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Chapter 1

Introduction

Stable Homotopy Theory deals with stark properties of topological spaces which
are preserved under a controlled ascent of dimensions. Far from its original
goals and initiating questions (like Freudenthal’s first remarks on stability), sta-
ble homotopy theory became a dominant discourse in some branches of pure
mthematics today. Stable Homotopy Theory has been after decades a succes-
ful deliverer of conceptual frameworks for crucial developings of, for instance,
algebraic K-theory, giving at the same time powerful and explicit computation
techniques like spectral sequences for the gathering of evidence.

Writing a thesis about homotopy theory from the viewpoint of a school
which is more devoted to K-theory, as the Topology Group in Münster has
to be oriented towards applications and open to other disciplines. This is a
constant interest ofthe author of this work.

In many fields of modern research, the notion of symmetry plays a crucial
role. Regularity, periodicity and recurrence are the intuitions which lie behind
the modern notion of a group action. This works deals mainly with the interac-
tion of symmetry and the methods of stable homotopy theory. It is motivated by
the fact that the highly developed Equivariant Stable Homotopy Theory, as it
is exposed for example in [May96], restricts itself to actions of finite or compact
Lie groups. This problem lies in the extreme dependence of their methods and
defnitions to the representation theory of the acting groups. The aim of this
work is precisely to enlight the dialectic of this particularly strong interaction
in finite group actions and independence in more general contexts, which is for
the first time introduced in this thesis. By the end of 2009, relativelly parallel
to the finishing time of this work, the paper [Kit09] adressed a definition of
equivariant K-theory for proper actions of other class of noncompact groups,
not considered here. We follow this developement very closely and see in these
developements a confirmation of the need of a systematical developement of
equivariant homotopy theory in the context of infinite groups.

This work should be understood as the first attempt to bring homotopy
theory to the contexts where it is needed, namely, where non-compact groups
act properly on possibly non-compact spaces. This is the main theoretical goal
here. As the first test for the relevance and accuracy of the proposals for gen-
eralized definitions, a fundamental result in homotopy theory is brought into
new realms. That is the 1984 proven Segal conjecture. The Segal conjecture
is a statement which was made for the first time in 1970 in the International
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8 CHAPTER 1. INTRODUCTION

Congress of Mathematicians and is considered to be the capital achievement of
the stable homotopy theory of the first part of the eighth decade of last cen-
tury. It involves a ring, the Burnside ring, and equivariant homotopy groups of a
classyfying space. Both notions are extended to non compact groups in this the-
sis, and so are severals results in this directions in the developement of Chapter
4. Also, the frontiers of these approaches and results are recogninsed in several
counterexamples in the body of the text. So, this work provides the homotopy
theoretical community with extensions of their notions to the context of proper
actions, as well as the extension of a highlighting theorem, which occupied by
more than a decade many of the best topologists. This is an aknowledgement
to a vaste field of research which the author of this thesis just begins to see and
appreciate in all its complexity.

There is a third small spring flooding the lands of homotopy theory. One
which is very often overseen by the leading researchers in this field. That is,
applications and active contributions from other branches of mathematics. This
plays also a role in the developement of our ideas. Notions coming from index
theory, operator algebras, functional analysis and gauge topology are presented
as an example of what stable homotopy theory can do out of their artificially de-
limited terrains. But they also contribute actively to its developement. The best
example is the theory of nonlinear perturbations of fredholm operators. This
is a topic motivated by the qualitative analysis of partial differential equations,
and which did not gained alot of interest among leading homotopy theorists. A
second aim of this work is to reverse this, providing a modest application of the
methods of homotopy theory in these index theoretical contexts. The author
of this work thanks the Gauge theoretical community in Germany, which was
always hilfsbereit, specially Markus Szymik, Stefan Bauer and Raphael Zentner,
who never hesitate to share ideas to achieve this program. Also, an active di-
alogue with the differential geometry and noncommutative geometry groups in
Münster is behind these developements.

The author wants to express his deep gratitude to all institutions which con-
tributed to the succes of this project in Münster. The DAAD-Conacyt schol-
arship was a crucial aspect for the developement of the projects here. The
author expresses his concern about the future of this program in these hard
days for his homeland, Mexico. He is also convinced that public investment in
science and technology made this effort succesful, and this should be a priority
for developing countries.

The Westfälische Wilhelms-Universität Münster has to be gratefully recog-
nised for his hospitality and cooperation, reflected in several succesful programs
on which the author of this work participated, in particular the people involved
in the Graduiertenkolleg Analytische Topologie und Metageometrie, and the Son-
derforschungsbereich Geometrische Strukturen in der Mathematik. In a more
broad sense, the support of the university in Münster was seen in die Brücke and
the work of autonomous organs inside the Allgemeine Studierendenausschuss.
Other institutions which contributed to this work in some exent include the
Max Planck Institute, the Oberwolfach Mathematical Research Institute, the
Studientsttiftung des Deutschen Volkes, and the National University of Mexico,
with particular engagement of Prof. Carlos Prieto.

In the personal line, deep thanks and admiration are expressed to Wolgang
Lück. His decisive support, sharp critic and bright understanding of mathe-
matics made this work what it is. Michael Joachim always shared both his
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knowledge and confidence. Few people taught me more mathematics than he
did. I am indebted with Malte Röer for his generous and long friendship. The
Doktorbrüder und Schwester Phillip Kühl, Pascal Fabig, Henrik Rüping, Adam
Mole, Christian Siegemeyer, Clara Löh and Wolfgang Steimle also exchanged
lots of knowledge with the author. Adam Mole read a preliminary version of this
Dissertation, giving valuable language, grammar and vocabulary improvements.
Without his help, this thesis would be even more difficult to read for the english
speaking community. The members of the mailing list Schwu-Le-Ma, including
Günter Ziegler, former president of the DMV, provided also an enviroment of
confidence and openess and deserve my aknowledgement and thanks.

Father and Mother, Noé Bárcenas Vázquez and Sonia Beatriz Torres Peraza
deserve my respect and gratitude. Special thanks are sent to Radu Popa, who
came in the last minute to share the most difficult time in the composition of
this thesis.
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Chapter 2

Infinite discrete groups

In this work we shall extend clasical definitions and results of equivariant sta-
ble homotopy theory to the context of proper actions of discrete groups. The
first approach we propose is given in terms of some infinite loop spaces. In
order to construct them, we make use of Segal’s infinite loop space machine,
Γ-spaces. Although Γ -spaces are certainly limited, in that they define only
connective spectra, this is no problem for us, since we are dealing with a flexible
generalization of the sphere spectrum, the canonical example of a connective
spectrum.

We recall briefly the definition of Γ-spaces, in the sense of Segal. For the
expert, all Γ-spaces we deal with are called in the modern literature special
Γ-spaces. We also use Segal’s original notation since it is technically more
convenient for our purposes.

A Γ-space can be understood from many points of view, the most useful
for us being a technically easier to handle substitute for a connective spectrum.
Or, more precisely, of its infinite loop space. We follow the classical definition,
[Seg74].

Definition 1. Let Γ be the category whose objects are finite sets and where a
morphism F : S → T is a function S → P(T ) such that F (s) ∩ F (s

′
) = φ for

s 6= s
′
. Denote by n the object of Γ which consists of {1, . . . , n}. A Γ-space is

a contravariant functor Γ→ Spaces such that:

1. A(0) = {∗}

2. For each n, the map A(n)→ Πn
i=1A1 induced by the inclusions κi : 1 −→

n, 1 κi→ i is a homotopy equivalence.

For a finite set S denote by SetS the category of S-partitioned finite sets.
That is, its objects are finite subsets X of N∞ =

∐
n∈N N together with a

decomposition of the formX =
∐
s∈S

Xs, whereXs ⊂ N is a finite set. A morphism

is an isomorphism of sets which preserves the decomposition. Let θ : S → T
be a morphism in Γ. It induces a functor SetT → SetS by sending

∐
t∈T Xt to

Y =
∐
s∈S Ys, where Ys =

∐
t∈θ(s)Xs, giving a functor Γop → Set.

Remark 1. Indeed, the previous functor is an instance of what Segal calls a
Γ-category. A Γ-category is a functor defined in the cetegory Cat of small cate-
gories F : Γop → Cat such that F (0) is equivalent to the category of one object
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12 CHAPTER 2. INFINITE DISCRETE GROUPS

and one morphism, and F (n) is equivalent to the category C(1)× . . .× C(1)︸ ︷︷ ︸
n−times

, the

equivalence being induced by the morphisms ik : 1 → n. Our main example is
the following. Define for a symmetric monoidal category C,

∐
the category C(S)

whose objects consist of sums indexed by the finite set S and a morphism is an
isomorphism which preserves the indexing. Then S 7→ C(S) is such a functor.

Our interest on Γ-spaces comes is focused around their role as infinite loop
spaces, that is, representing objects for cohomology theories. The main result
concerning this is the following proposition due to Graeme Segal, which is called
the group completion theorem.

Proposition 1. Let A be a Γ-space such that π0(A(1̄)) contains a cofinal free
abelian monoid. Denote by KA the contravariant functor defined in the category
of compact spaces by X 7→ [X,ΩBA]. Then the transformation [X,A] → KA,
induced as ajoint to the map ΣA(1) → BA(1) is universal among transforma-
tions Θ : [ , A]→ F , where F is a representable abelian-group valued functor
on compact spaces and Θ is a transformation of monoid valued functors.

Proof. See [Seg74], proposition 4.1

In the following discussion G denotes a discrete group. Let E(G) be the
transport category on the group G, that is, the category whose objects are the
elements of the group G, with exactly a morphism between each two elements.
Note that G acts on E(G). The action of a on the object x gives the object ax.
It sends the morphism lg,x : g → x to the morphism lag,ax.

Denote by B(G) the category consisting of one object and morphism set
the elements of G. For a subgroup H of G, the transport category E(G)/H is
the category whose objects are elements in G/H and where a morphism is a
traslation la : gH → agH. The reason of the notation is the following technical
result

Lemma 1. Let H be a subgroup. Then, the following holds

1. E(G)/H is naturally equivalent to B(H).

2. | EG |≈ EG, where | | stays for the geometric realization and EG stays
for the total space of a universal principal G-bundle.

3. For every small category C, there is an action of G in Fun(E(G), C). More-
over, for every subgroup H, the H-fixed points of the action form a sub-
category which is equivalent to the category Fun(E(G)/H, C).

Proof. 1. Define the functor F : E(G)/H → B(H) as follows. It is constant
on objects with value ∗. To describe its behavior in morphisms, let gαH
be a partition of the set G/H. Choose set isomorphisms α : gαH → eH.
Given a morphism la : gH → agH, note that the morphism eH → eH
given by eH →

αg
gH →

la
agH →

αag
eH is given by translation by some

hg,a ∈ H.

The inclusion functor E : eH → E(G)/H satisfies that E ◦ F and F ◦ E
are naturally equivalent to the identity functors.
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2. G acts freely and simplicially over EG. On the other side, the map G→ e
and the inclusion e → G induce a pair of adjoint functors, proving that
| EG | is contractible.

3. The first part is clear. Define the functor Fe : (E(G)/H, C)→ Fun(E(G), C)H
to be the functor which assigns to a functor f : EG/H → C the constant
functor with value f(eH) on objects,and where a morphism represented
by the pair of elements gH, g

′
H is asigned to the map batween a pair

of representatives g, g
′
. This functor lies in the H-fixed point set. Let

G : fun(EG, C)H → fun(EG/H, C) be the functor which is determined on
objects by the induced map of sets. There is a natural transformation
between the compositions of F and G and the identities.

Definition 2. Let G be a discrete group. The Γ-space of G-sets is the space
defined by the geometrical realization of the category of G-sets. In symbols,

G−Set(S) =| Func(E(G),SetS) |

The following result justifies our notation for G−Set

Proposition 2. For every subgroup H, there is a homotopy equivalence

| G−Set (n) |H ' | G−Set |H × . . .× | G−Set |H︸ ︷︷ ︸
n−times

Proof. After point 3. of previous proposition, one interprets the left side as the
nerve of the category which consists of functors from E(G) into n-tuple disjoint
unions of finite sets in the category of functors E(G)/H → Set. On the other
hand, the right side can be handled as the nerve of the category consisting of
functors from E(G)/H into n-tuple disjoint unions of finite sets in Set, which is
contained in the previous one. Since every element on the first category can be
decomposed as a sum of elements in the second one, there is a equivalence of
categories, giving the claimed homotopy equivalence.

Definition 3. A Γ-space with an action of the group G is a Γ-space A consisting
of G-spaces such that the fixed point sets A(n̄)H are Γ-spaces for all n.

Recall that Γ spaces have a geometric realization as simplicial sets. Precisely,
denote by BG−Set the Γ-space which is given by S 7→| T 7→ A(S × T ) |, where
the bars denote realization as simpicial set.

Definition 4. The equivariant infinite loop space is the group completion of
G−Set. In symbols,

QG = ΩBG−Set

Our reason for the nomenclature is the fact that for every finite subgroup
H, the H-fixed points of QHG classify H-equivariant stable cohomotopy. The
following discussion is our first try to make precise this claim.

By means of the category equivalence E(G)/H ↔ B(H) one can handle a
functor E(G)/H −→ Set as a finite H-set. For the image of the unique object
in BH under the functor in the category of finite sets yields a finite set of points
S ⊂ N∞ provided with a group homomorphism H → IsoSet(S). Denote by
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ΣS the group of automorphisms (= H-equivariant permutations) of such an
object. Then the realization of the Γ-space G−SetH can be identified with the
classifying space of the topological monoid consisting of the classifying spaces
of the group of automorphisms of such objects. In symbols,∐

H −Isomorphism classes of S

BΣS

Where the multiplication is defined by means of the partial assignments BΣS ×
BΣS′ −→ BΣS‘

S′ induced by the group homomorphisms ΣS×ΣS′ −→ ΣS‘
S′ .

Under this interpretation, the following result is immediate and amounts to an
equivariant version of the Barrat-Priddy-Quillen-Segal theorem.

Proposition 3. Let H be a finite subgroup. There is a homotopy equivalence

QHG ' ΩB(
∐

H−Isomorphism classes of S

ΣS)

where on the right side B stands for the classifying space of the monoid.

We recall the following classical definitions. See [tD87], [Hau77] for more
details. Let H be a finite group. A family of representations Ξ closed under
sums is called cofinal if it contains a representative of each class of irreducible
representations. Let SV denote the one-point-compactification of the H-module
V . Put ΣVX = X∗ ∧SV . If X is any space denote by ΩV (X) the space of con-
tinuous, equivariant pointed maps MapG(SV , X+). If X is a H-space, denote by
ΩVH(X) the subspace of the H-equivariant maps. Let Ξ be a cofinal system con-
sisting in the set of irreducible representations which have as underlying space
Cn for some n ≥ 0, ordered with direct sums. Define {S, S} = colimΞΩV SV .

Proposition 4. There is a H-equivariant homotopy equivalence QHG ' {S, S}H∗
Proof. Since the spaces in consideration have the H-equivariant homotopy type
of an H-CW complex, one has to prove that the K-fixed points have the same
weak homotopy groups for every subgroup K ≤ H. Hence, we get a situation
of the form

πrΩB(
∐
S

BΣS) −→ πr{S, S}K (2.1)

where S runs over the isomorphism classes of finite K-sets. Note that the
right side admits a splitting [Hau77], [Seg71]. Precisely, denote by WK′ ,K =
NK′ ,K/K

′
the Weyl group of a subgroup K

′ ≤ K. Let ccs(G) be the set of
conjugacy classes of subgroups of G. Then the right side of 2.1 is isomorphic to⊕

K′∈ccsK

πst
r (BWK′ ,K)

Our task now is to conveniently decompose the left side. Note for this that a fi-
nite K-set admits a decomposition into irreducible orbits S =

∐
niK/Ki, where

ni stands for the ni-tuple disjoint union of the corresponding orbit. This allows
a description of the automorphism group ΣS as ΠiWKni

i

∫
Σni . This group acts

freely on the space
∐
k,K EΣk ×EW k

K′
, the quotient being

∐
k,K EΣn ×

Σn

BWn
K′

.

Hence, we can identify the disjoint union of classifying spaces with the product
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Π
K′

∐
n∈N

EΣn ×
Σn

BWK′
n. Finally, there exists for any connected, well pointed space

a homotopy equivalence [Seg73], [Sch07], theorem 12.

B(
∐
n

EΣn ×
Σn

Xn) ≈ Ω∞−1Σ∞X

hence, we get a homotopy equivalence τ : ΩB(
∐
n∈N

EΣn ×
Σn

BWK′
n) −→

Q(BWK′ ). Putting all this together,

πrΩB(
∐

S∈K−sets

BΣS) ∼=
∏

K′∈ccsK

πst
r (BWK′ ) ∼= πr{S, S}K

2.1 Comparison with the approach of Lück

In [Lüc05a], a geometrical definition for equivariant stable cohomotopy is pro-
posed in the context of proper actions of discrete groups on finite G-CW com-
plexes. We shall extend this construction for all G-CW complexes by means of
the infinite loop spaces constructed in the previous section. Let us recal briefly
the construction of Lück.

An equivariant (real) vector bundle over a proper G-CW complex X is a
(real) vector bundle ξ : E −→ X such that the traslations lg : E → E are
fiberwise linear isomorphisms. A map of real vector bundles from ξ0 : E0 → X0

to ξ1 : E1 → X1 is a pair of G-equivariant maps f̄ : E0 → E1, f : X0 → X1

such that ξ1 ◦ f̄ = f ◦ ξ0 with the property that f̄ is fiberwise a linear map.
From a real vector bundle we form the associated sphere bundle by means of a
one-point compactification process on every fiber. Precisely, we have

Definition 5. Let ξ : E → X be a real equivariant vector bundle. The asso-
ciated sphere bundle, Sξ → X is the locally trivial G-bundle whose fiber over
x ∈ X is SEx .

Given a pair of sphere bundles ξ, µ, we form the G-bundles over X whose
fiber are given by the wedge, respectively the smash product of the fibers. We
denote them by Sξ ∨X Sµ, Sξ ∧X Sµ.

Fix an equivariant, proper G-CW complex. Form the category SPHBG(X)
having as objects the G-sphere bundles over X. A morphism from ξ : E → X
to µ : F → X is a bundle map Sξ → Sµ covering the identity in X, which
preserves fiberwise the basic points. A homotopy between the morphisms u0,
u1 is a G-bundle map h : Sξ×[0, 1]→ Sµ from the bundle Sξ×[0, 1]→ [0, 1]×X
to the bundle Sµ covering the projection X × [0, 1] −→ X and preserving the
base points on every fiber such that its restriction to X × {i} is ui for i = 0, 1.
Let Rn be the trivial vector bundle over X, which is furnished with the trivial
action of G. Two morphisms of the form

ui : Sξi⊕Rki → Sξi⊕Rki+n

are said to be equivalent if there are objects µi in SPHBG(X) and an isomor-
phism of vector bundles ν : µ0 ⊕ ξ0 ∼= µ1 ⊕ ξ1 such that the following diagram
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of morphisms in SPHBG(X) commutes up to homotopy

Sµ0⊕Rk1 ∧X Sξ0⊕Rk0
id∧Xu0 //

σ1

��

Sµ0⊕Rk1 ∧X Sξ0⊕Rk0+n

σ2

��
Sµ0⊕ξ0⊕Rk0+k1

Sν⊕id

��

Sµ0⊕ξ0⊕Rk0+k1+n

Sν⊕id

��
Sµ1⊕ξ1⊕Rk0+k1

σ3

��

Sµ1⊕ξ1⊕Rk0+k1+n

σ4

��
Sµ1⊕Rk0 ∧X Sξ1⊕Rk1

id∧Xu1

// Sµ1⊕Rk0 ∧X Sξ1⊕Rk1+n

where the isomorphisms σi are determined by the fiberwise defined homeo-
morphism SV⊕W ≈ SV ∧ SW and the associativity of smash products, which
holds for every pair of representations V ,W .

Definition 6. Let X be a G-CW complex. We define its n-th G-equivariant
stable cohomotopy group, πnG(X) as the set of homotopy clases of equivalence
classes of morphisms u : Sξ⊕Rk → Sξ⊕Rk+n

under the above mentioned relation.
For a G-CW pair, (X,A) we define πnG(X,A) as the equivalence classes of mor-
phisms which are trivial over A, i.e. those which are given by a representative
u : Sξ⊕Rk → Sξ⊕Rk+n

which satisfies that over every point a ∈ A, the map
ua : Sξa⊕Rk → Sξa⊕Rk+n

is constant with value the base point. For a pair of
bundle morphisms u : Sξ⊕Rk → Sξ⊕Rk+n

, v : Sξ
′
⊕Rk → Sξ

′
⊕Rk+n

, the sum is
defined as the homotopy class of the morphism

u : Sξ⊕ξ
′
⊕Rk ∧X SR id∧X∇→ Sξ⊕ξ

′
⊕Rk ∧X (SR ∨X SR) σ3→

(Sξ⊕Rk ∧X SR) ∨X (Sξ
′
⊕Rk ∧X SR)

(u∧X id)∨X(v∧X id)→

Sξ⊕ξ
′
⊕Rk+n

∧X SR

where σ3 is the canonical isomorphism given by the fiberwise distributivity
and associativity isomorphisms and ∇ denotes the pinching map SR → SR∨SR.
The relative version for elements lying in the group of a pair, πnG(X,A) translates
word by word when one sets all sphere bundles and morphisms to be trivial over
A. The multiplicative structure is introduced fiberwise as well. Precisely, given
a ∈ πnG(X,A), b ∈ πmG (X,B), choose representatives u : Sξ⊕Rk → Sξ⊕Rk+n

, v :
Sη⊕Rl → Sη⊕Rl+m and define their product to be the element in πn+m

G (X,A∪B)
which is represented by the morphism

Sξ⊕η⊕Rk⊕Rl σ4→

Sξ⊕Rk ∧X Sη⊕Rl u∧Xv→ Sξ⊕Rk+n
∧X Sη⊕Rl+m σ5→

Sξ⊕η⊕Rl+k+m+n

One obtains the long exact sequence of a pair after defining a coboundary
operator δnG(X,A) : πnG(A)→ πn+1

G (X,A). This is done as follows. One proves
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the existence of a natural isomorphism σnG(X,A) : πnG(X,A)→ πn+1
G (X×I, A×

{0, 1}). The coboundary map is then defined as the composition

πnG(A)
σnG(A)−→ πn+1

G (A× I, A× {0, 1})
πn+1
G (i1)−1

−→ πn+1
G (X ∪A×{0} A× I,X

∐
A× {1})

πn+1
G (i2)
−→ πn+1

G (X ∪A×{0} A× I, A× {1})
πn+1
G (pr1)−1

−→ πn+1
G (X,A)

Where the map πn+1
G (i1) is bijective by excision and πn+1

G (pr1) is bijective be-
cause of homotopy invariance.

The following result is proved in[Lüc05a]

Theorem 1. Equivariant stable cohomotopy defines an equivariant cohomology
theory with multiplicative structure for finite proper equivariant CW -comple-
xes. For every finite subgroup H of the group G the abelian groups πnG(G/H)
and πnH are isomorphic.

Now, we shall construct a natural transformation of monoid-valued functors
between our invariants defined via Γ-spaces and the groups of Lück. We shall
restrict it to a transformation of G-cohomology theories in the category of finite
proper G-CW complexes. In order to present this construction, we give to our
functor an interpretation as the monoid of isomorphism classes of equivariant
covering maps. Precisely,

Definition 7. A covering map p : X̃ → X is a G-covering if there are actions
on X̃ and X such that p is G-equivariant and every g ∈ G acts on X̃ and X by
means of deck transformations. A map of G-equivariant coverings over X is a
map of fibered bundles (f̄ , f) consisting of G-equivariant maps. A G-covering
map X̃ → X is called trivial if it is G-isomorphic to a covering map of the type
X × n̄, where n̄ carries the trivial G-action.

We now recall the following technical result, which is a consequence of the
slice theorem [Pal61].

Lemma 2. Let p : X̃ → X be a G-covering map over a proper G-CW complex.
Then the following fact holds:

1. For every point x ∈ X, there is a finite Gx-set S, a neighborhood U of x
and a map U → G/Gx such that p |U is isomorphic to the pullback of the
canonical bundle G ×

Gx
S → G/Gx.

In analogy with vector bundles, covering maps can be fibrewise “added” and
“multiplied”. Intuitively, this corresponds to a process of taking disjoint unions
and cartesian products of equivariant sets over every point of X. Precisely,

Definition 8. Let pi : X̃i → Xi=0,1 be G-covering maps. Their sum p0

∐
X p1is

the locally trivial G-bundle whose fiber over x is p−1
0 (x)

∐
p−1

1 (x). Their product
p0 ×X p1 is the locally trivial bundle whose fiber on x is p−1

0 (x)× p−1
1 (x).
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Definition 9. Two G-covering maps p0, p1 are called stable equivalent if there
is a trivial G-covering map q such that

p0

∐
X

q ∼= p1

∐
X

q

yields.

Definition 10. The monoid of stable G-covering maps, G−Cov(X)/ ∼ consists
of the set of stable isomorphism classes of G-coverings over X together with the
sum as operation.

The functor X → G−Cov(X) is a contravariant functor in the category of
abelian monoids. Imprecisely, our construction for equivariant stable cohomo-
topy is in some sense the universal extension to the category of abelian groups.
This admits a precise formulation following the lines of the group completion
theorem, proposition 1. But in order to apply this, we need to exhibit a re-
lationship between isomorphism classes of coverings, the construction of Lück,
and our construction. The first step in this direction is the

Lemma 3. Let p : X̃ → X be a finite G-covering map over the proper finite
G-CW complex X. Then, there is a vector bundle ξ : E → X and a G-map
X̃ → E injective on fibers covering the identity on X.

Proof. Let p : E → X be a G-locally trivial fiber bundle with fiber F . By means
of local trivializations, one can find a cover Ui consisting of G-invariant neigh-
borhoods together with G-maps Ui

ri→ G/Hi such that p |p−1(Ui) is isomorphic to
the pullback of the bundle G×

Hi
F → G/Hi along ri. Let Γ ⊂ Homeo(F ), H ⊂ G

be a pair of subgroups. Write RepΓ(H) = Hom(H,Γ)/Inn(Γ). A bundle of the
form G ×

H
F → G/H determines in a canonical way an element in RepΓ(H).

Since the existence of a G-map G/H → G/K yields a map between bundles
over orbits (elements in RepΓ(H)), a cocycle for the bundle E is given by func-
tions gUi,Uj : Ui ∩ Uj → Aut( lim←−

H∈F
RepΓ(H)), where F represents the family

of isotropy subgroups of points lying in X. Analogous to the non-equivariant
situation, cocycles give the gluing instructions to get the total space from the
trivializations. Precisely, denote by Ei,H the total space of r∗i (G×

H
F ), handled

as a subspace of the product Ui ×G×
H
F . Then, the space

∐
i∈I,H∈F

Ei,H�(x, s) ∼ (x, gUi,Uj (s))
x∈Ui∩Uj ,s∈G×

H
F

is G-homeomorphic to the total space E. Now, let us consider the case of
a G-covering. That is, F = n̄ and Γ = Σn, the symmetric group on n letters.
We are given a family of cocycles gUi,Uj : Ui ∩ Uj → Aut lim←−

H∈F
RepΣn(H)). The

inclusion Σn → On induces a map Aut lim←−
H∈F

RepΣn(H) → Aut lim←−
H∈F

RepOn(H),

which can be interpreted as the map which assigns to a given finite H-set the
permutation representation with basis on it. Consider over G/Hi the bundle
Ei := G ×

Hi
R < Si >→ G/Hi and form the vector bundle E determined by
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the aboye described cocycles. Note that we have an inclusion X̃p−1(Ui) ⊂ Ei.
This induces after identification a well defined map X̃ → E, which is fibrewise
injective.

By means of the above described embedding we can handle the fiber of a
G-covering map as an embedded subset into a representation of the stabilizer
group. This is a point in a so-called configuration space.

Definition 11. Let H be a finite group, V be an H-representation. The equiv-
ariant configuration space of V , CH(V ) is the space of finite H-sets embedded in
V . This space is topologized as follows. Let Vk be the subspace of V × . . .× V︸ ︷︷ ︸

k times

consisting of sequences (vi)i with vi 6= vj . We restrict ourselves to the subspace
VkH of such finite sets S which are invariant under the action of H. Let CkH(V )
denote the quotient of this space by the action of the symmetric group in k-
letters. CH(V ), the space of H-equivariant configurations, is topologized as the
disjoint union of the CkH(V )’s. We identify an embedding of a finite set with
its image as a configuration in C(V ).

Let S → V be such an embedding. Following Segal [Seg73], a map in a loop
space is constructed. This is done as follows. Let d be an H-invariant metric
on V , S be the image of such an embedding and ε > 0 . Define CεH(V ) =
{S ∈ CH(V ) | d(si, sj) > 2ε si, sj ∈ S} and Sε = {v ∈ V | d(v, S) > ε}.
Finally, let ε > 0 be sufficiently small so that V − Sε is an H-equivariant
tubular neighborhood of S and S ∈ CεH(V ) . Let si ∈ S and hi : Bε(si) → V
the canonical diffeomorphism. Define the map ΘS : V ∪∞ → V ∪∞ by

v 7→

{
∞ if v ∈ Sε
d(v, S)hi(v) if v ∈ Bε(si)

The Segal map TH : CH(V )→MapH(SV , SV ) is defined to be S 7→ ΘS .
For more details on this see [Hau80] or [RS00], alternatively [CW85], where

a related map is described in the context of compact lie groups.

Definition 12. Let X̃ ⊂ ξ : E → X be a fiberwise embedding of the finite
G-covering X̃ into a G-vector bundle ξ defined over the proper G-CW complex
X. Let d be a G-invariant metric for ξ (cfr. [Pal61], theorem 4.3.1). The
parametrized Segal map is the element of π0

G(X) which is given fibrewise as

SGx(v) =

{
∞ if v ∈ Sεx
dx(v, Sx)hix(v) if v ∈ Bε(six)

where Sx is the image of the embedding of the fiber of X̃ in ξ, handled as
a Gx-configuration and hix is a Gx-equivariant local diffeomorphism into the
representation ξx.

Lemma 4. The parametrized Segal map is well defined.

Proof. Let rn : (X̃ → En)n∈0,1 be embeddings of the covering p : X̃ → X. We
can assume E0 = EW1 Form the sum E = E0⊕E1 and the map E×I → E which
is given on every fiber as (x0, x1, t) 7→ (cos(πt2 )x0, sin(πt2 )x1). The fiberwise
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embedding X̃ × I → E × I given fiberwise by cos(πt2 )r0 + sin(πt2 )r1 allows
us to apply the parametrized segal map, obtaining a bundle map SE × I →
SE covering the projection X × I → X. This gives a homotopy between the

spherical morphism SE0⊕E1
S(p)∧X id−→ SE0⊕E1 and SE0⊕E1

id∧XSp−→ SE0⊕E1 , which
are equivalent to the spheric bundle morphisms obtained by the embeddings in
E0, respectively, E1. Finally note that given stably equivalent covering maps
p0, p1, one can find a G-vector bundle E with an embedding : X̃0

∐
X n ∼=

X̃1

∐
X n → E. Finally note that the spheric bundle morphism Kpi

‘
X n is

equivalent to Kpi .

Lemma 5. The parametrized Segal map is additive

Proof. Let ri : X̃i → Ei be a pair of embeddings. In view of the independence
of particular embeddings, let us choose an embedding of X0

∐
X1 into E0 ⊕

E1 ⊕ R as follows. Over every point x ∈ X, p−1
0 (x) ⊂ E0 × 0 × R+ and

p−1
1 (x) ⊂ 0 × E1 × R−. After applying the parametrized Segal map to the

corresponding configuration bundle, one gets a map Sp0
‘
p1 which fits into the

following commutative diagram

SE0⊕E1 ∧X SR

id∧X∇

��

Sp0
‘
p1 // SE0⊕E1 ∧X SR

��

SE0⊕E1 ∧X SR ∨X SR

��
SE0⊕E1 ∧X SR ∨ SE0⊕E1 ∧X SR

(Sp0∧X id∧X id)∨X (id∧XSp1∧X id)

((QQQQQQQQQQQQQQQQQQQQQQQQQQQQ SE0⊕E1 ∧X SR

SE0⊕E1 ∧X SR ∨X SE0⊕E1 ∧X SR

id∨X id

88ppppppppppppppppppppppp

where the unlabeled arrows are given by the canonical homeomorphisms.

Now we shall describe the relationship with the construction proposed pre-
viously. Essentially, our argument consists in proving that the space G−Set
classifies finite G-coverings. In order to state this precisely, we have to con-
struct the universal coverings which are going to be pulled back, which is the
purpouse of the following discussion.

Choose a functor X from the category of finite sets with isomorphisms into
the category whose objects are the natural numbers, and morphism the identities
n̄→ n̄. That is, a labeling for finite sets.

The category Setn consists of the full subcategory of Set consisting of objects
of cardinality n.

The category of n-frames of sets, Framen consists of pairs (S, x(S)) where
S ⊂ Setn and X is a labeling. Thus n-frames are pairs consisting of a finite set
of cardinality n and a numeration of its elements.
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We are mainly interested in the equivariant version of these categories. Put
G−Framen for the category of functors from E(G) to Framen. Write G−Framen
for its classifying space. This space carries an action of G×Σn given by trans-
lation and permutation of the labeling.

Proposition 5. G−Framen is a universal space for those G × Σn-complexes
where Σn ∼= 1× Σn acts freely

Proof. Since the space in question is a G×Σn-CW-complex, it suffices to prove
that the H-fixed points are contractible for every subgroup of the product. A
subgroup H subconjugate to 1 × Σn is essentially of two shapes. Either H
satisfies H ⊂ 1 × Σn, in which case, G−FrameHn = φ, since Σn acts freely, or
H is the graph of a group homomorphism ϕ : H

′ → Σn for some subgroup
H
′ ⊂ G hence,the category in question can be identified with the category of

ϕ-equivariant functors from E(G) to Framen. Since there is a unique morphism
between every pair of objects in G−Framen, every object is terminal. Hence,
the classifying space is contractible.

Since Σn acts freely on G−Framen, the forgetful functor G−Framen →
G−Setn induces a G-equivariant homeomorphism G−Framen/Σn ≈ G−Setn.
It follows that the G-bundle G−Framen ×

Σn
n̄→ G−Setn is a universal n-sheeted

covering. Hence, we have

Proposition 6. There is a isomorphism of sets G−Cov(X) ∼= [X,G−Set].

Proof.

We can arrange this in X natural transformations into a diagram of the
shape

G−Cov(X)/ ∼ S // π0
G(X)

[X,G−Set]

OO

Where S is the morphism determined by the parametrized Segal map, the
unlabeled arrow is the map determined by the pullback of the canonical covering,
followed with the identification of stable equivalent coverings. Note in particular
that this can be done for G-CW pairs (X,A) by taking covering maps which
are trivial over A, inducing up to a homotopy a map in [X/A,G−Set]. We
extend this to morphisms [ΣnX/A,G−Set] → πnG(X,A) and by means of the
map G−Set → QG, to morphisms S(X,A)

n : [ΣnX/A,QG] → πnG(X,A). Let us
restrict ourselves to the category of finite proper G-CW complexes. We shall
show that the value of the functors agree. Since both functors are in this case
equivariant cohomology theories, we can recover the data from Mayer-Vietoris
sequences for squares of the form

G/H × Sm−1 //

ϕ

��

G/H ×Dm

��
X // G/H ×Dm ∪ϕ X
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hence, it suffices to prove the isomorphism for complexes of the form G/H × Y
where Y carries a trivial G-action. On the one hand we have

[G/H × Y,QG]G ∼= [Y,QHG ]

whereas on the other hand

π0
G(G/H × Y ) ∼= π0

H(Y )

because of the induction structure for the inclusion H → G. Since π0(G−SetH)
is a monoid (the monoid of isomorphism classes of H-sets), proposition 1 allows
us to conclude that [X,QHG ] is universal among representable functors from
compact spaces to abelian groups extending [X,G−SetH ]. Since π0

H(X) is rep-
resentable, it is the universal functor. Hence

[G/H × Y,QG]G ∼= [Y,QHG ] ∼= π0
H(Y ) ∼= π0

G(G/H × Y )

Now, we extend the definitions in degree n ≤ 0 by

Π−nG (X,A) = [ΣnX/A,QG]G

This agrees with the definition of Lück because of the following argument.
Choose a representative of a map Σ1X/A→ G−Set. By means of the canonical
identification X× I → ΣX/A, we pull the canonical covering back to a covering
on X × I which is trivial on (X,A)× (I, {0, 1}). The procedure applied to this
yields an element of π0

G((X,A) × (I, {0, 1})) ∼=
σ1(X,A)

π−1
G (X), where σ1(X,A)

stays for the suspension isomorphism of [Lüc05a]. The general case follows then
by induction.

In order to get a definition in degrees n ≥ 0, we recall that the geometric
realizations BnA of a Γ-space A behave like an Ω-spectrum away of the grade
zero. Hence, it makes sense to define QnG := ΩBn+1G−Set and consequently

Πn
G(X/A) = [X/A,QnG]

We now check that this definition agrees with that of Lück. For this, we need
some notation. Put L(X/A) = MapG((S1, {1}), (X,A)), and define the map
X/A → L(X/A) by assigning the constant map to a point in X. We define a
map [X/A,BG−Set]G → π1

G(X,A) which by the universal property of group
completion extends to the required map [X/AΩB2G−Set]G → π1

G(X/A). To do
this we consider the following sequence of maps

[X/A,BG−Set]G → [L(X/A),ΩBG−Set]G →
πGe (S1)× [S1 × L(X/A),ΩBG−Set]G →
[S1 × L(X/A),ΩBG−Set]G →SS1×L(X/A)

π1
G(S1 × L(X/A))→ π1

G(X)

the first map is given by the inclusion of constant loops, the second one is given
by the inclusion on the right coordinate, the third map is the map which assigns
a map f an the generator g ∈ π0

e(S1) the map g × f , the labeled map is the
parametrized segal map, and the last map is the map induced by pullback of
the constant loop map.
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The Barrat-Puppe sequences for the inclusion i : A → X give rise to exact
sequences of the form

−→ . . . [ΣnA,QG]G
dn+1
G (X,A):=p∗

−→ [Σn−1X ∪A cone(A), QG]
j∗−→

[Σn−1X,QG]G
i∗−→ [Σn−1A,QG] −→ . . .

. . . −→ [A,QG] ∼= [ΣA,Q1
G]

d1
G(X,A):=p∗−→ [X ∪A cone(A), Q1

G]G
j∗−→ [X,Q1

G]G
i∗−→ [A,Q1

G]G −→ . . .

Where p : X ∪A coneA → ΣA is the canonical projection and we identify the
isomorphic sets of homotopy classes [X/A,Z] ∼= [X ∪A coneA,Z].

Lemma 6. There is a natural transformation of G-cohomology theories Π∗G →
π∗G consisting of isomorphisms for every finite proper G-CW pair (X,A).

Proof. Note that the following diagram commutes for any n

. . . // Πn
G(A)

dn+1
G (X,A)//

SnG(A)

��

Πn+1
G (X,A)

j∗ //

Sn+1
G (X,A)

��

Πn+1
G (X) i∗ //

Sn+1
G (X)

��

Πn+1
G (A)

Sn+1
G (A)

��

// . . .

. . . // πnG(A)
δn+1
G (X,A)

// πn+1
G (X,A)

j∗
// πn+1
G (X)

i∗
// πn+1
G (A) // . . .

Let us explain now how further structures in the construction of Lück carry
out into our context. The first point to be considered shall be the multiplicative
structure. We shall produce a pairing of the infinite loop spaces involved in our
construction. We point out for the homotopy theoretic-oriented reader, that we
are by no means trying to construct a strict monoidal structure in a category
of equivariant spectra. Our pairings are only defined up to homotopy.

The idea behind this is that one can define another monoidal structure in the
category of finite sets, which is given by the cartesian product. Let

∐
s∈S Xs ∈

SetS ,
∐
t∈T Yt be partitioned sets. By means of an isomorphism α : N×N ∼= N,

the set Xs × Yt ⊂ N × N can be handled as a finite set in N. Hence, for every
pair of finite sets S, T we get a functor α∗ : SetS × SetT → SetS×T given by
(
∐
s∈S Xs,

∐
t∈T Yt) 7→

∐
(s,t)∈S×T α∗(Xs × Yt). For any pair of groups G, H,

this extends to functors G−SetS ×H−SetT → G×H−SetS×T . By considering
the geometrical realization, this gives a G × H- equivariant map G−SetS ×
H−SetT → G×H−SetS×T . Since the restriction of the map to G−SetS ∨
H−SetT is constant with value on the basis point (the product with the empty
set is empty), there is a map G−SetS ∧H−SetT → G×H−SetS×T . Note that
both the target and the source of this map have two compatible structures of
Γ-spaces, namely, those which are given by letting S, respectively T , run over
the category of finite sets. After considering the separate realization of this
Γ-spaces as simplicial sets we get a map BG−Set ∧ BH−Set→ B2G×H−Set.
And at the level of loop spaces, Ω2(BG−Set ∧ BH−Set) α∗→ Ω2B2G×H−Set.
Now define the pairing QG ∧QH → QG×H by



24 CHAPTER 2. INFINITE DISCRETE GROUPS

QG ∧QH = ΩBG−Set ∧ ΩBH−Set→

Ω2(BG−Set ∧ BH−Set)
Ω2|α∗|→ Ω2B2G×H−Set ' ΩBG×H−Set

= QG×H

This map does not depend on the choice of the isomorphism α as a conse-
quence of the following

Lemma 7. Let α : N∞ → N∞ be an injective map. Then, the induced map
α∗ : G−Set → G−Set defined by composition with Set α→ Set is G-homotopic
to the identity.

Proof. There is a natural transformation of the functor α∗ to the identity.

Note that there is more than one homotopy equivalence Ω2B2G−Set →
ΩBG−Set. The following technical result denies a role of this choice in our
discussion.

Lemma 8. Let A be any equivariant Γ-space. Then, for any n and 0 ≤ k ≤
n, the maps ikn : Ωn+1Bn+1A → ΩnBnA induced by the inclusions {1} →
{1, . . . , n} differ up to weak G-equivariant stable equivalence.

Proof. Note that all ikn differ by permutation of the coordinates of BnA as a
simplicial set and a switch of the looping. Write σ∗ : ΩnBnA→ ΩnBnA for the
map induced by such a permutation σ ∈ Σn ⊂ Σn+1. It suffices to show that
all σ∗ are homotopic to the identity. Consider for this the following diagram

ΩBA
ϕ //

id

��

Ωn+1Bn+1A

1×σ∗
��

ΩnBnA
innoo

σ∗

��
ΩBA ϕ

// Ωn+1Bn+1A ΩnBnA
inn

oo

where ϕ = i0n ◦ . . . ◦ inn is induced by identifying A(S) with A(S, 1, . . . , 1). All
maps are weak G-homotopy equivalences. Hence, (1× σ∗) and (σ)∗ are weakly
G-homotopic to the identity.

The ring structure on Π∗(X) is given as follows. Let ∆∗ : [X,QG×G]G →
[X,QG]G be the map induced by the restriction to the diagonal subcategory
E(G) ⊂ E(G×G). Now compose it with the pairing obtained before: [X,QG]×
[X,QG]→ [X,QG×G]G

∆∗→ [X,QG]G.

Lemma 9. For any discrete group G and any G-space X, the following square
commutes

[X,QG]× [X,QG]
SX×SX//

α∗

��

π0
X(X)× π0

G(X)

×
��

[X,QG]
SX

// π0
G(X)

where × stands for the above mentioned products.
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Proof. Let µ : BG−Set ∧ BG−Set → B2G−Set be the map determined by the
pairing constructed above and f1, f2 be functions X → G−Set. Denote by
p1, respectively p2 the pullback of a finite covering X̃G → G−Set along f1,
respectively f2. Consider the map p defined as the following composition

X
f1∧f2→ BG−Set ∧ BG−Set

µ∗→ B2G−Set→ G−Set

where the last map is induced up to homotopy by iteration of the projection
ΣG−SettoBG−Set→ G−Set. For i = 1, 2, define the map qi to be the universal
map which fits into the following pullback diagram.

p∗(X̃G)
πXG

%%

��

qi

""E
E

E
E

E

p1 //

��

X̃G

��
X // G−Set

where the unlabeled arrows are projections, respectively canonical maps. Note
that the canonical map

p∗(X̃G)
q1

''

""

%%L
L

L
L

L

p1 ×X p2 //

��

p1

��
p2 // X

is an isomorphism of finite G-coverings over X. Now a fiberwise inspection,
which runs analogous to 5 gives the result. For the covering p1 ×X p2 embeds
naturally into ξ1 ⊕ ξ2, where pi ⊂ ξi. After taking the parametrized Segal
map, one obtains an element representing the product in π0

G(X), from where
the result follows.

Let us resume our results on multiplicative structure in the following

Theorem 2. For any discrete group G and any proper G-complex X the pair-
ings αX define a structure of graded ring on Π∗G(X)

Proof. Let us verify the existence of a unit. Denote by P 1 ∈ G−Set the vertex
for the constant functor E(G) → Set1. Put [P 1]Ω = i00 ∈ ΩBG−Set. Then the
following diagram commutes

ΩBG−Set

id

��

[P 1]∧− // G−Set ∧ ΩBG−Set α∗ //

' i00
��

ΩBG−Set

' i01
��

ΩBG−Set
[P 1]Ω∧−

// ΩBG−Set ∧ ΩBG−Set
α∗

// Ω2B2G−Set
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the upper row being homotopic to the identity after lemma 9. The commu-
tativity of the multiplication in Π0

G(X) is obtained as consequence of the fact
that α∗ : BG−Set ∧ BG−Set → B2G−Set commutes up to homotopy because
of lemma 9. For the map ΩBG−Set → Ω2B2G−Set is unique. Associativity
follows from the fact that triple products are induced by maps

ΩBG−Set∧3 // Ω3(BG−Set)3)
Ω3|α∗(α∗∧id)|//
Ω3|α∗(id∧α∗)|

// Ω3B3G−Set ΩBG−Set'
oo

where the middle maps are homotopic by lemma 9, and the last one is any
of the three possible maps.

Now let us look at the induction structure. Let α : H → G be a group
homomorphism and X an H-space. We check the induction structure in degree
zero in the case of a G-CW complex X. This extends in the usual way to
non-zero groups of pairs. Our results on this matter are a consequence of the
following

Lemma 10. Let ϕ : H → G be a group homomorphism. The composition with
the induced functor E(H) → E(G) induces an H-equivariant map H−Set →
G−Set of Γ-spaces and hence a G-equivariant map ϕ∗ : QH → QG. For any
subgroup L such that L ∩ ker(ϕ) = 1, ϕ∗ restricts to a homotopy equivalence
QLH ' Q

ϕ(L)
G .

Proof. Note that for such subgroups, L ∼= ϕ(L) holds. Hence, we get an equiv-
alence of categories E(H)/L ∼= E(G)/ϕ(L), for both are equivalent to B(L).
Hence G−Setϕ(L)(S) =| Fun(E(H)/L,Set(S)) | is homotopy equivalent to
H−SetL(S) =| Fun(E(G)/f(L),Set(S)) | for each object S of Γ.

Proposition 7. Let X be a space on which ker(α) acts freely. Then, there is
an induction isomorphism Π0

G(indαX) ∼= Π0
H(X).

Proof. There is an isomorphism [indαX,QG]G ∼= [X,QG]H . And the induced
map α∗ : QG → QH restricts after lemma 10 to a homotopy equivalence of fixed
points QLG → QLH for finite subgroups L satisfying L ∩ ker(α) = e. Since the
isotropy groups of the complex X lie in this family, we conclude (Theorem 3.4
in [DL98]) that

[indαX,QG]G ∼= [X,QG]H
α∗−→ [X,QH ]H

Proposition 8. The homomorphism [indαX,QG]G ∼= [X,QG]H
α∗−→ [X,QH ]H

defines an induction structure.

Proof. 1. Bijectivity. Its clear in view of the previous proposition.

2. Compatibility with boundary. Follows from lemma 6.

3. Functoriality. Let β : G → K be a group homomorphism. Note that the
following diagram commutes after lemma 10:
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[Σnindαindβ(X/A), QH ]H
indβ // [ΣnindαX/A,QG]G

indα

��
[Σnindβ◦α(X/A), QH ]H

πnG(f1)

OO

indβ◦α

// [ΣnX/A,QK ]K

where f1 : indβ indα(X/A) → indβ◦αX/A is the canonical H- homeomor-
phism given by (k, g, x) 7→ kβ(g), x).

4. Compatibility with conjugation. Follows from element chasing in the dia-
gram

[Σnindc(g)X/A,QG]G
indc(g) // [ΣnX/A,QG]G

πnG(f2)

uukkkkkkkkkkkkkk

[Σnindc(g)X/A,QG]G

=

OO

where f2 : X/A → indc(g)X/A is given by x 7→ (1, g−1x) and c(g)(g) =
gg
′
g−1.

Proposition 9. Let H ≤ G be a subgroup. Then there exists an in X natural
homomorphism

resGH : Πn
G(X) −→ Πn

H(X |H)

where X |H carries the obvious action obtained by restriction.

Proof. Let i : H → G be the inclusion. It induces a functor E(H) → E(G),
which gives an H- equivariant map QG → QH . This gives a homomorphism

[X,QG]∗G
resGH−→ [X |H , QH ]∗H

One extens to positive and negative degrees and for any G-CW pair.

We resume the results of this section in the following

Theorem 3. Equivariant stable cohomotopy Π∗? as defined in the first sec-
tion defines an equivariant cohomology theory with multiplicative structure in
the category of proper G-CW-complexes. It restricts to the equivariant stable
cohomotopy of Lück [Lüc05a] on the category of finite proper G-CW complexes.

In view of this result, we drop the notation Π∗?.

2.2 A map to equivariant topological K-theory

In the paper [LO01a], a construction for equivariant topological K-theory is pro-
posed in the context of proper actions of a discrete group on G-CW complexes.
It is defined in an analogous way to the one followed here for stable cohomo-
topy. Namely, one considers an equivariant Γ-space G−Vec obtained from the



28 CHAPTER 2. INFINITE DISCRETE GROUPS

symmetric monoidal category of finite dimensional vector spaces in F∞, where
F stands for R, respectively C. Precisely, one defines the functor

G−Vec : S 7−→| Fun(E(G),⊕s∈SVs) |

One gets after group completion a G-space KG = ΩBG−Vec. One defines for
the pair (X,A) and n ≤ 0

Kn
G(X,A) = [ΣnX/A,KG]

Under the assumption of finiteness of the G-CW complex X, this agrees with
the Grothendieck group of isomorphism classes of equivariant vector bundles
over X, KG(X) as defined in [LO01b]. The following result was proved in
[Lüc05a]

Theorem 4. There is a natural transformation of equivariant cohomology the-
ories with multiplicative structure for pairs of equivariant proper finite CW
complexes, given by maps

ψ∗G : π∗? → K∗?

If H ⊂ G is a finite subgroup of the group G, then the map

ψnG : πnG(G/H)→ K0
G(G/H)

is trivial for n ≥ 1 and agrees for n = 0 under the identifications π0
G(G/H) = π0

H

and K0
G(G/H) = K0

G({∗}) = RC(H) with the ring homomorphismus

A(H)→ RC(H) [S] 7→ [C[S]]

which assigns to a finite H-set the associated complex permutation representa-
tion.

Something about the construction of the transformation shall be said. It is
given as the restriction ψnG = φn,0G (a, 1X) of pairings of equivariant cohomology
theories

φm,nG (X;A,B) : πmG (X,A)×Kn
G(X,B)→ Km+n

G (X,A ∪B)

In order to describe them, let a ∈ πnG(X,A) be an element represented by an
over A trivial morphism u : Sξ⊕Rk → Sξ⊕Rk+n

such that k ≥ 0, m + k ≥ 0.
Denote now by v the morphism

Sξ⊕ξ⊕Rk → Sξ ∧X Sξ⊕Rk id∧Xu→ Sξ ∧X Sξ⊕Rk+n σ−1

→ Sξ⊕ξ⊕Rn+k

and notice that v is another representative of u. The bundle ξ ⊕ ξ carries a
canonical structure of a complex vector bundle. Denote this bundle by ξC. Let
σk(X;A ∪ B) : Km+n

G (X,A ∪ B)
∼=→ Km+n+k

G ((X,A ∪ B) × (Dk, Sk)) be the
suspension isomorphism. Let prk : X ×Dk → X be the projection and pr∗k(ξC)
be the vector bundle obtained from it by the pullback construction. Associated
to it there is a Thom isomorphism

Tm+n+k
pr∗k(ξC) : Kn+m+k

G ((X,A ∪B)×Dk)
∼=→ K

m+n+k+2dim(ξ)
G (Spr

∗
kξC , Spr

∗
kξC|X×Sk−1∪(A∪B)×Dk ∪ (X ×Dk)∞)
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where (X×Dk)∞ stands for the copy of X×Dk given by the various points
an infinity. Let

pk : (Spr
∗
kξC , Spr

∗
kξC|X×Sk−1∪(A∪B)×Dk ∪ (X ×Dk)∞))

−→ (Sξ⊕ξ⊕Rk , Sξ⊕ξ⊕Rk|A∪B ∪X∞)

be the obvious projection, which induces by excision an isomorphism on K∗G.
Define an isomorphism

µm+n.m+n+k+2dim(ξ) : Km+n
G (X,A ∪B)

−→ K
m+n+k+2dim(ξ)
G (Sξ⊕ξ⊕Rk , Sξ⊕ξ⊕Rk|A∪B ∪X∞)

by the composite Km+n+k+2dim(ξ)
G (pk)−1 ◦ Tn+m+k

pr∗kξC
◦ σk(X,A ∪B). Define

µn.m+n+k+2dim(ξ) : Kn
G(X;A,B)

−→ K
m+n+k+2dim(ξ)
G (Sξ⊕ξ⊕Rk , Sξ⊕ξ⊕Rk|B ∪X∞)

analogously. Let the desired map φm,nG (X,A)(a) be the composite

Kn
G(B)

µn.m+n+k+2dim(ξ)

−→

K
m+n+k+2dim(ξ)
G (Sξ⊕ξ⊕Rk , Sξ⊕ξ⊕Rk |B ∪X∞)

K
m+n+k+2dim(ξ)
G (v)

−→ K
m+n+k+2dim(ξ)
G (Sξ⊕ξ⊕Rk , Sξ⊕ξ⊕Rk|A∪B ∪X∞)

µn.m+n+k+2dim(ξ)−1

−→ Km+n
G (X,A ∪B)

The maps φm,nG (X,A∪B)(a) do not depend of the choices of k and u. They
define for the various elements a ∈ πmG (X,A) pairings

φm+n
G (A,B) : πmG (X,A)×Kn

G(X,B)→ Km+n
G (X,A ∪B)

Now we shall transcribe this result into our context.

Theorem 5. There is a natural transformation of equivariant cohomology the-
ories with multiplicative structure for pairs of equivariant proper CW complexes

ψ∗? : π∗G → K∗?

Proof. Let < >: Sets → C −Mod the functor which associates to a finite set
the finite dimensional complex vector space with basis on it. This gives for any
finite set S and any discrete group a functor

Fun(E(G),SetS) −→ Fun(E(G),VecS)

Where VecS denotes the category of S-partitioned finite dimensional complex
vector spaces. This gives for any objects S, T a map

G−SetS ∧G−VecT → G×G−VecS×T
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which after iterated geometrical realization turns into

BG−Set ∧ BG−Vec→ B2G×G−Vec

the argument used to define the multiplicative structure gives rise to a pairing

QG ∧KG → KG

determining for any n,m, k, l ∈ Z, any proper G-CW pairs (X,A), (X,B) an in
(X;A,B) natural ring homomorphism

Φl−m,k−nG : [ΣnX/A,QkG]G × [ΣmX/B,Kl
G]G → [Σn+mX/A ∪B,Kk+l

G ]G

We notice that this coincides with the pairing constructed in [Lüc05a]. Let
ϕ : π0

G(X) → [X,QG]G, β : KG(X) → [X,KG]G be the in X natural iso-
morphisms described above. Denote by µ : [X,G−Set]G × [X,G−Vec]G →
[X,B2G−Vec]G the morphism determined by the above described pairing and
the composition with the diagonal map ∆ : G×G−Vec→ G−Vec Notice that
for any finite proper G-CW complex X the following diagram is commutative

[X,G−Set]G × [X,G−Vec]G
µ //

��

[X,B2G−Vec]G

��
[X,QG]G × [X,KG]G

Φ0,0
G

// [X,ΩBG−Vec]G ∼= [X,Ω2B2G−Vec]G

where the unlabeled arrows are the obvious structure maps. The naturality of
ϕ, β, implies that we can complete the previous diagram with a lower block of
the form

[X,QG]G × [X,KG]G

ϕ×β−1

��

Φ0,0
G // [X,ΩBG−Vec]G

β−1

��
π0
G(X)×KGG(X)

φ0,0
G

// K0
G(X)

where φ stands for the pairing defined in [Lüc05a].

Recall that the classyfying space for proper actions is a proper G-CW com-
plex characterized up to G-equivariant homotopy by the fact that the fixed point
sets of finite subgroups are contractible and empty in other case. The classifying
space for proper actions always exist, and there are many interesting examples
(see for instance section 3 of the following chapter or [Lüc05c]).

Definition 13 (A Burnside Ring for arbitrary groups). Let G be a discrete
group and let EG be a model for the classifying space for proper actions for G,
in the sense of [Lüc05c]. The homotopy theoretical Burside ring of G is defined
to be the 0th-equivariant stable cohomotopy group of EG. In symbols:

Aho(G) = π0
G(EG)
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Example 1. Let D∞ = Z/2 ∗ Z/2 be the infinite dihedral group. Recall that
a model for ED∞ is one dimensional and schematically given by the following
picture:

·Z/2 ·Z/2

·e
Z/2

=={{{{{{{{Z/2

aaCCCCCCCC

It follows that Aho(D∞) = π0
Z/2({∗})× π0

Z/2({∗}).

We shall give more examples on the following chapter, where we deal with
a generalization to the case of lie groups. In the third chapter of this work, we
will study the Burnside ring from the point of view of completion theorems. We
finally point out that we are even able to define a Burnside ring for arbitrary
locally compact groups, as defined in chapter five.
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Chapter 3

An Analytical Approach:
lie groups

Stable homotopy theory and equivariant topology are nowadays a fundamental
tool in algebraic topology. Until now, very few of the main methods of this
discipline have been extended to the context of actions of non-compact groups.
The aim of this work is to extend the definition of equivariant cohomotopy to
the settig of proper actions of lie groups, as well as to present two applications
of this.

In the first section of this work, we define equivariant cohomotopy in terms of
certain nonlinear perturbations of fredholm morphisms of hilbert bundles over
a certain proper G-CW complex. The reason for doing this is twofold: first, the
seek for applications in analysis, and -perhaps more natural from the point of
view of topology-, the fact that the technical difficulties involved in the proof
of excision for equivariant cohomology theories, where the equivariance group
is not discrete, cannot be solved with constructions using finite dimensional
G-vector bundles. This is a phenomenon discovered in connection with the
Baum-Connes Conjecture, see [Phi89], chapter 9 for a detailed description. We
prove (Theorem 6 that our invariants generalize previous definitions, such as
that of W. Lück [Lüc05a] in the context of proper actions of discrete groups on
finite G-CW complexes. The proof has its roots in methods employed in the
qualitative analysis of Partial Differential Equations.

After some computational remarks in section 3, we illustrate the applications
of our methods in section 4. We generalize one Gauge theoretical invariant
of 4-dimensional manifolds, due to Bauer and Furuta to allow proper actions
of lie groups on four-manifolds and a refined invariant which also takes the
group action in account. Finally, we introduce a Burnside ring in operator
theoretical terms and as a test for the suitability of this definition. After some
computational remarks we verify the extension of a weak form of the Segal
Conjecture for a certain class of non-compact lie groups.

The author would like to thank the mexican conuncil for science and tech-
nology, CONACYT for economical support in terms of a Ph.D grant. The main
results of this note developed from the correspondig dissertation, defended at
the Westfälische Wilhelms Universität Münster.

33



34 CHAPTER 3. AN ANALYTICAL APPROACH: LIE GROUPS

3.1 Cocycles for Equivariant Cohomotopy

We begin by describing cocycles for equivariant cohomotopy. They are defined
in terms of certain nonlinear operators on real G-Hilbert bundles, so we briefly
recall first some well known facts in linear functional analysis parametrized
over a space. A comprehensive treatment of them is given in the book [Phi89].
For matters of reality and functional analysis we remit to the text [Sch93], in
particular to connections with Kasparov theory.

We point out that these constructions require proper actions of locally com-
pact, second countable groups as an input. In the first part of this work we
restrict our attention to proper actions of lie groups, though we also explain the
possibility of modifying Phillips’ slightly more general arguments to this setting.

We recall first some basic definitions and technical facts of equivariant topol-
ogy.

Definition 14. Let G be a second countable, locally compact hausdorff group.
Recall that a G-space is proper if the map

G×X → X ×X
θX

(g,x)7→(x,gx)

is proper.

Remark 2. In the case of lie groups, a proper action amounts to the fact that
all isotropy subgroups are compact ant that a local triviality condition, coded
in the Slice Theorem is satisfied [Pal61]. Specializing to discrete groups acting
on well behaved spaces (see below), this conditions boils down to the fact that
all stabilizers are finite.

The notion of a proper G-CW complex [Lüc89], p. 8 will be of relevance in
this work. Recall that a G-CW complex structure on the pair (X,A) consists
of a filtration of the G-space X = ∪−1≤nXn beginning mit A and for which
every space is inductively obtained from the previous one by attaching cells in
pushout diagrams of the type∐

i S
n−1 ×G/Hi

//

��

Xn−1

��∐
iD

n ×G/Hi
// Xn

We say that a proper G-CW complex is finite if it consists of a finite number of
cells G/H ×Dn.

The following result enumerates some facts which we will need in this work,
which are proven in chapter one of [Lüc89]:

Proposition 10. Let (X,A) be a proper G-CW pair

1. The inclusion A→ X is a closed cofibration.

2. A is a neighborhood G-deformation retract, in the sense that there exists
a neighborhood A ⊂ U , which is a G-equivariant deformation retract. The
neighborhood can be chosen to be closed or open.
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Some equivariant Hilbert bundles are the main objects on which our con-
structions begin. Let us recall basic terminology of [Phi89], which works in a
slightly more general context.

Definition 15. Let X be a locally compact, hausdorff proper G-space. A
Banach bundle over X is a locally trivial fiber bundle E with fiber on a Banach
space H, whose structure group is the set of all isometric linear bijections of H
with the strong topology.

If H is a (real) Hilbert space, we will speak of a Hilbert bundle. A G-Hilbert
bundle is a map p : E → X such that there is a continuous action of the
locally compact group G in the total space, the map p -called the projection-
is assumed to be G-equivariant and the action on the total space is given by
linear isometries, in the sense that for any g, the traslation Ex → Egx is a linear
isometry for any x.

Let E and F be hilbert bundles over X. A linear morphism from E to F is
an equivariant, continuous function t : E → F covering the identity on X, and
for which the fiberwise adjoint t∗ defined by < t∗x, y >=< x, ty > is continuous.
The support of a morphism t is the set {x ∈ X | tx 6= 0}

A linear morphism t : E → F is a compact morphism if it is fiberwise
compact in the usual sense (that is, for every x, tx.Ex → Fx maps bounded
sets to relatively compact sets) and in adition, for every point x ∈ X, there
exist local trivializations a : E |U→ U × Ex, b : F |U→ U × Fx such that
bta−1 : U ×Ex → U ×Fx is given by an expresion (y, x) 7→ (y, ψ(x)) for a norm
continuous map ψ : U → L(Ex, Fx) into the bounded linear maps between the
fibers over x.

A linear morphism t : E → F is said to be fredholm if there exists a mor-
phism s : F → E such that st − 1 and ts − 1 are compact morphisms with
compact supports. A fredholm morphism is said to be essentially unitary if
one can take t = s∗ in the definition. We recall the existence of G-invariant
riemannian metrics on vector bundles over proper G-spaces, which is proved for
instance in [Pal61] as consecuence of the slice theorem.

Remark 3. 1. Note that we choose the structure group of our bundles to be
the isometric bijections with the strong operator topology. Other choices,
like the weak topology would not give enough vector bundles, as pointed
out by Phillips in [Phi89], chapter 9.

2. Note that we forced the existence of adjoints for our morphisms. This is
technically convenient. We also assume that adjoint operators are always
continuous in the operator norm, and the same for morphisms of Hilbert
bundles.

We now ennumerate a collection of facts on linear morphisms and G-Hilbert
Bundles which we will use later.

Proposition 11 (Proper stabilization theorem). Let E be a G-Hilbert bundle
over a proper G-space. Denote by H the numerable Hilbert space consisting of
the numerable sum of the space of square integrable functions in G, in symbols
H = ⊕∞n=1L

2(G). Let H×X be the associated trivial Hilbert G-bundle. There
exists an equivariant linear isomorphism of vector bundles

E ⊕H×X ∼= H×X
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.

Proof. Theorem 2.9, p. 29 of [Phi89], Theorem 2.1.4 , p. 58 of [Sch93]. We
point out that Phillips realizes this isomorphism to be an adjointable morphism
between the G-C0(X)- hilbert modules Γ(E)⊗C0(X)H×X and H⊗C0(X). The
identification of such a morphism with an isomorphism of G-Hilbert bundles is
consequence of lemma 1.9 in [Phi89].

Next, we modify Phillip’s definition of complex equivariant K-theory for
proper actions of locally compact groups, [Phi89] to allow real cocycles. The
main reference for technical isssues concernig the passage to real K-theory is
[Sch93].

Definition 16. The real equivariant K-theory of the proper and finite G-CW
complex X KOG0 (X) is represented by cocycles (E,F, l), where E and F are
real G-Hilbert bundles and l : E → F is a fiberwise linear real fredholm mor-
phism. A cocycle is said to be trivial if l is fibrewise unitary. Two cocy-
cles (Ei, Fi, li)i=0,1 are equivalent if there exists a trivial cocycle τ such that
l0 ⊕ τ = l1 ⊕ τ is homotopic to a trivial morphism.

There exists at least one equivalent approach to the definition of equivariant
K-theory in this context. We just recall one of them as it is needed as a technical
modificationi in one of our arguments.

• KOG0 (X) can be realized as the set of essentially unitary fredholm linear
morphisms. Two such cocycles are said to be equivalent if they become ho-
motopic via an essentially unitary homotopy after adding a trivial cocycle
(Theorem 4.7, page 56 in [Phi89]) for the complex case.

We now enumerate two consequences of the proper stabilization theorem,
which are fundamental for veryfing excision in Phillips’ construction of equiv-
ariant K-theory.

Proposition 12. Let i : U → X be the inclusion of a G-invariant, open subset
of X. Let (E,F, t) be a linear cocycle over U such that t is fibrewise bounded
and has a bounded fredholm inverse. Then, there exists a linear cocycle (X ×
H, X ×H, r) i∗(r) and t agree after adding a unitary linear cocycle.

Proof. Proposition 5.9, p. 74 in [Phi89]. We recall that the constructed classes
agree after application of the proper stabilization theorem, for the real modifi-
cation see [Sch93], theorem 2.1.4 p.58 .

Proposition 13. Let X be a proper G-CW complex and ϕ : E → E be a
fibrewise fredholm operator defined on the space X×I. Denote by ϕ0 : E0 → E0

the restriction to X × {0}. Then:

1. There exists a unitary cocycle ρ between (E,E, ϕ) and (E0, E0, ϕ0). More-
over, the isomorphism can be taken to be unitary over a fixed, invariant
subspace A ⊂ X.

2. Let A ⊂ X be a G-subcomplex and l : F |A→ E |A be a bounded mor-
phism. Then, there exists a linear cocycle (l

′
, E, F ), defined over X such

that i∗(l) and l are equivalent .
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3. Let A ⊂ X be a G-invariant closed subset and U ⊂ X an open neighbor-
hood of which A is a deformation retract. Suppose that (U ×K,U ×K, l)
is an essentially unitary cocycle over U , where K is a strong unitary G-
representation in a hilbert space. Then, there exists an essentially unitary
cocycle (X ×H,X ×H,F ) such that i∗(F ) = l.

Proof. 1. As the involved bundles are locally trivial, the total space of E
carries the weak topology with respect to the set p−1(Xi), where Xi is
an element of the filtration in the basis G-CW complex structure cfr.
lemma 1.26 in [Lüc89]. Hence, the statement reduces to the case where
(X,A) = (G/H×Dn, G/H×Sn−1) and E has the form G×

H
H, for a given

strong, unitary and continuous H-representation H in a separable real
hilbert space. Let Uc(H) be the subspace of the H-equivariant, unitary
operators u in H, for which the conjugation with an arbitrary element
h−1uh is a continuous operator (recall that this is a contractible space
after results of Segal, it is an ANR). Giving an isomorphism ρ as described
above amounts to give a map ρ ∈ Map(Dn×I,Uc(H)) which is the identity
on G/H × Sn−1 × {0}. There is no obstruction for doing this because
the inclusion G/H × Sn−1 → G/H × Dn is a cofibration and Uc(H) is
contractible.

Remark 4. Note the technical difficulties arising in the extension of linear
morphisms over arbitrary spaces. As explained in point 3, we are only able to
extend morphisms which are defined on globally trivial hilbert bundles using
the proper stabilization theorem. The attempt to overcome this difficulty by
extending a section of a bundle instead of a morphisms breaks down essentially
because the morphisms as defined here are the sections of a bundle whose fiber
is the space of operators L(H1, H2) with the ∗-strong topology, which is not
even a Banach bundle.

The second ingredient for our construction of cocycles for stable cohomo-
topy are some basic notions of nonlinear functional analysis. This is a complete
subject itself, whose developements are certainly less known by orthodoxe ho-
motopy theorists. More or less encyclopedical references to this topic are the
books [Ber77] and [Dei85]. The reader interested in its relationship to Hopf
bifurcation problems should read [Ize05].

Relying on our interests, we shall change between two equivalent approaches
to this. One of them , the “no -zeros on the boundary- picture” will be useful
in applications and has its origin in the theory of partial differential equations.
For our purposes in algebraic topology, we shall give the following, technically
more convenient

Definition 17. Supose that k : H → H is a (possibly nonlinear) compact map
in a (real) Hilbert space, in the sense that k sends bounded sets into relatively
compact sets. A map f = t+ k : H → H is a compact perturbation of the real
fredholm linear map f if the preimages of bounded sets under f are bounded.
Let t : E → F be a fredholm morphism between the G-hilbert bundles over the
proper G- space X. A compact perturbation of t is a continuous, equivariant
map f : E → F , which has fibrewise the form t+ k for a compact perturbation
of f .
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Definition 18. Let X be a locally compact, proper G-CW complex and let G
be a locally compact group. Let l be a real linear cocycle representing a class
in KO0

G(X) in the sense of Phillips.
A cocycle for the equivariant cohomotopy theory of X, Πl

G(X) is a four-tuple
(E,F, l, c) where

• E is a real G- Hilbert bundle over X, with a linear, selfadjoint fredholm
morphism l̃ : E → F , which is equivalent to l in the sense of Phillips.

• A compact perturbation of l, c, such that the map l + c is proper and
extends to a map between one-point compactification bundles.

Two cocycles (E,F, l, c) and (E
′
, F
′
, l
′
, c
′
) are equivalent if there is a linear,

unitary cocycle (H,H
′
, k) such that E⊕H,F⊕H, l⊕k and E

′⊕H ′ , F ′⊕H ′ l′⊕k
are unitary equivalent as linear cocycles, by an isomorphism which preserves the
compact perturbations.

Two cocycles E,F, l, c and E,F, l, c
′
are homotopic if there exists a homotopy

H : SE×I → SF , pointed over every fiber and relative to l. such thatH |0= l+c,
H |1= l + c

′
.

The set Πl
G(X) is called the G-equivariant cohomotopy of X in degree l.

Remark 5. Note that our groups are naturally graded by KO0
G(X). This gen-

eralizes the fact that for compact groups certain classical definitions of equiv-
ariant cohomology theories [May96] are assumed to be RO(G)-graded. This is
included in our definition in the case of compact groups, where the representa-
tion V is associated to a Fibrewise equivariant fredholm morphism whit index
the trivial bundle X × V .

Remark 6 (The “no-zeros in the boundary” -picture). Let X be a locally
compact, Hausdorff proper G-space. Let E and F be real G- Hilbert bundles
over X. Let t : E → F be a real fredholm morphism between them. A compact
perturbation of t is a continuous equivariant map which is fibrewise of the form
t+k, where k is a non necessary linear, compact fibrewise map (it maps fibrewise
bounded sets to relatively compact subsets) defined on the unitary disk D(E) =
{x ∈ E | |x| ≤ 1}. We introduce the notation Ct(D,F ) for the set of compact
perturbations of the fredholm operator t, with the topology which is given by the
supremum norm, and obviate the corresponding fibrewise definition. Moreover,
we shall restrict us to the subspace C 6=0

t (D,F ) consisting of strongly non zero
compact perturbations, that is those c for which cx = 0 has no solutions on
the boundary of the unit disk D. In the ”no- zeros on the boundary” -picture,
stability up to unitary linear morphisms carries over. The homotopies are not
only assumed to be compact, but also strongly non- zero.

Let f = t + k be a compact perturbation of a fredholm map, as given in
the definition. Then f extends to a map of one point compactifications of the
Hilbert space f : SH → SH . Moreover, homotopy classes of pointed nonlinear
maps are in correspondence with strongly nonzero compact homotopy classes
of perturbations defined on the unitary disk. The same holds parametrized and
equivariant over a proper G-space.

This is essentially due to the fact that the maps defined in the previuos con-
struction amount to maps of pairs (D(H), ∂D(H)) → (H,H − {0}), which are
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equivalent via excision and homotopy equivalence to (SH , SH), via the inter-
mediary pairs (SH , H − {0}) and (SH , SH − IntD(H)). Note that the point at
infinity in the pointed picture is identified with the point (0, 1) in the no-zeros
on the boundary picture, if we identify the pair D(H) ⊂ H ⊕ R in the usual
way, and everything holds fibrewise and equivariant over a proper G-space.

We describe now an additive structure in equivariant cohomotopy theory.
Let (E0, F0l0, c0) and (E1, F1l1, C1) be cocycles in the equivariant cohomo-

topy theory of a given degree l.
Let us suppose without loss of generality that we have representatives of the

form (E0, F0, l, c0) and (E0, F0, l, c1). Let X ×R→ X ×R be the trivial bundle
and . Denote by SR the one point compactification bundle. Define the pinching
map SR → SR∨SR as the obvius extension of the map which sends the positive
ray under the map ln(x) and −ln(−x) in the negative ray.

The sum of two cocycles is represented by the cocycle (E0⊕R, F0⊕R, l⊕id, c),
where l ⊕ id + c : SE0⊕R → SF0⊕R is given as the following composition

SE0 ∧X SR id∧X∇→ SE0 ∧X SR ∨X SR ≈→

SE0⊕R ∨X SE0⊕R (l⊕id+c0)∧X(l⊕id+c1)→ SF0⊕R

The zero element is represented by a cocycle (E ⊕R, F ⊕R, l, c) such that c
extends to a map sending fibrewise SE to the point at infinity. .

The inverse of an element (E,F, l, c) is represented by the element (E,F, l,−c).
We have the following result:

Proposition 14. The operations described above turn the equivariant coho-
motopy theory in degree l into an abelian group.

There is a relative version for pairs (X,A) of proper G-CW complexes. An
element in Πl is represented by a compact perturbation of a fibrewise pertur-
bation of a fredholm operator ϕ + c : E → F , which extends to the one-point
compactification bundles beeing constant over the subspace A, with the value
at infinity. Note that this is consistent with the usual identification of X with
the pair (X,φ).

Alternatively, in the “no-zeros in the boundary”-picture, a cocycle for the
equivariant Π-theory can be chosen to be a conpact perturbation of a fredholm
map ϕ + c : DE → F whithout zeros on the boundary, which is constant over
A with value (0, 1) .

We now construct a multiplicative structure on the equivariant cohomotopy
theory.

∪ : Πl1
G(X,A1)×Π12

G (X,A2)→ Πl1+l2
G (X,A1 ∪A2)

Consider for this representing elements ui = ϕi + ci ∈ Πli
G(X,Ai) for i ∈

{1, 2}, where ci is a compact map accepting fibrewise an extension to the one-
point compactification, constant over Ai with the value at infinity. u1 ∪ u2 is
the cocycle defined as (E1 ⊕ E2, ϕ1 ⊕ ϕ2, C) where the map C is such that
C : (e1, e2) 7→ (c1(e1), c2(e2)). Note that this map allows an extension to the
one-point compactification.

Proposition 15. Let (X,A) be a proper G-CW pair. There exists a natural
sequence

Πl
G(X,A)

ρ∗→ Πl
G(X) i∗→ Πl

G(A)
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which is exact in the middle, where ρ and i denote the inclusion of A into X
and X into (X,A), respectively.

Proof. That i∗ ◦ ρ∗ = 0 is clear form the definitions. Let now ϕ+ c : E → F be
a cocycle for which i∗([ϕ+ c]) is compactly homotopic to the trivial morphism
over A.

In view of proposition 11, we can choose a representative (which we denote
by the same symbols) for which both E and F are the trivial G-Hilbert bundle
H×X → X and c is constant over A with value ∞. Using proposition 12, we
can assume up to equivalence that the fredholm linear operator extends to a
onoe ϕ̃ in all of X.

Suppose that there is a homotopy ht : i∗SE×I → i∗SF defined over A which
begins with i∗[ϕ+ c] and ends with a map ϕ+ c which sends the space E to the
base point at infinity. As X − A is build up of a finite number of equivariant
cells, one can argue inductively to extend h to a map H : SE → SF , defined on
all X such that h |A×I= h. H determines a homotopy betweeen certain element
ρ∗(ϕ̃+ c̃) defined over X and ϕ+ c.

Proposition 16. Let (X,B) be a proper, finite G-CW pair obtained as the
pushout with respect to the cellular map (f, F ) : (X0, A) → (X,B) as in the
following diagram:

A
f //

��

B

��
X0

F
// X

then the map (f, F )∗ : Πl
G(X,B)→ Πl

G(X0, A) induces a natural isomorphism.

Proof. Let (E,Fϕ + C) ∈ Πl
G(X0, A). Due to propositon 12, it is possible to

assume that there exists a linear morphism ϕ̃ : E ⊕ E′ → F ⊕ E′ defined oxer
X such that F ∗(ϕ̃) and ϕ differ by addition of an unitary cocycle. As c |A=∞,
it is posible to extend c to a map c̃ defined on X for which c̃ |B= ∞.Then
(F ∗, f∗) : π∗G(X,B)→ π∗G(X0, A) sends ϕ̃+ c̃ to ϕ+ c. This proves surjectivity.
To prove injectivity, recall that if ϕ+ht : E× I → E is a nullhomotopy starting
with (F ∗, f∗)(ϕ + c), ending with the constant ∞. As before, as c is constant
over B and (F ∗, f∗)(c) is trivial over A, it is possible to extend the map ht to
a homotopy h̃t defined over X which is trivial over B and which begins with
ϕ+ c, ends with a constant map. this shows that the map is injective.

The induction structure is defined as follows. To illustrate the proof and
avoid technicalities, we restrict ourselves to the case where G is a Lie group.

Proposition 17. Let α : H → G be a lie group homomorphism. Then there
exists a group homomorphisn

Π∗G(indα(X,A))→ Π∗H(X,A)

satisfying

1. Bijectivity. If ker(α) acts freely on (X,A), then the map is an isomor-
phism.
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2. Compatibility with the boundary homomorphisms. δnH ◦ Indα = indα ◦δnG.

3. Functoriality. If β : G→ K is a group homomorphism, then the diagram
commutes:

4. Compatibility with conjugation.For any g ∈ G , the homomorphism

indc(g):G→GΠn
G(X,A)→ Πn

G(ind)c(g):G→G(X,A))

agrees with the map πnG(f2), where f2 : (X,A) → indc(g):G→G sends x to
(1, g−1x) and c(g) is the conjugation isomorphism in G

Proof. 1. Let ϕ + c : E → E be a compact perturbation over the space
(indαX,A). The map i : X → indα(X) (x 7→ (1G, X) induces a group ho-
momorphism Fix∗G(indαX,A) → Fix∗H(X,A). An inverse is given by the
map which associates to a linear cocycle (E,F, ϕ) the cocycle (E/H,F/H,ϕ/H).
It is easy to show that this is the case for the perturbation and that this
still satisfies the boundedness condition. We point out that this only
makes sense for lie groups, and cannot be generalized to the more general
context of locally compact groups, see remark below.

2. Follows from the naturality of the induced bundle construcctions.

3. Follows from the functoriality of the induced vector bundle construction.

4. Compatibility with conjugation. Follows from element chasing in the dia-
gram

Πl
G(indc(g)(X,A))

indc(g) // Πl
G(X,A)

Πl
G(indc(g)(X,A))

=

OO

ΠnG(f2)

77nnnnnnnnnnnn

where f2 : (X,A)→ indc(g)(X,A) is given by x 7→ (1, g−1x) and c(g)(g) =
gg
′
g−1.

Remark 7. N.C. Phillips proves in [Phi89], corollary8.5 , p. 131 a more general
result for equivariant k-theory, allowing proper actions of locally compact groups
as input, instead of only lie groups. It is certainly plausible to try to generalize
them, though we prefer to keep the arguments in this note as easy as possible,
with technicalities only in the background. The main problematic point in this
is that we cannot guarantee the local triviality of bundles E/H → X/H unless
H is lie, see [Pal61].

We shall prove following properties which turn the equivariant cohomotopy
theory into a G-cohomology theory, the first of which is

Proposition 18 (Homotopy invariance). Let f0, f1 : (X,A)→ (Y,B) be two G-
maps of pairs of proper G-CW complexes. If they are homotopic, then Π∗G(f1) =
Π∗G(f2).
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Proof. in view if the naturality of the construction, this amounts to prove that
Π∗G(h) = id for the map h : (X,A)×I → (X,A)×I given by (x, t) 7→ (x, 0). Let
(E,F, l, c) be a nonlinear cocycle representing an element in Fix∗G(X,A× I). In
the notation of proposition 13, there exist unitary morphisms u : E → h∗(E),
v : F → h∗(F ) covering the identity X×I → X×I such that the restrictions to

E0, F0 are the respective identities. Note that the composition f = h∗(E) u
−1

→
E

ϕ+c→ F
v−1

→ h∗(F ) is homotopic to h∗(ϕ+ c) relative to h∗(ϕ). After checking
out the conditions for the definition of Fix∗G, one has that the equivalence classes
Π∗G(h)(ϕ+ c) = [f ] = [ϕ+ c] agree.

We construct a suspension isomorphism

σX,An : Πn
G(X,A)→ Πn+1

G ((X,A)× (I, {0, 1}))

Given ϕ+ c : E → F ∈ πnG((X,A), form the bundle E
′

= E ⊕ R, denote by
p the fibrewise projection on E

′ → E and define the map σn(ϕ + c) : DE
′ ×

I → E
′ × I defined as (e, t) 7→ p ◦ ϕ + (log(t) − (log(−t)))(c(p(v)). By this

means, we obtain a compact map which extends to the fibrewise one-point
compactifications, beeing trivial on the required subspace. Given an element
ϕ + c ∈ πn+1

G ((X,A) × I, {0, 1}), consider a unitary, fibrewise linear cocycle
u : E → E0 × I v : F → F0 covering the identity X × I → X × I, which
restricted over the subspace A × I ∪X × {0, 1} is the identity map. The map

constructed as E0× I
u−1

→ E
ϕ+c→ F

v→ F0× I determines an inverse for σnX,A).
A coboundary map is defined as the composition

Πn
G(A)

σnG(A)−→ Πn+1
G (A× I, A× {0, 1})

Πn+1
G (i1)−1

−→ Πn+1
G (X ∪A×{0} A× I,X

∐
A× {1})

Πn+1
G (i2)
−→ Πn+1

G (X ∪A×{0} A× I, A× {1})
Πn+1
G (pr1)−1

−→ Πn+1
G (X,A)

Where the map Πn+1
G (i1) is bijective by excision and Πn+1

G (pr1) is bijective
because of homotopy invariance.

Several approaches have been proposed towards the definition of equivariant
cohomotopy theory for proper actions. The work of Lück [Lüc05a] using finite
dimensional bundles deals with the difficulties appearing in the case where a
discrete group acts on a finite G-CW complex. We briefly recal this approach

Fix an equivariant, proper G-CW complex. Form the category
SPHBG(X) having as objects the G-sphere bundles over X. A morphism

from ξ : E → X to µ : F → X is a bundle map Sξ → Sµ covering the
identity in X, which preserves fiberwise the basic points. A homotopy between
the morphisms u0, u1 is a G-bundle map h : Sξ × [0, 1] → Sµ from the bundle
Sξ× [0, 1]→ [0, 1]×X to the bundle Sµ covering the projection X× [0, 1] −→ X
and preserving the base points on every fiber such that its restriction to X×{i}
is ui for i = 0, 1. Let Rn be the trivial vector bundle over X, which is furnished
with the trivial action of G. Two morphisms of the form

Sξi⊕Rki → Sξi⊕Rki+n
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are said to be equivalent if there are objects µi in SPHBG(X) and an isomor-
phism of vector bundles ν : µ0 ⊕ ξ0 ∼= µ1 ⊕ ξ1 such that the following diagram
of morphisms in SPHBG(X) commutes up to homotopy

Sµ0⊕Rk1 ∧X Sξ0⊕Rk0
id∧Xu0 //

σ1

��

Sµ0⊕Rk1 ∧X Sξ0⊕Rk0+n

σ2

��
Sµ0⊕ξ0⊕Rk0+k1

Sν⊕id

��

Sµ0⊕ξ0⊕Rk0+k1+n

Sν⊕id

��
Sµ1⊕ξ1⊕Rk0+k1

σ3

��

Sµ1⊕ξ1⊕Rk0+k1+n

σ4

��
Sµ1⊕Rk0 ∧X Sξ1⊕Rk1

id∧Xu1

// Sµ1⊕Rk0 ∧X Sξ1⊕Rk1+n

where the isomorphisms σi are determined by the fiberwise defined homeo-
morphism SV⊕W ≈ SV ∧ SW and the associativity of smash products, which
holds for every pair of representations V ,W . We recall now W. Lück’s definition
of equivariant cohomotopy:

Definition 19. Let X be a G-CW complex, where G is a discrete group and
X is finite. We define its n-th G-equivariant stable cohomotopy group, πnG(X)
as the set of homotopy clases of equivalence classes of morphisms u : Sξ⊕Rk →
Sξ⊕Rk+n

under the above mentioned relation. For a G-CW pair, (X,A) we define
πnG(X,A) as the equivalence classes of morphisms which are trivial over A, i.e.
those which are given by a representative u : Sξ⊕Rk → Sξ⊕Rk+n

which satisfies
that over every point a ∈ A, the map ua : Sξa⊕Rk → Sξa⊕Rk+n

is constant with
value the base point. For a pair of bundle morphisms u : Sξ⊕Rk → Sξ⊕Rk+n

, v :
Sξ
′
⊕Rk → Sξ

′
⊕Rk+n

, the sum is defined as the homotopy class of the morphism

u : Sξ⊕ξ
′
⊕Rk ∧X SR id∧X∇→ Sξ⊕ξ

′
⊕Rk ∧X (SR ∨X SR) σ3→

(Sξ⊕Rk ∧X SR) ∨X (Sξ
′
⊕Rk ∧X SR)

(u∧X id)∨X(v∧X id)→

Sξ⊕ξ
′
⊕Rk+n

∧X SR

where σ3 is the canonical isomorphism given by the fiberwise distributivity
and associativity isomorphisms and ∇ denotes the pinching map SR → SR∨SR.
The relative version for elements lying in the group of a pair, πnG(X,A) translates
word by word when one sets all sphere bundles and morphisms to be trivial over
A.

Our approach extends this notion and solves the principal problem of this
construction, namely: the the lack of finite dimensional G-vector bundles to
represent excisive G-cohomology theories. The crucial result in this is the con-
struction of an index theory in the context of parametrized nonlinear analysis.
The immediate goal is

Theorem 6. Let G be a discrete group acting on a G-CW pair (X,A). Denote
by l a selfadjoint fredholm morphism whose fibrewise index is a trivial virtual
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vector bundle of dimension p. The parametrized Schwartz index defines an
isomorphism

Πl
G(X,A)→ πpG(X,A)

We give two proofs of theorem 6, relying in the two approaches to nonlinear
analysis: the no-zeros on the boundary and the proper maps one. Because of its
simplicity, we give now the proof relying on the first one. We point out that the
techniques in the first case can only be used for fredholm operators of positive
fredholm index, whereas the second one is valid more generally, at the price of
technicalities. In both cases, the initial point is an approximation lemma for
compact perturbation of fredholm maps, which takes the following form:

Proposition 19. Suppose that U ⊂ E is a locally trivial bundle with fiber a
bounded subset of the hilbert bundle E. Suppose that c : U → F is a bounded,
fibrewise compact map with target on a G-Banach bundle. Given ε > 0, there
exist a continuous , bounded fibrewise mapping tε : U → Zε such that

• Zε is a subset of a finite dimensional subspace of F .

• | tεx−tx |≤ ε on every fiber and the image of fε is contained in the convex
hull of f(U).

Proof. It is essentially proved in page 89 of [Ber77] in the non- equivariant and
non parametrized case, so we just sketch the modification we need. First of all,
we assume the existence of an invariant riemmanian metric on F , which can
be done since the action on the basis space is proper and the group is locally
compact.

Since the closure of the image of U under c is compact, the image over every
point can be covered by a finite union of balls of radius ε and centers y1, . . . yn.
Moreover, in presence of the invariant riemannian metric, this can be done
fibrewise over X. Let Zε be the G-subbundle of Y which is fibrewise spanned
by the yi. We now construct an invariant partition of unity on U as follows.
Over a point in X, define for 0 ≥ i ≤ k and x ∈ U µi(x) = max{0, ε− | cx−yi |}.
We note that this is a G-invariant function since the norm is it. Put λi = µi

Σµi
.

and notice that Σλi = 1. Define cε(x) = Σiλiyi. This defines an equivariant
map because of the linear action of the group on every fiber. Now, notice that

| cx− cεx |=| Σiλi(x)(cx− yi) |≤ Σiλix | cx− yi |≤ ε

We are now able to state our main result in this section, whose unparametrized
and non-equivariant version can be found in [Šva64] or [Ber77], p. 257 for a
modern reference in english.

Before we begin with the proof of theorem 6, we point out that the equivari-
ant cohomotopy groups for discrete groups and finite G-CW complexes were de-
fined in [Lüc05a] as certain equivalence classes of morphisms between one-point
compactifications of finite dimensional vector bundles. By technical reasons
which will become clear in the proof of the theorem, we find it easier to handle
this groups as equivalence classes of spherical bundles inside finite dimensional
vector bundles with a G-invariant, riemannian metric.
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Proof. 1. Step 1. Let f ∈ C 6=0
l (D,E). We can assume that f = l+c, where c

has a finite dimensional range contained in a finite dimensional subbundle
ln+1 of dimension n+ 1 in E, and l is fiberwise surjective (n ≥ p+ 1).

2. Since l is fiberwise fredholm with index p, we may write E = Kerl ⊕X1

, where the Kernel is a finite dimensional vector bundle ξ of dimension p
and l : X1 → E is a fibrewise linear bounded homeomorphism with inverse
l−1.

3. Restrict now f to ∂Dn+p∩{Kerl⊕l−1(ln+1)}. Note that since f is nonzero
in the boundary and compact, there exists α > 0 such that infx∈∂D fx ≥ α
on every fiber. This follows because a compact perturbation of a fredholm
operator is locally proper, see [Sma65], theorem 1.6. So we can consider
the spherical morphism f̃ : Sξ⊕ln+1 → Sln+1 which is fibrewise given as
f
|f | . This does not depend on the choices of subspaces containing the
image of ∂D, for if ln and lm are finite dimensional bundles containing
C(∂D), and f̃ and g̃ are the spherical morphisms obtained by the previous
procedure, they can be seen to be of the form h∧x idηn : Sln∩lm⊕ηn → Sln ,
respectively h ∧x idηm : Sln∩lm⊕ηm → Sln , where the morphism h : ∂D ∩
{Kerl∩L−1(ln∩lm)} → Sln∩lm is obtained by the normalization procedure.
(That is, f and g are suspensions of the same mapping by certain vector
bundles). This is well defined at the level of compact homotopy classes, for
a compact homotopy h = l+ c joining f0 and f1 can be always be choosen
to have a fixed finite dimensional range for all t ∈ I. The restriction to
the corresponding finite dimensional bundle gives a fibrewise homotopy
between the spherical morphisms associated to f0 and f1.

4. To finish the proof, we verify that two perturbations f0, f1 with the same
associated spherical morphism are homotopic. We can assume, both the
range of f0− l and f1− l are defined in the same finite dimensional bundle
l. We use the homotopy h between the spherical morphisms to produce a
fibrewise compact homotopy H = L+h : Sl⊕ξ×I → Sl between f0 and f1.
We have to extend the compact homotopy on the finite dimensional sphere
to a compact homotopy in ∂D. For this, we use a fibrewise and equiv-
ariant extension theorem. We begin with the equivariant (not fiberwise!)
extension theorem of Antonyan [Ant85]. Let x ∈ X and consider the map
defined on the fibre of hx : Sl⊕ξx → Ex. Note that Sl⊕ξx × I is a closed
invariant subset of the metrizable G-space ∂D, where of course, the metric
is determined by an invariant scalar product on the hilbert space Ex. As
Ex is a locally convex space, the main theorem of [Ant85] applies and gives
an extension H : ∂D × I → Ex such that sup∂Dx×I | H |= supSξ⊕lx

| h |.
This gives a compact homotopy between f0x and g0x . We use now a G-
invariant partition of unity over X to glue the homotopies together and
we get the fibrewise compact homotopy.

This finishes the first proof of theorem 6. In the second case, the process of
normalizing is replaced by the following retraction lemma:

Lemma 11. Let τ ⊂ E be a finite dimensional G- vector bundle over the
proper G-space X. Let l : E → E be a linear fredholm morphism. Denote by
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Sτ
⊥

the fiber bundle which is determined by the unit sphere in the orthogonal
complement of τ . Then, there exists a fibrewise retraction ρτ : l−1(τ) → SE −
τ⊥.

Proof.

The approximation lemma is now as follows:

Proposition 20. Let f = l + c : E → E be a fibrewise compact perturbation
of the linear fredholm morphism l defined in a G- hilbert bundle E over the
proper G-space X. Then, there exist finite dimensional G-vector bundles ξ ⊂ E
such that

• ξ ⊕ l(E) ∼= E.

• Given a fibrewise inclusion as orthogonal summand in a finite dimensional
vector bundle ξ → τ , ξ⊕ ζ = τ , the restricted map f : Sl

−1(ξ) → SE sends
the unit sphere Sξ

⊥
to the orthogonal complement of ξ. The map ρξ(f)

has image in a

• The maps ρτf |l−1(τ) and idζ ∧X ρξ are G-homotopic over X.

Proof. 1. Denote by D the unit ball bundle in E. Due to the boundedness
condition, the map f−1(Dx) is bounded over any point x ∈ X. Hence,
the closure Cx of its image under the compact map c is fibrewise compact.
Cover Cx with a finite number of balls of radius εx ≤ 1

4 centered at points
vix . Construct the vector bundle η which is fibrewise spanned by these
vectors. Form the finite dimensional G-vector bundle ξ = η⊕ l(E)⊥. It is
clear that ξ ⊕ l(E) ∼= E.

2. If wx ∈ Sτ
⊥

x is in the image of f |Sl−1(τ) , then f−1(wx)) ∩ l−1(τ) will be
mapped under f |l−1 to a subspace of τx+Cx. So, wx will be contained in
Sτ
⊥ ∩ τx + Cx, which is not possible, because the distance between these

subspaces is greater than 1− εx > 3
4 .

3. In view of the slice theorem and the local triviality of the G-hilbert bundles
involved, we can cover the space X with invariant neighborhoods for which
there is a map Ux → G/H, and the bundle over Ux is the pullback of the
bundle G ×

H
Ex → G/H. , where Ex is some strong, norm continuous

representation of H in a hilbert space. Hence, we can restrict ourselves
to bundles over an orbit. In the notation of part 2, there is a retraction
ρτx : Sτx → SEx − Sτ⊥x , and consider the isomorphism l−1(τx) ∼= ζx ⊕
l−1(ξx) given by w

′

x 7→ (l ◦ (1 − prl−1(ξx)w
′

x,prl−1(ξx)w
′

x). We claim that
after this isomorphism, the maps idζxρξx(f |l−1(ξx)) and f |Sl−1(τx) are
homotopic. Consider for this a ball D ⊂ E which contains the inverse
image f−1(D1(0)) of the unitary ball We define the homotopy h : D×I →
SE − Sτ⊥ as follows

h(wx, t) =

{
l + [(1 − 3t)idEx + (3t)prξx ] ◦ c t ∈ [0, 1

3 ]

l + prξx ◦ c[(2 − 3t)id
l−1(ξx)

+ (3t − 1)pr
l−1(ξx)

] t ∈ [ 1
3 ,

2
3 ]

prζx ◦ l + [(3 − 3t)prξx + (3t − 2)ρζx ◦ (l + c) ◦ pr
l−1(ζx)

] t ∈ [ 2
3 , 1]
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Since SEx −D ∩ τ⊥x is contractible, the homotopy above can be extended
to a homotopy Sl

−1(τ) × I → SE − Sτ⊥ ' Sτ , as needed.

Definition 20. Let G be a discrete group acting on the proper G-CW complex
X. Denote by (E,F, l, k) a non-linear cocycle for the equivariant cohomotopy
-theory over the proper G-space X, where l is a linear morphism whose index
bundle is trivial of dimension p. Let ξ be a finite dimensional G-vector bundle as
constructed in proposition 20. The parametrized Schwartz index is the element.

[pξ(l + k) |l−1(ξ)] : Sl
−1(ξ) → Sl(E)⊥ ∈ πind

G (l)(X)

in the equivariant cohomotopy group as, introduced by Lück in [Lüc05a]. This
construction is well defined as consequence of part 3 of proposition 20. and gives
an isomorphism of both theories,

This finishes the second proof of theorem 6
In case of compact lie groups equivariant cohomotopy is a RO(G)- graded

equivariant cohomology theory, in the sense of [May96]. The definition is as
follows:

Definition 21. Let G be a compact lie group and X a G-CW complex. For any
representation W , form the one-point compactification SW and define the set
of equivariant and pointed maps ΩWSW = MapG(SW , SW ). The equivariant
cohomotopy group in grade V , where V is a virtual representation, is defined
to be the abelian group constructed out of the homotopy sets of maps

πVG(X) = colimW [SV ∧X+,ΩWSW ]

where the systems runs along a complete G-universe, that is a hilbert space
containing as subspaces all irreducible representations, where the trivial repre-
sentation appears infinitely often.

Remark 8. In case of compact groups, the stability condition allows to suppose
that the index bundle ker−coker has the form of a trivial bundle X × V . The
equivariant Schwartz index identifies this with the usual definition for equivari-
ant cohomotopy groups for finite G-complexes, in such a way that our proof for
discrete groups is formally the same, with the classical definition instead of that
of Lück.

3.2 Computational Remarks

In order to do computations, we introduce some basic tools from homotopy
theory.

Remark 9 (The spectral sequence). Let X be a proper G-CW complex. There
is an equivariant Atiyah-Hirzebruch spectral sequence which converges to πnG(X)
and whose E2-term is given in terms of Bredon cohomology

Ep,q2 = Hp
ZOrG(X,πq?)

Applied to the universal proper G-space EG:
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Ep,q2 = Hp
ZSUBCOM(G)

(EG, πq?)

where π0
? is the contravariant coefficient system H 7→ π0

H .
There is a canonical identification

H0
ZSUBCOM(G)

(EG, π0
?) ∼= lim←−H∈COMπ

0
H

The edge homomorphism of the spectral sequence defines a map edgeG :
π0
G(EG)→ Ainv(G). Several known results of the spectral sequence go trough.

Among them, as in case of discrete groups, the edge homomorphism is a rational
isomorphism.

We now define a Burnside ring in operator theoretical terms for non compact
lie groups. We first recall the definition for compact lie groups, which was first
indtroduced by Tom Dieck in [tD75].

Definition 22. Let G be a compact lie group. Consider the folowing equiva-
lence relation on the collection of finite G-CW complexes. X ∼Y if and only if
for all H ⊂ G, the spaces XH and XH have the same Euler characteristic. Let
A(G) be the set of equivalence classes. Disjoint union and cartesian product of
complexes are compatible with this equivalence relation and induce composition
laws on A(G). It is easy to verify that A(G) together with these composition
laws is a commutative ring with identity. The zero element is represented by a
complex X such that the Euler characteristic χ(XH) is zero for each H ⊂ G. If
K is a space with trivial G-action and χ(K) = −1, then X ×K represents the
additive inverse of X in A(G).

We collect some information about the algebraic structure of the burnside
ring in the following the crucial point which is used to motivate our definition
in the following results, which have been published by Tom dieck in [tD87], p
240 and 250, and 256 , respectively

Proposition 21. 1. As abelian group A(G) is the free abelian group on
G/H, where H ∈ Φ(G) and Φ(G) denotes the set of conjugacy classes
of subgroups such that N(H,G)/H is finite, where N(H,G) denotes the
normalizer of H in G.

2. There is a character map charG : A(G)→ Map(Φ(G),Z), where Φ(G), the
space of closed subgroups of G carries the Hausdorff metric (in particular
it is a compact Hausdorff space). And charG(X) is defined by H 7→ XH .

Proposition 22. By means of the character map, the elements of the burnside
ring can be identified with sums∑

K

n(H,K)χ(XK) ∼= 0 mod | NH/H | (∗)

where the sum is over conjugacy classes (K) such that H is normal in K,
K/H ⊂ NH,G/H is cyclic, the integer numbers n(H,K) are defined to be

n(h,K) =| Gen(K/H) | |WH,G/NWK/H ,WH,G
|

and Gen(Z) denotes the cardinality of the generators of the finite cyclic group
Z. In particular, the rationalized Burnside ring A(G)⊗Q can be identified with
the ring of continuous rational functions defined in Φ(G)
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Theorem 7. Let G be a compact lie group. there is an isomorphism

π0
G({∗})→ A(G)

Definition 23 (An operator theoretical Burnside Ring). Let G be a locally
compact group. The operator theoretical burnside ring of G, Aop(G) is the
0-dimensional equivariant cohomotopy theory of the classifying space of proper
actions EG. In symbols

Aop(G) = Π0
G(EG)

The augmentation ideal ÎG ⊂ Π0
G(EG) is defined to be the kernel of the

composition of the restriction to the oth- skeleton of the classifying space and
the restriction to the trivial group

Π0
G(EG)→ Π0

G(EG0)→ Π0
{e}(EG0)

Example 2 (The group Sl2(R)). Recall that the group Sl2(R) is defined to
be the group of real 2 × 2-matrices with determinant 1. It is a Lie group of
dimension 3 and has one connected component. The maximal compact subgroup
is S1 = SO2.

As Sl2(R) is almost connected, a model for ECOMSl2 is Sl2(R)/SO2 ≈
R2, which can be handled as the upper-half plane model for the 2-dimensional
hyperbolic space. Note that this is a zero-dimensional proper CW -complex.
From the equivariant Atiyah- Hirzebruch Spectral Sequence follows that the
edge homomorphism

edgeSl2(R) : π0
Sl2(R)(EGSl2(R))→ lim

invH∈COM(Sl2(R))
πH(pt)

is an isomorphism. On the other hand, since S1 is a final object in the category
of compact subgroups of Sl2(R), we have

Aop(Sl2(R)) ∼= A(S1)

A(S1) ∼= Z

is a well known fact.

3.3 An example in the topology of four mani-
folds

We illustrate now an example where our constructions in terms of perturbation
of fredholm morphisms appear in a natural way. This topics motivated the
interest of the author in nonlinear analiysis, and are concentraterd around some
results in Gauge theory due to Markus Szymik, (not yet published) Stefan Bauer
[BF04] and Mikio Furuta. The author is deeply grateful to the Gauge theoretical
community in Germany, in particular Markus Szymik and Raphael Zentner, who
were always avalaible for questions and shared their knowledge. An introduction
to this topic is the work of Moore [Moo01], the book [Nic00] and the notes [Tel].

We recall briefly that in the context of smooth, riemannian oriented mani-
folds, the existence of a Spinc(4)-structure is always guaranteed. This amounts
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to a map from a Spinc principal bundle Q together with a bundle map Q→ P
to the frame bundle of the tangential bundle. The identification of the group
Spinc(4) with the sugroup {u+, u− | u−, u+ ∈ U(2),det(u+) = det(u−)} allows
to define positive, respectively, negative spinor bundles S+, S− = Q ×

ρ+,−
C2,

where ρ+,− : Spinc → U(2) are the respective projections. Using quaternionic
multiplication, it is posible to furnish S := S+⊕S− with the structure of a mod-
ule over the Clifford algebra of the cotangential bundle T ∗(X)× S+,− → S−,+.
Clifford identities give a linear map ρ : Λ2 → EndC(S+) whose kernel is the
bundle of anti-selfdual 2-forms and whose image is the bundle of trace free skew
hermintian endomorphisms. For any spinc-connection A, define the associated
Dirac operator D as the composition Γ(S+) →

∇A+a
Γ(S+)⊗Λ1(T ∗M)

γ→ Γ(S−),

where γ denotes Clifford multiplication.
The monopole map µ̃ is defined for four-tuples (A, φ, a, f) of a Spinc connec-

tion A, a positive spinor φ, a 1-form a and a locally constant function f on M
as

µ : Conn×Γ(S+)⊕Ω1(M)⊕H0(M)→ Conn×Γ(S−)⊕Ω+(M)⊕Ω0(M)⊕H1(M)

(A, φ, a, f) 7→ (A,DA+aφ, F
∗
A+a − σ(φ), d∗(a) + f, aharm)

where σ is the tracefree endomorphism (−i)(φ ⊗ φ∗) − 1
2 | φ |

2 ˙id. Given a
point in M , the based gauge group Gx is the kernel of the evaluation map at x.
map(X,S1) → S1. The subspace A + ker(d) is invariant under the free action
of the based Gauge group. The quotient is isomorphic to the Picard torus,
Pic(X) = H1(X,R)/H1(X,Z). Let A and B be the quotients

a+ ker d× Γ(S+)⊕ Ω1(X)⊕H0(X,R)/Gx

respectively

a+ ker d× Γ(S−)⊕ Ω+(X)⊕ Ω0(X,R)⊕H1(X,R)/Gx

the quotient map µ : µ̃/Gx : A → B has by definition a presentatioon as a
fibrewise compact perturbation of a fredholm operator. It is proper after a
result of Bauer and Furuta, [BF04], which essentially uses estimates determined
by the Weitzenböck formula. This gives rise to a cocycle. A,B, DA + d +
d∗, c = F+

A + a · φ + σ(φ), where σ is the selfdual tracefree endomorphism
φ 7→ (−iφ⊗ φ∗ − 1

2 | φ |).

Example 3 (A generalized Bauer-Furuta invariant for proper actions on 4-man-
ifolds). Suppose G is a (possibly noncompact) Lie group acting properly and
cocompactly on the smooth Spinc- manifold M . assume furthermore, that the
group preserves the orientation and by means of isomorphisms of complex spin
structures, and respecting the connection. As the action is proper, it can be
assumed that G preserves the metric. Let G be the group of pairs (ϕ, u), where
ϕ is a G-equivariant diffeomorphism which preserves both the metric and the
orientation and u : f∗(σM )→ σM is an isomorphism of the spin-c principal bun-
dle. In particular, this gives a description of G in the middle of the following
exact sequence
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1→ S1 → G→ G→ 1

In this situation, the class of µ is denoted by mG(X,σX) ∈ Πind(λ)
G (Pic(X))

and is called the parametrized Bauer-Furuta invariant. The restriction map

resS
1

G Πind(l)
G (Pic(X))→ Πind(l)

S1 (Pic(X)) ∼= π
ind(l)
S1 (Pic(X))

maps mG to the S1-equivariant cohomotopical Bauer-Furuta invariant defined
in [BF04]. If, moreover, vector bundles do suffice to represent the equivariant
KO-theory of the Picard torus, the element λ can be identified after choice of an
invariant riemannian metric on the manifold with the difference of the complex
virtual index bundle of the dirac operator and the trivial bundle of the space of
selfdual harmonic two-forms.
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Chapter 4

The Segal Conjecture

In this chapter we shall transcribe to the context of proper actions of lie groups
one of the outstanding developements of equivariant topology in the last century,
the proof of the Segal conjecture. Originally formulated in the context of finite
groups, the conjecture is a statement relating the completion of the Burnside
ring and the stable homotopy groups of the classifying space of the group. It
was definitively proved by Gunnar Carlsson [Car84] in the form of the following

Theorem 8. [Segal conjecture for finite groups]
Let G be a finite group and X be any finite G-CW complex. There exists

an isomorphism
πnG(X)ÎG

∼=−→ πne (EG×
G

X)

in particular we get in the case X = {∗} and n = 0 an isomorphism

A(G)ÎG
∼=−→ π0

e(BG) (4.1)

The analogous statement for compact Lie groups is known to be false (see
example 4). A weaker form of the result assuming certain hypotheses on the
action of the Weyl group on the maximal torus was proved by Mark Feshbach
[Fes87].

This was simplified by Stefan Bauer [Bau89], who also provided a counterex-
ample which shows the necessity of the hypothesis concerning the action of the
Weyl group. The result is

Theorem 9. [Segal conjecture for compact lie groups]
Let G be a compact Lie group with maximal torus T of dimension n and

Weyl group W = NT,G/T . Let ρ : W → Gln(Z) be a representation which gives
rise to the action of W on T ≈ Rn/Zn. Suppose that ρ does not originate at a
generalized quaternion group of order 2n. Then the map

A(G)ÎG → π0
e(BG)

has dense image in the skeletal filtration.

As an application of the techniques developed in the previous chapters, we
prove a slightly more general version of this result.

53
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Theorem 10. [Segal Conjecture for almost connected Lie groups] The Segal
conjecture is true for (non compact) Lie groups with finitely many components.
That is, there is a map

Aho(G)ÎG → π0
e(BG)

with dense image in the skeletal filtration whenever a maximal compact sub-
group of G satisfies the hypotheses of theorem 9.

Our proof makes essential use of Feshbach and Bauer’s results. We shall
briefly recall their arguments on the way to the proof. Before we begin with
the proof, we notice that in the case of discrete groups a sharper, much more
beautiful result due to Wolfgang Lück, [Lüc08] is possible:

Theorem 11. Let G be a discrete group and X be any finite G-CW complex.
Suppose that there is a finite model for EG. Then there is an isomorphism

πnG(X)ÎG
∼= πn{e}(EG×

G
X)

We prove a generalization of this result to the context of infinite discrete
groups and families of finite subgroups. This takes the form of the following

Theorem 12. Let G be a discrete group and F be a family of finite subgroups
closed under conjugation and intersection. Suppose that X is a finite proper
G-CW complex. Let f : X −→ L be a G-map to a proper G-CW complex
having an upper bound on the cardinality of isotropy subgroups denote by EF
the classifying space for the family F . Then there is an ideal ÎF,f ⊂ π0

G(L) and
an isomorphism

πnG(X)ÎF,f
∼= πnG(EF ×X)

4.1 Proof of the main theorem

The idea behind our arguments is to reduce the result to a compact subgroup.
An essential role in this procedure is played by the following

Proposition 23. Let G be a Lie group with finitely many components. Then

1. There is up to conjugacy a unique maximal compact subgroup K of G.
Any other compact subgroup is subconjugated to K.

2. There exist diffeomorphisms G ≈ G/K ×K and G/K ≈ Rk.

Proof. See [Hoc65], Theorem 3.1 p. 180.

We mainly use the following consequence of this fact:

Corollary 1. Let G be an almost connected lie group (that is, G/G0 is finite).
Then there exists a maximal compact subgroup K, unique up to conjugacy such
that

1. BG ' BK.

2. G/K is a model for ECOMPG. In particular, the induction isomorphism
gives an isomorphism Aho(G) ∼= A(K), where A(K) stands for the Burn-
side ring in the sense of Tom Dieck.
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We now recall Feshbach’s proof of the Segal conjecture and show how the
previous facts fit into. The first step towards the result is given by transfer
maps. In order to state precisely this, we need the following

Remark 10. Let G be a compact lie group. Denote by ρH,G the inclusion of
a closed subgroup H. If H is a representable cohomology theory and g ∈ G is
an arbitrary element, there exists a conjugation isomorphism Cg : H(BH) →
H(BHg). An element x ∈ H(B(H) is stable with respect to ρH,G if

ρ∗H∩Hg,H(x) = ρ∗(H ∩Hg, Hg)Cg(x)

we shall denote the set of stable elements of H(BH) by H(BH)s. In the partic-
ular situation of the maximal torus of a compact Lie group there is an action
of the Weyl group W = NT,G/T on H(BN). We shall denote the invariant
elements of this action by Hs(BN). We point out that for normal groups, this
is exactly invariance.

Proposition 24. Let N be the normalizer of a maximal torus T in K. Then
there exist isomorphisms

1. π0(BK) ∼= π0(BN)s.

2. A(K)ÎK
∼= A(N)s

ÎN
, where the definition of an invariant element in the

burnside ring is analogous to that of elements in H(BK).

Proof. 1. Consider the fibration K/N → BN i∗→ BK. Because K/N is
compact, one has a transfer map [Dwy96]. This induces an isomorphism
trp ◦ p : π0(BK) → π0(BN)s ⊗ (χ(K/N)). Since χ(K/N) is a unit, the
result follows.

2. Consider the induction map A(N) → A(K). It is easy to see that the
image of indN,K ◦ resK,N consists of invariant elements.

[Fes79]

The essential point in Feshbach’s proof is the approximation of a compact
lie group by a distinguished family of finite subgroups. Precisely,

Proposition 25. There exists a nested sequence Fi of finite subgroups of N
with Fi/Fi∩T ∼= W such that ∪i(Fi)∩T consists of the subgroup TQ generated
by the torsion elements in T .

Proof. Theorem 1.1 in [Fes87]

The following result is crucial in Feshbach’s argument and is proved in [Fes87]
, p. 6

Proposition 26.
πq(BN) ∼= lim

i
πq(BFi)

sketch. Denote by ˜π0
e(BN) = invlimn

˜π0
e(BN)/n ˜π0

e(BN) the abelian completion.
( This is given at the level of spectra by smashing with a shifted Moore spec-
trum Σ−1M(Q/Z)). Because of the finiteness of the stable homotopy groups
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of spheres, ˜π0
e(BN) = π0

e(BN). Put NQ = ∪iFi. It is proved that π0
e(BNQ) =

˜π0
e(BN), the main argument beeing that the inclusion induces an isomorphism

of Q/Z-homology isomorphism at the level of classifying spaces, together eith
the fact that π0

e(BNQ) coincides with its abelian completion. The standard
lim1-argument gives the identification π0

e(BNQ) = invlimiπ
0
e(BFi).

As a consequence of the Segal conjecture for finite groups, one has A(Fi)Î ∼=
π0(BFi). Hence the Segal conjecture reduces to the understanding of the re-
striction map A(G)ÎG → limiA(Fi)ÎFi . As explained in example 4, this map is
neither injective nor surjective in the simple case of O(2). Under the hypothe-
ses of theorem 9, it is posibly to prove that the image is dense in the skeletal
filtration. Otherwise, example 5 contradices the Segal conjecture even in this
weaker formulation.

4.2 Examples and counterexamples

Example 4. [Feshbach’s counterexample to the original segal conjecture] Recall
the description of the Burnside ring of the 2-dimensional orthogonal group. It is
generated as abelian group by the homogeneous spaces O(2)/O(2), O(2)/SO(2)
and {O(2)/Dn}n∈N, where Dn is the subgroup generated by the subgroup of
SO(2) which is isomorphic to Z/n and an element α 3 SO(2) (This is a general-
ized dihedral group isomorphic to a semidirect product of the form Z/koϕD

′

2n,
where D

′
represents the usual group of symmetries of a n-gon.

Denote by Î(G) the completed augmentation ideal. We claim that the re-
striction map Î(O(2)) → limn Î(Dn) is neither surjective nor injective. This
follows from two claims.

First, the I-adical completion coincides with the 2-adical completion. An
argument to see this is the fact that [O(2)/Dn]× [O(2)/Dm] can be decomposed
as the union of two orbits of type Dgcd(m,n) and more orbits of type Z/k. Since
Z/k has infinite index in its normalizer, they are zero in the Burnside Ring.
An analogous argument shows that [O(2)/SO(2)] × [O(2)/Dk] = 0, and since
SO(2) has index two on O(2), we get [O(2)/SO(2)]2 = 2[O(2)/SO(2)].

On the other hand, the semidirect product structure of Dn implies that
limn Î(Dn) = limn Î(Pn), where Pn = D(2n).

This implies for instance that the image of [O(2)/Dm] under the restriction
map only depends on the two-order of m, therefore, the restriction map is not
injective. In order to describe an element which is not hit by the restriction
map let us remark that A(Pn) is generated by the elements {Pn/Tk | 0 ≤ k ≤
n}∪{Pn/P

′

j | 0 ≤ j ≤ n−1}, where Tk = SO(2)∩Pk =< t > and P
′

j =< Tj , t >.
put vj,k = [Pk/Pj ] + [Pj/P

′

j ]− [Pj/Tk] for j < k and vk,k = 2− [Pk/Tk]. Define

wj,k =

{
vj,k − vj−1,k if j ≤ k
0 otherwise

and put wj = limk wj,k ∈ lim I(Pk) and x = lim vk,k. Then, one has

lim
n

Î(Pn) =
∏

(Ẑ2[wj ]/w2
j = 2wj)⊕ Ẑ2[x]

as abelian groups. The element y =
∏
wj does not lie on the image of the

restriction map.
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Example 5. [Bauer’s counterexample to the density of restriction maps.] Let
Π = 〈a, b | a2n−1 = b2, b4 = 1, aba = b〉 be a generalized quaternion group. Let
ZΠ → Q(ζ2n)⊕Q(ζ2n)j = V be the morphism determined by a 7→ ζ2n , b 7→ j,
for ζ2n a primitive root of unity. Denote by Λ the image of ZΠ inside V . Accord
to a theorem of representation theory, there exists a Λ-lattice N inside V such
that N2̂ = M2̂⊕M2̂ for some other lattice M . Let T = N∗ the pontrjagyin dual
of the discrete group N . It is a 2-torus for which the image of the restricton
map is not dense.

Remark 11. The seek for weaker statements generalizing the Segal conjecture
to compact Lie groups is an active research field. An approach using trace
methods is for classifying spaces of tori is proposed in the preprint [CDD].

4.3 Families of finite subgroups in discrete groups

We first describe the context where our completion theorem will take place. We
briefly recall some standard notation for handling the algebraic part. Let R be
an associative ring with unit. A promodule indexed by the integers is an inverse
system of R-modules.

M0
α1←M0

α2←M1
α3←M2, . . .

We write αmn = αm+1 ◦ . . . ◦ αn : Mn →Mm for n > m and put αnn = idMn
.

A strict pro-homomorphism {Mn, αn} → {Nn, βn} consists of a collection
of homomorphisms {fn : Mn → Nn} such that βn ◦ fn = fn−1 ◦ αn holds for
each n ≥ 2. A pro R-module {Mn, αn} is called pro-trivial if for each m ≥ 1
there is some n ≥ m such that αmn = 0. A strict homomorphism f as above is
called a pro isomorphism if ker(f) and coker(f) are both pro-trivial. A sequence
of strict homomorphisms

{Mn, αn}
{fn}→ {M

′

n, α
′

n}
{gn}→ {M

′′

n , α
′′

n}

is called pro-exact if gn ◦ fn = 0 holds for n ≥ 1 and the pro-R-module
{ker(gn)/im(fn)} is pro-trivial. The following lemmas are proved in [AM69],
section 2:

Lemma 12. Let 0 → {M ′
, α
′

n} → {Mn, αn} → {M
′′

n , α
′′

n} → 0 be a pro-exact
sequence of pro-R-modules. Then there is a natural exact sequence

0→ invlimM
′

n
invlimfn−→ invlimMn

invlimgn−→ invlimM
′′

n
δ→

invlim1M
′

n
invlim1fn−→ invlim1Mn

invlim1gn−→ invlim1M
′′

n

In particular, a pro-isomorphism {fn} : {Mn, αn} → {Nn, βn} induces isomor-
phisms

invlimn≥1fn : invlimn≥1

∼=→ invlimn≥1Nn

invlim1
n≥1fn : invlim1

n≥1

∼=→ invlim1
n≥1Nn
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Lemma 13. Fix any commutative noetherian ring R and any ideal I ⊂ R.
Then, for any exact sequence M

′ →M →M
′′

of finitely generated R-modules,
the sequence

{M
′
/InM

′
} → {M/InM} → {M

′′
/InM

′′
}

of pro-R-modules is pro-exact.

We now set up the topological context we are going to study. We consider
an action of a discrete group G on a finite proper G-CW complex X and a map
f : X → Z, where Z is a proper G-CW complex with an upper bound on the
cardinality of the isotropy subgroups. We begin by defining the augmentation
modules

Definition 24. Let Z be a proper G-CW complex with an upper bound on the
cardinality of isotropy subgroups. Denote by Z0 the equivariant 0-skeleton of
Z. The augmentation module for the family F , in symbols InG,Z(Z) is defined
to be the kernel of the map

πnG(Z) i∗−→ πnG(Z0) Πres−→
∏
H∈F

πH(Z0)

If n = 0 , the augmentation module is an ideal in π0
G(Z).

We now recall the following easy but crucial fact

Lemma 14. Let X be an n- dimensional proper G-CW complex and I =
ker(π∗G(X) i∗→ π∗G(X0)). Then one has In+1 = 0.

Proof. Fix elements x ∈ In, y ∈ I. We inductively assume that x vanishes
in π∗G(Xn−1). Hence, there exists a lift x

′ ∈ π∗G(X,Xn−1). We note that
π∗G(X,Xn−1) is a π∗G-module. Now I · π∗G(X,Xn−1) = 0, since I vanishes in
orbits. Hence yx

′
= 0 and yx = 0

As a consequence of the previous lemma, for any n ≥ 0 the composite

InG,F (Z)π∗G(X) ⊂ π∗G(X)
proj∗−→ π∗G(EF ×X) i∗−→ π∗G((EF ×X)n−1)

is zero. Hence, we can define a homomorphism of pro-modules

λmX,F,f :
{
πmG (X)�InG,F · πmG (X)

}
n
→
{
πmG (EF ×Xn−1)

}
n

We formulate the following

Theorem 13 (Segal Conjecture for families of finite subgroups). Let G be a
discrete group and F be a family of finite subgroups of G closed under con-
jugation and under subgroups. Fix a finite proper G-CW complex X, a finite
dimensional proper G-CW complex Z whose isotropy subgroups lie in F and
have bounded order. Let f : X → Z be a G-map. Regard π0

G(X) as a module
over π0

G(Z) and set

I = IF,Z = ker(π0
G(Z)

resHG◦i
∗

−→
∏
H∈F

π0
H(Z0))

then
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λmX,F,f :
{
πmG (X)�In · πmG (X)

}
→
{
πmG (EF ×Xn−1)

}
is an isomorphism of pro-groups. Also, the inverse system{

πmG ((EF (G)×X)n)
}

n≥1

satisfies the Mittag-leffler condition. In particular

lim1πmG ((EF ×X)n) = 0

and λX,F,f induces an isomorphism

πmG (X)Î
∼=−→ πmG (EF ×X) ∼= lim

n
πm

G ((EF ×X)n)

Proof. Step 1. Assume first that X = G/H for some finite subgroup H ⊂ G
and consider the following commutative diagram:

π0
G(Z)

f∗ // πmG (G/H)
pr1//

ind
∼=
H→G

��

πmG (EF (G)×G/H)

∼=
indH→G

��
A(H) ∼=

// π0
H({∗}) pr2

// πmH (EF|H ×X)

Denote by IF (H) the kernel of the map

A(H) −→
∏

L∈F|H

A(L)

and note that the ideal I
′
, defined as I

′
:= indH→G(I) is contained in IF (H).

Now, by the completion theorem of Adams, Jackowski, Haeberly and May
[AHJM88], pr2 induces an isomorphism of progroups{

πmG ({∗})/IF (H)n
}
n
−→

{
πm(EF|H)n−1)

}
We now claim that pr1 induces an isomorphism of progroups{

πmG (G/H)/InπmH (G/H)
}
n
−→

{
πmG (EF (G)×G/Hn−1)

}
It suffices to show that for some k, IF (H)k ⊂ I

′
, equivalently, that the ideal

IF (H)/I
′

is nilpotent. Since A(H) is a noetherian ring [AM69], proposition 1.8,
this is equivalent to the fact that it is contained in all prime ideals of A(H)/I

′
.

hence, we must show that every prime ideal P which contains I
′

also contains
IF (H). We recall for this that prime ideals on the Burnside ring of a finite
group are detemined as the inverse image of prime ideals in Z along a character
map ϕK : A(H)→ Z for a subgroup K ⊂ H (compare [Dre69]), proposition 1.
We therefore write PK,p for such an ideal.

In view of proposition 27, which we found convenient to state separately,
we need to show that P contains the image of the structure map for H of the
inverse limit

invlimL∈FIL → IH
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Let n0 be a natural number divided by the cardinality of all subgroups in F .
Note that the H-set S formed by the disjoint union of n0/ | H | copies of

H is free. Choose an isomorphism S
u∼= {1, . . . , r} and a group homomorphism

H
ρu→ Sr into the set of automorphisms (=permutations) of this set. This defines

an action of H on Sr. Denote by Sr[ρu] the H-set obtained by this procedure
and notice that this does not depend on the isomorphism to {1, . . . , r}. Let
Sylp(Sr) be the p-sylow subgroup of Sr. We point out that the action of H on
Sr defines an action on the homogeneous space Sr/Sylp(Sr) by h · σ̄ = ¯h · σ.
Denote by Sr/Sylp(Sr)[ρu] the H- set given by this construction. This does
not depend on the choice of the particular isomorphism to {1, . . . , r}. Hence we
denote [Sr] := Sr[ρu] and [Sr/Sylp(Sr)] := Sr/Sylp(Sr)[ρu].

The elements {[Sr]} form a compatible system in limL∈FA(L). For if a
group homomorphism H0 → H1 is injective, then the restriction homomorphism
A(H1)→ A(H0) sends [Sr] to [Sr]. The same holds for [Sr/Sylp(Sr)] hence, we
can choose elements

{
[Sr]− | Sr |

}
and

{
[Sr/Sylp(Sr)]− | Sr/Sylp(Sr) |

}
in limL∈FI(L). The image under the structure map for the subgroup H is
[Sr]− | Sr | [H/H] and [Sr/Sylp(Sr)]− | Sr/Sylp(Sr) | [H/H]. Both elements
are in the prime ideal PK,p. Since ϕK : A(H)→ Z sends both elements to pZ,
and ϕK([Sr]− | Sr |) = − | Sr for k 6= {1}, we conclude that K = {1} or p 6= 0.
If K = {1}, then IH = P{1},0 ⊂ P{1},p. If K 6= {1}, then p 6= 0 is a prime and
ϕK([Sr/Sylp(Sr)]− | Sr/Sylp(Sr) |∈ pZ. Since | Sr/Sylp(Sr) | is prime to p,
and p divides the difference | (Sr/Sylp(Sr)K | − | Sr/Sylp(Sr) |, we conclude
that K is a p-group and PK,p = P{1},p. Hence IH = P{1},0 ⊂ P{1},p. This
finishes the proof for the case X = G/H.
Step 2 Suppose now inductively that the completion theorem is proved on
complexes of dimension at most n−1. Let X be an n-dimensional complex and
write X as the pushout

∐
G/H × Sn−1 //

��

∐
G/H ×Dn

��
Xn−1 // X

The Mayer-Vietoris sequence associated to this pushout gives rise to a situation
of the form:



4.3. FAMILIES OF FINITE SUBGROUPS IN DISCRETE GROUPS 61

. . .

��

. . .

��˘
πm−1
G (G/H × Sn−1)/IF,f (L)k

¯
k

��

λF,f (G/H×Sn−1)

// ˘πm−1
G ((EF ×G/H× Sn−1)k−1)

¯
k

��˘
πmG (X)/IF,f (L)k

¯
k

��

λF,f (X)
// ˘πmG ((EF ×X)k−1)

¯
k

��˘
πmG (G/H×Dn)/IF,f (L)k

¯
k

⊕˘
πm
G

(Xn−1)/IF,f (L)k
¯
k

��

λF,f (G/H×Dn)
⊕

λF,f (Xn−1)

//

˘
πmG ((EF×G/H×Dn)k−1)

¯
k

⊕˘
πm
G

((EF×Xn−1)k−1)
¯

k

��˘
πmG (G/H × Sn−1)/IF,f (L)k

¯
k

λF,f (G/H×Sn−1)

//

��

˘
πmG ((EF ×G/H× Sn−1)k−1)

¯
k

��. . . . . .

where we can assume inductively that the completion theorem holds for
Xn−1, G/H×Sn−1 and G/H×Dn ' G/H. The result follows from a standard
application of the 5-lemma for progroups.

Proposition 27. Let L be a l-dimensional proper G-CW complex with isotropy
in a family F of finite subgroups of G, let H be an equivariant cohomology
theory. Suppose that for r = 2, . . . , l − 1 the differential of the equivariant
Atiyah-Hirzebruch spectral sequence for L and H∗G, d0,0

r : E0,0
r → Er,1−rr van-

ishes rationally. Let H ∈ F(L), P ⊂ I(H) be any prime ideal and f : G/H → L
be any G-map. Then the image of the augmentation ideal under f is contained
in P if P contains the image of the structure map for H

φH : invlimK∈SubG,F IK → IH

Proof. It is proved in[Lüc08] using the equivariant Atiyah-Hirzebruch spectral
sequence. We recover here his main argument. The crucial point is to note
that since the differentials dr : E0,0

r → Er,1−rr vanish rationally, for any x ∈
HZOr(G)(L,H0

G(G/?)), there exists a positive integer k such that xk is contained
in the image of the edge homomorphism H0

G(L) → H0
ZOr(G),F . Consider a ∈

invlimK∈FIK let x be its image under the following composition of maps

invlimK∈FIK → H0
K({∗})

∼=→ H0
ZOrG(EF ,H0

G(G/?))
u∗→ HZOr(G),F (L,H0

G(G/?))

where the first map is unduced by the inclusions, the second one by the
canonical isomorphism and the third one by the classifying map u : L → EF .
So, there is y ∈ H0

G(L) with edge0,0 = xk. Now, since the composite
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H0
G(L)

f∗→ H0
G(G/H) indH→G→ HH({∗})

maps y to P, φh maps ak to P.



Chapter 5

The Bivariant Theory

We now extend Lück’s and the previously constructed proper equivariant coho-
mology theory to a bivariant theory. We first sketch the definitions for a discrete
group acting on proper cocompact finite CW complexes, although the general
arguments outlined in chapter 2 also can be considered here. We extend the
bivariant theory for cocompact complexes and discrete groups to infinite com-
plexes by means of straightforward generalizations of our techniques developed
around the parametrized Segal map.

5.1 Homotopy over the universal proper space.

The first construction of the bivariant theory involves finite dimensional G-
Vector bundles over the classifying space of proper actions EG. As it is well
described in the literature ([LO01b]), constructions of vector bundles over this
space can only be performed under the assumption of finiteness. We shall there-
fore suppose in this section that the group has a finite model for EG. Altough
this hypothesis is satisfied in many interesting cases (Mapping class groups,
Word Hyperbolic Groups, One Relator groups, Coxeter Groups, Cat(0)-groups,
etc.), we shall drop it out in the following section.

Loosely speaking, the idea is to use vector bundles over EG to stabilize maps
between proper G-CW complexes.

Let X be a proper cocompact G-CW complex and rX : X → EG a rep-
resentative of the classifying map. Given a finite dimensional G-vector bundle
ξ : E → EG, We form the pointed suspension along ξ, ΣξX as the space

Sξ ×
EG

X
∐

EG

with the topology whose basis is determined by the open sets of X and sets
of the shape r−1

X (W ) − K
∐
W , where W is an open set in EG and K ⊂ W

is such that rX(K) is compact in EG. We note that this space has a G-map
p : ΣξX → EG called the projection, as well as s : EG → ΣξX, called the
section such that p◦s = idEG. Slightly more general, If X, Y , Z are spaces with
a map to EG,(as it is the case of proper G-CW complexes and fibre bundles
over them), we form their product over EG as the pullback X ×

EG
Y . The one

point compactification over EG of Z, Z+ is defined to be the space Z
∐

EG with

63
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the topology whose basis is determined by the open sets of Z and sets of the
shape r−1

Z (W ) − K
∐
W , in an analogous notation to the pointed suspension

above. The reduced product over EG, X ∧EG Y is defined to be the one point
compactification over EG of the product over EG. On the other hand, given a
space with a map to EG, we can always add a disjoint copy of EG in order to
have a section. If X,Y are spaces with a projection and a section, we form the
space X ∨EG Y by identifying on X

∐
Y the corresponding sections.

Of course, if f : X → Z and g : Y → Z are section and projection preserving
maps, they determine a map f ∧EG g : X ∧EG Y → Z( if they agree on the
section), as well as a map f ∨EG g : X ∨EG Y → Z .

Let Y be a proper finite G-CW complex and ξ,µ finite dimensional G-vector
bundles over EG. A µ− ξ- stable map over EG is a map f : ΣξX → ΣµY such
that pX = pY ◦ f , sY = sX ◦ f , where the subscripts are meant to distinguish
the corresponding sections and projections.

Two maps fi : ΣξX → ΣµY are homotopic over EG if there is a map
H : ΣξX × I → ΣµY which is compatible with the sections and projections and
for which H( , i) = fi holds.

Let fi : Σξi⊕RkiX → Σξi⊕Rki+n be stable maps over EG for i = 0, 1. They
are equivalent if there are vector bundles µ0, µ1 over EG and a vector bundle
isomorphism ν : ξ0 ⊕ µ0

∼= ξ1 ⊕ µ1 such that following diagram commutes up to
homotopy over EG:

Σξ0⊕Rk0⊕µ0X
f0∧EGid//

σ1

��

Σξ0⊕Rk0+n⊕µ0Y

σ2

��
Σξ0⊕µ0⊕Rk0

X

σ3

��

Σξ0⊕µ0⊕Rk0+n
Y

σ4

��
Σξ1⊕µ1⊕Rk1

X

σ5

��

Σξ1⊕µ1⊕Rk1+n
Y

σ6

��
Σξ1⊕Rk1⊕µ1X

f1∧EGid// Σξ1⊕Rk1+n⊕µ1X

Where σ3 and σ4 are determined by the vector bundle isomorphism ν and
the other maps are determined by transposition and canonical isomorphisms.

For any n ∈ Z, we define the n-dimensional bivariant homotopy groups of X
and Y to be the set of equivalence classes of stable maps over EG of the shape
f : Σξ⊕RkX → Σξ⊕Rk+n

Y after dividing out equivalence in the previous sense
and homotopy over EG. We denote them by ωnEG(X,Y ).

Proposition 28. For any finite proper G-CW complex X, there is an in X
natural isomorphism of sets

ω∗EG(X,EG) ∼= π∗G(X)

Proof. We first illustrate this for 0-stable maps. Let f : ΣξX → ΣξEG be
a representative of an element in ωEG(X,EG). Let p : Sr

∗
Xξ → X be the

projection and note that the universal property of the pullback gives rise to a
map u : Sr

∗
X → Sr

∗
X . It is straightforward to check that u is a bundle map
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covering the identity on X, hence a representative of an element in π0
G(X).

In the other direction, let u : Sξ → Sξ be a representative of an element in
π0
G(X). After lemma 3.7 of[LO01b], there exists a vector bundle µ over EG

such that ξ is a direct summand of r∗X(µ). Hence, we can form a bundle map

Sr
∗
X(µ) → Sξ

u∧id→ Sξ → Sµ which obviously covers rX . This extends to the
one-point compactification and the assignments are compatible with homotopy
and stability conditions.

We now summarize some properties of the homotopy sets of stable maps
over EG.

Lemma 15. 1. There is an abelian group structure on ω∗EG(X,Y ).

2. There is a composition product ω∗EG(X,Y )× ω∗EG(Y,Z)→ ω∗EG(X,Z).

3. The assignment is X → ω∗EG(X,Y ) is a contravariant homotopy functor
of X.

Proof. 1. Let u : Sξ → Sξ be a map covering the identity over EG which is
fibrewise the collapse onto the basis point at infinity. Let rX : X → EG the
classifying map. The zero element is represented by a map f = u∧EG rX :
Sξ∧EGX → Sξ∧EGY . Let fi for i = 0, 1 be representatives of elements in
ωnEG(X,Y ). fi : Σξ0⊕RniX → Σξ0⊕Rni+nY . Extending the corresponding
notion for cohomotopy, We define their sum to be the map over EG which
is represented by

Σξ0⊕ξ1⊕RkX ∧EG S
R id∧EG∇→ Σξ0⊕ξ1⊕RkX ∧EG (SR ∨EG S

R) σ3→

Σξ0⊕RkX ∧EG S
R ∨EG Σξ1⊕RkX ∧EG S

R (f0∧EGid)∨EG(f1∧EGid)
→

Σξ0⊕ξ1⊕Rk+n
Y ∧EG S

R

where ∇ : SR → R ∨ R is the pinching map.

The additive inverse of an element represented by a map f is given by the
class of the composition

Σξ⊕Rk+1
X

σ1→ Σξ⊕RkX ∧EG ΣR f∧EG−id
→ Σξ⊕Rk+n

Y ∧EG S
R σ2→ Σξ⊕Rk+n+1

Y

2. It is clear.

3. It is clear.

5.2 A Parametrized Fixed Point Index

One of the most remarkable features of stable homotopy is the close interaction
with fixed point theory. It is hard to trace the authors of the first steps in this
direction, but in the modern formulation the theory is connected with the names
of Solomon Lefschetz, Heinz Hopf and Albrecht Dold. This interaction has led
to a fruitful exchange of techniques on both theories. Nonlinear analysis and
Manifold Topology are among the branches of mathematics on which notions



66 CHAPTER 5. THE BIVARIANT THEORY

of a fixed point index and methods from stable homotopy theory accelerated
interesting discoverings. We shall describe how this ideas get into our context,
in the hope of being useful and interesting for mathematicians working in other
fields.

To the knowledge of the author, the approach to parametrized fixed point
theory by equivariant methods was first outlined in the context of compact
Lie groups by Hanno Ulrich [Ulr88], [PU91]. A reference with some recent
applications is [Cra07]. We shall here present a somewhat ad-hoc approach, the
main immediate objective beeing the identification of the parametrized Segal
map constructed in this work with a parametrized fixed point index. We assume
in this section proper finiteness on the basis complexes.

Definition 25. Let X be a proper finite G-CW complex and G be a discrete
(possibly infinite) group. A fiberwise G-euclidean Neighborhood over X is a
locally trivial G-fiber bundle U over X together with a fibrewise open inclusion
U ⊂ ξ into a finite dimensional G-vector bundle over X.

A G-Euclidean Neighborhood retract over X, denoted G− ENRX is a locally
trivial G-fiber bundle M over X together with fibrewise maps i : M → U ,
r : M → U into a euclidean neighborhood over X such that r ◦ i = id.

We now describe the main object of study of parametrized fixed point theory

Definition 26. Let U ⊂ M be an open, G-invariant subset of a fibrewise
G− ENRX . and suppose f : U → M is a fibrewise G-map over X which is
compactly fixed in the sense that the fixed subset

Fix(f){x ∈ U | f(x) = x} ⊂ U

is compact and there is an open G-invariant neighborhood V of fix(f) such that
f(V ) has compact closure in M .

Definition 27. The parametrized fixed point index of a compact fixed map is
a stable map

LX(f, U) ∈ ω0
EG(X,U+)

defined explicitely as a map over EG

q : ΣξX → ΣξU+

constructed as follows

1. Step 1. By the compactness of V̄ − V , there is a real number ε such that
‖f(x)− x‖ ≥ ε for all x ∈ V̄ − V . The collapse map c : ξ → Sξ

c(v) =

{
(ε2 − ‖v‖2)−

1
2 v v ∈ V̄

∞ if v /∈ V

maps the open ball of radius ε and centre 0 homeomorphically onto ξ and
collapses the complement to the point at infinity.

2. Denote by U+ the fibrewise one-point compactification of the G-bundle
with fiber U the map q : Sξ → U+ given fiberwise by

q(x) =

{
c(x− f(x)) x ∈ V̄
∞ x /∈ V
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is proper over every point in X. It determines hence a map of one-point
compactifications over EG, q : ΣξX → ΣξU+.

We just state the following properties of the parametrized fixed point index:

Proposition 29. [PU91] Let f.U →M be a compactly fixed map over a proper
G-CW complex X. The parametrized point index has the following properties:

1. (Naturality). Let α.X → X
′

be a G map to a finite G-CW complex. Then

LX′ (α
∗f, α∗(U)) = LX(f, U)

2. (Localization). Let U
′ ⊂ U be an open G-subspace of U containing the

fixed point set of f . Then LX(f |U ′ , U
′
) maps to LX(f, U) under the map

ωEG(X,U
′

+)→ ωEG(X,U+)

3. (Additivity). Supose that U is the disjoint union of two open G-subspaces
U1 and U2. Then

LX(f, U) = (i1∗)LX(f |U1 , U1) + (i2∗)LX(f |U2 , U2)

4. (Homotopy invariance). Suppose that f : I × U → I ×M is a fibrewise
G-map over I×X with compact fixed-point set. Denote by LX(ft, U) the
restriction of f to the subspace {t} × U . Then LX(ft, U) is independent
of t.

5. (Contraction). Let p : N → M be a fibrewise G-map of G− ENRX . Let
h : U → N be a fibrewise G-map defined on an open subspace U of M .
Write V = p−1(U) ⊂ N , f = p ◦ h : U →M , g = h ◦ p : V → N as in the
following diagram:

p−1(U) = V
g //

p|
��

N

p

��
U

f
//

h

99ssssssssssss
M

Supppse that Fix(f) is compact and that h maps a compact neigborhood
of Fix(f) into a compact subspace of N . Then f and g are compactly
fixed and p maps LX(g, V ) to LX(f, U).

Remark 12 (The parametrized Segal map as a fixed point index). Indeed, the
parametrized segal map as constructed in definition 12 is a fixed point index
for the very special situation of a compact, discrete G− ENRX (=a finite G-
covering) and a map going out of a parametrized tubular neighborhood of it
into itself, giving rise to a fixed point situation which involves the retraction of
the tubular neighborhood. The fixed point sets over X can be identified with
the covering itself.
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5.3 Dropping out the finiteness condition

As it has been previously done for equivariant cohomotopy, we shall extend
the bivariant theory for arbitrary proper G-CW complexes. Our strategy for
doing this is to construct an appropiate analogon of the infinite loop space QX
associated to a space X. We generalize and conveniently modify ideas which
go back to Graeme Segal [Seg74] in the nonequivariant setting and a number of
mathematicians including Costenoble, Waner, and Hauschild among others in
the equivariant setting. Let us briefly recall Segal’s original idea in the following

Construction 1. Let Y be an unpointed space. The category of finite sets
over Y , CY has the following description. Objects are pairs (S, ϕ), where S is a
finite set and ϕ : S → Y is a bijective function. Morphisms from (S, ϕ) to (T, ψ)
consist of an injective map θ : S → T such that θ∗(ψ) = ϕ. This is a topological
category, where the space of morphisms carries the discrete topology, and the
space of objects is topologized as the configuration space C∗(X), see [Seg73].

The category of finite sets over Y has a symmetric monoidal structure de-
termined by the disjoint union in the category of finite sets and the fact that
Y S

‘
T ≈ Y S × Y T if the spaces are given the compactly generated topology.

Precisely, (S, ϕ)
∐

(T, ψ) = (S
∐
T, ϕ×ψ). Associated to this structure there

is a Γ-space MCY such that ΩBMCX ' Ω∞Σ∞Y∗. If Y is the singleton space,
then the construction above gives the first step of a proof of the Barrat-Priddy-
Quillen-Segal theorem. We remit the reader to the article [Sch07] for a further ,
more recent reference of these facts. We point out that altough the construction
does not take pointed spaces as input, the topological category of sets over Y
does have a basis point: the empty function.

As it is a leitmotiv in this work, we make this constructions equivariant by
considering categories of functors out of the transport category.

Definition 28. Let Y be a G-CW complex. The category of G-sets over Y is
the category of functors from the transport category to the category of sets over
Y . The Γ-space of G-sets over Y is the Γ-space associated to the symmetric
monoidal structure of CY , as in remark 1. In symbols

MCY (n̄) =| Fun(E(G), CY (n̄)) |

there is an action of G on this space determined by the action on the category
of functors which is described by g ·f(h) = (S, g ·ϕ), where g ·ϕ : S 7→ gf(hg−1).
Note that this Γ-space also admits integer deloopings, denoted by B and that
ΩBMCY (1) is an infinite loop space with an action of G.

Let M0(X,Y ) be the set of homotopy clases of G maps from X info the
group completion of MCY . Note that M is a contravariant, abelian group val-
ued functor of X which has the universal property of extendig transformations
into monoid valued functors (fundamental property of group completion, propo-
sition 4.1 in [Seg74]). Hence, our strategy to proof that M∗( , ) extends
ωEG( , ). if to give a natural transformation S of monoid-valued, contravari-
ant functors of X as in the following diagram, where the dotted map is given
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by the universal property of the group completion.

[X,MC(Y )(1̄)] S //

��

ωEG(X,Y )

M0(X,Y )

77oooooo

we then prove that these transformation restrict to isomorphisms on finite
proper G-CW complexes Y , X by examining the behaviour on equivariant cells
of X. Our construction is a generalization of the parametrized Segal map con-
structed before. The first step in this direction is to give a geometric interpre-
tation of maps into the corresponding Γ-space.

Definition 29. Let ϕ : S → Y be a finite set over Y . A ϕ-covering map over
X consists of

1. An | S |-sheeted, G-covering map X̃
p→ X.

2. A map ϕ̃ : X̃ → SPkY which is fibrewise the image of ϕ. that is, such
that the following diagram commutes for every x ∈ X,

S
ϕ // SPkY

p−1({x})

≈

OO

ϕ̃|p−1({x})

99ttttttttt

and Spk = Y k/Σk denotes the k−th symmetric product of Y

We shall call the set of ϕ-covering maps with varying ϕ, a covering map labeled
on Y .

ϕ, ϕ
′
-covering maps are called equivalent if there is a covering map isomor-

phism over X such that the following diagram commutes

SPk(Y )
id // SPk(Y )

X̃

ϕ
<<xxxxxxxxx

��

// X̃
′

ϕ
′

99tttttttttt

{{wwwwwwwww

X

Let X,Y be proper G-CW complexes and rX : X → EG, rY : Y → EG be
representatives of the unique G-homotopy classes. A ϕ-covering is said to be
admisible if for every s ∈ p−1({x}), ϕ(s) lies in the same connected component
of G/Y as r−1

Y ({rX(x)}).
The sum (fiberwise disjoint union) of covering maps and the symmetric

monoidal structure in CY determine an abelian monoid structure on the set
of admisible coverings labelled in Y . We shall denote this by CovY (X)
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Proposition 30. Let X and Y be proper finite G-CW complexes. The space
MCY (1) classifies admissible covering maps labeled on Y . That is, there is an
in X natural isomorphism of abelian monoids

[X,MC(Y )(1̄)] ∼= CovY (X)

Proof. Let f be a G-map X →MCY (1̄). We construct out of f a covering map
labelled on Y . Consider the functor C : CY → C{∗} induced by the collapse
map into the singleton space. Note that there is an equivalence of categories
C{∗} ∼= Set into the category of finite sets and bijections. Hence, there is an
equivariant map MCY (1)→ G−Set.

On the other hand, by pullback of a covering of the form G−Frame ×
Σ|S|

S → G−Set, we constructed previously a G-covering over X. Now note that ϕ
determines a map ϕ̃ as in the following diagram

X̃

��

// G−Frame ×
Σ|S|

S

��

ϕ̃ // SpkY

X // G−Set

The covering map X̃ equipped with the map X̃ → SPkY described above de-
termines a covering map labelled in Y which only depends on the G-homotopy
class of f .

Proposition 31. Let X, Y be proper, cocompact G-CW complexes. There is
an in X natural morphism of abelian monoids CovY (X)→ ω0

EG(X;Y )

Proof. Consider an admissible ϕ-covering over X with total space X̃. Let us
recall after lemma 3 the existence of a vector bundle ξ over EG such that X̃ → E
covers injectively the classifying map rX (Lemma 3 gives a vector bundle over
X and, one can push it forward into a summand of a vector bundle over EG
by means of lemma 3.7 of[LO01b]. Denote by {y1, . . . , yk} the image of ϕ. The
i-stratum X̃i of X̃ consists of the points which are fibrewise mapped onto yi.
Note that X̃ is fibrewise decomposed over its strata. By conveniently choosing
the embedding into the vector bundle, one can choose vector bundles Ei such
that X̃i injectively lies on Ei with disjoint images. Let s : X̃ → ξ =

⊕
i

Ei be a

stratified embedding as described. Choose a G-invariant riemannian metric on
ξ and a tubular neighborhood Uε(X̃) of the image of the embedding adequate
for considering a collapse situation.

Consider now the map Sr
∗
XξX

∧iEGθi→ Sr
∗
Y ξY which is given on the stratum

Ei as the map (x, v) 7→ (yi, θSi(v)) for the collapse map θSi of the embedding
of X̃i → Ei.

This determines a stable map ΣξX → ΣξY , which is well defined after
considering homotopy classes of maps over EG. It is additive by a careful
fibrewise examination which runs parallel to lemma 5.

We now examine the behaviour on equivariant cells. Of course, this is a
special case covered by the following slightly more general
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Proposition 32. Let H be a finite subgroup of G. Let X be space with a
trivial action of H. Then, for every G-CW complex Y , there is an isomorphism

[X ×G/H,ΩBMCY ]G ∼= [X,Q(Y )]H

where Q(Y ) denotes the H-space obtained as the colimit over a cofinal set of
representations of the H-equivariant mapping spaces Map∗(SV , SV ∧ Y+), and
Y has the action given by the restriction to H.

Proof. We first recall that from our remarks on functors going out of transport
and grupoid categories, lemma 1, the left hand side admits a decription as
[X, | Fun(BH, CY ) |]H . We note that giving a functor out of the grupoid category
amounts to give an object of CY with a conveniently defined action of the finite
group H. That is, we have H → Auto(S, ϕ). It follows that we can identify
such a functor with a finite H-set and a map to Y -defined on the finite set-
which is compatible with the action. That is to say, the map takes values into
the H-fixed point set. We shall calll such objects a finite H-set over Y . The
geometrical realization has the homotopy type of∐

S,ϕ

BAutoS,ϕ

where S, ϕ runs over the isomorphism classes of finite H-sets over Y . As before,
given an H-set S, we look at its decomposition into orbits of the type H/Ki

and write S =
∐
niH/Ki in what we expect is a natural notation. We consider

now an H universe, V∞, as definied in the proof of proposition 4. For the same
reason there -the equivariant version of the Whitney embedding theorems-, the
space of equivariant embeddings EmbH(H/K, V∞) is a model for the classifying
space of the Weyl group of K in H, in symbols

EWK,H 'H EmbH(H/K,V∞)

On the other hand, for every map ϕ : S → Y , evaluation at the identity coset
gives a map

Map(niH/Ki, V
∞) ≈

∏
i

Map(H/Ki, V
∞)

ϕ−→
∏
i

Y Ki

which we denote by ϕi. By means of this we can identify∐
S,ϕ

BAutoS,ϕ '
∐
n

∐
K

Emb(nH/K, V∞) ×
(WK,H)noΣn

(Y K)n

Now, up to homotopy, given an embedding of
∐
niH/Ki in V∞, we can

choose finite dimensional, WKi,H -invariant subspaces Vi such that niH/Ki ⊂ Ui
for a neighborhood which is suitable for constructing a collapse map Si : SVi →
SVi . We now form the WK,H -equivariant map τi : SVi → SVi ∧ Y Ki+ defined by

x 7→

{
∞ v ∈ V i − Ū or v =∞
S(v) ∧ ϕi(eH) v ∈ U

This factors trough the quotient determined by EmbH(H/K, V∞) × Y K →
Emb(H/K, V∞) ×

WK,H

Y K and thus gives a map into the equivariant stable

WK,H -maps as follows
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| Fun(BH, C(Y ) |→
∏
K

{{∗},EWK,H ×
WH,K

YK}WK,H

To resume, we get a map

[X, | Fun(BH, C(Y )) |]H
α→
∏
K

[X,QWH,K
(EWK,H ×

WK,H

YK)]

The map α determines a transformation of contravariant functors between a
monoid valued and a group valued functor, thus factoring out trough our group
completion. Hence, from the universal property of the group completion, the
map α̃ in the following diagram is an isomorphism

[X, | Fun(BH, C(Y )) |]H //

��

∏
K [X,QWK,H

(EWK.H ×
WK,H

YK)] ∼= [X,QHY]H

[X,ΩBMC(Y )]H

α̃

33ggggggggggggggggggggg

Where the right upper isomorphism is obtained by a splitting result for finite
groups, for instance Theorem 2.1 p. 206 in [May96].

Since both theories agree on cells, and every finite G-CW complexes is ex-
hausted after a finite number of cell attachments, we have the following

Theorem 14. The natural transformation

[X,ΩBMC(Y )(1̄)]G → ω0
EG(X,Y )

consists of isomorphisms in the category of finite G-CW complexes.

We examinate now the behaviour of the functor MC(X) in subspaces . The
following technical result is crucial in order to verify that this construction
defines an equivariant homology theory being dual to equivariant stable coho-
motopy.

Lemma 16. 1. Let (X,A) be a G-CW pair. The identification map X
p→

X/A induces a continuous functor MC(A) → MC(X)
p→ MC(X/A). For

any subgroup H ⊂ G, the functor restricts to a quasifibration on the
H-fixed point space of objects MH

C(X) →MH
CX/A with fiber MH

CA .

2. The functor p∗ induces a quasifibration at the leves of fixed points of
classifying spaces. |MC(A) |H→|MC(X) |H→|MC(X/A) |H

3. The functor p∗ induces a long exact sequence of fixed point sets after
performing group completion ΩB of the Γ-space structure associated with
the category of sets over X.

Proof. 1. Using a well known chriterion due to Waner [Wan80](Proposition
2.7), It amounts to find a G- filtration of distinguished sets Ui of the space
MCX , in the sense that The map p∗ : π∗(p−1(Ui), p−1({x}), y)→ π∗(Ui, x)
is an isomorphism for any H. and for any i, there is a G-invariant open
subset U of Ui containing Ui−1 together withG- homotopies h : U×I → U ,
H : p−1(U)× I → p−1(U) for which :
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• h0 = id, ht(Ui−1) ⊂ Ui−1, h1(U) ⊂ Ui−1

• H0 = id and H covers h.

• H1 restricts to a weak Gb-equivalence p−1(b)→ p−1(h1(b) for any b.

Recall [Lüc89], lemma 1.10 that A is an equivariant G- deformation retract
of some G-invariant open neighborhood Ũ of A. For any natural number
or zero, Let M i

CX be the collection of finite sets labbelled over X, for
which the image of x : S → X has cardinality less or equal to i. define
V = M i

CX/A − M i−1
CX/A the map p−1(V ) → V × MCA is an equivariant

homeomorphism, as it is the case for any open, G-invariant subset. Let
V ′ be the subset of M i

CX for which the map p maps at least one point into
p(Ũ). V

′
is a G- neighborhood deformation retract in Mn

CX/A . The set

V
′

is also distinguished using a similar argument. As V , V
′

, V
′ ∩ V are

distinguished, so is V
′ ∪ V = M i

CX . for any i. The sets U are constructed
using a Neighborhood deformation retract of A, as well as the homotopies
h and H, which satisfy the three requirements above..

2. We use for this theorem B of Daniel Quillen, see [Qui73]. We recall that
this result constructs a long exact sequence of homotopy groups of classi-
fying spaces of categories (as desired here) out of certain assumptions on
a functor.

We quickly indroduce the notation needed in this setting. If f : C → C
′

is a functor, and c is an object in c
′
, then the category of objects over c,

denoted by c/f has as objects pairs (d, e), where d is an object in c and
e : c → f(e) is a morphism. A morphism between (d, e) and (d

′
, e
′
) is a

morphism in C, w : d→ d′ such that f(w)(e) = e
′
.

We have to verify that for every morphism (T, ϕ) θ→ (T
′
, ϕ
′
) in WC(X/A),

the functor p∗ : (T
′
, ϕ
′
)/p∗ → (T, ϕ)/p∗ induces a homotopy equivalence

of classifying spaces. This is achieved by an application of theorem A
[Qui73], which is in fact a particular case of theorem B. That is, for
every object (S, ψ) in the category (T, ϕ)/p∗, and any morphism θ∗ in
this category, the category (S, ψ)/θ∗ is filtering. We begin with this fact.
Let (T1, η1, θ1) and (T2, η2, θ2) be elements in (S, ψ)/p∗ and assume that
θ1,2 : (T1, η1, θ1) → (T2, η2, θ2) is a morphism. Note that, by definition,
θ∗i : p∗(ϕ) → ϕ is an isomorphism induced by the isomorphism of sets
T1, T2, and the same occurs for θ1,2. The object (S, ϕ, id) ∈ (S, ϕ)/p∗
has maps induced by isomorphisms of sets (Ti, ηi, θi) → (S, ϕ, id). If
θi : (T, η, τ) → (U, δ, ρ) are two morphisms with common domain and
range, then by definition of the category there exists an isomorphism of
sets ξ : U → S such that ξθ1 = ξθ2. This finishes the proof that the
category is directed, and hence filtering, Hence, theorem B applies and
gives the result.

3. This is now easier in view of part 2., since the delooping BMC(X)(1) is
defined to be the composite of

• Shift of the Γ-space structure: S 7→MC(X)(1× S).

• Thickening τ of the simplicial set M·.
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• Geometric realization of the thickened and shifted Γ-space | τMC(X) |.

The first part is clear to be true, second part follows from examination of
the simplicial structure, the third one is Consequence of part 2. Finally,
this commutes with fixed point sets because the fixed point sets are also
Γ-spaces, and with the loop functor by obvious reasons(the long exact
sequence only gets shifted).

Definition 30 (Equivariant Stable homotopy groups). Let (X,A) be a proper
G-CW pair. Define the equivariant stable homotopy groups as πn(ΩBMC(X∪ConeA)(1))
if n ≥ 0 and π1(ΩBn+1MC(X∪ConeA)

We recall the axiomatic description of an equivariant homology theory as
given in [LR05].

Definition 31. Let G be a group annd fix an associative ring with unit R. A
G-homology theory with values in R-modules is a collection of covariant functors
HGn indexed by the integer numers Z from the category of G-CW pairs together
with natural transformations ∂nG : Hn(X,A)→ HGn−1(A) := Hn−1(A, φ), such
that the followinaxioms are satisfied:

1. If f0 and f1 are G-homotopic maps (X,A)→ (Y,B) of G-CW pairs, then
HGn (f0) = HGn (f1) for all n.

2. Given a pair (X,A) of G-CW complexes, there is a long exact sequence

. . .
HGn+1(j)
→ HGn+1(X,A)

∂Gn+1→ HGn (A)
HGn (i)→ HGn (X)

Hn(j)→ HGn (X,A)
∂Gn→ HGn−1(A)

HGn−1(i)
→ . . .

where i : A→ X and j : X → (X,A) are the inclusions.

3. Let (X,A) be a G-CW pair and f : A → B be a cellular map. The
canonical mal (F, f) : (X,A)→ (X ∪f B,B) induces an isomorphism

HGn (X,A)
∼=→ HGn (X ∪f B,B)

.

4. Let {Xi | i ∈ I} be a family of G-CW -complexes and denote by ji : Xi →∐
i∈I Xi the inclusion map. Then the map ⊕i∈IHGn (ji)

⊕i∈IHGn (Xi)
∼=→ HGn (

∐
i

Xi)

is bijective for each n ∈ Z.

An equivariant homology theory consists of a family of G-homology theories
HG∗ together with an induction structure

HH
n (X,A) ∼= HGn (indα(X,A))

for group homomorphisms α : H → G whose kernel acts freely on X satisfying
the following conditions:
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1. For any n, ∂Gn ◦ indα = indα ◦ ∂Gn .

2. For any group homomorphism β : G → K such that kerβ ◦ α acts freely
on X, one has

indα◦β = HKn (f1 ◦ indβ ◦ indα) : HHn (X,A)→ HKn (indβ◦α(X,A))

where f1 : indβ indα → indβ◦α is the canonical G-homeomorphism.

3. For any n ∈ Z, any g ∈ G , the homomorphism

indc(g):G→GH
G
n (X,A)→ HGn (ind)c(g):G→G(X,A))

agrees with the map HGn (f2), where f2 : (X,A)→ indc(g):G→G sends x to
(1, g−1x) and c(g) is the conjugation isomorphism in G.

Theorem 15. πG∗ (X,A) defines an equivariant homology theory in the sense
of [LR05]

Remark 13 (An Approach via OR(G)-spectra.). As stated in [LR05], in or-
der to construct a G-Homology theory, it is necessary to construct a covariant
functor from the orbit category to the category of spectra. Due to theorem 7.4
of [DL98], This is consistent with the approach used here, by considering the
functor

G/H 7→ ΩBMCG/H

Remark 14. Our definition of equivariant homology theories is crucially dif-
ferent from others in the literature, especially from that one in [May96]. We
make no assuptions of our theory being RO(G)- graded( which amounts to finer
equivariant deloopings of the Γ-space with an action MCX which we construct
here). The analogon of proposition 32 is not expected to be true for more general
topological groups (even Lie). See [Blu06] for all these issues.
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Chapter 6

Noncommutative Geometry

Noncommutative geometry arose as an ambitious generalization of the methods
and crucial questions of topology. This discipline, which was developed in the
last decades by Alain Connes, Israil Geĺfand, Gennadi Kasparov, Paul Baum and
several other mathematicians deals with the interaction of functional analysis,
topology, differential geometry and K-theory. The author of this work admires
this ideas and being from his education a topologist, would like to do a modest
contribution to this vaste and diverse field of research.

As this work which does not deal until here with the methods of operator
theory, we present some account of basic methods and techniques of noncom-
mutative topology

Definition 32. 1. A complex Banach algebra is a C-algebra which (with the
same C-linear structure is a complete normed vector space such that the
norm satisfies

‖xy‖ ≤ ‖x‖‖y‖

2. A C∗-algebra is a complex Banach Algebra A with an involutive antiau-
tomorphism ∗ such that the following is true:

‖xx∗‖ = ‖x‖‖x‖
We are mainly interested in operator theory methods as a non trivial exten-

sion of topology. This is certainly explained in the following classical and today
basic result:

Theorem 16 (Gel’fand- Naimark). Let A be an abelian, σ-unital C∗-algebra
and let a ∈ A. Denote by ˆ : A → C0(Â) the function representation of A,
characterized by the fact that â(ρ) = ρ(a).

Then, there exists an isometric ∗-homomorphism inverse to ˆ

C : C0(Â) −→ A

called the functional calculus with respect to a. It is unique with the property
that C(i) = a, where i : Spec(a) → C0(Â) is the map which maps identically
an element of the spectrum to itself. Both the function representation and
the functional calculus are natural and give rise to an equivalence of categories
between the category of locally compact hausdorff spaces and the category of
commutative C∗ -algebras. .

77
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6.1 Preliminaries on proper C∗-algebras

The notion of a proper group action is at the same time a leitmotiv and a
motivation in this work. We give an account of different notions of properness
for C∗-algebras with an action of a locally compact group.

A good reference in generalized notions of proper actions on C∗ algebras is
[Mey01].

Extending directly the notion for spaces as in [Pal61] via the Gel’fand-
Naimark Theorem leads to the notion of a spectrally proper C∗-algebra. This
concept is too rigid for our purposes. On the other extreme, the notion of square
integrable action on a C∗-algebra is the laxest generalization allowing the use
of techniques from the theory of Hilbert modules. We do not deal with this
generalization in this work and remit to [Mey01] for the definition and the com-
parison with other notions, as well as examples showing that they do not agree
in general.

The notion of properness we deal with arose in connection with the devel-
opement of equivariant KK-theory. It can be morally thought as a precise
formulation of the intuition that a proper C∗-algebra is pretty much like the
algebra of functions in a proper G-space.

Definition 33. 1. Let X be a locally compact, Hausdorff G-space. X is
called proper if the map X ×G→ X ×X x 7→ (gx, x) is proper.

2. Let A be a C∗-algebra with a strongly continuous action of G (briefly: a
G-C∗ algebra). A is spectrally proper if the states space Â is proper as a
G-space.

3. Let A be a G-C∗ algebra. Recall that the multiplier algebra of A, [Bla98],
p.103 is defined as the smallest unital algebra containing A as an essential
ideal. A G-C∗ algebra A is proper if there is a proper space X and an
essential ∗-homomorphism into the center of the multiplier algebra of A.

C0(X)→ Z(M(A))

Proposition 33. Let A be a proper G-C∗ algebra. There is a canonical ∗-
homomorphism φ : C0(EG) → L(A), which allows to form the tensor product
A⊗φ C0(X) for any space X with a proper G-map X → C0(EG).

Proof. Suppose A ⊂ L(H) for some Hilbert space. then a concrete model for
the multiplicator algebra is given as

M(A) = {m ∈ L(H) | ma, am ∈ A∀a ∈ A}

Of course, the map C0(EG) 3 x 7→ Z(M(A)) ⊂ L(H) restricts to a ∗-ho-
mo morphism into L(A). We now briefly recall the construction of the spatial
tensor product. For more details on this, see [Bla98], [Lan95]. Consider a
faithful representation π

′
: C0(X) → L(H

′
) and denote by π : A → L(H)

the a above mentioned faithful representation. Consider the tensor product of
representations π �ϕ π

′
: A � C0(X) → L(H ⊗ H

′
). and define the tensor

product to be the completion of A � C0(X) with respect to the spatial norm
t 7→ ‖π�π′(t)‖. In fact, under additional choices there is a structure of Hilbert
C0(EG)- module on this C∗ algebra. We warn, however, that the topology is
not determined by this structure and will not explote this fact.
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6.2 Asymptotic homomorphisms

Mapping cones and reduced suspensions of topological spaces are elementary
though fundamental tools of homotopy theory. Their convenient interaction
in a long exact sequence of homotopy sets can be considered as the birth of
homotopy theory and is at the same time the fundamental notion which is
developed in further broad-reach generalizations like triangulated categories.

Unexpected problems arise when trying to extend to the noncommutative
setting the long exact sequence involving cones and suspensions. This was first
noticed in research around the properties of the Kasparov bivariant functor
[Ska91], and is a purely operator theoretical phenomenon, in the sense that we
do not know an analogous complication in the topology of CW -complexes.

One of the theoretical solutions to this problem was the definition of E-
theory. Imprecisely, it could be seen as a homotopy theoretical refinement of
Kasparov theory. The fundamental difference of E-theory in comparison with
other homotopy theoretical-approaches to bivariant theories is the substitution
of ∗-homomorphisms by a coarser notion, the so-called assymptotic homomor-
phisms. A good intuition to this point is to think about “∗-homomorphisms
at infinity”. For the reader coming from operator theory, the author would
like to say that assymptotic homomorphism are a convenient way of allowing
generalized morphisms which appear, for instance, after the use of approximate
units.

Definition 34. [GHT00] Let A, B be G-C∗- algebras. Denote by TB the C∗-
algebra of continuous,G-continuous bounded functions from the locally compact
space T = [1,∞) to B. Let T0B be the ideal in TB consisting of the funcions
from T to B which vanish in norm at infinity. The assymptotic algebra of
B, A(B) is defined to be the quotient TB/T0B. An equivariant assymptotic
homomorphism from A to B is an equivariant ∗-homomorphism from A to the
assymptotic algebra AB.

Notice that there is a ∗-homomorphism αB : B → AB which assigns to b ∈ B
the class in AB of the constant function t 7→ b. Of course, the construction A
is functorial.

An assymptotic homomorphism ϕ : A → AB determines after choice of
a section to Cb([1,∞), B) → AB a family of continuous, bounded functions
{ϕt : A → B}t∈[1,∞) , satisfying that for any a, a

′ ∈ A and λ ∈ C the limit at
infinity of the expressions

ϕt(a)∗ − ϕt(a∗)

ϕt(a) + λϕt(a
′
)− ϕt(a+ λa

′
)

ϕt(a)ϕt(a
′
)− ϕt(aa

′
)

is zero in norm. When needed, we shall call such a family an associated
family to the assymptotic homomorphism ϕ.

Composition and homotopy notions for assymptotic homomorphisms is a
tecnically delicate question. There exist very simple examples showing that the
composition of assymptotic homomorphisms is not an assymptotic homomor-
phism. One approach to this problem -the original followed by Connes and
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Higson in their foundational work [CH90]- is an operator theoretical alteration
of the morphisms. We rather follow an alternative solution, due to Guentner,
Higson and Trout [GHT00], which can be thought of a categorical, rather than
operator theoretical substitution. We point out that we only deal with this
notions in connection with homotopy.

Definition 35. Let A, B be G-C∗ algebras. The interval over B, IB is the
C∗-algebra which consists of the continuous functions f : [0, 1] → B. Denote
by An the n-fold composition of the functor A with itself. Two equivariant
∗-homomorphisms ϕ0, ϕ1 : A → AnB are called n-homotopic if there is an
equivariant ∗-homomorphism ϕ : A→ AnIB whose evaluation at the endpoints
gives the ϕi. We shall denote by [A,B]n the homotopy classes of equivariant
∗-homomorphisms from A to AnB.

Let αB : B → AB be the homomorphism described in definition 34. Note
that given an equivariant ∗-homomorphismA

ϕ→ AnB one can form the composi-

tion A
ϕ→ An

An(αB)→ An+1B We obtain by this mean a map [A,B]n → [A,B]n+1

Definition 36. Let A, B be G-C∗ algebras. The homotopy set of equivariant
assymptotic homomorphisms from A to B, denoted by [A,B] is defined as the
colimit of the following diagram of sets

[A,B]0 → [A,B]1 → [A,B]2 → . . .

We summarize in the following result the advantages of considering homo-
topy classes of assymptotic homomorphisms. We remark that the proofs can be
found in chapters 2 to 5 of the excellent exposition [GHT00].

Proposition 34. 1. Let A, B, C be G-C∗ algebras. Given an equivariant
∗-homomorphisms ϕ : A : AjB, ψ : B → AkC, the construction

A
ϕ→ AjB

Aj(ψ)→ Aj+kC

defines an associative product

[A,B]× [B,C]→ [A,C]

2. Denote by D ⊗ A the maximal tensor product of D and A. There is
a functor from the category of G-C∗ algebras which assignes D ⊗ A to
the G-C∗-algebra D. and which assigns to a morphism A → AjB the
composition

D ⊗A 1⊗ψ→ D ⊗ AjB
ij→ Aj(D ⊗B)

where ij denotes the morphisms constructed inductively as the composi-
tion:

D ⊗ AjB
i→ A(A⊗ Aij−1) A(ij−1)

→ Aj(D ⊗B)

and i : D ⊗ AC → A(D ⊗ C) is the map determined from the fact that
the maximal tensor product is an exact functor.

3. The corresponding statement for 2. is true if one considers the maximal
tensor product A⊗D. This construction is associative, in the sense that
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for every pair of morphisms ϕ : A1 → A2, ψ : B1 → B2 in the homotopy
category of assymptotic morphisms, the compositions

A1 ⊗B1
ϕ⊗id→ A2 ⊗B1

id⊗ψ→ A2 ⊗B2

and
A1 ⊗B1

id⊗ψ→ A1 ⊗B2
ϕ⊗id→ A2 ⊗B2

are equal in the homotopy category of assymptotic homomorphisms.

As we mentioned, the fundamental contributions of assymptotic homomor-
phisms are focused around the construction of exact sequences involving map-
ping cones and suspensions. We recall briefly the corresponding definitions

Definition 37. 1. Let B be a G-C∗ algebra. The suspension of B is the C∗

algebra

ΣB = {f : [0, 1]→ B | f is continuous and f(0) = 0 = f(1)}

endorsed with the obious action of the group G. Of course, the operation
of suspension is a functor, and slightly more generally, an equivariant ∗-
homomorphism A→ AnB induces an equivariant ∗-homomorphism ΣA→
ΣAnB.

2. Let θ : B → A be an equivariant ∗-homomorphism betweenG-C∗ algebras.
The mapping cone Cθ of θ is the G-C∗ algebra

Cθ = {b⊕ f ∈ C0([0, 1), B)⊕A | θ(b) = f(0)}

furnished with the obvious G-action. There exist ∗-homomorphisms

α : Cθ → B β : ΣA→ Cθ

defined by α(b⊕ f) = b and β(f) = 0⊕ f .

The following is a fundamental though technical result:

Proposition 35. Given a short exact sequence of separable G-C∗-algebras

0→ J → B
π→ A→ 0

and an approximate unit {ut}t for J ⊂ B, there is an assymptotic morphism
σ : A→ AJ such that for any associated family {σt}, any set theoretical section
(not necesarilly equivariant) s : A→ B of the quotient map and any f ∈ Σ and
a ∈ A, the limit when t tends to infinity of the difference σt(f ⊗ x)− f(ut)s(a)
is zero .

We use it mainly in the form of the following consecuences, stated in [GHT00],
proposition 5.14. and 5.16.

Proposition 36. Let π : B → A be a surjective ∗-homomorphism and denote
by J its kernel. Let π1.CB → Cπ be the morphism given by f 7→ (f(0), π(f)).
Let σ : ΣCπ → AΣJ be the assymptotic homomorphism obtained from applying
proposition 35 to the sequence 0→ ΣJ → CB

π1→ Cπ → 0. Then, σ is an inverse
in the homotopy categoy of assymptotic homomorphisms to the inclusion ∗-
homomorphism Στ : ΣJ → ΣCπ
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Corollary 2. Let θ : B → A be an equivariant ∗-homomorphism and let D be
a G-C∗-algebra. The sequence of pointed sets

[D,Cθ]
α∗→ [D,B] θ∗→ [D,A]

is exact

The following result summarizes some technical facts concerning the relation-
ship of homotopy classes of assymptotic homomorphisms and the rigid, classical
notion of homotopy.

Proposition 37. Let A, B G-C∗ algebras.

1. If A is a separable C∗ algebra, then the map

[A,B]1 → colim[A,B]n

is an isomorphism.

2. Suppose that A is a separable nuclear G-C∗ algebra such that the space
of states Â is a G-absolute neighborhood retract (G-ANR). Then, the
canonical map

[A,C0(Y )]0 → [A,C0(Y )]1

is an isomorphism for any locally compact metrizable G-space Y . In par-
ticular, the notions of equivariant homotopy for ∗-homomorphisms and
assymptotic homomorphisms agree.

Proof. 1. This is the content of Theorem 2.16 in page 15 of [GHT00].

2. We adapt some arguments due to Marius Dădărlat from proposition 16
of [Dăd94]. Our aim is to show that the map αC0(Y ) : [A,C0(Y )]0 →
[A,C0(Y )]1 is an isomorphism. The equivalence of an arbitrary equiv-
ariant assymptotic homomorphism ϕ : A → AB with an equivariant ∗-
homomorphism is reached in a number of steps:

• Choose an associated assymptotic family {ϕt}t∈[1,∞). Since A is
nuclear, we can use a completely positive, contractive approximation
of idA to produce a completely positive , linear and contractive map
ϕ̃ : Cb([1,∞), C0(Y )), where b stays for boundedness. Construct
a map with values on completely positive, linear G-invariant maps
f : (1,∞)× Y → CP (A,C) by (t, y) 7→ ϕ̃(a)(t)(y).

• For any G-invariant neighborhood V of Â in CP (A,C), there ex-
ists t0 such that f(t, y) ∈ V for t ≥ t0. This follows from the fact
that CP (A,C)−U is compact ( since CP (A,C) is a weak*-compact
subset of the dual Banach space A∗). Suppose that there is a se-
quence (tn, yn) with tn → ∞ such that f(tn, yn) ∈ CP (A,C) − U .
By compactness, one can assume convergence to an element h ∈
CP (A,C) − Â. But on the other side, h must be an equivariant
∗-homomorphism, since ϕ is an equivariant assymptotic homomor-
phism.
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• Since Â is a G-ANR, there is an equivariant retraction r : U → Â
from some invariant neighborhood in the space of completely pos-
itive elements. The composition r ◦ f defines fon any t ≥ t0 a ∗-
homomorphism ψ : A → Cb([1,∞), Y ). In particular, ψ |t0 : A →
C0(Y ) is a *-homomorphism. This is well defined at the level of
homotopy classes, for if t ≥ t0, the map Ht(a)(s) = ψ(1−s)+ts is a
homotopy from ψ |t0 to ψ |t.

• We now show that αC0(Y )ψ |t0 determines the same assymptotic
morphism as αC0(Y )(ϕ). Since A is separable, we can assume the
existence of a G-invariant metric d on CP (A,C). So we are done if
we are able to show that

lim
t→∞

sup
y∈Y

d(f(t, y)ψ(t, y)) = 0

In order to do this, we find a sequence of invariant neighborhoods
Ui of Â in CP (A,C) with d(α, rα) < 1

i for all α ∈ Ui. We can
construct a sequence ti of real numbers diverging to infinity such
that d(f(t, y), ψ(t, y)) ≤ 1

i for t ≥ ti, from where

lim
t→∞

sup
y
d(f(t, y), ψ(t, y)) = 0

follows.

• If ϕ and ψ are ∗-homomorphisms which are homotopic as assymptotic
homomorphisms and H is a homotopy between them, we can form
as previously a map T such that for s 7→ T (t)(s) is a G-homotopy of
∗-homomorphisms for t big enough.

6.3 A bivariant homotopy theory for proper al-
gebras

We restrict now ourselves in this section to discrete groups which have a cocom-
pact model for the classifying space of proper actions EG. As above mentioned,
mapping class groups, word hyperbolic groups, one relator groups and Cat(0)-
groups are among possible examples. The point of this restriction is to ensure
the existence of finite dimensional vector bundles, which was the starting point
of Lück’s notions and our bivariant modification of it.

Let ξ : E → EG be a finite dimensional complex G-vector bundle. Let Sξ

be the total space of the locally trivial bundle which is fiberwise the one point
compactification. Notice that the projection Sξ → EG is a proper map, since a
locally trivial fibration of compact fiber. Hence, there exists a ∗-homomorphism
C0(EG)→ C0(Sξ).

Let now A and B be proper G-C∗-algebras. As a consequence of lemma 33, it
makes sense to form the tensor products of G-Hilbert modules A ⊗

C0(EG)
C0(Sξ)

and B ⊗
C0(EG)

C0(Sξ), denoted ΣξA, respectively ΣξB. Notice that we still
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have G-C∗ algebras, so we can form the set of homotopy classes of equivariant
assymptotic homomorphisms

[ΣξA,ΣξB]

Given a finite dimensional G-vector bundle ζ, we consider the zero inclusion
i : ξ → ξ⊕ ζ and the canonical projection p : ξ⊕ ζ → ξ, which determine a map
as follows:

MorA[A ⊗
C0(EG)

C0(Sξ), )B ⊗
C0(EG)

C0(Sξ)]

[id⊗C0(EG)id,A(id⊗C0(i))]
−→
MorA[A ⊗

C0(EG)
S(ξ⊕ζ), B ⊗

C0(EG)
S(ξ⊕ζ)]

which we denote at the level of homotopy sets as ∧id, in remembrance of its
classical origin:

[ΣξA,ΣξB] ∧id→ [Σξ⊕ζA,Σξ⊕ζB]

Two assymptotic homomorphisms ΣξiA → ΣξiB for i = 0, 1 are said to
be stably equivalent if there exist finite dimensional vector bundles µi and an
isomorphism ν : ξ0 ⊕ µ1 → ξ1 ⊕ µ1 such that they are mapped up to homotopy
of assymptotic homomorphisms as in the following diagram:

[Σξ0A,Σξ0B] ∧id // [Σξ0⊕µ0A,Σξ0⊕µ0B]

∼=ν∗

��
[Σξ1A,Σξ1B] ∧id // [Σξ1⊕µ1A,Σξ1⊕µ1B]

Definition 38. Let A, B be proper G-C∗ algebras with an action of a discrete
group G with a finite model for EG. let n ∈ Z. The bivariant homotopy
groups in degree n, FnG(A,B) are defined to be the set of equivalence classes of
assymptotic homomorphisms of virtual difference n. In symbols

FnG(A,B) = [Σξ⊕RkA,Σξ⊕Rk+n
B]� ∼

Let us justify now the assumption that Fn defines a group. Denote by
C(∇) : C0(R) ⊕ C0(R) → C0(R) the pinching map. The sum of the homotopy
classes of two assymptotic homomorphisms f1, f2 from ΣξA to ΣµB is defined
as follows. We begin with the element

f0 ⊗ id
⊕
f1 ⊗ id ∈

Mor(A ⊗
C0(EG)

C0(Sξ)⊗ C0(R),

A(B ⊗
C0(EG)

C0(Sµ)⊗ C0(R))
⊕

A(B ⊗
C0(EG)

C0(Sµ)⊗ C0(R))

We define their sum to be the element which is determined by its image
under the following secuence of maps:
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[A ⊗
C0(EG)

C0(Sξ)⊗ C0(R),

A(B ⊗
C0(EG)

C0(Sµ)⊗ C0(R))
⊕

A(B ⊗
C0(EG)

C0(Sµ)⊗ C0(R))]
∼=−→

[A ⊗
C0(EG)

C0(Sξ)⊗ C0(R),

A(B ⊗
C0(EG)

C0(Sµ)⊗ C0(R)
⊕

B ⊗
C0(EG)

Sµ ⊗ C0(R))]
∼=−→

[A ⊗
C0(EG)

C0(Sξ)⊗ C0(R),A(B ⊗
C0(EG)

Sµ ⊗ (C0(R)
⊕

C0(R))]
A(id⊗C(∇)⊗id)−→

[A ⊗
C0(EG)

C0(Sξ)⊗ C0(R),A(B ⊗
C0(EG)

C0(Sµ)⊗ C0(R))]

Here are some explanations. The first isomorphism is given by the isomorphism
A(E) ⊕ A(F ) ∼= A(E ⊕ F ), cf. lemma 2.5 in [GHT00], while the second one is
given by the distributivity of the tensor product with respect to sums. .

Theorem 17. Let X and Y be finite, proper G-CW complexes for a discrete
group G with a cocompact model for the classifying space of proper actions.
The canonical Gel’fand-Naimark correspondence induces an isomorphism

C : ωnEG(X,Y ) −→ Fn(C0(Y ), C0(X))

Proof. Let f : ΣξX → Σµ(Y ) be a representative of an element in ω0
EG(X,Y ).

Since f is a fibred continuous map, the naturality of the Gelfand transformation,
theorem 16 gives a ∗-homomorphism C(f) : C0(ΣµY )→ C0(ΣξX). We consider
the composition with the canonical map α : C0((ΣξX) → A(C0(ΣξX)) and
obtain by this means a well defined map

[ΣξX,ΣµY ]EG → [C0(Sµ ∧EG Y ), C0(Sξ ∧EG X)]1

where the 1 stays for homotopy of assymptotic homomorphisms. Since the
spaces involved are in particular ANR’s, and the algebras involved are commu-
tative, part 1. and 2. of proposition 37 allows the substitution of this by homo-
topy classes of equivariant ∗-homomorphisms [C0(Sµ ∧EG Y ), C0(Sξ ∧EG X)],
which can canonically be identifyied with [ΣµC0(Y ),ΣξC0(X)] as defined for
proper C∗-algebras.
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Prüfungen:

Diplom im Fach Mathematik am 13.9.2005 an der Nationaluniversität von
Mexiko.
Tätigkeiten:

1.9.2004-1.92005 Hifskraft. Nationaluniversität von Mexiko

seit 1.4.2006 Stipendiat des CONACYT-DAAD

Beginn der Dissertation:

1.4.2006 am Mathematischen Institut. betreuer: Prof.Dr. W.Lück


