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Abstract. In this paper we construct infinitely many examples of a Riemannian submersion
from a simple, compact Lie group G with bi-invariant metric onto a smooth manifold that
cannot be a quotient of G by a group action. This partially addresses a question of K. Grove’s
about Riemannian submersions from Lie groups.

1. Introduction

Riemannian submersions (which we always assume to have connected fibers)
are fundamentally important in several areas of Riemannian geometry. For in-
stance, it is a classical and important problem in Riemannian geometry to
construct Riemannian manifolds with positive or nonnegative sectional curva-
ture. While there are a few methods, the most abundant source of examples
comes via submersions from compact Lie groups (see [16] for a survey). In
addition, many of the known examples of Einstein manifolds are constructed
via Riemannian submersions (see [1]). Moreover, in order to prove the Diame-
ter Rigidity Theorem for positively curved manifolds ([6], [14]), a classification
of Riemannian submersions from spheres equipped with a round metric was
required ([7], [14]). As it turns out, only Hopf fibrations can occur. In the
special case where the fibers are totally geodesic, this classification had been
achieved in [4] (see also [13]). It is natural, therefore, to ask for a classification
of Riemannian submersions from special Riemannian manifolds. In [5] the au-
thor classified Riemannian submersions with totally geodesic fibers from CPn

equipped with the usual Fubini-Study metric. Riemannian submersions from
(flat) Euclidean space Rn+k were classified in [8], where it was shown that the
base must be diffeomorphic to Rn and the quotient of Rn+k by an isometric
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Rk action. Given the many geometric situations in which Riemannian submer-
sions from Lie groups arise, one should similarly address the following problem
([9, Problem 5.4]): Determine the structure of all Riemannian submersions
from G, where G is a compact Lie group with a bi-invariant metric 〈 , 〉0.

Until recently the only known Riemannian submersions from compact Lie
groups equipped with bi-invariant metrics arose as biquotient submersions,
namely Riemannian submersions from (G, 〈 , 〉0) given by the quotient of G by
a two-sided, free, isometric action of some closed subgroup of G × G. This
changed with the discovery of a single example of a Riemannian submersion,
SO(16) → S8 (unpublished; see Section 2), such that the base is not a quotient
of the total space SO(16) by a free group action. In fact:

Theorem. There exist infinitely many Riemannian submersions, G → B,
where G is a simple, compact Lie group equipped with a bi-invariant metric,
and such that B is not a quotient G/U by any subgroup U ⊆ Diff(G).

A list of examples is included in Table 1. The fiber in each case is a Lie group
bundle over a homogeneous space. We remark that the bases of the final two
examples in Table 1, namely the Stiefel manifold V3(R

4n−1) and its quotient
by a free circle action, have the same rational cohomology as S4n−4 × S8n−5

and S4n−4 ×CP4n−3 respectively.

G −→ B n

SO(16) −→ S8 -

SO(2n) −→ S2n−2 n ≥ 4

SU(2n) −→ S4n−3 n ≥ 3

SU(2n) −→ CP2n−2 n ≥ 3

SO(4n) −→ V3(R
4n−1) n ≥ 3

SO(4n) −→ S1\V3(R
4n−1) n ≥ 3

Table 1. Riemannian submersions G −→ B, where B is not
a quotient of G.

2. A Riemannian submersion, SO(16) → S8

In 2007, at a week long workshop at AIM in Palo Alto, one of the work-
ing groups constructed this example. Since we were both at the workshop,
we would like to acknowledge the contribution of the members of the work-
shop in stimulating interest in the problem, especially Corey Hoelscher, Marius
Munteanu, Craig Sutton, Kris Tapp and Wolfgang Ziller.

Consider the Hopf fibration

S7 → S15 → S8.
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It is well-known that the round metric on S15 induces a Riemannian submersion
onto S8. Moreover, the isometry group of (S15, ground) is SO(16), which also
acts transitively on S15 with isotropy subgroup SO(15). Since SO(16)/ SO(15)
is isotropy irreducible, it follows that the bi-invariant metric 〈 , 〉0 on SO(16) in-
duces the round metric on S15 via a Riemannian submersion. We may therefore
compose these two Riemannian submersions to yield a Riemannian submersion
(SO(16), 〈 , 〉0) −→ S8.

However, this submersion is not the result of a free action by some Lie
group U . In particular, this is not a biquotient submersion. If there were such
a U , then dim(U) = dim(SO(16)) − 8 = 112. From the long exact sequence
of homotopy groups associated to the fibration U −→ SO(16) −→ S8, we see
that π3(U) = π3(SO(16)) = Z and π1(U) = π1(SO(16)) = Z2. Since the rank
of π3 for a Lie group is the number of simple factors, we conclude that U is a
simple, compact Lie group of dimension 112. A quick look at the classification
of simple Lie groups reveals that there is no such group.

3. The basic construction

The above example was, to date, the only known Riemannian submersion
from a compact Lie group with bi-invariant metric that is not the result of a
group action. It is natural to wonder if this example is special in some way. For
instance, perhaps the construction relies on the fact that the Hopf fibration,
S15 → S8, is not a principal bundle. It turns out that this is not the case. The
important observation one should make is that the Hopf fibration is, in fact, a
homogeneous fibration coming from the triple Spin(7) ⊆ Spin(8) ⊆ Spin(9):

Spin(8)/ Spin(7) = S7 →֒ Spin(9)/ Spin(7) = S15 → Spin(9)/ Spin(8) = S8.

In particular, S15 may be written as a homogeneous space in two different
ways.

There is another subtlety of which one should be wary. The round met-
ric on S15 is not isometric to the normal homogeneous metric on the quo-
tient Spin(9)/ Spin(7). Thus, in order to combine the submersions so that
the composed map is a Riemannian submersion, one has to choose the ho-
mogeneous metric on Spin(9)/ Spin(7) carefully. The isotropy representation
on Spin(9)/ Spin(7) has two irreducible summands (of dimensions 7 and 8).
Hence, as we shall see in Section 4, there is a two parameter family of homoge-
neous metrics on Spin(9)/ Spin(7). It is possible to choose these parameters so
that Spin(9)/ Spin(7) is equipped with the round metric. Now one of the irre-
ducible summands is tangent to the base Spin(9)/ Spin(8) and also irreducible
under the Spin(8) isotropy action. Therefore the restriction of the metric on
Spin(9)/ Spin(7) to this isotropy summand yields a Riemannian submersion
onto Spin(9)/ Spin(8).

The construction of all examples in this paper relies on putting together the
two key ideas indicated above, namely:

First we look for homogeneous spaces that can be represented as the quo-
tient of two distinct (simple) groups. Given a homogeneous space that can be
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represented as G/K1 = K2/H , we then proceed to find intermediate subgroups
H ⊆ L ⊆ K2 which give rise to a homogeneous fibration,

L/H −→ K2/H −→ K2/L

We now have two submersions, π1 : G −→ G/K1 and π2 : K2/H −→ K2/L,
which we compose to obtain a submersion π : G −→ K2/L. Then we show, in
some cases, that there is no U ⊆ Diff(G) such that G/U = K2/L.

The second idea is to find a homogeneous metric on K2/H that is isometric
to the normal homogeneous metric on G/K1 and which induces a well-defined
homogeneous metric on K2/L so that the map π2 : K2/H −→ K2/L is a
Riemannian submersion. It is not always possible to do this (see for instance
Section 8). Whenever we can find such a metric, the submersion π = π2 ◦ π1 :
G −→ K2/L is Riemannian.

Let us examine the first part of the construction suggested above. Suppose
g is a compact Lie algebra with sub-algebras k1, k2 such that g = k1+ k2. Then
this is equivalent to the following: let G be the simply connected, compact,
Lie group with Lie algebra g and let K1,K2 be the closed subgroups in G
corresponding to the sub-algebras k1 and k2 respectively. Then we have the
homogeneous space identities, G/K1 = K2/(K1 ∩K2) and G/K2 = K1/(K1 ∩
K2). In 1962, A. L. Onǐsčik classified all (g, k1, k2), where g is a simple, compact
Lie algebra [12]; all his spaces are given in Table 3 in the Appendix.

Now suppose there is a subgroup U ⊆ Diff(G) such that the base K2/L
may be realized as the quotient G/U . Then from the long exact homotopy
sequence of the fibration, U → G → K2/L, we may compute the homotopy
groups of U . Moreover, since we know G and K2/L, we also know the dimen-
sion of U . From this we can determine the (local) decomposition of U into
simple and torus groups. Every compact, connected Lie group U is finitely

covered by a Lie group diffeomorphic to Tk ×Ũ , where Tk is a torus and Ũ is
a product of compact, connected, simply connected, simple Lie groups. Now,

since π1(T
k ×Ũ) = Zk injects into π1(U) under the homomorphism induced

by the covering, it follows that if we can determine π1(U) then we will know

the rank k of the torus Tk. In addition, if we can find π3(U) then we will have

determined the number of simple factors in Ũ .

If we assume that the simple factors of Ũ have dimension large enough, then

determining π5(U) = π5(Ũ) will allow us to decide which classical Lie groups
are possible for the simple factors. This is achieved via the isomorphisms
π5(Spin(n)) ∼= π5(O) ∼= 0 if n ≥ 7; π5(SU(n)) ∼= π5(U) ∼= Z if n ≥ 3;
and π5(Sp(n)) ∼= π5(Sp) ∼= Z2 if n ≥ 1, where O, Sp, U denote the stable
(infinite dimensional) limits of the corresponding Lie groups (see [2, pgs. 466–
467] for more details). The remaining possibilities for simple factors are low-
dimensional classical Lie groups and the exceptional Lie groups.

By examining the various examples in Onǐsčik’s list, we see that in some of
the cases such a U is not possible for dimension reasons (since all possible finite

covers T k × Ũ of U with π1(Ũ) = 0 may be determined as above). This yields
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candidate (topological) submersions which need to be examined metrically.
Some of these candidates are listed in Table 2. Evidently, the example in
Section 2 falls neatly into this scheme.

G G/K1 K2/H L K2/L

G/K1 symmetric

SO(16) SO(16)/ SO(15) Spin(9)/ Spin(7) Spin(8) S8

SO(2n)
(n≥4)

SO(2n)/U(n) SO(2n − 1)/U(n − 1) SO(2n − 2) S2n−2

SU(2n)
(n≥3)

SU(2n)/ Sp(n) SU(2n − 1)/ Sp(n − 1) SU(2n − 2) S4n−3

SU(2n)
(n≥3)

SU(2n)/ Sp(n) SU(2n − 1)/ Sp(n − 1) U(2n − 2) CP2n−2

G/K1 nonsymmetric

SO(2n)
(n≥4)

SO(2n)/ SU(n) SO(2n − 1)/ SU(n − 1) SO(2n − 2) S2n−2

SO(4n)
(n≥3)

SO(4n)/ Sp(n) Sp(1) SO(4n − 1)/ Sp(n − 1) Sp(1) SO(4n − 2) S4n−2

SO(4n)
(n≥3)

SO(4n)/ Sp(n) Sp(1) SO(4n − 1)/ Sp(n − 1) Sp(1) SO(4n − 3) T 1S4n−2

SO(4n)
(n≥3)

SO(4n)/ Sp(n) Sp(1) SO(4n − 1)/ Sp(n − 1) Sp(1) SO(4n − 4) V3(R
4n−1)

Table 2. Candidate submersions G −→ K2/L that are not
group quotients.

Besides the candidates listed above we also have SO(4n)/ Sp(n)U(1) =
SO(4n− 1)/ Sp(n− 1)U(1) and SO(4n)/ Sp(n) = SO(4n− 1)/ Sp(n− 1). Each
of these yields the same base spaces as the last three examples in Table 2.
The bases B1 = T 1S4n−2 and B2 = V3(R

4n−1) admit a free diagonal SO(2)
action from the left which is isometric for any homogeneous metric on B1, B2

respectively. Thus we have a (topological) submersion SO(4n) −→ SO(2)\Bi,
i = 1, 2, which will be Riemannian if SO(4n) −→ Bi, i = 1, 2 respectively, is
Riemannian. However, as we shall see, not all of the candidates in Table 2
yield Riemannian submersions from G onto the base. In order to complete the
picture we also need to address the metric part of the construction.

4. Homogeneous metrics on G/H

Given a compact, semisimple Lie group G and a closed subgroup H ⊆ G
one has a natural decomposition of the Lie algebra g into invariant subspaces
under the adjoint action ofH : g = h⊕m, where h is the Lie algebra ofH and m

is an Ad(H)-invariant subspace complementary to h ⊆ g. The representation
of H on m is called the isotropy representation of H . Homogeneous metrics on
G/H are in one-to-one correspondence with Ad(H)-invariant inner products
on m. Furthermore, if we let 〈 , 〉m be an Ad(H)-invariant inner product on m

and 〈 , 〉h an arbitrary inner product on h, then we may define an inner product
〈 , 〉 on g by declaring h ⊥ m. Via left translation we get a left-invariant metric
(also denoted by 〈 , 〉) on G and a homogeneous metric (also denoted by 〈 , 〉m)
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on G/H for which the map π : (G, 〈 , 〉) −→ (G/H, 〈 , 〉m) is a Riemannian
submersion.

So, in order to understand homogeneous metrics on G/H , we need to un-
derstand Ad(H)-invariant inner products on m. Now suppose m splits as
m = p1 ⊕ · · · ⊕ ps into a sum of Ad(H) irreducible sub-modules; the following
well-known lemma follows readily from Schur’s Lemma.

Lemma 4.1. Let g = h ⊕ m be as above, where m = p1 ⊕ · · · ⊕ ps and pk
is Ad(H) irreducible for all 1 ≤ k ≤ s, and let 〈 , 〉m be an Ad(H)-invariant
inner product on m. Then pi ⊥ pj with respect to 〈 , 〉m whenever pi and pj
are inequivalent representations of H.

As it turns out, Ad(H)-invariant inner products on the irreducible sum-
mands pk are very special. The following lemma is also well known.

Lemma 4.2. Let H be any group and let V be an irreducible H-representation.
Suppose there are two H-invariant inner products, 〈 , 〉1 and 〈 , 〉2, on V . Then
there exists a constant λ > 0 such that 〈 , 〉1 = λ 〈 , 〉2.

In the special case where the irreducible summands p1, . . . , ps of m are pair-
wise inequivalent, Lemmas 4.1 and 4.2 tell us that all homogeneous metrics on
G/H are described by s positive real numbers, namely

(4.1) 〈 , 〉m = λ1Q|p1 ⊥ λ2Q|p2 ⊥ · · · ⊥ λsQ|ps
,

where Q is some bi-invariant metric on G and λ1, . . . , λs > 0. We will always
choose Q to be the negative of the Killing form on g.

Suppose now that some of our irreducible Ad(H) sub-modules are pairwise
equivalent. In this situation it is more complicated to write down all possible
homogeneous metrics on G/H because equivalent sub-modules need not be
perpendicular. However, there is a well-established procedure. Any Ad(H)-
invariant inner product 〈 , 〉m on m satisfies 〈X,Y 〉m = Q(Φ(X), Y ), where
Φ : m −→ m is a linear, positive definite, symmetric, Ad(H)-equivariant map.
Therefore, the space of all possible Ad(H)-invariant inner products on m may
be described by parametrizing the space of all possible maps Φ. This is done
as follows.

We first consider the complexification ψ ⊗ C of a real representation ψ :
G −→ Aut(V ). If ψ ⊗ C is irreducible, we say ψ is orthogonal. Otherwise
ψ ⊗ C = ϕ ⊕ ϕ̄. If ϕ is not equivalent to ϕ̄, we say ψ is unitary. If, on the
other hand, ϕ and ϕ̄ are equivalent, we say ψ is symplectic. We call a map
A : V −→ V such that ψ ◦ A = A ◦ ψ an intertwining operator. The space of
all intertwining operators is has dimension one if ψ is orthogonal, two if ψ is
unitary, and four if ψ is symplectic.

It follows that between each pair of equivalent irreducible representations
pi, pj we have either a one, two, or four parameter family of Ad(H)-invariant
inner products. That is, 〈pi, pj〉m = Q(Φ(pi), pj) is given by one, two or four
real parameters. Therefore Φ may be represented by an s×s symmetric matrix
whose ij-th entry is real when i = j, zero if pi and pj are inequivalent, and an
element of R, C or H when pi and pj are equivalent.
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Let us return now to the second part of the construction suggested in Sec-
tion 3. Consider the situation where we have G/K1 = K2/H as homogeneous
spaces and a chain of subgroups H ⊆ L ⊆ K2 which gives the homogeneous

fibration, L/H −→ K2/H
π2−→ K2/L. We fix a bi-invariant metric 〈 , 〉0 on G

and hence a normal homogeneous metric on G/K1. It is clear that K2 acts
isometrically and transitively on G/K1 with isotropy groupH . Therefore there
is some homogeneous metric on K2/H isometric to the normal homogeneous
metric on G/K1. We want to choose this metric on K2/H and then determine
whether the map π2 : K2/H −→ K2/L is a Riemannian submersion.

Consider the Lie algebras h ⊆ l ⊆ k2 corresponding to the Lie groups H ⊆
L ⊆ K2. If we choose an Ad(H)-invariant complement m1 of h ⊆ l and an
Ad(L)-invariant complement m2 of l ⊆ k2, then we arrive at a decomposition

k2 = l⊕m2 = (h⊕m1)⊕m2.

In particular, m1 ⊕ m2 is an Ad(H)-invariant complement of h ⊆ k2 since the
H action on m2 is simply a restriction of the L action. We remark that m1

and m2 correspond to the tangent spaces of the fiber and base of the fibration

L/H −→ K2/H
π2−→ K2/L respectively.

Let m2 = q1⊕· · ·⊕qs be the irreducible decomposition of m2 with respect to
Ad(L). From our discussion above we can therefore determine all homogeneous
metrics on K2/L. Recall that we require m2 ⊥ l. In particular, we see that
a necessary condition for π2 to be a Riemannian submersion is m1 ⊥ m2 with
respect to the homogeneous metric on K2/H .

Consider now homogeneous metrics on K2/H . Let m1 = p1⊕· · ·⊕pr be the
irreducible decomposition of m1 with respect to Ad(H). In general, each of the
Ad(L) irreducible summands qj ⊆ m2, 1 ≤ j ≤ s, will split further into Ad(H)
irreducible summands. This is usually a problem when we want π2 to be a
Riemannian submersion (given by restriction of the inner product on m1 ⊕m2

to m2). Together with the discussion in the previous paragraph, this leads us
to consider a special case. Suppose that the following conditions hold:

(i) q1 ⊕ · · · ⊕ qs is the irreducible decomposition of m2 with respect to both
Ad(H) and Ad(L);

(ii) For all 1 ≤ i ≤ r, 1 ≤ j ≤ s, the Ad(H) irreducible representations pi
and qj are pairwise inequivalent;

(iii) If qi and qj, i, j ∈ {1, . . . , s}, are two equivalent irreducible representa-
tions, then they are of the same type with respect to both Ad(H) and
Ad(L), i.e. qi and qj are either both orthogonal, both unitary or both
symplectic as both H and L representations.

Conditions (i) and (ii) ensure, by Lemma 4.1, that m1 ⊥ m2 for every homo-
geneous metric on K2/H . Conditions (i) and (iii) (together with Lemmas 4.1
and 4.2) ensure that the restriction of a homogeneous metric on K2/H to
m2 yields a homogeneous metric on K2/L. Therefore π2 gives a Riemannian
submersion for any choice of homogeneous metric on K2/H . In particular,
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when K2/H is isometric to the normal homogeneous space G/K1, we obtain a
Riemannian submersion π : (G, 〈 , 〉0) −→ K2/L as desired. We have proved:

Theorem 4.3. Suppose we have G/K1 = K2/H, where G is a compact, semi-
simple Lie group with bi-invariant metric 〈 , 〉0 and K1,K2, H are closed sub-
groups of G. If, for some closed subgroup H ⊆ L ⊆ K2, conditions (i), (ii)
and (iii) above hold, then there is a Riemannian submersion from (G, 〈 , 〉0)
onto K2/L.

We are now ready to discuss the candidates from Table 2.

5. SO(2n) −→ S2n−2, n ≥ 4

Theorem 5.1. For each n ≥ 2, there is a Riemannian submersion

(SO(2n), 〈 , 〉0) −→ S2n−2.

Proof. Consider the Riemannian submersion π1 : SO(2n) −→ SO(2n)/U(n),
where we have equipped SO(2n) with a bi-invariant metric 〈 , 〉0. From
Onǐsčik’s classification we know that SO(2n)/U(n) = SO(2n− 1)/U(n− 1).

Now U(n− 1) ⊆ SO(2n− 2) ⊆ SO(2n− 1) and so we have a fibration

SO(2n− 2)/U(n− 1) −→ SO(2n− 1)/U(n− 1)
π2−→ SO(2n− 1)/ SO(2n− 2) = S2n−2.

The tangent space to the base may be identified with p2, a 2(n−1)-dimensional,
Ad(SO(2n − 2))-irreducible complement of so(2n − 2) ⊆ so(2n − 1). The
restriction of the Ad(SO(2n − 2)) action to U(n − 1) ⊆ SO(2n − 2) is the
standard irreducible representation of U(n− 1) on p2 ∼= Cn−1.

On the other hand, the tangent space to the fiber may be identified with
p1, an Ad(U(n − 1))-invariant complement of u(n − 1) ⊆ so(2n − 2). p1 is
(n − 1)(n − 2)-dimensional and is Ad(U(n − 1))-irreducible (see for instance
[11]).

Thus we may write

so(2n− 1) = so(2n− 2)⊕ p2

= (u(n− 1)⊕ p1)⊕ p2,

where p1 and p2 are orthogonal by the inequivalence of the U(n− 1) represen-
tations. For n 6= 4 this is clear for dimension reasons, while the case n = 4
follows from the discussion in [11].

Hence all homogeneous metrics on SO(2n− 1)/U(n− 1) are given by

〈 , 〉 = λ1Q|p1 ⊥ λ2Q|p2 ,

where Q(X,Y ) = − 1
2 tr(XY ) (in particular, Ad(U(n − 1))-invariant) and

λ1, λ2 > 0. We choose λ1 and λ2 such that SO(2n − 1)/U(n − 1) is iso-
metric to SO(2n)/U(n) equipped with the normal homogeneous metric (from
[11] it follows that the appropriate choice is λ2 = 1

2λ1). Furthermore, since p2
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is Ad(SO(2n− 2))-irreducible, perpendicular to so(2n− 2) and equipped with
an Ad(SO(2n− 2))-invariant metric, the map

π2 : SO(2n− 1)/U(n− 1) −→ SO(2n− 1)/ SO(2n− 2) = S2n−2

is a Riemannian submersion.
The composition π = π2 ◦ π1 is the desired Riemannian submersion from

SO(2n) (equipped with a bi-invariant metric) to S2n−2. �

Note that when n = 2 we have ∆SO(2)\ SO(4)/ SO(3) = S2 and when
n = 3 we have SO(3)\ SO(6)/ SU(3) = ∆SU(2)\ SU(4)/ SU(3) = HP1 = S4,
where ∆ denotes the diagonal embedding in both cases. On the other hand,
for n ≥ 4:

Theorem 5.2. For each n ≥ 4, there is no Lie group U acting freely on
SO(2n) such that SO(2n)/U = S2n−2.

Proof. Suppose there is some Lie group U acting freely on SO(2n), n ≥ 4, such
that S2n−2 = SO(2n)/U . Then we have a fibration U −→ SO(2n) −→ S2n−2.
The long exact sequence of homotopy groups for this fibration yields π1(U) =
Z2 and π3(U) = Z. Therefore, U must be a simple Lie group of dimension
(2n− 1)(n− 1) + 1.

Consider first the case n > 4. Then from the long exact sequence in homo-
topy and the stable homotopy groups of Lie groups we see that

· · ·π6(S
2n−2)︸ ︷︷ ︸
=0

→ π5(U) → π5(SO(2n))︸ ︷︷ ︸
=0

→ π5(S
2n−2) → · · ·

which forces π5(U) = 0. Since dim(U) = (2n − 1)(n − 1) + 1 ≥ 37, we are in
the stable range and may therefore conclude that either U ∼= SO(m) or U is an
exceptional simple group. A quick check reveals that dim(U) is never equal to
the dimension of any exceptional group. On the other hand, we see evidently
that dim(SO(2n−1)) = (2n−1)(n−1) < dim(U) < dim(SO(2n)) = (2n−1)n.

When n = 4, the dimension of U is 22 and there is no simple Lie group of
that dimension. Hence there are no Lie groups U for which SO(2n)/U = S2n−2

for each n ≥ 4. �

6. SU(2n) −→ S4n−3 and SU(2n) −→ CP2n−2, n ≥ 3

Theorem 6.1. For each n ≥ 3, there are Riemannian submersions

(SU(2n), 〈 , 〉0) −→ S4n−3, (SU(2n), 〈 , 〉0) −→ CP2n−2

Moreover, there are no groups U,U ′ ⊆ Diff(SU(2n)) so that SU(2n)/U =
S4n−3 and SU(2n)/U ′ = CP2n−2.

The arguments in this case are essentially identical to the case of SO(2n) −→
S2n−2 so we omit them. The only comment that may be of some inde-
pendent interest is the choice of constants for the homogeneous metric on
SU(2n− 1)/ Sp(n − 1) to be isometric to the normal homogeneous metric on
SU(2n)/ Sp(n). The isotropy representation of Sp(n− 1) ⊆ SU(2n− 1) splits
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into three irreducible summands, su(2n− 1) = sp(n− 1)⊕ p1 ⊕ p2 ⊕ p3, where
sp(n − 1) ⊕ p1 = su(2n − 2) = l, dim(p2) = 1 and dim(p3) = 4(n − 1). All
homogeneous metrics on SU(2n− 1)/ Sp(n− 1) are given by

〈 , 〉 = λ1Q |p1⊥ λ2Q |p2⊥ λ3Q |p3 ,

where Q(X,Y ) = − 1
2 tr(XY ) is a bi-invariant metric. To be isometric to

the normal homogeneous space SU(2n)/ Sp(n), it follows from [11] that the
appropriate choices are: λ2 = n

2n−1λ1, λ3 = 1
2λ1.

7. SO(4n) −→ V3(R
4n−1), n ≥ 3

Theorem 7.1. For each n ≥ 3, there is a Riemannian submersion

(SO(4n), 〈 , 〉0) −→ V3(R
4n−1),

where V3(R
4n−1) is the Stiefel manifold SO(4n− 1)/ SO(4n− 4).

Proof. Consider the Riemannian submersion

π1 : SO(4n) −→ SO(4n)/ Sp(n) Sp(1),

where SO(4n) is equipped with a bi-invariant metric. From Onǐsčik’s classifi-
cation we know that SO(4n)/ Sp(n) Sp(1) = SO(4n−1)/ Sp(n−1) Sp(1). Now
Sp(n− 1) Sp(1) ⊆ SO(4n− 4) ⊆ SO(4n− 1) and so we have a fibration

SO(4n− 4)/ Sp(n− 1) Sp(1) // SO(4n− 1)/ Sp(n− 1) Sp(1)

π2

��

SO(4n− 1)/ SO(4n− 4) = V3(R
4n−1).

The tangent space to the fiber may be identified with p1, an Ad(Sp(n −
1) Sp(1))-invariant complement of so(4n−4) ⊆ so(4n−1). p1 is 3(2n−1)(n−2)-
dimensional and in [15, 1984] it is shown that it is Ad(Sp(n − 1) Sp(1))-
irreducible.

On the other hand, we may use the chain of subgroups

SO(4n− 4) ⊆ SO(4n− 3) ⊆ SO(4n− 2) ⊆ SO(4n− 1)

to identify the tangent space to the base with

(7.1) m := p2 ⊕ p3 ⊕ p4 ⊕ p5 ⊕ p6 ⊕ p7 ⊆ so(4n− 1),

where pi ∼= R4n−4, i = 2, 3, 4, and pi ∼= R, i = 5, 6, 7, are Ad(SO(4n − 4))-
irreducible. The isotropy representation of SO(4n− 4) on m decomposes into
standard SO(4n − 4) actions on pi ∼= R4n−4, i = 2, 3, 4, and trivial repre-
sentations on pi ∼= R, i = 5, 6, 7. This is easily seen by considering the
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Ad(SO(4n− 4)) action on

(7.2) so(4n− 1) =




...
...

...
so(4n− 4) p2 p3 p4

...
...

...
· · · 0 p5 p6
· · · · 0 p7
· · · · · 0




,

where we recall that elements of so(k) are skew-symmetric. It is clear that the
representations p2, p3 and p4 are equivalent real representations, as are p5, p6
and p7. Moreover, by Schur’s Lemma, (p2 ⊕ p3 ⊕ p4) ⊥ (p5 ⊕ p6 ⊕ p7). In
each case pi ⊗ C is irreducible. Hence the space of intertwining operators is
one-dimensional when pi and pj are equivalent, from which it follows that the
space of all Ad(SO(4n−4))-invariant inner products on m is given by two real,
symmetric, 3× 3 matrices, i.e., 12 real parameters.

We now consider the isotropy representation of Sp(n − 1) Sp(1) and check
whether the type and irreducible decomposition of the representation restricted
from SO(4n − 4) remains the same. We remark that this is crucial other-
wise the number of parameters that determine the metric may be different
and hence, likely, not yield a Riemannian submersion. The restriction of the
Ad(SO(4n− 4)) action on m to Sp(n− 1) Sp(1) ⊆ SO(4n− 4) yields the same
irreducible decomposition as in (7.1). An easy way to see this is by considering
the subgroup Sp(n − 1) ⊆ Sp(n− 1) Sp(1). It’s clear that this gives the same
decomposition as in (7.1), where the Ad(Sp(n− 1)) action on pi, i = 2, 3, 4, is
the standard irreducible representation of Sp(n− 1) on R4n−4 ∼= Hn−1. Thus
Sp(n− 1) Sp(1) must also decompose m as in (7.1).

In [15, 1984] it is shown that the embedding of Sp(n−1) Sp(1) into SO(4n−
4), namely the restriction of the standard (complex) SO(4n−4) representation
to Sp(n − 1) Sp(1), is given by the tensor product of the standard Sp(n −
1) and Sp(1) (complex) representations. Since each of these is a sympletic
representation, it follows from [3, p. 264, Exer. 3] that their tensor product
is an orthogonal representation, i.e. pi ⊗ C is Sp(n − 1) Sp(1)-irreducible for
i = 2, 3, 4. A similar argument works for pi ⊗ C ∼= C, i = 5, 6, 7. Hence
the space of intertwining operators is one-dimensional whenever pi and pj are
equivalent.

Thus we may write

so(4n− 1) = so(4n− 4)⊕m

= (sp(n− 1)sp(1)⊕ p1)⊕ m.

Since dim(p1) 6= dim(pi) for all i = 2, . . . , 7, Schur’s Lemma ensures that
p1 ⊥ m for every Ad(Sp(n − 1) Sp(1))-invariant inner product on p1 ⊕ m.
Therefore it follows that the space of all Ad(Sp(n − 1) Sp(1))-invariant inner
products on p1 ⊕ m is given by one real parameter together with two real,
symmetric, 3× 3 matrices, i.e., 13 real parameters.
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In particular, for any homogeneous metric on SO(4n− 1)/ Sp(n− 1) Sp(1),
the map π2 : SO(4n − 1)/ Sp(n − 1) Sp(1) −→ SO(4n − 1)/ SO(4n − 4) is a
Riemannian submersion, where the metric on SO(4n− 1)/ SO(4n− 4) is given
by restricting the Ad(Sp(n− 1) Sp(1))-invariant inner product on p1⊕m to m.

Hence, if we choose the 13 real parameters describing the homogeneous
metric such that the metric on SO(4n− 1)/ Sp(n− 1) Sp(1) is isometric to the
normal homogeneous metric on SO(4n)/ Sp(n) Sp(1), then the composition

π = π2 ◦ π1 : SO(4n) −→ SO(4n− 1)/ SO(4n− 4) = V3(R
4n−1)

is a Riemannian submersion as desired. �

Theorem 7.2. For each n ≥ 3, there is no Lie group U acting freely on
SO(4n) such that SO(4n)/U = V3(R

4n−1).

Proof. Suppose there is some Lie group U acting freely on SO(4n), n ≥ 3, such
that V3(R

4n−1) = SO(4n)/U . Then we have a fibration U −→ SO(4n) −→
V3(R

4n−1). It is well-known that Vk(R
m) is (m − k − 1)-connected [10, p.

382]. In particular, πj(V3(R
4n−1)) = 0 for all j ≤ 7 since n ≥ 3. The long

exact sequence of homotopy groups for our fibration now yields π1(U) = Z2

and π3(U) = Z. Therefore, U must be a simple Lie group.
Since V3(R

4n−1) is at least 7-connected, we see from the long exact sequence
in homotopy that π5(U) = π5(SO(4n)) = 0. Since dim(U) = 8n2 − 14n+ 9 ≥
39, we are in the stable range and it follows that U must be isomorphic to
SO(m) for some m or to an exceptional simple group. dim(U) is not equal to
that of any exceptional group. On the other hand,

dim(SO(4n− 3)) = 8n2 − 14n+ 6 < 8n2 − 14n+ 9︸ ︷︷ ︸
=dim(U)

< 8n2 − 10n+ 3 = dim(SO(4n− 2)).

Hence there are no Lie groups U for which SO(4n)/U = V3(R
4n−1)

if n ≥ 3. �

Corollary 7.3. For each n ≥ 3, there is a Riemannian submersion

(SO(4n), 〈 , 〉0) −→M12n−10 := SO(2)\ SO(4n− 1)/ SO(4n− 4).

Moreover, this Riemannian submersion is not the result of a free, isometric
Lie group action on SO(4n).

Proof. Consider the circle subgroup SO(2) ⊆ SO(4n− 1) given by diag(A, . . . ,
A, 1), A ∈ SO(2). Then SO(2) acts freely on V3(R

4n−1) = SO(4n−1)/ SO(4n−
4) on the left since the two-sided action of SO(2)×SO(4n−4) on SO(4n−1) is
free. Now, since the metric on V3(R

4n−1) described in Theorem 7.1 is homoge-
neous, this SO(2)-action is by isometries. Therefore V3(R

4n−1) −→ M12n−10

is a Riemannian submersion and we may compose it with (SO(4n), 〈 , 〉0) −→
V3(R

4n−1) to yield the desired Riemannian submersion.
Consider the long exact sequence for homotopy associated to the fibration

S1 −→ V3(R
4n−1) −→M.
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Since πj(V3(R
4n−1)) = 0 for all j ≤ 7, it follows that π2(M) = Z and πj(M) =

0 for j = 1, 3, 4, 5, 6. Suppose that there is some Lie group U ′ acting freely
on SO(4n) such that M = SO(4n)/U ′. The long exact homotopy sequence for
the fibration U ′ −→ SO(4n) −→ M shows that U ′ is diffeomorphic to either
S1 × U or (S1 × U)/Z2, where U is a compact, connected, simply connected,
simple Lie group.

From the long exact sequence it also follows that π5(U
′) = π5(U) = π5(SO(

4n)) = 0. So we are now looking for U , a compact, simple group of dimension
8n2−14n+9 and isomorphic to SO(m) for some m or to an exceptional simple
group. From the proof of Theorem 7.2 there is no such U and hence, there can
be no free U ′-action on SO(4n) with quotient M . �

8. SO(4n) → S4n−2 and SO(4n) → T 1S4n−2

These two examples yield topological submersions which are not group quo-
tients. Indeed, one may adapt the proof of Theorem 7.2 to show that neither
S4n−2 nor T 1S4n−2 are quotients of SO(4n) by a group action. However, our
method of constructing a Riemannian submersion breaks down in this instance.

Consider our setup: we start with a bi-invariant metric on SO(4n) which
yields a homogeneous metric 〈 , 〉 on SO(4n− 1)/ Sp(n− 1) Sp(1) isometric to
the normal homogeneous metric on SO(4n)/ Sp(n) Sp(1). From the previous
section we already know the isotropy representation of Sp(n− 1) Sp(1):

so(4n− 1) = sp(n− 1)sp(1)⊕ p1 ⊕ p2 ⊕ p3 ⊕ p4 ⊕ p5 ⊕ p6 ⊕ p7︸ ︷︷ ︸
m

,

where p1 is the complement of sp(n− 1)sp(1) in so(4n− 4) and m decomposes
into six irreducible pieces: three equivalent modules isomorphic to R4n−4 and
three trivial (one dimensional) modules. The decomposition of m is the same
for SO(4n − 4) as it is for Sp(n − 1) Sp(1). Recall that in the Lie algebra
so(4n− 1) this decomposition is given by (7.2).

Consider now the quotient SO(4n−1)/ SO(4n−3) = T 1S4n−2. The isotropy
representation splits as so(4n− 1) = so(4n− 3)⊕ n which decomposes as:

so(4n− 1) = (sp(n− 1)sp(1)⊕ p1 ⊕ p2)︸ ︷︷ ︸
so(4n−3)

⊕ (q3 ⊕ q4 ⊕ p7)︸ ︷︷ ︸
n

,

where q3, q4 are equivalent, irreducible modules isomorphic to R4n−3 and p7 is
a trivial, one-dimensional module. Note that qj splits further under the action
of Sp(n−1) Sp(1) as q3 = p3⊕p5 and q4 = p4⊕p6. Therefore, the two isotropy
actions have different irreducible decompositions.

In order for the maps, π2 : SO(4n − 1)/ Sp(n − 1) Sp(1) → SO(4n −
1)/ SO(4n−3) and π′

2 : SO(4n−1)/ Sp(n−1) Sp(1) → SO(4n−1)/ SO(4n−2)
to be Riemannian submersions we need (see Section 4) that p2 is perpendicu-
lar to p4 with respect to 〈 , 〉. So we need to know the induced left invariant
metric on p2 ⊕ · · · ⊕ p7 inside so(4n − 1). This is done as follows: restrict
the bi-invariant metric on so(4n) which is given by 〈X,Y 〉0 = − 1

2 tr(XY ), to
so(4n − 1). The tangent space to SO(4n − 1)/ Sp(n − 1) Sp(1) is isomorphic
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to p1 ⊕ · · · ⊕ p7. On the other hand, we also have so(4n) = sp(n)⊕ sp(1)⊕ r;
let πr : so(4n) → r denote the orthogonal projection. If U, V are vectors in
p1 ⊕ · · · ⊕ p7, then the induced metric is given by 〈U, V 〉 = 〈πr(U), πr(V )〉0.

Let Eij ∈ so(4n) denote the vector whose ij-th entry is 1 (and therefore
its ji-th entry is necessarily −1). Then the Eij form an orthogonal basis for
so(4n). Consider now the vectors, E1,4n−3 ∈ p2, E3,4n−1 ∈ p4. A simple cal-
culation reveals that 〈E1,4n−3, E3,4n−1〉 = 〈πr(E1,4n−3), πr(E3,4n−1)〉0 = − 1

4 .
This shows immediately that the subspaces are pairwise not orthogonal, as
claimed, and hence the maps π2 and π′

2 are not Riemannian submersions for
the metric 〈 , 〉 on SO(4n− 1)/ Sp(n− 1) Sp(1).

Remark 8.1. One can, in fact, show that there is no homogeneous metric on
SO(4n− 1)/ Sp(n− 1) Sp(1) whatsoever such that the maps π2 (resp. π′

2) and
π = π2 ◦ π1 (resp. π′ = π′

2 ◦ π1) are both Riemannian submersions.

Appendix A. Enlargements of transitive actions

Table 3 is due to A. L. Onǐsčik ([12]) and classifies simple, compact Lie
algebras g with sub-algebras k1, k2 such that g = k1+ k2. We present the group
versions here and identify the space whenever possible.

G/K1 K2/H
Homogeneous

space

G/K1 symmetric

SO(4n)/ SO(4n− 1) Sp(n)/ Sp(n− 1) S4n−1

SO(4n)/ SO(4n− 1) Sp(n)U(1)/ Sp(n− 1)U(1) S4n−1

SO(4n)/ SO(4n− 1) Sp(n) Sp(1)/ Sp(n− 1) Sp(1) S4n−1

SO(2n)/ SO(2n− 1) U(n)/U(n− 1) S2n−1

SO(2n)/ SO(2n− 1) SU(n)/ SU(n− 1) S2n−1

SO(2n)/U(n) SO(2n− 1)/U(n− 1)

SO(16)/ SO(15) Spin(9)/ Spin(7) S15

SO(8)/ SO(7) Spin(7)/G2 S7

SO(8)/ Spin(7) SO(7)/G2 RP7

SO(8)/ SO(3) SO(5) Spin(7)/ SO(4) G+
3 (R

8)

SO(7)/ SO(6) G2 / SU(3) S6

SO(7)/ SO(2) SO(5) G2 /U(2) G+
2 (R

7)

SU(2n)/U(2n− 1) Sp(n)/ Sp(n− 1)U(1) CP2n−2

SU(2n)/ Sp(n) SU(2n− 1)/ Sp(n− 1)
continued on next page
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continued from previous page

G/K1 nonsymmetric

SO(4n)/ Sp(n) SO(4n− 1)/ Sp(n− 1)

SO(4n)/ Sp(n)U(1) SO(4n− 1)/ Sp(n− 1)U(1)

SO(4n)/ Sp(n) Sp(1) SO(4n− 1)/ Sp(n− 1) Sp(1)

SO(2n)/ SU(n) SO(2n− 1)/ SU(n− 1)

SO(16)/ Spin(9) SO(15)/ Spin(7)

SO(8)/ SO(6) Spin(7)/ SU(3) V2(R
8)

SO(8)/ SO(5) Spin(7)/ SU(2) V3(R
8)

SO(8)/ SO(2) SO(5) Spin(7)/ SO(2) SU(2)

SO(7)/G2 SO(2) SO(5)/U(2) RP7

SO(7)/ SO(5) G2 / SU(2) V2(R
7)

Table 3. Onǐsčik’s classification of (G,K1,K2) with g = k1+
k2, and G simple.
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