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Summary

Wave phenomena are the key features in many fields of application, such as fluid
dynamics, electromagnetics, aerodynamics, acoustics, seismics, oceanography, and
optics. In these fields, accurate numerical simulation of wave motion is crucial for
the understanding of basic phenomena as well as for the design and the development
of various engineering applications.

These traveling waves phenomena are described by partial differential equations
on large and often unbounded spatial domains. To solve such equations numeri-
cally, the simulation should first be confined to bounded subdomains of the original
domain — of course including that region, where the most interesting wave phenom-
ena take place. As a result, artificial boundaries and corresponding boundary condi-
tions emerge. Four main methods can be used to truncate problems on unbounded
or “large” domains: boundary integral methods, infinite element methods, absorbing
boundary condition methods, and absorbing layer methods. In this work, different
aspects of absorbing boundary conditions and absorbing layers are considered.

This dissertation is split in two parts, each one consists of two chapters:

I. In the first chapter, we study the far field boundary conditions for first order
hyperbolic systems. These boundary conditions combine the properties of absorbing
boundary conditions (ABCs) for transient solutions and the properties of transparent
boundary conditions for steady state problems. Far field boundary conditions were
first presented by Engquist and Halpern, and they defined them up to an arbitrary
matrix factor. In this work, we develop a general strategy to specify this matrix
factor in an optimal way with respect to the absorption of outgoing waves. This is
done first by separating the spurious and physical waves, then by minimizing the
reflections of the spurious waves from the boundary. Well-posedness of the resulting
initial boundary value problem is studied, and convergence in time of the transient
solution to the steady state is established.

In the second chapter, we introduce a finite difference scheme to solve the initial
boundary value problem established in the first chapter. We apply the well known
stability theory due to Gustafsson, Kreiss, and Sundstrom (GKS-theory) to prove
the stability of this scheme. Numerical examples are given, on one hand, to discuss
the convergence (as t — 00) of 2x 2 and 3 x 3 model systems with first order far field
boundary conditions to the correct steady state. On the other hand, to compare the

numerical solutions for different choices of the scaling matrix.



IT. In the second part, we focus on the perfectly matched layer (PML) method.
In the third chapter, we propose a PML approach for the numerical solution to
nonlinear Klein-Gordon (KG) equations. The procedure includes four steps: Firstly,
the nonlinear KG equation is transformed into a semilinear hyperbolic system with
a damping term by introducing auxiliary unknown functions. Secondly, we linearize
the damping term and design a PML formulation for the linearized system. Then,
we derive a nonlinear PML system by replacing the linearized damping term with its
original nonlinear counterpart. Finally, an implicit-explicit finite difference scheme is
used to solve the nonlinear PML system. This approach is next extended to the two-
dimensional case. The numerical tests show the efficiency of this “PML linearization”
over other local ABCs.

In the fourth chapter, we present a new PML formulation for the two-dimensional
nonlinear compressible and time-dependent Euler equations of fluid dynamics. Both
uniform flow and nonuniform but parallel flow in ducted and open domains are
considered. We apply the PML technique to the linearized Euler equations. Then
the nonlinear PML equations are formed by replacing the linearized flux functions
with their nonlinear counterparts. This formulation has an advantage in the form
of its hyperbolic part in which the numerical schemes for nonlinear conservation
laws can be used directly. We propose an approach to determine the involved layer
parameters in a way to guarantee the damping of all the outgoing wave modes
inside the PML layers. Different tests are performed and the results demonstrate
the effectiveness of the proposed PML.

Key Words: Absorbing boundary conditions, hyperbolic systems, perfectly

matched layer, Klein-Gordon equation, Euler equations.
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Chapter 1

Introduction

Several physical phenomena of great importance for applications are described by
equations whose solutions are composed of waves. An important part of these prob-
lems are posed on unbounded domains. To compute a numerical solution to such
problems, it is necessary, due to finite computational resources, to truncate the un-
bounded domain. This is done by introducing an artificial boundary I', defining a
new domain {2, which we will refer to as the computational domain. For the problem
to be well-posed, it must be closed with a suitable boundary condition on I'. Also,
special care have to be taken when choosing the boundary condition, so that the
solution on €2 will be close to the solution on the unbounded domain.

Often the artificial boundary I' is placed in the far field where the solution is com-
posed of linear waves traveling out of ¢2. The fundamental observation is therefore
that all reflections caused by the boundary condition on I' will contaminate the
solution in the interior. Hence, for linear waves, the boundary condition should ab-
sorb the energy at the artificial boundary. Right in this context, such a boundary
condition is usually called absorbing boundary condition (ABC). Other names are
also popularly used in the literature, such as nonreflecting, transparent, and open
boundary conditions.

The development of better boundary conditions is important, since it will allow for
more accurate simulation of wave phenomena in many areas. One such area is aeroa-
coustics, which is the enabling science for control of acoustics in early design stages
of aircraft, cars, and trains. Design for noise reduction in an aircraft is a typical
example of a problem posed on an unbounded domain. Simulation of elastic waves,

to predict strong ground motions, earthquakes and other geological phenomena, is
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another example.

The level of difficulty of constructing a particular boundary condition is determined
by the underlying problem. It is possible to divide the boundary conditions into four
different categories based on the underlying problem. In increasing order of difficulty

they are
e Linear time-harmonic wave propagation problems,
e Linear constant coefficient time-dependent wave propagation problems,
e Linear variable coefficient time-dependent wave propagation problems,

e Nonlinear time-dependent wave propagation problems.

To date, there are accurate and efficient boundary conditions available for linear
time-harmonic problems, see the review articles [30, 78], and we do not consider
such problems here.

For linear, constant coefficient, time-dependent, wave propagation problems, there
are ABCs available, which work well for some specific problems. Examples of such
problems are Maxwell’s equations and the wave equation, for which the perfectly
matched layer method (discussed below) is used today, with satisfactory results. For
other problems in this category, e.g. anisotropic elasticity, the available methods
have not yet reached a fully mature state.

For linear, variable coefficient, time-dependent, wave propagation problems and for
nonlinear, time-dependent, wave propagation problems only primitive methods are
available. In order to develop methods for these classes of problems, it is important
to first have a good understanding of the properties (such as well-posedness and
stability) of the corresponding linear problems.

In this thesis, we mainly consider boundary conditions for linear and nonlinear,
constant coefficient, time-dependent, wave propagation problems. Here, we are con-
cerned with boundary conditions which are easy to implement and efficient, with
respect to both memory and computational time. Also, thinking of the extension to
nonlinear problems, we are interested in boundary conditions with good mathemat-
ical properties.

In the first part of this introduction, we focus our presentation on ABCs for the
wave equation and first order hyperbolic systems. In the second part we review the
PML approach for Maxwell’s equations and the linearized Euler equations. Often,

by limited modifications, many of the methods discussed below can be applied to
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other equations as well.
For further studies of wave propagation problems on unbounded domains, we rec-
ommend the detailed review articles [5, 18, 30, 31, 40, 42, 78, 79|.

1.1 Exact and local absorbing boundary conditions

A boundary condition can be defined as a procedure
Brgu=0, onl.

The boundary condition is said to be exact, if the restriction to €2, of the solution w,
is identical to the solution on an unbounded domain closed with boundary conditions
at infinity. Exact boundary conditions are in general, as will be seen below, non-local
both in space and time. The non-locality in time often imply storage of the complete
temporal history of the solution on the boundary. Storage requirements has been,
and still is, the major drawback of exact ABCs. However, there exist novel methods
which reduce storage requirements. In addition, these methods can be used together
with fast algorithms, reducing the amount of computations per timestep needed to
update the boundary condition. In the following we will present exact and local
boundary conditions for some common problems.
Wave equation: We start by considering the construction of exact ABCs
for the two dimensional wave equation in Cartesian coordinates. Assume that
2 2 2
((E))tg - g;; + gyz’ (1)
is to be solved on the half plane x > 0.

Exact boundary conditions for the wave equation was considered in the classic paper
by Engquist and Majda [24]. The construction of By in [24| uses the fact that any
leftgoing solution w(z,y,t) of (1.1) can be represented by a superposition of plane

waves traveling to the left. Such plane waves are described by

u = qe'VE-wratittey) (1.2)

Here a is the amplitude and (£, w) are the duals of (¢,y), satisfying £ — w? > 0 and
&> 0.
Engquist and Majda conclude that, for fixed (£, w), the condition

<8£ _iV 52 _WQ) u|:v:0 :0’
a



Chapter 1. Introduction 11

annihilates plane waves described by (1.2). For such plane waves this will be an exact
ABC. For a more general wave packet, the exact ABC is obtained by superposition.

For the wave equation (1.1), the exact ABC becomes

F (%) — & —w?Fu=0, onz=0, (1.3)
x

where F denotes the Fourier transform.

The non-locality of the above boundary condition is clearly manifested through the
integral transforms. Inverting the transforms directly is not possible, since the func-
tion \/§Tw2 does not have an explicit inverse transform. However, Engquist and
Majda present a method to localize this exact boundary condition. They conclude
that if the function

is approximated by some rational function, it is possible to localize the approxi-
mation by explicitly inverting the Fourier transforms. As a result a hierarchy of
local ABCs of increasing order of approximation are produced. The most natural
approximation is perhaps to use a Taylor series expansion, however, the resulting
local boundary condition leads to an ill-posed problem and can therefore not be
used. Engquist and Majda investigate the boundary conditions obtained if a Padé
expansion is used and show that the resulting boundary conditions are well-posed.
The boundary conditions obtained from the two first Padé expansions are

g 10
Bu= (2 _22%),=
1 (63: c@t)u 0

bl (L8 18 18N
M=\Coor 2o 2 Jy? ‘=

The Padé expansion is not the only possible approximation. Other possible expan-

sions (Chebyshev, least-squares, etc) have been studied by Trefethen and Halpern
[77], where theorems determining the well-posedness for these types of expansions
are also presented.

The use of one-way equations as boundary condition was also studied by Higdon
[48|. He constructed an asymptotically (m — oo) exact ABC by factorization of
one-way equations. The ABC he proposes is given by

o= (IT (1o =) J o L)

J=1
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The boundary condition suggested by Higdon is exact for plane waves hitting the
boundary at angles +a;. For large m, direct application of (1.4) requires discretiza-
tion of high order derivatives of u. As a result only boundary conditions with small
m where used in [48].

Bayliss and Turkel [11] work with sequences of local ABCs for the wave equation in
spherical and cylindrical coordinates. Their boundary condition is similar in struc-

ture to (1.4) and is given by

Bmu:<H (%+%+21—;)>uzo. (1.5)

Jj=1

The suggested boundary condition is extendible to high-order, but only the second
order formulation is implemented in [11].
Another useful tool, which has been used to derive exact boundary conditions of
(1.1) is the Dirichlet to Neumann (DtN) map. The DtN map is an operator relating
the Dirichlet datum to the Neumann datum on the boundary I', enforcing desired
asymptotic behavior of the solution at infinity.
For example, consider solutions of the Helmholtz equation posed on the residual
domain X

s’ =V, 1€, (1.6)

with boundary conditions at infinity identical to those used for = = ¥ U 2. Since
no boundary condition has been imposed on I', there are infinitely many solutions
satisfying the above equation. However, the solution on = must be one of these. The
desired solution u, coinciding with the solution on 3, can be singled out by a specific
choice of the operator D

ou

Here the normal is taken outward from (2. The DtN map, D, can be used to define

the exact boundary condition Bg

o .
Bru = % + LY (DLu), (1.7)

where £ denotes the Laplace transform.
Now, (1.7) can be used to derive the exact boundary condition for (1.1) at a planar
boundary. As before we assume that (1.1) is solved for Q being the half plane x > 0.

Hence, to derive the DtN map we consider solutions which are bounded on . By
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taking the Fourier and Laplace transform (with the duals (k,s)) of (1.1) we obtain
the ordinary differential equation
%
Ox?

For s > 0, solutions that are bounded on ¥ can be written as

= (> + |k)a, zeX.

2 2

and the DtN map is therefore defined by

D= \/ 82+ |k

Here the the branch of the square root is chosen so that Dis analytical and positive
for s > 0. By inserting D into (1.7) we see that the exact boundary condition
is identical to the boundary condition (1.3) for ¢ > 0. In [39], Hagstrom derives
a formulation of (1.3), which only involves the inverse Fourier transform in the y

direction and a convolution in time. By rewriting D as

= s+ (\/s2+ k" —9),

the inverse Laplace transform of the function K (s) = 1/s2 + |k|> — s

K(t) = A(t) = %/_1 V1 — p?cos(pt) dp,

t

I

can be used to derive

g—Z+%+fl(\k\2K(\k\t)*fu) =0. (1.8)
By the use of fast algorithms for the computation of convolutions, see [46|, together
with the fast Fourier transform, (1.8) may be directly imposed. This use of fast
methods yield an acceptable number of operations required to update the boundary
condition.
Note that there is no explicit need for a two dimensional setting in the above exam-
ples. The analysis is identical if I' is chosen as the hyper plane x = 0. The Fourier
transform is then to be interpreted as the multidimensional Fourier transform.
First order hyperbolic systems: Here we consider the construction
of boundary conditions for strongly hyperbolic systems. Let us first give a short

overview of one dimensional hyperbolic systems of the form

ur + Az, tu, + C(z, t)u = f(x,t), (1.9)
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in the strip 0 <z <1, ¢t > 0, with initial function
u(z,0) =ug(xz), 0<z<1, (1.10)

and some boundary conditions, to be fixed later, at x =0, z = 1.

A(z,t),C(x,t) € R™™ and f(x,t),up(x) € IR" are assumed to be C*°-smooth
functions with respect to all variables. This system is called hyperbolic if A(x,t) has
real eigenvalues at every fixed point 2 € [0,1] and ¢y > 0. In particular, we have

the following classification.

Definition 1.1. [36] The system in equation (1.9) is called symmetric hyperbolic
if A is a Hermitian matriz at every fized point x = xg, t = to. It is called strictly
hyperbolic if the eigenvalues are real and distinct, it is called strongly hyperbolic if the
eigenvalues are real and there exists a complete system of eigenvectors, and, finally,

it 1s called weakly hyperbolic if the eigenvalues are real.

Strictly and symmetric hyperbolic systems are subclasses of strongly hyperbolic
systems. The initial value problem (1.9)-(1.10) is well-posed for strongly hyperbolic
systems and is not well-posed for weakly hyperbolic systems. We assume that the

system (1.9) is strongly hyperbolic.

Remark 1.2. Strong hyperbolicity of the system assumes the existence of a smooth
transformation H = H(x,t), the rows of H are the left eigenvectors of A, such that

HAH '=A= diag(Ai, ..., \n),

where \; = \j(x,t), 7 = 1,...,n, are the eigenvalues of A. If we introduce new
variables, called characteristic variables, v = H(x,t)u(x,t), then the system (1.9) is

transformed to the characteristic form:
v+ Az, o, + Clz, t)o = f(a, ), (1.11)

where C' = HCH™! + HH; '+ HAH;' and f = Hf. To simplify the notation, we
shall assume that the given system is written already in the characteristic variables,

thus A=A in (1.9).
Assumption 1.3. The eigenvalues of A at the boundary:

Ai(0,t) and \;(1,t), j=1,..,n, (1.12)
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are assumed to be different from zero. Hence, the boundary is called not character-
istic. Also they are assumed to have a constant sign as a function of time; i.e., each
function of (1.12) is either < 0 for all t, or > 0 for all t. However, in the interior

0 < x <1 the eigenvalues may change sign.

Notation 1.4. u™,u™ are used to assemble the variables w; with A\; > 0,\; < 0,

respectively, at each boundary points.

Considering the system (1.9) in the characteristic form, we need boundary conditions
to determine u(0) and u~(1). Acceptable boundary conditions are to prescribe the

ingoing variables at each boundary
ut(0,t) = go(t), (1.13a)
u (1,t) = g1 (1), (1.13b)

which can be generalized such that the ingoing variables are described in terms of
the outgoing ones
u(0,t) = So(t)u™(0,t) + go(t), (1.14a)
u(1,8) = Sp()u™(1,¢) + g1 (1), (1.14b)
where Sy(t), S1(t) are matrices of suitable dimensions.
The initial data should be compatible at ¢ = 0. Otherwise, the solution would have
discontinuities along the characteristics which start at the corners (z,t) = (0,0) and
(x,t) = (1,0). Thus, to avoid difficulties connected with nonsmoothness, we shall

assume that:
Assumption 1.5. The initial data vanishes near the corners.

For example, If we consider the initial boundary problem (1.9)-(1.10) with the
boundary conditions (1.14), then, according to the above assumption, the functions

9o, g1, Ug, [ are assumed to vanish near the corners.

Theorem 1.6. [[62|, Thm. 7.6.4] Assume that the boundary is not characteristic,
and that the data ug, f, go, g1 are compatiblet = 0. The system (1.9), in characteristic
form, for 0 <z <1, 0 <t <T with initial and boundary conditions (1.10),(1.14)
has a unique solution. The solution is a C°°-function, and for every finite time

interval 0 <t < T there is a constant Cr independent of wg, f, go, g1 such that
t
D+ [ (0,7 + (1, 7)) dr
0

s&ﬁm@+lo%mﬁﬂmmﬁ+wum@m- (1.15)
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for 0 <t <T.

The C*°-smoothness assumptions for the data are made for simplicity. However,
once estimates are derived for this case, more general -less smooth- data can be
treated as long as the norms for the data are defined, and one obtains a generalized
solution [62].

Now, we consider the construction of exact ABCs for a first order, multidimensional,
constant coefficient, strongly hyperbolic system. The boundary conditions are im-
posed at a planar boundary, z = 0. In the domain Q, (x > 0) the system can be

written as

ou ou ou
— + A— B,— = 1.1
o or T ; Ty, 0 (1.16)

where u € IR", A, B; € IR"*". If we further assume that A is invertible (no char-
acteristic boundary) we can employ the usual Fourier and Laplace transform to

obtain

o - B ,
5y = Mi, M=-A ! <s] + Zj:zk;jB]) : (1.17)

Since we consider a strongly hyperbolic problem, we can decompose the solution
into left and right-going modes or waves. The right-going waves corresponding to
positive eigenvalues of M and the left-going to negative eigenvalues.

To decouple the system into two sets of scalar equations we use the diagonalization

LA 0
QOMQ _<o A_>_A.

Here () is composed of the the eigenvectors of M arranged in two matrices Q*, Q™

such that
QF
(5)

=\, — =\t (1.18)

The resulting scalar problems are
00~
ox

where © = Qu. An exact ABC, which make sure that no waves enter  at z = 0 is

+

ot = BTu=0. (1.19)

It is important to realize that B* can be chosen in many ways. In principle, the only

restriction on BT is that it should be orthogonal to the matrix Q~. A natural choice
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is therefore BT = Q*. However, there are cases when this choice is not suitable.
One such case is the linearized Euler equations, for which Giles [28] discovered that
Bt = Q7" leads to an ill-posed problem. In [28], Giles also suggested an alternative
choice of BT, that leads to a well-posed problem. Other choices, leading to a well-
posed problem has been suggested by Hagstrom and Goodrich [34] and Rowley and
Colonius [71].

1.2 Perfectly matched layers

Another approach to terminate the computational domain is to surround the scat-
terer by a finite width, absorbing layer. In any absorbing layer, the governing equa-
tions are modified so that the solutions in the layer decay. For such an approach
to be effective, all waves traveling into the layer, independent of frequency or angle
of incidence, should be absorbed without reflections. Absorbing layers with these
ideal properties are referred to as Perfectly Matched Layers (PMLs). PMLs were
first introduced in the context of computational electromagnetics by Bérenger [13],
and is today used widely by engineers in that area.

PMLs for Maxwell’s equations: The major breakthrough, that made
absorbing layers competitive, compared to global and local ABCs, was the introduc-
tion of the Perfectly Matched Layer by Bérenger [13]. Bérenger considered Maxwell’s

equations in two space dimensions

OFE, 0H,
E, = 1.2
€0 615 +o T aya ( 0)
oE, OH,
EOW + O'Ey = — ax s (].2].)
oF. oF
z *H, = S 1.22
o5 T o M oy ox (1.22)

Here E, and E, are the electric fields, [, the magnetic field, ¢, and fp are the free
space permittivity and permeability and o and ¢* the electric and magnetic con-
ductivity. Bérenger realized that by the simple splitting H, = H, + H., additional
degrees of freedom, that in turn could be used to guarantee the perfect matching,

could be introduced. With this splitting he introduced the perfectly matched layer
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as a medium governed by the equations

eoa£x+axEx = a(H”a—JyFHZ?’), (1.23)
eo%—%ayEy = ——a(Hma;:sz), (1.24)
e (1.25)
/Loag[;y-i-U;sz = aa—]zﬂ”. (1.26)

For these equations, Bérenger showed that if o; and o] satisfy oj¢y = o;p, then
there will be no reflections at the medium-PML interface. Also, waves traveling
across the interface into the PML should decay exponentially inside the PML at a
rate depending on the magnitude of the conductivity parameters o; and o;.

Soon after the introduction of Bérengers PML, Abarbanel and Gottlieb [1] showed
that the equations (1.23)-(1.26) were only weakly well-posed. There were concerns
that Bérengers weakly well-posed PML could become ill-posed, and that its numeri-
cal solution would grow at an arbitrary rate. However, there were no reports of such
growth in computations.

The results from [1]| lead to the development of several strongly hyperbolic (hence,
well-posed) PMLs. One of these is the PML by Abarbanel and Gottlieb suggested
in |2]. They assumed that the behavior of the absorbing layer could be described by

lossy Maxwell’s equations

OF, OH,
R T (1.27)
oF 0H,
oL _ Ok, (1.25)
oH,  OE, OE,
= — — + Rs. 1.29
ot oy ox (1.29)
Solutions of (1.27)-(1.29) can be written as
H, 1
Eac = Ql(‘r) «, ﬁ) w) eiW(t_ax_ﬁy)e_a fom 0'(7])6177'
E, Qo(x; o, B, w)

For such solutions to be perfectly matched and decaying, it is required that the

unknown functions Ry, Ry, R3, {21, {2 satisfy the constraints:

e R;, (i =1,2,3) should be independent of the parameters «, 3, w,
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e the solution should be continuous across the interface,

e the amplitude of the solution vector in the layer should be monotonically

decreasing.

Taking these constraints into account and using the dispersion relation
o+ 32 =1, (1.30)

Abarbanel and Gottlieb derive the following PML

3((% _ 8;;, (1.31)
%~ B son,—op (1.32)
ﬁz _ a@ix_aaiua’@ (1.33)
%_1; = 0B, (1.34)
aa_? = —0Q - E, (1.35)

For these equations the question of well-posedness is trivial since the system (1.31)-
(1.35) is only a zero order perturbation of (1.20)-(1.22) which is well-posed. Also,
the auxiliary variables P and () only appear as ordinary differential equations and
will not alter the well-posedness.

PMLs for linearized Euler equations: Acoustic phenomena are gov-
erned by the linearized Euler equations. For a problem with oblique flow in two

dimensions these take the form

r+Cry+ Dr,+ Er =0, (1.36)
where
P M, 1 0 0 M, 0 1 0
0 M, 0 1 0 M, O 0
q - ! Y A - ) B - Y
v 0 0 M 0 0 0 M, 1
P 0 1 0 M, 0 0 1 M,

Here (p, u, v, p) are non-dimensionalized perturbations of the density, the velocity in

x and y direction and the pressure respectively. M, and M, are the Mach number
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in the x and y directions. The equations (1.36) support three types of waves; sound,
entropy, and vorticity waves. Entropy and vorticity waves are convected downstream
with the mean flow while the two soundwaves travel up or downstream.

The perfectly matched layer method has also been applied to the linearized Euler
equations. The first split-field PML for the linearized Euler equations was suggested
by Hu [51|. Hu reported that a low pass filter had to be used inside the absorbing
layer to suppress exponential instabilities, also Goodrich and Hagstrom reported
similar observations in [34]. Tam et al. 75| concluded, from a perturbation analysis
of the dispersion relation of Hu’s PML, that it supported unstable acoustic modes
at certain wave numbers. Hesthaven [49] also analyzed Hu’s PML and found that
it was only weakly well-posed.

The first well-posed PML for the linearized Euler equations was introduced by Abar-
banel, Gottlieb and Hesthaven [3] for a uniform flow (M, = M, M, = 0). To be able
to apply the construction used for Maxwell’s equations (see (1.31)-(1.35)) they used

the variable transformation
=2, n=V1-M2y=~y, 7=DMz+~t (1.37)

In these new variables the dispersion relation, of the transformed equations, is very
similar to that of the Maxwell’s equations and the techniques used in [2| can be
applied directly.

Although the PML in [3] was well-posed, it still supported exponentially growing
modes. To stabilize these modes Abarbanel et al. add lower order terms. By using
the variable transform (1.37), Hu [52] constructed an un-split and stable PML for
uniform flow. Hu’s PML is well-posed for layers parallel to the flow but only weakly
well-posed in corners and in layers perpendicular to the flow. Later, he considered
the non-uniform flow case, and proposed a numerical procedure to find such a trans-
formation [54|. Recently, Hu extended his idea to the the nonlinear Euler equations
[55].

A well-posed and stable PML for the linearized Euler equations for a oblique flow
has been suggested by Hagstrom in [42]|. The PML is derived as an example on an
application of Hagstrom’s general method for the construction of perfectly matched
layers for hyperbolic systems.

In his method, Hagstrom considers an absorbing layer of width L at the plane z = 0
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with the governing equations (for z < 0)

ou ou ou
E+A(y)—+ZBj(y)f+O(y)u=o, —L<z<0. (1.38)

By Laplace transform in time

o= e, (s] + A A+ Z Bj(y)aiy + C(y)) ¢ =0, (1.39)
7 j

it is possible to find the modal solutions to (1.38).

Hagstrom concludes that the solution inside the PML should be modified so that R
is bounded away from zero for #ts > 0. This condition is equivalent to the variable
transform (1.37). By construction the eigenfunctions ¢ are the same at the interface
x = 0, hence the absorbing layer will be perfectly matched.

Postulating a modal solution inside the PML

TR =N [ o)z (1.40)

and substituting (1.40) into (1.39) gives the resulting PML equations as
sI+MA(I —o(R+0)7) 9 L eiN) + > B-(y)i +C(y) | a=0.
ox - 0y,

In principle, the operators M, N and R can be very complicated but for most prac-
tical applications M and n can be chosen as real scalars and R to be a first order,

scalar differential operator in time and in the transverse variables
0 0
i+t LA, +o (141)

An extension of this PML model (from [42]) was presented by Appel6 et al. |7].
In [83], we present a PML formulation for the nonlinear Euler equations. This new
formulation combine properties of Hagstrom’s formulation in [42] and that of Hu in
[55]. In case of non-uniform parallel flow, an approach have been proposed to deter-

mine the involved parameters in a way to damp all wave modes in their trajectories
in the PML layers.



Notation

o AT = transpose of the matrix A.
e Foru,v € R", (u,v) = Z; UV;,
for u,v € C", (u,v) = 2;1 wvi,  |ul’ = (u,u)
o If A is real symmetric n X n matrix, we write
A >0l
if (x, Az) > §|z|” for all z € R"
e The space L*((0,1); R"), with the norm denoted by ||.||,, consists of those

functions u : (0,1) — R", u = (uy, ..., uy), with u; € L*(0,1), (i =1,....n).
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Chapter 2

Far field boundary
conditions for linear

hyperbolic systems

For the computation of a numerical solution to hyperbolic partial differential equa-
tion on an infinite domain, it is common to perform the calculation on a truncated
finite domain (). This raises the problem of choosing appropriate boundary con-
ditions for the resulting artificial boundary I'. Ideally, these boundary conditions
should prevent any nonphysical reflection of outgoing waves and should be easy
to implement numerically. They should also present together with the governing
equation a well-posed truncated problem which is a basic requirement for the cor-
responding numerical approximation to be stable.

Example of hyperbolic equations include the Euler equations of gas dynamics, the
shallow water equations, Maxwell’s equations, and equations of magnetohydrody-
namics. For these hyperbolic problems the correct boundary condition is that waves
traveling across the boundary should not be reflected back. Boundary conditions
with this property are often referred to as non-reflecting, transparent, artificial or
absorbing boundary conditions (ABCs).

The theoretical basis for ABCs stems from a paper by Engquist and Majda [24]
which discusses both ideal ABCs and a method for constructing approximate forms.
In addition, a paper by Kreiss [61] which analyzes the well-posedness of the initial
boundary value problems for hyperbolic systems. Many researchers have been active
in this area in the last years, The readers are referred to [29, 40, 78, 41, 18, 79|
for further details. However, their work has been mainly concerned with ABCs that

are better suited for a transient solution than for a steady solution, and most of

24



Chapter 2. Far field boundary conditions for linear hyperbolic systems 25

these boundary conditions lead to steady solutions of poor accuracy.

In this chapter, we are concerned with ABCs that lead to accurate steady solu-
tions. In this context, Bayliss and Turkel [12]| derived non-reflecting conditions for
the Euler equations which they used for steady state calculations. These boundary
conditions are obtained from expansions of the solution at large distances. Accurate
boundary conditions for the steady Euler equations in a channel were also studied
by Giles in [28|.

Our main reference is the paper of Engquist and Halpern [23|. They constructed a
new class of boundary conditions that combine the properties of ABCs for transient
solutions and the properties of transparent boundary conditions for steady state
problems. These boundary conditions, which called far field boundary conditions
(FBCs), can be used in both the transient regime and when the solution approaches
the steady state. In this sense, they can be applied when the evanescent and travel-
ing waves are present in the time-dependent calculation or when a time-dependent
formulation is used for computations to steady state. In case of hyperbolic systems,
these FBCs are defined up to matrix factor in front of the steady terms [23]. This
poses the following computational problem (which is one of the main subjects of
this chapter): How to choose this factor in a way to accelerate the convergence to
the steady state, and to improve the accuracy of the transient solution.

We observe that the FBCs simulate the radiation of energy out of €2. An incorrect
specification of these boundary conditions can cause spurious reflected waves to be
generated at I'. These waves represent energy propagating into 2. Since they are
not part of the desired solution, they can substantially reduce the accuracy of the
computed solution. On the other hand, if the time-dependent equations are only an
intermediate step toward computing a steady state, then a flow of energy into €2 can
delay the convergence to the steady state. Conversely, the correct specification of
FBCs can accelerate the convergence. Thus, an answer of the above question consists
in minimizing the spurious reflections.

The rest of the chapter is organized as follows: In Section 2, we study briefly the
procedure of constructing FBCs for linear hyperbolic systems, and propose a general
tool of scaling the included factors. In Section 3, well-posedness and regularity of the
resulting initial boundary value problem are studied. General result of convergence

in time to the steady state are established in Section 4.



Chapter 2. Far field boundary conditions for linear hyperbolic systems 26

2.1 Derivation of far field boundary conditions

We consider in this section the derivation of hierarchy of FBCs, at x =0 and z =1,

for a strictly hyperbolic system of the form
u + Auy + Cu = f(x), relR, t>0, (2.1)
with the initial function
u(z,0) =up(x), z€IR. (2.2)

Here C' and A are n X n constant matrices, u is a vector with n components. f(z)
and ug(x) are assumed to be C*°-smooth functions and have supports in (0, 1). The

eigenvalues of A are distinct and different form zero, that is

AT 0
() o

with A+t = diag(A, s Aw)y A >0, A~ =diag(Amsts s An), A; < 0.

We assume that

T+ C
2
which is a necessary condition to ensure the convergence of the whole space problem

Ch

>0, 6>0, (2.4)

to the steady state as t — oo. We will further assume that A~'C' has distinct

eigenvalues.

Notation 2.1. Any n x n-matriz X is partitioned as

X+t X+
X = ,
X+ X
where Xt XT= X~ are m x m,m x (n —m), (n —m) X m-matrices, respectively.

I
Also Xt := 0 X and X~ := 00 X.
00 0 I

Solutions of (2.1) are made up of n different modes, which propagate at different
speeds. A crucial step on developing boundary conditions for (2.1) is determining the
direction of propagation of each mode, and distinguishing which modes are outgoing
and which are incoming at the boundary.

If we take a Laplace transform in ¢, with the dual variable s

u(z,s) = / e *u(z,t)dt, s€C, Rs>0,
0
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the system becomes

Uy + AN+ C)a= A1 f
Define E(s) :== A~! + tA'C, we may write
iy 4 sE(s)iu = A1 f. (2.5)

We wish to separate u into “rightgoing” and “leftgoing” modes. Each of these modes

corresponds to an eigenvalue of E(s).

Definition 2.2. [14| The inertia of a matriz M is the ordered triple
(M) = (i (M),i_(M),io(M)), where i (M),i_(M), and ig(M) are the numbers of
eigenvalues of M with respectively positive, negative, and zero real part, all counting

multiplicity.

Lemma 2.3. [14] Let G, H be nxXn-matrices with H Hermitian and reqular, suppose
HG + G*H is a positive semi-definite and io(G) = 0. Then i(G) = i(H).

Lemma 2.4. For Rs > 0, E(s) has exactly m eigenvalues with positive real part

and (n — m) with negative real part; i.e., i(A) = i(F).
Proof. Apply Lemma 2.3 with H := A and G := A" (sI + O) :
AN ST+ C)) + (AN (s + C))*A = 2RsI +2C, > 61 > 0.

Also ig(A7Y(sI + C)) = 0; otherwise A~!(sI + C) will have a purely imaginary

eigenvalue, say 1w, w € IR. Let ¢ denote its eigenvector. Then
iwp = A" (sI + C)p & (iwh — C)p = s,
which is impossible since

0 < 2Rs|of" = (s¢,0) + (¢, 5¢) = ((iwh = ), 9) + (¢, (iwA — C)¢)
= —(6.(C+CM)g) < =25 |9|* <0.

O

From Lemma 2.4 and [36], there is 79 > 0 and a nonsingular transformation 7'(s)
such that for s > np,

Dt 0
XEX'=D= ( ) : (2.6)
0 D
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where D(s) is the matrix of eigenvalues of F(s), arranged so that D (s) is an
m X m positive definite matrix, corresponding to rightgoing solutions, and D~ (s) is
an (n—m) X (n —m) negative definite matrix, corresponding to leftgoing solutions.
Here, we drop the explicit s-dependence; henceforth all the matrices are functions
of s unless otherwise noted.

With the characteristic variables © := X the system (2.5) can be written as
Uy 4+ sDo = XA7'f,

and then partitioned into

d ([ oF DT 0 of .
L) 2 ()

where o and ¥~ represent purely “rightgoing” and “leftgoing” modes respectively.
Now, we restrict the domain of x in (2.1) to (0, 1). The exact nonreflecting boundary
conditions follow immediately. Since there are no incoming modes at a nonreflecting
boundary, at the left boundary x = 0 there should be no rightgoing modes, so an
exact perfectly ABC is

ot =[XaltT=0, z=0. (2.7a)

At right boundary, there should be no leftgoing modes, so an exact perfectly ABC
is
= [Xa" =0, ax=1. (2.7D)

Two difficulties arise in implementing the above boundary conditions. First, since the
boundary condition is expressed in Laplace transform (z, s)-space, and the matrix
X(s) contains non-rational functions of s (e.g., square roots), when we transform
back to physical (z,t)-space, the boundary conditions will be nonlocal in time.
From a computational perspective, we would prefer a local boundary condition,
which may be obtained by approximating non-rational elements of X by rational
functions of s.
The second difficulty arises when approximations are introduced: then the resulting
IBVP may be ill-posed. The theory of well-posedness will be discussed in the next
section.
For s — oo, we have E(s) — A~! and hence X (s) — I. Following standard practice
in [23] we shall hence make a high frequency expansion of X for Rs > 7, :
1 1 1
X(s)=1+ ;Xl + ?XQ +0 <—) . (2.8)

s
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The zero order ABCs are then

ut =0, x=0,

i~ =0, z=1.

More accurate conditions are obtained by using higher order approximations. First
and second order ABCs are respectively

1 +
l([ + —Xl)a} —0, =0,
S

S

[(I + 1Xl)a] 0, a-1,

1 1. "
(I+ gXl + ?XQ)U = 0, xr = 0,

1 1

. . . . . o
which is transformed to the physical space by the substitution s — .

Hence, the first and second order ABCs are respectively [24]

a +
|:(§ + Xl)u] =0, x =0, (2'93)
{(% + Xl)u} =0, x=1, (2.9b)
02 0 *
{(@ + Xla + X2)“:| =0, z =0, (2.10&)
02 ) -
{(@ + Xz + XQ)U} =0, xz=1. (2.10b)

For large Rs > 1o, the term A~'C in E(s) is a perturbation of A7 In this case,
D in (2.6) can be considered as a diagonal matrix [50]. With a high frequency

expansion D is written as

1 1 1
D(s)=AN'+Di+ =Dy +0 | —
(s) +S 1+82 2+ (‘8‘3)’

where D;(s), j =1,2,... are diagonal.
Write (2.6) as XE = DX, then the O (|s|™!)-equation reads

XlA_l —f- A_IO - A_le + Dl.
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Solving for X; and D gives

Dy = diag (CH Cﬂ) ,

A An
and
07 j - k’
(X1)jk = AkCik .
k
e J#k,

where cj;, is the (4, k)™ entry of C. The second order expansion of (2.6) yields
XoA '+ XiAT'C = A Xy + D1 Xy + Do,

Solving for X5 and D, yields

. C1kCk1 CnkCkn
Dy =d
g (33 ),

k£1
and
0, J=k,
Xo)ik =
(X2)jx ] x2 5 A L
— |¢jjcipp—— CjiC——— :
/\j _ Ak; Jj ]k/\k _ /\] 1#£5 il lk)\l )\j ) J
Let us now turn to the stationary problem corresponding to (2.1) :
u, + A 'Cu=A"f(x), x€lR, (2.11)
u(z) — 0, x — £oo. (2.12)

The following lemma is similar to Lemma 2.4 but for the case s = 0.
Lemma 2.5. i(A) =i(A71C).
Proof. Apply Lemma 2.3 with H := A and G := A~'C
AATIC) + (ATC)TA =20, > 0.
Assume that A~'C has the purely imaginary eigenvalue iw. Then
iwp = AN"1Ch & iwhe = Co.
But, on the other hand
0 = (iwhd, ) + (,iwAe)
= (Co.0) + (¢,Co) = (¢, (C + CT)¢) = 25 |¢]" > 0,
and hence ig(A~'C) = 0. O
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Using Lemma 2.5 and that A~1C has distinct eigenvalues, we diagonalize the system
(2.11)

w, + Rw = SA™' f(2), (2.13)
where w is given by w := Su,
RY 0
SAT'CST' =R = ( ), (2.14)
0 R

R* = diag(ry, ..., m), Rr; >0, R™ = diag(rmi1,...,mn), Rr; <O.
The following boundary conditions for the steady problem on the bounded domain

(0,1) are satisfied by the steady solution on the unbounded domain

(Su)" =0, x=0, (2.15a)
(Su)” =0, x=1L1 (2.15Db)

This is true since the general solution of (2.13) outside the support of f is

w*(O)e_R+$ w+(1)eR+(1—x)
w(x) = ., x <0, w(x) = . x>,

w=(0)e w™(1)eft (0-2)

where w = (w™,w™)7T is partitioned in the same way as u. For the decay condition
(2.12) to be valid, it is necessary that

wt(0) =w (1) =0.
(2.15) is unique up to a multiplication by regular matrices V' and V ~, respectively

(VSu)" =0, 2=0, (2.16a)
(VSu)” =0, x=1 (2.16Db)

In 23] the authors defined a family of first order FBCs from a combination of the
first order ABCs (2.9) and the transparent steady boundary conditions (2.16):

B%+V&4+:Q z =0, (2.17a)

{(% + VS)U] o 0, z=1, (2.17b)
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vVt o0
which is defined up to a matrix factor, V = 0o v- ) in front of S. Higher

order boundary conditions can formally be derived analogously

i d -
0? 0 a
[(ﬁ + Xla + VS)u:| = 0, r=1. (2.18b)

The solution of the IVP (2.1) on (0,1) with the boundary conditions (2.17) or
(2.18), for arbitrary regular V, converges for long time to the steady state, see [23]
and Section 4. But since spurious reflections pollute the computed solution, a good
choice of V' and V'~ that annihilate the spurious reflections up to higher order can
accelerate this convergence for long time computations and gives higher accuracy
for short time computations.

To clarify that, we transform the first order left boundary condition (2.17a) into
Laplace space, and use the Notation 2.1

+
l([ + évs)a} = <[+ + év*sﬂ : %V*S*) o= 0. (2.19)

In terms of the characteristic variables, @ = X 19, where

1 1 1
X 1) =T--X1—=(Xo - X)) +0 | — ).
(5)=1- 1%~ (%~ XD +0 ()
(2.19) then becomes
It —Lixit o Ly

(I++1V+S++ , lv-l—s-i-—)
S S

N 1
“*0(@

1 1 1
_ {ﬁ +o(VrsT - Xf*)] i [VEST - X 40 (—) = 0.

[

—iX;7t T -3ix7T

Neglecting O(|s|~?)-terms, we may solve for the incoming (rightgoing) modes in
terms of outgoing ones as long as [IT 4 $(VTS™ — X{"*)] is nonsingular (this

holds true at least for |s| large)

5H(0) = — [sIt + (VST — X0 7 VS — X77]47(0) = R (0),
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where RI is the matrix of reflection coefficients.
Similarly the right boundary condition (2.17b) may be written in term of the char-

acteristic variables as

I+ _ lXJrJr _lXJr*
VST IV 5
—iX;t T =3iXx7T
1 —Q—+ —+1 =+ - 1 - Q= —— ~— 1

Neglecting O(|s|2)-terms and solving for the incoming (leftgoing) modes in terms

of outgoing ones as long as [I’ + %(V’S” — Xf’)] is nonsingular, gives

() =—[sI-+ (V5 =X )] VSTt = X ot (1) = RIoH(1),

Cc

where R_ is the matrix of reflection coefficients at the right boundary.

For the pair of boundary conditions to be absorbing up to order O(|s|~?), the matri-

ces RF and R, must be identically zero, that is VSt~ — X;~ and V=S~ — X;*

must be zero. So the optimal choices of V' and V= are then given as solutions of
VTSt =X, (2.20a)
VoSTt =Xt (2.20Db)

If (ST7)7! exists, then V' = X;77(ST7)~! and the first order FBC at x = 0 reads
uf + X (ST TS T + XPuT =0, (2.21a)

which is different from the first order ABC (2.9a) only by the middle term.
Similarly if (S™%)~! exists, then V= = X[ *(S™")~! and the first order FBC at

r=11s

u; + X7 Tut + XSS T TuT = 0. (2.21Db)
We shall denote these FBCs as
) . +
{(— + Xl)u} =0, x=0, (2.22a)
ot
P A _
{(— + Xl)u} =0, x=1, (2.22Db)
ot
where
X+_(S+,),1S++ Xii——
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For the second order case, we write (2.18a) in terms of the characteristic variables:

1 1 1 1
I+ =X+ Svrstt o SXTT 4 S VSt
s 52 s 52

1 1 1 1
=(IT+-X{T+=VTstt | X+ =-vtst
S 52 S 52

T |- T /NS S A

52 B 1
“*0(mﬁ

1 1 1
— {IJF + 5 (VEST = X)) | of + =z VST — XS]0 +0 (—) .

s? |s[?

—IXTT - S[X-XPTY T - IXTT - S[X - XY

The optimal choice of VT is to annihilate the coefficient of the outgoing mode up
to order O(|s|72). Similar computations at the right boundary condition give the

analogous equation for V~. Finally V* and V'~ are chosen as solutions of

VISt =X, (2.23a)
VoSt =X, T (2.23b)

Again, if (ST7)7! and (S7F)~! exist, then the second order FBCs can be written

as

i o o 1"
{(@ + Xla + X2)“:| =0, z =0, (2.24&)

0? 0 - a
(ﬁ + Xl& + XQ)U =0, r=1, (2'24b)

where
X (ST7)7Lstt X,
XQ -
Xy Xy (87 s

In the case ST~ and/or S~ are not invertible, generalized solutions of (2.20),(2.23)
have to be considered.
General cases: Considering the systems (2.20), let V** and V*~ denote

generalized solutions of (2.20a) and (2.20b) respectively. Then we have two cases:
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e m > n —m, then equation (2.20a) can be written as
(S VT =(X)"

Let v{ and " be the i columns of (V)T and (X; )7, respectively. Then

this system is equivalent to the m underdetermined systems
(S+_)Tv§i) =0\, i=1,..,m.

the solution (v;)® € IR™ (in the least-squares sense, that is minimizing the

. 2
Euclidean norm of residuals H(SJF*)TUY) —o|", i=1,..,m) is given by

(W)@ =+ (()"s+ )™, i=1,...m.

The solution exists and is unique if ST~ has full rank. If ST~ does not have full
rank, then the solution is not unique, since in this case if (v})® is a solution
then the vector (v¥)®) + z with z € Ker(S*™™), is a solution too. A further
constraint is introduced to enforce uniqueness of the solution. Typically, one
requires that (v})® has minimal Euclidean norm.

On the other side, Equation (2.20b) is equivalent to n — m overdetermined

systems
(S_+)TU§Z) =), i=1,..n—m,

where v{” and b{" are the " columns of (V)7 and (X; )7 respectively. The

general solution is given by

)@ = (S~ D)L, i=1,...n—m.

e The case m < n — m, is similar but with n — m underdetermined and m

overdetermined systems.

This generalization applies to the case of (2.23).

2.2 Well-posedness of one-dimensional problem
In this section we discuss the well-posedness of the IVP

u + Az, tu, + Clx,t)u = f(z,t), 0O0<z<l, t>0, (2.25a)
u(z,0) = wup(z), O<z<l, (2.25Db)
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together with boundary conditions of the form

[<§t+3<>>]+:o, =0, (2.260)
(a+B()) —0, a-1 (2.26D)
5+ 2|

B(t) is partitioned in the same way as in Notation 2.1:

So(t)  Kol(t)
B(t) =
Si(t) Ki(t)

We assume that Sy, S, Ky, and K; are uniformly bounded for all ¢ > 0. Clearly the
first order ABCs (2.9), and the first order FBCs (2.22) are special cases of (2.26).
A(z,t),C(z,t) € R™" and f(x,t),up(x) € IR" are assumed to be C*°-smooth
functions with respect to all variables. Moreover, f(z,t), uo(z) are assumed to vanish
in a neighborhood of the corners (z,t) = (0,0), (x,t) = (1,0).

Using this compatability assumption, we write boundary conditions (2.26) in the

integral form:
ut(0,¢) = / So(T)ut (0,7 dT—/ Ko(r ,T)dT, (2.27a)

Roughly speaking, the initial value problem (2.25) with boundary conditions (2.27)
is called well-posed if for all smooth compatible data ug and f there is a unique
smooth solution u, and in every finite interval 0 < ¢t < T the solution can be esti-
mated in terms of the data.

Define the outflow and inflow norms respectively by

@2 = > NP~ 3 A0, 6)]uy(0,1)?,

A;(1,8)>0 A;(0,t)<0
and
lu@? = Y X0, 8)]u;0. 07 = > AL t)|uy(L, )]
A;(0,t)>0 A;(1,t)<0

Lemma 2.6. Assume that the boundary is not characteristic and that A(z,t),
Ay (x,t),C(z,t), B(t) are uniformly bounded for all0 < x <1 and 0 <t <T. Then,
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for every finite time interval 0 < t < T there is a constant Cp such that, if u solves
the IBVP (2.25),(2.27) for 0 <t < T, then

t t
(., )12 + / ([P + [u(r)2) dr < Cr (Huon% n / r|f<.,7>||%d7) |
Cr 15 independent of f and uy.

Proof.

d 2 _
Sl D13 = () + (uu)

< = (u, Aug) = (Mg, u) + e {JluC )5+ 1G5} -
Integration by parts gives
(u, Aug) + (g, Au) = (u, Au) |(1) — (u, Agu),

moreover,
(u, Ay | = u(®)])% = [Ju(®)].
Since A, is uniformly bounded, we have

%HU(-J)H% < @Iz = lu@I + ez {llul DI + 1D} (2.28)

Choose

=1,...,

pri= max (\(LD]N(0,8)]), 0<E<T,
Jj=

then
lu@)[Z < p1 (Ju*(0,1)* + [u™(1,8)]%) . (2.29)

The Cauchy-Schwarz inequality for the boundary condition (2.27a) yields
/ So(T)ut(0,7) dT / Ko(m)u™ (0, 7)dr

o (sg/o [ (0,7) d7+k§/0 yu—<o,7>;2d7),

where [Sy(t)] < sg and |Ko(t)| < ko for 0 <t <T.

In a similar way, the boundary condition (2.27b) can be estimated as

(L) < 2 (Sf /0 (L, ) dr + 2 /0 yu+<1,7>}2m) |

2

lut(0,0)* < +2

IA
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With & = max(ky, ko) and § = max(so, s1), (2.29) becomes
I < 200 (3 [ (ja* O + @) a
i /Ot (]u—(o, P+ ut (1, T)]2> dT) . (2.30)

Consider .

)= @+ [ ()2 + Juo]?) ar
Using (2.28), (2.30) yields
A1) < 2@ + e {JuC DB + £ 02

< dpipot (52/0 \yu(7)1\2d7+/%2/0 HU(T)HidT) + oo {[luC DI+ 1 Ol2}

IN

t
o (HU(-,t)Hi ; / TP + Humuidr) allf( D
where o := 4p1psT(s* + k*) + ¢ > 0, and

poi= max (AL 1)) [A\7(0,8)]), 0<t<T.

j=1

-----

po is used for the estimates:
(1O + [u™(0, )2 < paffu@)I3 and [u=(0,£)]* + [u(1,1)[* < pof|u(t)[|.
The Gronwall inequality gives the result

(0 < 0 (It + [ 15 lBar).

where Cp := (cy + 1)eT. O

Remark 2.7. The last proof as well as the proof of Theorem 1.6 can be done under
weaker reqularity assumptions, namely f € L*((0,T), L*((0,1); R"™)) and
ug € L((0,1); IR™). First derived for the classical solution, the result for mild solu-

tions then follows from a density argument.

Theorem 2.8. Under the assumptions of Lemma 2.6 and ug € L*((0,1); R") and
f € L*((0,7), L*((0,1); R")) the IBVP (2.25),(2.27) has a unique mild solution in
L2((0,T), L*((0,1); IR")).
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Proof. A fixed point method will be used to show the existence and uniqueness of
the solution. For g = (g7, ¢g7) € L*((0,T); IR") solve the equation:

yr + Az, )y, + C(z, )y = f(z,t), O<z<l, 0< t<T, (2.3la)
y(z,0) = wup(x), 0< <1, (2.31b)
y (0.t) = g7(t), (2.31c)
y (1,t) = g (¢). (2.31d)

Theorem 1.6 and Remark 2.7 guarantee the existence of unique solution
y € C([0, T, L*((0, 1)'13”)) and y(0,.),y(1,.) € L*((0,T); IR").
Define Fig = ((Fg)", (Fg)~) as

/So OTdT—/KO )d tz(),

(Fg)~(t) = — /sl( -1 TdT—/ Ky(r)y™ (L, 7)dr, t>0.

The first to show is that /' maps L?((0,7T); IR") into itself:
The solution of (2.31) can be estimated, according to Theorem 1.6, for 0 < ¢ < T as

(82 + / (190, 7) + ly(1,7)P) dr
< K [Huou%+ [ sl +loryar] o)

A similar computation as in the last proof shows that with oy = k2 + s2 + s? + k?

Fy(t)? < 2nt / (190, 7)1 + ly(1,7)[?) dr.

Integration by parts, using (2.32) and that g € L?((0,T); IR"), gives

IFalZ < <T2 [ wo.08 + w.op) a2 (ry<o,t>12+\y<1,t>\2))

< (Constant.

The second to show is that F' is contractive at least on a subinterval (0,77) of
(0,7 :

Given two inflow data: gi,g9o € L?((0,T); IR"), the difference between the corre-
sponding outflow data can be estimated by (2.32), for 0 <t < T as

[y — y2) ()15 + /0 (Iyr = y2)(0,7) ]2 + (11 — w2) (1, 7)]?) dr

< Ky / (g1 — g2)(7)|2dr (2.33)
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Now,

t
1P} () = Foi (0F <2465+ ) [ I = a)(0. )
0
t
1Fgr () = Foi (0F <2403 +) [ Il = )1,
0
Using (2.33) we get
t
|[Fgi(t) — Fga(t)]? < 2ta1/ (11 = 92) (0, 7) > + [(y1 — y2) (1, 7)|?) d.
0
Integration by parts gives
T
P9 = Faully < ad? [ (1 = )00 + (01 — 32)(1,0)7%) e
0

—t2 (|(y1 — 12) (0, ) + | (1 — ) (L) ")}

< OélKTTQHgl - gQH%-

1
F' is contraction for 177 < )
Vv 1 KT
The contractivity of F' depends only on a; K7 (but not on the initial condition or
the inhomogeneity term). So we can apply the iteration first on a subinterval (0,7})
of (0,7), then (77, 27}) and so on. The local solution can be continued in ¢ to reach

T. U

This theorem shows that our problem is strongly well-posed in the sense of Kreiss
[47].

2.3 Convergence to the steady state

We now consider the convergence of the IVP (2.1)-(2.2) with first order FBCs (2.17)
as t — oo to the solution of the corresponding steady problem. The non-singular
matrix V' in (2.17) is used to accelerate the convergence to the steady state and
it does not effect the convergence itself. For convenience we take V™ and V™~ as

identity matrices. Then, we have

ur+ Au, + Cu = f(x), O<z<l1, t>0, (2.34a)
u(z,0) = wup(x), 0<z<l, (2.34b)

+
l(% + S)u} = 0, x =0, (2.34¢)

l(% + s)u] ) = 0, r = 1. (2.34d)
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The corresponding steady state problem reads
Aul + Cu™ = f(z), 0<x <1, (2.35a)
with transparent boundary conditions
(Su*)* =0, =0, (2.35h)
(Su*)” =0, r=1 (2.35¢)
Define:
q(.T,t) = u(x,t) —u ('T)
then ¢ satisfies
@+ AN, +Cq = 0, O<z<l1,t>0, (2.36a)
q(z,0) = wp(z) —u*(z) =: qo(x), 0<z<l, (2.36b)
) +
l(a + S)q} = 0, x =0, (2.36¢)
P _
(E +S)q = 0, x=1. (2.36d)

By taking the Laplace transform (with dual variable s) of (2.36) we obtain the

ordinary differential equation

sq+ AN +Cq = qo(z), 0<x<l,
sqgT+ (ST = qF(0), z =0,
s+ (99 = qo (1), =1

(2.37a)
(2.37b)
(2.37¢)

The following lemma, which relates the asymptotic behavior of the original function

with the limit of the image function, will be used to prove the main theorem of this

section.

Lemma 2.9. [21] Suppose that b(t) belongs to a Banach space with norm ||.|| and

b(s) is its Laplace transform. Then we have

lim b(t) = lim sb(s),

t—o0 s—01

provided that lim,_, b(t) exists.
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Proof. Let lim;_, b(t) = a, then for any fixed € > 0, there exists a T, such that
|6(t) —al|| <e fort>T.
Define r(t) := b(t) — a. For all s > 0 consider

~ a > a
b(s)— -] = —th(t)dt — —
i) =21 = I [ b= 2|
= [ el
0
T

< [ elars [ e
0 T

T oo
/ | (t)]|dt + 6/ e *dt
0 T

€ €
< 4 -—e T <e+-
s s

A

= ||sb(s) — a|| < €+ scy, Vs >0, ¢ € R,
but with
€
€ 07 Db
s 0.
we have
|sb(s) — al| < 2e
for s — 0T gives the result. O

Theorem 2.10. If the solution q(x,t) of (2.56) converges in L*(0,1) as t — oo,

then it converges to zero in L*(0,1).

Proof. To make use of the previous Lemma we need to show that ¢(z, s) defined in
(2.37) is a natural extension of the Laplace transform near s = 0. That is, ¢(z, s) is
an analytic function of s in the neighborhood of 0.

Suppose that
Z = HY(0,1); R") x R", Y :=L*(0,1); R") x IR".
Define the operator L as

(Aox + C)q
L:YD>Z>HY0,1)"=:D(L)>§— (Sq)™(0) €y.
(5¢)~(1)
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Accordingly, (2.37) can be written as

q qo(z
(L+sD) | gto) | =] ¢ |, ¢ (0)eRrR™ ¢ (1)eR"™ (2.38)
g (1) q (1

Focusing on the operator L, we notice that it has some useful properties:

First, L is invertible. Consider

and search for ¢ € D(L), such that

A, +Cq = f(x), 0<z<l,
(59)7(0) = a,
(59)~(1) = o

This inhomogeneous boundary value problem is equivalent to

Wy + Rid = h(z), 0<z<l,
wt(0)=0, w (1)=0, (2.40)
y _ at _ at _
where W = 5S¢ — |, h(z) =SAf(z) — (I + R) ~ |, and S is defined
o o

as in (2.14). The last equation (2.40) has the unique solution

wh () = / e @Rt () dy, 0<z<l,
0

1
W (z) = —/ e~ =Dn= (y)dy, 0<z<l.

Second, L' is a bounded operator from Y to D(L). Multiplying (2.37a) by ¢ and

integrating
(AGe, @) + (G, AG) + (C,9) + (3. Cq) = 2(f, q)- (2.41)
Integration by parts gives

(G, AGe) + (Goy AG) = (4, AD) |,
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using the properties of C
(C4,4)+(3,Cq) = (4, (C+C")§) = 204ll; >0, §>0,

and that 5 5
2(£,0) < 51115 + 3lialls
Thus, (2.41) gives

o1 30 . 2
(7, Aq) |, + 3“‘1”3 < ngH%- (2.42)
Choose
Aa = max {[Al}
then
@ADL, = Do NIGOP =GO+ D A(gm1P - 1g0)?)
j=1 j=m+1
> = NGO+ > MR
j=1 j=m—+1

> —ny(lat]? + a7 ]?).
Substituting the result in (2.42), we get
gz < CAFIE + o[ + |~ ). (2.43)

But
q~a: - _A_10q~ + A_1f7

then
132115 < Ci(llgllz + 1f113)- (2.44)

Using (2.43) and (2.44) we get
1@y < CULIE+ a1+ [a7[*) = Cllally- (2.45)

Now, define ' := Po L™' : Y Y, where P : Z —— Y is the identity compact
operator. Since L™' : Y +—— D(L) is bounded, then L, is compact.

Choose s small enough such that

sl < 1L, 17, (2.46)



Chapter 2. Far field boundary conditions for linear hyperbolic systems 45

then (I + sL,') is an invertible operator from Y to Y. Moreover, the resolvent

function (1 +sL;')~" is an analytic function of s with norm that satisfies

1 1
-+ LYy £ 7,
H(S P ) ||Y % o HL;lHY
and so in particular
I -
||(E+Lp1) Iy =0 ass—0. (2.47)
Consider the first (main) part of (2.38)
(L + sI)G = qo, (2.48)

and let s be as in (2.46). Take L' of both sides of (2.48), then
(I+sL,")q= L, q.
Since (I + sL;") is invertible, we obtain
Gg= 1+ ngl)*nglqo,

which is analytic in s and bounded. The multiplication of the last equation by s

yields
~ I L—l —lL—l

Using (2.47) and that L' is bounded, gives that |[sg(x, s)|2 = 0 as s — 0.

From Lemma 2.9 we obtain the result. O



Chapter 3

Numerical

Approximation

Consider the first order hyperbolic system in characteristic form
up + Auy, + Cu = f(x,1), (3.1a)

in the stripe 0 <z < 1, t > 0. Here, A and C are constant n x n matrices and A is
partitioned as in (2.3). The solution of (3.1a) is uniquely determined if we prescribe

initial values for ¢ = O:
u(z,0) = ug(x), 0<z<1, (3.1b)
and boundary conditions at x = 0, 1:

uf + (Su)t = 0, z =0, (3.1¢)
u; + (Su)” = 0, r =1 (3.1d)
Here, S is defined as in (2.14). While (3.1¢)-(3.1d) represent general FBCs. Further-
more, the support of f and uy are assumed to be in (0, 1).
We want to solve the above problem by finite difference approximation. For that

reason, we introduce a mesh size h := Ax, a time step k := At, and discretize the

(z,t)—stripe [0, 1] x IR using the mesh points
zj=jh,  j=0,1,2,..J

th=1k, 1=0,1,2,..

46
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We assume that r := k/h is constant and use the notation ué € IR" to approximate

the exact solution u at (x;,t;). According to the partition of u, we set

(u*);

ug = , (u*)i e R™, (u’)i c R ™.

(u™);
The outline of this chapter is as follows: In Section 3.1, we introduce a finite difference
scheme to solve the IBVP (3.1). In Section 3.2, we apply the well known stability
theory due to Gustafsson, Kreiss, and Sundstrém (GKS-theory) to prove the stability
of this scheme. Two numerical examples are given in Section 3.3, in the first example,
we discuss briefly a 2 x 2 model system and prove the convergence of this system
with first order FBCs to the correct steady state. In the second example, we compare

the numerical approximations for different choices of the scaling matrices for a 3 x 3

system.

3.1 Numerical scheme

Lax-Wendorf scheme (LW-scheme) based on the expansion
k2
u(z, t + k) = u(z, t) + kug(x, t) + Eutt(x, t) + O(K?), (3.2)

where uy; can be determined using (3.1a) as follows

uy = (—Auyz —Cu+ f),
= —Auy — Cuy + f;
= AAuy+Cu— )y +C(Auy + Cu— f) + f;
= ANy, + (AC + CAu, + C*u+ f, — Af, — CFf.

Substituting the above equation into (3.2) yields

u(z,t+ k) = u(z,t) —k(Aug(x,t) + Cu(x,t) — f(x,t))

—i—%(/\?um(x, t) + (AC + ON)uy(z,t) + C?u(x, t)
+fi(z,t) = Afo(z,t) — Cf(x, 1)) + O(K?).

The LW-scheme uses centered differences to approximate the spatial derivatives of

u. Furthermore, the derivatives of f will be appropriately discertized. The resulting
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scheme will be then

1 1
uitt =l - §TA(“§‘+1 —ujy) — kCuj + 5(7’1\)2(“2‘“ = 2uj+ )

1 1 1
7 rh(AC + CA) (4 — ) ) + 5 (RC)Pul 4+ Sk + )
1 1

—ZrkA( =) — §k20fj., 1=0,1,..., j=1,..,J —1.(3.3a)

To solve (3.3a) uniquely, we provide initial values

U? :uO(xj)a ] :0717277J7 (33b)

and specify at each time level t;, = [k, [ = 1,2, ..., boundary values ué“, uf,“. These

boundary values split into two groups: The first group, which we refer to as inflow

W )

boundary conditions is

The second group is
O @)

which we refer to as the outflow boundary conditions.

The inflow values are determined by the discretization of the boundary conditions
(3.1¢)-(3.1d), while the outflow values are obtained by introducing numerical bound-
ary conditions. In this work we shall consider two types of numerical boundary
conditions, the first type is upwinding in which u at the boundaries satisfy the
homogeneous version of the system (3.1a), and the second type is first order extrap-

olation.

Definition 3.1. The general horizontal extrapolation of order q for the outflow data
u atx=01s

(By = D™ (w) =0, ¢=0,1,..,

and that of u™ at x =1

(I-EN™ @wH)' ™ =0, ¢=01,..,
where Eiuj = ;.
Using boundary condition (3.1c), we write

DL (u) + ((Su)*), =0,
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which gives
I+1 l I
(qu)o - (qu)o —k ((Su)Jr)o' (3-4)
Since f is compactly supported in (0, 1), the outflow part of (3.1a) at x = 0 satisfies
u, + A u, + (Cu)” =0,
which is discretized as

D (u™)y + A7DY (u)y + ((Cw)7)y = 0.

0

Hence
(u,>g+1 = (I+7rA7) (u’)g —k ((Cu)’)é —rA” (1[)l1 . (3.5a)
An alternative numerical boundary condition is the first order extrapolation
()" =2 ()" = (), (3.5b)

The discretization of the right boundary conditions is treated in a similar manner.

3.2 Stability of the finite difference scheme

In solving linear hyperbolic partial differential equations numerically by means of
finite difference approximations, a principal difficulty both theoretically and in prac-
tice is the question of stability. For the “Cauchy problem” on the unbounded domain
(—00,00), a fairly complete stability theory based on the Fourier analysis has been
worked out during the last few decades by von Neumann, Lax, Kreiss, and others
[70, 72, 76|. For the “initial boundary value problem” on a domain such as [0, c0)
or [0, 1], however, Fourier analysis cannot be applied in a straightforward way, and
progress has been slower and technically more complex. Important contributions in
this area were made by S. Osher [67] and by H.-O. Kreis [60|, and are based on
various kinds of normal mode analysis that extend the Fourier methods. A com-
prehensive theory of this type was presented in an influential paper by Gustafsson,
Kreiss, and Sundstrom (briefly: GKS) [37]. The complicated algebraic conditions of
the GKS-theory were simplified in following work of Goldberg and Tadmor [38].

In this section we apply the GKS-theory to show the stability of the difference ap-
proximation (3.3)-(3.5a)(or(3.5b)) and the corresponding right boundary discretiza-
tion. We intend to provide both sufficient and necessary conditions for the stability
of this discrete IBVP. It appears that the IBVP does not have the standard form
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presented in the GKS-theory and thus, this stability theory is not directly applica-
ble.

The discrete IBVP under consideration is given with two boundaries. According to
the Theorem 3.2 below, which is valid for any of the GKS stability definitions, it
is sufficient to consider the problem on the positive plane x > 0, i.e., on the index

range 7 > 0.

Theorem 3.2. [[37|, Thm. 5.4] Consider the difference approzimation fort > 0 and
0 < x <1 and assume that the corresponding left and right quarter-plane problems
(which we get by removing one boundary to infinity) are stable, then the original

problem is also stable.

The idea behind the theorem is that the basic difference scheme (3.3) and each of
the boundary conditions separated into the two quarter plane problems that are
relatively nice to handle. Therefore, we will consider only the stability of the right
quarter plane problem, while the left quarter one is analogue.

To fit our approximation into the form discussed in [37|, we write (3.3) as

utt = Qub + kb, (3.6a)

u) = wup(z;), j=0,1,2 ., (3.6b)
where

1
Q = Z AJEi, E+Uj = Uj+1,

o=—1
Ao =T —kC — (rA)? + % (kC)?,
Asy = :F%TA + % (rA)* + irk (AC + CA),

1 1 1
bé- =3 (f]l-Jrl + f]l) - ZTA( Jl'+1 - Jl'—l) - chfjl"

The boundary values are written as
UéJrl = B()’()Ué + BLoull -+ Bl,lullﬂ + BQJUIQJA, (37)

where the above matrices are determined by the numerical boundary conditions

under consideration. For the upwinding case (3.4)-(3.5a), we have
It 0 STt St
By, = —k ;
0 I+4+rA~ c—t C—
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Bl,O = s Bl,l = BQ,I =0. (38&)
0 —rA~
However, if extrapolation (3.4)-(3.5b) is used, then

"o St gt
BO,O = —k ’
0 0 0 0
0 0 0 0
Bl,l = , BQJ = s Bl,O = 0. (38b)
0 —2I- 0 —1I~

There are different ways to define stability of finite difference schemes. GKS [37]
discussed some possible definitions of which we choose the one that allows us to
make use of the available results.

Let [*(z) denote the space of all grid functions u; = u(x;), z; = jh, j = 0,1, ...,

with 377 lu;]> < oo and define the scalar product and norm by
R 2
(w0 =Y hujoy,  ully = (w0
=0
We define [*(¢) and [?(z,t) in the corresponding way and denote by

(u7v)k = Z ku*(tl)v(tl)7 HuHi = (uv U)k,

(Ve = Y Y hkui(t)v;(t), — ullh, = (u, Wk,

j=0 1=0

the corresponding norms and scalar products.

Definition 3.3. /|37|, Def. 3.3] Assume that the initial function is zero. The differ-
ence scheme (3.6)-(3.8a)(or(3.8b)) is stable, if there exist constants co > 0,9 > 0
such that, for all t =1t, = lk, all « > g, and all h, an estimate

2
a—« a a— o —a a 2
(S ) el (2022 ) eretall < oo,

holds.
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While here the vector bé» of the basic scheme (3.6a) is a general combination of f and
its derivatives, in [37] we have b}, = fI. However, Goldberg et al. [38] showed that
this generalization does not affect the results of [37] and they raised the question of
stability in the sense of Definition 3.3.

The definition of stability for the difference scheme for the left quarter plane prob-
lem is the same, except that the norm is taken over the grid on (—oo, 1] and wy is
replaced by u;.

In the following, we shall reduce the above stability question to that of the principal
part of the scalar outflow approximations, i.e., the part obtained by eliminating the
terms of order k, k%, and all inhomogeneity vectors. This result is based on Theorem
4.3 of [37], which provides a necessary and sufficient determinantal stability crite-
rion given entirely in terms of the principal part of the approximations. The mere
existence of such a criterion implies that for the stability purposes we may consider
a basic scheme of (3.6)-(3.8a)(or(3.8b)) of the form

1
ug“ = ng, Q= Z AET,  FEiuj = ujq, (3.9)

o=—1
where
]\0 =1-— (T’A)2 s

1 1
Ai1:ZF§TA+§(7’A)2,

and the boundary conditions

(u*)é+1 = (u*)g, (3.10)
(u_)f;rl = (I+7rA") (u‘)é —rA” (u_)ll, (3.11a)
(W) =2 @) = (w)) (3.11b)

The scheme (3.9) is now consistent with
uy + Au, = 0.

We split the basic scheme and the boundary values into inflow and outflow parts

respectively
() = @)= () - ) )
L ) () =2 )+ () ,). (3.12)
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(u_)f;rl = (I +rA7) (u‘)é —rA” (u_)ll, (3.13a)
(), =2 ()" = (u)," (3.13b)
and
() = )= (), - ),
+ “2) (), =2 (@) + @),,). (3.14)
(u*)?l = (u+)f). (3.15)

Obviously, (3.6)-(3.8a)(or(3.8b)) is stable if and only if both parts are stable. Before
we proceed, we include the following assumptions that are necessary for the result

contained in this section.
Assumption 3.4. 1. The associated initial value scheme is stable.
2. The difference scheme is either dissipative or nondissipative.

A necessary condition for the stability of the initial value scheme is to satisfy the
CFL(Courant-Friedrichs-Levy)-condition. CFL-condition simply asserts that the an-
alytical domain of dependence is contained in the numerical domain of dependence.
For the LW-scheme, this gives

max A <1, (3.16)

e

Definition 3.5. [76]| The difference scheme (3.9) is dissipative of order 2s if there
exists ¢ > 0 such that the eigenvalues p1,,(§) of the amplification matrix of Q satisfies

the following estimate

(O <1 —clo*, 0] < .
This condition is equivalent to (see [72])

1, (0)]? < 1 —ésin®(0/2), ¢>0.
The amplification matrix of Q reads

I —irAsing — (rA)*(1 — cos®),
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with eigenvalues

py(0) =1 —irX,sinf — 2r*\2sin?(0/2), v=1,..,n.

This gives
(0 = [1—2(r)\,)2%sin?(0/2)]2 + (rA,)?sin?0
= 1-2(r)\,)%4sin?(0/2) + 4(rA,)?sin*(0/2) + sin? 0]
= 1—4(r\)%1 - (r))?sin*(0/2), wv=1,..,n. (3.17)

Thus, the difference scheme (3.9) is dissipative of order 4 if 7 is chosen to satisfy
O<|\r <1, v=1,..,n.

Since A is regular, Assumption 3.4 is fulfilled if the CFL-condition (3.16) is satisfied.
We split the outflow approximation (3.12)-(3.13a)(or(3.13b) into n — m scalar com-
ponents, each of the form

2

ot = - g(véﬂ —Vjq) + %( i1 — 205 + V) _y)
= %(/@2 + r)vh_y 4 (1= r*)h + %(/@2 — k)4 (3.18)
where k :=r},, for fixed A\, € A7, and
vp™ = vl — k(v — o). (3.19a)
or
vptt = 208 — 20kt (3.19D)

The scheme (3.6)-(3.8a)(or(3.8b)) is stable if and only if (3.12)-(3.13a)(or(3.13b))
and (3.14)-(3.15) are stable, and the latter are stable if and only if their scalar
components are. Lemma 2.3 of [38] shows that the scalar components of the inflow
approximation (3.14)-(3.15) are stable (for 0 < k < 1). So we conclude the main
result of this section

Lemma 3.6. The Approzimation (3.6)-(3.8a)(or(3.8b)) is stable if and only if the
scalar outflow components (3.18)-(3.19a)(or(3.19b)) are stable.

To discuss the stability of (3.18)-(3.19a)(or(3.19b)) we use the discrete Laplace trans-
form, which is one of the few approaches available for analyzing the stability of
difference schemes for initial boundary value problems. This approach is used to
transform out the temporal differences (time derivatives) and consider the scheme

in transform space as a difference scheme in j.
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Definition 3.7. The discrete Laplace transform of u = {ul} 15 the function u :=
L ({ul}) defined by

[e.e]
(z) == Ze’dul
1=0

where z € C, Rz > 0 and Sz € [—m, 7.

We take the discrete Laplace transform of equation (3.18)-(3.19a)(or(3.19b)) and

obtain the resolvent equation
1

) ) 1 )
20 = 5(/@2 + k)01 + (1 — K%)0; + 5(/@2 — K)j41, (3.20)

and the transformed boundary conditions
2170 = 1~)0 - Ii(f)l - 170), (321&)

Definition 3.8. The complex number z, |z| > 1, is an eigenvalue of equations
(8.20)-(3.21a)(or( 3.21b)) if

1. there ezists a vector © = [0y Uy ...]7 such that (z,0) satisfies equations (5.20)-

(3.21a)(or( 3.21b)), and
2. ||9]],, < oo.

Definition 3.9. The complex number z is a generalized eigenvalue of equations
(3.20)-(3.21a) (or( 3.21b)) if

1. there ezists a vector © = [0y Uy ...]7 such that (z,0) satisfies equations (5.20)-

(3.21a)(or( 3.21b)),
2. |z =1, and

3. Uy salisfies

Up(z) = lim 9 (w),
w—z,|lw|[>1

where (w,0(w)) is a solution to equation (3.20).
The result from [36] is given in the following proposition.

Proposition 3.10. The difference scheme (3.18)-(3.19a)(or(3.19b)) is stable if and
only if the eigenvalue problem (3.20)-(3.21a)(or( 3.21b)) has no eigenvalues and no

generalized eigenvalues.
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Theorem 3.11. The approximation (3.18) in combination with one of the boundary
conditions (3.19a) or (3.19b) is stable for —1 < k < 0.

To prove this theorem we apply Proposition 3.10 and the first part of the following
lemma, which describes the root of the characteristic equation of (3.20)
2
zk:k+g(k2—1)+%(k—1)2. (3.22)
Lemma 3.12. [60] There exists a § > 0, such that for the roots ki, ko of (3.22) the

following estimates hold

1. If k <0, then

k| < 1-—09, for|z] > 1,
|k2| > 17 fOT |Z|217 2%17
ky = 1, for z=1.
2. If k >0, then
|k1| < 17 fOT |Z|217 2%17
ky = 1, forz=1,
ko] > 143, for |z > 1.

Proof. [of Theorem 3.11] To solve the difference equation (3.20)-(3.21b) for |z| > 1,
we note that the general solution of (3.20) belonging to /() has the form
6_7' = k{(pla
where k; is the (smaller) root of the characteristic equation (3.22). We insert this
solution into the condition (3.21b) and obtain
gOl(kl — 1)2 = 0.

But, according to the previous lemma, |k; — 1| > 0. Hence, equations (3.20)-(3.21b)
have no eigenvalues.
To determine whether z = 1 is a generalized eigenvalue of (3.20)-(3.21b), we substi-

tute z = 1 into equation (3.22) and obtain

I€2:|:|I€| B 1 = kg
3 =

k:

R — KR
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2
K2+K <1 (for =1 <k <0), and
K2 — K

For this scheme, k; is not relevant, since |k;| =

hence k; will not satisfy equation (3.21b).

We notice that for |z] > 1, ko will satisfy |ke| > 1. This is the case because k; is
clearly inside the circle |z] = 1, so ko must be outside that circle. Since |z| = 1 is
associated with ko, the solution at |z| = 1, does not satisfy condition 3 of Definition
3.9. Thus, z = 1 is not a generalized eigenvalue, and the difference scheme (3.18)-
(3.19Db) is stable.

We emphasize that we have already assumed that the difference scheme is stable as
an initial value problem scheme. Hence, the stability proved here will be conditional
stability with condition —1 < k < 0.

Considering the case (3.19a), we substitute

b =kle, k| <1-4,
into boundary condition (3.19a)

v1(z =1+ kky — k) = 0.

For —1 < k < 0 (the stability condition for the Cauchy problem) and |z|] > 1, we

have

’Z—1+K)]€1—K,’ > '1+k1

z—1—k
> ]y —
l14+x—2
K
> 1 o—1)|—m 0.
> 14 )1+I€—Z >

It follows that (3.20)-(3.21a) has no eigenvalues.
Analogue to the computations used in the first part, we show that z = 1 is not a
generalized eigenvalue of (3.20)-(3.21a) . O

3.3 Numerical tests

In the following numerical experiments we compare the performance of the ABCs
and the FBCs, as well as the numerical approximation with FBCs for different

scaling matrices.
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3.3.1 Example 1

Consider the linear hyperbolic system

(1)) () A

u(z,0) = u’(z), v(x,0) = 0%

INSTICR
—_ =
~
VR
ST~
~
I
VR
a2 >
SRS
—
~
IS
m
‘w
O
o
£

~—

—~
o
[N}
wW
=5

~—

where u°, 0%, f and ¢g have compact support in (0, 1).

The corresponding steady equation on IR is given by

() () )(5) e o

with the decay condition
u,v — 0, 1z — Foo. (3.24Db)

[INY U=y

The zero and first order ABCs for the restriction to the interval 0 < z < 1 are,

respectively

u=0, x=0, (3.25a)
v=0, z=1, (3.25Db)
and
u+v/2=0, x=0, (3.26a)
v +3u/8=0, x=1 (3.26Db)

The matrix

2
s— (@23 yLavem
b 2b

transforms the steady state problem (3.24a) to the diagonal form. Diagonalize A~1C

e (172 0
SATLCS _<o _1/2>. (3.27)

For the decay condition to be valid we need

u+2v/3=0, x=0, (3.28a)
u+2v=0 x=1 (3.28Db)
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The first order FBCs combine ABCs (3.26) and the steady boundary conditions
(3.28), in analogue to (2.17),

ur + a(u+2v/3) =0, x =0, (3.29a)
v+ bu+20)=0, z=1. (3.29b)

The finite difference scheme introduced in the first section is used in the following

numerical tests.

(i) Consider (3.23) with zero initial condition, f = 0, and

cos?(m(z — 0.5)/0.9), z € (0.05,0.95),
g(x) =
0, elsewhere,
together with each of the boundary conditions (3.26) and (3.29). The conver-
gence as t — oo of the solution of the resulting IBVP to the solution of the
steady unbounded problem has been tested (h = 0.0005, r = k/h = 0.9). The
steady state solution (3.24) is given in Figure 3.1 and the convergence to this

solution is described in Figures 3.2 and 3.3.

u component Vv component
o 0.35 T -
0.3
—0.05
0.25
-0.1
0.2
0.15
-0.15
0.1
-0.2
0.05
—_0.25 . . . . . o
~15 -10 -5 o 5 10 15 -15 -10 -5 o 5 10 15
X X

Figure 3.1: Steady state solution of (3.24).

Figure 3.2 shows, with different choices of a and b, that the solution of (3.23)
with the new boundary conditions (3.29) converges in (0, 1) to the solution of
the steady unbounded problem. Figure 3.3 shows that this is not true for the
first order boundary conditions (3.26).

(ii) Using equation (2.20), the optimal choices of a and b are

)\2012 1 3 b )\1021 1
a = _ = -, =
A2 — Aj S12 4 A1 — A2 821

3
]’
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0.5 w w
a=0.65 b=2/8

a=0.75 0.4 —— b=3/8
-~ - 08 - - - b=7/16

o
N

L2[0,1]—err0r

0 5 10 15 20 25 30 0 5 10 15 20 25 30
time time

Figure 3.2: L2(0,1)—error between the solution with boundary condition (3.29) and the steady

state solution.

u component v component

60 50
507 ’ 40}
40+
30+
30t
20t
20t
10} 101
0 : : 0 - :
0 5 10 15 20 0 5 10 15 20
time time

Figure 3.3: L?(0,1)—error between the solution with boundary condition (3.26) and the steady

state solution.

and the FBCs (3.29a) become

3
ug + Z(u +2v/3) =0, x =0, (3.30a)
3
vy + g(u +2v) =0, r =1 (3.30b)

In this test we show that this choice, among other arbitrary choices, improve
the approximation for short time computations. The convergence to steady
state is tested, for arbitrary non-zero constants a and b, in part (i). Therefore,
for short time comparison, it is reasonable to consider f(z) = g(x) = 0.

Since an asymptotic approximation is used to localize the exact nonlocal
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boundary conditions, we consider a highly-oscillatory initial data (2.7).

cos? (2w (z — 0.5)) sin(27pz), r € (0.25,0.75),

0, elsewhere,

u(z,0) =v(x,0) = {
(3.31)
The cases p = 10, 20 are described in Figure 3.4.

0.3 0.4 0.5 0.6 0.7 0.3 0.4 0.5 0.6 0.7
X X

Figure 3.4: Initial values (3.31). Left: p = 10. Right: p = 20.

The error between the exact solution and the solution with the boundary
condition (3.29) for different values of a and b has been tested. The absolute
errors of the inflow data (u at = 0 and v at x = 1) and the L*(0, 1)-error

are considered. The step size is chosen small (A = 0.0005) in order to estimate

x 107 Absolute error of u at x=0 x 107 L2-error of u on [0,1]
8 : :
a=0.65 a=0.65
a=0.75 o a=0.75
6l - — -a=0.8 |] - — -a=0.8
4t 1
YII\‘»(\Y\ . ,/ \\\\\
. I.]l" . i S~
L i i / -~
2 K Il'VHH i B v
r._' i B >] lll /
g e
0 A A anaA 0 E— ‘
0 0.5 1 15 0 0.5 1 15
time time

Figure 3.5: Comparison of the error between the exact solution u and the solution with boundary

conditions (3.29) for different values of a.

the errors due to the boundary conditions and not the discretization errors. In
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case p = 10, Figures 3.5-3.6 clearly show that our choices of a and b give the

minimum error. The same result holds for the case p = 20.

-3

absolute error of v at x=1

-4

X 10 X 10 L2-error of v on [0,1]
15 4 \ \
b=2/8 b=2/8
—b=3/8 —b=3/8
— — -b=7/16 3t — — -b=7/16 |-
1 L 4
2 L
05} e ST
'/U[!r"l:, 1t : // ~ .
Jy e /
1y gt
0 Al 0 ]
0 0.5 1 15 0 0.5 1 15
time time

Figure 3.6: Comparison of the error between the exact solution v and the solution with boundary
conditions (3.29) for different value of b.

(iii) In this example, we test the dependence of the boundary condition on the
initial frequency. We consider the system (3.23), boundary conditions (3.30),
and the initial data (3.31). In the case p = 10, Figure 3.7 compares the absolute
error of inflow data for different refinements of the space step size h. Figures

3.8-3.9 show the same comparison but for the case p = 20.

X 10‘5 absolute error of u at x=0 X 10_5 absolute error of v at x=1
3 \ 2 :
h=0.001 h=0.001
25+ — — -h=0.0005 — — -h=0.0005
—— h=0.00025 1.5} — h=0.00025
2 L
15} 1t
1 L
05f
0.5¢
0 ‘ o i 0 ‘ L | W
0 0.2 04 0.6 0.8 0 0.2 0.4 0.6 0.8
time time

Figure 3.7: Comparison of errors between the exact solution and the solution with the boundary
conditions (3.30) for different h, p = 10.

Tables 3.1-3.2 list the maximal absolute errors at the inflow data, the tables

show that as h is getting smaller the error is reduced slower. As a result the
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X 10‘5 absolute error of u at x=0 X 10‘5 absolute error of v at x=1
15 \ 1 ‘
h=0.001 h=0.001
— — -h=0.0005 08| — — -h=0.0005
1f| —— h=0.00025 Dih 1 ——— h=0.00025
R 061
051 041
0.2r
0 ‘ 0 :
0 0.2 0 0.2

time
Figure 3.8: Comparison of errors between the exact solution and the solution with the boundary
conditions (3.30) for different h, p = 20.

x10°¢ absolute error of u at x=0 X107 absolute error of v at x=1
5
5 4t
4t
3 L
3 L
2 L
2 L
1 L 1
0 . 0 .
0 0.2 0.4 0.6 0.8 0 0.2 0.4 0.6 0.8
time time

Figure 3.9: Comparison of errors between the exact solution and the solution with the boundary
conditions (3.30) for A = 0.0001 and p = 20.

last row of the two tables are good approximations of the errors due to the
boundary conditions (3.30). The maximal absolute error for the case p = 10 of
watx = 0andvatx =1are2.5702-107° and 1.9215-107°, respectively. In the
case of p = 20, they are reduced to 5.5009-107% and 4.1164- 1075, respectively.
This shows that with highly oscillating initial data the errors become smaller,
which agrees with the approximation of the nonlocal exact boundary condition

(2.7) with asymptotic expansion.
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h watxz =0, (-107°) vat z =1, (-1079)

0.001 2.5997 1.9439
0.0005 2.5713 1.9227
0.00025 2.5702 1.9215

Table 3.1: Maximal absolute error, p = 10.

h watz =0, (-107°) vatz =1, (-1079)
0.001 11.079 8.2997
0.0005 6.0525 4.5299
0.00025 5.5394 4.1452
0.0001 5.5009 4.1164

Table 3.2: Maximal absolute error, p = 20.

Convergence to the steady state

Using the Laplace transform approach, we want to prove the convergence of the

IBVP in Example one to the steady state solution. Namely, we consider

U 1 0 U 1 '\ f(x)
() () () ()0 (1) e oo

u(z,0) = u’(z), v(z,0) = (), (3.32b)

L
—_

with the first order FBCs
3
ut—l—Z(u—l—Qv/B) =0, z=0, (3.32¢)
3
v + é(u +20)=0, z=1, (3.32d)

The corresponding steady state equation on (0, 1)

u* 1 u* B f(.?i')
(“);(— —1><U*>—<_g(x)>,0<x<1, (3.33a)

and the transparent boundary conditions

[INQIJC

u 4+ 20"/3=0, x=0, (3.33b)
w20 =0, z=1. (3.33¢)
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Define v as

Then, v satisfies

(%] 1 0 V1 11
- +
V2 : 0 —1 (%) - 1 1

oo (@) (@)~ @)

0 ( () ) ( 2(r) — 0" (x) ) -
V1t + %}1 + %vg =0, =0, (3.34¢)
Vot + gvl + %Ug = O, r = 1. (334d)

We write

o(x,s) = / e *u(x, t)dt, s=a+ir T,a€ R, «a>0,
0

to denote Laplace transform in ¢. Taking the Laplace transform of (3.34), we obtain

o\ [ —(1+s) -1 o 9 (z)
(5) (00 Y (5)o (40 ) vercr o

3 1
s+ 701+ 50 = v)(0), x =0, (3.35b)
3 3
5O + gl + 70 = v9(1), T =1. (3.35¢)

Since Rs > 0, (3.35a) has the two eigenvalues,  and —7, where

n=+/(1+5)-3/4,

and 1n > 0.
The eigenvectors of 1, —n read respectively

() ()

The solution of (3.35) is written as a sum of homogeneous and particular solutions

BRI
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v —1 1
151 =0 e + oy e ", (3.37)
va ), n+s+1 n—s—1

U1 . . .
- > is any particular solution.
p

where

and vy(z, s) = (

Using variation of parameters, v, can be found as

U2

le,9) = vles) [ 0 W),
0
where
_en e
/éz)(x? S) - Y
m+s+1)e™ (n—s—1)e™
is the fundamental solution. This can be simplified and written finally as
5 . [ vi)cosh(n(z —y)) — 1 ((s + 1)} (y) + v(y))sinh(n(z — y))
( ! ) = / dif3.38)
0 0

v (y)cosh(n(x —y)) + 5 (§07(y) + (s + 1vg(y))sinh(n(z — y))

Applying boundary conditions (3.35b)-(3.35¢) to (3.36) gives

Vg

o1 v7(0)
B(s) - , (3.39)

where B(s) is given by

n—s—1/2 n+s+1/2
B(s) = (3.40)
(s+3/4)(n+s+1)—3/8e" [(s+3/4)(n—s—1)+3/8 e

h(s) := —(s + 3/4) b9, (1) — 301,,(1)/4 + 0(1).

The equation (3.39) has a unique solution if and only if the determinant of B(s) is
nonzero.
Denote the determinant of B(s) by dg(s), then

dp(s) = (45 + 10s® + 65 + 3/4) sinh(n) + (4s® + 65 + 3/2) cosh(n).
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Now,
dp(s) =0, (3.41)

has no solution with positive real part (Figure 3.10), and it has only real negative
roots (Figure 3.11). Using (3.39) we solve for oy, 09, and substitute the result in

50 -
— s=it
— $=0.24it
~ — 5=0.8+it
)
o 0
]
-50 :
-60 0 80
i)idB(s)
600 -
— s=1+t
— s=1.64it
0
- 0
]
-600 :
-600 0 600
Rd (s)

B

Figure 3.10: Contour plots of dg(s) for s x Ss € [0,1.6] x [—10, 10].
(3.37) to obtain

U1 . 1 —1 . 1 S i
<62 ) ~ dp(s) <77+8+1>h1(8)6 +<77—5—1>h2() +<1§2 >IE3.42)

hi(s) :=[(s +3/4)(n—s—1)+3/8v)(0)e™ — (n+ s+ 1/2)h(s)],

ho(s) == [—(s +3/4)(n+ s+ 1) 4+ 3/8]v2(0)e” — (n — s — 1/2)h(s)],
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and the particular solution is given by (3.38).

Using the inversion formula,

1 B+ico
v(x,t) = —/ 0(z, s)eds,
B

21 S5 oo

where 3 is larger than the real part of any pole of the integrand. The poles of the
first part of (3.42) are simply the zeros of the dg(s), which are simple poles and have
negative real part, while the second part has no poles. According to the complex

inversion theorem [21]

( Ui ) = Zresidues of e ( 131 ) at each of its singularities in C
Vo %) h
—1 1 est
e h n _|._ h -n —_
[ L R S e

where s; € IR (Figure 3.11). Hence, v converges to 0 as t — oc.

40

R dy(s)
o
T
I

0
@
UCD _0 5 | -
(v}
_1 | -
_15 1 1 1 1 1 1 1
“12 -10 -8 % s -4 -2 0 2 4
0
_5 -
— Rdy(s)
— 349
_10 | 1 1 1 1 1 1
-7 -6 -5 -4 53 -2 -1 0 1

Figure 3.11: Graph of dp(s), s € IR.
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3.3.2 Example 2

Consider (3.1a) in IR with

Uy 1 0 0 02 0 1
u=|uw |, A=]002 0o |, Cc=| 0 04 2|, (343
us 0 0 —0.8 -1 -2 1

and f(flfat) = (fl(x)a fl(x)a fl(x))Tv where

10 exp(—100(2z — 1)?), x € (0.25,0.75),
0, elsewhere.
The initial function is given by (Figure 3.12)
—0.5)/0.9 0.05,0.95
uO(x) — COS('R’(I’ )/ )7 € e ( ) )7 (345)
0, elsewhere.

In the first part of this example we compare the performance of the FBCs and

Initial condition F(x)

1 . T T 10
0.8 ] st
0.6} , , ] 6f
0.4t ] al
0.2r J 2l

0 . . . . 0 - -

0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1
X X

Figure 3.12: Left: Initial condition (3.45). Right: Forcing function (3.44).

ABCs for long time computations. The first order ABCs for the restriction to the
interval 0 <z <1 are

ury + 0.444u3, =0, 2 =0, (3.46a)
ugy + 1.6us;, =0, =0, (3.46b)
ugy — 0.5556u;; — 0.4ug, =0, x=1, (3.46¢)
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while the first order FBCs read
uf + V(ST +STTuT) =0, =0, (3.47a)
u, + V(ST +S5TTuT) =0, z=1 (3.47Db)
The matrix S, which diagonalizes A~1C, is given by

—0.2287 —0.6791 —1.0083
S = 1.0522 —0.0952  0.0656
—0.2690 —0.4004  1.1275

v*:(g b), Vo=e
c d

are chosen as a general solution of VST~ = X|"~ and V=5~ = X", respectively.

The scaling matrices

Following the procedure presented in Section 1.2, we take

et ( —0.4389 0.0285

. V* = 1.3306.
~1.5801 0.1028

The stepsizes are chosen small in order to see the errors due to different boundary
conditions and not the discretization errors (h = 0.0005, k& = 0.0004). It is clear that
the CFL-condition, max;_j 23 [rA;| < 1, is satisfied.

The steady state solution is given in Figure 3.13-Right and the convergence to this
solution as t — oo in (0,1) is described in Figure 3.14. In Figures 3.15-3.17 the
solutions with FBCs for different choices of the scaling matrices are compared to
the exact solution over (—oo, 00). The plots show that the FBCs with the proposed
optimal choices of V', V= give the best approximate solutions in the transient phase
to the exact solution in the unbounded domain.

Tables 3.3-3.5 list the maximal absolute errors at the inflow data (uy,us at x = 0
and uz at * = 1). As well as the L?*(0,1)—error between exact solution and the
solution with the boundary condition (3.29) for different values of a, b, ¢, d, and e.
The numerical results give quantitative evidence that the FBCs are useful for both

short and long times.
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a, b |abs.errorat z=0  L*0,1)—error
—0.2, 0 0.0804 0.0548
—0.8, 0.2 0.0829 0.0506

a* b* 0.0318 0.0293

Y

Table 3.3: Maximum errors due to the first order FBCs of u; for different choices of a and b, see
also Figure 3.15.

c, d | abs. error at x =0  L?*(0,1)—error
—1, 0 0.2208 0.0664
—-25, 0.5 0.1312 0.0430

o d 0.1233 0.0408

Table 3.4: Maximum errors of us due to the first order FBCs for different choices of ¢ and d, see
also Figure 3.16.

e |abs.erroratz =1  L?*(0,1)—error
1 0.1080 0.0421
2.5 0.0943 0.0468
e 0.0875 0.0344

Table 3.5: Maximum errors due to the first order FBCs of us for different choices of e, see also
Figure 3.17.
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exact solution steady-state solution

time 0 4

Figure 3.13: Left: Exact solution. Right: Steady state solution.
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L2[O,1]—error between the solution u L2[0,1]—error between the solution uy
with FBC and the steady-state solution. with ABC and the steady-state solution.
0.8 0.8
0.6 0.6
0.4r 0.4f
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Figure 3.14: Convergence to the steady state solution as t — oo in (0, 1).
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Figure 3.15: Comparison of the errors between the exact solution of u; and the solution with
FBCs for different choices of a and b.
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Figure 3.16: Comparison of the errors between the exact solution of uz and the solution with
FBOCs for different choices of ¢ and d.
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Figure 3.17: Comparison of the errors between the exact solution and the solution with FBCs
for different choices of e.
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Chapter 4

Numerical solution to

nonlinear KG equations
by PML approach

Abstract
It is a common practice to use absorbing boundary conditions when
simulating waves in unbounded domains. In this paper, we propose a
perfectly matched layer (PML) approach for the numerical solution to
nonlinear Klein-Gordon (KG) equations. The procedure includes four
steps: Firstly, the nonlinear KG equation is transformed into a semi-
linear hyperbolic system with a damping term by introducing auziliary
unknown functions. Secondly, we linearize the damping term and de-
sign a PML formulation for the linearized system. Then, we derive a
nonlinear PML system by replacing the linearized damping term with
its original nonlinear counterpart. Finally, an implicit-explicit finite
difference scheme is used to solve the nonlinear PML system. This
approach is next extended to the two-dimensional case. The numerical
tests show the efficiency of this “PML linearization” over other local

absorbing boundary conditions.

4.1 Introduction

! Waves in unbounded domains exist in a wide range of application areas, such
as quantum mechanics, aeroacoustics, electromagnetics, fluid dynamics, and geo-

physics [29]. When seeking numerical solutions of the governing partial differential

!The content of this chapter is a joint work with my Ph.D. adviser A. Arnold and C. Zheng [4]
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equations, it is a common practice to use absorbing boundary conditions (ABCs) to
limit the computational domain to a finite region. An appropriate ABC should have
the following three features: It should define together with the interior differential
equation a well-posed (initial boundary value) problem. Its solution should be a
“reasonably accurate” approximation of the original whole space solution. Lastly, an
ABC should allow for an efficient numerical implementation.

Most ABCs in the literature can be classified into PDE-based and material-based.
PDE-based ABCs are imposed on some specific artificial boundary. For wave-like
equations, they are obtained by factorizing the governing equation into incoming
and outgoing modes, while “minimizing” reflections of the outgoing waves. The read-
ers are referred to |78, 40, 31, 53, 5| for detailed reviews. Material-based ABCs
follow a different philosophy. Instead of using artificial boundaries to limit the com-
putational domain, they use a lossy medium surrounding the physically interesting
part of the domain to annihilate (or at least damp) the outgoing waves [42].

Very often, methods based on the pseudodifferential operator theory are used to
design approximate PDE-based ABCs. Engquist and Majda [24] were the first to
apply this technique to the numerical simulation of waves. Most recent approaches
in this direction include [73, 74| by Szeftel. There, he derived a hierarchy of local
ABCs for semilinear wave equations and nonlinear Schrodinger equations based on
the pseudodifferential and paradifferential calculus.

Material-based ABCs have been used to deal with wave problems for three decades.
In early versions, dissipative or damping terms were added into the governing equa-
tions [58, 59| to form an absorbing layer. Later, purely numerical means have been
used to achieve the attenuation of waves. Rai and Morin [69], Colonius et al. [19]
created a sponge layer by the grid stretching technique. Hu and Atkins [56| pointed
out that the stretching has to be performed gradually, otherwise significant reflec-
tion can be induced. In 1994, Bérenger [13] proposed his famous perfectly matched
layer (PML) for computational electromagnetics. The advantage of the PML lies in
the fact that the absorbing layer is theoretically reflectionless for multi-dimensional
linear waves of any angle and any frequency. As a result, the zone of the PML is
usually thin compared with that of other absorbing layer techniques.

The original PML technique of Bérenger was based on the split physical variables
that was shown to be only weakly well-posed [1]. Later studies revealed that the
PML can be considered as a coordinate stretching from the real space to the complex
plane [15, 79, 16, 17| and a well-posed unsplit PML can be achieved. Extensive
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work on the applications of the PML technique has been done, however, only recent
studies extended it to some nonlinear problems. For example, Hu [55] applied this
technique for the nonlinear Euler equations, and Navon et al. [66] for the nonlinear
shallow water equations.

In this paper, we shall apply the PML technique to the nonlinear Klein-Gordon
(KG) equation of the form

uy = EAu — o(u, uy, Vu), (4.1)

where ¢ is a given scalar function. This equation has many applications in science
and engineering. The linear KG equation plays a fundamental role in quantum field
theory [80], and it models the motion of a massive spinless particle in the relativistic
regime. In the study of semi-conductor devices, the sine-Gordon equation (i.e. (4.1)
with ¢ := sinu) is commonly used to model the propagation of fluxons in Josephson
junctions. Furthermore, it is used to study the motion of rigid pendula attached to
a stretched wire and dislocations in crystals [20, 22]. Well-posedness of the Cauchy
problem for the nonlinear KG equation was studied in [65].

For the linear KG equation, Givoli and Patlashenko [33| designed a series of high-
order local ABCs. Later, Givoli and Neta [32] modified these ABCs into a form with
only low-order derivatives by introducing auxiliary unknown functions. Zahim and
Guddati [81] applied their continued fraction ABC to this problem. Using some spe-
cial padding elements, they reduced the reflection of evanescent waves significantly.
For the one-dimensional sine-Gordon equation, Zheng [82| revised the generalized
Dirichlet-to-Neumann mapping proposed by Fokas [27] and designed a suitable nu-
merical scheme. This approach uses inverse scattering theory and it relies on the full
integrability of the sine-Gordon equation. Hence, the extension of this technique to
higher dimensions and other nonlinear KG equations seems impossible.

The main goal of this paper is to apply the PML approach to the nonlinear KG
equation. To this end (4.1) is first linearized and transformed into a hyperbolic sys-
tem with a linear damping term. The standard PML technique is then used for
this linearized system. A nonlinear PML system is then obtained by replacing the
damping term in the PML formulation with its original nonlinear counterpart.
This paper is organized as follows: In Section 2 we illustrate the PML for the one-
dimensional KG equation, both for linear and nonlinear cases. In Section 3 we extend
this technique to higher dimensional cases. An implicit-explicit scheme is used for

solving the nonlinear PML system in Section 4. In Section 4.5 we present some
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numerical tests to demonstrate the effectiveness of our approach. We conclude in

Section 6.

4.2 One-dimensional KG equations

We start with a linear KG equation of the form

Uy = CUypy — Lu, © >0, t>0, (4.2)
u(0,t) = B(t), u(z,0) = ug(x), us(z,0) = uy(z). (4.3)

Here, the constant ¢ > 0 is the wave speed and L > 0 is the dispersion parameter.
Further we assume that the initial functions uy € C[0,00) and u; € C[0,00) are
compactly supported in [0, a], with some fixed a > 0. To assure continuity of the
solution to (4.2)-(4.3) we assume B € C'[0,00) and B(0) = 0.

First we transform (4.2)-(4.3) into a hyperbolic system with damping term. Let
v = u, and w := u;. Then (4.2)-(4.3) is equivalent to

U =W, Uy =Wy, Wy = vy — Lu, x>0, t>0, (4.4)

w(0,t) = B'(t), u(x,0) = ug(x), v(z,0) =uy(x), w(z,0) =u(x). (4.5)
By taking the Laplace transform in ¢ of (4.4), we obtain on the domain [a, c0)
St =1, sO=1,, s =c*,—La, > a. (4.6)

Here, s € C with Rs > 0 is the dual variable of ¢. For given s, the bounded modal
solution of (4.6) is

6>\£E+St -\ 6>\£E+St

u(z,s) = , 0(x, s) iz, 8) = s g >aq, (4.7)
with arbitrary ¢ > 0 and
Vs + L
—
Here, {/z denotes the branch of the square with £({/z) > 0.

The idea of the PML method is to replace (4.4) by an equivalent whole space prob-

A= —

lem, whose solution decays outside the computational domain (i.e. on [a, 00)) faster
(i.e. with a higher exponential rate) than (4.7). Eventually, this new problem will
be cut-off at a finite distance and “closed” with an appropriate boundary condition

(Dirichlet, e.g.). The PML can also be interpreted as an extension of the independent
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real coordinate x to the complex plane [15, 79, 16]. More precisely, we introduce

the complex change of variables:

1
s+«

=1 (x) =2+

/:v o(r)ydr, x>0, (4.8)

where the phase shift parameter @ > 0 and the absorption function ¢ > 0 vanish in

0, a]. Then, we define modified modal functions as @™ (x, s) := u(z'(x), s), 0™ (z,s) :
0(a'(x),s), W (z,s) = w(z'(x),s) for x > 0. For x > a they read

Az’ +st

W (z,s) =e L 0™z, s) = At

L ™z, 8) = s (4.9)
Notice that for different modal solutions (parametrized by s) the corresponding
variable transformations (4.8) are different. According to the transformation (4.8),

m

the modified functions ™, 0™, w™

coincide with @, ¥, @ on the a-interval [0, a.

However, in [a, c0) each component is modified by the factor

- (Sia /ax a(r)dr) = exp( \/j:j >

with amplitude
+ 82 + L x
‘Cf‘ = exXp <—§R (m) /(; U(T)dr) .

Apart from the absorption function o, the damping rate strongly depends on the
t/s +L

real part of y := . To explain why to introduce a positive phase shift o, we
depict in Flgure 4.1 §Ru when s € 7[R
We divide C — {j:\/f 2} into two parts: The open line segment (—+/L, /L) x i and

_ 2+ L
C

its complement. For any s in the first part, A = is a negative real number
and the modal solution (4.7) represents an evanescent wave. On the other hand, for
any s in the second part, A is purely imaginary and the modal solution (4.7) repre-
sents a traveling wave. Now, compare the two cases a« = 0 and a > 0. When a = 0,
we always have Ry > 0 for the traveling waves, thus the PML technique can indeed
damp the modal solution. But for the evanescent waves, we have Ry = 0. In this
case, although the modal solution itself represents a decaying function, the PML
technique cannot improve the decay, and the only effect is a phase transformation
of the modal solution. If & > 0, then Ru > 0 for both the traveling and evanescent
waves, see Figure 4.1.

Figure 4.1 also shows that a must not be negative. Otherwise, the modified modal
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=
=
—0.2f \ ' — =0
—0.4a} \ O
\ / — o=—1
-0.6 \ 7
0.8} \ /
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s

Figure 4.1: Real part of y for L =1 and s € i[R.

solution could be exponentially increasing as x goes to infinity. A natural question
would be how to chose the phase shift a. First we mention that the damping factor
Ruu(s; o) — 1 for high temporal frequency, i.e. for 2 — Fo0. Hence, a natural option
would be to minimize |1 —Ru(s; )| r2(m,,) w.r.t. @ > 0. But since we are ultimately
interested in the nonlinear KG equation, we do not elaborate on this issue here.
The exceptional cases s = ++v/Li yield A = 0. Hence, the modal solution is inde-
pendent of x and Cy = 1. Thus, the PML method would not be able to damp such
waves. In the numerical example 1 (cf. §4.5.1) this corresponds to the frequency
w=1.

Next we seek a PDE system that is satisfied by the modified modal functions (4.9).

Using (4.6) and
o'  s+a+o(x)

or s+a
we conclude that the modified modal functions satisfy

) s+a sta o
=", st" = ———— ), s0" = —————c*0) — Lu™  on [a,00).
s+a+o(x) s+a+o(x)

(4.10)

In order to avoid higher order time derivatives when going back to the time domain,
we introduce the auxiliary variables

25m
ot (x, s)

7" = > 0.
(z,5) s+a+o(z) r=

wi(z, s)
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The system (4.10) then becomes

U™ = 0™, (4.11)
so™ =l —o(x)p™, (4.12)
s™ = 0" — LA™ — o(x)§™, (4.13)
sp"t = w)' — (a+o(x))p™, (4.14)
s¢™ = 0" — (a4 o())§™. (4.15)

Going back to the time domain, we obtain the PML system for the linear KG
equation (4.2)

ut =w", (4.16)
vt = wy' —op™, (4.17)
w = " — Lu™ — oq™, (4.18)
plt =wy' — (a+o)p™, (4.19)
Q" =" — (a+o)g™. (4.20)

This system was derived for [a,c0), but we can naturally extend it (setting oy, =
0, &|[,q) = 0) to the whole definition domain [0, 00) of the original problem (4.2)-
(4.3). Since the system (4.16)-(4.20) has only one right traveling characteristic, the

only boundary condition is then
w™(0,t) = B'(t), (4.21)
and the initial functions are

u™(z,0) = ug(x), v"(2,0) = uy(x), w™(x,0) =uy(x), p™(x,0) =q¢™(x,0) = 0.
(4.22)
The equations (4.16)-(4.20) constitute a hyperbolic system with damping term. By
construction, the solution of (4.16)-(4.20) restricted to [0, a] is exactly the same as
that of the original problem (4.2)-(4.3) restricted to [0, a.

Next we consider a more general linear KG equation of the form
Uy = gy — (U, up, ug), x>0, t>0, (4.23)

where p(u, uy, u,) := Liu+ Loug+ Lyu,. The constants are assumed to satisfy L; > 0,
Ly > 0, and Ly € IR which makes ¢ a damping term. The above PML derivation
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can be made analogously, but we omit the details here. The resulting modified PML

system reads for x > 0, ¢ > 0 (dropping the superscript m):

U = w, (4.24)
vy = W, — op, (4.25)
w; = v, — o(u, w,v) — oq, (4.26)
pe=w, — (a0 +0)p, (4.27)
¢ = v, — (a +0)q. (4.28)

As before, « > 0 and ¢ > 0 are supported outside the computational domain, i.e.
on [a, o).

Notice that in our modified PML system (4.24)-(4.28) for the general linear KG
equation (4.23), the damping term ¢ only appears linearly.

Next we consider the KG equation with a nonlinearity ¢. In order for ¢ to be

damping, we assume that it can be written in the form
QO(U, Ut, ux) = Ll (ua Ut, um)u + L2 (U, Ut, um)ut + LS(ua Ut, ux)u:ta

with Ly > 0, Ly > 0, and L3 € IR. We remark that this representation of ¢ is not
unique, and the validity of the above constraints on L; may depend on the particular
choice of representation. Many nonlinear KG equations of physical interest belong
to this class. For the sine-Gordon equation with ¢(u) = sinu and L; = 2 this
holds true if u lies in the interval [—m, 7]. More examples will be given in Section
4.5.

To construct a PML system for this semilinear hyperbolic system, a natural idea is
to substitute the nonlinear function ¢ into the system (4.24)-(4.28). This treatment
of nonlinear terms can be considered as a special linearization. In contrast to the
direct linearization (i.e. in the equation) of nonlinear terms, it yields, however, also
a nonlinear hyperbolic system in the PML zone. And for the trivial choice ¢ = 0
one still recovers the original nonlinear KG equations on [0, 00). Therefore, we can
reasonably expect that the nonlinear PML system (as a treatment of the open
boundary) yields a better approximate solution than the direct linearization. This

is illustrated by the numerical tests given in Section 4.5.
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4.3 Two-dimensional KG equations

An advantage of PML over other absorbing boundary techniques is the easy exten-
sion to higher dimensional problems. First we consider the following nonlinear KG

equation in two dimensions
Uy = Uy + Uyy) — P(U, Up, Uy, 0y). (4.29)

We consider this problem on a duct with uniform rectangular tail, say [0, 00) X
[—b,b] C IR?, and derive a PML system for the exterior region [a,o0) x [—b, b]. The
PML hyperbolic system for equation (4.29) can be obtained by a minor modification
of the system (4.24)-(4.28):

4.30
4.31
4.32
4.33
4.34
4.35

Uy = W,
Vit = Wy — 0P,
Vot = Wy,
9 2
wy = V1 5 + gy — (U, w, vy, v2) — 04,

pe=wz — (o +0)p,

(4.30)
(4.31)
(4.32)
(4.33)
(4.34)
(4.35)

G = CQULI — (a+o0)q.

Here we introduced v, := u, and vy := wu,. The boundary and initial data for the
nonlinear Klein-Gordon equation (4.29) are then transformed for the new unknown
functions in (4.30)-(4.35) in analogy to (4.21) and (4.22).

For two-dimensional exterior problems, the generalization is also straightforward,
but in this case, more auxiliary unknown functions have to be introduced. For sim-
plicity, we only consider the Cauchy problem. Suppose the initial functions are locally
supported in a rectangular domain [—a,a| x [—b,b]. We introduce two absorption

functions o, = o0,(z) and o, = 0,(y). 0, vanishes on [—a,a] and o, vanishes on
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[—b,b]. The modified PML system thus reads

4.36
4.37
4.38
4.39
4.40
4.41
4.42
4.43

Uy = W,
V1t = Wy — OzP1,
Vot = Wy — OyP2,
_ 2 2
Wy = CV1 g + U2y — (U, W, V1, V2) — 021 — 0y G,
P1it = Wy — (04 + U;t)pla
P2t = Wy — (O[ + O-y)p%

Q= vy, — (a+02)q,

o o e e e e e T
— O e e e N N e

G2t = 020273, — (a4 0y)qe.

Initial boundary value problems can be dealt with analogously.

4.4 Numerical scheme

In the real implementation, the PML zone has to be truncated at some x = a >
a, and an auxiliary boundary condition is needed on the exterior PML boundary.
Owing to the strong damping property of the PML zone, a homogeneous Dirichlet or
Neumann boundary condition can serve this purpose, provided it yields a well-posed
truncated problem. For our problems we use a homogeneous boundary condition for
the one incoming the characteristic of the hyperbolic part of the PML system. In
the example (4.24)-(4.28) this reads

cv(a,t) +w(a,t) = 0. (4.44)

To design a suitable numerical scheme, we confine ourselves to the one-dimensional
PML system (4.24)-(4.28), with ¢ possibly nonlinear. This is a semilinear, weakly
hyperbolic system with a stiff damping term when ¢ is large. To guarantee stability,
a very small time step must be used for any explicit numerical scheme, which would
greatly increase the computational cost. In this paper, we employ the well-developed
implicit-explicit (IMEX) Runge-Kutta schemes to overcome this difficulty.

Let us first consider a large ODE system

U, = H{U) + S(U), (4.45)

which might come from the discretization of the spatial derivatives of a complex

PDE problem. H corresponds to the hyperbolic term, while S (which is supposed
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to be stiff) corresponds to the diffusion or —as in our case— reaction terms. This
means that there are two significantly different time scales involved in (4.45). A
normal implicit ODE solver can guarantee numerical stability. However, at each
time step, a nonlinear algebraic system with a large number of unknowns (most of
them coupled) have to be solved which makes these schemes inapplicable. The idea
of IMEX Runge-Kutta is to use an explicit scheme on H and an implicit scheme
on S. The overall scheme is still implicit. But in this case the resulting nonlinear
algebraic system can be decoupled into many smaller nonlinear algebraic systems.
Thus, the overall computational cost is acceptable.

Suppose that At is the time step and the numerical solution at the n-th step is U,.
The IMEX Runge-Kutta approximation for the n + 1-st step is realized by

i—1 v
Uh — 4+ AtZ&in(U(j)) + AtZaijS(U(j)); i=1,---,v, (4.46)

j=1 j=1
U1 = Up + ALY i HUD) + ALY " wS(UD). (4.47)
i=1 i=1

Here, the matrices A = (@), a; = 0 for j > i and A = (ay;) are v X v matri-
ces. A and W = (i;) correspond to an explicit Runge-Kutta scheme, while A and
W = (w;) correspond to an implicit Runge-Kutta scheme. For efficiency of solving
the nonlinear algebraic system corresponding to the implicit part, it is natural to
consider diagonally implicit Runge-Kutta (DIRK) schemes for the damping term,
ie., a;; =0 for j > 1.

For a second-order time integration, we use the following implicit-explicit midpoint

scheme
M At M
U™ = U+ 3 (H(U,) +SUM)), (4.48)
Upir = U, + At(HUW) + S(UD)). (4.49)

The reader is referred to [9, 68] for more details on IMEX Runge-Kutta schemes.
The PML system (4.24)-(4.28) for nonlinear KG equations can be written as
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with Q = (u,v,w,p,q)T, and

00 0O0O w

00 100 —o(x)p
A=10 ¢ 00 0 |, S=| —o(u,w,v)—o(x)qg

00100 —(a(z) +o(x))p

0000 —(a(z) + o(x))q

With mesh size Az, the spatial variable is discretized using a second order finite-

volume scheme. We introduce the grid points as
. 1 .
x; = jAuw, Tl :xj+§Ax, j e Ny
and use the standard notations

i-3

By integrating (4.50) over I; = [xj_%,xﬂé] and dividing by Az we obtain

= 1 1 T+l
Qjt = E(AQ(ijr%’t) — AQ(xjfé,t)) + N /:E S(Q(x,t), z)d.

[N

Within second order accuracy, the average of the damping term S(Q, x) can be taken

as
Wy
1 Ti+d 93P
1 o - _
Ar S(Q($:t)a$)d95 ~ —w(ujawjavj) — 0,445 = S(Qj,fﬂj)-

x r. 1 _
=3 —(aj 4 05)D;
—(aj + )

The treatment of the hyperbolic part is rather standard. The numerical flux at the
interface of two grid cells is obtained by solving a Riemann problem. The left and
right values at each interface point is obtained by a linear reconstruction from the
average cell values. Since we are studying nonsmooth solutions, a suitable limiter
such as the minmod limiter should be used.

Finally, the resulting ODE system is then solved by (4.48)-(4.49) for the time inte-

gration. Higher dimensional problems can be solved analogously.
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4.5 Numerical examples

4.5.1 Example 1: one-dimensional linear KG equation

We consider

t>0, (4.51)

Ugp = Ugy — U, T > 0,

with

t>0, (4.52)

uy = uy = 0, u(0,t) = sin(wt),

for some fixed w > 0. The solution of (4.51)-(4.52) corresponds to an evanescent
wave if w < 1 and to a traveling wave if w > 1. The computational domain is set
to [0,1]. The step sizes are chosen small enough (At = Az = 0.0025) such that
the discretization errors are negligible compared to the errors due to the ABC. The

thickness of the PML zone is 0.2 and the absorption function is chosen as

0,
ole) = { 105(x — 1)?,

Now we shall compare the exact solution of (4.51) to the solution of the modified
PML system (4.16)-(4.20) with truncation at x = 1.2, i.e. with the characteristic

boundary condition (4.44). For this comparison, we take as “exact” reference solution

0<z <1,
x> 1.

the numerical solution of (4.51) computed on the large spatial domain [0, 10] with
the boundary condition u(10) = 0. Due to the wave speed 1, boundary effects will
only affect u| ) for t > 19. Figure 4.2 compares the L*(0,1)-error, for 0 < ¢ < 10,
for different choices of the phase shift a. It shows that using a positive phase shift

0.014

0.012 1

Relative L, error

0.004 -

0.002

0.008 -

0.006 -

— o=0
- o=1
— — o=5

N

Figure 4.2: The influence of phase shift. Left: w = 0.5. Right: w = 2.

Relative L2 error

25

1.5

x10™*

— o=0

— — o=5
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leads to a more accurate numerical solution. Besides, if we compare the right and
left plots, we notice that the PML technique yields better results for the traveling
wave (w = 2) than for the evanescent wave (notice the different scales!).

In Figure 4.3 we depict the approximate solutions of (4.51)-(4.52) with w = 2 for

the two cases a = 0 and o = 1, at different points in time. Focusing on the domain

1

0.8}

0.6}

0] 0.5 1 0] 0.5 1
() x (d) x
Figure 4.3: Numerical solutions for w = 2 with different phase shifts: (a) ¢ = 20; (b) t = 40; (c)
t = 60; (d) ¢ = 100.

0, 1], we notice that the solutions in the two cases match very well. Even at ¢t = 100,
only a minor difference can be observed. However, on the PML zone, [1,1.2], the
solution with phase shift is much smoother. This effect of the phase shift obviously

stabilizes the solution with respect to the truncation of the PML zone.
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4.5.2 Example 2: one-dimensional sine-Gordon equation

As discussed in Section 2, the presented PML derivation can be considered as some
kind of linearization for the governing equation. This poses the following question:
How is the performance of the PML linearization compared to the direct linearization
of nonlinear terms in the equation? To this end we consider the one-dimensional

sine-Gordon equation
Uy = Uge — SiDU, x>0, 1>0,

with initial and boundary conditions (4.52). A direct linearization of the nonlinear
damping term about u = 0 yields the same governing equation (4.51) of Example
1. The evolution of L?*(0,1)-error in Figure 4.4 shows that the PML linearization

0.1 0.06
—— PML linearization —— PML linearization
— - Direct linearization 0.05 — - Direct linearization
0.08 ! ] : B
|
1 50.04 |

o
)}

Relative L err
o o2

o o

N w

Relative L
(@)
(@]
s

0.02¢ ' 0.01}

Time Time

Figure 4.4: Comparison between PML linearization and direct linearization. Left: w = 0.5. Right:

w=2.

performs better than the direct linearization.

4.5.3 Example 3: comparison of PML with absorbing bound-

ary conditions

In this test, we compare the PML linearization technique with the local absorbing
boundary conditions proposed by Szeftel [73]. Consider the one-dimensional nonlin-
ear KG equation

Ut = Ugg — (U, Ug, Uy ).
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The initial functions
up(z) = 2*(2 — 2)*x 0,2, wi(z) = 32*(2 — 2)*(z — 1)X[02, (4.53)
are compactly supported in [0, 2]. Four different damping terms will be considered
Case A: ¢ = uy;
Case B: ¢ = u?;
Case C: ¢ = u +u?;
Case D: ¢ = u?u,.

The computational parameters were chosen small enough (Az = 0.001 and At =
0.0005) such that we can ignore the discretization error. The phase shift « is set to
1. The “exact solution” is taken as the numerical solution obtained in an enlarged
domain [—10, 12] with the same computational parameters. Its restriction to [0, 2] are
plotted in Figure 4.5. To measure the accuracy of these “exact” reference solutions, we
compared them to solutions obtained with 2Ax and 2At¢: This yields an absolute L>-
error of the order of 1078 (with u(1) = 1). Thus, the computed reference solutions
are sufficiently accurate.

In this Example, we define the L?-error function as in Szeftel [73] by

[Ju(t, ) — uex(t, )| 2
[[uo|[z2 + [|ua| 2

In our computation, we set the thickness of PML zone as 0.1 at both ends. The

absorption function is set to be

—10023, x <0,
o(z) = 0, 0<z<2,
10%(z — 2)3, x> 2.

Figure 4.6 compares the L*(0,2)-error of the ABCs derived in |73] based on pseu-
dodifferential approach and that of the PML linearization technique for the Case
A. It is clear that the PML linearization presents much more accurate numerical
solutions than others.This is expected, since for linear problems the solution to the
modified PML system without truncating the PML zone is exactly the same as the

exact solutions in the continuous level.
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ik}

Figure 4.5: Exact solutions on [0, 2] for the Cases A-D.

For Cases B and C, the ABCs derived by paradifferential and pseudodifferential
calculus are the same [73|. Figure 4.7 shows the comparison between the PML
linearizations, direct linearization, the first and the second-order ABCs. In Figure
4.7-B, we notice that the PML linearization presents a better approximations over
both the direct linearization and the first-order ABC, which are identical in this
case, and a competitive one with the second-order ABCs. Figure 4.7-C shows that

the PML linearization presents the best approximations with relative error less than
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Figure 4.6: Comparison of the L?(0,2)-error between different ABCs for Case A.
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Figure 4.7: Comparison of the L?(0,2)-error between different ABCs. for the Cases B (left) and
C (right).

The Case D is shown in Figure 4.8 in which a competitive approximations can
be observed between the PML linearization and the first-order ABC based on the
paradifferential approach. The best performance is that of the second-order paradif-
ferential ABC. However, Figure 4.10-D shows the advantage of PML over long time
computations. The exact solutions for long time is taken as the numerical solutions
obtained in a large domain [—55,57], with the same step sizes as that in the short
time computations. The exact solutions of the Cases B,C, and D restricted to [0, 2]
are plotted in Figure 4.10-Right. The left part of Figure 4.10 shows the comparison
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Figure 4.8: Comparison of the L?(0, 2)-error between different ABCs for Case D.

of the L?(0,2)-error over long time.
Another remarkable advantage of our PML linearization over the local ABCs lies in

the easy extension to the high-dimensional problems, as the next example shows.

4.5.4 Example 4: two-dimensional exterior problem
Consider the two-dimensional nonlinear KG equation

— 3
utt—u:m"'uyy_u:

with initial condition

10, 2% +y? <3,

uo(,y,0) = 0, ui(z,y,0) = { 0 otherwise

The physically interested domain is [—2,2] x [—2,2] and the computational domain
including the PML zone is set to be [—2.8,2.8] x [—2.8,2.8]. The same absorption
function as that in Example three is used in both x and y directions. The computa-
tional parameters are set to be Ax = Ay = 0.014 and At = 0.007. For comparison,
we take the exact solution as the numerical solution by solving the above problem
in an enlarged domain [—5.6,5.6] with the same computational parameters.

Figure 4.9 compares the relative L?((—2,2)?)-errors due to both PML linearization
and direct linearization. Again, the PML linearization shows an advantage over the

direct linearization.
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Figure 4.9: Comparison of relative errors from PML linearization and direct linearization.

In Figure 4.11, we draw the contour plots for the exact solution, the approximate
solution with PML linearization, and that with direct linearization. The difference
between the exact solution and the numerical solution with PML linearization can

hardly be detected, while in the case of direct linearization this difference is obvious.

4.6 Conclusion

In this paper, we have proposed a PML linearization technique to numerically handle
nonlinear Klein-Gordon equations. We explained in detail the design of the mod-
ified PML system and illustrated the importance of the phase shift parameter in
numerical tests. The PML linearization can be considered as a special kind of lin-
earization technique for nonlinear problems. Compared with the direct linearization,
numerical tests in one and two dimensions for various nonlinear damping terms have
shown its advantage. Our numerical tests have also shown the efficiency of the PML
linearization over other local ABCs obtained by paradifferential and pseudodifferen-
tial approaches. For most examples the PML method gives better results. Another
advantageous property of this technique lies in its easy generalization to higher

dimensions.
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Figure 4.11: Contour plots at ¢t = 3.5. (a) Exact solution; (b) PML linearization; (c) Direct

linearization.



Chapter 5

Absorbing PML

boundary layers for the
nonlinear Euler

equations

Abstract

In this paper a PML absorbing boundary condition (ABC) is presented
for the nonlinear Euler equations. There are two steps involved. First,
the PML technique is applied to the Fuler equations linearized about
uniform and parallel flows. Then the nonlinear PML equations are
formed by replacing the linearized flux functions with their nonlinear
counterparts. Since a stiff source term gets involved in the nonlinear
PML equations, an Implicit-Explicit Runge-Kutta scheme is recom-
mended to compute numerical solutions. Some tests are performed, and
the results demonstrate the effectiveness of the proposed PML ABC.

5.1 Introduction

'Wave propagation in unbounded domain appears in many fields of application,
such as aeroacoustics, electromagnetics, and seismics [29]. A main aim of numerical
simulation for these kind of problems is to resolve the wave field on a small part of
domain which bears some special physical interest. Therefore it is a natural practice

to limit the computational domain by introducing some artificial boundaries, which

!The content of this chapter is a joint work with C. Zheng (cf. [83])

98
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necessitates suitable boundary conditions to be imposed. A simple choice of these
boundary conditions, for example, the radiation condition at infinity, works well if
the computational domain is made large enough such that the simulation terminates
before the wave reflection from the artificial boundaries comes into effect. But this
treatment generally leads to a heavy computation burden in terms of time and stor-
age. Alternatively, the physical domain can be tailored more closely, and thus more
delicate boundary conditions must be designed.

We suppose that the solution near the artificial boundary consists only of outgoing
waves. In this case, a good boundary condition should not only present a wellposed
problem, but also mimic the absorption of waves originating from the interior, and
prevent the energy from being reflected by the artificial boundary. Right in this
context, such a boundary condition is usually called absorbing boundary condition
(ABC). Other names of same spirit are also popularly used in the literature, such
as nonreflecting, transparent and open boundary conditions. Besides, from the com-
putational aspect, a good ABC should also be inexpensive to implement.

Different ABCs have been developed over the last three decades. The readers are
referred to |29, 40, 78, 41, 18| for detailed review. In general the ABCs can be
classified into two categories: PDE-based and material-based. PDE-based ABCs are
imposed exactly on prescribed artificial boundaries, and obtained either by factoriz-
ing the field equation and allowing only the outgoing waves, or by solving the exterior
wave problems in an analytical or semi-analytical way. Material-based ABCs employ
a different philosophy. Instead of solely using artificial boundaries to limit the com-
putational domain, they turn to a finite-thickness lossy material to annihilate the
outgoing waves. These kind of ABCs have been utterly renovated since 1994 when
Bérenger [13] proposed the PML for computational electromagnetics. Soon after,
Chew and Weedon [15] presented an elegant explanation that the PML essentially
equals to some coordinate stretching from the real axis to the complex plane, making
all waves damped in the PML absorbing layers under the new coordinate system.
Abarbanel and Gottlieb revealed in [1] that the original PML formulation in [13],
which is based on the split physical variables, is only weakly well-posed.

Of particular interest in this work is the application of the PML for the Euler
equations. Hu [51] was the first to consider such a problem. Based on the idea
in [13], he proposed a PML formulation for the Euler equations linearized about
uniform flow. Goodrich and Hagstrom [34] presented a different formulation, and

reported that in some special cases their formulation admits unstable growing wave
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modes, which implies the existence of some inherent instability. This was confirmed
both theoretically and numerically by many authors, including Hesthaven [49] and
Tam et al. [75]. Considering this point, in 1999, Abarbanel et al. [3] first derived a
well-posed PML by using the unsplit physical variables. Hu [52] presented another
stable formulation by performing a space-time transformation before applying the
PML technique. Later, he extended this idea to the parallel shear flow [54] and
proposed a numerical procedure to find such a transformation. Recently, Hu [55]
and his collaborators [57] even considered the nonlinear Euler equations and the
Navier-Stokes equations. Hagstrom [42] constructed a general PML formulation for
linear hyperbolic systems, and with Nazarov [43, 44| he considered the parallel flow
and studied the dependence of growth rate within the PML layer on the involved
parameters.

In this paper we study the PML technique for the nonlinear Euler equations. We
consider both the ducted flow problems for which only vertical xz-layers to the left
and right of the physical domain are needed, and the open flow problems for which
horizontal y-layers are further needed at the top and bottom boundaries, see Figure
5.1. A new PML formulation is presented, which has an advantage that the numer-
ical schemes for nonlinear conservation laws can be adapted easily. We propose a
strategy for choosing the parameters involved in this formulation and describe an
Implicit-Explicit Runge-Kutta scheme with which we solve the presented numerical

examples.

PML

PML Nonlinear Euler PML PML Nonlinear Euler PML

Figure 5.1: Two schematics of unbounded domain problems. Left: ducted flow. Right: open flow.

The organization of this paper is as follows. In Section 2, we present PML formu-
lations for the linearized Euler equations with both uniform and nonuniform but
parallel flows. In Section 3, we discuss how to construct the final PML formulation

for the nonlinear Euler equations. In Section 4, we explore one strategy to solve the
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nonlinear PML equations. Numerical examples are presented in Section 5, and we

conclude this paper in Section 6.

5.2 PML formulations for the linearized Euler equa-

tions

The two-dimensional nonlinear Euler equations describing the physical laws of con-

servation of mass, momentum and energy, read

where
P pu pu
2
pU puc +p pUv
q= , flg) = , 9(q) = ) (5.2)
pU pUv puv°+p
E (E+pu (E+pv

The unknown vector ¢(t,z,y) from R? x [0, +00) into § describes the state of the
gas as a function of time and space. The set € is called the set of states and f and g
are the convective fluxes in the z- and y-directions, respectively. Here p, u, v, E and
p denote density, velocity components in the x- and y-directions, total energy and
pressure. For a perfect gas

p=(-1(E-La+0). (53)

where 7 is the ratio of specific heats.

When the flow near the boundary can be considered as a constant mean flow plus a
small amplitude fluctuation, it is justifiable to linearize the nonlinear Euler equations
(5.1) and approximate the fluctuation part by the solution to the resulting linearized
Euler equations. A typical difficulty in applying the PML for the parallel flow when
compared with the uniform flow is to damp all those waves which travel in the PML

absorbing layers. We will study this issue in the following.

5.2.1 Uniform flow

Linearizing the Euler equations with a constant state gy = (po, poto, povo, Fo) yields

the following hyperbolic system with constant coefficients
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where
§=q—q, A= (@), B=d(q) (5.5)
and
0 1 0 0
oy —u? + (v = D) (w? +v?) B=vu  —~(y-v y-1
fla) = o ) y 0 :
ult(y =)W +v?) —H| H—(y—1Du*> —(y—1Luw ~u
0 0 1 0
(q) = —Uuv v u 0
P72l -D@ ) —(-Du Byl

v [%(7 —1)(u? +v?) — H} —(y=1Duv H—(y—1v* v
Here, H = (E +p)/p is the enthalpy. We confine to the subsonic flow, i.e., u2 +v3 <

2 = %. For the linear system (5.4), the standard modal analysis can be applied.

Suppose the modal solution behaves like

_ QestJr)\eriky' (56)

S}

Here s with R(s) > 0 is the variable in the Laplace-transformed space, A is the
complex wave number in the z-direction, and k corresponds to the real wave number
in the y-direction. @) is a vector depending on s, A and k. Substituting (5.6) into
equation (5.4) we get

(sI + NA+ikB)q = 0. (5.7)

Equation (5.7) means that for any fixed s and k, A is a generalized eigenvalue of
equation (5.7), and ¢ is a corresponding eigenvector. A nontrivial solution can be

obtained if X\ satisfies the following dispersive relation

det(sI + NA +ikB) = 0, (5.8)
which has three solutions
A\ :_5—|—2kv07 (5.9)
Ug
y = (s + ikvo)ug — con/(s + ikvg)? + k2(c2 — ud) 510
- — , (5.10)
)\Jr _ (S + ik’Uo)Uo + Co\/gs + ZfUO)2 + k2(6(2) - ug) ) (511)

Cp — U
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Here, A_ and A\, correspond to the acoustic waves and A\; to the entropy and the
vorticity waves simultaneously. The direction of these waves depends on the sign
of the real part of their corresponding \: left-going if positive and right-going if
negative. Thus, the acoustic waves corresponding to A_ and A, always move to the
right and the left separately. If ug > 0, the entropy and vorticity waves are right-
going, and if uy < 0, they are left-going. For convenience, from now on we will refer
to “the sign of the real part of \” simply as “the sign of \”.

The essence of the PML lies in constructing new wave equations to which the modal
solutions not only are continuations of those to the original wave equations, but also
decay exponentially faster in their propagating directions at the same time. This is

usually accomplished with the following coordinate transformation
I
x—>x—x—|—x o(z)dz, x > o,
Zo

where ¢ > 0 is called the absorption coefficient, and f is a mapping from A to the

complex plane. Under this transformation, the modal solution (5.6) is changed to

QestHAe'Fiky _ (pstdatiky f [2,0()dz (5.12)

g

Obviously, the point to make this modified modal solution damp faster than (5.6)
in its traveling direction, is to ensure f has the same sign of A\. Following the idea

of Hagstrom [42], we set

A S‘i‘ik?}o
_ _, ) Stk 5.13
/ (5+ikvo M) s + ikvg + o’ (5.13)

uo

where p = "= and a > 0 is called the phase shift parameter. f indeed has the
0 0

same sign of A\, as can be verified directly.

From (5.12) and (5.13) , we have

- At Ao s + kv ~
4 s+ ikvy + « Ns—l—zkvo—l—a 4
Thus then,
\a s+ tkvy + « P s+ ikvg
= e topu——q | .
4 s+ thvy +a+ o 4 'us—irzkvo—ir@q

Substituting the above expression of A\g into (5.7) we get

s+ ikvg + «

Al Gz
Sq+s+ikv0+a+a <q o

s + ikvg
s+ 1kvy + «

d) +ikB§ = 0.
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Introducing an auxiliary vector function

1
= - A N:t N:
v s+ thkvyg +a+ o (G + (o + o))

and going back to the physical space, we derive the PML equations for the linearized

Euler equations (5.4)
Gt + Agy + Bgy + opAg+ ow = 0, (5.14)
w + Ay + vowy + (a4 0)ppAG + (a + o)w = 0. (5.15)

It has been proved in Appel6 et al.[7] that the PML equations (5.14)-(5.15) are well-
posed. For constant o, Appelo et al. [7| showed that the specific choice of =

Uug
c2—u,

2

0 0
is necessary and sufficient to guarantee the asymptotic stability of (5.14)-(5.15). This
issue was also studied in Hagstrom [42] and Hu [52].

5.2.2 Parallel flow

In many cases, linearization with a nonuniform parallel flow ¢y = (po, poto, 0, Eo) is

more reasonable. The resulting linearized Euler equations read
G+ Ay + Bay + B"q =0, (5.16)

where ¢, A and B are given as in (5.5). The matrix B* originates from the nonunifor-
mity of the flow in the y-direction. We do not intend to give the explicit expression
of B*, since it is never used in the mathematical analysis and the numerical compu-
tation.

To analyze (5.16), it is a common practice to reformulate it with the primitive vari-

ables as
r+Cry+ Dr,+ Er =0, (5.17)

u po 0 0 00 po O 0 0 py, O
1 /
O 0 wuwy O - D= 00 0 (1) E= 0 0 wy, O
0 0 wuwy O 00 O o 00 0 O
0 o 0 g 0 0 vpo O 00 0 O

(5.18)
Unlike the linear equations (5.4) with constant coefficients, the modal analysis of
(5.17) can be, in general, only performed numerically. Since the numerical compu-

tation relies strongly on the physical boundary condition in the y-direction, we have
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to consider this issue case by case.

We confine ourselves to the y-periodic flow with a nonuniform velocity (ug, 0). The
period is L. py and py are assumed constant. In this case, a simple normalization
can be made to give pp = 1 and py = % We presume that this normalization has
already been done.

Let the modal solution of (5.17) be

r =t (5.19)

where ¢ is a vector function depending on s, A and the y-coordinate. Substituting
(5.19) into (5.17) we get

(sI + A\C + E + Dd,)¢ = 0, (5.20)

where [ is the 4 x 4 identity matrix. For any fixed s with s > 0, there are an
infinite number of generalized eigenvalues A\ and corresponding eigenfunctions ¢
satisfying the above equation. We compute those A whose eigenfunctions can be
well-approximated with less than 121 Fourier modes.

To understand how to extend the PML technique to the nonuniform flow, we per-
form first the numerical modal analysis for a uniform mean state with uy = 0.5,
even though it has been analyzed in the last subsection. Figure 5.2 shows the results
for different values of s (we set L = 27). Let us look at Figure 5.2-b. The first
subplot shows all admissible generalized eigenvalues A. For a clear distinction, we
have marked the negative and positive eigenvalues by red dot and blue plus symbols,
respectively. Those A\ nearly on the imaginary axis correspond to the standard trav-
eling sinusoidal waves. The amplitudes for this band of waves are hardly changed
since the damping coefficients are very small. On the other hand, those A composing
a line parallel to the real axis correspond to the evanescent waves. If the absolute
values of the real part of A is large, the evanescent waves damp fast in space. In
the second subplot, a transformation from A to % is made. Since s is almost purely
imaginary, this transformation nearly rotates the complex plane clockwise with
angle. Obviously, the sign of some X is varied, especially those corresponding to the

evanescent waves. But a careful examination shows that if we shift the origin of the

2

second subplot to a point fairly close to £, then all the eigenvalues will maintain

their signs. Notice that

2 0.5 o

§:1—0.52:cg—u3:'u'
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with o = 1.

Similar observations can be made, for different s, through Figures 5.2-a, 5.2-c.

This nice property does not hold in general for the parallel flow. Figure 5.3-b demon-

strates the computational results when uy =

1+sin

cos®(y/2)
M *(y/2)

with M = 0.5. The period

L is set equal to 27. In the second subplot, again, we see the sign of some A is varied.

But in this case, it is impossible to find a simple shift of the origin to maintain the

sign, as the third subplot shows. However, by examining the second subplot which

shows %, we can find a nice property: though the red dot symbols cannot be sepa-

rated from the blue plus symbols with a straight line parallel to the imaginary axis,

it seems that a suitable oblique line can fulfill this purpose, see also Figure 5.3-a

and 5.3-c for different s. To determine this oblique line, we can make two successive

transformations: first shift the origin to some point u, then rotate the complex plane

A
s

— 1 by an appropriate angle. Of course, we do not expect u to rely on the choice

of s. Besides, the rotating transformation should be easy to handle. Stimulated by

the work of Hagstrom [42| and Hu [54], for the parallel flow with constant density,
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0.14; (b) s = 10712 +14; () s = 107124 10i. First row: X. Second row: 2. Third row: refined structure

of the second. Last row: f = (% — u) o With a =1

we make transformation analogous to (5.13) as

A S
A— f=|—-— 0.21
F=(2-0) 2 (5.21)
with .
U, 1 2mcy
— = — dy, o = 5.22
e sl L/o u(y)dy, a=— (5.22)

The fourth row of subplots in Figure 5.3 shows the results after transformation. All
the eigenvalues A indeed maintain their sign.

We can also detect the effect of this phase shift parameter « for the uniform flow.
The fourth row in Figure 5.2 shows the results. We see that o typically increases
the damping rates of the evanescent waves, though it sacrifices those of the travel-
ing waves a little. This parameter was first introduced in [63] for electromagnetic
problems.

We should confess that though the choice of x and « in (5.22) is valid in many
cases, in some exceptional situations when the amplitude of s is relatively small, we

do find from our numerical computations that several few generalized eigenvalues
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cannot maintain their sign after the transformation (5.21). See Figure 5.4 for an
example. But in these situations, the real part of f is small, which implies a slow
increase of amplitude in the PML layers. Since the thickness of the PML layers is
usually made small, and the characteristic boundary condition is used at the PML
boundaries, it is reasonable to expect a small error from these exceptional wave
modes.

In the above analysis, we assume that the parallel flow is periodic in y-direction
with period L. In the real applications, either for the ducted flow or for the open
flow, this assumption is unreasonable. In these cases, we can still make the trans-
formation (5.21) with g and « determined in (5.22). But the period L should be
replaced with the characteristic wave length, which is usually a problem-dependent
parameter, and has to be determined by trial and error.

After ;4 and « are determined, the argument of deriving the PML equations for the

uniform flow can be made analogously for the parallel flow. We omit this discussion.
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The final PML equations formulated with the conservative variables read

G+ Ag, + Bgy + B* G+ opAg + ow = 0, (5.23)
wy + Ay + (a + o)w + (o + 0)uAg = 0. (5.24)

5.3 PML formulations for the nonlinear Euler equa-

tions

In the last section, we discussed the PML for the linearized Euler equations. The
key point is to determine the parameters g and a. Remember what we are trying
to solve is the nonlinear Euler equations. If we insist on using the linearized Euler
equations in the PML absorbing layers, we have to solve a mixed-type problem: the
nonlinear Euler equations in the physical domain and the linearized Euler equations
in the PML absorbing layers, combined with the artificial boundaries. In this case,
the interface condition at the artificial boundaries has to be considered carefully.
From the computational point of view, this is troublesome. In the following, we
present a simple idea to solve this problem.

First we consider the PML equations (5.14)-(5.15) for the uniform flow. Replacing
q with ¢ — gy we have

¢+ Aqe + Bgy + oppA(qg — qo) + ow =0, (5.25)
wy + Ag, + vowy + (o + o) pAlg — qo) + (a4 o)w = 0. (5.26)

Since
f(q) = f(q) + Alg — ), 9(q) = g(q0) + B(q — @)

within the first order accuracy, by replacing Aq, with f(¢),, Bg, with g(¢), and
A(q — qo) with f(q) — f(qo), we derive a first order approximation of the equations
(5.25)-(5.26)

@+ f(@)z +9(q)y + ou(f(q) — f(q)) +ow =0, (5.27)
wy + [(q)e +vowy + (a+a)u(f(q) — f(q)) + (@ +0o)w=0. (5.28)

If we extend the definition of o to the physical domain with zero, and consider a
profile of o sufficiently smooth, then the equations (5.27)-(5.28) are naturally com-
patible with the original nonlinear Euler equations. Thus the equations (5.27)-(5.28)

are valid in the whole computational domain, including both the physical domain
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and the PML absorbing layers. Besides, as the PML equations (5.14)-(5.15) are de-
rived from the linearized Euler equations, which itself is a first order approximation
of the nonlinear Euler equations, the solution of the nonlinear PML equations (5.27)-
(5.28) being restricted to the physical domain is a first order approximation of the
original nonlinear Euler equations (5.1). The PML equations (5.23)-(5.24) for the
parallel flow can be modified analogously. The resulting nonlinear PML equations

read

G+ f(@)z + 9(q)y + ou(f(q) — f(q(o0,y,1))) + ow =0, (5.29)
wy + f(q)e + (a+0)u(f(q) = flqo(00,y,1))) + (@ +0o)w=0. (5.30)

These equations can be taken as a special case of (5.27)-(5.28) for vy = 0. Thus in
both cases, the nonlinear PML equations can be formulated in a unified form (5.27)-
(5.28). The only point to keep in mind is that the mean state variable ¢y should be
valued at infinity in the correct direction.

For open flow problems, we enclose the physical domain with the PML absorbing
layers in both two directions. A straightforward extension of the nonlinear PML

equations (5.27)-(5.28) to two dimensions is

@+ (@) + 9(q)y + 0upta(f (@) — f(go0))
+oyiy(9(q) = 9(ds)) + opwr + oywz =0, (5.31)
Wit + f(Q)e + VooWiy + (e + 02)wr + (0 + 02)11(f(¢) — f(g)) = 0, (5.32)
Wat + UsoWaz + 9(q)y + (0 + 0y )wa + (o + 011, (9(q) — 9(gs)) = 0. (5.33)

Here, ji,, v, and p,, o, are determined by (5.22) in the z- and y-directions, respec-
tively. Unfortunately, this seemingly natural treatment suffers from some unstable
fast-growing wave modes, even for the uniform flow. This instability has been noticed
in [6]. In Figure 5.5, we show the maximal growth rate obtained by the numerical
computation of all wave modes of (5.31)-(5.33), with the fixed wave numbers k,
and k,. We can see that as the wave numbers increase, the maximal growth rate
grows rapidly. Since the positive growth rate only appears when both o, and o, are
positive, we conclude that this instability only appears at the corner region of the
PML domain. This is verified by our numerical computations, see Figure 5.10.

To suppress these instabilities, we simply add an artificial damping term

0.0

(g — o)

(ax + O‘y)U;n +or
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to equation (5.31). Here 07" and o} are the maximal values of o, and o, respectively.

The final nonlinear PML equations for the open flow problems are then

G+ (@) + 9(0)y + 0uta(f(Q) = f(go0)) + ypty(9(q) — 9(go0))
xT(q — o) =0, (5.34)
wiy + f(q)s + Voo W1,y + (v + 0z)wr + (g + 02) 12 (f(q) — f(¢0)) = 0, (5.35)

Wap + UsoWaz + g(q)y + (0 + 0y)wa + (ay + 0y 1y (9(q) — 9(g)) = 0. (5.36)

+o,wy + oyws + (o + ay)

Our numerical tests show that this treatment works well.
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5.4 Solution strategies

In this section we discuss solution strategies of solving the nonlinear PML equations
(5.34)-(5.36). This is a hyperbolic system with a local source term. When either o,
or o, turns large, the source term becomes stiff. In this case, any explicit numerical
scheme would suffer from the strict constraint on the time step size.
A naive implicit discretization of the time variable is absolutely not a good resolu-
tion. This is because any kind of spatial discretization would result in a scheme in
which some nonlinear algebraic systems with a large number of unknowns need to
be solved during the time advancing. To overcome this difficulty, we can resort to
the Implicit-Explicit Runge-Kutta (IERK) semi-discretization method.
The TERK method is composed of two steps. First we should perform the spatial
discretization for the equations (5.34)-(5.36). There are many choices which can
serve this purpose. Since the nonlinear Euler equations in general admit discontin-
uous shock wave solution, we prefer the WENO-type schemes. Though high-order
versions can be considered without any technical difficulty, in this paper we only
employ a second order finite volume scheme based on the linear reconstruction with
the minmod limiter. On the cell interface, the flux is computed with Roe’s approx-
imate Riemann solver. More details can be found in the book of Leveque [64]. For
the source term, we simply take its cell average as the function value of the cell
average state, which holds within second order accuracy.
The second step of the [IERK method requires solving a large ODE system resulting
from the first step, say,

U =H(U)+ S(U), (5.37)

where H comes from the hyperbolic part and .S from the stiff source term. U denotes
the vector composed of all cell averages of ¢, w; and wy. Suppose At is the time step
and the numerical solution at the n-th step is already obtained as U,,. The IMEX
Runge-Kutta approximation at the n + 1-th step is realized by

i—1 v
U'=Up+ At a HU?) + ALY aS(U7), i=1,--+ v, (5.38)

J=1 Jj=1

U1 = Un + ALY i HUY) + ALY wiS(UY). (5.39)
i=1 i=1
Here, the matrices A = (a;), a; = 0 for j > i and A = (a;;) are v X v ma-

trices. A and W = (w;) correspond to an explicit Runge-Kutta scheme, while A
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and W = (w;) correspond to an implicit Runge-Kutta scheme. To efficiently solve
the nonlinear algebraic system corresponding to the implicit part, it is natural to
consider diagonally implicit Runge-Kutta (DIRK) schemes for the source term, i.e.,
a;; = 0 for j > 1.

For a second order approximation, we use the following two-stage scheme

U'=U, + xAtS(U"), (5.40)
U? =U, +AtH(UY) + (1 — 2x)AtS(UY) + xAtS(U?), (5.41)
Uns1 = U, + %At (HUYY + HU?) +S(U" + S(U?), (5.42)

with y =1 — @ This is also an L-stable TVD scheme. The readers are referred to
[9, 68| for more detail.

Notice that we still need to solve an algebraic system with a large number of un-
knowns in (5.40) or (5.41). But unlike the naive implicit scheme such as the backward
Euler, this large algebraic system can be decoupled to a lot of small algebraic sys-
tems with only several few unknowns related to each specific cell. In fact, in our
scheme at most 12 cell average variables are involved in each small algebraic system,
and the number can be further reduced to 4 by some basic calculus. For example,

let us consider the implicit step (5.40). On a cell denoted by symbol * we have to

solve
ql — (g« 1 1
*X A T Owrttalf(00) = fldoon)) + oytty(9(a.) = (o))
1 1 Ozx0yx 1
T,% * * * x o *—OOZO, 5.43
00, Wy, + Oy sy, + (0 +%)0?+%n(q (oc) (5.43)

w%,* — W1,
YAt
w%,* — W2
YAt

+ (az + U:v,*)wi* + (g 4 0p )i (fgr) — fdoo)) =0, (5.44)

+ (o + 0y7*)w%7* + (o + Uy,*)uy(g(Qi) — (o)) = 0. (5.45)

Here, for conciseness of notations, we omit the subfix n for the field variables ¢, w;
and wy. (5.43)-(5.45) is a nonlinear algebraic system with 12 unknowns. From (5.44)

and (5.45), wi, and w;, can be expressed with ¢, as

1
wi* = 1 i XAt(C(x T 0_17*) (wl,* - XAt(OQE + Uz,*),ux(f(Qi) - f(QOo,*))) 9 (546)
1
1

— JE— 1 J—
w27* - 1 + XAt(Oéy + O'y7*) (wz* XAt(ay + Uy,*)My(g(q*) g(qOO,*))) . (547)
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Substituting (5.46) and (5.47) into (5.43) we get

- Cot (f(a2) = f(goon)) + vty (9(2) = 9(ge.0))
XAt 1+ xAt(a, + 044) ’ 1+ xAt(ay +0y.) ,
_ Y . Oz,+W1 . Oy« W2 B Oz 4Oy L
XAt 1 + XAt(ax + O';t,*) 1 -+ XAt(Cty =+ O'y,*) (C(x + C(y) O—g@ + O—Zm (q* qoo)
(5.48)

Only 4 unknowns are involved in (5.48), which can be solved with Newton iterations.
To ensure a nonsingular Jacobian in each iteration, we have to make constraints on
the absorbing functions o, and o,. Suppose ¢, is the maximal sound speed. Then

a sufficient condition for nonsingular Jacobians could be

1 m m
— = QCmaa:(o-x oz + Uy /'Ly)

YAt —
Since ¢4, is unknown, in the computation we replace ¢,,,, with the maximal c.,
and set .
oy =0, =0"= (5.49)

2(py + f1y) XAt max coo

We still need to determine the profile of the absorbing functions and the thickness
D of the PML domain at each artificial boundary. In principle, the bigger is D,
the better is the approximation. But considering the computational cost, under the
precondition of accuracy, D should be reduced as small as possible. From (5.12)
and (5.13), we see that on the interval [z, zo + D], the damping rates for all modal

solutions depend, in addition to f, on a common factor f;OOJrD o(z)dz. If we set

N
o=oc" (x on) , T € [x0, 10 + D],

then

xo+D D m
/ o(z)dz = Ni T

Denoting the above quantity by Ny and consulting (5.49), we have

o

D = [2(N 4 1) No(ftz + o) x Mmax coo] At.

This implies that for a specific problem, the number of grid points in the PML
domain is always fixed with the proposed method. In the real implementation, for

the accuracy requirement, we set

D = max ([2(N + 1) No(pz + 1) x max c | , 10) At, (5.50)
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which means at least 10 grid points are used in the PML absorbing layers.
For easy reference, we list the main steps of solving the nonlinear open flow problems
with the equations (5.34)-(5.36):

1. fix the physical part of the computational domain by introducing artificial

boundaries;
2. prescribe reasonable mean flow at each artificial boundary;
3. determine the characteristic wave length, thus « and p by equation (5.22);
4. determine the spatial step sizes Az and Ay, thus At under the CFL constraint;
5. determine ¢™ with equation (5.49);
6. determine the profile parameter N and Ny (3 and 15 used in our computations);

7. determine the width of the PML domain D by (5.50) at each artificial bound-

ary;
8. solve the nonlinear PML equations (5.34)-(5.36) with the scheme (5.40)-(5.42).

Other flow problems can be considered analogously.

5.5 Numerical tests

In this section, we present two numerical tests, dealing with an open uniform flow

and a ducted parallel flow respectively.

5.5.1 Open uniform flow

Suppose that the base state is (po, ug, vo, po) With pg = 1 and py = % At the initial

time the pressure field is set to

p= L4 Ae- m@E)/022

Y
with A = 1. The special case with ug = 0.5 and vy = 0 has been considered in
the work of Hu [55], in which the physical domain is set as [—1,1] x [—1, 1] with
Az = Ay = 0.02. By (5.22), i, = 2, pt, = 0, and a, = o, = 2m. The time step
is At = 0.005 satisfying the CFL constraint. According to (5.49), ™ = 330.6, and
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from (5.50), twelve grid points are needed in the PML domain. Thus the computa-
tional domain is [—1.24,1.24] x [—1.24, 1.24].

To evaluate the quality of numerical solutions, we take the reference solutions as
those computed on a large domain [—4,4] x [—4,4] with the same mesh size. The
errors for different field variables are depicted in Figure 5.6. For comparison, we also
plot the errors of the numerical solutions with the characteristic boundary condi-
tions. We see that the relative L; errors (except for the v component since vy = 0)

are less than 0.5 percent in the time interval [0, 5]. The performance of the PML is
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Figure 5.6: Comparison between the PML ABC and the characteristic boundary condition.
Uniform flow. ug = 0.5, vo = 0.
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much better than that of the characteristic boundary conditions. Figure 5.7 shows
the computed pressure field of the uniform flow (ug, vo) = (0.5,0) at t = 0.5, 1.0 and
1.5. Little reflections are observed.

We also consider the uniform flow but with an oblique direction, i.e., (ug,vy) =
(%, g) In this case, p, = p1, = 41[\2/5 and 0™ & 272.7. Twelve grid points are used

in the PML domain. The numerical results are shown in Figure 5.8 and Figure 5.9.

In Section 3 we analyzed that if no additional treatment is performed in the corner
domain, the nonlinear PML equations are unstable. In Figure 5.10, we illustrate
the numerical solution at t = 2.8 without corner modification. Peaks form in the
corners. After this time point, the computation breaks down immediately since the
assumption of subsonic flow is violated. We should remark that this instability can-
not be removed by reducing the time step, which implies that it does not come from
our proposed numerical scheme.

In fact, after a dissipative term is added into (5.43), the observed instability disap-
pears, and long time computations can be carried out. Figure 5.11 shows the results
at t = 100. It strongly suggests that the numerical solutions restricted to the physical

domain [—1,1] x [—1, 1] converge to the exact solutions as time goes to infinity.

5.5.2 Ducted parallel flow

We consider a y-periodic parallel flow with

sin? my 1

p():l,U():O.5 UOZO,pOZ—.
v

1+ cos?2my’

Since the period is 1, we can limit this problem in R x [0, 1]. At the initial time, a

disturbance is added to the pressure field

P=p—py= e*ln(2)(12+(y70.5)2)/0.12'
This disturbance is well-supported in [—1, 1] x [0, 1]. Thus we take it as the physical
domain. From (5.22), we have p = 4 and o = 2m. We set Az = Ay = 0.01 and
At = 0.0025. By (5.49), we have o™ = 3155.6, and by (5.50), we know ten grid points
are needed in the z-direction of the PML domain. The computational domain is thus
[—1.1,1.1) x [0, 1].

The numerical errors are depicted in Figure 5.12. The relative errors are typically
below 0.5 percent. The advantage of our PML ABC over the characteristic boundary

condition is obvious.
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To examine the stability property, we compute the solution at time £ = 10 and
t = 100. The results are shown in Figure 5.13 and Figure 5.14, respectively. It
suggests that as time goes to infinity, the solution converges to a state which is close

to the steady state solution.

5.6 Conclusion

Based on the work of Hagstrom [42] and Hu [55], we have presented a new PML for-
mulation for the nonlinear Euler equations. Both uniform flow and nonuniform but
parallel flow have been considered. One of the main advantage of our formulation
lies in the autonomic form of its hyperbolic part. The technique for the nonlinear
conservation laws can be used directly. For the flow problems with shock waves, this
treatment is crucial.

One of the key points to successfully use the PML is to find out a way of damping
all wave modes in their trajectories in the PML layers. This has been solved com-
pletely by Hagstrom for the uniform flow, but for the parallel flow, from theoretical
perspective, it is still an unsolved problem. As revealed in Hagstrom and Nazarov
[43], only p cannot ensure the damping of all wave modes. In this paper we have
made some progress in proposing an approach of determining p and o to damp
all the wave modes for the parallel flow. Numerical tests have shown that for most
wave modes the proposed values can damp them in the PML layers. Exceptional
cases appear when the wave frequency is relatively small. But in these cases, those
wave modes have a small amplifying factor, and the resulting error is expected to
be reasonably small.

We have also analyzed the corner instability of the PML equations. This is much
analogous to the local boundary conditions for which the corner compatibility condi-
tions play an important role in the stability of the truncated problem. Our numerical
tests have shown that with a suitable dissipative term added in the corner domain,
this instability can be removed.

The PML equations are usually hyperbolic systems with source term. This source
term becomes stiff when ¢, the maximal value of the absorption coefficient o, is
large. Thus, to use an explicit numerical scheme, we have to use a fairly small time
step. Alternatively, we can reduce ¢™ to use a moderate time step. But in this
case, the PML absorbing layer has to be broadened, which results in an increased

computational cost. To resolve this contradict, we have used the Implicit-Explicit



Chapter 5. Absorbing PML boundary layers for the nonlinear Fuler equations 119

Runge-Kutta semi-discretization method. Since the source term in the PML formu-
lation is purely local, the implicit part with this method can be solved efficiently.

Finally, we should remark that the discussions in this paper for the nonlinear Euler
equations can be also applied to some other nonlinear conservation laws. For ex-
ample, the PML formulation for the shallow water equations can be obtained in a

straightforward manner.
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Figure 5.10: Numerical solution at ¢ = 2.8 without corner modification. Oblique flow ug = vo =

%. (a) Density; (b) u; (c) v; (d) Pressure.
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