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2007





Mathematik

`1-Homology and Simplicial Volume

Inaugural-Dissertation
zur Erlangung des Doktorgrades

der Naturwissenschaften im Fachbereich
Mathematik und Informatik

der Mathematisch-Naturwissenschaftlichen Fakultät
der Westfälischen Wilhelms-Universität Münster

vorgelegt von
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Tag der mündlichen Prüfung 28. September 2007
Tag der Promotion 28. September 2007



Introduction

A pervasive theme of contemporary mathematics is to explore rigidity phenom-
ena caused by the symbiosis of algebraic topology and Riemannian geometry on
manifolds. In this context, the term “rigidity” refers to the astounding fact that
certain topological invariants provide obstructions for geometric structures. Con-
sequently, topological invariants of this type serve as interfaces between topology
and geometry, thereby generating a rewarding exchange between both fields.

Over time many such interfaces evolved, the forefather being the Gauß-Bonnet
theorem [30; Chapter 9], which reveals the Euler characteristic of compact sur-
faces as an obstruction for specific types of curvature.

Another way to think of the Gauß-Bonnet theorem is to view it as a topological
bound for the minimal volume of compact surfaces [18; p. 5], where the minimal
volume of a smooth manifold M is defined as

minvol M := inf
{

vol(M, g)
∣∣ g a complete Riemannian metric on M

with |sec(g)| ≤ 1
}

.

By the Gauß-Bonnet theorem, the minimal volume of an oriented, closed, con-
nected surface M can be estimated from below by | 2π · χ(M)|, which is a topo-
logical invariant.

Similarly, the Euler characteristic of higher dimensional oriented, closed, con-
nected, smooth manifolds yields lower bounds for the minimal volume [18; p. 6].
However, the vanishing of the Euler characteristic of oriented, closed, connected,
odd-dimensional manifolds suggests to strive for other topological invariants that
encode information on the minimal volume.
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One example of such an invariant is the so-called simplicial volume: The sim-
plicial volume is a proper homotopy invariant of oriented manifolds measuring
the complexity of the fundamental class with real coefficients with respect to the
`1-norm: If M is an oriented n-manifold, then the simplicial volume of M is de-
fined as

‖M‖ := inf
{
‖c‖1

∣∣ c is an R-fundamental cycle of M
}

,

where
∥∥∑j aj · σj

∥∥
1 := ∑j |aj|.

For example, the simplicial volume of spheres and tori is zero, whereas the
simplicial volume of oriented, closed, connected, negatively curved manifolds is
non-zero [57, 18, 24].

Originally, the simplicial volume was designed by Gromov to give an alterna-
tive proof of the Mostow rigidity theorem [44, 1]. In his pioneering article Volume
and bounded cohomology [18], Gromov establishes a vast number of links between
the simplicial volume and Riemannian geometric quantities, one of them being
the volume estimate [18; p. 12, p. 73]: If M is an oriented, connected, smooth
n-manifold without boundary, then

‖M‖ ≤ (n− 1)n · n! ·minvol M.

Together with the explicit computation of the simplicial volume of closed hy-
perbolic manifolds in terms of the hyperbolic volume [57, 18, 1, 50; Chapter 6,
Section 2.2, Theorem C.4.2, Theorem 11.4.3] and the proportionality principle [18,
57, 56; Section 2.3, p. 6.9, Chapter 5], the volume estimate indicates that the sim-
plicial volume indeed can be understood as a “topological approximation” of the
Riemannian volume.

In view of these geometric consequences, it is desirable to find topological and
algebraic tools that compute the simplicial volume. In the present thesis, we in-
vestigate such a tool – a functional analytic variant of singular homology, called
`1-homology.

`1-Homology and bounded cohomology

Taking the completion and the topological dual of the singular chain complex
with R-coefficients of a space X with respect to the `1-norm gives rise to the `1-ho-
mology H`1

∗ (X) and bounded cohomology H∗b(X) of X respectively.
Both the `1-norm on the `1-chain complex C`1

∗ (X) and the supremum norm on
the bounded cochain complex C∗b(X) induce semi-norms on the level of (co)hom-
ology. Gromov observed that the simplicial volume of oriented, closed, connected
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Linking various (co)homology theories related to singular homology

manifolds can be expressed in terms of the semi-norm on bounded cohomol-
ogy [18; p. 17]. Similarly, we show that the simplicial volume can be computed by
the `1-semi-norm on `1-homology, both in the compact and in the non-compact
case (Section 5.3). For example, the simplicial volume of a closed manifold with
vanishing `1-homology or vanishing bounded cohomology is zero.

By passing from singular cohomology to bounded cohomology deep proper-
ties of the simplicial volume become visible; in fact, the work of Gromov [18]
and Ivanov [25] shows that the seemingly small difference in the definition of
bounded cochains and singular cochains has drastic consequences for the be-
haviour of the corresponding cohomology theories:

• Bounded cohomology of spaces with amenable fundamental group van-
ishes (in non-zero degree) [18, 25].
• Bounded cohomology depends only on the fundamental group [18, 25].
• Bounded cohomology admits a description in terms of certain injective res-

olutions [25, 42, 45].

Singular homology and cohomology are intrinsically tied together by the uni-
versal coefficient theorem. Therefore, it is natural to ask whether `1-homology
and bounded cohomology admit a similar link; more specifically:

• Does `1-homology of spaces with amenable fundamental group vanish?
• Does `1-homology depend only on the fundamental group?
• Does `1-homology admit a description in terms of certain projective resolu-

tions?
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• More generally: What is the relation between bounded cohomology and
`1-homology? Is there some kind of duality?

It is the purpose of this thesis to give a both uniform and lightweight approach
to answer these questions.

A first step towards results of this type is the insight of Matsumoto and Morita
that `1-homology of a space is trivial if and only if bounded cohomology of the
space in question is trivial [38; Corollary 2.4]. In particular, `1-homology of a
space with amenable fundamental group is zero in non-zero degree. This led
Matsumoto and Morita to suspect that – like bounded cohomology – also `1-ho-
mology depends only on the fundamental group [38; Remark 2.6].

Bouarich was the first to prove that `1-homology indeed depends only on the
fundamental group [5; Corollaire 6]; his proof is based on the result of Matsumoto
and Morita that `1-homology of simply connected spaces is trivial and on an
`1-version of Brown’s theorem.

The translation mechanism

Although there is no real duality between bounded cohomology and `1-homolo-
gy (in the spirit of the universal coefficient theorem, cf. Remark (3.4)), `1-homol-
ogy and bounded cohomology are strongly linked by the translation mechanism
below.

The `1-chain complex of a space is an example of a so-called Banach chain com-
plex, i.e., it is a chain complex of Banach spaces whose boundary operators are
bounded operators. Other examples of Banach chain complexes occurring nat-
urally in our context are `1-chain complexes of discrete groups (i.e., the `1-com-
pletion of the bar resolution) as well as `1-chain complexes of spaces and discrete
groups with twisted coefficients.

Matsumoto and Morita’s vanishing result can be generalised to an approxima-
tion of the universal coefficient theorem: The homology of a Banach chain com-
plex vanishes if and only if the cohomology of the topological dual of the complex
vanishes [26; Proposition 1.2]. Applying this duality principle to mapping cones
of morphisms of Banach chain complexes, we derive the following relative ver-
sion (Theorem (3.1)):

Theorem (Translation mechanism for isomorphisms). Let f : C −→ D be a mor-
phism of Banach chain complexes and let f ′ : D′ −→ C′ be its topological dual.

1. Then the induced homomorphism H∗( f ) : H∗(C) −→ H∗(D) is an isomorphism
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of vector spaces if and only if H∗( f ′) : H∗(D′) −→ H∗(C′) is an isomorphism of
vector spaces.

2. Furthermore, if H∗( f ′) : H∗(D′) −→ H∗(C′) is an isometric isomorphism, then
also H∗( f ) : H∗(C) −→ H∗(D) is an isometric isomorphism.

By applying this translation mechanism to suitable morphisms of Banach chain
complexes, we can transfer results on bounded cohomology to the realm of `1-ho-
mology (see Chapter 4). The main results that we deduce using this technique are
the following:

Corollary (Mapping theorem for `1-homology). Let f : X −→ Y be a continuous
map between countable, connected CW-complexes such that the induced map π1( f ) is
surjective and has amenable kernel. Then the induced homomorphism

H`1

∗ ( f ) : H`1

∗ (X) −→ H`1

∗ (Y)

is an isometric isomorphism.

Corollary (`1-Homology via projective resolutions). Let X be a countable, con-
nected CW-complex with fundamental group G and let V be a Banach G-module.

1. Then there is a canonical isometric isomorphism

H`1

∗ (X; V) ∼= H`1

∗ (G; V).

2. If C is a strong relatively projective G-resolution of V, then there is a canonical
isomorphism (degreewise isomorphism of semi-normed vector spaces)

H`1

∗ (X; V) ∼= H∗(CG).

3. If C is a strong relatively projective G-resolution of the trivial Banach G-module R,
then there is a canonical isomorphism (degreewise isomorphism of semi-normed
vector spaces)

H`1

∗ (X; V) ∼= H∗
(
(C⊗V)G

)
.

Park tried to use an approach similar to Ivanov’s work [25] on bounded coho-
mology to prove these results (with trivial coefficients) [47]. However, not all of
Ivanov’s arguments can be carried over to `1-homology and her proofs contain a
significant gap – this issue is addressed in Caveats (4.13) and (4.15).

As an example application of the description of `1-homology via projective
resolutions, we obtain a straightening on `1-homology generalising Thurston’s
straightening on non-positively curved Riemannian manifolds (Section 4.4). The
`1-straightening in turn gives a new, homological, proof of the fact that measure
homology and singular homology are isometrically isomorphic (Appendix D).

ix
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A finiteness criterion for the simplicial volume of non-compact manifolds

The results presented so far might give the impression that `1-homology is merely
a shadow of bounded cohomology, its only advantage being that the stored infor-
mation is more accessible than in bounded cohomology – due to the fact that
homology usually is more intuitive than cohomology. But there are also genuine
applications of `1-homology, as the following example shows:

The simplicial volume of non-compact manifolds, defined via locally finite fun-
damental cycles, is not finite in general. It might even then be infinite if the non-
compact manifold in question is the interior of a compact manifold with bound-
ary. According to Gromov, the vanishing of the simplicial volume of the boundary
of the compactification is a necessary condition for the simplicial volume of the
interior to be finite [18; p. 17]. More generally, we show that `1-homology allows
to give a necessary and sufficient condition for the finiteness of the simplicial vol-
ume of the interior (Theorem (6.1)):

Theorem (Finiteness criterion). Let (W, ∂W) be an oriented, compact, connected
n-manifold with boundary and let M := W◦. Then the following are equivalent:

1. The simplicial volume ‖M‖ is finite.
2. The fundamental class of the boundary ∂W vanishes in `1-homology, i.e.,

Hn−1(i∂W)
(
[∂W]

)
= 0 ∈ H`1

n−1(∂W),

where i∂W : C∗ (∂W) −→ C`1

∗ (∂W) is the natural inclusion of the singular chain
complex of ∂W into the `1-chain complex.

Bounded cohomology, on the other hand, in general cannot detect whether a
given class in `1-homology is zero; therefore, the finiteness criterion cannot be
formulated in terms of bounded cohomology.

The finiteness criterion gives rise to a number of computations, or at least es-
timates, of the simplicial volume in the non-compact case (Section 6.4). These
examples might be the starting point for a more detailed analysis of simplicial
volume of non-compact manifolds via `1-homology.

Organisation of this work

Scriptum est omne divisum in partes tres: The first part, Chapters 1 through 4,
deals with `1-homology and bounded cohomology as well as with the relation
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between these theories – the main goal being the link given by the translation
mechanism.

Chapters 5 and 6 constitute the second part, which is more geometric in nature;
this part deals with the simplicial volume and applications of `1-homology to the
simplicial volume.

The Appendices A to D form the third part. The appendices contain material
used in the rest of the thesis, but leading too far astray to be included in the main
text.

We now describe the chapters in more detail: In Chapter 1, we introduce the
basic objects of study – normed chain complexes and their homology. The main
examples of these concepts are `1-homology and bounded cohomology, which
enter the scene in Chapter 2. In addition to basic properties of `1-homology and
bounded cohomology, a survey of the distinguishing features of bounded coho-
mology – such as the mapping theorem – is given in Section 2.4.

In Chapter 3, we return to the more abstract setting, investigating the duality
between homology and cohomology of Banach chain complexes. In particular,
we give a full proof of the translation mechanism. In Chapter 4, with help of the
translation mechanism, we transfer results from bounded cohomology to `1-ho-
mology.

The simplicial volume and its relation to both `1-homology and bounded co-
homology is studied in Chapter 5; in Section 5.4, we give a survey of known
properties of simplicial volume. Chapter 6 is devoted to the finiteness criterion
and its consequences.

The sequence of appendices starts with a review of the version of homological
algebra suitable for our Banach-flavoured setting (Appendix A). In the second
appendix (Appendix B), we generalise Ivanov’s proof that bounded cohomol-
ogy of spaces coincides with bounded cohomology of the fundamental group to
bounded cohomology with twisted coefficients. Appendix C contains a proof of
Gromov’s description of simplicial volume of non-compact manifolds in terms
of bounded cohomology. Finally, Appendix D gives an introduction to measure
homology and its `1-version. Using the techniques established in Section 4.4, we
give a new, homological, proof of the fact that measure homology and singular
homology are isometrically isomorphic.

xi
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1 Homology of
normed chain complexes

In this chapter, we introduce the basic objects of study – normed chain complexes
and their homology. A normed chain complex is a chain complex equipped with
a norm such that the boundary operators all are bounded operators. In particular,
the homology of a normed chain complex inherits a semi-norm. For example, in
the case of the singular chain complex equipped with the `1-norm this semi-norm
contains valuable geometric information such as the simplicial volume.

In order to understand this semi-norm on homology it suffices to understand
the semi-norm on homology of the corresponding completed normed chain com-
plex (Proposition (1.7)). Therefore, in many situations we can restrict ourselves
to the investigation of Banach chain complexes; in the case of singular homology
this corresponds to the investigation of `1-homology.

In the first section we give concise definitions of the categories of normed
and Banach chain complexes and introduce basic constructions on them. Sec-
tion 1.2 deals with the homology of normed chain complexes, emphasising the
induced semi-norms. Finally, in Section 1.3 we present the corresponding equiv-
ariant setting, because many normed chain complexes in fact naturally occur as
(co)invariants of equivariant ones.

The discussion of examples of these concepts follows in Chapter 2.

1



1 Homology of normed chain complexes

1.1 Normed chain complexes

In this text, we use the convention that Banach spaces are Banach spaces over R
and that all (co)chain complexes are indexed over the set N of natural numbers.

Definition (1.1). 1. A normed chain complex is a chain complex of normed
vector spaces, where all boundary morphisms are bounded linear operators.
Analogously, a normed cochain complex is a cochain complex of normed
vector spaces, where all coboundary morphisms are bounded linear opera-
tors.

2. A Banach (co)chain complex is a normed (co)chain complex consisting of
Banach spaces.

3. A morphism of normed (co)chain complexes is a (co)chain map between
normed (co)chain complexes consisting of bounded operators. 3

In our context, the fundamental examples of the concept of normed chain com-
plexes are given by the singular chain complex and the bar resolution equipped
with the obvious `1-norm (Chapter 2).

The direct sum of two normed (Banach) chain complexes again is a normed
(Banach) chain complex, where the norm on the direct sum complex is the sum of
the norms on the summands. Moreover, if C is a normed (Banach) chain complex
and D ⊂ C is a closed subcomplex, then the quotient C/D is a normed (Banach)
chain complex with respect to the quotient norm.

Definition (1.2). Let (C, ∂) be a normed chain complex. Then the dual cochain
complex (C′, ∂′) is the normed cochain complex defined by

∀n∈N (C′)n := (Cn)′,

where · ′ stands for taking the (topological) dual normed vector space, together
with the coboundary operators

(∂′)n := (∂n+1)′ : (C′)n −→ (C′)n+1

f 7−→
(
c 7→ f (∂n+1(c))

)
and the norm given by ‖ f ‖∞ := sup

{
| f (c)|

∣∣ c ∈ Cn, ‖c‖ = 1
}

for f ∈ (C′)n. 3

2



1.2 (Semi-)norms in homology

Remark (1.3). 1. If C is a normed (co)chain complex, then the (co)boundary
operator can be extended to a (co)boundary operator on the completion C
that is bounded in each degree. Hence, the completion C of C is a Banach
(co)chain complex.

2. If C is a Banach chain complex, then its dual C′ is also complete and thus a
Banach cochain complex. Moreover, if C is a normed chain complex, then
we have C′ = (C)′.

Examples of Banach (co)chain complexes include the `1-completion of the sin-
gular chain complex of topological spaces (Sections 2.1 and 2.3) and the `1-com-
pletion of the bar resolution of discrete groups (Section 2.2), which give rise to the
different types of `1-homology. The corresponding dual complexes are the source
for the various incarnations of bounded cohomology.

1.2 (Semi-)norms in homology

Clearly, the presence of chain complexes calls for the investigation of the cor-
responding homology. In the case of normed chain complexes, the homology
groups carry an additional piece of information – the semi-norm.

Definition (1.4). 1. Let (C, ∂) be a normed chain complex and let n ∈ N. The
n-th homology of C is the quotient

Hn(C) :=
ker(∂n : Cn → Cn−1)

im(∂n+1 : Cn+1 → Cn)
.

2. Dually, if (C, δ) is a normed cochain complex, then its n-th cohomology is
the quotient

Hn(C) :=
ker(δn : Cn → Cn+1)

im(δn−1 : Cn−1 → Cn)
.

3. Let C be a normed chain complex. The norm ‖ · ‖ on C induces a semi-norm,
also denoted by ‖ · ‖, on the homology H∗(C) as follows: If α ∈ Hn(C), then

‖α‖ := inf
{
‖c‖

∣∣ c ∈ Cn, ∂(c) = 0, [c] = α
}

.

Similarly, we define a semi-norm on the cohomology of normed cochain
complexes. 3

3



1 Homology of normed chain complexes

Because the images of the (co)boundary operators of Banach (co)chain com-
plexes are not necessarily closed, the induced semi-norms on (co)homology need
not be norms. Therefore, it is sometimes convenient to look at the corresponding
reduced versions instead:

Definition (1.5). 1. Let (C, ∂) be a normed chain complex and let n ∈ N. Then
the n-th reduced homology of C is given by

Hn(C) := ker ∂n/im ∂n+1,

where · denotes the closure in C.
2. Analogously, if (C, δ) is a normed cochain complex and n ∈ N, then the n-th

reduced cohomology of C is given by

Hn(C) := ker δn/im δn−1. 3

Remark (1.6). Any morphism f : C −→ D of normed chain complexes induces
linear maps Hn( f ) : Hn(C) −→ Hn(D) for each n ∈ N. Since f is continuous
in each degree, these maps descend to linear maps Hn( f ) : Hn(C) −→ Hn(D).
Moreover, the maps Hn( f ) and Hn( f ) are bounded linear operators.

In order to understand semi-norms on the homology of normed chain com-
plexes it suffices to consider the case of Banach chain complexes [52; Lemma 2.9];
in the case of singular homology this amounts to restrict attention to `1-homology
(cf. Proposition (2.5)).

Proposition (1.7). Let D be a normed chain complex and let C be a dense subcom-
plex. Then the induced map H∗(C) −→ H∗(D) is isometric. In particular, the induced
map H∗(C) −→ H∗(D) must be injective.

Proof. In the following, we write i : C ↪→ D for the inclusion and ‖ · ‖ for the norm
on D.

Because C is a subcomplex, ‖H∗(i)‖ ≤ 1. Conversely, let z ∈ Cn be a cycle and
let z ∈ Dn be a cycle such that [z] = Hn(i)([z]) ∈ Hn(D). Furthermore, let ε ∈ R>0.
To prove the proposition, it suffices to find a cycle z′ ∈ Cn satisfying

[z′] = [z] ∈ Hn(C) and ‖z′‖ ≤ ‖z‖+ ε.

By definition of z, there must be a chain w ∈ Dn+1 with ∂n+1(w) = i(z) − z.
Since Cn+1 lies densely in Dn+1 and since ‖∂n+1‖ is finite, there is a chain w ∈ Cn+1
such that ∥∥w− i(w)

∥∥ ≤ ε

‖∂n+1‖
.

4



1.2 (Semi-)norms in homology

Then z′ := z + ∂(w) ∈ Cn is a cycle with [z′] = [z] ∈ Hn(C) and∥∥z− i(z′)
∥∥ =

∥∥∂n+1(w− i(w))
∥∥ ≤ ε.

In particular, ‖z′‖ ≤ ‖z‖+ ε. Hence, Hn(i) is an isometry.

The previous proposition is surprising in the respect that usually the processes
of completing and taking homology do not harmonise:

Example (1.8). There exist normed chain complexes C with H∗(C) = 0 and H∗(C) 6= 0,
and vice versa:

1. Let f : C1 −→ C0 be a continuous operator and let f : C1 −→ C0 be its ex-
tension. Suppose that f is an isomorphism, but ker f 6= 0. For example,
for x := ∑j∈N 1/2j+1 · ej ∈ `1(N, R), we consider f :

⊕
N R −→ im f given

by f (en) := en − x; here,
⊕

N R and `1(N, R) are endowed with the `1-norm.
We now view the operator f : C1 −→ C0 as a normed chain complex, con-
centrated in degrees 0 and 1. By construction, H∗(C) = 0, but

H1(C) = ker f /0 6= 0.

2. Let V be a normed vector space that is not complete. Then we view the
inclusion i : V ↪→ V as a normed chain complex C, which is concentrated in
degree 0 and 1. Since V is not complete,

H0(C) = V/ im i = V/V 6= 0.

But the completion C of C is the Banach chain complex given by id : V −→ V
and hence H∗(C) = 0 = H∗(C).

In particular, if a morphism f : C −→ D of normed chain complexes induces an
isometric isomorphism on homology, then H∗( f ) as well as H∗( f ) in general are
neither injective, nor surjective, nor isometric. 3

An ubiquitous tool in any decent (co)homology theory are long exact sequences
provided by the snake lemma. In the world of Banach (co)chain complexes, the
snake lemma takes the following form:

Proposition (1.9) (Snake lemma). Let 0 // A
i // B

p
// C // 0 be a short exact

sequence of Banach chain complexes. Then there is a natural long exact sequence

· · · // Hn(A)
Hn(i)

// Hn(B)
Hn(p)

// Hn(C) ∂ // Hn−1(A) // · · ·

5



1 Homology of normed chain complexes

in homology, and the connecting homomorphism ∂ is continuous.
In the same way, short exact sequences of Banach cochain complexes give rise to long

exact sequences in cohomology with continuous connecting homomorphisms.

Proof. That the mentioned sequence in homology is exact is a purely algebraic
fact following from the snake lemma for R-chain complexes [7; Proposition 0.4].

In order to convince ourselves of the continuity of the connecting homomor-
phism ∂, we first recall the definition of ∂: Let γ ∈ Hn(C), and let c ∈ Cn be a
cycle representing γ. Because pn : Bn −→ Cn is surjective, there is a chain b ∈ Bn
with pn(b) = c. By construction, pn−1(∂B

n (b)) = ∂C
n (pn(b)) = ∂C

n (c) = 0, and hence
there is an a ∈ An−1 satisfying in−1(a) = ∂B

n (b); moreover, a is a cycle and the
class [a] ∈ Hn−1(A) is independent of the choices made. The connecting homo-
morphism is then defined by

∂(γ) := [a] ∈ Hn−1(A).

We now proceed using an argument by Monod [42; proof of Proposition 8.2.1]:
Let ε ∈ R>0. By definition of the semi-norm on homology, the cycle c can be
chosen in such a way that ‖c‖ ≤ ‖γ‖+ ε. The open mapping theorem applied to
the operators p̃n : B/ ker pn −→ C and ĩn−1 : An−1 −→ im in−1 = ker pn−1 induced
by pn and in−1 respectively shows that these operators have bounded inverses.
Therefore, we can choose the chains b ∈ Bn and a ∈ An−1 in a such a way that

‖b‖ ≤ ‖ p̃−1
n ‖ ·

(
‖c‖+ ε

)
≤ ‖ p̃−1

n ‖ ·
(
‖γ‖+ 2 · ε

)
,

‖a‖ ≤ ‖ĩ−1
n−1‖ · ‖∂

B
n (b)‖.

This shows that
‖∂‖ ≤ ‖ĩ−1

n−1‖ · ‖∂
B
n‖ · ‖ p̃−1

n ‖ < ∞,

i.e., the connecting homomorphism ∂ is continuous.

1.3 The equivariant setting

We now turn our attention towards equivariant normed chain complexes, i.e.,
normed chain complexes that additionally carry an isometric group action. Many
normed chain complexes in fact are naturally derived from equivariant normed
chain complexes by taking (co)invariants.
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1.3 The equivariant setting

1.3.1 Banach G-modules

As first step, we recall the definitions of the categories of normed G-modules and
of Banach G-modules respectively.

Definition (1.10). Let G be a discrete group.

1. A normed vector space together with an isometric (left) G-action is called
a normed G-module. A Banach G-module is a normed G-module that is
complete.

2. A G-morphism between normed G-modules is a G-equivariant bounded
linear operator. 3

The most basic example of a Banach G-module with non-trivial group action
is `1(G), the set of all `1-functions G −→ R with the G-action given by shifting
the argument. Obviously, any Banach G-module is a module over `1(G).

Geometrically, normed G-modules arise in the following way: Let X be a topo-
logical space with a continuous G-action and let n ∈ N. Then the singular chain
group Cn (X) inherits a G-action, which is isometric with respect to the `1-norm.

Definition (1.11). Let G be a group and let V be a normed G-module. The set of
invariants of V is defined by

VG := {v ∈ V | ∀g∈G g · v = v}.

The set of coinvariants of V is the quotient

VG := V/W,

where W ⊂ V is the subspace generated by the set {g · v− v | v ∈ V, g ∈ G}. 3

Clearly, if V is a normed (Banach) G-module, then VG is a normed vector (Ba-
nach) space with respect to the restricted norm and VG is a normed vector (Ba-
nach) space with respect to the quotient norm [49; Proposition 2.1.5] – because a
closed subspace is quotiened out. However, notice that the space W itself used in
the previous definition in general need not be closed in V.

Any G-morphism f : V −→W between normed G-modules induces a bounded
linear operator fG : VG −→ WG satisfying fG ◦ (V � VG) = (W � WG) ◦ f [49;
Proposition 2.1.7]. Similarly, any G-morphism f : V −→ W restricts to a bounded
linear operator f G : VG −→WG. Clearly, both ·G and ·G are functorial.

Like in the (algebraic) category of G-modules the most basic functors are tensor
products and taking homomorphisms:

7



1 Homology of normed chain complexes

Definition (1.12). Let G be a discrete group and let U and V be two Banach
G-modules.

1. The projective tensor product U⊗V is the Banach G-module whose under-
lying Banach space is the projective tensor product U⊗V of Banach spaces,
i.e., the completion of the tensor product U ⊗ V of R-vector spaces with
respect to the norm

∀c∈U⊗V ‖c‖ := inf
{

∑
j
‖uj‖ · ‖vj‖

∣∣∣∣ ∑
j

uj ⊗ vj represents c ∈ U ⊗V
}

.

The (diagonal) G-action on U ⊗V is the G-action uniquely determined by

∀g∈G ∀u∈U ∀v∈V g · (u⊗ v) := (g · u)⊗ (g · v).

2. The Banach space B(U, V) of all bounded linear functions from U to V (with
the operator norm) is a Banach G-module with respect to the G-action

G× B(U, V) −→ B(U, V)

(g, f ) 7−→
(
u 7→ g · ( f (g−1 · u))

)
.

In particular, U′ = B(U, R) is a Banach G-module (where R is regarded as
the trivial Banach G-module). 3

If U and V are two Banach G-modules, then (U ⊗ V)G can be viewed as an
equivariant tensor product “Uop⊗G V.” We prefer the notation (U⊗V)G because
it allows us to speak only about left G-modules.

As expected, the functors ⊗ and B are adjoint in the following sense:

Remark (1.13). Let G be a discrete group and let U, V, and W be Banach G-mod-
ules. Then

B(U ⊗V, W) −→ B
(
U, B(V, W)

)
f 7−→

(
u 7→ (v 7→ f (u⊗ v))

)(
u⊗ v 7→ f (u)(v)

)
←− [ f

is an isometric isomorphism of Banach G-modules.

Furthermore, taking duals converts coinvariants to invariants:
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1.3 The equivariant setting

Proposition (1.14). For all Banach G-modules V the map

ϕ : (VG)′ −→ (V ′)G

f 7−→ f ◦ π

is a natural isometric isomorphism, where π : V −→ VG is the canonical projection.

Proof. It is not hard to see that ϕ is well-defined and ‖ϕ‖ ≤ 1. Conversely, we
consider the map

ψ : (V ′)G −→ (VG)′

f 7−→ f ,

where f : VG −→ R is the unique continuous functional satisfying f ◦ π = f .
Moreover, ‖ f ‖∞ ≤ ‖ f ‖∞. Again, it is not difficult to check that ψ is well-defined
and that ‖ψ‖ ≤ 1.

By construction, ϕ ◦ ψ = id and ψ ◦ ϕ = id, which implies that ϕ must be an
isometric isomorphism.

1.3.2 Banach G-chain complexes

Assembling normed G-modules and G-morphisms into chain complexes yields
the category of normed G-chain complexes:

Definition (1.15). Let G be a discrete group.

1. A normed G-(co)chain complex is a normed (co)chain complex consisting
of normed G-modules whose (co)boundary operators are G-morphisms.

2. A Banach G-(co)chain complex is a normed G-(co)chain complex consisting
of Banach G-modules.

3. A morphism of normed G-(co)chain complexes is a (co)chain map of Ba-
nach G-(co)chain complexes that consists of G-morphisms.

4. Two morphisms of normed G-(co)chain complexes are G-homotopic if there
exists a (co)chain homotopy between them consisting of G-morphisms. 3

Fundamental examples of normed G-chain complexes are the bar resolution
of G as well as singular chain complexes of G-spaces (Sections 2.2 and 2.3).

The functors of taking invariants and coinvariants respectively extend to func-
tors on the category of Banach G-chain complexes:
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1 Homology of normed chain complexes

Definition (1.16). Let G be a discrete group.

1. If (C, δ) is a Banach G-cochain complex, then CG is the Banach cochain com-
plex given by (CG)n := (Cn)G with the coboundary operator δG induced
by δ.

2. If (C, ∂) is Banach G-chain complex, then CG is the Banach chain complex
given by (CG)n := (Cn)G and the boundary operator ∂G induced by ∂. 3

Every G-morphism f : C −→ D of normed/Banach G-(co)chain complexes
induces morphisms f G : CG −→ DG and fG : CG −→ DG of normed/Banach
(co)chain complexes, and these constructions are functorial.

Of course, the operations ⊗ and B also have a pendant on the level of G-chain
complexes:

Definition (1.17). Let G be a discrete group, let (C, ∂) be a Banach G-chain com-
plex and let V be a Banach G-module.

1. The projective tensor product C⊗V is the Banach G-chain complex with

(C⊗V)n := Cn ⊗V

and the boundary operator ∂⊗ idV .
2. The Banach G-cochain complex B(C, V) is defined by B(C, V)n := B(Cn, V),

equipped with the coboundary operator

B(∂n+1, idV) : B(C, V)n −→ B(C, V)n+1

f 7−→
(
c 7→ f (∂n+1(c))

)
. 3

A straightforward computation (using Remark (1.13)) shows that the functors B
and⊗ are adjoint. I.e., for all Banach G-chain complexes C and all Banach G-mod-
ules U, V, there is a natural isometric isomorphism

B(C⊗U, V) ∼= B
(
C, B(U, V)

)
.

of Banach G-cochain complexes.
The tools introduced so far allow us to imitate standard constructions of ho-

mological algebra related to group (co)homology. For example, if C is a Banach
G-chain complex and V is a Banach G-module, then we can build the Banach
(co)chain complexes (C⊗V)G and B(C, V)G, and, in a second step, take their ho-
mology. By choosing suitable complexes C, these (co)chain complexes give rise
to `1-homology and bounded cohomology with twisted coefficients (Sections 2.2
and 2.3). More generally, one can develop a theory of projective and injective
resolutions in the framework of Banach G-(co)chain complexes (Appendix A).
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2 `1-Homology and
bounded cohomology

The singular chain complex (with real coefficients) of a topological space is a
normed chain complex with respect to the `1-norm. Taking the completion and
the topological dual of the singular chain complex gives rise to `1-homology and
bounded cohomology of spaces respectively (Section 2.1).

Similarly, also the bar resolution of a discrete group can be turned into a normed
chain complex by introducing a suitable `1-norm. The completion and the topo-
logical dual of this normed chain complex give rise to `1-homology and bounded
cohomology of discrete groups respectively (Section 2.2).

Both constructions can be decorated with equivariant Banach modules, yield-
ing the corresponding theories with (twisted) coefficients (Sections 2.2 and 2.3).

In this chapter, we give an introduction to `1-homology and bounded cohomol-
ogy for topological spaces and discrete groups and study their basic properties
(Sections 2.1.2 and 2.2.4).

The last section (Section 2.4) contains a survey of more sophisticated properties
of bounded cohomology, mainly concerning amenable groups. In Chapter 4, we
apply the methods developed in Chapter 3 to transfer these properties to `1-ho-
mology.
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2 `1-Homology and bounded cohomology

2.1 `1-Homology of spaces

In the next paragraphs, we introduce `1-homology of topological spaces (with
trivial coefficients). Other flavours of `1-homology like `1-homology of discrete
groups or `1-homology with twisted coefficients are presented in Section 2.2 and
Section 2.3 respectively.

Definition (2.1). Let (X, A) be a pair of topological spaces. The `1-norm on the
singular chain complex C∗ (X) with real coefficients is defined as follows: For a
chain c = ∑k

j=0 aj · σj ∈ C∗ (X) in reduced form we set

‖c‖1 :=
k

∑
j=0
|aj|.

The semi-norm on the quotient C∗ (X, A) = C∗ (X)/C∗ (A) induced by ‖ · ‖1 is a
norm because C∗ (A) is `1-closed in C∗ (X). This norm on C∗ (X, A) is also de-
noted by ‖ · ‖1. 3

The boundary operator ∂n : Cn (X, A) −→ Cn−1 (X, A) is a bounded operator
with respect to the `1-norm of operator norm at most (n + 1). Hence, C∗ (X, A) is a
normed chain complex. Clearly, C∗ (X) and C∗ (X, A) are in general not complete
and thus these complexes are no Banach chain complexes.

Definition (2.2). Let (X, A) be a pair of topological spaces. The `1-chain complex
of (X, A) is the `1-completion

C`1

∗ (X, A) := C∗ (X, A)
`1

of the normed chain complex C∗ (X, A). We abbreviate C`1

∗ (X, ∅) by C`1

∗ (X). 3

By Remark (1.3), the completion C`1

∗ (X, A) is a Banach chain complex. Further-
more, because C∗ (A) is `1-closed in C∗ (X), there is an isometric isomorphism

C`1

∗ (X, A) ∼= C`1

∗ (X)/C`1

∗ (A)

of Banach chain complexes.
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2.1 `1-Homology of spaces

Definition (2.3). If (X, A) is a pair of topological spaces, then the Banach cochain
complex

C∗b(X, A) :=
(
C`1

∗ (X, A)
)′ = (

C∗ (X, A)
)′

is the bounded cochain complex of (X, A). We write C∗b(X) := C∗b(X, ∅). 3

Using the isomorphism C`1

∗ (X, A) ∼= C`1

∗ (X)/C`1

∗ (A), it is not difficult to see that
there is for all n ∈ N an isometric isomorphism [49; Proposition 2.1.7]

Cn
b(X, A) ∼=

{
f ∈ Cn

b(X)
∣∣ f |C`1

n (A) = 0
}

.

If f : (X, A) −→ (Y, B) is a continuous map of pairs of topological spaces, then
the induced map C∗ ( f ) : C∗ (X, A) −→ C∗ (Y, B) is a chain map that is bounded
in each degree (with operator norm equal to 1), i.e., it is a morphism of normed
chain complexes. Its extension C`1

∗ ( f ) : C`1

∗ (X, A) −→ C`1

∗ (Y, B) is a morphism of
Banach chain complexes and its dual C∗b( f ) : C∗b(Y, B) −→ C∗b(X, A) is a morphism
of Banach cochain complexes.

Definition (2.4). Let (X, A) be a pair of topological spaces.

1. Then `1-homology of (X, A) is defined as

H`1

∗ (X, A) := H∗
(
C`1

∗ (X, A)
)
.

Dually, bounded cohomology of (X, A) is given by

H∗b(X, A) := H∗
(
C∗b(X, A)

)
.

We write H`1

∗ (X) := H`1

∗ (X, ∅) and H∗b(X) := H∗b(X, ∅) for short.
2. The semi-norms on H`1

∗ (X, A) and H∗b(X, A) are the ones induced by ‖ · ‖1
and ‖ · ‖∞ respectively and are also denoted by ‖ · ‖1 and ‖ · ‖∞.

3. If f : (X, A) −→ (Y, B) is a continuous map of pairs of topological spaces,
then the maps on `1-homology and bounded cohomology induced by C`1

∗ ( f )
and C∗b( f ) are denoted by H`1

∗ ( f ) and H∗b( f ) respectively. 3

By construction, both `1-homology and bounded cohomology are functorial
with respect to composition of continuous maps of (pairs of) topological spaces.
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2 `1-Homology and bounded cohomology

2.1.1 The `1-semi-norm on `1-homology of spaces

Despite of the relation between `1-homology or bounded cohomology and sin-
gular (co)homology being rather obscure, both `1-homology and bounded coho-
mology compute the `1-semi-norm on singular homology (Proposition (2.5) and
Theorem (3.8)). In fact, it turns out that these theories are much better adapted to
the behaviour of the `1-semi-norm than singular homology itself.

Proposition (2.5). Let (X, A) be a pair of topological spaces. Then the homomorphism
H∗ (X, A) −→ H`1

∗ (X, A) induced by the inclusion iX,A : C∗ (X, A) ↪→ C`1

∗ (X, A) is
isometric with respect to the semi-norms on H∗ (X, A) and H`1

∗ (X, A) induced by the
`1-norm.

In particular, if H`1

n (X, A) = 0, then ‖α‖1 = 0 for all α ∈ Hn (X, A).

Proof. This follows from Proposition (1.7) because C∗ (X, A) is, by definition, a
dense subcomplex of C`1

∗ (X, A) with respect to ‖ · ‖1.

An interesting invariant defined in terms of the `1-semi-norm on singular ho-
mology is the simplicial volume (Chapter 5). Proposition (2.5) is the key to study
the simplicial volume via `1-homology and the associated tools.

Moreover, from Proposition (2.5) we can deduce that `1-homology of topologi-
cal spaces is not always zero:

Example (2.6). For any n ∈ N \ {1} there is a topological space with H`1

n (X) 6= 0:
For example, if M is an oriented, closed, connected, hyperbolic manifold of

dimension n ≥ 2, it is well-known that all non-zero classes in H2 (M), . . . , Hn (M)
have non-zero `1-semi-norm [57; p. 6.6]. By Proposition (2.5), the image of these
classes in `1-homology cannot be zero.

It is not difficult to see that H`1

0 (X) 6= 0 for all topological spaces. On the other
hand, H`1

1 (X) = 0 (Proposition (2.7)). 3

2.1.2 Basic properties of `1-homology of spaces

In the following, we study the basic properties of `1-homology, i.e., we analyse to
which extent `1-homology satisfies the Eilenberg-Steenrod axioms.

Proposition (2.7) (Basic properties of `1-homology of spaces).

1. Homotopy invariance. The functor `1-homology is homotopy invariant, i.e., if
f , g : (X, A) −→ (Y, B) are homotopic maps of pairs, then

H`1

∗ ( f ) = H`1

∗ (g) : H`1

∗ (X, A) −→ H`1

∗ (Y, B).
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2.1 `1-Homology of spaces

2. `1-Homology of the point. For the one-point-space • we obtain H`1

0 (•) = R and
H`1

k (•) = 0 for all k ∈ N>0.
3. The first `1-homology group. For any space X we have H`1

1 (X) = 0.
4. Long exact sequence of the pair. Let (X, A) be a pair of topological spaces. Then

there is a natural long exact sequence

. . . ∂ // H`1

k (A) // H`1

k (X) // H`1

k (X, A) ∂ // H`1

k−1(A) // . . . ,

where ∂ is induced by the map ∂ : C`1

k (X, A) −→ C`1

k (A), and the other maps are
the homomorphisms induced by the natural inclusions A ↪→ X ↪→ (X, A).

5. Finite disjoint unions. If I is a finite set and (Xi)i∈I are topological spaces, then
H`1

∗ (äi∈I Xi) is isometrically isomorphic to
⊕

i∈I H`1

∗ (Xi). Here, the direct sum is
equipped with the sum of the norms.

Proof. Apart from part 3, all properties can be shown by the same arguments as
in singular homology:

Homotopy invariance. If f and g are homotopic, the classic construction [16;
Proposition III.5.7] of subdividing a homotopy between f and g in an appropriate
way gives rise to a chain homotopy h : C∗ (X, A) −→ C∗ (Y, B) between C∗ ( f )
and C∗ (g) that is bounded in each degree. Therefore, h can be extended to the
`1-chain complexes, and a straightforward calculation shows that this extension
is a chain homotopy between C`1

∗ ( f ) and C`1

∗ (g). In particular, H`1

∗ ( f ) = H`1

∗ (g).
`1-Homology of the point. By definition of the `1-chain complex, C`1

∗ (•) = C∗ (•).
In particular, H`1

k (•) = Hk (•), which equals R if k = 0 and which is 0 otherwise.
The first `1-homology group. As first step, we show that each class in H`1

1 (X) can
be represented by an `1-cycle consisting of loops in X:

In order to keep the notational overhead limited, we only consider the case that
X is path-connected (the general case can be treated by the same arguments, but
requires an additional layer of indices). We choose a base point x ∈ X and for
each point y ∈ X we choose a path py : [0, 1] −→ X joining y and x. Then for each
1-simplex σ : [0, 1] −→ X there is a homotopy hσ : [0, 1]× [0, 1] −→ X satisfying

hσ( · , 0) = σ, hσ(0, · ) = pσ(0), hσ(1, · ) = pσ(1).

We now define

` : C1 (X) −→ C1 (X)
σ 7−→ hσ( · , 1).
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2 `1-Homology and bounded cohomology

By construction ‖`‖ ≤ 1 and all chains in the image of ` are sums of loops (based
at x) and hence are cycles. Moreover, subdividing [0, 1] × [0, 1] into the obvious
two triangles gives rise to a homomorphism H : C1 (X) −→ C2 (X) with

∂
(

H(σ)
)

+ pσ(1) − pσ(0) = σ− `(σ)

for all σ ∈ map(∆1, X) and ‖H‖ ≤ 2. Therefore, we obtain extensions

` : C`1

1 (X) −→ C`1

1 (X),

H : C`1

1 (X) −→ C`1

2 (X)

of ` and H respectively such that H witnesses the fact that for all cycles c ∈ C`1

1 (X)
the image `(c) is a cycle and

[`(c)] = [c] ∈ H`1

1 (X).

Thus, it suffices to show [`(c)] = 0 ∈ H`1

1 (X) for all cycles c ∈ C`1

1 (X): By
construction, `(c) is an `1-sum ∑n∈N an · σn of loops σn : [0, 1] −→ X. In particular,
we have the decomposition σn = σ◦n ◦ τ, where τ : [0, 1] −→ S1 wraps exactly once
around S1 and where σ◦n ∈ map(S1, X).

Let d : S1 −→ S1 be an orientation preserving double covering. Then there is a
chain b ∈ C2(S1) with

∂b = τ − 1
2
· C1 (d)(τ).

We consider the formal sum

b
(
`(c)

)
:= ∑

n∈N
an · ∑

j∈N

1
2j · C2(σ◦n) ◦ C2(dj)(b),

which clearly is `1-summable. Hence, b(`(c)) ∈ C`1

2 (X), and one easily checks
that ∂b(`(c)) = `(c) ∈ C`1

1 (X). In particular, [c] = [`(c)] = 0 ∈ H`1

1 (X).
Matsumoto and Morita show how H`1

1 (X) = 0 can be derived from knowl-
edge on bounded cohomology [38; Corollary 2.7]. On the other hand, Bouarich’s
proof [5; p. 164] is not entirely correct [37] – his argument shows only that the
reduced (in the normed sense) first `1-homology vanishes.

Long exact sequence. By the snake lemma (Proposition (1.9)), the short exact
sequence 0 −→ C`1

∗ (A) −→ C`1

∗ (X) −→ C`1

∗ (X, A) −→ 0 induces a long exact
sequence in homology; moreover, the construction of the connecting homomor-
phism shows that it indeed is of the mentioned form.
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2.1 `1-Homology of spaces

Finite disjoint unions. Because the standard simplices ∆k are connected, it fol-
lows that there is an isometric isomorphism C∗ (X) ∼=

⊕
i∈I C∗ (Xi) of normed

chain complexes. The finiteness of I ensures that C`1

∗ (X) and
⊕

i∈I C`1

∗ (Xi) are
isometrically isomorphic. Therefore, we obtain an isometric isomorphism

H`1

∗ (X) ∼=
⊕
i∈I

H`1

∗ (Xi).

Similar arguments as in the previous proposition show that bounded cohomol-
ogy satisfies the corresponding properties [56; Sections 2.1.1 and 2.2.2].

However, `1-homology (as well as bounded cohomology) does not satisfy ex-
cision. The geometric reason behind this phenomenon is the following: Singu-
lar homology satisfies excision, because any singular homology class can also be
represented by a singular cycle consisting of “small” simplices. This is achieved
by applying barycentric subdivision sufficiently often. However, in an (infinite)
`1-chain ∑n∈N an · σn, the number of barycentric subdivisions needed for the sim-
plices (σn)n∈N might be unbounded. Therefore, an `1-homology class can in gen-
eral not be represented by cycles consisting only of “small” simplices.

Example (2.8). We will see that H`1

∗ (S1) ∼= H`1

∗ (•) (Corollary (4.2)). But the sec-
ond `1-homology H`1

2 (S1 ∨ S1) is not even finite dimensional because there is an
isomorphism H`1

2 (S1 ∨ S1) ∼= H`1

2 (Z ∗ Z) (Corollary (4.14)), and the latter term is
not finite dimensional [6, 41]. In particular, there can be no cellular version of
`1-homology. 3

This failure of excision is both a curse and a blessing. On the one hand, the lack
of excision makes concrete computations via the usual divide and conquer ap-
proach significantly harder; on the other hand, it turns out that both bounded
cohomology and `1-homology depend only on the fundamental group (Theo-
rem (2.26) and Corollary (4.3)) and hence can be computed in terms of certain
nice resolutions (Theorem (2.28) and Corollary (4.14)).

Remark (2.9). It is not clear, whether `1-homology of an infinite disjoint union of
spaces coincides with the `1-sum of the `1-homology of the pieces. Namely, let
(Xn)n∈N be a family of spaces and let X := än∈N Xn. Clearly, we have an isomet-
ric isomorphism C`1

∗ (X) ∼=
⊕`1

n∈N C`1

∗ (Xn). But there might exist a cycle c ∈ C`1

∗ (X)
such that its restrictions to all subspaces Xn are null-homologous in C`1

∗ (Xn), but
such that the sum of all such null-homologies is not `1-summable. 3

In Section 2.4, we list some of the more sophisticated properties of bounded
cohomology; their analogues in `1-homology are derived in Chapter 4.
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2 `1-Homology and bounded cohomology

2.1.3 Where is `p-homology?

It is tempting to consider not only the `1-norm on the singular chain complex,
but also `p-norms with p > 1. However, the singular chain complex is not a
normed chain complex with respect to these norms (Proposition (2.11)) – hence,
the boundary operator cannot be extended to the completion of the singular chain
complex with respect to the `p-norm.

Definition (2.10). Let X be a topological space and let p ∈ [1, ∞]. The `p-norm on
the singular chain complex C∗ (X) is defined by

‖c‖p :=

{
p
√

∑k
j=0 |aj|p if p 6= ∞

sup
{
|aj|

∣∣ j ∈ {0, . . . , k}
}

if p = ∞

for all c := ∑k
j=0 aj · σj ∈ Cn (X). 3

Proposition (2.11). Let X be a path-connected topological space with at least two points
and let p ∈ (1, ∞]. Then the singular chain complex C∗ (X) of X is not a normed chain
complex with respect to the `p-norm.

Proof. In the following, let n ∈ N>0. Let x, y ∈ X be two points with x 6= y, and
let σ ∈ map(∆n, X) be a singular n-simplex of X with ∂σ 6= 0; for example, any
singular n-simplex that has one vertex in x and n vertices in y enjoys this property.

For each d ∈ N we can find d different n-simplices of X having the same
boundary as σ; for example, using a cofibration ∂∆n ∪ {x1, . . . , xd} ↪→ ∆n, where
x1, . . . , xd ∈ (∆n)◦, we can find singular n-simplices σ1, . . . , σd : ∆n −→ X such
that

σj(xk) =

{
x if k 6= j
y if k = j

and σj|∂∆n = σ|∂∆n holds for all j, k ∈ {1, . . . , d}. In particular, the σ1, . . . , σd are d
different singular simplices with ∂σj = ∂σ.

We then consider the chain

cd :=
1
d
·

d

∑
j=1

σj ∈ Cn (X).

By construction, ∂ncd = ∂σ 6= 0. On the other hand, limd→∞ ‖cd‖p = 0 because
p > 1. Therefore, the boundary operator ∂n is not a bounded operator.

Furthermore, a refined version of this argument can be applied to show that
the semi-norms on singular homology induced by ‖ · ‖p with p > 1 are trivial.
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2.2 `1-Homology of discrete groups

2.2 `1-Homology of discrete groups

Like in ordinary group (co)homology, there are several ways to introduce their
functional analytic analogues – bounded cohomology and `1-homology of dis-
crete groups:

• Firstly, `1-homology and bounded cohomology of discrete groups can be
explicitly defined in terms of the Banach bar resolution, which is the `1-com-
pletion of the bar resolution (Sections 2.2.1 and 2.2.2).

• Secondly, `1-homology and bounded cohomology of discrete groups can
also be described in the language of certain projective and injective resolu-
tions (Section 2.2.3).

In Section 2.2.4, we examine basic properties of `1-homology of groups.

2.2.1 The Banach bar resolution

The bar resolution with R-coefficients of a discrete group can be equipped with an
`1-norm turning this resolution into a normed chain complex. The corresponding
completion is the so-called Banach bar resolution of the group. Standard opera-
tions like projective tensor products and spaces of bounded operators then create
the Banach (co)chain complexes that underlie the definitions of `1-homology and
bounded cohomology of discrete groups with coefficients.

Definition (2.12). Let G be a discrete group. The Banach bar resolution of G
is the `1-completion of the bar resolution of G, i.e., the Banach G-chain complex
defined as follows:

1. For each n ∈ N let

C`1

n (G) :=
{

∑
g∈Gn+1

ag · g0 · [g1| . . . |gn]
∣∣∣∣ ∀g∈Gn+1 ag ∈ R and ∑

g∈Gn+1

|ag| < ∞
}

together with the norm
∥∥∑g∈Gn+1 ag · g0 · [g1| . . . |gn]

∥∥
1 := ∑g∈Gn+1 |ag| and

the G-action characterised by

h ·
(

g0 · [g1| . . . |gn]
)

:= (h · g0) · [g1| . . . |gn]

for all g ∈ Gn+1 and all h ∈ G.
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2 `1-Homology and bounded cohomology

2. The boundary operator is the G-morphism uniquely determined by

C`1

n (G) −→ C`1

n−1(G)
g0 · [g1| . . . |gn] 7−→ g0 · g1 · [g2| . . . |gn]

+
n−1

∑
j=1

(−1)j · g0 · [g1| . . . |gj−1|gj · gj+1|gj+2| . . . |gn]

+ (−1)n · g0 · [g1| . . . |gn−1].

3. Moreover, we define the augmentation ε : C`1

0 (G) −→ R by adding up the
coefficients. 3

Definition (2.13). Let G be a discrete group and let V be a Banach G-module.

1. Let C`1

∗ (G; V) be the Banach G-chain complex given by

C`1

∗ (G; V) := C`1

∗ (G)⊗V.

2. Dually, we define the Banach G-cochain complex C∗b(G; V) by

C∗b(G; V) := B
(
C`1

∗ (G), V
)
.

(Details on the corresponding norms, G-actions and (co)boundary operators can
be found in Definitions (1.12) and (1.17)). 3

Remark (2.14). Let G be a discrete group. Then, C`1

∗ (G; R) = C`1

∗ (G). If V is a
Banach G-module, the adjointness relation between ⊗ and · ′ (see Remark (1.13))
shows that

C∗b(G; V ′) =
(
C`1

∗ (G; V)
)′.

Remark (2.15). For any discrete group G, the bijections

Gn+1 −→ Gn+1

g0 · [g1| . . . |gn] 7−→ (g−1
n , . . . , g−1

0 )

induce an isometric isomorphism (C`1

∗ (G))′ −→ C∗b(G) of Banach G-cochain com-
plexes, where C∗b(G) is the cochain complex defined by Ivanov [25; Section 3.4].

Of course, these constructions are functorial with respect to group homomor-
phisms and change of coefficients:
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2.2 `1-Homology of discrete groups

Remark (2.16). Let ϕ : G −→ H be a homomorphism of discrete groups, let V be
a Banach G-module and let W be a Banach H-module. Then

C`1

n (ϕ) : C`1

n (G) −→ ϕ∗
(
C`1

n (H)
)

g0 · [g1| . . . |gn] 7−→ ϕ(g0) ·
[
ϕ(g1)| . . . |ϕ(gn)

]
defines a morphism C`1

∗ (ϕ) : C`1

∗ (G) −→ ϕ∗C`1

∗ (H) of Banach G-chain complexes
of norm 1; here, ϕ∗( · ) stands for the Banach G-module structure on the Ba-
nach H-module in question that is induced by ϕ. In particular, for any mor-
phism f : V −→ ϕ∗W of Banach G-modules, the map

C`1

∗ (ϕ; f ) := C`1

∗ (ϕ)⊗ f : C`1

∗ (G; V) −→ ϕ∗
(
C`1

∗ (H; W)
)

is a morphism of Banach G-chain complexes (of norm at most ‖ f ‖). Analogously,
for any morphism f : ϕ∗W −→ V of Banach G-modules,

C∗b(ϕ; f ) := B
(
C`1

∗ (ϕ), f
)

: ϕ∗
(
C∗b(H; W)

)
−→ C∗b(G; V)

is a morphism of Banach G-cochain complexes (of norm at most ‖ f ‖).

2.2.2 Definition of `1-homology of discrete groups

The definition of `1-homology and bounded cohomology of discrete groups is
now a straightforward adaption of the classic definition of group (co)homology
in terms of the bar resolution:

Definition (2.17). Let G be a discrete group and let V be a Banach G-module.

1. The `1-homology of G with coefficients in V, denoted by H`1

∗ (G; V), is the
homology of the Banach chain complex C`1

∗ (G; V)G.
We write H`1

∗ (G) := H`1

∗ (G; R), where R is the trivial Banach G-module.
2. The bounded cohomology of G with coefficients in V is defined as

H∗b(G; V) := H∗
(
C∗b(G; V)G),

and we write H∗b(G) := H∗b(G; R), where R is the trivial Banach G-module.
3. If ϕ : G −→ H is a homomorphism of discrete groups, W is a Banach H-mod-

ule, and f : V −→ ϕ∗W is a morphism of Banach G-modules, we write

H`1

∗ (ϕ; f ) : H`1

∗ (G; V) −→ H`1

∗ (H; W)

for the homomorphism induced by the composition

p ◦ C`1

∗ (ϕ; f )G : C`1

∗ (G; V)G −→ ϕ∗(C`1

∗ (H; W))G −→ C`1

∗ (H; W)H.
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2 `1-Homology and bounded cohomology

4. Dually, if ϕ : G −→ H is a homomorphism of discrete groups, W is a Banach
H-module and f : ϕ∗W −→ V is a morphism of Banach G-modules, then
we write

H∗b(ϕ; f ) : H∗b(H; W) −→ H∗b(G; V)

for the homomorphism induced by the composition

C∗b(ϕ; f )G ◦ i : C∗b(H; W)H ↪→ ϕ∗(C∗b(H; W))G −→ C∗b(G; V)G. 3

Notice that the `1-norm on the Banach bar resolution C`1

∗ (G) induces semi-
norms on H`1

∗ (G; V) and on H∗b(G; V).

2.2.3 `1-Homology of discrete groups via projective resolutions

In this section, we show that `1-homology (and bounded cohomology) of discrete
groups enjoy the same flexibility as ordinary group (co)homology: namely, both
`1-homology and bounded cohomology can be computed by means of relative ho-
mological algebra, as studied by Brooks, Ivanov, Monod, and Park [6, 25, 42, 47].
An introduction to this version of homological algebra is given in Appendix A.

Theorem (2.18). Let G be a discrete group and let V be a Banach G-module.

1. For any strong relatively projective G-resolution (C, η : C0 → V) of V there is a
canonical isomorphism (degreewise isomorphism of semi-normed vector spaces)

H`1

∗ (G; V) ∼= H∗(CG).

2. For any strong relatively injective G-resolution (C, η : V → C0) of V there is a
canonical isomorphism (degreewise isomorphism of semi-normed vector spaces)

H∗b(G; V) ∼= H∗(CG).

3. If (C, η : C0 → R) is a strong relatively projective G-resolution of the trivial
Banach G-module R, then there are canonical isomorphisms (degreewise isomor-
phisms of semi-normed vector spaces)

H`1

∗ (G; V) ∼= H∗
(
(C⊗V)G

)
,

H∗b(G; V) ∼= H∗
(

B(C, V)G).
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2.2 `1-Homology of discrete groups

The semi-norms on H`1

∗ ( · ; · ) and H∗b( · ; · ) induced by the standard resolu-
tions C`1

∗ (G; V) and C∗b(G; V) coincide with the canonical semi-norms in the sense
of Ivanov [25, 47, 42; Corollary 3.6.1, Corollary 2.3, Corollary 7.4.7]. However, it
is clear that not every strong relatively projective/injective resolution induces the
same semi-norm in (co)homology.

Of course, not only the groups H`1

∗ ( · ; · ) and H∗b( · ; · ) can be described via res-
olutions, but also the morphisms H`1

∗ (ϕ; f ) and H∗b(ϕ; f ) [42, 33; Section 8, Sec-
tion 5.1].

Bühler developed a description of `1-homology and bounded cohomology as
derived functors via exact categories [11], thereby providing an even more con-
ceptual approach, which paves the way to applying standard methods from ho-
mological algebra directly to `1-homology and bounded cohomology.

Proof (of Theorem (2.18)). The fundamental lemma of homological algebra in the
context of Banach G-modules (Propositions (A.7) and (A.9)) shows that the two
terms H∗(CG) and H∗(CG) do not depend (up to canonical isomorphisms) on
the chosen strong relatively projective resolutions and strong relatively injective
resolutions respectively.

Therefore, for the first and the second part it suffices to show that C`1

∗ (G; V) and
C∗b(G; V) are strong relatively projective/injective resolutions of V. This is done
in Proposition (2.19).

It remains to prove the third part: If (C, η : C0 → R) is a strong relatively projec-
tive resolution of R, there exist by the fundamental lemma of homological alge-
bra (Proposition (A.9)) mutually G-homotopy inverse G-chain homotopy equiv-
alences ϕ : C � η ' C`1

∗ (G) � ε : ψ; here, the symbol “�” denotes concatenation of
chain complexes. Hence, ϕ⊗ idV and ψ⊗ idV clearly are (mutually G-homotopy
inverse) G-chain homotopy equivalences

(C⊗V) � (η ⊗ idV) '
(
C`1

∗ (G)⊗V
)

� (ε⊗ idV) = C`1

∗ (G; V) � (ε⊗ idV).

In particular, we obtain an isomorphism

H∗
(
(C⊗V)G

) ∼= H∗
(
C`1

∗ (G; V)G
)
,

which is in each degree an isomorphism of semi-normed vector spaces. Therefore,
it follows that

H`1

∗ (G; V) ∼= H∗
(
(C⊗V)G

)
.

Analogously, B(ϕ, idV) and B(ψ, idV) are (mutually G-homotopy inverse) G-co-
chain equivalences between C∗b(G; V) = B(C`1

∗ (G), V) and B(C, V). Thus, we see
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2 `1-Homology and bounded cohomology

that there is a canonical isomorphism H∗b(G; V) ∼= H∗(B(C, V)G), which is in each
degree an isomorphism of semi-normed vector spaces.

Proposition (2.19). Let G be a discrete group and let V be a Banach G-module.

1. Then C`1

∗ (G; V) together with the augmentation ε⊗ idV is a strong relatively pro-
jective G-resolution of V.

2. Dually, C∗b(G; V) together with the augmentation B(ε, idV) is a strong relatively
injective G-resolution of V.

Here, ε : C`1

0 (G) −→ R is the augmentation introduced in Definition (2.12).

Proof. Ad 1. Park showed that (C`1

∗ (G), ε) is a strong relatively projective resolu-
tion of the trivial Banach G-module R [47; p. 596f]: A contracting chain homo-
topy s of the concatenated chain complex C`1

∗ (G) � ε of norm at most 1 can, for
example, be defined by s−1(1) := 1 · [ ] and

sn : C`1

n (G) −→ C`1

n+1(G)

g0 · [ g1| . . . | gn ] 7−→ (−1)n+1 · [ g0 | g1| . . . | gn ].

Therefore, s ⊗ idV is a contracting chain homotopy of C`1

∗ (G; V) � (ε ⊗ idV),
which also has norm at most 1. Hence, (C`1

∗ (G; V), ε⊗ idV) is a strong resolution
of the Banach G-module R⊗V = V = V.

For each n ∈ N, the Banach G-module C`1

n (G; V) = C`1

n (G) ⊗ V is relatively
projective because any mapping problem (in the sense of Definition (A.1)) of the
form

C`1

n (G; V)

α
��~~}

}
}

}

U π
// W //

σ
yy

0

is solved by the G-morphism given by

C`1

n (G; V) −→ U

g0 · [g1| . . . |gn]⊗ v 7−→ g0 · σ ◦ α
(
1 · [g1| . . . |gn]⊗ (g−1

0 · v)
)
.

Ad 2. Dually, it is not difficult to see that B(s, idV) is a contracting cochain
homotopy of B(ε, idV) � B(C`1

∗ (G), V). Furthermore, for each n ∈ N the Banach
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2.2 `1-Homology of discrete groups

G-module Cn
b(G; V) = B(C`1

n (G), V) is relatively injective because any mapping
problem (in the sense of Definition (A.1)) of the form

Cn
b(G; V)

0 // U i //

α

OO

W
σ

ee

``B
B

B
B

can be solved by the G-morphism

W −→ Cn
b(G; V) = B

(
C`1

n (G), V
)

w 7−→
(

g0 · [g1| . . . |gn] 7→
(
α(g0 · σ(g−1

0 · w))
)
(g0 · [g1| . . . |gn])

)
.

If we were only interested in the case of V = W ′ for some Banach G-module W,
then we could just apply Proposition (A.8) to the first part.

2.2.4 Basic properties of `1-homology of discrete groups

As expected, in degree zero `1-homology and bounded cohomology of a discrete
group coincide with the (co)invariants of the coefficients. Like the corresponding
theories for topological spaces, `1-homology and bounded cohomology of dis-
crete groups with R-coefficients vanish in degree 1.

Proposition (2.20) (Low dimensions). Let G be a discrete group and let V be a Banach
G-module. Then

H`1

0 (G; V) ∼= VG,

H0
b(G; V) ∼= VG,

H`1

1 (G) = 0 = H1
b(G).

Proof. (Co)homology in degree 0: Almost the same calculations as in ordinary group
(co)homology prove the statements on `1-homology and bounded cohomology
in degree 0. The only noteworthy difference is that VG is obtained from V by
dividing out the closure of span{g · v− v | v ∈ V, g ∈ G}.

(Co)homology in degree 1: For each g ∈ G the chain

s(g) := ∑
n∈N

1
2n+1 ·

[
g2n ∣∣ g2n] ∈ C`1

2 (G)
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2 `1-Homology and bounded cohomology

constructed by Mitsumatsu [41] satisfies ∂Gs(g) = 1 · [g] in the quotient C`1

1 (G)G.
Hence, the map ∂G : C`1

2 (G)G −→ C`1

1 (G)G induced by the boundary operator
on C`1

∗ (G) is surjective. This implies that the dual map(
C`1

1 (G)G
)′

(1.14)

//
(
C`1

2 (G)G
)′

(1.14)

C1
b(G)G // C2

b(G)G

is injective. Therefore, we obtain H`1

1 (G) = 0 and H1
b(G) = 0.

Moreover, like in ordinary group cohomology, short exact sequences on the
level of coefficients give rise to long exact sequences in (co)homology [26, 42, 11]:

Proposition (2.21) (Long exact sequence). Let G be a discrete group, and let

0 // U i // V
p

// W // 0

be a short exact sequence of Banach G-modules with relatively injective i. Then there are
natural long exact sequences

· · · −→ H`1

n (G; U) −→ H`1

n (G; V) −→ H`1

n (G; W) −→ H`1

n−1(G; U) −→ · · · ,
· · · −→ Hn

b (G; W ′) −→ Hn
b (G; V ′) −→ Hn

b (G; U′) −→ Hn+1
b (G; W ′) −→ · · ·

with continuous connecting homomorphisms.

Proof. For every n ∈ N, the Banach G-module C`1

n (G) is relatively projective
(Proposition (2.19)). Therefore, we obtain short exact sequences

0 −→ C`1

∗ (G, U)G −→ C`1

∗ (G; V)G −→ C`1

∗ (G; W)G −→ 0,

0 −→ C∗b(G; W ′)G −→ C∗b(G; V ′)G −→ C∗b(G; U′)G −→ 0

of Banach G-(co)chain complexes (Proposition (A.3)).
Now the snake lemma (Proposition (1.9)) gives the two natural long exact se-

quences on (co)homology.

A closer look at the proof of Proposition (A.3) reveals that in the situation of the
above proposition it is not necessary to assume that i is relatively injective [26, 42;
Proposition 2.10, Section 8.2].
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2.3 `1-Homology of spaces with twisted coefficients

Analogously to singular (co)homology, there are also versions of `1-homology
and bounded cohomology of spaces with twisted coefficients.

Definition (2.22). Let X be a connected topological space with universal cover-
ing X̃ and fundamental group G, and let V be a Banach G-module.

1. The `1-chain complex of X with twisted coefficients in V is defined as the
Banach chain complex of coinvariants

C`1

∗ (X; V) :=
(
C`1

∗ (X̃)⊗V
)

G.

Here, C`1

∗ (X̃) inherits the G-action from the action of the fundamental group
on the universal covering X̃.

2. The `1-homology of X with twisted coefficients in V, denoted by H`1

∗ (X; V),
is the homology of the Banach chain complex C`1

∗ (X; V).
3. The bounded cochain complex of X with twisted coefficients in V is de-

fined as the Banach cochain complex of invariants

C∗b(X; V) := B
(
C`1

∗ (X̃), V
)G.

4. Bounded cohomology of X with twisted coefficients in V is the cohomol-
ogy of the Banach cochain complex C∗b(X; V) and is denoted by H∗b(X; V).

(Details on the definition of the Banach G-(co)chain complexes C`1

∗ (X̃) ⊗ V and
B(C`1

∗ (X̃), V) can be found in Definitions (1.12) and (1.17)). 3

The `1-chain complex and the bounded cochain complex of X (as defined in
Section 2.1) can be recovered from this definition by taking trivial coefficients;
namely, as Park stated [47; proof of Theorem 4.1], the `1-chain complex of X can
be viewed as the coinvariants of the `1-chain complex of X̃:

Proposition (2.23). If X is a connected topological space admitting a universal cover-
ing π : X̃ −→ X, then the morphism C`1

∗ (π) : C`1

∗ (X̃) −→ C`1

∗ (X) induces an isometric
isomorphism

ϕ : C`1

∗ (X̃)π1(X) −→ C`1

∗ (X)

of Banach chain complexes.
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2 `1-Homology and bounded cohomology

Therefore, C`1

∗ (X; R) = C`1

∗ (X), and we obtain from Proposition (1.14) that

C∗b(X; R) ∼=
(
C`1

∗ (X̃)′
)π1(X) ∼=

(
C`1

∗ (X̃)π1(X)
)′ ∼= (

C`1

∗ (X)
)′ ∼= C∗b(X).

Proof (of Proposition (2.23)). For brevity, we write G for π1(X) and W for the sub-
complex span{g · c− c | c ∈ C`1

∗ (X̃), g ∈ G}.
Since C`1

∗ (π) is continuous (with norm 1) and since C`1

∗ (π) clearly vanishes
on W, it also vanishes on the closure W. In particular, C`1

∗ (π) induces a morphism

ϕ : C`1

∗ (X̃)G −→ C`1

∗ (X).

of Banach chain complexes with norm equal to 1 [49; Proposition 2.1.7].
We now construct an inverse to ϕ: To this end, for each τ ∈ map(∆∗, X) we

choose a π-lift τ̃ ∈ map(∆∗, X̃). Then

ψ : C`1

∗ (X) −→ C`1

∗ (X̃)G

∑
j∈N

aj · τj 7−→ ∑
j∈N

aj · τ̃j + W

is a linear map, which satisfies ‖ψ‖ ≤ 1. (As we will see in the following para-
graph, ψ is the inverse of ϕ and thus is also compatible with the boundary oper-
ators).

Clearly, ϕ ◦ ψ = id. Conversely, let c = ∑j∈N aj · σj + W ∈ C`1

∗ (X̃)G. For every
index j ∈ N there exists a gj ∈ G such that (π ◦ σj)˜= gj · σj. Therefore, we obtain

(ψ ◦ ϕ)(c)− c =
(

∑
j∈N

aj · (π ◦ σj)˜ − ∑
j∈N

aj · σj

)
+ W

= ∑
j∈N

aj · (gj · σj − σj) + W.

Because the series ∑j∈N |aj| converges, the sum ∑j∈N aj · (gj · σj − σj) lies in the
`1-closure of W, i.e., in W. This implies (ψ ◦ ϕ)(c)− c = 0 and hence ψ ◦ ϕ = id.
This proves the proposition.

Basic properties of `1-homology and bounded cohomology with twisted co-
efficients can be derived by similar means as in Sections 2.1.2 and 2.2.4. We
refrain from doing so because `1-homology as well as bounded cohomology of
spaces actually coincide with the corresponding theories of discrete groups (The-
orem (2.28) and Corollary (4.14)).
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2.4 Peeking into the mirror universe

The seemingly small difference in the definition of bounded cochains and sin-
gular cochains has drastic consequences for the behaviour of the corresponding
cohomology theories. In this section, we give a short survey of the astonishing
properties of bounded cohomology. Unfortunately, the beautiful geometric appli-
cations of bounded cohomology to rigidity theory, as for example developed by
Burger, Monod and Shalom [12, 43], are beyond the scope of this thesis. Instead
we focus on the classic results concerning amenable and hyperbolic groups.

The material presented below (especially Sections 2.4.3 and 2.4.4) does not only
serve as a guideline for the properties of `1-homology we can expect to hold,
but also enables us to derive similar results for `1-homology by means of the
translation mechanism (see Chapters 3 and 4).

2.4.1 Amenable groups

Before studying the relation between amenable groups and bounded cohomol-
ogy, we first recall the definition of amenable groups:

Definition (2.24). A discrete group A is called amenable if there is a left-invariant
mean on the set B(A, R) of bounded functions from A to R, i.e., if there is a linear
map m : B(A, R) −→ R satisfying

∀ f∈B(A,R) ∀a∈A m( f ) = m
(
b 7→ f (a−1 · b)

)
and

∀ f∈B(A,R) inf
{

f (a)
∣∣ a ∈ A

}
≤ m( f ) ≤ sup

{
f (a)

∣∣ a ∈ A
}

. 3

Every finite, every Abelian, and every solvable group is amenable. The class of
amenable groups is closed under taking subgroups and quotients. An example of
a non-amenable group is the free group Z ∗ Z. A detailed discussion of amenable
groups can be found in Paterson’s book [48].
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2 `1-Homology and bounded cohomology

2.4.2 Amenable groups and bounded cohomology

The proof of the following proposition contains the prototypic argument in the
setting of bounded cohomology and shows how amenability can be exploited in
the theory of bounded cohomology [18; p. 39]:

Proposition (2.25). Let X be a connected, aspherical CW-complex with amenable funda-
mental group. Then Hk

b(X) = 0 for all k ∈ N>0.

Proof. For brevity, we write G := π1(X) for the fundamental group of X and
π : X̃ −→ X for the universal covering. The space X̃ is contractible because X is
aspherical. In particular, Hk

b(X̃) = 0 for all k ∈ N>0.
Because G is amenable, there is a G-invariant mean m : B(G, R) −→ R. This

mean allows to construct a split of the homomorphism H∗b(π) : H∗b(X) −→ H∗b(X̃)
as follows: Covering theory shows that

s : C∗b(X̃) −→ C∗b(X)
f 7−→

(
σ 7→ m(g 7→ f (g · σ̃))

)
(where σ̃ denotes any π-lift of the singular simplex σ) is a well-defined chain map
satisfying

s ◦ C∗b(π) = idC∗b(X) .

Therefore, we obtain the relation H∗(s) ◦H∗b(π) = idH∗b(X) on the level of bounded
cohomology. In particular, H∗(s) is surjective.

Now the claim follows because the bounded cohomology of X̃ is trivial in non-
zero degree.

Of course, the construction of s in the proof would not be possible on the singu-
lar cochain complex because the mean m can only be applied to bounded functions.

Moreover, the argument in the proof of the previous proposition admits no ana-
logue on the level of `1-chain complexes (cf. Caveats (4.13) and (4.13)). Because
the construction in the proof of Proposition (2.25) lies at the heart of most results
on bounded cohomology related to amenability, the corresponding statements for
`1-homology cannot be proved by imitating the cohomological proofs.

2.4.3 The mapping theorem in bounded cohomology

Gromov [18; p. 40] and Ivanov [25; Theorem 4.3] established that bounded coho-
mology of spaces depends only on the fundamental group. More generally, they
showed the following:
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Theorem (2.26) (Mapping theorem for bounded cohomology). If f : X −→ Y is a
continuous map of connected, countable CW-complexes such that the induced map π1( f )
is surjective and has amenable kernel, then the induced homomorphism

H∗b( f ) : H∗b(Y) −→ H∗b(X)

is an isometric isomorphism.

In particular, the bounded cohomology of spaces with amenable fundamental
group vanishes in non-zero degree.

Similarly, bounded cohomology of groups cannot see amenable, normal sub-
groups [25, 45, 42; Section 3.8, Theorem 1, Corollary 8.5.2]:

Theorem (2.27). Let G be a discrete group, let A ⊂ G be an amenable normal subgroup
and let V be a Banach G-module. Then the projection G −→ G/A induces an isometric
isomorphism

H∗b(G/A; V ′A) ∼= H∗b(G; V ′).

Conversely, the vanishing of bounded cohomology (with respect to all twisted
coefficients) even characterises amenable groups [26].

2.4.4 Bounded cohomology of spaces via injective resolutions

Singular cohomology of an aspherical space coincides with group cohomology of
the fundamental group, and hence singular cohomology of aspherical spaces can
be computed by injective resolutions and vice versa. The same is true for bounded
cohomology. But since bounded cohomology depends only on the fundamental
group (Theorem (2.26)), the corresponding statement is much stronger:

Theorem (2.28). Let X be a countable, connected CW-complex, let G := π1(X), and let
V be a Banach G-module. Then there is a natural isometric isomorphism

H∗b(X; V ′) ∼= H∗b(G; V ′).

As a consequence, bounded cohomology of spaces can also be computed via
strong relatively injective resolutions (Theorem (2.18)).

In the case of trivial coefficients, the theorem was proved by Ivanov [25; Theo-
rem 4.1] (based on work of Brooks [6]). A proof of the generalised version is given
in Appendix B.
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2 `1-Homology and bounded cohomology

2.4.5 Bounded cohomology and hyperbolic groups

Using straightening (see Section 4.4), Thurston shows that for all oriented, closed,
connected, hyperbolic manifolds M the comparison map Hk

b(M) −→ Hk (M) is
surjective for all k ∈ N≥2. In particular, bounded cohomology is not always zero.

An interesting class of groups, containing all fundamental groups of oriented,
closed, connected, hyperbolic manifolds, is the class of hyperbolic groups intro-
duced by Gromov [19]. Mineyev [39, 40] extended Thurston’s result to all hyper-
bolic groups and discovered that this property characterises hyperbolicity:

Theorem (2.29) (Characterisation of hyperbolic groups by bounded cohomol-
ogy). Let G be a finitely presented group. Then G is hyperbolic if and only if for all
Banach G-modules V and all k ∈ N≥2 the comparison map Hk

b(G; V) −→ Hk (G; V) is
surjective.

In particular, the mapping theorem (Theorem (2.26)) yields: If X is an aspheri-
cal, countable, connected CW-complex with hyperbolic fundamental group, then
the comparison map Hk

b(X) −→ Hk (X) is surjective for all k ∈ N≥2.
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3 Duality

The universal coefficient theorem shows that the algebraic dual of homology of
a chain complex of vector spaces coincides with the cohomology of the algebraic
dual cochain complex. In this chapter, we investigate the effect of replacing alge-
braic duals by topological duals.

While the naı̈ve analogue of the universal coefficient theorem fails in this Ba-
nach setting, we present the following translation mechanism (Theorem (3.1)):
A morphism of Banach chain complexes induces an isomorphism on homology if
and only if its dual induces an isomorphism on cohomology of the corresponding
dual Banach cochain complexes. Additionally, if the isomorphism on cohomol-
ogy is isometric, then so is the isomorphism on homology.

A first step towards a proof is the observation that taking topological duals is
compatible with acyclicity of Banach chain complexes. Using mapping cones, we
can transform this compatibility into the translation mechanism.

We first give a precise statement of the translation principle and discuss duality
in the Banach setting (Section 3.1). In the second step, mapping cones are studied
(Section 3.2). The proof of the translation mechanism is given in Section 3.3. In
the last section, we have a closer look at the relation between cohomological and
homological comparison maps.

Applications of the translation mechanism to `1-homology and bounded coho-
mology are given in Chapter 4.
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3 Duality

3.1 Linking homology and cohomology

3.1.1 Statement of the main theorem

Unlike taking algebraic duals of chain complexes of vector spaces, taking topo-
logical duals of normed chain complexes does not commute with homology (Re-
mark (3.4)). However, it is still possible to transfer certain information from ho-
mology of a Banach chain complex to cohomology of the dual Banach cochain
complex and vice versa:

Theorem (3.1) (Translation mechanism for isomorphisms). Let f : C −→ D be a
morphism of Banach chain complexes and let f ′ : D′ −→ C′ be its dual.

1. Then the induced homomorphism H∗( f ) : H∗(C) −→ H∗(D) is an isomorphism
of vector spaces if and only if H∗( f ′) : H∗(D′) −→ H∗(C′) is an isomorphism of
vector spaces.

2. Furthermore, if H∗( f ′) : H∗(D′) −→ H∗(C′) is an isometric isomorphism, then
also H∗( f ) : H∗(C) −→ H∗(D) is an isometric isomorphism.

The proof of the first part relies on the following duality principle: A Banach
chain complex is acyclic if and only if the corresponding dual Banach cochain
complex is acyclic (Theorem (3.5)). The key to lifting this duality to morphisms
is to apply the duality principle to mapping cones of morphisms of Banach chain
complexes.

The second part can be derived from the first part because the semi-norm on
homology of a normed chain complex can be computed in terms of the semi-norm
on cohomology of its dual complex (Theorem (3.8)). On the other hand, the semi-
norm on cohomology of the dual in general cannot be computed in terms of the
semi-norm on homology. Therefore, we cannot expect that the converse of the
second part holds.

Before delving into the details of the proof of the translation mechanism, we
first introduce the Kronecker product and shed some light on the relation it in-
duces between homology of Banach chain complexes and cohomology of the cor-
responding dual cochain complexes.
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3.1 Linking homology and cohomology

3.1.2 The Kronecker product in the normed setting

Analogous to the algebraic setting, evaluation links homology of a normed chain
complex and cohomology of its dual complex.

Definition (3.2). Let C be a normed chain complex. Evaluation C′n ⊗ Cn −→ R
induces linear maps, the so-called Kronecker products,

〈 · , · 〉 : H∗(C′)⊗ H∗(C) −→ R,

〈 · , · 〉 : H∗(C′)⊗ H∗(C) −→ R,

〈 · , · 〉 : H∗(C′)⊗ H∗(C) −→ R. 3

These Kronecker products are well-defined because all elements in C′ are, by
definition, continuous.

Remark (3.3). Let f : C −→ D be a morphism of normed chain complexes and
let n ∈ N. Then the induced homomorphisms Hn( f ) and Hn( f ′) are adjoint in
the sense that 〈

ϕ, Hn( f )(α)
〉

=
〈

Hn( f ′)(ϕ), α
〉

for all α ∈ Hn(C) and all ϕ ∈ Hn(D′). Analogously, Hn( f ) and Hn( f ′) are adjoint
with respect to 〈 · , · 〉.

By the universal coefficient theorem, the algebraic dual of homology of a chain
complex of vector spaces coincides with the cohomology of the algebraic dual
complex. However, taking topological duals (even of complete normed chain
complexes) fails to commute with homology:

Remark (3.4). There is no obvious duality isomorphism between homology and cohomol-
ogy of Banach chain complexes:

Let C be a Banach chain complex. Then we have the following commutative
diagram

H∗(C′) //

�� ''PPPPPPPPPPP
homR(H∗(C), R)

H∗(C′) //
(

H∗(C)
)′,

OO

where the horizontal arrows are the homomorphisms induced by the Kronecker
products (i.e., they are induced by evaluation of elements in C′ on elements in C),
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3 Duality

the left vertical arrow is the canonical projection and the right vertical arrow is
the composition (H∗(C))′ ↪→ homR(H∗(C), R) ↪→ homR(H∗(C), R) of inclusions.

The lower horizontal morphism, and hence also the diagonal morphism, is sur-
jective by the Hahn-Banach theorem. Moreover, Matsumoto and Morita showed
that the diagonal morphism is injective if and only if H∗(C′) = H∗(C′) holds [38;
Theorem 2.3].

Obviously, this is not the case in general. It is even wrong if C = C`1

∗ (X) for
certain topological spaces X [54, 53]. Hence, there is no obvious duality between
`1-homology and bounded cohomology.

Even the lower horizontal arrow is in general not injective: The kernel of the
evaluation map

ker ∂′n+1 −→
(
ker ∂n/im ∂n+1

)′ = (
Hn(C)

)′
equals (⊥ im(∂′n))⊥, which is the weak*-closure of im ∂′n [51; Theorem 4.7]. Fur-
thermore, the norm-closure im ∂′n and the weak*-closure (⊥ im(∂′n))⊥ coincide if
and only if im ∂n+1 is closed [51; Theorem 4.14]. Thus there is also no obvious
duality isomorphism between reduced `1-homology and reduced bounded coho-
mology. 3

Nevertheless, the Kronecker product is strong enough to give sufficient condi-
tions for (co)homology classes to be non-trivial. For example, if α ∈ H∗(C) and
ϕ ∈ H∗(C′) with 〈ϕ, α〉 = 1, then neither α, nor ϕ can be zero. This effect can
be used to show that `1-homology and bounded cohomology of certain surface
groups are non-trivial [41].

3.1.3 Duality tools for the proof of the translation mechanism

Surprisingly, there is the following relation between homology of Banach chain
complexes and cohomology of their duals, which has been discovered by John-
son [26; Proposition 1.2] as well as by Matsumoto and Morita [38; Corollary 2.4].

Theorem (3.5) (Duality principle). Let C be a Banach chain complex. Then H∗(C)
vanishes if and only if H∗(C′) vanishes.

Here, the “∗” carries the meaning “All of the Hn(C) are zero if and only if all
the Hn(C′) are zero.”

For the sake of completeness we provide a proof of this theorem. The proof is
based on the following fact, stating that taking dual Banach spaces pretends to be
an exact functor; it is not a genuine exact functor because the categories involved
are not Abelian.
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3.1 Linking homology and cohomology

Lemma (3.6). Let f : U −→ V and g : V −→ W be two bounded operators of Banach
spaces satisfying g ◦ f = 0. Then the following two statements are equivalent:

1. The image of g is closed and im f = ker g.
2. The image of f ′ is closed and im(g′) = ker( f ′).

Proof. The various kernels and images are related as follows [51; Theorem 4.7 and
Theorem 4.12], where im(g′)

∗
denotes the weak*-closure of im(g′):

(im f )⊥ = ker( f ′),

(ker g)⊥ =
(⊥ im(g′)

)⊥ = im(g′)
∗
.

Suppose the image of g is closed and im f = ker g. Then also im f is closed.
Hence, im( f ′) and im(g′) are (weak*-)closed by the closed range theorem [51;
Theorem 4.14]. Therefore, we obtain ker( f ′) = im(g′)

∗
= im(g′).

Conversely, suppose the image of f ′ is closed and im(g′) = ker( f ′). Thus, also
im(g′) is closed. By the closed range theorem, im(g′) is even weak*-closed and
both im f and im g are closed. In particular,

(im f )⊥ = (ker g)⊥.

Because the image im f is closed and im f ⊂ ker g, the Hahn-Banach theorem
shows that im f = ker g.

Proof (of Theorem (3.5)). If the (co)homology of a Banach (co)chain complex van-
ishes, then the images of all (co)boundary operators are kernels of bounded oper-
ators and hence closed. Therefore, the theorem follows from Lemma (3.6).

Remark (3.7). Lemma (3.6) can also be used to give stronger versions of Theo-
rem (3.5); for example, one can loosen the restriction on the degrees [38; Theo-
rem 2.3]. However, we do not need these generalisations for the applications we
have in mind and therefore stick to the more streamlined formulation of Theo-
rem (3.5). 3

Moreover, Gromov realised that the semi-norms on homology and cohomology
are intertwined in the following way [18, 1; p. 17, Proposition F.2.2]:

Theorem (3.8) (Duality principle for semi-norms). Let C be a normed chain complex
and let n ∈ N. Then

‖α‖ = sup
{ 1
‖ϕ‖∞

∣∣∣ ϕ ∈ Hn(C′) and 〈ϕ, α〉 = 1
}

holds for each α ∈ Hn(C). Here, sup ∅ := 0.
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Proof. If α ∈ Hn(C) and ϕ ∈ Hn(C′), then∣∣〈ϕ, α〉
∣∣ ≤ ‖α‖ · ‖ϕ‖∞ .

This shows that ‖α‖ is at least as large as the supremum. Now suppose ‖α‖ 6= 0,
i.e., if c is a cycle representing α, then c 6∈ im ∂n+1. Thus, by the Hahn-Banach
theorem there exists a functional f : Cn −→ R satisfying

f |im ∂n+1 = 0, f (c) = 1, ‖ f ‖∞ ≤ 1/‖α‖.

In particular, f ∈ C′n is a cocycle. Let ϕ := [ f ] ∈ Hn(C′) be the corresponding
cohomology class. Then, by construction, 〈ϕ, α〉 = 1 and ‖ϕ‖∞ ≤ ‖ f ‖∞ ≤ 1/‖α‖.
Hence, ‖α‖ is at most as large as the supremum.

The discussion in Remark (3.4) shows however that the semi-norm on H∗(C′)
can in general not be computed by the semi-norm on H∗(C). (It might happen
that the reduced homology H∗(C) is zero, but H∗(C′) is non-zero).

3.2 Mapping cones

Mapping cones of chain maps are a device translating questions about isomor-
phisms on homology into questions about the vanishing of homology groups
(Lemma (3.10)). Like many concepts in homological algebra, the mapping cone is
modeled on its topological counterpart – the mapping cone of continuous maps.

Definition (3.9). 1. Let f : (C, ∂C) −→ (D, ∂D) be a morphism of normed chain
complexes. Then the mapping cone of f , denoted by Cone( f ), is the normed
chain complex defined by

Cone( f )n := Cn−1 ⊕ Dn,

linked by the boundary operator that is given by the matrix

Cone( f )n(
−∂C 0

f ∂D

)
��

= Cn−1 ⊕

−∂C

��

f
��

99
99

99
99

9 Dn

∂D

��

Cone( f )n−1 = Cn−2 ⊕ Dn−1.
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3.2 Mapping cones

2. Dually, if f : (D, δD) −→ (C, δC) is a morphism of normed cochain com-
plexes, then the mapping cone of f , also denoted by Cone( f ), is the normed
cochain complex defined by

Cone( f )n := Dn+1 ⊕ Cn

with the coboundary operator determined by the matrix

Cone( f )n

(
−δD 0

f δC

)
��

= Dn+1 ⊕

−δD

��

f
��

99
99

99
99

9 Cn

δC

��

Cone( f )n+1 = Dn+2 ⊕ Cn+1.

In the first case, we equip the mapping cone with the direct sum of the norms,
in the second case, we use the maximum norm. 3

Clearly, if f is a morphism of Banach (co)chain complexes, then the mapping
cone Cone( f ) is also a Banach (co)chain complex.

3.2.1 Mapping cones and homology isomorphisms

The main feature of mapping cones is being able to detect isomorphisms on ho-
mology:

Lemma (3.10). 1. Let f : C −→ D be a morphism of normed chain complexes. Then
the induced map H∗( f ) : H∗(C) −→ H∗(D) is an isomorphism (of vector spaces)
if and only if all homology groups H∗(Cone( f )) are zero.

2. Dually, let f : D −→ C be a morphism of normed cochain complexes. Then the
induced map H∗( f ) : H∗(D) −→ H∗(C) is an isomorphism if and only if all co-
homology groups H∗(Cone( f )) are zero.

In the proof of the lemma, we use the following notation:

Definition (3.11). If C is a normed chain complex, the normed chain complex ΣC
that is derived from C via (ΣC)n := Cn−1 is called the suspension of C. For a
normed cochain complex C, the suspension ΣC is defined by (ΣC)n := Cn−1. 3

Proof. The sequence (where the morphisms are given by the obvious inclusion
and the negative of the projection) 0 −→ D −→ Cone( f ) −→ ΣC −→ 0 of
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normed chain complexes is exact. Hence, we obtain a long exact sequence in ho-
mology (Proposition (1.9)) whose connecting morphism is easily seen to coincide
with H∗( f ) [7; Proposition 0.6]:

. . . // Hn
(
Cone( f )

)
// Hn(ΣC) // Hn−1(D) // Hn−1

(
Cone( f )

)
// . . .

Hn−1(C)
Hn−1( f )

88pppppppp

This proves the first part. The second part can be shown in the same way, making
use of the long exact cohomology sequence corresponding to the short exact se-
quence 0 −→ C −→ Cone( f ) −→ Σ−1D −→ 0 of normed cochain complexes.

Notice that both the lemma and its proof are completely algebraic in nature –
we used only the underlying R-chain complexes.

3.2.2 Mapping cones of dual morphisms

In order to understand the relation between the induced maps H∗( f ) and H∗( f ′)
it remains to relate the mapping cone of f to the one of f ′.

Lemma (3.12). Let f : C −→ D be a morphism of normed chain complexes and let
f ′ : D′ −→ C′ the induced morphism between the dual complexes. Then there is a natural
isomorphism

Cone( f )′ ∼= ΣCone(− f ′)

of normed cochain complexes, relating the mapping cones of f and − f ′. In particular,

H∗
(
Cone( f )′

) ∼= H∗
(
ΣCone(− f ′)

)
.

Proof. For each n ∈ N, there is an isomorphism(
Cone( f )′

)n = (Cn−1 ⊕ Dn)′ −→ (Dn)′ ⊕ (Cn−1)′ = Cone(− f ′)n−1

ϕ 7−→ (−1)n ·
(
d 7→ ϕ(0, d), c 7→ ϕ(c, 0)

)
(−1)n ·

(
(c, d) 7→ ϕ(c) + ψ(d)

)
←− [ (ψ, ϕ)

of normed vector spaces. By definition, the coboundary operator of Cone( f )′ is
given by

(Cn−1 ⊕ Dn)′ −→(Cn ⊕ Dn+1)′

ϕ 7−→
(
(c, d) 7→ ϕ

(
−∂C(c), f (c) + ∂D(d)

))
,

40



3.3 Transferring isomorphisms

which corresponds under the isomorphisms given above to the coboundary oper-
ator on ΣCone(− f ′). Hence, we obtain an isomorphism Cone( f )′ ∼= ΣCone(− f ′)
of normed cochain complexes.

3.3 Transferring isomorphisms

In this section, we put all the pieces together and complete the proof of the trans-
lation mechanism (Theorem (3.1)).

3.3.1 Transferring algebraic isomorphisms

Fusing the properties of mapping cones with the duality principle (Theorem (3.5))
yields a proof of the first part of Theorem (3.1):

Theorem (3.13). Let f : C −→ D be a morphism of Banach chain complexes. Then the
induced homomorphism H∗( f ) : H∗(C) −→ H∗(D) is an isomorphism of vector spaces if
and only if the induced homomorphism H∗( f ′) : H∗(D′) −→ H∗(C′) is an isomorphism
of vector spaces.

Proof. By Lemma (3.10), the induced homomorphism H∗( f ) is an isomorphism if
and only if H∗(Cone( f )) = 0. In view of the duality principle (Theorem (3.5)) and
Lemma (3.12), this is equivalent to

0 = H∗
(
Cone( f )′

) ∼= H∗
(
ΣCone(− f ′)

)
= H∗−1(Cone(− f ′)

)
.

(The duality principle is applicable because the cone of a morphism of Banach
chain complexes is a Banach chain complex.) On the other hand, the cohomology
groups H∗−1(Cone(− f ′)) are all zero if and only if H∗(− f ′) : H∗(D′) −→ H∗(C′)
is an isomorphism (Lemma (3.10)). Moreover, H∗( f ′) = −H∗(− f ′), and therefore
the claim follows.

3.3.2 Transferring isometric isomorphisms

Similarly, combining the properties of mapping cones with the duality principle
for semi-norms (Theorem (3.8)) proves the second part of Theorem (3.1):
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Theorem (3.14). Let f : C −→ D be a morphism of normed chain complexes that induces
an isometric isomorphism H∗( f ′) : H∗(D′) −→ H∗(C′) between the cohomology groups
of the topological duals. Then also H∗( f ) : H∗(C) −→ H∗(D) is isometric.

Proof. That the homomorphism H∗( f ) is isometric is a consequence of the duality
principle for semi-norms (Theorem (3.8)), namely:

Let n ∈ N and let α ∈ Hn(C). Using the duality principle for semi-norms twice
and the fact that H∗( f ′) is an isometric isomorphism, we obtain∥∥Hn( f )(α)

∥∥ = sup
{ 1
‖ψ‖∞

∣∣∣ ψ ∈ Hn(D′) and
〈
ψ, Hn( f )(α)

〉
= 1
}

= sup
{ 1
‖ψ‖∞

∣∣∣ ψ ∈ Hn(D′) and
〈

Hn( f ′)(ψ), α
〉

= 1
}

= sup
{ 1
‖Hn( f ′)(ψ)‖∞

∣∣∣ ψ ∈ Hn(D′) and
〈

Hn( f ′)(ψ), α
〉

= 1
}

= sup
{ 1
‖ϕ‖∞

∣∣∣ ϕ ∈ Hn(C′) and 〈ϕ, α〉 = 1
}

= ‖α‖,

as desired.

3.4 Comparing comparison maps

In addition to the translation mechanism (Theorem (3.1)), there also exists a link
between the cohomological and homological comparison maps, i.e., between the
maps measuring the difference between the algebraic and the functional analytic
settings.

Proposition (3.15). Let C be a normed chain complex, let n ∈ N, and let i : C ↪→ C
and j : C′ ↪→ homR(C, R) be the canonical inclusions. If the cohomological comparison
map Hn(j) : Hn(C′) −→ Hn(homR(C, R)) is surjective, then the homological compari-
son map Hn(i) : Hn(C) −→ Hn(C) is injective.

Proof. Let α ∈ Hn(C) \ {0}. Clearly, it suffices to show ‖Hn(i)(α)‖ 6= 0.
By the universal coefficient theorem, the Kronecker product induces an iso-

morphism Hn(homR(C, R)) ∼= homR(Hn(C), R). Hence, there is a cohomology
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class ψ ∈ Hn(homR(C, R)) with 〈ψ, α〉 = 1. By assumption, the cohomological
comparison map Hn(j) is surjective, i.e., there is a ϕ ∈ Hn(C′) with Hn(j)(ϕ) = ψ.
In particular, 〈

ϕ, Hn(i)(α)
〉

=
〈

Hn(j)(ϕ), α
〉

= 〈ψ, α〉 = 1.

Therefore, ϕ 6= 0 and we obtain ‖Hn(i)(α)‖ 6= 0 from the duality principle for
semi-norms (Theorem (3.8)).

However, the converse of this proposition is not true without imposing sub-
stantial finiteness conditions as the following example shows.

Example (3.16). There exist normed chain complexes C and n ∈ N such that the homo-
logical comparison map Hn(C) −→ Hn(C) is injective, but the cohomological compari-
son map Hn(C′) −→ Hn(homR(C, R)) is not surjective:

Let C be the Banach chain complex concentrated in degree n with Cn = `1(Z).
Then C = C and hence the homological comparison map Hn(C) −→ Hn(C) is
injective.

By construction,

Hn(C′) = B
(
`1(Z), R

)
Hn(homR(C, R)

)
= homR

(
`1(Z), R

)
.

Therefore, the cohomological comparison map Hn(C′) −→ Hn(homR(C, R)) can-
not be surjective – the space `1(Z) is infinite dimensional. 3

While it is easy to see (for example, using the Kronecker product) that the im-
age of the cohomological comparison map is always a Banach space [6, 17; p. 60,
Corollary 1.12], it is unknown for which normed chain complexes C the semi-
norm on the image of the homological comparison map H∗(C) −→ H∗(C) is a
norm; a discussion of this issue in the case that C is the singular chain complex of
a manifold can be found in Section 6.3.1.
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In this chapter, we apply the translation mechanism established in the previous
chapter (Theorem (3.1)) to `1-homology, thereby gaining a uniform, lightweight
approach to the following results:

• Like bounded cohomology `1-homology of a space depends only on the
fundamental group (Corollary (4.3)).
• More generally, `1-homology of spaces as well as of discrete groups cannot

see amenable, normal subgroups (Corollaries (4.2) and (4.12)).
• `1-Homology of spaces can be computed via certain projective resolutions

(Corollary (4.14)).

In Section 4.4, we present an example application of these results – a “straight-
ening” of chains on the level of `1-homology. The motivation for this applica-
tion is the geometric straightening in the non-positively curved setting. One of
the consequences of the `1-straightening is a homological proof of the fact that
measure homology and singular homology are isometrically isomorphic (Ap-
pendix D).
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4.1 Isomorphisms in `1-homology of spaces

The translation mechanism (Theorem (3.1)) allows to transfer certain results from
bounded cohomology to `1-homology. In this section, we present the simplest
applications of this type, concerning `1-homology of spaces with R-coefficients.

4.1.1 The translation mechanism for `1-homology of spaces

In the language of `1-homology, the translation mechanism reads as follows:

Corollary (4.1). Let f : (X, A) −→ (Y, B) be a continuous map of pairs of topological
spaces.

1. The induced homomorphism H`1

∗ ( f ) : H`1

∗ (X, A) −→ H`1

∗ (Y, B) is an isomor-
phism if and only if H∗b( f ) : H∗b(Y, B) −→ H∗b(X, A) is an isomorphism.

2. If H∗b( f ) : H∗b(Y, B) −→ H∗b(X, A) is an isometric isomorphism, then H`1

∗ ( f ) is
also an isometric isomorphism.

3. In particular, H`1

∗ (X, A) vanishes if and only if H∗b(X, A) vanishes.

Proof. By definition, C∗b(X, A) = (C`1

∗ (X, A))′ and C∗b(Y, B) = (C`1

∗ (Y, B))′. The
cochain map C∗b( f ) : C∗b(Y, B) −→ C∗b(X, A) coincides with (C`1

∗ ( f ))′. Applying
the translation mechanism Theorem (3.1) to C`1

∗ ( f ) proves the Corollary.

4.1.2 The mapping theorem in `1-homology

For example, Corollary (4.1) yields a new, lightweight proof of the fact that `1-ho-
mology depends only on the fundamental group (Corollary (4.3)) and that amena-
ble groups are a blind spot of `1-homology (Corollary (4.2)). A short introduction
to amenable groups is given in Section 2.4.1.

Corollary (4.2) (Mapping theorem for `1-homology). Let f : X −→ Y be a contin-
uous map of connected, countable CW-complexes such that π1( f ) : π1(X) −→ π1(Y) is
surjective and has amenable kernel. Then the induced homomorphism

H`1

∗ ( f ) : H`1

∗ (X) −→ H`1

∗ (Y)

is an isometric isomorphism.
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4.1 Isomorphisms in `1-homology of spaces

Proof. It is a classic result in the theory of bounded cohomology that in this sit-
uation H∗b( f ) : H∗b(Y) −→ H∗b(X) is an isometric isomorphism (Theorem (2.26)).
Applying Corollary (4.1) completes the proof.

Corollary (4.3). The `1-homology of connected, countable CW-complexes depends only
on the fundamental group.

Proof. Let X be a connected, countable CW-complex. Its fundamental group is
countable, and hence there is a model of the classifying space Bπ1(X) that is a
countable, connected CW-complex. Therefore, we can apply the previous corol-
lary.

Bouarich gave the first proof that `1-homology depends only on the funda-
mental group [5; Corollaire 6]. His proof is based on Theorem (3.5), the fact that
bounded cohomology of simply connected spaces vanishes, and an `1-version of
Brown’s theorem. Moreover, Park [47; Corollary 4.2] already claimed that Corol-
lary (4.2) holds. However, due to a gap in her argument, her proof is not complete.
This issue is addressed in Caveat (4.13) and Caveat (4.15).

Corollary (4.2) also gives a new proof of the following result of Bouarich [5;
Corollaire 5]:

Corollary (4.4). Let p : E −→ B be a fibration of connected, countable CW-complexes
with path-connected fibre F. If the fundamental group π1(F) is amenable, then the in-
duced map H`1

∗ (p) : H`1

∗ (E) −→ H`1

∗ (B) is an isometric isomorphism.

Proof. From the portion

. . . // π1(F) // π1(E)
π1(p)

// π1(B) // π0(F) = 0

of the long exact sequence associated to the fibration p, we obtain that π1(p) is
surjective and that its kernel ker π1(p), as homomorphic image of the amenable
group π1(F), must be amenable [48; Proposition 1.12 and 1.13]. Now the result
follows from Corollary (4.2).

4.1.3 Amenable subsets and `1-homology

Gromov introduced the notion of amenable subsets of spaces [18; p. 40]; amenable
subsets serve as a generalisation of sets that are contractible in the ambient space.
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4 Isomorphisms in `1-homology

Definition (4.5). Let X be a topological space. A subset A ⊂ X is called amenable
if the subgroups im π1(B ↪→ X) ⊂ π1(X) are amenable for all path-connected
components B of A. 3

Corollary (4.6) (Amenable subsets and `1-homology). Let X be a connected, count-
able CW-complex and suppose that A ⊂ X is an amenable subcomplex with finitely many
connected components. Then

im H`1

k (A ↪→ X) = 0

for all k ∈ N>0.

Proof. Keeping in mind that `1-homology is additive with respect to finite dis-
joint unions (Proposition (2.7)), we can restrict ourselves to the case where A is
connected.

Killing the kernel of π1(A ↪→ X) by gluing in disks shows that we can find a
connected, countable CW-complex X containing X and a subcomplex A of X con-
taining A with the following properties [25; p. 1110]: The group π1(A) is amena-
ble, the inclusion X ↪→ X induces an isomorphism on the level of fundamental
groups, and the diagram

A //

��

X

��

A // X

of inclusions is commutative. By the mapping theorem (Corollary (4.2)), the right
vertical arrow induces an isometric isomorphism on the level of `1-homology and
H`1

k (A) = 0 for all k ∈ N>0. Therefore, the corresponding diagram in `1-homolo-
gy shows that im H`1

k (A ↪→ X) = 0.

For bounded cohomology, the comparison map in high degree is well under-
stood in the case that the space in question admits an open, amenable covering
with controlled multiplicity [18, 25; p. 40, Corollary 6.3]. Probably this is also true
for `1-homology – for example, one could try to transfer Ivanov’s argument to
`1-homology.

4.1.4 Hyperbolic groups and `1-homology

Mineyev showed that hyperbolicity gives rise to large bounded cohomology (Sec-
tion 2.4.5). A small part of this result can also be formulated in terms of `1-homol-
ogy:
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4.2 Isomorphisms in `1-homology of discrete groups

Corollary (4.7). Let X be an aspherical, countable, connected CW-complex with hyper-
bolic fundamental group. Then the comparison map Hk (X) −→ H`1

k (X) is injective for
all k ∈ N≥2.

Proof. Let k ∈ N≥2. By Mineyev’s result (Section 2.4.5), the cohomological com-
parison map Hk

b(X) −→ Hk (X) is surjective. Therefore, Proposition (3.15) ap-
plied to the normed chain complex C∗ (X) shows that the homological compari-
son map Hk (X) −→ H`1

k (X) is injective.

4.2 Isomorphisms in `1-homology of discrete groups

Analogously to the previous section, the translation mechanism can also be ap-
plied to `1-homology of discrete groups (Corollary (4.8)). For example, this trans-
forms the characterisation of amenable groups via bounded cohomology into a
characterisation in terms of `1-homology (Corollary (4.11)). Moreover, we deduce
that like bounded cohomology, `1-homology ignores amenable normal subgroups
(Corollary (4.12)).

4.2.1 The translation mechanism for `1-homology of discrete groups

Corollary (4.8). Let ϕ : G −→ H be a homomorphism of discrete groups, let V be a Ba-
nach G-module, let W be a Banach H-module and suppose f : V −→ ϕ∗W is a morphism
of Banach G-modules.

1. Then the homomorphism H`1

∗ (ϕ; f ) : H`1

∗ (G; V) −→ H`1

∗ (H; W) is an isomor-
phism if and only if H∗b(ϕ; f ′) : H∗b(H; W ′) −→ H∗b(G; V ′) is an isomorphism.

2. If H∗b(ϕ; f ′) is an isometric isomorphism, then so is H`1

∗ (ϕ; f ).

Proof. By definition (Definition (2.17)), we have

H`1

∗ (ϕ; f ) = H∗
(

p ◦ C`1

∗ (ϕ; f )G
)
,

C∗b(ϕ; f ′) = H∗
(
C∗b(ϕ; f ′)G ◦ i

)
,

where p : (ϕ∗C`1

∗ (H; W))G −→ C`1

∗ (H; W)H denotes the canonical projection and
i : C∗b(H; W ′)H −→ (ϕ∗C∗b(H; W ′))G is the inclusion.
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4 Isomorphisms in `1-homology

(
C`1

∗ (H; W)H
)′ (1.14)

p′

��

(p◦C`1
∗ (ϕ; f )G)′

%%

(
C`1

∗ (H; W)′
)H (2.14)

C∗b(H; W ′)H

i
��(

(ϕ∗C`1

∗ (H; W))G
)′ (1.14)

(C`1
∗ (ϕ; f )G)′

��

(
ϕ∗C`1

∗ (H; W)′
)G (2.14) (

ϕ∗C∗b(H; W ′)
)G

C∗b(ϕ; f ′)G

��(
C`1

∗ (G; V)G
)′

(1.14)

(
C`1

∗ (G; V)′
)G

(2.14)
C∗b(G; V ′)G

Figure (4.9). Linking `1-homology and bounded cohomology of discrete groups
(proof of Corollary (4.8))

A straightforward calculation shows that the diagram in Figure (4.9) is a com-
mutative diagram of morphisms of Banach chain complexes, where all horizontal
morphisms are isometric isomorphisms.

Therefore, applying the translation mechanism (Theorem (3.1)) to the mor-
phism p ◦ C`1

∗ (ϕ; f )G of Banach chain complexes proves the corollary.

Corollary (4.10). Let G be a discrete group and let V be a Banach G-module. Then
H`1

∗ (G; V) ∼= H`1

∗ (1; V) if and only if H∗b(G; V ′) ∼= H∗b(1; V ′).

4.2.2 Amenable groups and `1-homology of discrete groups

Corollary (4.8) enables us to carry over many results on bounded cohomology of
discrete groups to `1-homology. In the following, we present two examples of this
kind:

Corollary (4.11) (Characterisation of amenable groups by `1-homology). For a
discrete group G the following are equivalent:

1. The group G is amenable.
2. For all Banach G-modules V, the `1-homology H`1

∗ (G; V) of G with coefficients
in V is trivial, i.e., H`1

∗ (G; V) ∼= H`1

∗ (1; V).

Proof. Amenable groups can be characterised by the vanishing of bounded coho-
mology with arbitrary (dual) coefficients in non-zero degree [26, 45]. Therefore
the claim follows with help of Corollary (4.10).
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4.2 Isomorphisms in `1-homology of discrete groups

Corollary (4.12). Let G be a discrete group, let A ⊂ G be an amenable, normal subgroup
and let V be a Banach G-module. Then the projection G −→ G/A induces an isometric
isomorphism

H`1

∗ (G; V) ∼= H`1

∗ (G/A; VA).

Proof. The corresponding homomorphism

H∗b(G � G/A; V ′A ↪→ V ′) : H∗b(G/A; V ′A) −→ H∗b(G; V ′)

is an isometric isomorphism [45, 42; Theorem 1, Corollary 8.5.2] (the case with
R-coefficients was already treated by Ivanov [25; Section 3.8]). Because the in-
clusion V ′A ↪→ V ′ is the dual of the projection V −→ VA (which follows from
Proposition (1.14)), we can apply Corollary (4.8).

Caveat (4.13). Let G be a discrete group and let A ⊂ G be an amenable normal
subgroup.

Ivanov proved that the cochain complex C∗b(G/A) is a strong relatively injec-
tive G-resolution of the trivial G-module R [25; Theorem 3.8.4] by showing that
the G-morphisms C∗b(G/A) −→ C∗b(G) induced by the projection G −→ G/A are
split injective [25; Lemma 3.8.1 and Corollary 3.8.2].

Analogously, Park claimed that the G-morphisms C`1

n (G) −→ C`1

n (G/A) are
split surjective [47; Lemma 2.4 and Lemma 2.5] and concluded that the C`1

n (G/A)
are relatively projective G-modules. Unfortunately, Park’s proof [47; proof of
Lemma 2.4] contains an error: the A-invariant mean on B(A, R) provided by
amenability of A in general is not σ-additive.

In fact, C`1

n (G/A) in general is not a relatively projective G-module as the fol-
lowing example shows: Let G be an infinite amenable group (e.g., G = Z) and let
A := G. Then the G-action on G/A = 1 is trivial. However, since G is infinite, the
G-modules C`1

n (G) do not contain any non-zero G-invariant elements. Therefore,
any G-morphism of type C`1

n (G/A) −→ C`1

n (G) must be trivial. We now consider
the mapping problem

C`1

n (G/A) = R

id
��

?
||

C`1

n (G) π
// R // 0

with the G-morphism π given by g0 · [g1| . . . |gn] 7−→ 1, which obviously admits a
(non-equivariant) split of norm 1. The argument above shows that this mapping
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4 Isomorphisms in `1-homology

problem cannot have a solution, and hence that C`1

n (G/A) cannot be a relatively
projective G-module.

This problem also affects several other results of Park, e.g., her proof of the fact
that `1-homology depends only on the fundamental group [47; Theorem 4.1] and
of the equivalence theorem [47; Theorem 3.7 and 4.4]. 3

4.3 `1-Homology of spaces via projective resolutions

Finally, we are able to identify `1-homology of topological spaces with `1-homol-
ogy of the associated fundamental groups:

Corollary (4.14). Suppose X is a countable, connected CW-complex with fundamental
group G, and let V be a Banach G-module.

1. There is a canonical isometric isomorphism

H`1

∗ (X; V) ∼= H`1

∗ (G; V).

2. In particular: If C is a strong relatively projective G-resolution of V, then there is
a canonical isomorphism (degreewise isomorphism of semi-normed vector spaces)

H`1

∗ (X; V) ∼= H∗(CG).

3. If C is a strong relatively projective G-resolution of the trivial Banach G-module R,
then there is a canonical isomorphism (degreewise isomorphism of semi-normed
vector spaces)

H`1

∗ (X; V) ∼= H∗
(
(C⊗V)G

)
.

Therefore, the results of Section 4.2 are also valid for `1-homology with twisted
coefficients and provide generalisations of the results presented in Section 4.1.

Caveat (4.15). Ivanov proved the corresponding theorem for bounded cohomol-
ogy with R-coefficients [25; Theorem 4.1] by verifying that C∗b(X̃) is a strong rela-
tively injective resolution of the trivial Banach G-module R [25; Theorem 2.4].

The proof that the resolution C∗b(X̃) is strong relies heavily on the fact that cer-
tain chain maps are split injective (see Lemma (B.4)). However, for the same rea-
sons as explained in Caveat (4.13), it is not possible to translate these arguments
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4.3 `1-Homology of spaces via projective resolutions

into the language of `1-chain complexes. Hence, it seems impossible to prove that
the chain complex C`1

∗ (X̃) is a strong resolution. In particular, Park’s proof [47;
proof of Theorem 4.1] of Corollary (4.14) (with R-coefficients) is not complete. 3

Using the techniques developed in Chapter 3, we can derive Corollary (4.14)
from the corresponding result in bounded cohomology (cf. Theorem (2.28), which
is proved in Appendix B).

Proof (of Corollary (4.14)). Ad 1. In order to prove the first part of Corollary (4.14),
we proceed as follows:

1. We establish a connection between C`1

∗ (X̃; V) and the strong relatively pro-
jective resolution C`1

∗ (G; V).
2. The dual of this morphism, when restricted to the invariants, induces an

isometric isomorphism on the level of cohomology of the invariants (Theo-
rem (2.28)).

3. Finally, we apply the translation mechanism (Theorem (3.1)) to transfer this
isometric isomorphism back to `1-homology.

First step. Park [47; proof of Theorem 4.1] constructed the following map (“pre-
dually” to Ivanov’s construction [25; proof of Theorem 4.1]):

Let F ⊂ X̃ be a (set-theoretic) fundamental domain of the G-action on X̃. In the
following, the vertices of the standard n-simplex ∆n are denoted by v0, . . . , vn. For
a singular simplex σ ∈ map(∆n, X̃) let g0(σ), . . . , gn(σ) ∈ G be the group elements
characterised uniquely by

g0(σ)−1 · σ(v0) ∈ F

g1(σ)−1 · g0(σ)−1 · σ(v1) ∈ F
...

gn(σ)−1 · · · · · g1(σ)−1 · g0(σ)−1 · σ(vn) ∈ F.

Then the map η : C`1

∗ (X̃) −→ C`1

∗ (G) given by

C`1

n (X̃) −→ C`1

n (G)
σ 7−→ g0(σ) ·

[
g1(σ)

∣∣ . . .
∣∣ gn(σ)

]
is a morphism of Banach G-chain complexes. Hence,

ηV := η ⊗ idV : C`1

∗ (X̃; V) −→ C`1

∗ (G; V)

is also a morphism of Banach G-chain complexes.
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4 Isomorphisms in `1-homology

Let (ηV)G : C`1

∗ (X̃; V)G −→ C`1

∗ (G; V)G denote the morphism of Banach chain
complexes induced by ηV . We show now that a different choice of fundamental
domain F∗ ⊂ X̃ leads to a map chain homotopic to (ηV)G:

Homological algebra shows that there is up to G-homotopy only one G-mor-
phism C`1

∗ (X̃) −→ C`1

∗ (G) (Proposition (A.7)); in fact, C`1

∗ (X̃) is a Banach G-chain
complex consisting of relatively projective G-modules [47; p. 611] and C`1

∗ (G) is a
strong relatively projective resolution of R (Proposition (2.19)). But η and η∗, the
map obtained via F∗, are such G-morphisms and hence are G-homotopic. There-
fore, also η ⊗ idV and η∗V := η∗ ⊗ idV must be G-homotopic, which implies that
the induced maps (ηV)G and (η∗V)G are homotopic. In particular,

H∗
(
(ηV)G

)
: H∗

(
C`1

∗ (X̃; V)G
)
−→ H∗

(
C`1

∗ (G; V)G
)

does not depend on the choice of fundamental domain.
Second step. The dual of the G-morphism ηV coincides under the natural iso-

metric isomorphisms (C`1

∗ (X̃; V))′ ∼= C∗b(X̃; V ′) and (C`1

∗ (G; V))′ ∼= C∗b(G; V ′) of
Banach G-cochain complexes (Remarks (1.13) and (2.14)) with ϑV ′ : C∗b(G; V ′) −→
C∗b(X̃; V ′), the morphism of Banach G-cochain complexes given by

Cn
b(G; V ′) −→ Cn

b(X̃; V ′)
f 7−→

(
σ 7→ f (g0(σ), . . . , gn(σ))

)
.

(4.16)

In other words, the diagram

(
C`1

∗ (G; V)
)′

(2.14)

(ηV)′
//
(
C`1

∗ (X̃; V)
)′

(1.13)

C∗b(G; V ′)
ϑV′

// C∗b(X̃; V ′)

is commutative. Taking G-invariants of this diagram yields the commutative di-
agram of morphisms of Banach cochain complexes in Figure (4.17).

The restriction (ϑV ′)G to the subcomplexes of G-invariants induces an isometric
isomorphism on the level of cohomology (Theorem (2.28)/Theorem (B.1)). Hence,
also the top row of the diagram (i.e, (ηV)G

′) must induce an isometric isomor-
phism on the level of cohomology.

Third step. Therefore, we can derive from the translation mechanism (Theo-
rem (3.1)) that

(ηV)G : C`1

∗ (X; V) = C`1

∗ (X̃; V)G −→ C`1

∗ (G; V)G

54
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(
C`1

∗ (G; V)G
)′

(1.14)

(ηV)G
′
//
(
C`1

∗ (X̃; V)G
)′

(1.14)(
C`1

∗ (G; V)′
)G

(1.13)

(ηV)′G
//
(
C`1

∗ (X̃; V)′
)G

(1.13)

C∗b(G; V ′)G
(ϑV′ )

G
// C∗b(X̃; V ′)G

Figure (4.17). Relating ηV and ϑV ′

induces a (canonical) isometric isomorphism on the level of homology. This fin-
ishes the proof of the first part.

Ad 2. and 3. These statements follow from the first part combined with the cor-
responding results on `1-homology of discrete groups (Theorem (2.18)).

4.4 Example application – a generalised straightening

For manifolds of non-positive sectional curvature, the existence of unique geo-
desics on the universal covering shows that the singular chain complex can be
replaced by the chain complex of so-called straight simplices (Proposition (4.20)).
Straight simplices in this context are defined as projections of geodesic simplices
on the universal covering.

Based on `1-homology, we exhibit a generalised straightening that is valid for
all countable, connected CW-complexes (Theorem (4.21)).

As first step, we define straight simplices for general spaces, starting with the
notationally more transparent case of universal coverings. Geodesic simplices
on the universal covering of a manifold with non-positive sectional curvature
depend only the set of vertices, leading to the following definition:

Definition (4.18). Let X be a connected space with fundamental group G that
admits a universal covering X̃ −→ X.
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4 Isomorphisms in `1-homology

1. The real vector space R[X̃n+1], i.e., the R-vector space with basis X̃n+1, with
the obvious `1-norm carries an isometric G-action given by the diagonal
action of G on X̃n+1.

2. The straight chain complex of X̃ is the normed G-chain complex S∗(X̃) de-
fined by

Sn(X) := R[X̃n+1]

together with the `1-norm and the boundary operator given by

Sn(X̃) −→ Sn−1(X̃)

(x0, . . . , xn) 7−→
n

∑
j=0

(−1)j · (x0, . . . , x̂j, . . . , xn).

3. Moreover, we define the straightening map sX̃ : C∗(X̃) −→ S∗(X̃) via

Cn(X̃) −→ Sn(X̃)
σ 7−→

(
σ(v0), . . . , σ(vn)

)
,

where v0, . . . , vn are the vertices of the standard n-simplex ∆n. 3

Clearly, the straightening sX̃ is a well-defined chain map, which is bounded in
each degree and which is compatible with the respective G-actions. I.e., sX̃ is a
morphism of normed G-chain complexes. In order to obtain a straightening not
only for the universal covering X̃ but also for the space X itself, we pass to the
coinvariants:

Definition (4.19). Let X be a connected, topological space that admits a universal
covering X̃ −→ X. Let G be the fundamental group of X.

1. The straight chain complex of X is the normed chain complex defined by

S∗(X) := S∗(X̃)G.

2. The straight `1-chain complex of X, denoted by S`1

∗ (X), is the completion of
the normed chain complex S∗(X).

3. The straightening and `1-straightening of X respectively are given by

sX := (sX̃)G : C∗ (X) = C∗(X̃)G −→ S∗(X),

sX := (sX̃)G : C`1

∗ (X) = C`1

∗ (X̃)G −→ S`1

∗ (X),

where sX̃ denotes the extension of the morphism sX̃ : C∗(X̃) −→ S∗(X̃) of
normed chain complexes to the respective completions. 3
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For the universal covering X̃ this “new” definition of the straight chain complex
and the straightening map coincides with the first definition.

Proposition (4.20) (Straightening in the non-positively curved case). Let M be a
connected, Riemannian manifold with non-positive sectional curvature. Then straighten-
ing sM : C∗ (M) −→ S∗(M) induces an isometric isomorphism

H∗(sM) : H∗ (M) −→ H∗(S∗(M)).

If M is a Riemannian manifold with non-positive sectional curvature, any two
points in the Riemannian universal covering M̃ of M are connected by precisely
one geodesic (up to parametrisation). In particular, it makes sense to speak of
convex combinations of points in M̃. A singular n-simplex σ of M̃ is called geodesic
if there exist (m0, . . . , mn) ∈ M̃n+1 such that σ is of the form

∆n −→ M̃

(t0, . . . , tn) 7−→
n

∑
j=0

tj ·mj.

Proof (of Proposition (4.20)). For brevity, we write G := π1(M). Because M is non-
positively curved, for each (n + 1)-tuple (m0, . . . , mn) of points in the universal
covering M̃, there exists exactly one geodesic n-simplex ∆n −→ M̃ whose vertices
are m0, . . . , mn. Therefore, the chain complex S∗(M̃) is isometrically G-isomorphic
to the subcomplex Cg

∗ (M̃) of C∗(M̃) generated by all geodesic simplices.
Furthermore, the geometry of M̃ allows to find an explicit G-homotopy be-

tween the identity and the morphism

C∗(M̃)
sM̃ // S∗(M̃) // Cg

∗ (M̃) // C∗(M̃)

of Banach G-chain complexes [50; Lemma 2 on p. 531]. Clearly, this equivari-
ant chain homotopy descends to a chain homotopy on M and thus H∗(sM) is an
isomorphism.

The isomorphism H∗(sM) is even isometric because both sM̃ and the composi-
tion S∗(M̃) −→ Cg

∗ (M̃) −→ C∗(M̃) are norm-decreasing.

Of course, in general, the geometry and topology of the universal covering is
much more complicated and the corresponding statement would be false. How-
ever, if we look at the completion of the chain complexes, i.e., if we step into the
`1-world, then straightening induces an isometric isomorphism on the level of
homology:
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4 Isomorphisms in `1-homology

Theorem (4.21) (`1-Straightening). Let X be a countable, connected CW-complex.
Then straightening sX : C`1

∗ (X) −→ S`1

∗ (X) induces an isometric isomorphism

H∗(sX) : H`1

∗ (X) −→ H∗
(
S`1

∗ (X)
)
.

Proof. One can show that S`1

∗ (X̃), with the augmentation S`1

0 (X̃) −→ R given by
adding up the coefficients, is a strong relatively projective G-resolution of the
trivial G-module R. This is similar to the proof that C`1

∗ (G) is a strong relatively
projective resolution of R (Proposition (2.19)):

Namely, the Banach G-modules S`1

n (X̃) are relatively projective because they are
`1-completions of free RG-modules [47; Lemma 2.1]. For the chain contraction,
we choose a point p ∈ X̃ and define

kn : S`1

n (X̃) −→ S`1

n+1(X̃)

(x0, . . . , xn) 7−→ (−1)n+1 · (p, x0, . . . , xn),

as well as

k−1 : R −→ S`1

0 (X̃)
1 7−→ 1 · p.

It is not difficult to see that (kn)n∈Z≥−1 indeed is a chain contraction of S`1

∗ (X̃) (con-
catenated with the augmentation) of norm at most 1. Hence, S`1

∗ (X̃) is a strong
relatively projective G-resolution of R.

Therefore, the fundamental lemma of homological algebra (Proposition (A.7))
implies that sX̃ is a G-chain homotopy equivalence and hence that sX = (sX̃)G is
a chain homotopy equivalence. In particular, H∗(sX) is an isomorphism.

It remains to show that this isomorphism is isometric: By construction, the
canonical morphism η : C`1

∗ (X̃) −→ C`1

∗ (G) of Banach G-chain complexes (intro-
duced in the proof of Corollary (4.14)) factorises over the straight `1-chain com-
plex:

C`1

∗ (X̃)
η

//

sX̃ ��
??

??
?

S`1

∗ (X̃)

??�����

C`1

∗ (G)

Moreover, both diagonal arrows are of norm at most 1. Because H∗(ηG) is an iso-
metric isomorphism (Corollary (4.14)), we deduce that the isomorphism H∗(sX) =
H∗((sX̃)G) is isometric.
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4.4 Example application – a generalised straightening

An important aspect of the abstract straightening as described above is that it
allows to get control of the semi-norm in measure homology (see Appendix D).
Measure homology in turn is the foundation for Thurston’s smearing technique,
which is a useful tool in the study of simplicial volume.

Remark (4.22). If M is a Riemannian manifold with non-positive sectional curva-
ture and if N ⊂ M is a convex subset, then also the corresponding relative version
of Proposition (4.20) holds. Here, the subset N is said to be convex if all connected
components of its preimage in M̃ under the universal covering map are convex.

It is not entirely clear whether the same holds for the generalised straightening
in Theorem (4.21); namely, it is difficult to check whether the cochain contractions
of Cn

b(X̃) can be chosen to be natural with respect to inclusion maps. 3
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5 Simplicial volume and
`1-homology

The simplicial volume of oriented (not necessarily compact) manifolds is a proper
homotopy invariant measuring the complexity of (generalised) triangulations,
i.e., the complexity of the fundamental class in locally finite homology with re-
spect to the `1-semi-norm.

Gromov introduced the simplicial volume in order to give an alternative proof
of Mostow rigidity. Subsequently, in his seminal paper Volume and bounded co-
homology even more relations, such as the volume estimate, between simplicial
volume and Riemannian geometry are uncovered.

On the other hand, the simplicial volume is accessible by powerful algebraic
tools – both `1-homology and bounded cohomology compute the simplicial vol-
ume.

Before giving the precise definition of simplicial volume in Section 5.2, we first
recapitulate locally finite homology and the local characterisation of fundamental
cycles (Section 5.1). Section 5.3 contains the description of simplicial volume in
terms of `1-homology and bounded cohomology. Finally, in Section 5.4 properties
of the simplicial volume are collected.

A closer investigation of the simplicial volume of non-compact manifolds is
performed in Chapter 6.
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5 Simplicial volume and `1-homology

5.1 Fundamental cycles of manifolds

In this section, we recall the definition of fundamental cycles of oriented mani-
folds, which serve as an easier to handle replacement of triangulations, as well
as their local characterisation (Theorem (5.4)). Since fundamental cycles of non-
compact manifolds live in locally finite homology, we first give a short introduc-
tion into locally finite homology and its contravariant companion – cohomology
with compact supports.

5.1.1 Locally finite homology

By definition, the singular chain complex contains only finite chains. On the other
hand, triangulations of non-compact manifolds need not be finite. Therefore,
some questions on non-compact manifolds force to allow certain infinite chains,
leading to locally finite homology. Similarly, singular cohomology needs to be
replaced by cohomology with compact supports:

Definition (5.1). Let X be a topological space and let k ∈ N.

1. We write C(X) for the set of all compact, connected, non-empty subsets
of X.

2. A set A ⊂ map(∆k, X) is called locally finite if any compact subset of X in-
tersects the image of only finitely many elements of A. The set of all locally
finite subsets of map(∆k, X) is denoted by Slf

k (X).
3. The locally finite chain complex of X is the chain complex Clf

∗ (X) consisting
of the vector spaces

Clf
k (X) :=

{
∑

σ∈A
aσ · σ

∣∣∣∣ A ∈ Slf
k (X) and (aσ)σ∈A ⊂ R

}
of (formal, possibly infinite) sums equipped with the boundary operator
given by the alternating sums of the (k− 1)-faces.

4. The homology Hlf
∗ (X) of the locally finite chain complex is called locally

finite homology of X.
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5.1 Fundamental cycles of manifolds

c

K

Figure (5.2). Restriction of chains; the shaded part is the restriction c|K of c (Defi-
nition (5.3))

5. A cochain f ∈ Ck (X) has compact support if there exists a compact subset K
in X such that f (σ) = 0 holds whenever σ ∈ map(∆k, X \ K). The cochain
complex with compact supports of X is the subcomplex C∗cs (X) of C∗ (X)
of cochains with compact support.

6. The cohomology with compact supports of X, denoted by H∗cs (X), is the
cohomology of C∗cs (X). 3

By definition, for compact spaces singular homology and locally finite homol-
ogy coincide. Dually, in this case also singular cohomology and cohomology with
compact supports are equal.

Notice that we can evaluate cochains with compact support on locally finite
chains, and this evaluation descends to (co)homology.

Algebraically, the locally finite chain complex of X can also be expressed as the
inverse limit

Clf
∗ (X) = lim←−

K∈C(X)

C∗ (X, X \ K),

where the set C(X) is directed by inclusion. For K, L ∈ C(X) with L ⊂ K the
structure map C∗ (X, X \ K) −→ C∗ (X, X \ L) is the one induced by the inclu-
sion (X, X \ K) −→ (X, X \ L). Dually,

C∗cs (X) = colim
K∈C(X)

C∗ (X, X \ K).

Definition (5.3). Let X be a topological space, let k ∈ N, and let K ∈ C(X). The
restriction of a chain c = ∑σ∈A aσ · σ ∈ Clf

k (X) to the subspace K is defined as

c|K := ∑
σ∈A,

σ(∆k)∩K 6=∅

aσ · σ ∈ Ck (X). 3
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5 Simplicial volume and `1-homology

Restriction of chains is illustrated in Figure (5.2). Clearly, · |K gives rise to a
chain map · |K : Clf

∗ (X) −→ C∗ (X, X \ K) and hence to a homomorphism

· |K : Hlf
∗ (X) −→ H∗ (X, X \ K).

If L ∈ C(X) with L ⊂ K, then the restrictions · |K and · |L are compatible with the
inclusion iK

L : C∗ (X, X \ K) −→ C∗ (X, X \ L), i.e., · |L = iK
L ◦ · |K. For example, the

natural map Clf
∗ (X) −→ lim←−K∈C(M)

C∗ (X, X \ K) is given by the restriction maps.

5.1.2 Homology of manifolds in the top dimension

The top-dimensional (locally finite) homology with R-coefficients of oriented,
connected manifolds is one-dimensional and contains a distinguished generator,
the so-called fundamental class. Moreover, this generator can be described “lo-
cally,” i.e., by restrictions to small sets:

Theorem (5.4) (Fundamental classes of manifolds).

1. Let M be an oriented, connected n-manifold without boundary and let K ∈ C(M).
Then

Hn (M, M \ K) ∼= R,

and there is a unique generator [M, M \ K] with the following property: For all
points x ∈ K, the restriction [M, M \ K]|{x} ∈ Hn (M, M \ {x}) coincides (under
change of coefficients) with the image of the generator of Hn (M, M \ {x}; Z) given
by the (homological) orientation of M. In particular, if L ∈ C(M) with L ⊂ K,
then the restriction homomorphism

· |L : Hn (M, M \ K) −→ Hn (M, M \ L)

is an isomorphism mapping [M, M \ K] to [M, M \ L].
2. Let M be an oriented, connected n-manifold without boundary. Then Hlf

n (M) ∼= R
and there is a unique class [M] ∈ Hlf

n (M) such that

[M]|K = [M, M \ K] ∈ Hn (M, M \ K)

holds for all K ∈ C(M).
3. Let (M, ∂M) be an oriented, compact, connected n-manifold with boundary ∂M.

Then Hn (M, ∂M) ∼= R and there is a unique class [M, ∂M] ∈ Hn (M, ∂M) such
that

[M, ∂M]|K = [M◦, M◦ \ K] ∈ Hn (M◦, M◦ \ K) ∼= Hn (M, M \ K)
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5.1 Fundamental cycles of manifolds

holds for all K ∈ C(M◦). Furthermore,

∂[M, ∂M] = ∑
N∈π0(∂M)

[N] ∈ Hn−1 (∂M).

Proof. Almost any textbook on algebraic topology contains a proof of the first and
the third part [36; Chapter XIV].

For the second part, we use the description of Clf
∗ (M) as inverse limit. Clearly,

the directed system (C∗ (M, M \ K))K∈C(M) satisfies the Mittag-Leffler condition.
Moreover, Hn+1 (M, M \ K) = 0 for all K ∈ C(M) [36; Lemma XIV.2.3]. Therefore,
the lim1-term vanishes and we obtain [59; Theorem 3.5.8]

Hlf
n (M) ∼= lim←−

K∈C(M)

Hn (M, M \ K).

In view of the first part, it follows that Hlf
n (M) ∼= R and that there exists a unique

class [M] ∈ Hlf
n (M) with the desired properties.

Definition (5.5). The classes [M, M \ K], [M], and [M, ∂M] in Theorem (5.4) are
called fundamental classes of the respective objects. Cycles representing such a
class are called fundamental cycles. 3

For example, any triangulation of a manifold gives rise to a fundamental cycle
– i.e., fundamental cycles can be viewed as generalised triangulations. But the
concept of fundamental cycles is much more flexible, especially when considering
homology with R-coefficients:

Example (5.6). For each d ∈ N>0, the chain 1/d · σd is a fundamental cycle of the
circle S1, where σd : [0, 1] −→ S1 is given by σd(t) := e2πi·d·t. 3

Dually, there are also cohomological versions of the fundamental class:

Corollary (5.7) (Cohomological fundamental classes of manifolds). In the cor-
responding situations of Theorem (5.4) there are cohomology classes [M, M \ K]∗ ∈
Hn (M, M \ K) ∼= R, [M]∗ ∈ Hn

cs (M) ∼= R, and [M, ∂M]∗ ∈ Hn (M, ∂M) ∼= R
uniquely determined by the relations〈

[M, M \ K]∗, [M, M \ K]
〉

= 1,〈
[M]∗, [M]

〉
= 1,〈

[M, ∂M]∗, [M, ∂M]
〉

= 1.
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5 Simplicial volume and `1-homology

Proof. The compact case follows from Theorem (5.4) by means of the universal
coefficient theorem. For the non-compact case, it suffices to note that (because the
set C(M) is directed by inclusion [55; p. 162])

Hn
cs (M) = Hn

(
colim

K∈C(M)
C∗ (M, M \ K)

)
∼= colim

K∈C(M)
Hn (M, M \ K)

and Hlf
n (M) ∼= lim←−K∈C(M)

Hn (M, M \ K) (proof of Theorem (5.4)).

Definition (5.8). The classes [M, M \ K]∗, [M]∗, and [M, ∂M]∗ in Corollary (5.7)
are called cohomological fundamental classes of the respective objects and all
cocycles representing such a class are called fundamental cocycles. 3

Theorem (5.4) can easily be generalised to cover also the case of non-connected
manifolds (which naturally occur as boundaries of compact manifolds). Hence,
we can also speak of fundamental (co)cycles and (cohomological) fundamental
classes of oriented, non-connected manifolds.

5.2 Definition of simplicial volume

The simplicial volume of oriented manifolds is a proper homotopy invariant mea-
suring the complexity of (generalised) triangulations, i.e., the complexity of the
fundamental class with respect to the `1-semi-norm.

We start with the compact case (Section 5.2.1) and then consider one possible
generalisation to the non-compact case (Section 5.2.2).

5.2.1 The compact case

As already indicated, the simplicial volume is defined as the evaluation of the
`1-semi-norm on the fundamental class [18; p. 8]:

Definition (5.9). Let (M, ∂M) be an oriented, closed, connected n-manifold with
boundary ∂M. The simplicial volume of (M, ∂M) is given by

‖M, ∂M‖ :=
∥∥[M, ∂M]

∥∥
1

= inf
{
‖c‖1

∣∣ c ∈ Cn (M) is a relative fundamental cycle of (M, ∂M)
}

∈ [0, ∞). 3
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5.2 Definition of simplicial volume

The term “relative fundamental cycle in Cn (M)” refers to a chain that under the
projection Cn (M) −→ Cn (M, ∂M) is mapped to a fundamental cycle of (M, ∂M).

The definition of simplicial volume can easily be generalised to cover also non-
connected manifolds (by taking the sum of the simplicial volumes of the con-
nected components) and non-orientable manifolds (by dividing the simplicial
volume of the orientation covering by 2).

Example (5.10). A simple, yet instructive, example is to compute the simplicial
volume of S1: For each d ∈ N>0, there is a fundamental cycle 1/d · σd ∈ C1(S1),
where σd is a singular simplex on the circle (cf. Example (5.6)). Therefore, we ob-
tain ‖S1‖ ≤ 1/d for all d ∈ N>0 and hence ‖S1‖ = 0. The same type of argument
shows that the simplicial volume of all spheres and tori (of non-zero dimension)
equals zero. 3

A more extensive collection of examples and properties of simplicial volume is
given in Section 5.4.

5.2.2 The non-compact case

Clearly, also the chain complex Clf
∗ (X) of locally finite singular chains of a topo-

logical space becomes a “normed” chain complex with respect to the `1-norm;
the reason we put quotation marks here is that the `1-norm of locally finite chain
complexes is not necessarily finite.

In particular, we obtain a notion of simplicial volume for non-compact man-
ifolds [18; p. 8], which in the compact case coincides with the one defined in
Section 5.2.1:

Definition (5.11). Let M be a connected n-manifold without boundary. The sim-
plicial volume of M is defined as

‖M‖ :=
∥∥[M]

∥∥
1

= inf
{
‖c‖1

∣∣ c ∈ Clf
n (M) is a fundamental cycle of M

}
∈ [0, ∞]. 3

The tamest examples of non-compact manifolds are manifolds that are the in-
terior of a compact manifold with boundary. The simplicial volume of such man-
ifolds is related to the simplicial volume of the ambient compact manifold as fol-
lows:
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5 Simplicial volume and `1-homology

Proposition (5.12). Let (W, ∂W) be an oriented, compact, connected manifold with
boundary and let M := W◦. Then

‖M‖ ≥ ‖W, ∂W‖ .

Proof. Because M is homeomorphic to M′ := W ∪∂W ∂W × [0, ∞) [14, 8], it suffices
to show that ‖M′‖ ≥ ‖W, ∂W‖.

Let c′ ∈ Clf
n (M′) be a locally finite fundamental cycle of M′. Pushing the restric-

tion c′|W via the obvious projection M′ −→ W to W yields a chain c ∈ Cn (W)
with ∂c ∈ Cn−1 (∂W). Because c and c′ coincide on W◦, it follows from the local
characterisation of fundamental cycles (Theorem (5.4)) that c is a relative funda-
mental cycle of (W, ∂W).

By construction, ‖c‖1 ≤ ‖c′‖1, which implies ‖M‖ = ‖M′‖ ≥ ‖W, ∂W‖.

In general, this inequality is a strict inequality – namely, the simplicial volume
of the interior might be infinite, whereas the relative simplicial volume of the com-
pactification is always finite. In Chapter 6, we present a necessary and sufficient
finiteness criterion for such interiors and investigate some examples of simplicial
volumes of such manifolds (Section 6.4).

5.3 Computing simplicial volume

Both `1-homology and bounded cohomology provide a convenient setting for
computing the simplicial volume in a systematic way. We first look at the compact
case and, in a second step, discuss the corresponding generalisations for the non-
compact case. Because `1-homology and bounded cohomology are homotopy
invariants, but the simplicial volume of non-compact manifolds is only invariant
under proper homotopy equivalences, the latter case is more involved.

In both cases, we first present the homological approach and then the cohomo-
logical one because – especially in the non-compact case – the connection with
`1-homology is much more transparent.

5.3.1 The compact case – homological approach

Using the comparison map from singular homology to `1-homology, we can ex-
press the simplicial volume in terms of `1-homology:
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Proposition (5.13). Let (M, ∂M) be an oriented, compact, connected n-manifold with
boundary. Then

‖M, ∂M‖ =
∥∥Hn(iM,∂M)

(
[M, ∂M]

)∥∥
1,

where iM,∂M : C∗ (M, ∂M) −→ C`1

∗ (M, ∂M) is the canonical inclusion.

Proof. This is a special case of Proposition (2.5).

Hence, if M is closed and connected, then information on `1-homology of the
fundamental group π1(M) transforms into computations of the simplicial volume
of M, which is particularly suited for vanishing results:

Corollary (5.14). Let M be an oriented, closed, connected n-manifold with classifying
map f : M −→ Bπ1(M). Then

‖M‖ =
∥∥H`1

n ( f )
(

Hn(iM)([M])
)∥∥

1

=
∥∥Hn ( f )([M])

∥∥
1.

In particular, if H`1

n (π1(M)) = 0, then ‖M‖ = 0.

Proof. By the mapping theorem for `1-homology (Corollary (4.2)), the induced
homomorphism H`1

∗ ( f ) : H`1

∗ (M) −→ H`1

∗ (Bπ1(M)) is an isometric isomorphism.
Therefore, the first equality follows from Proposition (5.13). The second one
can be derived from the first one by applying Proposition (2.5) to the classifying
space Bπ1(M).

Furthermore, H`1

∗ (π1(M)) ∼= H`1

∗ (Bπ1(M)) (Corollary (4.14)), which implies
the last statement.

The first proof of the second equality of Corollary (5.14) was originally given
by Gromov [18; Corollary B on p. 40], using bounded cohomology.

5.3.2 The compact case – cohomological approach

The duality principle for semi-norms translates the `1-homological description of
simplicial volume (Proposition (5.13)) into one in terms of bounded cohomology
(Proposition (5.15)). Historically, this cohomological interpretation was the first
algebraic approach to simplicial volume [18; p. 17].
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5 Simplicial volume and `1-homology

Proposition (5.15) (Duality principle for compact manifolds). Let (M, ∂M) be an
oriented, compact, connected n-manifold with boundary. Then

‖M, ∂M‖ = sup
{ 1
‖ϕ‖∞

∣∣∣ ϕ ∈ Hn
b (M, ∂M), 〈ϕ, [M, ∂M]〉 = 1

}
=

1∥∥[M, ∂M]∗
∥∥

∞

.

Here, sup ∅ := 0.

Because not all fundamental cocycles are bounded, the value ‖[M, ∂M]∗‖∞ can
be infinite; in this case, we use the convention 1/∞ = 0.

Proof. The first equality follows from the duality principle for semi-norms (Theo-
rem (3.8)). The second equality is easily derived from the fact that

‖[M, ∂M]∗‖∞ = inf
{
‖ϕ‖∞

∣∣ ϕ ∈ Hn
b (M), Hn(jM)(ϕ) = [M, ∂M]∗

}
,

where jM : C∗b(M, ∂M) −→ C∗ (M, ∂M) is the inclusion.

5.3.3 The non-compact case – homological approach

Analogously to the compact case (Proposition (5.13)), also the simplicial volume
of non-compact manifolds can be expressed with help of `1-homology.

Definition (5.16). Let M be an oriented, connected n-manifold without boundary.
We write [M]`

1 ⊂ H`1

n (M) for the set of all homology classes that are represented
by at least one locally finite fundamental cycle (with finite `1-norm). 3

If M is compact, then the set [M]`
1

contains exactly one element, namely the
class Hn(iM)([M]). However, if M is non-compact the set [M]`

1
may be empty

(this happens if and only if ‖M‖ = ∞) or consist of more than one element.

Proposition (5.17). If M is an oriented, connected n-manifold without boundary, then

‖M‖ = inf
{
‖α‖1

∣∣ α ∈ [M]`
1 ⊂ H`1

n (M)
}

.

Here, inf ∅ := ∞.

Proof. Let i : Clf
∗ (M) ∩ C`1

∗ (M) ↪→ Clf
∗ (M) and j : Clf

∗ (M) ∩ C`1

∗ (M) ↪→ C`1

∗ (M) de-
note the inclusions. By definition,

‖M‖ = inf
{
‖α‖1

∣∣ α ∈ H∗(i)−1([M])
}

= inf
{
‖α‖1

∣∣ α ∈ H∗(j)−1([M]`
1
)
}

.
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The sequence
C∗ (M) ↪→ Clf

∗ (M) ∩ C`1

∗ (M) ↪→ C`1

∗ (M)

of inclusions of normed chain complexes shows that the middle complex is a
dense subcomplex of the `1-chain complex C`1

∗ (M). Thus, the induced map

H∗(j) : H∗
(
Clf
∗ (M) ∩ C`1

∗ (M)
)
−→ H`1

∗ (M)

on homology is isometric (Proposition (1.7)). This yields the desired description
of ‖M‖.

For example, in combination with Corollary (4.14) the previous proposition
gives rise to the following vanishing result:

Corollary (5.18). Let M be an oriented, connected n-manifold with H`1

n (π1(M)) = 0.
Then ‖M‖ ∈ {0, ∞}.

5.3.4 The non-compact case – cohomological approach

There are two possible generalisations of Proposition (5.15) to the non-compact
case. One can either dualise the computation via `1-homology (leading to Propo-
sition (5.19)), or, as indicated by Gromov [18; p. 17], one can try to find a suitable
semi-norm on cohomology with compact supports and evaluate it on the dual
fundamental class (Theorem (5.20)).

Proposition (5.19). Let M be an oriented, connected n-manifold without boundary.
Then

‖M‖ = inf
α∈[M]`1

sup
{ 1
‖ϕ‖∞

∣∣∣ ϕ ∈ Hn
b (M), 〈ϕ, α〉 = 1

}
.

Proof. Combining the computation of ‖M‖ via `1-homology (Proposition (5.17))
with the duality principle of semi-norms (Theorem (3.8)) proves the proposition.

Theorem (5.20) (Duality principle for non-compact manifolds). Let M be an ori-
ented, connected manifold without boundary. Then

‖M‖ =
1∥∥[M]∗
∥∥lf

∞

.
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This theorem is proved in Appendix C, where also the exact definition of the
semi-norm ‖ · ‖lf

∞ on Hn
cs (M) is given (Definition (C.1)).

The advantage of the first version is being closely related to bounded coho-
mology; but in general the semi-norm of more than one cohomology class has
to be computed. The second version needs only knowledge about the dual fun-
damental class, but the semi-norm involved is quite difficult to control. Hence,
Proposition (5.19) is more suitable for vanishing results and Theorem (5.20) is to
be preferred for calculations that involve concrete constructions on the dual fun-
damental class (e.g., product formulae – see Theorem (C.7)).

5.4 A collection of properties of simplicial volume

In this section, we present a collection of topological as well as geometric proper-
ties of simplicial volume. The geometric ones, such as proportionality, the mini-
mal volume estimate and the computation for hyperbolic manifolds, demonstrate
that the simplicial volume also can be viewed as a topological approximation of
the Riemannian volume.

Degree estimate. Let f : M −→ N be a proper, continuous map of oriented, con-
nected manifolds (of the same dimension) of non-zero degree. Then

‖N‖ ≤ 1
|deg f |

· ‖M‖ .

This also holds for compact manifolds with boundary and maps relative to
the boundary.

Self-maps. Let f : M −→ M be a continuous self-map of the oriented, closed, con-
nected manifold M with |deg f | ≥ 2. Then ‖M‖ = 0. Clearly, this also
holds for compact manifolds with boundary and self-maps respecting the
boundary.

Example (5.21). In particular, the simplicial volume of spheres and tori of
non-zero dimension is zero. 3
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Proper homotopy invariance. If the two oriented, connected manifolds M and N are
properly homotopy equivalent, then ‖M‖ = ‖N‖. This is also true for com-
pact manifolds with boundary and homotopy equivalences relative to the
boundary.

This follows from the degree estimate because properly homotopic manifolds have
the same dimension, any proper homotopy equivalence has degree 1.

Finite coverings. Let p : M −→ N be a finite covering of oriented, connected man-
ifolds. Then

‖M‖ = |deg p| · ‖N‖ .

This also holds for compact manifolds with boundary and finite covering
maps respecting the boundaries.

The estimate “≤” follows from the degree estimate. The reverse inequality can
be shown by summing up all p-lifts of the simplices in a fundamental cycle of M
(which gives a fundamental cycle of N).

Connected sums. Let M and N be oriented, closed, connected manifolds of the
same dimension > 2. Then

‖M # N‖ = ‖M‖+ ‖N‖ .

The pinching map M # N −→ M ∨ N induces an isomorphism on the level of fun-
damental groups. Therefore, the mapping theorem of `1-homology (or bounded
cohomology) can be used to show that “≤” holds. Gromov proves the (more com-
plicated) estimate “≥” by looking at a concrete description of the universal cover-
ing of M ∨ N as a so-called tree-like complex [18; Section 3.5].

Similar arguments apply not only to connected sums, but also to “amenable glu-
ings,” i.e., to manifolds that are glued along a common submanifold of codimen-
sion 1 that is amenable [18, 28; p. 55, Chapter 3].

Products. Let M and N be oriented, closed, connected manifolds. Then

‖M‖ · ‖N‖ ≤ ‖M× N‖ ≤
(

dim M + dim N
dim M

)
· ‖M‖ · ‖N‖ .

The first inequality remains true if the compactness condition on one of the two fac-
tors is dropped, the second estimate even holds if both manifolds are non-compact
(Theorem (C.7)). However, the first inequality fails in general for non-compact
manifolds, and for compact manifolds with boundary (cf. Sections C.4 and 6.4).
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5 Simplicial volume and `1-homology

Because the cross-product of two fundamental cycles is a fundamental cycle of the
product manifold, the second inequality follows. Gromov’s proof of the first in-
equality takes advantage of the cohomological description of simplicial volume; a
detailed proof is given in Section C.4.

Example (5.22). Bucher-Karlsson computes the first concrete value of a non-
trivial product [10]: If M1 and M2 are two oriented, closed, connected, hy-
perbolic surfaces, then ‖M1 ×M2‖ = 3/2 · ‖M1‖ · ‖M2‖. Moreover, in this
case the simplicial volumes of the factors M1 and M2 can be computed ex-
plicitly (Example (5.23)). 3

Fibrations. Let F −→ M −→ B be a fibration of oriented, closed, connected mani-
folds with dim F > 0. If π1(F) is amenable, then ‖M‖ = 0.
A spectral sequence argument shows that dim M > dim B; therefore, the mapping
theorem of `1-homology/bounded cohomology yields ‖M‖ = 0 [35; Exercise 14.15
and p. 556].

Circle actions. Let M be an oriented, closed, connected, smooth manifold with
non-trivial, smooth S1-action. Then ‖M‖ = 0.
Yano describes a quite concrete, geometric construction to reduce general S1-ac-
tions to the product case [60]. Gromov proves the vanishing via the corresponding
statement on the minimal volume [18; p. 93].

Proportionality principle. Let M and N be oriented, closed, connected, Riemannian
manifolds with isometric universal covering. Then

‖M‖
vol M

=
‖N‖

vol N
.

Thurston sketches a homological proof using measure homology [57, 56; p. 6.9,
Chapter 5] (see also Appendix D, especially Section D.3). A skeleton for a co-
homological proof is given by Gromov [18; Section 2.3]. Both proofs depend on
normalised Haar measures on the compact quotients of the group of orientation
preserving isometries on the common universal covering divided by the respective
fundamental groups.

The proportionality principle in general does not hold in the non-compact or in the
relative cases [18; p. 59].

Volume estimate. Let M be an oriented, smooth n-manifold without boundary.
Then the simplicial volume is bounded from above by the minimal vol-
ume minvol M in the sense that

‖M‖ ≤ (n− 1)n · n! ·minvol M.
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5.4 A collection of properties of simplicial volume

Both the original proof of Gromov, as well as the version of Besson, Courtois and
Gallot rely on the description of simplicial volume via bounded cohomology and
comass estimates [18, 2].

Negative curvature. Let M be an oriented, closed, connected Riemannian n-mani-
fold of negative curvature. Then ‖M‖ > 0. If M is hyperbolic, then

‖M‖ =
vol M

vn
,

where vn ∈ (0, ∞) is the maximal volume of an ideal n-simplex in hyper-
bolic n-space.

The curvature condition ensures that there is an upper bound on the volumes
of geodesic simplices in the universal covering of M. Thurston’s straightening
(Proposition (4.20)) shows that the simplicial volume of a negatively curved man-
ifold can be computed by looking only at fundamental cycles consisting of (pro-
jections of) geodesic simplices. Therefore, integration over the volume form of M
shows that the simplicial volume is bounded from below [57, 24].

The upper bound can be obtained by Thurston’s smearing construction [57; Chap-
ter 6] or the corresponding discrete version [1, 50; Theorem C.4.2, Theorem 11.4.3].

Example (5.23). If Fg is the oriented, closed, connected surface of genus g at
least 2, then ‖Fg‖ = 4 · g− 4. 3

Locally symmetric spaces of non-compact type. Oriented, closed, connected, locally
symmetric spaces of non-compact type have non-zero simplicial volume.

Lafont and Schmidt apply a refined straightening procedure to show positivity [29],
modulo two special cases. These special cases are covered by work of Thurston [57;
Chapter 6] and Bucher-Karlsson [9] respectively.

Hyperbolic fundamental group. Oriented, closed, connected, aspherical manifolds
with hyperbolic fundamental group have non-zero simplicial volume.

This follows from Mineyev’s work on bounded cohomology of hyperbolic groups
(Section 2.4.5) together with Proposition (5.15).

Amenable fundamental group. Let M be an oriented, connected n-manifold (with-
out boundary) of dimension at least 1 with amenable fundamental group.
Then ‖M‖ ∈ {0, ∞}. If M is compact, then ‖M‖ = 0.

By Corollary (4.12) we have H`1
n (π1(M)) = 0, and hence Proposition (5.18) applies.
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5 Simplicial volume and `1-homology

Amenable coverings. More generally, let M be an oriented, closed, connected man-
ifold of dimension n that possesses a covering by open, amenable subsets of
multiplicity at most n. Then ‖M‖ = 0.
In this situation, the comparison map H∗b(M) −→ H∗ (M) factors over the coho-
mology of the nerve of the open covering [18, 25]. Therefore, the class [M]∗ does
not lie in the image of the comparison map Hn

b (M) −→ Hn (M). In other words,
‖[M]∗‖∞ = ∞. This implies that ‖M‖ = 0 (Proposition (5.15)).

Free fundamental group. Let M be an oriented, closed, connected manifold of di-
mension at least 1 with free fundamental group. Then ‖M‖ = 0.
The homology of free groups vanishes in degrees bigger than 1, and `1-homology
vanishes in degree 1 (Proposition (2.7)); thus, the image of [M] under the classify-
ing map M −→ Bπ1(M) is zero in `1-homology. Therefore, we obtain ‖M‖ = 0
(Corollary (5.14)).

The corresponding statement for the relative simplicial volume of compact man-
ifolds with boundary and for the simplicial volume of non-compact manifolds is
not true (Section 6.4.3).

The definition of the simplicial volume of non-compact manifolds given in Sec-
tion 5.2.2 is of more topological than geometric nature – it does not reflect (Rie-
mannian) geometric properties as well as the simplicial volume in the category of
compact manifolds. By imposing geometric conditions on the locally finite funda-
mental cycles that appear in the infimum of Definition (5.11), one obtains versions
of the simplicial volume that carry more geometric information. Of course, these
geometric versions are in general only invariant under proper homotopy equiva-
lences that are compatible with the geometric structures involved.

One example of such a variant of simplicial volume is the so-called Lipschitz
simplicial volume [18, 34], where the infimum of `1-norms is taken over the set of
those locally finite fundamental cycles whose simplices satisfy a uniform Lips-
chitz condition. The Lipschitz simplicial volume can be used to establish pro-
portionality principles and product formulae for certain classes of non-compact
manifolds [34]. The price for this gain is that we lose the strong connection with
homological tools such as `1-homology and bounded cohomology.

In the next chapter, we study the question under which conditions the sim-
plicial volume of non-compact manifolds is finite in a special case – namely for
manifolds that are the interior of a compact manifold with boundary.
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6 A finiteness criterion for
simplicial volume

The simplicial volume of non-compact manifolds is not finite in general. It might
even then be infinite if the non-compact manifold M in question is the interior of
a compact manifold (W, ∂W) with boundary. Gromov showed that the vanishing
of the simplicial volume of the boundary ∂W is a necessary condition for ‖M‖ to
be finite.

It turns out that `1-homology allows to give a necessary and sufficient condition
for the finiteness of ‖M‖ if M has such a nice compactification (Theorem (6.1)).
More precisely: the simplicial volume of M is finite if and only if the fundamental
class of ∂W is mapped to zero in `1-homology under the comparison map, i.e., if
∂W is “`1-invisible.” Clearly, this is a purely topological condition.

Since bounded cohomology cannot see whether a given class in `1-homology is
zero, this finiteness criterion cannot be formulated in terms of bounded cohomol-
ogy.

The finiteness criterion is stated in Section 6.1 and proved in Section 6.2. We
then investigate the class of `1-invisible manifolds (Section 6.3). In the last section,
we show how the finiteness criterion can help getting a better understanding of
the behaviour of simplicial volume of non-compact manifolds.
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6 A finiteness criterion for simplicial volume

6.1 Stating the finiteness criterion

One of the virtues of `1-homology is its ability to characterise the finiteness of
simplicial volume of certain non-compact manifolds:

Theorem (6.1) (Finiteness criterion). Let (W, ∂W) be an oriented, compact, connected
n-manifold with boundary and let M := W◦. Then the following are equivalent:

1. The simplicial volume ‖M‖ is finite.
2. The fundamental class of the boundary ∂W vanishes in `1-homology, i.e.,

Hn−1(i∂W)
(
[∂W]

)
= 0 ∈ H`1

n−1(∂W),

where i∂W : C∗ (∂W) −→ C`1

∗ (∂W) is the natural inclusion.

The Kronecker product of bounded cohomology and `1-homology factorises
over reduced `1-homology. Therefore, bounded cohomology in general cannot
detect the vanishing of a given class in `1-homology – bounded cohomology can
only tell whether the corresponding class in reduced `1-homology is zero, i.e.,
whether the `1-semi-norm of the considered class is zero.

Combining the finiteness criterion with the fact that the comparison map be-
tween singular homology and `1-homology is isometric (Proposition (2.5)), we
obtain the necessary condition formulated by Gromov [18; p. 17]:

Corollary (6.2). Let (W, ∂W) be an oriented, connected, compact manifold with bound-
ary and let M := W◦. If ‖M‖ is finite, then ‖∂W‖ = 0.

A more thorough discussion of the relation between the second item of the
finiteness criterion and the vanishing of simplicial volume of the boundary is
given in Section 6.3.1.

The first sufficient condition for finiteness of simplicial volume of non-compact
manifolds needs self-maps on the boundary of non-trivial degree [18; p. 8]. In ad-
dition, Gromov states also sufficient conditions for finiteness using amenable cov-
erings and minimal volume [18; p. 58, p. 12/p. 73]. However, his techniques are
much more sophisticated and less transparent. Furthermore, the estimate via the
minimal volume is not a topological condition, but depends on a smooth struc-
ture.
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Of course, it would be interesting to know whether the finiteness criterion (The-
orem (6.1)) can be generalised to cover all non-compact manifolds. A possible
strategy might be to find a suitable definition of “`1-homology at infinity” and to
study its relation with the fundamental group at infinity.

6.2 `1-Invisibility and the proof of the finiteness criterion

Before starting with the proof of the finiteness criterion, we introduce the notion
of `1-invisibility, which is a shorthand for the second item in the statement of the
finiteness criterion.

Definition (6.3). An oriented, closed n-manifold M is called `1-invisible if its
fundamental class vanishes in `1-homology, i.e., if

Hn(iM)
(
[M]

)
= 0 ∈ H`1

n (M). 3

If M is `1-invisible, then ‖M‖ = 0. More generally, we can reformulate the
`1-invisibility condition as follows – which is also a step towards the proof of the
finiteness criterion:

Proposition (6.4). Let M be an oriented, closed n-manifold. Then the following are
equivalent:

1. The manifold M is `1-invisible.
2. There are fundamental cycles (zk)k∈N ⊂ Cn (M) and chains (bk)k∈N ⊂ Cn+1 (M)

satisfying

∀k∈N ∂(bk) = zk+1 − zk,

∑
k∈N
‖bk‖1 < ∞,

∑
k∈N
‖zk‖1 < ∞.

Proof. The proof is nothing but a rearrangement of absolutely convergent series
in the `1-chain complex.
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6 A finiteness criterion for simplicial volume

1⇒ 2 Suppose that M is `1-invisible. Let z ∈ Cn (M) be a fundamental cycle
of M. Since M is `1-invisible, there exists an `1-chain b ∈ C`1

n+1(M) with

∂b = −z.

The chain b can be written in the form b = ∑k∈N ak · σk ∈ C`1

n+1(M) with
ak ∈ R and different σk ∈ map(∆n+1, M). We now set bk := ak · σk and

zk := z +
k−1

∑
j=0

∂(bk) ∈ Cn (M)

for all k ∈ N. This implies ∑k∈N ‖bk‖1 < ∞ and ∂(bk) = zk+1 − zk for
all k ∈ N. Moreover, the definition of ∂ in the `1-chain complex shows that

∑
k∈N

∂(bk) = ∂b = −z = −z0.

In order to satisfy the additional summability condition on the ‖zk‖1, we
construct a suitable subsequence of (zk)k∈N and then modify the (bk)k∈N
accordingly: From the considerations above we deduce that

lim
k→∞

zk = lim
k→∞

(
z0 +

k−1

∑
j=0

∂(bj)
)

= z0 + lim
k→∞

k−1

∑
j=0

∂(bj)

= z0 − z0

= 0

(in particular, the limit limk→∞ zk indeed exists). We set s(0) := 0 and
choose inductively s(k) ∈ N large enough so that s(k) > s(k− 1) and

‖zs(k)‖1 ≤
1
2k · ‖z0‖1.

Then the resulting sequences (z′k)k∈N ⊂ Cn−1 (∂W) and (b′k)k∈N ⊂ Cn (∂W)
defined by

z′k := zs(k),

b′k :=
s(k+1)−1

∑
j=s(k)

bj

for all k ∈ N satisfy condition 2.
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2⇒ 1 Conversely, suppose that part 2 is satisfied. Then the infinite sum

b := ∑
k∈N

bk

is a well-defined chain in C`1

n+1(M). Since ∑k∈N ‖bk‖1 < ∞ as well as
∑k∈N ‖zk‖1 < ∞, we can compute the boundary of b via

∂b = ∂

(
∑

k∈N
bk

)
= ∑

k∈N
∂(bk) = ∑

k∈N
(zk+1 − zk) = z0.

Because z0 is a fundamental cycle of M, this proves that M is `1-invisible.

We now turn to the geometric part of the proof of the finiteness criterion:

Proof (of Theorem (6.1)). The theorem trivially holds if the boundary ∂W is empty;
therefore, we assume for the rest of the proof that ∂W 6= ∅. The homeomor-
phism [8, 14]

M ∼= W t∂W ∂W × [0, ∞) =: M′

shows that we can also look at the notationally more convenient manifold M′

instead of M.

1⇒ 2 Suppose the simplicial volume ‖M‖ = ‖M′‖ is finite. In other words, there
is a locally finite fundamental cycle c ∈ Clf

n (M′) with ‖c‖1 < ∞. We now
restrict c to a cylinder lying in ∂W × [0, ∞) ⊂ M′. The boundary of this re-
striction is a fundamental cycle of ∂W and the restriction itself gives rise to
the desired boundary in the `1-chain complex. In the following, we explain
this procedure in more detail (the notation is illustrated in Figure (6.5)):

For t ∈ (0, ∞), we consider the cylinder

Zt := ∂W × [t, ∞) ⊂ M′.

Because c is locally finite, there exists a t ∈ (0, ∞) such that the restric-
tion c|Zt ∈ Clf

n (M′) does not meet W.
Let

pt : ∂W × [0, ∞) −→ Zt,
qt : ∂W × [0, ∞) −→ ∂W × [0, t)
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W

∂W

∂W × [0, ∞)

c|Zt

0

pt qt

Zt

t ∞

Figure (6.5). The proof of “1⇒ 2” of the finiteness criterion

denote the canonical projections. Clearly,

ct := Clf
n (pt)(c|Zt)

is a locally finite chain on Zt whose boundary lies in ∂W×{t} = ∂Zt. In the
following paragraph, we show that ∂ct is a fundamental cycle of ∂W × {t}:

The boundary of the restriction

ct+1
t := Cn (qt+1)(ct|∂W×[t,t+1]) ∈ Cn (∂W × [t, t + 1])

lies in ∂W × {t, t + 1}. By construction, we have ct+1
t |{x} = c|{x} for all

points x ∈ ∂W × (t, t + 1). Therefore, the local characterisation of funda-
mental cycles (Theorem (5.4)) implies that ct+1

t is a relative fundamental
cycle of the manifold ∂W × [t, t + 1] with boundary. In particular,

zt := ∂ct = (∂ct+1
t )|∂W×{t} ∈ Cn−1 (∂W × {t})

is a fundamental cycle of ∂W × {t} (Theorem (5.4)).
The finiteness of ‖c‖1 yields c ∈ C`1

n (M′) and ct ∈ C`1

n (Zt). Therefore,

bt := C`1

n (qt)(ct) ∈ C`1

n (∂W × {t})

and
∂(bt) = C`1

n−1(qt)
(
∂(ct)

)
= C`1

n−1(qt)(zt) = zt.

I.e., Hn−1(i∂W×{t})([∂W × {t}]) = 0 ∈ H`1

n−1(∂W × {t}). Using the identifi-
cation ∂W ∼= ∂W × {t}, we see that ∂W is `1-invisible and hence that part 2
is satisfied.
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W ∂W × [0, ∞)∂W

0

z0

b0

0

z1

1

z1

b(z1, 0) b1

1

. . .

k

bk

k

zk+1

k + 1

zk+1

b(zk+1, k) bk+1 . . .

∞

Figure (6.6). The proof of “2⇒ 1” of the finiteness criterion

2⇒ 1 Conversely, suppose that part 2 holds, i.e., that ∂W is `1-invisible. By
Proposition (6.4), we find fundamental cycles (zk)k∈N ⊂ Cn−1 (∂W) and
chains (bk)k∈N ⊂ Cn (∂W) with

∀k∈N ∂(bk) = zk+1 − zk,

∑
k∈N
‖bk‖1 < ∞,

∑
k∈N
‖zk‖1 < ∞.

The idea is – similarly to Gromov’s argument in a special case [18; p. 8] –
to take a relative fundamental cycle of (W, ∂W) and to glue the (bk)k∈N to
its boundary. To ensure that the resulting chain is locally finite, we spread
out the chain ∑k∈N bk over the cylinder ∂W × [0, ∞).

More precisely, let c ∈ Cn (W) be a relative fundamental cycle of the
manifold (W, ∂W) with boundary. Then ∂c ∈ Cn−1 (∂W) is a fundamental
cycle of the oriented, compact manifold ∂W. Of course, we may assume
that ∂c = z0.

The spreading out of (bk)k∈N is achieved by using the following chains:
For any cycle z ∈ Cn−1 (∂W) and any k ∈ N we can find a chain b(z, k) ∈
Cn (∂W × [0, ∞)) such that

∂
(
b(z, k)

)
= Cn−1 (jk+1)(z)− Cn−1 (jk)(z),∥∥b(z, k)

∥∥
1 ≤ n · ‖z‖1 ;

here, jk : ∂W ↪→ ∂W × {k} ↪→ ∂W × [0, ∞) denotes the inclusion. For ex-
ample, such a chain b(z, k) can be constructed by looking at the canonical
triangulation of ∆n−1 × [0, 1] into n-simplices.
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6 A finiteness criterion for simplicial volume

We now define (see also Figure (6.6))

b := ∑
k∈N

(
Cn (jk)(bk) + b(zk+1, k)

)
and c := c + b. Because all bk and all b(zk+1, k) are finite, the stretched
chain b is a well-defined locally finite n-chain of M′. Therefore, also c ∈
Clf

n (M′).
In the chain complex Clf

∗ (M′) of locally finite chains we can compute

∂(c) = ∂(c) + ∂(b)
= z0 + ∑

k∈N

(
Cn−1 (jk)(zk+1)− Cn−1 (jk)(zk)

+Cn−1 (jk+1)(zk+1)− Cn−1 (jk)(zk+1)
)

= z0 + ∑
k∈N

(
Cn−1 (jk+1)(zk+1)− Cn−1 (jk)(zk)

)
= z0 − z0

= 0.

In other words, c is a cycle. The construction shows that c|M = c|M and
hence that c is a locally finite fundamental cycle of M′ (Theorem (5.4)).
Furthermore, we obtain

‖c‖1 ≤ ‖c‖1 + ‖b‖1

≤ ‖c‖1 + ∑
k∈N

(
‖bk‖1 +

∥∥b(zk+1, k)
∥∥

1

)
≤ ‖c‖1 + ∑

k∈N
‖bk‖1 + ∑

k∈N
n · ‖zk+1‖1

< ∞,

which shows that ‖M′‖ < ∞.

This finishes the proof of the finiteness criterion.

6.3 A closer look at `1-invisible manifolds

In view of the finiteness criterion (Theorem (6.1)), it is interesting to analyse `1-in-
visibility in more detail.
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6.3 A closer look at `1-invisible manifolds

In this section, we study the relation of `1-invisibility to the vanishing of sim-
plicial volume (Section 6.3.1), the behaviour with respect to standard topolog-
ical constructions (Section 6.3.2), the influence of the fundamental group (Sec-
tion 6.3.3), the relation to curvature (Section 6.3.4), as well as a possible connection
with L2-Betti numbers (Section 6.3.5).

For applications, we refer to Section 6.4.

6.3.1 `1-Invisibility and simplicial volume

If a manifold is `1-invisible, then its simplicial volume is zero because the com-
parison map to `1-homology is isometric (Proposition (2.5)).

Matsumoto and Morita [38] introduce the so-called uniform boundary condi-
tion for normed chain complexes. This framework allows in certain cases to de-
rive `1-invisibility from the vanishing of simplicial volume (Proposition (6.8)).

Definition (6.7). A normed chain complex (C, ‖ · ‖) is said to satisfy the uniform
boundary condition in degree q if there is a constant K ∈ R>0 such that for any
null-homologous cycle z ∈ Cq there exists a chain b ∈ Cq+1 with

∂(b) = z and ‖b‖ ≤ K · ‖z‖. 3

Proposition (6.8). Let M be an oriented, closed, connected n-manifold with ‖M‖ = 0.

1. If the chain complex (C∗ (M), ‖ · ‖1) satisfies the uniform boundary condition in
degree n, then M is `1-invisible.

2. If Hn+1
b (M) = 0, then M is `1-invisible.

Proof. In the first case, condition 2 of the technical characterisation of `1-invisi-
bility, Proposition (6.4), is satisfied. The second case can be reduced to the first
case by a result of Matsumoto and Morita [38; Theorem 2.8].

On the other hand, if M is an oriented, closed, connected, `1-invisible n-mani-
fold, then (C∗ (M), ‖ · ‖1) does not necessarily satisfy the uniform boundary con-
dition in degree n, as the following example shows:

Example (6.9). Let n ∈ N≥5. Then there exists a finitely presented group G such
that Hn+1

b (G) is non-zero (for example, we could take G to be the fundamental
group of an oriented, closed, connected hyperbolic (n + 1)-manifold, cf. Theo-
rem (2.29)). Furthermore, there is also an oriented, closed, connected manifold N
of dimension (n− 1) with fundamental group G [36; p. 114f].
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We now consider the oriented, closed, connected n-manifold

M := N × S2.

By construction, π1(M) ∼= G and hence Hn+1
b (M) ∼= Hn+1

b (G) 6= 0 by the mapping
theorem in bounded cohomology (Theorem (2.28)). In particular, the comparison
map Hn+1

b (M) −→ Hn+1 (M) = 0 is not injective. By a result of Matsumoto and
Morita [38; Theorem 2.8], this means that C∗ (M) does not satisfy the uniform
boundary condition in degree n. On the other hand, one can show that M is
`1-invisible (Proposition (6.10).2/5). 3

It could be true that the vanishing of the simplicial volume of an oriented,
closed, connected manifold already implies `1-invisibility. However, this seems
to be rather unlikely:

If a manifold is `1-invisible, there must exist fundamental cycles and bound-
aries between them of small `1-norm (Proposition (6.4)). If the simplicial vol-
ume of an oriented, closed, connected n-manifold M is zero, a priori we can only
deduce that there is a sequence (zn)n∈N ⊂ Cn (M) of fundamental cycles with
limn→∞‖zn‖1 = 0. But this does not give any control over the `1-norms of the set
of all chains bk ∈ Cn+1 (M) with ∂bk = zk+1 − zk. It is conceivable that there are
manifolds such that ‖bk‖1 must be large, whenever ‖zk‖1 and ‖zk+1‖1 are small.

Unfortunately, it also seems to be very difficult to prove existence of a coun-
terexample, let alone exhibit a concrete counterexample. For example, it is not
possible to use the work on non-Banach bounded cohomology because bounded
cohomology cannot see the difference between `1-homology and reduced `1-ho-
mology. Furthermore, in almost all cases where it is known that the simplicial
volume is zero, the underlying reason is strong enough to also give `1-invisibility,
as we will see in the following subsections.

6.3.2 `1-Invisibility and standard constructions

Proposition (6.10). Let M and N be two oriented, closed, connected manifolds of dimen-
sion at least 1.

1. Non-trivial maps. Suppose M and N are of the same dimension and there exists
a continuous map f : M −→ N of non-zero degree. If M is `1-invisible, then N is
also `1-invisible.

2. Non-trivial self-maps. If M admits a self-map f : M −→ M with |deg f | ≥ 2,
then M is `1-invisible.
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6.3 A closer look at `1-invisible manifolds

3. Connected sums. Suppose M and N are of the same dimension at least 3. If both
M and N are `1-invisible, then also the connected sum M # N is `1-invisible.

4. Amenable gluings. Let (W1, A) and (W2, A) be oriented, compact, connected
m-manifolds with boundary A and let M := W1 ∪A W2. Suppose that

Hm(i(Wj,A))([Wj, A]) = 0 ∈ H`1

m (Wj, A)

for j ∈ {1, 2} and that im H`1

m (A ↪→ M) = 0; the second condition is for example
satisfied if A is an amenable subset of M or of one of the Wj (Definition (4.5) and
Corollary (4.6)). Then the oriented, closed, connected m-manifold M is `1-invisible.

5. Products. If M is `1-invisible, then also the product M× N is `1-invisible.
6. Fibrations. Let p : M −→ B be a fibration of oriented, closed, connected manifolds

whose fibre F is also an oriented, closed, connected manifold of non-zero dimension.
If π1(F) is amenable, then M is `1-invisible.

7. Circle actions. If M is smooth and admits a smooth S1-action that is either free or
has at least one fixed point, then M is `1-invisible.

8. Proportionality. Suppose M and N are equipped with a Riemannian metric such
that the Riemannian universal coverings of M and N are isometric. Then M is
`1-invisible if and only if N is `1-invisible.

Comparing this list with the properties of simplicial volume (Section 5.4) raises
the question whether all oriented, closed, connected manifolds with vanishing
minimal volume are `1-invisible.

The proofs for most of the parts of the proposition are modeled on the proofs
for the corresponding properties of simplicial volume.

Proof. In the following, we write m := dim M and n := dim N.
Non-trivial maps. By definition of the mapping degree, we have

Hm(iN)
(
[N]
)

=
1

deg f
· Hm(iN)

(
Hm ( f )

(
[M]

))
=

1
deg f

· H`1

m
(

f
)(

Hm(iM)
(
[M]

))
= 0.

Hence, N is `1-invisible.
Non-trivial self-maps. Let z ∈ Cm (M) be a fundamental cycle of M. For brevity,

we write d := deg f . The definition of the mapping degree of the mapping degree
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6 A finiteness criterion for simplicial volume

shows that there is a chain b ∈ Cm+1 (M) satisfying

∂b = z− 1
d
· Cm ( f )(z).

The chains (zk)k∈N ⊂ Cm (M) and (bk)k∈N ⊂ Cm+1 (M) defined by

zk :=
1
dk · Cm( f k)(z),

bk :=
1
dk · Cm+1( f k)(b)

for all k ∈ N satisfy condition 2 of Proposition (6.4). Therefore, M is `1-invisible.
Connected sums. The pinching map f : M # N −→ M ∨ N induces an isomor-

phism on the level of fundamental groups because dim M = dim N ≥ 3 (by the
Seifert-van Kampen theorem). By the mapping theorem for `1-homology (Corol-
lary (4.2)), the induced homomorphism H`1

m ( f ) : H`1

m (M # N) −→ H`1

m (M ∨ N)
therefore is an (isometric) isomorphism.

Let jM : M −→ M ∨ N and jN : N −→ M ∨ N be the canonical inclusions. The
Mayer-Vietoris sequence for singular homology shows that

Hm (jM)⊕ Hm (jN) : Hm (M)⊕ Hm (N) −→ Hm (M ∨ N)

is an isomorphism satisfying

Hm (jM)⊕ Hm (jN)
(
[M], [N]

)
= Hm ( f )

(
[M # N]

)
.

We now consider the commutative diagram

Hm (M # N) //

Hm( f )
��

H`1

m (M # N)

H`1
m ( f )

��

Hm (M ∨ N) // H`1

m (M ∨ N)

Hm (M)⊕ Hm (N) //

Hm(jM)⊕Hm(jN)

OO

H`1

m (M)⊕ H`1

m (N)

H`1
m (jM)⊕H`1

m (jN)
OO

where the horizontal maps are given by the respective comparison maps between
singular homology and `1-homology.

Both M and N are `1-invisible, and thus the lower horizontal arrow maps
([M], [N]) to 0. Therefore, the comparison map of M ∨ N maps Hm ( f )([M # N])
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W1

w1

b1

A

∂w1

a1

W2

w2

b2

A

∂w2

a2

zA

bA

Cm−1 ( · )

Cm ( · )

C`1
m ( · )

C`1

m+1( · )

∂

∂

Figure (6.11). Amenable gluings

to 0. Now the fact that H`1

m ( f ) is injective shows that the comparison map of M # N
maps [M # N] to 0; thus, the connected sum M # N is `1-invisible.

Amenable gluings. Let w1 ∈ Cm (W1) and w2 ∈ Cm (W2) be relative fundamental
cycles of (W1, A) and (W2, A) respectively. Since the corresponding relative fun-
damental classes are zero in `1-homology, there exist chains bj ∈ C`1

m+1(Wj) as well
as aj ∈ C`1

m (A) satisfying

∂b1 = w1 + a1 and ∂b2 = w2 + a2.

(All the notation is illustrated in Figure (6.11)). Because wj is a relative funda-
mental cycle, both ∂w1 and ∂w2 are fundamental cycles of (the not necessarily
connected) closed (m− 1)-manifold A. In particular, there is a chain zA ∈ Cm (A)
with

∂zA = ∂w2 − ∂w1.

We now consider the chain

z := w1 − w2 + zA ∈ Cm (M).

By construction, z is a cycle and because z coincides on the open subset W◦
1 ⊂ M

with the (relative) fundamental cycle w1, the cycle z must be a fundamental cycle
of M (Theorem (5.4)).

On the other hand, ∂(zA − a1 + a2) = 0 shows that z − a1 + a2 ∈ C`1

m (A) is a
cycle. Because im H`1

m (A ↪→ M) = 0, there is a bA ∈ C`1

m+1(M) with

∂bA = zA − a1 + a2.
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6 A finiteness criterion for simplicial volume

Putting it all together yields

∂(b1 − b2 + bA) = w1 − w2 + zA = z.

I.e., the `1-chain b1 − b2 + bA ∈ C`1

m+1(M) is a witness for the `1-invisibility of M.
(We also could have derived the previous item on connected sums from this

one – however, the direct proof for connected sums looks more straightforward).
Products. We choose fundamental cycles zM ∈ Cm (M) and zN ∈ Cn (N) of M

and N respectively. Therefore, the cross product z := zM × zN is a fundamental
cycle of M× N by the Künneth theorem.

It is not difficult to see that the homological cross product

× : Cp (M)⊗ Cq (N) −→ Cp+q (M× N)

can be extended to a cross product

× : C`1

p (M)⊗ C`1

q (N) −→ C`1

p+q(M× N)

on `1-chains. Moreover, the relation ∂(cM × cN) = ∂cM × cN + (−1)p · cM × ∂cN
for all cM ∈ Cp (M) and all cN ∈ Cq (N) also carries over to `1-chains.

Because M is `1-invisible, there is a chain bM ∈ C`1

m+1(M) with ∂bM = zM. We
now consider the chain

b := bM × zN ∈ C`1

m+n(M× N).

By construction, in the chain complex C`1

∗ (M× N) we have the relation

∂b = ∂bM × zN + (−1)m · bM × ∂zN

= zM × zN + (−1)m · bM × 0
= zM × zN .

In other words, the product M× N is `1-invisible.
Fibrations. In this situation, the dimension of B is at most m − 1 [35; Exer-

cise 14.15 and p. 556]. In particular, Hm (B) = 0. Since π1(F) is amenable, the
induced map H`1

m (p) : H`1

m (M) −→ H`1

m (B) is an (isometric) isomorphism (Corol-
lary (4.4)). Therefore, the commutative diagram

Hm (M)
Hm(iM)

//

Hm(p)
��

H`1

m (M)

H`1
m (p)

��

0 = Hm (B)
Hm(iB)

// H`1

m (B)

shows that M is `1-invisible.
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6.3 A closer look at `1-invisible manifolds

Circle actions. We first look at the case that the S1-action on M has at least one
fixed point: Then

Hm ( f )
(
[M]

)
= 0 ∈ Hm

(
Bπ1(M)

)
,

where f : M −→ Bπ1(M) is the classifying map [18, 35; p. 95, Lemma 1.42]. On
the other hand, the induced map π1( f ) on the level of fundamental groups is
an isomorphism, and hence H`1

m ( f ) : H`1

m (M) −→ H`1

m (Bπ1(M)) is an (isometric)
isomorphism (Corollary (4.2)). Now the commutative diagram

Hm (M)
Hm(iM)

//

Hm( f )
��

H`1

m (M)

H`1
m ( f )

��

Hm
(

Bπ1(M)
)

Hm(iBπ1(M))
// H`1

m
(

Bπ1(M)
)

allows us to deduce that M must be `1-invisible if the action has fixed points.
What happens if the S1-action on M is free? Because M is compact, the S1-oper-

ation in question is proper. Therefore, the quotient M/S1 is a compact manifold
of dimension m − 1. Hence, Hm(M/S1) = 0. Furthermore, it follows that the
projection p : M −→ M/S1 is an S1-principal bundle and thus in particular a fi-
bration with fibre S1. Because the fundamental group π1(S1) ∼= Z is amenable,
the induced map H`1

m (p) : H`1

m (M) −→ H`1

m (M/S1) is an (isometric) isomorphism
(Corollary (4.4)). Therefore, we deduce (like in the previous item) from the com-
mutative diagram

Hm (M)
Hm(iM)

//

Hm(p)

��

H`1

m (M)

H`1
m (p)

��

0 = Hm
(

M/S1)
Hm(iM/S1 )

// H`1

m
(

M/S1)
that Hm(iM)([M]) = 0. I.e., M is `1-invisible.

Proportionality. Thanks to symmetry, it suffices to show that if M is `1-invisible,
then also N is `1-invisible. Moreover, since the universal coverings of M and N
coincide, the dimensions of M and N must be equal.

Thurston’s proof of the proportionality principle for simplicial volume relies
on the so-called “smearing” of (smooth) singular chains. Smearing is a chain map

smearM,N : Cs
∗ (M) −→ Cs

∗ (N),
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6 A finiteness criterion for simplicial volume

Hn (M)
Hn(iM)

// H`1

n (M)

Hs
n (M)

∼=

OO

//

Hn(smearM,N)
��

· vol M
vol N

��

Hs,`1

n (M)

∼=

OO

Hn(smear`1
M,N)

��

Hs
n (N) // Hs,`1

n (N)

Hs
n (N)

∼=

OO

//

∼=
��

Hs,`1

n (N)

⊂

OO

∼=
��

Hn (N)
Hn(iN)

// H`1

n (N)

Figure (6.12). Proof of part 8 of Proposition (6.10) – proportionality

where Cs
∗ (M) ⊂ C∗ (M) is the subcomplex generated by smooth singular chains

and Cs
∗ (N) is the smooth version of the measure chain complex of N. The two

distinguishing features of this chain map are that it is bounded with norm at
most 1 and that it maps (smooth) fundamental cycles of M to (smooth) measure
cycles representing vol M/ vol N times the fundamental class of N; more details
on measure homology and smearing are provided in Appendix D, especially in
Theorem (D.13).

Because smearM,N is bounded, it extends to a morphism

smear`1

M,N : Cs,`1

∗ (M) −→ Cs,`1

∗ (N)

of the corresponding completed chain complexes (Theorem (D.13)). We obtain
the commutative ladder in Figure (6.12), where

• except for the maps Hn(smearM,N) and Hn(smear`1

M,N), all homomorphisms
are the ones induced by the canonical inclusions of the underlying chain
complexes;

• all arrows labeled with “∼=” are (isometric) isomorphisms (Proposition (D.5)
and Corollary (D.12));

• the arrow labeled with “⊂” is an (isometric) injection (Theorem (D.9)).
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6.3 A closer look at `1-invisible manifolds

Hence, chasing through the diagram shows that if Hn(iM)([M]) = 0 ∈ H`1

n (M),
then also Hn(iN)([N]) = 0 ∈ H`1

n (N) holds. This finishes the proof of proportion-
ality for `1-invisibility.

6.3.3 `1-Invisibility and the fundamental group

Proposition (6.13). Let M be an oriented, closed, connected m-manifold.

1. Group homology. If Hm(π1(M)) = 0, then M is `1-inviable.
2. Amenable fundamental group. If the fundamental group of M is amenable and

if m > 0, then M is `1-invisible.
3. Free fundamental group. If the fundamental group of M is free and m > 0, then

M is `1-invisible.

Proof. Group homology. Let f : M −→ Bπ1(M) be the classifying map. We consider
the commutative diagram

Hm (M)
Hm(iM)

//

Hm( f )
��

H`1

m (M)

H`1
m ( f )

��

Hm
(

Bπ1(M)
)

Hm(iBπ1(M))
// H`1

m
(

Bπ1(M)
)
.

Because H`1

m ( f ) is an (isometric) isomorphism by the mapping theorem (Corol-
lary (4.2)) and Hm(Bπ1(M)) = Hm(π1(M)) = 0, it follows that Hm(iM)([M]) = 0.

Amenable fundamental group. If π1(M) is amenable, then H`1

m (M) = 0 (Corol-
lary (4.2)). In particular, Hm(iM)([M]) = 0 ∈ H`1

m (M), i.e., M is `1-invisible.
Free fundamental group. If π1(M) is a free group, then we have Hk(π1(M)) = 0

for all k ∈ N>1. Therefore, we can apply part 1 whenever m > 1. If m = 1, then
M = S1, which is `1-invisible (for example, by part 2).

6.3.4 `1-Invisibility and curvature

Corollary (6.14). Let M be an oriented, closed, connected, Riemannian manifold.

1. Positive curvature. If M has positive sectional curvature, then M is `1-invisible.
2. Flat manifolds. If M is flat, then M is `1-invisible.
3. Negative curvature. If M has negative sectional curvature, then M is not `1-in-

visible.
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6 A finiteness criterion for simplicial volume

Proof. Positive curvature. By Myers’s theorem, complete, connected manifolds of
positive sectional curvature have finite – and hence amenable – fundamental
group [30; Theorem 11.8]. Therefore, these manifolds are `1-invisible (Proposi-
tion (6.13).2)

Flat manifolds. The classification of compact, flat manifolds shows that they
all are finitely covered by tori and hence have amenable fundamental group [13;
Theorem II.5.3].

Moreover, `1-invisibility of flat manifolds can also be derived from the propor-
tionality property of `1-invisibility (Proposition (6.10).8): Namely, the Rieman-
nian universal covering of any flat manifold is isometric to the Riemannian uni-
versal covering of the torus of the same dimension. Because tori are `1-invisible,
all flat manifolds must be `1-invisible.

Negative curvature. Oriented, closed, connected manifolds of negative sectional
curvature have non-zero simplicial volume (Section 5.4). Therefore, these mani-
folds cannot be `1-invisible.

6.3.5 `1-Invisibility and L2-Betti numbers

Gromov asked if the L2-Betti numbers of an oriented, closed, connected, aspher-
ical manifold with vanishing simplicial volume are zero [20; Section 8A]. For an
introduction to L2-Betti numbers we refer to Lück’s extensive textbook [35].

The notion of `1-invisibility gives rise to the following approach to Gromov’s
question: Let M be an oriented, closed, connected n-manifold with fundamental
group G, and let NG be the group von Neumann algebra of G. Then there is
a commutative diagram relating L2-(co)homology to bounded cohomology and
`1-homology:

Hk (M;NG)
· ∩[M]

// Hn−k (M;NG)

��

Hk
b(M;NG)

OO

· ∩Hn(iM)([M])
// H`1

n−k(M;NG)

Here, the vertical arrows are the respective comparison maps. The upper hori-
zontal arrow is an isomorphism (Poincaré duality with twisted coefficients – for
cellular L2-(co)homology this follows from a theorem of Wall [58; Theorem 2.1,
p. 23]).
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6.4 Applying the finiteness criterion

The lower cap-product is based on literally the same definition as the usual cap-
product in singular (co)homology with twisted coefficients: In view of Proposi-
tion (2.23), we can identify the two Banach chain complexes C`1

∗ (M) and C`1

∗ (M̃)G.
Then the cap-product is defined on generators by

Ck
b(M;NG)⊗ C`1

n (M) · ∩ · // C`1

n−k(M;NG)

B
(
C`1

k (M̃),NG
)G ⊗ C`1

n (M̃)G
//
(
C`1

n−k(M̃)⊗NG
)

G

f ⊗ [σ] � //

∈ [
n−kbσ⊗ f (σck)

]∈

where the brackets [ · ] denote the corresponding equivalence classes in the coin-
variants, and n−kbσ and σck are the (n − k)-back face and the k-front face of σ
respectively.

The same calculations as in singular (co)homology show that this definition
is independent of the chosen representatives in the coinvariants. Moreover, the
norm ‖ f ∩ c‖1 ≤ ‖ f ‖∞ · ‖c‖1 is finite for all f ∈ Ck

b(M; V) and all c ∈ C`1

n (M).
Therefore, this cap-product is well-defined on the (co)chain level. In addition,
this cap-product descends to a cap-product on the level of (co)homology.

Suppose that the comparison map H∗b(M;NG) −→ H∗ (M;NG) is surjective
and that the comparison map H∗ (M;NG) −→ H`1

∗ (M;NG) is injective (up to
NG-dimension). Then the commutative diagram above shows: If M is `1-invis-
ible, then the upper horizontal arrow is the zero map up to NG-dimension and
thus all L2-Betti numbers of M must be zero. This leads to the following question:

Question (6.15). Let M be an oriented, closed, connected, aspherical manifold
with fundamental group G. Is the comparison map H∗b(M;NG) −→ H∗ (M;NG)
surjective and is the comparison map H∗ (M;NG) −→ H`1

∗ (M;NG) injective (at
least up to NG-dimension)? 3

6.4 Applying the finiteness criterion

Combining the finiteness criterion (Theorem (6.1)) with the properties of `1-invis-
ibility established in Section 6.3 gives access to a collection of simple examples
demonstrating the odd behaviour of simplicial volume of non-compact mani-
folds.
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In Section 6.4.1, we give a basic vanishing result, which can be applied to com-
pute the simplicial volume of Euclidean spaces (Section 6.4.2). Section 6.4.3 con-
tains an elementary example of a non-compact manifold whose simplicial volume
is neither zero nor infinite. The lack of homotopy invariance of the simplicial vol-
ume in the category of non-compact manifolds is discussed in Section 6.4.4. A
geometrically interesting class of non-compact manifolds with nice boundaries
are locally symmetric spaces of finite volume (Section 6.4.5). Finally, the last sec-
tion deals with products of non-compact manifolds.

6.4.1 Vanishing results

The computation of simplicial volume of non-compact manifolds in terms of
`1-homology leads to the following vanishing result:

Corollary (6.16). Let (W, ∂W) be an oriented, compact, connected n-manifold with
boundary and let M := W◦. If H`1

n (W) = 0 and ∂W is `1-invisible, then ‖M‖ = 0.

Proof. Because M is homotopy equivalent to W, we know that H`1

n (M) = 0. In
particular, ‖M‖ ∈ {0, ∞} (Corollary (5.18)). According to the finiteness criterion
(Theorem (6.1)) the simplicial volume of M cannot be infinite because ∂W is `1-in-
visible. Therefore, ‖M‖ = 0.

In particular, if (W, ∂W) is an oriented, compact, connected n-manifold with
boundary with H`1

n (W) = 0 and H`1

n−1(∂W) = 0, then ‖W◦‖ = 0.

6.4.2 Euclidean spaces

For example, Corollary (6.16) allows to compute the simplicial volume of Eu-
clidean spaces:

Example (6.17). Since ‖S0‖ = 2, the finiteness criterion (Theorem (6.1)) shows
that ‖R‖ = ‖[0, 1]◦‖ = ∞.

On the other hand, for all n ∈ N>1, the sphere Sn−1 is `1-invisible (Proposi-
tion (6.10)) and hence ‖Rn‖ = ‖(Dn)◦‖ < ∞ by the finiteness criterion. Moreover,
H`1

n (Rn) = 0. Using Corollary (6.16), we deduce that ‖Rn‖ = 0.
The second part can also be shown via self-maps of (Dn, Sn−1) of non-trivial

degree [18; p. 8f]. 3

It is one of the confusing aspects of the simplicial volume of non-compact man-
ifolds that (by the example above) the simplicial volume of hyperbolic n-space
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is zero if n > 1. This contrasts the classic result that the simplicial volume of
oriented, closed, connected hyperbolic manifolds is positive.

6.4.3 Non-compact manifolds with finite, non-zero simplicial volume

The finiteness criterion provides concrete examples of non-compact manifolds
whose simplicial volume is non-trivial, i.e., it is neither zero nor infinite:

Example (6.18). Let M be an oriented, closed, connected manifold with ‖M‖ 6= 0
of dimension n ≥ 2 (for example a hyperbolic manifold of dimension at least 2),
and let N be a non-compact manifold obtained from M by removing a finite num-
ber of points. Then

0 < ‖N‖ < ∞.

This can be seen as follows: Let (N′, ∂N′) be the compact manifold with bound-
ary obtained from M by removing the same (finite) number of open n-balls. By
construction, N is homeomorphic to the interior of N′ and the boundary of N′

consists of a finite disjoint union of (n− 1)-spheres.
In particular, the boundary of N′ is `1-invisible (Proposition (6.10).2). Hence,

the finiteness criterion (Theorem (6.1)) shows that ‖N‖ < ∞.
Why is ‖N‖ non-zero? By Proposition (5.12) it suffices to show ‖N′, ∂N′‖ > 0.

By construction, N′ = M \ (D◦1 t . . . D◦k ), where D1, . . . , Dk ⊂ M are small n-disks.
Because Hn

b (D1 t · · · t Dk) = 0, the singular chain complex C∗ (D1 t · · · t Dk)
satisfies the uniform boundary condition in degree n − 1 [38; Theorem 2.8]. Let
K ∈ R>0 be the corresponding constant as in the Definition (6.7).

If c′ ∈ Cn (N′) is a relative fundamental cycle of (N′, ∂N′), then ∂c′ ∈ Cn−1 (∂N′)
is a cycle; because Hn−1 (D1 t · · · t Dk) = 0, this cycle is null-homologous in the
chain complex C∗ (D1 t · · · t Dk).

Therefore, the uniform boundary condition guarantees the existence of a chain
b ∈ Cn (D1 t · · · t Dk) with

∂b = −∂c′ and ‖b‖1 ≤ K · ‖∂c′‖1 ≤ (n + 1) · K · ‖c′‖1.

In particular, the chain c := c′ + b ∈ Cn (M) is a cycle. Because c and c′ coincide
on N′◦, the cycle c is a fundamental cycle of M (Theorem (5.4)).

This implies
‖M‖ ≤ ‖c‖1 ≤ ‖c

′‖1 + (n + 1) · K · ‖c′‖1

and hence ‖N′, ∂N′‖ ≥ 1/(1 + (n + 1) · K) · ‖M‖ > 0, as desired. 3
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6 A finiteness criterion for simplicial volume

For example, many of the oriented, hyperbolic surfaces of finite volume can be
obtained in this way. In fact, all oriented, hyperbolic surfaces have finite, non-
zero simplicial volume and the value can be computed explicitly (in terms of the
volume) [57, 34]. However, these computations are beyond the scope of this text.

6.4.4 Lack of homotopy invariance in the non-compact case

We have already seen that the simplicial volume of non-compact manifolds is not
homotopy invariant in general (Example (6.17)), but only invariant under proper
homotopy equivalences. With little more effort, we can also show that the sim-
plicial volume of non-compact manifolds is not even homotopy invariant in the
class of non-compact manifolds with finite simplicial volume:

Example (6.19). Let (W, ∂W) be an oriented, compact, connected surface of genus
at least 2 with non-empty boundary. Clearly, W◦ 'W◦ × R2, but

0 < ‖W◦‖ < ∞,

0 = ‖W◦ × R2‖.

The first line is an instance of Example (6.18), the second line follows in view
of ‖W◦‖ < ∞ and ‖R2‖ = 0 from the product formula (Theorem (C.7)). 3

6.4.5 Locally symmetric spaces of non-compact type of finite volume

A class of non-compact manifolds with nice compactification arises naturally in
differential geometry, namely in the study of locally symmetric spaces of non-
compact type with finite volume.

We begin with hyperbolic manifolds of finite volume (Example (6.20)). In Ex-
amples (6.21) and (6.22), we study locally symmetric spaces of non-compact type
given by arithmetic lattices; an introduction to arithmetic lattices and the corre-
sponding locally symmetric spaces can be found in the book of Borel and Ji [3;
Section III.2], where also a number of examples of such spaces is discussed.

Example (6.20). Let M be an oriented, connected, complete hyperbolic n-mani-
fold. Then a classic theorem [1; Corollary D.3.14] asserts that there is an oriented,
compact, connected n-manifold (W, ∂W) with boundary such that M ∼= W◦ and
all connected components of the boundary ∂W are manifolds admitting a flat Rie-
mannian structure.
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6.4 Applying the finiteness criterion

By Corollary (6.14), oriented, closed, connected, flat manifolds are `1-invisible.
Therefore, the finiteness criterion (Theorem (6.1)) yields that the simplicial vol-
ume of M is finite.

In this situation, one can even show that ‖M‖ = ‖W, ∂W‖: The chain com-
plex C∗ (∂W) satisfies the uniform boundary condition in degree n − 1 because
all connected components of ∂W are amenable (cf. proof of Corollary (6.14)) and
hence Hn

b (∂W) = 0 [38; Theorem 2.8]. Let K ∈ R>0 be the corresponding constant
as in Definition (6.7).

The proof of the finiteness criterion shows that if c ∈ Cn (W) is a relative fun-
damental cycle of (W, ∂W), then we can find a locally finite fundamental cycle c′

of M satisfying ‖c′‖1 ≤ ‖c‖1 + 2 · K · ‖∂c‖1. Therefore, Gromov’s “equivalence
theorem” [18; p. 57] lets us deduce that ‖M‖ ≤ ‖W, ∂W‖. On the other hand, we
also have the reverse inequality by Proposition (5.12).

Notice however that there does not seem to be a complete proof of the equiv-
alence theorem in the literature. Gromov’s proof is rather sketchy, and Park’s
approach [47, 46] is incomplete (in the `1-case) and does deal with a different
semi-norm on the relative homology groups (both in the `1-case as well as in the
bounded cohomology case). 3

Example (6.21). Let M = Γ /G/K be an oriented, connected, locally symmetric
space (of non-compact type) with finite volume, where Γ is an arithmetic lattice
of Q-rank equal to 1. Then the simplicial volume of M is finite:

In this situation, it is known that M is homeomorphic to the interior of an ori-
ented, compact manifold (W, ∂W) with boundary, the Borel-Serre compactifica-
tion [4, 3].

Moreover, each connected component of ∂W is a fibre bundle, whose fibre is an
oriented, closed, connected nil-manifold and whose base is an oriented, closed,
connected manifold [3; Proposition III.9.20]; the stratification of the boundary in
this case is especially simple because in the Q-rank 1 case all proper, Q-parabolic
subgroups are minimal [3; III.1.8]. The fundamental groups of nil-manifolds are
nilpotent and hence amenable [48; p. 13]; thus, the fibres have amenable funda-
mental group.

Therefore, ∂W is `1-invisible (Proposition (6.10).6) and hence ‖M‖ is finite by
the finiteness criterion (Theorem (6.1)). 3

Example (6.22). Let M = Γ /G/K be an oriented, connected, locally symmetric
space (of non-compact type) with finite volume, where Γ is an arithmetic lattice
of Q-rank at least 3. Then ‖M‖ is finite:

99



6 A finiteness criterion for simplicial volume

Let n := dim M. It is known that under the assumptions above M is the interior
of an oriented, compact, connected n-manifold (W, ∂W), where the boundary ∂W
is connected and the map π1(∂W) −→ π1(W) induced by the inclusion is an
isomorphism [4; Section 11.2].

By the mapping theorem (Corollary (4.2)), the homomorphism H`1

∗ (∂W) −→
H`1

∗ (W) induced by the inclusion is an isometric isomorphism. Therefore, the
long exact sequence in `1-homology (Proposition (2.7)) of the pair (W, ∂W) shows
that H`1

n (W, ∂W) = 0. Because ∂[W, ∂W] = [∂W], the commutative diagram

Hn (W, ∂W) //

��

H`1

n (W, ∂W)

��

Hn−1 (W) // H`1

n (W)

(where the horizontal arrows are the comparison maps and the vertical arrows
are the boundary operators of the respective long exact sequences in homology)
yields that ∂W is `1-invisible. In particular, ‖M‖ is finite (Theorem (6.1)).

Notice that H`1

n (W, ∂W) = 0 implies ‖W, ∂W‖ = 0 (Proposition (5.13)) – in
contrast to the closed case (Section 5.4). It might be even true that ‖M‖ = 0. 3

Because all the examples of locally symmetric spaces considered in this section
have complete Riemannian metrics of finite volume and bounded sectional cur-
vature, their minimal volume is finite. Therefore, also Gromov’s estimate of the
simplicial volume by the minimal volume (Section 5.4) shows that the simplicial
volume of these examples must be finite.

The advantage of the approach via the finiteness criterion is that it depends
only on topological information and that it is more concrete – one can actually see
where the finiteness comes from.

6.4.6 Products of manifolds

The simplicial volume of products of manifolds can be estimated from above by
the product of the simplicial volumes of the factors (cf. Section 5.4 and Theo-
rem (C.7)). But this estimate cannot deal with the tricky case that one of the factors
has zero simplicial volume and the other one has infinite simplicial volume [18;
p. 10].

In a very special case, `1-invisibility completely determines the simplicial vol-
ume of such products:
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6.4 Applying the finiteness criterion

Proposition (6.23). Let M be an oriented, closed, connected n-manifold. Then

‖M× R‖ =

{
0 if M is `1-invisible,
∞ otherwise.

Proof. Because M × R is the interior of the compact manifold M × [0, 1] with
boundary M t M, the finiteness criterion (Theorem (6.1)) yields that ‖M× R‖
is finite if and only if M is `1-invisible.

Therefore, it remains to show that ‖M× R‖ = 0 provided M is `1-invisible:
In the case that M is `1-invisible, the proof of the finiteness criterion (applied
to M× [0, 1]) shows that there is a locally finite chain c ∈ Clf

n+1 (M× [0, ∞)) such
that the sequence (ck)k∈N of chains given by

ck := c|M×(k,∞)

satisfies the following properties:

1. For each k ∈ N we have ck ∈ Clf
n+1 (M× [k, ∞)) and ∂ck ∈ Cn (M× {k}).

2. For each k ∈ N and each x ∈ M × (k, ∞) the restriction ck|{x} is a relative
fundamental cycle of (M× [k, ∞), M× [k, ∞) \ {x}).

3. Moreover, limk→∞‖ck‖1 = 0.

For each k ∈ N, we now consider the mirror images

ck := Clf
n+1 (idM ×rk)(ck) ∈ Clf

n+1 (M× (−∞, k]),

where rk : R −→ R denotes reflection at k. Then ck − ck ∈ Clf
n+1 (M× R) is a cycle,

which is a fundamental cycle of M × R (this follows from 2. and Theorem (5.4)).
Therefore, we obtain

‖M× R‖ ≤ inf
k∈N
‖ck − ck‖1 ≤ inf

k∈N
2 · ‖ck‖1 = 0.

Hence, any oriented, closed, connected manifold with vanishing simplicial vol-
ume that is not `1-invisible would produce the first example of two manifolds M
and N with ‖M‖ = 0, ‖N‖ = ∞ and ‖M× N‖ 6= 0.

A related problem is to find an example of two open manifolds whose product
has non-zero simplicial volume. Again, the finiteness criterion helps us to catch
such an example red-handed:
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6 A finiteness criterion for simplicial volume

Example (6.24). Let (M, ∂M) be an oriented, compact, connected surface of genus
at least 1 with non-empty boundary. Then

‖M◦ × R‖ = ∞.

This is a consequence of the finiteness criterion: Clearly, M◦ × R is the interior of
the compact manifold M× [0, 1] with boundary

∂
(

M× [0, 1]
)

= M× {0, 1} ∪∂M×{0,1} ∂M× [0, 1],

which is nothing but an oriented, closed, connected surface of genus at least 2.
Because hyperbolic surfaces are not `1-invisible (Corollary (6.14)), the finiteness
criterion (Theorem (6.1)) shows that ‖M◦ × R‖ is infinite. 3

Surprisingly, all information on the factors is lost when considering the simpli-
cial volume of threefold products of open manifolds (Example (C.9)).
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A Homological algebra of
Banach G-modules

Brooks [6] and Ivanov [25] adapted (relative) homological algebra in the sense of
Hochschild [23] to fit the needs of bounded cohomology of discrete groups. In
this chapter, we introduce the basic objects of this theory and investigate their
compatibility with taking (topological) duals. The key concepts are strong rela-
tively projective and injective resolutions, which lead to the desirable fundamen-
tal lemma (Proposition (A.7)). Concrete examples of these concepts are studied
in Section 2.2.

A more detailed account of the material collected in this chapter is, for exam-
ple, presented in the work of Ivanov [25] and Monod [42], as well as (for the
non-Banach case) in the book of Guichardet [21]. An alternative approach to ho-
mological algebra of Banach G-modules was created by Bühler [11].

A.1 Relatively injective and relatively projective
Banach G-modules

The atoms of the variant of (relative) homological algebra presented in the follow-
ing are Banach G-modules with a suitable notion of projectivity and injectivity.
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}
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β
``A

A
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A

Figure (A.2). Mapping problems for relatively projective and relatively injective
Banach G-modules respectively

Definition (A.1). Let G be a discrete group.

1. A Banach G-module is a Banach space V with a G-action G×V −→ V such
that for each g ∈ G the linear map v 7→ g · v is an isometry.

2. A G-morphism is a bounded linear map between Banach G-modules that is
G-equivariant.

3. A G-morphism π : U −→ W is called relatively projective if there is a (not
necessarily equivariant) linear map σ : W −→ U satisfying

π ◦ σ = idW and ‖σ‖ ≤ 1.

4. A G-morphism i : U −→ W is called relatively injective if there is a (not
necessarily equivariant) linear map σ : W −→ U satisfying

σ ◦ i = idU and ‖σ‖ ≤ 1.

5. A Banach G-module V is called relatively projective if for each relatively
projective G-morphism π : U −→ W and each G-morphism α : V −→ W
there is a G-morphism β : V −→ U such that

π ◦ β = α and ‖β‖ ≤ ‖α‖.

6. A Banach G-module V is called relatively injective if for each relatively
injective G-morphism i : U −→ W and for each G-morphism α : U −→ V
there is a G-morphism β : W −→ V such that

β ◦ i = α and ‖β‖ ≤ ‖α‖. 3

The mapping problems arising in the definition of relatively projective and rela-
tively injective Banach G-modules are depicted in Figure (A.2). Sometimes, “rela-
tively injective” and “relatively projective” morphisms are also called “admissible
monomorphisms” and “admissible epimorphisms” respectively.
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A.1 Relatively injective and relatively projective Banach G-modules

The most basic example of a Banach G-module with non-trivial group action
is `1(G), the set of all `1-functions G −→ R with the G-action given by shifting the
argument. Obviously, any Banach G-module is a module over `1(G). However,
the homological algebra we use does not coincide with the homological algebra
in the category of `1(G)-modules. Even worse, the category of Banach G-modules
is (like the category of Banach spaces) not Abelian.

Relatively projective Banach G-modules are flat in the following sense [11]:

Proposition (A.3). Let G be a discrete group, let 0 // U i // V
p

// W // 0 , be a
short exact sequence of G-morphisms of Banach G-modules with relatively injective i,
and let A be a relatively projective G-module. Then the induced sequences

0 −→ B(A, W ′)G −→ B(A, V ′)G −→ B(A, U′)G −→ 0,
0 −→ (A⊗U)G −→ (A⊗V)G −→ (A⊗W)G −→ 0

are exact.

Proof. We obtain from the duality principle (Theorem (3.5)) that the induced se-
quence

0 // W ′ p′
// V ′

i′ // U′ // 0

is exact. By assumption, i is relatively injective and therefore its dual i′ is relatively
projective. Because the Banach G-module A is relatively projective, it follows that
B(idA, i′)G : B(A, V ′)G −→ B(A, U′)G is surjective.

A straightforward calculation yields that also the truncated sequence

0 −→ B(A, W ′)G −→ B(A, V ′)G −→ B(A, U′)G

is exact. Therefore, the first part of the proposition is proved.
For the second part, we observe that there is a commutative ladder(

(A⊗W)G
)′ //

(
(A⊗V)G

)′ //
(
(A⊗U)G

)′
B(A, W ′)G // B(A, V ′)G // B(A, U′)G,

whose vertical morphisms are isometric isomorphisms of Banach G-modules (Re-
mark (1.13) and Proposition (1.14)). The duality principle (Theorem (3.5)) shows
that also the sequence 0 −→ (A ⊗ U)G −→ (A ⊗ V)G −→ (A ⊗W)G −→ 0 is
exact.
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Figure (A.5). Diagrams occurring in the proof of Proposition (A.4)

Taking duals transforms relatively projective modules into relatively injective
modules; because not all Banach spaces are reflexive, it seems unlikely that the
converse of this proposition holds.

Proposition (A.4). Let V be a relatively projective Banach G-module. Then its dual V ′

is a relatively injective Banach G-module.

Proof. In order to show that V ′ is a relatively injective Banach G-module we have
to find a G-morphism β : W −→ V ′ fitting into the diagram Figure (A.5)(a) when-
ever α : U −→ V ′ is a G-morphism and i : U −→ W is a G-morphism admitting a
(not necessarily equivariant) split σ : W −→ U satisfying σ ◦ i = idU and ‖σ‖ ≤ 1.

There is an isometric embedding [49; 2.3.7]

jV : V −→ V ′′

v 7−→
(

f 7→ f (v)
)
,

which is G-equivariant, of V into its double dual V ′′. (However, this embed-
ding is not surjective in general). Taking the dual of the solid part of diagram
Figure (A.5)(a) thus gives rise to Figure (A.5)(b). Clearly, we have i′ ◦ σ′ = idW ′

and ‖σ′‖ ≤ ‖σ‖ ≤ 1. Because V is relatively projective, we there exits a G-mor-
phism γ : V −→W ′ such that i′ ◦ γ = α′ ◦ jV and ‖γ‖ ≤ ‖α ◦ jV‖ ≤ ‖α‖.

Dualising a second time yields the commutative diagram Figure (A.5)(c). Un-
folding the various definitions shows that (α′ ◦ jV)′ ◦ jU = α. Hence, β := γ′ ◦ jW
is a G-morphism with β ◦ i = α and ‖β‖ ≤ ‖γ′‖ · 1 ≤ ‖α‖.

106



A.2 Relatively injective and relatively projective resolutions

A.2 Relatively injective and relatively projective resolutions

The key concept of homological algebra is the adequate notion of projective and
injective resolutions leading to the fundamental lemma of homological algebra
(Proposition (A.7)). In our case, the special form of the mapping problems oc-
curring in the definition of relatively projective/injective G-modules forces us to
consider so-called “strong” resolutions.

Definition (A.6). Let G be a discrete group and let V be a Banach G-module.

1. Let (C, ∂) be a Banach G-chain complex (cf. Definition (1.15)). An augmenta-
tion of C with respect to V is a G-morphism ε : C0 −→ V satisfying ε ◦ ∂1 = 0.
If ε is an augmentation of C, then the concatenation of C and ε : C0 −→ V is
a Banach G-chain complex, which we denote by C � ε.

2. Dually, an augmentation of a Banach G-cochain complex (C, δ) is a G-mor-
phism ε : C0 −→ V satisfying δ0 ◦ ε = 0. The concatenation of ε : V −→ C0
and C is then a Banach G-cochain complex, which is denoted by ε � C.

3. A (left) resolution of V is a Banach G-chain complex C together with an
augmentation ε : C0 −→ V such that H∗(C � ε) = 0.

4. A (right) resolution of V is Banach G-cochain complex C together with an
augmentation ε : V −→ C0 such that H∗(ε � C) = 0.

5. A resolution of V by Banach G-modules is called strong if the concatenated
Banach G-(co)chain complex admits a (not necessarily equivariant) chain
contraction of norm at most 1.

6. A resolution of V is called relatively projective (or relatively injective) if
it consists of relatively projective Banach G-modules (or relatively injective
Banach G-modules respectively). 3

Now the fundamental lemma reads as follows:

Proposition (A.7) (Fundamental lemma). Let G be a discrete group, let V and W be
two Banach G-modules, and let f : V −→W be a G-morphism.

1. If (C, ε : C0 → V) is an augmented Banach G-chain complex consisting of rel-
atively projective G-modules and (D, η : D0 → W) is a strong resolution of W,

107
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then f can be extended to a morphism C � ε −→ D � ε of Banach G-chain com-
plexes. Moreover, this morphism is unique up to G-homotopy.

2. Dually, if (D, η : W → D0) is an augmented Banach G-cochain complex consist-
ing of relatively injective G-modules and if (C, ε : V → C0) is a strong resolution
of V, then f can be extended to a morphism ε � C −→ η � D of Banach G-cochain
complexes and this morphism is unique up to G-homotopy.

Proof. The fundamental lemma can be proved using standard techniques from
homological algebra [21, 42; Proposition 2.2, Lemma 7.2.4]. For example, in order
to find an extension of f in the first part, we inductively solve mapping problems
of the form

Cn+1
fn+1

zzu
u

u
u

u
fn◦∂C

n+1
��

Dn+1
∂D

n+1

// im ∂D
n+1

(where f−1 := f ). This is a mapping problem in the sense of Definition (A.1) be-
cause im ∂D

n+1 = ker ∂D
n is closed – and hence indeed a Banach G-module – and

any contracting homotopy of D provides a (non-equivariant) split of the G-mor-
phism ∂D

n+1 : Dn+1 −→ im ∂D
n+1 of norm at most 1. Therefore, the relative projec-

tivity of Cn+1 ensures the existence of a solution fn+1.

Proposition (A.4) extends to resolutions and thus dualising transforms (strong)
relatively projective resolutions into (strong) relatively injective ones:

Proposition (A.8). Let G be a discrete group and let (C, ε : C0 → V) be a relatively
projective resolution of the Banach G-module V. Then its dual (C′, ε′ : V ′ → C′0) is a
relatively injective resolution of the Banach G-module V ′.

If the resolution (C, ε) is strong, then so is (C′, ε′).

Proof. By Proposition (A.4) the Banach G-cochain complex C′ consists of relatively
injective Banach G-modules. Since (C, ε) is a resolution, H∗(C � ε) = 0. Because
the Banach G-cochain complexes (C � ε)′ and ε′ � C′ are isomorphic, we obtain
H∗(ε′ � C′) = 0 from the duality principle (Theorem (3.5)). Hence, (C′, ε′) is a
resolution of V ′.

If (C, ε) is strong, then the dual of a chain contraction of C � ε with norm at
most 1 is a cochain contraction of the dual ε′ � C′ with norm at most 1, i.e., (C′, ε′)
is a strong resolution of V ′.
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The following consequence of the fundamental lemma (Proposition (A.7)) lies
at the heart of the definition of group (co)homology in this Banach-flavoured set-
ting (see Definition (2.17) and Theorem (2.18)).

Proposition (A.9). Let G be a discrete group and let V be a Banach G-module.

1. If (C, ε : C0 → V) and (D, η : D0 → V) are two strong relatively projective (left)
resolutions of V, then there is a canonical isomorphism (degreewise isomorphism of
semi-normed vector spaces)

H∗(CG) ∼= H∗(DG).

2. Dually, if (C, ε : V → C0) and (D, η : V → D0) are two strong relatively in-
jective (right) resolutions of V, then there is a canonical isomorphism (degreewise
isomorphism of semi-normed vector spaces)

H∗(CG) ∼= H∗(DG).

However, the canonical isomorphisms mentioned in the proposition need not
be isometric.

Proof. Clearly, any morphism ϕ : C � ε −→ D � ε of Banach G-chain complexes
induces a morphism CG −→ DG of Banach chain complexes. Similarly, G-ho-
motopies descend to (bounded) homotopies on the coinvariants. Hence, Proposi-
tion (A.7) applied to the G-morphism id : V −→ V proves the first part.

In the same way the second part can be derived from Proposition (A.7).
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B Bounded cohomology with
twisted coefficients

Ivanov proved that bounded cohomology of topological spaces (with R-coeffi-
cients) can be computed in terms of strong relatively injective resolutions of R [25;
Theorem 4.1]. This appendix is devoted to the generalisation of Ivanov’s result to
bounded cohomology with twisted coefficients:

Theorem (B.1). Let X be a countable, connected CW-complex with fundamental group G
and let V be a Banach G-module.

1. The morphism ϑV ′ : C∗b(G; V ′) −→ C∗b(X̃; V ′) of Banach G-cochain complexes (de-
fined in (4.16)) induces an isometric isomorphism

H∗b(X; V ′) ∼= H∗b(G; V ′).

Moreover, this isometric isomorphism does not depend on the choice of fundamental
domain used in the definition of the ϑV ′ .

2. In particular: If C is a strong relatively injective G-resolution of V ′, then there is a
canonical isomorphism (degreewise isomorphism of semi-normed vector spaces)

H∗b(X; V ′) ∼= H∗(CG).

3. If C is a strong relatively projective G-resolution of R, then there is a canonical
isomorphism (degreewise isomorphism of semi-normed vector spaces)

H∗b(X; V ′) ∼= H∗
(

B(C, V ′)G).
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The proof of the first part relies on the following observation:

Lemma (B.2). Let X be a countable, connected CW-complex with fundamental group G
and let V be a Banach G-module. The cochain complex C∗b(X̃; V ′) = B(C`1

∗ (X̃), V ′)
together with the augmentation εX : V ′ −→ C0

b(X̃; V ′) given by the obvious inclusion is
an approximate strong relatively injective G-resolution of V ′.

Definition (B.3). Let G be a discrete group.

1. If C is a Banach G-cochain complex and n ∈ N, we define the truncated
cochain complex C|n to be the Banach G-cochain complex derived from C
by keeping only the modules (and the corresponding coboundary opera-
tors) in degree 0, . . . , n and defining all modules in higher degrees to be 0.

2. An augmented Banach G-cochain complex (C, ε : V → C0) is an approxi-
mate strong resolution of the Banach G-module V if for every n ∈ N, the
truncated complex C|n admits a partial contracting cochain homotopy, i.e.,
linear maps (Kj : Cj → Cj−1)j∈{1,...,n} and K0 : C0 → V of norm at most 1
satisfying

∀j∈{1,...,n−1} δj−1 ◦ Kj + Kj+1 ◦ δj = idCj

as well as K0 ◦ ε = idV . 3

The proof of Lemma (B.2) is a straightforward generalisation of Ivanov’s proof
of the fact that C∗b(X̃) is a strong relatively injective π1(X)-resolution of R, one of
the main steps being the following splitting:

Lemma (B.4). Let X and Y be simply connected spaces, let p : X −→ Y be a principal
bundle whose structure group is an Abelian topological group G, and let V be a Banach
space. Then for each n ∈ N there is a partial split of C∗b(p; V ′)|n, i.e., a cochain map

A|n : C∗b(X; V ′)|n −→ C∗b(Y; V ′)|n

of truncated complexes satisfying for all j ∈ {0, . . . , n}

A|nj ◦ Cj
b(p; V ′) = id and ‖A|nj‖ ≤ 1.

Proof (of Lemma (B.4)). This can be shown in exactly the same way as the corre-
sponding statement for R-coefficients [25; Theorem 2.2]:

Let n ∈ N. Then the group Gn := map(∆n, G) is Abelian and hence amenable
(when regarded as discrete group). Therefore, there exists a Gn-equivariant mean

m : B(Gn, V ′) −→ V ′,
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where V ′ is endowed with the trivial Gn-action. Such a mean can, for example, be
constructed via

m : B(Gn, V ′) −→ V ′

f 7−→
(

v 7→ mR
(

g 7→ ( f (g))(v)
))

,

where mR : B(Gn, R) −→ R is a Gn-invariant mean provided by amenability of Gn.
Now the same construction as in Ivanov’s proof [25; proof of Theorem 2.2] gives

rise to the partial split A|n. (Perhaps there is no total split C∗b(X; V ′) −→ C∗b(Y; V ′)
because – unlike in the case with R-coefficients [25; p. 1094] – the theorem of
Banach-Alaoglu cannot be applied directly to the space B(B(Gn, V ′), V ′). But for
our applications the partial splits suffice.)

Using Lemma (B.4), we can construct the required partial contracting homo-
topies of the bounded chain complex with twisted coefficients as in Ivanov’s proof
for R-coefficients:

Proof (of Lemma (B.2)). Because X̃ is a simply connected countable CW-complex,
there is a sequence

. . . pn
// Xn

pn−1
// . . . p2

// X2
p1

// X1 := X̃

of principal bundles (pn)n∈N>0 with Abelian structure groups such that

∀j∈{0,...,n} πj(Xn) = 0 and ∀j∈N>n πj(Xn) = πj(X̃)

holds for all n ∈ N>0 [25; p. 1096]. In particular, all the Xn are simply connected.
Let n ∈ N. Since Xn is n-connected, one can explicitly construct a partial chain

contraction

R
L0 // C0 (Xn)

L1 // . . . Ln // Cn (Xn)

with ‖Lj‖ ≤ 1 for all j ∈ {0, . . . , n} [25; p. 1097]. Because L is bounded, it can be
extended to a partial cochain contraction

R
L0 // C`1

0 (Xn)
L1 // . . . Ln // C`1

n (Xn),

which also satisfies ‖Lj‖ ≤ 1. Therefore, the induced maps

V ′ = B(R, V ′) C0
b(Xn; V ′)

B(L0,idV′ )oo . . .B(L1,idV′ )oo Cn
b(Xn; V ′)

B(Ln,idV′ )oo
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form a partial cochain contraction with norm at most 1. Using the splits from
Lemma (B.4), we can transfer this partial contracting cochain map of Xn to one
of X: By Lemma (B.4), for j ∈ {1, . . . , n} we find partial splits

A(j)|n : C∗b(Xj+1; V ′)|n −→ C∗b(Xj; V ′)|n

of C∗b(pj)|n. We consider the maps

V ′ C0
b(X̃; V ′)

K0oo . . .K1oo Cn
b(X̃; V ′)

Knoo

defined by

Kj := A(1)|n ◦ · · · ◦ A(n− 1)|n ◦ B(Lj, idV ′) ◦ Cj
b(pn−1; V ′) ◦ · · · ◦ Cj

b(p1; V ′)

for all j ∈ {0, . . . , n}. By construction, ‖Kj‖ ≤ 1 and K0, . . . , Kn form a partial
cochain contraction [25; p. 1096].

It remains to show that the Banach G-modules Cn
b(X̃; V ′) are relatively injective:

Let F ⊂ X̃ be a fundamental domain for the G-action on X̃. For n ∈ N, we
write Fn ⊂ C`1

n (X̃) for the Banach subspace generated by all singular simplices
mapping the zeroth vertex of ∆n into F. Then

C`1

n (X̃) = `1(G)⊗ Fn

(as Banach G-modules). In particular, we obtain (cf. Remark (1.13))

Cn
b(X̃; V ′) = B

(
C`1

n (X̃), V ′
)

= B
(
`1(G)⊗ Fn, V ′

)
= B

(
`1(G), B(Fn, V ′)

)
.

Because B(`1(G), B(Fn, V ′)) is a relatively injective Banach G-module [42; Propo-
sition 4.4.1], it follows that Cn

b(X̃; V ′) is relatively injective.
Hence, the cochain complex (C∗b(X̃; V ′), εX) is an approximate strong relatively

injective resolution of V ′.

Theorem (B.1) can now be deduced from Lemma (B.2) by means of homological
algebra:

Proof (of Theorem (2.28)). Ad 1. The pair (C∗b(X̃; V ′), εX : V ′ → C0
b(X̃; V ′)) is an ap-

proximate strong relatively injective resolution of V ′ by Lemma (B.2).
The morphism ϑV ′ : C∗b(G; V ′) −→ C∗b(X̃; V ′) of Banach G-cochain complexes

constructed in the proof of Corollary (4.14) satisfies (where ε : C`1

0 (G) −→ R is the
augmentation of Definition (2.12))

εX ◦ ϑ0
V ′ = B(ε, idV) ◦ idV ′ .
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I.e., idV ′ � ϑV ′ : B(ε, idV) � C∗b(G; V ′) −→ εX � C∗b(X̃; V ′) is a morphism of Banach
G-cochain complexes.

The inductive proof of Proposition (A.7) depends only on finite initial parts of
the resolutions in question. Because (C∗b(G; V ′), B(ε, idV)) is a strong relatively in-
jective resolution (Proposition (2.19)), it follows that ϑV ′ is the (up to G-homotopy)
unique morphism of Banach G-cochain complexes from C∗b(G; V ′) to C∗b(X̃; V ′)
and that ϑV ′ admits a G-homotopy inverse.

In particular, the restriction of ϑV ′ to the G-invariants induces an isomorphism

H∗
(
C∗b(X̃; V ′)

) ∼= H∗
(
C∗b(G; V ′)G) = H∗b(G; V ′),

which is independent of the choice of fundamental domain used in the definition
of ϑV ′ .

Furthermore, this isomorphism is even isometric: By construction, ‖ϑV ′‖ ≤ 1.
Conversely, it is known that the semi-norm on H∗b(G; V ′) induced by the norm
on the standard resolution C∗b(G; V ′) is “minimal” [42; Corollary 7.4.7, Theo-
rem 7.3.1]. Therefore, the isomorphism on cohomology induced by ϑV ′ must be
isometric.

Ad 2. and 3. Combining the first part with Theorem (2.18) shows that we can also
compute H∗b(X; V ′) in the stated form via strong relatively injective resolutions.
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C Gromov’s duality principle for
non-compact manifolds

It is natural to ask whether the simplicial volume of a non-compact manifold
can also be computed in terms of a suitable semi-norm evaluated on the dual
fundamental class in cohomology with compact supports. Although the naı̈ve
duality ‖M‖ = 1/ ‖[M]∗‖∞ fails in general (Remark (C.4)), it is still possible to ex-
plicitly describe a semi-norm ‖ · ‖lf

∞ on cohomology with compact supports such
that

‖M‖ =
1∥∥[M]∗
∥∥lf

∞

holds (Theorem (C.2)). In this appendix, we give a complete proof of this duality
and apply it to derive a generalised product formula (Theorem (C.7)) as indicated
by Gromov [18; p. 17f].

C.1 Statement of the non-compact duality principle

As first step, we recall Gromov’s definition [18; p. 17] of the semi-norm ‖ · ‖lf
∞ on

cohomology with compact supports:
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Definition (C.1). Let M be a topological space, let N ⊂ M be a subspace, let k ∈ N,
and let A ∈ Slf

k (M); the definition of Slf
k (M) is contained in Definition (5.1).

1. If f ∈ Ck (M), then
‖ f ‖A

∞ := sup
σ∈A

∣∣ f (σ)
∣∣ ∈ [0, ∞].

The corresponding semi-norms ‖ · ‖A
∞ on the cohomology groups Hk (M, N)

and Hk
cs (M) are defined as the infimum of the above norm of all represen-

tatives of the cohomology class in question.
2. Moreover, for ϕ ∈ Hk (M, N) or ϕ ∈ Hk

cs (M), we write

‖ϕ‖lf
∞ := sup

A∈Slf
k (M)
‖ϕ‖A

∞ ∈ [0, ∞].

Notice that the semi-norm ‖ · ‖lf
∞ only exists on the level of cohomology, but

not on the level of cochains.
3. Similarly, if c = ∑σ∈B aσ · σ is a chain in Clf

k (M) or Ck (M, N) that is in re-
duced form, then

‖c‖A
1 := ∑

σ∈B∩A
|aσ|+ ∑

σ∈B\A
∞ ∈ [0, ∞]

(where ∑∅ ∞ := 0). The corresponding semi-norms ‖ · ‖A
1 on the homol-

ogy groups Hlf
k (M) and Hk (M, N) are defined as the infimum of the above

norm of all representatives.
4. If M is an oriented, connected manifold without boundary and if K is a

non-empty, compact, connected subset of M, then

‖M, M \ K‖A :=
∥∥[M, M \ K]

∥∥A
1 ,

‖M‖A :=
∥∥[M]

∥∥A
1 3

Using this terminology, Gromov [18; p. 17] stated the following generalisation
of Proposition (5.15) to non-compact manifolds:

Theorem (C.2) (Duality principle for non-compact manifolds). Let M be an ori-
ented, connected manifold without boundary. Then the simplicial volume of M can be
computed by

‖M‖ =
1∥∥[M]∗
∥∥lf

∞

.

118
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Because the cochain complex of cochains with compact support is not large
enough, we cannot directly apply the duality principle for semi-norms (Theo-
rem (3.8)) to obtain this non-compact version. Rather we have to take a little
detour where we show that ‖M‖ can be expressed nicely in terms of relative sim-
plicial volumes (Proposition (C.3)). We then apply duality to these relative terms
(Proposition (C.6)). Because there is no proof of Theorem (C.2) in the literature
and because the whole construction is not as straightforward as one might sus-
pect, a full proof is presented in the following sections.

C.2 The homological version

Before proving the duality principle for non-compact manifolds, we first establish
an approximation result for the simplicial volume in terms of (relative) simplicial
volumes of compact pieces of the manifold in question:

Proposition (C.3) (Simplicial volume in terms of relative simplicial volumes).
If M is an oriented, connected n-manifold without boundary, then

‖M‖ = inf
A∈Slf

n (M)
‖M‖A ,

and for all A ∈ Slf
n (M) we have

‖M‖A = sup
K∈C(M)

‖M, M \ K‖A .

Recall that C(M) is the set of all compact, connected, non-empty subsets of M.

Remark (C.4). In the second part of the proposition it is essential that we restrict
ourselves to locally finite (in the sense of Definition (5.1)) subsets of map(∆n, M);
for example, the naı̈ve approximation ‖M‖ = supK∈C(M) ‖M, M \ K‖ does not
hold in general: Restriction of fundamental cycles shows that the estimate “≥”
always holds. However, the reverse inequality may fail badly:

If M = W◦, where (W, ∂W) is an oriented, compact, connected manifold with
boundary, then

sup
K∈C(M)

‖M, M \ K‖ = ‖W, ∂W‖ ,
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which is always finite. On the other hand, ‖M‖ is not finite in general (see Chap-
ter 6).

This example also shows why the naı̈ve duality ‖M‖ = 1/ ‖[M]∗‖∞ cannot
be correct in general [18; p. 17]: By definition of [M]∗ via cocycles with compact
support, we have ‖[M]∗‖∞ = infK∈C(M) ‖[M, M \ K]∗‖∞. Therefore, in the case
M = W◦ as above, it follows that

1
‖[M]∗‖∞

=
1

infK∈C(M) ‖[M, M \ K]∗‖∞
= sup

K∈C(M)
‖M, M \ K‖ = ‖W, ∂W‖ ,

which in general does not coincide with ‖M‖. 3

Proof (of Proposition (C.3)). The equality ‖M‖ = infA∈Slf
n (M) ‖M‖A follows directly

from the definition of ‖M‖ by locally finite fundamental cycles.
Therefore, it remains to show that for each A ∈ Slf

n (M) we can compute ‖M‖A

as the supremum supK∈C(M) ‖[M, M \ K]‖A:
We first show that “≥” holds: If c ∈ Clf

n (M) is a locally finite fundamental cycle
and if K ∈ C(M), then the restriction c|K ∈ Cn (M, M \ K) is a relative fundamen-
tal cycle of (M, M \ K) and

‖c‖A
1 ≥

∥∥c|K
∥∥A

1 .

Hence, taking the infimum over all fundamental cycles c yields

‖M‖A
1 ≥ sup

K∈C(M)
‖M, M \ K‖A .

It remains to show “≤”: Let (Km)m∈N ⊂ C(M) be an increasing sequence satisfy-
ing

⋃
m∈N Km = M. It suffices to prove that

‖M‖A ≤ sup
m∈N
‖M, M \ Km‖A .

If the supremum supm∈N ‖M, M \ Km‖A is infinite, there is nothing to show; so
we assume in the following that this supremum is finite.

The idea is now to choose ‖ · ‖A
1 -small relative fundamental cycles cm of the

pairs (M, M \ Km) supported on A and to construct – via diagonalisation – a lo-
cally finite fundamental cycle c of M out of the sequence (cm)m∈N. The fact that
all cm are supported on A and the local finiteness of A ensure that this limit cycle
exists, is locally finite with support in A, and indeed represents the fundamental
class.
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More precisely: Let ε ∈ R>0 and for each m ∈ N let cm ∈ Cn (M) be a relative
fundamental cycle of (M, M \ Km) with

‖cm‖A
1 < ‖M, M \ Km‖A + ε.

The ‖M, M \ Km‖A all being finite, we can write

cm = ∑
σ∈A

aσ
m · σ

for certain real coefficients aσ
m. Furthermore because supm∈N ‖cm‖A

1 is finite, for
each σ ∈ A the sequence (aσ

m)m∈N ⊂ R is bounded and thus possesses at least one
limit point.

We choose an enumeration (σk)k∈N of A; this is possible because A is locally
finite and hence countable. By induction on k ∈ N, we can find subsequences

(m(k)
r )r∈N ⊂ (m(k−1)

r )r∈N

(where m(−1)
r := r for all r ∈ N) such that the limit

ak := lim
r→∞

aσk

m(k)
r

exists. Thus
c := ∑

k∈N
ak · σk

is a locally finite chain on M with support in A.

Lemma (C.5). For the chain c ∈ Clf
n (M) constructed as above, the following holds:

1. The chain c ∈ Clf
n (M) is a cycle.

2. The cycle c represents the fundamental class of M.
3. Moreover,

‖c‖A
1 ≤ sup

m∈N
‖M, M \ Km‖A + ε.

Before proving the lemma, we first complete the proof of the theorem. Thanks
to the lemma we obtain

‖M‖A ≤ ‖c‖A
1 ≤ sup

m∈N
‖M, M \ Km‖A + ε,

which implies (by letting ε → 0) that ‖M‖A ≤ supm∈N ‖M, M \ Km‖A, as desired.
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Proof (of Lemma (C.5)). We use the same notation as established in the proof of the
theorem. To prove the lemma, we make use of the following fact: For any m ∈ N
there is a k ∈ N such that: If σ ∈ A and σ(∆n) ∩ Km 6= ∅, then σ ∈ {σ1, . . . , σk}.
(This is a direct consequence of the local finiteness of A).

1. The chain c is a cycle: It suffices to show that

∀m∈N ∂
(
c|Km

)
∈ Cn−1 (M \ Km)

because (Km)m∈N is an increasing, exhausting sequence of M, the chain c is locally
finite, and Clf

∗ (M) = lim←−K∈C(M)
C∗ (M, M \ K). Let m ∈ N, and let k ∈ N be chosen

as above. Furthermore, we assume that k is the smallest such number. Thus,

c|Km =
k

∑
j=0

aj · σj.

Therefore, we obtain

∂
(
c|Km

)
= ∂

( k

∑
j=0

(
lim
r→∞

a
σj

m(k)
r

)
· σj

)

= ∂

(
lim
r→∞

k

∑
j=0

a
σj

m(k)
r
· σj

)
,

where the last limit is taken with respect to ‖ · ‖1. The boundary operator ∂ is
‖ · ‖1-continuous. This implies

∂
(
c|Km

)
= lim

r→∞
∂

( k

∑
j=0

a
σj

m(k)
r
· σj

)
= lim

r→∞
∂
(
c

m(k)
r
|Km

)
.

If r ∈ N is large enough, then m(k)
r ≥ m, and therefore ∂(c

m(k)
r

) lies in the chain
complex C∗(M \ K

m(k)
r

) ⊂ C∗ (M \ Km). But then also

∂
(
c

m(k)
r
|Km

)
∈ C∗ (M \ Km).

In other words, ∂(c|Km) is an `1-limit of chains in C∗ (M \ Km). Because the sub-
complex C∗ (M \ Km) is `1-closed in C∗ (M), we see that ∂(c|Km) ∈ C∗ (M \ Km).

Therefore, we deduce that c ∈ Clf
n (M) = lim←−m∈N

Cn (M, M \ Km) is a cycle.
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2. The cycle c is a fundamental cycle of V: By the local characterisation of funda-
mental cycles (Theorem (5.4)), it suffices to show that for some m ∈ N〈

[M, M \ Km]∗, [c|Km ]
〉

= 1

holds. Let m ∈ N, and let k ∈ N be as above. Moreover, let fm ∈ Cn (M, M \ Km)
be a cocycle representing [M, M \ Km]∗. Then〈

[M, M \ Km]∗, [c|Km ]
〉

= fm

( k

∑
j=0

aj · σj

)

= fm

( k

∑
j=0

(
lim
r→∞

a
σj

m(k)
r

)
· σj

)

= fm

(
lim
r→∞

k

∑
j=0

a
σj

m(k)
r
· σj

)
.

The restriction of fm to the (‖ · ‖1-closed) finite dimensional subspace
⊕k

j=0 R · σj
is continuous with respect to the norm ‖ · ‖1. Therefore, we obtain〈

ϕm, [c|Km ]
〉

= lim
r→∞

fm

( k

∑
j=0

a
σj

m(k)
r
· σj

)
= lim

r→∞
fm
(
c

m(k)
r
|Km

)
.

For all large enough r ∈ N, we have m(k)
r ≥ m and hence the restriction c

m(k)
r
|Km is

a relative fundamental cycle of (M, M \ Km). This implies〈
[M, M \ Km]∗, [c|Km ]

〉
= lim

r→∞

〈
[M, M \ Km]∗, [M, M \ Km]

〉
= 1,

as was to be shown.
3. The norm of c is small enough: Because the support of c lies in A, it follows that
‖c‖A

1 = ∑k∈N |ak| = limk→∞ ∑k
j=0 |aj|. For any k ∈ N, we have

k

∑
j=0
|aj| =

k

∑
j=0

lim
r→∞

∣∣aσj

m(k)
r

∣∣ = lim
r→∞

k

∑
j=0

∣∣aσj

m(k)
r

∣∣
≤ sup

r→∞

∥∥c
m(k)

r

∥∥A
1 ≤ sup

m∈N
‖cm‖A

1

≤ sup
m∈N
‖M, M \ Km‖A + ε,

and hence ‖c‖A
1 ≤ supm∈N ‖M, M \ Km‖A + ε.
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C.3 The dual point of view

The proof of the duality principle for non-compact manifolds (Theorem (C.2))
is based on the homological approximation (Proposition (C.3)) combined with a
duality expressing ‖M, M \ K‖A in terms of the corresponding dual fundamental
class:

Proposition (C.6) (Duality principle for the locally finite semi-norms). Let M be
an oriented, connected n-manifold without boundary. Then

‖M, M \ K‖A =
1

‖[M, M \ K]∗‖A
∞

for all A ∈ Slf
n (M) and all K ∈ C(M).

Proof. The norm ‖ · ‖A
1 is only defined on the chain group in degree n because A is

a set of n-simplices. Furthermore, this norm also may take the value ∞. Therefore,
we cannot directly apply the duality principle for semi-norms (Theorem (3.8)).

However, it is not difficult to see that the semi-norm ‖ · ‖A
∞ is dual to ‖ · ‖A

1 and
that the Hahn-Banach theorem also applies in the case that the norm is infinite.
Literally the same arguments as in the proof of Theorem (3.8) show that the equal-
ity ‖M, M \ K‖A = 1/ ‖[M, M \ K]∗‖A

∞ holds.

Proof (of Theorem (C.2)). By definition of the dual fundamental class [M]∗ via co-
cycles with compact support, we have

‖[M]∗‖A
∞ = inf

K∈C(M)
‖[M, M \ K]∗‖A

∞

for each A ∈ Slf
n (M). Therefore, the duality principle for the locally finite semi-

norms (Proposition (C.6)) and the approximation of simplicial volume in terms of
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relative simplicial volumes (Proposition (C.3)) allow us to deduce that

‖M‖ = inf
A∈Slf

n (M)
sup

K∈C(M)
‖M, M \ K‖A

= inf
A∈Slf

n (M)
sup

K∈C(M)

1

‖[M, M \ K]∗‖A
∞

= inf
A∈Slf

n (M)

1

‖[M]∗‖A
∞

=
1

‖M‖lf
∞

.

This finishes the proof of the duality principle.

C.4 A generalised product formula

With help of the duality provided by Theorem (C.2), we can prove the following
version of the product formula for simplicial volume [18; p. 17f]:

Theorem (C.7) (Product formula for simplicial volume). Let M and N be oriented,
connected, manifolds without boundary of dimension m and n respectively.

1. Then

‖M× N‖ ≤
(

m + n
m

)
· ‖M‖ · ‖N‖ .

2. If N is compact, then

‖M‖ · ‖N‖ ≤ ‖M× N‖ ≤
(

m + n
m

)
· ‖M‖ · ‖N‖ .

Here, x ·∞ := ∞ for all x ∈ (0, ∞]. However, in the case that one of the factors
has zero simplicial volume and the other one has infinite simplicial volume, the
formula does not tell anything about the simplicial volume of the product (see
also Section 6.4.6).
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Proof. Ad 1. The first part follows, like in the compact case [18, 1; p. 10, Theo-
rem F.2.5], by taking the homological cross-product of fundamental cycles: The
cross-product of two locally finite cycles again is a locally finite cycle and restric-
tion to a point shows that the cross-product of two fundamental cycles indeed is
a fundamental cycle of the product (by the Künneth theorem and the local char-
acterisation in Theorem (5.4)). Therefore, the explicit form of the homological
cross-product [16; Exercise 12.26.2] shows that

‖M× N‖ ≤
(

m + n
m

)
· ‖M‖ · ‖N‖ .

Ad 2. The cohomological cross-product of two cochains with compact support
is not necessarily a cochain with compact support. However, if one of the two
cochains is a cochain on a compact space, then the explicit form of the cohomo-
logical cross-product [15; p. 65] shows that the cross-product again has compact
support. Furthermore, evaluating the cohomological cross-product on the homo-
logical cross-product of fundamental cycles of both factors (which is a fundamen-
tal cycle of the product) shows that the cross-product of a fundamental cocycle
(with compact support) of M and a fundamental cocycle of N is a fundamental
cocycle (with compact support) of the product M × N. I.e., on the level of coho-
mology we obtain the relation

[M]∗ × [N]∗ = [M× N]∗.

The duality principle for non-compact manifolds (Theorem (C.2)) yields

‖M‖ =
1

‖[M]∗‖lf
∞

,

‖N‖ =
1

‖[N]∗‖lf
∞

=
1

‖[N]∗‖∞
,

‖M× N‖ =
1

‖[M× N]∗‖lf
∞

.

Therefore, it remains to prove that

‖[M× N]∗‖lf
∞ ≤ ‖[M]∗‖lf

∞ · ‖[N]∗‖∞ .

That is, given a locally finite set B ∈ Slf
m+n (M× N) and ε ∈ R>0 it suffices to find

a cocycle hε
B ∈ Cm+n

cs (M× N) representing [M× N]∗ such that

‖hε
B‖

B
∞ ≤

(
‖[M]∗‖lf

∞ + ε
)
·
(
‖[N]∗‖∞ + ε

)
.
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C.4 A generalised product formula

By definition, for any ε ∈ R>0 and any A ∈ Slf
m (M) there exist fundamental

cocycles f ε
A ∈ Cn

cs (M) and gε ∈ Cm (N) such that

‖ f ε
A‖

A
∞ ≤ ‖[M]∗‖lf

∞ + ε and ‖gε‖∞ ≤ ‖[N]∗‖∞ + ε.

For B ∈ Slf
n+m (M× N) and ε ∈ R>0 we now consider the cochain

hε
B := f ε

A × gε,

with A := {pM ◦ σcm | σ ∈ B}, where pM : M× N −→ M is the projection.
Why is A locally finite? Let K ⊂ M be compact. Then L := K × N ⊂ M× N is

compact. Therefore, the set {σ ∈ B | σ(∆m+n) ∩ L 6= ∅} is finite. But then also{
τ ∈ A

∣∣ τ(∆m) ∩ K 6= ∅
}
⊂
{

pM ◦ σcm
∣∣ σ ∈ B, pM ◦ σcm(∆m) ∩ K 6= ∅

}
⊂
{

pM ◦ σcm
∣∣ σ ∈ B, σ(∆m+n) ∩ L 6= ∅

}
must be finite. Hence, A is locally finite and thus hε

B is well-defined. Moreover,
hε

B is a cocycle with compact support representing [M]∗ × [N]∗ = [M × N]∗. By
construction,

‖hε
B‖

B
∞ ≤ sup

σ∈B

∣∣ f ε
A(pN ◦ nbσ)

∣∣ · ∣∣gε(pM ◦ σcm)
∣∣

≤ ‖ f ε
A‖

A
∞ · ‖g

ε‖∞

≤
(
‖[M]∗‖lf

∞ + ε
)
·
(
‖[N]∗‖∞ + ε

)
.

This proves the product formula.

In the second part of the product formula (Theorem (C.7)), the restriction that
one of the factors has to be compact might seem artificial. However, the following
example [18; p. 10] shows that some condition on the factors is needed:

Example (C.8). The simplicial volume of R is infinite, but ‖R× R‖ = 0 (see Ex-
ample (6.17)). 3

Gromov mentions that the same phenomenon can also occur if the simplicial
volumes of the factors are finite:

Example (C.9). Gromov shows that if M1, M2, M3 are oriented, connected, non-
compact manifolds (without boundary) of dimension at least 3, then the simpli-
cial volume ‖M1 ×M2 ×M3‖ is zero [18; p. 59]. On the other hand, the Mj can be
chosen in such a way that ‖Mj‖ is finite and non-zero (Example (6.18)). 3
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However, compactness of one of the factors clearly is not a necessary condition
for the second part of the product formula, as the example

‖R4‖ = 0 = ‖R2‖ · ‖R2‖

shows (Example (6.17)).
It is natural to ask whether there is at least a product formula for the simplicial

volume of manifolds with boundary. Again, it is easy to show that there is an
estimate of the form ‖(W1, ∂W1)× (W2, ∂W2)‖ ≤ const · ‖W1, ∂W1‖ · ‖W2, ∂W2‖ by
looking at the homological cross-product of relative fundamental cycles. In order
to get an estimate from below one would have to consider the cohomological
cross product of two relative fundamental cocycles. However, to construct the
cohomological cross-product

H∗ (W1, ∂W1)⊗ H∗ (W2, ∂W2) −→ H∗
(
(W1, ∂W1)× (W2, ∂W2)

)
one has to use the inverse of the isomorphism

H∗
(
(W1, ∂W1)× (W2, ∂W2)

)
��

H∗
(

homR
(
C∗ (W1 ×W2)/(C∗ (∂W1 ×W2) + C∗ (W1 × ∂W2)), R

))
given by excision. Therefore, control over the norm of the cohomological cross-
product is lost in this step.
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D Measure homology and
measure `1-homology

In his study of simplicial volume of hyperbolic manifolds, Thurston introduced a
new homology theory, called measure homology [57; p. 6.6–6.7]. Measure homol-
ogy is a cunning variation of singular homology: Let X be a topological space and
let n ∈ N. The idea is to think of a singular chain ∑k

j=0 aj · σj ∈ Cn (X) with real
coefficients as a signed measure on map(∆n, X) carrying mass aj on the set {σj}.
The measure chain complex of X consists of all signed measures on map(∆n, X)
satisfying some finiteness conditions. Measure homology is then defined to be
the homology of this chain complex.

We first give an introduction into measure homology and its counterpart in the
smooth category – smooth measure homology – as well as their `1-versions (Sec-
tion D.1). In Section D.2, we investigate the relation between `1-homology and
measure `1-homology. We conclude with a short discussion of the smearing map
(Section D.3), which is the key step in Thurston’s proof of the proportionality
principle of simplicial volume, and which we use in the proof of the correspond-
ing statement about `1-invisibility (Proposition (6.10)).
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D Measure homology and measure `1-homology

D.1 Measure homology and measure `1-homology

In this section, we recall the definition of (smooth) measure homology and intro-
duce the corresponding `1-versions.

D.1.1 Measure homology – the topological version

As indicated above, the measure chain complex consists of signed measures on
the space of singular simplices that satisfy certain finiteness conditions. More
detailed accounts of measure homology are given in the articles of Hansen [22]
and Zastrow [61].

Definition (D.1). Let X be a topological space and let n ∈ N.

1. The n-th measure chain group, denoted by Cn (X), is the R-vector space
of signed measures on map(∆n, X) possessing a compact determination set
and finite total variation, where map(∆n, X) is equipped with the compact-
open topology. The elements of Cn (X) are called measure n-chains.

2. For each j ∈ {0, . . . , n + 1} the inclusion ∂j : ∆n −→ ∆n+1 of the j-th face
induces a continuous map map(∆n+1, X) −→ map(∆n, X) and hence a ho-
momorphism (which we also denote by ∂j)

∂j : Cn+1 (X) −→ Cn (X)

µ 7−→ µ(σ 7→σ◦∂j).

The boundary operator of measure chains is then defined by

∂ :=
n+1

∑
j=0

(−1)j · ∂j : Cn+1 (X) −→ Cn (X).

3. The R-vector space Hn (X) := Hn
(
C∗ (X), ∂

)
is called the n-th measure ho-

mology group of X. 3
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D.1 Measure homology and measure `1-homology

Zastrow showed that (C∗ (X), ∂) indeed is a chain complex [61; Corollary 2.9].
In particular, measure homology is well-defined. Furthermore, each continuous
map f : X −→ Y induces a chain map [61; Lemma-Definition 2.10(iv)]

C∗ ( f ) : C∗ (X) −→ C∗ (Y)

µ 7−→ µ f ,

which does not increase the total variation. Therefore, we obtain a homomor-
phism H∗ ( f ) : H∗ (X) −→ H∗ (Y) with ‖H∗ ( f )(µ)‖ ≤ ‖µ‖ for all µ ∈ H∗ (X).
Clearly, this turns H∗ into a functor.

By verifying the Eilenberg-Steenrod axioms for measure homology, Hansen [22]
and Zastrow [61] deduced that measure homology and singular homology coin-
cide on the category of CW-complexes. More precisely:

Theorem (D.2). For all CW-complexes the inclusion of the singular chain complex into
the measure chain complex induces an isomorphism on homology.

Measure homology therefore combines in a beautiful way the rigidity of singu-
lar homology with the flexibility of `1-chains.

Like the singular chain complex the measure chain complex comes with a nat-
ural norm, the total variation, and it is not difficult to see that total variation turns
the measure chain complex into a normed chain complex.

Definition (D.3). Let X be a topological space.

1. The measure `1-chain complex C`1

∗ (X) of X is the completion (in the sense
of Remark (1.3)) of the measure chain complex C∗ (X) with respect to total
variation.

2. The homology H`1

∗ (X) of the measure `1-chain complex of X is called the
measure `1-homology of X. 3

Because the space of all signed measures on a given measurable space is a Ba-
nach space with respect to total variation, the n-chains of the `1-measure chain
complex C`1

∗ (X) also can be viewed as measures on map(∆n, X); more precisely,
C`1

n (X) consists of the signed measures on map(∆n, X) of finite total variation that
have a σ-compact determination set.

D.1.2 Smooth singular homology

For the main application of measure homology – Thurston’s smearing construc-
tion – it is necessary to replace measure homology by a corresponding theory
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D Measure homology and measure `1-homology

based on smooth singular simplices. Before modifying the definition of measure
homology to support Thurston’s construction, we first introduce the smooth ver-
sion of singular homology for smooth manifolds, which links smooth measure
homology and singular homology, as well as the corresponding `1-versions.

Definition (D.4). Let M be a smooth manifold.

1. The smooth singular chain complex of M is the normed subcomplex Cs
∗ (M)

of the singular chain complex C∗ (M), equipped with the `1-norm, that is
generated by all smooth singular simplices; a singular simplex σ : ∆n −→ M
is called smooth if it can be extended to a smooth map on an open neigh-
bourhood of ∆n in Rn+1.

2. The homology Hs
∗ (M) of Cs

∗ (M) is the smooth singular homology of M.
3. The completion of Cs

∗ (M) with respect to the `1-norm is called smooth
`1-chain complex of M and is denoted by Cs,`1

∗ (M).

4. The homology Hs,`1

∗ (M) of Cs,`1

∗ (M) is the smooth `1-homology of M. 3

Proposition (D.5). Let M be a smooth manifold.

1. The inclusion Cs
∗ (M) ↪→ C∗ (M) induces an isometric isomorphism

Hs
∗ (M) ∼= H∗ (M).

2. The inclusion Cs,`1

∗ (M) ↪→ C`1

∗ (M) induces an isometric isomorphism

Hs,`1

∗ (M) ∼= H`1

∗ (M).

Proof. We write j : Cs
∗ (M) ↪→ C∗ (M) and j : Cs,`1

∗ (M) ↪→ C`1

∗ (M) for the inclu-
sions.

With help of the Whitney approximation theorem one can construct a smooth-
ing operator s : C∗ (M) −→ Cs

∗ (M) with the following properties: the map s is
a chain map of norm 1 and the composition s ◦ j is homotopic to the identity
on Cs

∗ (M) via a chain homotopy that is bounded in each degree [31; p. 417ff].
In particular, H∗(j) is an isomorphism with inverse H∗(s). Because both H∗(j)
and H∗(s) do not increase the norm, H∗(j) must be isometric.

Furthermore, the boundedness properties ensure that both s and the mentioned
chain homotopy can be extended to the completions of the chain complexes in-
volved. Therefore, the same argument shows that H∗(j) is an isometric isomor-
phism.
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D.1 Measure homology and measure `1-homology

D.1.3 Measure homology – the smooth version

Similarly to measure homology for general spaces we can define a version of mea-
sure homology tailored for smooth manifolds [61, 56]:

Definition (D.6). Let M be a smooth manifold.

1. The smooth measure chain complex Cs
∗ (M) of M is defined like the mea-

sure chain complex C∗ (M), but using measures on the space map∞(∆∗, M)
of all smooth singular simplices instead.

2. The homology Hs
∗ (M) of the smooth measure chain complex of M is called

smooth measure homology of M. 3

As topology on map∞(∆n, M) we choose the C1-topology, i.e., the unique topol-
ogy that turns the differential map∞(∆n, M) −→ map(T∆n, TM) into a homeo-
morphism onto its image, where map(T∆n, TM) is given the compact-open topol-
ogy.

The advantage of the C1-topology is being fine enough to ensure that integra-
tion of smooth measure chains on a Riemannian manifold over the volume form
is well-defined [50, 56; Lemma 3 in Section 11.5, Section 4.4].

Classical tools of algebraic topology show that smooth measure homology and
(smooth) singular homology coincide on the category of smooth manifolds [61,
56; Theorem 3.4, Theorem 4.10]:

Theorem (D.7). For any smooth manifold the inclusion of the smooth singular chain
complex into the smooth measure chain complex induces an isomorphism in homology.

As in the the topological case, total variation turns the smooth measure chain
complex into a normed chain complex.

Definition (D.8). Let M be a smooth manifold.

1. The smooth measure `1-chain complex of M is defined as the completion
of the smooth measure chain complex of M with respect to total variation.
This chain complex is denoted by Cs,`1

∗ (M).

2. The homology Hs,`1

∗ (M) of Cs,`1

∗ (M) is the so-called smooth measure `1-ho-
mology of M. 3
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D Measure homology and measure `1-homology

D.2 Relating `1-homology and measure `1-homology

The straightening technique (Section 4.4) allows to deduce that (smooth) measure
`1-homology contains a copy of ordinary `1-homology and thus that (smooth)
measure homology can be used to compute the `1-semi-norm on singular homol-
ogy.

Theorem (D.9). 1. Let X be a countable, connected CW-complex. Then the homo-
morphism H∗(jX) : H`1

∗ (X) −→ H`1

∗ (X) induced by the inclusion jX : C`1

∗ (X) ↪→
C`1

∗ (X) is injective and isometric.

2. Let M be a connected, smooth manifold. Then H∗(j
s
M) : Hs,`1

∗ (M) −→ Hs,`1

∗ (M),
the homomorphism induced by the natural inclusion j

s
M : Cs,`1

∗ (M) ↪→ Cs,`1

∗ (M), is
injective and isometric.

During the proof of this theorem we have to compare (smooth) measure chain
complexes of spaces with the (smooth) measure chain complexes of their univer-
sal covering. At this point, the following observation is helpful:

Lemma (D.10). 1. Let X be a countable, connected CW-complex with universal cov-
ering π : X̃ −→ X and let n ∈ N. Then there is a measurable section

map(∆n, X) −→ map(∆n, X̃)

of the map map(∆n, X̃) −→ map(∆n, X) induced by π.
2. Let M be a connected, smooth manifold, let π : M̃ −→ M be the (smooth) universal

covering, and let n ∈ N. Then there is a measurable section

map∞(∆n, M) −→ map∞(∆n, M̃)

of the map map∞(∆n, M̃) −→ map(∆n, M) induced by π.

Proof. For both parts, there exist proofs based on geometric arguments [32, 56;
Appendix, Section 4.3.3].

Moreover, the first part can also be treated by the following reasoning based
on descriptive set theory: The simplex ∆n is compact and metrisable, and the

134



D.2 Relating `1-homology and measure `1-homology

manifolds M and M̃ are Polish; therefore, map(∆n, M) and map(∆n, M̃) are stan-
dard Borel spaces [27; Theorem 4.19]. The map map(∆n, M̃) −→ map(∆n, M)
induced by π is Borel (even continuous) and countable-to-one (because π1(M) is
countable). Now descriptive set theory shows that this map admits a measurable
section [27; Exercise 18.14/Theorem 18.10].

Proof (of Theorem (D.9)). Ad 1. The basic idea is to look for a factorisation of the
`1-straightening map sX of the following type:

C`1

∗ (X)
sX //

jX
��

??
??

?

C`1

∗ (X)
SX

??�����

S`1

∗ (X)

The measure straightening SX is constructed as follows: For each n ∈ N let
sn : map(∆n, X) −→ map(∆n, M̃) be a measurable section of the map induced
by π, as provided by Lemma (D.10). For (x0, . . . , xn) ∈ X̃n+1 the set

A(x0,...,xn) :=
{

τ ∈ map(∆n, X̃)
∣∣ ∀j∈{0,...,n} τ(vj) = xj

}
⊂ map(∆n, X̃)

is closed an hence Borel; here, v0, . . . , vn denote the vertices of the standard sim-
plex ∆n. By definition, the A(x0,...,xn) are pairwise disjoint. Then for all µ ∈ C`1

n (M),
at most countably many of the values µsn(Ax) are non-zero and

∑
x∈X̃n+1

∣∣µsn(Ax)
∣∣ ≤ ‖µsn‖ ≤ ‖µ‖ < ∞,

where µsn is the push-forward measure on map(∆n, M̃) of µ via sn (Lemma (D.11)
below). We define the straightening SX in degree n by

C`1

n (X) −→ S`1

n (X) = S`1

n (X̃)π1(X)

µ 7−→
[

∑
x∈X̃n+1

µsn(Ax)
]

.

It is not difficult to see that this definition does not depend on the actual choice of
the measurable section sn and that the corresponding map SX : C`1

∗ (X) −→ S`1

∗ (X)
is a chain map of norm at most 1. Furthermore, the triangle above is commutative.

In particular, H∗(sX) ◦ H∗(jX) = H∗(sX). Because H∗(sX) is an isometric iso-
morphism (Theorem (4.21)), it follows that H∗(jX) is injective. Moreover, both
H∗(jX) and H∗(SX) do not increase the norm. Thus, H∗(jX) is isometric.
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D Measure homology and measure `1-homology

Ad 2. Similarly, using a measurable section map∞(∆n, M) −→ map∞(∆n, M̃)
(Lemma (D.10)) we can construct a straightening map Ss

M : Cs,`1

∗ (M) −→ S∗(M)
fitting into the commutative diagram

Cs,`1

∗ (M)

??�����

jsM ��
??

??
?

C`1

∗ (M)
sM

��
??

??
??

Cs,`1

∗ (M)
Ss

M

??�����

S`1

∗ (M).

Because the top left arrow induces an isometric isomorphism on the level of
homology (Proposition (D.5)), the same arguments as in the first part show that
also H∗(j

s
M) is an isometric injection.

In the course of the proof, we made use of the following measure theoretic fact:

Lemma (D.11). Let µ be a signed measure with finite total variation on a measurable
space A and let (Ai)i∈I be a family of pairwise disjoint, measurable subsets. Then at most
countably many of the numbers µ(Ai) are non-zero, and

∑
i∈I
|µ(Ai)| ≤ ‖µ‖.

Proof. Because the (Ai)i∈I are pairwise disjoint and µ has finite total variation, for
each m ∈ N the set

{
i ∈ I

∣∣ |µ(Ai)| > 1/m
}

is finite. In particular, the set of
indices i ∈ I with µ(Ai) 6= 0 is at most countable.

Therefore, σ-additivity of the variation |µ| = µ+ + µ− shows that

∑
i∈I
|µ(Ai)| ≤∑

i∈I
|µ|(Ai) ≤ |µ|(A) = ‖µ‖.

In particular, we obtain homological (and hence a bit more transparent) ver-
sions of the original proofs [56, 32; Section 4.3, Theorem 1.1 and 1.2] that measure
homology and singular homology are isometrically isomorphic.

Corollary (D.12). 1. For countable, connected CW-complexes measure homology is
isometrically isomorphic to singular homology.

2. For connected, smooth manifolds smooth measure homology and singular homology
are isometrically isomorphic.
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D.3 Smearing

Proof. Ad 1. Let X be a countable, connected CW-complex. In view of Theo-
rem (D.2), it suffices to show that the homomorphism on homology induced by
the inclusion C∗ (X) ↪→ C∗ (X) is isometric. To this end we consider the commu-
tative diagram

C∗ (X)

��

// C∗ (X)

��

C`1

∗ (X) // C`1

∗ (X)

of inclusions of normed chain complexes. Theorem (D.9) and Proposition (1.7)
show that the lower horizontal arrow and the vertical arrows induce isometries
on the level of homology. Therefore, also the top horizontal arrow induces an
isometry on the level of homology.

Ad 2. Let M be a smooth manifold. Literally the same argument as in the first
part shows that the inclusion Cs

∗ (M) ↪→ Cs
∗ (M) induces an isometric isomor-

phism on the level of homology. On the other hand, smooth singular homology
and singular homology are isometrically isomorphic (Proposition (D.5)). There-
fore, also smooth measure homology and singular homology of M are isometri-
cally isomorphic.

However, Theorem (D.9) cannot be derived from Corollary (D.12) by general
arguments, as Example (1.8) shows.

D.3 Smearing

The main feature of (smooth) measure homology is Thurston’s construction of
the smearing map [57; p. 6.8–6.9], which constitutes the lion share of his proof of
the proportionality principle of simplicial volume (see also Remark (D.14) below).
When deriving proportionality for `1-invisibility (Proposition (6.10)), we use the
following version of smearing on the level of `1-homology:

Theorem (D.13) (Smearing). Let M and N be oriented, closed, connected, Riemannian
n-manifolds whose Riemannian universal covering spaces are isometric. Then there are
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D Measure homology and measure `1-homology

chain maps

smearM,N : Cs
∗ (M) −→ Cs

∗ (N),

smear`1

M,N : Cs,`1

∗ (M) −→ Cs,`1

∗ (N)

of norm 1 making the diagram

Hn (M)

· vol M
vol N

��

Hs
n (M)oo

· vol M
vol N

��

Hs
n (M) //

Hn(smearM,N)
��

Hs,`1

n (M)

Hn(smear`1
M,N)

��

Hn (N) Hs
n (N)oo // Hs

n (N) // Hs,`1

n (N)

commutative. Here, the horizontal arrows are the maps induced by the canonical inclu-
sions on the level of chain complexes.

Proof. The leftmost square is clearly commutative and all four vector spaces in-
volved are isometric to R, generated by the corresponding fundamental classes.
Therefore, it makes sense to speak of “multiplication by vol M/ vol N.”

The smearing smearM,N : Cs
∗ (M) −→ Cs

∗ (N) can be constructed by averaging
over the Haar measure of the compact quotient π1(N) \ Isom+(M̃) [57, 56; p. 6.8,
Section 5.4].

If c ∈ Cs
n (M) is a smooth fundamental cycle of M, then integration of the mea-

sure cycle smearM,N(c) over the volume form of N shows that smearM,N(c) repre-
sents vol M/ vol N times the fundamental class of N [57, 56; p. 6.9, Theorem 5.23].
Furthermore, the smearing is constructed in such a way that it does not increase
the norm [56; Lemma 5.22].

This shows that the middle square of the diagram is commutative. Because
smearM,N is a morphism of normed chain complexes, it extends to the comple-
tions and hence we obtain the desired chain map smear`1

M,N . By construction,
then also the rightmost square of the diagram is commutative.

Remark (D.14). The proportionality principle of simplicial volume directly fol-
lows from this theorem [57, 56; p. 6.9, Section 5.5]: If M and N are oriented,
closed, connected, Riemannian manifolds with isometric Riemannian universal
covering, then the previous theorem shows that

vol M
vol N

· ‖N‖ ≤ ‖M‖ .

Symmetry yields the converse inequality and hence we obtain the proportional-
ity ‖M‖ / vol M = ‖N‖ / vol N.
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Vorname Clara
Geburtsname Strohm
Geburtsdatum 3. August 1981, in Stuttgart
Familienstand verheiratet
Staatsangehörigkeit deutsch
Eltern Dr. Stefan Strohm

Ingrid Strohm, geb. Woiwode
Schulbildung

1987–1991 Grundschule (Fuchsrainschule Stuttgart)
1991–1999 Gymnasium (Karls-Gymnasium Stuttgart)

Hochschulreife
29. 06. 1999 Karls-Gymnasium Stuttgart, Gesamtnote 1,3

Studium
10/1999–09/2001 Universität Konstanz, Mathematik auf Diplom mit

Nebenfach Informatik
10/2001–09/2004 WWU Münster, Mathematik auf Diplom mit

Nebenfach Informatik
Vordiplom

13. 09. 2001 Universität Konstanz, Gesamtnote 1,0
Diplom

30. 09. 2004 WWU Münster, Gesamtnote mit Auszeichnung
Beginn der Dissertation

01. 10. 2004 WWU Münster, Graduiertenkolleg Analytische Topologie
und Metageometrie, Promotionsstudiengang Mathematik,
betreut von Prof. Dr. W. Lück

Tätigkeiten
09/2000–12/2000 studentische Hilfskraft, Universität Konstanz
07/2002–12/2002 studentische Hilfskraft, WWU Münster
05/2003–01/2004 studentische Hilfskraft, WWU Münster
11/2004–03/2005 wissenschaftliche Hilfskraft, WWU Münster
01/2007–02/2007 wissenschaftliche Hilfskraft, WWU Münster



All drawings by Clara Löh.
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