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Abstract

We study the Rokhlin dimension of C∗-dynamical systems that are induced

by free actions of certain discrete groups on locally compact metric spaces.

The concept of Rokhlin dimension was introduced by Hirshberg, Winter and

Zacharias for actions of finite groups and the integers on unital C∗-algebras.

One of their key results is that actions with finite Rokhlin dimension posess a

permanence property with respect to finite nuclear dimension, when passing

to the crossed product C∗-algebra.

We extend the notion of Rokhlin dimension to actions of residually finite

groups on all C∗-algebras, and show that an analogous permanence property

with respect to nuclear dimension holds for a class of residually finite groups

that contains all finitely generated and virtually nilpotent groups. For this,

we use some ideas from coarse geometry, the most important ingredient

being the so-called box spaces associated to residually finite groups.

As our main class of application, we consider free actions of Zm on locally

compact metric spaces with finite covering dimension. We show that these

always yield C∗-dynamical systems with finite Rokhlin dimension. In this

setting, the aforementioned properties of Rokhlin dimension imply that the

associated transformation group C∗-algebra has finite nuclear dimension.

Our approach employs a generalization of Gutman’s marker property for

aperiodic homeomorphisms, and a generalization of a technical result by

Lindenstrauss that aperiodic homeomorphisms on finite-dimensional spaces

satisfy a certain bounded version of the small boundary property. Finite

Rokhlin dimension for free topological Zm-actions is then deduced from a

controlled version of the marker property. We also consider more generally

free actions of infinite, finitely generated and nilpotent groups on locally

compact metric spaces with finite covering dimension, and show that the

analogous result holds even in this setting. This employs the techniques

from the case of Zm-actions and combines it with certain aspects of the

geometric group theory of nilpotent groups.
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Introduction

Since its inception, the theory of operator algebras has been influenced in

large part through ideas of a dynamical nature. The study of C∗-dynamical

systems, i.e. group actions of locally compact groups on C∗-algebras, is in-

teresting in many ways. The crossed product construction is of fundamental

importance, which is a way to create a new C∗-algebra that naturally in-

corporates the structure of a given C∗-dynamical system. This construction

has, by now, proved to be a virtually inexhaustible source of interesting ex-

amples of C∗-algebras. In many cases, crossed products can turn out to be

simple C∗-algebras falling within the scope of the so-called Elliott classifica-

tion program.

In 1976, Elliott established his seminal classification theorem of approx-

imately finite-dimensional (AF) algebras [20] via K-theory, building on ear-

lier work of Bratteli [9] on AF algebras and of Glimm [32] on UHF algebras.

Elliott’s classification theorem asserts that, up to isomorphism, AF algebras

are classified by their scaled ordered K0-groups. That is, two unital AF al-

gebras A and B are isomorphic if and only if there exists an order-preserving

isomorphism from K0(A) to K0(B) preserving also the K0-classes of the re-

spective units. Extending this result considerably, he later managed to prove

that approximate circle (AT) algebras of real rank zero are classified by their

ordered K0-groups and K1-groups, see [21], and that simple, approximate

interval (AI) algebras are classified by their K0-groups, tracial state spaces

and their pairings, see [19, 97]. In 1994, this led him to conjecture that

a more general class of C∗-algebras should be classifiable by K-theory and
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traces, see [22, 23]:

Conjecture (Elliott 1994). Let A and B be two separable, unital, nuclear

and simple C∗-algebras. Then A ∼= B if and only if Ell(A) ∼= Ell(B), where

Ell denotes the so-called Elliott-functor on unital C∗-algebras given by

Ell(A) =
(
K0(A),K0(A)

+, [1A], T (A), ρA,K1(A)
)
.

Here, T (A) denotes the tracial state space of A and ρA : K0(A)×T (A)→
R is the natural pairing map given by ρA([p], τ) = (Trn⊗τ)(p) for all projec-
tions p ∈ Mn(A) and τ ∈ T (A), where Trn denotes the unique tracial state

on Mn given by Trn
(
(xi,j)1≤i,j≤n

)
=

∑n
j=1 xj,j . The target category of this

functor is the so-called Elliott category, with objects consisting of suitable

tuples of (scalered, ordered) abelian groups, Choquet simplices and suitable

pairing maps between these. The morphisms consist of tuples of (ordered,

unit-preserving) group homomorphisms and affine maps compatible with

the respective pairing maps. For a more thorough explanation, the reader is

referred to the second chapter of Rørdam’s book [81] on classification theory

of C∗-algebras.

The reason for the nuclearity assumption in Elliott’s conjecture is not

immediately obvious. However, the class of nuclear C∗-algebras is very im-

portant and large enough to contain most of the C∗-algebras that arise nat-

urally in one way or another. Nuclear C∗-algebras also have nice structural

properties that are technically very useful in applications. A C∗-algebra A

is called nuclear, if for every C∗-algebra B, there is a unique C∗-cross norm

on the algebraic tensor product of A and B. Surprisingly, the property of

being nuclear has a variety of interesting equivalent characterizations. By

combined work of Connes and Haagerup [13, 40], it is known that a C∗-

algebra is nuclear if and only if it is amenable as a Banach algebra. For

this reason, nuclear C∗-algebras are often called amenable. Combined work

of Choi, Effros and Lance [11, 58] shows that a C∗-algebra A is nuclear if

and only if its enveloping von Neumann algebra A∗∗ is injective. Perhaps

the most important characterization for classification purposes, it is due to

Choi, Effros and Kirchberg [12, 49] that a C∗-algebra A is nuclear if and only

if its identity map can be locally approximated by contractive completely

positive maps factoring through finite-dimensional C∗-algebras. In the sepa-

rable case, Kirchberg has characterized nuclear C∗-algebras A as those that
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are embeddable as C∗-subalgebras into the Cuntz algebra of two generators

O2 such that there exists a conditional expectation from O2 onto A, see [50].

In the case of group C∗-algebras, nuclearity amounts to amenability of the

group. That is, for any discrete group G, the universal C∗-algebra C∗(G)

of unitary representations of G is nuclear if and only if G is amenable. For

a proper treatement of nuclear C∗-algebras in general and in particular its

meaning in the setting of group C∗-algebras, the reader is advised to consult

Brown-Ozawa’s book [10].

Since there exist various range results for the Elliott invariant, when

restricted to special inductive limit C∗-algebras (see for instance [23]), the

Elliott conjecture would also entail that stably finite, classifiable C∗-algebras

should be expressible as inductive limits of particularly nice building blocks.

These include AH algebras, i.e. inductive limits of finite direct sums of the

form pC(X,Mn)p for a finite CW complex X and a projection p ∈ C(X,Mn).

More generally, these also include ASH algebras, i.e. inductive limits of

recursive subhomogeneous algebras, see [75]. In fact, the bulk of the earlier

results within the Elliott program all presuppose a certain inductive limit

decomposition into well-behaved building blocks for the C∗-algebras under

consideration.

For certain crossed product C∗-algebras associated to natural classes of

C∗-dynamical systems, it is desirable to determine when they belong to a

class of C∗-algebras that is tractable enough to be covered by a classifi-

cation theorem in the spirit of Elliott’s conjecture. However, the task of

showing that a crossed product of some C∗-dynamical system admits such

an inductive limit decomposition of this sort is a very challenging task.

A few years after Elliott proposed his conjecture, it was discovered that

his conjecture in its original form was too much to ask for, see [101, 82, 98].

The reason behind it is, simply put, that Elliott’s conjecture can fail for a

pair of C∗-algebras, if one of them is, in a sense, regular, but the other is not.

This insight has led to several far-reaching new developments in C∗-algebra

theory, which, from today’s point of view, yield more conceptual approaches

to the Elliott program than the study of C∗-algebras that are a priori given

as inductive limits of some sort.

One important direction is the concept of tracial approximation. This

notion has first been used very successfully by Lin for the study of tra-

cially approximately finite-dimensional (TAF) algebras, see [59, 60]. The
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advantage of his classification theorem is that it relies on rather abstract

properties of the involved C∗-algebras, compared to the assumption that

it is given as an inductive limit of some sort. Moreover, the verification

of these abstract properties of a C∗-algebra, in order to show classifia-

bility, is expected to be much easier than directly obtaining an inductive

limit decomposition. Driven most notably by Lin, Niu, Gong and Win-

ter, there now exist very general classification theorems of this spirit, see

[59, 60, 61, 108, 64, 34, 63, 35]. With these classification theorems at hand,

one would often like to verify for a C∗-algebra that its stabilization by a

certain UHF algebra is tracially approximated by either finite-dimensional

C∗-algebras, interval algebras or more generally certain 1-NCCW-complexes.

However, this easier task is in general still very difficult for C∗-algebras given

as a crossed product of some C∗-dynamical system.

Another important conceptual approach to Elliott’s program attacks the

C∗-algebras of interest at a somewhat more basic level. At the heart of this

recent progress is the discovery of various C∗-algebraic regularity properties,

which have emerged as a necessary criterion for a C∗-algebra to be considered

from the point of view of Elliott’s conjecture in its original form. The study

of these regularity properties has culminated into the so-called regularity

conjecture of Toms and Winter, see [25, 107]:

Conjecture (Toms-Winter). Let A be a separable, unital, simple and nu-

clear C∗-algebra that is not isomorphic to a finite matrix algebra. Then the

following are equivalent:

(i) A has finite nuclear dimension.

(ii) A absorbs the Jiang-Su algebra Z tensorially.

(iii) A has strict comparison of positive elements.

As will be made more precise in the first chapter, finite nuclear dimension

is a strengthening of nuclearity in a way that is motivated by the idea of

covering dimension. In fact, it is a notion that generalizes covering dimension

for locally compact metric spaces. Because of this, part (i) of the above

conjecture is a rather topological statement, whereas parts (ii) and (iii) are

much more algebraic in nature. The progress made on this conjecture during

the last few years has been vast, see in particular [106, 107, 79, 68, 54, 99,

87, 69, 88].
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If one looks back at the inital questions about the classifiability of crossed

products, one can consider a natural problem. For now, let A be a C∗-

algebra, G a countable, discrete group and let α : G → Aut(A) be a group

homomorphism. We call α a G-action on A and write α : Gy A.

Question 1. When is the crossed product A ⋊α G regular or classifiable?

More modestly: under what conditions on α does regularity or classifiability

pass from A to A⋊α G?

Of course, this question is interesting for all three versions of regularity,

and for all kinds of nuclear C∗-algebras A. Within this dissertation, however,

we will restrict our focus to special cases of this question. The specification

is two-fold; firstly, we will study this question for the regularity property of

having finite nuclear dimension.

Question 2. Under what conditions on α does finite nuclear dimension pass

from A to A⋊α G?

Secondly, the C∗-dynamical systems under consideration are mainly ex-

amples coming from topological dynamics. So the question becomes:

Question 3. Let A be of the form A = C0(X) for a finite-dimensional

and locally compact metric space. When does the transformation group

C∗-algebra C0(X)⋊α G have finite nuclear dimension?

Let us briefly review to what extent these questions have been answered

for transformation group C∗-algebras of the form C0(X) ⋊α G in the liter-

ature. For the most part, the current results concern the case that G = Z

and X being compact. Early results of Putnam about characterizing crossed

products of minimal homeomorphisms on the Cantor set as AT algebras [78]

or of Elliott and Evans about irrational rotation algebras [24] have essentially

set the stage for a deeper investigation of transformation group C∗-algebras

of this type. In a related context, Giordano, Putnam and Skau proved a

celebrated result [31] asserting that two Cantor minimal systems yield iso-

morphic transformation group C∗-algebras if and only if they are strongly

orbit equivalent. In one of the more recent breakthroughs, Toms and Winter

could show in [100] that a C∗-algebra C(X) ⋊ϕ Z associated to a minimal

dynamical system (X,ϕ,Z) has finite nuclear dimension, provided that X

is compact and has finite covering dimension. Combining this fact with a
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result by Strung and Winter [91], they have shown that crossed products of

uniquely ergodic minimal homeomorphisms on infinite compact metrizable

spaces with finite covering dimension are classified by ordered K-theory.

Before I began my doctoral studies, the combined work of Toms, Strung

and Winter was the state-of-the-art result concerning the classifiability of

transformation group C∗-algebras of the form C(X)⋊ Z.

For more general group actions, the situation becomes much more com-

plicated. As it has been empirically observed in countless similar situations

within mathematics, handling a problem concerning a fairly general class of

groups can be much better accessible for the integer group Z. Simply put,

this stems from the fact that Z is the only singly-generated free group. As

such, it is easier to prove something for Z than for other groups, because

there are no group relations that one has to worry about. Moreover, the nat-

ural linear order on Z can be of technical use in many situations, whereas

such a tool is mostly absent elsewhere. In the above context, a major prob-

lem is that already for Z2 it is not at all obvious how to define the large

subalgebras as in [78] to break orbits within a crossed product of the form

C(X)⋊Z2. This is a considerable drawback even if one only wishes to follow

Toms’ and Winter’s approach to show that certain C∗-algebras of the form

C(X)⋊Z2 have finite nuclear dimension. As for the techniques of [91], it is

at present still completely unclear how to proceed for non-integer group ac-

tions. However, the concept of large subalgebras pioneered by Phillips might

shed some light on these questions in the future, see [76, 77].

Around the time that I began my doctoral studies, Hirshberg, Winter

and Zacharias have introduced the concept of Rokhlin dimension in [42] as

a tool for solving Question 2 in great generality. This notion has been intro-

duced for finite group actions and integer actions on unital C∗-algebras, but

has the big advantage that it can be defined similarly for Zm-actions and

even for other higher-rank groups. Integer actions with finite Rokhlin dimen-

sion have been shown to behave well with underlying C∗-algebras of finite

nuclear dimension. That is, the property of having finite nuclear dimension

passes from the underlying C∗-algebra to the crossed product. They have

also provided a purely C∗-algebraic proof that minimal Z-actions on infinite

and finite-dimensional compact metric spaces yield C∗-dynamical systems

with finite Rokhlin dimension. This, in turn, marked an alternative route

towards showing that the transformation group C∗-algebras C(X) ⋊ Z of
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minimal actions have finite nuclear dimension, provided X is compact and

finite-dimensional. With this approach, however, came the reasonable hope

that these techniques could possibly carry over to actions of Zm or even

more general groups.

At this point, I would like to summarize my contributions to the second

and third question from above, and simultaniously sketch how this disserta-

tion is organized.

Towards making progress on Question 2, I have investigated to what ex-

tent the methods from the work of Hirshberg, Winter and Zacharias carry

over to actions of higher-rank groups, in order to obtain a more general no-

tion of Rokhlin dimension. I could indeed obtain a rather straightforward

generalization to Zm-actions in [94], which posed only minor additional com-

binatorial difficulties. In later joint work with Wu and Zacharias [96], we

could overcome the technical difficulties for non-abelian groups and were

able to generalize Rokhlin dimension to cover actions of a subclass of resid-

ually finite groups that contains all finitely generated and virtually nilpotent

groups. We will give a detailed treatment of all this in the first chapter.

Towards making progress on Question 3, I have examined under what

conditions a topological action α : G y X on a finite-dimensional, locally

compact metric space yields a transformation group C∗-algebra with finite

nuclear dimension. This will be the topic of the second and third chapter.

At the beginning of the second chapter, we revisit an approach of Toms

andWinter showing that the C∗-algebras C(X)⋊Z have finite nuclear dimen-

sion, but under the assumption that the action is merely aperiodic instead

of minimal. This approach employs the orbit-breaking subalgebras of [78]

instead of arguments related to Rokhlin dimension. The so-called marker

property, which is a dynamical property recently introduced by Gutman in

[39] for aperiodic Z-actions, turns out to be the right tool to carry out the

original proof of Toms andWinter for aperiodic homeomorphisms. Following

this, we use Gutman’s marker property to obtain a purely dynamical general-

ization of the aforementioned result of Hirshberg, Winter and Zacharias that

minimal Z-actions on finite-dimensional, compact metric spaces have finite

Rokhlin dimension. Although the marker property in itself is not a strong

enough condition for this purpose, a formally stronger version of the marker

property can be obtained directly from Gutman’s proof. This stronger ver-

sion will then enable us to give a comparably simple proof of finite Rokhlin
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dimension in the setting of aperiodic Z-actions on finite-dimensional spaces.

In the third chapter, we investigate how one can extend Gutman’s no-

tion of the marker property in order to apply it to free actions of higher-

rank groups, and in particular Zm. Although the suitable definition for

Zm-actions is rather obvious, actually verifying this condition poses a big

technical obstacle. It not only requires a suitable generalization of Gutman’s

proof itself, but of another technical result, which already served as a black

box within Gutman’s approach. Namely, a very strong version of the small

boundary property is needed for the approach to work, which is something

that Lindenstrauss has established in one of his earlier works [66] on Z-

actions on finite-dimensional spaces. Fortunately, the jump from Z to other

groups is merely a question about more general combinatorial arguments, at

least as far as Lindenstrauss’ approach is concerned. In particular, we gen-

eralize this technical result even to free actions of countably infinite groups

on finite-dimensional, locally compact metric spaces. As the main technical

result of this dissertation, we then prove a general marker property lemma

for such actions. In the particular case where the acting group is Zm, this

general lemma implies an even stronger variant as a corollary, which is then

sufficiently strong to prove finite Rokhlin dimension. As a culmination of

this general analysis of free topological actions, we can answer Question 3

affirmatively in the case where G = Zm and the action is free. This marks

the main result of this dissertation. It should be pointed out that the results

of the first half of the third chapter are essentially published in [94]; how-

ever, some of the partial results are carried out in greater generality here,

for instance without the assumption that the underlying space is compact.

Following this, we explain how the aforementioned result for free Zm-

actions can be extended even further to actions of not necessarily abelian

groups. This is a result obtained within a collaboration with Wu and

Zacharias 1, which is available as an arxiv preprint [96]. However, the ap-

proach presented in this dissertation will be somewhat different, more direct

and also more general in that we treat the case of locally compact metric

spaces.

In the first chapter, we have extended the notion of Rokhlin dimension

to actions of a certain class of residually finite groups. This class of groups

can be regarded as the groups having very low coarse-geometric complexity,

1Each author has contributed an approximately equal amount to this collaboration.
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and includes all finitely generated and virtually nilpotent groups. So the

natural candidate for a class of groups, for which Question 3 should have

an affirmative answer, is given by finitely generated, nilpotent groups. In-

deed, we will see that such groups acting freely on finite-dimensional, locally

compact metric spaces automatically yield C∗-dynamical systems with finite

Rokhlin dimension. Compared to the case of Zm-actions, however, the proof

is necessarily more technical and involves certain aspects of the geometric

group theory of nilpotent groups.

Also worth mentioning is that shortly after I have obtained the main re-

sult of the third chapter, Wilhelm Winter has invented a new and conceptual

way of verifying classifiability for certain C∗-algebras, which is now known

as classification via embedding, see [109]. The main motivation was to ap-

ply this to crossed product C∗-algebras, and particularly to transformation

group C∗-algebras of the form C(X)⋊Zm associated to free and minimal ac-

tions on finite-dimensional, compact metric spaces. His main result asserts

that classifiability is assured if the space of ergodic measures is compact

and projections separate tracial states. Besides several new insights, his

approach makes crucial use of two other results; one of them being Lin’s

deep theorem about AF-embeddability of transformation group C∗-algebras

from [62], and the other being the main result from the third chapter of this

dissertation.

At least as far as uniquely ergodic, free and minimal Zm-actions are

concerned, classifiability of their transformation group C∗-algebras C(X) ⋊

Zm can also be obtained by combining the main result of the third chapter

with the quasidiagonality result from [62] and the main result of [69].

Let us also mention that the C∗-algebras associated to Penrose tilings or

substitution tilings, as considered in [47], can often be expressed as transfor-

mation group C∗-algebras of uniquely ergodic, free and minimal Zm-actions

on the Cantor set. Since these objects appear naturally in the context of

quasicrystals, the classifiability of these C∗-algebras might even spark some

applications in physics.

Apart from all of this, I have also obtained some other results during my

doctoral studies, partly in collaboration with others, see [2, 95, 3]. While

these results go in a similar direction as this dissertation, namely studying

certain C∗-dynamical systems and their crossed products with the help of

Rokhlin type properties, they do not directly address the interplay between
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topological dynamics and classification theory of C∗-algebras. In order to

keep this dissertation self-contained, those results will therefore not be dis-

cussed at length here. However, we will conclude this dissertation in the

fourth chapter by briefly reviewing the contents of [2, 95, 3] and by indicat-

ing how they relate to the initial outlined problems of this introduction.
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The theory of Rokhlin dimension

The reader of this dissertation is supposed to be familiar with the general

theory of C∗-algebras, including the definition and basic properties of crossed

product C∗-algebras. We suggest [70, 103] as the standard references for the

basic theory. Although we will recall the most importants bits in the first

preliminary section, it may also be useful to be familiar with nuclearity and

completely positive maps between C∗-algebras, see [10]. It can also help

to know some basic coarse geometry, see [71, 80] as standard references, in

particular the definition and the most elementary properties of asymptotic

dimension. Some needed definitions of this area will be treated in the second

preliminary section. Before we begin, let us specify some notations:

Notation 1.0.1. Unless specified otherwise, we will stick to the following

notations throughout this dissertation.

• A denotes a C∗-algebra.

• For a C∗-algebra A, we write A+ for the set of positive elements in A.

• G denotes a group.

• α denotes a group action on a C∗-algebra or a metric space. If α : Gy

X is a topological action on a locally compact space, then we denote

by ᾱ : G y C0(X) the naturally induced action on the continuous

functions over X vanishing at infinity, given by ᾱg(f) = f ◦ αg−1 for

all g ∈ G and f ∈ C(X).

• If M is some set and F ⊂M is a finite subset, then we write F⊂⊂M .

11



• If ε > 0 is a positive number and a, b are elements in some normed

space, then we write a =ε b as a shortcut for ‖a− b‖ ≤ ε.

• Assume that ”dim” is one of the notions of dimension that appear in

this dissertation, and X a mathematical object on which this dimen-

sion can be evaluated. Then we sometimes use the convenient shortcut

dim+1(X) = 1 + dim(X).

• Let (X, d) be a metric space. For x ∈ X and r > 0, we denote the ball

of radius r centered at x as

Bd
r (x) = {y ∈ X | d(x, y) < r} .

In the case where the metric is known from context, we sometimes

omit it from the notation for convenience, and just write Br(x).

• Let (X, d) be a metric space. If Y ⊂ X is a subset, we denote its

diameter as

diam(Y ) = diamd(Y ) = sup {d(x, y) | x, y ∈ Y } .

1.1 C∗-algebraic preliminaries

In this section, we shall recollect some of the notions in the more current

C∗-algebra theory that are omnipresent in this dissertation.

Definition 1.1.1 (cf. [10, 1.5.1] and [110, 1.3]). Let A and B be C∗-algebras.

Let ϕ : A→ B be a linear map.

• ϕ is called positive, if ϕ(a) ≥ 0 for all a ≥ 0 in A.

• ϕ is called completely positive, if for each n ∈ N, the matrix amplifica-

tion ϕn = idMn ⊗ϕ :Mn(A)→Mn(B) of ϕ, given by ϕn
(
(ai,j)1≤i,j≤n

)
=

((ϕ(ai,j))1≤i,j≤n, is positive.

• If ϕ : A→ B is completely positive, then ϕ is said to have order zero,

if for all a, b ∈ A+ the condition ab = 0 implies ϕ(a)ϕ(b) = 0. In other

words, ϕ is called order zero if it preserves orthogonality of positive

elements.
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For brevity, we will call a completely positive map a c.p. map. A contrac-

tive and completely positive map between C∗-algebras is abreviated as a

c.p.c. map.

Order zero maps in particular appear in the definition of nuclear di-

mension (as introduced by Winter and Zacharias) and decomposition rank

(as introduced by Kirchberg and Winter), which have become increasingly

important regularity properties for the classification theory of nuclear C∗-

algebras.

Definition 1.1.2 (cf. [111, 2.1]). Let A be a C∗-algebra. A is said to have

nuclear dimension r ∈ N, denoted by dimnuc(A) = r, if r is the smallest

natural number with the following property: For all F⊂⊂A and ε > 0, there

exists a finite-dimensional C∗-algebra F and c.p. maps ψ : A → F and

ϕ : F → A such that

• ψ is contractive.

• ϕ allows a decomposition ϕ = ϕ(0) + · · · + ϕ(r) into r + 1 c.p.c. order

zero maps ϕ(j) : F → A for j = 0, . . . , r.

• ‖ϕ ◦ ψ(a)− a‖ ≤ ε for all a ∈ F .

The triple (F , ψ, ϕ) is then called an (r+1)-decomposable c.p. approximation

of tolerance ε on F . If no such r exists, one writes dimnuc(A) =∞.

The notion of nuclear dimension is a noncommutative generalization

of covering dimension invented by Winter and Zacharias. In fact, nuclear

dimension recovers the theory of covering dimension for locally compact

metric spaces:1

Proposition 1.1.3 (see [111, 2.4]). For any locally compact metric space

X, one has dimnuc(C0(X)) = dim(X).

Remark 1.1.4. The decomposition rank of a C∗-algebra, as introduced by

Kirchberg and Winter in [55], is defined in a similar manner as nuclear di-

mension. Namely, a C∗-algebra A has decomposition rank at most r ∈ N,

if for every F⊂⊂A and ε > 0, there exists an (r + 1)-decomposable c.p. ap-

proximation (F , ψ, ϕ) as in 1.1.2 of tolerance ε on F , with the additional

property that ϕ is contractive.

1We will recall the notion of topological covering dimension in the next section.
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However, we note that our focus in this dissertation lies on nuclear di-

mension rather than on decomposition rank.

Next, we shall recall the notion of sequence algebras:

Definition 1.1.5. Let A be a C∗-algebra. We call

A∞ = ℓ∞(N, A)/c0(N, A) = ℓ∞(N, A)/
{
(an)n ∈ ℓ∞(N, A) | lim

n→∞
‖an‖ = 0

}
.

the sequence algebra of A. Then A embeds naturally into A∞ as equiv-

alence classes of constant sequences. We will frequently make use of this

identification of A as a subalgebra of A∞ without mention.

Remark. On A∞, the norm is given by the limes superior on representa-

tives. That is, if x ∈ A∞ is the image of a sequence (xn)n ∈ ℓ∞(N, A), then

‖x‖ = lim supn→∞ ‖xn‖.

The following observation has appeared frequently in Winter’s work,

and can be seen as a consequence of an important structure theorem for

order zero maps established by Winter and Zacharias (see [110, 2.3 and

3.1]), paired with Loring’s observation that cones over finite-dimensional

C∗-algebras are projective (see [67, 10.1.11 and 10.2.1]).

Theorem 1.1.6 (cf. [105, 1.2.4] and [55, 2.4]). Let A be a C∗-algebra with

an ideal J ⊂ A. Let q : A→ A/J denote the quotient map. Let F be a finite-

dimensional C∗-algebra. Then for any c.p.c. order zero map σ : F → A/J ,

there exists a c.p.c. order zero map σ̄ : F → A with q ◦ σ̄ = σ.

In some technical steps later in this chapter, it will be useful to have a

slightly more flexible characterization of nuclear dimension. In a very similar

form, this has been used by Hirshberg, Winter and Zacharias in [42].

Proposition 1.1.7 (cf. [42, A.4]). Let A be a C∗-algebra and r ∈ N a

natural number. Then dimnuc(A) ≤ r, if and only if the following holds:

For all F⊂⊂A and δ > 0, there exists a finite-dimensional C∗-algebra F , a
c.p.c. map ψ : A → F and c.p.c. order zero maps ϕ(0), . . . , ϕ(r) : F → A∞

such that

a =δ

r∑

l=0

ϕ(l) ◦ ψ(a) for all a ∈ F.
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Proof. Since the ’only if’ part is trivial, we show the ’if’ part. Let F⊂⊂A
and δ > 0 be arbitrary. Find F , ψ, ϕ(0), . . . , ϕ(r) as in the assertion.

By 1.1.6, we can find sequences of c.p.c. order zero maps ϕ
(l)
n : F → A

for l = 0, . . . , r with ϕ(l)(x) = [(ϕ
(l)
n (x))n] for all x ∈ F . In particular, it

follows that lim supn→∞ ‖a −
∑r

l=0 ϕ
(l)
n ◦ ψ(a)‖ ≤ δ for all a ∈ F . So there

exists n with a =2δ
∑r

l=0 ϕ
(l)
n ◦ ψ(a) for all a ∈ F . Since F and δ were

arbitrary, this shows that dimnuc(A) ≤ r.

1.2 Geometric preliminaries

In this section, we recall some definitions and terminology from topology,

coarse geometry of metric spaces and geometric group theory, which we need

in this dissertation. First, let us fix some terminology concerning covers of

spaces:

Definition 1.2.1. Let X be a set. A cover of X is a family U of subsets

of X with X =
⋃U . We say that a cover U refines another cover V, if for

every U ∈ U , there exists V ∈ V with U ⊂ V .

Moreover, we will use the following terminologies:

• We say that a cover U has finite multiplicity m ∈ N, if the intersection

of any m+ 1 distinct members of U is empty, and if m is the smallest

number with this property.

• If X is a topological space, then an open cover is a cover consisting of

open sets in X.

• If X is equipped with a metric d, we say that a cover U of X is

uniformly bounded by r > 0, if diam(U) ≤ r for all U ∈ U .

• If X is equipped with a metric d, we say that a cover U of X has

Lebesgue number R > 0, if every subset in X with diameter less than

R is contained in a member of U , and if R is the largest number with

this property.

Now let us recall the notion of topological covering dimension:

Definition 1.2.2 (cf. [27, 1.6.7]). Let X be a normal topological space. The

covering dimension (or Čech-Lebesgue dimension) of X, denoted dim(X), is

the smallest natural number d ∈ N with the following property: For every
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finite open cover U of X, there exists an open refinement V of U such that

the multiplicity of V is at most d+ 1.

The following variation can be quite useful:

Proposition 1.2.3 (cf. [55, 1.6]). Let X be a normal topological space and

d ∈ N a natural number. Then dim(X) ≤ d if and only if the following

holds:

For every finite open cover U of X, there exists an open refinement V of

U such that one can write V = V(0) ∪ · · · ∪ V(d) with the property

V1 ∩ V2 = ∅ for all V1 6= V2 in V(l)

for all l = 0, . . . , d.

We continue with some coarse geometry, and will follow Nowak and Yu’s

book [71] for the most part.

Definition 1.2.4 (cf. [71, 1.3.1 and 1.4.4]). Let (X, dX) and (Y, dY ) be two

metric spaces. A map f : X → Y is called a coarse equivalence, if:

• There exists some R > 0 such that the image f(X) interesects all balls

of radius R in Y non-trivially.

• There exist functions ρ−, ρ+ : [0,∞) → [0,∞) with limt→∞ ρ−(t) =

∞ = limt→∞ ρ+(t) such that we have

ρ−(dX(x, y)) ≤ dY (f(x), f(y)) ≤ ρ+(dX(x, y))

for all x, y ∈ X.

Two metric spaces (X, dX) and (Y, dY ) are called coarsely equivalent, if there

exists a coarse equivalence from X to Y .

Definition 1.2.5 (cf. [71, 2.2.1]). Let (X, d) be a metric space. The asymp-

totic dimension of X is the smallest natural number n ∈ N such that the

following holds: For any R > 0, there exists a uniformly bounded cover U of

X, such that for any x ∈ X, the ball Bd
R(x) intersects at most n+1 distinct

members of U . We write asdim(X) = n in this case. If no such number

exists, we write asdim(X) =∞.
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Recall that the asymptotic dimension of a metric space is an invariant

of its coarse equivalence class:

Theorem 1.2.6 (see [71, 2.2.5]). Two coarsely equivalent metric spaces have

the same asymptotic dimension.

For some purposes, it is useful to have the following equivalent charac-

terization of asymptotic dimension, which can be obtained in a more or less

straightforward manner by using the equivalent characterizations of asymp-

totic dimension exhibited in [4].

Proposition 1.2.7. Let (X, d) be a metric space and let n ∈ N be a natural

number. Then the following are equivalent:

(1) asdim(X) ≤ n.

(2) For every R > 0, there exist collections U (0), . . . ,U (n) of subsets of X,

such that the following holds:

• for each l = 0, . . . , n, any two distinct sets in U (l) are disjoint;

• the family U = U (0) ∪ · · · ∪ U (n) is a uniformly bounded cover of X

with Lebesgue number at least R.

(3) For every R > 0, there exist collections U (0), . . . ,U (n) of subsets of X,

such that the following holds:

• for each l = 0, . . . , n, the distance between two distinct sets in U (l)

is at least R;

• the family U = U (0) ∪ · · · ∪ U (n) is a uniformly bounded cover of X

with Lebesgue number at least R.

Proof. (1) =⇒ (3) : LetR > 0 be a positive number and assume asdim(X) ≤
n. The equivalence ”(2)⇔ (3)” within Theorem 19 from [4] shows that there

exist collections V(0), . . . ,V(n) of subsets inX such that V = V(0)∪· · ·∪V(n) is

a uniformly bounded cover and such that for each l = 0, . . . , n, the distance

between two distinct sets in V(l) is greater than 3R. Taking the memberwise

R-neighbourhoods, we can consider the collections

U (l) =
{
BR(V ) | U ∈ V(l)

}
with BR(V ) = {x ∈ X | dist(x, V ) < R}

17



for each l = 0, . . . , n. Then U = U (0) ∪ · · · ∪ U (n) is clearly a uniformly

bounded cover. By the triangle inequality, we have for each l = 0, . . . , n

that the distance between two distinct members in U (l) is at least R. Now

let M ⊂ X be any subset with diameter less than R. Given any x0 ∈ M ,

there is some l ∈ {0, . . . , n} and V ∈ V(l) with x0 ∈ V . It follows that

M ⊂ BR(x0) ⊂ BR(V ) ∈ U (l). Thus, U has Lebesgue number at least R.

(3) =⇒ (1) : Let R > 0 be a positive number. Choose uniformly

bounded collections U (0), . . . ,U (n) of subsets of X with the required proper-

ties from (3) with respect to the number 2R+1. Let x ∈ X. Then BR(x) has

diameter less than 2R+1 by the triangle inequality, and thus is contained in

some U ∈ U (l) for a number l ∈ {0, . . . , n}. But since for each l = 0, . . . , n,

the collection U (l) consists of sets with pairwise-distance at least 2R + 1,

it follows that BR(x) can intersect at most one set in U (l). In particular,

BR(X) can intersect at most n+ 1 members of U = U (0) ∪ · · · ∪ U (n). Since

R > 0 was arbitrary, this shows that asdim(X) ≤ n.

(2) =⇒ (3): Let R > 0 be a positive number. Choose uniformly

bounded collections U (0), . . . ,U (n) of subsets of X such that U = U (0)∪ · · ·∪
U (n) is a cover with Lebesgue number at least 4R, and such that for each l =

0, . . . , n, the collection U (l) consists of pairwise disjoint sets. Given a subset

Z ⊂ X, denote B−R(Z) = {x ∈ X | BR(x) ⊂ Z}. For each l = 0, . . . , n,

set V(l) =
{
B−R(U) | U ∈ U (l)

}
, and set V = V(0) ∪ · · · ∪ V(n). Since U

has Lebesgue number at least 4R, it follows that given any x ∈ X, the set

B2R(x) is contained in a member U of U . In particular, x ∈ B−R(U), and

thus V is a cover. Moreover, for x as before and each y ∈ BR(x), we have

that BR(y) ⊂ B2R(x) is also contained in the same set U . So by definition,

it follows that BR(x) ⊂ B−R(U) ∈ U . Since any set of diameter at most

R is trivially contained in a ball of radius R, it follows that the Lebesgue

number of U is at least R. Moreover, since any two distinct sets in U (l) are

pairwise disjoint, it follows from the construction that the distance between

any two distinct sets in V(l) is at least R.

(3) =⇒ (2): This is trivial.

Definition 1.2.8 (cf. [71, 1.4.12]). Let (Xn, dn) be a sequence of finite

metric spaces. Consider the disjoint union X =
⊔
n∈NXn as a set, and let

dX be a metric on X satisfying the following two properties:

• for all n ∈ N, the metric dX restricted to Xn coincides with dn;
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• as i 6= j and i+ j →∞, we have distdX (Xi, Xj)→∞.

Then the pair (X, dX) is called a coarse disjoint union of the sequence

(Xn, dn).

It seems to be a well-known fact in the field of coarse geometry that a

metric as above always exists, and that the properties of such a metric, as re-

quired by 1.2.8, uniquely determine (X, dX) up to coarse equivalence. How-

ever, I could not find any reference with an explicit proof of this fact. Hence,

the detailed proofs are attached for the reader’s convenience. But first, we

establish a technical Lemma, which we will use several times throughout

this chapter.

Lemma 1.2.9. Let X be a set and M a family of metrics on X. Sup-

pose that for any two metrics d(1), d(2) ∈ M, there exists a monotonously

increasing function ρ : [0,∞) → [0,∞) with limr→∞ ρ(r) = ∞, and such

that d(2)(x, y) ≤ ρ(d(1)(x, y)) for all x, y ∈ X. Then for any two met-

rics d(1), d(2) ∈ M, the identity map on X is a coarse equivalence between

(X, d(1)) and (X, d(2)).

Proof. Since the identity map on X is bijective, the first condition of 1.2.4

is obviously satisfied. Given any two metrics d(1), d(2) ∈M, let us construct

the functions ρ−, ρ+ : [0,∞) → [0,∞) as required by the second condition

of 1.2.4.

First, find a monotonously increasing function ρ+ : [0,∞) → [0,∞)

with limr→∞ ρ+(r) = ∞, and such that d(2)(x, y) ≤ ρ+(d
(1)(x, y)) for all

x, y ∈ X. Exchanging the roles of d(1) and d(2), also find a monotonously

increasing function µ : [0,∞) → [0,∞) with limr→∞ µ(r) = ∞, and such

that d(1)(x, y) ≤ µ(d(2)(x, y)) for all x, y ∈ X.

Define the map ρ− : [0,∞)→ [0,∞) via

ρ−(r) = inf {s > 0 | r ≤ µ(s)} .

Given any R > 0, the set µ([0, R]) is bounded by some r0 > 0, and thus we

have ρ−(r) ≥ R for all r ≥ r0+1. Thus we have limr→∞ ρ−(r) =∞. Lastly,

by the choice of µ it follows that

ρ−(d
(1)(x, y)) = inf

{
s > 0 | d(1)(x, y) ≤ µ(s)

}
≤ d(2)(x, y)
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for all x, y ∈ X. What this all amounts to is that we have found functions

ρ−, ρ+ : [0,∞)→ [0,∞) with limr→∞ ρ−(r) =∞ = limr→∞ ρ+(r) satisfying

the inequalities

ρ−(d
(1)(x, y)) ≤ d(2)(x, y) ≤ ρ+(d

(1)(x, y))

for all x, y ∈ X. This shows that id : (X, d(1))→ (X, d(2)) is indeed a coarse

equivalence.

Proposition 1.2.10. Let (Xn, dn) be a sequence of finite metric spaces.

Suppose that d(1) and d(2) are two metrics on the disjoint union X =
⊔
n∈NXn realizing both pairs (X, d(1)) and (X, d(2)) as coarse disjoint unions

of the sequence (Xn, dn). Then (X, d(1)) and (X, d(2)) are coarsely equivalent

via the identity map from (X, d(1)) to (X, d(2)).

Proof. Let M be the family of all metrics d on X realizing the pair (X, d)

as a coarse disjoint union of the sequence (Xn, dn). In order to show the

statement, we appeal to 1.2.9.

So let d(1), d(2) ∈M. Let r > 0 be any number. We claim that there are

only finitely many pairs (x, y) ∈ X ×X satisfying d(1)(x, y) < d(2)(x, y) and

d(1)(x, y) ≤ r. Indeed, by assumption, there exists k0 ∈ N such that for all

natural numbers i 6= j and i + j ≥ k0, we have distd(1)(Xi, Xj) > r. Since

both d(1) and d(2) restrict to the same metric on each set Xi, the condition

d(1)(x, y) < d(2)(x, y) implies that x ∈ Xi and y ∈ Xj for some i 6= j. But

then we necessarily have x, y ∈ ⊔
n≤k0

Xn, which leaves only finitely many

possibilites.

We can thus obtain a well-defined map f : [0,∞)→ {−∞}∪ [0,∞) given

by

f(r) = max
{
d(2)(x, y)

∣∣ d(1)(x, y) < d(2)(x, y) and d(1)(x, y) ≤ r
}
.

Now set ρ(r) = max {r, f(r)} to obtain a monotonously increasing function

ρ : [0,∞)→ [0,∞) with limr→∞ ρ(r) =∞. By construction of this map, we

have the inequality d(2)(x, y) ≤ ρ(d(1)(x, y)) for all x, y ∈ X. But his verifies

the conditions in 1.2.9, and the claim follows.

Proposition 1.2.11. Let (Xn, dn) be a sequence of finite metric spaces.

For each n ∈ N, let xn ∈ Xn be a point. Let (an)n be a sequence of positive
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numbers with limn→∞ an =∞. Consider the disjoint union X =
⊔
n∈NXn.

Then the map d : X ×X → [0,∞) given by

d(y, z) =





dn(y, z) , y, z ∈ Xn

dk(y, xk) +
∑n−1

j=k aj + d(xn, z) , y ∈ Xk, z ∈ Xn with k < n

dk(z, xk) +
∑n−1

j=k aj + d(xn, y) , z ∈ Xk, y ∈ Xn with k < n.

yields a metric on X, which realizes the pair (X, d) as a coarse disjoint union

of the sequence (Xn, dn).

Proof. We first verify that d is a metric. By definition, it is symmetric,

i.e. d(y, z) = d(z, y) for all y, z ∈ X. Suppose that d(y, z) = 0 for some

y, z ∈ X. Then we necessarily have y, z ∈ Xn for some n, and dn(y, z) = 0.

Since each dn is a metric, we obtain y = z. Now let z1, z2, z3 ∈ X and

let us show the triangle inequality d(z1, z3) ≤ d(z1, z2) + d(z2, z3). Let

n1, n2, n3 ∈ N with zi ∈ Xni
for i = 1, 2, 3. Let us fix the following notation:

For any k, l ∈ N, denote

bk,l =

max{k,l}−1∑

j=min{k,l}

aj .

Note that this defines a metric on N, by declaring the distance between k

and k + 1 to be ak for all k ∈ N, and extending it with the linear order.

Hence we have a triangle inequality, i.e. we have bk,l + bl,m ≤ bl,m for all

k, l,m ∈ N.

Case 1: n1 = n2 = n3. In this case, d restricts to the given metric on the

finite subset Xn1 , and hence the triangle inequality is trivially satisfied.

Case 2: n1 6= n2 = n3. Then

d(z1, z2) + d(z2, z3) = dn1(z1, xn1) + bn1,n2 + dn2(xn2 , z2) + dn2(z2, z3)

≥ dn1(z1, xn1) + bn1,n2 + dn2(xn2 , z3)

= d(z1, z3).
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Case 3: n1 6= n2 6= n3 = n1. Then

d(z1, z2) + d(z2, z3)

= dn1(z1, xn1) + 2bn1,n2 + 2dn2(z2, xn2) + dn1(z3, xn1)

≥ dn1(z1, xn1) + dn1(z3, xn1)

≥ dn1(z1, z3) = d(z1, z3).

Case 4: n1 6= n2 6= n3 6= n1. Then

d(z1, z2) + d(z2, z3)

= dn1(z1, xn1) + bn1,n2 + 2dn2(z2, xn2) + bn2,n3 + dn3(z3, xn3)

≥ dn1(z1, xn1) + bn1,n2 + bn2,n3 + dn3(z3, xn3)

≥ dn1(z1, xn1) + bn1,n3 + dn3(z3, xn3)

= d(z1, z3).

Thus we have verified that d defines a metric on X. It trivially satisfies the

property that it recovers the metric dn on each subset Xn. Moreover, note

that for all k < l, we have

distd(Xk, Xl) ≥
l−1∑

j=k

aj ≥ al−1 ≥ a⌊ l+k
2
⌋.

As k + l→∞, this expression tends to infinity because of limn→∞ an =∞.

So we have shown that the pair (X, d) is indeed a coarse disjoint union of

the sequence (Xn, dn). This finishes the proof.

Combining the previous two observations, we obtain:

Corollary 1.2.12. Let (Xn, dn) be a sequence of finite metric spaces. Then

there exists a coarse disjoint union (X, d) for (Xn, dn), and it is uniquely

determined by the conditions given in 1.2.8 up to coarse equivalence.

We now recall some basics of geometric group theory, in the sense of

viewing groups as proper metric spaces. We will first stay in the more ele-

mentary setting of countable, discrete groups, mostly following [71, Chapter

1, Section 2].

Definition 1.2.13. Let (X, d) be a metric space. We say that d or (X, d) is

proper, if for any x ∈ X and r > 0, the closed r-ball {y ∈ X | d(x, y) ≤ r} is
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compact. This is equivalent to saying that the compact sets in X are given

by the bounded and closed sets.

Definition 1.2.14 (cf. [71, 1.2.1]). Let G be a group. A length function

on G is a function ℓ : G → [0,∞) such that for any g, h ∈ G the following

conditions are satisfied:

• ℓ(g) = 0 if and only if g is the identity element;

• ℓ(g) = ℓ(g−1);

• ℓ(gh) ≤ ℓ(g) + ℓ(h).

Proposition 1.2.15 (cf. [71, 1.2.2]). Every countable, discrete group admits

a proper length function.

For the following, see also the discussion after Proposition 1.2.2 in [71]:

Example 1.2.16. Let G be a finitely generated group, and let us fix a

finite generating set S⊂⊂G with S = S−1. Then the map ℓ : G→ N given by

ℓ(g) = min {n | g = s1 · · · sn with si ∈ S} defines a proper length function

on G.

Proposition 1.2.17 (cf. [71, 1.2.5]). Let G be a group. Given any length

function ℓ, the map d : G×G→ [0,∞) given by d(x, y) = ℓ(xy−1) defines a

right-invariant metric. Conversely, given a right-invariant metric d on G,

the map ℓ : G→ [0,∞) given by ℓ(g) = d(g, 1G) is a length function.

This yields a one-to-one correspondence between the length functions on

G and the right-invariant metrics on G, which restricts to a one-to-one

correspondence between the proper length functions and the proper, right-

invariant metrics on G.

In particular, it follows that any countable, discrete group G admits a

proper, right-invariant metric.

We note that most authors in the standard literature are usually inter-

ested in left-invariant metrics on a group rather than right-invariant metrics.

However, these are in a canonical one-to-one correspondence: Composing

any left-invariant metric on a group with the group inversion yields a right-

invariant metric and vice versa.

As it turns out, such a proper, right-invariant metric on a group is unique

up to coarse equivalence:
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Theorem 1.2.18 (cf. [71, 1.4.7]). Let G be a countable, discrete group.

Then for any two proper, right-invariant metrics d(1) and d(2) on G, there ex-

ists a monotonously increasing function ρ : [0,∞)→ [0,∞) with lim
r→∞

ρ(r) =

∞ and such that d(2)(g, h) ≤ ρ(d(1)(g, h)) for all g, h ∈ G. Moreover, the

metric spaces (G, d(1)) and (G, d(2)) are coarsely equivalent via the identity

map.

Proof. For i = 1, 2, the metric d(i) is given by a proper length function ℓ(i) in

the sense of 1.2.17. Thus, it suffices to show that there exists a monotonously

increasing function ρ : [0,∞)→ [0,∞) with limr→∞ ρ(r) =∞, such that we

have the inequality ℓ(2)(g) ≤ ρ(ℓ(1)(g)) for all g ∈ G. Indeed, set

ρ(r) = max
{
ℓ(2)(g)

∣∣ g ∈ G with ℓ(1)(g) ≤ r
}
.

Since the length functions ℓ(1) and ℓ(2) are proper, this yields a well-defined

map. It is obviously monotonously increasing. Lastly, it follows directly

from the definition that ℓ(2)(g) ≤ ρ(ℓ(1)(g)) for every g ∈ G.
The second claim now follows by applying 1.2.9 to the family of all

proper, right-invariant metrics on G.

Let us also mention a more general existence result, due to Struble [90],

for proper, left-invariant metrics in the case of locally compact groups:

Theorem 1.2.19 (cf. [90] and [15, 2.B.5]). A locally compact group G is

second-countable if and only if it is metrizable by a proper, left-invariant

metric.

Remark 1.2.20. By the canonical one-to-one correspondence between left-

invariant metrics and right-invariant metrics via group inversion, it follows

from 1.2.19 in particular that a locally compact, second-countable group G

is metrizable by a proper, right-invariant metric.

To conclude this preliminary section, let us recall the notion of geometric

group actions and associated orbit spaces, following the book of Drutu and

Kapovich [18, Chapter 3]:

Definition 1.2.21 (cf. [18, 3.1.1 and 3.1.4]). Let (X, d) be a locally compact

metric space and G a group. Let α : G y X be an action via homeomor-

phisms. Then α is called
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• isometric, if α acts by isometries in the sense that d(αg(x), αg(y)) =

d(x, y) for all g ∈ G and x, y ∈ X.

• properly discontinuous, if for every pair of compact subsets K1,K2 ⊂
X, there exist only finitely many g ∈ G with αg(K1) ∩K2 6= ∅.

• cobounded, if there exists a bounded set B ⊂ X such that the collec-

tion {αg(B) | g ∈ G} covers X.

• cocompact, if there exists a compact subset K ⊂ X such that the

collection {αg(K) | g ∈ G} covers X.

• geometric, if it is isometric, properly discontinuous and cobounded.

Remark 1.2.22. Observe in the above definition that if the metric d on

X is proper, then cobounded implies cocompact, since closures of bounded

sets are compact.

Lemma 1.2.23 (cf. [18, 3.18]). Let (X, d) be a locally compact, proper met-

ric space and G a group. Let α : G y X be a faithful, isometric action.

Then α is properly discontinuous if and only if G is discrete.

Notation. Let α : G y X be an action of a group on some set. For each

x ∈ G, denote the G-orbit of x by Oα(x) = {αg(x) | g ∈ G}.

Theorem 1.2.24 (cf. [18, 3.2, 3.3 and 3.20]). Let (X, d) be a locally compact,

proper metric space and G a countable, discrete group. Let α : G y X be

a geometric action. Consider the orbit space X/G = {Oα(x) | x ∈ X} with

the natural surjection π : X → X/G, x 7→ Oα(x). Then X/G, equipped

with the quotient topology via π, is a compact Hausdorff space. Moreover,

it is metrizable by measuring the distances of orbits, i.e. the map π∗(d) :

(X/G)× (X/G)→ [0,∞) given by

π∗(d)(Oα(x),Oα(y)) = inf {d(αg(x), αh(y)) | g, h ∈ G}

is a metric (called the push-forward metric of d) and induces the quotient

topology on X/G.

Proposition 1.2.25. Let X,G,α, d, π be as in 1.2.24. If α is free, then π

is a local homeomorphism.
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Proof. Let x ∈ X. Choose a compact neighbourhood K of x. Since α

is properly discontinuous, the set F = {g ∈ G | αg(K) ∩K 6= ∅} is finite.

Since α is free, we can find a compact neighbourhood K ′ of X such that

K ′ ∩ αg(K ′) = ∅ for all g ∈ F \ {1G}. In particular, we can find some r > 0

such that

Br(x) ∩ αg(Br(x)) = ∅ for all g ∈ G \ {1G} .

By choosing r even smaller (for instance replacing it by r/4), we assume

moreover that d(y, αg(z)) ≥ 3r for all y, z ∈ Br(x) and all g 6= 1G. But

then it is obvious that π is injective on Br(x). Since Br(x) is compact, π

restricts to a homeomorphism from Br(x) onto its image. This shows that

π is indeed a local homeomorphism.

Of particular importance is the following special case:

Definition 1.2.26. Let G be a locally compact, second-countable group.

A closed subgroup H ⊂ G is called cocompact, if the action ρ : H y G

given by right-multiplication ρh(g) = g · h−1, is cocompact. That is, H is

cocompact if and only if G =
⋃
h∈H K · h for some compact subset K ⊂ G.

Remark 1.2.27. Observe that in the above situation, ρ-orbits are just left

cosets with respect to H in the ordinary group-theoretic sense. That is, for

each g ∈ G, we have Oρ(g) = gH. In particular, the orbit space of ρ agrees

with the usual group theoretic quotient space G/H.

Corollary 1.2.28. Let G be a locally compact, second-countable group,

equipped with a proper, right-invariant metric d on G. Let H ⊂ G be dis-

crete, cocompact subgroup, and let π : G → G/H denote the quotient map.

Then the quotient space G/H is a compact Hausdorff space, and is metriz-

able by the push-forward metric π∗(d) : (G/H) × (G/H) → [0,∞) given

by

π∗(d)(g1H, g2H) = distd(g1H, g2H) = inf {d(g1h1, g2h2) | h1, h2 ∈ H}

for all g1, g2 ∈ G. Moreover, π is a local homeomorphism.

Proof. Since d is chosen to be a right-invariant metric, the H-action on G

by right-multiplication is isometric. It is trivially free. It is also properly

discontinuous by 1.2.23 because H is discrete. Since H is cocompact by
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assumption, it follows that its induced action on G is cocompact. In partic-

ular, this action is geometric. The claim now follows directly from 1.2.27,

1.2.24 and 1.2.25.

1.3 Box spaces and asymptotic dimension

In the next three sections, we will develop the theory of Rokhlin dimension

for actions of residually finite groups on C∗-algebras, extending such a the-

ory for finite groups and the integers by Hirshberg, Winter and Zacharias

from [42]. The content of these sections comes from a joint paper with Wu

and Zacharias 2, which is available as an arxiv preprint in [96]. There is a

substantial text overlap between the following sections of this chapter and

[96], with large parts carried over verbatim with only minor changes. How-

ever, it should be pointed out that the second section of the current preprint

version of [96], which corresponds to this section, contains several mistakes.

For this reason, there are some adjustments in this section, some of which

which we will indicate below after 1.3.1.

To avoid any confusion concerning the text overlap with [96], we will

follow the convention to give the corresponding references to the preprint

[96] for all partial results that were originally proved in [96], either verbatim

or in a similar form. We note, however, that the Rokhlin dimension theory

developed in [96] is more general than presented here because it treats also

cocycle actions instead of only genuine group actions.

Before one delves into the details of Rokhlin dimension, it is important

to understand a certain geometric invariant of discrete and residually finite

groups, namely their box spaces. This notion is based on an idea of Roe

from [80]. In this section, we will introduce box spaces of residually finite

groups. A special focus will be on the asymptotic dimension of such spaces.

The reason is (as we will see in the last section of this chapter) that the

Rokhlin dimension theory for actions of a given group G is compatible with

the notion of nuclear dimension, if G has a box space with finite asymptotic

dimension.

Definition 1.3.1. Let G be a countable, discrete group. Let Gn E G be a

decreasing sequence of normal subgroups with finite index, i.e.

2Each author has contributed an approximately equal amount to this collaboration.
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[G : Gn] < ∞ and Gn+1 ⊂ Gn for all n ∈ N. We say that the sequence

(Gn)n is separating if
⋂
n∈NGn = {1G}. G is called residually finite, if it

has such a separating sequence of normal subgroups with finite index. In

what follows, such a decreasing and separating sequence is called a residually

finite approximation.

Remark. At this point, the reader should be warned about a difference

between this section and the analogous section in the current version of the

preprint [96] on box spaces. Namely, residually finite approximations are

not assumed in [96] to consist of subgroups that are normal. However, some

assumptions on the subgroups in question are necessary. For instance, one

can find counterexamples to the important technical Lemma 1.3.8 below

within separating sequences of arbitrary subgroups with finite index. Since

1.3.8 is implicitely used in [96], the results presented in the second section

of [96] are not correct in the presented generality.

Now, we will follow the ideas from [80, 11.24], [71, Chapter 4, Section 4]

and the introduction of [48] to define box spaces of residually finite groups.

However, unlike in these references, we do not require the groups to be

finitely generated for the definition.

Definition 1.3.2. Let G be a countable, discrete, residually finite group

and let σ = (Gn)n be a residually finite approximation of G. Let us equip

G with a proper, right-invariant metric d. For each n ∈ N, consider the

quotient map πn : G → G/Gn. The box space �σG associated to σ is

defined as the coarse disjoint union of the sequence of finite metric spaces

(G/Gn, πn∗(d)).

Since the metric d is chosen above to define the box space �σG, we have

to justify why it does not appear in its notation. As it turns out, the coarse

equivalence class of �σG does not depend on the choice of d. In the finitely

generated case, this is mentioned in the introduction of [48], but without an

explicit proof.

Proposition 1.3.3. Let G be a countable, discrete, residually finite group

and let σ = (Gn)n be a residually finite approximation of G. For each

n ∈ N, consider the quotient map πn : G→ G/Gn. Let d(1) and d(2) be two

proper, right-invariant metrics on G. Then the coarse disjoint unions of the

sequences (G/Gn, πn∗(d
(1))) and (G/Gn, πn∗(d

(2))) are coarsely equivalent

via the identity map.
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Proof. Consider the family M of metrics dB on the disjoint union X =
⊔
n∈NG/Gn satisfying the requirements of 1.2.8 for the sequence of finite

metric spaces (G/Gn, πn∗(d)), where d is an arbitrary proper, right-invariant

metric on G. In order to show the claim, we appeal to 1.2.9.

So let d(1) and d(2) be two proper, right-invariant metrics on G, and

d
(1)
B , d

(2)
B ∈ M two metrics on X such that for i = 1, 2 the metric d

(i)
B

satisfies the requirements of 1.2.8 for the sequence (G/Gn, πn∗(d
(i))).

By 1.2.18, we can find a monotonously increasing function µ : [0,∞)→
[0,∞) with limr→∞ µ(r) =∞ and such that we have the inequality d(2)(g, h) ≤
µ(d(1)(g, h)) for all g, h ∈ G. We claim that for all r ≥ 0, there are only

finitely many pairs x, y ∈ X satisfying both µ(d
(1)
B (x, y)) < d

(2)
B (x, y) and

µ(d
(1)
B (x, y)) ≤ r.

For n ∈ N, let x, y ∈ G/Gn be two elements. Write x = πn(g1) and

y = πn(g2) for elements g1, g2 ∈ G such that πn∗(d
(1))(x, y) = d(1)(g1, g2).

Then we have
µ(d

(1)
B (x, y)) = µ

(
πn∗(d

(1))(x, y)
)

= µ(d(1)(g1, g2))

≥ d(2)(g1, g2)

≥ πn∗(d
(2))(x, y)

= d
(2)
B (x, y).

In particular, for any pair x, y ∈ X, the condition µ(d
(1)
B (x, y)) < d

(2)
B (x, y)

implies that x ∈ G/Gi and y ∈ G/Gj for some i 6= j.

Choose s0 > 0 such that µ(s) > r for all s ≥ s0. Then choose k0 ∈ N such

that for any i 6= j and i+ j ≥ k0, we have dist
d
(1)
B

(G/Gi, G/Gj) ≥ s0. Thus

it follows that µ
(
dist

d
(1)
B

(G/Gi, G/Gj)
)
> r for all i 6= j with i + j ≥ k0. In

particular, for any two elements x, y ∈ X, the two conditions µ(d
(1)
B (x, y)) <

d
(2)
B (x, y) and µ(d

(1)
B (x, y)) ≤ r together imply that x, y ∈ ⊔

i≤k0
G/Gi, which

leaves only finitely many possibilities.

We obtain a well-defined map f : [0,∞)→ {−∞} ∪ [0,∞) given by

f(r) = max
{
d
(2)
B (x, y)

∣∣ µ(d(1)B (x, y)) < d
(2)
B (x, y) and µ(d

(1)
B (x, y)) ≤ r

}
.

Note that f is monotonously increasing. Now set ρ(r) = max {µ(r), f ◦ µ(r)}
to obtain a monotonously increasing function ρ : [0,∞) → [0,∞) with

limr→∞ ρ+(r) = ∞. Moreover, we have d
(2)
B (x, y) ≤ ρ(d

(1)
B (x, y)) for all

x, y ∈ X by construction. This finishes the proof.
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Remark 1.3.4. It is well-known that the box spaces of G, as coarse metric

spaces, encode important properties of G. For instance, assuming that G

is finitely generated, the box space �σG has property A if and only if G is

amenable, see [80, 11.39] and [71, 4.4.6]. On the other hand, property A is

always implied by finite asymptotic dimension, see [71, 4.3.6]. When a box

space has finite asymptotic dimension, one might therefore be tempted to

think that this value encodes the geometric complexity of the group in some

sense. This is demonstrated in the next Lemma:

Lemma 1.3.5 (cf. [96, 2.4]). Let G be a residually finite group, and let

σ = (Gn)n be a residually finite approximation of G. Then the following

conditions are equivalent for all s ∈ N:

(1) The box space �σG has asymptotic dimension at most s.

(2) For any R > 0, there exists n ∈ N and collections U (0), . . . ,U (s) of

subsets of G such that U = U (0) ∪ · · · ∪ U (s) is a uniformly bounded

cover of G with Lebesgue number at least R, and such that for each

l ∈ {0, . . . , s}, the collection U (l) has mutually disjoint members and is

Gn-invariant with respect to multiplication from the right.

(3) For every ε > 0 and M⊂⊂G, there exists n ∈ N and functions µ(l) : G→
[0, 1] for l = 0, . . . , s with the following properties:

(a) For every l = 0, . . . , s, one has

supp(µ(l)) ∩ supp(µ(l))h = ∅ for all h ∈ Gn \ {1} .

(b) For every g ∈ G, one has

s∑

l=0

∑

h∈Gn

µ(l)(gh) = 1.

(c) For every l = 0, . . . , s and g ∈M , one has

‖µ(l) − µ(l)(g · )‖∞ ≤ ε.

Remark. We note that condition (3)(a) above automatically forces the

functions µ(l) to be finitely supported, because each subgroup Gn ⊂ G has,

by definition, finite index.
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Before we prove 1.3.5, we need a few observations:

Lemma 1.3.6. Let G be a group and H ⊂ G a subgroup with finite index.

Let V be a collection of pairwise disjoint, finite subsets of G that is H-

invariant with regard to multiplication from the right. Then there is a finite

set U⊂⊂G such that

• U ∩ Uh = ∅ for all h ∈ H \ {1}.

• For every V ∈ V, there exists some h ∈ H with V ⊂ Uh.

Proof. Let V1 ∈ V be some set. If V = {V1 · h | h ∈ H}, then we set U = V1

and are done. So assume that this is not the case. As V is H-invariant and

consists of mutually disjoint sets, there exists some V2 ∈ V with V2∩V1h = ∅
for all h ∈ H. But then, the set U2 = V1 ∪ V2 automatically satisfies

U2 ∩ U2h = ∅ for all h ∈ H \ {1}. If

V = {Vi · h | h ∈ H, i = 1, 2} ,

then we can set U = U2 and are done. So assume that this is not the case.

Proceed inductively like this. Assume that for some k ∈ N, we have found

V1, . . . , Vk ∈ V such that Uk = V1 ∪ · · · ∪ Vk satisfies Uk ∩ Ukh = ∅ for all

h ∈ H \ {1}, and such that

{Vi · h | h ∈ H, i = 1, . . . , k} ( V.

Choosing some set Vk+1 ∈ V in the complement, it again follows by H-

invariance and pairwise disjointness of V that Uk+1 = Uk ∪ Vk+1 satisfies

Uk+1 ∩ Uk+1h = ∅ for all h ∈ H \ {1}.
Notice that in every induction step, we are either done by setting U = Uk,

or we can proceed with another step and strictly enlarge the set Uk to Uk+1.

But at the same time, the condition Uk∩Ukh = ∅ for all h ∈ H \{1} implies

|Uk| ≤ [G : H] < ∞. So the induction must stop after finitely many steps,

and the claim follows.

Proposition 1.3.7. Let G be a countable group and H ⊂ G a subgroup

with finite index. Let π : G→ G/H be the quotient map. Let d be a proper,

right-invariant metric on G. Then for every r > 0 and g ∈ G, we have

π(Bd
r (g)) = B

π∗(d)
r (π(g)).
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Proof. The ”⊆” part is trivial because by the definition of the metric π∗(d),

the map π is contractive. If x ∈ B
πn∗(d)
r (πn(g)), write x = πn(f) for some

f ∈ G. By right-invariance of d, we have

r > πn∗(d)(πn(g), πn(f))

= inf {d(gh1, fh2) | h1, h2 ∈ Gn}
= inf {d(g, fh) | h ∈ Gn} .

In particular, there exists h ∈ Gn with d(g, fh) < r, which means fh ∈
Bd
r (g), and moreover πn(fh) = π(f) = x. This shows our claim.

Lemma 1.3.8. Let G be a residually finite group, and let σ = (Gn)n be

a residually finite approximation of G. For each n ∈ N, let πn : G →
G/Gn be the quotient map. Let d be a proper, right-invariant metric on

G. For every r > 0, there exists n0 ∈ N, such that for each n ≥ n0 and

g ∈ G, the restriction of πn yields an isometric bijection between Bd
r (g) and

B
πn∗(d)
r (πn(g)).

Proof. Let r > 0. Since d is proper, Bd
4r(1G) is a finite set. So choose

n0 ∈ N so large that Bd
4r(1G)∩Gn0 = {1G}. Then also Bd

4r(1G)∩Gn = {1G}
for every n ≥ n0, because (Gn)n is decreasing. Given any g1, g2 ∈ G with

d(g1, g2) ≤ 2r, this implies for all h ∈ Gn that

d(g1h, g2) = d(g1hg
−1
1 , g2g

−1
1 ) ≥ d(g1hg

−1
1︸ ︷︷ ︸

∈Gn

, 1G)− 2r ≥ 2r.

In particular,

d(g1, g2) ≤ min {d(g1h, g2) | h ∈ Gn} = πn∗(d)(πn(g1), πn(g2)).

Since inequality in the other direction always holds, this shows that for every

subset X ⊂ G with diamd(X) ≤ 2r, the restriction πn|X is isometric. In

particular, we have for every g ∈ G and n ≥ n0 that πn|Bd
r (g)

is isometric.

Applying 1.3.7, this finishes the proof.

Proof of 1.3.5. For the entire proof, let us fix the following notation: For

each n ∈ N, denote by πn : G→ G/Gn the quotient map. Let d be a proper,

right-invariant metric on G and let dB be a metric on �σG =
⊔
n∈NG/Gn

satisfying the requirements of 1.2.8 with respect to the sequence of finite
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metric spaces (G/Gn, πn∗(d)).

(1) =⇒ (2) : Given R > 0, use asdim(�σG) ≤ s and 1.2.7(2) to find

collections V(0), . . . ,V(s) of subsets of �σG such that V = V(0) ∪ · · · ∪ V(s)

is a cover of �σG uniformly bounded by some r > 0 and with Lebesgue

number at least R. Let Vn = V(0)
n ∪ · · · ∪ V(s)

n be the induced finite covers

on the finite subspaces G/Gn ⊂ �σG.

Applying 1.3.8, choose n0 ∈ N large enough such that for every n ≥ n0

and g ∈ G, the map πn restricts to an isometric bijection between Bd
r (g)

and B
πn∗(d)
r (πn(g)). By choosing n0 even larger (if necessary), we may also

assume that B2r+1(1G) ∩ Gn = {1G} for all n ≥ n0, i.e. the distance be-

tween any two distinct elements in Gn is at least 2r + 1. By the uniform

boundedness, each V ∈ Vn is contained in B
πn∗(d)
r (πn(g)) for some g ∈ G.

Thus, we can find some UV ⊂ Bd
r (g) that is mapped isometrically onto V

under πn. Then, the preimage of V can be written as the disjoint union

π−1n (V ) =
⊔
h∈Gn

UV · h. Define

U (l)
n :=

{
UV · h | V ∈ V(l)

n , h ∈ Gn
}

for all n ≥ n0 and l = 0, . . . , s. Then each U (l)
n is Gn-invariant with re-

gard to multiplication from the right and has mutually disjoint members by

construction. Moreover, the collection Un = U (0)
n ∪ · · · ∪ U (s)

n covers G. We

claim that the Lebesgue number of U is at least R. Let X ⊂ G be a set with

diameter at most R. Since the cover Vn of G/Gn has Lebesgue number at

least R and πn is contractive, it follows that πn(X) ⊂ V for some V ∈ Vn.
Hence

X ⊂ π−1n (πn(X)) ⊂ π−1n (V ) =
⊔

h∈Gn

UV · h.

By construction, the set UV has diameter at most r, and the distance be-

tween two distinct elements in Gn is at least 2r + 1. Thus, for h1 6= h2 in

Gn, we have for every g1, g2 ∈ UV that

d(g1h1, g2h2) = d(g1h1h
−1
2 g−11 , g2g

−1
1 ) ≥ d(g1h1h

−1
2 g−11︸ ︷︷ ︸

∈Gn

, 1G)− r ≥ r + 1.

This shows distd(UV · h1, UV · h2) ≥ r + 1 > R. But this implies that X

must be entirely contained in UV ·h ∈ Un for some h ∈ Gn, which shows the

claim.
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(2) =⇒ (3) : Let ε > 0 and M⊂⊂G be given. Choose R > 2(2s+1)
ε

large enough so that M is contained in Bd
R(1G). By assumption, there

exists n and a uniformly bounded cover U = U (0) ∪ · · · ∪ U (s) of G with

Lebesgue number at least R, such that each U (l) is Gn-invariant with regard

to multiplication from the right and has mutually disjoint members. Upon

applying 1.3.6 to U (l) for each l = 0, . . . , s, we may assume that U (l) is of the

form
{
U (l) · h | h ∈ Gn

}
for some finite set U (l) ⊂ G with U (l)∩

(
U (l) · h

)
= ∅

for all h ∈ Gn \ {1G}. Now define

µ(l) : G→ [0, 1], g 7→ distd(g,G \ U (l))∑
V ∈U distd(g,G \ V )

.

Then obviously supp(µ(l)) ⊂ U (l) and
{
µ(l)( · h) | h ∈ Gn, l = 0, . . . , s

}

forms a partition of unity for G. This proves properties (a) and (b). By

applying [71, 4.3.5], we see that our assumption on the Lebesgue number of

U being at least R implies that each function µ(l) is Lipschitz with regard

to the constant 2(2s+1)
R ≤ ε, which shows that also condition (c) is met.

(3) =⇒ (1) : Let R > 0 be given. Let 0 < ε < 1
(s+1) . Choose n

and finitely supported functions µ(l) : G → [0, 1] for l = 0, . . . , s satisfying

the requirements of (3) with respect to the pair ε and M = Bd
R(1G). By

choosing n large enough, we may also assume that the dB-distance between

any two sets of the form
⊔n−1
k=1 G/Gk and G/Gm, for m ≥ n, is at least R.

Define U (l) := supp(µ(l)). Then U (l) ∩
(
U (l) · h

)
= ∅ for all l = 0, . . . , s

and h ∈ Gn \ {1} and
{
U (l) · h | h ∈ Gn, l = 0, . . . , s

}
covers G. For each

m ≥ n and l = 0, . . . , s, define the collection V(l)
m =

{
πm(U

(l) · h) | h ∈ Gn
}
,

which consists of [Gn : Gm] disjoint subsets of G/Gm. Define a cover V =

V(0) ∪ · · · ∪ V(s) of �σG by

V(0) =

{
n−1⋃

k=1

G/Gk

}
∪

∞⋃

m=n

V(0)
m and V(l) =

∞⋃

m=n

V(l)
m for l = 1, . . . , s.

The diameters of members of V are then bounded by

max

{
diam

(n−1⋃

m=1

G/Gm

)
, diam(U (0)), . . . , diam(U (s))

}
.

Moreover, for every l = 0, . . . , s, two distinct sets in V(l) are disjoint. Let us

now show that any ball of radius R is contained in some member of V.
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Given any point x ∈ �σG, our choice of n implies that BdB
R (x) falls

entirely in one of the subsets
⊔n−1
k=1 G/Gk or G/Gm for m ≥ n. In the first

case, BdB
R (x) ⊂ ⊔n−1

k=1 G/Gk ∈ V(0). In the case where BdB
R (x) ⊂ G/Gm

for m ≥ n, choose some g ∈ G with πm(g) = x. By condition (b), g

can be in the support of at most s + 1 members of the partition of unity{
µ(l)( · h) | h ∈ Gn, l = 0, · · · , s

}
. Moreover, it follows that there exist

h ∈ Gn and l ∈ {0, . . . , s} such that µ(l)(g · h) ≥ 1
s+1 . For any g

′ ∈ Bd
R(1G),

condition (3)(c) for M = Bd
R(1G) implies

µ(l)(g′ · g · h) ≥ µ(l)(g · h)− ε > 1

s+ 1
− 1

s+ 1
= 0.

So Bd
R(g)h = Bd

R(1G)gh ⊂ supp(µ(l)) = U (l), which equivalently means

Bd
R(g) ⊂ U (l)h−1. Since any set of diameter at most R is trivially contained

in a ball of radius R, it follows that U has Lebesgue number at least R. This

verifies asdim(�σG) ≤ s by appealing to 1.2.7(2).

Corollary 1.3.9 (cf. [96, 2.5]). Let G be a countable, discrete, residu-

ally finite group and σ = (Gn)n a residually finite approximation. Let

G be equipped with a proper, right-invariant metric. Then asdim(G) ≤
asdim(�σG).

Proof. This follows immediately from 1.2.7(2) and 1.3.5(2).

Corollary 1.3.10 (cf. [96, 2.6]). Let G be a countable, discrete, residually

finite group and σ = (Gn)n a residually finite approximation. Let H ⊂ G be

a subgroup. Then for the residually finite approximation κ = (H ∩Gn)n of

H, we have asdim(�κH) ≤ asdim(�σG).

Proof. This follow directly from 1.3.5(2) by restricting the covers given on

G to H.

Definition 1.3.11 (cf. [96, 2.7]). Let G be a countable, discrete and resid-

ually finite group. We denote by Λ(G) the set of all residually finite ap-

proximations of G. The set Λ(G) carries the following natural preorder: we

write (Gn)n - (Hn)n, if for all n ∈ N, there exists m ∈ N with Hm ⊂ Gn.

We call a residually finite approximation (Gn)n ∈ Λ(G) dominating, if it

is dominating with respect to the above order, i.e. (Hn)n - (Gn)n for all

(Hn)n ∈ Λ(G).
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Proposition 1.3.12. Let G be a countable, discrete and residually finite

group. A residually finite approximation (Gn)n ∈ Λ(G) is dominating if and

only if for every subgroup H ⊂ G with finite index, there exists n such that

Gn ⊂ H.

Proof. It is obvious that a residually finite approximation (Gn)n is dominat-

ing if and only if for every normal subgroup N ⊂ G with finite index, there

exists n with Gn ⊂ N . The claim follows by recalling the well-known fact

that any subgroup with finite index contains a normal subgroup with finite

index: If H is a subgroup with finite index, let FH⊂⊂G be a finite set of rep-

resentatives for G/H. This means that the map FH ×H → G, (x, h) 7→ x ·h
is bijective. Then observe that the normal subgroup

⋂

g∈G

gHg−1 =
⋂

x∈FH ,h∈H

(xh)H(xh)−1 =
⋂

x∈FH

xHx−1

is contained in H and has finite index in G as a finite intersection of sub-

groups with finite index.

Example 1.3.13. Given m ∈ N, the sequence (n! · Zm)n is a dominating

residually finite approximation of Zm.

Proof. Applying 1.3.12, it suffices to show that any finite index subgroup of

Zm contains a subgroup of the form nZm for some n ∈ N. So let H ⊂ Zm

be a subgroup with finite index. Then H is free abelian with rank m. Let

v1, . . . , vm denote a set generators for H. If we view H and Zm as subsets

of Qm, then we claim that the vectors v1, . . . , vm form a Q-basis. Indeed,

let λ1, . . . , λm ∈ Q be given with 0 = λ1v1 + · · · + λmvm. Then we can

find a positive integer k > 0 such that kλ1, . . . , kλm ∈ Z, and we have

0 = (kλ1)v1 + · · · + (kλm)vm. Since H is free abelian of rank m, it follows

that kλi = 0 for all i, which implies λi = 0 for all i. This shows that the

vectors v1, . . . , vm ∈ Qm are linearly independant in Qm, and thus form a

basis.

Let e1, . . . , em denote the standard generators of Zm. We claim that

for each i = 1, . . . ,m, there is a positive integer ki such that kiei ∈ H.

Indeed, we can find some λ1, . . . , λm ∈ Q with ei = λ1v1 + · · · + λmvm. If

we choose ki large enough such that kiλj ∈ Z for all j = 1, . . . ,m, then

kiei = (kiλ1)v1 + · · ·+ (kiλm)vm ∈ H.
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After having found these numbers, let n be the least common multiple

of k1, . . . , km. Then for all i = 1, . . . ,m, it follows that n
ki
∈ Z and thus

nei =
n
ki
· ki · ei ∈ H. In particular, we have nZm ⊂ H.

Let us record the following variant of 1.3.5 in the special case of domi-

nating residually finite approximations, which follows directly from 1.3.12:

Corollary 1.3.14. Let G be a residually finite group, and let σ = (Gn)n

be a dominating residually finite approximation of G. Then the following

conditions are equivalent for all s ∈ N:

(1) The box space �σG has asymptotic dimension at most s.

(2) For any R > 0, there exists some subgroup H ⊂ G with finite index and

collections U (0), . . . ,U (s) of subsets of G such that U = U (0) ∪ · · · ∪ U (s)

is a uniformly bounded cover of G with Lebesgue number at least R,

and such that for each l ∈ {0, . . . , s}, the collection U (l) has mutually

disjoint members and is H-invariant with respect to multiplication from

the right.

(3) For every ε > 0 and M⊂⊂G, there exists a subgroup H ⊂ G with finite

index and functions µ(l) : G → [0, 1] for l = 0, . . . , s with the following

properties:

(a) For every l = 0, . . . , s, one has

supp(µ(l)) ∩ supp(µ(l))h = ∅ for all h ∈ H \ {1} .

(b) For every g ∈ G, one has

s∑

l=0

∑

h∈Gn

µ(l)(gh) = 1.

(c) For every l = 0, . . . , s and g ∈M , one has

‖µ(l) − µ(l)(g · )‖∞ ≤ ε.

Corollary 1.3.15 (cf. [96, 2.6]). Let G be a residually finite group, and let

σ = (Gn)n be a dominating residually finite approximation of G. Let H ⊂ G

be a subgroup of finite index, and let κ = (H∩Gn)n be the induced residually

finite approximation on H. Then asdim(�κH) = asdim(�σG).
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Proof. The ”≤” part follows from 1.3.10, so let us show the inequality in

the other direction. Denote s = asdim(�κH), and let d be a proper, right-

invariant metric on G. Its restriction to H obviously yields a proper, right-

invariant metric onH. Let FH⊂⊂G be a finite set of representatives for G/H,

i.e. the map FH ×H → G, (x, h) 7→ x · h is bijective. Let R > 0. Without

loss of generality, assume that R is large enough such that FH ⊂ Bd
R(1G).

Use 1.3.14(2) in order to find n and collectionsW(0), . . . ,W(s) of subsets

of H such that W = W(0) ∪ · · · ∪ W(s) is a uniformly bounded cover of H

with Lebesgue number at least 8R, and such that for each l = 0, . . . , s, the

collectionW(l) consists of pairwise disjoint sets and is H∩Gn-invariant with
respect to multiplication from the right. Since (Gk)k is dominating, we may

choose n large enough according to 1.3.12 such that Gn ⊂ H, which implies

Gn ∩H = Gn. For each l = 0, . . . , s, define

V(l) =
{
B−4R(W ) | W ∈ W(l)

}
withB−4R(W ) =

{
h ∈ H | Bd|H

4R (h) ⊂W
}
.

Then for each l = 0, . . . , s, the collection V(l) is again Gn-invariant with

respect to multiplication from the right, and the distance between any two

distinct sets is at least 4R. Moreover, sinceW has Lebesgue number at least

8R, any ball of radius 4R in H is contained in a member of W. Therefore,

it follows from the construction of V that it is a cover. Now for l = 0, . . . , s,

define

U (l) =
{
Bd

2R(1G) · V | V ∈ V(l)
}
.

Since the distance between any two distinct sets in V(l) is at least 4R, it

follows that any two distinct sets in U (l) are disjoint. Moreover, it is obvi-

ous that U (l) is Gn-invariant with respect to multiplication from the right.

Moreover, we claim that U = U (0) ∪ · · · ∪ U (s) is a cover with Lebesgue

number at least R. Indeed, given g ∈ G, there are x ∈ FH and h ∈ H with

g = xh. Then h ∈ V for some V ∈ V. Since x ∈ FH ⊂ Bd
R(1G), it follows

that g ∈ Bd
R(1G) · V , and thus Bd

R(g) = Bd
R(1G)g ⊂ Bd

R(1G) · Bd
R(1G) · V ⊂

Bd
2R(1G) · V ∈ U . Since every set of diameter less than R is trivially con-

tained in some ball of radius R, it follows that the Lebesgue number of U is

indeed at least R. This finishes the proof.

In applications, the existence of a residually finite approximation can be

quite useful. In the case of finitely generated groups, this turns out to be
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automatic:

Proposition 1.3.16. Let G be a finitely generated and residually finite

group. Then G has a dominating residually finite approximation.

Proof. Let S⊂⊂G be a finite generating set. Given some finite group E,

there are at most as many group homomorphisms from G to E as there

are maps from S to E, which there are |E||S| of. Now up to isomorphism,

there are only countably many finite groups. Since any normal subgroup

of G with finite index arises as a kernel of a homomorphism into a finite

group, this implies that G has at most countably many normal subgroups

of finite index. Let {Nn}n∈N be a respresentation of this set, and define

(Gn)n ∈ Λ(G) recursively via G1 = N1 and Gn+1 = Gn∩Nn+1 for all n ∈ N.

By construction, any normal subgroup must eventually contain a member

of this sequence as a subgroup, so this sequence is indeed dominating.

Remark 1.3.17. Let σ, κ ∈ Λ(G) be two sequences with σ - κ. Then it

follows from 1.3.5(2) that asdim(�κG) ≤ asdim(�σG). In other words, the

map

Λ(G) −→ N, σ 7−→ asdim(�σG)

is order-reversing. This implies that the values of asymptotic dimension for

all box spaces associated to dominating sequences are the same, and they

take the lowest value among all possible box spaces associated to residually

finite approximations.

If σ ∈ Λ(G) is a dominating residually finite approximation, we will call

the associated box space �σG a standard box space, and will sometimes

denote it by �sG under the assumption that G is finitely generated. While

there might a priori be some ambiguity, we will exclusively be interested in

the asymptotic dimension of these spaces, so the above argument shows that

there is no ambiguity concerning the asymptotic dimension of a standard

box space.

1.4 Box spaces of nilpotent groups

In this section, we show that the standard box space of a finitely generated,

virtually nilpotent group has finite asymptotic dimension. We first need to

record a few technical observations:
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Lemma 1.4.1. Let G be a locally compact group with a proper, right-

invariant metric d. Let H ⊂ G be a discrete, cocompact subgroup. Suppose

that G has finite covering dimension m ∈ N. Then there exists a uniformly

bounded, open cover W of G with positive Lebesgue number and a decompo-

sition W =W(0) ∪ · · · ∪W(m), such that for each l = 0, . . . , s, the collection

W(l) consists of mutually disjoint members and is H-invariant with respect

to multiplication from the right.

Proof. Consider the quotient map π : G → G/H, which is a local homeo-

morphism by 1.2.28. Thus m = dim(G/H). Since H ⊂ G is discrete, there

exists η > 0 with d(h, 1G) ≥ 3η for all h ∈ H \ {1G}. By right-invariance of

d, this implies d(h1, h2) ≥ 3η for all h1 6= h2 in H.

For any x ∈ G/H, choose g ∈ G with x = π(g), and then choose an

open neighbourhood Ux of g with diameter at most η. Now the collection

{Vx}x∈G/H given by Vx = π(Ux) is an open cover of G/H. By compactness,

there exists some finite subcover. Using m = dim(G/H) and 1.2.3, we

can choose an open cover U of G/H refining {Vx}x∈G/H with the following

properties:

• There is a decomposition U = U (0) ∪ · · · ∪ U (m) such that for each

l ∈ {0, . . . ,m}, one has U ∩ V = ∅ for all U 6= V in U (l).

• For all V ∈ U , there exists an open set UV ⊂ G with π(UV ) = V and

diam(UV ) ≤ η.

Since G/H is compact, we can apply the Lebesgue number theorem (see [92,

7.2.12]) to deduce that this cover has some positive Lebesgue number µ > 0

with respect to the push-forward metric π∗(d). Set r = min(µ, η).

Now consider the uniformly bounded, open cover W of G given by W =

W(0) ∪ · · · ∪ W(m), where

W(l) =
{
UV · h | V ∈ U (l), h ∈ H

}
.

Claim 1: For each l = 0, . . . , s, the members inW(l) are mutually disjoint.

So let W1 6= W2 in W(l). Let V1, V2 ∈ U (l) and h1, h2 ∈ H with W1 =

UV1h1 and W2 = UV2h2.

Case 1: W1 6= W2. In this case, we get π(W1) = V1 and π(W2) = V2,

which are disjoint, so W1 and W2 have to be disjoint.
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Case 2: h1 6= h2. Then d(h1, h2) ≥ 3η. NowW1 is an open neighbourhood

of h1 with diameter at most η, and likewise W2 is an open neighbourhood

of h2 with diameter at most η. It follows by triangle inequality that W1 and

W2 have distance at least η, so they must be disjoint.

Claim 2: The Lebesgue number of W is at least r.

Let X ⊂ G be some set of diameter less than r with respect to d. Then

π(X) has diameter less than r with respect to π∗(d). Since r ≤ µ, there is

some V ∈ U with X ⊂ V . But then we have

X ⊂ π−1(X) ⊂ π−1(V ) =
⋃

h∈H

UV · h.

As we have observed earlier, for all h1 6= h2, the distance between UV h1 and

UV h2 is at least η with respect to d. Since r ≤ η, it follows that X must be

contained in exactly one open set of the form UV h, which is a member of

W.

The following will be our main method in showing that a given group

admits a finite-dimensional box space:

Lemma 1.4.2. Let G be a locally compact group G with a proper, right-

invariant metric d. Let H ⊂ G be a finitely generated, discrete and cocom-

pact subgroup. Suppose that there exists a sequence of continuous automor-

phisms σn ∈ Aut(G) satisfying

• for all n ∈ N, the map σn restricts to an endomorphism on H;

• for any compact set K and open neighbourhood U of 1G, there exists

n ∈ N with K ⊂ σn(U).

Then H is residually finite and asdim(�sH) ≤ dim(G).

Proof. Observe that each subgroup Hn = σn(H) ⊂ H must have finite index

in H. Indeed, since Hn is the image of H under an automorphism on G,

the subgroup Hn is cocompact in G. Let K ⊂ G be a compact subset

with G =
⋃
h∈Hn

K · h. Let πn : G → G/Hn be the quotient map. Then

the restriction of πn|K is still surjective. Now we may identify H/Hn as a

subset of G/Hn in the obvious way, and then the restriction of πn yields a

surjective map from K ∩H onto H/Hn. But since K ∩H is the intersection
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of a compact set and a discrete set, it is finite, and thus H/Hn is finite.

Since H is discrete, there exists an open neighbourhood U ⊂ G of the

unit with U ∩ H = {1G}. Then given any predescribed finite set F⊂⊂H
containing the unit, there exists n with F ⊂ σn(U), from which it follows

that F ∩Hn = {1}. As F is arbitrary, it follows that
⋂
n∈NHn = {1}, and

in particular H is residually finite.

Without loss of generality, assume that G has finite covering dimension.

Set m = dim(G). Apply 1.4.1 to choose a uniformly bounded, open coverW
of G with positive Lebesgue number δ > 0 and a decompositionW =W(0)∪
· · · ∪ W(m), such that for each l = 0, . . . , s, the collection W(l) consists of

mutually disjoint members and is H-invariant with respect to multiplication

from the right.

For each n, consider the uniformly bounded coverWn =W(0)
n ∪· · ·∪W(m)

n

of G given by W(l)
n = σn(W(l)) =

{
σn(U) | U ∈ W(l)

}
for all l = 0, . . . ,m.

Then any two distinct members of W(l)
n are disjoint. The first property of

the σn ensures that for all n and l = 0, . . . ,m, the collection W(l)
n is right-

invariant with respect to Hn = σn(H) ⊂ H. Now let R > 0. Since the

metric d is proper, the second property of the sequence (σn)n ensures that

we find some n such that BR(1G) ⊂ σn(Bδ/3(1G)). Since W has Lebesgue

number δ, any ball of radius δ/3 is contained in a member of W. By our

choice of n, any ball of radius R is therefore contained in a member of Wn,

which shows that the Lebesgue number of Wn is at least R.

If we now restrict the cover Wn = W(0)
n ∪ · · · ∪ W(m)

n to a cover on H,

we see that condition 1.3.14(2) is met for R. Since R > 0 was arbitrary, the

claim follows.

Corollary 1.4.3. For all m ∈ N, we have asdim(�sZ
m) = m.

Proof. Apply 1.4.2 forG = Rm, H = Zm and the sequence of automorphisms

given by σn(x) = n·x to deduce that asdim(�sZ
m) ≤ m. On the other hand,

we have asdim(Zm) = m, so equality follows from 1.3.9.

Let us now recall the definition of some important classes of groups:

Definition 1.4.4 (see the introduction of [102, Chapter 2]). Let G be a

group. We call G polycyclic, if G admits a subnormal series of subgroups

{1G} = G0 E G1 E · · · E Gr = G
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of finite length r ≥ 1, such that for each k = 1, . . . , r, the subquotient

Gk/Gk−1 is cyclic. If we furthermore assume that these subquotients are

infinite, we call G poly-Z.

Definition 1.4.5 (cf. [102, p. 18]). Given a polycyclic group G, choose

a subnormal series {Gk}0≤k≤r as above. Define the Hirsch length of G,

written ℓHir(G), as the number of all k such that Gk/Gk−1 ∼= Z. It is a well-

known consequence of Schreier’s refinement theorem (see [84, 5.11]) that this

number is an invariant of the group G, and in particular does not depend

on the choice of subnormal series.

Notation. Let G be a group. Given two subgroups H1, H2 ⊂ G, we denote

the commutator subgroup by [H1, H2] = 〈h1h2h−11 h−12 | h1 ∈ H1, h2 ∈ H2〉.

Definition 1.4.6 (cf. [84, p. 115]). Let G be a group. Define the collection

{γn(G)}n∈N of subgroups of G inductively by setting γ1(G) = [G,G] and

γn+1(G) = [γn(G), G]. G is called nilpotent, if there exists n ∈ N with

γn(G) = {1G}.

Definition 1.4.7. Let G be a group. G is called virtually nilpotent, if

it contains a nilpotent subgroup of finite index. Analogously, G is called

virtually polycyclic, if it contains a polycyclic subgroup of finite index.

Remark 1.4.8. Let us now list a few well-known facts about polycyclic and

nilpotent groups, which in particular make them interesting from the point

of view of our previous section:

• Polycyclic groups are residually finite. (see [102, 2.10])

• A simple induction on the number r ≥ 1 in 1.4.4 shows that polycyclic

groups are finitely generated.

• A subgroup or quotient of a polycyclic group is polycyclic. A subgroup

of a poly-Z group is poly-Z. (see [72, 10.2.4])

• Let G be a polycyclic group. If H ⊂ G is a subgroup, then ℓHir(H) ≤
ℓHir(G). If N E G is a normal subgroup, then ℓHir(G) = ℓHir(N) +

ℓHir(G/N). (see [72, 10.2.10])

• A subgroup or quotient of a nilpotent group is nilpotent. (see [84, 5.35

and 5.36])
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• A polycyclic group contains a poly-Z group of finite index. (see [72,

10.2.4] or [102, 2.6])

• Poly-Z groups are torsion-free. (see [102, p. 22])

• Finitely generated, nilpotent groups are polycyclic. (see [102, 2.13] or

[72, 11.4.3(i)])

• The center of an infinite, finitely generated, nilpotent group is infinite.

(see [72, 11.4.3(ii)])

In particular, finitely generated, nilpotent groups are residually finite. By

1.3.16, they admit a dominating residually finite approximation, and thus

have a standard box space. For the rest of this section, we will show that

such box spaces have finite asymptotic dimension.

Definition 1.4.9. Let R be a commutative, unital ring and d ∈ N. The

unitriangular matrix group of size d over R is defined by

Ud(R) = {x = (xi,j)1≤i<j≤d | xi,j ∈ R} .

The multiplication is given by

(x · y)i,j =
j∑

m=i

xi,mym,j for all 1 ≤ i < j ≤ d,

where the convention xi,i = 1 is used for all i = 1, . . . , d.

Let us make a few observations:

Remark 1.4.10. The group Ud(R) is generated by elements of the form

edi,j(x) = (δk,iδl,jx)1≤k<l≤d for 1 ≤ i < j ≤ d and x ∈ R. The assignment

edi,j(x) 7→ ed+1
i,j then identifies Ud(R) as a subgroup of Ud+1(R). Moreover,

these generators satisfy edi,j(x)
−1 = edi,j(−x), and the commuting relations

[edi,j(x), e
d
k,l(y)] =




1 , j 6= k

ei,l(xy) , j = k

for all 1 ≤ i < j, k < l ≤ d and x, y ∈ R. From this, it can be seen that

[Ud(R), Ud(R)] is contained in the subgroup Ud−1(R). Inductively, it hence
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follows that γd(Ud(R)) = {1} (cf. 1.4.6), and thus Ud(R) is nilpotent. In

the case R = Z, the group Ud(Z) has a finite set of generators given by{
edi,j(1Z) | 1 ≤ i < j ≤ d

}
.

The finitely generated, nilpotent groups Ud(Z) will play an important

role for the remainder of this section. This is due to the following embedding

theorem, which first appeared implicitely in Jenning’s paper [45] on group

rings of nilpotent groups, and was later explicitely proved by Swan in [93]:

Theorem 1.4.11 (see [45, 5.2] and [93]). Let G be a finitely generated,

torsion-free nilpotent group. Then G embeds as a subgroup into Ud(Z) for

some d ≥ 2.

Definition 1.4.12. Let r > 0 be a real number. Then the map αr :

Ud(R)→ Ud(R) defined by

αr(x)i,j = rj−ixi,j for all 1 ≤ i < j ≤ d

yields a well-defined endomorphism. Moreover, it is immediate that αrs =

αr ◦ αs for all r, s > 0 and α1 = id, thus

α : R>0 → Aut(Ud(R)), r 7→ αr

yields a group action on Ud(R).

Remark 1.4.13. • Observe that if r > 0 is an integer, then αr restricts

to an endomorphism on Ud(Z).

• It is a well-known fact that Ud(Z) is a discrete and cocompact subgroup

in Ud(R). In fact, one has Ud(R) = K · Ud(Z) for the compact set

K =

{
x = (xi,j)1≤i<j≤d

∣∣∣ |xi,j | ≤
1

2

}

in Ud(R), see [1, 8.2.2].

Theorem 1.4.14 (cf. [96, 2.16]). One has asdim(�sUd(Z)) = d(d − 1)/2

for all d ≥ 2.

Proof. We shall apply 1.4.2 for G = Ud(R),m = d(d− 1)/2, H = Ud(Z) and

σn = αn. Indeed, since Ud(R) is homeomorphic to Rd(d−1)/2 by evaluation
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of the matrix components, it has covering dimension d(d− 1)/2. Moreover,

Ud(Z) is a discrete, cocompact subgroup such that each automorphism σn

of Ud(R) restricts to an endomorphism on Ud(Z). Lastly, let K ⊂ Ud(R) be

any compact set and U ⊂ Ud(R) any open neighbourhood of the unit. Then

there are positive numbers R, δ > 0 such that

K ⊂
{
x = (xi,j)1≤i<j≤d

∣∣∣ |xi,j | ≤ R
}

and {
x = (xi,j)1≤i<j≤d

∣∣∣ |xi,j | ≤ δ
}
⊂ U.

Then any natural number n ≥ R
δ clearly satisfies K ⊂ σn(U). Thus, we have

verified the conditions in 1.4.2, and thus it follows that asdim(�sUd(Z)) ≤
d(d− 1)/2. Equality follows from asdim(Ud(Z)) = d(d− 1)/2 and 1.3.9.

Theorem 1.4.15 (cf. [96, 2.17]). Let G be a finitely generated, virtually

nilpotent group. Then asdim(�sG) <∞.

Proof. Let G′ be a nilpotent subgroup of G with finite index. By 1.4.8, G′

contains a torsion-free group H of finite index, which is then necessarily also

finitely generated and nilpotent. By combining 1.4.11, 1.4.14 and 1.3.10, we

obtain asdim(�sH) <∞. Since H also has finite index as a subgroup in G,

it follows from 1.3.15 that asdim(�sG) <∞.

1.5 Rokhlin dimension and permanence of finite

nuclear dimension

We start this section by recalling the notion of relative central sequence

algebras. We will adapt an idea of Kirchberg pioneered in [51], namely to

divide out two-sided annihilators in non-unital relative commutants in order

to obtain unital C∗-algebras.

Definition 1.5.1 (cf. [51, 1.1]). Let A be a C∗-algebra and D ⊂ A∞ a

C∗-subalgebra. Denote

Ann(D,A∞) = {x ∈ A∞ | xD = Dx = {0}} .
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Then Ann(D,A∞) is a closed, two-sided ideal inside the relative commutant

A∞ ∩D′ = {x ∈ A∞ | xd = dx for all d ∈ D}

and define

F (D,A∞) = (A∞ ∩D′)/Ann(D,A∞)

the central sequence algebra of A relative to D. One writes F∞(A) =

F (A,A∞).

Here are some immediate observations, whose proof we will omit.

Remark 1.5.2. LetA be a C∗-algebra andD ⊂ A a separable C∗-subalgebra.

• AsD is separable, it admits a countable approximate unit en consisting

of positve contractions. Then the positive contraction e = [(en)n] ∈
A∞ satisfies ed = d = de for all d ∈ D. In particular, the class

e + Ann(D,A∞) of e defines a unit of F (D,A∞), and hence this is a

unital C∗-algebra. (cf. [51, 1.9(3)])

• If ϕ : A → A is a ∗-endomorphism with ϕ(D) ⊂ D, then component-

wise application of ϕ on representing sequences yields well-defined ∗-
endomorphisms on both A∞ and F (D,A∞). Despite slight abuse of

notation, both will be denoted by ϕ∞.

• If α : G y A is an action and D ⊂ A is α-invariant, then the family

of automorphisms {αg,∞}g∈G defines actions α∞ : Gy A∞ and α∞ :

Gy F (D,A∞).

Remark 1.5.3 (cf. [51, 1.1]). Let A be a C∗-algebra and D ⊂ A a separable

C∗-subalgebra. Then there is a canonical ∗-homomorphism

F (D,A∞)⊗max D → A∞ via
(
x+Ann(D,A∞)

)
⊗a 7→ x · a.

The image of 1⊗ a under this ∗-homomorphism is a for all a ∈ D.

Now if we assume additionally that α : Gy A is an action of a discrete

group such that D is α-invariant, then the above map becomes an equivari-

ant ∗-homomorphism from
(
F (D,A∞)⊗max D,α∞ ⊗ α|D

)
to (A∞, α∞).

In particular, it makes sense to multiply elements of F (D,A∞) with

elements of D to obtain an element in A∞, and this multiplication is com-
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patible with the naturally induced actions by α. We will implicitely make

use of this observation throughout this section.

Notation 1.5.4. Let G be a discrete group and H ⊂ G a subgroup. By

the canonical G-shift action on C0(G/H), we understand the action given

by g1.f(g2H) = f(g−11 g2H) for all g1, g2 ∈ G and f ∈ C0(G/H). For brevity,

we will often write ḡ = gH ∈ G/H for g ∈ G.

We are now ready to start defining Rokhlin dimension. We first give the

definitions together with some observations, and then discuss in what way

this definition generalizes the original one from [42] by Hirshberg, Winter

and Zacharias.

Definition 1.5.5 (cf. [96, 3.3]). Let A be a C∗-algebra, G a countable group

and α : G y A an action. Let H ⊂ G be a subgroup with finite index. Let

d ∈ N be a natural number. Then α is said to have Rokhlin dimension at

most d with respect to H, written dimRok(α,H) ≤ d, if the following holds:

For all separable, α-invariant C∗-subalgebras D ⊂ A, there exist equiv-

ariant c.p.c. order zero maps

ϕl : (C(G/H), G-shift) −→ (F (D,A∞), α∞) (l = 0, . . . , d)

with ϕ0(1) + · · ·+ ϕd(1) = 1.

Let us consider a few equivalent reformulations of the above definition.

Proposition 1.5.6. Let A be a C∗-algebra, G a countable group and α :

G y A an action. Let H ⊂ G be a subgroup with finite index and d ∈ N a

natural number. Then the following are equivalent:

(1) dimRok(α,H) ≤ d.

(2) For every separable, α-invariant C∗-subalgebra D ⊂ A, there exist posi-

tive contractions (f
(l)
ḡ )l=0,...,d

ḡ∈G/H in A∞ ∩D′ satisfying

(2a)
(∑d

l=0

∑
ḡ∈G/H f

(l)
ḡ

)
· a = a for all a ∈ D;

(2b) f
(l)
ḡ f

(l)

h̄
∈ Ann(D,A∞) for all l = 0, . . . , d and ḡ 6= h̄ in G/H;

(2c) α∞,g(f
(l)

h̄
)− f (l)

gh
∈ Ann(D,A∞) for all l = 0, . . . , d, h̄ ∈ G/H and

g ∈ G.
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(3) For all ε > 0 and finite sets M⊂⊂G and F⊂⊂A, there are positive con-

tractions (f
(l)
ḡ )l=0,...,d

ḡ∈G/H in A satisfying

(3a)
(∑d

l=0

∑
ḡ∈G/H f

(l)
ḡ

)
· a =ε a for all a ∈ F ;

(3b) ‖f (l)ḡ f
(l)

h̄
a‖ ≤ ε for all a ∈ F, l = 0, . . . , d and ḡ 6= h̄ in G/H;

(3c) αg(f
(l)

h̄
) · a =ε f

(l)
gh
· a for all a ∈ F, l = 0, . . . , d, h̄ ∈ G/H and

g ∈M ;

(3d) ‖[f (l)ḡ , a]‖ ≤ ε for all a ∈ F, l = 0, . . . , d and ḡ ∈ G/H.

Moreover, it suffices to check these conditions for M being contained in

a given generating set of G.

Proof. (1) =⇒ (2) : Assume dimRok(α,H) ≤ d. Choose equivariant

c.p.c. order zero maps

ϕl : (C(G/H), G-shift) −→ (F (D,A∞), α∞) (l = 0, . . . , d)

with ϕ0(1)+ · · ·+ϕd(1) = 1. Then, by definition, each positive contraction

of the form ϕl(χ{ḡ}) ∈ F (D,A∞) for ḡ ∈ G/H has a representing element

f
(l)
ḡ ∈ A∞ ∩D′ with f (l)ḡ +Ann(D,A∞) = ϕl(χ{g}). By functional calculus,

we may assume that each f
(l)
ḡ is a positive contraction. Then we have

ϕ0(1) + · · ·+ ϕd(1) =
d∑

l=0

∑

ḡ∈G/H

f
(l)
ḡ +Ann(D,A∞),

and thus the property ϕ0(1)+ · · ·+ϕd(1) = 1 translates to condition (2a) by

1.5.3. For each l = 0, . . . , d and ḡ 6= h̄ in G/H, the characteristic functions

χḡ, χh̄ ∈ C(G/H) are orthogonal. Since ϕl is an order zero map, we thus

have f
(l)
ḡ f

(l)

h̄
+Ann(D,A∞) = ϕl(χḡ)ϕl(χh̄) = 0+Ann(D,A∞). This implies

condition (2b). Since ϕl is equivariant with respect to the G-shift on G/H,

we get for all g ∈ G, h̄ ∈ G/H that

α∞,g(f
(l)

h̄
)+Ann(D,A∞) = α∞,g(ϕl(χ{h̄})) = ϕl(χ{gh}) = f (l)

gh
+Ann(D,A∞).

This implies condition (2c).

(2) =⇒ (1) : Let (f
(l)
ḡ )l=0,...,d

ḡ∈G/H be positive contractions in A∞ ∩ D′
satisfying the conditions (2a), (2b) and (2c). Then the same calculations

as above, only read in the reverse order, show that conditions (2b) and
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(2c) imply that for l = 0, . . . , d, the linear map ϕl : C(G/H) → F (D,A∞)

given by ϕl(χ{ḡ}) = f
(l)
ḡ + Ann(D,A∞) is c.p.c. order zero and equivariant

with respect to the G-shift and α∞. Moreover, condition (2a) implies that

1 = ϕ0(1) + · · ·+ ϕd(1) in F (D,A∞).

(2) =⇒ (3) : Let ε > 0, M⊂⊂G and F⊂⊂A be given. Let D ⊂ A

be a separable, α-invariant C∗-subalgebra containing F . Choose positive

contractions (f
(l)
ḡ )l=0,...,d

ḡ∈G/H in A∞∩D′ satisfying the conditions (2a), (2b) and

(2c). For each l = 0, . . . , d and ḡ ∈ G/H, the element f
(l)
ḡ has a representing

sequence (f
(l)
ḡ,n) ∈ ℓ∞(N, A), which we may assume by functional calculus

to consist of positive contractions. Then conditions (2a), (2b) and (2c)

translate to

•
(∑d

l=0

∑
ḡ∈G/H f

(l)
ḡ,n

)
· a n→∞−→ a for all a ∈ D;

• f (l)ḡ,nf (l)h̄,na
n→∞−→ 0 for all a ∈ D, l = 0, . . . , d and ḡ 6= h̄ in G/H;

• (αg(f
(l)

h̄,n
)− f (l)

gh,n
) · a n→∞−→ 0 for all a ∈ D, l = 0, . . . , d, h̄ ∈ G/H and

g ∈ G.

Moreover, the fact that f
(l)
ḡ ∈ A∞ ∩D′ translates to

• [f
(l)
ḡ,n, a]

n→∞−→ 0 for all a ∈ D, l = 0, . . . , d and ḡ ∈ G/H.

Since F is a subset of D, and both F and M are finite, we can choose some

large number n such that the elements (f
(l)
ḡ,n)

l=0,...,d
ḡ∈G/H satisfy conditions (3a),

(3b), (3c) and (3d).

(3) =⇒ (2) : Let S ⊂ G a be a generating set of G. Assume that (3)

holds for all finite subsetsM of S. Since S is countable, choose an increasing

sequence of finite sets Mn⊂⊂S with S =
⋃
n∈NMn.

Let D ⊂ A be a separable, α-invariant C∗-subalgebra. Let Fn⊂⊂D be an

increasing sequence of finite subsets whose union
⋃
k∈N Fn ⊂ D is dense. For

every n, choose positive contractions (f
(l)
ḡ,n)

l=0,...,d
ḡ∈G/H in A satisfying conditions

(3a), (3b), (3c) and (3d) for the triple (ε,M, F ) = ( 1n ,Mn, Fn). Set f
(l)
ḡ =

[(f
(l)
ḡ,n)n] for each l = 0, . . . , d and ḡ ∈ G/H. Then by choice of the sequence

(f
(l)
ḡ,n)n, we have:

•
(∑d

l=0

∑
ḡ∈G/H f

(l)
ḡ,n

)
· a n→∞−→ a for all a ∈ ⋃

k∈N Fk;

• f (l)ḡ,nf (l)h̄,na
n→∞−→ 0 for all a ∈ ⋃

k∈N Fk, l = 0, . . . , d and ḡ 6= h̄ in G/H;
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• (αg(f
(l)

h̄,n
)−f (l)

gh,n
) ·a n→∞−→ 0 for all a ∈ ⋃

k∈N Fk, l = 0, . . . , d, h̄ ∈ G/H
and g ∈ ⋃

k∈NMk = S;

• [f
(l)
ḡ,n, a]

n→∞−→ 0 for all a ∈ ⋃
k∈N Fk, l = 0, . . . , d and ḡ ∈ G/H.

For the correspond elements in the sequence algebra, we thus have

(2a’)
(∑d

l=0

∑
ḡ∈G/H f

(l)
ḡ

)
· a = a for all a ∈ ⋃

k∈N Fk;

(2b’) f
(l)
ḡ f

(l)

h̄
a = 0 for all a ∈ ⋃

k∈N Fk, l = 0, . . . , d and ḡ 6= h̄ in G/H;

(2c’) αg(f
(l)

h̄
) · a = f (l)

gh
· a for all a ∈ ⋃

k∈N Fk, l = 0, . . . , d, h̄ ∈ G/H and

g ∈ ⋃
k∈NMk = S;

(2d’) [f
(l)
ḡ , a] = 0 for all a ∈ ⋃

k∈N Fk, l = 0, . . . , d and ḡ ∈ G/H.

Since condition (2c’) holds for all g in a generating set and this condition

passes to products of elements, it follows that condition (2c’) even holds for

all g ∈ G. Since the union
⋃
k∈N Fk ⊂ D is dense, it follows by continuity

of multiplication that f
(l)
ḡ ∈ A∞ ∩D′ for all l = 0, . . . , d and ḡ ∈ G/H, and

that the elements (f
(l)
ḡ )l=0,...,d

ḡ∈G/H satisfy conditions (2a), (2b) and (2c).

Remark 1.5.7. Let A be a C∗-algebra, G a countable group and α : Gy A

an action. Let H ⊂ G be a subgroup with finite index and d ∈ N a natural

number. In the case that A is separable, observe that dimRok(α,H) ≤ d if

and only if there exist equivariant c.p.c. order zero maps

ϕl : (C(G/H), G-shift) −→ (F∞(A), α∞) (l = 0, . . . , d)

with ϕ0(1) + · · ·+ ϕd(1) = 1.

Proof. In this case, A is trivially the maximal separable, α-invariant C∗-

subalgebra in itself. The ”only if” part is obvious. For the ”if” part,

choose positive contractions (f
(l)
ḡ )l=0,...,d

ḡ∈G/H in A∞ ∩ A′ satisfying the condi-

tions (2a), (2b) and (2c) from 1.5.6 for A in place of D. Given any other

separable, α-invariant C∗-subalgebra D of A, we then have f
(l)
ḡ ∈ A∞ ∩D′

and the conditions (2a), (2b) and (2c) hold for this subalgebra. Hence

dimRok(α,H) ≤ d.

Lemma 1.5.8. Let A be a C∗-algebra, G a countable group and α : Gy A

an action. If H2 ⊂ H1 ⊂ G are two subgroups with finite index, then

dimRok(α,H1) ≤ dimRok(α,H2).
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Proof. Since there exists an equivariant and unital ∗-homomorphism

(C(G/H1), G-shift) −֒→ (C(G/H2), G-shift),

this follows directly from the definition 1.5.5.

Definition 1.5.9 (cf. [96, 3.7]). Let A be a C∗-algebra, G a residually finite

group and α : G y A an action. Let σ = (Gn)n ∈ Λ(G) be a residually

finite approximation. We define

dimRok(α, σ) = sup
n∈N

dimRok(α,Gn).

Moreover, we define

dimRok(α) = sup {dimRok(α,H) | H ⊂ G, [G : H] <∞} .

Remark 1.5.10. It follows from 1.3.12 and 1.5.8 that if σ is a dominating

residually finite approximation, then dimRok(α, σ) = dimRok(α).

Let us now discuss in what way this definition extends the ones due to

Hirshberg, Winter and Zacharias in [42]:

Remark 1.5.11. Let G be a finite group, A a unital C∗-algebra and α :

Gy A an action. Let d ∈ N. Then dimRok(α) = dimRok(α, {1G}) by 1.5.8.

Apply 1.5.6(3) with H = {1G}, M = G and finite sets F that contain the

unit 1A. Then dimRok(α) ≤ d if and only if the following holds:

For all ε > 0 and 1A ∈ F⊂⊂A, there are positive contractions (f (l)g )l=0,...,d
g∈G

in A satisfying

• ∑d
l=0

∑
g∈G f

(l)
g =ε 1A for all a ∈ F ;

• ‖f (l)g f
(l)
h ‖ ≤ ε for all l = 0, . . . , d and g 6= h in G;

• αg(f (l)h ) =ε f
(l)
gh for all l = 0, . . . , d and g, h ∈ G;

• ‖[f (l)g , a]‖ ≤ ε for all a ∈ F, l = 0, . . . , d and g ∈ G.

In this way, we see that this notion of Rokhlin dimension for finite group

actions recovers the definition [42, 1.1] of Hirshberg, Winter and Zacharias.
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Remark 1.5.12. Let A be a unital C∗-algebra and α an automorphism on

A. We identify α with its induced Z-action on A. Let d ∈ N. Then by 1.3.13

and 1.5.10, we have

dimRok(α) = dimRok(α, {n! · Z}n∈N) = sup {dimRok(α, n · Z) | n ∈ N} .

Apply 1.5.6(3) with H = n · Z, M = {1} ⊂ Z and finite sets F that contain

the unit 1A. For each n ∈ N, we identify the elements in Z/nZ with elements

of the finite interval {0, . . . , n− 1} in the obvious way. Then dimRok(α) ≤ d

if and only if the following holds:

For all n ∈ N, ε > 0 and 1A ∈ F⊂⊂A, there are positive contractions

(f
(l)
j )l=0,...,d

j=0,...,n−1 in A satisfying

• ∑d
l=0

∑n−1
j=0 f

(l)
j =ε 1A for all a ∈ F ;

• ‖f (l)j f
(l)
k ‖ ≤ ε for all l = 0, . . . , d and 1 ≤ j 6= k ≤ n− 1;

• α(f (l)j ) =ε f
(l)
j+1 for all l = 0, . . . , d and 1 ≤ j < n− 1;

• α(f (l)n−1) =ε f
(l)
0 for all l = 0, . . . , d;

• ‖[f (l)j , a]‖ ≤ ε for all a ∈ F, l = 0, . . . , d and 1 ≤ j ≤ n− 1.

Although this notion of Rokhlin dimension for integer actions does not

coincide with the primary definition [42, 2.3a)] of Hirshberg, Winter and

Zacharias, we see that it does recover a special case of what they have

called Rokhlin dimension with single towers [42, 2.3c), 2.9]. The fact that

finite Rokhlin dimension can also be characterized by the existence of cer-

tain c.p.c. order zero maps with approximately central images, was already

observed by Hirshberg, Winter and Zacharias, see [42, 2.6]. If one com-

pares two different versions of Rokhlin dimension for integer actions from

[42], then it was shown in [42, 2.8, 2.9] that finiteness with respect to either

version is equivalent.

Remark 1.5.13. In general, the value dimRok(α, σ) can indeed depend on

the sequence σ. Hirshberg, Winter and Zacharias have first observed this

phenomenon for integer actions, see [42, 2.4(vi)]. However, it appears to be

unknown at present if there is any example of an action where the Rokhlin

dimension associated to some residually finite approximation is finite, but

the full Rokhlin dimension dimRok is not.
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Recall that one of the main results by Hirshberg, Winter and Zacharias

in [42] is that actions with finite Rokhlin dimension enjoy a permanence

property with respect to finite nuclear dimension:

Theorem (see [42, 1.3]). Let G be a finite group, A a unital C∗-algebra and

α : Gy A an action. Then

dim+1
Rok(A⋊α G) ≤ dim+1

Rok(α) · dim+1
nuc(A)

and

dr+1(A⋊G) ≤ dim+1
Rok(α) · dr+1(A).

Theorem (see [42, 4.1] and its proof). Let A be a unital C∗-algebra and α

an automorphism on A. Then

dim+1
nuc(A⋊α Z) ≤ 2 · dim+1

Rok(α) · dim+1
nuc(A).

It turns out that when one considers actions of a residually finite group

with a finite-dimensional box space, then one has an analogous permanence

property of actions with finite Rokhlin dimension with respect to C∗-algebras

of finite nuclear dimension. The following extends the above theorems and

is the main result of this chapter:

Theorem 1.5.14. Let A be a C∗-algebra, G a countable, residually finite

group and α : G y A an action. Let σ = (Gn)n be a residually finite

approximation of G. Then

dim+1
nuc(A⋊α G) ≤ asdim+1(�σG) · dim+1

Rok(α, σ) · dim+1
nuc(A).

If G is finitely generated, we get the estimate

dim+1
nuc(A⋊α G) ≤ asdim+1(�sG) · dim+1

Rok(α) · dim+1
nuc(A)

as a special case.

Remark. This indeed extends the corresponding theorems [42, 1.3, 4.1] by

Hirshberg, Winter and Zacharias. Note that for the case of finite groups G,

every of its box spaces has asymptotic dimension zero by inserting the trivial

cover {G} of G in 1.3.5(2). So asdim+1(�sG) = 1, and this factor does not

appear. For integer actions, 1.4.3 shows that asdim(�sZ) = 1, and hence
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the above formula recovers the factor 2 = asdim+1(�sZ) in the formula by

Hirshberg, Winter and Zacharias.

Proof of 1.5.14. We may assume that all of the numbers s = asdim(�σG),

r = dimnuc(A) and d = dimRok(α, σ) are finite, or else the statement is

trivial.

Let F⊂⊂A⋊α G and δ > 0 be given. In order to show the assertion, we

show that there exists a finite-dimensional C∗-algebra F with a c.p. approx-

imation (F , ψ, ϕ) for F up to δ on A⋊α G as required by 1.1.7.

Since the purely algebraic crossed product is dense in A ⋊α G and is

linearly generated by terms of the form aug for a ∈ A and g ∈ G, we may

assume without loss of generality that F ⊂ {aug | a ∈ F ′, g ∈M} for two

finite sets F ′⊂⊂A1 and M⊂⊂G.
The square root function

√· : [0, 1]→ [0, 1] is uniformly continuous. So

choose ε > 0 with ε ≤ δ so small that |√s −
√
t| ≤ δ, whenever |s − t| ≤ ε.

Apply 1.3.5(3) to find n ∈ N and functions µ(j) : G→ [0, 1] for j = 0, . . . , s

such that

(d1) for every j = 0, . . . , s, and for all h ∈ Gn \ {1} one has

supp(µ(j)) ∩ supp(µ(j))h = ∅;

(d2) for every g ∈ G, we have

s∑

j=0

∑

h∈Gn

µ(j)(gh) =

s∑

j=0

∑

h∈ḡ

µ(j)(h) = 1;

(d3) for every j = 0, . . . , s and g ∈M , one has

‖µ(j) − µ(j)(g−1 · )‖∞ ≤ ε.

Consider the finite sets

B(j)
n = supp(µ(j)), Bn =

s⋃

j=0

B(j)
n ⊂⊂G (e1)

and

F̃ =
{
αh−1(a) | a ∈ F ′, h ∈ Bn

}
⊂⊂A.
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Let A act faithfully on a Hilbert space H and let A ⋊α G ∼= A ⋊r,α G

be embedded into B(ℓ2(G) ⊗ H) via the left-regular representation. Note

that asdim(�σG) < ∞ implies by 1.3.4 that G is amenable. Let Qj ∈
B(ℓ2(G) ⊗H) be the projection onto the subspace ℓ2(B

(j)
n ) ⊗H. Then the

assignment x 7→ QjxQj defines a c.p.c. map Ψj : A ⋊r,α G → M
|B

(j)
n |

(A).

We have for all a ∈ A, g ∈ G and j = 0, . . . , s that

Ψj(aug) = Qj

[∑

h∈G

eh,g−1h ⊗ αh−1(a)
]
Qj

=
∑

h∈B
(j)
n :

g−1h∈B
(j)
n

eh,g−1h ⊗ αh−1(a)

=
∑

h∈B
(j)
n ∩gB

(j)
n

eh,g−1h ⊗ αh−1(a). (e2)

For j = 0, . . . , s, define the diagonal matrices Ej ∈ M|B
(j)
n |

(C) by (Ej)h,h =

µ(j)(h). By our choice of ε and d3, we have

∥∥∥
√
µ(j) −

√
µ(j)(g−1 · )

∥∥∥
∞
≤ δ for all g ∈M. (e3)

It follows for all g ∈M and a ∈ A that

‖[
√
Ej ,Ψj(aug)]‖
e2
=

∥∥∥
∑

h∈Bn∩gBn

(√
µ(j)(h)−

√
µ(j)(g−1h)

)
eh,g−1h ⊗ αh−1(a)

∥∥∥

≤ max
{ ∣∣∣

√
µ(j)(h)−

√
µ(j)(g−1h)

∣∣∣
∣∣ h ∈ Bn ∩ gBn

}
· ‖a‖

e3
≤ δ‖a‖.

Define the c.p.c. map θj : A⋊r,αG→M
|B

(j)
n |

(A) by θj(x) =
√
EjΨj(x)

√
Ej .

By the previous calculation, we have

‖θj(aug)− EjΨj(aug)‖ ≤ δ · ‖a‖ for all g ∈M and a ∈ A. (e4)

Observe that for aug ∈ F , the matrix coefficients of θj(aug) ∈ M
|B

(j)
n |

(A)

are all in F̃ .

Choose an r-decomposable c.p. approximation (F , ψ, ϕ) for F̃ within

A up to δ/[G : Gn], i.e. a finite-dimensional C∗-algebra F and c.p. maps
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A
ψ→ F ϕ(i)

→ A for i = 0, . . . , r such that ψ is c.p.c., the maps ϕ(i) are

c.p.c. order zero and

‖x− (ϕ ◦ ψ)(x)‖ ≤ δ

[G : Gn]
for all x ∈ F̃ , (e5)

where ϕ denotes the sum ϕ = ϕ(0) + · · ·+ ϕ(r).

For all j = 0, . . . , s and i = 0, . . . , r let

ψj = id
|B

(j)
n |
⊗ψ :M

|B
(j)
n |
⊗A→M

|B
(j)
n |
⊗F (e6)

and

ϕj,i = id
|B

(j)
n |
⊗ϕ(i) :M

|B
(j)
n |
⊗F →M

|B
(j)
n |
⊗A (e7)

denote the amplifications of ψ and ϕ(i).

Let D ⊂ A be a separable, α-invariant C∗-algebra containing F̃ and the

image of ϕ(i) for each i = 0, . . . , r. Since dimRok(α,Gn) ≤ d, we can apply

1.5.6(2) and find positive contractions (f
(l)

h̄
)l=0,...,d

h̄∈G/Gn
in A∞ ∩ D′ satisfying

the relations

(R1)
( d∑

l=0

∑

h̄∈G/Gn

f
(l)

h̄

)
a = a for all a ∈ D;

(R2) f
(l)
ḡ f

(l)

h̄
a = 0 for all a ∈ D, ḡ 6= h̄ and all l = 0, . . . , d;

(R3) α∞,g(f
(l)

h̄
)a = f (l)

gh
a for all a ∈ D, l = 0, . . . , d and g, h ∈ G.

Now let j ∈ {0, . . . , s} and l ∈ {0, . . . , d}. Define maps

σj,l :M|B
(j)
n |

(D)→ (A⋊α G)∞ by σj,l(eg,h ⊗ a) = ugf
(l)

1̄
au∗h. (e8)

Note that these are indeed c.p. since σj,l(x) = vj,lxv
∗
j,l for the 1 × |B(j)

n |-
matrix vj,l = (uhf

(l)1/2

1̄
)
h∈B

(j)
n
. We now show that these maps are order

zero. For each l = 0, . . . , d, we denote f (l) =
∑

ḡ∈G/Gn
f
(l)
ḡ . Observe that by

R3, this is an element fixed by α∞ upon multiplying with an element in D.

Let h1, h2, h3, h4 ∈ B(j)
n and a, b ∈ D. We have

σj,l(eh1,h2 ⊗ a)σj,l(eh3,h4 ⊗ b) = uh1f
(l)

1̄
au∗h2 · uh3f

(l)

1̄
bu∗h4

= uh1af
(l)

1̄
· (αh−1

3 h2
)∞(f

(l)

1̄
)uh−1

2 h3
bu∗h4
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R3
= uh1af

(l)

1̄
· f (l)

h
−1
3 h2

uh−1
2 h3

bu∗h4

R2
= δh̄2,h̄3 · uh1a(f

(l)

1̄
)2bu∗h4

R2
= δh̄2,h̄3 · uh1f (l)f

(l)

1̄
abu∗h4

R3,d1,e1
= f (l) · σj,l

(
(eh1,h2 ⊗ a)(eh3,h4 ⊗ b)

)
.

Note that for the last step of the above calculation, we have used d1 in

that the canonical map G −։ G/Gn is injective on each set B
(j)
n . Since

this calculation involves linear generators of the C∗-algebra M
|B

(j)
n |

(D), we

obtain the equation

σj,l(x)σj,l(y) = f (l) · σj,l(xy) for all x, y ∈M
|B

(j)
n |

(D).

In particular, each map σj,l is order zero and so is

σj,l ◦ ϕj,i :M|B
(j)
n |
⊗F → (A⋊α G)∞

for all i = 0, . . . , r, j = 0, . . . , s and l = 0, . . . , d. Note that this composition

makes sense because of our assumption that D contains the images of each

ϕ(i), and so the image of each ϕj,i is contained in the domain of σj,l.

As the next step, we would like to show that the maps

A⋊α G //

⊕
j ψj◦θj=:Θ

''

(A⋊α G)∞

⊕s
j=0M|G

(j)
n |

(F)

∑
j,l,i σj,l◦ϕj,i=:Φ

66
(e9)

give rise to a good c.p. approximation of F . For this, we first calculate for

every contraction x ∈ D that

∥∥∥
s∑

j=0

∑

h∈B
(j)
n \gB

(j)
n

µ(j)(h)f
(l)

h̄
x
∥∥∥

≤ (s+ 1) · max
0≤j≤s

∥∥∥
∑

h∈B
(j)
n \gB

(j)
n

µ(j)(h)f
(l)

h̄
x
∥∥∥

R2
≤ (s+ 1) ·max

{
µ(j)(h) | h ∈ B(j)

n \ gB(j)
n , j = 0, . . . , s

}

e1
≤ (s+ 1) ·max

{
‖µ(j) − µ(j)(g−1 · )‖∞ | g ∈M, j = 0, . . . , s

}
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d3
≤ (s+ 1)ε ≤ (s+ 1)δ. (e10)

Observe for all l = 0, . . . , d

f (l) =
∑

ḡ∈G/Gn

f
(l)
ḡ

d2
=

∑

ḡ∈G/Gn

s∑

j=0

∑

h∈ḡ

µ(j)(h)f
(l)
ḡ

=
s∑

j=0

∑

h∈B
(j)
n

µ(j)(h)f
(l)

h̄
. (e11)

Note that the last equation follows from the fact that for each j = 0, . . . , s,

the set B
(j)
n is contained in a finite set of representatives of G/Gn by d1 and

e1. It follows for all g ∈M and contractions x ∈ D that




d∑

l=0

s∑

j=0

∑

h∈B
(j)
n ∩gB

(j)
n

µ(j)(h)f
(l)

h̄


 · x

e11,R1
= x−




d∑

l=0

s∑

j=0

∑

h∈B
(j)
n \gB

(j)
n

µ(j)(h)f
(l)

h̄


 · x

e10
= (s+1)(d+1)δ x. (e12)

Now let aug ∈ F and recall the definition of the maps Θ and Φ from the

approximation diagram e9. We calculate that

Φ ◦Θ(aug)

e9
=

d∑

l=0

s∑

j=0

r∑

i=0

(σj,l ◦ ϕj,i ◦ ψj ◦ θj)(aug)

e4
=(s+1)(d+1)(r+1)δ

d∑

l=0

s∑

j=0

r∑

i=0

(σj,l ◦ ϕj,i ◦ ψj)(EjΨj(aug))

e2
=

d∑

l=0

s∑

j=0

r∑

i=0

(σj,l ◦ ϕj,i ◦ ψj)




∑

h∈B
(j)
n ∩gB

(j)
n

µ(j)(h) · eh,g−1h ⊗ αh−1(a)



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e6,e7
=

d∑

l=0

s∑

j=0

r∑

i=0

σj,l




∑

h∈B
(j)
n ∩gB

(j)
n

µ(j)(h) · eh,g−1h ⊗ (ϕ(i) ◦ ψ)
(
αh−1(a)

)



e8
=

d∑

l=0

s∑

j=0

r∑

i=0

∑

h∈B
(j)
n ∩gB

(j)
n

µ(j)(h) · uhf (l)1̄

[
(ϕ(i) ◦ ψ)

(
αh−1(a)

)]
uh−1g

R3
=

d∑

l=0

s∑

j=0

∑

h∈B
(j)
n ∩gB

(j)
n

µ(j)(h)f
(l)

h̄
· uh

[
(ϕ ◦ ψ)

(
αh−1(a)

)]
uh−1g

e5
=

(s+1)(d+1)|B
(j)
n |· δ

[G:Gn]

d∑

l=0

s∑

j=0

∑

h∈B
(j)
n ∩gB

(j)
n

µ(j)(h)f
(l)

h̄
· uhαh−1(a)uh−1g

=




d∑

l=0

s∑

j=0

∑

h∈B
(j)
n ∩gB

(j)
n

µ(j)(h)f
(l)

h̄


 · aug

e12
= (s+1)(d+1)δ aug.

Summing up these approximation steps and using d1 in the form of the

inequality |B(j)
n | ≤ [G : Gn], it follows for all aug ∈ F that

aug =3(s+1)(d+1)(r+1)δ Φ ◦Θ(aug).

Now let us recall what we got. We have contructed a c.p. approximation




s⊕

j=0

M
|B

(j)
n |

(F), Θ, Φ




of tolerance 3(s+ 1)(d+ 1)(r + 1)δ on F , where the map

Φ =
r∑

i=0

d∑

l=0

s∑

j=0

σj,l ◦ ϕj,i :
s⊕

j=0

M
|B

(j)
n |

(F)→ (A⋊α G)∞

is a sum of (s + 1)(d + 1)(r + 1) c.p.c. order zero maps. Since d, s, r are

constants and F⊂⊂A ⋊α G and δ > 0 were arbitrary, it follows from 1.1.7
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that

dim+1
nuc(A⋊α G) ≤ (s+ 1)(d+ 1)(r + 1),

which is what we wanted to show.

In the case of Zm-actions, the estimate of 1.5.14 simplifies nicely, since

we know from 1.4.3 that the standard box space of Zm has asymptotic

dimension equal to m. We note that before the collaboration with Wu and

Zacharias [96] took place, the following result was also proved in my own

paper [94, 1.10] for unital C∗-algebras, as a generalization of [42, 4.1], but

with a worse estimate than given below.

Corollary 1.5.15. Let A be a C∗-algebra, m ∈ N and α : Zm y A an

action. Then we have

dim+1
nuc(A⋊α Zm) ≤ (m+ 1) · dim+1

Rok(α) · dim+1
nuc(A).

Proof. This follows from 1.5.14 and 1.4.3.
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Crossed products by Z revisited

From this point on, we will mainly be interested in determining when trans-

formation group C∗-algebras by free actions of discrete groups have finite

nuclear dimension. An important tool towards that will be the theory of

Rokhlin dimension developed in the first chapter. However, we will first

revisit the special case of Z-actions in this chapter. The first reason is that

this chapter is intended as a somewhat more pleasant starting point for most

readers, where we do not begin with all the technicalities and complications

that one has to get into in the third chapter. The second reason is that

the case of Z-actions, although easier to handle than higher-rank group ac-

tions, already showcases the need for the so-called marker property, which

itself will play a major role in the third chapter. The two upcoming sec-

tions each handle a different approach towards showing that C(X)⋊ϕ Z has

finite nuclear dimension, if X is a compact metric space with finite covering

dimension and ϕ : X → X is aperiodic.

2.1 The Toms-Winter approach

In this section, we follow an approach by Toms and Winter from [100] to

show that transformation group C∗-algebras by certain Z-actions have finite

nuclear dimension. Their main result asserts that, if ϕ : X → X is a

minimal homeomorphism on a compact metric space X with finite covering

dimension, then C(X)⋊ϕZ has finite nuclear dimension. We will extend this

result to aperiodic homeomorphisms with the help of the marker property.
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But first, we need to recall the notion of orbit-breaking algebras, as

introduced originally for Cantor minimal systems by Putnam:

Definition 2.1.1 (cf. [78, Section 3]). Let X be a compact metric space

and ϕ : X → X a homeomorphism. Consider the transformation group

C∗-algebra A = C(X) ⋊ϕ Z and denote by u the unitary implementing the

action on C(X) that is induced by ϕ. If Y ⊂ X is a closed subset, define its

so-called orbit-breaking algebra via

AY = C∗
(
C(X) ∪ u · C0(X \ Y )

)
⊂ C(X)⋊ϕ Z.

Next, we shall recall Phillips’ notion of a recursive subhomogeneous al-

gebra:

Definition 2.1.2 (cf. [75, 1.1]). A recursive subhomogeneous algebra is a

C∗-algebra given by the following recursive definition.

• If X is a compact Hausdorff space and n ≥ 1, then C(X,Mn) is a

recursive subhomogeneous algebra.

• If A is a recursive subhomogeneous algebra, X is a compact Haus-

dorff space, X(0) ⊂ X is closed, ϕ : A → C(X(0),Mn) is any unital

homomorphism, and ρ : C(X,Mn) → C(X(0),Mn) is the restriction

homomorphism, then the pullback

A⊕C(X(0),Mn)
C(X,Mn) = {(a, f) ∈ A⊕ C(X,Mn) | ϕ(a) = ρ(f)}

is a recursive subhomogeneous algebra.

Remark 2.1.3 (cf. [75, 1.2]). Let R be a recursive subhomogeneous algebra.

Then by definition, there exists some decomposition

R =
[
. . .

[[
C0 ⊕C(0)

1

C1

]
⊕
C

(0)
2

C2

]
. . .

]
⊕
C

(0)
l

Cl

for Ck = C(Xk,Mnk
), C

(0)
k = C(X(0)

k ,Mnk
) with natural numbers nk and

compact Hausdorff spaces Xk and closed subsets X
(0)
k ⊂ Xk. Given such

a decomposition, we say that it has topological dimension at most r ∈ N,

if dim(Xk) ≤ r for all r. By the main result of Winter’s paper on the

decomposition rank of subhomogeneous C∗-algebras [104, 1.6], it follows
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that the decomposition rank (and so in particular the nuclear dimension) of

R is bounded by the topological dimension of this decomposition.

Lemma 2.1.4. Let X be a compact metric space and ϕ : X → X a home-

omorphism. Let Y ⊂ X be closed subset with X =
⋃N
j=0 ϕ

j(Y ) for some

N ∈ N. Then its orbit-breaking algebra AY has a decomposition as a recur-

sive subhomogeneous algebra with topological dimension at most dim(X). In

particular, the decomposition rank of AY is at most the covering dimension

of X.

Proof. This fact was proved in [65, Section 3] in the case that ϕ is minimal

and Y is closed with non-empty interior. However, that proof carries over

verbatim with the given conditions. The key argument there only uses the

fact that finitely many translates of Y cover all of X.

Now we come to the definition of markers for a homeomorphism on

a compact metric space. Conceptually, this notion was first defined for

systems on zero dimensional spaces by Downarovicz in [17, Definition 2],

being inspired by Krieger’s marker Lemma [56, Lemma 2] in topological

dynamics. In the presented generality, it was then defined by Gutman in

[39].

Definition 2.1.5 (cf. [39, 5.1]). Let X be a compact metric space and

ϕ : X → X a homeomorphism. Let Z ⊂ X be a subset and n ∈ N. We call

Z an n-marker if Z ∩ϕj(Z) = ∅ for all j = 1, . . . , n−1 and X =
⋃N
j=0 ϕ

j(Z)

for some N . The homeomorphism ϕ is said to have the marker property if

there exist open n-markers for all n.

Gutman has asked the question whether every aperiodic homeomorphism

on a compact metric space must necessarily have the marker property. Al-

though this question is still unanswered in full generality, he proved the

following partial result:

Theorem 2.1.6 (see [39, 6.1]). Let X be a compact metric space with finite

covering dimension and ϕ : X → X an aperiodic homeomorphism. Then ϕ

has the marker property.

Before we discuss how this can be applied, we need a technical Lemma

that already appeared in an almost identical form in [100].
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Lemma 2.1.7 (cf. [100, 1.1]). Let K ⊂ C a compact subset and G finite

set consisting of continuous functions f : K → C with f(0) = 0, if 0 ∈ K.

For every ε > 0, there exists δ > 0 with the following property: Whenever

x ∈ A is a normal element in a C∗-algebra A with Sp(x) ⊆ K, and y ∈ A is

a contraction with ‖[x, y]‖ ≤ δ and ‖[x∗, y]‖ ≤ δ, then ‖[f(x), y]‖ ≤ ε for all

f ∈ G.

Proof. Write G = {f1, . . . , fk}. By the Weierstrass approximation theorem,

we can find N ∈ N and polynomials pi(z) =
∑N

j=1 a
(i)
j z

j + c
(i)
j z

j for i =

1, . . . , k such that ‖fi − pi‖∞,K ≤ ε/4 for all i = 1, . . . , k. This implies

[fi(x), y] =ε/2 [pi(x), y] for all i = 1, . . . , k and contractions y ∈ A. Using

the basic properties of commutators, we calculate

‖[pi(x), y]‖ =
∥∥∥
[ N∑

j=1

a
(i)
j x

j + c
(i)
j x

∗j , y
]∥∥∥

≤
N∑

j=1

j · (|a(i)j |+ |c
(i)
j |) ·max {‖[x, y]‖, ‖[x∗, y]‖} .

Now we observe that

δ =
ε

2
·


 sup
i=1,...,k

N∑

j=1

j · (|a(i)j |+ |c
(i)
j |)



−1

yields the desired statement.

As an application of 2.1.6, we can generalize one of the main results of

[100], which was proved for minimal homeomorphisms. We note that the

proof of the next result closely follows the original approach by Toms and

Winter.

Theorem 2.1.8 (cf. [100, 3.3]). Let X be a compact metric space and

ϕ : X → X an aperiodic homeomorphism. Then the nuclear dimension

of C(X)⋊ϕ Z is at most 2 dim(X) + 1.

Proof. Set d = dim(X) and assume that it is finite, as there is otherwise

nothing to show. Let F⊂⊂A = C(X) ⋊ϕ Z be given. We have to show that

there exist good 2(d + 1)-decomposable c.p. approximations of F through

finite-dimensional C∗-algebras. As the purely algebraic crossed product
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C(X)⋊alg Z is dense in A and is linearly generated by terms of the form fuj

for f ∈ C(X) and j ∈ N, we may assume without loss of generality that

F =
{
fuj | f ∈ F ′,−N ≤ j ≤ N

}

for some N ∈ N and F ′⊂⊂C(X)1. So let ε > 0. Use 2.1.7 to choose δ > 0 for

this ε > 0 with respect to K = [0, 1] and

G =
{
xi/2j | j = 1, . . . , N, i = 1, . . . , 2j − 1

}
.

Now choose a natural number n ≥ 1
δ . Since ϕ has the marker property, we

may choose an open (2n+ 1)-marker Z ⊂ X, i.e. we have X =
⋃
j∈Z ϕ

j(Z)

and ϕj(Z) ∩ ϕl(Z) = ∅ for all −n ≤ j < l ≤ n. Since these pairwise

disjoint closed sets have a minimal distance from each other, we can find

an open neighbourhood Z ′ of Z that is still a 2n-marker. Now apply the

Urysohn-Tietze extension theorem to obtain a continuous function g : X →
[0, 1] supported on Z ′ with g|Z = 1. Since now the collection of positive

contractions
{
g ◦ ϕj | j = −n, . . . , n

}
is pairwise orthogonal, we can define

a new positive contraction via

h =
n∑

j=−n

n− |j|
n

· g ◦ ϕj ∈ C(X).

For each x = fuj ∈ F , we set ax = f ·(uh1/2|j|)j and bx = f ·(u(1−h)1/2|j|)j .
We compute

‖[u, h]‖ = ‖h− uhu∗‖

= ‖h− h ◦ ϕ−1‖

=
∥∥∥

n∑

j=−n

n− |j|
n

· g ◦ ϕj −
n∑

j=−n

n− |j|
n

· g ◦ ϕj−1
∥∥∥

=
∥∥∥

n∑

j=−n

n− |j|
n

· g ◦ ϕj −
n∑

j=1−n

n− |j + 1|
n

· g ◦ ϕj
∥∥∥

≤ 1

n
≤ δ.

By the choice of δ, it follows that ‖[u, hi/2j ]‖ ≤ ε and ‖[u, (1− h)i/2j ]‖ ≤ ε
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for every j = 1, . . . , N and i = 1, . . . , 2j − 1. Observe that now

h1/2xh1/2 =Nε xh and (1− h)1/2x(1− h)1/2 =Nε x(1− h) (e1)

for all x ∈ F , by applying the inequality ‖[u, h1/2]‖ ≤ ε at most N times.

Secondly, observe that

h1/2xh1/2 = h1/2fujh1/2 =Nε




h1/2ax , j ≥ 0

axh
1/2 , j < 0

(e2)

and analogously

(1− h)1/2x(1− h)1/2 =Nε




(1− h)1/2bx , j ≥ 0

bx(1− h)1/2 , j < 0
(e3)

for all x ∈ F . This involves passing a function of the form hi/2j from one

side of a u or u∗ to the other at most N times. By construction, h vanishes

on ϕn(Z) and 1− h vanishes on Z. In particular, ax ∈ Aϕn(Z) and bx ∈ AZ
and hence

h1/2xh1/2 ∈Nε Aϕn(Z) and (1− h)1/2x(1− h)1/2 ∈Nε AZ

for all x ∈ F .
By 2.1.4, we know that both AZ and Aϕn(Z) have decomposition rank

at most d. Define

F1 =
{
axh

1/2 | x ∈ F
}
∪
{
h1/2ax | x ∈ F

}
⊂⊂Aϕn(Z)

and

F2 =
{
bx(1− h)1/2 | x ∈ F

}
∪
{
(1− h)1/2bx | x ∈ F

}
⊂⊂AZ .

Choose two finite-dimensional C∗-algebras F1 and F2, two c.p.c. maps θ1 :

Aϕn(Z) → F1 and θ2 : AZ → F2 and two sets of c.p.c. order zero maps

ψ
(l)
1 : F1 → Aϕn(Z) and ψ

(l)
2 : F2 → AZ for l = 0, . . . , d, such that

d∑

l=0

ψ
(l)
i ◦ θi(y) =ε y (e4)
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for all x ∈ Fi and i = 1, 2. Moreover, we may assume that the sums
∑d

l=0 ψ
(l)
i

are contractive for i = 1, 2. By Arveson’s theorem [10, 1.6.1], we can extend

θ1, θ2 to two c.p.c. maps θ̃i : A→ Fi for i = 1, 2. Let ι1 : Aϕn(Z) −֒→ A and

ι2 : AZ −֒→ A be the two inclusion maps. We obtain for every x ∈ F that

d∑

l=0

ι1 ◦ ψ(l)
1 ◦ θ̃1(h1/2xh1/2) + ι2 ◦ ψ(l)

2 ◦ θ̃2
(
(1− h)1/2x(1− h)1/2

)

e2,e3: ∃y1∈F1,y2∈F2
=2Nε

d∑

l=0

ι1 ◦ ψ(l)
1 ◦ θ1(y1) + ι2 ◦ ψ(l)

2 ◦ θ2(y2)

e4
=2ε ι1(y1) + ι2(y2)

=2Nε h1/2xh1/2 + (1− h)1/2x(1− h)1/2

e1
=2Nε xh+ x(1− h) = x.

In particular, this yields a 2(d+ 1)-decomposable c.p. approximation

(
F1 ⊕F2, θ̃1

(
h1/2 · · h1/2

)
⊕θ̃2

(
(1− h)1/2 · · (1− h)1/2

)
,
∑

i=1,2

d∑

l=0

ιi ◦ ψ(l)
i

)

of F up to (6N +2)ε. Since ε can be chosen arbitrarily small in comparison

to N , this finishes the proof.

Remark 2.1.9. By looking at the above proof, one might conjecture that

the analogous statement of 2.1.8 is true for decomposition rank instead of

nuclear dimension. However, this is not true. The reason is that the c.p.

approximation constructed above does not even ensure that C(X)⋊ϕ Z is a

finite C∗-algebra, as the next example shows:

Example 2.1.10 (cf. [74, 8.8]). Let X1 = Z ∪ {±∞} be the two-sided

compactification of the integers. Consider the homeomorphism ϕ1 : X1 →
X1 given by

ϕ1(x) =




x+ 1 , x ∈ Z

x , x = ±∞.

Let X2 be another finite-dimensional compact metric space with some ape-

riodic homeomorphism ϕ2 : X2 → X2. (e.g. an Odometer action on the

Cantor set.) Define X = X1 × X2 and ϕ = ϕ1 × ϕ2 : X → X. Then ϕ is
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clearly aperiodic, so Theorem 2.1.8 applies and we have

dimnuc(C(X)⋊ϕ Z) ≤ 1 + 2dim(X) = 1 + 2dim(X2).

On the other hand, one has C(X1) ⋊ϕ1 Z ⊂ C(X) ⋊ϕ Z canonically. But

if u is the canonical unitary implementing the action and p ∈ C(X1) is the

characteristic function associated to N ∪ {∞}, then we have

(up+ 1− p)∗(up+ 1− p) = p+ (1− p)up+ 1− p
= 1+ (1− p) · p ◦ ϕ−1 · u
= 1

and
(up+ 1− p)(up+ 1− p)∗ = upu∗ + 1− p

= p ◦ ϕ−1 + 1− p
= 1− χ{0} 6= 0.

Hence this transformation group C∗-algebra contains a proper isometry and

in particular, the decomposition rank of C(X)⋊ϕ Z is infinite.

2.2 The Rokhlin dimension approach

In the previous section, we saw how the marker property enables one to carry

over a result for minimal homeomorphisms to aperiodic homeomorphisms,

in that case the Toms-Winter approach for showing that a transformation

group C∗-algebra of the form C(X) ⋊ Z has finite nuclear dimension. As it

turns out, a stronger variant will allow us to do the same with the Rokhlin

dimension approach, which was first carried out by Hirshberg, Winter and

Zacharias in [42].

The following result arises upon analyzing Gutman’s proof of 2.1.6 more

carefully. Although we will not go over the proof at this point, we will prove

a generalization of this result in the next chapter.

Theorem 2.2.1 (see [39, 6.1] with proof.). Let X be a compact metric

space with finite covering dimension d and ϕ : X → X an aperiodic home-

omorphism. For all n ∈ N, we can find an open n-marker Z ⊂ X with

X =
⋃2(d+1)n−1
j=0 ϕj(Z).

We will now demonstrate how this result can be used to obtain a compa-
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rably simple proof that these Z-actions have finite Rokhlin dimension. The

idea for the following proof is originally due to Wilhelm Winter:

Corollary 2.2.2. Let X be a compact metric space and ϕ : X → X an

aperiodic homeomorphism. Denote by ϕ̄ : C(X) → C(X) the induced auto-

morphism given by ϕ̄(f) = f ◦ ϕ−1. Then we have

dim+1
Rok(ϕ̄) ≤ 4 dim+1(X).

Proof. We may assume that X has finite covering dimension d, or else there

is nothing to show. Let k ∈ N and ε > 0 be given. We will now construct

at most 4(d + 1) Rokhlin towers of length k as required by 1.5.12. To this

end, choose a natural number n ≥ 1
ε and use 2.2.1 to find an open set Z

with Z ∩ ϕj(Z) = ∅ for all j = 1, . . . , 4nk − 1 and X =
⋃2(d+1)4nk−1
j=0 ϕj(Z).

Since the pairwise disjoint sets
{
ϕj(Z) | j = 0, . . . , 4nk − 1

}
have a minimal

distance from each other, we can find an open neighbourhood Z ′ ⊃ Z that

is still a 4nk-marker. Use the Urysohn-Tietze extension theorem to find a

continuous function g : X → [0, 1] supported on Z ′ and with g|Z = 1. Then

the function

h =

−1∑

l=−n

g ◦ ϕ−lk + n− |l|
n

· g ◦ ϕ−(l−n)k

+

n−1∑

l=0

g ◦ ϕ−lk + n− |l|
n

· g ◦ ϕ−(l+n)k

yields a positive contraction in C(X). Observe that by the properties of the

sets Z,Z ′ and the number n, this element satisfies the following properties:

• h · h ◦ ϕ−j = 0 for all j = 1, . . . , k − 1.

• h ◦ ϕ−k =ε h.

• h = 1 on the set
⋃n−1
l=−n ϕ

lk(Z).

For all v = 0, . . . , k, i = 0, 1 and l = 0, . . . , 2d+ 1, we define

h(i,l)v =




h ◦ ϕ(−1−4l)nk−v , i = 0

h ◦ ϕ(−3−4l)nk−v , i = 1.

Then we can observe that
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• h(i,l)v ·h(i,l)w = 0 for all i = 0, 1, l = 0, . . . , 2d+1 and 0 ≤ v < w ≤ k−1.

• Up to ε, applying ϕ̄ on h
(i,l)
v results in a k-cyclic lower index shift.

• We have
∑

i=0,1

∑2d+1
l=0

∑k−1
v=0 h

(i,l)
v ≥ 1 on the set

⋃

i=0,1

ϕ2nki




2d+1⋃

l=0

ϕ4nkl



k−1⋃

v=0

ϕv




2n−1⋃

j=0

ϕjk(Z)






 =

2(d+1)4nk−1⋃

j=0

ϕj(Z),

which is the whole space X by assumption.

In particular, the sum S =
∑

i=0,1

∑2d+1
l=0

∑k−1
v=0 h

(i,l)
v satisfies ϕ̄(S) =4(d+1)kε

S. Moreover, it is positive and its spectrum is in [1, 4(d+1)]. Now apply 2.1.7

with respect to x = S, K = [1, 4(d+ 1)], f(x) = x−1 and y = u ∈ C(X)⋊Z

the canonical unitary implementing ϕ̄. Since we can choose ε arbitrarily

small at the beginning of this construction, we may as well assume by 2.1.7

(by replacing ε with an even smaller number at the beginning) that we have

ϕ̄(S−1) =ε S
−1. Defining f

(i,l)
v = S−1h

(i,l)
v for all i, l, v, we observe that

• f (i,l)v ·f (i,l)w = 0 for all i = 0, 1, l = 0, . . . , 2d+1 and 0 ≤ v < w ≤ k−1.

• Up to 2ε, applying ϕ̄ on f
(i,l)
v results in a k-cyclic lower index shift.

• ∑
i=0,1

∑2d+1
l=0 f

(i,l)
v = 1.

Since the collection (f
(i,l)
v )i=0,1, l=0,...,2d+1

v=0,...,k−1 of Rokhlin elements has 4(d +

1) upper indices, and moreover k and ε were arbitrary, this verifies the

conditions given in 1.5.12 and hence dim+1
Rok(ϕ̄) ≤ 4(d+ 1).

Corollary 2.2.3. Let X be a compact metric space and ϕ : X → X an

aperiodic homeomorphism. Then we have

dim+1
nuc(C(X)⋊ϕ Z) ≤ 8 dim+1(X)2.

Proof. This follows directly by combining 2.2.2 and 1.5.15.
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Topological dynamics

From now on, we turn to the case of free actions of higher-rank groups

on locally compact metric spaces. Although the main focus in terms of

applications is, at least within this chapter, on actions of Zm and nilpotent

groups, the next two upcoming sections establish certain technical properties

for actions of any countable group on finite-dimensional spaces. The main

technical result will be that all free actions of countably infinite groups on

finite-dimensional spaces satisfy the marker property. Moreover, the result

will be of a form that allows us to show that, under suitable restrictions on

the group, even a stronger variant of the marker property holds.

Note that this chapter has substantial text overlap with my paper [94],

and large parts are carried over verbatim. However, the results in the fol-

lowing sections are carried out in greater generality than in [94], although it

was already remarked in [94, 5.4] that one can remove the assumption that

all spaces must be compact.

3.1 The topological small boundary property

In this section, we define a technical condition that we name the (bounded)

topological small boundary property. Weaker versions of this were consid-

ered by Lindenstrauss in [66] and by Gutman in [39] and had connections to

a dynamical system having mean dimension zero. It will turn out that we

can in fact assume a stronger bounded variant, whenever we have a finite-

dimensional underlying space. Unlike in [94], we will not restrict our focus
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only onto compact spaces, but rather work in the setting of locally compact

metric spaces.

Definition 3.1.1 (cf. [66, 3.1]). Let X be a locally compact metric space,

G a group and α : Gy X an action. Let M ⊂ G be a subset and k ∈ N be

some natural number. We say that a set E ⊂ X is (M,k)-disjoint, if for all

distinct elements γ(0), . . . , γ(k) ∈M we have

αγ(0)(E) ∩ · · · ∩ αγ(k)(E) = ∅.

We call E toplogically α-small if E is (G, k)-disjoint for some k.

Lemma 3.1.2. Let X be a locally compact metric space with a group action

α : G y X. Let F⊂⊂G be a finite subset and n ∈ N a natural number. If a

compact subset E ⊂ X is (F, n)-disjoint, then there exists an open, relatively

compact neighbourhood V of E such that V is (F, n)-disjoint.

Proof. Note that for all S ⊂ F with n = |S|, we have

∅ =
⋂

γ∈S

αγ(E) =
⋂

γ∈S

αγ

(⋂

ε>0

Bε(E)
)
=

⋂

ε>0


⋂

γ∈S

αγ(Bε(E))




By compactness, there must exist some ε(S) > 0 such that Bε(S)(E) is

compact and ⋂

γ∈S

αγ(Bε(S)(E)) = ∅.

If we set ε = min {ε(S) | S ⊂ F, n = |S|}, then V = Bε(E) is a relatively

compact, open neighbourhood of E whose closure is (F, n)-disjoint.

Definition 3.1.3 (cf. [66, 3.2]). Let G be a group, M ⊂ G a subset and

d ∈ N a natural number. A topological dynamical system (X,α,G) has the

(M,d)-small boundary property, if whenever K ⊂ X is compact and V ⊃ K

is open, we can find a relatively compact, open set U with K ⊂ U ⊂ V such

that ∂U is (M,d)-disjoint.

We say moreover that (X,α,G) has the bounded topological small bound-

ary property with respect to d, if it has the (G, d)-small boundary property.

The main goal of this section is to prove that free actions on finite-

dimensional spaces have this property. The case G = Z and X compact has
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been done by Lindenstrauss in [66, 3.3]. It follows from his result that, if

ϕ : X → X is an aperiodic homeomorphism, then (X,ϕ) has the bounded

topological small boundary property with respect to dim(X). We will carry

out his approach in a more general context, with a few modifications of

rather combinatorial nature.

An important point is to observe that for a topological dynamical system,

verifying the topological small boundary property with respect to d reduces

to the (F, d)-small boundary property for arbitrarily large finite sets F inside

the group G.

Lemma 3.1.4. Let G be a countable group, X a locally compact metric

space and α : Gy X an action. Let d ∈ N be a natural number. Let

F1 ⊂ F2 ⊂ F3 ⊂ . . .⊂⊂G

be an increasing sequence of finite subsets such that G =
⋃∞
k=1 Fk. If

(X,α,G) has the (Fk, d)-small boundary property for every k ∈ N, then

it has the topological small boundary property with respect to d.

Proof. Let K ⊂ X be a compact subset and V ⊂ X an open neighbourhood

ofK. We will show that there exists U as required by 3.1.3. For this, assume

without loss of generality that V is relatively compact.

We will construct sequences of relatively compact, open sets {Uk}k∈N
and {Vk}k∈N with the following properties for all k:

(1) K ⊂ Uk ⊂ Uk ⊂ Uk+1 ⊂ V .

(2) V k+1 ⊂ Vk.

(3) Uk+1 ⊂ Uk ∪ Vk.

(4) V k is (Fk, d)-disjoint.

(5) ∂Uk ⊂ Vk.

First, apply the (F1, d)-small boundary property to find U1 such that K ⊂
U1 ⊂ U1 ⊂ V and ∂U1 is (F1, d)-disjoint. Apply 3.1.2 to find an open

neighbourhood V1 of ∂U1 such that V 1 ⊂ V and V 1 is (F1, d)-disjoint.

Clearly these sets satisfy (1)-(5) thus far. Suppose that the sets Uk, Vk have

been defined for some k. Apply the (Fk+1, d)-small boundary property to

74



find an open set Uk+1 such that Uk ⊂ Uk+1 ⊂ Uk+1 ⊂ Uk ∪ Vk and ∂Uk+1

is (Fk+1, d)-disjoint. Since Vk is an open neighbourhood of ∂Uk+1, we can

find another open neighbourhood Vk+1 of ∂Uk+1 such that V k+1 ⊂ Vk is

(Fk+1, d)-disjoint, by virtue of 3.1.2. Clearly these new sets satisfy properties

(1)-(5) again.

Now set U =
⋃∞
k=0 Uk. It follows immediately from (1) that K ⊂ U ⊂ V .

From condition (1), (2) and (3) it follows that Uk+r ∪ Vk = Uk ∪ Vk for all k

and r > 0, so in particular Uk ⊂ U ⊂ Uk ∪ Vk for all k. It follows that

∂U ⊂ Uk ∪ Vk \ Uk ⊂ V k.

Since for each k ∈ N, the set Vk is (Fk, d)-disjoint, we have that ∂U is

(Fk, d)-disjoint for all k. In particular, it is (G, d)-disjoint.

In this way, we have localized our problem by only having to consider

how a group action behaves at given finite sets. In order to make general

statements for actions on finite-dimensional spaces, we naturally need to

apply dimension theory for topological spaces. More specifically, we shall

now record some well-known facts about properties of covering dimension,

which we will refer to throughout this section. These statements come up

in [66, Section 3], but a detailed treatment can be found in [27], see in

particular [27, 4.1.5, 4.1.7, 4.1.9, 4.1.14, 4.1.16]. All spaces in question are

assumed to be separable metric spaces.

D1 A ⊂ B implies dim(A) ≤ dim(B).

D2 If {Bi}i∈N is a countable family of closed sets in A with dim(Bi) ≤ k,

then dim(
⋃
Bi) ≤ k.

D3 Let E ⊂ A be a zero dimensional subset and x ∈ U ⊂ A a point with

an open neighbourhood. Then there exists some open set U ′ ⊂ A with

x ∈ U ′ ⊂ U such that ∂U ′ ∩ E = ∅.

D4 If A 6= ∅, there exists a zero dimensional Fσ-set E ⊂ A such that

dim(A \ E) = dim(A)− 1.

D5 Any countable union of k-dimensional Fσ-sets is a k-dimensional Fσ-

set.
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Lemma 3.1.5. Let X be a locally compact metric space. Let K ⊂ X be

compact and V ⊂ X an open neighbourhood of K. Let E ⊂ X be a zero

dimensional subset. Then there exists a relatively compact, open set U with

K ⊂ U ⊂ U ⊂ V such that ∂U ∩ E = ∅.

Proof. Clearly ∂K is compact. For x ∈ ∂K, apply D3 and find relatively

compact, open neighbourhoods x ∈ Bx ⊂ Bx ⊂ V such that ∂Bx ∩ E = ∅.
Choose a finite cover ∂K ⊂ ⋃M

i=1Bi of such neighbourhoods and set U =

K ∪⋃M
i=1Bi. It is now immediate that U is relatively compact with U ⊂ V

and that ∂U ⊂ ⋃M
i=1 ∂Bi, so we have indeed ∂U ∩ E = ∅.

Definition 3.1.6. Let X be a locally compact metric space, G a group and

α : Gy X an action. Let M⊂⊂G be a finite subset. We define

X(M) = {x ∈ X | the map [M ∋ g 7→ αg(x)] is injective} .

By continuity, X(M) is an open subset of X. The action α is then free if

and only if one has X(M) = X for every M⊂⊂G.

Definition 3.1.7 (following [57, Section 3] and [66, 3.4]). Let X be a metric

space of finite covering dimension n. A family B of subsets in X is in general

position, if for all finite subsets S⊂⊂B we have

dim(
⋂
S) ≤ max(−1, n− |S|).

Lemma 3.1.8. Let X be a locally compact metric space, G a group and

α : G y X an action. Let M⊂⊂G be finite subset. Let K ⊂ X(M) be

compact and let V ⊂ X(M) be an open neighbourhood of K. Then there

exists a relatively compact, open set U with K ⊂ U ⊂ U ⊂ V such that the

family {αγ(∂U)}γ∈M is in general position in X.

Proof. Let n be the covering dimension of X. We prove this by induction in

the variable k = |M |. The assertion trivially holds for k = 1. Now assume

that the assertion holds for some natural number k. We show that it also

holds for k + 1.

Let M = {γ(0), . . . , γ(k)} be a set of cardinality k + 1 in G. Then

obviously X(M) ⊂ X(M ′) for every subset M ′ ⊂ M . Using the induc-

tion hypothesis, there exists a relatively compact, open set A0 with K ⊂
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A0 ⊂ A0 ⊂ V , such that the collection
{
αγ(0)(∂A0), . . . , αγ(k−1)(∂A0)

}
is in

general position in X.

Since A0 ⊂ V ⊂ X(M), we can find for every point x ∈ ∂A0 a number

η(x) > 0 such that Bη(x)(x) ⊂ V and such that the sets αγ(j)(Bη(x)(x))

are pairwise disjoint for j = 0, . . . , k. Denote B̂x = Bη(x)(x) and Bx =

Bη(x)/2(x). Note that since A0 was relatively compact, its boundary ∂A0

is compact. So find some finite subcover ∂A0 ⊂
⋃N
i=1Bi. We will now

construct relatively compact, open sets Ai for i = 0, . . . , N (A0 is already

defined) with the following properties:

(1) Ai ⊂ A0 ∪
⋃N
j=1Bj .

(2) Ai ⊂ Ai+1 ⊂ Ai ∪ B̂i+1.

(3) The collection

Ai =
{
αγ(j)(∂Ai)

}
j<k

∪
{
αγ(k)(∂Ai ∩

i⋃

j=1

Bj)
}

is in general position.

Once we have done this construction, combining (1) with (3) implies that the

set U = AN has the desired property. It remains to show how to construct

the sets Ai.

So suppose that the set Ai has already been defined for i < N . According

to D4, for all nonempty subsets S ⊂ Ai, there exists a zero dimensional Fσ-

set

ES ⊂
⋂
S with dim(

⋂
S \ ES) = dim(

⋂
S)− 1.

Define

E :=
⋃

∅6=S⊂Ai
0≤j≤k

αγ(j)−1(ES). (e1)

By D5, E is a zero dimensional Fσ-set. Use 3.1.5 to find a relatively compact,

open set W such that

Ai ∩Bi+1 ⊂W ⊂W ⊂ B̂i+1 ∩ (A0 ∪
N⋃

j=1

Bj) (e2)

and

∂W ∩ E = ∅. (e3)

77



Now set Ai+1 := Ai ∪W . This clearly satisfies the properties (1) and (2).

To show (3), let ∅ 6= S = {S1, . . . , Sm} ⊂ Ai+1 correspond to some subset

{j1, j2, . . . , jm} ⊂ {0, . . . , k}. Note that since ∂Ai+1 ⊂ ∂Ai ∪ ∂W , we have

either

Sl = αγ(jl)(∂Ai+1) ⊂ αγ(jl)(∂Ai) ∪ αγ(jl)(∂W ) =: S0
l ∪ S1

l (if jl 6= k)

or

Sl = αγ(jl)(∂Ai+1 ∩
i+1⋃

j=1

Bi)

⊂ αγ(jl)((∂Ai \W ) ∩
i+1⋃

j=1

Bi) ∪ αγ(jl)(∂W )

e2⊂ αγ(jl)(∂Ai ∩
i⋃

j=1

Bj) ∪ αγ(jl)(∂W )

=: S0
l ∪ S1

l (if jl = k).

It follows that
⋂
S ⊂

⋃

a∈{0,1}m

(
m⋂

l=1

Sall

)
.

Since W ⊂ B̂i+1, our choice of B̂i+1 implies that the sets S1
l are pairwise

disjoint. So it suffices to consider the case a = (0, . . . , 0) and, since we can

change the order without loss of generality, the case a = (1, 0, . . . , 0). For

a = (0, . . . , 0), note that
{
S0
1 , . . . , S

0
m

}
is a subset of Ai, so we already have

dim
( m⋂

l=1

S0
l

)
≤ max(−1, n−m).

For a = (1, 0, . . . , 0), define Ŝ =
{
S0
2 , . . . , S

0
m

}
. This is a subset of Ai, hence

we know that it is in general position. Moreover, considering our choice of

the set EŜ , recall that

dim(
⋂
Ŝ\EŜ) ≤ dim(

⋂
Ŝ)−1 ≤ max(−1, n−(m−1))−1 ≤ max(−1, n−m).

By the choice ofW we know that ∂W∩E = ∅, see e3. Since αγ(j1)−1(EŜ) ⊂ E
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(see e1), this implies EŜ ∩ αγ(j1)(∂W ) = ∅. In particular, it follows that

S1
1 ∩

m⋂

l=2

S0
l = αγ(j1)(∂W ) ∩

⋂
Ŝ ⊂

⋂
Ŝ \ EŜ .

Therefore we have established

dim(S1
1 ∩

m⋂

l=2

S0
l ) ≤ max(−1, n−m).

If we combine these inequalities with D2, it follows that we have dim(
⋂
S) ≤

max(−1, n−m) as well. So Ai+1 is in general position and we are done.

Corollary 3.1.9. Let X be a locally compact metric space with finite cov-

ering dimension d ∈ N, G a group and α : G y X an action. Let M⊂⊂G
be finite subset. Let K ⊂ X(M) be compact and let V ⊂ X(M) be an open

neighbourhood of K. Then there exists a relatively compact, open set U with

K ⊂ U ⊂ U ⊂ V such that ∂U is (M,d)-disjoint.

Proof. By 3.1.8, we can find a relatively compact, open set U with K ⊂
U ⊂ U ⊂ V such that the family {αg(∂U)}g∈M is in general position. But

this implies that the intersection of d+1 distinct members of this family has

dimension at most −1, and hence is empty. So we see that ∂U is (M,d)-

disjoint.

Theorem 3.1.10. Let X be a locally compact metric space with finite cov-

ering dimension d. Let G be a countable group, and α : G y X a free

action. Then (X,α,G) has the bounded topological small boundary property

with respect to d.

Proof. Since α is free, we have X(M) = X for everyM⊂⊂G. So 3.1.9 implies

that (X,α,G) has the (M,d)-small boundary property for everyM⊂⊂G. The
claim now follows from 3.1.4.

3.2 A generalization of Gutman’s marker property

The aim of this section is to use the technical results about dynamically

small boundaries from the previous section to obtain a generalization of

Gutman’s marker property (see 2.2.1) for free countable group actions and
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free Zm-actions in particular. Very similarly to 2.2.2, it will follow that free

Zm-actions have finite Rokhlin dimension. First we have to introduce the

notion of markers and the marker property.

Definition 3.2.1. Let X be a locally compact metric space, G a group and

α : G y X an action. Let F⊂⊂G be a finite subset and K ⊂ X a compact

subset. We call a relatively compact set Z ⊂ X an (F,K)-marker, if

• The family of sets
{
αg(Z) | g ∈ F

}
is pairwise disjoint.

• K ⊂
⋃

g∈M

αg(Z) for some M⊂⊂G.

We say that α has the marker property if there exist open (F,K)-markers

for all F⊂⊂G and compact K ⊂ X.

Remark 3.2.2. If X is compact, one can mostly neglect the parameter

K ⊂ X in the above definition. In that case, one can speak of F -markers,

which are by definition (F,X)-markers. This terminology was used in my

paper [94], where the focus was mainly on the case that X is assumed to be

compact.

It is important to note that although the marker property is trivial if

the action is assumed to be minimal, Gutman’s result 2.2.1 gives a uniform

bound (in relation to F ) of how many copies one needs to cover the space

with an F -marker, which is something new even in the minimal case. We

would like to build on his ideas in the case G = Z to generalize his method

of proof for the general case of countable group actions on locally compact

metric spaces.

Lemma 3.2.3. Let G be a group and d ∈ N a natural number. Let F⊂⊂G
be a finite subset and let g1, . . . , gd ∈ G be group elements with the property

that the sets

F−1F , g1F
−1F , . . . , gdF

−1F

are pairwise disjoint. Using the notation g0 = 1G, set M =
⋃d
l=0 glF

−1F .

Let X be a locally compact metric space and α : G y X be an action.

Then the following holds:

Let U, V ⊂ X be relatively compact, open sets such that

• ∂U is (M,d)-disjoint;
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• U is (F, 1)-disjoint;

• V is (M−1, 1)-disjoint.

Then there exists a relatively compact, open set W ⊂ X such that U ⊂
W, V ⊂ ⋃

g∈M αg(W ) and W is (F, 1)-disjoint.

Proof. Set R = V \⋃g∈M αg(U). Observe that R is compact and (M−1, 1)-

disjoint, so apply 3.1.2 and choose ρ > 0 such that Bρ(R) is compact and

(M−1, 1)-disjoint as well. We now claim that there exists a δ > 0 such that

|
{
g ∈M | αg(U) ∩Bδ(x) 6= ∅

}
| ≤ d for all x ∈ R. (e4)

Assume that this is not true. Let xn ∈ R be elements with δn > 0 such that

δn → 0 and

|
{
g ∈M | αg(U) ∩Bδn(xn) 6= ∅

}
| ≥ d+ 1 for all n.

By compactness, we can assume that xn converges to some x ∈ R by passing

to a subsequence. Moreover, sinceM has only finitely many subsets, we can

also assume (again by passing to a subsequence if necessary) that there are

distinct γ(0), . . . , γ(d) ∈ M such that αγ(l)(U) ∩ Bδn(xn) 6= ∅ for all n and

all l = 0, . . . , d. But then δn → 0 implies

x ∈ R ∩
d⋂

l=0

αγ(l)(U) ⊂
d⋂

l=0

αγ(l)(∂U) = ∅.

So this gives a contradiction to ∂U being (M,d)-disjoint. So we may choose

a number δ ≤ ρ satisfying e4. Moreover, choose some finite covering

R ⊂
s⋃

i=1

Bδ(zi) for some z1, . . . , zs ∈ R.

Note that the right-hand side is relatively compact and (M−1, 1)-disjoint by

our choice of ρ. Since the sets
{
glF

−1F | l = 0, . . . , d
}
are pairwise disjoint,

observe that e4 enables us to define a map c : {1, . . . , s} → {0, . . . , d} such

that

αg(U) ∩Bδ(zi) = ∅ for all g ∈ gc(i)F−1F. (e5)
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Finally, set

W = U ∪
s⋃

i=1

αg−1
c(i)

(Bδ(zi)).

Obviously, W is a relatively compact, open set with U ⊂ W . Moreover, we

have
V ⊂

⋃

g∈M

αg(U) ∪R

⊂
⋃

g∈M

αg(U) ∪
s⋃

i=1

Bδ(zi)︸ ︷︷ ︸
=αgc(i)

(α
g
−1
c(i)

(Bδ(zi)))

⊂
⋃

g∈M

αg(U) ∪
s⋃

i=1

αgc(i)(W ) ⊂
⋃

g∈M

αg(W )

At last we have to show that W is (F, 1)-disjoint. Suppose that αa(W ) ∩
αb(W ) 6= ∅ for some a 6= b in F . That is, there exist x, y ∈ W such that

αa(x) = αb(y). Let us go through all the possible cases:

• x, y ∈ U is obviously impossible.

• x ∈ αg−1
c(i1)

(Bδ(zi1)) and y ∈ αg−1
c(i2)

(Bδ(zi2)) for some 1 ≤ i1, i2 ≤ s. It

follows that

αa(x) = αb(y) ∈ αag−1
c(i1)

(Bδ(zi1)) ∩ αbg−1
c(i2)

(Bδ(zi2)),

so
∅ 6= αb−1ag−1

c(i1)
(Bδ(zi1)) ∩ αg−1

c(2)
(Bδ(zi2))

⊂ αb−1ag−1
c(i1)

(Bρ(R))) ∩ αg−1
c(i2)

(Bρ(R)).

Observe that by a 6= b, we have b−1ag−1c(i1) 6= g−1c(i2) in M−1. Since

Bρ(R) is (M−1, 1)-disjoint, the right side of the above is empty. So

this is impossible.

• x ∈ U and y ∈ αg−1
c(i)

(Bδ(zi)) for some 1 ≤ i ≤ s. Then it follows that

αa(x) = αb(y) ∈ αa(U) ∩ αbg−1
c(i)

(Bδ(zi)) 6= ∅.

Or equivalently, αgc(i)b−1a(U) ∩ Bδ(zi) 6= ∅, a contradiction to the

definition of c(i), see e5.

So we see that W is indeed (F, 1)-disjoint.
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The following Lemma constitues the main technical result of this chapter:

Lemma 3.2.4. Let G be a group and d ∈ N a natural number. Let F⊂⊂G
be a finite subset and let g1, . . . , gd ∈ G be group elements with the property

that the sets

F−1F , g1F
−1F , . . . , gdF

−1F

are pairwise disjoint. Using the notation g0 = 1G, set M =
⋃d
l=0 glF

−1F .

Let X be a locally compact metric space with an action α : Gy X such

that (X,α,G) has the (M,d)-small boundary property. Moreover, assume

that X(M−1) = X. Then given any compact subset K ⊂ X, there exists an

open (F,K)-marker Z ⊂ X with K ⊂ ⋃
g∈M αg(Z).

Proof. For all x ∈ K, useX(M−1) = X to choose a relatively compact, open

neighbourhood Ux such that Ux is (M−1, 1)-disjoint. By the (M,d)-small

boundary property, we can also assume that ∂Ux is (M,d)-disjoint. Note

that since 1G ∈ F−1F ⊂ M , it follows that every (M−1, 1)-disjoint set is

also (F, 1)-disjoint.

Choose a finite subcovering K ⊂ ⋃s
i=0 Ui. Apply 3.2.3 (with respect

to U = U0, V = U1) to find a relatively compact, open set W1 such that

U0 ⊂ W1, U1 ⊂
⋃
g∈M αg(W ) and such that W 1 is (F, 1)-disjoint. Clearly

we have U0 ∪ U1 ⊂
⋃
g∈M αg(W1).

Now carry on inductively. If Wk is already defined, apply 3.2.3 (with

respect to U = Wk, V = Uk+1) to find a relatively compact, open set Wk+1

such that Wk ⊂ Wk+1 and Uk+1 ⊂
⋃
g∈M αg(Wk+1) and such that W k+1 is

(F, 1)-disjoint. Note also that if Wk had the property that

U0 ∪ · · · ∪ Uk ⊂
⋃

g∈M

αg(Wk),

then it follows that

U0 ∪ · · · ∪ Uk ∪ Uk+1 ⊂ ⋃
g∈M αg(Wk) ∪ Uk+1

⊂ ⋃
g∈M αg(Wk) ∪

⋃
g∈M αg(Wk+1)

=
⋃
g∈M αg(Wk+1).

So set Z = Ws. The set Z is compact and (F, 1)-disjoint by construction,
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and indeed an (F,K)-marker because

K ⊂ U0 ∪ · · · ∪ Us ⊂
⋃

g∈M

αg(Z).

Let us now list some obvious implications:

Corollary 3.2.5. Let G be a group and d ∈ N a natural number. Let F⊂⊂G
be a finite subset and let g1, . . . , gd ∈ G be group elements with the property

that the sets

F−1F , g1F
−1F , . . . , gdF

−1F

are pairwise disjoint. Using the notation g0 = 1G, set M =
⋃d
l=0 glF

−1F .

Let X be a locally compact metric space with covering dimension at most

d. Let α : Gy X be an action. Assume that X(M) = X(M−1) = X. Then

given any compact subset K ⊂ X, there exists an open (F,K)-marker Z ⊂ X

with K ⊂ ⋃
g∈M αg(Z).

Proof. Combine 3.1.9 and 3.2.4.

Remark 3.2.6. It should be pointed out that ultimately, 3.2.5 is not re-

ally a statement about topological dynamical systems, but rather a state-

ment about a property of all locally compact metric spaces with covering

dimension at most some d ∈ N. Since in the statement, G is allowed to

be any group, we can just choose G = Homeo(X) and let it act on X in

the canonical way. In this way, the statement boils down to a topological

property of certain finite sets of homeomorphisms on X. The condition

X(M) = X(M−1) = X in 3.2.5 translates to the fact that one requires

the finite sets under consideration to move all points around in different

ways. Conversely, if the statement of 3.2.5 holds for the canonical action of

G = Homeo(X) on X, then it is not hard to see that 3.2.5 automatically

holds for any group action on X.

Corollary 3.2.7. Let X be a locally compact metric space of finite covering

dimension d. Let G be a group and α : G y X a free action. Let F⊂⊂G
be a finite subset and let g1, . . . , gd ∈ G be group elements with the property

that the sets

F−1F , g1F
−1F , . . . , gdF

−1F
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are pairwise disjoint. Using the notation g0 = 1G, set M =
⋃d
l=0 glF

−1F .

Then given any compact subset K ⊂ X, there exists an open (F,K)-

marker Z ⊂ X with K ⊂ ⋃
g∈M αg(Z).

Corollary 3.2.8. Let X be a locally compact metric space of finite covering

dimension d. Let G be a countably infinite group. Then any free topological

G-action on X has the marker property.

Proof. If G is countably infinite, then for every finite subset F⊂⊂G, there
exist g1, . . . , gd as required by 3.2.7. This can be seen by fixing a proper

length function on G (recall 1.2.15) and choosing the elements g1, . . . , gd

inductively with very large length compared to F−1F . Hence 3.2.7 implies

our claim.

Lastly, let us prove that we have indeed extended Gutman’s marker

property result 2.2.1:

Corollary 3.2.9. Let X be a compact metric space of finite covering di-

mension d ∈ N, and let α : X → X be an aperiodic homeomorphism. Then

for all n ∈ N, there exists an open set Z ⊂ X such that

Z ∩ αj(Z) = ∅ for all j = 1, . . . , n− 1

and

X =

2(d+1)n−1⋃

j=0

αj(Z).

Proof. Set F = {0, . . . , n− 1} and vl = 2ln for l = 0, . . . , d. Then

F − F = {1− n, . . . , 0, . . . , n− 1} ⊂ 1− n+ {0, . . . , 2n− 1} .

It is clear that the sets v0(F − F ), v1(F − F ), . . . , vd(F − F ) are pairwise

disjoint. Their union is equal to

M =

d⋃

l=0

vl + {1− n, . . . , n− 1}

⊂ 1− n+

d⋃

l=0

2ln+ {0, . . . , 2n− 1}

= 1− n+ {0, . . . , 2(d+ 1)ln− 1} .
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Applying 3.2.7, we can find an open set Z ⊂ X with

αj(Z) ∩ αk(Z) = ∅ for all j 6= k in F

and

X =
⋃

j∈M

αj(Z).

The first condition amounts to

Z ∩ αj(Z) = ∅ for all j = 1, . . . , n− 1,

while the second condition implies

X ⊂
2(d+1)n−1⋃

j=0

α1−n+j(Z) = α1−n




2(d+1)n−1⋃

j=0

αj(Z)


 ,

which in turn yields X =
⋃2(d+1)n−1
j=0 αj(Z).

3.3 Rokhlin dimension of topological Zm-actions

In this section, we focus on free Zm-actions and show that on finite-dimensional

spaces, their Rokhlin dimension is always finite. With the help of the topo-

logical results of the previous section, this will follow with a few technical,

but straightforward calculations.

Notation 3.3.1. Let m ∈ N. For the remainder of this chapter, let us

denote Jn = {1− n, . . . , n}m ⊂ Zm and Bn = {0, . . . , n− 1}. For all n and

a ∈ {0, 1}m, defining

wa =
(
(−1)δ1,aj · n

)
j=1,...,m

∈ Zm

yields 2m distinct elements with the property that J2n =
⋃

a∈{0,1}m

(wa + Jn).

Proposition 3.3.2. Let X be a locally compact metric space with finite

covering dimension d ∈ N and let α : Zm y X be a free action. Then given

any compact set K ⊂ X and n ∈ N, we can find elements vl ∈ Zm for
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1 ≤ l ≤ 2m(d+ 1) and an open (Jn,K)-marker Z ⊂ X such that

K ⊂
2m(d+1)⋃

l=1

⋃

v∈Jn

αvl+v(Z).

Proof. For n ∈ N, choose x1, . . . , xd ∈ Zm such that (with x0 := 0)

J2n , x1 + J2n , . . . , xd + J2n

are pairwise disjoint. Define M =
⋃d
l=0(xl + J2n). Notice that J2n contains

the set Jn − Jn. Apply 3.2.7 to find a (Jn,K)-marker Z such that K ⊂
⋃
v∈M αv(Z). Now use 3.3.1 to choose w1, . . . , w2m ∈ Zm so that J2n =

⋃
j(wj + Jn). It follows that

M =
d⋃

l=0

(xl + J2n) =
d⋃

l=0

2m⋃

j=1

((xl + wj) + Jn),

so

K ⊂
⋃

v∈M

αv(Z) =
d⋃

l=0

2m⋃

j=1

⋃

v∈Jn

α(xl+wj)+v(Z).

Noticing that the family {xl + wj | l = 0, . . . , d, j = 1, . . . , 2m} has cardi-

nality 2m(d+ 1), this finishes the proof.

The following two results constitute the main result of this chapter for

Zm-actions:

Theorem 3.3.3. Let X be a locally compact metric space and let α : Zm y

X be a free action. Then

dim+1
Rok(ᾱ) ≤ 4m dim+1(X).

Proof. We may assume that the covering dimension d of X is finite, as there

is otherwise nothing to show.

Let L ∈ N, ε > 0 and K ⊂ X compact. Choose n large enough such

that 2
n ≤ ε. Apply 3.3.2 and find elements vl ∈ Zm for 1 ≤ l ≤ 2m(d + 1)

and an open (J4Ln,K)-marker Z ⊂ X with K ⊂ ⋃2m(d+1)
l=1

⋃
v∈J4Ln

αvl+v(Z).

By virtue of being a (J4Ln,K)-marker, Z admits a relatively compact open
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neighbourhood Z0 that is still a (J4Ln,K)-marker. Choose some continuous

function g : X → [0, 1] with g|Z = 1 and having support in Z0.

For all l = 1, . . . , 2m(d+ 1), define functions (f
(l)
v )v∈BL

via

f (l)v (x) =





g ◦ α−(vl+w)(x) , if x ∈ αvl+w(Z0) for ‖w‖∞ ≤ 2Ln

and w = v mod LZm

3Ln−‖w‖∞
Ln · g ◦ α−(vl+w)(x) , if x ∈ αvl+w(Z0) for

2Ln < ‖w‖∞ ≤ 3Ln

and w = v mod LZm

0 , elsewhere.

Now the properties of Z,Z0 and g ensure that

• f (l)v · f (l)w = 0 for v 6= w in BL.

• ∑
v∈BL

f
(l)
v is constantly 1 on

⋃
w∈J2Ln

αvl+w(Z).

• For ‖w‖∞ = L, we have ‖f (l)0 − f (l)0 ◦ α−w‖ ≤ 1
n .

• For v ∈ BL, we have ‖f (l)v − f (l)0 ◦ α−v‖ ≤ 1
n .

• Hence ‖f (l)w ◦ α−v − f (l)(v+w) mod LZm‖ ≤ 2
n ≤ ε for all v, w ∈ BL.

Now choose {aj | j = 1, . . . , 2m} ⊂ Zm according to 3.3.1 such that

J4Ln =
2m⋃

j=1

aj + J2Ln.

For l = 1, . . . , 2m(d + 1), j = 1, . . . , 2m and v ∈ BL, we define f
(l,j)
v =

f
(l)
v ◦ α−aj .

Let us identify BL with Zm/LZm in the obvious way. Then we have

established that for all l and j, the functions (f
(l,j)
v )v∈BL

satisfy the rela-

tions (3b), (3c) and (3d) of 1.5.6. Furthermore,
∑

v∈BL
f
(l,j)
v is constantly

1 on
⋃
w∈J2Ln

αvl+aj+w(Z), so the choice of the aj ensures that we have
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∑2m

j=1

∑
v∈BL

f
(l,j)
v ≥ 1 on

⋃
w∈J4Ln

αvl+w(Z), and hence

2m(d+1)∑

l=1

2m∑

j=1

∑

v∈BL

f (l,j)v ≥ 1 on

2m(d+1)⋃

l=1

⋃

w∈J4Ln

αvl+w(Z) ⊃ K.

We see that the family
{
f
(l,j)
v | l, j, v

}
has 4m · (d+ 1) upper indices. Note

that since the elements
{
f
(l,j)
v

}
v∈V

are pairwise orthogonal for fixed (l, j),

the sum
∑2m(d+1)

l=1

∑2m

j=1

∑
v∈BL

f
(l,j)
v is bounded by 4m(d+ 1).

Now ε and K ⊂ X were arbitrary and did not depend on L, so we

can let ε go to zero and let the compact set K get larger and larger. This

construction allows us to repeat the same argument as in the proof of ”(3)⇒
(2)⇒ (1)” from 1.5.6 and find equivariant c.p.c. order zero maps

ϕl :
(
C(Zm/LZm),Zm-shift

)
→

(
F∞(C0(X)), ᾱ∞

)
(l = 0, . . . , 4m(d+1)−1)

such that the element S :=

4m(d+1)−1∑

l=0

ϕl(1) satisfies 1 ≤ S ≤ 4m(d + 1)1.

Since S is fixed under ᾱ∞ and the target algebra of these maps is com-

mutative, we may replace each ϕl by S−1 · ϕl and still have equivariant

c.p.c. order zero maps. Hence we may assume without loss of generality

that

4m(d+1)−1∑

l=0

ϕl(1) = 1. But this verifies dim+1
Rok(ᾱ, LZ

m) ≤ 4m(d+ 1), for

arbitrary L ∈ N. Since (LZm)L∈N contains a dominating residually finite

approximation of Zm by 1.3.13, we obtain by 1.5.10 that

dim+1
Rok(ᾱ) = sup

L∈N
dim+1

Rok(ᾱ, LZ
m) ≤ 4m(d+ 1),

as desired.

Combining everything, we obtain our main result:

Corollary 3.3.4. Let X be a locally compact metric space and let α : Zm y

X be a free action. Then

dim+1
nuc(C0(X)⋊ᾱ Zm) ≤ 4m(m+ 1) dim+1(X)2.

Proof. This follows directly from 1.1.3, 3.3.3 and 1.5.15.
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Corollary 3.3.5 (cf. [94, 5.3]). Let X be a compact metric space and let

α : Zm y X be a free action. Then

dim+1
nuc(C(X)⋊ᾱ Zm) ≤ 4m(m+ 1) dim+1(X)2.

3.4 Finite Rokhlin dimension beyond Zm

As the title of this section suggests, we consider free actions of higher-rank,

non-abelian groups, and study to what extent one can carry over a result

like 3.3.4. We could already witness during the proof of 3.3.3 that even

in the case of abelian groups, obtaining finite Rokhlin dimension from a

marker-type property is a fairly technical endeavour. In the non-abelian

case, this becomes more complicated. First of all, one still has to make

restrictions on the group in question, because a result like 3.3.3 cannot be

expected to hold for every residually finite group. In our case, we will restrict

to finitely generated and nilpotent groups. Second, one has to turn these

restrictions into a geometric statement that one can work with. In order

to obtain finite Rokhlin dimension from these geometric and topological

dynamical statements, it becomes useful to carry out certain calculations in

a naturally induced product system.

Before we begin, let us mention that the results of this section essentially

come from a collaboration with Wu and Zacharias 1, see [96]. However, the

line of argument towards the main result is a bit different and more direct

than in [96], because we forego the parallel study of amenability dimension

in the sense of Guentner, Willett and Yu [37, 38]. However, the approach

is still very much inspired by some techniques of [37, 38]. Moreover, the

results presented here are more general than in [96] because we treat the

case of actions on locally compact metric spaces, instead of only considering

compact metric spaces.

Before we can study the actions themselves, we have to establish an

important technical property of nilpotent groups, which basically amounts

to their special geometry that comes from polynomial growth. Recall that

by 1.4.8, every finitely generated and nilpotent group is poly-cyclic and thus

has a Hirsch-length.

1Each author has contributed an approximately equal amount to this collaboration.
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Lemma 3.4.1 (cf. [96, 5.1]). Let G be a finitely generated, nilpotent group.

Let ℓ be the Hirsch-length of G and set m = 3ℓ. Then for any finite subset

M⊂⊂G, there is a finite subset F⊂⊂G containing the identity and g1, . . . , gm ∈
G, such that for any g ∈ F−1F , we haveMg ⊂ gjF for some j ∈ {1, . . . ,m}.

Proof. We apply induction by ℓ. If ℓ = 0, then G is finite, and we may

simply take F = G and m = 1.

Now suppose G has Hirsch-length ℓ+1 for some ℓ ≥ 0, and the statement

has been proved for all nilpotent groups with Hirsch length at most ℓ. By

1.4.8, G has a central element t ∈ G of infinite order. Set H = G/〈t〉. This
yields another finitely generated, nilpotent group of Hirsch-length ℓ. Denote

by π : G→ H the quotient map and set m = 3ℓ.

Now letM⊂⊂G be a finite subset. We apply our induction hypothesis on

H to get a finite set F0⊂⊂H containing the identity and h1, . . . , hm ∈ H such

that for each h ∈ F−10 F0, we have π(M)h ⊂ hjF0 for some j ∈ {1, . . . ,m}.
Pick some cross section σ : H → G such that σ(1H) = 1G. Decompose

M into

M =
⊔

k∈π(M)

Mk · σ(k) (e6)

for some finite subsets Mk⊂⊂〈t〉. Define the finite sets

T =
⋃

k∈π(M)

⋃

k1,k2∈F0

σ(kk−11 k2)
−1σ(k)σ(k1)

−1σ(k2)Mk (e7)

and

S =

m⋃

j=1

⋃

k∈π(M)

⋃

k1,k2∈F0

σ(h−1j kk−11 k2)
−1σ(hj)

−1σ(kk−11 k2). (e8)

Since σ is a cross section, it follows that we have S, T ⊂ 〈t〉. Moreover, ST

is finite, so there exists n ∈ N such that that

ST ⊂
{
ti | − n ≤ i ≤ n

}
. (e9)

We set

F1 =
{
ti | − 3n ≤ i ≤ 3n

}
, F = σ(F0) · F1 (e10)

and

gi,j = t4niσ(hj) (e11)

for i = −1, 0, 1 and j = 1, . . . ,m. Let us show that these satisfy the desired
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property of the assertion.

Let us choose an element x ∈ F−1F . By e10, this element has the form

x = tl1−l2σ(k1)
−1σ(k2) (e12)

for certain k1, k2 ∈ F0 and −3n ≤ l1, l2 ≤ 3n. By assumption, we have

π(M)k−11 k2 ⊂ hj0F0 (e13)

for some j0 ∈ {1, . . . ,m}. For the number

i0 =





−1 , if − 6n ≤ l2 − l1 < −2n
0 , if − 2n ≤ l2 − l1 ≤ 2n

1 , if 2n < l2 − l1 ≤ 6n

we have

l2 − l1 + {−n, . . . , n} ⊂ 4ni0 + {−3n, . . . , 3n} . (e14)

Combining all this, observe that

Mx

e6,e12
=

⊔

k∈π(M)

Mk · σ(k)tl1−l2σ(k1)−1σ(k2)

=
⊔

k∈π(M)

σ(k)σ(k1)
−1σ(k2)Mkt

l1−l2

=
⊔

k∈π(M)

σ(kk−11 k2)σ(kk
−1
1 k2)

−1σ(k)σ(k1)
−1σ(k2)Mkt

l1−l2

e7⊂
⊔

k∈π(M)

σ(kk−11 k2)Tt
l1−l2

=
⊔

k∈π(M)

σ(hj0)σ(h
−1
j0
kk−11 k2)σ(h

−1
j0
kk−11 k2)

−1σ(hj0)
−1σ(kk−11 k2)Tt

l1−l2

e8⊂
⊔

k∈π(M)

σ(hj0)σ(h
−1
j0
kk−11 k2)STt

l1−l2
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e13⊂ σ(hj0)σ(F0)STt
l1−l2

e9,e14,e10
⊂ σ(hj0)σ(F0)F1t

4ni0

e10,e11
= gi0,j0 · F .

By the definition of the elements gi,j in e11, we see that there are 3m = 3ℓ+1

lower indices. This finishes the induction step and the proof.

Lemma 3.4.2. Let X be a locally compact metric space with finite covering

dimension d. Let G be an infinite, finitely generated, nilpotent group and

α : Gy X a free action.

For any compact subset K ⊂ X, finite subset M⊂⊂G and ε > 0, there

exist finitely-supported maps µ(l,j) : G → Cc(X)+,1 for l = 0, . . . , d and

j = 1, . . . ,m := 3ℓHir(G) satisfying:

(a)

d∑

l=0

m∑

j=1

∑

g∈G

µ(l,j)g ≤ 1 and

d∑

l=0

m∑

j=1

∑

g∈G

µ(l,j)g |K = 1.

(b) µ
(l,j)
g µ

(l,j)
h = 0 for all l = 0, · · · , d, j = 1, . . . ,m and g 6= h in G.

(c) µ
(l,j)
h ◦ αg−1 =ε µ

(l,j)
gh for all l = 0, · · · , d, j = 1, . . . ,m, g ∈ M and

h ∈ G.

Proof. Let ℓ be the Hirsch-length of G and denote m = 3ℓ. Let K ⊂ X be

compact and M⊂⊂G finite. Since G is amenable, we can choose a Følner set

J⊂⊂G with |J∆gJ | ≤ ε|J | for all g ∈M. (e15)

By 3.4.1, we can find a finite subset F⊂⊂G containing the identity and

h1, . . . , hm ∈ G such that for every x ∈ F−1F , we have Jx ⊂ hjF for some

j ∈ {1, . . . ,m}. Since G is infinite and nilpotent, so is its center by 1.4.8.

Thus we can find g1, . . . , gd in the center of G such that the sets

F−1F , g1F
−1F , . . . , gdF

−1F
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are pairwise disjoint. Define the compact set

KJ =
⋃

g∈J

αg−1(K) ⊂ X. (e16)

By 3.2.7, there exists an (F,KJ)-marker Z ⊂ X such that

KJ ⊂
d⋃

l=0

⋃

g∈F−1F

αglg(Z). (e17)

For l = 0, . . . , d and j = 1, . . . ,m, define the finite sets

N (l,j) = {g ∈ G | Jg ⊂ glhjF}⊂⊂G.

For each g ∈ N (l,j), define the relatively compact, open set

Z(i,j,g) = αg(Z) ⊂ X.

We now claim that

KJ ⊂
d⋃

i=0

m⋃

i=1

⋃

g∈N(i,j)

Z(i,j,g).

For any x ∈ KJ , we can apply e17 and find some l ∈ {0, . . . , d} and g ∈ F−1F
with x ∈ αglg(Z). By our choice of F and the elements h1, . . . , hm, we can

find j ∈ {1, . . . ,m} with Jg ⊂ hjF . But then Jglg ⊂ glhjF , so we see that

glg ∈ N (l,j) and x ∈ Z(l,j,glg).

Having this cover of KJ , we may find a partition of unity

{
ν(l,j,g) | g ∈ N (i,j), l = 0, . . . , d, j = 1, 2, . . . ,m

}

of KJ subordinate to the open cover

{
Z(l,j,g) ∩KJ | g ∈ N (l,j), l = 0, . . . , d, j = 1, 2, . . . ,m

}
.2

By the Urysohn-Tietze extension theorem, we can extend each function

ν(l,j,g) to a continuous function on X with values in [0, 1] and with support

inside Z(l,j,g), which we will (with slight abuse of notation) also denote by

ν(l,j,g). For the sake of convenience, let us set ν(l,j,g) = 0 for all l = 0, . . . , d

2Note that we allow repetions with this notation.
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and j = 1, . . . ,m, whenever g /∈ N (l,j).

For every l = 0, . . . , d and j = 1, . . . ,m, we now define the finitely

supported maps µ(l,j) : G→ Cc(X)+,1 via

µ(l,j)g =
1

|J |
∑

h∈J

ν(l,j,h
−1g) ◦ αh−1

We claim that these satisfy the desired properties. Firstly, the support of

each map µ(l,j) is contained in J ·N (l,j), and is hence finite. Secondly, since

each ν(l,j,g) has values in [0, 1], so does each µ
(l,j)
g by triangle inequality. We

have

d∑

i=0

m∑

j=1

∑

g∈G

µ(i,j)g =

d∑

l=0

m∑

j=1

∑

g∈G

1

|J |
∑

h∈J

ν(l,j,h
−1g) ◦ αh−1

=
1

|J |
∑

h∈J

( d∑

l=0

m∑

j=1

∑

g∈G

ν(l,j,h
−1g)

︸ ︷︷ ︸
=:Sh

)
◦αh−1 .

Now by construction of the maps ν(l,j,g), we know that Sh is a compactly

supported, continuous function on X with values in [0, 1], and which is

constantly 1 onKJ . By the definition e16 of the setKJ , we see that Sh◦αh−1

is constantly 1 on K for each h ∈ J . So if we average these expressions via

J , it follows that condition (a) holds.

Next we observe that for all l = 0, . . . , d, j = 1, . . . ,m and g ∈ G, the

open support of µ
(l,j)
g satisfies

supp(µ(l,j)g ) ⊂
⋃

h∈J

αh
(
supp(ν(i,j,h

−1g))
)

⊂





⋃
h∈J αh(αh−1g(Z)) = αg(Z) , if g ∈ J ·N (l,j)

∅ , if g /∈ J ·N (l,j).

By definition of the set N (l,j), we have J · N (l,j) ⊂ glhjF . So let g′ ∈ G

be an element different from g. If g /∈ J · N (l,j) or g′ /∈ J · N (l,j), then we

trivially have µ
(i,j)
g µ

(i,j)
g′ = 0 because one of the functions is zero already. If

g, g′ ∈ J ·N (l,j) ⊂ glhjF , then we can write g = glhjf1 and g′ = glhjf2 for

some f1 6= f2 in F . Since Z is an (F,KJ)-marker, it follows that αf1(Z) ∩
αf2(Z) = ∅, and thus αg(Z) ∩ αg′(Z) = ∅. In particular, the two functions
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µ
(l,j)
g and µ

(l,j)
g′ have disjoint open supports and are therefore orthogonal.

This verifies condition (b).

Lastly, for all l = 0, . . . , d, j = 1, 2, . . . ,m, g ∈ M and g′ ∈ G, we

calculate

‖µ(l,j)g′ ◦ αg−1 − µ(l,j)gg′ ‖

=
1

|J |
∥∥∥
∑

h∈J

ν(l,j,h
−1g′) ◦ αh−1 ◦ αg−1 −

∑

h∈J

ν(l,j,h
−1gg′) ◦ αh−1

∥∥∥

=
1

|J |
∥∥∥
∑

h∈J

ν(l,j,(gh)
−1gg′) ◦ α(gh)−1 −

∑

h∈J

ν(l,j,h
−1gg′) ◦ αh−1

∥∥∥

=
1

|J |
∥∥∥
∑

h∈gJ

ν(l,j,h
−1gg′) ◦ αh−1 −

∑

h∈J

ν(l,j,h
−1gg′) ◦ αh−1

∥∥∥

=
1

|J |
∥∥∥

∑

h∈gJ\J

ν(l,j,h
−1gg′) ◦ αh−1 −

∑

h∈J\gJ

ν(l,j,h
−1gg′) ◦ αh−1

∥∥∥

≤ 1

|J |
( ∑

h∈gJ\J

‖ν(l,j,h−1gg′) ◦ αh−1‖+
∑

h∈J\gJ

‖ν(l,j,h−1gg′) ◦ αh−1‖
)

≤ |J∆gJ |
|J |

e15
≤ ε.

This verifies condition (c) and finishes the proof.

This technical Lemma leads us to the main result of this section:

Theorem 3.4.3 (cf. [96, 5.4]). Let G be an infinite, finitely generated, nilpo-

tent group. Let X be a locally compact metric space and α : G y X a free

action. Then for the induced C∗-algebraic action ᾱ : Gy C0(X), we have

dimRok(α) ≤ 3ℓHir(G) · dim+1(X).

Proof. Denote m = 3ℓHir(G) and d = dim(X). Without loss of generality, we

may assume that d is finite, as there is otherwise nothing to show.

LetH ⊂ G be a subgroup of finite index. In order to show dimRok(ᾱ,H) ≤
m(d + 1), we verify condition 1.5.6(3). Let F⊂⊂C0(X)1, M⊂⊂G and ε > 0

be given. Since F is finite and consists of continuous functions vanishing at

infinity, we can choose a compact set K ⊂ X such that

|a(x)| ≤ ε for all x ∈ X \K and a ∈ F. (e18)
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By 3.4.2, we can find finitely supported maps µ(l,j) : G → Cc(X)+,1 for

l = 0, . . . , d and j = 1, . . . ,m with conditions (a), (b) and (c) from 3.4.2. For

each l = 0, . . . , d, j = 1, . . . ,m and ḡ ∈ G/H, we define f
(l,j)
ḡ =

∑
h∈ḡ µ

(l,j)
h .

We claim that the collection
{
f
(l,j)
ḡ

∣∣ ḡ ∈ G/H, l = 0, . . . , d, j = 1, . . . ,m
}

satisfies conditions (3a), (3b), (3c) and (3d) from 1.5.6(3) for the triple

(F,M, 2ε).

Since C0(X) is commutative, condition 1.5.6(3d) is redundant. For two

elements ḡ 6= h̄ in G/H, viewing them as subsets of G means ḡ ∩ h̄ = ∅.
Observe that thus condition (b) from 3.4.2 implies that for fixed l, j, the

elements
{
f
(l,j)
ḡ

∣∣ ḡ ∈ G/H
}
are pairwise orthogonal, so condition 1.5.6(3b)

follows. Moreover, combining conditions (b) and (c) from 3.4.2 yields

ᾱg(f
(l,j)

h̄
) =2ε f

(l,j)

gh
for all h̄ ∈ G/H and g ∈M.

In particular, this verifies condition 1.5.6(3c).

Lastly, we have

d∑

l=0

m∑

j=1

∑

ḡ∈G/H

f
(l,j)
ḡ =

d∑

l=0

m∑

j=1

∑

ḡ∈G/H

∑

h∈ḡ

µ
(l,j)
h

=

d∑

l=0

m∑

j=1

∑

g∈G

µ(l,j)g

Condition 3.4.2(a) says that this sum is a positive contraction and is con-

stantly 1 on K. Thus, e18 implies that

( d∑

l=0

m∑

j=1

∑

ḡ∈G/H

f
(l,j)
ḡ

)
a =ε a for all a ∈ F.

This shows condition 1.5.6(3a) and finishes the proof.

Combining this with the results of the first chapter, we obtain the most

general result about transformation group C∗-algebras within this disserta-

tion:
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Theorem 3.4.4 (cf. [96, 5.5, 5.6]). Let G be an infinite, finitely generated,

nilpotent group and X a locally compact metric space with finite covering

dimension. Let α : Gy X be a free action. Then the transformation group

C∗-algebra C0(X)⋊ᾱ G has finite nuclear dimension.

Proof. This follows by combining 1.1.3, 3.4.3, 1.4.15 and 1.5.14.
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Actions on noncommutative

C∗-algebras

In this chapter, I will give a brief survey of the contents of the other papers

[2, 3, 95] that I authored or co-authored over the course of my doctoral

studies. These papers go in a somewhat similar direction as this dissertation,

in that one studies certain C∗-dynamical systems or their crossed products

by means of considering certain Rokhlin-type properties. However, they

do not address the interplay between topological dynamics and C∗-algebra

classification theory, which is the overall goal of this dissertation. That

is why I do not discuss them at length. Each of the upcoming sections

will describe one of these papers, outlining the underlying questions and

problems and then presenting the main results.

Before we begin, let us mention what additional knowledge might be

helpful for the reader in order to appreciate the results that are presented

in this chapter. For a proper understanding of some of the results, it can be

crucial to be somewhat familiar with Kasparov’s KK-theory of C∗-algebras,

see the later chapters of [7] as a standard reference. To a more limited

extent, it can be helpful to know basic E-theory and how it connects to

KK-theory, see [14, 36]. Moreover, some results concern Rosenberg’s and

Schochet’s universal coefficient theorem from [83], abbreviated as UCT, for

C∗-algebras.
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4.1 The nuclear dimension of certain O∞-absorbing
C∗-algebras

In [2], I have collaborated with Selçuk Barlak, Dominic Enders, Hiroki Matui

and Wilhelm Winter. The paper is motivated by the regularity conjecture of

Toms and Winter in the case of so-called Kirchberg algebras. A Kirchberg

algebra is a separable, nuclear, simple and purely infinite C∗-algebra. A

simple C∗-algebra is called purely infinite, if every non-trivial hereditary

subalgebra contains an infinite projection, see [16]. For Kirchberg algebras,

the Elliott conjecture has been confirmed with a very satisfying classification

result due to Kirchberg and Phillips, see [50, 73].

Theorem (Kirchberg-Phillips). Let A and B be two unital Kirchberg al-

gebras. Then A and B are isomorphic, if and only if there exists a KK-

equivalence κ ∈ KK(A,B)−1 preserving the K0-class of the unit, i.e. for the

map κ0 ∈ Hom(K0(A),K0(B)) induced by κ, one has κ0([1A]) = [1B].

If both A and B satisfy the UCT, then A and B are isomorphic if and

only if they have the same K-theoretic data, i.e.

(
K0(A), [1A],K1(A)

)∼=
(
K0(B), [1B],K1(B)

)
.

Despite this classification result, it has remained unclear for a long time

whether the Toms-Winter conjecture holds for all Kirchberg algebras. Since

Kirchberg algebras are well-known to be both Z-stable and having strict

comparison of positive elements, the only open problem was if Kirchberg

algebras have also finite nuclear dimension.

In the UCT case, there exist fairly tractable inductive limit model sys-

tems for Kirchberg algebras realizing all possible K-theoretic data. Winter

and Zacharias have used these model systems to show in [111] that Kirchberg

algebras satisfying the UCT do have finite nuclear dimension. In a ground-

breaking paper of Matui and Sato [69], this question has been answered in

the affirmative without the UCT assumption:

Theorem (Matui-Sato). The nuclear dimension of any Kirchberg algebra

is at most three.

In [2], two alternative lines of proof of this fact are presented, leading

also to partial answers to the analogous problem in the non-simple case.
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The first line of proof concerns the Rokhlin dimension of symmetries,

i.e. Z2-actions, on Kirchberg algebras. The so-called Rokhlin property for

finite group actions on unital C∗-algebras, which coincides with Rokhlin

dimension zero in our terminology from the first chapter, has been studied

by Izumi in [43, 44]. From his work, it is well-known that the Rokhlin

property is very restrictive, not least because there exist various K-theoretic

obstructions to its existence. For instance, any two actions of a finite group

with the Rokhlin property on O2 are conjugate, and in particular the crossed

product of O2 by such an action is always isomorphic to O2. As it turns

out, the notion of Rokhlin dimension at most one for symmetries is a much

more flexible concept on Kirchberg algebras, so much so that it is automatic

whenever one has a chance to expect it:

Theorem. Any outer symmetry on a unital Kirchberg algebra has Rokhlin

dimension at most one.

On the other hand, Izumi has shown in [43] that many Kirchberg algebras

can be realized as a crossed product of an outer symmetry on O2.

Theorem (Izumi). Let A be a Kirchberg algebra. Then there exists an outer

symmetry α on O2 such that its crossed product O2⋊αZ2 is stably isomorphic

to A⊗M2∞.

Combing all of this with a further technical dimension reduction step

from [69], one obtains:

Theorem. Let A be a Kirchberg algebra. Then dimnuc(A ⊗M2∞) ≤ 3 and

in fact dimnuc(A) <∞.

The second line of proof towards finite nuclear dimension of Kirchberg

algebras is a more direct one, not making use of any crossed product picture

of the involved C∗-algebras. Namely, for any C∗-algebra A, it is shown in [2]

that the nuclear dimensions of A⊗O∞ and A⊗O2 are related by a formula.

This marks the main result of [2]:

Theorem. For any C∗-algebra A, we have the inequality

dim+1
nuc(A⊗O∞) ≤ 2 dim+1

nuc(A⊗O2).

Combining this general observation with Kirchberg’s absorption theo-

rems [52] and the fact from [111] that dimnuc(O2) = 1, one recovers the
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Matui-Sato result that a Kirchberg algebra has nuclear dimension at most

three. However, the above inequality has the advantage that it holds in a

very general context. Even in the non-simple case, it is known that tensoring

a given C∗-algebra with O2 has a great smoothening effect, leading to an

immense loss of information of the original C∗-algebra, see [53]. In partic-

ular, it is conceivable that any separable, nuclear and O2-stable C∗-algebra

might always have finite nuclear dimension. The above inequality then gives

rise to the following question in the non-simple case:

Question. What is the nuclear dimension of a separable, nuclear and O∞-

absorbing C∗-algebra?

In [2], a partial answer is given for C∗-algebras that can be expressed as

C(X)-algebras with Kirchberg fibres. This follows from the above nuclear

dimension formula and a dimension reduction argument from [53] for C∗-

algebras of the form C(X)⊗O2.

Theorem. Let X be a compact metrizable space. Let A be an O∞-absorbing,

continuous C(X)-algebra whose fibres are Kirchberg algebras. Then A has

finite nuclear dimension.

Concerning the nuclear dimension of Kirchberg algebras, we note that

subsequent work of other authors yield an optimal nuclear dimension esti-

mate. It has been shown in [85], building on a similar result in [26], that

any Kirchberg algebra satisfying the UCT has nuclear dimension one. How-

ever, this approach used the entire power of Kirchberg-Phillips classification

by using certain inductive limit model systems. Using sequence algebra

techniques, a more direct proof was found in [8], not relying on the UCT

assumption:

Theorem (Bosa et. al.). Any Kirchberg algebra has nuclear dimension one.

4.2 The continuous Rokhlin property and the UCT

As mentioned in the previous section, Izumi has introduced the Rokhlin

property of finite group actions in [43] within the general context of sepa-

rable, unital C∗-algebras. He has shown that such actions enjoy a number

of structural well-behavedness properties. It was later also discovered by
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various authors that actions with the Rokhlin property preserve many C∗-

algebraic properties of interest, when passing to the crossed product. See

[86] for a nice overview on these phenomena.

Hirshberg and Winter have then generalized the notion of the Rokhlin

property to actions of compact groups on separable, unital C∗-algebras,

see [41]. Their main result asserts that the property of absorbing a given

strongly self-absorbing C∗-algebra passes from any unital C∗-algebra to its

crossed product by a Rokhlin action. In [28, 29, 30], Gardella has then un-

dergone an investigation of compact group actions with the Rokhlin property

and more specially circle actions with the Rokhlin property.

Despite the fact that many known results from the realm of finite group

actions with the Rokhlin property carry over to the setting of compact

groups, there remain some subtle difficulties concerning certain properties

like the permanence of the UCT. It is known that in many cases, the UCT

passes from a C∗-algebra to its crossed product associated to a Rokhlin

action of a finite group:

Theorem (cf. [86, Theorem 3]). Let G be a finite group, A a separable C∗-

algebra and α : Gy A an action with the Rokhlin property. Assume that A

is nuclear and that every ideal of A satisfies the UCT. Then every ideal of

A⋊α G satisfies the UCT.

At present, it is still unclear if such a permanence property holds for

Rokhlin actions of compact groups as well. For example, when confronted

with the problem of classifying Rokhlin actions of the circle on Kirchberg

algebras by means of K-theory as in [28, 29], this proves to be a rather an-

noying obstacle. To overcome this, Gardella has introduced the continuous

Rokhlin property for compact group actions on unital C∗-algebras in [29].

It turns out that this stronger version is compatible with the UCT for circle

actions on nuclear C∗-algebras.

In the short note [95], the definition of the continuous Rokhlin property is

extended to actions of metrizable compact groups on separable C∗-algebras:

Definition. Let G be a compact group, A a separable C∗-algebra and α :

Gy A a continuous action. Consider the path algebra of A defined by

Ac = Cb
(
[1,∞), A

)
/C0

(
[1,∞), A

)
.
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Similarly as in 1.5.1, one defines the central path algebra of A as

Fc(A) = Ac ∩A′/Ann(A,Ac).

In a completely analogous fashion to the case of sequence algebras treated

in the first chapter, fibrewise application of the action α gives rise to a (not

necessarily continuous) action αc of G on Fc(A). Then α is said to have

the continuous Rokhlin property, if there exists a unital and equivariant

∗-homomorphism from (C(G), G-shift) to (Fc(A), αc).

The main result of [95] is that an E-theoretic version of Gardella’s UCT

preservation theorem holds for actions of all metrizable compact groups on

separable C∗-algebras. This is done by using a somewhat more conceptual

approach, enabling shorter and less technical proofs than in [29]:

Theorem. Let G be a compact, metrizable group, A a separable C∗-algebra

and α : G y A a continuous action with the continuous Rokhlin property.

Assume that A satisfies the UCT in E-theory. Then both the fixed point

algebra Aα and the crossed product A⋊α G satisfy the UCT in E-theory.

4.3 Rokhlin actions of finite groups on UHF-ab-

sorbing C∗-algebras

In [3], I have collaborated with Selçuk Barlak. The paper serves as a

source of examples of Rokhlin actions or locally representable actions of

finite groups on C∗-algebras satisfying a certain UHF-absorption condition.

Over the last few years, Phillips has been steadily paving the way towards a

classification theory of pointwise outer finite group actions on unital Kirch-

berg algebras, building on ideas of ordinary classification theory of Kirchberg

algebras [73, 50] and making use of equivariant absorption theorems in the

spirit of [52]. The key ideas of the latter have already been demonstrated in

[33].

An important question related to such a classification theory is how

large the range of the objects is that one wishes to classify. For example, if

a certain class of C∗-algebras is classified byK-theoretic data and one wishes

to study finite group actions on such, this begs the question of whether every

group action on the K-theory of a C∗-algebra in this class can be realized
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by an honest group action on the C∗-algebra. More generally, one can pose

the following question:

Question. If A belongs to a class of C∗-algebras that is classifiable by a

functor Inv (in a suitable sense) and σ : Gy Inv(A) is an action of a finite

group on the invariant of A, does there exist an action α : G y A with

Inv(α) = σ?

Compared to the recent progress in the Elliott classification program,

satisfactory answers to this question are very scarce. Even within the setting

of G = Zn and A being an AF algebra, this question is still open, see [7,

10.11.3]. Only the case of actions on unital UCT Kirchberg algebras has been

successfully studied in special cases of groups so far, in which the invariant

boils down to K-theory, see [5, 89, 46].

In [3], another viewpoint of this problem is taken that is also suitable for

actions on not necessarily classifiable C∗-algebras. For this, let us fix some

terminology. Write ϕ≈uψ, if two ∗-homomorphisms ϕ, ψ : A → B between

separable C∗-algebras are approximately unitarily equivalent by unitaries in

the multiplier algebra M(B) of B.

Question. For a C∗-algebra A and a finite group G, when can a homomor-

phism G→ Aut(A)/≈u lift to an honest action of G on A?

While we must certainly impose certain restrictions on A, it turns out

that a sufficient criterion is common enough to produce a variety of inter-

esting examples. Incidentally, the actions may all be chosen to have the

Rokhlin property.

Theorem. Let G be a finite group and A a separable C∗-algebra that ab-

sorbs the UHF algebra M|G|∞ tensorially. Then any homomorphism G →
Aut(A)/≈u lifts to a Rokhlin action of G on A.

Looking back to the above question about the range of the invariant of

G-actions on classifiable C∗-algebras, this more general viewpoint is weaker

because the Elliott invariant alone is usually not strong enough to distin-

guish between approximate unitary equivalence classes of ∗-homomorphisms.

However, all of the state-of-the-art classification results, when paired with

the UCT, imply that for a classifiable C∗-algebra A, the canonical map

Aut(A)/≈u → Aut(Inv(A)) is not only surjective, but has a split. For ex-

ample, this works for Kirchberg algebras or simple, nuclear TAF algebras,
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see [50, 73, 59, 60]. This enables one to reduce the above question about the

range of the invariant of actions to the more elementary question of being

able to lift homomorphisms G→ Aut(A)/≈u to honest group actions on A.

In particular, the aforementioned theorem allows one to prove the following

result:

Theorem. Let G be a finite group and A a separable, unital, nuclear and

simple C∗-algebra with A ∼= M|G|∞ ⊗ A. Assume that A satisfies the UCT

and is either purely infinite or TAF. Then Rokhlin actions of G on A exhaust

all G-actions on the (ordered) K-theory of A.

This result then becomes very useful for constructing interesting abelian

group actions on classifiable C∗-algebra by considering the dual actions of

Rokhlin actions. We now present the two most notable examples that are

discussed in [3]:

Firstly, one can recover and extend Blackadar’s famous construction [6]

of certain symmetries on the CAR algebra having fixed point algebras with

non-trivial K1-groups, by combining the above existence result for Rokhlin

actions with Lin’s classification theory of TAF algebras [60]:

Theorem. Let p ≥ 2 be a natural number. Let (G0, G
+
0 , u) be a countable,

uniquely p-divisible ordered abelian group with order unit, which is weakly

unperforated and has the Riesz interpolation property. Let σ0 be an ordered

group automorphism of order p on G0, such that ker(id−σ0) is isomorphic to

(Z[1p ],Z[
1
p ]

+, 1) as an ordered group with order unit. Let G1 be a countable,

uniquely p-divisible abelian group with an order p automorphism σ1 such that

ker(id−σ1) = 0. Then there exists a Zp-action γ on Mp∞ such that Mγ
p∞

is a simple TAF C∗-algebra satisfying the UCT and with K0(M
γ
p∞) ∼= G0 as

ordered groups and K1(M
γ
p∞) ∼= G1.

Secondly, one can reduce the UCT problem for separable, nuclear C∗-

algebras to the question of whether one can leave the UCT class by passing

to crossed product C∗-algebras of O2 by finite group actions. This is essen-

tially done by realizing so many KK-theories of crossed products by finite

group actions on O2 that it is sufficient to test the UCT question on these

crossed products. Moreover, it is even sufficient to consider only locally

representable actions of certain finite cyclic groups. We note that this re-

lies crucially on Kirchberg’s reduction of the UCT problem to Kirchberg

algebras, see [51, 2.17].
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Theorem. Let p, q ≥ 2 be two distinct prime numbers. The following are

equivalent:

(1) Every separable, nuclear C∗-algebra satisfies the UCT.

(2) If β : Zp y O2 and γ : Zq y O2 are pointwise outer, locally repre-

sentable actions, then both O2 ⋊β Zp and O2 ⋊γ Zq satisfy the UCT.

(3) If γ : Zpq y O2 is a pointwise outer, locally representable action, then

O2 ⋊γ Zpq satisfies the UCT.
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[14] A. Connes, N. Higson: Déformations, morphismes asymptotiques et
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