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Abstract. We present a new concept for the generation of optical lattice
waves. For all four families of nondiffracting beams, we are able to
realize corresponding nondiffracting intensity patterns in a single setup. The
potential of our approach is shown by demonstrating the optical induction of
complex photonic discrete, Bessel, Mathieu and Weber lattices in a nonlinear
photorefractive medium. However, our technique itself is very general and can
be transferred to optical lattices in other fields such as atom optics or cold gases
in order to add such complex optical potentials as a new concept to these areas
as well.
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1. Introduction

Due to their technological importance in a multitude of application fields, artificial photonic
materials have become a very active research area in recent years. In this context, photonic
crystal structures with their unique transmission and reflection spectra provide one of the most
influential approaches. In particular, the occurrence of photonic band gaps in these periodically
modulated materials [1, 2] fascinates scientists from all fields and offers novel possibilities to
control and guide the propagation of light [3].

Photonic crystal fibers [4] provide a prominent example to demonstrate the relevance
of structured materials for photonic applications. Their internal microstructure facilitates
tunable zero dispersion wavelengths and very high nonlinearities which make these fibers—for
instance—highly convenient for supercontinuum generation [5].

While this application illustrates the significant influence of structured materials on light
and light propagation, photons in turn can be highly useful to structure material properties as
well. The emerging field of laser-assisted material processing, be it for example holographic
laser lithography [6] or direct femtosecond laser writing [7], accounts for this insight.

Combining both aspects—Ilight-induced material structuring on the one and the influence
of structured media on the propagation characteristics of light on the other hand—Ieads us to
the concept of optically induced photonic structures. Materials that change their properties due
to light whereupon light itself reacts on the changed material environment provide the necessary
link in order to control and guide light by light itself.

However, modulated light fields required for an efficient light induced material structuring
also have important applications in other areas. For example, optical tweezing and micrometer
particle assembly rely on corresponding optical potentials [8, 9], and atom traps for
Bose—Einstein condensates are based on optical lattices as well [10]. In this respect, the new
concepts for complex photonic lattices presented in the following will add significantly to all
these physical fields.

2. Nondiffracting beams for optical induction

Among all the different realizations of optically induced photonic structures, the optical
induction of photonic lattices in photorefractive strontium barium niobate (SBN) crystals
[11, 12] is particularly flexible. This specific approach takes advantage of SBN’s electro-optic
properties and therewith allows to achieve highly reconfigurable refractive index distributions
with various geometries.

Physically, the induced refractive index modulation is caused by the photorefractive
effect [13]. Under illumination with a spatially modulated intensity distribution—the so-called
lattice wave—charge carriers in the medium are excited via photoionization and redistributed in
an externally applied electric field. Inside the photorefractive crystal, this redistribution results
in a reversible macroscopic space-charge field which in turn modulates the refractive index by
means of the electro-optic effect.

This concept of optically induced two-dimensional photonic lattices facilitates new insights
in various fields of physical science and has been utilized to demonstrate for instance discrete
solitons [12], Anderson localization [14] as well as Zener tunneling and Bloch oscillations [15].

While up to now only rather simple lattice geometries have been studied in this field, we
show that the concept of optically structured photonic materials is not limited to such basic
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patterns. In the following, a new induction approach is introduced which enables the fabrication
of photonic structures with various complex geometries.

In order to generate a two-dimensional photonic lattice inside a photosensitive material,
the intensity profile of the inducing lattice beam has to be modulated in the two transverse
dimensions but invariant in the direction of propagation. All beams satisfying this condition
share the property that their transverse spatial frequency components lie on a circle in the
corresponding Fourier plane [16]. Therefore, the general Fourier spectrum of a nondiffracting
beam can conveniently be written in polar coordinates as

F(v, ) = A(g —¢o) (v — ), (D

with a radial spatial frequency v and with § being the Dirac delta function, limiting the spectral
distribution to a circle with radius vy. A(¢) gives the complex Fourier spectrum on this circle
as a function of the azimuthal angle ¢ while ¢, accounts for the possibility to rotate the whole
transverse structure by this angle.

This general spectrum indeed leads to ideal nondiffracting beams whose transverse
intensity profiles remain invariant for arbitrary propagation distances but at the same time carry
infinite energy [16]. Since actual experimental realizations naturally require a finite total energy
of the beam, the nondiffracting character can merely be approximated. Therefore, a rigorous
theoretical description of the beam propagation would have to take finite apertures into account,
and usually this is modelled as Helmholtz—Gauss beams [17, 18]. The resulting spectrum then is
given by a convolution of (1) with the spectrum of the transverse envelope. However, we intend
to use the given equations for the calculation of the input to our experimental setup and thus
refer only to the ideal formulation given above.

Theoretical investigations revealed four different fundamental families of propagation
invariant light fields. Depending on the underlying real space coordinate system, a distinction is
drawn between discrete, Bessel, Mathieu and Weber nondiffracting beams [16, 19].

The family of discrete nondiffracting beams can be considered as a set of plane wave
interference patterns. The classical two beam interference is a well-known member of this
family showing a nondiffracting stripe pattern as its transverse intensity profile. Besides stripes,
all other regular plane tilings—i.e. square, hexagonal and triangular patterns—have been
realized with discrete nondiffracting beams as well [12, 20, 21].

While the experimental implementation of discrete nondiffracting beams is comparatively
simple, the other three beam families require a far more elaborate approach. By means of
computer-controlled light modulators, we are able to spatially modulate both amplitude and
phase of an incident light wave. This novel technique permits us to generate arbitrary lattice
waves out of all families of nondiffracting beams within one single setup.

3. Experimental realization of complex nondiffracting beams

The experimental setup used for the generation of these complex nondiffracting intensity
patterns and their utilization for the optical induction of photonic structures is schematically
shown in figure 1.

A beam from a frequency-doubled Nd : YAG laser at a wavelength of 532 nm illuminates a
first programmable light modulator. This modulator imprints a spatial phase pattern specifically
calculated for the desired nondiffracting wave onto the illuminating beam. Subsequently,
this first modulator is imaged onto a second one which modulates the amplitude of the
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Figure 1. Experimental setup for the optical induction of complex nonlinear
photonic lattice structures. BS: beam splitter, FM: Fourier mask, L: lens, LP:
linear polarizer, M: mirror, MO: microscope objective, PH: pinhole, SLM: spatial
light modulator, TS: translation stage.

beam according to the calculated intensity distribution of the nondiffracting lattice wave. The
modulated beam is finally imaged by a high numerical aperture telescope onto the input face
of an SBN crystal with a length of 5 mm. Since all nondiffracting beams share the discussed
property that their transverse spatial frequency components lie on a circle in the corresponding
Fourier plane [16], spatial filters within the Fourier planes of the two involved telescopes ensure
this constraint.

A camera is used to analyze the intensity distribution at the output face of the crystal. In
addition, this imaging part of the setup is mounted on a translation stage and can be moved to
image different transverse planes of the lattice wave. After removing the crystal, this tool allows
for an analysis of the wave’s nondiffracting intensity profile in air as well.

To illustrate the nondiffracting propagation of a lattice wave in our setup, we generated a
prototypical discrete nondiffracting beam (cf figure 2(a)) and observed its transverse intensity
pattern (cf figure 2(c)) at multiple equidistant longitudinal positions. By stacking all these
two-dimensional images, we get a three-dimensional intensity distribution of the lattice wave
that makes an analysis of the propagation characteristics possible. Figure 2(d) shows a
longitudinal cross-section of the considered beam and compared to the corresponding perfect
discrete nondiffracting wave field with infinite energy (cf figure 2(b)) we see a nondiffracting
propagation range of about seven centimeters realized with our setup. This distance considerably
exceeds the thickness of all appropriate photosensitive materials.

4. Optical induction using discrete nondiffracting beams

For typical discrete nondiffracting beams, the azimuthal contribution in equation (1) is given by
N-1
A(p) = Agexp(imep) Y "8 (¢ — sy )
® 0 Z N
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Figure 2. Discrete nondiffracting beam with eight-fold rotational symmetry
(cf equation (2), N =8, m =0, ¢y = 0). (a) Calculated and (c) experimentally
observed transverse intensity distribution, (b) calculated and (d) experimentally
observed nondiffracting intensity profile in longitudinal direction. The green
lines in (a) and (c) mark the longitudinal planes shown in (b) and (d),
respectively. All figures are normalized.

representing the Fourier transform of N interfering plane waves with amplitude Ay. The
resulting Fourier spectrum consists of discrete intensity spots forming the corners of a regular
N-fold polygon. The phase difference between neighboring spots is determined by the total
topological charge m.

Besides regular plane tilings, discrete nondiffracting beams can also be used to generate
quasicrystallographic patterns [22, 23], i.e. patterns that possess a long-range order but lack the
characteristic translational periodicities of crystals (cf figures 2(a) and (c)).

The optical induction of such a quasicrystallographic structure—exemplarily with
sevenfold rotational symmetry in this case—is demonstrated in figure 3. Based on (1) and (2),
figure 3(a) depicts the Fourier spectrum of the considered nondiffracting beam (N =7, m =1,
@o =0).

For the experimental realization, we firstly calculate the transverse real space intensity and
phase profiles of the desired beam (cf figures 3(b) and (c), respectively). Then, these numerical
cross sections are used as input for our experimental writing setup, and figure 3(e) shows the
impressive agreement between the generated lattice wave and the addressed nondiffracting
beam (figure 3(b)). In addition, figure 3(d) depicts iso-intensity surfaces of the simulated
nondiffracting beam propagating through the photorefractive crystal.

In order to analyze the actually induced structure, the lattice is illuminated with a broad
plane wave, which is then guided by the regions of high refractive index. As a consequence,
the modulated intensity distribution at the output of the crystal qualitatively maps the induced
refractive index change [24]. Figure 3(f) clearly shows the successful induction of the
quasicrystalline photonic lattice.

New Journal of Physics 14 (2012) 033018 (http://www.njp.org/)
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Figure 3. Discrete nondiffracting beam (N =7, m = 1, ¢y = 0). (a) Calculated
transverse intensity distribution in Fourier space and (b) real space,
(c) corresponding real space phase distribution, (d) iso-intensity surfaces of the
nondiffracting light field at 20% of the maximum intensity, (e) experimentally
observed transverse intensity profile and (f) waveguiding in optically induced
discrete photonic lattice. Besides (c) all figures are normalized.

5. Photonic Bessel lattices

Even though these discrete beams seem to be an obvious example for nondiffracting
propagation, this fascinating phenomenon historically was discovered by analytical
considerations leading to a field distribution radially proportional to a zeroth order Bessel
function of the first kind [25]. Up to now, this fundamental Bessel beam is typically generated
with a classical optical approach using an axicon [26].

Besides this basic solution of the nondiffracting propagation problem in cylindrical
coordinates, field distributions according to higher order Bessel functions—described in Fourier
space by

A(p) = Agexp(img), 3)

with m being the order [19]—show nondiffracting propagation as well [16]. Only their
experimental preparation is much more difficult compared to the zeroth order case.

Nevertheless, our setup provides a simple approach to realize Bessel beams with arbitrary
order which in turn are qualified as lattice waves for the generation of photonic structures with
circular geometry. According experiments—exemplarily shown for a first order Bessel beam
(m = 1)—are summarized in figure 4.

Figures 4(a)—(c) depict the numerically calculated Fourier spectrum as well as the intensity
and phase profiles of the desired nondiffracting beam. The transverse intensity profile of the first
order Bessel beam actually generated in our setup and used for the optical induction is shown
in figure 4(e). A subsequent waveguiding experiment (figure 4(f)) proves the induction of a
photorefractive Bessel lattice in a SBN crystal using the nondiffracting light beam (figure 4(d)).
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Figure 4. First order nondiffracting Bessel beam (m =1). (a) Calculated
transverse intensity distribution in Fourier space and (b) real space,
(c) corresponding real space phase distribution, (d) iso-intensity surfaces of the
nondiffracting light field at 20% of the maximum intensity, (e) experimentally
observed transverse intensity profile and (f) waveguiding in optically induced
Bessel photonic lattice. Besides (c) all figures are normalized.

Such an optical potential can for example provide the environment for complex spatial soliton
dynamics [27].

6. Photonic Mathieu lattices

The so-called Mathieu beams constitute the third fundamental family of nondiffracting intensity
distributions [16]. One distinguishes between even and odd Mathieu beams, and their Fourier
spectrum is given by

Ac(p) = Agcen(e, q) “4)

and

Ay(p) = Apsen(p, q), (5

respectively, where ce,, and se,, are the angular Mathieu functions with order m and ¢ is the
ellipticity parameter. One member of this complex beam family (an even Mathieu beam with
m=4,q=6.257%and ¢y = 7/2) is shown as an example in figure 5.

While Bessel beams are described in cylindrical coordinates, Mathieu beams rely on the
elliptic cylindrical coordinate system. This fact becomes manifest in their transverse intensity
and phase patterns. Figures 5(a)—(c) depict these distributions numerically calculated for the
selected example. In particular the phase (figure 5(c)) illustrates the underlying elliptical
character given that the lines separating regions of different phase form ellipses and hyperbolas
with joint foci.

Using the numerically calculated intensity and phase distributions as input for our experi-
mental setup, we generate the complex nondiffracting Mathieu beams. For the discussed
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Figure 5. Nondiffracting even Mathieu beam (m =4, g =6.25 T2, @y =
/2). (a) Calculated transverse intensity distribution in Fourier space and
(b) real space, (c) corresponding real space phase distribution, (d) iso-intensity
surfaces of the nondiffracting light field at 20% of the maximum intensity,
(e) experimentally observed transverse intensity profile and (f) waveguiding
in optically induced Mathieu photonic lattice. Besides (c) all figures are
normalized.

example, figure 5(e) shows the corresponding intensity pattern and figure 5(f) depicts the
experimental waveguiding result after optical induction with the distribution in figure 5(d).

Besides the manufacturing of complex structures in photosensitive materials, the presented
nondiffracting light fields are also outstanding patterning tools. The structured optical potential
provided by a complex nondiffracting beam can be used as versatile light molds for micro
particle assemblies, as recently shown using Mathieu beams as well [28].

7. Photonic Weber lattices

The fourth family of nondiffracting intensity distributions aggregates the so-called Weber
beams. These beams are based on parabolic cylindrical coordinates and their angular Fourier
spectra are given by

Acp) = )

ﬁ exp (ia In ‘tan % D (6)

and

T ()
2

for the even and odd case, respectively [19]. The symmetry of a Weber beam depends on the
continuous parameter a, and figure 6 exemplarily demonstrates a characteristic member of this
nondiffracting beam family.

I [Ae, 0<o@<
Ao(w)z; B

_A67 T<g@
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Figure 6. Nondiffracting Weber beam (a =-2, ¢y=0). (a) Calculated
transverse intensity distribution in Fourier space and (b) real space,
(c) corresponding real space phase distribution, (d) iso-intensity surfaces of the
nondiffracting light field at 20% of the maximum intensity, (e) experimentally
observed transverse intensity profile and (f) waveguiding in optically induced
Weber photonic lattice. Besides (c) all figures are normalized.

For the experimental realization of this nondiffracting beam, we calculated the required
spectrum (figure 6(a)) as well as the intensity (figure 6(b)) and phase (figure 6(c)) profiles and
used them again as an input in our setup (a = —2, ¢y = 0). The actually obtained transverse
intensity modulation of the Weber beam is shown in figure 6(e). Finally, the waveguiding image
in figure 6(f) illustrates that this fourth family of nondiffracting beams is highly applicable
to be used for the optical induction of complex two-dimensional photonic lattices inside a
photorefractive material as well.

Since the underlying coordinate system—ijust like in the case of the Bessel and Mathieu
nondiffracting beams—is curvilinear, the induced nonlinear photonic structures share this
property and therefore might be an excellent platform for future research on nonlinear photonics
in curved systems.

8. Conclusions

In conclusion, we have presented a new concept of optical lattice wave generation. For all four
families of nondiffracting beams, we were able to transfer calculated field distributions into real
nondiffracting lattice waves. Exemplarily, the potential of these complex lattice beams in the
field of artificial materials and structures was shown by demonstrating the optical induction of
complex discrete, Bessel, Mathieu and Weber photonic lattices in a nonlinear photorefractive
medium.

While all presented photonic structures were designed to be invariant in one distinct
direction, our induction concept can easily be modified in order to introduce a modulation in
this direction as well [29, 30]. In addition, techniques known from the field of holographic
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data storage could be used to multiplex lattices with different feature size, thus facilitating
superperiodic structures [31] and—since the four discussed families of nondiffracting
beams each are complete and orthogonal [18]—even optical series expansions of arbitrary
patterns [32].

Furthermore, the choice of the photosensitive medium is not restricted to the demonstrated
photorefractive case. Other materials—for example photoresists [33]—could also serve as an
adequate platform.

At the same time, the presented concept and therewith all the complex nondiffracting beams
can be used for the generation of optical potentials in fields like atom optics or cold gases as
well. With all this flexibility, our approach has the potential to significantly contribute to modern
physics research in multiple fields.
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