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1 Introduction
The rate at which data is generated increases every day [35], and at the same time, the cost

for data storage is continually decreasing [15]. This development allows many organizations

to store vast amounts of data with little regard as to what should be done with it. The raw

data however has no inherent value by itself, but it represents a source of untapped potential.

It has been said that “data is the new oil” [24]. This analogy does not refer to the scarcity

or the non-renewability of the resource, but rather to the fact that it needs to be processed

and refined to gain value from it. In this vein, uninterpreted data corresponds to crude oil,

and refining it involves gathering knowledge about it, putting it into context, and analyzing

it. A refinement of crude oil into usable products such as gas, plastic, or other chemicals is

analogous to a transformation of data into information [Ack89, LLS10]. This transformation

process is accomplished through an interpretation of the data. In other words, i. e., information

is interpreted data [AN95, p. 197].

Having correct and relevant information is crucial in all organizations as it is the basis for

any kind of decision making. However, the sheer volume of data that is available makes it

challenging to select the relevant parts and interpret them properly. To facilitate this issue,

it can be helpful to preprocess the data and extract metadata about it. Metadata is “data

about data” [HT03, p. 9] and can be used to create an easily-digestible overview of the data it

describes. The types of metadata range from simple counts of rows or null values over value

distributions and outliers to complex integrity constraints such as foreign key dependencies.

The act of extracting metadata is commonly referred to as data profiling and the resulting set

of metadata is called the data profile [AGN15].

Data profiling has the potential to save money and time in data-driven scenarios. For

example, in any business intelligence project, a data preparation phase is recommended to

ensure that the input data is consistent and accurate before it is passed into analysis. This data

preparation phase can take a substantial amount of time: In a survey conducted by TDWI

in 2016, it was reported that 73% of respondents spent at least 41% of their total time in an

analytics project on preparing data compared to the time spent performing analysis [Sto16,

p. 21]. In the same survey, 86% of respondents said that it is important to reduce the amount

of time and resources spent on data preparation [Sto16, p. 22]. Similar numbers are reported

by IBM, who estimate that 70% of the time in an analytics project is spent on cleaning and

integrating data [TSRC15]. Data profiling is a crucial part of data preparation, because it

enables a user to assess the data quality and spot inconsistencies. Thus, it is expected that a

better understanding of data profiling can help with facilitating data preparation.
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1 Introduction

1.1 Aims of this Thesis
Data profiling has been the subject of much research work, but it is still not considered to

be a research area in its own right [Nau13]. Instead, it is often treated as a byproduct of

other areas, such as data quality [Ols03], data cleaning [RD00], or data mining [Pyl99]. This

has led to a situation in which data profiling is admittedly recognized as an important and

valuable discipline, but it does not have a common body of knowledge that establishes a set

of agreed-upon and generally accepted methods and terms. Thus, the first part of this thesis

aims to:

Establish a definition of data profiling and provide an overview of
its constituent components

Most of the existing work on data profiling considers only the dataset itself as a source for

metadata that describes its content. This is a limited view that restricts what types of metadata

can be gathered. For example, the provenance of data, i. e., its origin and transformation

history [BKWC01], is often neglected in data profiling, but knowing where data comes from

is very useful, e. g., when tracking down errors. There is often an interesting reciprocal

relation between the data and the processes and applications that interact with it. Including

this relation during profiling can potentially lead to many more useful insights that would

otherwise go unnoticed. The second part of this thesis therefore aims to go beyond the data

and include its context into the considerations:

Expand profiling and its methods to the context of data

This will yield a more holistic view of a dataset, which can be applied in a wide range of

scenarios and domains.

1.2 Structure of this Thesis
This thesis is subdivided into eight chapters. After this introduction, the term profiling,

detached from any data, is examined closely in Chapter 2. To this end, its linguistic background

is analyzed and an overview of commonly encountered application areas is given. The shared

similarities are compiled into a generic model that captures the essence of what profiling is.

This is followed by Chapter 3, which introduces a characterization of the problems to which

data profiling can be a solution. This considers types of data that may be encountered, typical

tasks that revolve around data, and who the users that face these tasks are. The chapter closes

with insights into what is commonly done in cases where data profiling is not considered as

the method of choice.

Chapter 4 presents the current state of the art of data profiling and addresses the first

research aim. It establishes a definition of the term and provides a detailed list of individual

metadata types that make up a data profile as well as a classification scheme for them. This

chapter is completed by a short overview of software tools and research projects that are

used in the profiling context. Subsequently, Chapter 5 assumes an organizational perspective

and characterizes six different data profiling variants along the dimensions purpose, input,

2



1 Introduction

executor, method, output, user, and application areas. This provides a comprehensive summary

of when, why, and by whom profiling should be considered and concludes the first part of

this thesis.

The second part of this thesis addresses the second research aim. To this end, Chapter 6

first broadens the scope of metadata to those types that are not intrinsically available from the

data itself, but must be sourced from external sources. A list of these extrinsic metadata types

is provided and complemented by a discussion of their sources and a process for extraction.

Then, Chapter 7 shifts the focus away from the data by introducing an abstract model for the

context of data, which consists of processes and applications. This model is used to envision

profiling methods that can be applied to this extended context. The application of the model

is discussed alongside three different practical examples.

Finally, this thesis is concluded in Chapter 8 with a summary of the main contributions

and an outlook on further research opportunities.

Note that throughout this thesis, gender-specific terms may be used in an effort to ease the

flow of reading. These should be understood as referring to both genders, unless explicitly

stated otherwise.

1.3 Running Scenario: The CloudHost Case
In the following chapters, numerous different concepts will be explained and illustrated. In an

effort to facilitate their understanding and demonstrate the practical applicability, examples

are used whenever feasible. Most of these examples will be taken from a fictitious case about

a company called CloudHost.

CloudHost is an IT company that offers a cloud platform for clients to rent and host arbitrary

software on. There are several hundred clients who use this platform to run thousands

of different programs, applications and services, which are either third-party software or

implemented by CloudHost themselves. CloudHost records a wide variety of data about

which client is running which software, in which version and configuration. Most of this

data is stored in a relational database management system, but CloudHost also employs a

document-oriented database which stores semi-structured data for use cases where a higher

degree of flexibility is required (e. g., web traffic data).

To expand their business, CloudHost employs a dedicated team of sales representatives

that regularly visit prospective and existing clients to inform them about the latest product

offerings in a sales pitch. In order to improve the quality of these pitches, the sales team

needs detailed information about the client, his priorities, preferences, and purchase history

at CloudHost. This enables a custom-tailored and highly focused negotiation process, which is

highly beneficial for all involved parties. However, in order to provide these client information

to the sales team, numerous data sources need to be integrated and analyzed first. This is

the core challenge of the CloudHost case, and it is addressed with the use of data profiling

techniques.

The inspiration for this example scenario came from a real project that has been conducted

by the Databases and Information Systems Group in corporation with an undisclosed company

from Münster. This project started in October 2014 and concluded in August 2015. To comply

3



1 Introduction

with non-disclosure agreements, the name and any identifiable references are obfuscated

and replaced with fictional ones, while preserving as much of the project and the involved

challenges as possible.

4



Part I

State of the Art

5



2 Profiling Fundamentals
This chapter introduces the fundamentals of profiling by first defining the term in Section 2.1.

Then, the most common application areas that include the term profiling are considered and

their differences and similarities highlighted in Section 2.2. The results are used in Section 2.3

to develop a generic profiling model that shows the inputs and outputs of profiling as well as

the activities in between. Lastly, Section 2.4 arranges the profiling activities with respect to

their main purpose, which can range from description over prediction to prescription.

2.1 Definition
In order to fully understand what the term profiling means, its linguistic characteristics and

etymology are examined first. The term profiling is composed of the verb to profile and the

suffix -ing. The first part, to profile, has its origin in the Italian word profilare, which means “to

represent in profile” and goes back to the 1650s [11]. This indicates that the verb’s meaning is

dependent on the noun profile. Looking at this noun, its roots can be traced back to the Italian

word profilo, meaning “a drawing in outline” [11]. Drawing something in outline involves

marking only the contours of a shape or figure while omitting all details such as shading and

colors. The purpose of an outline is to visually represent the most important characteristics

of an object.

So far, there is no further specification of the object, the something, that is being profiled

or outlined. However, looking at more modern definitions of the word yields more insight:

The online dictionary at Dictionary.com defines to profile as “to draw a profile of”, which is

very similar to the Italian origin described above. The noun profile, however, is defined as “(1)

the outline or contour of the human face, (2) a picture or representation of the side view of a

head, or (3) an outlined view, as of a city or mountain” [5]. Here, the object to be profiled is

specified to be a human face, or a city/mountain, which hints at concrete application areas in

which profiling is performed.

Examples for this notion of profile can be seen in Figure 2.1. Figure 2.1a shows the silhouettes

of Münster’s most iconic buildings. The minimalistic style omits many details, such as color or

material, and does not even correctly reflect the height or position of the buildings. Still, this

skyline is sufficient to enable a beholder that knows about Münster to uniquely and correctly

identify the depicted city. As another example, Figure 2.1b shows the silhouette of a man in

black and white. Theoretically this could be any man, but due to the high recognition value, it

is obvious that this is a profile of Donald Trump. This depiction makes use of the unique and

characteristic features of his appearance (most notably the shape of his hair) to give a short

and compact visual representation. In a sense, a profile shares some similarities to a model,

which is an abstraction of a real-world object that highlights only the important parts [Sta73].

6



2 Profiling Fundamentals

(a) Skyline of Münster. Source: [33]. (b) Silhouette of Donald

Trump. Source: [29].

Figure 2.1: Examples of di�erent types of profiles.

The second part of the word profiling, “-ing”, transforms the verb into a gerund, which has

two effects: Firstly, it signifies an ongoing process, i. e., something that is being done. As such,

it is implied that there is no fixed point when profiling ends. Secondly, it emphasizes the fact

that profile is to be understood as a verb, and should not be confused with the identically

written noun.

Grammatically speaking, the combination of “to profile” and “-ing” into profiling should

not change the semantic meaning and only indicates that profiling is being done. However,

the historic and linguistic usage has transcended profiling into much more than that, which

is reflected in several definitions. For example, the following definition for profiling can be

found on Wikipedia: “Profiling is the extrapolation of information about something, based on

known qualities” [43]. The Merriam Webster dictionary offers a similar definition: “the act or

process of extrapolating information about a person based on known traits or tendencies”

[19]. The most striking difference is that profiling is described as extrapolating, as opposed

to representing in the case of to profile. Extrapolating means to derive something previously

unknown, possibly with the use of inference and reasoning rules. In this sense, profiling is

concerned with the creation of knowledge about a given object whereas a profile focuses

on reduction and abstraction to provide a concise summary of an object and its properties.

However, some application areas use the word profiling to not only describe the act of profile

creation, but also the usage and application of existing profiles in a given setting. To account

for these cases and conclude this section, the so-far discussed points are summarized in the

following working statement:

“Profiling is the act of creating a profile of a given input object based on

observation, analysis, and extrapolation. Additionally, profiling also relates

to the application and exploitation of profiles in a given setting.”

2.2 Application Areas
The term profiling most often occurs in combination with another word, which usually

specifies the object that is being profiled. Thus, those different types of profiling denote

various application areas. This section explores these application areas that are most frequently

encountered in order to show the breadth of the field and identify similarities and differences.

7



2 Profiling Fundamentals

Each subsection is concluded with a summary of the most important characteristics of the

respective application area.

2.2.1 O�ender Profiling
Offender profiling is the art of creating profiles of suspects for a criminal act in order to

help law enforcement to unequivocally identify (and ultimately catch) the perpetrator of

a committed crime. Woodhams described it as “the inference of offender characteristics

from offense behaviors” [WT07]. To this end, many different characteristics of a criminal are

considered such as his physical and emotional state, his behavior and his psyche [Tur11].

Due to this breadth of information sources offender profiling is a multidisciplinary approach

that draws from the insights of multiple fields such as criminology, psychology, psychiatry

and forensic sciences [Tur11]. Further, it is based on two basic assumptions: (1) behavior is

predictable, and (2) people are creatures of habit.

While profiling with the intent of improving chances to catch criminals has probably been

done for a long time, one of the very first recorded cases is connected to Jack the Ripper. Jack

the Ripper is the name given to an unidentified serial killer who is attributed with the brutal

killing of at least five prostitutes in the Whitechapel district of London in the autumn of 1888

[BB17]. At this time, the extent and cruelty of these crimes was unprecedented, which posed

new challenges for the investigating police force. The style of these killings led many people

to believe that the killer was a trained butcher or slaughterer. In the efforts to identify the

murderer, a police surgeon was consulted. This surgeon examined the bodies of the victims

and provided a report on his findings. In this report, which has been declared as the first

offender profile in history, he asserted that all murders were committed by the same man.

However, he opposed the suspicion that this man had any kind of anatomical knowledge, or

even any skill regarding the slaughter of livestock [Can94].

This early example of offender profiling did not follow any structured approach. Having

a structure in place for this kind of endeavor is however very important in order to ensure

objectivity and avoid prejudice or bias. It is mandatory that the methodology is sound and the

applied inference rules are transparent to make sure that the results are legally admissible.

Even in 1960, when the FBI started to teach courses on profiling, most of the techniques were

based on intuition and subjective experience [Tur11]. In the 1980s however, work begun on

formalizing efforts and methods, and in 1986 Douglas described what he calls a “criminal-

profile-generating process” [DRBH86]. This process consists of six stages, namely the profiling

inputs stage, the decision process models stage, the crime assessment stage, the criminal

profile stage, the investigation stage, and the apprehension stage.

Since then, offender profiling has continually been developed further. This development

resulted in a host of closely related disciplines, such as behavioral profiling, crime scene pro-

filing, criminal personality profiling, psychological profiling, criminal investigative analysis,

and investigative psychology. While most of these disciplines share many similarities to the

point where they are even used synonymously [Tur11], their individual differences are not of

interest within the scope of this thesis.
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Summary of o�ender profiling
Objective Identify the offender of a committed crime in order to assist in his apprehension

Input Information about previous offense behaviors, the offender, and the circum-

stances

Processing Comparison of previous cases with current case. Similar cases are used to narrow

down the list of suspects

Output Profile that describes key characteristics of the suspect

2.2.2 Crime Prevention Profiling
Also related to law enforcement is the practice of crime prevention profiling (sometimes

also called predictive profiling). As opposed to offender profiling, it is not concerned with

identifying perpetrators of already committed crimes, but rather aims at predicting crimes

based on previously established profiles of likely perpetrators. Nielsen describes crime

prevention profiling as the “recognition of characteristics and behavioral patterns of persons

who are likely to threaten security” [Nie05, p. 75]. These characteristics could include anything

observable about a person, such as clothing, facial expression, etc. Note that when the assumed

race of a person is used in profiling, the term racial profiling is usually used instead, which

will be discussed in Section 2.2.3.

Simply put, crime prevention profiling aims at predicting crimes or similar offenses, and

at initiating measures to stop them from ever being committed. While this may sound like

a futuristic plot from a Hollywood movie (e.g., Minority Report from 2002), it is much more

simple in reality. For example, a security guard at a train station is patrolling the main area

and observes passers-by. His job is to provide safety by stepping in when there is a fight or a

theft, or other misbehavior by anyone. However, he is not only reacting to offenses when

they are happening, but also proactively watching out for suspicious and irregular behavior.

As such, he is trying to predict when and where an offense might occur. However, he is also

profiling, because his judgment is based on previous experiences of past offenses. For example,

he might know that groups of adolescent boys are more likely to cause trouble than elderly

seniors, which is why he is keeping a vigilant eye on the former. This is often sufficient to

maintain order and security.

This manual process is increasingly supported through the use of modern technology,

most prominently video surveillance. In high security locations, like nuclear power plants

or government buildings, video surveillance is commonplace. These video feeds are usually

monitored by security staff members, who look for irregularities in all monitored places at

once from a central office. This task is repetitive, tiring, and most of the time even boring,

which makes it a prime candidate for being automated with computers. This requires first that

a computer is able to analyze the content of a video feed in real time, which is the primary

focus of the machine vision field [Dav12]. With the ability to see a video, a computer then

needs to be taught when and how to act. The simplest approach is to configure a set of

event-condition-action rules. For example, a rule could read “if a person enters this area at

nighttime, raise an alarm”. In order to prevent false alarms, such a system needs to be able

to differentiate, e. g., between a person and an animal. More sophisticated algorithms have

been developed that are even capable of recognizing specific actions, like falling, stealing, or
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fighting [HVL08].

Another approach is to design a system that is able to observe a scene and learn au-

tonomously to distinguish between right and wrong. The obvious advantage of this approach

is that no laborious setup of rules is required, and adapting to new environments takes less

effort. Such a system has, for example, been implemented by Behavioral Recognition Systems,

Inc. (BRS Labs) with the fitting name AISight. It makes heavy use of machine learning algo-

rithms and is capable of analyzing video content, learning what normal activity looks like, and

then raising an alarm when abnormal or irregular activity occurs [27]. Among other places,

this system has been deployed in Boston after the 2013 marathon bombings. Authorities hope

that this will prevent or at least deter similar attacks in the future and thus, increase security

in public spaces. Whether or not this can be a successful approach is still an open question.

Another example that shows the power of prediction with automated surveillance can

be found in Japan, where the operators of a train platform have installed a system that can

detect through cameras when people are intoxicated and notify attendants if necessary [38].

The detection of drunkenness is based on common behavior of people under the influence of

alcohol, such as sleeping on a bench or being motionless for prolonged time. The goal is to

prevent accidents of people getting hit by trains, which in the majority of cases happens to

drunk people.

Some people even go so far as to claim that the personality of a person can be predicted

based on an image of their face. The company Faception has developed such a technique under

the name facial personality profiling. They claim that their “breakthrough computer-vision and

machine learning technology analyzes facial images and automatically reveals personalities

in real-time” [8]. This goes beyond similarity-based face recognition algorithms that can

spot an input face in a video feed. Instead, previously unknown potential offenders can be

identified and apprehended before damage can be done. So far, the claims made by the vendor

are unsubstantiated and cannot be verified.

Crime prevention profiling is the basis for predictive policing which has been developed

at the Los Angeles police department. In predictive policing, an algorithm is fed with crime

statistics and other relevant data in order to predict which areas of a city are most likely to

see a crime. Patrolling police officers are then sent to these locations to deter any potential

miscreants through mere presence. Initial evaluations show that predictive policing has twice

the accuracy of usual prediction practices employed by the police [9]. This success has led to

the foundation of PredPol [28], a company that focuses on refining the prediction technology

and selling it to police departments and other jurisdictions.

It must be noted here that ubiquitous surveillance coupled with automated behavioral

analysis unquestionably raises numerous privacy concerns. However, this is a very complex

topic which shall not be further discussed here.
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Figure 2.2: Satirical depiction of “hard” racial profiling. Source: Family Guy, Fox Broadcasting

Company.

Summary of crime prevention profiling
Objective Predict time and place of a crime before it can be committed

Input Real-time information about a specific environment; usually in visual form (e. g.,

a video feed)

Processing Comparison of input with rules or previously observed events

Output Alert of suspicious behavior, apprehension of suspect, dispatch of a patrol to

designated area

2.2.3 Racial Profiling
Racial profiling describes the practice to suspect a person based on their race and/or skin color.

Unlike offender or crime prevention profiling, it is not so much an established technique that

has been developed deliberately, but rather a label that has been assigned to the behavior of

specific individuals or groups. The most prominent use of the term racial profiling occurs in

the context of law enforcement, especially when police officers stop and interrogate colored

people [WT02].

In order to pave the way for a more rational discussion about this subject, Heather Mac

Donald suggests a distinction between hard and soft racial profiling [6]. Hard profiling takes

place when race is the only considered factor when looking out for potential criminals. With

soft racial profiling on the other hand, race is only one factor out of many that is used to

assess an individual and his level of suspiciousness. In this sense, soft racial profiling is related

to crime prevention profiling as described before. Figure 2.2 shows a satirical example of hard

racial profiling as seen in the adult animated sitcom Family Guy. In this picture, the driver of

a car is stopped and his skin color is assessed with the use of a chart. The chart shows six

different shades of skin color, with the lighter three ones labeled as “okay”, and the darker

three ones labeled as “not okay”, indicating that it is suspicious to be a member of a race with

dark skin color.

Racial profiling is a highly debated topic, because discrimination based on the race of a

person is considered racism, which is illegal in most countries. Therefore, attempts have been

made to ban the practice altogether, for example in the US by president Bush in 2003 [16].

However, it is not trivial to enforce such a ruling, because it is often impossible to provide
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evidence that race was a determining factor in an event or action. Furthermore, it needs to

be said that the race of a person is just another item in the list of demographic attributes

(next to age or gender) that can be gathered about an individual. Other people even argue

that including the ethnicity of a person in an offender profile is a successful technique for

crime-fighting that should be continued [6].

Summary of racial profiling
Objective Not explicitly defined. Usually to prevent crimes or misdemeanor

Input Observation of people’s skin color or ethnicity

Processing Comparison of input with previous experiences

Output Decision to take an action against a person of a specific race

2.2.4 Customer Profiling
Marketing professionals are always looking for new and improved ways to sell their products

and satisfy the needs of their (existing and potential) customers. In order to do so, frequent

analyses are carried out regarding a multitude of influencing factors. One such analysis is

called customer profiling, which is concerned with the creation of customer profiles and their

exploitation to increase sales. A customer profile acts as a model of the customer and his

behavior, and serves as a basis upon which a market practitioner can make his decisions

[SSTW01]. Depending on the application context, a customer profile consists of different

attributes. These usually include demographic attributes (e.g., age, income, gender, education,

occupation, etc.) and psychographic attributes (e.g., hobbies, concerns, political beliefs). A

customer profile can either be used to portray a single real-world customer of the company,

or act as a model for a group or segment of like-minded customers which share similar

attributes. The former is usually employed when the number of individual customers is low

and a descriptive analysis is desired, while the latter is more useful if there are numerous

customers whose behavior needs to be predicted.

As an example, consider a local supermarket in a small town. The analysis of sales data

reveals a pattern of customer behavior throughout the day: during the early hours, mainly

housewives and -men come in, and in the evening, more students are shopping. Furthermore,

sales analysis reveals that the housewives and -men tend to buy more expensive brand prod-

ucts, whereas students go for the cheaper no-name products. This information constitutes the

customer profiles, which can be leveraged by management to tailor the shopping experience

to the targeted customer segment based on the time of day. For example, the promotion aisle

with special offers can be stocked with brand products during the day and no-name products

in the evening. This strategy is then likely to support the goal of increasing sales.

This example assumes that demographic attributes of the customers can easily be ob-

served, which is usually not the case in a classic retail setting where people want to get their

shopping done and not be bothered by questions or surveys. However, with the rise of the

Internet in general and e-commerce in particular, more and more purchases move away from

brick-and-mortar stores and into online channels. Marketing researchers have quickly found

out that these online channels offer a wealth of information about their users which can

easily be extracted. The information sources include server logs, session cookies, and related

mechanisms and technologies, which are commonly referred to as Web analytics [PSF04].
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These sources allow insights into various characteristics and behaviors of a user, such as

which Web sites he has previously visited and for how long, or which hyperlinks and ads he

has clicked on. As these kinds of information are a natural byproduct of Web site operation,

no additional effort needs to be made to get this raw data [WBW02]. In order to transform

these data into useful customer profiles, additional processing and analysis needs to be carried

out. Ideally, this includes the integration of other data sources (such as social media accounts)

to augment and complete the profiles with demographic and psychographic attributes. These

online customer profiles can then be used to, for example, provide customized advertising

specifically tailored towards the interests of a user.

Customer profiling is usually targeted at the end consumer of a product or service, which

means it is used in B2C (business to consumer) relations. However, it is also possible to perform

profiling of customers in a B2B (business to business) setting where the customers are other

companies. Hence, this practice is sometimes called company profiling and includes different

attributes, but similar methods.

Related to customer profiling is the idea of a recommender system [RV97][LRU14, p. 307].

The goal of a recommender is to provide a user with recommendations of items he might

potentially be interested in. These items can be products, books, movies, music, or any other

object with distinguishable and comparable attributes. One type of recommender system

learns the preferences of its users over time by monitoring their behavior and keeping track

of their assessment of encountered items (such as ratings or reviews). This information is

then used to either find similar items to those a user liked, and recommend them, or find

similar users, and recommend items they have liked in the past. So even though the word

profiling is not explicitly used in the discussion surrounding recommender systems, there is a

strong similarity between the methodology of customer profiling and recommender systems.

Summary of customer profiling
Objective Help marketing decision making by gathering customer data and analyzing

customer behavior

Input Various sources of customer information, e.g., social media, sales records, or

clickstreams

Processing Aggregation and summarization of input sources

Output Customer profiles

2.2.5 DNA Profiling
DNA profiling is concerned with creating genetic profiles to uniquely and unambiguously

identify individuals. It is sometimes also referred to as DNA fingerprinting because it shares

many similarities with the usage of fingerprints in criminal investigations. The roots of

DNA profiling go back to the findings of the geneticist Sir Alec Jeffreys. In 1984, Jeffreys

discovered by pure chance that DNA contains extractable patterns that are unique to an

individual, with the exception of identical twins. Although he could not foresee the wide

applicability of his findings, he described his findings on DNA fingerprints as being able to

“provide an individual-specific DNA ’fingerprint’ of general use in human genetic analysis”

[JWT85]. After more refining of this technology, Jeffreys developed a test that could be used

to assess whether two people shared enough genetic characteristics that they can be declared
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as blood-related. It did not take long until the true potential of such a test was discovered:

In immigration cases, where lawyers fighting deportation claimed maternity or paternity,

a legally valid proof could now be obtained [17]. Modern paternity tests, which are much

cheaper and quicker, are based on the same principles discovered back then.

Another application area for DNA profiling is, once again, law enforcement. Due to the fact

that perpetrators often leave traces of their DNA behind at crime scenes and that DNA can

be unambiguously attributed to a specific person, many cases could be solved with the help

of DNA profiling. In fact, many TV shows and movies are built around the practice of finding

single hairs or droplets of blood to assist crime scene investigation and police work. Once a

source of DNA has been found, it needs to be processed into a DNA profile in a laboratory.

This profile can then be compared against a database that maps DNA profiles to persons.

These databases, aptly named DNA databases, are highly controversial because a person, once

recorded, cannot demand the deletion of their DNA profile. This is technically a breach of

data privacy, purely based on the suspicion that this person might commit a crime in the

future. The trade-off between civil liberties on one side, and state security on the other side,

is a recurring topic in public debate.

Summary of DNA profiling
Objective Uniquely identify individuals to settle paternity/maternity disputes, or find

perpetrators of a crime

Input DNA source of person in question; database with previously recorded profiles

Processing Extraction of unique characteristics from the source material; compilation into

profiles; comparison

Output Degree of similarity between two or more profiles; probability of identity or

paternity/maternity

2.2.6 So�ware Profiling
Software profiling (also called program profiling) is used in software development to assess and

benchmark a given piece of source code. It is different from software testing in the way that

profiling is about identifying bottlenecks in a program, whereas testing is about finding bugs

and other unwanted behavior. A developer who wishes to profile his code usually does so with

the use of a (code) profiler. A profiler is a software component which is commonly integrated

directly into the development environment, although stand-alone profilers also exist. Profilers

operate in one of two different fashions, offline or online [DB00]. Offline profiling means

that the code to be profiled is still under development and not part of a running system yet.

Execution takes place in a dedicated run of the program whose only purpose is the collection

of various characteristics of the program, such as memory consumption, runtimes of functions,

usage of instructions, etc. The resulting profile is a summary of the program, which is then

analyzed by a software developer to spot anomalies or bottlenecks, and subsequently improve

and optimize the input source code. Online profiling on the other hand is applied in dynamic

compilation systems, and the collection and consumption of profile information occurs within

the same run [DB00]. Thus, this approach requires a high degree of efficiency, i. e., little

overhead caused by the profiling mechanism. It allows monitoring and benchmarking of a

system while it is running in production, which can give more realistic results compared to
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the artificial setting in offline profiling.

Orthogonal to the distinction between online and offline modes is a classification based on

how a profiler gathers its data. The most commonly encountered methods are instrumentation,

event-based, and statistical, which will be discussed in the following paragraphs.

Instrumentation is the oldest technique of software profiling. It consists of inserting mea-

surement code into a program, executing it, and measuring the output [BL94]. Generally,

this insertion adds considerable overhead to a program’s runtime, which might cause

problems in an online setting. Estimates put this overhead anywhere between 3% and

40% [Wu03]. The degree of incurred overhead heavily depends on the placement of the

measurement code which in turn depends on the required granularity of the measured

data.

Statistical profilers rely on sampling to periodically poll the status of a program (e. g., the

call stack or the memory allocation) while it is running. This approach is numerically

less accurate, but causes less overhead. For example, the Digital Continuous Profiling

Infrastructure described by Anderson et al. is reported to only have 1-3% overhead

while being around 10% off on average [ABD
+

97]. Thus, this approach is preferred in

scenarios where latency is more important than accuracy.

Event-based profilers use native interfaces provided by the programming language to hook

into specific events. These events are triggered by the program during runtime and

include cases such as function calls, memory allocation and thread changes. One use

case for event-based profiling is refactoring of graphical user interfaces, as described

by Nagarajan and Memon [NM03].

One key difference that distinguishes software profiling from the other types of profiling

described before is the fact that usually no profile comparison takes place. The created

profiles are either consumed immediately or analyzed after the run. This implies that storing

of software profiles is not needed, because their purpose can be directly and immediately

achieved. Furthermore, a comparison of software profiles from different programs makes little

sense, because every source code is different and there are hardly any code-specific profile

characteristics that can be contrasted. For example, the frequency and duration of function

calls is individual to every program, because every program defines its own unique functions.

In cases where a comparison of different programs is needed, like a comparison of different

implementations of the same algorithm, software profiling is not the correct technique to be

applied. Rather, benchmarking should be used, which shares some similarities with profiling,

but ultimately uses its own techniques, methods and tools.

Summary of so�ware profiling
Objective Analyze source code to identify optimization potential

Input Source code of a program

Processing Monitored execution through a profiler

Output Software profile that gives insight into where in the code a program spends its

time and resources
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2.2.7 Data Profiling
Data profiling is the practice of extracting metadata to learn about the characteristics of a

given dataset. In other words, Abedjan et al. have defined it as “the set of activities and

processes to determine the metadata about a given dataset” [AGN15]. In this context, metadata

is any piece of information that describes or quantifies a characteristic of the underlying

dataset, e. g., the number of rows or the distribution of values. The extraction of such metadata

is usually carried out with specialized tools, but can also be done with targeted queries or

even manual counting. After extraction, the resulting metadata is compiled and stored in

the profile of the input data. A profile can then be displayed in tabular or graphical form

and be used in a wide range of use cases, ranging from simple data validations over quality

assessments to complex data integration scenarios.

Data profiling is not new. In fact, the use of statistical profiles for query optimization has

already been described almost thirty years ago [MCS88]. Since then, many techniques and

algorithms have been developed, although data profiling was never really considered to be

a research area in its own right [Nau13]. As data profiling is a major focus of this thesis,

this section only provided a high-level view of it. An in-depth explanation of the current

state-of-the-art in data profiling and all its constituent components will be given in Chapter 4.

For the sake of completeness, it should also be mentioned that there is a similarly named

but functionally different discipline called database profiling. It is not concerned with the

data itself, but rather with the performance of a database in execution [MPdS
+

08]. In this

sense, database profiling is similar to software profiling, because here the goal is also to

find bottlenecks and performance hogs by analyzing the posed instructions and queries. The

derived insights are then used to optimize query design and ultimately guide overall software

architecture design [MPdS
+

08]. Database profiling is mainly concerned with the operations

of a database and how they are used, such as joins, storage, and memory load, whereas data

profiling focuses on the intrinsic characteristics of the data itself, independent of the system

that is used to handle it.

Summary of data profiling
Objective Extract metadata to aggregate, characterize and summarize data

Input Raw data, datasets, or collections of data

Processing Profiling algorithms and tools

Output Data profile consisting of metadata and charts

2.3 A Model for Profiling Activities
Now that the most common application areas for profiling have been described, a generic

profiling model can be developed to synthesize commonalities. This model can be used to

explain and structure existing profiling activities as well as classify new ones. Furthermore,

the model helps diving deeper into the intricacies of data profiling throughout the remainder

of this thesis. Figure 2.3 shows the model and the rest of this section explains its components

as well as the reasoning behind them.

The first observation is that every profiling activity is focused on an object that needs to

be characterized or summarized. This makes sense because a profile is always a profile of
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Figure 2.3: Generic model for profiling activities.

something and that something was used to create the profile in the first place. This to-be-

profiled object shall henceforth be called input. For example, the input could be a DNA sample

in DNA profiling, or an image of a person in offender profiling. Next to the input object itself,

further information surrounding it could be available. This information is not part of the input

object itself, and thus shall be referred to as external information. This external information

could, e. g., consist of the context from which an input object originated. For example, the

location from which a DNA sample has been taken, or the name of the witness describing

a criminal would be considered external information. The consideration of these additional

information sources can enhance and guide profile creation by narrowing down the set of

possible options. If for example a DNA sample has been taken from an area with restricted

access, it is likely that it belongs to a person who had access to that area. After the input and

external information have been declared, the first activity can begin.

2.3.1 Profile Creation
The input and external information are both fed into profile creation which consists of two

consecutive steps, feature extraction and profile compilation. For the extraction step it is

necessary that it was previously defined which features are of relevance for the profile. For

example, during customer profiling, it needs to be clearly stated which attributes of the

customers should be recorded, like age or annual income. For every feature, a procedure is

required that describes how the extraction is performed and which source it is derived from.

In customer profiling, some features (like age or place of residence) could be extracted using

surveys or direct interviews, while other features (like income or social status) are better

sourced from a third-party data provider, e. g. the Socio-Economic Panel. Once all required

data about features has been collected from the various sources, it needs to be put into a

structured form to facilitate its later usage. This structuring step shall be called compilation,

because it aggregates all the individual profile pieces and assembles them into one cohesive

profile. The complexity of this compilation depends on the requirements that resulting profile

must meet. For example, in customer profiling it is most important that a profile can easily be

communicated to the decision makers. Thus, it is desirable that a customer profile contains

visual elements, is concise, and not too convoluted with numbers and unnecessary details. In
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offender profiling, it is important to focus a profile on the appearances of a suspect so that he

can be found and identified in a crowd (think of a wanted poster in the Wild West). Vastly

different requirements must be fulfilled by a DNA profile: here, the purpose is not to be visually

digested by a human, but rather to be readable and comparable by a computer. Accordingly,

the compilation step consists of transforming the raw feature data into a machine-readable

format that can be stored and persisted in an appropriate database.

The output of profile creation is the profile of the input object. Now, it is interesting to

think about how this relationship between input objects and profiles can be quantified. A

profile is always derived from the input object that was used for its creation, so there is always

a precise assignment from a profile to an input object. Easier put, every profile belongs to one
input object. This also holds true in cases where two input objects are so similar that their

resulting profiles are identical, because each profile has its own identity. If the input object

was a collection of elements (e. g., a set of tables in data profiling), then the profile is assigned

to the whole collection as one object, and not to its individual, constituent components. At

this point, it should be pointed out that it makes little sense to create a profile of a collection

just by merging the profiles of the individual elements from the collection, as Aristotle’s

famous saying “the whole is more than the sum of its parts” applies.

Looking at the other direction of the relationship between input objects and profiles, the

cardinality is less obvious. One could argue that for every input object exactly one profile

should exist. However, this perspective is not very useful in this generic view as it neglects

many circumstances. First, the context influences the profile creation. A piece of software

(input) performs differently depending on the hardware it is run on (the context). Secondly,

the profile creation procedure may be subject to change. When the selected features or steps

for extraction are modified, it is inevitable that the resulting profiles are different. As such

it is concluded that any input object can have one or more profiles. In some cases, it makes

sense to limit this cardinality to exactly one. For example, a human being should have exactly

one DNA profile in order to allow for unambiguous identification. Implicitly this means that

the context of the DNA sample and the extraction method should have no influence on the

resulting profile.

After the profile has been created, it is checked whether it is good enough for the task at

hand, i. e., if all requirements and conditions are met. This inspection step has two possible,

mutually exclusive results, ok and not ok. In the case of not ok, the profile goes back to the

creation phase where it is refined. For example, it could be discovered that a DNA profile

does not contain the correct features. During the next iteration, a different configuration for

the feature extraction is chosen to remedy this issue. Similarly, the fault of a profile could

also stem from the compilation step. If for example a customer profile is not suitable for

presentation, then it should be revised with more appropriate compilation procedures, such

as better visualization. Overall, the profile inspection introduces a feedback loop that ensures

that all output profiles are of sufficient quality and meet the laid-out standards.

2.3.2 Profile Usage
Profiles that pass the inspection step are passed onto the profile usage phase. In general there

are two distinct types of profile usage: profile consumption and profile comparison. Profile
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consumption means that the profile is consumed by a process that directly transforms it into

some kind of value or insight. For example, a software profile is consumed by a software

developer through analysis and assessment. The developer learns characteristics of the profiled

source code and uses these insights to optimize or refactor it. After that, the software profile

is no longer valid because the input object has changed. Generally speaking, a profile that

has been consumed has fulfilled its purpose and can thus be discarded. Specifically, it does

not need to be stored.

Comparison of profiles works in a different way. First of all, a repository is necessary to

store all previously created profiles. This requires that those profiles have been compiled

in a way that makes them suitable for storage in a repository. Furthermore, the format and

structure of all stored profiles need to be similar enough to allow meaningful comparison.

Then, as soon as a new profile comes in, a system can automatically perform the comparison.

Consider for example a DNA database and an unidentified DNA profile. The system can

search for a match of the profile in the database which, if successful, allows identification. If

no full match is found, i. e., not all profile components are equivalent, even a partial match

can be helpful as it might indicate a blood relation (sibling, parent, or child) between the two

profile holders. For this and related use cases, a comparison algorithm should also output

some kind of confidence measure that expresses the quality of the returned matches. This is of

great relevance in crime prevention profiling where the repository stores abnormal reportable

behavior and the input is the video feed of a surveillance camera. In this setting, the input is

constantly matched against the repository and evaluated into a suspicion score. Once this

score exceeds a threshold value, an alarm is raised. Careful consideration should be placed

upon calibrating this threshold value in order to minimize false alarms and maximize the

chance of rightfully alerting abnormal behavior.

2.4 From Description to Prescription: A Classification
To further structure the various profiling activities, it is useful to look more closely at their

respective purpose and considered time horizon. A common classification for these character-

istics distinguishes between three main perspectives: descriptive, predictive, and prescriptive

[14]. This section first introduces these perspectives and their corresponding disciplines in

data analytics. These insights are then transferred to profiling, where they are used to classify

the previously described profiling application areas.

The descriptive perspective is about gathering and presenting facts about events that have

taken place before. Thus, it is retrospective. On the other hand, the predictive and prescriptive
perspectives are prospective in the sense that they regard the future and the events that are

most likely to take place. To this end, statistical models are used to learn from the past and

extrapolate this experience into the future. This is done under the assumption that the past

will repeat itself to at least some degree, i. e., the same input will lead to similar output. The

difference between the predictive and prescriptive perspectives is that the former assumes

the role of a passive observer and only predicts what will happen, whereas the latter also

considers possible actions of an acting entity and their effects on the predicted future.

These three perspectives have corresponding techniques in the fields of data analytics and
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data mining. Descriptive analytics is the most basic variant. The underlying question “what

has happened?” is answered through charts, reports and dashboards that show aggregate

statistics about past events. These results are used, e. g., by managers to make informed

business decisions. Due to its low complexity and wide applicability, descriptive analytics

are at the core of virtually any business intelligence project. In addition to the informative

value itself, descriptive analytics can also form the basis for more complex and sophisticated

techniques.

Predictive analytics goes a step further and addresses the question “what will most likely

happen?”. To this end, past performances are analyzed to build a model that is able to extrap-

olate into the future and to predict events and occurrences that have not yet taken place. A

prominent use case for predictive analytics is churn prediction (also called churn modeling
[Sie16]) which aims at predicting which customers of a business are most likely to churn,

i. e., cancel their subscription or contract. If a company is able to successfully identify the

customers that are most likely to leave before they actually do so, it can initiate measures to

retain these customers, e. g., offer special promotions.

Finally, prescriptive analytics subsumes predictive analytics and extends it in regard with

possible actions that can be taken to affect the predicted future. As such, it poses and aims to

answer the question “how can we change what will happen?”. This requires further input

to the model about actions that have previously been taken, what their results were, and

which actions can still be applied in the future. Due to this increase in complexity, much more

sophisticated techniques and algorithms are required, which are usually taken from fields

such as machine learning, operations research or management science [BK14]. Prescriptive

analytics is especially valuable in scenarios where the actions of the decision maker have a

strong impact on the surrounding environment or market. For example, a large investor in

a stock market has the potential to heavily influence the stock prices with his decisions to

buy or sell. Thus, including his own actions can increase the accuracy of the model used to

predict future prices.

The three described perspectives are used to classify the profiling activities with the result

being shown in Figure 2.4.

Offender profiling is first and foremost about portraying a criminal or offender. It is

focused on the appearance and superficial characteristics of individual persons and how this

information can be provided to other people to raise the chances somebody will recognize the

person in question. Thus, its main purpose is description. However, it can also be argued that

a prediction pertaining to the real identity of a perpetrator is made, and that future crimes

from that person need to be prevented. Following this line of thought, there is no clear line

to be drawn between offender profiling and crime prevention profiling, as indicated by the

merging of both into one bar in Figure 2.4. Note that a prescriptive purpose can also be found

in some use cases of crime prevention profiling, such as a recommendation to send out a

police patrol to a certain area at a specific time. Racial profiling on the other hand, although

not a real discipline in its own right, deals with a purely descriptive perspective, such as the

color of a person’s skin or other factors of race and ethnicity.

Customer profiling spans the whole spectrum. This starts with profiles about individual

customers that usually contain a list of characteristics as well as a history of past interactions,

e. g., sales. These profiles serve a descriptive purpose. Based on these, prediction models can
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Figure 2.4: Classification of profiling activities according to main purpose.

be set up in order to estimate how well promotions or other marketing activities are perceived.

In this sense, customer profiling can also be prescriptive as the potential actions are also

part of the model. The goal of DNA profiling is to obtain a unique genetic fingerprint of an

individual, which is a descriptive purpose. However, there also exist procedures that have a

more predictive nature. For example, the DNA of a person can be checked to predict whether

he or she is susceptible to a hereditary diseases or has any genetic disorder. In software

profiling, statistics about the runtime of a given piece of code are generated and analyzed. To

obtain this information, the code is executed, resulting in empirical results that are purely

descriptive. It should be noted that there also exist approaches in which this information is

predicted [HXHLB14]. However, these approaches are not called profiling, and thus, are not

considered here. Data profiling is primarily about describing a given dataset through usage

of metadata and visualizations. In the CloudHost case, these descriptions are used to gain

a better understanding of the available data about its customers. Depending on the context

however, a data profile can also be used to make predictions. For example, future data growth

or schema changes can be estimated from a data profile. For CloudHost, this can enable them

to better plan and provision their resources (e. g., their available disk space per customer), or

even to directly support business decisions (e. g., which customers to prioritize based on their

usage of CloudHost services).

In conclusion, profiling is an activity that is used in many diverse application areas with

varying objectives, processing techniques, representation types, purposes and time horizons.

After this general introduction into various application areas of profiling, the remainder of

this thesis will focus on data profiling specifically.
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More and more data is generated every day. There are many reasons for this development,

such as the massive proliferation of mobile smart devices that allow virtually anybody to

create data (pictures or videos, geographic data, social media content, etc.) at any time. At

CloudHost, new software products and systems are introduced continually, and each product

generates data during its operation. As each piece of data is potentially useful, nothing is

discarded right away, and all data is stored.

On the other hand, the storage capacities and processing speeds of the systems that deal

with this influx of data are continually improving. This never-ending circle of increasing

dimensions (volume, variety, velocity [Lan01]; also referred to as Big Data [CML14]) has

usually one limiting factor in it: the human mind. Our cognitive capacities have a natural

upper bound that limits how much information we can take in, process, act upon, and

remember. Even though these cognitive capacities have been increased over time through

evolution and education, this growth is orders of magnitudes slower than the corresponding

increase in computing power observed over the last decades. Furthermore, it is reasonable to

expect that this gap will only get larger in the foreseeable future.

The CloudHost company is also facing this issue: As they expand their business and grow

their number of clients, they are confronted with increasingly heterogeneous requirements

they need to meet and data sources they need to integrate and manage. For example, a new

client might want to run a novel piece of software on the CloudHost platform. Ensuring

a smooth hosting of this software requires a monitoring of its logging data, which in turn

requires an understanding of what this data means.

Overall, the Big Data phenomenon leads to an increasing frequency of problems where

individuals are confronted with datasets that are too complex to make sense of. These problems

are particularly severe when little or nothing is known beforehand about that dataset. In this

chapter, the intricacies of this problem and its characteristics will be investigated. To this end,

Section 3.1 focuses on the data as the input to the problem. Section 3.2 describes typical tasks

and objectives in which the problem occurs, while Section 3.3 highlights information overload

as both its cause and effect. The desired outcome is data comprehension and is explained in

Section 3.4. Section 3.5 covers a characterization of the users that are facing the described

challenges, and addresses the question what changes when that user is a group of people

instead of a single individual. Finally, Section 3.6 shows how the described problem is usually

approached, and how that could be improved.
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3.1 Unfamiliar Datasets
The term dataset describes a cohesive collection of data values, which can be structured in

any arbitrary way. Examples of common datasets are spreadsheets, databases, documents, and

tables. With increasing size and complexity, the efficient analysis and processing of datasets

is becoming more and more difficult. This issue is exacerbated in cases where the dataset is

new to the person dealing with it, which shall be denoted as being unfamiliar. Unfamiliar

datasets are encountered frequently in any data-driven environment. For example, whenever

CloudHost deploys a new software, they are likely to be confronted with data that they did

not deal with before. In such a case, they do not know anything about the dataset, its content,

or its structure. This unfamiliarity prevents an individual from being able to efficiently carry

out any task with regard to that dataset, like analysis or monitoring.

Similarly, when a company acquires or buys a new dataset to augment its internal data

sources, the provided information about it may be incomplete, e. g., the documentation is

outdated or missing, or the quality of the data is uncertain. Even if this information were to

be included, it needs to be confirmed before the dataset is used in a productive setting. Thus,

one should always err on the side of caution, and verify that any claims that are made about

a dataset hold true. For example, if an integrity constraint is documented, it must be ensured

that it has been properly enforced. If an attribute is said to be 100% complete, it is easier to

check it than to blindly trust the information and fix errors that appear later when a violation

occurs.

In general, datasets can be highly dynamic and may change over time, which generates

the recurring issue of having to deal with unfamiliar datasets. The unfamiliarity state of a

dataset is a naturally subjective characteristic that is dependent on the person looking at it.

This means that one dataset can be unfamiliar to one person while at the same time being

familiar to another person. Additionally, one’s capability to read and make sense of data plays

a crucial role in the assessment of the issue at hand. This capability is commonly referred to

as data literacy [MG13].

The (un-)familiarity of a dataset to a person can be thought of as a spectrum ranging

from completely unfamiliar to completely familiar. On this spectrum, one can move towards

familiarity by learning about the dataset by inspecting and profiling it, and move towards

unfamiliarity over time by forgetting about it or when the dataset is changed and updated.

Most cases are somewhere in between the endpoints of this spectrum, as on the one side

there is usually at least something to start with, like an assumption or informal information

(i. e., the dataset is not completely unfamiliar). For example, if there is any similarity of a

new dataset to one that has been encountered before, an experienced CloudHost employee

might use his knowledge to grasp the new dataset quicker. This preconception is strengthened

through the observation that best practices and database design principles are often enforced,

which leads to similarly structured datasets that are not completely unfamiliar to experienced

people. Looking at the other side of the spectrum, there is almost always something more

that can be learned about the dataset (i. e., it is not completely familiar). For example, even if

a senior CloudHost employee has curated a specific dataset for the last ten years and claims

to know it inside out, there is a high chance that there remains a piece of information that

he is not aware of. This could be a hidden correlation between attributes, the value of a data
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quality metric, or something else entirely. Now, it is rarely the goal to reach this far end of

the spectrum and to learn everything there is about a given dataset. Instead, a specific level

of knowledge is usually required to be able to work effectively with that dataset and carry

out the task that has been set. Once this level has been reached, i. e., sufficient knowledge has

been gathered about the dataset, work can commence or continue. Due to the significance of

this level, it shall be given the distinctive term data comprehension, which is further detailed in

Section 3.4. Achieving data comprehension is a non-trivial process that is naturally dependent

on the size and complexity of the dataset. Small datasets with low complexity (e. g., the list of

all CloudHost employees) can be self-explanatory and understandable upon first glance. This

and other ad-hoc approaches are further laid out in Section 3.6. These approaches however

fail when the size and complexity increases beyond certain thresholds (e. g., more data than

can fit on one screen, non-descriptive attribute names, etc.). Then, a more sophisticated data

profiling strategy is necessary to turn an unfamiliar dataset into a familiar one and achieve

the desired data comprehension. The remaining chapters of this thesis will highlight some of

these strategies as they are described in the literature, as well as introduce novel approaches

to data profiling.

A dataset can be structured in any arbitrary way, as explained earlier. The remainder of

this section discusses the most relevant ways of structuring data and their characteristics.

3.1.1 Relational Data Model
The most prominent data model is the relational data model, which was invented by Codd in

1970 [Cod70]. Ever since then, it has been continually advanced and optimized and became

the most dominant data model for a wide range of applications and systems. It is conceptually

rooted in relational algebra (hence the name) [Vos91, p. 97] and set theory in order to provide

an abstraction layer between the internal organization of data in a machine and the user

interface for querying and manipulating the data. This interface is provided by means of a

declarative query language that allows a user to specify what data he wants without worrying

about how the data is retrieved. The most common query language is the structured query

language (SQL), which has been considered one of the main reasons why relational databases

became so successful [EN15, p. 207], because it established a standard that allowed users to

easily migrate their data between application and database systems from different vendors.

Data in a relational structure can be represented by using tables. For example, Figure 3.1

shows how CloudHost stores information about their employees and associated departments

using the relational model. The ⊥ symbol is used to denote a null value.

One key characteristic of relational databases is that they require the definition of a static

schema before any data can be stored. On the one hand, this ensures a consistent structure

that every data instance must obey, but on the other hand, it restricts the flexibility of the

database with regard to changing requirements. This rigidity has led to the development of

other, less strict data models that do not require a schema.
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Figure 3.1: Example excerpt of two CloudHost tables.

3.1.2 Key-Value Data Model
The most basic schema-less data model is the key-value data model, in which data is stored

in pairs of keys and associated values. The keys are used to identify the values and thus

need to be unique within the same collection. In this way, key-value pairs are very similar to

associative arrays and dictionaries as known from modern programming languages.

This model only supports basic operations to push and retrieve values to and from specified

keys. Thus, it is not possible to look up data according to specific criteria or perform searches

of any kind. This limitation of functionality makes the usage very simple. A user can insert

new data by supplying it as a key-value pair. For data retrieval, the user can pass a key and

receive the associated value, if it exists. The storage engine keeps no track of what is stored

in the actual values, which means that there is no query language that allows a search based

on any specific criteria or value properties. Due to this simplistic design, key-value stores can

be implemented in very efficient ways and typically achieve comparatively fast speeds, both

in terms of latency and throughput. This makes key-value stores an attractive choice for use

cases in which performance is crucial.

The most prominent use case for key-value stores is caching, e. g., in a web application.

Here, the key-value store is not used to persist data, but rather to allow more efficient access

to data that resides in another database. For example, Memcached [7] provides the specific

functionality to cache key-value structured data in memory to speed up web requests and

database queries. This can help in scenarios where the database is the bottleneck, either

because the data volume is very large or the data is accessed very frequently.

Many modern implementations extend these basic functionalities. For example, Redis [31], a

widely popular key-value store, offers a number of different data types. Numbers can be stored

and interpreted as such, which can be used for counters or other purposes. Incrementing

and decrementing numbers are implemented as atomic operations, which helps to alleviate

concurrency problems in a distributed setting.

Figure 3.2 shows how the same CloudHost employee data from before might be stored in a

key-value store. Note that this is just one possible way to structure the data, and many other

ways exist. For example, each employee could be stored as one single key-value pair, with the

key representing the id, and the value being a concatenation of attribute values.
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Figure 3.2: CloudHost employee example as key-value pairs.

Figure 3.3: CloudHost employee example in JSON.

3.1.3 Document-Oriented Data Model
A subclass of the key-value data model is the document-oriented data model, which treats

the value part of a tuple as a document [EN15, p. 425]. A document in this context is a data

structure that encodes data in accordance with a document format, the most popular being

XML, YAML, JSON, and BSON. These formats allow the database system to make use of the

data content to offer a richer user experience that supports complex queries.

In Figure 3.3 it is demonstrated how the CloudHost employee data might be stored using a

JSON syntax.

3.1.4 Graph-Oriented Data Model
The graph data model is based on the mathematical specification of a graph, which is a set of

nodes connected by edges [Die17, p. 2][EN15, p. 903]. Data is stored as labels or descriptors of

nodes, and edges are used to denote relationships between data instances. This data model is

particularly well suited for associative data in which traversing along the edges is a common

scenario, e. g., a social network. Internally, many graph databases make use of a key-value

data model to physically store their data.

An overview of different approaches for graph database modeling and associated data

structures and query languages is given by Angles and Gutierrez [AG08].

The CloudHost employee example interpreted as a graph is visualized in Figure 3.4.
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3.2 Typical Tasks and Objectives
This section gives a broad overview of typical tasks that arise in a data-centric environment.

Data-centric in this context means that each task revolves around a dataset as input, and

processing and producing a result from it is the goal. All tasks have in common that a certain

degree of data comprehension is necessary before it can be carried out.

Data Loading One of the core requirements with respect to data is the ability to load it into

a system or database [EN15, p. 45]. This task, which is also referred to as data ingestion
[SS13], establishes the basis for many further steps by enabling access to the data. The

complexity of the data loading task is largely dependent on its input. For example,

loading a SQL dump into a SQL database is just a matter of executing a single command

that points to the respective file. As the SQL dump contains all necessary information

about the data, such as data types, schema, constraints, etc., no further action is required.

This is different for datasets that do not bring these types of additional information

with them. A flat comma-separated values (CSV) file for example only contains raw

data values with no further context. When such a file needs to be loaded into a database,

several challenges arise, such as determination of data types, identification of primary

keys (or candidates thereof), and establishment of reasonable integrity constraints.

Data Integration In many scenarios, multiple data sources need to be combined into one

logical or physical source. This challenge is well researched under the term data in-
tegration [Hal01, LM02], which has gained a lot of significance in recent years due

to the increasing demand to connect previously isolated datasets. A data integration

system provides the user with a single uniform interface to which he can pose his query.

The system can then autonomously unfold that query, retrieve the relevant parts from

the individual sources, join them into a result and present it to the user. One of the

main characteristics of a successful data integration system is that the user is not even

aware he is using one, because the source selection and query processing is handled

Figure 3.4: CloudHost employee example as a graph.
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transparently in the background. This allows the addition and removal of data sources

on the fly without interrupting operations or breaking queries.

Data Migration Moving data from one location to another is called datamigration [HHK
+

01].

This includes movement in a physical sense regarding the hardware (e. g., from one

hard drive or datacenter to another) and movement in a logical sense regarding the data

management system (e. g., from one DBMS to another). There is a number of reasons for

data migration, such as load balancing, system expansion, system exchange, or failure

recovery [LAW02]. The simplest form of data migration is copying, where the data

is moved as it is from a source to a functionally equivalent destination. It gets more

difficult when the source and destination have differences in the way they organize the

data they store. Consider for example a dataset that needs to be moved from a legacy

database system (source) to a modern type of storage (destination). In such scenarios, a

number of challenges can arise, such as conflicting data types (e. g., float values have

differing precision, character string lengths do not match), diverging structure type

(e. g., relational vs. semi-structured data), or different data representation formats. To

overcome these challenges, it is important to have detailed knowledge about the dataset

and the source and destination systems.

Data �ality Assessment Crucial for many activities is the quality of a dataset. Data quality

has been described as “fitness for use”, i. e., “data that are fit for use by data consumers”

[WS96]. To find out whether or not this requirement is met by a given dataset, the data

quality needs to be assessed. This is usually done with the help of data quality metrics

that quantify specific dimensions of the dataset, such as accuracy, completeness, or

accessibility [PLW02]. These metrics are derived and calculated with the use of a specific

methodology. Over the years, many different data quality assessment methodologies

have been proposed, and a comprehensive overview of these is given by Batini et al.

[BCFM09].

Data Analysis The umbrella term data analysis (also called data analytics) is used to denote

a wide variety of techniques and processes for retrieving, processing, transforming, and

evaluating data. As such, it is closely related to mathematics in general and statistics

in particular. The purpose of data analysis is to gain insight from the analyzed data

and learn something new about it. It is applied in virtually every domain where data

needs to be processed, such as finance, insurance, logistics, health care, etc. Within the

scope of data analysis, a number of specialized sub-disciplines have emerged. Amongst

others, these are descriptive statistics [JWHT13], exploratory and confirmatory data

analysis [Tho04], predictive analytics [Sie16], and text analytics [AZ12].

Data Mining Aggarwal defines data mining as “the study of collecting, cleaning, processing,

analyzing, and gaining useful insights from data.” [Agg15, p. 1]. As this definition

is substantially close to the one of data analysis above, their relationship shall be

further examined here. In 1996, Fayyad et al. wrote that “Data Mining is a step [...]

consisting of applying data analysis and discovery algorithms that [...] produce a

particular enumeration of patterns over the data.” [FPSS96]. This suggests that the term
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data analysis is used to describe the algorithms and the technical side, while data mining

makes use of data analysis and applies it to a specific dataset. The same notion can be

found in the work of Nisbet et al., who state that “data mining is doing data analysis

(or statistics) on datasets (often large) that have been obtained from potentially many

sources.” [NEM09, p. xv]. Interestingly, this later definition also includes hints of the

increased requirements due to Big Data (large datasets, many sources). Other authors

do not make a distinction between the two terms, and prefer the usage of both terms

simultaneously (“data analysis/data mining”) [Mya06].

For the scope of this thesis, the precise nature of the relation between data analysis and

data mining is of little interest, and thus, they shall also be treated synonymously.

Data Warehousing To support decision making within a company, decision support sys-

tems (DSS) have been developed. At the core of most DSSs is usually a data warehouse,
which is a subject-oriented, integrated, nonvolatile, and time-variant collection of gran-

ular corporate data [Inm05, p. 31]. The data warehouse is separate from operational

databases and acts as the central point from which information about past events that

are important for business (e. g., sales, transactions, customer interactions, etc.) can be

retrieved. The progressive form of the term, data warehousing, describes all activities

surrounding such a data warehouse, e. g., its construction, operation, and maintenance

[CD97]. Establishing a data warehouse is essentially a data integration project that

brings together relevant internal and external sources. However, to allow proper usage

of a data warehouse, certain design guidelines should be considered, such as choosing a

suitable schema template (star or snowflake) and carefully designing fact and dimension

tables and their attributes. All in all, a thorough understanding of the input data sources

is required to ensure the success of such a project.

3.3 Information Overload
In Section 3.1 it was described what happens when too little is known about a dataset and

why that is a problem. This section considers the other side, i. e., what happens when too
much information is present. This phenomenon is usually referred to as information overload
and has been recognized very early on in the history of computer systems. For example,

Hiltz and Turoff wrote in 1985 that “unless computer-mediated communication systems

are structured, users will be overloaded with information” [HT85, p. 680]. It should be noted

that this was at a time when the Internet was still in its infancy and the information available

to a user was merely a fraction of what it is today. Since then, the issue has been studied in

many ways and was given numerous names, such as data smog [She98], analysis paralysis
[SC97], information fatigue syndrome [Opp97], infobesity [26], and infoxication [3]. All these

word plays share the notion that too much information has the inadvertent effect of impeding

the ability of an individual to make a good decision. Thus, the issue is a cognitive one that

stems from the fact that mankind has invented machines that produce information more

quickly than a human can process it [EM00]. This is a severe problem, because in order to

cope with the modern world that we have created and be successful in it, new information
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needs to be processed all the time [LO96]. Keim et al. give three different reasons for why

information overload can occur [KAF
+

08]. These are:

� Information is irrelevant to the current task

� Information has been processed in an inappropriate way

� Information is presented in an inappropriate way

Systems that display data or information should be designed in a way that these problems

do not occur or are at least mitigated. Depending on the context, this requirement can be

arbitrarily difficult to achieve. Deciding whether a piece of information is relevant to a user is

usually not possible for a computer. While there are systems that suggest certain items to

a user, i. e., recommender systems [RV97], these systems cannot verify the appropriateness

of their suggestions before the user reacts to them. Similarly, the appropriateness of the

processing and presentation cannot be verified automatically, as it may depend on external

factors such as the task or the perception of the user. For example, one user might prefer bar

charts while another prefers pie charts. Displaying one or the other could be detrimental

depending on the current user, while displaying both at the same time is clearly redundant

and introduces even more complexity. Thus, these systems need to be flexible and dynamic

and allow hiding information, inspecting the way it has been processed, and changing the

way it is presented.

Information overload is a prevalent issue in data profiling. The reason for this is that

a profiling tool has the capability to generate high volumes of metadata, even from small

amounts of data as input. This can lead to a situation in which a user is facing more information

than before, which may be detrimental to achieving data comprehension. This issue can at

least be partially alleviated through the smart design of user interfaces that do not overwhelm

the user with all information at once. One approach for this type of design is called adaptive
user interface, which is based on the approach that individual differences in a user’s cognitive

abilities can be accommodated for with dynamic interfaces [Ben93]. Such a system infers the

user characteristics from his interaction patterns and then adapts itself accordingly. Further

developments in this area make use of learning algorithms to improve over time [JCK03].

Adaptive user interfaces have been successfully implemented in various domains, e. g., health

care [Ram09] or education [BTN90, p. 202]. However, as of today, no major effort has been

made to design an adaptive user interface for a data profiling tool.

In general, solutions to the information overload problem can be categorized into two types:

system-centric and user-centric. System-centric approaches try to improve the systems that

display information to avoid the issues stated above. The degree to which this is achievable

depends on the data and the use case. For example, there does not exist an intuitive way

to visualize four-dimensional data. Thus, they cannot be visualized effectively and remain

complex in their representation.

User-centric approaches aim at educating and teaching the users to better understand what

is being presented. This skill is also referred to as information literacy, and Edmunds et al.

believe this to be the key to reduce information overload [EM00]. However, it is unreasonable

to expect that a one-sided approach can solve this problem in all instances, and thus, both

approaches need to be combined in an intelligent manner.
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3.4 Data Comprehension
As already mentioned in Section 3.1, the term data comprehension is used in this thesis to

denote the state at which a user knows enough about a given dataset to be able to work

with it in the context of a specific task. Thus, it acts as an intermediate goal that is desirable

to be achieved in situations that involve unfamiliar datasets. This section describes the key

characteristics of this state and their implications.

First off, due to its definition, data comprehension is dependent on these three aspects:

1. The dataset (cf. Section 3.1)

2. The task (cf. Section 3.2)

3. The user (cf. Section 3.5)

Whenever the question occurs whether data comprehension has been achieved, these

three aspects need to be considered. The task is important, because it determines the depth of

knowledge that is demanded from the user. For example, if the task is to migrate a dataset from

one system to another, very little information is necessary, e. g., the size and format. Further

information about the data values themselves are not required, and thus, data comprehension

can quickly be achieved. If however the task were different and more complex, like a data

mining effort, then much more information about the dataset would be needed.

Achieving data comprehension can be difficult. Usually, it is done by gradually gathering

insights about the dataset. To understand this process, it is useful to define what exactly an

insight is. The word itself carries multiple meanings, but the most relevant here is that an

insight is a piece of information. Insights are especially useful if they have not been known

before, i. e., the information is new for the user, because only then can something be learned.

The assumption then is that insights about datasets can be derived directly from metadata

that are generated through data profiling. This can be generalized to the statement that data

comprehension can be achieved through data profiling, which shall be demonstrated later on.

A core challenge that remains is to evaluate if data comprehension has been achieved, i. e.,

determine the point at which enough insights have been gathered. As already mentioned in

Section 3.1, it is unreasonable to strive for every piece of information possible. However, it is

very tricky to know when to stop due to the lack of quantifiable or objective measures. This

issue is exacerbated by the many factors that influence the comprehension of the user, such

as his ability to learn new facts, the complexity and requirements of the task, etc. Still, for

efficiency reasons it is desirable to have a measure in place that shows whether sufficient

data comprehension has been reached.

Such a measure could be implemented in the following way: A quiz-like game is set up in

which the user is asked questions about the data. These questions aim at various characteristics

of the data, e. g., how many rows there are, how old the data is, what it is about, etc., and get

progressively harder. The user can answer through multiple choice or free-form text input.

After the game, a score is calculated which directly reflects the user’s comprehension of the

data, i. e., the higher the better. This “data comprehension game” is especially applicable in

scenarios with many users and static, non-changing data. With only few users, the effort to
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set up the game would not be worthwhile, and if the data is changing frequently, too much

effort would be needed to keep the questions and answers up to date.

The observed practice for evaluating data comprehension is to rely on the instinct of the

user. This means that the user gathers insights about the data as long as he deems necessary

and until he feels confident about his capability to commence work on the task. With this

reliance on the user and his skills, this component of the system should be further investigated,

which is done in the next section.

3.5 User Characterization
So far, the term user has been employed several times already. This section aims to give a

more detailed insight into what a user is, how he can be characterized, and especially what

needs to be considered in cases where multiple users interact.

In Information Systems, a user is somebody that uses any kind of system, e. g., a computer,

an application, or a service. A user interacts with a system through an interface, such as

a keyboard and monitor, a web browser, etc. This interaction is called Human Computer
Interaction or Man Machine Interaction and due to its importance, a whole research discipline

has emerged around it. A comprehensive overview can be found, e. g., by Dix et al. in

[DFAB03].

However, a user is not only defined through his interaction with the system he is using. A

further characteristic to consider is the goal or purpose that the user has in mind before he

approaches the system. Consequently, the user needs to be aware which system is suitable to

help him with the accomplishment of his goal, which in turn is dependent on his proficiency

in the usage of that system. This is similar to the concept of “sociotechnical systems”, which

consider the trinity of human, machine and goal as the cornerstones of successful system

design [LL95, p. 20]. Consider, for example, a user that wants to learn more about a dataset by

using data profiling. He is confronted with a variety of multiple profiling tools that all offer

a wide range of functions and features. Choosing a tool then depends on numerous factors,

such as previous experiences, perceived utility, ease of use, etc.

3.5.1 Skill dimensions
In characterizing the potential users in a data-centric scenario, two dimensions shall be

considered here: domain knowledge and technical expertise. These are the main dimensions

that are important when assigning people to tasks in an IT context. For simplicity reasons,

only two levels along these dimensions, low and high, are considered here. The first dimen-

sion, domain knowledge, describes how well the user understands the business domain to

which the data belongs, e. g., finance, insurance, health care, etc. A higher level of domain

knowledge can be acquired through formal education, studying the respective field, or simply

acquiring experience by working with the subject matter. A user who has gained thorough

domain knowledge shall be called domain expert (sometimes also referred to as subject-matter
expert [13]). Technical expertise on the other hand describes a user’s skill in dealing with

information technology, e. g., setting up and configuring IT systems, coding, programming,
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Figure 3.5: Classification of users according to skill level.

etc. Consequently, a user with a high level of technical expertise is called an IT professional.
New users with low levels of knowledge in both dimensions are called novices. These different

user classifications are depicted in Figure 3.5. The obvious question now is what to call users

that have high levels in both dimensions. Maybe they could be called veteran, master, or power
user, but ultimately, a concise naming is not needed, because in practice, these people are very

hard to find, which is why the upper right corner is left blank in Figure 3.5. Thus, the focus in

this thesis will be on the previously mentioned three types of users and their interactions and

relations.

3.5.2 Multiple Users
In many scenarios, more than one user needs to be considered. For example, companies often

organize their work in projects that consist of multiple project members. Within a project,

tasks may be delegated to smaller teams consisting of, e. g., two to three people. When these

teams jointly work on a task, they need to communicate and coordinate, and agree on the

tools and systems to use.

With multiple users, a distinction can be made according to the comparability of each group

member’s skill set. If everybody has similar skills and knowledge, the group is homogeneous,

whereas it is heterogeneous otherwise. A homogeneous group is easier to manage due to the

fact that everybody can perform every task and group members are essentially interchangeable.

In a heterogeneous group, some organizational challenges need to be overcome. Differences

in skill levels need to be identified and tasks distributed accordingly. This can also be used as a

teaching opportunity where a novice learns from an expert. However, a heterogeneous group

has the advantage that it can combine its domain knowledge with its technical expertise to

achieve its goal.
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3.6 Common Solution Strategies
As the problem of facing an unfamiliar dataset is frequently encountered, one obvious question

to ask is how people have dealt with it before. This section gives an insight into some common

solution strategies that have been observed.

The most simple approach is to just start right away without any further preparation. If the

dataset or the task at hand is of low complexity, this can work out successfully. However, this is

rarely the case. More often, going in blind leads to backtracking when specific characteristics

of the datasets are revealed during the later stages. For example, consider the task of setting up

an ETL process to transfer data from a file to a database. One could just start implementation

right away without looking deeper into the data and try to execute it. The lack of data

inspection can lead to numerous errors, such as non-matching data types (e. g., trying to

insert a string into an integer column), differing value formatting (e. g., date format not

conforming), or incorrect or missing integrity constraints. Some of these errors will be caught

by the DBMS right away, while others persist until they are found, if they are found at all.

Correcting these errors requires going back to previous stages and revising the initial work.

Thus, this approach is ill-suited for any moderately sized project.

To get at least some degree of familiarity with the dataset, the user may also a apply a

technique called data gazing [May07, p. 154], which involves manually browsing through

and looking at the data. This is a very intuitive approach that is appropriate if the size of

the dataset does not justify the use of more extensive methods. However, it also suffers from

poor scalability and susceptibility to errors. Also, its success is heavily dependent on the

experience of the person performing the gazing.

A better idea is to include the information and metadata that may already be available.

For example, the dataset may have a documentation attached that describes what it is about,

how it was recorded, how it is structured, and more. Careful examination of a high quality

documentation can prevent many errors and misunderstandings and is thus advisable. Still,

the reality of many datasets is that no documentation is available, or that it is outdated, or of

such low quality that it provides no tangible benefit. In these situations, it may be possible

that there is another person with more knowledge and expertise regarding the dataset in

question. Asking them about it, or maybe even including them in the project, is a worthwhile

consideration.

When there is no previous source of information available, people tend to resort to ad hoc

practices that involve just-in-time retrieval of needed information (e. g., about data types or

formats) from the dataset using provisional methods [AGN15]. This can range from inspecting

the data using spreadsheet software, over posing hand-written “quick and dirty” queries, to

calculating some self-made measures on the fly. The results of these methods are mostly

consumed immediately to inform a relevant decision at hand. Thus, information is usually

not recorded in persistent storage, which hinders reusability and reproducibility.

The logical next step is to have standardized techniques and algorithms in place that enable

the extraction and storage of necessary information about the dataset. This is precisely what

data profiling tools offer. More details about data profiling tools are given in Section 4.4. The

advantage of using a specialized tool over ad hoc methods is that the user can assume that the

computations and calculations done by the tool are (mostly) correct and reproducible. Most
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tools also offer the ability to visualize the results for easy interpretation. A core challenge

that remains is that profiling tools tend to offer a vast amount of procedures that compute all

kinds of information, which leads to the final approach.
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This chapter aims to give a comprehensive view of data profiling from an academic perspective.

To this end, Section 4.1 first defines the term data profiling. This is followed by a typology of

metadata in Section 4.2, which consists of two parts. The first part is a comprehensive overview

that details which metadata types are commonly considered in data profiling scenarios, how

they are defined and in which cases they are applicable. The second part of the typology

presents classifications that have been proposed upon these metadata types in an effort to

sort and group them together. In Section 4.3, the point of view is shifted to a higher level

and data profiling is regarded from an organizational, process-oriented perspective. Finally,

Section 4.4 shows how data profiling can be applied in practice by describing a selection of

software tools for this purpose.

4.1 Definition
To lay the groundwork for the remainder of this thesis, this section summarizes the various

points made so far and presents a definition for data profiling. To this end, the generic profiling

model introduced in Figure 2.3 is revisited. Applying this generic model to the domain of data

gives a more refined picture of the relevant tasks and how they are related. The result of this

top-down approach is shown in Figure 4.1 and is subsequently described in more detail.

The primary input is the dataset, which is potentially unfamiliar to the user (cf. Section 3.1).

The secondary input is external metadata, which comprises every piece of information that is

not part of the dataset itself, such as documentation, provenance information, previously dis-

covered metadata, etc. This type of information, its possible sources and means for extraction

are explored later in Chapter 6.

Figure 4.1: Profiling activities model applied to data profiling.

36



4 Data Profiling — State of the Art

After the collection of the inputs, the creation of a data profile commences, which consists

of metadata extraction and data profile compilation. The extraction of metadata is a core

activity that has been well researched in the past [AGN15]. It involves first a declaration

of which type of metadata is wanted. Broadly speaking, metadata is “data about data”, i. e.,

data that is used to describe other data and its characteristics. More details about metadata

and their typology will be given in Section 4.2.1. Second, an algorithm for its calculation

must be selected. Some of these algorithms have such a high computational complexity (e. g.,

functional dependency detection is exponential in the number of attributes [Nau13]) that

the use of a heuristic makes more sense, which sacrifices accuracy for a reduced runtime

complexity. For many types of metadata, multiple algorithms and heuristics exist, which vary

in their efficiency and applicability.

Once all required metadata have been extracted, they can be compiled into a data profile.

Common techniques for this purpose range from simple tables that show numerical results to

sophisticated visualizations with various types of charts. This compilation procedure is not

standardized, which can lead to varying forms of representations across different tools. This

issue is linked to information overload as presented in Section 3.3. Once compiled, the data

profile is inspected manually by the user to check whether it needs to be refined. If this is not

the case, the usage phase commences.

Profile usage in data profiling most often entails a manual analysis of said profile immedi-

ately after its creation. This means that the user carefully examines the results of the previous

phase and looks for insights that help him achieve data comprehension (cf. Section 3.4). This

procedure is based on the assumption that insights about a dataset can be learned from its

metadata, which are usually smaller in volume and thus, easier to digest and interpret. In

many cases, the data profile is discarded after it has been analyzed. However, it is usually a

better idea to store it in a specialized metadata repository. This obviates the need to redo the

whole process if the same data profile is required in a future project by allowing re-usability

of results.

Storing data profiles also enables the second activity for data profile usage, which is

comparison. This activity is less frequently performed in data profiling, but has two major

use cases in which it can play a crucial role. The first is the assessment of compliance with

standards, mostly used in the context of data quality [PLW02]. Here, the profile in question is

compared with established or expected norms about data quality metrics. For example, if a

requirement is imposed that a dataset may have at most 10% null values, it can quickly be

checked through comparison whether this requirement is met or not. This procedure can also

include more complex rules and automated comparison and notification. The second use case

for profile comparison is tracking of change over time, also called database evolution [TS92].

Here, the profile is compared with older profiles of the same dataset. This is useful when

assessing whether specific changes to, e. g., data management policies or procedures have

had the desired effect. Essentially, this is a form of data monitoring on a higher, aggregated

level, i. e., on the metadata level.

All these considerations can be summed up as follows:
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“A data profile is a collection of metadata that represents a dataset in a

concise way. Data profiling is an activity conducted by a user on a dataset

and its external metadata to create a data profile that can be used for

analysis and comparison purposes.”

The second half of this section provides definitions for data profiling as proposed by other

authors. These definitions reflect how these authors emphasize different aspects of data

profiling and what it entails. A discussion of these individual differences helps to round out

the overall concept.

Naumann: Data Profiling Revisited, 2013 In 2013, Felix Naumann wrote a survey about

data profiling and the current state of research and literature about it. As the introductory

sentence, he cites Wikipedia which provides the following definition:

“Data profiling is the process of examining data available from an existing

information source (e. g., a database or a file) and collecting statistics or

small but informative summaries about that data.” [Nau13, p. 40][42]

There are several overlaps with the previously developed definition: First, data profiling is

described as a process which is similar to an activity as they both describe actions that are

being performed. The person doing the profiling is, however, not further characterized in this

definition. The next similarity is the input data, which is described as “data available from an

existing information source” and thus, largely corresponds to the dataset as introduced in

Section 3.1. Note that so far the existence of available data as input is a prerequisite to the

profiling process. Later on, it will be discussed what can be done if this condition is not met.

The Wikipedia definition further specifies that the results of data profiling are “statistics”

and “summaries”, which are a subset of metadata as mentioned before. This particular choice

of words gives a more tangible image of what exactly is being produced during profiling, and

also hints at why it is done, i. e., provide a short abstract of the data.

Abedjan et al.: Profiling Relational Data: A Survey, 2015 Abedjan et al. published

a paper in 2015 titled “Profiling relational data: a survey” [AGN15] with the goal to classify

data profiling tasks and provide a mostly algorithmic overview over the state of the art for

each task. It should be noted that Felix Naumann has co-authored this paper. In their work,

the authors propose the following definition of data profiling:

“Data profiling is the set of activities and processes to determine the meta-

data about a given dataset” [AGN15, p. 557]

Whereas previously only a single activity has been considered, this definition increases the

multiplicity to a “set of activities”. However, there is virtually no difference in referencing

each individual step as data profiling versus collectively calling all efforts by that name. Thus,

the implications of this distinction are largely non-existent. Lastly, the input and output are

described as “a given dataset” and “metadata” respectively, which is identical to the definition

from the previous section.
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Olson: Data �ality: The Accuracy Dimension, 2003 A book called “Data Quality: The

Accuracy Dimension” has been published by Jack E. Olson in 2003 [Ols03]. It consists of

three parts: (I) Understanding Data Accuracy, (II) Implementing a Data Quality Assurance

Program, and (III) Data Profiling Technology. It is the third part that has a high relevance to

the contents of this thesis. Furthermore, the author is called “one of the original developers of

data profiling technology” on the backside of the book. This makes it a useful, albeit slightly

dated, resource on the matter. In the book, Olson uses the following definition:

“Data profiling is defined as the application of data analysis techniques

to existing data stores for the purpose of determining the actual content,

structure, and quality of the data.” [Ols03, p. 122]

Here, data profiling is described as an “application of [...] techniques” instead of an activity

or a process. This embodies the perception that data profiling does not have any techniques

on its own, but rather it uses techniques from another domain (here: data analysis) and

applies them in a different context. This perception can be described as outdated as by now,

specialized data profiling algorithms and methods have been developed (cf. Chapter 5 and

[AGN15]).

The next part in Olson’s definition is “existing data stores”. This is a direct correspondence

to the previously described “dataset” and shows once more that the existence of data as an

input to the profiling process is essential. In the last part, the purpose of data profiling is

characterized as “determining the actual content, structure, and quality of the data”. In a

sense, this goes deeper than just the discovery of metadata by emphasizing to which end the

profiling results are used. Still, there is an implied similarity to the analysis purpose of the

working definition, because structure and quality are part of the analysis output.

It is interesting to note that Olson deliberately uses the term “actual content”, because

it implies the existence of non-actual content, i. e., supposed or perceived content. This

underlines the fact that Olson recommends to start with the assumption that everything that

is assumed to be known about a given dataset is wrong, and only thorough analysis with data

profiling technology can reveal the actual content. This assumption calls for a complete run

through the entire process, and is thus, very expensive and pessimistic. It can be argued that

there are cases in which preexisting knowledge about data (e. g., in the form of metadata or

documentation) is trustworthy and thus, should be used without costly reevaluation.

4.2 Metadata Typology
Having established that one of the purposes of data profiling is the extraction of metadata,

it shall be explained in more detail what exactly metadata is in this context and what it

is comprised of. To this end, Section 4.2.1 first provides a broad overview of commonly

encountered types of metadata, how they are defined and calculated, as well as how they can

be useful in a data profiling scenario. After that, Section 4.2.2 describes various classification

schemes for metadata that have been proposed in the past. Lastly, a process to operationalize

the extraction of metadata is proposed in Section 4.2.3.
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4.2.1 Common Types of Metadata
The term metadata is composed of the two terms meta and data. Meta is a Greek word that can

roughly be translated to after or beyond. Modern usage of the term as a prefix to another word

has shifted more towards about in order to indicate an abstraction from the word onto a higher

level. Thus, metadata is essentially data about data [HT03, p. 9], or as the Merriam-Webster

dictionary puts it: “data that provides information about other data” [18]. This also underlines

the intuition that looking at metadata is useful for understanding a given dataset due to

the descriptive nature of the former. The same understanding is held by the International

Organization for Standardization, which declares that “metadata is defined to be data that

defines and describes other data” [ISO04, p. 10]. However, in a later draft of the same standard,

the authors also concede that this “data about data” notion is incomplete and potentially

misleading. Their argument is that the term metadata is also frequently used to describe other

things that are not data, i. e., real-world objects such as books or movies. For example, the

metadata of a movie could include its release date or its director. This kind of data is data

about the movie, and not about some other data. Thus, the term metadata is ambiguous and

semantically overloaded. For the scope of this thesis however, whenever metadata is discussed,

the intended meaning is that of “data about data”.

The rest of this section shows what types of metadata are frequently encountered in data

profiling scenarios. There is an obvious bias towards metadata that is relevant in relational

databases. The reason for this bias is that this is the data model that is used by most of the

literary work that deals with data profiling. Ideas on how non-relational data can be profiled

are given in Section 8.2.

The following set of metadata types has been derived from two main approaches: First,

various data profiling tools have been examined to screen the features they offer. In particular,

the tool Talend Open Studio for Data Quality has been a notable source due to ease of access

and its wealth of functionality. Second, the body of knowledge about data profiling was

reviewed to find out which metadata types receive the most attention. Here, one notable

source is the work by Abedjan et al. in [AGN15], which provides a good overview on data

profiling in general and metadata types in particular. The results from both approaches have

been merged and unified to present one comprehensive set. However, note that the set of

metadata types described here cannot and does not claim to be complete, because there is an

unlimited number of metadata types conceivable. Technically, anybody can invent arbitrary

rules to define any types of metadata that are relevant for only specific use cases, which raises

the number of metadata types to infinity. Instead, the goal is to provide an overview of those

types of metadata that are pertinent to a wide range of use cases and scenarios.

For reasons of clarity, the following list is split into two parts. The first part deals with

metadata types that are generally applicable to a single field or column. In the second part,

more complex types of metadata that involve multiple fields or columns are described. At

the end of each part, a tabular overview recapitulates the metadata types for easier reference.

Finally, the case of metadata that spans more than a single dataset is addressed in a separate

subsection.
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Table 4.1: Sample CloudHost employee dataset: “emp”.

id name age department hours

1 John Smith 38 HR 39.75

2 Sun Li 42 HR 39.75

3 Jane Miller ⊥ HR 19.875

4 45 Sales 40

Single Field

To illustrate the descriptions in this section, all metadata types will be evaluated for the

CloudHost employee dataset shown in Table 4.1, which was already used back in Section 3.1.

This dataset is meant to represent an excerpt from CloudHost’s employee database and

consists of the five columns id, name, age, department and hours. When applicable, generic

SQL code samples are given to show how the respective metadata can be calculated. These

code samples will use the placeholder names tbl for a table and col for a column, and have

been tested with MySQL server version 5.6.21.

Name. A name is any label that allows identification of and reference to a specific object

or entity. Names are usually represented as alphanumeric strings and are an integral part for

the structure of any dataset. They are used to distinguish its different parts and components.

Most prominent is the name of a field or column, because it is the primary way to uniquely

specify the part of the data that is relevant for a certain operation. In the example case, the

five columns have their respective names explicitly spelled out in the first row. This means

that the first column is named id, the second column name, and so on.

Names are also used to identify other parts of the data, like tables, databases, graphs,

or similar concepts depending on the data model. In most relational DBMS, the name of a

column must be unique within one table. Otherwise, it would not be possible to distinguish

two same-named columns. To differentiate between two same-named columns in different

tables, the table name and a separating dot are commonly used as a prefix. Thus, id could

also be referred to as emp.id in order to differentiate it from another column id that might

exist in a different table.

It can be challenging to handle cases in which the names of the columns are not explicitly

provided, e. g., when data is loaded from an undocumented CSV file. Most tools handle such

cases by using placeholder names with ascending suffixes, such as COL_01, COL_02, etc. These

should be replaced by proper names as soon as possible, because having descriptive names in

place is a very important part in making data understandable. Thus, when naming columns

(or tables or graphs...) one should always try to describe the content in a concise manner that

allows others to easily understand what is meant. If applicable, naming conventions should

be followed. For example, Oracle proposes a set of naming standards for all objects within a

database [23].

At CloudHost, most datasets are stored in relational databases, where names of tables and

columns are enforced to be uniquely identifiable. Combined with a well drafted policy of how
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these names should be designed, it is usually very easy to understand a given CloudHost

dataset. However, when exporting datasets out of the database, it is very common that tables

and columns are renamed or merged in non-unique fashion.

In one particular case of the original CloudHost project, a dataset needed to be processed,

which was the result of a larger join query that combined the data from many different

tables. That dataset was provided in the format of a spreadsheet file, without any constraints

regarding the existence or duplication of any names. As such, that file contained four distinct

columns with the exact same name ID, with no further information as to what data each of

these columns contain or how they should be interpreted. As it turned out, each of these

columns referred to a different source table, and it required a lot of manual back and forth

between different involved stakeholders to resolve this ambiguity and establish a mapping.

If these ID columns had been renamed uniquely to include a reference to their respective

source table, this problem would not have existed.

In another case, a CloudHost analyst from Denmark created a report in which he translated

every column name to Danish. Sharing that report with his other Danish colleagues did not

cause any issues, but when the report was sent to the German headquarters for verification,

nobody could understand what any of the columns meant. Thus, this case also required

unnecessary additional work to fix a problem that was caused by naming issues.

The lesson here is that names are an important part of any dataset and should be treated

carefully. Renaming a column can sometimes save time as in the first case, or cause additional

problems as in the second case.

Data Type. The data type of a column specifies the type of values that are allowed in it.

The most general data type is character string, which allows a sequence of characters from a

fixed alphabet (e. g., the American Standard Code for Information Interchange, ASCII) to be

stored. In the example table, John Smith is a character string. By putting further restrictions

on the value space, other data types can be derived. For example, if only numeric digits are

allowed and no letters or other characters, integers can be represented, like the age of John

Smith “38”. With the addition of a decimal separator, the data type decimals is expressible,

e. g., the hours of John Smith “39.75”, which uses a dot as separator.

Note that these considerations are based on a purely representational view, that is, what the

data looks like to a user. The internal representation of the different data types on an actual

(database management) system is much more complicated and involves technical details that

are omitted here as they are not relevant for profiling purposes.

Further data types, like time or date, are constructed by enforcing a specific pattern and/or

value ranges that correspond with the desired output. For example, the pattern YYYY-MM-DD

specifies that a date should be stored by using the first four digits to represent the year, then

a dash, then two digits for the month, another dash, and lastly two digits for the day of the

month. The underlying system could further require that the value of MM is between 01 and

12, or DD is between 01 and 31. Lastly, for data that has no useful representation in the form

of characters and numbers, a binary data type is usually employed.

When working with a concrete DBMS, it is customary to refer to the data types not

by their generic names, but rather through DBMS-specific identifiers. In most SQL-based
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implementations, these are CHAR and VARCHAR for character string, INT for integers, FLOAT

or DOUBLE for decimals, TIMESTAMP and DATE for time and date, and BLOB (short for Binary

Large OBject) for binary data. Most of these data types also have variations for differing sizes,

like TINYINT or MEDIUMBLOB.

The data type of a column is a crucial information that is useful in many different ways.

For example, if it is known that two columns have incompatible data types (say, string and

number), then it makes probably no sense to attempt to perform a join operation along those

columns. Similarly, instances where a column should be of one data type, but includes values

of another type (e. g., a string in a number column), can be flagged as violations that should

be looked into.

Ideally, the data type of every column is given as part of the schema or documentation and

does not need to be inferred or determined manually. However, this is not always the case,

e. g., when data is dumped into a plain text format like CSV. Then, it is usually not possible to

unambiguously find the data type of every column. For example, the column id in the sample

dataset consists of only integers, so it would be natural to assume integer as the data type.

However, this is not the only possibility, because this column could also be declared to be

of type string without causing any violations. Thus, domain knowledge might be required,

like the information that the id column is used as the primary key which performs faster on

integer types. In conclusion, an automated data type determination should always be followed

up by a manual inspection by a domain expert.

Row Count. The number of rows is a very basic type of metadata for a dataset. It is usually

given on a per-table basis, i. e., every table has its own distinct count. The row count is a very

useful number to have when assessing the size of a dataset. Due to its simplicity, almost every

data-centric tool automatically calculates and displays this number. In cases where the term

row does not fit with the structure of the data, a synonym is used, e. g., entity count, node

count, or relation cardinality. Sometimes, it is also referred to simply as the size of the dataset,

although this can be misleading due to similar names of unrelated concepts, such as the space

in bytes allocated to the dataset.

The row count for a table tbl can be calculated in SQL using this query:

SELECT count(*) FROM tbl

This query returns 4 for the CloudHost employee dataset. Note that the header row is

considered part of the schema and is thus not interpreted as a data row. This distinction is

important in cases where it is not clear whether the first row should be interpreted as the

header row, which happens often in plain text formats, e. g., CSV files.

One major use case in which the row count plays a crucial role is query optimization. A

query can be optimized, i. e., its execution sped up, by transforming it into an equivalent query

with less costs [Cha98]. This is achieved through re-arrangement of processing steps in such

a way that intermediate results are minimized. Knowing the row count of every participating

table of a query is a prerequisite for this procedure.

Another use case for the row count is the first step of validation after data migration. Recall

that data migration is act of moving data from one location to another Section 3.2. There
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are numerous reasons why such a migration might be incomplete: data being unreadable

due to corruption, data getting lost during transmission (e. g., due to packet loss or other

network issues), or data being unwritable at the destination due to integrity constraints or

other restrictions. How these errors are identified and treated depends on the implementation

of the system performing the migration. Some systems may give a detailed report of any

encountered error, while others may silently ignore them, resulting in data loss. In any case,

it is reasonable to at least compute and compare the row count at every step along the way,

to make sure no data is inadvertently lost.

In the CloudHost scenario, one step of data processing consisted of the data being pulled

from a source system, stored as a spreadsheet file, compressed into a ZIP archive, sent via

mail, uncompressed, and loaded into a target database. It is very inexpensive to compute

the row count of the dataset at three points during this procedure: in the source system,

the spreadsheet file, and the target system. Comparing the numbers revealed that, indeed,

a sizable number of rows got lost between the file and the target system, which was likely

caused by an error in the compressing and uncompressing steps. Redoing these steps fixed

the issue and corrected the row count to be the same in the source and target system.

Null Count. Most (relational) databases support a special value called null to mark cells

whose true value is not applicable or not known. The null count can be computed for a column

by counting all these occurrences. A simple SQL query to do so is for example the following:

SELECT count(*) FROM tbl

WHERE col IS NULL

Note that the WHERE condition uses the special operator IS NULL instead of a direct com-

parison, i. e., col = NULL. This is because null is not a value, but rather the absence of one,

and thus cannot be used in this way for a comparison.

In the employee example dataset, a null value is indicated with the special symbol ⊥. The

age column has one such value, so the null count for this column is 1. Put into context, this

means that the age of Jane Miller is unknown. This observation can be used in different ways.

For example, the completeness of a column can be defined as the ratio of non-null to total

values. This is already a useful data quality metric, albeit a very simple one. Another example

is that columns with a null count greater than one can be filtered out when looking for key

candidates, because keys usually do not contain nulls.

During the CloudHost scenario, an analysis was conducted that focused on one specific

column, which contained descriptions of the product portfolio. The results of this analysis

were met with skepticism from the domain experts ("this can’t be right"), and consequently,

much time was spent on going through the individual steps of the analysis. In the end, it

was found that the root cause for the wrong results was not in the analysis, but in the data

itself: the descriptions column had a completeness of less than 10%, i. e., more than 90% of the

values were NULL. This made the analysis mostly worthless. In this case, a quick look at the

null count could have saved time and effort.

The fact that null values only exist in systems that support them (i. e., database management

systems) has a number of ramifications. For example, it is common practice to transfer data
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by exporting into a flat-file format and re-importing into the target system. However, as the

flat-file format does not support null values explicitly, they are usually converted into empty

values. This makes them indistinguishable from actual empty values. During the re-import, a

decision needs to be made whether empty values should be converted back into null values

or kept as empty values. No matter how that decision is made, information will be lost.

Blank Count. A blank value is a value that is empty, i. e., it contains an empty string with

no characters and length zero. This is most commonly expressed by writing two quotes with

nothing in between (`'). Blank values are different from null values in systems that support

them, because they are treated as actual values which allows the usage of standard comparison

operators. Furthermore, this implies that a column with a NOT NULL constraint may very well

contain blank values.

Counting the number of blank values in a given set of values yields the blank count. In an

SQL query, the blank count of a column can be computed as follows:

SELECT count(*) FROM tbl

WHERE col = ''

In the sample employee dataset, this query returns 1 for the column name and 0 for all

other columns.

It should be noted that sometimes the term blank space is used to denote a whitespace

character (` '), which is produced by hitting the space bar on a standard keyboard. This

should not be confused with the usage here, where blank is a synonym for empty string. This

also implies that the blank count can only be meaningfully computed for columns with a

string data type. For all other data types, the blank count will always be zero.

There is another peculiarity regarding blank values that users should be aware of. Depending

on the implementation and configuration of the tool and database used, trimming functions

may be applied that automatically remove leading or trailing whitespaces. This may lead to

unexpected situations in which a comparison like `' == ` ' may evaluate to true.

Default Value Count. Many systems allow the definition of a default value for a field or

column. This default value is used whenever a row is inserted without an explicit value for

that column. The default value count can then be computed by counting the number of values

that are equal to that default value, which translates into the following SQL query:

SELECT count(*) FROM tbl

WHERE col = '<default>'

The placeholder <default> needs to be replaced by the determined or assumed default

value. This implies that without any pre-existing knowledge about the default value, this

count cannot be computed.

In the example case, it shall be assumed that the default value for age is null. Thus, the

query above returns 1 for that column.
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Distinct Count. Two values are considered distinct if they are not equal to each other. The

distinct count is the number of values in a given collection that are distinct from each other.

The naming is derived from the SQL operator DISTINCT, where it can be used as follows:

SELECT count(distinct col) FROM tbl

In the CloudHost employee dataset, this query returns 2 for the column department,

because there are two distinct values in it (HR and Sales).

The computation of the exact distinct count for a given dataset is straight-forward, but uses

an amount of memory that grows linearly with the size of the dataset. This may be prohibitive

in scenarios with large datasets or small amounts of available memory. Thus, a number of

approximation algorithms have been proposed that aim to reduce the memory usage and to a

lesser extent, the total runtime. As the number of distinct values in a dataset is also called its

cardinality, these algorithms are commonly referred to as cardinality estimation algorithms.

A recent and comprehensive evaluation of twelve cardinality estimation algorithms is given

by Harmouch and Naumann in [HN17].

Unique Count. A value in a collection is said to be unique if no other value in that collection

is equal to it. In other words, a unique value appears exactly once. The unique count is

consequently the number of values in a collection that are unique. Computing this number

is not directly supported by a standard SQL operator. However, a sub query can be used to

compute the unique count in the following way:

SELECT count(*) FROM (

SELECT * FROM tbl

GROUP BY col

HAVING count(col) = 1)

AS unique_count

The inner clause selects all values that appear exactly once, and the outer clause counts

the number of values returned by the inner clause. Together, this accomplishes the task of

computing the unique count of a given column. In the sample employee dataset, this query

returns 1 for the column department, because there is only one value that appears exactly

once (HR).

Dividing the unique count by the row count results in the unique ratio, i. e., the percentage

of values that are unique. If the unique ratio has a value of 1, then every value is unique, and

the respective column is a potential primary key candidate.

During the CloudHost scenario, a situation emerged where the primary key of a dataset in

a spreadsheet file needed to be determined. Spreadsheets usually do not contain information

about primary keys in a dataset, so a manual search was conducted. By computing the unique

ratio for each column, and then discarding all columns with a unique ratio of less than 1, the

search field could be narrowed down considerably. The remaining columns were considered

primary key candidates from a technical perspective, and together with the domain experts

that know about the business meaning of each column, it was very easy to find the one

column that should be declared as primary key.
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Duplicate Count. Two values are considered duplicates of each other if they are equal.

One might be inclined to think that the duplicate count then is the number of duplicates in a

collection. However, this declaration is too vague as it is not clear whether both duplicate

values should be counted or just one of them. The problem gets more complicated if more than

two duplicates exist for one value. An examination of different data profiling tools reveals that

different data profiling tools implement the duplicate count in different ways. The following

three definitions can be distinguished:

1. The number of distinct values that appear more than once, i.e., the number of values

that have at least one duplicate. The number of duplications for one specific value does

not matter. This is the interpretation of Talend.

SELECT count(*) FROM (

SELECT * FROM tbl

GROUP BY col

HAVING count(col) > 1)

AS dup_count

2. The number of values that are duplicates of already seen values. This is the number of

values that can be considered redundant and, e. g., flagged for removal during duplicate

detection and is reported, e. g., by the ataccama Data Quality Analyzer.

SELECT sum(c) FROM (

SELECT count(col)-1 as c

FROM tbl

GROUP BY col

HAVING count(col) > 1)

AS dup_count

3. The number of total values that appear more than once. While this interpretation has

not been observed in any tool, it is easy to make a reasonable argument for it.

SELECT sum(c) FROM (

SELECT count(col) as c

FROM tbl

GROUP BY col

HAVING count(col) > 1)

AS dup_count

To illustrate this with an example, consider the department column in the CloudHost em-

ployee example, which consists of four values: HR,HR,HR, Sales. Counting the number

of duplicates in this column can be done in three different ways. According to (1), the result

is 1, because only HR appears more than once. However, it could also be argued according

to (2) that the result is 2, because two instances of HR are duplicates of one original HR.

Finally, the answer to the duplicate count could also be 3, because three instances of HR
can be observed, and they are all duplicates because they are not unique (3). In this line of

thought, the original HR can not be distinguished from its duplicates. It should be noted that
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despite these different methods of counting, all three definitions agree on the result zero if no

duplicates are present. Thus, there is no ambiguity to the statement “there are no duplicates

in this set”, but it is unclear what is meant when x duplicates are asserted if the method of

counting is not specified. This is especially relevant in scenarios where data quality metrics

or scores are constructed based on the count of duplicates.

The duplicate count as discussed here is only defined for exact matches of values. Depending

on the use case, it can also be worthwhile to extend that notion and look for close matches,

which is known as fuzzy matching. Independent of how the duplicate count is defined, it is

usually the goal to minimize it, because a duplicate is usually an indicator for a data quality

issue. The process of finding and eliminating duplicates is called deduplication.

Value Length. The length of a value is defined as the number of characters it contains. For

example, the length of the string John is four, because it has four individual characters. As

this concept of length applies only to a single value, it is not really useful as metadata by itself.

Usually, an aggregation function is applied to derive more interesting information about a set

of values (e. g., a column). Examples for these aggregations include minimum, maximum and

average.

To compute the minimal value length of a column using SQL, the following query can be

used:

SELECT min(length(col)) FROM tbl

In the CloudHost employee dataset, this query returns 0 for the name column, because

the blank value in row 4 is counted as zero length. Similarly, the maximal or average value

length can be computed with the built-in SQL functions max and avg. Applied to the employee

dataset, the maximal value length of the name column yields 11. Note that the longest value

is Jane Miller in row 3, and that counting characters also considers white spaces.

Using the average function on the name column results in 6.75. This can easily be verified:

John Smith has length 10, Sun Li has length 6, Jane Miller has length 11, and the empty

value in row 4 has length 0. Summing these numbers up and dividing them by their count

equals 6.75, i. e., (10 + 6 + 11 + 0)/4 = 6.75.

These various aggregations of value lengths have a number of uses, which are typically

dependent on additional domain knowledge about the types of values that are stored in a

field or column. For example, if the minimal value length equals zero, there is at least one

value that is empty. This hints at data quality issues when empty values are not expected,

e. g., in a name column. Similarly, a minimal value length of one or two in a name column is

suspicious and warrants further investigation. The maximal value length on the other hand

can hint at abnormal values and outliers on the other end of the spectrum. If for example the

maximal value length in a column city is 50 or longer, it is possible it has been misused to

store additional information, like country or continent. The maximal value length also has an

important technical use case. Most relational DBMSs handle string columns with an explicit

maximum number of allowed characters, e. g., VARCHAR(255) indicates that no string longer

than 255 characters may be put into that column. Knowledge of the maximal value length of

a given column can thus be crucial when designing a database table to hold the data, e. g., in

a data migration scenario.
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Number of Decimals. In numeric data types that represent non-integer numbers, such as

float or double, the decimal part is the fraction that is not integer. In colloquial terms, this can

be explained as “everything after the dot”. For example, the decimal part of ’1.23’ would be

’23’. The number of decimals then is defined as the length of the decimal part, i. e., 2 in the

aforementioned example.

Calculating the number of decimals for a given number can be done by stripping away

the integral part (“everything before the dot”) and then counting the number of digits that

remain. In SQL, the following query calculates the number of decimals for every value in a

given column:

SELECT

col,

GREATEST( LENGTH(CAST(col - FLOOR(col) as CHAR(50)))-2,0)

as decimals

FROM tbl

The subtraction of two is done to account for the leading zero and the decimal dot, which

is a MySQL-specific correction that may need to be adapted for other DBMSs. This does

however lead to negative results when numbers without a decimal part are put in, which is

unwanted. Thus, the GREATEST function catches these cases and sets the result to zero. This

query can be applied to the hours column of the employee dataset. The results are 2 for ’39.75’,

3 for ’19.875’, and 0 for ’40’.

Similarly to the value length before, it is usually not desirable to look at this result for each

individual value. Instead, it should be aggregated in a way that makes semantic sense for

the data, e. g., using min, max or avg. For example, in a scientific experiment where data is

generated through physical measurements, the number of decimals is an indicator for the

precision of the sensors. Looking at the minimal and maximal number of decimals provides

insight into the precision range of measurements and allows its validation. Note that in this

example, it might also be advisable to remove trailing zeros before counting decimals to assess

the true informative content, and not be misled by padded numbers.

Value Statistics. These types of metadata are computed using simple statistical functions

applied to the values of an input dataset. Starting with the lowest complexity, the minimal
and maximal values of a dataset are the lowest and highest values, respectively. SQL has

built-in functions that allow a direct computation of a column’s minimal or maximal value.

The following query returns the minimal value:

SELECT min(col) FROM tbl

Applied to the age column of the CloudHost employee dataset, this query returns 38.

Replacing min with max returns 45 as the maximal value. Note that these functions are defined

on the basis of an underlying order of the data type in question, which is also used when

sorting the data. For numerical data, this order is trivial. For date data types, like datetime

or timestamp, the convention is that older dates have a lower value and newer dates a
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higher value. When the data in question contains string data, it depends on the system

implementation which order is chosen. Most implementations apply an alphabetical order,

such that, e. g., ’A’ is treated as a lower value than ’B’. However, other implementations could

also use a different order, or even disable these functions for string data types entirely.

The next concept is the average. Mathematically speaking, there exist numerous differing

definitions of what exactly the average of a collection of values is. In most cases, the term

refers to the arithmetic mean, i. e., the sum of the numbers divided by the count of numbers.

Whenever the term average is used in this thesis without further specification, the arithmetic

mean is meant. The definition of the average already reveals the constraint that it is usually

only defined for numerical data types. Most SQL-based systems implement an avg function

to quickly calculate the average of a column:

SELECT avg(col) FROM tbl

For the age column in the CloudHost employee dataset, this query returns 41.66 for the

age column. The calculation to verify this result is: (38 + 42 + 45)/3 = 41.66. Note that the

null value in row 3 does not factor into this calculation at all, because it is not treated as a

value.

The minimal, maximal and average value, provide a first intuition about the distribution of

the data. Some tools also offer the calculation of the range, which is defined as the max value

minus the min value. In some scenarios, a user may have a premonition or rough expectation

about the values of these metadata types. If that is the case, these premonitions should be

compared to their actual values, because any discrepancies here constitute valuable insights.

As said before, average has multiple definitions. For the purpose of data profiling, a second

definition can be of importance, namely the median. The median of a set of numbers is the

value that separates the lower half from the upper half. Note that ’lower’ and ’upper’ here

imply that the set is sorted. Use cases of the median are very similar to the average (i. e., the

arithmetic mean). Both are useful to derive the central tendency of a set of numbers and get a

first insight into its distribution. The median is more robust with regard to extreme values

and outliers, whereas the average is more intuitive and easier to interpret.

x-th Percentile. Another way to quickly describe the distribution of a set of numbers is the

x-th percentile. The x-th percentile states the threshold value below which x% of the numbers

are found. For example, the employee dataset has three numbers in the age column: 38, 42 and

45. The 33rd percentile is the cut-off age below which 33% of the employees are. The value of

the 33rd percentile in this example is 38. Consecutively, it can be derived that the remaining

67% of employees are above that age. Note that following this definition, the median can also

be interpreted as the 50th percentile. Further percentiles with special names are the lower

quartile and the upper quartile, which correspond to the 25th and 75th percentile, respectively.

The inter quartile range, defined as the difference between the upper and lower quartile, is a

popular measure for noisy data, because it is more robust to outliers than, e. g., the range.

Mode. The next metadata type is the mode (or modus), which is defined as the most

frequently occurring value in a set of values. The mode can be derived using the following

SQL expression:
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SELECT col FROM tbl

GROUP BY col

HAVING count(*) = (

SELECT count(*) FROM tbl

GROUP BY col

ORDER BY count(*) DESC

LIMIT 1)

In the CloudHost employee dataset, this query returns ’HR’ for the department column,

because it occurs three times, which is more than any other value. Note that the mode is not

necessarily unique, i. e., there can be multiple values that occur the most.

In statistics, the mode is often compared to the average and the median, because they fulfill

the same purpose of describing the central tendency of a distribution. While the detailed

intricacies of the differences of these three measures are omitted here, one key purpose of

the mode shall be highlighted. The mode is defined for arbitrary data types, i. e., numeric

or non-numeric. In particular, it does not require any order of its input values, unlike the

average and the median. Thus, in cases where there is no order of the data values, or where

the assumed order (e. g., alphabetical) is not meaningful, the mode should be favored. For

example, in a column that contains city names it makes little sense to ask for the average city.

However, the most frequently occurring city, i. e., the mode, can provide valuable insight.

Value Frequency Table. In statistics, the frequency is the number of times a thing of

interest has been observed or occurred. The value frequency is thus the frequency of a data

value within a given dataset. For each value, the frequency can be computed in absolute terms,

or relative to the number of total values in the set. Usually, the value frequency for multiple

values (or all of them) is displayed in the form of a table, hence the name value frequency
table. Such a table has a column for the value and additional columns for the absolute and/or

relative frequency, depending on the use case. If the number of distinct values is too large,

the number of rows in the table can be limited to a fixed number.

In SQL, a value frequency table with absolute frequencies can be computed using the

GROUP BY operator. Combined with ORDER BY and LIMIT, the x most frequent values and

their absolute frequency are retrieved with the following query:

SELECT col, count(*) FROM tbl

GROUP BY col

ORDER BY count(*) DESC

LIMIT x

Executing this query on the department column of the CloudHost employee dataset gives

the result shown in Table 4.2.

Note that if the least frequent values are sought after, e. g., to look for outliers, then the

order can be reverted by changing DESC to ASC. Depending on the tool used, the most or least

frequent values are also referred to as top x or bottom x, respectively.

Due to their definition, value frequency tables tend to be clear and compact in their

representation, which enables their quick assessment by a user. They are especially well
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Table 4.2: Value Frequency Table of the department Column.

department count(*)

HR 3

Sales 1

suited for data that is categorical, like the department column in the example case. However,

value frequency tables are less suitable for fields or columns that contain many distinct or

unique values, or continuous numerical variables. For example, in a primary key column

where every value is unique, the frequency for all values is equal to one. In such a scenario,

no useful insight can be gained from a value frequency table.

Pa�ern Frequency Table. Patterns are a way to abstract a concrete value into a more

generalist form, which allows easy identification of prevalent structures and commonalities

in, e. g., a collection of strings. There are various ways and languages to define a pattern.

Many profiling tools offer a simple approach, in which the pattern of a data value is derived

by going through it character-wise and replacing each character with a placeholder for that

character. For example, upper-case characters are replaced with ’A’, lower-case characters

with ’a’ and numbers with ’9’, while special characters are left as they are. With this, the

strings Tom and Jim are both turned into Aaa, i. e., they adhere to the same pattern.

The values in any given dataset may have a number of different patterns. Aggregating

these patterns and counting their frequency results in a pattern frequency table, which is

similar in structure to a value frequency table, but lists patterns instead of actual values.

Pattern frequency tables are very powerful when assessing string data where a correct

pattern of fixed length can be explicitly stated. For example, consider a scenario where zip

codes are stored in a column. In Germany, all zip codes need to consist of exactly five numbers.

Consequently, every valid zip code needs to conform to the pattern ’99999’ and every other

observed pattern is likely to stem from some data quality issue.

Pa�ern Matching Count. There are many more patterns that can be observed in a dataset

but require techniques more sophisticated than the simple replacement steps described above.

For example, a valid e-mail address consists of letters, and numbers, followed by the @ symbol,

followed by some more letters or numbers, then a dot, and finally a top-level domain indicator.

This is a simplified pattern for e-mail addresses and the full specification can be found in [32].

Due to the varying length of the individual parts, a pattern frequency table is insufficient to

accurately distinguish valid and invalid e-mail addresses.

This task can adequately be handled with the use of regular expressions, which define a

precise syntax to represent patterns. They go back to the work of Kleene [Kle51]. A regular

expression that correctly identifies valid e-mail addresses following the description above

would be:

[A-Z0-9._%+-]+@[A-Z0-9.-]+\.[A-Z]{2,4}
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For an explanation of this syntax, the reader is referred to a textbook on the matter (e. g.,

[Fri06] or [GL12]) or one of the many online resources that describe regular expressions and

how they work in detail.

The pattern matching count of a dataset is defined as the number of values that match

a specified pattern. Thus, this type of metadata requires a pattern (e. g., in the form of a

regular expression) as additional input. For numerous scenarios, pre-compiled patterns exist

for validation, like e-mail or IP addresses, website URLs, phone numbers, and currencies. A

user can also provide his own pattern in case there are domain-specific requirements on how

the data should be formatted.

As powerful as regular expressions are, they also have limitations. Consider for example

the International Standard Book Number, or ISBN for short. The ISBN is a numerical code

system that is used to uniquely identify each commercially available book worldwide. In its

newest version, it states that a valid ISBN consists of 13 digits grouped into 5 parts. While

this is easy to check with a regular expression, there is an additional constraint added on top:

the check digit. The last digit of an ISBN is the check digit and its value must be the result of

a particular calculation involving the other 12 digits. This allows a certain degree of error

detection, because small mistakes like mixed up digits result in an ISBN that is most likely

invalid instead of a reference to a completely different book. The verification of the check

digit is however beyond the capability of regular expressions. Thus, the validation of ISBNs

requires special code, which is indeed included in some data profiling tools.

Summary A summary of the various types of metadata that have been described so far in

this first part is given in Table 4.3. For every type it lists the name, a short description and a

note about restrictions and applicability considerations.

Multiple Fields

This section describes types of metadata that involve more than a single field. These can be

multiple columns in a relational database, or different attributes in a document- or graph-

oriented data storage. Note that some of the following concepts are usually discussed as

constituents of data mining or statistics. The reasons they are included here is that first,

they fit the definition of being metadata, i. e., data about data, and second, they are helpful

in getting to know and understanding the data in question, which is the main goal of data

profiling. Thus, it is reasonable to consider them as metadata types despite their origin.

Correlations. A correlation is a measurement between two sets of data that, broadly

speaking, describes how closely they are related to each other [JWHT13, p. 70]. If values from

one column can be predicted with reasonable accuracy based on the values of another column,

both are said to be correlated. The most prominent type of correlation is a linear relationship,

i. e., two sets of data are related such that increasing values in one set imply linearly increasing

(or decreasing) values in the other set. This type of correlation is only applicable to numeric

data. The underlying cause for this is often a connection between real-world concepts. For

example, the height of a person is correlated with his shoe size, i. e., the taller a person is, the

larger his shoes are likely to be.
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Table 4.3: List of single field metadata types.

Metadata Description Note

Name Label that uniquely identifies an

attribute, field or column

Also applicable to collections

of data, e. g., tables, graphs, or

databases

Row Count Number of rows in a dataset Also known as entity count,

node count, or instance count

Data Type Data type of a data value or field,

e. g., string or number

-

Null Count Number of null values Only applicable within a system

that supports null values

Blank Count Number of blank values, i. e.,

empty cells

Only applicable to string data

types

Default Value Count Number of values equal to the

default value

Only applicable when a default

is known

Distinct Count Number of values that are differ-

ent from every other value

Also known as cardinality (of a

dataset)

Unique Count Number of values that appear ex-

actly once

-

Duplicate Count Number of duplicate values May be defined differently de-

pending on use case

Value Length Number of characters a value

contains

Usually aggregated with min,

max or avg

Number of Decimals Number of decimals in a numeric

value

Only applicable for numeric data

types. Also known as precision

Value Statistics Lowest, highest, average or me-

dian value in a dataset

Average is only applicable to nu-

meric columns. Median requires

an ordered set.

x-th Percentile Threshold value below which x%

of the values are

Only applicable for numeric data

types

Mode Most frequent value, i. e., value

that appears most often

-

Value Frequency

Table

Table of most (or least) frequent

values

Can include absolute and/or rel-

ative frequencies

Pattern Frequency

Table

Table of most (or least) frequent

patterns

Only applicable to string data

types

Pattern Matching

Count

Number of values that match a

specified pattern

Patterns can be provided as reg-

ular expressions
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There are many ways to measure and quantify the degree of correlation between two

datasets. The most common way is to use a correlation coefficient, such as the Pearson

correlation coefficient [FMR12]. A correlation coefficient can assume any value between −1
and +1, where +1 indicates the strongest degree of positive correlation and −1 the strongest

degree of negative correlation. A value of zero indicates that there is no correlation in either

direction.

In data profiling, correlation is a useful type of metadata because it reveals to a user which

part of the data is related to which other part of the data. This can be very helpful in cases

where the user is unraveling the semantics behind the data or is looking for a connection

between two datasets. For example, a recent study on taxi and weather data has found a

negative correlation between the number of taxi trips and the wind speed, i. e., when it is

windy, people tend to not take a taxi [CDDF16]. This phenomenon could then be traced back

to hurricanes Irene and Sandy.

Additionally, it makes sense to periodically check for correlations in datasets where no

correlations is assumed. This is because unexpected correlations have the potential to reveal

new and impactful insights. Computing every correlation coefficient in a given dataset requires

a comparison of each column with each other column, i. e., the number of steps grows squarely

with the number of columns. This makes it computationally expensive and can quickly become

prohibitive. Thus, some tools only offer to compute the correlation between columns that the

user specifically selects.

Association Rules. An association rule expresses the co-occurrence of two or more values

in a dataset. It is written in the form x→ y, which expresses that the value x is likely to be

observed together with value y. This is often done in market basket analysis or recommender

systems [BMU
+

97][LRU14, p. 213][SKKR00]. For example, a retailer might find out that the

rule {diapers} → {beer} can be derived from his sales data, which indicates that people

who bought diapers are also likely to have bought beer. This information can then be used to,

e. g., plan promotional offers or optimize shelf arrangements [AIS
+

93].

Numerous algorithms for generating or mining association rules have been developed. One

very popular example is the Apriori algorithm, which has been invented by Agrawal and

Srikant in 1994 [AS94]. It provides exact results, making it great for smaller datasets, but

it is not very scalable. This has prompted development of extensions that use heuristics to

sacrifice accuracy results in favor of speed and memory requirements. A detailed survey of

algorithms for association rule mining can be found in [HGN00].

One notable characteristic of association rules is that they can be applied to categorical

values. This makes them a valid option to choose from if the data at hand is not numeric and

other analysis methods are not applicable.

Unique Column Combinations. A unique column combination (UCC) is a set of columns

whose projection, i. e., the removal of all other columns, contains only unique value combina-

tions [AGN15]. In other words, a UCC consists of columns that are able to uniquely identify

each row of the dataset. For instance, the primary key of a relation is a UCC, because its

projection is per definition unique. Note that, despite the name, a UCC can also consist of
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just a single column.

Discovering all UCCs in a given dataset is an NP-hard problem [HQRA
+

13]. Each additional

column exponentially raises the number of potential column combinations that need to be

examined for uniqueness. This makes it very challenging to construct algorithms that are

both efficient and scale to larger datasets. One such algorithm is called DUCC, shorthand for

discovery of unique column combinations, which is presented in [HQRA
+

13]. DUCC solves

the problem by employing depth-first search and random walk strategies to traverse the

intermediate graph. An in-depth explanation of this algorithm as well as a comparison with

other UCC discovery algorithms are given in [AGN15].

Knowing the UCCs of the data at hand can be helpful in a number of data-related tasks,

such as data integration or query optimization. In cases where the primary key of a relation

is needed but unknown, UCCs can be used to narrow down the set of possible columns as

every UCC is a candidate key.

Inclusion Dependencies. Given two sets of columns A and B, an inclusion dependency

(IND) written as A ⊆ B states that each individual value in A also appears in B [AGN15]. For

example, in an employee table, it is reasonable to expect that every value in the department

column also appears in the department table, i. e., every employee works in a department

that is listed as part of the company. Note that INDs are not symmetric and the opposite

does not necessarily need to hold. In the example, not every value from the department table

needs to appear in the corresponding column in the employee table, which means that there

could be departments with no associated employee. In other words, emp.department ⊆
department.name holds true and is a valid inclusion dependency, but department.name ⊆
emp.department is false.

INDs have been formalized by Fagin in 1981 [Fag81] and form the basis for referential

integrity in relational databases. This is because foreign keys are a specialization of INDs

in which the left-hand side is a reference to a primary key on the right-hand side. In other

words, INDs are usually the first step when discovering foreign keys. Cases where the left-

and right-hand side come from the same relation are called self-referencing or recursive foreign

keys.

An extension of INDs is the concept of a partial or approximate INDs [LPT02][DLP09].

These are INDs that almost hold true, i. e., there is a small number of values that violate the

IND, and once removed, turn the partial IND into a proper one. Partial INDs are very useful

when dealing with dirty or noisy data, because they can be used for data cleaning purposes.

Another extension is the concept of conditional INDs which only hold on a well-defined

subset of the data [BAL
+

12][AGN15]. A well-defined subset in this context can be described

by a clear filter rule, such as department = sales, which then acts as a condition for the

associated IND.

Calculating these different types of INDs is far from trivial. Much research effort has been

put into devising and optimizing algorithms that address this challenge. Papenbrock et al.

present an efficient and scalable algorithm for exact IND discovery in [PKQRN15], while

partial INDs are also considered in [LPT02].
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Table 4.4: CloudHost customers dataset.

Customer ID Zip code City

1 48143 Münster

2 48565 Steinfurt

3 48149 Münster

4 48565 Steinfurt

Functional Dependencies. A functional dependency (FD) is a relation between two sets

of columns in a relation that states that any two rows that have the same values in the first

set of columns must also have the same values in the second set of columns. Formally, this

can be written as follows: “A functional dependency over R is an expression of the form

X → A, indicating that ∀ri, rj ∈ r if ri[X] = rj[X]; then ri[A] = rj[A].” [AGN15, p. 570].

To illustrate this concept, consider Table 4.4, which shows a small excerpt of CloudHost’s

customer data, with customer IDs, zip codes and cities. It can be observed that each distinct

zip code is associated with the same city, which translates into the FD zip code→ city. In

other words, it can be said that the zip code functionally determines the city. This FD would

be violated if a row were entered that contained, e. g., 48143 as zip code and any other string

than ’Münster’ as city.

FDs can be found in every relation. When a primary key is set, it functionally determines

every other column. In the example case, the FD customer id→ zip code, city holds.

FDs based on primary keys are usually not very useful, because primary keys are by definition

unique, and unique columns, i. e., columns with only unique values, always functionally

determine all other columns. Furthermore, for any given set of columns A, the FD A→ A
holds. However, not much can be learned from such an obvious FD, which is why they are

called trivial. More generally, every FD A→ B is called trivial when B is a subset of A.

More useful are FDs that are neither based on a unique column nor trivial. The FD zip

code→ city for example can be used to impute missing values: Assume that a new row is

entered which has 48565 as zip code but null as city. This missing value poses a data quality

issue and should be resolved as soon as possible. Domain knowledge shows that zip code

→ city holds, and thus, the missing city value can be inferred from the zip code. This is

done by looking up 48565 in the other rows and taking the city value ’Steinfurt’ from there.

It does not matter whether row 2 or 4 is found first, because they both have the same city

value. Note that this obviously requires that the zip code in question is already present in the

data or can be looked up from another source. This concept is similar to the chase algorithm,

which was introduced by Aho et al. [ABU79].

Further application areas for FDs can be found in the normalization of databases where

they are used to search for violations of the second and third normal form. Another area is

data warehousing that uses a denormalized star schema. Here, FDs can be used to gain insight

into potentially hidden dimension hierarchies. Generally speaking, the presence of an FD

reveals some of the semantics of the underlying data, because it shows how the individual

parts are related and connected. This makes them a very useful concept in any data profiling

scenario.
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Table 4.5: List of multi field metadata types.

Metadata Description Note

Correlations Measures the degree to which

two datasets are related

Usually quantified using

correlation coefficients that

range from −1 to +1, e. g.,

the Pearson correlation

coefficient

Association Rules Expresses co-occurrences of

values

Applicable to categorical val-

ues

Unique Column

Combinations (UCC)

Set of columns that uniquely

identify each row

Useful when searching for pri-

mary key candidates

Inclusion Dependencies

(IND)

Relation between two sets of

columns that states that each

value on one side must also

appear on the other side

Prerequisite for foreign keys

and referential integrity. Ex-

tensions include partial and

conditional INDs

Functional Dependencies

(FD)

Relation between two sets of

columns that states that val-

ues on one side functionally

determine values on the other

side

Used for database normaliza-

tion. Extensions include par-

tial and conditional FDs

Similarly to INDs, there are variants of FDs that are partial or approximate. The intuition

here is that these are FDs that almost hold, i. e., there are violations, but their number is small

with respect to the overall number of rows in the relation. Another FD variant are conditional
FDs. These holds under a specific condition, which specifies a subset of the rows that are

considered. For example, if the customer dataset were to be extended worldwide, but the

FD only holds for Germany, this could be expressed as conditional FD with the condition

country = 'Germany'.

One of the main problems with FDs is their efficient discovery, because the straight-forward

enumeration of all possibilities is prohibitively expensive due to exponential scaling. This

mandates the design of clever algorithms that exploit certain characteristics of the search

space to achieve optimization. A comprehensive overview and experimental evaluation of FD

discovery algorithms can be found in [PEM
+

15].

Summary A summary of the various types of metadata types that have been described in

this second part is given in Table 4.5. For every type it lists the name, the abbreviation that is

used as subscript in the formal notation, a short description and a note about restrictions and

applicability considerations.
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Multiple Datasets

From a practical perspective, it might be argued that there is a third class of metadata types

that encapsulate information that is spanning multiple datasets, e. g., multiple tables. A prime

example here is the concept of foreign keys, which link together tables in a parent/child

relationship. To identify a foreign key relationship, both tables need to be considered simulta-

neously.

Upon closer examination however, it becomes apparent that these metadata types spanning

multiple datasets are just a special case of multi-field metadata as described in the previous

subsection. Any of those metadata types are also applicable if the involved fields are spread

across multiple datasets. In particular, foreign keys are a subclass of inclusion dependencies.

To conclude, there is effectively no “third class” of metadata types, because the distinction

into single field and multiple fields metadata types is already all-encompassing.

4.2.2 Classifying Types of Metadata
To operationalize metadata and further promote their research, it is useful to provide a

classification for them. This is however not an easy task, because the variety of metadata

is as diverse as the data that is described. There are numerous disciplines and domains that

make heavy use of the concept of metadata, such as statistics, information systems, databases,

health care, law, libraries, or media file formats for music, video and photography. Each

of these areas has its own requirements and thus, there is no unifying framework, model

or theory that encompasses everything. The National Information Standards Organization

(NISO) published what they call a “comprehensive overview of metadata, covering topics such

as metadata types, standardization and use” in January 2017 [Ril17]. However, this overview

focuses primarily on the cultural heritage world and the usage of metadata in bibliographic

and library applications. Thus, it is rather narrow in scope and does not provide much insight

for the information systems point of view that this thesis aims to take.

More can be learned from the mature research area of data warehousing. One of the pioneers

of data warehousing is Bill Inmon, who declares that “one of the most basic ways to divide

the world of metadata is by technical metadata versus business metadata.” [IOF08, p. 16].

Technical metadata is metadata that is useful for a database technician to do his job, especially

“design, development, maintenance, and other functions” [IOF08, p. 12]. Inmon et al. give

the following examples for technical metadata:

� Database table name

� Database index name

� Database table layout

� Database field name

� Field physical characteristic

� Field constraints
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� Inter-record or intertable relationship

Simply put, technical metadata is about what is “under the hood” to make things work as

expected. Note that Inmon et al. only consider the relational data model by explicitly using

the term table.
Business metadata on the other hand includes those types of metadata that are “useful to

the business-person in the day-to-day conduct of business” [IOF08, p. 12]. A business user

does not care much about how tables and fields are named, or what data types they have. He

is more interested in the content, and thus, needs business metadata that helps him find and

interpret the data.

Another famous data warehouse expert is Ralph Kimball, who also acknowledges business

metadata and technical metadata as the two main categories. Additionally, he also introduces

a third category, called process metadata, which is used to capture the result from various

processes and operations that surround the data, such as ETL processes or queries [KRB
+

16,

p. 710]. However, this category does no longer describe the underlying data, and thus, does not

quite fit the notion of “data about data”. Instead, it is data about the processes that deal with

the data. While this type of operational data is without a doubt important for the operation of

a data-driven system, there is no immediate applicability during the data profiling and data

understanding phase. Thus, it is not further investigated in this thesis.

More detailed work on the matter was conducted by Abedjan et al. in [AGN15]. They

describe a classification of what they refer to as “data profiling tasks” (see Figure 4.2), which

are individual tasks performed in a data profiling scenario. In their work, Abedjan et al.

regard data profiling from an algorithmic point of view and arrange and group the individual

tasks accordingly. This differs from the more user-centric view point taken in this thesis.

However, each of the tasks describes a class of computations that result in a specific type of

metadata. Thus, there is almost a one-to-one correspondence between these tasks and the

resulting metadata, which makes it very useful in the context of metadata classification.

At the highest level, Abedjan et al. distinguish three classes: single column, multiple

columns, and dependencies. The single column class comprises all those tasks that look at

only one isolated column at a time, which is similar to the descriptions in the first part of

Section 4.2.1. The following four sub-classes are identified:

Cardinalities are the result of basic count operations. This includes counts such as the

number of rows, nulls, duplicates or uniques, as well as aggregations of value lengths,

e. g., the minimum, maximum, or average value in a column. Apart from calculating

the exact results for these values, there also methods to estimate them, which also fall

under this category.

Pa�erns & data types take a more in-depth look into the actual values of the data. Patterns

are extracted by replacing characters with more generic representations. Subsequent

aggregation can then reveal the distribution of patterns across a column. The data type

on the other hand is a classification that determines the domain of permissible values.

Common data types are integers, character strings, Boolean values, or decimal numbers.

From these basic types, more complex data types can be constructed. For example, to

store information about dates, the data type date could be defined by enforcing the
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Figure 4.2: Classification of data profiling tasks according to Abedjan et al. Source:

[AGN15].
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pattern YYYY-MM-DD. This data type uses a combination of integers and the character

symbol - to precisely specify how a date should be represented. During profiling, this

usually works the other way around, e. g., when a pattern of the form dddd-dd-dd is

frequently encountered, it is reasonable to assume that these values represent a date.

Thus, patterns and data types are closely related and grouped together here.

Value distributions describe how the values within a column are distributed along their

domain. The simplest form is a table that shows the most (or least) frequent values

alongside their total number of occurrences. More sophisticated techniques within this

sub-class include histograms, box plots, and graphs of distribution functions.

Domain Classification is focused on the semantics that are represented by the data. Fre-

quently encountered domains are for example first name or city. Deducing the semantic

domain of a column usually requires external business knowledge or sophisticated

ontologies and is thus very hard to automate.

The next class considers multiple columns at once to extract insights that are spread across

the dataset. Abedjan et al. describe the following three sub-classes:

Correlation & Association Rules have in common that they both aim to quantify the

relation between two columns. One key difference is that correlation is usually applied

to numerical data, whereas association rules are useful when working with categorical

data.

Clusters & Outliers are opposing concepts that assess the homogeneity of a group of objects.

Clustering aims to group objects together that are similar in some sense [JWHT13,

p. 373]. This requires a quantification of similarity, which is often done by using a

distance function (e. g., Euclidean distance). Such a distance function is often set up as

a combination of multiple columns. For example, people could be grouped together if

they have similar age, body weight and height. The result is an additional attribute that

is attached to each object in the group that shows to which cluster it belongs. Outliers

on the other hand are those objects that do not fit particularly well in any cluster, i. e.,

their attribute values deviate greatly from the others [JWHT13, p. 96].

Summaries & Sketches are a general group of methods that aim to find a brief and compact

description of a given dataset. They make use of previously described techniques such as

clustering and association rule mining to trim down the amount of data that is displayed.

The quality of such approaches can be measured with the two metrics compaction gain
and information loss [CK07].

The last class in the classification scheme by Abedjan et al. is called dependencies. It is

worth mentioning that technically, dependencies are also multi-column concepts. The authors

declare that “[while] dependency detection falls under multi-column profiling, [they] chose

to assign a separate profiling class to this large, complex, and important set of tasks.” [AGN15,

p. 560]. This once again highlights the algorithmic point of view they take, because this

distinction is based on technicalities rather than intrinsic characteristics of the underlying

concepts and how the user perceives them.
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Figure 4.3: Data profiling outputs according to Olson. Source: [Ols03].

The dependencies class consists of three sub-groups, namely uniqueness, inclusion depen-

dencies, and functional dependencies. All these three concepts have been introduced and

described in the second part of Section 4.2.1.

Further tasks are not considered by Abedjan et al. to be part of data profiling. Thus, some

types of metadata and structural properties of data are not covered by this classification. In

particular, the special relationships generalization/specialization and is-part-of/is-component-

of are not mentioned. Further, a purely data-centric view is adopted in which only metadata

that can be derived from the data itself is considered. This leaves out those types of metadata

that are external to the data. These will be dealt with in Chapter 6.

A different classification scheme is introduced by Olson, who discusses what he considers

to be the five outputs of data profiling. These five outputs are shown in Figure 4.3 and are

detailed next.

Column Properties are properties that are derived from inspecting single columns individ-

ually. For example, Olson lists the name, data type, character set and length restrictions

as typical column properties, among others [Ols03, p. 149].

Structure Properties consider how the data is structured across its columns. In this group

fall the following: functional dependencies, primary keys, foreign keys, normal forms,

and synonyms. Apart from the last one, they have all been described already. Synonyms

are a concept that applies when two or more columns contain the same business facts

[Ols03, p. 184].

Simple Data Rules are data rules that concern a single row or entity. Data rules in this

context are “specific statements that define conditions that should be true all of the time”

[Ols03, p. 215]. These conditions are defined over multiple columns and specify admis-

sible value ranges in one or more columns based on the values in one or more other

columns. For example, the simple data rule

states that any part-time employee

may not be assigned to the research department. Once they are explicitly known,

data rules can be implemented and enforced in databases using triggers.

Complex Data Rules are data rules that concern a set of rows or entities. For example, a

complex data rule could specify that the order quantity for any part must be at least as

high as the minimum order quantity defined in the master data.
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Value Rules are rules that are derived from the definition of a value computation [Ols03,

p. 246]. For example, the frequency distribution of a column involves the computation

of distinct values and counting their occurrences. According to Olson, this constitutes

a value rule. Other types of value rules are extreme values or group aggregations.

There are some interesting points that can be learned from comparing Olson’s classification

with the previous one from Abedjan et al.. First, column properties are very similar to the

single column-group. Next, the structure properties largely overlap with the multi column-

group, with the notable exception of synonyms. To reconcile these differences, it needs to be

understood what synonyms in the context of databases are. Olson explains that there are

four types of synonyms:

1. Primary key/foreign key synonyms, which occur in every primary key/foreign key pair,

because they are defined to contain the same business facts.

2. Redundant data synonyms, which occur when columns are duplicated across tables.

These are special cases of a functional dependency and can be eliminated without

information loss.

3. Domain synonyms, which have no structural relation, but just happen to contain the

same business fact. For example, a ’city’ column may appear in the ’user’ table as well as

in the ’employee’ table. This phenomenon should be registered as a (partial) inclusion

dependency.

4. Merge synonyms, which are essentially schema matchings, i. e., correspondences be-

tween different data sources that state which columns contain the same data and

should be merged into the same target column. This plays an essential role in any data

integration scenario.

To conclude, although the name synonyms is never used by Abedjan et al., the concept

can be derived from the established dependencies and the differences are purely down to

naming conventions.

A more notable difference is the concept of data rules, which are not considered by Abedjan

et al., while they play an important part in Olson’s classification. The reason for this is that

Abedjan et al. is focused on metadata that can be derived directly from the data without any

other input. This is in stark contrast to Olson’s approach, who considers documentations,

logs, domain knowledge and other external sources as valid input for the profiling process.

Data rules in particular cannot be discovered or generated from the data in the same way

that it is possible for, e. g., functional or inclusion dependencies. Olson writes: “The potential

for data rules is almost infinite from a discovery point of view. It would not be practical or

beneficial to discover data rules from the data” [Ols03, p. 220]. Instead of discovering them,

other methods for establishing of data rules are proposed: source code scavenging, analysis

of database-stored or business procedures, or simply speculation.

Lastly, what Olson calls value rules is already part of the single column-group of metadata

types described by Abedjan et al..
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Figure 4.4: Proposed process for the extraction of metadata.

4.2.3 Metadata Extraction Process
In order to operationalize the extraction of metadata, it makes sense to conceptualize it as a

process, as shown in Figure 4.4.

The process starts on the left-hand side with an arbitrary demand for metadata. This

demand comes from the individual use case at hand. For example, when a new dataset is

acquired, or an existing dataset has undergone significant change, a demand for metadata can

be identified. This demand is further broken down into the two classes of metadata types,

single-field and multi-field. For each class, the relevant types of metadata are identified by

matching the available types (cf. Tables 4.3 and 4.5) with the respective demand. This results

in a set of metadata types, whose values are computed in the next steps. In order to carry

out this computation, the dataset in question is used in a read-only fashion, i. e., it remains

unchanged. All results are gathered as metadata candidates, which undergo a final verification

step. This verification is put in place to make sure that the results match the initial demand.

If that is not the case, the demand is refined and fed back to the start of the process, such

that a new iteration can begin. This can be necessary, if, for example, the calculated metadata

is insufficient and further metadata types are required. If the verification step succeeds, the

resulting metadata is put out.

4.3 Three Challenges of Data Profiling
This section presents a different way to think about and structure data profiling activities.

Whereas the previous section focused on the metadata as the result of profiling, the following

remarks apply the input-process-output (IPO) model to data profiling. The IPO model has

a long history in computer science, particularly in software engineering and programming

[Gra10, p. 165][Goe10, p. 11][CFH05, p. 99]. It decomposes any system or function into

the three components input, process and output. Landon and Landon describe these three
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components as the “basic activities” of any information system [LL95, p. 7]. The input is

a description of what the input is, how it should be organized or formatted, and which

requirements it needs to fulfill. For example, when programming a function, this corresponds

to the parameters of that function, which can be specified to be of a particular data type, e. g.,

integer. Next, the process describes what is being done with the input. This corresponds to the

code in the body of the function and specifies exactly which steps are done in which order.

Lastly, the output is a specification of how the result looks like and which requirements it

should fulfill. In programming, this corresponds to the return type, which states the data type

of the variable that is being returned by the function.

Abedjan et al. also apply the IPO model and define three core challenges of data profiling

based on the former. These are managing the input, performing the computation, and manag-

ing the output [AGN15] and are discussed more extensively in the following subsections.

4.3.1 Managing the Input
The input for data profiling is a dataset, as introduced in Section 3.1. There are several issues

that need to be addressed in this stage. First, the dataset needs to be specified, i. e., its location

and access method must be made available. This can range from pointing towards local files

to configuring firewalls for remote access to online sources. Once the dataset is accessible,

the part of the data that should be analyzed needs to be specified. In most cases, only a subset

is of interest, e. g., a specific group of tables or columns, but analyzing the complete dataset at

once is also possible.

The next task is to look for potential data formatting and parsing issues, and to resolve

them. If the data resides in a CSV file, it needs to be specified what delimiter should be used

to load the data. Despite the name, it is often the case that the comma character is not the

delimiter. Other characters are permitted, with the tab and semicolon being popular choices.

Surprisingly, many tools that load CSV files do not have a feature to automatically guess the

most likely delimiter in a given file, so this task is usually done manually. Other formatting

issues that need resolving are the configuration of the correct encoding, text qualifiers and

escape sequences. Note that most of these tasks can be omitted when a proper DBMS is used

as a source.

When the data is correctly parsed, the user needs to specify which metadata he wishes to

have computed. Ideally, the data profiling tool assists the user by showing him which types

of metadata are applicable to which parts of the data. Alternatively, the user can also choose

to simply calculate everything and then search through the results to look for interesting

insights. This approach is obviously only feasible in cases where the resulting metadata are

quickly calculated and easy to review.

After this challenge is addressed, i. e., when the input has been managed, the tool can

commence with performing the computations.

4.3.2 Performing the Computations
This challenge has received the most attention in data profiling research [AGN15, p. 557],

and deals with algorithms for metadata extraction, their runtime, and optimization. Due to
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the ever-increasing volumes of data, it is important that any algorithm that processes data

is efficient and scalable. The challenge here is to cope with datasets that potentially have

not only many rows, but also many columns. As mentioned before, the calculation of some

metadata types scales exponentially with the size of columns, e. g., the discovery of inclusion

or functional dependencies.

One way to deal with this is to apply the KIWI principle, which stands for “kill it with iron”,

i. e., throw as much computational power at the problem until it is solved in a reasonable

amount of time. This is especially effective if the problem is structured in such a way that it

can be addressed through an algorithmic approach that can benefit from parallelization.

Alternatively, or in combination, heuristics can be applied. A heuristic is any method

that provides a practical approach to a problem without guaranteeing optimal results, only

“reasonably good” ones [Pea84, p. 3]. Thus, a heuristic sacrifices accuracy in favor of reducing

the runtime complexity. Ideally, this trade-off can be measured or estimated in some way, so

that the loss of accuracy can be assessed. In many cases, approximate results are good enough,

making heuristics an enticing solution. This is especially true in data profiling, because most

of the results are not used as the basis for further computations, but instead are manually

inspected and assessed by a user. The goal often is to “get a feel” for the data, which is easy

enough to achieve with approximate results.

Performing the computation is done automatically by a computer or system. This means

that some users may be tempted to treat it like a black box where they put the data in and get

metadata out, and to not care about the details that take place in between. However, this is a

dangerous practice, because ignorance about how a piece of metadata has been computed

impedes one’s ability to correctly evaluate and interpret it. Thus, it is strongly recommended

that anybody who uses data profiling tools and attempts to interpret their results makes

himself familiar with the metadata types and their definitions beforehand.

4.3.3 Interpreting the Output
In the last challenge, the user is presented with the results. The task of making use of these

results by interpreting them in their respective context cannot be automated by a computer.

Abedjan et al. state that “profiling results need interpretation, which is usually performed

by database and domain experts” [AGN15]. Furthermore, there is no standardized reference

process that guides the user in this task. As such, it is the hardest of the three challenges and

little work exists that addresses it.

One of the reasons for this is that the interpretation is technically no longer part of the

profiling process itself. Usually, profiling is done to learn something about the data that is

useful in some other, broader context. Thus, the interpreter needs to consider this broader

context because it provides the direction in which the user should focus his attention. However,

the broader context is dependent on the use case and the profiling context and cannot be

easily generalized.

It is an open research challenge to figure out what can be done about this. One observation

is that seasoned data experts are confident in their ability to interpret metadata. This is

because they have done it before and use their experience that tells them what to look for,

what to expect, and what is unusual in a given data profile. Thus, practice makes perfect, as
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the expression goes, and one needs to interpret data profiles to become better at interpreting

data profiles. This idea could be supplemented by a compilation of best practices and practical

examples.

4.4 So�ware Tools and Research Projects
Data profiling and metadata extraction can, to a certain extent, be performed in an ad-hoc

fashion by hand-writing queries and executing them, e. g., using SQL as demonstrated above.

However, the task of manually writing queries is prone to errors and can quickly become

cumbersome as the complexity of the data increases. Furthermore, many metadata types

require more involved computations for which query languages are inappropriate. This is

why numerous dedicated data profiling software tools have been implemented, which support

a user by offering easy access to profiling algorithms and functionalities. The same train

of thought is followed by Kimball, who writes “you can be much more productive in the

data profiling stages of a project using a tool rather than hand coding all the data content

questions.” [KR13, p. 450].

This section has two goals: First, it aims to give an overview of the various classes of

software tools available for data profiling. Second, a more detailed impression of some of the

tools and their usage is provided by describing selected representatives. The classification

scheme suggested here distinguishes between three classes of data profiling tools:

� Dedicated Tools

� Integrated Tools

� Research Projects

Dedicated tools are stand-alone programs that are built with the main purpose of providing

data profiling or similar functionality. These are described in Section 4.4.1. Integrated tools on

the other hand are not offered stand-alone, but instead are part of a bigger package, usually a

data management platform with many features. They are described in Section 4.4.2. The third

class, research projects, contains contributions from (computer) scientists to the data profiling

discipline. As these research projects tend to focus on specific techniques or algorithms, their

range of features as well as their usability is usually significantly lower than tools from the

first two classes. Additionally, these projects tend to be abandoned more quickly, because

there is little commercial interest to maintain them. Section 4.4.3 provides some examples.

4.4.1 Dedicated Tools
A selection of popular dedicated data profiling tools was compiled by querying the search

engines Google, Bing, startpage.com, and DuckDuckGo. Using the search term "data profiling

tool", the top-two results returned by all engines were consistently Talend and Datamartist.
Thus, it is concluded that there is at least some degree of popularity and relevance to these

two tools, and they shall be examined more closely to demonstrate data profiling in practice.
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Figure 4.5: Column analysis for the department column using TOS DQ.

Talend Open Studio for Data �ality. Talend Open Studio for Data Quality (abbr. TOS

DQ) is an open source tool that offers a wide array of data profiling functionalities [34].

It consists of a graphical user interface and supports data sources that either reside in a

supported database or in a flat-file format like CSV. Among the supported databases are

well-established relational systems such as IBM DB2, Microsoft SQL Server, MySQL, Oracle

Database and a general JDBC interface. Support for modern Big Data systems on the other

hand is more sparse, with Apache Hive and Impala being the only notable entries. Overall,

twenty different database systems are supported.

Once the data is loaded into the tool, the user can choose from a variety of analyses. These

range from general information about the database as a whole (e. g., number of tables, rows,

views, keys and indexes) to metadata extraction on specific columns, with many of the meta-

data types described in Section 4.2 being supported. However, the more complicated types that

involve multiple columns (e. g., inclusion dependencies or unique column combinations) are

not supported out of the box, and while there is a function for functional dependency analysis,

it works in a rather minimalistic way. The user has to manually specify the determinant and

dependent columns between which a dependency is assumed, and the tool will calculate

a dependency strength for that pair. Thus, there is no automatic discovery of functional

dependencies.

Additionally, TOS DQ allows users to define their own types using SQL templates or

Java code. These user-defined types can be used to, e. g., calculate and monitor business- or

domain-specific metrics that measure data quality or other concepts.

One of the core features of TOS DQ is column analysis, which allows the extraction of

metadata for individual columns. Note that Talend uses the term indicators to refer to what has

been established as metadata types here. When the user has selected the column(s) he wishes

to analyze and metadata types for each column, the computation can be started. Afterwards,

the results are visualized using suitable charts. For example, back in the example dataset

introduced in Table 4.1, the column ’department’ contained four values: Sales, HR, HR, and

HR. This column is analyzed with the following metadata types selected: row count, null

count, distinct count, unique count, duplicate count, and blank count. The result is shown in

Figure 4.5.
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Figure 4.6: Default profile of the employee dataset using Datamartist.

TOS DQ is developed and maintained by Talend Inc. from California, United States. Initially,

TOS DQ was called “Talend Open Profiler”, which hints at the focus the developers originally

had. In 2011 it was renamed to its current name Talend Open Studio for Data Quality, which

was most likely a consequence of the much larger popularity and wide-spread use of the term

“data quality” in practice.

Datamartist. Datamartist is advertised as a “flexible, visual, data profiling and data trans-

formation tool” [4]. The transformation part refers to its capabilities as an ETL tool which are

of little interest here. Profiling is done similarly to TOS DQ. First, a data source needs to be

set up, which can be a text or Excel file, or a database. The list of supported database systems

contains only seven entries, which include well-established ones such as MySQL, Oracle DB

and PostgreSQL. Newer database systems or Big Data sources are not supported.

After the data has been loaded and without any further configuration, Datamartist computes

a default profile. This default profile contains some basic metadata as depicted in Figure 4.6,

where the employee dataset has been loaded. In this view, the user can drill down and

interactively browse through the data and, e. g., find the row with the missing data with a

few clicks. Depending on what is currently displayed, the view changes dynamically between

a tabular layout and appropriate visualizations such as bar charts.

Next to the default profile, which is automatically computed for every data source, Data-

martist offers a designated data profiler block. Note that block is part of the tool’s terminology

and denotes a component that performs an operation. The data profiler block has three outputs

called ’columns’, ’values’, and ’formats’. ’Columns’ is identical to the aforementioned default

profile and lists metadata per column. ’Values’ gives a tabular overview of each distinct value

and how often it occurs in each column, while ’formats’ is just used as a synonym for patterns,

i. e., it generalizes values through replacement and then counts their occurrences Both of

the latter concepts have been introduced in Section 4.2.1, where they were named ’value

frequency table’ and ’pattern frequency table’, respectively. More advanced functionality, e. g.,

for dealing with multi-column metadata, is not provided.

There are numerous more dedicated data profiling tools available on the market that

cannot possibly all be described here. Some of the names of such tools that have been on the

shortlist for consideration here are (in no particular order): Ataccama DQ Analyzer, Experian

Data Quality, Trifacta Wrangler, Informatica Data Explorer, and IBM InfoSphere Information

Analyzer. Their main commonalities are that they all enable a user to quickly extract most of

the single field metadata types described in the beginning of this chapter. The differences

between these tools lie in their capabilities of visualization and data ingestion, i. e., which
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types of data sources are supported.

4.4.2 Integrated Tools
Many software companies bundle their products into monolithic platforms that cater to a

wide range of audiences. In the area of data management, this can make a lot of sense, because

it frequently occurs that a user needs access to a wide range of functionalities while working

on a particular dataset. For example, during data integration, a user may want to profile

the data sources first, then pre-process and clean them in some way, model a target data

schema, perform schema mapping, define an ETL process, and finally perform and monitor

the integration. Having one single software tool that supports all these individual steps in

one interface can greatly facilitate this task.

The data profiling capabilities of these tools can vary widely and are not always clearly

marked as such. The metadata of the processed dataset is often integrated in places where

the developer thought it might be helpful. For example, any spreadsheet tool, e. g., Microsoft

Excel, offers a convenient view of the number of rows in a given selection. This is a very

low-level form of integrated profiling, because it displays metadata to the user to help his

understanding. However, in some cases this can already be sufficient.

Most major software companies offer a monolithic data management platform that has

some form of data profiling capabilities. For example, Oracle has the Oracle Data Integrator,
SAP has the SAP Information Steward, and Microsoft has the Microsoft SQL Server Management
Studio. All of these tools are sold commercially and targeted at business users, which makes

getting access to them rather difficult. However, assessing and comparing these tools is not

the goal here, so this section remains deliberately short compared to the other sections.

4.4.3 Research Projects
Metanome is the name of a data profiling platform that was developed as a cooperation

between the Hasso-Plattner-Institut in Potsdam, Germany, and the Qatar Computing Re-

search Institute. It is designed with extensibility in mind, which means that users can easily

implement their own algorithms and plug them in to test and evaluate them. An overview of

the architecture is shown in Figure 4.7. At its core is the backend, which handles algorithm

execution either locally or remotely. The configuration and result presentation is done through

a Web-based frontend that is compatible with any ordinary browser. A number of input source

connectors for popular databases come prepackaged with Metanome, including MySQL, DB2

and Oracle, and also various flat-file formats.

One of the design goals of the Metanome project was to create a platform for algorithm

comparison and subsequent optimization. Naturally, the need for optimization is only given

for metadata types whose calculation is computationally expensive due to their inherent

complexity. Four metadata types in particular are the focus of Metanome. These are UCCs,

INDs, FDs, and cardinality estimation (not pictured). For each of these, multiple algorithms

can be downloaded from the Metanome store [21], and their respective Java source code is

also freely available from a GitHub repository [25].
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Figure 4.7: Architecture of the Metanome profiling platform. Source: [PBF
+

15].

Metanome offers no easy-to-use feature for the extraction and visualization of less complex

metadata types. As such, it is not well suited for smaller profiling tasks of everyday users, but

rather a tool for researchers and developers to implement and test new algorithms.

Bellman Data �ality Browser has been developed by the research team of AT&T labs

in 2002. While not explicitly called a tool for data profiling, the authors describe it as a tool for

“data mining on the structure of the database” [DJMS02]. It offers features to find resemblances

within sets, multisets and substrings, which are useful to quickly assess the similarity of

different data sources. Further features include the identification of (minimal) keys, join paths,

composite fields, and heterogeneous tables.

A join path is a description of how a given table can be joined with another table. Composite

fields are the result of the combination of multiple fields, e. g., through concatenation, and

thus bear a close resemblance to the concept of synonyms. Candidates for composite fields are

produced by applying q-gram signatures [GIJ
+

01]. Lastly, heterogeneous tables are described

as tables that have been altered since their initial creation trough, e. g., the addition of columns.

Such a change can potentially cause the affected table to be compatible to only a subset of

related tables. The identification of heterogeneous tables is thus a problem that is related to

the discovery of join paths.

Overall, the authors claim that the “results of the database structure mining allow the

analyst to make sense of the database content” [DJMS02]. This aligns perfectly with the goals

of data profiling, and thus, leads to the conclusion that the Bellman Data Quality Browser is

essentially a data profiling tool. Furthermore, it has been demonstrated that Bellman can be

used to track changes in data over time to uncover patterns of modifications and document

the evolution of a database [DJM06]. However, it seems that further development of this tool

has been halted, because there have been no updates to it since 2006.

There is a number of further research projects that have resulted in usable data profil-

ing tools, including in no particular order Potter’s Wheel [RH01], Data Auditor [GKKS10],
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RuleMiner [CIPY14], MADLib Analytics Library [HLK
+

12] and ProLOD++ [AGJN14]. A short

survey that describes some of these tools is given in [AGN15].
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In day-to-day business, data profiling can be performed in a number of different ways by

a number of different people. Although the core is always about data and the extraction of

associated metadata, there exists a variety of different profiling manifestations that can be

distinguished. To provide a foundation for further academic discourse and distinguish more

precisely between the various kinds of data profiling, this chapter provides a characterization

of various profiling approaches. Additionally, this chapter gives more detailed insights into

how the previously described profiling techniques and metadata types can be put to use in a

practical setting.

The characterization that is presented here consists of the following seven dimensions:

purpose, input, executor, method, output, user, and application areas. These dimensions were

derived from the IPO model (cf. Section 4.3) and focus additionally on the people involved,

i. e., the executor and user, and the areas in which a profiling variant can be applied. Each

dimension addresses a specific question, as shown in Figure 5.1.

Each section in this chapter describes one data profiling variant and its properties with

respect to the dimensions. The following variants are considered here:

� Data-oriented data profiling

� Goal-oriented data profiling

� Multi-source data profiling

� Data profile validation

� Visual data exploration

� Data discovery

Note that these variants are not intended to be mutually exclusive, i. e., they can overlap or

intersect so that a single profiling endeavor may fall into multiple of the proposed categories.

This allows for more flexibility when applying these categories to a specific use case at

hand. Additionally, this list does not claim exhaustiveness. Depending on the granularity and

objective, it could be further subdivided or complemented with fringe activities. The aim here

is to give an overview over the most commonly observed data profiling variants and explain

how they can be characterized and applied.
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Figure 5.1: Characterization dimensions for data profiling variants.

Figure 5.2: Data-oriented data profiling.

5.1 Data-Oriented Data Profiling
This is the canonical, most basic setting, which is usually meant when people refer to data
profiling without additional discriminator. A single data source is the input for which a data

profile is being created. It is called data-oriented to indicate that the input data is the focal

point of this variant, and to differentiate it from another type of orientation, goal-oriented,

which will be described in the next section. Naumann refers to this variant as “traditional

data profiling” [Nau13]. A conceptual illustration is given in Figure 5.2.

Purpose. The purpose of data-oriented data profiling is to create a data profile, which is

subsequently inspected by the user to understand and learn about the data source. This can

lead to the discovery of new opportunities or tasks that can be accomplished with the data.
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Input. The input can be any kind of dataset, e. g., a database, a flat file, or any other kind of

structured or semi-structured dataset. Apart from the data, no other type of input is considered

here.

Executor. This variant is executed by an IT professional as characterized in Section 3.5,

because it requires a certain degree of expertise regarding metadata and data profiling. The

extent of required expertise is dependent on the sophistication of the profiling tool that is

used. For example, if a highly sophisticated tool that offers guidance throughout the profiling

process is available, then even an inexperienced person can perform this task. The opposite

example to this is a case where only low-tech tools are available, like a query interface.

Here, the executor would have to write his own queries, which requires a higher degree of

knowledge.

Method. The use of a data profiling tool is encouraged to ensure that the resulting data

profile is correct and as complete as possible. Additionally, it makes sense to use the same

tool for different profiling runs to guarantee that any differences in the results are not due to

divergent implementations. This enhances reproducibility and transparency.

If the execution of data profiling is a frequently occurring task within a company, it makes

sense to standardize it using a reference process that specifies the individual steps and their

order. However, no applicable reference process has emerged so far with any significant

amount of adoption, neither in research nor in practice. Thus, the generic profiling model

introduced in Figure 4.1 is proposed as a basic template for such an endeavor.

Output. The output of data-oriented data profiling is a data profile that is general-purpose in

nature. There is no further specification or requirement placed upon which types of metadata

should be included in the profile. Thus, such a data profile should be universal and consist of

every metadata type that is applicable to the given input. Applicability considerations here

include the data model (e. g., structured versus semi-structured) and the data types of the

involved data (e. g., strings versus numbers). It is then up to the user to inspect this profile

and look for interesting and useful insights that can be learned.

User. The user is the person that needs to understand and learn about the data source. This

can be the same person as the executor, or in larger settings, be a different person that is a

domain user instead of an IT professional.

As the user is tasked with inspecting the data profile, he needs to be data literate and know

how to interpret metadata. This requires knowledge about what the various metadata types

mean, how they are defined, and what can be learned from them about the underlying dataset.

Many of these aspects have been laid out in Section 4.2.

Application Areas. Generally speaking, data-oriented data profiling can be applied every-

where where data is involved, because any data source can be profiled. Still, some application

areas can be identified in which the use of this technique is most appropriate.
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First, data-oriented profiling is appropriate whenever a user is facing a dataset which he is

not familiar with. This may for instance be the case when a company hires a new employee,

buys a new dataset, or acquires another company and its datasets. Achieving familiarity with

a dataset, i. e., having an idea what it contains and how it is structured, is often very desirable,

and data-oriented data profiling is the ideal way to do so.

Another application area is data quality assessment, which should be done whenever the

general state of the data is in question. This may be the case when the data can potentially

be written and updated by a large set of people with varying areas and levels of expertise.

Additionally, when the data has not been checked for a long time, it is likely that its quality

has decreased. For example, Marsh reports that customer data degenerates by 2% per month

[Mar05], which can be attributed to changes in names or addresses that are not reflected

in the data. This phenomenon has been described as “changes not captured” [May07, p. 18].

Thus, it makes sense to periodically re-run this profiling variant to verify the overall state of

the data.

Example. To give a more concrete example of how data-oriented data profiling can be

applied in a practical setting, recall the CloudHost scenario. Here, the overall objective was to

design and implement an algorithm that generates sale opportunities based on the company’s

product portfolio dataset. This dataset contained a list of all CloudHost products, the clients

that use them, and in which configuration. As the team that was tasked with the algorithm

creation was not familiar with this dataset, more insights about it were required. There was no

specific goal yet, as the project stakeholders were still in an exploratory phase, ascertaining

what is and is not possible with the data at hand. Thus, it was decided to perform data-oriented

data profiling as a first step, using Talend Open Studio for Data Quality (cf. Section 4.4.1)

as the data profiling tool. The choice to use this particular tool was based on the fact that

it offers an easy-to-use interface, a wide variety of metadata types, and is readily available

under an open-source license.

Using this tool, a data profile for the portfolio dataset was created, which consisted of

numerous metadata for all included columns. This enabled the team to gain a broad under-

standing of key characteristics. The main benefit of inspecting the metadata, as opposed to

inspecting the raw data itself, is that it can be done much more quickly and unusual patterns

or characteristics are easier to spot. For example, it was discovered that the key columns

(product_id and client_id) were of sufficiently high completeness and integrity for the

planned analysis. On the other hand, some of the columns had a very high null count (cf.

Section 4.2.1), i. e., many of the values were missing. After consulting the domain experts

about this, a few of these columns (e. g., rarely used free-form text fields) were discarded for

the analysis, as they did not provide any useful information. In another case, it was discovered

that the available data about product usage statistics was incomplete due to the fact that it

was not mapped properly. With the precise knowledge of which column was affected and to

which extent, this issue was easily fixed by re-requesting this data with a proper mapping

path. This particular issue prompted the project team to consider multi-source data profiling,

which will be described in more detail in Section 5.3.

In conclusion, the data-oriented data profiling helped to kick off the overall project by
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Figure 5.3: Goal-oriented data profiling.

providing key insights about the overall state of the data. This allowed issues with the data to

be caught early on, instead of later where they would have been much more costly to fix.

5.2 Goal-Oriented Data Profiling
In this second variant of data profiling, the focal point expands from the data to also include

a specific goal. This goal is a concrete description of something that needs to be achieved

with the data. For example, the goal could be the migration of a dataset from a source system

into a target system. This requires checks to make sure that the data fits into the target

system, e. g., the number of data instances and fields is less than the supported maximum,

the data types of individual fields match the target schema, and all integrity constraints are

satisfied. Performing these checks is easy to do with data profiling, because the necessary

information is part of the respective data profile. In this example, many metadata types are

not required, such as descriptors of the data’s distribution. Thus, these metadata do not need

to be computed. This omission leads to a partial data profile, which is called goal-oriented,

because it is trimmed down to satisfy the exact requirements of the goal in question.

A conceptual illustration of this variant is given in Figure 5.3. Next to the data source there

is now a second input, which is the aforementioned goal, and the icon depicting the profile

contains only partial lines to imply the trimming down.

Purpose. In this variant, the purpose is the accomplishment of the goal. Thus, a thorough

understanding of the complete dataset is often not necessary and can be skipped, which leads

to savings in time and resources. Instead, the understanding of the dataset is limited to the

extent that is necessary with regards to the goal.

Input. There are two inputs: a goal and a data source, which are connected, i. e., the data is

necessary for the accomplishment of the goal. The nature of the data source is unchanged,

i. e., any kind of dataset is permissible here. The goal on the other hand require a bit more

explanation. In the context of requirements engineering, Pohl defines a goal as “an intention

with regard to the objectives, properties, or use of the system” [Poh10, p. 53]. The important

word here is intention, which implies that a goal describes a commitment to taking a specific

action in the future. In the previous example case, the goal can be written out as “the data in

the source system needs to be migrated into the target system”.

No further requirements are placed upon the goal, especially not regarding its format. This

means that it can be written in natural language, or given in verbal form, or be expressed

in any other suitable form. However, to be operationalized and carried out, a goal needs to
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be understandable and sufficiently specific. If that is not the case, e. g., when a client cannot

adequately express what exactly he needs, a translation into more suitable terms is necessary.

In the example above, the source and target system are not sufficiently specified, which can

be remedied by providing details about their names, location, accessibility, and so on. An

extensive literature source on how goals should be documented, alongside reference templates

and goal modeling frameworks, can be found in [Poh10, p. 103ff].

Executor. Goal-oriented data profiling should be executed by a person that has understood

the specified goal. The best candidates for this are usually either the person that has set the

goal, or the person that is tasked with its fulfillment. Both of these persons should possess

the required knowledge that is needed to derive the necessary metadata types that are used

to form the goal-oriented data profile.

Method. Similarly to the data-oriented data profiling variant, the use of a data profiling tool

is encouraged. However, instead of simply calculating every possible metadata type, careful

consideration should be applied to select those metadata types that are relevant and useful

for the goal. Ideally, it should be possible to formulate goals in such a way that the selection

of relevant and appropriate metadata types can (at least to some extent) be automated.

Output. The output of goal-oriented data profiling is a goal-oriented data profile. A goal-

oriented data profile has the same structure as an ordinary data profile, but it only contains

a selected subset of metadata types. The ultimate goal is to provide the information that is

necessary to reach the goal, and no other information.

User. The user is the person that inspects the output and derives insight from it. As the

output revolves around the fulfillment of the goal, it makes the most sense then that this user

is the same person as the one that needs to fulfill said goal. This way it is ensured that the

necessary information is supplied to the right person.

Application Areas. As this variant requires a specific goal to be set beforehand, it is less

widely applicable as compared to the data-oriented variant. Still, some important areas and

scenarios can be highlighted where a goal can clearly be identified.

Data Migration has already been described as part of the introductory example. Another

area is data cleaning, in which the objective is to find errors and other data quality issues in a

dataset and correct them accordingly [RD00]. These errors range from simple issues (e. g.,

missing values) to more complex problems (e. g., integrity constraint violations). Goal-oriented

data profiling can be applied to specifically look for these issues. This provides the user with

an overview of how many issues there are in total and where they are located, which helps in

planning measures to address them. As a specific example, when the goal is to deduplicate a

dataset, computing the duplicate count as part of the data profile is usually a reasonable first

step.

A more technical example of a goal-oriented data profiling application area is query op-
timization, which is performed by a DBMS before queries are executed [Cha98]. A very
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Figure 5.4: Multi-source data profiling.

important metric for query optimization is the cardinality of involved datasets (e. g., the

number of rows of a table). For this very reason, most DBMS keep track of all cardinalities in

a buffer so that they are readily available when needed and do not have to be computed first.

These buffered cardinalities are a prime example of a goal-oriented data profile, because they

are kept up-to-date for the explicit goal of optimizing queries.

Example. In the CloudHost scenario, the need for a goal-oriented data profiling emerged

after the initial exploratory phase (which contained data-oriented data profiling, cf. Section 5.1).

At this stage, the decision was made to implement a customizable recommender system, which

should be able to support the sales representatives by generating product recommendations

for specific clients. These recommendations should be based on both the existing product

portfolio of that client, as well as the portfolio of similar clients. Similarity in this sense should

be calculated based on master data about the clients, such as size and revenue.

In order to achieve this goal, it was necessary to ensure that the data at hand was sufficiently

able to support the planned recommender system. Thus, another round of data profiling was

started, but focused on only those types of metadata that were relevant in the context of that

goal. For example, the value distributions in the master client data were of high importance,

to ensure that the planned similarity calculation would have the expected results. This was

checked by calculating frequency and distribution tables for each considered column. Next,

the mappings between clients and products were profiled to assess whether they were of

sufficient quality for the recommender. It was found that there were only a negligible amount

of foreign key violations (caused mostly by formatting problems and wrong encodings), which

were easily cleaned.

The results of all these individual profiling efforts were gathered in a goal-oriented data

profile and presented to the stakeholders. This proved to be a valuable basis for a focused

discussion about the planned recommender system.

5.3 Multi-Source Data Profiling
So far, only a single data source was considered as input. However, in many cases, two or

more data sources need to be compared and inspected for similarities, differences or potential

overlaps. This is called multi-source data profiling and its basic concept is shown in Figure 5.4.

Note that multi-source data profiling is not the same as profiling two data sources in

sequence, because the focus is not on the individual source’s profile. Instead, the parallel

profiling of multiple sources at once enables new types of information to be generated, like

similarity measures and compatibility metrics.
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Purpose. The purpose of multi-source data profiling is to gain insight into the relationship

between two or more data sources. This relationship can have different manifestations. For

example, it could be the case that the two data sources have the same schema and thus, their

data integrates perfectly. If the schemata do not match, but they have a common ID attribute,

they could be complementing each other. This is useful when somebody is looking to enhance

a given dataset by augmenting it with more attributes from another source. Lastly, it is also

possible that the two data sources do not agree on neither schema nor data instances and thus,

are incompatible with one another. Finding out the type of relation between the input sources

before any resources are invested in integrating them can save a lot of time and money.

Input. As already stated above, the input is a set of two or more data sources, which can

be of arbitrary structure. If all sources follow the same data model (e. g., the relational data

model), assessing their compatibility through profiling and schema matching is a straight

forward task that is well researched. Chapter 5 of the book Principles of Data Integration by

Doan et al. gives a good overview of this topic [DHI12, p. 121].

The complexity increases when the input data sources have diverging data models, e. g., a

relational data source and a document-oriented database. The challenge is that semi-structured

databases usually do not enforce a schema on their data, i. e., a schema is only provided on
demand or on read, which complicates schema matching, because it may be different each

time it is generated, depending on the use case. There is very little research in this area, a

notable example being [BV05].

Executor. This variant requires a high degree of expertise to execute correctly and reliably.

There are no easy-to-use tools which perform the necessary steps in an automated fashion at

the press of a button, which increases the responsibility of the executor. Thus, only trained

staff members should be assigned to this type of task, especially in mission-critical scenarios.

Method. So far, there is no established process for multi-source profiling. However, there

are proposed methods for performing data matching. For example, Christen suggests a

general data matching process that consists of the steps data pre-processing, indexing, record

pair comparison, classification, clerical review, and evaluation [Chr12, p. 24]. Doan et al.

propose a matching system architecture that is based on matchers, combiners, constraint

enforcers, and match selectors [DHI12, p. 128].

These methods however only consider two data sources at once. Achieving true multi-

source profiling with more than two sources at once is still an open research challenge [Chr12,

p. 225]. The reason for this is that many basic operations, e. g., comparisons or relational

joins, are binary, i. e., they are defined for only two parameters. Extending these operations to

more parameters can be achieved conceptually by executing them on pairs and concatenating

the results. In practice however, this creates many problems, such as a dependence on the

execution order if the operation does not satisfy the associative law. Additionally, it may not

be obvious how exactly the results should be concatenated in a meaningful way. Initial work

that extends data matching to more than two data sources has been done by Sadinle et al.

[SHF11].
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Output. The output of multi-source data profiling is a report on the relationship of the

input sources, i. e., their differences and similarities. The similarity can be measured on the

two levels schematic fit and data fit. Schematic fit describes how well the schemata of the

sources match and can be quantified, e. g., by comparing the number of schema matches with

the overall number of schema elements. The data fit on the other hand provides insight into

how well the data instances residing in each source match with each other. Calculating the

data fit is also known as data matching [Chr12], record linkage [FS69], or entity resolution

[Tal11].

In certain cases, the differences might be of more interest than the similarities, and the

focus is shifted towards those schema elements and data instances that are not a good fit

with each other. This can be a very useful exercise when, for example, the two sources are

the same database, but from different points in time. Generating a difference report can then

reveal what has changed over time.

It must be pointed out that the output of such an effort is best suited to be interpreted

manually by a user instead of being used unfiltered in some automated process. Smith et al.

write that “in large enterprises involving many information systems, we observe that human

planners and decision makers can benefit as primary consumers of the information generated

by schema matching, as opposed to these results solely being “piped” into code generation.”

[SMM
+

09, p. 6].

User. The similarity report needs to be assessed and reviewed to support decision making.

One particular role that can benefit here is the project manager of any data integration

project. As multi-source data profiling uncovers how well two data sources fit together, it is

particularly well suited for estimating the effort for integration. Abedjan et al. state that

“data profiling can [...] assess the integrability or ease of integration of datasets and thus also

indicate the necessary integration effort, which is vital to project planning. Integration effort

might be expressed in terms of similarity, but also in terms of man-months or in terms of

which tools are needed.” [AGN15]

Application Areas. The prime example for multi-source data profiling is the preparation of

a data integration effort. The purpose of data integration is to combine individual data sources

and provide a unified view on all data. This requires that the data sources are comparable to

a certain degree, i. e., that they are used to describe similar real-world entities and have an

overlap in their data or schema definitions. This overlap is used in a formal process called

schema matching, during which correspondences between the schema elements (i. e., tables or

columns) are documented [RB01]. Data profiling can support schema matching by suggesting

likely candidate pairs of corresponding schema elements based on the similarity of their

metadata. In other words, if for example two columns have the same data type, similar value

statistics, and similar pattern frequencies (i. e., they have similar profiles), then they are likely

to be a useful schema match.

Example. The CloudHost project mostly dealt with a single data source, the portfolio

dataset. However, in one particular instance, this dataset was augmented with data from
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another source about product usage statistics. During the initial data-oriented data profiling

(cf. Section 5.1), it was discovered that this data augmentation process was faulty, as many

of the expected values were missing. Investigating this issue required an analysis of both

data sources: the portfolio dataset and the product usage statistics. As both of these datasets

followed the relational data model, multi-source data profiling could be conducted without

much effort.

First, it was assessed how the existing augmentation had been set up. It was discovered that

a join operation was used, which combines the two datasets on a set of product ID columns.

This join was clearly based on the assumption that the respective columns would contain

matching data values. However, profiling both columns for their actual data overlap revealed

that it was less than 10%, i. e., the amount of data values that appeared in both columns was

less than 10%, out of all values in these columns. Later, it came to light that the used product ID

column in the product usage statistic dataset was deprecated and no longer updated, causing

the observed discrepancy.

Next, a solution to this issue was required, which involved finding a better-suited pair

of columns to base the join operation on. The domain experts informed the project team

about the correct product ID columns to use in this case. However, before any changes were

made, a verification based on the actual data was needed. Thus, another round of profiling

was started which assessed the data overlap between the proposed columns. The result was

over 90%, which aligned with the stakeholders’ expectation and provided confidence that this

would indeed be the correct columns to use for a join operation. Consequently, the change

was implemented, which significantly improved the usability of the portfolio dataset for the

intended analysis.

5.4 Data Profile Validation
The next variant of data profiling is concerned with validating a given data profile and the

contained metadata. This can be done whenever metadata is already available for the data

source in question, but there are doubts regarding their correctness or accuracy. These doubts

can arise for a number of reasons, such as mistrust of the source or expected decay due to

age. Olson even goes so far as to assume that all metadata should be doubted. He states:

“Data profiling technology starts with the assumption that any available metadata [...] is

either wrong or incomplete” [Ols03, p. 122]. This is a very pessimistic approach that mandates

a potentially expensive recomputation of existing information, which could be wasteful.

However, one could also argue that being overly cautious at this stage is the best way to

ensure correct metadata as a basis for future decision making.

No matter what the motivation for validation is, it needs both a data profile and a data source

as input, from which a validation report is generated. This process is shown in Figure 5.5.

Note that data profile validation should not be confused with data validation. As the names

imply, the former is about making sure that a given profile is correct, i. e., it contains correct

metadata, while the latter is about checking whether the data itself conforms to a set of

validation rules, including data types, values ranges, or other constraints. In this sense, data

validation is a subprocess to data quality assessment, whereas data profile validation is an
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Figure 5.5: Data profile validation.

independent check that can be done before any data profile information is put to use.

Purpose. Data profile validation ensures the correctness of a given data profile by recom-

puting the metadata from the data source and comparing the results.

Input. The input consists of two parts, a data source and an associated data profile that

needs to be validated. The data profile does not need to be complete in any sense and can be

a loose collection of metadata. These pre-existing metadata can come from any source. For

example, the analysis of a data source’s documentation, or an evaluation of interviews with

stakeholders and users of the data can result in useful information that should be validated

against the actual data.

Executor. Performing this kind of validation requires knowledge about what data profiles

are, what they consist of and how they are derived from a dataset. In particular, distinguishing

between what is right and wrong in this context requires expertise that only a trained person

can be expected to have. Additionally, there are no sophisticated tools on the market that

adequately support this task, which further increases the challenge.

Method. The task of validating a data profile as a whole can be subdivided into validating

the individual types of metadata that are included. Validating a single piece of metadata is

tantamount to recomputing its value and then comparing it to the initial value. For example,

if the given metadata states that the row count of a table is equal to 50, this can be validated

by executing the query that determines the row count (cf. Section 4.2.1). If the query returns

50, the equality check returns true and this metadata is correct. Otherwise, it is false and an

according entry is made in the validation report.

This check of metadata is repeated either for each instance of metadata present in the data

profile (complete validation), or just for a subset of metadata instances (partial validation),

e. g., only those whose correctness is uncertain or doubtful.

Output. The output of data profile validation is a validation report. It lists each individual

metadata validation run that has been executed as well as the respective results. Each entry

should include the type of metadata that has been validated, the expected value, the actual

value, and the algorithm or query that has been used for the computation. The use of colors

is encouraged here to highlight any encountered differences, e. g., in red.
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Additionally, the validation report may include an aggregated sum of number of compar-

isons made and a percentage of how many of them matched. This allows the user to quickly

inspect and digest the report.

User. The user is the person that inspects the validation report. In order to do so, he needs

to be able to understand and interpret its content, which requires data profiling experience.

Additionally, the user is responsible for making decisions and taking actions based on the

report. For example, any metadata that is reported as wrong should probably be corrected,

which may have implications for other systems that use that data.

Application Areas. Data profile validation should be applied whenever a data profile

is being made use of, but its correctness cannot be ascertained. This can occur in many

application areas, e. g., when the source of the metadata cannot be trusted, which is often

the case when third parties are involved or the data comes from the Web. Another aspect to

remember is that metadata is data as well, and thus, is subject to the same circumstances. One

such circumstance is that the quality of data diminishes over time, because as data gets older,

it is more likely to be outdated. The same applies to metadata, so the older the metadata is,

the more skepticism should be applied.

Finally, a data profile can only be expected to be valid for a given input dataset in a specific

state. Whenever the dataset changes, e. g., instances are inserted, deleted, or updated, it is

reasonable to assume that the metadata changes as well. If any change in the data does not

automatically update the metadata, the associated data profile is invalidated immediately.

Example. At the beginning of the CloudHost case, one crucial question was "How many

different products does CloudHost have on offer?". It was important to have a precise answer

to this question, because it would affect the complexity of the planned recommender algorithm,

its scalability requirements and the expected number of resulting recommendations. However,

different people had different answers to this question, and they varied wildly. Still, none of

them were objectively wrong, because the various departments of CloudHost had different

definitions of the term product.
For example, the finance department considers the complete Office 365 suite to be one

product, because customers usually pay only one bill to use everything it includes. However,

the marketing department considers each individual software in that suite as a product in

its own right, because they need to advertise each software separately. Further still, the IT

department considers each major version of each individual software to be its own product,

because they have different requirements regarding the technical environment they need to

be run in.

From a data profiling perspective, these reported numbers of products represented meta-

data that needed to be validated, due to their uncertain correctness. After discussing the

various definitions with the project stakeholders, an agreement was reached that a product

is anything that has been assigned a unique product_ID. Thus, the question of how many

different products there are could be answered by calculating the distinct count (as laid out

in Section 4.2.1) of the product ID column. The result was consequently used to validate the
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Figure 5.6: Visual data exploration.

previously reported number of products, and reassess some of the initially made complexity

estimates, which helped the management of the project.

This brief example shows the validation of a single piece of metadata (here, the number of

products). In cases where a proper data profile (i. e., a collection of metadata, cf. Section 4.1)

is available, the validation process should be repeated for each individual type of metadata

whose correctness is not guaranteed.

5.5 Visual Data Exploration
Data exploration is the process of inspecting a dataset and learning about its contents and

characteristics. The techniques that are used for exploration are usually visual, which is why

it is synonymously referred to as visual data exploration or visual data mining [Kei02].

Data exploration is an important activity for any organization that collects large amounts

of data, because data that is merely collected without eventually being put to use serves no

business goal while incurring costs due to, e. g., occupying storage space [KA01]. Only when

it is known what kind of data is available and how it is structured can it be put to good use.

The general process is depicted in Figure 5.6.

The key concept here is the use of visualization techniques to process and present the

data. The idiom “a picture is worth a thousand words” can be applied here to stress the fact

that humans, unlike computers, can more easily digest information if it is presented in a

visual way, e. g., using colors, shapes and other elements [LS87]. This essentially amounts to

a translation from a machine-oriented format of bits and bytes into a human-oriented format

of visual information.

Another benefit of visual exploration techniques is that they are designed with interactivity

in mind. This means that the resulting visualizations are not static, but can dynamically be

adapted by the user, enabling navigation through the data. This is especially useful when there

are too many data instances to be viewed at once, as visualizations aggregate and summarize

the data in a compact manner.

Data exploration is linked to data profiling, and consequently considered here as a data

profiling variant, because it is based on the same types of metadata. In fact, many exploration

techniques require that a specific type of metadata is calculated first, and then piped into

a visualization technique. From this perspective, data exploration extends data profiling by

adding this final visualization step to the process. It could be argued that it should thus

be called visual data profiling instead. However, the term visual data exploration is already

established in the literature, which is why it is kept as a name for this variant.
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Purpose. The purpose of visual data exploration is to enable a human user to use his

cognitive visual ability to make sense of a dataset.

Input. The input consists of a single data source with any kind of structure. If the data

source is small, i. e., it has a low number of data instances and fields, it is usually sufficient to

look at it directly with an appropriate tool, e. g., spreadsheet software for tabular data. This

may have the benefit that it is unfiltered and enables immediate insight into the available

data. This approach quickly fails when the size of the data increases even slightly to just a few

hundred components, because a human reader cannot reliably process that much information

at once. Thus, visual data exploration is recommended on input data sources that are moderate

to very large in size.

The data type of the input data plays a crucial role for its visualization, because the set of

applicable visualization techniques are dependent on it. The term data type is used slightly

different in the context of visualization as compared to the technical perspective introduced in

Section 4.2.1, where basic types such as characters and numbers were considered. According to

Shneiderman, the following seven data types can be distinguished for visualization purposes

[Shn96]:

1. One-dimensional: linear data type, organized in a sequential manner. E. g., documents,

lists of data.

2. Two-dimensional: planar or map-type data. Used for geographical and location-based

systems.

3. Three-dimensional: describes real-world objects and their dimensions, e. g., buildings.

Used in computer graphics and computer-assisted design.

4. Multi-dimensional: arbitrary number of dimensions. Relational tables fall in this cate-

gory.

5. Temporal: data that has explicit timestamps for start and end. Used in logging, project

management, or medical documentations.

6. Tree: data that is structured such that every item has a link to one parent item, except

the root. Useful to describe hierarchies.

7. Network: graph-based data, where every item can be linked to any other item. Used to

show social networks.

Each of these data types can be visualized with appropriate techniques. For example, if

the data input resembles a social network, then graph visualization methods can be applied

[HMM00].
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Executor. Exploration is always performed using a suitable tool, so the executor of the

exploration is automatically the user of that tool. As the usefulness of data exploration tools

has been recognized early on [dOL03], the market for these tools is very mature and the

sophistication levels accordingly high. This leads to a wide availability of easy-to-use tools

that are accessible to anyone that knows how to operate a computer. Consequentially, the

entry barriers into this discipline are relatively low.

Method. Visual data exploration is an interactive and iterative process that is dependent on

support through an appropriate tool. Such tools allow users to navigate through the dataset

and explore it, which is complemented by suitable types of interaction. These interaction

types have been categorized together with their respective user intent. The following list

shows one such categorization [YaKS07].

• Select Mark something as interesting

• Explore Show me something else

• Reconfigure Show me a different arrangement

• Encode Show me a different representation

• Abstract / Elaborate Show me more or less detail

• Filter Show me something conditionally

• Connect Show me related items

For a more high-level perspective on how visual data exploration should be structured,

the visual information-seeking mantra proposed by Shneiderman offers useful guidance.

This mantra states “Overview first, zoom and filter, then details-on-demand” [Shn96, p. 337],

which is an intuitive approach for visualizing data in a top-down fashion.

A frequent problem in data visualization is that it is a time-consuming and costly task to

construct a suitable visualization that reveals interesting insights about the data that can

actually be understood by the reader. Thus, a method to automatically generate visualizations

that are useful for data profiling can be highly beneficial. One such method is called Profiler
and is described by Kandel et al. [KPP

+
12]. It offers an extensible system architecture, an

automatic view suggestion, and scalable summary visualizations.

Output. Seeing how visual data exploration is considered an interactive process, there is

no immediate need for a tangible output besides what is put on the monitor, because the user

is learning what he needs to know while exploring, which already achieves the purpose. Still,

it makes sense in many cases to consider exporting static images of the current visualization.

These visualizations can be used to reproduce the exploration process and educate a broader

audience about the findings, e. g., in a presentation.

User. The user is either the same person as the executor in cases where he is exploring

the data on his own. The group of users expands accordingly in cases where the exploration

results are shown to other people.
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Figure 5.7: CityPlot example. Source: [DV12].

Application Areas. The usage of visual data exploration techniques has been proposed for

a diverse range of application areas. For example, von Zernichow and Roman present their

tool Grafterizer in [vZR17], which utilizes visualization techniques to facilitate data cleaning

and transformation.

Another popular tool is Gephi [37], which focuses on graph and network data and offers a

powerful engine for visualization, arrangement and manipulation. Gephi is advertised as a

tool for exploratory data analysis, which is a term that has its roots in statistics [Tuk77], but

means essentially the same as visual data exploration. Gephi enables application areas such

as social network analysis or the visualization of complex scientific data from domains such

as biology [OHB12, VKH15] or chemistry [CLD
+

12].

Lastly, visual data exploration can also be applied to inspect relational data. One noteworthy

tool as an example for this is CityPlot, which generates a skyline-like representation of the

input data [DV12]. This allows a quick visual assessment of table cardinalities and their

relation to each other. An example output of CityPlot is shown in Figure 5.7. The colors in

this example denote the data type of the respective data cell, with numeric data being blue,

categorical data green, date/time yellow, and others in red. White spots show missing data,

i. e., null values.

These are just some examples of visualization application areas and corresponding tools.

There exist many more and they cannot all be listed here. The interested reader is referred to

surveys on the matter, such as [LCWL14] or [BK01].

Example. In the CloudHost project, there was one particular instance where a visual

exploration of the data had been key to making progress. Remember the portfolio dataset,

which used a relational data model and had been made available as a spreadsheet file. Some

of the preliminary analyses on this dataset that have been conducted for test purposes

yielded unexpected findings, i. e., some of the aggregation results were outside the range of

expected values. After double-checking the analysis implementation and finding no issues

there, suspicions were raised that something was wrong with the data itself.
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Figure 5.8: Spreadsheet view of the CloudHost portfolio dataset.

The natural reaction at this point was to open the file in a spreadsheet software and simply

look at the data. The default setting of most spreadsheet software is to display data in a

readable size, which means that only a handful of data values fit on one screen and are

visible to the user. The remaining data can only be seen by scrolling horizontally (to see more

columns) or vertically (to see more rows). Looking for anomalies or irregularities in the data

while alternating between these scrolling mechanisms is similar to searching the proverbial

needle in a haystack, i. e., infeasible.

As pointed out before, the first decree of the visual information-seeking mantra is “Overview

first” [Shn96, p. 337]. In an effort to gain an overview of the data, the zoom functionality of

the spreadsheet software was used to reduce the display size of the data significantly, so that

at least all of the columns could fit on the screen. Although this caused the actual data values

to be no longer legible, it provided a much better overview of the structure and general form

of the data. The horizontal scrollbar was now eliminated, which significantly reduced the

complexity of going through all rows and looking for irregularities. Near the end of the file,

the data looked like shown in Figure 5.8.

In the lower half of that view, the structure of the data changes and the values seem to be

shifted to the left. Investigating this anomaly revealed that all rows below that point have

different columns compared to the rows above. 17 columns are not present in these rows,

which had been loaded through a different (outdated) process and appended to the file. When

encountering such a format mismatch, there are generally two options: discard the offending

data, or correct the issue at the source. In the CloudHost case, a correction was possible,

which involved modifying the loading process with an updated column list and re-executing

it. This resulted in a cleaner dataset, which no longer exhibited the unexpected results that

had initially prompted this investigation.

Even though this example employed a very basic form of data visualization, it could still be

demonstrated why visually inspecting a dataset can be very valuable: Structural anomalies

or irregularities in a dataset tend to stand out and are easily spotted by the human eye.

Identifying and dealing with such issues is usually very beneficial for any data-driven project,
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Figure 5.9: Data discovery.

especially early on before they cause any complications in the downstream processing of the

data. Furthermore, the use of more sophisticated data visualization tools and techniques can

reveal more obscure issues in more complex datasets.

5.6 Data Discovery
The last data profiling variant described in this chapter is data discovery. Data discovery is

done to search through a space of available data to find a dataset that satisfies a given set of

requirements and criteria. This search space in which the discovery takes place can either

be internal, e. g., a data repository or a data lake, or external, e. g., the Internet. The search

criteria that describe the desired dataset are descriptions of its characteristics and thus can

be considered metadata themselves. This enables the treatment of a set of search criteria as

a data profile. This data profile then assumes the same role as the search parameters in a

traditional search process. This constellation is shown in Figure 5.9.

Data discovery can be seen as some kind of reverse data profiling, because it reverses the

input and output objects. However, instead of generating the output from the input, it is rather

discovered and found.

Note that there is a degree of linguistic similarity between the words exploration and

discovery as both describe acts of investigating and searching the unknown. However, there

is a notable distinction between data exploration and data discovery, as the former is about

investigating a dataset that is already available, while the latter describes a method to find

one dataset among many that satisfies a set of criteria.

Purpose. The purpose of data discovery is to find one or more dataset(s) within a search

space. This can be useful if, for example, new data is needed to fulfill a specific purpose like

enabling an analysis or augmenting another dataset.

Input. The input for data discovery are the search criteria given as a data profile. There are

two ways in which such data profiles can be generated. First, they can be defined manually by

specifying the metadata and their values. These hand-crafted data profiles allow a maximum

of flexibility, because there are no restrictions regarding their contents. The second way is to

derive a data profile from the profiling process of another dataset. This enables a discovery of

datasets that share the same metadata and can thus be assumed to be similar in some way.

Another implicit input to the discovery process is the definition of the search space. This

tells the executing system where it should look. For the discovery to be successful, it is
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important that the datasets available in the search space are sufficiently described through

appropriate metadata.

Executor. The decision who should be responsible for executing data discovery depends on

the application for which the data is needed. For example, a newspaper article about the most

recent weather phenomenon might be improved by a comparison with historical weather

data. Looking for this historical weather dataset is a discovery process with a low complexity,

because it can probably be easily accomplished by searching for its title. Thus, the executor

can be anybody with basic search skills.

Another example with a higher complexity would be if a company is looking to augment

its data warehouse with more detailed customer data. This data needs to be compatible with

existing customer records and give insight into a specific set of product preferences. Also, the

dataset will be used in a core system of the company, hence its quality and trustworthiness are

of high importance. Discovering such a dataset involves a precise definition of a corresponding

data profile, which is an elaborate task that should be performed by trained IT professionals.

Method. Applicable methods are largely dictated by the search space. If, for example, one

wants to search through the whole Internet, the only reasonable possibility is to use a general-

purpose search engine like Google or Bing. These search engines do not allow to enter specific

metadata to filter and refine the search, so it is very broad in nature.

Another kind of search space are data repositories, which are manually curated lists of

datasets that serve a specific purpose. For example, many governments have an open data

program in which they offer data about topics such as public spending or education, such

as Germany [10] and the United States [40]. These data repositories can be freely browsed

through a Web interface, which allow a specific set of search parameters to be set, such as

data format, topic, tags, or publisher.

Lastly, data discovery can be heavily facilitated through the usage of a specialized data

marketplace as the search space. A data marketplace is a platform that allows anybody to

offer their datasets, either for free or a specific price [SSV12]. These data marketplaces have a

vast amount of datasets to offer due to their open and collaborative nature and are thus an

ideal search space for data discovery. However, many such marketplaces do not offer very

comprehensive search mechanisms and instead rely on key-word search and categorization

of datasets. There is room for improvements in this area, because a more sophisticated search

interface would enable new business cases such as automated data discovery or applying

recommendation engines to datasets.

Output. The output of the discovery process is the desired dataset, or at least a location

identifier where it can be found. Alternatively, the output can also consist of a subset of a

found dataset that is the result of applying a specific filter. This output is expected to fulfill

the criteria specified in the input data profile. If the trustworthiness of the data source is

doubted, a subsequent data profile validation process can be initiated to make sure that profile

and dataset match.
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Table 5.1: Data profile for the data discovery of the portfolio dataset.

Metadata Value

Column Names client_id, product_id

Row Count > 20’0000

Distinct Count of client_id > 200

Distinct Count of product_id > 1000

User. Usually, the user that needs the data is the same person as the one executing the

discovery process. However, there can also be scenarios in which somebody is tasked with

the discovery of a dataset for somebody else. In this case, the user can be anybody that uses

that dataset.

Application Areas. The biggest application area for data discovery is data acquisition, i. e.,

when data needs to be sourced from a third party, either via payment or for free. In these

cases, a precise purpose can be specified, translated into a data profile, and used as input to

the discovery process. As pointed out above, this line of thinking can be applied to open data

repositories or data marketplaces.

Another area is when a company is collecting vast amounts of data from various sources

and stores them without proper documentation, e. g., in a data lake. Deriving value from

such an unorganized collection of data tends to be very difficult due to the sheer volume

and variety involved. This can be facilitated by automatically extracting metadata about all

included datasets and compiling them in comprehensive data profiles. Then, all datasets can

be effectively and efficiently be searched, allowing a successful data discovery, and ultimately

enabling value to be gained out of it.

Example. The previous cases from the CloudHost scenario assumed a dataset to be already

available, most notably the portfolio dataset. Before these cases had been started, however,

some of the involved datasets needed to be found, i. e., discovered, first. This section describes

how the portfolio dataset had been searched for and ultimately discovered.

Based on the idea to create an algorithm for automated client-specific product recommen-

dations, a dataset was needed that contained information about both clients and the products

they are using. Thus, the first requirement imposed on the dataset was that it should contain

columns to uniquely and unambiguously identify clients and products. Such identifying

columns were expected to be named client_ID and product_ID, respectively. Next, the

dataset must have a sufficient amount of data to allow a meaningful analysis. After some

discussion, it was decided that a minimum of 20’000 rows would be necessary to achieve

that. Lastly, the data should cover a large portion of CloudHost’s clients and products, to

ensure that the envisioned results would cover a wide amount of the business. This notion

was concretized to at least 200 different clients and 1000 different products.

With the requirements specified, they could be translated into a data profile, as shown in

Table 5.1. This data profile constituted the starting point for the following data discovery.
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With the data profile specified, a search space for the discovery needed to be determined.

It was decided that the CloudHost-internal data lake is the only reasonable candidate for

this. As the needed data is by definition internal to CloudHost’s operations, it did not make

much sense to include any external sources in the search space. The data lake was a loose

collection of many different kinds of datasets across the whole enterprise. It had a basic search

interface, which allowed a user to look up specific schema elements of the relational datasets

it contained, like table and column names. With this interface, a search was conducted for

datasets that contain both required columns, client_id and product_id.

The search found 13 datasets. For each dataset, the row count, as well as the distinct count

of both columns was calculated using a data profiling tool. Only two datasets fulfilled the

specified criteria. Both of these candidates were investigated manually to decide which one

would be best suited for the planned goals. In the end, the portfolio dataset has been selected,

which consequently acted as the input for other examples of profiling techniques throughout

this thesis. With the desired dataset found, the data discovery ended.

This example demonstrates how data discovery can be executed in a practical setting, from

requirement gathering, over search space evaluation, to result selection. When all these steps

are properly documented, this approach can lead to transparent and reproducible results, and

contribute to the overall success of a data-driven project.

5.7 Summary
To conclude this section, all the presented data profiling variants are condensed into one super

process, shown in Figure 5.10. It shows each variant as an activity with its corresponding

inputs and outputs.
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Figure 5.10: Data profiling super process.
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6 Broadening the Scope of Metadata
So far, one of the core assumptions was that metadata can be directly derived from an input

dataset. However, upon closer examination of the issue, it becomes evident that this is not

always the case. There exist types of metadata that relate to facts that are not part of the data

itself. For example, the origin of a dataset and the transformations it has undergone up until

this point, i. e., the data provenance [BKWC01], are information about that data which cannot

be learned from the data itself. Instead, the provenance information may be hidden away

in log files, or be only implicitly known by the people that have worked on the data before.

Still, it is a type of metadata, because it describes a property of the dataset and thus, fits the

definition of “data about data”.

The fact that there are two distinct sources from which metadata can be derived, i. e., the

data itself on one hand and other external sources on the other hand, suggests that a clear

distinction between these classes of metadata types should be established. This is done in

Section 6.1. To demonstrate the usefulness of this concept, an example case for this chapter is

introduced in Section 6.2, which will be used to explain these individual types of metadata

in Section 6.3. Afterwards, the two questions where such metadata can be found and how it

can then be extracted are answered in Section 6.4. Lastly, the process of extracting extrinsic

metadata is combined with the the process of extracting intrinsic metadata in Section 6.5 in

order to construct a combined process.

6.1 Distinguishing Intrinsic and Extrinsic Metadata
The metadata types that have been discussed in-depth in Chapter 4 can all be derived directly

from the data. In other words, the information is already present within the data and only

needs to be gathered and extracted by an algorithm. This is the first class of metadata types,

which shall be called intrinsic metadata henceforth. The term intrinsic is used to highlight

the fact that these types of metadata are based on properties that are inherent to the data

in question and require no external source. In other words, this means that there is a direct

functional relationship between the input data and its intrinsic metadata, which can be

expressed in terms of an algorithm. In conclusion, the following statement is established:

Intrinsic Metadata is metadata that can be derived solely from the data itself.

Metadata types that do not conform to the above statement relate to properties outside of

the data. Consequently, it is proposed to use the antonym of intrinsic, extrinsic, to label these

types of metadata:

Extrinsic Metadata is metadata that cannot be derived solely from the data itself.
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This complementary definition of classes leads to a binary distinction, i. e., any metadata

type is considered to be either intrinsic or extrinsic and there exists no third class. All metadata

types that have been discussed in Chapter 4 are intrinsic. In particular, the metadata extraction

process shown in Figure 4.4 can now be considered to be an intrinsic metadata extraction

process.

As a side note, it should be commented that this binary classification might be too strict,

depending on the context and use case. It could be possible to conceive a more general concept

where these two types are the end points of a continuous spectrum, and in between would

be types of metadata that are “a little” extrinsic or “a bit” intrinsic. For example, the age of a

given piece of data could be considered intrinsic in cases where it is explicitly stored as part

of the data, and extrinsic otherwise. For the scope of this work however, it is more useful to

keep the binary restriction, because it allows a more focussed discussion on the individual

types of metadata and from which source they can be retrieved.

Including extrinsic metadata as part of a data profile can be highly advantageous, because it

provides a more thorough and holistic picture of the dataset in question. A real-world example

of a successful company that explicitly considers extrinsic information in their operations can

be found at Amazon. While they perform extensive analyses on the data they have available,

i. e., intrinsic metadata, the CEO, Jeff Bezos, has made it a point to explicitly listen and react

to the comments and anecdotes of their customers. In a recent interview, he said “the thing I

have noticed is when the anecdotes and the data disagree, the anecdotes are usually right”

[2]. This demonstrates that not everything can be explained by numbers and algorithms, and

it can be beneficial to look beyond the data and search for extrinsic metadata.

6.2 Revisiting the CloudHost Case
To better illustrate the individual types of extrinsic metadata and how they are useful with

regards to a specific dataset, the familiar CloudHost example case will be revisited (cf. Sec-

tion 1.3). Remember that CloudHost is a company that rents out server capacities for customers

to run software on. All sales made by CloudHost are recorded in a database table, which

consists of the following seven columns:

id Unique identifier for each sale

customer Name of the customer that bought an item

item Name of the item that has been bought

price Amount of money that has been paid

discounted Indicator of whether the sale price has been discounted

registration_fee First-time customers get charged with a one-time registration fee upon

their first purchase from CloudHost. This fee is sometimes waived, e. g., during special

promotions.

date Date of the sale

Across the years of CloudHost’s existence, numerous sales have been recorded. A small

excerpt of this data is given in Table 6.1. Note that although this example is based on a
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Table 6.1: Excerpt of the CloudHost sales data.

id customer item price discounted registration_fee date

.

.

.

47 Customer01 A $700 No $50 2018-05-05

48 Customer01 B $650 ⊥ 2018-05-06

49 Customer02 A $500 Yes $0 2018-05-08

.

.

.

relational data model, most of the following concepts are easily transferable to other data

models, e. g., semi-structured models.

The goal in this example case is to integrate the sales data into the CloudHost data ware-

house. There are two users in this scenario, namely the IT professional and the domain expert
(cf. also Section 3.5). The IT professional is responsible for the integration process and has to

implement and execute it. He has already performed goal-oriented data profiling, in a similar

fashion as described in Section 5.2. Thus, he already has all the necessary intrinsic metadata he

needs for his task. What he is lacking though is information about the surrounding context of

the data to make better sense of it. In other words, he needs extrinsic metadata, which he does

not have immediate access to. This is where the domain expert comes into play: he is familiar

with the dataset and how it is used, and thus has implicit knowledge about it. It is further

assumed that the domain expert is willing to cooperate and answer any questions the IT

professional has. A visualization of this scenario is given in Figure 6.1, which is intentionally

kept general to make it applicable to other, similar use cases.

IT Professional Domain Expert

Task

has domain
knowledge about

provides access to

concerns

is assigned with

needs to understand

can pose questions to

Dataset

can perform
profiling on

Figure 6.1: Use case diagram for the sales example.
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6.3 Types of Extrinsic Metadata
There is a number of different types of extrinsic metadata that can be used to gain a deeper

understanding of an associated dataset. This section aims to give a comprehensive, but not

exhaustive overview of the most important types according to their anticipated usefulness in

a data-driven project. Unlike the list of intrinsic metadata, there are no algorithmic definitions

of these types as they are not applicable here. Instead, a higher-level conceptual overview of

what each metadata type entails is given, as well as its application in the context of the sales

example case.

Data Provenance Data provenance, also referred to as data lineage [WS97] or data pedigree
[Rom99], has been characterized as “the description of the origins of a piece of data and the

process by which it arrived in a database” [BKWC01, p. 1]. This definition is a combination of

two distinct concepts: data origin and data transformation history.

The data origin indicates where the data comes from, i. e., what were the circumstances that

led to its inception. There are two broad classes of data origin which can be distinguished:

� Machine-generated data is “data that is generated as a result of a decision of an indepen-

dent computational agent or a measurement of an event that is not caused by a human

action” [1]. Examples include computer and network logs, sensor readings and satellite

data.

� Human-generated data is a recording of the “direct result of human choices” [20].

Examples include e-mails, word files, but also records about purchases, payments,

inquiries, comments, evaluations, and notes.

The data origin type allows to draw conclusions about various aspects of the data, such as

the expected velocity: Machine-generated data can be produced at enormous speeds, which

continually rise along with the computational power of the machines. Human-generated data

on the other hand grows much slower, as humans have a cognitive limit on how fast they can

make reasonable decisions. The expected growth rate of a dataset is important, e. g., for the

adequate sizing of the systems that shall process it.

The second part of data provenance, the data transformation history, is an (ideally) com-

plete list of transformations that have been applied to the data since its inception. These

transformation range from simple computations like copying or aggregating to complex

data management tasks like data cleansing, data integration, or data curation. One way to

represent the transformation history of data is a directed acyclic graph that links the data to

the performed activities and the respective agents [CCM17].

The provenance of data is crucial in applications that require transparency and the ability

to precisely keep track of a dataset. Examples of such applications include scientific data

management for experimental results, the creation of intellectual property, or regulations that

involve audit trails. Furthermore, data provenance is universally useful in scenarios where

“data debugging” is required, i. e., the possibility to go back and trace any specific point of data.

Overall, it can be used to facilitate the assessment of the quality, reliability, or trustworthiness

of a dataset [CCM17].
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Table 6.2: List of permissible privileges in MySQL. Source: [22].

ALTER EVENT RELOAD

ALTER_ROUTINE EXECUTE REPLICATION_CLIENT

CREATE FILE REPLICATION_SLAVE

CREATE_ROUTINE GRANT_OPTION SELECT

CREATE_TABLESPACE INDEX SHOW_DATABASES

CREATE_TEMPORARY_TABLES INSERT SHOW_VIEW

CREATE_USER LOCK_TABLES SHUTDOWN

CREATE_VIEW PROCESS SUPER

DELETE PROXY TRIGGER

DROP REFERENCES UPDATE

Applying these concepts to the CloudHost case reveals the following: First, the data recorded

is about sales, which are human choices, so it is human-generated data. This leads the IT

professional to conclude that the existing ETL system will likely suffice for the integration

task and no expensive big data technology is required. Second, the domain expert tells the

IT professional that the dataset is a straight export from the CRM system, with no further

transformation or curation being applied. This indicates the need to perform thorough data

quality checks before the data can be loaded into the data warehouse, which are implemented

as part of the integration process.

Data Privileges A privilege is the right to perform a specific operation on a (subset of

the) dataset. Privileges are used to precisely govern which user (or user group) may access

and manipulate which part of the data. The range of privileges depends on the functionality

offered by the underlying database management system. The most basic operations that any

DBMS offers are create, read, update and delete, often abbreviated as CRUD. Popular DBMSs

offer many more operations and, consequently, a much more fine-grained privilege system.

For example, MySQL offers a total of 30 different types of privileges, as shown in Table 6.2

[22].

Privileges can be either granted directly to individual user accounts, or to a role. A role in this

context is a middle layer between users and privileges that can be used to facilitate privilege

management. Users are associated with roles and automatically inherit all privileges that

have been granted to that role in addition to user-individual privileges. Roles are supported

by most modern DBMSs.

Related to data privileges is the concept of data ownership. Simply put, the data owner has

the right to grant and revoke privileges to others [VBM95]. This is also referred to as having

administrative privileges.
When a user is working with a dataset it is usually very helpful to know which privileges

he has and who can change them, i. e., who the data owner is, because it tells the user exactly

what he can and cannot do. If, for example, a user is tasked with performing data cleaning,

but does not have the privileges to update the data, he cannot accomplish this task. Thus, he

has to turn to the data owner and ask for the appropriate privileges to be granted to him.
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In the CloudHost example, the dataset resides in a strictly governed production database.

The IT professional may only read the data, but not manipulate it in any way. However, when

copying the dataset, e. g., in an ETL process to move it into the corporate data warehouse, it

is possible to transform, enrich, or augment the data.

Data Location Every dataset needs to be stored somewhere. This somewhere is the data

location and can be specified in a number of ways. On the Internet, the usage of URLs (uniform
resource locator) has been established as the de-facto standard for specifying the location of a

resource. In this context, the term resource refers to a Web resource which can be anything

with an identity, ranging from files over services to datasets. In offline scenarios, the location

of a dataset may also be specified using an ordinary path in a file system, or by pointing to a

specific data storage device, such as a USB flash drive.

In many cases, the data location is conveyed implicitly without a need for further clarifi-

cation. However, there are also cases in which a specific statement of this metadata type is

useful. For example, when a collaborative project is set up and one party agrees to give data

to another party, it needs to be made clear in the project documentation when and where this

data can be accessed. Doing this upfront saves any unnecessary effort put into searching for

the data later on.

There may be cases in which the data location is known, but it cannot be accessed. A

classification of reasons why data may be inaccessible is given by Pyle and consists of the

following categories [Pyl99, p. 118]: legal issues, departmental restrictions, political reasons,

wrong data format, lacking connectivity, architectural reasons, and timing issues. If the data

location is not accessible, it is advised to investigate the reason in order to find a solution.

So far, the data location has been considered from an access-oriented point of view. However,

it may also make sense to think of the physical location of the data, i. e., where the data center

that stores the data is. For legal reasons, it may be a strict requirement that data is stored and

processed in a specific country. This is an issue that is especially relevant when outsourcing

data storage to a cloud computing provider.

The domain expert in the CloudHost example informs the IT professional about the database

that contains the dataset and under which IP address and port number he can access it. The

IT professional uses this information to configure his tools correctly and ensure successful

data processing.

Data Completeness Data completeness is a measure that describes how many of the

expected entities and attributes are present in a given dataset. Pipino et al. refer to this

concept as "schema completeness" [PLW02]. It is a two-dimensional concept that can further

be broken down into entity completeness and attribute completeness. To compute the entity

completeness, the number of observed entities (or rows, data instances, etc.) in a dataset is

divided by the number of expected entities. This in turn requires knowledge about the number

of expected entities, i. e., how many entities the dataset should have. For example, if a dataset

describing the states of Germany only contains 14 rows (cf. row count in Section 4.2.1), while

it is known that there are 16 states, the entity completeness can be said to be 14/16 = 0.875.

Similarly, the attribute completeness measures how many of the expected attributes (or
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columns, fields, etc.) are available in the dataset.

Both dimensions of data completeness require knowledge of what the respective expected

counts are. This knowledge usually comes from an external source (like the number of states

in Germany, which can, e. g., be looked up from Wikipedia). Thus, data completeness cannot

be derived from the data itself and fulfills the definition of extrinsic metadata.

The idea of completeness is related to the concepts of closed-world assumption (CWA)

and open-world assumption (OWA). Under CWA, all real-world facts are contained in the

data and non-existing facts are assumed to be false [Rei78]. The CWA can be made if data

completeness is fulfilled. As an example, consider an airline database that lists all flight

connections for a specific airline. If the source can be trusted, it is reasonable to assume that

all flight connections are indeed contained in the database, and if a specific connection cannot

be found, it does not exist.

The OWA on the other hand states that missing facts in a database can be either true or

false and cannot be verified. For example, a telephone book should usually be treated with

the OWA, because it cannot be known whether persons not listed do not have a telephone

number, or whether they simply opted out of having their number published. Thus, it is

unreasonable to assume that a telephone book is data complete.

Note that the concept of data completeness is, just like data quality, dependent on the use

case and context. Wang describes completeness as “the extent to which data are of sufficient

breadth, depth, and scope for the task at hand” [WS96]. If a user is looking for a flight by a

specific airline, he may have a complete dataset at hand, but if he is looking for all flights,

the same dataset would be considered incomplete. Thus, it is important to always define

completeness with respect to the context in which it is assessed.

Knowledge about data completeness is useful in a variety of ways. If it is known that a

dataset is complete, then no further sources are needed to complement it. On the other hand,

if it is incomplete, then it might be worthwhile to find out in which regard it is lacking, i. e.,

which entities or attributes are missing. Furthermore, the state of completeness influences the

analyses that can be performed on the data. For example, the maximum value of an attribute

becomes meaningless if a significant portion of the values are missing, whereas the average

value is more robust in this regard.

In cases where it is known that a dataset is incomplete it makes sense to ask for the reason

why that is the case. Depending on the individual reason, there may or may not be measures

that can be taken. For example, if the survey responses of an interviewee are not stored

properly and get lost, the data has never been recorded. In such a case, the data can be

recovered by asking the same person again. This is different from cases where reproducing

the data creation process is not possible, e. g., when the time is a crucial component of it,

like weather sensors that record the temperature and humidity. Such data cannot easily be

reproduced, because the specific circumstances have irrevocably passed.

Another reason for missing data is that, after it has been recorded, it is deleted intentionally.

Deletion can occur along any level of the data, be it tables, entities, attributes or any other

group of values. If data is deleted, it might be worthwhile to investigate why that is the case.

For example, there could be data privacy laws that need to be complied with, which leads

to the omission of specific values so that individual persons cannot be identified from the

data. This is a frequent occurrence when medical patient data should be published without
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infringing on the individuals right to privacy. Solutions to this challenge are studied under

the name differential privacy. A comprehensive overview of this topic is given by Dwork

[Dwo08]. If data has been deleted intentionally, the user working on that data can usually

assume that there is nothing he can do and cease any efforts to reach a higher degree of

completeness. Other reasons for intentional data deletion include negligence, i. e., somebody

thinks parts of the data are not important, or size restrictions, e. g., data needs to fit into a

physical drive or the attachment of an email and is trimmed down to make it fit.

If the data has been recorded properly and was not deleted intentionally, there may be a

third reason for incomplete data: it is located somewhere else. This can happen on a technical

level, e. g., data is stored in a distributed database and some nodes go offline, making parts of

the data inaccessible. Or it can happen on an organizational level, e. g., somebody misplaced a

spreadsheet file in the wrong directory, or gave it the wrong name. These issues are related

to the concept of data location (cf. previous section) and can usually be fixed with reasonable

effort.

Back in the CloudHost sales example, the IT professional learns that the provided dataset

only contains sales made in Europe. Thus, it is a complete recording of all sales that have

occurred in that continent, but it does not contain any sales from other continents. This fact

should be recorded in the documentation of the dataset. Any reports or analyses based on

that data should be made with that fact in mind. To reach a higher degree of completeness, it

could be investigated if CloudHost even makes sales outside of Europe, and if that’s the case,

locate the data about those sales and merge them with the data at hand.

To complete this discussion about completeness, it should be mentioned that Batini et al.

go further and propose the concept of completability as a function over time that indicates

how complete a dataset is at a given point in time [BS06, p. 27]. This is useful in scenarios

where a dataset evolves over time, e. g., weather data from a sensor, or computer predictions

of elections.

Missing Value Handling It is comparatively easy to detect the presence of missing values

and measure their impact, e. g., by combining the intrinsic metadata types NULL count and

blank count (cf. Section 4.2). However, it is much harder to reasonably decide how these

values should be treated upon identification.

To illustrate this problem, consider how relational databases encourage the usage of the NULL

marker for missing values. While this practice offers an elegant solution to unambiguously

denote the absence of a data value, it still leaves room for interpretation of the reason why

that may be the case in an individual instance. The inventor of the NULL marker, E. F. Codd,

offered two possible meanings: “value at present unknown” and “property inapplicable”. For

example, in a table describing people, a column that stores email addresses may be NULL either

because the respective person chose to not disclose their email address (“value unknown”) or

the person does not have an email address (“property inapplicable”). It can even be argued

that a third meaning should be included: “not known if applicable” [BS06, p. 24]. In the people

table, this would mean that, from a data point of view, it is neither known what the email

address is, nor if it exists in the first place.

These three possible interpretations of NULL values are indistinguishable on the data level.
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Thus, extrinsic sources are required to learn how each NULL value should be treated. This

enables a very precise approach when data needs to be completed. In cases where a property

is inapplicable it is perfectly acceptable to enter a NULL, and that should not be counted as

a missing value, because it is, semantically speaking, the correct value. On the other hand,

NULLs that represent unknown values should trigger an investigation with the aim to find

out the true value. A similar investigation should be done in cases where it is not known if a

property is applicable.

In some cases, NULL can simply be replaced by default values, e. g., a blank string or a

zero. In the CloudHost sales example, the IT professional notices that there is a NULL value

in the registration_fee column, denoted by a ⊥. The domain expert informs him that

this is not the same as zero delivery charges, but rather indicates that the exact amount has

not been determined yet and will be filled in at a later point in time. This circumstance is

documented in the corresponding metadata, so that future data users are made aware of this

fact. Furthermore, an exemption is made to exclude NULL values in this column from being

counted in any data quality metric.

Data Age Data age is a measure of how old a piece data is, i. e., the difference between the

current date and the date when the data has been generated or stored. It is related to data

provenance, but, due to its importance, is considered here as a metadata type in its own right.

Many different scenarios rely on data that is up-to-date and current enough to serve a specific

use case. For example, when trading stocks, it is important to have the most current stock

prices available to make informed decisions. Another example is weather forecasting, where

the latest sensor readings are required to build accurate prediction models of how the weather

is going to change.

Data age has also been referred to as the currency factor of data, and is regarded as one of

two sub-dimensions of the data quality dimension data freshness by Bouzeghoub et al. They

define currency as the “gap between the extraction of data from the sources and its delivery

to the users” [Bou04, p. 60], which fits well into the context of the previous paragraph. The

second sub-dimension of data freshness they propose is the timeliness factor, which “captures

how often data changes or how often new data is created in a source” [Bou04, p. 60]. Thus,

timeliness is not directly related to data age and will be considered later as part of the concept

update behavior.
Working with outdated data is generally not desirable, and to avoid that one needs to be

aware of the data age. Age is a metadata type that is applicable on every level of a dataset, i. e.,

each individual attribute value can have its own age, or groups of data values share the same

age, or the whole dataset is of the same age. Depending on the implementation of the system

that recorded or processed the data, some of these values may be already intrinsically available

in the data. For example, in cases where the creation date of an entity is of importance, it is

considered good practice to automatically add the current timestamp upon insertion into the

database as an explicit attribute to that entity. This has been done in the CloudHost sales

example, where the date column explicitly captures the day on which a sale took place.

There are different levels of granularity in which the data age can be measured, from

nanoseconds to years. In scientific experiments, a very fine granularity and temporal resolution
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may be necessary, whereas the sales example only records the date without a specific time of

day. The required granularity of data age may even be dynamic within one scenario, depending

on the considered time horizon. For example, stock prices need to be current to the minute

(or even second) for regular day-to-day trading purposes. However, when looking at the same

data retrospectively, e. g., the last ten years, then one stock price per day may be perfectly

adequate for many kinds of analyses. In fact, it would be highly unreasonable to attempt to

store historic stock prices for every second that has passed, because that would unnecessarily

inflate the volume of the data and slow down analyses.

The data age is useful metadata in scenarios where the data is immutable, i. e., the data

values are fixed upon creation and cannot be changed in the future. This is usually the case

where the data expresses a recording of something that has happened in the past, like the stock

exchange, weather forecasting and sales examples. In other scenarios, the data is mutable

and can be changed at a later time. For example, people relocate their homes, so any dataset

that stores addresses needs to be updated accordingly. Here, it makes more sense to consider

the point in time when the last change occurred to a data value, instead of when it has been

created.

Another category of use cases where knowing the data age can be highly beneficial is

characterized by the fact that the dataset at hand is only a snapshot of an underlying data

source. A snapshot is a full or partial copy of a data source that is taken at a specific point in

time. Thus, creating a snapshot introduces a second notion of data age, namely the age of the

snapshot, i. e., the time that has passed between its creation and the current date. Snapshots

are frequently used when, for example, the data source is a live production database with

restricted access due to performance or security concerns. Further, snapshots are useful to

create data backups or maintain the history of the data source. Most systems that allow

snapshot management automatically provide timestamps of their creation, making them

easily accessible.

In the CloudHost sales example, it is learned that the snapshot date is 2018-05-09. This

enables several conclusions to be made. First, no sale that occurred after that date can be part

of that dataset. If such a case should occur, it most likely indicates a data quality issue. Second,

the month of May is not included completely. Thus, any aggregation by month needs to be

interpreted accordingly. Lastly, if further data is added at a later point in time, only those

sales after that date are necessary.

Data Validity Data is valid if it is applicable and usable in a given context. If the data has

been recorded correctly and without errors, it can usually be assumed that it is valid. The

most common reason for data to become invalid is that the real-world fact the data describes

is changed, but the data is not updated accordingly. For example, when two people marry and

one of them changes their last name from Schomm to Schomm-von Auenmüller, then every

occurrence of Schomm is no longer a valid reference to that person’s last name. Other reasons

for the invalidity of data are inappropriate or faulty procedures that change the data into an

illegal state. For example, a database query may deliberately disable foreign key checks and

update some data rows, resulting in a violation of integrity constraints.

The validity of a data value can also be limited upon its creation. For example, if a Web
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shop wants to offer a limited time promotion, it could do so by offering a coupon code that

automatically expires after the intended time span. Other examples where auto-expiration is

frequently used include account passwords and browser cookies. Many modern databases,

especially key-value stores and in-memory databases, provide features for data expiration.

The default way to handle expired data is to delete it. However, there are scenarios where

invalid data should be preserved, e. g., for historical reasons, like in data warehouses.

In a data warehouse, old data is usually not deleted. Instead, timestamps are used to explicitly

mark rows as being valid within a specific time interval. The easiest way to achieve this is by

introducing two attributes valid_from and valid_until and set their values accordingly.

This enables queries that only consider valid entries while still preserving old values that can

be used to reconstruct specific points in time or other historic reports. The intricacies of such

procedures are described by Kimball using the term “slowly changing dimensions” [KR13,

p. 53]. Another approach to this issue is offered by so-called temporal databases [Sno86], which

offer specialized concepts (e. g., Valid Time and Transaction Time) to deal with time-varying

data in a more consistent manner.

In cases where the data validity is explicitly stored, it can be argued that it is no longer

an extrinsic metadata type, because it is possible to derive it from the data itself. Thus, data

validity is a concept that can either be intrinsic or extrinsic, depending on the use case at

hand.

Update Behavior Most data sources are not static, but are changed and updated throughout

their lifetime. When a dataset is updated, the results that have been computed with that

data as input can become invalid, including its data profile, and their recomputation may

become necessary. Thus, it is useful to document the expected frequency with which a dataset

is updated, as that influences key design decisions down the line. For example, when a

dataset is static and never or very rarely updated, then there is no need for automated data

processing routines. In these cases it is most likely the most time-efficient and economic

way to process such a dataset manually. On the other hand, if updates occur with a certain

regularity (e. g., once a day, week, or month) then the initial costs for setting up automated

processing will quickly reach the break-even point. ETL processes are prime examples for this

type of automation. Lastly, the update frequency could theoretically also approach real-time,

i. e., changes are reflected immediately and a reaction is needed as soon as possible. This

requires a switch from batch to stream processing, which usually necessitates specialized

real-time streaming technology.

Bouzeghoub et al. use the term change frequency to describe this concept and propose

a classification with three categories: stable data, long-term-changing data, and frequently-

changing data [Bou04]. This classification matches the previous considerations. However, it

should be noted that the update frequency in reality is more like a spectrum that ranges from

never to continuously, and any interval in between is possible.

Another aspect of the update behavior has already been mentioned earlier: the mutability

of the data. Some databases only allow additional entries to be made to a dataset, and existing

entries may not be changed. These databases are referred to as append-only databases.
In the CloudHost sales example, a customer can make a purchase at any time, and the
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associated data is recorded with minimal delay. However, the data is not accessible in real-time.

Instead, a snapshot is generated once a week. With this regularity in mind, the IT professional

decides to set up an automated ETL process for data loading that is scheduled to run as a

weekly batch job. Additionally, the data is immutable, so he does not need to worry about

updating any entries that have already been loaded into the data warehouse.

Data Access Frequency Data needs to be accessible to be useful. However, not all parts of

a database are accessed equally often. Usually, the most recent data that is put into a system

is the most relevant and thus, retrieved most frequently. When the volume of the data reaches

non-trivial amounts, i. e., Big Data solutions are necessary, this can lead to performance

bottlenecks if handled improperly.

This issue can be tackled with a data storage strategy that considers the data access

frequency of the various parts of the data and attempts to strike an appropriate balance

between performance and costs. One such strategy is described by Teradata Corporation, an

enterprise software company that develops and sells databases [36]. They use the analogy

of temperature to describe a spectrum from hot to cold [Gra12] and recommend appropriate

storage technology that ranges from high-performance, high-cost to low-performance, low-

cost. In this spectrum, five different tiers are identified:

� Blazing is the highest tier. This data should be kept in main memory at all times, because

it is accessed the most frequent.

� Hot is the next tier, for which solid state disks (SSDs) are a good fit.

� Warm data lies in between hot and cold. Reasonably fast hard disk drives (HDDs), i. e.,

with at least 10,000 RPM, offer a good balance between bandwidth and cost for this tier.

� Cold is the tier that is best supported by economical storage, like high-capacity HDDs

with less than 7,500 RPM.

� Arctic as the lowest tier is the place for data that is only very rarely touched, if ever, but

still needs to be stored, e. g., for regulatory purposes. Historically, the storage solution

of choice for this tier has been magnetic tapes. These have slowly been superseded by

low-cost HDDs in recent years.

Depending on the data volume and the available budget, one might be tempted to resort to

the KIWI principle, which is short for “kill it with iron”. Under this principle, any classifications

of data tiers are skipped in favor of simply throwing as much money and hardware at the

problem until it is solved sufficiently, i. e., buy as much RAM as is needed to store everything

in memory. Such a strategy may be feasible in small-scale scenarios, but will quickly become

unjustifiably expensive.

The data access frequency is a very dynamic type of metadata. The distinction between

what is considered blazing and what is hot may change during the operation of the database.

In fact, these classifications are rarely decided upon by humans. Instead, the data access is

monitored live by a system and the classification and subsequent movement of data parts is

performed automatically.
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Table 6.3: List of extrinsic metadata types.

Metadata Description

Data Provenance Documents where the data comes from (machine-generated

vs human-generated data) and how it has been transformed

so far. Also known as data lineage or data pedigree

Data Privileges Governance of access rights to a dataset

Data Location Description of where the data is located at. Can be given

in form of a URL

Data Completeness Measure of how many of the expected entities and at-

tributes are present in a dataset

Missing Value Handling Documentation of how missing values, such as NULLs,

should be handled

Data Age Measure of how old the data is, i. e., the difference between

now and its time of creation

Data Validity Binary classification whether a piece of data is valid or not

in a given context

Update Behavior Assessment of how often data is updated, and if so, how

Data Access Frequency Assessment of how often data is accessed and read

Summary A summary of the preceding extrinsic metadata types is given in Table 6.3.

6.4 Sources of Extrinsic Metadata and Their Extraction
The core characteristic of extrinsic metadata is that it cannot be derived solely from a given

dataset. Thus, new sources are necessary with new approaches to retrieve such metadata.

This section gives an overview of where extrinsic metadata can be found and how it can be

extracted.

Domain Experts The people that deal with datasets on a daily basis are likely to be highly

familiar with it. Maydanchik states that “nobody knows the data better than the users.”

[May07, p. 152]. This means that if they can be asked about a specific dataset, extrinsic

information can be learned. In the sales example, it was the IT professional that could pose

questions to the domain expert (cf. Figure 6.1). There are three basic requirements that must

be fulfilled for this approach to work.

First, it must be known whom to ask. Within a small company, this should be fairly

straightforward, whereas it gets progressively harder in larger settings. If the dataset has been

sourced externally from, e. g., the Internet, it could even be entirely unfeasible to attempt to

find a person that has expert knowledge about it.

Second, the person in question needs to be reachable via a channel of communication.

These range from personally going over and interacting with them, over using voice chat

or a telephone, to asynchronous media like text message or email. Which of these channels
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should be used depends on factors like the distance between the two parties and their relation.

For example, if the other person is a colleague working in the same building, it makes the

most sense to have a face-to-face meeting. However, if the other person is a stranger with an

unknown affiliation, the best approach could be to write a polite email and ask nicely.

Third, the contacted person must be willing to cooperate. Within the same company this

should be easy to accomplish, but there are many reasons why somebody might decline such

a request. These include, e. g., lack of time or motivation, too little confidence in one’s own

knowledge, or simply a dislike towards the other party. This issue is exacerbated when the

contacted person is not working for the same company as the inquirer as that may diminish

any motivation to cooperate and help out.

When all three requirements are met, a transfer can begin in which the domain expert

discloses his implicit knowledge about the dataset. This transfer can assume the form of an

interview, in which a set of questions that refer to the extrinsic metadata types are asked and

answered. The results should be recorded and stored in a metadata repository. In some cases,

the interviewee may not know certain answers, but he can name somebody else that might

know it. This leads to a recursive process in which the interviewer goes from one person

to another in a pursuit of information, until he has finally learned everything he needs to

learn about the data. In the context of data quality assessment, Maydanchik proclaims that

“often it is simply useful to sit next to those data experts and watch them while they work.”

[May07, p. 152]. While this may be a bit too intrusive in some settings, e. g., when customers

are directly involved, like in a bank or at the dentist, it is certainly a good approach where it

is feasible and the affected data experts do not mind the additional attention.

Alternatively, instead of an interview, the questions could also be asked in form of a check

list or survey that is sent to the domain experts, asking them to fill it out. Such a check list

could, e. g., be derived from the list of extrinsic metadata types as summarized in 6.3. This has

the benefit of being asynchronous, i. e., there is no need of setting up any kind of meeting and

the domain expert can think carefully of his answers on his own time. Additionally, it allows

the IT professional to simultaneously pose questions to a larger group of people. For example,

if the dataset in question is composed of data from various departments across a company,

then there are probably different people who know about the provenance of individual parts,

their respective schema completeness and validity, and how that data is updated. Asking

multiple people from these different departments at once has the potential to significantly

speed up the extraction of such extrinsic metadata.

It must be pointed out that any information learned this way should be assessed and

verified critically, as it may very well be the case that the question has been misunderstood,

or the asked person does not know and just guessed, or even worse, intentionally spread false

information. Double-checking during the early stages of a project can prevent a lot of issues

that might be very costly to fix later on.

Explicit Recordings Some of the extrinsic metadata that is sought after might be available

in the form of explicit recordings. Such recordings may be available, e. g., in written database

documentations or visual models. Olson suggests to look for “procedure manuals used by

data entry personnel” [Ols03, p. 125], as these may contain rules on how the resulting data
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Figure 6.2: Model of the data flow in an exemplary project seminar.

will be structured and formatted.

Once relevant recordings have been identified, they need to be examined carefully in order

to extract metadata. It helps when this task is approached with clearly formulated questions in

mind, such as “who has the privileges to change the data” or “how often is the data updated”.

This focuses the attention and mitigates the risk of getting lost in a wealth of potentially

unrelated information. Each piece of information that is discovered should be recorded in a

metadata repository.

As an example of how explicit recordings can be used for the extraction of extrinsic metadata,

consider the model shown in Figure 6.2. It is taken from the results of a project seminar that

took place at the Department of Information Systems at the University of Münster during the

summer of 2015
1
. It shows the relevant components of a system and the data flow between

them.

At the bottom are three sources that are merged by means of ETL processes into an

integrated database, which acts as a central point of truth. The data that arrives here is used

to populate a separate application database, which is copied to a number of independent

databases at remote locations. These are used to serve individual instances of a customer-

facing application. Lastly, a Web interface is connected to the application database to allow

data monitoring and manual changes.

1
For compliance with non-disclosure agreements, names and references have been omitted. If needed, the

complete report of the project seminar can be obtained from the author of this thesis.
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Assuming that extrinsic metadata about the application database is required, there are

several things that can be learned from this architecture and its documentation. First, it gives

a good overview of the data provenance. The data sources are clearly identifiable and show

where the data originates. To learn the exact transformation the data undergoes, the respective

ETL processes can be investigated. Next, properties of the data location are revealed: the

application database is copied to the physical location of the remote sites.

Information about the update behavior can be read directly from the ETL processes, which

are executed daily (this is the update frequency) and perform exclusively append operations to

the integrated database, which means that the data is immutable. On the other hand, the Web

interface allows an inspection and change of specific data values in the application database,

which gives the administrator an option to manually override any errors or data quality issues

he encounters. However, from the directions of the arrows it can be seen that these changes

are not relayed back to the integrated database or the sources.

Lastly, the system architecture allows to draw inferences about the expected data access
frequency. The read load on the application database scales with the number of individual

applications that are being set up, while the load on the integrated database is unaffected by

that.

Application The third source for extrinsic metadata considered here is the set of appli-

cations or programs that read or process the dataset in question. After all, many types of

data are the direct result of the execution of an application, so inspecting that source can

reveal interesting facts about the data. The extent to which this is possible depends on the

accessibility of the concerned application. It can range from no access, e. g., because it is

unknown or proprietary, to full access, e. g., the source code is available for inspection. If there

is no access at all, nothing can be done here, and the extrinsic metadata must be obtained

from one of the other sources. In most cases however, there should be at least some trace that

allows inferences to be made. In cases where the data is exchanged through an interface, this

interface can be examined. Olson recommends to “seek out interface definitions to application

programs that feed data to the data source. These can often add illuminating information

about the expected content of the data.” [Ols03, p. 125].

For example, a popular way to share data is through a REST API. REST stands for “rep-

resentational state transfer” and was designed as an architectural style for Web services

and interfaces [Fie00]. It is considered good style to properly document a REST API [Mas11,

p. 55], i. e., add written information about the functions that are offered. Among others, these

information include allowed request types such as GET, POST, or DELETE, which correspond

to the data privileges a user has. Furthermore, an API documentation can also reveal intrinsic

metadata, such as the data type or format of the offered data.

If the data is not exchanged via an API, but instead directly created by an application

running within the same control sphere (e. g., the same organization), it is advisable to directly

examine the application. Ideally, the respective source code is accessible and can be examined

for clues about the resulting data. Olson refers to this practice as “source code scavenging”

[Ols03, p. 221] and recommends it as a way to gather simple and complex data rules (cf.

Figure 4.3). Inspecting the source code of an application can be an extensive task, because it
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Figure 6.3: Extrinsic metadata extraction process.

can quickly reach hundreds of thousands of lines. Still, it is usually sufficient to only examine

those parts of the code that interact with the data, e. g., serialization routines or prepared

statements. This enables drawing conclusions about data provenance and schema completeness.
Finally, there may also be scenarios in which neither a documented interface nor source

code is available, and the application is essentially a black box. If it is of mission-critical

importance to learn more about the data creation mechanisms of such an application, it may

be worthwhile to attempt to reverse engineer it [EC05]. In this process, the application is

deconstructed into its individual components with careful observation how each of these

behaves. From these observations, the application design and blueprint are derived, which

may contain useful information about the dataset. Another form of reverse engineering is

redocumentation, where the intent is to recover lost or non-existent documentation about a

system [CC90, p. 15]. In any case, reverse engineering is usually a costly and time-consuming

process which should only be resorted to if no other means for gathering information about

extrinsic metadata are available.

This section dealt with ways in which an application can be inspected to extract extrinsic

metadata. However, the application itself can also be profiled on its own in order to derive

application metadata. This will be discussed later in 7.2.2 under the name application profiling.

Extrinsic Metadata Extraction Process The various sources for extrinsic metadata and

means to extract them are brought together in one concise process model, as depicted in

Figure 6.3. Beginning with the demand for extrinsic metadata, one of the three paths is selected

and a respective element identified. All paths lead back to an extrinsic metadata candidate,

which is verified before it is considered applicable. If the verification step fails, the process is

started again from the beginning where another source can be chosen.
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Figure 6.4: Combined metadata extraction process.

6.5 Bringing Intrinsic and Extrinsic Metadata Together
With the process to extract intrinsic metadata (cf. Figure 4.4) and the process to extract extrinsic

metadata (cf. Figure 6.3), it is now possible to construct a super process that combines both

processes into one combined process. This combined process is shown in Figure 6.4.

The process begins on the left-hand side with a dataset, for which a specific metadata

demand is determined. This demand can now pertain to either intrinsic or extrinsic metadata,

and is subsequently passed on to the respective extraction step. These extraction steps are

marked with a white plus symbol in the top right corner to indicate the link to the respective

sub processes, as shown before in Figure 4.4 and Figure 6.3. The results from both the intrinsic

and extrinsic extraction processes are then combined to form the resulting data profile.

Such a data profile is a set that contains all the extracted metadata and their respective

values. A conceptual overview is given in Figure 6.5, which combines the findings of Tables 4.3

(single field metadata types), 4.5 (multi field metadata types) and 6.3 (extrinsic metadata types)

in one hierarchical presentation.
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Figure 6.5: Conceptual overview of all discussed data profile types.
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Performing data profiling is a recommended first step when facing an unfamiliar dataset or

new data sources. However, looking only at the data may not reveal everything there is to

know. Chapter 6 introduced the notion of extrinsic metadata, which covers the “other side”

of the data that is not explicitly observable. Still, this is a data-centric perspective that does

not fully capture the reality that most organizations face. As a matter of fact, data is not

always the focal point and rarely exists in an isolated vacuum. Instead, it is usually only one

component of a larger, surrounding context, which consists of the systems that interact with

and depend on the data. This context can contain interesting pieces of information that may

be highly beneficial in a data-driven project. Thus, a change in perspective is proposed here

that shifts the focus away from the data as the central point of attention, towards a more

holistic view that incorporates the context of the data.

To achieve this goal, an abstract representation of the context of data is needed in order

to enable reasoning about it and provide a framework for discussion. This is addressed in

Section 7.1, which introduces the Generic Application Framework (GAF) and its levels. Next,

Section 7.2 describes how the general idea of profiling, i. e., observing and analyzing an object

to construct a concise summary, can be extended to each individual level of the GAF. Lastly, a

set of three approaches is established that allows an operationalization of the framework and

makes it applicable to real scenarios in Section 7.3.

7.1 The Generic Application Framework
The Generic Application Framework (GAF) is a simple model that consists of three levels:

application at the top, process in the middle, and data at the bottom (cf. Figure 7.1).

The bottom-up relationship between the individual levels is that a lower level enables the

higher level, i. e., data enables processes, and processes enable applications. This perspective is

supported by Weske, who states that “data are an integral part of business processes.” [Wes12,

p. 294]. In a top-down reading direction, the relationship is such that a higher levels uses the

next lower level, i. e., an application uses processes, and processes use data. This relationship

is not strictly required, and there may very well be datasets or processes that are used by

multiple processes and applications, respectively. In this sense, the GAF is only one view on a

specific part of components within an organization.

The GAF is intended to be used as a template onto which a wide variety of process-oriented

and data-driven systems can be mapped. For example, a bank may have a credit card manage-

ment system in use, which represents an application in this context. This application consists

of many processes, e. g., for issuing new credit cards or processing transactions. These pro-

cesses require specific data sources to be available, like a customer database and a transaction
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Figure 7.1: Generic Application Framework.

database. Many more systems that revolve around processes and data can be mapped onto

the GAF in a similar fashion, including broad application classes such as enterprise resource

planning (ERP) systems, data warehouses, or customer relation management (CRM) systems.

This makes the GAF widely applicable to numerous different types of use cases.

7.2 Profiling the GAF Levels
Each level of the GAF can be profiled individually. In other words, there are three associated

procedures, namely data profiling, process profiling, and application profiling. The first was

described extensively in the previous chapters, with an extensive overview of the state-of-

the-art in Chapter 4, a list of variants in Chapter 5 and an extension into extrinsic metadata

in Chapter 6. All these different metadata types, methods, algorithms, tools, and concepts are

applicable here.

The other two forms of profiling have not been considered so far. Thus, they are described

in dedicated sections next.

7.2.1 Process Profiling
A process is defined as a “completely closed, timely and logical sequence of activities which

are required to work on a process-oriented business object” [BKR14, p. 4]. Furthermore, the

term business process is used to describe a subclass of processes that are used by businesses

and organizations to realize their goals [Wes12, p. 5]. The remainder of this section focuses

on business processes and will use the simple term process to refer to them.

Profiling a process is an activity that involves an analysis of the process with the goal to

extract and record descriptive metadata about it. The types of metadata that can be extracted

from a process depend on the type of process and how it is defined. Elias et al. propose a

business process metadata model (BPMM) [ESJ10], which lists a number of metadata types for

business processes. Although the primary use case described by the authors is a facilitation

of searching and navigating in a process repository, their model includes numerous metadata
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types that capture important characteristics of business processes. More specifically, the

individual process metadata types are the following:

Process Area Based on the Porter Value Chain [Por85], the process area is a classification

attribute that denotes the area within an organization to which a process belongs. There

are primary process areas (i. e., inbound logistics, operations, outbound logistics, market-

ing & sales, and service & mainteance) and supporting process areas (i. e., procurement,

technology development, human resource management, and firm infrastructure).

Process Phase The phase of a process shows to which set of operational activities a process

belongs. The proposed classification scheme by Elias et al. consists of five phases:

planning, identification, negotiation, actualization, and post-actualization.

Process Type The process type classifies how a process interacts with its resources. It can

be either exchange (i. e., a resource is received or given from or to another party) or

conversion (i. e., a resource is used or consumed and coverted into something else).

Process Relationship A process can have relationships with other processes. Applicable

relationship types are generalization/specialization and partof/includes.

Process Level The level of a process refers to the organizational level within a company on

which the process is executed. It can be either operational, tactical, or strategic.

Resource A process consumes or produces resources, which can be classified into one of

these categories: goods, services, rights, finances, and information. In particular, the

required datasets and sources are considered here.

Actor This is the person responsible for the execution of the process. Actor categories are:

customer, supplier, employee, investor, and organizational unit.

Business Context The context in which a process is executed is captured here. It contains in-

formation that relate to the industry, the involved communication channel, geopolitical

descriptions, and official constraints such as legal or regulatory requirements.

Goal This is a description of a condition or state of affairs that an actors seeks to achieve.

Goals can either be soft goals, i. e., abstract, strategic objectives that are strived towards,

or hard goals, i. e., operational goals that must be reached by the process in order to

succeed.

Extracting these types of metadata from a process is likely to prove difficult, because they

depend on the intentions of the process designer. Thus, extrinsic sources, like the knowledge

of a domain expert or written documentations, are necessary here, similar to the extraction

of extrinsic metadata (cf. Section 6.4).

If the process in question is available in form of a process model, e. g., as a Petri net, then

new possibilities for process profiling arise. For example, the quality of a process model

can be measured with the use of quality metrics. These metrics aim to evaluate the process

model with regards to one specific characteristic, such as the number of edge crossings or the
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average connector degree. There exist numerous different process model frameworks that

define various such metrics. A recent work of Pflanzl contains a comprehensive overview

of this topic and concludes with a framework that defines quality metrics in the following

categories [Pfl17, p. 54]:

Planar Variables capture characteristics of the representation of the process model in a

plane, i. e., a two-dimensional space. Metrics of this category include the number of

edge crossings, the number of edge bends, node occlusion, crossing resolution, angular

resolution, consistent flow direction, and orthogonality.

Retinal Variables relate to the use of graphical elements, e. g., colors, shapes and textures,

in a process model. These can be used to realize concepts such as syntax highlighting,

label styles, or activity icons.

Complexity is an inherent property of a process model that is independent of how it is

represented graphically. It can be assessed in multiple different dimensions, including

size measures (e. g., the number of elements), connection measures (e. g., the density of

connectors), modularity measures (e. g., the separability of the process graph), connector

interplay measures (e. g., the connector mismatch), and complex behavior measures

(e. g., cyclicity).

Textual Contents in a process model are used to label elements and provide descriptions.

The quality of these can be measured in metrics such as naming convention adherence

or text complexity.

Semantics relate to the question whether the process model is a correct representation

of the corresponding domain. Metrics in this category pertain to dimensions such as

completeness and validity.

For many of these metrics, concrete algorithms can be specified that define precisely how

it is extracted from the underlying process model, which allows an automation of their

computation. For example, the planar and retinal variables, as well as the complexity, are easy

to assess by an appropriate software tool. Similarly to the definition of intrinsic metadata

in the context of data profiling, the metrics can be considered to be intrinsic metadata of

the process profile. However, some of the metrics cannot be assessed automatically, like the

completeness or validity of a process model. These require the knowledge of a domain expert,

analogical to the extrinsic metadata of data profiles.

Relation to Process Mining In the context of process profiling, it makes sense to describe

and compare a related discipline called process mining. Van der Aalst writes that “the idea of

process mining is to discover, monitor and improve real processes (i. e., not assumed processes)

by extracting knowledge from event logs readily available in today’s systems.” [vdA11, p. 8].

Thus, there are three different main types of process mining: discovery, conformance (monitor),

and enhancement (improve). All three types require an event log, i. e., a chronological list of

events observed by a system, as their input. For discovery, this event log is the only input,
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and the result is a reconstructed process model. The algorithm used for this transformation

is called α-algorithm and was invented by van der Aalst et al. [vdAWM04]. The other

two types of process mining, conformance and enhancement, take a process model as an

additional input. The goal here is to compare the executed process (as observed in the event

log) with the formally defined and designed process model, in order to then verify that these

two correspond to each other (conformance), or to suggest improvements to the process

model (enhancement).

In contrast to this, process profiling has only a single input, namely the process or its model,

which is used to extract metadata about it. The goal is to provide a user with a concise view

on the most important characteristics of the process in order to facilitate his understanding

of it.

7.2.2 Application Profiling
The term application is used to describe a broad spectrum of computer programs, ranging

from small special-purpose tools (e. g., smartphone apps that show the weather) over desktop

software (e. g., word or spreadsheet processors) to distributed systems that span whole or-

ganizations (e. g., data warehouses or management information systems). Most instances of

these various applications can be meaningfully interpreted as consisting of a collection of

processes. These are the applications that are considered in the context of the GAF, and they

share many similarities with information systems. For example, the credit card management

system mentioned earlier is an application that consists of processes, and thus, is applicable

for the GAF.

The concept application is not as well researched as the other two concepts of the GAF,

process and data. Thus, there is little prior work in the area of application profiling. In fact,

some people have a completely different understanding of the term application profiling and

use it to describe the practice of profiling a running piece of software [12][30]. However, for

the scope of this thesis, this was described as software profiling in Chapter 2. Thus, there is a

certain degree of ambiguity that needs to be taken into account when researching this term.

Here, application profiling is defined as the extraction of metadata that capture the proper-

ties of an application. This yields a general overview of the application, its purpose, and the

environment and resources that are needed for its operation.

In order to perform application profiling, a list of metadata types is required, so that the

user knows which information he needs to gather. Seeing how application profiling is not yet

an established discipline, such a list cannot be found in the literature. To address and fill this

gap, the rest of this section aims to establish a first proposal on what this list of application

metadata types should contain.

Application Type Applications can be broadly classified according to their type. Research

on information systems has identified the following types, which are also applicable

here [LL17]: transaction processing systems [GR93], management information systems,

decision support systems [SWC
+

02], and executive support systems [RD88]. Further

application types are search engines [CMS10], data warehouses [KR13], geographic

information systems [HCC11], supply chain management systems [KH13], customer
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relationship management (CRM) systems [BM15], enterprise resource planning (ERP)

systems [O’L00] and knowledge management systems [AL01].

Knowledge about the type of an application is useful for assessing its purpose and its

role in the larger context of the organizational IT landscape. Note that this classification

is not meant to be strict, i. e., some of these types may overlap. For example, one appli-

cation may be considered a transaction processing system and a customer relationship

management system at the same time. Furthermore, this list is a representation of some

of the most popular application types, but does not claim exhaustiveness. Thus, the

attention here is restricted to these types. Depending on the required level of granularity,

it may also make sense to further subdivide the individual types.

Users The users are the people that use the application. These can be specified either by

role, e. g., “middle management”, by organizational affiliation, e. g., “members of the

sales department”, or directly by name, e. g., “Mr. Smith”. When the group of users of

an application is known, it can be inferred who might be a domain expert, and who is

likely to be affected by any changes to that application.

Depending on the application, users may also be subdivided into user groups that use

the application in various ways. For example, a data warehouse may have different

people that are assigned with tasks such as data input, data administration, and report

generation. Each of these tasks requires individual privileges within the application.

Application Processes These are the processes of which the application consists. Ideally,

these are fully documented and described with their name and profile, as described in

the previous section.

Resources An application needs resources for its successful execution, either as input, output,

or intermediate byproduct. Most of these resources are referenced implicitly through

the included processes, but for some applications a declaration of further resources may

be necessary, such as the context, laws, or other regulations. Categories of resources

include goods, services, rights, finances and information/data.

Vendor The vendor provides the software that is used to run the application. This can either

be a third party, i. e., a software company that implements and offers software to others,

or the organization itself, which is called an in-house implementation. Both approaches

have advantages and disadvantages that must be evaluated in each individual use case

[IJ90].

Technical Context The technical context captures where an application is executed, which

can either be local or remote. If it is remote, further distinctions can be made according

to whether the application is executed in an on-site data center, or using a cloud-hosting

platform. Further information about the technical context may include any requirements

a machine needs to meet, e. g., memory size or CPU speed, as well as dependencies on

other software components, such as the operating system or programming libraries.
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Business Context Similar to the business context of a process as outlined previously, the

business context of an application contains information about the surroundings in which

it is executed. This relates to the industry of the organization, geopolitical descriptions,

and official constraints such as legal or regulatory requirements.

Purpose The purpose is a high-level description of why an application is needed and which

types of activities it enables and serves. Such a description will most likely reference

the other metadata types, such as the users and processes.

Gathering these various types of metadata types is a complex task that is likely to be not

automatable in any meaningful way. Instead, it is a manual process in which information is

collected from various sources and brought together in an application profile. Such a profile

is useful for a concise summary of the most important properties of a given application and

can be used for purposes such as comparison, evaluation or search of applications within an

organization.

7.3 Proposed Appproaches
The first application of the GAF is to decompose a use case into the three levels and profile

them individually, as shown in the previous section. However, the true potential of the GAF

is unfolded when it is fully embraced and used to move between the levels. In order to do

that, a starting point must be declared, which may be any of the three levels. Consequently,

three different approaches are proposed here, namely the data-first approach, the application-

first approach, and the process-first approach. These approaches correspond to a bottom-up,

top-down, and inside-out strategy respectively, and each is described in a dedicated section

next.

7.3.1 Data-First Approach
The data-first approach assumes that a dataset is available from the beginning. From this

starting point, the other levels are reached in a bottom-up fashion, as shown in Figure 7.2.

It consists of the following steps:

1. Profile the data First, the dataset is profiled according to the data-oriented data profiling

variant described in Section 5.1. Additionally, the resulting data profile may be augmented

with extrinsic metadata, as explained in Section 6.4. This provides an overview of the general

state of the data and its quality, which are relevant for the next step.

2. Identify enabled processes This step aims to answer the question “which processes are

enabled by this data?”. This is based on the assumption that data is needed for the successful

execution of a process. For example, a company may have a process send newsletter that is

executed regularly to send out newsletters to their customers. This process requires address

data of all intended recipients. Thus, a dataset that includes customer addresses is needed to

enable this process.
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Figure 7.2: Data-first approach.

Finding all processes that are enabled by the data can be a quite extensive task. One

approach to facilitate this is using a process repository, if one exists. A process repository is a

central place in which all process models of an organization are stored and made accessible

[MWA
+

07]. It provides a search space in which the dataset at hand can be compared against

the input definitions of established processes. Another approach is to look at reference process

models, which can be obtained from the literature or public repositories. This allows to find

processes that are not yet implemented within an organization.

If the available data represents an event log [vdA11, p. 104], then it can be used to perform

process discovery, i. e., reconstruct a process model from the data.

3. Identify enabled applications The set of processes that are enabled by the data finally

allow to draw conclusions about any enabled applications. These can either be applications

that are already implemented at the organization, or novel applications that have not been

considered before.

The CloudHost Case The data-first approach is demonstrated in the CloudHost case, as

introduced back in Section 1.3.

Remember that CloudHost operates as a platform provider that hosts software products

for its clients. CloudHost records a wide variety of data about which client is running which

software, in which version and configuration. This data lead the managers to pose the following

question: “How can we use this data to optimize the work of our sales team, and provide

them with custom-tailored client-specific sales arguments?”. With this question and the data,

CloudHost approached a team of IT consultants and initiated a project to find an answer. As

this project revolves around a specific dataset at hand, which is readily available from the

start, it is a good example for the application of the data-first method.

The first step taken was to thoroughly profile the data, which was provided as a CSV

file. This revealed that the data contained 80 columns and 46,548 rows, as well as a header

row containing column names. For this volume of data, a relational database was deemed

sufficient, and the decision was made to use MySQL for data storage. The columns included

a client ID, a software name, a version number, numerous attributes regarding the state of
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the software, as well as multiple columns whose names were not self-explanatory. In search

for a primary key, it was found out that no single column is entirely unique. Thus, a search

for unique column combinations was started, which revealed that a combination of client ID,

software name and version number yields a key candidate, which was consequently promoted

to a primary key. This allowed the creation of a schema for the database that was populated

by means of an ETL process.

Through interviews with domain experts it became apparent that the provided dataset did

not include all relevant data to assist the sales team. In particular, further information about

the clients, such as name and total revenue, as well as further information about the software

was needed, which led to the conclusion that the schema completeness (cf. Section 6.3) was

lacking. This issue could be remedied by requisitioning the data in question and integrating it

into the database.

After the data was profiled and properly integrated in one database, the identification

of enabled processes as the next step could commence. An observation was made that the

data included information about which software products are good supplements to other

products. This led to the idea of exploiting a technique called cross-selling [KWdRM03], i. e.,

selling additional products to an existing customer based on the products that he already

has. For example, product A and product B are complementary to each other. In cases where

a customer has purchased product A, but not product B, a potential sale can be made by

recommending product B to him. Subsequently, a process was implemented that enabled

cross-selling by performing the necessary data analysis steps and providing the resulting

recommendations to the sales team.

Using the same rationale, additional processes were identified and implemented. For exam-

ple, the CloudHost executives stated that they would like more customers to use their in-house

software instead of third-party products, because this resulted in more net profits. This was

addressed in a process that analyzed the data for cases in which existing third-party software

could be replaced by functionally equivalent CloudHost products. Similarly, a process to

recommend an update of outdated products, based on their version number, was set up.

With all these different processes, the last missing piece was a unified interface that enables

the head of the sales team and other users to see what is happening. Thus, an application,

called the CloudHost sales management cockpit, was set up that provided a Web interface

where users could log in and oversee the processes, adjust parameters, execute calculations,

and inspect the results. Additionally, the individual recommendations made by each process

could be weighted and ranked, so that a prioritization of sales activities was made possible.

This concludes the example of the data-first approach, where it was shown how the GAF can

be used in a bottom-up fashion, starting with a profiling run of the available data, identifying

enabled processes, and finally working up to the application level.

7.3.2 Application-First Approach
In the application-first approach, the starting point is the top level, i. e., the application. From

there, the procedure continues downwards in a top-down fashion, as shown in Figure 7.3.

Scenarios in which this approach can be meaningfully used are usually characterized by a

particular requirement that can be met with a specific application. For example, a manager
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Figure 7.3: Application-first approach.

might say “we need to keep better track of the materials in our production facilities!”, which

leads to the initiation of a project to implement an appropriate application. Such a project

can use the GAF with the application-first approach for the initial phases and requirements

elicitation.

Another type of use case occurs when an application is already implemented within an

organization, but its performance is insufficient. The GAF can be used then to assess the

application, analyze its context and identify potential deficiencies

The application-first approach consists of the following steps:

1. Profile the application The first step is the creation of an application profile as described

in Section 7.2.2. This includes an investigation into the different application metadata types

and their values, which should provide a good first overview of the characteristics of the

application. Following the list of metadata types ensures that no important aspect is left out

and encourages the responsible people to carefully think about the application from every

relevant perspective. Furthermore, the compilation of all this information in one place, and a

subsequent communication to all involved stakeholders, ensures that everybody is “on the

same page”.

In the example, a call for better tracking of production facilities may be addressed by an ERP

system. Thus, this application type should be selected accordingly and recorded as part of the

application profile. In particular, the individual processes that are involved in the application

must be identified, which leads to the next step.

2. Identify relevant processes After the application has been fully profiled, the relevant

processes need to be identified. “Relevant” here means that the process is necessary or

useful in the context of the application, i. e., it is needed for its successful execution. One

technique that can help here is called functional decomposition [Wes12, p. 78], which consists

of breaking down a complex entity into smaller, more manageable parts. Here, the application

is decomposed into its constituent processes.

For the example case, materials management is identified as the most relevant process of
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the ERP system in the given context.

3. Identify data requirements For each process that has resulted from the previous step,

the data requirements need to be identified. These requirements describe which datasets are

needed as input to a process and the characteristics they must have, e. g., the data schema

or the minimum level of data quality. The data requirements can be expressed as a set of

metadata, i. e., a data profile.

4a. Verify fulfillment -or- 4b. Discover suitable data Once the data requirements have

been identified, there are two options. First, if the data source is already present within the

organization, it can be checked whether the imposed requirements are fulfilled. For this, the

data profiling variant data profile validation (cf. Section 5.4) can be used. The result of this

check allows an assessment of whether the existing data source can be used for the intended

process. If that is not the case, or there is no data source to begin with, the second option

can be taken, which is to discover suitable data. This step can be performed using the data

discovery method as described in Section 5.6. It takes the data requirements as input to a

search process that results in datasets that fulfill them.

In the ERP case, the data for the materials management process must contain detailed

descriptions about current inventory levels that are both current and accurate. Profiling of the

interal data sources showed that these requirements can be fulfilled by the existing systems.

Example Case: MicroCorp As an example for using the application-first approach, the

MicroCorp case is presented. It is loosely inspired by a project seminar that took place at

the Department of Information Systems at the University of Münster during the winter

term 2016/2017
1
. MicroCorp is a company that sells microphones for industrial and scientific

customers, i. e., they operate in a business-to-business (B2B) market. They have two branches:

the first is located in Hungary and is responsible for research, development, and manufacturing

of their products, while the second is the headquarter, which is located in Münster, Germany,

and takes care of sales and marketing.

The microphones of MicroCorp are technologically highly advanced assets that are high

in value and low in volume. This means that the revenue is earned with a low amount of

sales each month. Most of their operations are thus handled manually. For example, incoming

customer orders are recorded and tracked using spreadsheet files. This approach worked

well so far, with experienced staff that knew what to do and where to look for information.

However, as MicroCorp is slowly expanding their business world-wide, a more scalable

solution is required, in particular with regards to inventory control, workflow support, and

reporting capabilities.

The goal of the project was to analyze the requirements of MicroCorp and recommend an

appropriate solution. Such an analysis requires the consideration of the complete application

stack, and thus, the GAF was considered to be a good fit.

1
For compliance with non-disclosure agreements, names and references have been omitted. If needed, the

complete report of the project seminar can be obtained from the author of this thesis.
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In the first step, the application was profiled and all relevant metadata gathered. It was

determined that a CRM system would be a good fit for MicroCorp, as that would not only

enable them to track their inventory, but also support many of their current operations.

Implementing such a system was not feasible due to the inherent complexity and MicroCorp’s

lack of IT personnel. Thus, a third-party solution was sought, which could be customized to

fit their needs.

Next, the relevant processes were identified. These could be grouped into the classes

inventory management, lead management, marketing, sales management, order management,

accounting, and human resources. Prior to this project, MicroCorp did not have any explicit

process models in place to describe all these processes. Instead, most of the employees knew

from experience how things worked. Thus, project participants set out to explicate this implicit

knowledge by interviewing key employees and reviewing operation manuals. These efforts

resulted in numerous process models, which gave a precise representation of how MicroCorp

conducts their business.

The processes were modeled as Petri nets that contained object models to represent the

entities that were passed in between individual steps. These object models could be analyzed

to show the exact requirements placed upon the data that these processes needed. From these

requirements, a database schema could be derived that would be able to serve all processes.

This schema contained all relevant entities, including inventory items, orders, reservations,

parcels and customers.

Lastly, the existing spreadsheet files were matched against the derived database schema

in a multi-source profiling process (cf. Section 5.3). Most of the data could be mapped onto

the target schema successfully. Some data was not available, like reservations, because these

were handled in an offline fashion by physically placing reserved products into a separate

container. In order to fill this gap, the corresponding data would need to be filled in manually.

The final result was a complete picture of every data source and process that needed to

be included in the desired CRM system. With this information, a thorough market analysis

could be conducted that showed which commercial offerings would be a good fit for the

requirements of MicroCorp. The results of this analysis were used to make an educated

decision on which CRM system to buy and the project came to a successful conclusion.

7.3.3 Process-First Approach
The third approach applies in cases where the process is the starting point into the GAF. From

this middle level, efforts can be made to go upwards and identify enabled applications, or

reach into the lower level and identify data requirements. This approach is thus a hybrid

between the first two approaches and combines elements from both the top-down and the

bottom-up directions, as shown in Figure 7.4.

As the first step, a profiling of the given process is recommended, as described in Sec-

tion 7.2.1. This provides an overview of what the process does and where it is applied. The

remaining steps are re-utilizations of some of the steps that have been described before.

Identifying enabled applications was already introduced as part of the data-first approach

in Section 7.3.1. The other steps were described in Section 7.3.2 within the application-first

approach. In an ideal setting, these two directions (up and down) can be taken in parallel,
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Figure 7.4: Process-first approach.

because there are no direct interdependencies between the data and the application layer. It is

admitted however that this may not be true in a practical setting, so it is recommended to

perform the steps in sequence and check for interdependencies along the way.

Example Case: MultiChannelSupport To demonstrate how the process-first approach

can be applied, the example case of MultiChannelSupport is introduced. Again, this is a

fictitious case that is loosely inspired by a real project that started in March 2016 at the

Department of Information Systems at the University of Münster. In this case, the subsidiary

MultiChannelSupport offers customer support services to its parent company. These services

are offered on multiple channels, including social media, telephone, email and live chat.

At the core of MultiChannelSupport’s business model is the customer journey shown in

Figure 7.5. It shows the different phases a customer goes through, ranging from pre-sales

over sales to after-sales. Within these phases, multiple subprocesses are included that go from

the selection and acquisition of customers, to the extension of the customer base and the

retention of existing customers. Along this journey, a customer may have various questions

or concerns that he wishes to discuss with the company. To do so, he can choose one of many

different channels to establish contact. The goal of MultiChannelSupport is to record these

interaction across all these various channels and integrate them into one unified view of the

customer. This enables, for example, a customer service representative during a call about an

after-sales issue to immediately look into the history of the customer that is on the line and

see all previous interactions, independent of how they occurred.

With the customer journey in place as a focal process, MultiChannelSupport chooses to

use the process-first approach of the GAF to reach their goal. At the start, the process is

profiled thoroughly. Being a super process, it is necessary to drill down into the respective

subprocesses and profile them as well.

Then, the application level is considered. As the customer journey revolves around the

customer and his interactions, it makes sense to consider a CRM system. Many of the process

metadata can be used to derive the requirements that a suitable CRM system should have.

For example, a high number of concurrent users must be supported, because many different

customer service representatives need to use the system at the same time. Furthermore, a
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Figure 7.5: Customer journey. Source: [TVH
+

17].

high availability of the system must be guaranteed, because it is a very crucial part of the

business and every outage is likely to lead to customer dissatisfaction and thus lost profit.

Therefore, MultiChannelSupport should consider to allocate a high budget for the purchase

of a CRM system as basis for their operations to ensure that these requirements can be met.

Next, attention is shifted towards the data level. There is no explicit input data that the

customer journey process needs from outside sources. Instead, the required data is created

by the process itself, in earlier steps. One of the core issues in the management of this data

is that it structured in different formats. For example, the customer sales history is stored

in a relational database, while social media interactions are stored as XML documents. This

necessitates an integration procedure that can deal with heterogeneous data models. Further

considerations must be taken with regards to how the customer data is processed and for

how long it is stored, because it represents personally identifiable data. Such data is subject to

strict laws and regulations, such as the General Data Protection Regulation in the European

Union [39].

In the end, MultiChannelSupport has a complete picture of how the initial process influences

the superordinate application and the subordinate level. This information provides them with

a solid foundation from which further decisions and plans to reach their business goals can

be made.

7.3.4 Combined Approaches
There may exist cases in which components of more than one level may be available at the

start, i. e., application and process, application and data, process and data, or all three of these.

In these cases, a combination of the described steps can be used. For example, if the application

is in place as well as the data, then the user can choose to either approach the process level

from above or below. Alternatively, he might even do both simultaneously, and then match

the results in the middle. In concrete terms this would lead to a scenario where a given dataset

is used to identify enabled processes, and an application is assessed for relevant processes

at the same time. Ideally, the results of these two approaches match, and the processes of

both are the same. If there is a mismatch, the user has gained valuable knowledge and should

reassess his input elements.
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8 Conclusion
To conclude this thesis, Section 8.1 gives a summary of each chapter and outlines its contri-

butions. Then, Section 8.2 provides an outlook on open issues and research questions in the

context of data profiling that require further work.

8.1 Summary
The state of the art of data profiling The first part of this thesis addressed the task to

establish a definition of data profiling and provide an overview of its constituent components.

To this end, Chapter 2 started with a presentation of various application areas that use the

term profiling as part of their description. Seven different areas (cf. Sections 2.2.1 to 2.2.7)

have been identified and analyzed with regards to their objective, input, processing and

output. Furthermore, they have been classified according to their main purpose, which could

range from description over prediction to prescription. The results from these observations

have been used to derive a generic model for profiling activities, which was used later on to

represent a data profiling process.

Chapter 3 then provided more detail about the problem that data profiling attempts to

solve by characterizing its individual parts. First, the input datasets were considered with

a specific focus on the data model. The data model of a dataset is of particular importance

because it is a deciding factor in the selection of profiling methods, because not every metadata

type is applicable under every data model. Next, a list of seven typical tasks (cf. Section 3.2)

was described that frequently occur in a data-centric environment and can benefit from

data profiling. This was followed by a description of the increasingly common problem of

information overload, which can be observed in the preceding tasks. The solution to this

problem, and the overall goal state to strive for, is data comprehension, which is achieved when

the data in question is understood to a sufficient degree. In particular, data comprehension is

dependent on the three aspects (i) dataset, (ii) task, and (iii) user, i. e., a user must understand

the dataset that is relevant for a task in order to achieve it. The user itself can be characterized

according to his technical expertise and his domain knowledge. These two dimensions were

used to establish a classification scheme that highlights the two user classes domain expert
(high domain knowledge, low technical expertise) and IT professional (low domain knowledge,

high technical expertise). The individual roles of these classes and their interrelationship

are fundamental for the later parts. The chapter closed with an observation about common

solution strategies that are employed by people that are unaware of data profiling techniques.

These strategies are mostly ad-hoc approaches that tend to fail for various reasons, which is

one of the reasons why data profiling should be applied more rigorously.

This led to Chapter 4, in which in-depth descriptions of what data profiling is precisely
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were given. To begin, a definition of the term data profiling was established in Section 4.1

and consequently compared to and verified against definitions by other authors. They all

agreed on the fact that data profiling is concerned with the extraction of metadata. What

precisely metadata is, of which types it is comprised, and how they can be put to use were

the central questions answered in Section 4.2, where a typology on metadata was presented.

It consisted of a discussion of metadata types of the classes single field, multiple fields, and

multiple datasets. The typology was completed by a presentation of classification schemes

that arrange the individual types into semantic groups. In the next section, the perspective

was shifted to look at data profiling in terms of the IPO model, i. e., input, processing, output.

This provides an overall framework into which specific considerations of future academic

work can be integrated. The last section in this chapter presented an overview of selected

software tools and research projects. This provided the reader with a practical insight into

how the so-far theoretical considerations can be realized in practice and made usable.

Chapter 5 expanded upon the IPO perspective on profiling by also including the purpose,

the executor, the user, and application areas in order to establish a characterization framework.

This framework was used to describe six different variants of data profiling that differ in

their individual inputs and outputs. Lastly, all these variants were brought together into one

unified, high-level data profiling process.

Profiling beyond data The second part of this thesis aimed to expand profiling and its

methods to the context of data. This was achieved by first broadening the scope of metadata

to also include the extrinsic side in Chapter 6. Extrinsic metadata was defined as metadata

that cannot be derived solely from the data itself. These types of metadata are highly useful

in numerous scenarios, as was demonstrated in small examples. While some of the shown

concepts were not new discoveries, such as data provenance or data validity, their interpreta-

tion in a data profiling context was a novel contribution. Furthermore, the sources and means

of extraction of extrinsic metadata have been introduced and brought together in a structured

process model. The chapter concluded with a combined metadata extraction process and a

hierarchical data profile type overview, both of which unify the previously discussed intrinsic

view with the newly proposed extrinsic view.

Chapter 7 shifted the perspective towards the context in which data usually resides and

introduced the GAF as a means of conceptualization. The GAF consists of the three levels

application, process, and data, onto which many application scenarios can be mapped. For

every level of the GAF, a list of metadata was introduced, which enabled a profiling on each

of them. Furthermore, three different approaches to move between the levels have been

proposed that start at each of the levels. The data-first approach can be applied when data is

available, and enabled processes and applications are sought in a bottom-up fashion. This

is useful, e. g., when an organization has a dataset stored, but is unsure on what it can be

used for. Next, the application-first approach corresponds to a top-down perspective in which

the application is specified at the beginning. From there, relevant processes and datasets

are identified, which are needed for a successful implementation of the application. This

resembles a more traditional approach to IT projects that start from the goal and derive

requirements that must be met. The third approach is a hybrid that starts in the middle from

131



8 Conclusion

the process level, which may not be as often encountered as the other two approaches, but

can still be of use when, for example, reference processes are set up first without specifying

the applications and data sources. Overall, the assumption is put forth that moving between

the levels brings the advantage of extending the scope of consideration, which leads to a

more holistic view. Each approach was described in-depth by means of an example that was

inspired by real projects. This demonstrated the applicability and usefulness of the proposed

approaches.

8.2 Outlook
One of the bigger IT hypes of the recent years has been big data. Referred to as “the big

buzzword of 2013” [Vos14, p. 3], it is used as a catchall phrase to describe the development of

organizations losing the ability to efficiently and effectively handle the data at their disposal

[CML14]. There are multiple reasons for this, which are usually referred to as a set of V’s.

The original set consisted of the three V’s volume, velocity, and variety [Lan01]. Each of these

V’s represents an area that also affects data profiling.

Volume: Profiling large datasets As data processing algorithms scale with the size of

the input data, increasing volumes tend to be a problem for non-efficient and unoptimized

algorithms. Thus, naive implementations of data profiling algorithms may quickly reach

the point at which their execution is no longer feasible as they simply take too long. For

example, the discovery of inclusion dependencies has been shown to be PSPACE-complete

[CFP84]. This necessitates tradeoffs to be made that sacrifice precision in favor of more

efficient runtimes. There has already been done plenty of work in this regard, e. g. efficient

IND discovery is described in [BLNT07] and [PKQRN15], but there is still potential to design

better optimized algorithms that handle large volumes either more effectively, or lose less

precision in their results.

Velocity: Profiling data streams Every input dataset considered in this thesis was always

assumed to be available in a fixed and static format. There are, however, cases in which this

assumption does not hold, and the data is received over a continuous time span. For example,

a social media data source generates data non-stop as users post statuses and updates, which

constitutes a data stream [Agg06]. One way to deal with data streams is called micro batching
and relies on cutting the stream into small subsets, which are treated as a small static set of

data [HYG
+

10]. Depending on the chosen size of these batches, this approach can be quite

memory expensive and may not be always feasible.

In true continuous stream processing, the data comes in at a very high velocity, which

means there is little time to perform computations on it. Usually, every data item is only seen

once, because memory must be freed for the subsequent data, and there is not enough space

available for storage. This means that the algorithm must be executed fast enough to process

the data while it is in memory, and any algorithm that requires multiple passes over the data

cannot be used.
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Several profiling algorithms are affected by this. For example, duplicate detection usually

relies on comparing data instances with each other, which is not possible in a stream. As

a compromise, an approximation for duplicate detection can be implemented using Stable

Bloom Filters. This has been demonstrated by Deng and Rafiei [DR06]. Further work needs

to be put into identifying a similar approximation for other profiling algorithms that rely

on multiple passes, such as the detection of inclusion or functional dependencies, or the

discovery of foreign keys.

Variety: Profiling non-relational data Previous research in the area of data profiling

tends to focus on one specific data model, usually the relational one. For example, Olson

states that the “target data for [his] book is structured data captured in corporate databases”

[Ols03, p. XVI], and Abedjan et al. say that they “focus [their] discussion on relational data,

the predominant format of traditional data profiling methods” [AGN15, p. 558].

There exists work that focuses on specific non-relational data models. ProLOD is a tool

developed by Böhm et al. that is specifically designed to profile linked open data (LOD)

[BNA
+

10]. Since its inception, ProLOD has been extended and enhanced into ProLOD++

[AGJN14]. As part of the Semantic Web, LOD is data that uses a graph-based structure, such as

the Resource Description Framework (RDF) [41], as an interconnection mechanism (“linked”)

and is publicly available (“open”). The authors rightfully argue that due to the heterogeneity

and volume of LOD, classical profiling techniques are not appropriate for dealing with them.

They adapt data mining techniques, specifically clustering, to overcome these issues and create

an intermediate structure upon which traditional profiling methods can then be executed.

The question remains whether relational profiling techniques need to be specifically adapted

for each individual data model, or whether it is possible to develop one unifying solution

that bridges the gaps between the individual data models and provides a generalized set of

profiling methods that can be applied anywhere, thus saving lots of effort. While the answer

to that question is out of the scope of this thesis, an initial idea on how to achieve such a data

model-agnostic generalization is presented here.

In 1976, Chenwrote that “the entity-relationship model can be used as a basis for unification

of different views of data” [Che76, p. 9]. Entity-relationship modeling (ERM) is a technique that

is used to model the entities within a domain and how they relate to each other. An ER model is

a conceptual model, which means that in order to actually store data, it needs to be transformed

into a physical model. This transformation process is well-described for a relational model as

the target [Vos91, p. 104]. However, following Chen’s words, it is also possible to transform

an ER model into any other data model, such as a document-oriented or graph-oriented one.

This fact is visualized in Figure 8.1, where arrows represent a transformation process.

It is also possible to reverse the arrows and go from an implemented physical model back to

the conceptual level. This process is called reverse engineering and was proven to be possible

for the relational case [Fah96, p. 151]. If this proof can be extended to also include the other

data models, it would be possible to move horizontally from one physical model to another,

using the ER level as an intermediate step.

Using the same logic, it should be possible to take relational profiling methods, raise them

to the conceptual level, and then bring them down to another target physical data model.
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Figure 8.1: Relation between ERM and data models.

However, there are some issues that would need to be overcome before this idea can become

reality. First, a formalization of profiling methods is required that allows their representation

on a conceptual model. Second, it must be guaranteed that all transformations are correctly

invertible, i. e., executing a transformation and then reversing it leads back to the exact same

input.

Meaningful interpretation of data profiles Just like data, metadata needs to be inter-

preted by users to gain value. Any data profiling effort is worthless if the resulting metadata

cannot be interpreted correctly. It has already been pointed out in Section 4.3.3 that this is

the hardest part of data profiling [AGN15, p. 558], because it cannot be automated or stan-

dardized efficiently. This open issue is not satisfyingly solved so far. One solution that could

be attempted is to establish a guide that consists of best practices for interpreting metadata.

This guide could be based on the list of metadata types put forward in this thesis and expand

upon it by providing typical values and what insights can be derived from them. For example,

if an inclusion dependency is detected across tables from different data sources, then it is

likely that these can be joined together. There are already examples of what can be done with

some metadata types, but there is an opportunity to expand these into a thorough data profile

interpretation guide.

134



Bibliography

[ABD
+

97] Jennifer M Anderson, Lance M Berc, Jeffrey Dean, Sanjay Ghemawat, Monika R

Henzinger, Shun-Tak A Leung, Richard L Sites, Mark T Vandevoorde, Carl A

Waldspurger, and William E Weihl. Continuous Profiling: Where Have All the

Cycles Gone? In Proceedings of the Sixteenth ACM Symposium on Operating
Systems Principles, SOSP ’97, pages 1–14, New York, NY, USA, 1997. ACM.

[ABU79] Alfred Aho, Catriel Beeri, and Jeffrey Ullman. The Theory of Joins in Relational

Databases. ACM Trans. Database Syst., 4(3):297–314, sep 1979.

[Ack89] Russell L Ackoff. From Data to Wisdom. Journal of Applied Systems Analysis,
16(1):3–9, 1989.

[AG08] Renzo Angles and Claudio Gutierrez. Survey of Graph Database Models. ACM
Computing Surveys, 40(1):1–39, feb 2008.

[Agg06] Charu C Aggarwal. Data Streams: Models and Algorithms. Advances in Database

Systems. Springer, 2006.

[Agg15] Charu C Aggarwal. Data Mining: The Textbook. Springer, 2015.

[AGJN14] Ziawasch Abedjan, Toni Gruetze, Anja Jentzsch, and Felix Naumann. Profiling

and Mining RDF Data with ProLOD++. In 2014 IEEE 30th International Conference
on Data Engineering, pages 1198–1201. IEEE, mar 2014.

[AGN15] Ziawasch Abedjan, Lukasz Golab, and Felix Naumann. Profiling Relational Data:

A Survey. VLDB Journal, 24(4):557–581, 2015.

[AIS
+

93] Rakesh Agrawal, Tomasz Imieliński, Arun Swami, Rakesh Agrawal, Tomasz

Imieliński, and Arun Swami. Mining Association Rules Between Sets of Items

in Large Databases. In Proceedings of the 1993 ACM SIGMOD international
conference on Management of data - SIGMOD ’93, volume 22 (2), pages 207–216,

New York, New York, USA, 1993. ACM Press.

[AL01] Maryam Alavi and Dorothy E. Leidner. Review: Knowledge Management and

Knowledge Management Systems: Conceptual Foundations and Research Issues.

MIS Quarterly, 25(1):107, mar 2001.

[AN95] Agnar Aamodt and Mads Nygård. Different Roles and Mutual Dependencies of

Data, Information, and Knowledge — An AI Perspective on their Integration.

Data & Knowledge Engineering, 16(3):191–222, sep 1995.

135



Bibliography

[AS94] Rakesh Agrawal and Ramakrishnan Srikant. Fast Algorithms for Mining Associ-

ation Rules in Large Databases. In VLDB ’94 Proceedings of the 20th International
Conference on Very Large Data Bases, pages 487–499, San Francisco, CA, USA,

1994. Morgan Kaufmann Publishers Inc.

[AZ12] Charu C. Aggarwal and ChengXiang. Zhai. Mining Text Data. Springer, 2012.

[BAL
+

12] Jana Bauckmann, Ziawasch Abedjan, Ulf Leser, Heiko Müller, and Felix Nau-

mann. Discovering Conditional Inclusion Dependencies. In Proceedings of the
21st ACM international conference on Information and knowledge management -
CIKM ’12, page 2094, New York, New York, USA, 2012. ACM Press.

[BB17] Paul Begg and John Bennett. Jack the Ripper. Andre Deutsch Ltd, 2017.

[BCFM09] Carlo Batini, Cinzia Cappiello, Chiara Francalanci, and Andrea Maurino.

Methodologies for Data Quality Assessment and Improvement. ACM Com-
puting Surveys, 41(3):1–52, jul 2009.

[Ben93] David Benyon. Accommodating Individual Differences through an Adaptive

User Interface. Adaptive User Interfaces - Results and Prospects, 10:1–16, 1993.

[BK01] S. Bassil and R. K. Keller. Software Visualization Tools: Survey and Analysis. In

Proceedings 9th International Workshop on Program Comprehension. IWPC 2001,

pages 7–17. IEEE Comput. Soc, 2001.

[BK14] Dimitris Bertsimas and Nathan Kallus. From Predictive to Prescriptive Analytics.

Technical report, Massachusetts Institute of Technology, feb 2014.

[BKR14] Joerg Becker, Martin Kugeler, and Michael Rosemann. Process Management: A
Guide for the Design of Business Processes. Springer, 2014.

[BKWC01] Peter Buneman, Sanjeev Khanna, and Tan Wang-Chiew. Why and Where: A

Characterization of Data Provenance. In Jan den Bussche and Victor Vianu,

editors, Database Theory — ICDT 2001, pages 316–330, Berlin, Heidelberg, 2001.

Springer Berlin Heidelberg.

[BL94] Thomas Ball and James R. Larus. Optimally Profiling and Tracing Programs.

ACM Transactions on Programming Languages and Systems, 16(4):1319–1360, jul

1994.

[BLNT07] Jana Bauckmann, Ulf Leser, Felix Naumann, and Veronique Tietz. Efficiently

Detecting Inclusion Dependencies. In 2007 IEEE 23rd International Conference
on Data Engineering, pages 1448–1450. IEEE, 2007.

[BM15] Francis Buttle and Stan Maklan. Customer Relationship Management: Concepts
and Technologies. Routledge, 3rd edition, 2015.

136



Bibliography

[BMU
+

97] Sergey Brin, Rajeev Motwani, Jeffrey D. Ullman, Shalom Tsur, Sergey Brin,

Rajeev Motwani, Jeffrey D. Ullman, and Shalom Tsur. Dynamic Itemset Counting

and Implication Rules for Market Basket Data. ACM SIGMOD Record, 26(2):255–

264, jun 1997.

[BNA
+

10] Christoph Böhm, Felix Naumann, Ziawasch Abedjan, Dandy Fenz, Toni Grutze,

Daniel Hefenbrock, Matthias Pohl, and David Sonnabend. Profiling Linked

Open Data with ProLOD. In 2010 IEEE 26th International Conference on Data
Engineering Workshops (ICDEW 2010), pages 175–178. IEEE, mar 2010.

[Bou04] Mokrane Bouzeghoub. A Framework for Analysis of Data Freshness. In Proceed-
ings of the 2004 international workshop on Information quality in informational
systems - IQIS ’04, page 59, New York, New York, USA, 2004. ACM Press.

[BS06] Carlo Batini and Monica Scannapieco. Data Quality: Concepts, Methodologies
and Techniques. Springer Berlin Heidelberg, 2006.

[BTN90] Dermont Browne, Peter Totterdell, and Mike Norman. Adaptive User Interfaces
(Computers and People Series). Academic Press Inc, 1990.

[BV05] Aida Boukottaya and Christine Vanoirbeek. Schema Matching for Transforming

Structured Documents. In Proceedings of the 2005 ACM symposium on Document
engineering - DocEng ’05, page 101, New York, New York, USA, 2005. ACM Press.

[Can94] David V. Canter. Criminal shadows: Inside the Mind of the Serial Killer. Harper

Collins, 1994.

[CC90] Elliot J. Chikofsky and J. H. Cross. Reverse Engineering and Design Recovery:

A Taxonomy. IEEE Softw., 7(1):13–17, 1990.

[CCM17] Adriane Chapman, James Cheney, and Simon Miles. Guest Editorial: The Prove-

nance of Online Data. ACM Transactions on Internet Technology, 17(4):1–3, aug

2017.

[CD97] Surajit Chaudhuri and Umeshwar Dayal. An Overview of Data Warehousing

and OLAP Technology. ACM SIGMOD Record, 26(1):65–74, mar 1997.

[CDDF16] Fernando Chirigati, Harish Doraiswamy, Theodoros Damoulas, and Juliana

Freire. Data Polygamy. In Proceedings of the 2016 International Conference on
Management of Data - SIGMOD ’16, pages 1011–1025, New York, New York,

USA, 2016. ACM Press.

[CFH05] Adrienne Curry, Peter Flett, and Ivan Hollingsworth. Managing Information
and Systems: The Business Perspective. Routledge, 2005.

[CFP84] Marco A. Casanova, Ronald Fagin, and Christos H. Papadimitriou. Inclusion

Dependencies and Their Interaction with Functional Dependencies. Journal of
Computer and System Sciences, 28(1):29–59, feb 1984.

137



Bibliography

[Cha98] Surajit Chaudhuri. An Overview of Query Optimization in Relational Systems.

In Proceedings of the seventeenth ACM SIGACT-SIGMOD-SIGART symposium on
Principles of database systems - PODS ’98, pages 34–43, New York, New York,

USA, 1998. ACM Press.

[Che76] Peter Pin-Shan Chen. The Entity-Relationship Model—Toward a Unified View

of Data. ACM Transactions on Database Systems, 1(1):9–36, mar 1976.

[Chr12] Peter Christen. Data Matching: Concepts and Techniques for Record linkage,
Entity Resolution, and Duplicate Detection. Springer Berlin Heidelberg, 2012.

[CIPY14] Xu Chu, Ihab F. Ilyas, Paolo Papotti, and Yin Ye. RuleMiner: Data Quality Rules

Discovery. In 2014 IEEE 30th International Conference on Data Engineering, pages

1222–1225. IEEE, mar 2014.

[CK07] Varun Chandola and Vipin Kumar. Summarization – Compressing Data into an

Informative Representation. Knowledge and Information Systems, 12(3):355–378,

aug 2007.

[CLD
+

12] Francesco Contino, Tommaso Lucchini, Gianluca D’Errico, Catherine

Duynslaegher, Veronique Dias, and Herve Jeanmart. Simulations of Advanced

Combustion Modes Using Detailed Chemistry Combined with Tabulation

and Mechanism Reduction Techniques. SAE International Journal of Engines,
5(2):2012–01–0145, apr 2012.

[CML14] Min Chen, Shiwen Mao, and Yunhao Liu. Big Data: A Survey. Mobile Networks
and Applications, 19(2):171–209, apr 2014.

[CMS10] W. Bruce. Croft, Donald. Metzler, and Trevor. Strohman. Search Engines: Infor-
mation Retrieval in Practice. Addison-Wesley, 2010.

[Cod70] E. F. Codd. A Relational Model of Data for Large Shared Data Banks. Commu-
nications of the ACM, 13(6):377–387, jun 1970.

[Dav12] E. R. Davies. Computer and Machine Vision: Theory, Algorithms, Practicalities.
Elsevier, 2012.

[DB00] Evelyn Duesterwald and Vasanth Bala. Software Profiling for Hot Path Predic-

tion. ACM SIGPLAN Notices, 35(11):202–211, nov 2000.

[DFAB03] Alan Dix, Janet E Finlay, Gregory D Abowd, and Russell Beale. Human-Computer
Interaction (3rd Edition). Pearson, 2003.

[DHI12] AnHai Doan, Alon Halevy, and Zachary Ives. Principles of Data Integration.

Principles of Data Integration, pages 95–119, 2012.

[Die17] Reinhard Diestel. Graph Theory (Graduate Texts in Mathematics). Springer, 2017.

138



Bibliography

[DJM06] Tamraparni Dasu, Theodore Johnson, and Amit Marathe. Database Exploration

Using Database Dynamics. IEEE Data Eng. Bull., 29(2):43–59, 2006.

[DJMS02] Tamraparni Dasu, Theodore Johnson, S. Muthukrishnan, and Vladislav

Shkapenyuk. Mining Database Structure; or, How to Build a Data Quality

Browser. In Proceedings of the 2002 ACM SIGMOD international conference on
Management of data - SIGMOD ’02, page 240, New York, New York, USA, 2002.

ACM Press.

[DLP09] Fabien De Marchi, Stéphane Lopes, and Jean-Marc Petit. Unary and n-ary

Inclusion Dependency Discovery in Relational Databases. Journal of Intelligent
Information Systems, 32(1):53–73, feb 2009.

[dOL03] M.C.F. de Oliveira and H. Levkowitz. From Visual Data Exploration to Visual

Data Mining: A Survey. IEEE Transactions on Visualization and Computer
Graphics, 9(3):378–394, jul 2003.

[DR06] Fan Deng and Davood Rafiei. Approximately Detecting Duplicates for Streaming

Data Using Stable Bloom Filters. In Proceedings of the 2006 ACM SIGMOD
international conference on Management of data - SIGMOD ’06, page 25, New

York, New York, USA, 2006. ACM Press.

[DRBH86] John E. Douglas, Robert K. Ressler, Ann W. Burgess, and Carol R. Hartman.

Criminal Profiling from Crime Scene Analysis. Behavioral Sciences & the Law,

4(4):401–421, 1986.

[DV12] Martin Dugas and Gottfried Vossen. CityPlot: Colored ER Diagrams to Visualize

Structure and Contents of Databases. Datenbank-Spektrum, 12(3):215–218, nov

2012.

[Dwo08] Cynthia Dwork. Differential Privacy: A Survey of Results. In Theory and
Applications of Models of Computation, pages 1–19. Springer Berlin Heidelberg,

Berlin, Heidelberg, 2008.

[EC05] Eldad Eilam and Elliot J Chikofsky. Reversing: Secrets of Reverse Engineering.

Wiley, 2005.

[EM00] Angela Edmunds and Anne Morris. The Problem of Information Overload in

Business Organisations: A Review of the Literature. International Journal of
Information Management, 20(1):17–28, 2000.

[EN15] Ramez Elmasri and Sham Navathe. Fundamentals of Database Systems. Pearson,

7th edition, 2015.

[ESJ10] Mturi Elias, Khurram Shahzad, and Paul Johannesson. A Business Process

Metadata Model for a Process Model Repository. Lecture Notes in Business
Information Processing, pages 287–300, 2010.

139



Bibliography

[Fag81] Ronald Fagin. A Normal Form for Relational Databases that is Based on Domains

and Keys. ACM Transactions on Database Systems, 6(3):387–415, sep 1981.

[Fah96] Christian Fahrner. Schematransformationen in Datenbanken. Phd thesis, WWU

Muenster, 1996.

[Fie00] Roy Thomas Fielding. Architectural Styles and the Design of Network-based
Software Architectures. Dissertation, University of California, Irvine, 2000.

[FMR12] Catherine O. Fritz, Peter E. Morris, and Jennifer J. Richler. Effect Size Esti-

mates: Current Use, Calculations, and Interpretation. Journal of Experimental
Psychology: General, 141(1):2–18, 2012.

[FPSS96] Usama Fayyad, Gregory Piatetsky-Shapiro, and Padhraic Smyth. Knowledge

Discovery and Data Mining: Towards a Unifying Framework, 1996.

[Fri06] Jeffrey E. F. Friedl. Mastering Regular Expressions. O’Reilly, 2006.

[FS69] Ivan P. Fellegi and Alan B. Sunter. A Theory for Record Linkage. Journal of the
American Statistical Association, 64(328):1183–1210, dec 1969.

[GIJ
+

01] Luis Gravano, Panagiotis G Ipeirotis, H V Jagadish, Nick Koudas, S Muthukrish-

nan, and Divesh Srivastava. Approximate String Joins in a Database (Almost) for

Free. In Proceedings of the 27th International Conference on Very Large Data Bases,
VLDB ’01, pages 491–500, San Francisco, CA, USA, 2001. Morgan Kaufmann

Publishers Inc.

[GKKS10] Lukasz Golab, Howard Karloff, Flip Korn, and Divesh Srivastava. Data Auditor:

Exploring Data Quality and Semantics Using Pattern Tableaux. Proceedings of
the VLDB Endowment, 3(1-2):1641–1644, 2010.

[GL12] Jan Goyvaerts and Steven Levithan. Regular Expressions Cookbook. O’Reilly and

Associates, 2012.

[Goe10] Anita Goel. Computer Fundamentals. Pearson Education India, 2010.

[GR93] Jim Gray and A. (Andreas) Reuter. Transaction Processing: Concepts and Tech-
niques. Morgan Kaufmann Publishers, 1993.

[Gra10] Jeffrey O. Grady. System Management: Planning, Enterprise Identity, and Deploy-
ment. CRC Press, 2010.

[Gra12] Dan Graham. The Data Temperature Spectrum (Teradata white paper), 2012.

[Hal01] Alon Y. Halevy. Answering Queries Using Views: A Survey. The VLDB Journal,
10(4):270–294, dec 2001.

[HCC11] D. Ian. Heywood, Sarah. Cornelius, and Steve. Carver. An Introduction to Geo-
graphical Information Systems. Prentice Hall, 2011.

140



Bibliography

[HGN00] Jochen Hipp, Ulrich Güntzer, and Gholamreza Nakhaeizadeh. Algorithms for

Association Rule Mining — A General Survey and Comparison. ACM SIGKDD
Explorations Newsletter, 2(1):58–64, jun 2000.

[HHK
+

01] Joseph Hall, Jason Hartline, Anna R Karlin, Jared Saia, and John Wilkes. On

Algorithms for Efficient Data Migration. In Proceedings of the Twelfth An-
nual ACM-SIAM Symposium on Discrete Algorithms, SODA ’01, pages 620–629,

Philadelphia, PA, USA, 2001. Society for Industrial and Applied Mathematics.

[HLK
+

12] Joseph M. Hellerstein, Kun Li, Arun Kumar, Christoper Ré, Florian Schoppmann,

Daisy Zhe Wang, Eugene Fratkin, Aleksander Gorajek, Kee Siong Ng, Caleb

Welton, and Xixuan Feng. The MADlib Analytics Library. Proceedings of the
VLDB Endowment, 5(12):1700–1711, aug 2012.

[HMM00] I. Herman, G. Melancon, and M.S. Marshall. Graph Visualization and Navigation

in Information Visualization: A Survey. IEEE Transactions on Visualization and
Computer Graphics, 6(1):24–43, 2000.

[HN17] Hazar Harmouch and Felix Naumann. Cardinality Estimation: An Experimental

Survey. PVLDB, 11(4):499–512, 2017.

[HQRA
+

13] Arvid Heise, Jorge-Arnulfo Quiané-Ruiz, Ziawasch Abedjan, Anja Jentzsch,

and Felix Naumann. Scalable Discovery of Unique Column Combinations.

Proceedings of the VLDB Endowment, 7(4):301–312, dec 2013.

[HT85] Starr R. Hiltz and Murray Turoff. Structuring Computer-Mediated Communi-

cation Systems to Avoid Information Overload. Communications of the ACM,

28(7):680–689, jul 1985.

[HT03] Anthony J G Hey and Anne E Trefethen. The Data Deluge: An e-Science

Perspective. In F. Berman, G. C. Fox, and A. J. G. Hey, editors, Grid Computing -
Making the Global Infrastructure a Reality, pages 809–824. Wiley and Sons, 2003.

[HVL08] Niels Haering, Péter L. Venetianer, and Alan Lipton. The Evolution of Video

Surveillance: An Overview. Machine Vision and Applications, 19(5-6):279–290,

oct 2008.

[HXHLB14] Frank Hutter, Lin Xu, Holger H. Hoos, and Kevin Leyton-Brown. Algorithm

Runtime Prediction: Methods and Evaluation. Artificial Intelligence, 206:79–111,

jan 2014.

[HYG
+

10] Bingsheng He, Mao Yang, Zhenyu Guo, Rishan Chen, Bing Su, Wei Lin, and

Lidong Zhou. Comet: Batched Stream Processing for Data Intensive Distributed

Computing. In Proceedings of the 1st ACM symposium on Cloud computing -
SoCC ’10, page 63, New York, New York, USA, 2010. ACM Press.

[IJ90] J. Iivari and J. Implementation of In-House Developed vs Application Package

Based Information Systems. ACM SIGMIS Database, 21(1):1–10, sep 1990.

141



Bibliography

[Inm05] W H Inmon. Building the Data Warehouse. Wiley, 2005.

[IOF08] William H. Inmon, Bonnie K. O’Neil, and Lowell. Fryman. Business Metadata:
Capturing Enterprise Knowledge. Elsevier/Morgan Kaufmann, 2008.

[ISO04] ISO. ISO/IEC 11179-1:2004(E): Information Technology - Metadata Registries,

2004.

[JCK03] Jiming Liu, Chi Kuen Wong, and Ka Keung Hui. An Adaptive User Interface

Based on Personalized Learning. IEEE Intelligent Systems, 18(2):52–57, mar 2003.

[JWHT13] Gareth James, Daniela Witten, Trevor Hastie, and Robert Tibshirani. An Intro-
duction to Statistical Learning, volume 103 of Springer Texts in Statistics. Springer

New York, New York, NY, 2013.

[JWT85] Alec J. Jeffreys, Victoria Wilson, and Swee Lay Thein. Hypervariable ‘Minisatel-

lite’ Regions in Human DNA. Nature, 314(6006):67–73, mar 1985.

[KA01] Daniel A. Keim and Daniel A. Visual Exploration of Large Data Sets. Communi-
cations of the ACM, 44(8):38–44, aug 2001.

[KAF
+

08] Daniel Keim, Gennady Andrienko, Jean-Daniel Fekete, Carsten Görg, Jörn

Kohlhammer, and Guy Melançon. Visual Analytics: Definition, Process, and

Challenges. In Information Visualization, pages 154–175. Springer Berlin Hei-

delberg, Berlin, Heidelberg, 2008.

[Kei02] D.A. Keim. Information Visualization and Visual Data Mining. IEEE Transactions
on Visualization and Computer Graphics, 8(1):1–8, 2002.

[KH13] Axel. Kuhn and Bernd. Hellingrath. Supply Chain Management: Optimierte
Zusammenarbeit in der Wertschoepfungskette. Springer, 2013.

[Kle51] Stephen Cole Kleene. Representation of Events in Nerve Nets and Finite Au-

tomata (Research memo), 1951.

[KPP
+

12] Sean Kandel, Ravi Parikh, Andreas Paepcke, Joseph M. Hellerstein, and Jeffrey

Heer. Profiler: Integrated Statistical Analysis and Visualization for Data Quality

Assessment. In Proceedings of the International Working Conference on Advanced
Visual Interfaces - AVI ’12, page 547, New York, New York, USA, 2012. ACM

Press.

[KR13] Ralph. Kimball and Margy. Ross. The Data Warehouse Toolkit: The Definitive
Guide to Dimensional Modeling. Wiley, 2013.

[KRB
+

16] Ralph Kimball, Margy Ross, Bob Becker, Joy Mundy, Warren Thornthwaite, and

Kimball Group. The Kimball Group Reader: Relentlessly Practical Tools for Data
Warehousing and Business Intelligence. John Wiley & Sons, 2016.

142



Bibliography

[KWdRM03] Wagner A. Kamakura, Michel Wedel, Fernando de Rosa, and Jose Afonso Mazzon.

Cross-Selling Through Database Marketing: A Mixed Data Factor Analyzer

for Data Augmentation and Prediction. International Journal of Research in
Marketing, 20(1):45–65, mar 2003.

[Lan01] Doug Laney. 3D Data Management: Controlling Data Volume, Velocity, and

Variety (research note). Technical report, META Group, 2001.

[LAW02] Chenyang Lu, Ga Alvarez, and John Wilkes. Aqueduct: Online Data Migration

with Performance Guarantees. FAST’02 Proceedings of the 1st USENIX conference
on File and storage technologies, 1(January):219–230, 2002.

[LCWL14] Shixia Liu, Weiwei Cui, Yingcai Wu, and Mengchen Liu. A Survey on Infor-

mation Visualization: Recent Advances and Challenges. The Visual Computer,
30(12):1373–1393, dec 2014.

[LL95] Kenneth C. Laudon and Jane P. Laudon. Essentials of Management Information
Systems. Prentice Hall Inc., 1995.

[LL17] Kenneth C. Laudon and Jane P. Laudon. Management Information Systems:
Managing the Digital Firm. Pearson Higher Education, 15th edition, 2017.

[LLS10] K. Laudon, J. Laudon, and D. Schoder. Wirtschaftsinformatik: Eine Einführung.

Pearson Deutschland, 2010.

[LM02] Maurizio Lenzerini and Maurizio. Data Integration. In Proceedings of the twenty-
first ACM SIGMOD-SIGACT-SIGART symposium on Principles of database systems
- PODS ’02, page 233, New York, New York, USA, 2002. ACM Press.

[LO96] David Lewis and Others. Dying for Information. Reuters Business Information,
London, 1996.

[LPT02] Stéphane Lopes, Jean-Marc Petit, and Farouk Toumani. Discovering Interesting

Inclusion Dependencies: Application to Logical Database Tuning. Information
Systems, 27(1):1–19, mar 2002.

[LRU14] Jure Leskovec, Anand Rajaraman, and Jeffrey D Ullman. Mining of Massive
Datasets. Cambridge University Press, 2nd edition, 2014.

[LS87] Jill H. Larkin and Herbert A. Simon. Why a Diagram is (Sometimes) Worth Ten

Thousand Words. Cognitive Science, 11(1):65–100, jan 1987.

[Mar05] Richard Marsh. Drowning in Dirty Data? It’s Time to Sink or Swim: A Four-

Stage Methodology for Total Data Quality Management. Journal of Database
Marketing & Customer Strategy Management, 12(2):105–112, jan 2005.

[Mas11] Mark Masse. REST API Design Rulebook. O’Reilly, 2011.

143



Bibliography

[May07] Arkady Maydanchik. Data Quality Assessment. Technics Publications, 2007.

[MCS88] Michael V. Mannino, Paicheng Chu, and Thomas Sager. Statistical Profile

Estimation in Database Systems. ACM Computing Surveys, 20(3):191–221, sep

1988.

[MG13] E. B. Mandinach and E. S. Gummer. A Systemic View of Implementing Data

Literacy in Educator Preparation. Educational Researcher, 42(1):30–37, jan 2013.

[MPdS
+

08] Fabio Perez Marzullo, Rodrigo Novo Porto, Geraldo Zimbrao da Silva, Jano Mor-

eira de Souza, and Jose Roberto Blaschek. An MDA Approach for Database

Profiling and Performance Assessment. In Roger Lee, editor, Computer and
Information Science, pages 1–10. Springer Berlin Heidelberg, 2008.

[MWA
+

07] Zhilei Ma, Branimir Wetzstein, Darko Anicic, Stijn Heymans, and Frank Ley-

mann. Semantic Business Process Repository. Proceedings of SBPM, pages

92–100, 2007.

[Mya06] Glenn J Myatt. Making Sense of Data: A Practical Guide to Exploratory Data
Analysis and Data Mining. Wiley-Interscience, 2006.

[Nau13] Felix Naumann. Data Profiling Revisited. ACM SIGMOD Record, 42(4):40–49,

feb 2013.

[NEM09] Robert. Nisbet, John F. (John Fletcher) Elder, and Gary. Miner. Handbook of
Statistical Analysis and Data Mining Applications. Academic Press/Elsevier, 2009.

[Nie05] Detlef Nielsen, editor. Maritime Security and MET. WIT Press / Computational

Mechanics, 2005.

[NM03] Adithya Nagarajan and Atif M Memon. Refactoring Using Event-Based Profiling.

In Proceedings of The First International Workshop on REFactoring: Achievements,
Challenges, Effects, nov 2003.

[OHB12] Paul Oldham, Stephen Hall, and Geoff Burton. Synthetic Biology: Mapping the

Scientific Landscape. PLoS ONE, 7(4):e34368, apr 2012.

[O’L00] Daniel Edmund O’Leary. Enterprise Resource Planning Systems: Systems, Life
Cycle, Electronic Commerce, and Risk. Cambridge University Press, 2000.

[Ols03] Jack E. Olson. Data Quality—The Accuracy Dimension. Morgan Kaufmann, 2003.

[Opp97] C. Oppenheim. Managers’ Use and Handling of Information. International
Journal of Information Management, 17(4):239–248, aug 1997.

[PBF
+

15] Thorsten Papenbrock, Tanja Bergmann, Moritz Finke, Jakob Zwiener, and Felix

Naumann. Data Profiling with Metanome. Proceedings of the VLDB Endowment,
8(12):1860–1863, aug 2015.

144



Bibliography

[Pea84] Judea Pearl. Heuristics: Intelligent Search Strategies for Computer Problem Solving.

Addison-Wesley Publishing. Co, 1984.

[PEM
+

15] Thorsten Papenbrock, Jens Ehrlich, Jannik Marten, Tommy Neubert, Jan-Peer

Rudolph, Martin Schönberg, Jakob Zwiener, and Felix Naumann. Functional

Dependency Discovery. Proceedings of the VLDB Endowment, 8(10):1082–1093,

jun 2015.

[Pfl17] Nicolas Pflanzl. Gamification for Business Process Modeling. Doctoral thesis,

Westfälische Wilhelms-Universität Münster, 2017.

[PKQRN15] Thorsten Papenbrock, Sebastian Kruse, Jorge-Arnulfo Quiané-Ruiz, and Felix

Naumann. Divide & Conquer-Based Inclusion Dependency Discovery. Proceed-
ings of the VLDB Endowment, 8(7):774–785, feb 2015.

[PLW02] Leo L. Pipino, Yang W. Lee, and Richard Y. Wang. Data Quality Assessment.

Communications of the ACM, 45(4):211, apr 2002.

[Poh10] Klaus Pohl. Requirements Engineering: Fundamentals, Principles, and Techniques.
Springer, 2010.

[Por85] Michael E. Porter. Competitive Advantage: Creating and Sustaining Superior
Performance. Free Press, 1985.

[PSF04] A. Phippen, L. Sheppard, and S. Furnell. A Practical Evaluation of Web Analytics.

Internet Research, 14(4):284–293, sep 2004.

[Pyl99] Dorian Pyle. Data Preparation for Data Mining. Morgan Kaufmann Publishers,

1999.

[Ram09] Krish Ramachandran. Adaptive User Interfaces for Health Care Applications.

Technical report, IBM, 2009.

[RB01] Erhard Rahm and Philip A. Bernstein. A Survey of Approaches to Automatic

Schema Matching. The VLDB Journal, 10(4):334–350, dec 2001.

[RD88] John F. (John Fralick) Rockart and David W. DeLong. Executive Support Systems:
The Emergence of Top Management Computer Use. Dow Jones-Irwin, 1988.

[RD00] Erhard Rahm and Hong Hai Do. Data Cleaning: Problems and Current Ap-

proaches. IEEE Data Eng. Bull., 23(4):3–13, 2000.

[Rei78] Raymond Reiter. On Closed World Data Bases. In Logic and Data Bases, pages

55–76. Springer US, Boston, MA, 1978.

[RH01] Vijayshankar Raman and Joseph M Hellerstein. Potter’s Wheel: An Interactive

Data Cleaning System. Proceedings of the 27th International Conference on Very
Large Data Bases, 01:381–390, 2001.

145



Bibliography

[Ril17] Jenn Riley. Understanding Metadata: What is Metadata, and what is it for? NISO

Press, 2017.

[Rom99] Jorge Luis Romeu. Data Quality and Pedigree (whitepaper). Technical report,

IIT Research Institute, Rome, New York, 1999.

[RV97] Paul Resnick and Hal R. Varian. Recommender Systems. Communications of the
ACM, 40(3):56–58, mar 1997.

[SC97] A.J. Stanley and P.S. Clipsham. Information Overload - Myth or Reality? In IEE
Colloquium on IT Strategies for Information Overload, volume 1997, pages 1–1.

IEE, 1997.

[She98] David Shenk. Data Smog: Surviving the Information Glut. HarperOne, 1998.

[SHF11] Mauricio Sadinle, Rob Hall, and Stephen E Fienberg. Approaches to Multiple

Record Linkage. Proceedings of International Statistical Institute, 2011.

[Shn96] Ben Shneiderman. The Eyes Have It: A Task by Data Type Taxonomy for

Information Visualizations. In Proceedings 1996 IEEE Symposium on Visual
Languages, pages 336–343. IEEE Comput. Soc. Press, 1996.

[Sie16] Eric Siegel. Predictive Analytics: The Power to Predict Who Will Click, Buy, Lie, or
Die. Wiley, Hoboken, New Jersey, 2016.

[SKKR00] Badrul Sarwar, George Karypis, Joseph Konstan, and John Riedl. Analysis of

Recommendation Algorithms for e-Commerce. In Proceedings of the 2nd ACM
conference on Electronic commerce - EC ’00, pages 158–167, New York, New York,

USA, 2000. ACM Press.

[SMM
+

09] Kenneth P Smith, Michael Morse, Peter Mork, Maya Hao Li, Arnon Rosenthal,

M David Allen, and Len Seligman. The Role of Schema Matching in Large

Enterprises. In {CIDR} 2009, Fourth Biennial Conference on Innovative Data
Systems Research, Asilomar, CA, USA, January 4-7, 2009, Online Proceedings.
www.cidrdb.org, 2009.

[Sno86] Richard Thomas Snodgrass. Temporal databases. IEEE COMPUTER, 19:35—-42,

1986.

[SS13] Nitin Sawant and Himanshu Shah. Big Data Ingestion and Streaming Patterns.

In Big Data Application Architecture Q & A, pages 29–42. Apress, Berkeley, CA,

2013.

[SSTW01] Michael J Shaw, Chandrasekar Subramaniam, Gek Woo Tan, and Michael E

Welge. Knowledge Management and Data Mining for Marketing. Decision
Support Systems, 31(1):127–137, 2001.

146



Bibliography

[SSV12] Fabian Schomm, Florian Stahl, and Gottfried Vossen. Marketplaces for Data:

An Initial Survey. ACM SIGMOD Record, 42(1):15, may 2012.

[Sta73] Herbert. Stachowiak. AllgemeineModelltheorie. Springer-Verlag, Vienna, Austria,

1973.

[Sto16] David Stodder. Improving Data Preparation for Business Analytics (Best Prac-

tices Report). Technical report, TDWI, 2016.

[SWC
+

02] J.P. Shim, Merrill Warkentin, James F. Courtney, Daniel J. Power, Ramesh Sharda,

and Christer Carlsson. Past, Present, and Future of Decision Support Technology.

Decision Support Systems, 33(2):111–126, jun 2002.

[Tal11] John R. Talburt. Entity Resolution and Information Quality. Morgan Kaufmann,

2011.

[Tho04] Bruce Thompson. Exploratory and Confirmatory Factor Analysis: Understanding
Concepts and Applications. American Psychological Association, Washington,

2004.

[TS92] Markus Tresch and Marc H Scholl. Meta Object Management and its Application

to Database Evolution. In G Pernul and A M Tjoa, editors, Entity-Relationship
Approach — ER ’92, pages 299–321, Berlin, Heidelberg, 1992. Springer Berlin

Heidelberg.

[TSRC15] Ignacio Terrizzano, Peter Schwarz, Mary Roth, and John E. Colino. Data Wran-

gling: The Challenging Yourney from the Wild to the Lake. In 7th Biennial
Conference on Innovative Data Systems Research (CIDR ’15), Asilomar, California,

USA, 2015.

[Tuk77] John W. Tukey. Exploratory Data Analysis. Addison-Wesley Pub. Co, 1977.

[Tur11] Brent E. Turvey. Criminal Profiling: An Introduction to Behavioral Evidence
Analysis. Academic Press, 2011.

[TVH
+

17] Heike Trautmann, Gottfried Vossen, Leschek Homann, Matthias Carnein, and

Karsten Kraume. Challenges of Data Management and Analytics in Omni-

Channel CRM. Technical report, ERCIS Working Papers, No. 28, 2017.

[VBM95] Marshall Van Alstyne, Erik Brynjolfsson, and Stuart Madnick. Why Not One Big

Database? Principles for Data Ownership. Decision Support Systems, 15(4):267–

284, dec 1995.

[vdA11] Wil M. P. van der Aalst. Process Mining. Springer Berlin Heidelberg, Berlin,

Heidelberg, 2011.

[vdAWM04] W. van der Aalst, T. Weijters, and L. Maruster. Workflow Mining: Discovering

Process Models from Event Logs. IEEE Transactions on Knowledge and Data
Engineering, 16(9):1128–1142, sep 2004.

147



Bibliography

[VKH15] Jose M Villaveces, Prasanna Koti, and Bianca H Habermann. Tools for Visualiza-

tion and Analysis of Molecular Networks, Pathways, and -omics Data. Advances
and applications in bioinformatics and chemistry : AABC, 8:11–22, 2015.

[Vos91] Gottfried Vossen. Data Models, Database Languages and Database Management
Systems. Addison-Wesley Publishing. Co, 1991.

[Vos14] Gottfried Vossen. Big Data as the New Enabler in Business and Other Intelli-

gence. Vietnam Journal of Computer Science, 1(1):3–14, feb 2014.

[vZR17] Bjørn Marius von Zernichow and Dumitru Roman. Usability of Visual Data

Profiling in Data Cleaning and Transformation. In Lecture Notes in Computer
Science (including subseries Lecture Notes in Artificial Intelligence and Lecture
Notes in Bioinformatics), volume 10574 LNCS, pages 480–496. SINTEF, 2017.

[WBW02] K-P Wiedmann, H Buxel, and G Walsh. Customer Profiling in e-Commerce:

Methodological Aspects and Challenges. Journal of Database Marketing &
Customer Strategy Management, 9(2):170–184, jan 2002.

[Wes12] Mathias Weske. Business Process Management: Concepts, Languages, Architectures.
Springer, 2012.

[WS96] Richard Y. Wang and Diane M. Strong. Beyond Accuracy: What Data Quality

Means to Data Consumers. Journal of Management Information Systems, 12(4):5–

33, mar 1996.

[WS97] A. Woodruff and M. Stonebraker. Supporting Fine-Grained Data Lineage in a

Database Visualization Environment. In Proceedings 13th International Confer-
ence on Data Engineering, pages 91–102. IEEE Comput. Soc. Press, 1997.

[WT02] Ronald Weitzer and Steven A. Tuch. Perceptions of Racial Profiling: Race, Class,

and Personal Experience. Criminology, 40, 2002.

[WT07] Jessica Woodhams and Kirsty Toye. An Empirical Test of the Assumptions

of Case Linkage and Offender Profiling with Serial Commercial Robberies.

Psychology, Public Policy, and Law, 13(1):59, 2007.

[Wu03] Youfeng Wu. Software Profiling Method and Apparatus (US Patent 6,668,372).

Patent, Intel Corp, 2003.

[YaKS07] Ji Soo Yi, Youn ah Kang, and John Stasko. Toward a Deeper Understanding

of the Role of Interaction in Information Visualization. IEEE Transactions on
Visualization and Computer Graphics, 13(6):1224–1231, 2007.

148



List of Web Pages
[1] Abadi, Daniel: DBMS Musings: Machine vs. human generated data. h�p://dbmsmusings.

blogspot.de/2010/12/machine-vs-human-generated-data.html. – Last accessed: 2018-

04-17

[2] Bort, Julie: Amazon CEO Jeff Bezos explains his famous one-character emails , known
to strike fear in manager’s hearts. h�ps://finance.yahoo.com/news/amazon-ceo-je�-

bezos-explains-212315127.html. – Last accessed: 2018-04-23

[3] Chamorro-Premuzic, Tomas: How the web distorts reality and impairs our judgement
skills. h�ps://www.theguardian.com/media-network/media-network-blog/2014/may/

13/internet-confirmation-bias. – Last accessed: 2017-06-09

[4] Datamartist: Datamartist FAQ. h�p://www.datamartist.com/product/datamartist-faq.

– Last accessed: 2017-07-07

[5] Dictionary.com: Define Profile at Dictionary.com. h�p://www.dictionary.com/browse/

profile. – Last accessed: 2017-05-03

[6] Donald, Heather M.: The Myth of Racial Profiling. h�ps://www.city-journal.org/html/

myth-racial-profiling-12022.html. – Last accessed: 2017-05-18

[7] Dormando: memcached - a distributed memory object caching system. h�ps://

memcached.org/. – Last accessed: 2018-04-23

[8] Faception: Facial Personality Profiling. h�p://www.faception.com. – Last accessed:

2017-05-12

[9] Friend, Zach: Predictive Policing: Using Technology to Reduce Crime. h�ps://leb.fbi.

gov/2013/april/predictive-policing-using-technology-to-reduce-crime. – Last accessed:

2017-06-21

[10] GovData: Datenportal für Deutschland. h�ps://www.govdata.de/. – Last accessed:

2018-05-06

[11] Harper, Douglas: Online Etymology Dictionary. h�p://www.etymonline.com/index.

php?term=profile. – Last accessed: 2017-04-27

[12] IBM: IBM Knowledge Center - Application profiling. h�ps://www.ibm.com/support/

knowledgecenter/en/SSAW57_7.0.0/com.ibm.websphere.nd.doc/info/ae/appprofile/

concepts/capp_overview.html. – Last accessed: 2018-05-03

149



List of Web Pages

[13] iSixSigma: Subject Matter Expert - SME. h�ps://www.isixsigma.com/dictionary/subject-

ma�er-expert-sme/. – Last accessed: 2018-04-23

[14] James R. Evans, Carl H. L.: Business Analytics: The Next Frontier for Decision Sciences.
h�p://www.cbpp.uaa.alaska.edu/afef/business_analytics.htm. – Last accessed: 2017-

06-22

[15] LaChapelle, Cindy: The Cost of Data Storage and Management. h�p://www.

datacenterjournal.com/cost-data-storage-management-headed-2016/. – Last accessed:

2018-05-08

[16] Lichtblau, Eric: Bush Issues Federal Ban on Racial Profiling. h�p://www.nytimes.com/

2003/06/17/politics/bush-issues-federal-ban-on-racial-profiling.html. – Last accessed:

2017-05-23

[17] McKie, Robin: Eureka moment that led to the discovery of DNA fingerprinting. h�ps:

//www.theguardian.com/science/2009/may/24/dna-fingerprinting-alec-je�reys. – Last

accessed: 2017-05-30

[18] Merriam-Webster: Definition of Metadata. h�ps://www.merriam-webster.com/

dictionary/metadata. – Last accessed: 2018-01-15

[19] Merriam-Webster: Definition of Profiling. h�ps://www.merriam-webster.com/

dictionary/profiling. – Last accessed: 2017-04-27

[20] Monash, Curt: Examples and definition of machine-generated data | DBMS2. h�p://

www.dbms2.com/2010/12/30/examples-and-definition-of-machine-generated-data/. –

Last accessed: 2018-04-17

[21] Naumann, Felix: Metanome Tool and Profiling Algorithms. h�ps://hpi.de/naumann/

projects/data-profiling-and-analytics/metanome-data-profiling/algorithms.html. –

Last accessed: 2018-04-14

[22] Oracle: MySQL 5.7 Reference Manual :: 6.2.1 Privileges Provided by MySQL. h�ps:

//dev.mysql.com/doc/refman/5.7/en/privileges-provided.html. – Last accessed: 2018-04-

18

[23] Oracle: Oracle E-Business Suite Developer’s Guide. h�ps://docs.oracle.com/cd/E18727_

01/doc.121/e12897/T302934T458266.htm. – Last accessed: 2018-04-23

[24] Palmer, Michael: ANA Marketing Maestros: Data is the New Oil. h�p://ana.blogs.com/

maestros/2006/11/data_is_the_new.html. – Last accessed: 2018-05-07

[25] Papenbrock, Thorsten: Source code for several Metanome data profiling algorithms.
h�ps://github.com/HPI-Information-Systems/metanome-algorithms. – Last accessed:

2018-04-14

150



List of Web Pages

[26] Paul Rogers, James R. Rudy Puryear P. Rudy Puryear: Infobesity: The enemy of good
decisions. h�p://www.bain.com/publications/articles/infobesity-the-enemy-of-good-

decisions.aspx. – Last accessed: 2017-06-09

[27] Prado, Guia Marie D.: Artificially intelligent security cameras are spotting crimes
before they happen. h�p://www.businessinsider.com/security-cameras-use-artificial-

intelligence-to-detect-crime-2015-8?IR=T. – Last accessed: 2017-05-12

[28] PredPol: Predictive Policing Software. h�p://www.predpol.com/. – Last accessed:

2017-06-21

[29] ProPublica: Trump’s 10 Troubling Deals with Foreign Power-Players. h�ps://projects.

propublica.org/trump-conflicts/. – Last accessed: 2018-05-08

[30] QNX: Help - Eclipse SDK. h�p://www.qnx.com/developers/docs/6.5.0/index.jsp?topic=

%2Fcom.qnx.doc.ide.userguide%2Ftopic%2Fprofiler_PROUSECASES_.html. – Last

accessed: 2018-05-03

[31] RedisLabs: Redis. h�ps://redis.io/. – Last accessed: 2018-04-23

[32] Resnick, Peter: RFC 5322 - Internet Message Format. h�ps://tools.ietf.org/html/rfc5322.

– Last accessed: 2018-04-24

[33] Schlueter-Isenbeck: Münster-Skyline. h�p://scheidingen.de/muenster-skyline/. –

Last accessed: 2018-05-08

[34] Talend: Open Source Data Quality: Talend Open Studio Data Quality. h�ps://www.

talend.com/products/talend-open-studio/data-quality-open-studio/. – Last accessed:

2018-04-24

[35] Team, Editorial: The Exponential Growth of Data. h�ps://insidebigdata.com/2017/02/

16/the-exponential-growth-of-data/. – Last accessed: 2018-05-08

[36] Teradata Corporation: Business Analytics, Hybrid Cloud & Consulting. h�ps://www.

teradata.com/. – Last accessed: 2018-04-22

[37] The Gephi Consortium: Gephi - The Open Graph Viz Platform. h�ps://gephi.org/. –

Last accessed: 2018-04-05

[38] The Wall Street Journal: Drunk on the Train Platform? These Cameras Can
Tell. h�ps://blogs.wsj.com/japanrealtime/2015/08/13/drunk-on-the-train-platform-

these-cameras-can-tell/. – Last accessed: 2017-05-15

[39] Trunomi: EU GDPR Information Portal. h�ps://www.eugdpr.org/. – Last accessed:

2018-05-07

[40] U.S. General Services Administration: Data.gov. h�ps://www.data.gov/. – Last

accessed: 2018-05-06

151



List of Web Pages

[41] W3C: RDF - Semantic Web Standards. h�ps://www.w3.org/RDF/. – Last accessed:

2018-04-25

[42] Wikipedia: Data profiling. h�ps://en.wikipedia.org/wiki/Data_profiling. – Last ac-

cessed: 2018-01-10

[43] Wikipedia: Profiling. h�ps://en.wikipedia.org/wiki/Profiling. – Last accessed: 2017-04-

27

152






