and Φ(x) = a · x.

Let α, β ∈ Q be defined by Φ(y) = α · x+ β · y. Since Φ is an isomorphism
and Φ(x) = a · x we have a, β 6= 0. Let us write Φ̂(

∏2
i=0(y + ũi)) as a linear

combination λ̂ · x3 + µ̂ ·
∏2

i=0(y + ui) for some rational numbers λ̂, µ̂. Then we
obtain the following relations:

λ̂ = α3 + a · α2 · (dk̃ + ek̃) + a2 · α · (dk̃ · ek̃), µ̂ = β3,

3α+ a · (dk̃ + ek̃) = β · (dk + ek)(3)

and

(4) 3α2 + 2a · α · (dk̃ + ek̃) + a2 · (dk̃ · ek̃) = β2 · (dk · ek).
If we solve for α in equation (3) and insert the result into equation (4), we
obtain

a2 · (d2
k̃
− dk̃ · ek̃ + e2

k̃
) = β2 · (d2k − dk · ek + e2k).

Since a, β 6= 0 and pk̃ = d2
k̃
− dk̃ · ek̃ + e2

k̃
, pk = d2k − dk · ek + e2k are different
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primes, we arrive at a contradiction. Hence, the rational cohomology rings
of Mk̃ and Mk are not isomorphic. �

We remark that the arguments in the proof can be used to show that the
conclusion of the proposition above fails if one replaces rational coefficients by
real coefficients.

Another eight-dimensional family with pairwise nonisomorphic rational
cohomology rings can be obtained by crossing Totaro’s six-dimensional mani-
folds [20] with S2. The six-dimensional manifolds are biquotients of the form
(S3)3 // (S1)3 and come with a (visible) cohomogeneity three action. Cross-
ing with S2 one obtains nonnegatively curved eight-dimensional manifolds of
cohomogeneity three. One can show that their real cohomology rings fall into
only finitely many isomorphism types. It would be interesting to know whether
these manifolds also admit a cohomogeneity two action.

We now turn to the proof of the statement in Theorem 1.3 concerning
ten-dimensional manifolds. The manifolds which we use are total spaces of
projective bundles associated to sums of three complex line bundles over CP 3.
Their cohomology can be identified with the quotient of a polynomial alge-
bra in two generators by an ideal generated by two homogeneous elements of
different cohomological degree. This feature will simplify greatly the algebraic
considerations.

Proposition 5.3. There exists an infinite family of complex vector bundles
Ek → CP 3, where each Ek is a sum of three complex line bundles, such that the
ten-dimensional manifolds Mk := P (Ek) have pairwise nonisomorphic complex
cohomology rings.

Proof. Let E be the sum of three complex line bundles L1, L2 and L3 overCP
3.

Let ui := c1(Li), i = 1, 2, 3. By the Leray–Hirsch theorem the integral coho-
mology ofM := P (E) is given byH∗(M ;Z) ∼= Z[x, y]/(x4,

∏3
i=1(y + ui)). Here

x denotes a generator of H2(CP 3;Z).
We want to show that the manifolds constructed in this way contain an infi-

nite sequence (Mk)k with pairwise nonisomorphic complex cohomology rings.

Let M̃ = P (Ẽ) be another manifold and let ũi, i = 1, 2, 3, denote the cor-
responding first Chern classes.

Suppose Φ : H∗(M̃ ;C) → H∗(M ;C) is an isomorphism of rings. The re-

striction of Φ to H2(M̃ ;C) = C〈x, y〉 defines a ring isomorphism

Φ̂ : C[x, y] → C[x, y]

which maps the ideal (x4,
∏3

i=1(y + ũi)) to (x4,
∏3

i=1(y + ui)) and induces Φ.
Note that the ideals are generated by homogeneous elements of (cohomological)
degree 8 and 6.

Hence the element
∏3

i=1(y + ũi) (which is the one of smaller degree) must
be mapped under Φ̂ to C ·∏3

i=1(y + ui), where C ∈ C is a constant.
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Since the restriction of Φ̂ to C〈x, y〉 is an isomorphism and C[x, y] has
no zero-divisors, the constant C 6= 0.

We next note that by Gauss’ lemma C[x, y] is a unique factorization domain
and that the elements (y + ũi) and (y + ui) are irreducible.

Hence, after a permutation of the ui we may assume Φ̂(y+ ũi) = Ci ·(y+ui)
for some Ci ∈ C∗. Let l̃i, li ∈ Z be defined by ũi =: l̃i · x and ui =: li · x. If
we write Φ̂(x) =: a · x + b · y and Φ̂(y) =: α · x + β · y for complex numbers
a, b, α, β, we obtain the equations (α+ l̃i · a) = (β + l̃i · b) · li for i = 1, 2, 3.

We claim that b = 0 if the li are pairwise different. To see this con-
sider Φ̂(x4) = (a · x+ b · y)4 which belongs to the ideal (x4,

∏3
i=1(y + ui)) and,

hence, is of the form

(a · x+ b · y)4 = C̃ · x4 + g(x, y) ·
3∏

i=1

(y + ui),

where C̃ ∈ C is a constant and g(x, y) ∈ C[x, y] is homogeneous of degree 2.
If we specialize to x = 1, we see that |a+ b · y| is equal to |C̃|1/4 for y = −li,
i = 1, 2, 3. In particular, t 7→ a+ b · t intersects {z ∈ C | |z| = |C̃|1/4} for t = li,
i = 1, 2, 3. Since the li are pairwise different, it follows that b = 0 (a line cannot
intersect a circle in three different points).

So suppose b = 0. Then a, β 6= 0, li =
1
β · (α+ l̃i · a) and the defining param-

eters for M̃ and M are coupled by li − lj =
a
β · (l̃i l̃j) for all i, j. It follows that

there are infinitely many manifolds with pairwise nonisomorphic complex
cohomology rings. A specific family is given by the manifolds Mk which cor-
respond to the parameters {l1, l2, l3} = {0, 1, k}, k ≥ 2. �
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