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Abstract.  In this work a definition of characters in the context of the theory
of  locally  analytic  representations  of  p-adic  reductive  groups  is  proposed.
This  character  will  be  a  function  on  a  compact  subgroup  S0  in  a  maximal
torus of the reductive group G. 
As  an  elementary  tool  we  develop  a  theory  of  evaluability  of  formal

characters  of  S0-representations.  To  an  admissible  G-representation  V  we
then  associate  a  projective  system  of  S0-representations;  the  design  of  this
approximating  system  constitutes  the  technical  heart  of  this  work.  If  the
components of the projective system possess evaluable formal characters and
their  values  converge  to  a  function  on  S0  then  this  function  is  the  desired
character of V .
We  show that  our  definition  generalizes  the  one  established  in  the  smooth

representation  theory.  We  determine  the  characters  of  the  locally  analytic
principal  series  representations  of  the  group  SL2HQpL  and  of  the  Iwahori

subgroup of a split-reductive  group. 
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Ut! Olicrosse! Godemite!
(J. Neukirch, Algebraische Zahlentheorie, p. 46)

Introduction

In  the  smooth  representation  theory  of  p-adic  groups  one  associates  to  every

admissible representation V  of  a  group G  a  trace QV  which is  a  linear form on

the  Hecke  algebra HHGL  of  G.  A  theorem of  Howe and Harish-Chandra  states
that  if  G  is  reductive  and V  is  finitely  generated as  a  G-module  then  the  trace
"coincides"  with  a  smooth  function  Θ  (the  so-called  character  of  V)  on  the

regular set Greg  of G; this means that QV H f L = Ù ΘHxL f HxL dx for every compactly

supported smooth function f  on Greg. 
The main obstacle to introducing the concept of character to the locally analytic

representation  theory  of  p- adic  groups  is  the  following  fact:  While  on  any
admissible smooth G-representation  the Hecke algebra HHGL acts by finite rank
operators,  on  an  admissible  locally  analytic  G-representation  the  distribution
algebra  DHGL  of  G  (which  takes  the  role  of  the  Hecke  algebra  in  the  locally
analytic  setting)  acts  by  operators  which  in  general  are  not  even  nuclear.
Therefore  there  is  no  obvious  way  to  assign  a  trace  QHΛL  to  the  operators
Λ Î DHGL  in  order  to  obtain  a  linear  form  Q  on  DHGL  which  would  -  by
reflexivity  -  point  a  way  to  define  a  character  function  on  the  group.  In  this
work we propose a definition of what it means for an admissible locally analytic
representations of a p-adic  reductive group G to possess a character on a subset

S¢  of a compact subgroup of a maximal torus of G.  This definition will depend
on the choice of a minimal parabolic subgroup.
In  the  following  we  explain  our  proposal,  thereby  giving  an  outline  of  the

sections  of  this  work.  We  first  develop  a  theory  of  formal  characters  for
representations  of  commutative  groups  which  do  not  necessarily  act  by  finite
rank  (or  nuclear)  operators  but  satisfy  a  certain  finiteness  condition  on  weight
multiplicities, a condition we call finite trigonalisability (Sections 1-3).  To such
a finitely trigonalisable representation V  of a group S over a field K  we associate

a  formal  character  QV  which  is  a  "formal  function",  i.e.  a  formal  sum  of  K-

valued  functions  on  S.  Given  a  subset  S¢ Ì S,  we  study  the  conditions  under

which a formal function f  on S  may be evaluated on S¢,  thus yielding an actual

function evS¢ H f L on S¢. If the formal character QV  is evaluable on S¢  in this sense
then the function

evS¢ HQV L : S¢ ® K
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evS¢ HQV L : S¢ ® K

is called the character on S¢ of V .

An  appendix  of  Section  3  contains  a  similar  theory  of  formal  traces  of
endomorphisms satisfying a finiteness condition on algebraic multiplicities.

Let p be a prime number, and let K È L È Qp  be a tower of complete valued fields

such that  L È Qp  is  finite and K  is  discretely valued.  Let  G  be  (the group of  L-

rational  points  of)  a  connected  reductive  group  over  L,  S Ì G  a  maximal  split
torus  over  L,  and  N  the  unipotent  radical  of  a  minimal  parabolic  subgroup
containing  S,  with  Lie  algebra  n.  Let  V  be  an  admissible  locally  analytic

representation  of  G  over  K.  Sections  4  to  8  prepare  the  definition  of  an  n-

character of V , to be given in Section 9. To this end we carry out a two-folded

approximation process. Let S0  be a compact subgroup of the torus S, and choose
a  compact  open  subgroup  G0 Ì G  containing  S0.  We  view  V  only  as  a
representation  of  the  group  G0.  By  a  result  of  Schneider-Teitelbaum  V  is  the
compact  inductive  limit  of  a  system  HViLiÎN  of  locally  analytic  G0-

representations  on  K-Banach  spaces  ([32],  Proposition  6.5).  In  a  second  step,

one can use the associated Lie algebra action to form the subspaces Vi
HnL Ì Vi   of

vectors which are n- adically finite, i.e. which are annihilated by some power of

n  in the enveloping algebra UHnL.  The spaces Vi
HnL  are stable under the compact

commutative group S0. Now we can formulate a first definition.

Definition  (preliminary  version). Let  S¢ Ì S0  be  a  subset.  Suppose  that  each

S0-representation  Vi
HnL  possesses  a  character  Θi  on  S¢  and  that  the  sequence  of

functions HΘiLiÎN  converges pointwise. Then the limit function Θ = lim Θi  is called

the n- character on S¢ of V .
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The  problem  with  this  preliminary  definition  is  that  the  limit  of  the  above
sequence of characters on S¢  behaves not  very well  with respect to  a  change in
the  choice  of  the  compact  inductive  system  HViL  (for  an  illustration  of  this

phenomenon  compare  the  two  examples  in  Section  3).  As  a  consequence  we

have to specify a "canonical" compact inductive system giving V  in the limit. It
turns out that this is easier to do in the dual setting.

Let  DHG0, KL  be  the  distribution  algebra  of  G0;  this  is  a  noetherian  Frechet
algebra  over  K.  Associated  to  any  open  subgroup  H Ì G0  which  is  a  uniform

pro- p-group  there  is  a  family  ° ´HH,rL  (r Î pQ,  p-1 £ r < 1)  of  Banach  algebra

norms on DHG0, KL such that the completions DHH,rLHG0, KL with respect to these

norms realize the structure of a Frechet-Stein  algebra of DHG0, KL;  this implies

in particular that DHG0, KL  =  limÕÖÖÖÖÖÖrDHH,rLHG0, KL  as Frechet spaces. Moreover, by

admissibility  the  strong  dual  M = Vb
¢  of  our  G0-representation  is  equal  to  the

projective limit 

M = limÕÖÖÖÖÖÖrMHH,rL

where  MHH,rL  :=  DHH,rLHG0, KL ÄDIG0 ,KM M.  In  order  to  obtain  a  "canonical"

projective system -  not depending on the choice of H  -  we consider all uniform
open  subgroups  (satisfying  certain  technical  assumptions)  of  G0  at  the  same
time. More exactly, we view M as the projective limit of the system

HMHH,rLLHH,rL

with  a  suitable  directed  ordering  on  the  set  of  pairs  HH, rL.  A  large  part  of

Sections  5- 7  is  devoted  to  the  investigation  of  the  transition  maps  of  this

projective  system;  here  an  elementary  but  important  result  is  a  kind  of
elementary  divisor  theorem  for  uniform  pro- p-groups.  The  second
approximation  step,  corresponding  to  the  passage  to  n-adically  finite  vectors
described  above,  is  to  consider  the  system  of  quotient  representations

MHH,rL � nk  MHH,rL (k Î N) of S0.

Definition (final version). Set S¢ Ì S0 be a subset. Suppose that

· each S0-representation  MHH,rL � nk  MHH,rL possesses a formal character QHH,rL,k;

· for each pair HH, rL the sequence HQHH,rL,kLkÎN
 of formal functions converges

to a formal function QHH,rL which is evaluable on S¢;

· the  net  of  evaluations HevS¢ HQHH,rLLLHH,rL  converges pointwise to a  function Θ

on S¢. 8



· for each pair HH, rL the sequence HQHH,rL,kLkÎN
 of formal functions converges

to a formal function QHH,rL which is evaluable on S¢;

· the  net  of  evaluations HevS¢ HQHH,rLLLHH,rL  converges pointwise to a  function Θ

on S¢.

Then the function s # ΘIs-1M is called the n- character on S¢ of V .

 

It  turns  out  that  this  definition  does  not  depend  on  the  choice  of  the  compact
open  subgroup G0 Ì G  containing S0.  We emphasize  that  we do  not  claim that
every admissible representation possesses an n-character.  

The  theory  of  admissible  locally  analytic  representations includes  as  a  special

case  the  theory  of  admissible  smooth  representations.  Section  10  is  devoted  to

the  verification  that  our  n-characters  generalize  the  classical  concept  of
characters in the smooth theory.

We  finally  calculate  the  n-character  in  two  examples  of  genuine  locally

analytic  representations:  The  locally  analytic  principal  series  of  SL2HQpL
(Section  12)  and  of  the  Iwahori  subgroup  in  a  split  reductive  p-adic  group

(Section 13). These sections may be read independently of each other; they rely

on  results  about  explicit  Banach  space  bases  and  filtrations  of  completed

distribution algebras developped in Sections 7 and 8.

As an appendix we give an alternative definition of a character which is limited
to principal series representations, but has the advantage of being independent of
the  choice  of  a  minimal  parabolic  subgroup.  In  case  the  group  is  SL2HQpL  we

obtain  a  character  formula  which  (up  to  a  slight  modification)  was  already

conjectured by Y. Morita in his 1984 paper [21]. In fact this conjectured formula

was one of the main motivations for the hope that a character (as a function on a
subset of the group) of an admissible locally analytic representation should exist.

I  would  like  to  thank  my  advisor  Peter  Schneider  for  his  good  advice,  my
colleagues  Jan  Kohlhaase,  Enno  Nagel,  Tobias  Schmidt  and  Matthias  Strauch
for a few helpful discussions, my friends and fellows Alexis Pangalos and Stefan

Wiech who accompanied me from Hamburg to MuÐnster, and the group Sport for
Homerun.
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I. Formal characters

1. Evaluation of formal sums of functions

Let S be a set, and let R be an integral domain. The ring structure on R induces a
ring structure on the set MapHS, RL  of all mappings S ® R  and a group structure

on  the  set  MapHS, R´L  of  all  mappings  S ® R´.  Let  X Ì MapHS, R´L  be  a
subgroup.  Let  ZPXT  denote  the  Z -module  of  all  mappings  X ® Z,  written  as
formal sums

ÚΛÎX nΛ eHΛL   (nΛ Î Z).

We  endow  ZPXT  with  the  product  topology  of  the  discrete  groups  Z.  Thus
ZPXT  is  a  Hausdorff  and  complete  abelian  group  and  contains  the  group  ring

Z@XD  of X  as a dense subgroup (cf. [5]; Chap. 2, Sect. 3, Proposition 10; Chap.

3, Sect. 2, Proposition 25). This topology has the following features:

·  Let  I  be  a  directed set.  A net  H fi = ÚΛ ni,Λ eHΛLLiÎI  in  ZPXT  converges to  an

element  f  =  ÚΛ nΛ eHΛL  Î  ZPXT  if  and  only  if  for  every  Λ Î X  there  exists  an

index i Î I such that n j,Λ = nΛ for all j ³ i. 

·  Given an arbitrary set I,  a family H fi = ÚΛ ni,Λ eHΛLLiÎI  in ZPXT  is summable

if  and  only if  for  each Λ Î X  the  family Hni,ΛLiÎI  in  Z  has  finite support;  in  this

case the sum of the family H fiLiÎI  is given by 

Úi fi = ÚΛ HÚi ni,ΛL eHΛL Î ZPXT

([4], Chap. IV, §4, No. 2, Lemma 1). 

We will call two elements f  =  ÚΛ nΛ eHΛL,  g  =  ÚΛ mΛ eHΛL  Î  ZPXT  multipliable

if the family IÚΛÎX nΜ mΛ Μ-1  eHΛLM
ΜÎX

 is summable, i.e. if for each Λ Î X there are

but  finitely  many pairs  HΜ1, Μ2L Î X ´ X  such  that  Μ1  Μ2 = Λ  and  nΜ1
 mΜ2

¹ 0.  If

this is the case then we call the element

f g := ÚΛ IÚΜ nΜ mΛ Μ-1 M eHΛL Î ZPXT

the product of f  and g. This definition restricts to the usual multiplication on the
group  ring  Z@XD Ì ZPXT;  moreover,  it  endows  ZPXT  with  the  structure  of  a
Z@XD- module.
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the product of f  and g. This definition restricts to the usual multiplication on the
group  ring  Z@XD Ì ZPXT;  moreover,  it  endows  ZPXT  with  the  structure  of  a
Z@XD- module.

Let S¢ Ì S be a subset. The ring homomorphism

evS¢ : Z@XD � MapHS¢, RL
ÚΛ nΛ eHΛL S TQQ ÚΛ nΛ Λ ÈS¢

may  be  extended  "by  taking  quotients"  in  the  following  way:  Since  R  is  an

integral domain the subset SS¢  Ì  Z@XD  of all h  such that evS¢ HhL  has no zeros is

multiplicative.  Moreover,  evS¢ HhL  is  invertible  in  the  ring  of  mappings

S¢ ® Quot R  for  any  such  h.  Therefore  we  can  form the  localization  SS¢
-1  Z@XD,

and evS¢  extends uniquely to a ring homomorphism

SS¢
-1  Z@XD ® MapHS¢, Quot RL.

Let  ZPXTS¢  denote  the  subset  of  all  elements  f Î ZPXT  for  which  there  exist

g Î Z@XD  and  h Î SS¢  with  h f = g.  This  is  in  fact  a  Z-submodule  of  ZPXT:

indeed,  given  two  equations  h f = g,  h¢  f ¢ = g¢  we  have  h h¢H f + f ¢L  =  h¢  g  +

h g¢, and SS¢  is multiplicative. We obtain a Z-linear  map

ZPXTS¢ ® SS¢
-1  Z@XD.

by sending such an element f  to the quotient g � h (this is well-defined:  if h f  =

g, h¢  f  = g¢ then g h¢ = h h¢  f  = g¢  h), and by composition the Z-linear  map

evS¢ : ZPXTS¢ ® MapHS¢, Quot RL.

Definition  1.1.  Let  f Î ZPXT,  S¢ Ì S  a  subset,  x Î S¢.  If  f  is  contained  in

ZPXTS¢  then  f  is  called  evaluable  on  S¢  and  the  value  evS¢ H f L HxL  Î  QuotHRL  is

called the value of f  in x.

Remark  1.2. (i) The  notation  "ÚΛÎX nΛ Λ"  common  in  group  rings  would  be

ambiguous here: if Λ, Μ Î X  are such that Λ + Μ Î X  then one has to distinguish

between  the  elements  eHΛ + ΜL  and  eHΛL + eHΜL.  However,  if  S  is  a  generating
subset  of  a  group  G  and  the  group  X  consists  of  restrictions to  S  of  characters

G ® R´  then  evS  is  injective,  and  we  could  write  "ÚΛ nΛ Λ"  instead  of

"ÚΛ nΛ eHΛL". 
11



Remark  1.2. (i) The  notation  "ÚΛÎX nΛ Λ"  common  in  group  rings  would  be

ambiguous here: if Λ, Μ Î X  are such that Λ + Μ Î X  then one has to distinguish

between  the  elements  eHΛ + ΜL  and  eHΛL + eHΜL.  However,  if  S  is  a  generating
subset  of  a  group  G  and  the  group  X  consists  of  restrictions to  S  of  characters

G ® R´  then  evS  is  injective,  and  we  could  write  "ÚΛ nΛ Λ"  instead  of

"ÚΛ nΛ eHΛL". 

(ii) On the other hand the above applies to X = R´  (take S  a singleton); in this
case we have the ring homomorphism

ev : Z@R´D � R

ÚΛ nΛ eHΛL S TQQ ÚΛ nΛ Λ

which of course is far from being injective.

(iii) The Z-linear  map evS¢  is multiplicative in the following sense: if f , g  are

multipliable and if f , g, f g Î ZPXTS¢  then evS¢ H f gL = evS¢ H f L evS¢ HgL.

(iv) The  value  of  f  in  x  in  the  situation of  Definition 1.1  does  not  depend on

the  ambient  subset  S¢:  If  S² Ì S¢  is  a  subset  then  ZPXTS¢  Ì  ZPXTS²  and

evS² H f L HxL = evS¢ H f L HxL for all f Î ZPXTS¢  and x Î S².

(v) Suppose  that  the  set  SS¢  contains  no  zero  divisors.  Then  the  natural  map

ZPXTS¢  ®  SS¢
-1  Z@XD  is  injective.  Example:  S  is  a  topological  space,  S¢ Ì S  is

dense, R is a complete topological ring, X  consists of continuous mappings, and

the evaluation homomorphism evS  is injective (cf. (i) above). Then SS¢  contains
no zero divisors.

2. Formal characters. Characters on a subset

Let C È K  be an extension of fields, V  a K-vector  space, S a commutative group,

and let Ρ : S ® GLHVL  be a fixed K-linear  representation of S  on V .  Let ΡHCL  be
the  C-linear  representation  of  S  on  VHCL  =  C ÄK V  obtained  by  extension  of

scalars. Let XHSL be the group of characters S ® C´.

Definition 2.1.

 (i) Let Λ Î XHSL be a character. For x Î S let ΛHxL. denote the homothety on VHCL

defined by ΛHxL. The subspace of VHCL

VHCL
Λ := Ý

xÎS
Ü

kÎN

ker HΡHCLHxL - ΛHxL.Lk

12



VHCL
Λ := Ý

xÎS
Ü

kÎN

ker HΡHCLHxL - ΛHxL.Lk

is called the generalized weight space of weight Λ of ΡHCL. Its dimension is called

the algebraic multiplicity of Λ in ΡHCL. 

(ii) Assume  that  VHCL  is  the  sum  of  the  generalized  weight  spaces  of  ΡHCL  and

that the algebraic multiplicity of each Λ Î XHSL in ΡHCL  is finite. Then we say that
the  representation  Ρ  is  finitely  trigonalisable  over  C  or  possesses  a  formal
character over C, and the element

ChHΡL := Ú
ΛÎXHSL

dimCIVHCL
Λ M eHΛL Î ZPXHSLT

is called the formal character of Ρ. 

(iii)  In  addition  to  (ii),  assume  that  S¢ Ì S  is  a  subset  such  that  ChHΡL  is

evaluable on S¢. Then we say that Ρ possesses a character on S¢, and the map

evS¢ HChHΡLL : S¢ ® C

is called the character on S¢ of Ρ.

Remark  2.2. (i) Suppose  Ρ  is  finitely  trigonalisable  over  C.  Since  HΡHCLLHCL  =

ΡHCL  we have VHCL
Λ  =  HVHCLLHCL

Λ  for all  Λ,  hence ΡHCL  is finitely trigonalisable, with

ChHΡL  =  ChHΡHCLL.  On  the  other  hand,  the  formal  character  ChHΡL  does  not

depend on the particular choice of C. Indeed, if C¢ È C  is an extension then XHSL
embeds  into  X¢HSL  :=  HomIS, C¢´M,  ZPXHSLT  embeds  into  ZPX¢HSLT  (via

"extension by zero"), and by exactness of the scalar extension functor we have

kerHΡHC¢LHsL - Λ.Lk = IkerHΡHCLHsL - Λ.LkMHC¢L

for all k Î N, Λ Î XHSL, s Î S; hence IVHCL
Λ MHC¢L  = VHC¢L

Λ  for all Λ Î XHSL, and hence

the element ChHΡL Î ZPX¢HSLT stays the same whether calculated in ZPXHSLT or

in ZPX¢HSLT.

(ii) If  dimK HVL < ¥  and  each  ΡHxL  (x Î S)  is  trigonalisable  over  C  in  the
classical  sense  then  Ρ  is  finitely  trigonalisable  over  C  and  possesses  a  (K-
valued)  character  on  S  which  coincides  with  the  usual  character  of  the  finite-

dimensional representation Ρ (cf. [4], §5, Prop. 19).
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(ii) If  dimK HVL < ¥  and  each  ΡHxL  (x Î S)  is  trigonalisable  over  C  in  the
classical  sense  then  Ρ  is  finitely  trigonalisable  over  C  and  possesses  a  (K-
valued)  character  on  S  which  coincides  with  the  usual  character  of  the  finite-

dimensional representation Ρ (cf. [4], §5, Prop. 19).

Lemma 2.3 (direct sums). Let V = ÅiÎIVi  be a decomposition into a direct sum

of  Ρ-stable  subspaces.  Then  V  is  finitely  trigonalisable  over  C  if  and  only  if
each  subrepresentation  Ρ ÈVi  is  finitely  trigonalisable  over  C  and  the  family  of

formal characters IChIΡVi MM
iÎI

 is summable in ZPXHSLT; in that case

 ChHΡL = ÚiÎI ChIΡ ÈVi M.

Proof.  This  follows  from  VHCL = ÅiÎI HViLHCL  and  VHCL
Λ  =  ÅiÎI HViLHCL

Λ  for  each

Λ Î XHSL,  where HViLHCL
Λ  denotes the generalized weight space of weight Λ  of the

subrepresentation ΡHCL ÈHViLHCL
. �

Lemma 2.4 (subrepresentations). Let W Ì V  be a Ρ-stable  subspace.

(i) The generalized weight space of weight Λ of HΡ ÈW LHCL is equal to WHCL Ý VHCL
Λ .

(ii) WHCL Ý ÚΛÎXHSL VHCL
Λ  = ÚΛÎXHSL IWHCL Ý VHCL

Λ M.

(iii) Ρ ÈW  is finitely trigonalisable over C  if and only if WHCL  Ì  ÚΛÎXHSL VHCL
Λ  and

dimCIWHCL Ý VHCL
Λ M < ¥ for all Λ Î XHSL; if this is the case then

ChHΡ ÈW L = Ú
ΛÎXHSL

dimCIWHCL Ý VHCL
Λ M eHΛL.

Proof. (i) follows from the obviously equality HΡ ÈW LHCL = ΡHCL ÈWHCL .

(ii) It  is  clear  that  ÚΛÎXHSL IWHCL Ý VHCL
Λ M  is  contained  in  WHCL  Ý  ÚΛÎXHSL VHCL

Λ  .

Vice  versa,  assume  w  Î  WHCL  Ý ÚΛÎXHSL VHCL
Λ .  There  is  a  finite  subset  L Ì XHSL

such that w = ÚΛÎL vΛ  with vΛ Î VHCL
Λ . Put U = ÚΛÎL VHCL

Λ , and for x Î S and a Î C

define  the  generalized  eigen  space  Ux,a  =  ÜkÎN Hker ΡHCLHxL ÈU -aLk  Ì  U.  Thus

VHCL
Λ  =  ÝxÎS Ux,ΛHxL  for  Λ Î L.  We  claim that  there  even  is  a  finite  subset  T Ì S

such that

VHCL
Λ  = Ý

xÎT
Ux,ΛHxL for all Λ Î L.
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VHCL
Λ  = Ý

xÎT
Ux,ΛHxL for all Λ Î L.

Indeed, there exists a finite subset T Ì S  which, for any two distinct Λ, Λ¢ Î L,

contains an element x  such that ΛHxL ¹ Λ¢HxL.  Since for any x Î T  the direct sum

decomposition U = ÚΛÎL VHCL
Λ  refines the direct sum decomposition U  =  Úa Ux,a

we have,  for  any  Λ Î L,   ÝxÎT Ux,ΛHxL  =  VHCL
Λ1  Å  ¼  Å  VHCL

Λn  with  Λ1, ¼, Λn Î L.

But  Λi ¹ Λ  would  imply  Ux,ΛHxL  Ý  Ux,ΛiHxL  =  0  for  some  x Î T,  and  thereby

ÝxÎT Ux,ΛHxL Ý VHCL
Λi  = 0. This proves VHCL

Λ  = ÝxÎT Ux,ΛHxL.

Now  w  is  contained  in  a  finite-dimensional  subspace  U¢ Ì U  which  is  stable

under  each ΡHCLHxL  (x Î T).  (Namely,  write  T = 8x1, ¼, xn<,  for  each Λ Î L  and

each xi Î T  choose kΛ,i Î N  such that  HΡHCLHxiL - ΛHxiLLkΛ,i  HvΛL  is  zero,  and  let  U¢

be  the  span  of  the  elements  ΡHCLHx1Lk1  ¼ ΡHCLHxnLkn  vΛ  (Λ Î L,  0 £ ki < kΛ,i).)  By

the finite-dimensional  theory (e.g. [4], §5, Prop. 19) the space U¢  as well as the

stable  subspace  U¢ Ý WHCL  are  trigonalisable  simultaneously  for  the  ΡHCLHxL
(x Î T),  so  that  the  decomposition  w = ÚΛ vΛ  necessarily  already  takes  place

inside U¢ Ý WHCL.

(iii) follows immediately from (i) and (ii). �

Lemma  2.5  (increasing  filtrations).  Let  V0 Ì V1 Ì ¼ Ì V  be  an  increasing

sequence  of  Ρ-stable  subspaces,  and  put  V¥  :=  ÜiÎN Vi.  Then  Ρ ÈV¥  is  finitely

trigonalisable over C if and only if Ρ ÈVi  is finitely trigonalisable over C for each

i Î N and the sequence IChIΡ ÈVi MM
iÎN

 converges in ZPXHSLT; in that case

limiÎN  ChIΡ ÈVi M = ChHΡ ÈV¥ L.

Proof.  Suppose  that  each  Ρ ÈVi  is  finitely  trigonalisable  over  C  and

limiÎN  ChIΡ ÈVi M  exists.  According to  Lemma 2.4,  HViLHCL  Ì  ÚΛÎXHSL VHCL
Λ  for  all  i,

hence  HV¥LHCL  Ì  ÚΛÎXHSL VHCL
Λ ,  and  for  each  Λ,  HV¥LHCL Ý VHCL

Λ  =

ÜiÎN IHViLHCL Ý VHCL
Λ M. The existence of the above limit means that for each Λ there

exists  an  i0  such  that  HViLHCL Ý VHCL
Λ  =  IVi0 MHCL Ý VHCL

Λ  for  all  i ³ i0.  Hence

HV¥LHCL Ý VHCL
Λ  =  IVi0 MHCL Ý VHCL

Λ ,  hence ChV¥ HΡL  =  limiÎN  ChVi HΡL.  -  The reverse

direction is clear. �
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Proof.  Suppose  that  each  Ρ ÈVi  is  finitely  trigonalisable  over  C  and

limiÎN  ChIΡ ÈVi M  exists.  According to  Lemma 2.4,  HViLHCL  Ì  ÚΛÎXHSL VHCL
Λ  for  all  i,

hence  HV¥LHCL  Ì  ÚΛÎXHSL VHCL
Λ ,  and  for  each  Λ,  HV¥LHCL Ý VHCL

Λ  =

ÜiÎN IHViLHCL Ý VHCL
Λ M. The existence of the above limit means that for each Λ there

exists  an  i0  such  that  HViLHCL Ý VHCL
Λ  =  IVi0 MHCL Ý VHCL

Λ  for  all  i ³ i0.  Hence

HV¥LHCL Ý VHCL
Λ  =  IVi0 MHCL Ý VHCL

Λ ,  hence ChV¥ HΡL  =  limiÎN  ChVi HΡL.  -  The reverse

direction is clear. �

Corollary  2.6  (block  matrices). (i) Suppose  Ρ  has  a  matrix  representation  of
the form

s #
i

k

jjjjjjj

A0HsL *
A1HsL

0 ¸

y

{

zzzzzzz

with  finite  dimensional  matrix  representations s # AiHsL  of  S  over  K  which  are

trigonalisable over C  (i Î N).  If the family HChHAiLLiÎN  is  summable in ZPXHSLT
then  the  representation Ρ  is  finitely  trigonalisable  over  C  with  formal  character

Ch Ρ = ÚiÎN ChHAiL. 
(ii) Suppose  that  ΡHCL  has  a  matrix  representation  s # Hai jHsLLi, jÎN´N

 over  C  in

triangular  form  with  the  property  that  each  character  Λ Î XHSL  occurs  only
finitely often (say nΛ  times) as a diagonal character s # aiiHsL. Then Ρ is finitely

trigonalisable over C with formal character ÚnΛ eHΛL.

Proof.  (i)  follows  from  Lemma  2.5  together  with  Remark  2.2  (ii).  -  (ii)  is  a

special case of (i). �

Corollary  2.7  (tensor  products).  Let  Ρ1, Ρ2  be  two  countable-dimensional
finitely trigonalisable representations of S over K.

(i) If Ρ1  and Ρ2  have lower triangular form (w.r.t. suitable bases) and the formal

characters ChHΡ1L and ChHΡ2L are multipliable then the representation Ρ1 Ä Ρ2  of

S is finitely trigonalisable over K with ChHΡL = ChHΡ1L × ChHΡ2L.
(ii)  If  Ρ1  has  lower  triangular  form  and  Ρ2  is  finite-dimensional  and

trigonalisable  over  C  then  the  formal  characters  Ch Ρ1  and  Ch Ρ2  are
multipliable  and  the  S-representation  Ρ1 Ä Ρ2  is  finitely  trigonalisable  over  C

with ChHΡL = ChHΡ1L × ChHΡ2L.

Proof. In each case HΡ1 Ä Ρ2LHCL  is isomorphic to a countable-dimensional  matrix

representation over C in triangular form in which the various diagonal characters
occur only finitely many times, and part (ii) of the previous corollary applies. �
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Proof. In each case HΡ1 Ä Ρ2LHCL  is isomorphic to a countable-dimensional  matrix

representation over C in triangular form in which the various diagonal characters
occur only finitely many times, and part (ii) of the previous corollary applies. �

Lemma  2.8  (decreasing  filtrations).  Let  V É W0 É W1 É ¼,

V É W0
¢ É W1

¢ É ¼  be two decreasing sequences of Ρ-stable  subspaces of finite

codimension in V  such that for every i Î N  there exists j Î N  with W j
¢ Ì Wi  and

W j Ì Wi
¢.  If each quotient representation Ρi  of Ρ  on V � Wi  is trigonalisable over

C  and the sequence HChHΡiLLiÎN
 converges in ZPXHSLT  then the same is  true for

the quotient representations Ρi
¢ of Ρ on V � Wi

¢, and

limiÎN  ChHΡiL = limiÎN  ChIΡi
¢M.

Proof.  Let i Î N.  Choose j Î N  such that W j Ì Wi
¢.  Then V � Wi

¢  is a quotient of

the  finite-dimensional  vector  space  V � W j.  Hence  with  Ρ j  also  Ρi
¢  is

trigonalisable over C, and the set of weights of Ρi
¢  (with multiplicities) is a subset

of the set of weights of Ρ j. This means that dimCJIV � Wi
¢MHCL

Λ N £ dimCIHV � W jLHCL
Λ M

for  all  Λ.  Since  i  was  arbitrary  and  the  sequence  HChHV � W jLL jÎN
 converges  it

follows  that  the  sequence  IChIV � Wi
¢MM

iÎN
 converges;  namely,  by  symmetry,  to

the same limit. �
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3. Convergent nets of characters on a subset

We keep the notations of the previous section. Suppose that V  is the union of an

increasing sequence V0 Ì V1 Ì ¼ of Ρ-stable  subspaces. We have seen (Lemma

2.5) that if each Vi  is trigonalisable over C and the sequence of formal characters

ChHViL  converges in ZPXHSLT  then V  is finitely trigonalisable over C,  its formal

character being the limit of the ChHViL.  However, if the sequence HChHViLLi  does

not converge but each representation Vi  possesses a character on a subset S¢ Ì S

we may still ask if the sequence of characters on S¢ converges in some sense.

Convention.  By  weak  convergence  of  a  net  of  C-valued  functions  we  shall
always mean pointwise convergence with respect to the discrete topology on C.

Example 3.1.  Let  p  be  a  prime number,  and  let  vp  denote  the  valuation  of  Qp

normalized by vpHpL = 1. Let S = Zp
´. Let V  = C¥HZp, KL be the K-vector  space

of  locally  constant  K-valued  functions  on  Zp,  endowed  with  the  S- operation

ΡHsL H f L  :=  Hz # f Hs zLL  (s Î S,  f Î V ,  z Î Zp).  For  any  h Î N  consider  the

disjoint open covering Uh,i := i + ph  Zp  (0 £ i < ph) of Zp.  Then V  is the union

of the Ρ-stable  subspaces

Vh := 9 f : Zp ® K; f constant on Uh,i for all 0 £ i < ph=   (h Î N).

Since each S-representation  Vh  is finite-dimensional  it possesses a character Θh

= evSHCh VhL on S. The value of Θh  in s Î S  is the trace of the operator s on Vh.

The  characteristic  functions  1Uh,i
 (0 £ i < ph)  form  a  basis  of  Vh.  Letting  I1Uh,i

* M
denote the dual basis we obtain

ΘhHsL = Ú0£i<ph 1Uh,i

*  Is 1Uh,i
M

= # 90 £ i < ph; s-1 i + ph  Zp = i + ph  Zp=

= # 90 £ i < ph; vpHi L ³ h - vpIs-1 - 1M=

= pminIh,vpIs-1-1MM

according  to  Lemma  3.2  below.  Hence  ΘhH1L = ph,  and  if  s ¹ 1  and

h ³ vpIs-1 - 1M  then  ΘhHsL  =  pvpIs-1-1M  =  ¡s-1 - 1¥-1
.  It  follows that  the  sequence

HevS-81<HCh VhLLhÎN
 converges  weakly  to  the  function  Θ : S - 81< ® K,

s # ¡s-1 - 1¥-1
. 18



according  to  Lemma  3.2  below.  Hence  ΘhH1L = ph,  and  if  s ¹ 1  and

h ³ vpIs-1 - 1M  then  ΘhHsL  =  pvpIs-1-1M  =  ¡s-1 - 1¥-1
.  It  follows that  the  sequence

HevS-81<HCh VhLLhÎN
 converges  weakly  to  the  function  Θ : S - 81< ® K,

s # ¡s-1 - 1¥-1
.

Lemma 3.2. For any two integers 0 £ Α £ Β there are pΑ  elements i contained in

90, 1, ¼, pΒ - 1= satisfying vpHiL ³ Β - Α.

Proof. pΑ is the cardinality of the image of pΒ-Α  Z in Z � pΒ Z. �

The next example shows that the limit function Θ obtained in Example 3.1 is not

an invariant of Ρ but depends on the particular system HVhL exhausting V .

Example 3.3.  Define S,  V ,  Ρ  as in the previous example, but this time consider
the subsets

U
�

h,i = :
9z-1; z Î i p1-h + ph  Zp= ; i Î N - 80<
ph  Zp ; i = 0

of Qp (h Î N). For z Î Q we have z-1 Î Zp - ph  Zp � z Î p1-h  Zp - p Zp, and

p1-h  Zp - p Zp = Ü
iÎI

 
i p1-h + ph  Z

where I  :=  {1 £ i < p2 h-1,  vpHiL < h}. Hence the family HU
�

h,iLiÎIÜ80<  is a disjoint

open covering of Zp. Again V  is the union of the Ρ-stable  subspaces

V
�

h := 9 f : Zp ® K; f constant on U
�

h,i for all i Î I Ü 80<=   (h Î N).

We calculate
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Θ
�

hHsL := evSICh V
�

hM = ÚiÎIÜ80< 1
U
�

h,i

*  Js 1
U
�

h,i
N

= 1 + # 9i Î I; s i p1-h + ph  Zp = i p1-h + ph  Zp=
= 1 + # 8i Î I; vpHiL + vp Hs - 1L ³ 2 h - 1<;

here we used s 1
U
�

h,0
= 1

U
�

h,0
 for all s. For any fixed s ¹ 1 and h >> 0 we have vpHiL

+  vpHs - 1L  <  2 h - 1  for  all  i Î I,  i.e.  Θ
�

hHsL = 1.  This  means  that  the  sequence

IevS-81<ICh V
�

hMM
hÎN

 converges weakly to the function S - 81< ® K, s # 1.

Appendix: Formal traces

(The content of this appendix is not needed elsewhere in this work.)

Let  C È K  be  a  field  extension,  V  a  K-vector  space,  and  let  u Î EndK HVL  be  an

endomorphism.  We  abbreviate  VHCL  =  C ÄK V ,  uHCL  =  1C Ä u  Î  EndCHVHCLL.  In

this  section  we  consider  the  space  of  formal  functions  ZPC´T  (cf.  Remark  1.2

(ii)).

Definition. (i) Let Λ Î C.  Let Λ. Î EndCHVHCLL  denote the homothety defined by

Λ. The subspace

VHCL
Λ := Ü

kÎN

kerHuHCL - Λ.Lk

of  VHCL  is  called  the  generalized  eigenspace  of  uHCL  corresponding  to  Λ.  Its

dimension dimCIVHCL
Λ M is called the algebraic multiplicity of Λ in uHCL.

(ii) If VHCL  is  the sum of the generalized  eigenspaces of uHCL  and the algebraic

multiplicity of each Λ Î C´  in uHCL  is finite then we say that the endomorphism u
is  finitely  trigonalisable  over  C  or  possesses  a  formal  trace  over  C,  and  the
element

TrHuL := Ú
ΛÎC´

dimCIVHCL
Λ M eHΛL Î ZPC´T

is called the formal trace of u.
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is called the formal trace of u.

Remark. (i) As  in  the  previous  section  it  follows  from  the  exactness  of  the
scalar extension functor that if u is finitely trigonalisable over C then TrHuL does
not depend on the particular choice of C.

(ii) The assumptions of part (ii) of the definition are satisfied if u has finite rank
and is trigonalisable in the classical sense (i.e. C  contains all eigenvalues of u);

in  this  case  TrHuL  is  contained  in  Z@K´D,  and  the  element  evHTrHuLL Î K  is  the
usual trace of the endomorphism u.

The following results are proved completely analogously as in the case of formal
characters.

Lemma. (i) Let  V = ÅiÎIVi  be  a  decomposition  into  a  direct  sum  of  u- stable

subspaces. Then u is finitely trigonalisable over C  if and only if each restriction

u ÈVi  is finitely trigonalisable over C  and the family of formal traces ITrIu ÈVi MM
iÎI

is summable in ZPC´T; in that case

 TrHuL = Ú
iÎI

TrIu ÈVi M.

(ii) Let W Ì V  be a u-stable  subspace. Then u ÈW  is finitely trigonalisable over

C  if and only if WHCL  Ì ÚΛÎC´ VHCL
Λ  and dimCIWHCL Ý VHCL

Λ M < ¥ for all Λ Î C´; if

this is the case then

TrHu ÈW L = Ú
ΛÎC´

dimCIWHCL Ý VHCL
Λ M eHΛL.

(iii) Let  V0 Ì V1 Ì ¼ Ì V  be  an  increasing  sequence  of  u-stable  subspaces,

and put V¥  := ÜiÎN Vi. Then u ÈV¥  is finitely trigonalisable over C  if and only if

u ÈVi  is finitely trigonalisable over C for each i Î N and the sequence ITrIu ÈVi MM
iÎN

converges in ZPC´T; in that case

limi®¥  TrIu ÈVi M = TrHu ÈV¥ L.

(iv)  Let  V É W0 É W1 É ¼,   V É W0
¢ É W1

¢ É ¼  be  two  decreasing  sequences

of u-stable  subspaces of finite codimension in V  such that for every i Î N there

exists j Î N with W j
¢ Ì Wi  and  W j Ì Wi

¢. If each quotient endomorphism ui  of u

on  V � Wi  is  trigonalisable  over  C  and  the  sequence  HTrHuiLLiÎI  converges  in

ZPC´T  then the same is true for the quotient endomorphisms ui
¢  of u on V � Wi

¢,

and
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(iv)  Let  V É W0 É W1 É ¼,   V É W0
¢ É W1

¢ É ¼  be  two  decreasing  sequences

of u-stable  subspaces of finite codimension in V  such that for every i Î N there

exists j Î N with W j
¢ Ì Wi  and  W j Ì Wi

¢. If each quotient endomorphism ui  of u

on  V � Wi  is  trigonalisable  over  C  and  the  sequence  HTrHuiLLiÎI  converges  in

ZPC´T  then the same is true for the quotient endomorphisms ui
¢  of u on V � Wi

¢,

and

limi®¥  TrHuiL = limi®¥  TrIui
¢M. �

Corollary (block matrices). Suppose u is represented by a matrix of the form

i

k

jjjjjjj

A0 *
A1

0 ¸

y

{

zzzzzzz

with  finite  dimensional  matrices  Ai  over  K  which  are  trigonalisable  over  C

(i Î N).  If  the  family  HTrHAiLLiÎN  is  summable  in  ZPC´T  then  u  is  finitely

trigonalisable over C with formal character TrHuL = ÚiÎN TrHAiL. �

Remark. The field K being embedded into ZPC´T via 

c # :
eHcL ; c ¹ 0,

0 ; c = 0,

in the above corollary it is crucial to demand that the formal  traces of the Ai  be
summable. It may happen that the usual traces trHAiL Î K, viewed as elements of

ZPC´T, are summable and u is not finitely trigonalisable: consider Ai =
i

k

jjjjjjjj

ai

1

1

y

{

zzzzzzzz

with pairwise different elements ai Î K. Then trHAiL = ai, TrHAiL = eHaiL + eH1L +
eH-1L,  and  the  generalized eigenspaces VHCL

1 , VHCL
-1  are  infinite-dimensional.  -  A

similar remark applies to part (iii) of the above lemma.
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II. Distribution algebras of p-adic  groups

This  second  part  provides  certain  results  concerning  completed  distribution
algebras.  The  most  important  three  are  the  following:  the  question  when  there
are  natural  maps  between  completions  with  respect  to  different  norms  of  the

same distribution algebra (Section 5- 7), explicit bases of completed distribution

algebras (viewed as K-Banach  spaces; Section 7), and the description of the g-

adic filtration by means of these bases (Section 8).

Notations.  Let  p  be  a  prime  number,  and  let  C È K È L È Qp  be  a  tower  of

complete  valued  fields  such  that  L È Qp  is  finite  of  degree  n,  K  is  discretely

valued, and C is algebraically closed. Let oL  be the ring of integers of L, ΠL Î oL

a  prime  element,  and    ¤L  the  absolute  value  on  L  normalized  by

 ΠL¤L = H# oL � ΠLL-1.  For  the  basic  ideas  of  the  theory  of  locally  analytic

representations of p-adic  groups we refer to the series of papers [29], [30], [31],

[32],  [33].  For  a  commutative  group  S,  let  XHSL  be  the  group  of  characters

S ® C´. By an L-analytic  group we mean a finite-dimensional  Lie group over L

in the sense of [6]. For such an L-analytic  group G with Lie algebra g we denote

by

· CanHG, KL  the  locally  convex  K-vector  space  of  locally  analytic  functions
G ® K, 

· DHG, KL  =  CanHG, KLb
¢  (strong  dual)  the  K-algebra  of  distributions  on  G,

endowed with the convolution product,

· UHgL the enveloping L-algebra  of g, viewed as a subalgebra of DHG, KL,
· UHg, KL the closure of UHgL ÄL K in DHG, KL

(cf.  [29],  Section  2).  Finally,  we  let  RQp

L HGL  denote  the  Qp-analytic  group

obtained  from  G  by  scalar  restriction  ([8],  5.14);  the  underlying  topological

groups of G and of RQp

L HGL coincide.
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4. Exp and Log

Let G be an L-analytic  group with L-Lie  algebra g. On a suitable small additive
open  subgroup  V Ì g  there  exists  an  exponential  mapping  Φ : V ® G;  this  is  a

locally L-analytic  map satisfying ΦHm xL = ΦHxLm  (x Î V , m Î Z) and having the

identity  map  g ® g  as  the  tangent  map  in  0  (cf.  [6],  III.4.3  and  III.7.2).

Exponential mappings are not unique. However, using the logarithmic mapping
of G one can make a natural choice as follows: Put

Gf  := :g Î G; $ m Î N : lim
n®¥

 gm pn
= 1>.

Then Gf  is an open set of G,  equal to the union of all compact subgroups of G,

and  closed  under  taking  integral  powers  ([6],  III.7.6,  Lemma 1,  Proposition 10

(i),  and  Corollary  of  Proposition  13).  There  is  a  unique  map  LogG :  Gf  �  g

with the following two properties:

· LogGHgmL = m LogGHgL for all g Î Gf , m Î Z,

· there are an open neighbourhood U  of 1 in G, an open neighbourhood V  of

0  in  g,  and  a  bijective  exponential  mapping  Φ : V ® U  of  G  such  that

LogG ÈU = Φ-1;

and this map is locally L-analytic  ([6], III.7.6, Proposition 10).

Proposition  4.1.  Let  G  be  an  L-analytic  group  and  H Ì G  an  L- analytic

subgroup. Then Hf = Gf Ý H and LogG ÈHf
 = LogH .

Proof. The first assertion is obvious. Let V  be an open neighbourhood of 0 in the

Lie algebra g of G such that LogG
-1 ÈV  is an exponential mapping of G. According

to [6],  III.4.4,  Proposition 8,  there is  an open neighbourhood V ¢  of  0  in LieHHL

such that LogG
-1 ÈV  restricts to an exponential mapping LogG

-1 ÈV¢  of H. Since also

LogGHgmL  =  m LogHgL  for  all  g Î Hf  and  m Î Z,  the  restriction  LogG
-1 ÈHf

 is  a

logarithmic mapping of H, necessarily equal to LogH . �

Thus  we  shall  often  simply  write  LogH = Log  when  dealing  with  various  L-

analytic  subgroups  H  of  a  fixed  L-analytic  group  G.  We  shall  reserve  the
notation  ExpH  =  Exp  for  exponential  mappings  which  are  inverse  maps  of

logarithmic mappings.
Another  notational  remark:  we  capitalize  the  symbols  Exp,  Log  in  order  to

distinguish  them  from  the  exponential  and  logarithmic  series  in  (completed)
distribution  algebras;  these  will  always  be  denoted  exp,  log  respectively.  In  a
small  neighbourhood  of  1,  0  respectively  both  concepts  coincide;  for  a  more

precise statement cf. Remark 7.3.
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analytic  subgroups  H  of  a  fixed  L-analytic  group  G.  We  shall  reserve  the
notation  ExpH  =  Exp  for  exponential  mappings  which  are  inverse  maps  of

logarithmic mappings.
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Example  4.2.  Let  G  be  a  unipotent  L-group,  i.e.  an  algebraic  L- group
isomorphic  to  a  closed  subgroup  of  the  upper  strictly  triangular  subgroup  of
some GLm � L.  Let  GHLL  be  the  corresponding group of  L-rational  points  and  g

its Lie algebra. Then GHLLf  = GHLL, g is nilpotent ([10], IV.2.2, Corollaire 2.13),

and we have the global bijections

GHLL X Yoooooo
Exp

Log
 g

([10],  IV.2.4  Proposition  4.1)  which  are  given  by  the  restrictions of  the  matrix

logarithm resp. the matrix exponential of GLmHLL.

If  x Î g  is  an  element  in  the  domain  of  Exp  and  H Ì G  is  an  L- analytic

subgroup with Lie algebra h Ì g  then the fact "x Î h"  does not  generally imply
"ExpHxL Î H":  this  is  clear  if  one  considers  proper  open  subgroups  H Ì G.
However, in the case of algebraic groups we have the following:

Proposition  4.3.  Let  H Ì G  be  an  inclusion  of  affine  algebraic  L-groups.  Let

G = GHLL, H = HHLL be the respective groups of L-rational  points, viewed as L-

analytic  groups,  with  respective  Lie  algebras  g  and  h.  There  is  an  open

neighbourhood g~ Ì g, depending only on G, such that ExpHg~ Ý hL Ì H.

Proof.  There  exist  a  number  m Î N  and  an  inclusion  of  affine  algebraic  L-

groups G ® GLm �L  ([10], Corollaire II.5.5.2); hence by Proposition 4.1 we may

assume  G = GLm �L.  Then  g  is  equal  to  the  algebra  of  m ´ m-matrices  over  L.

Let  EXP : g ® GHLPTTL  denote  the  formal  exponential  mapping  defined  in
Section II.6.3.1 of [10]. In our case it is given by 
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Proof.  There  exist  a  number  m Î N  and  an  inclusion  of  affine  algebraic  L-

groups G ® GLm �L  ([10], Corollaire II.5.5.2); hence by Proposition 4.1 we may

assume  G = GLm �L.  Then  g  is  equal  to  the  algebra  of  m ´ m-matrices  over  L.

Let  EXP : g ® GHLPTTL  denote  the  formal  exponential  mapping  defined  in
Section II.6.3.1 of [10]. In our case it is given by 

EXPHxL = Ú
k³0

�����1
k!

 xk  Tk = 
i
k
jjj Ú

k³0
�����1
k!

 xi j
HkL Tky

{
zzz

i j

where  xk  =  Ixi j
HkLM

i j
 (cf.  [10],  Exemple  II.6.3.3).  Let  LXT\  Ì  LPTT  be  the

subalgebra of power series converging on the closed unit ball. There is an open
neighbourhood  g~ Ì g  on  which  Exp  is  defined  and  given  by  the  convergent

series  Úk³0 �����1
k!

 xk.  This  means  that  for  x Î g~  the  coefficients  of  the  matrix

EXPHxL  converge in L  if we substitute T = 1, hence they are contained in LXT\.
The map Exp : g~ ® GHLL therefore factors as follows:

g~ �¾¾
EXP

GHLXT\L �¾¾
T#1

GHLL

According to [10], Corollaire II.6.3.4 (c), the restriction of EXP : g ® GHLPTTL to
h  is  equal  to  the  intrinsically  defined  map  EXP : h ® HHLPTTL;  hence  by
restriction we obtain the map

g~ Ý h �¾¾
EXP

GHLXT\L Ý HHLPTTL = HHLXT\L �¾¾
T#1

HHLL

which proves our assertion. �

5. Uniform pro- p groups

In this section we clarify how two arbitrary uniform pro- p-groups  in the sense

of  [11]  can  intersect.  Instead  of  recalling  the  formal  definition  of  such  groups

(cf. [11], Section 4.1) we will collect their basic properties.

Let  H  be  a  uniform  pro- p-group  of  dimension  d Î N.  Any  d-tupel  h  =

Hh1, ¼, hdL  of topological generators of H  will be called an ordered basis of H
and gives rise to a homeomorphism

Ψh : Zp
d � H

Α S TQQ h1
Α1  ¼ hd

Αd
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Ψh : Zp
d � H

Α S TQQ h1
Α1  ¼ hd

Αd

and thereby to an isomorphism of locally convex K-vector  spaces

Ψh
* : CanHH, KL ® CanIZp

d , KM.

The  uniform  pro- p-group  H  is  a  Qp-analytic  group  with  global  chart  Ψh
-1.

Conversely,  every  Qp-analytic  group  G  contains  a  uniform pro- p-group  H  as

an open subgroup. A basis of neighbourhoods of 1 in H (as well as in G) is given

by the lower p-series  of H,  i.e.  the uniform pro- p-groups  Hpm
 =  9hpm

; h Î H=
(m Î N).

In  the  book  [11]  a  map  log : H ® L  into  a  certain  Zp-Lie  algebra  L

(constructed inside a completion of the group ring of H  over Qp) is defined and

shown to  be  an  isomorphism when  the  underlying  set  of  H  is  endowed  with  a

Zp- Lie algebra structure as follows:

z × g := lim
n®¥

 gzn

g + h := lim
n®¥

Igpn
 hpn Mp-n

,

@g, hD := lim
n®¥

Ig-pn
 h-pn

 gpn
 hpn Mp-2 n

(g, h Î H,  z = limn®¥ zn Î Zp  with zn Î N;  cf. [11], Definitions 1.25, 4.12, 4.29

and Corollary 7.14).

Lemma 5.1. Let H  be a uniform pro- p-group  with Lie algebra h. Then Hf = H,

and the map Log : HH, +, @ , DL ® h is an embedding of Zp-Lie  algebras.

Proof.  Since H is compact we have H = Hf .

Log  is  Zp-linear:  Let  g Î H  and  z = limn®¥ zn Î Zp  with  zn Î N.  Since

addition in HH, +, @ , DL satisfies gzn  = g + ¼ + g (zn  times) and by continuity we

have LogHz × gL = limn®¥  LogHgzn L = limn®¥  zn  LogHgL = z LogHgL.
Log  is  injective:  Proposition  12  of  [6],  III.7.6,  assures  that  the  kernel  of  Log

consists of torsion elements, hence is trivial by Theorem 4.5 of [11].

Log is additive and respects the bracket: Let g, h Î H,  x = LogHgL,  y = LogHhL.
Then
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Proof.  Since H is compact we have H = Hf .

Log  is  Zp-linear:  Let  g Î H  and  z = limn®¥ zn Î Zp  with  zn Î N.  Since

addition in HH, +, @ , DL satisfies gzn  = g + ¼ + g (zn  times) and by continuity we

have LogHz × gL = limn®¥  LogHgzn L = limn®¥  zn  LogHgL = z LogHgL.
Log  is  injective:  Proposition  12  of  [6],  III.7.6,  assures  that  the  kernel  of  Log

consists of torsion elements, hence is trivial by Theorem 4.5 of [11].

Log is additive and respects the bracket: Let g, h Î H,  x = LogHgL,  y = LogHhL.
Then

Log Hg + hL = lim
n®¥

 Log JIgpn
 hpn Mp-n

N

= lim
n®¥

 p-n  Log HExp Hpn  xL Exp Hpn  yL

= x + y ;

the last equality is an instance of [6], III.7.2, Proposition 4 (1). Finally, using [6],

III.7.2, Proposition 4 (2), we calculate

Log H@g, hDL = lim
n®¥

 Log KAgpn
, hpn Ep-2 n

O

= lim
n®¥

 p-2 n  LogHExpH- pn  xL ExpH- pn  yL ExpHpn  xL ExpHpn  yLL

= @x, yD . �

Thus  if  H  is  a  uniform  pro- p-group  which  at  the  same  time  is  an  L- analytic

subgroup  of  some  L-analytic  group  G  we  will  identify  the  Zp-Lie  algebra  L

mentioned above with the Zp-Lie  subalgebra LogHHL of the L-Lie  algebra of G,

thereby  identifying  the  map  log : H ® L  defined  in  [11]  with  our  logarithmic

mapping Log : H ® LogHHL.
We know that LogHHL  is free as a Zp-module  and that the ordered bases of H

correspond under Log to the Zp-bases  of LogHHL ([11], Theorem 4.17 and Ex. 3

(i)  of  Section 8).  Although we will  not  make any use of  it  we mention that the

inverse map of Log : H ® LogHHL is an exponential mapping (cf. [11], Ex. 3 (iv)

of Section 8), and we will always denote it by Exp.

Proposition  5.2  (elementary  divisor  theorem  for  uniform  pro- p- groups).

Let  H  be  a  uniform  pro- p-group  of  dimension  d.  Let  H¢ Ì H  be  a  closed
subgroup  which  is  a  uniform  pro- p-group.  There  are  an  ordered  basis

Hh1, ¼, hdL  of  H  and  integers  0  £  ΑH1L  £  ¼  £  ΑHd¢L  (d¢ £ d)  such  that

Jh1
pΑH1L

, ¼, hd¢
pΑId¢ M

N  is  an  ordered  basis  of  H¢.  The  number  d¢  and  the  tuple

HΑH1L, ¼, ΑHd¢LL are uniquely determined by H  and H¢. Moreover, H¢  is open in

H if and only if d¢ = d.
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Proposition  5.2  (elementary  divisor  theorem  for  uniform  pro- p- groups).

Let  H  be  a  uniform  pro- p-group  of  dimension  d.  Let  H¢ Ì H  be  a  closed
subgroup  which  is  a  uniform  pro- p-group.  There  are  an  ordered  basis

Hh1, ¼, hdL  of  H  and  integers  0  £  ΑH1L  £  ¼  £  ΑHd¢L  (d¢ £ d)  such  that

Jh1
pΑH1L

, ¼, hd¢
pΑId¢ M

N  is  an  ordered  basis  of  H¢.  The  number  d¢  and  the  tuple

HΑH1L, ¼, ΑHd¢LL are uniquely determined by H  and H¢. Moreover, H¢  is open in

H if and only if d¢ = d.

Proof. Let L = LogHHL, L¢  = LogHH¢L denote the respective Zp-Lie  algebras of

H, H¢.  Then  L¢  is  a  submodule  of  the  free  rank- d- Zp-module  L  (cf.  [11],

Theorem  4.17,  Proposition  4.31  and  Corollary  7.14).  According  to  the

elementary  divisor  theorem  for  principal  ideal  domains  (cf.  [4],  VII,  §4,

Proposition 9) there are a Zp-basis  Hx1, ¼, xdL  of L  and elements c1, ¼, cd¢  Î

Zp  (d¢ £ d),  uniquely  determined  by  L  and  L¢  up  to  a  unit  in  Zp,  such  that

Hc1  x1, ¼, cd¢  xd¢ L  is  a  Zp-basis  of  L¢  and  c1 È c2 È  ¼  È cd¢ .  After  scaling  by  a

unit  in  Zp  we  may  in  fact  attain  ci = pΑHiL  with  natural  numbers

ΑH1L £ ¼ £ ΑHd¢L.  But  then  HExp x1, ¼, Exp xdL  is  an  ordered  basis  of  H  and

(ExpHc1  x1L,  ¼,   ExpHcd¢ xd¢ L)  =  (HExp x1LpΑH1L
,  ¼,  HExp xd¢ LpΑId¢ M

)  is  an  ordered

basis of H¢.

Let  Ih
�

1, ¼, h
�

dM  be  another  ordered  basis  of  H  such  that  h
� pΒH1L

, ¼, h
� pΒId² M

 is  an

ordered  basis  of  H¢,  0  £  ΒH1L  £  ¼  £  ΒHd²L,  d² £ d.  Again  by  [11],  Theorem

4.17 and Corollary 7.14, we have that  (LogHh
�

L,  ¼,  LogHh
�

L) is a Zp-basis  of L

and (LogHh
� pΒH1L

L, ¼, LogHh
� pΒId² M

L) = (pΒH1L LogHh
�

L, ¼, pΒHd² L LogHh
�

L) is a Zp- basis

of  the  free  submodule  L¢.  By  the  uniqueness  of  the  above  elementary  divisors
c1, ¼, cd we deduce d¢ = d², ΒH1L = ΑH1L, ¼, ΒHd¢L = ΑHd¢L.
If d¢  equals d then H¢  contains a member of the lower p-series  of H  and hence

is open in H. The converse follows from [11], Proposition 4.4. �

Remark  5.3. The  above  proposition  has  no  converse,  in  the  following  sense:

Let  H  be  a  uniform  pro- p-group  with  ordered  basis  Hh1, ¼, hdL,  and  let

ΑH1L, ¼, ΑHd¢L ³ 0.  Then  the  closed  subgroup  H¢  of  H  generated  by

Jh1
pΑH1L

, ¼, hd¢
pΑId¢ M

N  in  general  is  not  uniform.  Example:  the  pro- p- groups

i

k

jjjjjj
1 p Zp Zp

1 p Zp

1

y

{

zzzzzz,  
i

k

jjjjjj
1 p Zp p Zp

1 p Zp

1

y

{

zzzzzz are uniform while 
i

k

jjjjjj
1 p Zp p2 Zp

1 p Zp

1

y

{

zzzzzz is not.
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y
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k
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1

y

{
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i

k

jjjjjj
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1

y

{
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Corollary  5.4.  Let  H  be  a  uniform  pro- p-group,  g Î H.  Then  there  is  an

ordered basis Hh1, ¼, hdL of H and a number Α Î N such that g = h1
pΑ

.

Proof.  The  group  H  has  no  torsion  ([11],  Theorem  4.5),  hence  the  closed

subgroup generated by g is a uniform pro- p-group  (isomorphic to Zp, cf. [11],

Proposition 1.26 (iii)). Now apply Proposition 5.2. �

  

Definition 5.5. (i) Given a pair of uniform pro- p groups H, H¢  such that H¢ Ì H

is  a  closed  subgroup  we  call  the  sequence  Α  =  HΑH1L, ¼, ΑHd¢LL  determined  by

the above proposition the sequence of p- elementary divisors of H¢  in H, and we

call ΑHd¢L the highest p- elementary divisor of H¢ in H.

(ii)  Let  H, H¢  be  uniform  pro- p-groups  which  are  open  subgroups  of  some

topological  group  G.  Choose  k Î N  such  that  Hpk
Ì H¢,  and  let  Α  be  the

sequence of p-elementary  divisors of Hpk
 in H¢. Then the number 

udHH, H¢L := ΑHdL - ΑH1L

is called the uniform defect of H and H¢. 

Part  (ii)  of  the  definition  is  justified  by  the  subsequent  lemma;  note  that  the
uniform defect  of  the  two groups is  zero if  and only if  one is  a  member of  the
lower  p-series  of  the  other.  Note  also  that,  in  the  situation  of  part  (i)  of  the

definition, the highest p-elementary  divisor of H¢  in H  is zero if and only if H¢

is  compatible with H in the sense of [19], Section 1.3.

Lemma 5.6.  Let  G  be  a  topological  group.  Let  H, H¢  be  open  subgroups of  G

which  are  uniform  pro- p-groups.  Let  k,  k¢,  l,  l¢ Î N  such  that  Hpk
Ì H¢ pk¢

,

H¢ pl¢

Ì Hpl
.  Let Α  (resp. Β) be the sequence of p-elementary  divisors of Hpk

 in

H¢ pk¢

 (resp. of H¢ pl¢

 in Hpl
). Then the differences ΑHdL - ΑH1L and ΒHdL - ΒH1L are

equal and do not depend on the choices of k, k¢, l, l¢.
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Lemma 5.6.  Let  G  be  a  topological  group.  Let  H, H¢  be  open  subgroups of  G

which  are  uniform  pro- p-groups.  Let  k,  k¢,  l,  l¢ Î N  such  that  Hpk
Ì H¢ pk¢

,

H¢ pl¢

Ì Hpl
.  Let Α  (resp. Β) be the sequence of p-elementary  divisors of Hpk

 in

H¢ pk¢

 (resp. of H¢ pl¢

 in Hpl
). Then the differences ΑHdL - ΑH1L and ΒHdL - ΒH1L are

equal and do not depend on the choices of k, k¢, l, l¢.

Proof.  If  we  replace  k, k¢  by  k
�
,  k

�¢
 with  k

�
³ k,  say,  then  the  numbers  ΑHiL  are

replaced by Α� HiL = ΑHiL + k
�

- k - k
�¢

+ k¢  (note that regarding Lemma 4.10 of [11]

this  makes  sense  even  in  the  case  Α� HiL < ΑHiL).  Hence  the  quantity  ΑHdL - ΑH1L
does not depend on the choice of k, k¢. Similarly for ΒHdL - ΒH1L.

Let  Hh1, ¼, hdL  be  an  ordered  basis  of  H¢ pk¢

 such  that  (h1
pΑH1L

,  ¼,  hd
pΑHdL

)  is  an

ordered base of Hpk
.  Fix N ³ ΑHdL.  Then H¢ pk¢ +N

 has the ordered basis (h1
pN

,  ¼,

hd
pN

)  and  is  contained in  Hpk
.  We see  that  the  unique  p-elementary  divisors of

H¢ pk¢ +N

 in Hpk
 are given by N - ΑHdL £ ¼ £ N - ΑH1L. Consequently, by the first

part of the proof, ΒHdL - ΒH1L = HN - ΑH1LL - HN - ΑH1LL = ΑHdL - ΑH1L. �

Lemma  5.7.  Let  H  be  a  uniform  pro- p-group  and  H¢ Ì H  an  open  normal
subgroup  which  is  a  uniform  pro- p-group.  Let  Α  be  the  sequence  of  p-

elementary  divisors  of  H¢  in  H  and  choose  an  ordered  basis  Hh1, ¼, hdL  of  H

such  that  Jh1
pΑH1L

, ¼, hd
pΑHdL

N  is  an  ordered  basis  of  H¢.  Then  the  elements

h1
l1 , ¼, hd

ld  (0 £ lΝ < pΑHΝL) constitute a system of representatives for H � H¢.

Proof.  A  general  element  of  H  may  be  written  as  h1
k1  pΑH1L +l1  ¼  hd

kd  pΑHdL +ld  with

kΝ Î Zp,  0 £ lΝ < pΑHΝL;  since  H¢  is  normal  in  H  this  element  is  contained  in

h1
l1  ¼ hd

ld  H¢.  Hence  the  family  Jh1
l1 , ¼, hd

ld N
0£lΝ<pΑHΝL

 contains  a  system  of

representatives. The same argument applies to the normal subgroup group HpΑHdL

of  H¢.  But  we  know that  the  group H � HpΑHdL
 has  cardinality pdΑHdL  (cf.  Section

4.2  of   [11]),  so  the  mentioned  family  already  has  to  be  a  system  of

representatives. �
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6. Distribution algebras of uniform pro- p groups

We study the restriction of norms of distribution algebras of a uniform group to
distribution  algebras  of  uniform  subgroups,  thereby  generalizing  a  result  of  T.

Schmidt (cf. [26], Proposition 4.5 and Lemma 4.6).

  

Let  H  be  a  uniform  pro- p-group  of  dimension  d,  viewed  as  a  Qp- analytic

group. The distribution algebra DHH, KL is a K- Frechet algebra and contains the

group  ring  Zp@HD.  The  image  of  a  group  element  h Î H  in  Zp@HD  Ì  DHH, KL
will be denoted by ∆h (the "Dirac distribution" of h).

Convention.  In the following we will  view Rd  and Nd  as  partially ordered sets
via the product ordering 

 Ha1, ¼, adL £ Hb1, ¼, bdL � aΝ £ bΝ for all 0 £ Ν £ d.

Then

IHdL := 9Hr1, ¼, rdL; r1, ¼, rd Î pQ Ý Ap-1, 1M= Ì Rd

is a directed set, and the subset {Hr, ¼, rL; r Î pQ Ý Ap-1, 1M} of diagonal tuples

is cofinal in IHdL. As a matter of notation we write

 Α¤ = Ú
1£Ν£d

ΑΝ,

rΑ = Û
1£Ν£d

rΝ
ΑΝ ,

Λ
Α = Λ1

Α1  ¼ Λd
Αd

for all r Î Rd, Λ = HΛ1, ¼, ΛdL Î DHH, KLd, Α Î Nd.

Choose  an  ordered  basis  h  =  Hh1, ¼, hdL  of  H,  and  put  b  =  Hb1, ¼, bdL  :=

(∆h1
- 1,  ¼,  ∆hd

- 1)  Î  Zp@HDd.  Then  for  each  f Î CanHH, KL  the  Mahler

expansion ([20], III, 1.2.4) of the function Ψh
* H f L is given by

Ψh
* H f L = Ú

ΑÎNd

bΑH f L I ×
Α

M.
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Ψh
* H f L = Ú

ΑÎNd

bΑH f L I ×
Α

M.

From the characterization of locally analytic functions on Zp
d  by means of their

Mahler  coefficients  ([20],  III,  1.3.9)  it  follows  that  every  distribution  Λ  Î

DHH, KL has a unique convergent expansion 

Λ = Ú
ΑÎNd

dΑ  bΑ

with  a  family  HdΑLΑÎNd  in  K  satisfying  lim Α¤®¥ dΑ¤ rΑ  =  0  for  any  r  Î  IHdL.
Conversely, any such family HdΑL  defines an element Λ Î DHH, KL  by the above
formula. For every r Î IHdL we define a norm ° ´h,r on DHH, KL by

°Λ´h,r := sup
ΑÎNd

  dΑ¤ rΑ;

the  dominant  index  of  Λ,  i.e.  the  maximal  (cf.  the  above  convention)  index

Α Î Nd satisfying °Λ´h,r =  dΑ¤ rΑ will be denoted by 

Α = domh,rHΛL. 

Then the original Frechet topology on DHH, KL is defined by the family of norms

° ´h,r  (r Î IHdL).  Let  Dh,rHH, KL  denote  the  completion of  DHH, KL  with  respect

to the norm ° ´h,r;  this is a K-Banach  space allowing the family IbΑM
ΑÎNd  as an

orthogonal basis.
Put Κ = 1 if p ¹ 2, Κ = 2 if p = 2. In case Hr, ¼, rL Î IHdL is a diagonal tuple we

know by the work of Schneider-Teitelbaum  that the norm

° ´r := ° ´h,HrΚ ,¼,rΚ L

is  multiplicative and does not depend on the choice of the ordered basis h,  and
that the completion

DrHH, KL := Dh,HrΚ ,¼,rΚ LHH, KL

is  a  noetherian  K-Banach  algebra  (cf.  [32],  Theorem  4.5,  Remark  4.6  and  the

remarks following Theorem 4.10; take into account that the map h # max(m + Κ;

h Î Hpm
) is a p-valuation  of H). Before stating the main result of this section we

provide two lemmata. 
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Lemma  6.1.  Let  H  be  a  uniform  pro- p-group  with  ordered  basis  h  =

Hh1, ¼, hdL  and  put  b  =  (∆h1
- 1,  ¼,  ∆hd

- 1).  Let  r Î IHdL.  Let

IΛi = ÚΑÎNd ai,Α  bΑM
iÎI

 be  a  family  in  Dh,rHH, KL  such  that,  for  each  i Î I,  Si  =

domh,rHΛiL is the only element of Nd satisfying

°Λi´h,r = ±ai,Si  b
Si µ

h,r
.

If the mapping i # domh,rHΛiL : I ® Nd  is injective (resp. bijective) then HΛiLiÎI  is

an orthogonal family (resp. an orthogonal basis) in Dh,rHH, KL.

Proof.  For  diagonal  tuples  r = Hr0, ¼, r0L  this  is  [26],  Corollary  4.2,  based  on

Lemma  2  of  Section  1.4  in  [15].  One  easily  checks  that  the  proofs  of  these

results literally carry over to general tuples r Î IHdL. �

Lemma 6.2. (i) Let a, b, c, d Î N. Then

Ú
k³0

H-1La-k  I a
k

M I c k+d
b

M = 
lm
n

ca if b = a ,

0 if b < a .

(ii) Let a, b, h Î N. Then

Ú
k³0

H-1La-k  I a
k

M J ph  k
b

N 
loooom

n
oooo

= 1 if b = a ph,

= 0 if b < a or b > a ph

º 0 Hmod pL if b ¹ a ph.

Proof. (i) We  use  induction  on  c,  the  case  c = 0  being  well-known.  The

addition  theorem  gives  I a
k

M I c k+d
b

M  =  Úl=0
b I a

k
M I k

l
M I Hc-1L k+d

b-l
M  =

Úl=0
b I a

l
M I a-l

k-l
M I Hc-1L k+d

b-l
M, hence

Ú
k³0

H-1La-k  I a
k

M I c k+d
b

M = Ú
l=0

b
I a

l
M Ú

k³0
H-1La-k+l I a-l

k
M I Hc-1L Hk+lL+d

b-l
M.

If  b < a  then  b - l < a - l,  and  the  assertion follows by  induction.  If  b = a  then

by  induction  Úk³0 H-1La-k+l I a-l
k

M I Hc-1L Hk+lL+d
b-l

M  =  Hc - 1La-l,  and  the  assertion

follows from the binomial formula.
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If  b < a  then  b - l < a - l,  and  the  assertion follows by  induction.  If  b = a  then

by  induction  Úk³0 H-1La-k+l I a-l
k

M I Hc-1L Hk+lL+d
b-l

M  =  Hc - 1La-l,  and  the  assertion

follows from the binomial formula.

(ii) (owed  to  E.  Nagel)  We  have  I a
k

M J ph  k
b

N ¹ 0  only  for  a ³ k  and  ph  k ³ ph  b,

whence the cases b = a ph  and b > a ph.  The case b < a  is a special case of part
(i). -  We claim the following:

J ph  k
b

N º 
loom
n
oo

0 Hmod pL if b ¹ ph  i for all 0 £ i £ k,

I k
i

M Hmod pL if b = ph  i for some 0 £ i £ k.

A summand in the sum J ph  k
b

N = Ú
b1+¼+bk=b

 J ph

b1
N ¼ J ph

bk
N is congruent to 1 mod p if

and only if

H*L each bΝ (0 £ Ν £ k) is equal to either 0 or ph

and  is  zero  mod  p  in  all  other  cases.  But  the  number  of  tuples  Hb1, ¼, bkL
satisfying b1 + ¼ + bk = b and H*L is equal to

loom
n
oo

0 if b ¹ ph  i for all 0 £ i £ a,

I k
i

M if b = ph  i for some 0 £ i £ a

as in the latter case i tokens of ph  have to be distributed onto k  possible indices
(without consideration of order). This proves our claim.

Since also J ph  k
b

N = I k
i

M for b > ph  k and i > k we conclude

Ú
k³0

H-1La-k  I a
k

M J ph  k
b

N º 
looom
n
ooo

0 if b ¹ ph  i for all 0 £ i £ a,

Ú
k³0

H-1La-k  I a
k

M I k
i

M if b = ph  i for some 0 £ i £ a,

and the lemma follows from the part (i). �

Proposition 6.3.  Let H  be a uniform pro- p-group  of dimension d.  Let H¢ Ì H

be  an  open  subgroup  which  is  a  uniform  pro- p-group.  Let  Γ Î Nd  be  the

sequence of p-elementary  divisors of H¢  in H.  Choose r Î IHdL  and an ordered

basis h  =  Hh1, ¼, hdL  of H  such that r¢  :=  Jr1
pΓH1L

, ¼, rd
pΓHdL

N  is  contained in IHdL,

the norm ° ´h,r  is multiplicative, and h¢ := Jh1
pΓH1L

, ¼, hd
pΓHdL

N is an ordered basis of

H¢.  Then  the  norm  ° ´h¢ ,r¢  on  DHH¢, KL  is  equal  to  the  restriction  of  the  norm

° ´h,r on DHH, KL to DHH¢, KL and in particular is multiplicative.
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Proposition 6.3.  Let H  be a uniform pro- p-group  of dimension d.  Let H¢ Ì H

be  an  open  subgroup  which  is  a  uniform  pro- p-group.  Let  Γ Î Nd  be  the

sequence of p-elementary  divisors of H¢  in H.  Choose r Î IHdL  and an ordered

basis h  =  Hh1, ¼, hdL  of H  such that r¢  :=  Jr1
pΓH1L

, ¼, rd
pΓHdL

N  is  contained in IHdL,

the norm ° ´h,r  is multiplicative, and h¢ := Jh1
pΓH1L

, ¼, hd
pΓHdL

N is an ordered basis of

H¢.  Then  the  norm  ° ´h¢ ,r¢  on  DHH¢, KL  is  equal  to  the  restriction  of  the  norm

° ´h,r on DHH, KL to DHH¢, KL and in particular is multiplicative.

Proof.  Write  b  =  I∆h1
- 1, ¼, ∆hd

- 1M,  b¢  =  I∆h1
¢ - 1, ¼, ∆hd

¢ - 1M.  We  have  to

show that

±ÚΑ dΑ
¢  b¢Αµ

h,r
= ±ÚΑ dΑ

¢  b¢ Αµ
h¢ ,r¢ .

for every convergent series

(*) ÚΑÎNd dΑ
¢  b¢Α   (dΑ

¢ Î K)

in DHH¢, KL. 
We first determine, for each Β Î Nd, the expansion

b¢Β = Ú
ΑÎNd

tΒ,Α  bΑ   (tΒ,Α Î K).

We  calculate  bΝ
¢ ΒΝ  =  JHbΝ + 1LpΓHΝL

- 1N
ΒΝ

 =  Úl³0 H-1LΒΝ-l  I ΒΝ

l
M  HbΝ + 1Ll pΓHΝL

 =

Úk³0 Úl³0 H-1LΒΝ-l I ΒΝ

l
M J l pΓHΝL

k
N bΝ

k; therefore

tΒ,Α = Û
1£Ν£d

 Ú
l³0

 H-1LΒΝ-l I ΒΝ

l
M J l pΓHΝL

ΑΝ
N.

In case Β = H0, ¼, 1, ¼, 0L is the Ν-th  unit vector this reduces to

tH0,...,1,¼,0L,Α = 
loom
n
oo

J pΓHΝL

ΑΝ
N ; 1 £ ΑΝ £ pΓHΝL and ΑΝ¢ = 0 for all Ν¢ ¹ Ν,

0 ; otherwise.

Our next claim is that, for every Β Î Nd, there is a unique element SΒ of Nd  such

that ±b¢Βµ
h,r

 = ±tΒ,SΒ
 bSΒ µ

h,r
. First observe that the assumption on r¢  implies that,

for  every  1 £ Ν £ d,  rΝ
pΓHΝL -1 >  p¤.  Using  the  fact  that  p  divides  J pΓHΝL

k
N  for  all

1 £ k < pΓHΝL we obtain
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Our next claim is that, for every Β Î Nd, there is a unique element SΒ of Nd  such

that ±b¢Βµ
h,r

 = ±tΒ,SΒ
 bSΒ µ

h,r
. First observe that the assumption on r¢  implies that,

for  every  1 £ Ν £ d,  rΝ
pΓHΝL -1 >  p¤.  Using  the  fact  that  p  divides  J pΓHΝL

k
N  for  all

1 £ k < pΓHΝL we obtain

¢J pΓHΝL

pΓHΝL N¦ rΝ
pΓHΝL

 = rΝ
pΓHΝL

 > ¢J pΓHΝL

k
N¦ rΝ ³ ¢J pΓHΝL

k
N¦ rΝ

k

for all 1 £ k < pΓHΝL. This proves our claim in case Β = H0, ¼, 1, ¼, 0L is the Ν-

th unit vector: letting SΒ := H0, ¼, pΓHΝL, ¼, 0L = pΓHΝL Β, we have

±tΒ,SΒ
 bΒµ

h,r
 > ±tΒ,Α  bΑµ

h,r
   for all Α ¹ SΒ,

±b¢ Βµ
h,r

 = max
Α

 ±tΒ,Α  bΑµ
h,r

 = ±tΒ,SΒ
 bΒµ

h,r
 = rΝ

pΓHΝL
.

For general Β we have, by multiplicativity of the norm ° ´h,r,

(**) ±b¢Βµ
h,r

 = Û
1£Ν£d

°bΝ
¢ ´h,r

Βi  = Û
1£Ν£d

rΝ
pΓHΝL  ΒΝ  = r¢Β. 

On the other hand,

 tΒ,Α¤ = Û
1£Ν£d

 
ÄÄÄÄ 
ÄÄÄÄ
Ú
l³0

H-1LΒΝ-l I ΒΝ

l
M J l pΓHΝL

ΑΝ
N
ÄÄÄÄ¤
ÄÄÄÄ
 
lom
noo

= 1 ; if Α = IΒ1  pΓH1L, ¼, Βd pΓHdLM
< 1 ; otherwise

.

by  Lemma  6.2.  It  follows  that  SΒ := IΒ1  pΓH1L, ¼, Βd pΓHdLM Î Nd  is  the  unique

element such that

±tΒ,SΒ
 bSΒ µ

h,r
 = rSΒ  = r¢Β = ±b¢Βµ

h,r
,

and our claim is established.

Since  the  elements  SΒ  (Β Î Nd)  are  pairwise  different  it  follows  from Lemma

6.1  that  the  family  Ib¢ΒM
ΒÎN

 is  orthogonal  in  the  K-Banach  space  Dh,rHH, KL.

This means that

±ÚΑ dΑ  b¢Αµ
h,r

 = max
Α

  dΑ¤ ±b¢Αµ
h,r

for  every  convergent  series  ÚΑ dΑ  b¢Α  in  DHH, KL  and  a  fortiori  for  our

convergent series (*) in DHH¢, KL Ì DHH, KL. Together with (**) this implies

±ÚΑ dΑ
¢  b¢Αµ

h,r
= max

Α
  dΑ¤ r¢Α = ±ÚΑ dΑ  b¢ Αµ

h¢ ,r¢
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±ÚΑ dΑ
¢  b¢Αµ

h,r
= max

Α
  dΑ¤ r¢Α = ±ÚΑ dΑ  b¢ Αµ

h¢ ,r¢

as was to be shown. �

7. Distribution algebras of L-analytic  groups

Let H  be an L-analytic  group with Lie algebra h, and let r Î pQ  Ý Ap-1, 1M. The

map  DIRQp

L HHL, KM  ®  DHH, KL  dual  to  the  canonical  injection  CanHH, KL  ®

CanIRQp

L HHL, KM  is an epimorphism of K- Frechet algebras ([31], Section 1). We

let  ° ´r�  denote  the  residue  norm  on  DHH, KL  induced  from  the  norm  ° ´r  on

DIRQp

L HHL, KM via this epimorphism, and we let DrHH, KL (resp. UrHh, KL) denote

the completion of DHH, KL (resp. of UHh, KL) with respect to the norm ° ´r� .

The  property  of  an  L-analytic  group H  of  being  uniform pro- p  only  depends
on its underlying topological group, not on its being viewed as an L-analytic  or

Qp-analytic  group.  There  is  a  finer  concept  of  uniformity  adapted  to  the

circumstances of L-analytic  groups (cf. [27], Section 2):

Definition 7.1. An L-analytic  group H  with Lie algebra h is called L- uniform if

it is a uniform pro- p-group  and the Zp-lattice  LogHHL Ì h is an oL- lattice.

If H is L-uniform,  Hx1, ¼, xdL is an oL-basis  of LogHHL and Hv1, ¼, vnL is a Zp-

basis of oL then the family

Hhi j := Exp vi x jL1£i£n,1£ j£d

is an ordered basis of H; conversely, any L-analytic  group H which is a uniform
pro- p-group  with an ordered basis of the above form is L-uniform.  According

to  [19],  Proposition  1.3.5,  every  L-analytic  group  possesses  a  basis  of

neighbourhoods of 1 consisting of open L-uniform  subgroups. We remark that if

H  is  L-uniform  with  ordered  basis  Hhi jL  as  above  then  every  uniform  pro- p-

group with an ordered basis of the form Jhi j
pΑH jL

N
i, j

 with ΑH1L, ¼, ΑHdL Î N, and in

particular every lower p-series  member of H, is L-uniform  as well.
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to  [19],  Proposition  1.3.5,  every  L-analytic  group  possesses  a  basis  of

neighbourhoods of 1 consisting of open L-uniform  subgroups. We remark that if

H  is  L-uniform  with  ordered  basis  Hhi jL  as  above  then  every  uniform  pro- p-

group with an ordered basis of the form Jhi j
pΑH jL

N
i, j

 with ΑH1L, ¼, ΑHdL Î N, and in

particular every lower p-series  member of H, is L-uniform  as well.

Recall that Κ = 1 if p ¹ 2, Κ = 2 if p = 2. For r Î H0, 1L define

ΕHrL := sup 9m0 Î N³1; ¡m0
-1¥ rΚ m0 ³ ¡m-1¥ rΚ m for all m Î N³1=.

Theorem 7.2  (Frommer-Kohlhaase).  Let  H  be  an  L-uniform  group  with  Lie

algebra h. Let r Î pQ Ý Ap-1, 1M.

(i) Let  X  =  Hx1, ¼, xdL  be  an  oL-basis  of  LogHHL.  Then  HXΑLΑÎNd  is  an

orthogonal basis of UrHh, KL.
(ii) DrHH, KL  is  a  free  right  UrHh, KL-module  of  rank  n × d × ΕHrL.  More  exactly:

Let  Hh1, ¼, hn dL  be  an  ordered  basis  of  H  and  put  b  :=  (∆h1
- 1,  ¼,  ∆hn d

- 1).

Then IbΑM
ΑÎNn d ,Α1<ΕHrL,¼,Αn d <ΕHrL is a UrHh, KL-basis  of DrHH, KL.

Proof.  This  is  essentially Theorem 1.4.2 of  [19].  The orthogonal basis property

of  the  family HXΑL  for  the  norm ° ´r�  is  proved in  [27],  Proposition 2.4.  For  the

description of ΕHrL cf. [15], Section 1.4. �

Remark  7.3.  Let  H  be  an  L-analytic  group  which  is  a  uniform pro- p- group,

and let r Î pQ Ý Ap-1, 1M. 

(1) Let g Î H. Then the series log ∆g converges in DrHH, KL, and

log ∆g = Log g.

(2) What is the significance of the number ΕHrL? We have:

a) if  Hx1, ¼, xdL  is  a  Zp-basis  of  LogHHL  then  ΕHrL  =  domrHxiL  for  each

1 £ i £ d; in particular °xi´r�  = ΕHrL rΚ ΕHrL;

b) ΕHrL is a p-power,  and ΕIrp-k M = pk  ΕHrL for k Î N;

c)  p¤p�Hp-1L £ rΚ ΕHrL <  p¤1�Hp-1L, and ΕHrL ® ¥ monotonely for r ® 1;

d) Let  g  Î  HΕHrL,  x := Log g.  Then the series exp x  converges in DrHH, KL.  In
particular, ∆g = exp x Î UrHh, KL and
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b) ΕHrL is a p-power,  and ΕIrp-k M = pk  ΕHrL for k Î N;

c)  p¤p�Hp-1L £ rΚ ΕHrL <  p¤1�Hp-1L, and ΕHrL ® ¥ monotonely for r ® 1;

d) Let  g  Î  HΕHrL,  x := Log g.  Then the series exp x  converges in DrHH, KL.  In
particular, ∆g = exp x Î UrHh, KL and

exp x = ∆Exp x.

Proof. (1)  Let  Hh1, ¼, hdL  be  an  ordered  basis  of  H,  and  write  as  usual  b  =

Hb1, ¼, bdL,  bi = ∆hi - 1.  According  to  Corollary  5.4  we  may  assume  g  =  h1
pm

(m Î N).  Hence  °∆g - 1´r�  =  ±Úk³1 I pm

k
M b1

k µ
r�

 £  r  <  1,  so  the  series  log ∆g

converges ([6], Section II.8.4).

We identify the Lie algebra h of H  with the Lie algebra of RQp

L HHL. Then LogH

coincides  with  LogR
Qp

L HHL,  and  the  epimorphism  DIRQp

L  H, KM ® DHH, KL  is

compatible  with  the  embeddings  H ® DIRQp

L  H, KM,  H ® DHH, KL  and  with  the

embeddings  h ® DIRQp

L  H, KM,  h ® DHH, KL.  Hence  by  continuity  of  this

epimorphism,  in  order  to  show  log ∆g  =  Log g  we  may  restrict  to  the  case

L = Qp. But then

LogHgtL = t LogHgL,     logI∆g
t M = t log ∆g

for all t Î Z and hence for all t Î Zp. For sufficiently small t we deduce

∆ExpHt Log gL = expHt log ∆gL = Ú
n³0

I t
n

M H∆g - 1Ln.

Using the formula limt®0 ���1
t

 I t
n

M = ����������������H-1Ln-1

n
 we compute

log ∆g = Ú
n³1

����������������H-1Ln-1

n
 H∆g - 1Ln = lim

t®0
 ���1

t
 Ú
n³1

I t
n

M H∆g - 1Ln = lim
t®0

 ���1
t

 H∆ExpHt Log gL - 1L;

the  last  expression  is  precisely  Log g  (cf.  the  description  of  the  embedding

h Ì DHH, KL at the end of Section 2 in [30]).

(2) a)  This  is  clear  by  definition  of  ΕHrL,  since  xi  =   Ún>1 H-1Ln-1  ���1
n

 bi
n,

bi := ∆Exp xi - 1, by part (1). 

b) First  observe  that  the  expression  ¡m-1¥ rΚ m  (m Î N³1)  attains  its  maximal

values at p-powers  m. Thus we may describe ΕHrL as the maximum of the set
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b) First  observe  that  the  expression  ¡m-1¥ rΚ m  (m Î N³1)  attains  its  maximal

values at p-powers  m. Thus we may describe ΕHrL as the maximum of the set

{pk0 ; k0 Î N, pk0  rΚ pk0  ³ pk  rΚ pk
 for all k Î N}.

Let  k1 Î N.   The  condition  "pk0  rΚ pk0  ³  pk  rΚ pk
 for  all  k Î N"  is  equivalent  to

"pk0  rΚ pk0  ³  pk-k1  rΚ pk-k1  for  all  k Î N"  (since  pk  rΚ pk
£ p0  rΚ p0

 for  negative  k),

and  further  to  "pk0+k1 Irp-k1 M
Κ pk0 +k1

 ³  pkIrp-k1 M
Κ pk

 for  all  k Î N".  This  means  that

ΕIrp-k1 M = ΕHrL pk1 .

c) Write Κ ΕHrL = pk. By definition, ¡p-k¥ rpk
 > ¡p-Hk+1L¥ rpk+1

, hence p-1  =  p¤ >

rHp-1L pk
, hence p-1�Hp-1L  > rpk

. Also by definition, ¡p-k¥ rpk
 ³ ¡p-Hk-1L¥ rpk-1

, hence

rI1-p-1M pk
 ³   p¤  =  p-1,  hence  rpk

 ³  p-1�I1-p-1M  =  pp�H1-pL.  This  also  implies

ΕHrL ® ¥  for  r ® 1.  In  order  to  show monotony,  let  r¢ £ r,  and  write  ΕHrL = pk,

ΕHr¢L = pk¢
,  r¢ = r s.  By  definition,  pk¢

 rΚ pk¢

 sΚ pk¢

 ³  pk  rΚ pk
 sΚ pk

 ³  pk¢
 rΚ pk¢

 sΚ pk
,

which implies k¢ £ k. 

d)  According  to  [6],  Section  II.8.4,  we  have  to  show  that  °x´r�  <   p¤1�Hp-1L.

There  is  a  basis  HxiL  of  LogHHL  satisfying  x  =  pm x1  (Corollary  5.4),  and  by

assumption pm ³ ΕHrL. By part a), °x´r�  = p-m °x1´r�  = p-m ΕHrL rΚ ΕHrL  £ rΚ ΕHrL, and
our claim follows from part c). �

Now fix a compact L-analytic  group G. Let H Ì G be an open normal subgroup

which is a uniform pro- p-group,  and let r Î pQ  Ý Ap-1, 1M. In Section 5 of [32]

the algebra DHG, KL is endowed with a norm depending on the pair HH, rL in the

following  way:  Let  R  be  a  system  of  representatives  of  G � H.  Let

Λ Î DIRQp

L HGL, KM, and write

Λ = Ú
xÎR

Λx ∆x

according to the decomposition DIRQp

L HGL, KM = ÅxÎRDIRQp

L HHL, KM ∆x. Then

Λ # max
xÎR

 °Λx´r
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Λ # max
xÎR

 °Λx´r

defines  a  norm  on  DIRQp

L HGL, KM  which  is  independent  of  the  choice  of  R  (cf.

[26],  Section 4.2).  We let  ° ´HH,rL  denote  the  residue norm on  DHG, KL  induced

from  this  norm  via  the  epimorphism DIRQp

L HGL, KM  ®  DHG, KL,  and  we  denote

the completion of DHG, KL with respect to this norm by DHH,rLHG, KL. Then

DHH,rLHG, KL = Å
xÎR

DrHH, KL ∆x

as K-Banach  spaces (cf. [23], Remark 2.2.5). By [32], Theorem 5.1 (and proof),

DHH,rLHG, KL is a noetherian K-Banach  algebra.

Recall that a basis  of a K-Banach  space HM, ° ´L  is a family HTiLiÎI  in M  such

that every Μ Î M  has a representation as a convergent sum Μ = ÚiÎI ai Ti  with a

uniquely determined family HaiLiÎI  in K (cf. [24], p. 53).

Corollary 7.4.  Let H Ì G  be an L-uniform  open normal subgroup, and let  r  Î

pQ Ý Ap-1, 1M. Let X = Hx1, ¼, xdL be an oL-basis  of LogHHL. Let  R be a system

of representatives of G � HΕHrL. Then the family HXΑ  ∆xLΑÎNd ,xÎR is a basis of the K-

Banach space DHH,rLHG, KL.

Proof.  Let  HhiL  be  an  ordered basis  of  H,  h := I∆hi Mi
,  b := I∆hi - 1M

i
.  In  Theorem

7.2  (ii)  we  may  replace  the  UrHg, KL-basis  IbΑM
Α<ΕHrL  of  DrHH, KL  by  the  basis

IhΑM
Α<ΕHrL, since

IhΑM
Α<ΕHrL = IbΑM

Α<ΕHrL × T,      IbΑM
Α<ΕHrL = IhΑM

Α<ΕHrL × T-1

with  base  change  matrices  T  =  (I Α
Β

M) Α,Β<ΕHrL,  T-1  =  (H-1L Β¤ I Α
Β

M) Α,Β<ΕHrL.  Let  R¢

be any system of representatives of G � H.  From the decomposition DHH,rLHG, KL

=  ÅyÎR¢ DrHH, KL ∆y  we  obtain  that  IhΑ  ∆yM
Α<ΕHrL,yÎR¢  is  a  UrHg, KL-basis  of

DHH,rLHG, KL.  Now  if  hΑ  ∆y  (Α < ΕHrL, y Î R¢)  and  ∆x  (x Î R)  are  two

representatives  contained  in  the  same  coset  of  HΕHrL  then  hΑ  ∆y ∆x
-1  is  a  unit  in

UrHg, KL  (Remark  7.3  (2)  d)).  Hence  H∆xLxÎR  is  also  a  UrHg, KL-basis  of

DHH,rLHG, KL. The corollary follows then from Theorem 7.2 (i). �
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with  base  change  matrices  T  =  (I Α
Β

M) Α,Β<ΕHrL,  T-1  =  (H-1L Β¤ I Α
Β

M) Α,Β<ΕHrL.  Let  R¢

be any system of representatives of G � H.  From the decomposition DHH,rLHG, KL

=  ÅyÎR¢ DrHH, KL ∆y  we  obtain  that  IhΑ  ∆yM
Α<ΕHrL,yÎR¢  is  a  UrHg, KL-basis  of

DHH,rLHG, KL.  Now  if  hΑ  ∆y  (Α < ΕHrL, y Î R¢)  and  ∆x  (x Î R)  are  two

representatives  contained  in  the  same  coset  of  HΕHrL  then  hΑ  ∆y ∆x
-1  is  a  unit  in

UrHg, KL  (Remark  7.3  (2)  d)).  Hence  H∆xLxÎR  is  also  a  UrHg, KL-basis  of

DHH,rLHG, KL. The corollary follows then from Theorem 7.2 (i). �

Proposition  7.5.  Let  H, H¢ Ì G  be  open  normal  subgroups  which  are  uniform

pro- p-groups.  Let  r, r¢  Î  pQ  Ý  Ap-1, 1M.  Suppose  that  one  of  the  following

conditions holds:

(i) H¢ = H and r¢ ³ r;

(ii)  H¢ Ì H,  r¢ = r,  rΚ pm
³ p-1  where m  is  the highest  p-elementary  divisor of

H¢ in H;

(iii) there is an m Î N such that H¢ = Hpm
, r¢ = rpm

.

Then  there  is  a  continuous  K-algebra  homomorphism  DHH¢ ,r¢LHG, KL  ®

DHH,rLHG, KL  extending  the  identity  map  DHG, KL  ®  DHG, KL.  In  case  (iii)  this

homomorphism is a topological isomorphism.

Proof.  First  note  that  a  continuous  K-linear  map  DHH¢ ,r¢LHG, KL  ®  DHH,rLHG, KL
fixing G  (that  is,  fixing the  Dirac distributions ∆g  for  g Î G)  is  automatically a

K-algebra  homomorphism extending the identity on DHG, KL.
(i) We have ° ´r £ ° ´r¢  on DIRQp

L HHL, KM, hence ° ´r� £ ° ´r�
¢  on DHH, KL, hence

the  identity  on  DHH, KL  extends  to  a  norm-decreasing  map  Dr¢ HH, KL  ®
DrHH, KL.  This  induces  a  norm-decreasing  K-linear  map  DHH,r¢LHG, KL  =

ÅxÎG0�H  Dr¢ HH, KL ∆x ® ÅxÎG0�H  DrHH, KL ∆x = DHH,rLHG, KL which fixes G.

(ii) Let HΑH1L, ¼, ΑHdL = mL  be the sequence of p-elementary  divisors of H¢  in

H.  By  assumption  we  have  r²  :=  (rΚ pΑH1L
,  ¼,  rΚ pΑHdL

)  Î  IHdL,  so  we  may  apply

Proposition 6.3 to obtain a an ordered basis h¢  of H¢  such that the norm ° ´h¢ ,r²

on DIRQp

L HH¢L, KM is equal to the restriction of the norm ° ´r  on DIRQp

L HHL, KM to

DIRQp

L HH¢L, KM.  It  follows  from  [26],  Corollary  4.9,  that  the  residue  norm  on

DHH¢, KL  induced  from ° ´h¢ ,r²  is  equivalent  to  the  restriction of  the  norm ° ´r�

on DHH, KL to DHH¢, KL, and for the respective completions we have

DrHH, KL = Å
xÎH�H¢

Dh¢ ,r² HH¢, KL ∆x

43



DrHH, KL = Å
xÎH�H¢

Dh¢ ,r² HH¢, KL ∆x

as  K-Banach  spaces.  On the  other  hand  there  is,  similarly as  in  part  (i)  of  this

proof,  the  natural  continuous  K-linear  map  DrHH¢, KL  ®  Dh¢ ,r² HH¢, KL,  and

thereby the continuous K-linear  map 

DHH¢ ,rLHG, KL = 
i

k

jjjjj Å
yÎG0�H

Å
xÎH�H¢

DrHH¢, KL ∆y ∆x

y

{

zzzzz 

� 
i

k

jjjjj Å
yÎG0�H

DrHH, KL ∆y

y

{

zzzzz = DHH,rLHG, KL,

fixing G.

(iii)  The  restriction  of  the  norm  ° ´r  on  DIRQp

L HHL, KM  to   DIRQp

L IHpm M, KM  is

equal  to  the  norm  ° ´rpm  on  DIRQp

L IHpm M, KM  (Proposition  6.3),  hence  ([26],

Corollary  4.9)  DrHH, KL  =  ÅxÎH�Hpm Drpm IHpm
, KM.  Consequently,

DIHpm
,rpm MHG, KL  =  ÅyÎG0�H  ÅxÎH�Hpm  Drpm IHpm

, KM ∆y ∆x  =  ÅyÎG0�H  DrHH, KL ∆y

= DHH,rLHG, KL. �

8. Decreasing filtrations of the enveloping algebra

Let G be an L-analytic  group with Lie algebra g and exponential mapping Exp.
Let  V  be  a  locally  analytic  G-representation.  The  Lie  algebra  action  on  V  is
given by

x v = �����d
dt

 ExpHt xL v Èt=0

(x Î g, v Î V); it naturally extends to an action of the enveloping algebra UHgL of

g.  For  k Î N  let  gk Ì UHgL  denote  the  subset  of  elements  of  the  form  x1 ¼ xk

with x1, ¼, xk Î g.

Definition  8.1.  A  vector  v Î V  is  called  g-adically  finite  if  gk  v = 0  for  some

k Î N.
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Definition  8.1.  A  vector  v Î V  is  called  g-adically  finite  if  gk  v = 0  for  some

k Î N.

From  the  formula  x g v = g AdHgL-1  HxL v  (x Î g,  g Î G,  v Î V ,  cf.  [14]  Satz

3.1.3) it follows that the g-adically  finite vectors form an invariant subspace of
V .

Let THgL = ÅkÎNTkHgL be the graded tensor L-algebra  of g, with TkHgL denoting

the subspace of homogeneous tensors of order k  (k Î N). We have the canonical
epimorphism

Π : THgL ® UHgL, z1 Ä ¼ Ä zk # z1  ¼ zk,

and ΠITkHgLM is equal to the L-vector  subspace of UHgL generated by gk. The sum

of  the  ΠITkHgLM  is  of  course  not  direct  anymore,  we  rather  have  ΠITkHgLM  Ì

Ú1£k¢£k L gk¢
 for k ³ 1. The L-vector  spaces

UmHgL := Ú
k£m

ΠITkHgLM    (m Î N)

constitute the (increasing) canonical filtration of the L-algebra  UHgL  considered

in  [6],  I.2.6,  and  [12],  2.3.1.  On  the  other  hand,  for  each  m Î N  we  obviously

have

gm UHgL := 8Úi xi yi; xi Î gm, yi Î UHgL< = Ú
k³m

ΠITkHgLM,

and this L-vector  space is equal to the left, as well as to the two-sided  ideal in

UHgL  generated by  gm.  As  the  spaces ΠITkHgLM  are  finite-dimensional  the  ideals

gm UHgL  are  of  finite  codimension  in  UHgL.  Moreover,  gk  UHgL × gm UHgL  Ì

gk+m UHgL for all k, m Î N.

Definition  8.2.  The  decreasing  filtration  Igk  UHgLM
kÎN

 is  called  the  g- adic

filtration of the algebra UHgL.

Clearly,  a  vector is  g-adically  finite if  and only if  it  is  annihilated by the ideal

gk  UHgL  for  some  k Î N.  Recall  that  a  vector  v  is  called  UHgL- finite  (cf.  [13],

Definition 4.1.10) if it is contained in a finite-dimensional  UHgL-stable  subspace
of  V ,  or  equivalently:  if  it  is  annihilated  by  a  left  ideal  in  UHgL  of  finite

codimension.  By  a  lemma  of  Emerton  ([13]  4.1.11)  this  is  equivalent  to  the

condition that v  is locally finite,  i.e.  contained in a finite-dimensional  subspace
of  V  stable  under  an  open  subgroup  of  G.  Obviously,  every  g-adically  finite

vector  is  UHgL-finite.  The  converse  does  not  hold  as  Example  8.3  below

indicates.
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Clearly,  a  vector is  g-adically  finite if  and only if  it  is  annihilated by the ideal

gk  UHgL  for  some  k Î N.  Recall  that  a  vector  v  is  called  UHgL- finite  (cf.  [13],

Definition 4.1.10) if it is contained in a finite-dimensional  UHgL-stable  subspace
of  V ,  or  equivalently:  if  it  is  annihilated  by  a  left  ideal  in  UHgL  of  finite

codimension.  By  a  lemma  of  Emerton  ([13]  4.1.11)  this  is  equivalent  to  the

condition that v  is locally finite,  i.e.  contained in a finite-dimensional  subspace
of  V  stable  under  an  open  subgroup  of  G.  Obviously,  every  g-adically  finite

vector  is  UHgL-finite.  The  converse  does  not  hold  as  Example  8.3  below

indicates.

Example 8.3.  Let  G = oL,  the  additive  group of  integers  of  L.  Then Exp  is  the
identity map on oL. Let V  be the locally analytic regular representation of G, that

is,  V  is  the  locally  convex  K-vector  space  CanHG, KL  endowed  with  the

translation  action  of  G.  The  Lie  algebra  action  is  given  by  x1 f = - f ¢

(x1 = 1 Î L, f Î V; here f ¢ denotes the dervative of f ).

(a) A vector f Î V  is g-adically  finite if and only if it is locally polynomial, i.e.
if and only if  for each x Î G there is a polynomial P with coefficients in K  such

that f HzL = PHy - xL for all y in a neighbourhood of x.

(b) Choose  an  open  subgroup  U Ì G  such  that  the  series  ÚmÎN xm � m!

converges for x Î U. The vector

e : G � K

x S TQQ :
ÚmÎN xm � m! ; x Î U

0 ; x Ï U

is not g-adically  finite but is UHgL-finite:  We have x1 e = -e, hence gk  e = L e ¹

0  for  all  k Î N,  while  the  ideal  generated  by  x1 + 1  in  UHgL  is  of  finite
codimension and annihilates e.
More generally one can show the following: Let G  be the group of L- rational

points  of  a  unipotent  algebraic  L-group  and  let  V  be  the  left  regular

representation on CanHG, KL. A vector f Î V  is g-adically  finite if and only if it
is  locally  polynomial  with  respect  to  the  canonical  chart  of  the  second  species
associated to any ordered basis of g.

We denote by g = C0HgL É C1HgL É ¼ the lower central series of g.

Lemma  8.4.  Let  G  be  the  group  of  L-rational  points  of  a  unipotent  L- group.
For any g Î G and m Î N,

HAdHgL - idgL HCmHgLL Ì Cm+1HgL.
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HAdHgL - idgL HCmHgLL Ì Cm+1HgL.

Proof.  Let  x = LogHgL.  We  may  view  G  as  a  group  of  strictly  upper  triangular

matrices in some GLm  (Example 4.2). Hence Exp is defined on the whole of g,

and we have the equality AdHExpHxLL = expHadHxLL in GLHgL. For all y Î CmHgL,

HAdHgL - idgL HyL = expHadHxLL HyL - y = @x, yD + ���1
2

@x, @x, yDD + ¼ .

Since  CmHgL  is  an  ideal  in  g  it  follows  that  HAdHgL - idgL HyL  is  contained  in

@x, CmHgLD Ì Cm+1HgL. �

For the rest  of  this  section,  we fix an open normal L-uniform  subgroup H Ì G

and a number r  Î pQ  Ý Ap-1, 1M. Let Hx1, ¼, xdL be an oL-basis  of LogHHL and

R a system of representatives for HΕHrL \ G. Then the family

Ix1
Α1  ¼ xd

Αd  ∆gM
ΑÎNd ,gÎR

is  a  basis  of  the  K-Banach  space  DHH,rLHG, KL  (Corollary  7.4).  We  further

assume R to be of the following form: There exists a family g = Hgi,ΒL1£i£d,ΒÎI  in

G  such  that  R  =  8g1,Β × ¼ × gd,Β; Β Î I<.  For  k Î N,  let  MHg, kL  Ì  DHH,rLHG, KL
denote the closed K-vector  subspace generated by the elements 

x1
Α1  ∆g1,Β

 ¼ xd
Αd  ∆gd,Β

     (Β Î I, Α Î Nd, not all Αi < k).

The next two lemmata compare this space with the closed subspace

gk  DHH,rLHG, KL = 9Úi xi Λi; xi Î gk, Λi Î DHH,rLHG, KL=

of DHH,rLHG, KL.

Lemma 8.5. (i) Let g Î G, x Î g. In DHH,rLHG, KL we have

∆g  x ∆g
-1 = AdHgL HxL.

(ii) For any k Î N,

MHg, kL Ì gk  DHH,rLHG, KL.
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MHg, kL Ì gk  DHH,rLHG, KL.

Proof.  There  exists  c Î L´  such  that  c x Î LogHHΕHrLL.  Put  h := ExpHc xL.  By

Remark  7.3,  ∆g  x ∆g
-1  =  c-1  ∆g  logH∆hL ∆g

-1  =  c-1  Ún³1 H-1Ln-1  n-1  ∆g  ∆h
n  ∆g

-1  =

c-1  Ún³1 H-1Ln-1  n-1I∆g h g-1 Mn
 =  c-1  logI∆g h g-1 M  =  c-1  LogIg h g-1M,  since  g h g-1

is contained in HΕHrL. After eventually making c smaller we may apply Corollary

3 (ii) of [6], III.4.4, to obtain c-1  LogIg h g-1M = c-1  AdHgL HExpHhLL = AdHgL HxL,

whence  (i).  In  order  to  prove  (ii),  we  have  to  show  that  x1
Α1  ∆g1,Β

 ¼ xd
Αd  ∆gd,Β

 is

contained in gk  DHH,rLHG, KL for Β Î I, Α Î Nd, not all Αi < k. But from part (i) it

follows  that  there  exist  k¢ ³ k  and  Λ Î gk¢
 such  that  x1

Α1  ∆g1,Β
 ¼ xd

Αd  ∆gd,Β
 =

Λ ∆g1,Β
 ¼ ∆gd,Β

. �

Lemma  8.6.  Let  G  be  the  group  of  L-rational  points  of  a  unipotent  L- group,

and choose m ³ 2 such that CmHgL = 0. Suppose that each CiHgL  is spanned by a

subfamily of the basis Hx1, ¼, xdL. Let k1, k2 Î N such that d m k2 < k1. Then

 gk1  DHH,rLHG, KL Ì MHg, k2L.

Proof. By our assumption on R, gk1  DHH,rLHG, KL is the closed K-vector  subspace

of DHH,rLHG, KL generated by the elements

Λ x1
Α1  ¼ xd

Αd ∆g1,Β
 ¼ ∆gd,Β

   (Λ Î gk1 , Α Î Nd, Β Î I),

and hence also by the elements

Λ ∆g1,Β
 ¼ ∆gd,Β

   (Λ Î gk, k ³ k1, Β Î I).

We fix such an element and introduce some notations: For z Î g define NHzL :=

max 9i Î N; z Î CiHgL= if z ¹ 0, NH0L := ¥. Put 

A := :IHzi, jL1£ j£kHiLM
1£i£d

; zi, j Î g, kHiL Î N>.

Every family z = IHzi, jL1£ j£kHiLM
1£i£d

Î A gives rise to an element

ΛHzL := z1,1  ¼z1,kH1L ∆g1,Β
¼ zd,1  ¼zd,kHdL ∆gd,Β

 Î DHH,rLHG, KL, 
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ΛHzL := z1,1  ¼z1,kH1L ∆g1,Β
¼ zd,1  ¼zd,kHdL ∆gd,Β

 Î DHH,rLHG, KL, 

and  we  define  NHzL  :=  Úi, j NHzi, jL,  LHzL  :=  Úi kHiL.  Finally,  let  B  denote  the

subset of DHH,rLHG, KL of elements of the form

 Μ = c x1
Α1  ∆g1,Β

 ¼ xd
Αd  ∆gd,Β

     (c Î K, Α Î Nd),

and  for  such  an  element  Μ Î B  put  LHΜL = Úi Αi.  Clearly,  if  LHΜL ³ d k2  then

Μ Î MHg, k2L.  Thus it will suffice to show that our fixed generator Λ ∆g1,Β
 ¼ ∆gd,Β

is a finite sum of elements ΜΝ Î B with LHΜΝL ³ d k2.
We claim the following:
(+) Let z Î A with LHzL = k. There exists a finite family HΜΝL in B and a finite

family HzHΝLL in A such that

(a)  ΛHzL = Ú
Ν

ΜΝ + Ú
Ν

ΛHzHΝLL,

(b)  LHΜΝL = k for all Ν,

(c)  k - 1 £ LHzHΝLL £ k and NHzHΝLL ³ NHzL + 1 for all Ν.

In  order  to  prove  (+),  we  first  observe  that  ΛHzL  is  a  linear  combination  of

elements of the form ΛHyL with y = Hyi, jL Î A, all yi, j  Î 8x1, ¼, xd<, LHyL = LHzL
and  (using  our  assumption  on  the  basis)  NHyL ³ NHzL.  Hence  we  may  assume

that ΛHzL itself has this form. Next, for all 1 £ i, j £ d we have

(I) x j xi = xi x j + @x j, xiD with NH@x j, xiDL ³ NHxiL + NHx jL + 1

and, according to Lemma 8.5 (i) and Lemma 8.4,

(II) x j ∆gi,Β
 = ∆gi,Β

 x j - y ∆gi,Β
 with NHyL ³ NHx jL + 1,

where  y  :=  ∆gi,Β
 x j ∆gi,Β

-1 - x j  =  AdHgi,ΒL Hx jL - x j.  Applying  a  finite  number  of

operations of type (I) and (II) to ΛHzL we indeed obtain

ΛHzL = x1
Α1  ∆g1,Β

 ¼ xd
Αd  ∆gd,Β

 + ÚΝ ΛHzHΝLL   (Α Î Nd, ÚΑi = k, zHΝL Î A)

such that the elements zHΝL satisfy the condition (c) of (+).

To conclude the proof, we observe that our chosen generator Λ ∆g1,Β
 ¼ ∆gd,Β

 has

the form ΛHzL  for some z Î A  with LHzL = k.  Since k  ³  k1  ³  d k2,  and since the

procedure (+) "increases N" and "decreases L" according to (c), we may apply

it to ΛHzL and then recursively to the summands ΛHzHΝLL in (a) until we arrive at an
equation 
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To conclude the proof, we observe that our chosen generator Λ ∆g1,Β
 ¼ ∆gd,Β

 has

the form ΛHzL  for some z Î A  with LHzL = k.  Since k  ³  k1  ³  d k2,  and since the

procedure (+) "increases N" and "decreases L" according to (c), we may apply

it to ΛHzL and then recursively to the summands ΛHzHΝLL in (a) until we arrive at an
equation 

ΛHzL = ÚΝ ΜΝ + ÚΝ ΛHzHΝLL   (ΜΝ Î B, zHΝL Î A)

with either LHzHΝLL = d k2, or LHzHΝLL > d k2  and NHzHΝLL > Hm - 1L LHzHΝLL for each

Ν.  In  view  of  (b)  this  also  implies  LHΜΝL ³ d k2  for  each  Ν.  Moreover,  if

LHzHΝLL = d k2  then  in  virtue  of  (c)  we  have  NHzHΝLL  ³  k - d k2  >  Hm - 1L d k2  =

Hm - 1L LHzHΝLL  as well in this case. But for each zHΝL = Izi, j
HΝLM  the relation NHzHΝLL

> Hm - 1L LHzHΝLL implies that at least one zi, j
HΝL  is contained in CmHgL, and thereby

ΛHzHΝLL = 0 by the choice of m. Hence 

ΛHzL = ÚΝ ΜΝ   with ΜΝ Î B, LHΜΝL ³ d k2. �

Remark 8.7. The g-adic  filtration Igk  UHgLM is in general not separated. In fact,

in  case @g, gD = g  it  is  even stationary with gk  UHgL = g UHgL  for  all  k ³ 1.  If  on

the other hand g is nilpotent then a simplified version of Lemma 8.6 shows that

the  g-adic  filtration  is  cofinal  with  the  filtration  given  by  the  subspaces
generated by the elements

x1
Α1  ¼ xd

Αd    (Α Î Nd, not all Αi < k)

(k Î N,  Hx1, ¼, xdL  a  fixed  basis  of  g);  and  this  filtration  clearly  is  separated.
Bourbaki considers yet another decreasing filtration which is independent of the

choice  of  a  particular  basis:  letting  S¢kHgL Ì TkHgL  denote  the  subspace  of
symmetric  tensors,  the  canonical  map  Π : THgL ® UHgL  restricts  to  isomorphisms
of L-vector  spaces

S¢kHgL �� UkHgL := ΠIS¢kHgLM,
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(k Î N),  and  each  UmHgL  is  the  direct  sum  of  the  UkHgL  (k £ m)  (compare  [3],

III.6.3,  Remark;  [6],  I.2.4,  Corollary  4  and  subsequent  discussion).  Again,  a

proof  similar  to  that  of  Lemma  8.6  shows  that  the  g-adic  filtration  is  cofinal

with the filtration IÚk¢³k UkHgLM
kÎN

 provided g is nilpotent.
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III. n-characters  of  admissible  representations  of  reductive  p-
adic groups

Notations. For the remaining sections we fix the following situation: Let G be a
connected reductive group over L. Let S Ì G be a maximal L-split  L-torus.  Let

W  be  the Weyl  group and Fnd  the  system of  non-divisible  roots of  HG, SL.  Let

P Ì G  be  a  minimal  parabolic  subgroup  containing  S,  and  let  N  denote  the
unipotent radical of the parabolic subgroup containing S  and opposite to P.  Let
G = GHLL,  S = SHLL,  P = PHLL,  N = NHLL  denote the corresponding groups of L-
rational points, considered as L-analytic  groups. Finally, let

g = g0 Å Å
aÎFnd

ga 

be  the  L-linear  root  space  decomposition  of  the  Lie  algebra  g  of  G;  here  g0

denotes the  Lie algebra of  S.  By an abuse of language we shall  call  root space
vectors  the  nonzero  elements  of  g  which  are  contained  in  some  ga  (a Î Fnd  or

a = 0).
We will consider admissible representations of open subgroups G1 Ì G over K.

9. Definition of n- characters

Definition 9.1.  Let G¢ Ì G  be an L-subgroup  such that the Lie algebra g¢  of G¢

is spanned by root space vectors. Let G0 Ì G¢HLL be an open compact subgroup.
We define XHG0L to be the set of pairs HH, rL where

(a) H Ì G0  is  an  open  normal  L-uniform  subgroup  such  that  the  oL- lattice
LogHHL  is spanned by root space vectors and is contained in the neighbourhood

Hg¢L~ Ì g¢ specified in Proposition 4.3, and

(b) r Î pQ Ý Ap-1, 1M.

Let us keep the notations of the definition. The groups H Ì G0  with property (a)

form a basis of  neighbourhoods of 1  in G0.  Indeed, let  H¢ Ì G0  be an arbitrary

open normal L-uniform  subgroup. Then the oL-lattice  L¢  = LogHH¢L contains an

oL-lattice  L  spanned by root space vectors and contained in Hg¢L~; moreover, L

É  pm L¢  for some m Î N.  The property of H¢  of being uniform pro- p  translates

to the fact that the lattice L¢  is powerful, i.e. @L¢, L¢D Ì pΚ L¢  ([11], Section 9.4).

But  @pm L, pm LD  Ì  @pm L¢, pm L¢D  Ì  pΚ+2 m L¢  Ì  pΚ  pm L,  hence  pm L  is

powerful and the uniform pro- p-group  H  := ExpHpm LL is an open subgroup of

H¢ satisfying the above properties. This proves our claim.
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Let us keep the notations of the definition. The groups H Ì G0  with property (a)

form a basis of  neighbourhoods of 1  in G0.  Indeed, let  H¢ Ì G0  be an arbitrary

open normal L-uniform  subgroup. Then the oL-lattice  L¢  = LogHH¢L contains an

oL-lattice  L  spanned by root space vectors and contained in Hg¢L~; moreover, L

É  pm L¢  for some m Î N.  The property of H¢  of being uniform pro- p  translates

to the fact that the lattice L¢  is powerful, i.e. @L¢, L¢D Ì pΚ L¢  ([11], Section 9.4).

But  @pm L, pm LD  Ì  @pm L¢, pm L¢D  Ì  pΚ+2 m L¢  Ì  pΚ  pm L,  hence  pm L  is

powerful and the uniform pro- p-group  H  := ExpHpm LL is an open subgroup of

H¢ satisfying the above properties. This proves our claim.

For a pair HHH, rL, HH¢, r¢LL in XHG0L consider the following condition:

(+)

there exist k, k¢ Î N such that H¢ pk¢

Ì Hpk
,

r¢ pk¢

³ rpk
³ p-1,

r¢Κ pk¢ +m

³ p-1,

where m denotes the highest p-elementary  divisor of H¢ pk¢

 in Hpk
.  We define a

binary  relation  on  XHG0L  by  declaring  HH, rL £ HH¢, r¢L  if  and  only  if  there  is  a
finite sequence

HH, rL = HH0, r0L, HH1, r1L, ¼, HH j, r jL = HH¢, r¢L   ( j ³ 0)

in  XHG0L  such  that  HHHi-1, ri-1L, HHi, riLL  satisfies  (+)  for  all  1 £ i £ j.  This
relation  is  reflexive  and  transitive  by  construction,  and  in  fact  is  a  directed
preordering:  indeed,  given  two  elements  HH, rL,  HH¢, r¢L  of  XHG0L  we  find  a  k¢

with H¢ pk¢

Ì H; letting m denote the highest p-elementary  divisor of H¢ pk¢

 in H

and  choosing  s < 1  such  that  s  ³  max :rp-k¢

, p-IΚ pk+mM
-1

, r¢>  we  have  HH, rL  £

HH¢, sL and HH¢, r¢L £ HH¢, sL.
The following result exhibits the crucial properties of the £- relation:

Lemma 9.2. Let HH, rL, HH¢, r¢L Î XHG0L such that HH, rL £ HH¢, r¢L. Then:

(i) The identity map DHG0, KL  ®  DHG0, KL  extends to a continuous K- algebra
homomorphism

DHH¢ ,r¢LHG0, KL ® DHH,rLHG0, KL.

(ii) H¢ΕHr¢L Ì HΕHrL.
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(ii) H¢ΕHr¢L Ì HΕHrL.

Proof.  For  both  (i)  and  (ii)  we  may  assume  that  (+)  already  holds  for  the  pair

HH, rL, HH¢, r¢L. Proposition 7.5. yields maps DHH¢ ,r¢LHG0, KL ® D
JH¢ pk¢

,r¢ pk¢

N
HG0, KL

®  D
JHpk

,r¢ pk¢

N
HG0, KL  ®  DJHpk

,rpk NHG0, KL  ®  DHH,rLHG0, KL.  This  proves  (i).  By

Remark  7.3  b),  HΕHrL  =  IHpk M
ΕJrpk N

 and  H¢ΕHr¢L  =  JH¢ pk¢

N
ΕJr¢ pk¢

N
.  Now  (ii)  follows

from (+) and the monotony of the map r # ΕHrL. �

Let G1  be an open subgroup of G, let S0  be a compact subgroup of G1 Ý S, and
let  V  be  an  admissible  locally  analytic  G1-representation  over  K,  with  strong

dual  M = Vb
¢ .  From  now  we  take  G0  to  be  a  compact  open  subgroup  of  G1

containing S0,  and we simply write XHG0L = X.  (Such a group G0  always exists,

cf. [35], 3.2.) For each pair HH, rL Î X we define the left DHH,rLHG0, KL- module

MHH,rL := DHH,rLHG0, KL Ä
DIG0 ,KM

M;

here  DHG0, KL  acts  on  M  through  the  inclusion  G0 ® G1.  Note  that  since  V  is
admissible  MHH,rL  is  a  finitely  generated module  over  the  noetherian K- Banach

algebra  DHH,rLHG0, KL  and  hence  carries  a  canonical  K-Banach  space  topology

([32], Proposition 2.1). Using Lemma 9.2 (i) we obtain a projective system

HMHH,rLLHH,rLÎX.

Remark 9.3.  M = limÕÖÖÖÖÖÖ HH,rLÎX
 MHH,rL.

Proof. Since V  is admissible M  is a coadmissible module over the Frechet- Stein

algebra  HDHH¢, KL, H° ´r� Lr<1L  for  any  fixed  choice  of  a  uniform  open  normal

subgroup  H¢ Ì G0  (viewed  as  an  L-analytic  group).  Regarding  [32],  Corollary

3.1.,  this  means  that  M  =  limÕÖÖÖÖÖÖ r<1
 MHH¢ ,rL.  Hence  it  suffices  to  show  that  the

system HMHH¢ ,rLLr  is  cofinal in HMHH,rLLHH,rL.  Let HH, rL  Î  X.  There exists a k¢ Î N

with  H¢ pk¢

Ì H.  Let  m  denote  the  highest  p-elementary  divisor  of  H¢ pk¢

 in  H.

Choose r¢ < 1 such that r¢ ³ max :rp-k¢

, p-IΚ pk¢ +mM
-1

>. Then HH, rL £ HH¢, r¢L. �
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subgroup  H¢ Ì G0  (viewed  as  an  L-analytic  group).  Regarding  [32],  Corollary

3.1.,  this  means  that  M  =  limÕÖÖÖÖÖÖ r<1
 MHH¢ ,rL.  Hence  it  suffices  to  show  that  the

system HMHH¢ ,rLLr  is  cofinal in HMHH,rLLHH,rL.  Let HH, rL  Î  X.  There exists a k¢ Î N

with  H¢ pk¢

Ì H.  Let  m  denote  the  highest  p-elementary  divisor  of  H¢ pk¢

 in  H.

Choose r¢ < 1 such that r¢ ³ max :rp-k¢

, p-IΚ pk¢ +mM
-1

>. Then HH, rL £ HH¢, r¢L. �

Fix a pair HH, rL  Î  X.  Let n  denote the Lie algebra of N.  Since G0 Ì G  is open
the universal enveloping algebra UHnL  is  contained in DHH,rLHG0, KL  and thereby

acts  on  MHH,rL.  Moreover,  since  S  normalizes  N,  the  subspace  nk  MHH,rL  is  S0-

invariant  for  any  k Î N,  and  we  will  view  the  quotients  MHH,rL � nk  MHH,rL  as

representations of S0.

Recall  that  by  weak  convergence  of  a  net  of  C-valued  functions  we  always
mean pointwise convergence with respect to the discrete topology on C.

Definition 9.4. Let S¢ Ì S0  be a subset. Suppose there is a pair HH0, r0L Î X and a

number k0 Î N such that the following holds:

(i) for every pair HH, rL ³ HH0, r0L  the representations MHH,rL � nk  MHH,rL  (k ³ k0)

are  finitely  trigonalisable  over  C  and  the  sequence  ChIMHH,rL � nk  MHH,rLM
k³k0

converges to an element QHH,rL in ZPXHS0LT;

(ii) QHH,rL is evaluable on S¢ for every HH, rL ³ HH0, r0L;

(iii) the net of functions HevS¢ HQHH,rLLLHH,rL³IH0 ,r0M  converges weakly to a function

Θ : S¢ ® C.

Then we say that the G1-representation  V  possesses an n- character on S¢, and

the  function  ΘV : S¢ ® C  defined  by  ΘV HsL = ΘIs-1M  is  called  the  n- character  (or

simply the character) on S¢ of V .
 

Remark 9.4.  The  character  ΘV  (existence  and  value)  depends  only  on  the  G1-

representation  V ,  the  groups  N  and  S0,  and  the  subset  S¢,  while  G0  should  be
considered as  an  auxiliary group which may be  replaced by  any other  compact
open  subgroup  of  G1  containing  S0.  Indeed,  let  H0 Ì G0  an  open  subgroup
containing  S0.  Then  XHH0L  is  a  preordered  subset  of  XHG0L  which  is  cofinal:  if

HH, rL Î XHG0L  then  IHpk
, rM Î XHH0L  for  sufficiently  large  k Î N,  and

IHpk
, rM ³ HH, rL. Let HH, rL Î XHH0L. Then

DHH,rLHH0, KL Ä
DIH0 ,KM

 DHG0, KL = DHH,rLHH0, KL Ä
DIH0 ,KM

 
i

k
jjjj Å

xÎH0 \G0

DHH0, KL ∆x
y

{
zzzz

= Å
xÎH0 \G0

i

k

jjjjjDHH,rLHH0, KL Ä
DIH0 ,KM

DHH0, KL ∆x

y

{

zzzzz = DHH,rLHG0, KL,55



DHH,rLHH0, KL Ä
DIH0 ,KM

 DHG0, KL = DHH,rLHH0, KL Ä
DIH0 ,KM

 
i

k
jjjj Å

xÎH0 \G0

DHH0, KL ∆x
y

{
zzzz

= Å
xÎH0 \G0

i

k

jjjjjDHH,rLHH0, KL Ä
DIH0 ,KM

DHH0, KL ∆x

y

{

zzzzz = DHH,rLHG0, KL,

hence  DHH,rLHH0, KL  ÄDIH0 ,KM  M  =   DHH,rLHH0, KL  ÄDIH0 ,KM  DHG0, KL  ÄDIG0 ,KM  M

= DHH,rLHG0, KL ÄDIG0 ,KM M as S0-representations.  

Proposition 9.5.  Let  S¢ Ì S0  be  a  subset.  Suppose  that  V = ÅiÎIVi  is  the  finite

direct sum of G1-stable  subspaces Vi. If each Vi  possesses an n-character  ΘVi  on

S¢ then V  possesses an n-character  ΘV  on S¢, and

ΘV = Ú
iÎI

ΘVi .

Proof.  For  the  strong  duals  we  have  M  =  ÅiÎI MHiL  where  MHiL  :=  HViLb
¢ .

Furthermore,  MHH,rL  =  DHH,rLHG0, KL  ÄDIG0 ,KM  IÅiÎI MHiLM  =

ÅiÎI IDHH,rLHG0, KL ÄDIG0 ,KM MHiLM  =  ÅiÎI MHH,rL
HiL  for  all  HH, rL Î X,  and  finally

MHH,rL � nk  MHH,rL  =  ÅiÎI IMHH,rL
HiL � nk  MHH,rL

HiL M  for all  k  because the direct sum is n-

stable.  By  assumption we find  a  pair  HH0, r0L  such  that  for  all  HH, rL ³ HH0, r0L

and for every i  the formal characters ChIMHH,rL
HiL � nk  MHH,rL

HiL M  exist and converge to

an element

QHH,rL
HiL := lim

k®¥
 ChIMHH,rL

HiL � nk  MHH,rL
HiL M.  

Hence (Lemma 2.3) each MHH,rL � nk  MHH,rL possesses a formal character satisfying

ChIMHH,rL � nk  MHH,rLM = Ú
iÎI

ChIMHH,rL
HiL � nk  MHH,rL

HiL M.

Therefore

Ú
iÎI

QHH,rL
HiL = Ú

iÎI
lim
k®¥

 Ch IMHH,rL
HiL � nk  MHH,rL

HiL M

= lim
k®¥

 Ú
iÎI

Ch IMHH,rL
HiL � nk  MHH,rL

HiL M

= lim
k®¥

 Ch IMHH,rL � nk  MHH,rLM = : QHH,rL .
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Ú
iÎI

QHH,rL
HiL = Ú

iÎI
lim
k®¥

 Ch IMHH,rL
HiL � nk  MHH,rL

HiL M

= lim
k®¥

 Ú
iÎI

Ch IMHH,rL
HiL � nk  MHH,rL

HiL M

= lim
k®¥

 Ch IMHH,rL � nk  MHH,rLM = : QHH,rL .

For  each  i,  by  assumption,  the  elements  QHH,rL
HiL  are  evaluable  on  S¢  and  the

evaluations  converge  weakly  to  a  function  ΘHiL : S¢ ® C.  Therefore,  since
ZPXHS0LTS¢  is  a  Z-module  and  evS¢  is  Z-linear,  the  elements  QHH,rL  are

evaluable on S¢ and

evS¢ HQHH,rLL HsL = Ú
iÎI

evS¢ IQHH,rL
HiL M HsL.

Hence the functions evS¢ HQHH,rLL converge weakly to ÚiÎI ΘHiL. �

10. The smooth case

In  this  section  we  intend  to  show that,  modulo  restriction to  S0,  Definition 9.4

generalizes the concept of character of the smooth representation theory.

Let  V  be  a  smooth  representation  of  an  open  subgroup  G1 Ì G  over  K.  Let

HHG1L  be  the  Hecke  algebra  of  G1,  i.e.  the  K-vector  space  of  compactly
supported  locally  constant  K-valued  functions  on  G1,  endowed  with  the

convolution product. Choose a Haar measure Μ on G1. Then HHG1L acts on V  by
the rule

H f , vL # Ù
G1

f × v· d Μ
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( f Î HHG1L,  v Î V;  here  v· : G1 ® V  denotes  the  locally  constant  orbit  map

g # g v).  The  smooth  representation V  is  called  admissible  if  every  f Î HHG1L
has finite rank as an operator on V , equivalently: if the subspace of H- invariants

VH Ì V  is finite-dimensional  for every compact open subgroup H Ì G1  (cf. [9],

p. 119). If this is the case then the linear form

QV : HHG1L ® K, f # tr
i

k

jjjjjV ® V , v # Ù
G1

f × v· d Μ
y

{

zzzzz

is defined.
 

Definition 10.1. Let G¢ Ì G1  be an open subset. Let V  be an admissible smooth

representation of G1. Let Θ : G¢ ® C be a locally constant function such that

QV H f L = Ù
G1

f × Θ d Μ

for all functions f Î HHG1L whose support is contained in G¢. Then we say that

V  possesses a character on G¢,  and the function Θ  is called the character on G¢

of V .

For  finitely  generated  smooth  representations  there  is  the  following  classical

result (cf. [18], Corollary of Theorem 2; [34], Corollary 4.8.2):

Theorem  10.2  (R.  Howe,  Harish-Chandra).  Let  Greg Ì G  be  the  subset  of
regular elements. Let V  be an admissible smooth representation of G such that V

is finitely generated as a G-module.  Then V  possesses a character on Greg.

Now let G0 Ì G1 be a compact open subgroup, and consider the quotient algebra

D¥HG0, KL := DHG0, KL � HgL

where HgL Ì DHG0, KL is the closed two-sided  ideal generated by the Lie algebra
g  of G.  This quotient algebra may be viewed as the strong dual of the subspace

HHG0L  =  C¥HG0, KL  Ì  CanHG0, KL  of  locally  constant  functions  (cf.  [30],

Section  2).  As  a  topological  K-vector  space  D¥HG0, KL  is  generated  by  the

distributions ∆x ΜH  where ∆x  denotes the Dirac distribution of an element x Î G0

and ΜH  denotes the normalized Haar measure of an open subgroup H Ì G0  ([1],

Section  2.1;  compare  also  [7],  Ex.  22  of  IV.2).  Note  that  for  any  open  normal

subgroup H Ì G0  the finite-dimensional  group ring K@G0 � HD may be viewed as

the subring of D¥HG0, KL with K-basis  H∆x ΜHLxÎG0�H . 

For a pair HH, rL Î X = XHG0L we put
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g  of G.  This quotient algebra may be viewed as the strong dual of the subspace

HHG0L  =  C¥HG0, KL  Ì  CanHG0, KL  of  locally  constant  functions  (cf.  [30],

Section  2).  As  a  topological  K-vector  space  D¥HG0, KL  is  generated  by  the

distributions ∆x ΜH  where ∆x  denotes the Dirac distribution of an element x Î G0

and ΜH  denotes the normalized Haar measure of an open subgroup H Ì G0  ([1],

Section  2.1;  compare  also  [7],  Ex.  22  of  IV.2).  Note  that  for  any  open  normal

subgroup H Ì G0  the finite-dimensional  group ring K@G0 � HD may be viewed as

the subring of D¥HG0, KL with K-basis  H∆x ΜHLxÎG0�H . 

For a pair HH, rL Î X = XHG0L we put

DHH,rL
¥ HG0, KL := DHH,rLHG0, KL � HgL

where this time HgL is the closed two-sided  ideal in DHH,rLHG0, KL generated by g.

Recall  (Remark 7.3) that HΕHrL  is  an open normal subgroup of G0  depending on

HH, rL.

Lemma 10.3. Let HH, rL Î X. We have a canonical isomorphism of K- algebras

DHH,rL
¥ HG0, KL > K@G0 � HΕHrLD.

Proof.  By Corollary 7.4 we have DHH,rLHG0, KL  =  ÅxÎRUrHg, KL ∆x  where R  is a

system  of  representatives  of  G0 � HΕHrL.  We  claim  that  the  closed  ideal  in
DHH,rLHG0, KL generated by g is equal to

I := Å
xÎR

g UrHg, KL ∆x. 

It is clear that I is contained in that ideal and contains g because g UrHg, KL is the
closed ideal in UrHg, KL  generated by g.  Now for any x, y Î UHgL,  x, y Î G0  we
have

x ∆x y ∆y = z ∆x y = z ∆h  ∆z

with z Î UHgL,  z Î R  and h Î HΕHrL;  moreover,  if  either x  or  y  are  non-constant

then  z  is  non-constant  (Lemma 8.5  (i)).  Since  ∆h Î UrHg, KL  (Remark 7.3)  this

shows that I is an ideal, thereby proving our claim. 

  It  follows  that  DHH,rL
¥ HG0, KL  =  DHH,rLHG0, KL � I  as  a  K-vector  space  is

isomorphic to ÅxÎRK ∆x  = K@G0 � HΕHrLD under the map ∆x + I  # ∆x ΜHΕHrL , and this
map is obviously multiplicative. �
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  It  follows  that  DHH,rL
¥ HG0, KL  =  DHH,rLHG0, KL � I  as  a  K-vector  space  is

isomorphic to ÅxÎRK ∆x  = K@G0 � HΕHrLD under the map ∆x + I  # ∆x ΜHΕHrL , and this
map is obviously multiplicative. �

Let V  be an admissible smooth representation of G1.  Following [30], Section 2,

we may view V  as a locally analytic representation by endowing the underlying
K-vector  space  with  the  finest  locally  convex  topology;  among  the  locally
analytic representations such a representation is characterized by the fact that V
is  admissible (in the sense of  locally analytic representation theory) with trivial

Lie algebra action ([32], Theorem 6.6). The dual M  = Vb
¢  is in this case the full

linear  dual  V*,  and  the  action  of  DHG0, KL  on  M  factors  through  D¥HG0, KL.
Using  the  above  lemma  we  can  describe  the  coherent  sheaf  structure  of  the
coadmissible DHG0, KL-module  M in terms of the pairs HH, rL Î X: We have

MHH,rL = DHH,rLHG0, KL Ä
DIG0 ,KM

V* = DHH,rL
¥ HG0, KL Ä

D¥IG0 ,KM
V*

as D¥HG0, KL-modules;  hence

MHH,rL = K@G0 � HΕHrLD Ä
D¥IG0 ,KM

V* = IVHΕHrL M
*

(compare  also  the  proof  of  [32],  Theorem  6.6).  Note  that  the  space  of  HΕHrL-

invariants VHΕHrL
 is G0-stable  since HΕHrL Ì G0 is normal.

The  restriction  of  VHΕHrL
 to  the  commutative  group  S0  is  finitely  trigonalisable

over C  and possesses a character on S0, namely the restriction to S0  of the usual
character 

ΘHH,rL : G0 ® K, g # trIg· : VHΕHrL
® VHΕHrL M

of  VHΕHrL
 (cf.  Remark  2.2  (ii)).  The  function  ΘHH,rL  is  constant  on  the  cosets  of

HΕHrL, and its connection to the linear form QV  is given by

(*) QV  I1g HΕHrL M = Ù
G1

1g HΕHrL  ΘHH,rL d Μ = ΜHHΕHrLL ΘHH,rLHgL

for every g Î G0 (compare [9], Section 1.5, equation (12)).

Lemma 10.4. Let G¢ Ì G1 be an open subset, S¢ := S0 Ý G¢.

(i) If the smooth representation V  possesses a character Θ  on G¢  then the net of

functions HΘHH,rL ÈS¢ LHH,rLÎX converges weakly to the restriction Θ ÈS¢ .

(ii) If  the  net  of  functions  HΘHH,rL ÈS¢ LHH,rLÎX  converges  weakly  to  a  function

Θ : S¢ ® K  which  extends  to  a  locally  constant  K-valued  function  G¢ ® K  then

there  is  an  open  subset  G² Ì G¢  containing  S¢  such  that  the  smooth

representation V  possesses a character on G² which coincides with Θ on S¢.
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(i) If the smooth representation V  possesses a character Θ  on G¢  then the net of

functions HΘHH,rL ÈS¢ LHH,rLÎX converges weakly to the restriction Θ ÈS¢ .

(ii) If  the  net  of  functions  HΘHH,rL ÈS¢ LHH,rLÎX  converges  weakly  to  a  function

Θ : S¢ ® K  which  extends  to  a  locally  constant  K-valued  function  G¢ ® K  then

there  is  an  open  subset  G² Ì G¢  containing  S¢  such  that  the  smooth

representation V  possesses a character on G² which coincides with Θ on S¢.

Proof. (i) Let g Î S¢. Since G¢ Ì G1  is open and regarding Lemma 9.2 we find a

pair  HH0, r0L  such  that  g HΕHrL Ì G¢  and  such  that  the  function  Θ  is  constant  on

g HΕHrL for all HH, rL ³ HH0  r0L; these two conditions imply

ΘHgL = ΜHHΕHrLL-1
 Ù
G1

1g HΕHrL  Θ d Μ = ΜHHΕHrLL-1
 QV I1g HΕHrL M

and  therefore,  using  the  equality  (*),  that  the  value  ΘHH,rLHgL  is  constant  for  all

HH, rL ³ HH0  r0L. 
(ii) We denote the locally constant extension of Θ to G¢  again by Θ, and for each

g Î S¢  we  choose  a  pair  HHg, rgL  such  that  ΘHH,rLHgL  =  ΘHgL  for  all  HH, rL  ³

HHg, rgL.  By  eventually  increasing  HHg, rgL  we  attain  that  Θ  is  constant  on

g Hg
ΕIrgM Ì G¢ (Lemma 9.2) and hence, using (*) again,

(**) Ù
G1

1g HΕHrL  Θ d Μ = ΜHHΕHrLL ΘHgL = QV I1g HΕHrL M

for  all  HH, rL ³ HHg, rgL.  Let  G²  be  the  union of  all  g Hg
ΕIrgM  (g Î S¢).  Then (**)

shows that QV H f L = ÙG1
f Θ d Μ for all f  with suppH f L Ì G², i.e. the restriction of Θ

to G² is a character of V  on G². �

Theorem  10.5.  Let  V  be  the  admissible  locally  analytic  representation
associated to an admissible smooth representation of G  over K  according to the

above  method.  Let  S¢ Ì S0  be  an  open  subset.  The  following  assertions  are
equivalent:

(i) V  possesses  an  n-character  Θ  on  S¢,  and  there  is  an  open  subset  G¢ Ì G

containing S¢ such that Θ extends to a locally constant function Θ¢ : G¢ ® K;
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(i) V  possesses  an  n-character  Θ  on  S¢,  and  there  is  an  open  subset  G¢ Ì G

containing S¢ such that Θ extends to a locally constant function Θ¢ : G¢ ® K;

(ii) there  is  an  open  subset  G² Ì G  containing  S¢  such  that  the  underlying

admissible smooth representation of V  possesses a character Θ² on G².

If these assertions hold then Θ¢ and Θ² agree on S¢.

Proof.  Since  n  acts  trivially  on  V  we  have  MHH,rL � nk MHH,rL  =  MHH,rL  for  all

k Î N. The theorem then follows from the preceding lemma. �

Remark 10.6.  Lemma 10.3  indicates  in  particular  that  we  can  characterize  the

subspace  CHΕHrL
¥ HG0, KL  Ì  C¥HG0, KL  of  functions  which  are  constant  on  the

cosets of HΕHrL by means of the ° ´HH,rL-norm:  We have

CHΕHrL
¥ HG0, KL > K@G0 � HΕHrLD*

 = DHH,rL
¥ HG0, KL*.

This  phenomenon  is  very  peculiar  to  the  smooth  situation  as  we  are  going  to
illustrate  in  the  case  G0 = Zp.  Fix  h Î N,  and  let  OhHZp, QpL  Ì  CanHZp, QpL
denote the subspace of functions which are holomorphic on the cosets of ph Zp.

On the other hand, for r Î H0, 1D (resp. H0, 1L) we consider the space CrHZp, QpL
(resp.  Cr+HZp, QpL)  of  all  continuous  functions  f : Zp ® Qp  with  Mahler

expansion  f = ÚnÎN bnI ·
n

M  satisfying  limn®¥   bn¤ r-n = 0  (resp.  H bn¤ r-nLnÎN  is

bounded). Put Λh := p-hHp - 1L-1
. If 0 < r £ p-Λh  < s £ 1 then 

 Cr+HZp, QpL Ì
¹

 OhHZp, QpL Ì
¹

 CsHZp, QpL.

Proof. First observe that for any Λ Î Q and t := p-Λ we have

f Î Ct+  �  HvpHbnL - n ΛLnÎN
 bounded below.

Next, by a criterion of Y. Amice ([20], 1.3.8) f  is holomorphic on  the cosets of

ph  Zp  if and only if lim
n®¥

 vpHbnL - ��������������������������p-h  n-chHnL
p-1

= +¥; here chHnL  =  Úai  denotes the

sum of p-adic  digits of n = Úai pi (0 £ ai < p). In other words:

f Î OhHZp, QpL  �  lim vpHbnL - n Λh + ph  Λh  chHnL = +¥.
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f Î OhHZp, QpL  �  lim vpHbnL - n Λh + ph  Λh  chHnL = +¥.

"Cr+HZp, QpL Ì OhHZp, QpL": follows from chHnL ® +¥.

"OhHZp, QpL Ì CsHZp, QpL": Choose Λ = Λh - ∆ < Λh  (∆ > 0)  such that s ³ p-Λ

> p-Λh . Then vpHbnL - n Λ = vpHbnL - n Λh  + n ∆ > vpHbnL - n Λh  + ph  Λh  chHnL for

n >> 0, since chHnL � n ® 0.

"Cr+HZp, QpL  ¹  OhHZp, QpL":  Choose  HbnL  such  that  vpHbnL  =  n Λn  -

ph  Λh  chHnL � 2.  Then  vpHbnL  -  n Λh  +  ph  Λh  chHnL  =  ph  Λh  chHnL � 2  ®  +¥,  hence

f Î OhHZp, QpL.  On  the  other  hand  vpHbnL - n Λh  =  - ph  Λh  chHnL � 2  is  not

bounded below.

"OhHZp, QpL ¹ CsHZp, QpL": Choose HbnL such that vpHbnL = n Λn  - ph  Λh  chHnL.
Then vpHbL - n Λn  - ph  Λh  chHnL is constant, hence f Ï OhHZp, QpL. It suffices to

show that vpHbnL - n Λ ® +¥ for all Λ < Λh. Put ¶ = Λ - Λh. Choose N Î N such

that  ph  Λh  chHnL � n  £  ¶ � 2  and  n ¶ � 2  ³  M  for  all  n ³ N.  Then  vpHbnL  -  n Λ  =

n I¶ - ph  Λh  chHnL � nM ³ M for all n ³ N. �

11. Preliminaries on principal series representations

Let  M Ì P  be  the  Levi  subgroup  containing  S.  Let  Χ  be  a  K-linear  locally
analytic P-representation  which is the composite of a locally analytic character

MHLL ® K´  and  the  canonical  map  P ® MHLL.  The  locally  analytic  principal
series representation of G induced from Χ is defined to be the locally convex K-
vector space

V = IndP
GH ΧL = 9F Î CanHG, KL; FHg pL = ΧHpL-1  FHgL=

together with the left translation action of the group G. Below we will see that V
is indeed admissible.

Using the Bruhat-Tits  decomposition the locally convex vector space V  may be
identified  with  a  finite  direct  sum  of  function  spaces  on  compact  unipotent
groups. For the purpose of explicit calculations we will give the identification in
extenso.

Let  G0  be the Iwahori subgroup of G  of  the same type as P.  Then G0  is  open
and is contained in a special maximal compact subgroup G1 Ì G.  The Iwasawa

decomposition   G  =  G1  P  ([9],  Section  3.5)  induces  an  isomorphism  of  G1-
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Let G0  be the Iwahori subgroup of G  of  the same type as P.  Then G0  is  open
and is contained in a special maximal compact subgroup G1 Ì G.  The Iwasawa

decomposition   G  =  G1  P  ([9],  Section  3.5)  induces  an  isomorphism  of  G1-

representations

V0 := IndPÝG1

G1 H Χ ÈG1
L � V

F S TQQ Ig p # Χ-1HpL FHgLM Hg Î G1, p Î PL
F ÈG1

P RQQ F

For  w Î W  put  Pw  :=  w P w-1 Ý G0,  Nw  :=  w N w-1 Ý G0.  Then

G1 = ÜwÎW G0 w P  (disjoint  union;  cf.  [9],  section  3.5).  On  the  other  hand,  for

each w Î W the map

V0 Ý CanHG0 w P, EL � IndPw

G0  H ΧwL = : Vw

F S TQQ F ëRw

is  a  well-defined  isomorphism  of  G0-representations;  here  Rw : G0 ® G0 w P
denotes  right  multiplication  with  some  fixed  representative  of  w  in  NGHSL,  and

Χw : Pw ® E  is  defined by composing Χ  with conjugation by w-1.  Furthermore,
the  product  map Nw ´ Pw ® G0  is  an  isomorphism of  L-analytic  manifolds  (cf.

[23],  Lemma 3.3.2).  Let  Πw
- : G0 ® Nw,  Πw

+ : G0 ® Pw  denote  the  components  of

the inverse map. An element F Î Vw  is determined by its restriction to Nw  which
in  turn  can  be  any  function,  whence  the  restriction  isomorphism  Vw  ®

CanHNw, KL.  The  inverse  map  CanHNw, KL  ®  Vw  is  explicitely  given  by  f  #

I Χw
-1 ë Πw

+M × H f ë Πw
-L.  Identifying  the  G0-representation  Vw  with  CanHNw, KL  we

finally obtain the direct sum decomposition of G0- representations

V � Å
wÎW

 Vw

F S TQQ IF ëRw ÈNw M
wÎW

.

The preimage F Î V  of an element H fwLwÎW  Î ÅwÎW Vw is given by 

FHb w pL = ΧIw-1  Πw
+HbL w pM-1

 fwHΠw
-HbLL     (b Î G0, w Î W, p Î P).

Note that since G0 Ì G is open we also have the Lie algebra action of g on each

Vw. We let nw  denote the Lie algebra of Nw, and we put S0 = S Ý G0. As an easy
consequence  of  the  explicit  description  of  the  above  decomposition  we  obtain
the following:
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Note that since G0 Ì G is open we also have the Lie algebra action of g on each

Vw. We let nw  denote the Lie algebra of Nw, and we put S0 = S Ý G0. As an easy
consequence  of  the  explicit  description  of  the  above  decomposition  we  obtain
the following:

Lemma 11.1. Fix a Weyl group element w Î W.

 (i) The action of G0 on Vw is given by

Hx f L HyL = Χw
-1IΠw

+Ix-1  yMM f IΠw
-Ix-1  yMM

(x Î G0, f Î Vw, y Î Nw). Special cases:

Hx f L HyL = ΧwHxL f Ix-1  y xM    if x Î S0,

Hx f L HyL = f Ix-1  yM    if x Î Nw. 

(ii) The Lie algebra action on Vw is given by 

Hx f L HyL = f HyL × ������d
d t

 Χw
-1HΠw

+HexpH-t xL yLL Èt=0

+ ������d
d t

 f HΠw
-HexpH-t xL yLL Èt=0

(x Î g, f Î Vw, y Î Nw). Special case:

Hx f L HyL = ������d
d t

 f HexpH-t xL yL Èt=0     if x Î nw. �

Passing  to  the  duals  M  :=  Vb
¢  =  DHG, KL  ÄDHP,KL  Χ¢  and   Mw  :=  HVwLb

¢  =

DHG0, KL  ÄDHPw ,KL  Χw
¢  (w Î W)  we  get  the  direct  sum  decomposition  of

DHG0, KL- modules

M = Å
wÎW

Mw
.

The  above  decomposition  G0  =  Nw Pw  induces  an  isomorphism  of  K- Frechet
spaces

DHG0, KL � DHNw, KL Ä
K

`
 DHPw, KL

Λ S TQQ Λ ë HΠw
-L* Ä Λ ë HΠw

+L*

(cf. [23], Proposition 3.3.4). Hence the natural map
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(cf. [23], Proposition 3.3.4). Hence the natural map

DHNw, KL Ä
K

 Χw
¢ � DHG0, KL Ä

DHPw ,KL
 Χw

¢ = Mw

Λ Ä a S TQQ Λ Ä a

is  an  isomorphism.  If  we  identify  Mw  =  DHNw, KL  then  the  restriction  of  the

DHG0, KL-action  on  Mw  to  DHNw, KL  is  simply  left  multiplication in  DHNw, KL.
Hence  Mw  is  finitely  generated  as  a  DHG0, KL  module;  in  other  words,  Vw  is

strongly admissible in the sense of [29], Section 3. Consequently:

Corollary 11.2. V  is strongly admissible as a locally analytic G0- representation.
�

This result is  also proved in [33],  Section 6 (for the case L = Qp;  the argument

given however works also for general L).

For  the  remainder  of  this  section  we  fix  a  Weyl  group  element  w Î W.  Let

Dw Ì Fnd  be  the  root  system  basis  corresponding  to  the  minimal  parabolic

subgroup  w P w-1  and  let  Fw Ì Fnd  denote  the  subset  of  negative  roots  with

respect to Dw;  thus nw  =  ÅaÎFw ga  and Nw  =  ÛaÎFw
Ua  (direct span in any fixed

order),  where  Ua  denotes  the  intersection  of  the  root  subgroup  UaHLL  with  G0

([2] 21.11). Since w N w-1 is unipotent we have the global bijections

w N w-1 X Yoooooo
Exp

Log
 nw,

inducing bijections Nw V LogHNwL Ì nw, Ua V LogHUaL Ì ga (cf. Example 4.2).

Proposition 11.3. Let H Ì G0  be an open L-uniform  subgroup such that the oL-

lattice LogHHL Ì g has a basis X consisting of root space vectors and is contained

in  the  neighbourhood  g~ Ì g  specified  in  Proposition  4.3.  Then  H Ý Nw  and

H Ý Pw  are closed L-uniform  subgroups of H  and the oL-lattices  LogHH Ý NwL
and LogHH Ý PwL are spanned by the elements of X they contain.

Proof.  Let pw  denote the Lie algebra of Pw.  The intersections LogHHL Ý nw  and

LogHHL Ý pw  are oL-Lie  subalgebras of LogHHL.  Moreover, the L-vector  spaces

nw  and  pw  are  direct  sums  of  the  root  spaces  ga  (a Î F Ü 80<)  they  contain.

Therefore  the  oL-lattices  LogHHL Ý nw  and  LogHHL Ý pw  are  spanned  by  the

elements  of  X  they  contain.  This  also  implies  that  the  quotients
LogHHL � HLogHHL Ý nwL  and LogHHL � HLogHHL Ý pwL  are Zp-torsion  free. Hence

([11],  Proposition  7.15  (i))  those  lattices  correspond  to  closed  Qp- uniform

subgroups  H¢  :=  ExpHLogHHL Ý nwL,  H²  :=  ExpHLogHHL Ý pwL  of  H.  By

construction H, H¢ are in fact L- uniform.

It  remains  to  be  seen  that  H¢  =  H Ý Nw,  H²  =  H Ý Pw.  If  g  Î  H Ý Nw  then

LogHgL  Î  LogHHL  Ý  LogHNwL  Ì  LogHHL  Ý  nw,  hence  g  Î  H¢.  In  the  other

direction,  if  g  Î  H¢  then  LogHgL  Î  LogHHL  Ý nw,  and  from Proposition 4.3  we

obtain g Î H¢  Ý w N w-1  = H¢  Ý Nw. Thus we have proved H¢  = H Ý Nw. The

equality H² = H Ý Pw is shown analogously. �
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Proof.  Let pw  denote the Lie algebra of Pw.  The intersections LogHHL Ý nw  and

LogHHL Ý pw  are oL-Lie  subalgebras of LogHHL.  Moreover, the L-vector  spaces

nw  and  pw  are  direct  sums  of  the  root  spaces  ga  (a Î F Ü 80<)  they  contain.

Therefore  the  oL-lattices  LogHHL Ý nw  and  LogHHL Ý pw  are  spanned  by  the

elements  of  X  they  contain.  This  also  implies  that  the  quotients
LogHHL � HLogHHL Ý nwL  and LogHHL � HLogHHL Ý pwL  are Zp-torsion  free. Hence

([11],  Proposition  7.15  (i))  those  lattices  correspond  to  closed  Qp- uniform

subgroups  H¢  :=  ExpHLogHHL Ý nwL,  H²  :=  ExpHLogHHL Ý pwL  of  H.  By

construction H, H¢ are in fact L- uniform.

It  remains  to  be  seen  that  H¢  =  H Ý Nw,  H²  =  H Ý Pw.  If  g  Î  H Ý Nw  then

LogHgL  Î  LogHHL  Ý  LogHNwL  Ì  LogHHL  Ý  nw,  hence  g  Î  H¢.  In  the  other

direction,  if  g  Î  H¢  then  LogHgL  Î  LogHHL  Ý nw,  and  from Proposition 4.3  we

obtain g Î H¢  Ý w N w-1  = H¢  Ý Nw. Thus we have proved H¢  = H Ý Nw. The

equality H² = H Ý Pw is shown analogously. �

Corollary 11.4. Let HH, rL, HH¢, r¢L Î XHG0L. Then HH Ý Nw, rL, HH¢ Ý Nw, r¢L Î

XHNwL  and  HH Ý Pw, rL,  HH¢ Ý Pw, r¢L  Î  XHPwL.  If  HH, rL £ HH¢, r¢L  then

HH Ý Nw, rL £ HH¢ Ý Nw, r¢L and HH Ý Pw, rL £ HH¢ Ý Pw, r¢L.

Proof.  The  first  assertion  follows  from  Proposition  11.3.  For  the  second

assertion we certainly may assume that there already exist natural numbers k, k¢

satisfying  the  condition  (+)  from  Section  9.  By  Proposition  11.3  there  is  an

ordered basis h of H  (resp. H¢) such that the elements of h contained in H Ý Nw

(resp.  H¢ Ý Nw)  form an  ordered basis  of  H Ý Nw  (resp.  H¢ Ý Nw).  We deduce

HH Ý NwLpk

 =  Hpk Ý Nw,   HH¢ Ý NwLpk¢

 =  H¢ pk¢

Ý Nw.  Since  the  highest  p-

elementary divisor of H¢ pk¢

Ý Nw  in Hpk Ý Nw  clearly is smaller than or equal to

the  highest  p-elementary  divisor  of  H¢ pk¢

 in  Hpk
 it  follows  that  the  pair

(HH Ý Nw, rL, HH¢ Ý Nw, r¢L) satisfies (+) as well (using the same numbers k, k¢).

-  Analogously one proves that HH Ý Pw, rL £ HH¢ Ý Pw, r¢L. �

If  the  reductive  group  G  is  split  over  L  then  the  root  spaces  ga  are  one-
dimensional,  and  the  group  Nw  is  "as  good  as  L-uniform",  in  the  following

sense:  Write  Fw  =  8a1, ¼, ad<.  Let  x j Î ga j  be  a  generator  of  the  oL- lattice

LogIUa j M.  Let  Hv1, ¼, vnL  be  a  Zp-basis  of  oL,  hi j := ExpHvi x jL.  Then

Hv1  x j, ¼, vn  x jL is a Zp-basis  of LogIUa j M, and as Nw  is directly spanned by its

subgroups Ua j  every element g Î Nw has a unique representation
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If  the  reductive  group  G  is  split  over  L  then  the  root  spaces  ga  are  one-
dimensional,  and  the  group  Nw  is  "as  good  as  L-uniform",  in  the  following

sense:  Write  Fw  =  8a1, ¼, ad<.  Let  x j Î ga j  be  a  generator  of  the  oL- lattice

LogIUa j M.  Let  Hv1, ¼, vnL  be  a  Zp-basis  of  oL,  hi j := ExpHvi x jL.  Then

Hv1  x j, ¼, vn  x jL is a Zp-basis  of LogIUa j M, and as Nw  is directly spanned by its

subgroups Ua j  every element g Î Nw has a unique representation

g = g1 ¼ gd Ig j Î Ua j M

= h11
t11  ¼ hn1

tn1 ¼ h1d
t1d  ¼ hnd

tnd Hti j Î ZpL .

Lemma  11.5.  Assume  G  to  be  split  over  L  and  L È Qp  unramified,  and  define

Hhi jL  as  above.  Let  H Ì Nw  be  an  L-uniform  normal  open  subgroup  such  that

LogHHL  is spanned by root space vectors. There are integers ΑH1, 1L,  ¼,  ΑHn, dL

Î  N  such  that  the  elements  h11
pΑH1,1L

,  ¼,  hnd
pΑHn,dL

 form  an  ordered  basis  of  H.  A

system  of  representatives  of  Nw � H  is  given  by  the  elements  h11
t11  ¼ hnd

tnd

(0 £ ti j < pΑHi, jL).

Proof.  Let  (x1
¢ ,  ¼,  xd

¢ )  be  an  oL-basis  of  LogHHL  with  x j
¢ Î ga j  (1 £ j £ d).  As

LogHHL  Ì  LogHNwL  is an oL-sublattice  we have x j
¢ = c j x j  for some c j Î oL,  and

since L  is  unramified over Qp  we may choose the x j
¢  such that x j

¢  =  pΑH jL x j  for

some  ΑH jL Î N.  The  elements  ExpIvi x j
¢ M  =  ExpHvi x jLpΑH jL

 =  hi j
pΑH jL

 (1 £ i £ n,

1 £ j £ d) constitute an ordered basis of H. This proves the first assertion.

 Since  H Ì Nw  is  normal  the  family  Ih11
t11  ¼ hnd

tnd M
0£ti j<pΑHi, jL  contains  a  system of

representatives (cf. the proof of Lemma 5.7). Suppose h11
t11  ¼ hnd

tnd  = h11
u11  ¼ hnd

und  h

with 0 £ ti j, ui j < pΑHi, jL and h Î H. We have to show that ti j = ui j. 

Put hH jL := h1 j
u1 j  ¼ hn j

un j  (1 £ j £ d). Then h11
u11  ¼ hnd

und  h = hH1L  ¼ hHdL  h1  ¼ hd  with

uniquely determinded elements h j Î H Ý Ua j , and we claim that further

(+)                                 hH1L ¼ hHdL h1  ¼ hd = hH1L h1
¢  ¼ hHdL hd

¢    
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(+)                                 hH1L ¼ hHdL h1  ¼ hd = hH1L h1
¢  ¼ hHdL hd

¢    

with suitable h j
¢  Î H Ý Ua j . 

To  see  this,  consider  arbitrary  elements  n1,  ¼,  nr  Î  Nw  and  g Î H,  each

contained in some root subgroup. If g ¹ 1 and Ua  is the root subgroup containing

g then let kHgL denote the height of the root -a, i.e. the unique natural number k

such that -a = b1  + ¼ + bk  with simple roots b1, ¼, bk  (with respect to Dw). If

g = 1 we put kHgL := ¥. Since H is normal in Nw we have

(++) n1  ¼ nr  g = g n1  g1  ¼ nr  gr

with  commutators  g j  =  Hn j, gL  Î  H  (1 £ j £ r);  moreover,  each  g j  is  a  finite

product  of  root  subgroup  elements  gi j Î H  satisfying  kHgi jL ³ kHgL + 1  ([2],

Proposition 14.5, in particular the assertion marked (*)). Similarly,

(+++) g n1  ¼ nr = g1
¢  n1  ¼ gr

¢  nr  g

with commutators g j
¢  = Hg, n jL Î H  (1 £ j £ r), each one a finite product of root

subgroup elements gi j
¢ Î H satisfying kIgi j

¢ M ³ kHgL + 1.

 As there is a bound k0 Î N such that kHgL > k0  implies g = 1, a finite number of
recursive  applications  of  transformations  of  the  form  (++)  or  (+++)  to  the  left
hand side  of  (+)  gives  the  right  hand side  of  (+).  Indeed,  in  a  first  step we use
(++) to move each h j according to the root subgroup it belongs to and obtain

hH1L hH2L ¼ hHdL h1  h2  ¼ hd = hH1L h1 hH2L h2  h2
¢  ¼ hHdL hd  hd

¢

where each appearing h j
¢  is  a  finite product  of  root subgroup elements h j k

¢  with

kIh j k
¢ M ³ kHh jL + 1.  In  a  second  step,  each  of  these  h j k

¢  (unless  equal  to  1)  is

moved according to the root subgroup it belongs to, using either (++) or (+++).
Along  the  way  commutators  appear,  being  products  of  root  subgroup  elements

h j k l
²  with  kIh j k l

² M ³ kHh jL + 2.  In  a  third  step  the  h j k l
²  (unless  equal  to  1)  are

moved, and so on. After finitely many steps all commutators are equal to 1, and
we are done.

From (+) we deduce h1 j
t1 j  ¼ hn j

tn j  Ih1 j
u1 j  ¼ hn j

un j M
-1

 Î  H  for all j  and thereby, since

the groups Ua j  are commutative, hi j
ti j  hi j

-ui j  Î H and hence ui j = ti j for all i, j. �
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From (+) we deduce h1 j
t1 j  ¼ hn j

tn j  Ih1 j
u1 j  ¼ hn j

un j M
-1

 Î  H  for all j  and thereby, since

the groups Ua j  are commutative, hi j
ti j  hi j

-ui j  Î H and hence ui j = ti j for all i, j. �

We finish this section by stating a result describing the DHG0, KL- modules

MHH,rL
w  = DHH,rLHG0, KL Ä

DIG0 ,KM
Mw =  DHH,rLHG0, KL Ä

DHPw ,KL
Χw

¢

that were considered in Section 9 for the pairs HH, rL Î XHGL.

Proposition 11.6  (Frommer-Orlik-Strauch).  There is  a  pair  HH0, r0L Î XHG0L
such that the natural K-linear  map

(*) DHHÝNw ,rLHNw, KL Ä
K

Χw
¢ ® DHH,rLHG0, KL Ä

DHPw ,KL
Χw

¢

is a topological isomorphism for all HH, rL ³ HH0, r0L.

Proof.  For  fixed H  this  is  Proposition 3.4.2  of  [23];  the  case L = Qp  is  already

contained  in  [15],  Proposition  7.  We  adapt  the  proof  to  our  directed  set

X = XHG0L.
Let  HH, rL Î X.  Let  us  assume  that  the  DHPw, KL-action  on  Χw

¢  extends  to  a

continuous DHHÝPw ,rLHPw, KL-action.  Then

DHH,rLHG0, KL Ä
DHPw ,KL

Χw
¢   =  DHH,rLHG0, KL Ä

DIHÝPw ,rM HPw ,KL
Χw

¢ .

Moreover,  the  decomposition  G0 = Nw Pw  induces  an  isomorphism  of  K-
Banach spaces 

DHH,rLHG0, KL = DHHÝNw ,rLHNw, KL Ä
K

`
 DHHÝPw ,rLHPw, KL

(cf. [23], Proposition 3.3.4; note that by Proposition 11.3 our groups H, H Ý Nw,

H Ý Pw  satisfy the  same conditions  as  the  corresponding groups  P0,  Uw,0
- ,  Pw,0

+

constructed in  Section 3.3.3  of  that  paper).  Hence the map (*)  is  bijective.  The
canonical  topology  on  the  finitely  generated  DHH,rLHG0, KL- module

DHH,rLHG0, KL ÄDHPw ,KL Χw
¢  is  equal  to  the  quotient  topology  with  respect  to  the

obvious surjection DHH,rLHG0, KL ® DHH,rLHG0, KL ÄDHPw ,KL Χw
¢ . Hence the map (*)

is  a  continuous  bijection  and  consequently,  by  the  open  mapping  theorem,  a
topological isomorphism.
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(cf. [23], Proposition 3.3.4; note that by Proposition 11.3 our groups H, H Ý Nw,

H Ý Pw  satisfy the  same conditions  as  the  corresponding groups  P0,  Uw,0
- ,  Pw,0

+

constructed in  Section 3.3.3  of  that  paper).  Hence the map (*)  is  bijective.  The
canonical  topology  on  the  finitely  generated  DHH,rLHG0, KL- module

DHH,rLHG0, KL ÄDHPw ,KL Χw
¢  is  equal  to  the  quotient  topology  with  respect  to  the

obvious surjection DHH,rLHG0, KL ® DHH,rLHG0, KL ÄDHPw ,KL Χw
¢ . Hence the map (*)

is  a  continuous  bijection  and  consequently,  by  the  open  mapping  theorem,  a
topological isomorphism.

It  remains  to  show  that  there  exists  a  pair  HH0, r0L Î X  such  that  for  any

HH, rL ³ HH0, r0L  the  DHPw, KL-action  on  Χw
¢  extends  to  a  continuous

DHHÝPw ,rLHPw, KL-action.  Using  Proposition  3.4.2  (i)  of  [23]  we  find  a  pair

HH0, r0L and an extension to a continuous DIH0ÝPw ,r0MHPw, KL-action.  Let HH, rL ³

HH0, r0L.  We  then  know  (Corollary  11.4  and  Lemma  9.2)  that  there  is  a

continuous K-algebra  homomorphism

DHHÝPw ,rLHPw, KL ® DIH0ÝPw ,r0MHPw, KL

inducing the desired continuous extension of the DHPw, KL-action  on Χw
¢ .  �

12. The principal series of SL2IQpM

We specialize the setting of Section 11 to the following situation: Let G  be the

Qp-analytic  group  SL2HQpL,  S Ì G  the  standard  torus,  P Ì G  the  lower  Borel

subgroup containing S, and let N Ì G be the subgroup of upper strictly triangular

matrices,  with  Lie  algebra  n.  Let  Χ : Qp
´ ® K´  be  a  locally  analytic  character,

extended to P via the map K a

* a-1
O # a-1. We want to calculate the n- character

of the locally analytic G- representation

VΧ = IndP
GH ΧL

on the subset S0 Ý Greg of regular elements.

As  representatives  for  the  two  elements  of  the  Weyl  group  W  of  HG, SL  we

choose  w+ = K
1

1
O,  w- = J -1

1
N.  Adopting  the  previous  notations  we  get  the

following subgroups of G: G0  = 
i
k
jjj

Zp
´ p Zp

Zp Zp
´

y
{
zzz Ý G, S0  = :K a

a-1
O; a Î Zp

´>, Pw+  =

i
k
jjj

Zp
´

Zp Zp
´

y
{
zzz  Ý  G,  Pw-  =  

i
k
jjj

Zp
´ p Zp

Zp
´

y
{
zzz  Ý  G,  Nw+  =  K 1 p Zp

1
O,  Nw-  =  K 1

Zp 1
O.

Identifying  the  two  latter  groups  in  the  obvious  way  with  Zp  the  underlying

locally  analytic  vector  spaces  of  the  components  HVΧLw+
,  HVΧLw-

 are  copies  of

CanHZp, KL. Put
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As  representatives  for  the  two  elements  of  the  Weyl  group  W  of  HG, SL  we

choose  w+ = K
1

1
O,  w- = J -1

1
N.  Adopting  the  previous  notations  we  get  the

following subgroups of G: G0  = 
i
k
jjj

Zp
´ p Zp

Zp Zp
´

y
{
zzz Ý G, S0  = :K a

a-1
O; a Î Zp

´>, Pw+  =

i
k
jjj

Zp
´

Zp Zp
´

y
{
zzz  Ý  G,  Pw-  =  

i
k
jjj

Zp
´ p Zp

Zp
´

y
{
zzz  Ý  G,  Nw+  =  K 1 p Zp

1
O,  Nw-  =  K 1

Zp 1
O.

Identifying  the  two  latter  groups  in  the  obvious  way  with  Zp  the  underlying

locally  analytic  vector  spaces  of  the  components  HVΧLw+
,  HVΧLw-

 are  copies  of

CanHZp, KL. Put

x+ := J 0 p

0 0
N Î nw+ = n,

x- := J 0 0

1 0
N Î nw- .

For  a  function  f Î CanHU, KL  on  an  open  subset  U Ì Qp  we  denote  by

�������d
d x

 f : U ® K the derivative of f . E.g., the derivative of Χ satisfies

�������d
d x

 Χ HzL = cH ΧL z-1  ΧHzL

where we let cH ΧL := �������d
d x

 Χ H1L.

Lemma 12.1. (i) The action of G0 on HVΧLw+
 is given by

JJ 1 p b

1
N f N HzL = f Hz - bL,

JJ 1

c 1
N f N HzL = ΧH1 - p c zL-1  f I ����������������z

1-p c z
M,

KK a

a-1
O f O HzL = ΧHaL-1  f Ia-2  zM.

The action of G0 on HVΧLw-
 is given by

JJ 1 p b

1
N f N HzL = Χ H1 - p b zL-1  f I ����������������z

1-p b z
M,

JJ 1

c 1
N f N HzL = f Hz - cL,

KK a

a-1
O f O HzL = ΧHaL f Ia2  zM.

(ii) The Lie algebra action on HVΧLw+
 satisfies

Hx+ f L HzL = - �������d
d x

 f HzL

Hx- f L HzL = cH ΧL p z f HzL + p z2  �������d
d x

f HzL.
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Hx- f L HzL = cH ΧL p z f HzL + p z2  �������d
d x

f HzL.

The Lie algebra action on HVΧLw-
 satisfies

Hx- f L HzL = - �������d
d x

 f HzL,

Hx+ f L HzL = cH ΧL p z f HzL + p z2  �������d
d x

 f HzL.

Proof: In our case the Bruhat-Tits  decomposition G1 = G0 W P is realised by

J a b

c d
y
{
zzz =

looooom

n
ooooo

i
k
jjj

1 b � d

0 1
y
{
zzz w1 K d-1

c d
O;  b¤ <  d¤,

i
k
jjj

1

d � b 1
y
{
zzz w2 K -b-1

-a -b

y
{
zzz;  b¤ ³  d¤,

and for the projections Πw
±  we have Πw+

- HgL = J 1 b � d

1
N, Πw+

+ HgL = J 1 � d

c d
N, Πw-

- HgL

= J 1

c � a 1
N, Πw-

+ HgL = J a b

1 � a
N for g = J a b

c d
N Î G0. Now apply Lemma 11.1. �

In  Section  11  we  saw  that  dually  to  the  G0-stable  decomposition

VΧ = HVΧLw+
Å HVΧLw-

 we have the decomposition of DHG0, KL- modules

M := HVΧLb
¢  = M+ Å M-

where  M±  =  DHG0, KL ÄDHPw± ,KL Χw±
¢  >  DHNw± , KL ÄK Χw±

¢ ,  and  that  there  is  a

pair HH0, r0L Î X such that for all HH, rL ³ HH0, r0L,

MHH,rL = MHH,rL
+ Å MHH,rL

-

where MHH,rL
±  = DHHÝNw± ,rLHNw± , KL ÄK Χw±

¢  (Proposition 11.6). We fix elements

h+ := 1 Î Zp   corresponding to   J 1 p

0 1
N Î Nw+ ,

h- := 1 Î Zp   corresponding to   J 1 0

1 1
N Î Nw-

under the above identification, and as usual we put b±  := ∆h± - 1 Î M±. Then x±

= logH1 + b±L.
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under the above identification, and as usual we put b±  := ∆h± - 1 Î M±. Then x±

= logH1 + b±L.

Lemma 12.2. Define operators D, Pz : M± ® M± (z Î Zp) by

DHÚan  b±
n L := H1 + b±L ân an  b±

n-1, 

PzHÚan  b±
n L := âanIH1 + b±Lz - 1Mn

.

Then

ΛHx # x f HxLL = D Λ H f L,
ΛHx # f Hz xLL = Pz Λ H f L

for all Λ Î M± and f Î CanHZp, KL.

Proof. This is contained in [29], Lemma 4.3. �

Fix a pair HH, rL ³ HH0, r0L in X. Recall (Remark 7.3) that ΕHrL is a p-power  with

the  property  that  for  all  z Î Nw±
ΕHrL  we  have  ∆z = expHLog zL  (convergent  series in

MHH,rL
± ). Moreover, the group H Ý Nw±  is of the form m± Zp  with a p-power  m±.

We  choose  N<ΕHrL m±  =  80, ¼, ΕHrL m± - 1<  as  a  system  of  representatives  for

Nw± � HH Ý Nw± LΕHrL. For n Î N and z Î Zp we put

Tn,z
±  := x±

n  ∆z = logH1 + b±Ln  H1 + b±Lz Î M±.

According to Corollary 7.4 the family ITn,z
± M

nÎN,iÎN<ΕHrL m±
 is  a  basis of the Banach

space MHH,rL
± . We further introduce the elements

   T
�

n,z
±

:= Ú
j=0

n
I n

j
M cn, j,z T j,z

± Î M± Hz ¹ 0L,

   T
�

n,0
±

:= Tn,0
± Î M±,

where for j £ n we put

cn, j,z := z j-n  HcH ΧL + jL HcH ΧL + j + 1L ¼ Hc H ΧL + n - 1L.

From now on,  we  suppose  that   cH ΧL¤ £ 1.  Moreover,  by  eventually  increasing

HH, rL we attain °x±´HH,rL ³ 1 (Remark 7.3 (2) a)). These assumptions are needed

in order to prove the following result: 
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From now on,  we  suppose  that   cH ΧL¤ £ 1.  Moreover,  by  eventually  increasing

HH, rL we attain °x±´HH,rL ³ 1 (Remark 7.3 (2) a)). These assumptions are needed

in order to prove the following result: 

Lemma 12.3. The family HT
�

n,i
±

L
nÎN,iÎN<ΕHrL m±

 is a basis of the Banach space MHH,rL
± .

Proof.  For  every  n Î N  and  every  z Î Zp  the  matrix  II k
j
M ck, j,zM

0£ j,k£n
 possesses

the  inverse  IH-1L j+k  I k
j
M ck, j,zM

0£ j,k£n
:  indeed,  Ú

l=0

n
I l

j
M cl, j,z H-1Ll+k  I k

l
M ck,l,z  =

ck, j,z Ú
l=0

n
H-1Ll+k  I k

l
M I l

j
M  =  ∆ j,k  (Kronecker’s  symbol)  and

Ú
l=0

n
H-1L j+l I l

j
M cl, j,zI k

l
M ck,l,z  =   ck, j,z Ú

l=0

n
H-1L j+l I k

l
M I l

j
M  =  ∆ j,k,  since cl, j,z ck,l,z = ck, j,z

for all j £ l £ k, c j, j,z = 1 for all j, and Ú
l=0

n
H-1Ll+k  I k

l
M I l

j
M = ∆ j,k for all j, k £ n.

It follows that every Λ Î MHH,rL
±  may be written as

Λ = Ú
nÎN,iÎN<ΕHrL m±

bn,i Tn,i
±  = Ú

iÎN<ΕHrL m±

Ú
nÎN

bn,i Ú
jÎN

H-1L j+n  I n
j

M cn, j,i T
�

j,i
±

with uniquely determined elements bn,i Î K. We have to show that for each i the

last  two  sums  on  the  right  hand  side  commute,  i.e.  letting  Λn, j  :=

bn,i H-1L j+n  I n
j

M cn, j,i T
�

j,i
±

 we  have  to  show that  for  every  ¶ > 0  there  is  exists  an

n0 Î N such that °Λn, j´HH,rL < ¶ whenever n ³ n0  and j ³ 0 (cf. [25], Section 23).

But by our assumption on cH ΧL we have  c j,k,i¤ £ 1 for all j, k, and therefore

°Λn, j´HH,rL £ ²bn,i I n
j

M T
�

j,i
±

¶
HH,rL

 = 
ÅÅÅÅ°
ÅÅÅÅ
bn,i I n

j
M Ú

k=0

j
I j

k
M c j,k,i Tk,i

±
ÅÅÅǺ
ÅÅÅÅHH,rL

 £  bn,i¤ × max
0£k£n

 ±Tk,i
± µHH,rL. 

Moreover,  the  assumption  °x±´HH,rL ³ 1  implies  that  max0£k£n  ±Tk,i
± µHH,rL  =

±Tn,i
± µHH,rL.  Since  the  sum  ÚnÎN bn,i Tn,i

±  converges  in  MHH,rL
±  we  indeed  have

°Λn, j´HH,rL £  bn,i¤ ±Tn,i
± µHH,rL < ¶ for large n, independently of j. �
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Moreover,  the  assumption  °x±´HH,rL ³ 1  implies  that  max0£k£n  ±Tk,i
± µHH,rL  =

±Tn,i
± µHH,rL.  Since  the  sum  ÚnÎN bn,i Tn,i

±  converges  in  MHH,rL
±  we  indeed  have

°Λn, j´HH,rL £  bn,i¤ ±Tn,i
± µHH,rL < ¶ for large n, independently of j. �

Lemma 12.4. (i) The action of a torus element s = K a

a-1
O Î S0 on M+ satisfies 

s × Tn,z
+  = ΧHaL a2 n  T

n,a2  z
+ . 

The Lie algebra action on M+ satisfies 

x+ × Tn,z
+  = Tn+1,z

+ .

(ii) The action of s = K a

a-1
O Î S0 on M- satisfies 

s × T
�

n,z
-

 = ΧIa-1M a-2 n  T
�

n,a-2  z
-

. 

The Lie algebra action on M- satisfies 

x+ × T
�

n,z
-

 = - p z2 T
�

n+1,z
-

 (z ¹ 0), 

x+ × T
�

n,0
-

 = - p nHcH ΧL + n - 1L T
�

n-1,0
-

.

Proof. (i)  For  y Î Zp  and  f Î CanHZp, KL  define  fy Î CanHZp, KL  by  fyHxL  =

f Hy xL. According to Lemma 12.1 (i) and Lemma 12.2, Is Tn,z
+ M H f L = Tn,z

+ Is-1  f M =

ΧHaL  Tn,z
+ I fa2 M  =  ΧHaL  Pa2 IlogH1 + b+Ln  H1 + b+LzM H f L  =  ΧHaL  a2 n  logH1 + b+Ln

H1 + b+La2  z  H f L  =  ΧHaL  a2 n  T
n,a2  z
+  H f L,  whence the first assertion of (i). Since the

action of DHNw+ , KL on M+  is just left multiplication the second assertion is also
clear.

(ii) Similarly  as  in  part  (i)  we  calculate  Is Tn,z
- M H f L  =  ΧIa-1M Tn,z

- I fa-2 M  =

ΧIa-1M a-2 n  Tn,a-2  z
- H f L which already proves the first assertion for z = 0. For z ¹ 0

we conclude

s T
�

n,z
-

= Új=0
n I n

j
M z j-nHcH ΧL + jL ¼HcH ΧL + n - 1L s T j,z

-

= ΧIa-1M Új=0
n I n

j
M a-2 j z j-n HcH ΧL + jL ¼HcH ΧL + n - 1L T j,a-2  z

-

= Χ Ia-1M a-2 n  Új=0
n I n

j
M Ia-2  zM j-n HcH ΧL + jL ¼HcH ΧL + n - 1L T j,a-2  z

-

= ΧIa-1M a-2 n  T
�

j,a-2  z
-

.
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s T
�

n,z
-

= Új=0
n I n

j
M z j-nHcH ΧL + jL ¼HcH ΧL + n - 1L s T j,z

-

= ΧIa-1M Új=0
n I n

j
M a-2 j z j-n HcH ΧL + jL ¼HcH ΧL + n - 1L T j,a-2  z

-

= Χ Ia-1M a-2 n  Új=0
n I n

j
M Ia-2  zM j-n HcH ΧL + jL ¼HcH ΧL + n - 1L T j,a-2  z

-

= ΧIa-1M a-2 n  T
�

j,a-2  z
-

.

Finally,  by Lemma 12.1  (ii)  the  Lie  algebra action on M-  satisfies Hx- ΛL H f L  =

ΛH-x- f L  =  ΛI �������d
d x

 f M  and  I- p-1  x+ ΛM H f L  =  ΛIp-1  x+ f M  =  cH ΧL D ΛH f L  +

D2  ΛI �������d
d x

 f M  =  cH ΧL D ΛH f L  +  x- D2  ΛH f L  in  the  notation of  Lemma 12.2.  Turning

to our elements Tn,z
- , T

�
n,z
-

 we obtain

D Tn,z
- = H1 + b-L J ��������������������������������n logH1+b-Ln-1

1+b
 H1 + b-Lz + logH1 + bLn  z H1 + bLz-1N

= n Tn-1,z
- + z Tn,z

- ,

D2  Tn,z
- = n Hn - 1L Tn-2,z

- + 2 n z Tn-1,z
- + z2  Tn,z

- ,

- p-1  x+ Tn,z
- = cH ΧL n Tn-1,z

- + cH ΧL z Tn,z
-

+ n Hn - 1L Tn-1,z
- + 2 n z Tn,z

- + z2  Tn+1,z
-

= n Hc H ΧL + n - 1L Tn-1,z
- + z Hc H ΧL + 2 nL Tn,z

- + z2  Tn+1,z
- ,

thereby proving the second assertion of (ii) in case z = 0; for z ¹ 0 we calculate

- p-1  x+ T
�

n,z
-

= Úi=0
n I n

i
M zi-nHcH ΧL + iL ¼HcH ΧL + n - 1L I- p-1  x+ Ti,z

- M

= Úi=-1
n-1 I n

i+1
M zi+1-nHc H ΧL + iL ¼Hc H ΧL + n - 1L Hi + 1L Ti,z

-

+ Úi=0
n I n

i
M zi-nHc H ΧL + iL ¼Hc H ΧL + n - 1L z HcH ΧL + 2 iL Ti,z

-

+ Úi=1
n+1 I n

i-1
M zi-1-nHc H ΧL + i - 1L ¼Hc H ΧL + n - 1L z2  Ti,z

-

= Úi=0
n+1 I n+1

i
M zi+1-n  Hc H ΧL + iL ¼Hc H ΧL + nL Ti,z

-

= z2 T
�

n+1,z
-

,

because I n
i+1

M Hi + 1L  +  I n
i

M HcH ΧL + 2 iL  +  I n
i-1

M HcH ΧL + i - 1L  =  I n-1
i

M n  +  2 I n-1
i-1

M n

+  I n-1
i-2

M n  +  I n
i

M cH ΧL  +  I n
i-1

M cH ΧL  =  I n+1
i

M HcH ΧL + nL  by  the  recursion  formula.

This proves the second assertion of (ii). �
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because I n
i+1

M Hi + 1L  +  I n
i

M HcH ΧL + 2 iL  +  I n
i-1

M HcH ΧL + i - 1L  =  I n-1
i

M n  +  2 I n-1
i-1

M n

+  I n-1
i-2

M n  +  I n
i

M cH ΧL  +  I n
i-1

M cH ΧL  =  I n+1
i

M HcH ΧL + nL  by  the  recursion  formula.

This proves the second assertion of (ii). �

Now fix a  number k Î N;  in  case -cH ΧL Î N  assume k > -cH ΧL.  Note that since

the  decomposition  M = M+ Å M-  is  n-stable  we  have  MHH,rL � nk  MHH,rL  =

IMHH,rL
+ � nk  MHH,rL

+ M Å IMHH,rL
- � nk  MHH,rL

- M.

Corollary 12.5. (i) Put Ik
+ := N<k ´ N<ΕHrL m+ . The elements

Tn,i
+ + nk  MHH,rL

+    (Hn, iL Î Ik
+)

constitute a basis of the K-vector  space MHH,rL
+ � nk  MHH,rL

+ .

(ii) Put

Ik
- := N<k ´ N<ΕHrL m- - :

8Hn, 0L; n > -cH ΧL< if - cH ΧL Î N,

8Hn, 0L; n ³ 0< if - cH ΧL Ï N.

The elements

T
�

n,i
-

+ nk  MHH,rL
-    (Hn, iL Î Ik

-)

constitute a basis of the K-vector  space MHH,rL
- � nk  MHH,rL

- .

Proof.  This  follows  from  the  description  of  the  action  of  n  on  M±  given  in

Lemma 12.4. For (ii), in the case -cH ΧL Î N observe that x+ T
�

n,0
-

= 0 if and only

if n = 0 or n = 1 - cH ΧL, and that x+ T
�

n,0
-

 is a nonzero scalar multiple of T
�

n-1,0
-

 in

all  other  cases;  hence  x+
k × SpanIT

�
n,0
-

; n ³ 0M  =  SpanIT
�

n,0
-

; n ³ 1 - cH ΧLM  provided

k ³ 1 - cH ΧL. �

For any z Î Zp  we define elements Q±HzL Î ΕHrL m± Zp  and R±HzL Î N<ΕHrL m±  by z

= Q±HzL + R±HzL.

Lemma 12.6. Let s = K a

a-1
O Î S0.

(i) The coefficients bHn,iL,Hn¢ ,i¢L
+ Î K defined by the equations

 s Tn¢ ,i¢
+  = ÚHn,iLÎIk

+ bHn,iL,Hn¢ ,i¢L
+  Tn,i

+     (Hn¢, i¢L Î Ik
+) 
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 s Tn¢ ,i¢
+  = ÚHn,iLÎIk

+ bHn,iL,Hn¢ ,i¢L
+  Tn,i

+     (Hn¢, i¢L Î Ik
+) 

in MHH,rL
+ � nk  MHH,rL

+  satisfy

bHn,iL,Hn¢ ,i¢L
+ = 0  if n < n¢ or i ¹ R+Ia2  i¢M,

bHn,iL,Hn,iL
+ = ΧHaL a2 n if i = R+Ia2  iM.

(ii) The coefficients bHn,iL,Hn¢ ,i¢L
- Î K defined by the equations

 s T
�

n¢ ,i¢

-
 = ÚHn,iLÎIk

- bHn,iL,Hn¢ ,i¢L
-  T

�
n,i
-

    (Hn¢, i¢L Î Ik
-) 

in MHH,rL
- � nk  MHH,rL

-  satisfy

bHn,iL,Hn¢ ,i¢L
- = 0  if n > n¢ or i ¹ R-Ia-2  i¢M,

bHn,iL,Hn,iL
- = Χ-1HaL Ú

j,mÎN

dn, j,m a-2 j Ia-2 - 1Mm
if i = R-Ia-2  iM,

where

dn, j,m := ������1
m!

 c j+m, j,1H-1L j+m+n  I n
j

M I j+m
n

M.

Proof.  (i) First,  s Tn¢ ,i¢
+  =  ΧHaL a2 n¢

 T
n¢ ,a2  i¢
+  by  Lemma 12.4  (i).  But  T

n¢ ,a2  i¢
+  =  x+

n¢

∆1
a2  i¢

 =  x+
n¢

 ∆1
R+Ia2  i¢M

 ∆1
Q+Ia2  i¢M

,  and  ∆1
Q+Ia2  i¢M

 =  expIQ+Ia2  i¢M log ∆1M  =

expIQ+Ia2  i¢M x+M = Úm³0 ������1
m!

 Q+Ia2  i¢Mm
 x+

m. Hence 

s Tn¢ ,i¢
+  = ΧHaL a2 n¢

 Ú
m³0

������1
m!

 Q+Ia2  i¢Mm
 T

n¢+m,R+Ia2  i¢M
+ .

This proves our assertion, since n¢ + m = n¢ implies ������1
m!

 Q+Ia2  iMm
 = 1.

(ii) Similarly as in part (i), this time using Lemma 12.4 (ii), we calculate

s Tn¢ ,i¢
-  = ΧIa-1M a-2 n¢

 Ú
m³0

������1
m!

 Q-Ia-2  i¢Mm
 Tn¢+m,R-Ia-2  i¢M

- .

Hence

s T
�

n¢ ,i¢

-
= Ú

j³0
I n¢

j
M cn¢ , j,i¢  s T j,i¢

-

= Ú
j,m³0

I n¢

j
M cn¢ , j,i¢  ΧIa-1M a-2 j ������1

m!
 Q-Ia-2  i¢Mm

 T j+m,R-Ia-2  i¢M
-

= Ú
j,m,n³0

I n¢

j
M cn¢ , j,i¢  Χ Ia-1M a-2 j ������1

m!

Q-Ia-2  i¢Mm
 H-1L j+m+n  I j+m

n
M c j+m,n,RIa-2  i¢M  T

�
n,R-Ia-2  i¢M
-

.
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s T
�

n¢ ,i¢

-
= Ú

j³0
I n¢

j
M cn¢ , j,i¢  s T j,i¢

-

= Ú
j,m³0

I n¢

j
M cn¢ , j,i¢  ΧIa-1M a-2 j ������1

m!
 Q-Ia-2  i¢Mm

 T j+m,R-Ia-2  i¢M
-

= Ú
j,m,n³0

I n¢

j
M cn¢ , j,i¢  Χ Ia-1M a-2 j ������1

m!

Q-Ia-2  i¢Mm
 H-1L j+m+n  I j+m

n
M c j+m,n,RIa-2  i¢M  T

�
n,R-Ia-2  i¢M
-

.

It  already  follows  that  bHn¢ ,i¢L,Hn,iL = 0  if  n > n¢  or  i ¹ R-Ia-2  i¢M.  If  i = R-Ia-2  iM

then Q-Ia-2  iM = a-2  i - i = i Ia-2 - 1M, and therefore

bHn,iL,Hn,iL = Ú
j,m

I n
j

M cn, j,i Χ Ia-1M a-2 j ������1
m!

 imIa-2 - 1Mm
 H-1L j+m+n  I j+m

n
M c j+m,n,i

= Ú
j,m

I n
j

M Χ Ia-1M a-2 j ������1
m!

 Ia-2 - 1Mm
 H-1L j+m+n  I j+m

n
M c j+m, j,1

because cn, j,i c j+m,n,i = c j+m, j,i = i-m c j+m, j,1. �

Theorem  12.7.  Assume   cH ΧL¤ £ 1.  The  G0-representation  VΧ  possesses  an  n-

character on S0 Ý Greg given by

ΘVΧ KK a

a-1
OO = ��������������������������������������������������

ΧHaL-1

¡1-a-2¥
p

 I1-a-2M
 + ��������������������������������������������

ΧHaL
¡1-a2¥

p
 I1-a2M

 - �����������������������������
ΧHaL a2 m0

1-a2

where 

m0 := :
1 - cH ΧL if - cH ΧL Î N,

0 otherwise.

Proof. Using Proposition 9.5 we will treat HVΧLw+
 and HVΧLw-

 separately.

Step 1:  We fix a  pair  HH, rL  and a  number k Î N  (both large enough),  and we

determine the formal character of the representation MHH,rL
± � nk  MHH,rL

±  of S0. 

First of all this representation possesses a formal character Qk
± Î Z@XHS0LD (over

the  field  C)  whose  value  in  any  s = K a

a-1
O Î S0  is  equal  to  the  trace  of  the

operator  on  MHH,rL
± � nk  MHH,rL

±  defined  by  s  (Remark  2.2  (ii)).  Hence,  in  the

notations of Lemma 12.6 (i),
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Step 1:  We fix a  pair  HH, rL  and a  number k Î N  (both large enough),  and we

determine the formal character of the representation MHH,rL
± � nk  MHH,rL

±  of S0. 

First of all this representation possesses a formal character Qk
± Î Z@XHS0LD (over

the  field  C)  whose  value  in  any  s = K a

a-1
O Î S0  is  equal  to  the  trace  of  the

operator  on  MHH,rL
± � nk  MHH,rL

±  defined  by  s  (Remark  2.2  (ii)).  Hence,  in  the

notations of Lemma 12.6 (i),

evS0
IQk

+M HsL = Ú
Hn,iLÎIk

+
bHn,iL,Hn,iL

+  = Χ-1HsL lHsL Ú
n=0

k-1
a2 n

where lHsL Î N  is  the number of fixpoints of the permutation i # R+Ia2  iM  of the

set  N<ΕHrL m+ .  Let  ¶ : S0 ® K´  denote  the  character  K a

a-1
O  #  a-1,  and  let

Y+ Î Z@XHS0LD denote the formal character of the matrix representation of S0

K a

a-1 O # J∆i,R+Ia2  i¢MN
Hi,i¢LÎN<ΕHrL m+ ´N<ΕHrL m+

.

Then lHsL = evS0
HY+L HsL, and hence

evS0
IQk

+M HsL = evS0

i
k
jjjeI Χ-1M × Y+ × Ú

n=0

k-1
eH¶L-2 ny

{
zzz HsL

by  multiplicativity  of  the  evaluation  map.  But  since  this  map  is  also  injective

(Remark 1.2 (i)) we deduce

Qk
+ = eI Χ-1M × Y+ × Ú

n=0

k-1
eH¶L-2 n.

Similarly, in the notations of Lemma 12.6 (ii),

evS0
HQk

-L HsL = Ú
Hn,iLÎIk

-
bHn,iL,Hn,iL

-  = Ú
n=0

k-1
Ú
i=1

ΕHrL m--1
bHn,iL,Hn,iL

- + Ú
n=0

-cH ΧL
bHn,0L,Hn,0L

- ;

here we understand the sum Ún=0
-cH ΧL H ...L to be zero if -cH ΧL Ï N. Letting l-HsL Î N

denote  the  number  of  fixpoints  of  the  permutation  i # R-Ia-2  iM  of  the  set

N<ΕHrL m-
*  = N<ΕHrL m- - 80< we have

Ú
n=0

k-1
Ú
i=1

ΕHrL m--1
bHn,iL,Hn,iL

-  = ΧHsL l-HsL Ú
n=0

k-1
Ú

j,mÎN

dn, j,m a-2 j Ia-2 - 1Mm
.

Moreover, if -cH ΧL Î N then we calculate

Ú
n=0

-cH ΧL
bHn,0L,Hn,0L

- = ΧHsL Ú
n=0

-cH ΧL
Ú
j=0

n
Ú

m=0

¥
���������������
c j+m, j,1

m!
 a-2 jIa-2 - 1Mm

 H-1L j+m+n  I n
j

M I j+m
n

M

= Χ HsL Ú
j=0

-cH ΧL
Ú

m=0

-cH ΧL- j

Ú
n=0

j+m
���������������
c j+m, j,1

m!
 a-2 jIa-2 - 1Mm

 H-1L j+m+n  I n
j

M I j+m
n

M

= Χ HsL Ú
j=0

-cH ΧL
a-2 j;
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Ú
n=0

-cH ΧL
bHn,0L,Hn,0L

- = ΧHsL Ú
n=0

-cH ΧL
Ú
j=0

n
Ú

m=0

¥
���������������
c j+m, j,1

m!
 a-2 jIa-2 - 1Mm

 H-1L j+m+n  I n
j

M I j+m
n

M

= Χ HsL Ú
j=0

-cH ΧL
Ú

m=0

-cH ΧL- j

Ú
n=0

j+m
���������������
c j+m, j,1

m!
 a-2 jIa-2 - 1Mm

 H-1L j+m+n  I n
j

M I j+m
n

M

= Χ HsL Ú
j=0

-cH ΧL
a-2 j;

the  second  equality  holds  since  c j+m, j,1 = 0  whenever  j £ -cH ΧL < j + m,  the

third equality follows from ÚnÎN H-1L j+m+n  I n
j

M I j+m
n

M = ∆m,0. Hence

evS0
HQk

-L HsL = Χ HsL l- HsL Ú
n=0

k-1
Ú

j,mÎN

dn, j,m ¶HsL2 j I¶HsL2 - 1M
m

+ ΧHsL Ú
j=0

-cH ΧL
¶HsL2 j .

Again by the injectivity of evS0
 we deduce

Qk
- = eH ΧL eHY-L Ú

n=0

k-1
Ú

j,mÎN

dn, j,m eH¶L2 j IeH¶L2 - 1M
m

+ eH ΧL Ú
j=0

-cH ΧL
eH¶L2 j

where Y- Î ZPXHS0LT  denotes the  formal character of  the  matrix representation
of S0

K a

a-1 O # J∆i,R-Ia-2  i¢MN
Hi,i¢LÎN<ΕHrL m-

* ´N<ΕHrL m-
*

. 

Step 2: We keep the pair HH, rL from the first step and form the limit k ® ¥ in
ZPXHS0LT of the formal characters just obtained:

QHH,rL
+ := lim

k®¥
 Qk

+ = eI Χ-1M Y+ Ú
jÎN

eH¶L-2 j ,

QHH,rL
- := lim

k®¥
 Qk

- = e H ΧL e HY-L Ú
n, j,mÎN

dn, j,m eH¶L2 j IeH¶L2 - 1M
m

+ e H ΧL Ú
j=0

-cH ΧL
eH¶L2 j

= eH ΧL Y- Ú
jÎN

eH¶L2 j

+ eH ΧL Ú
j=0

-cH ΧL
eH¶L2 j82



QHH,rL
+ := lim

k®¥
 Qk

+ = eI Χ-1M Y+ Ú
jÎN

eH¶L-2 j ,

QHH,rL
- := lim

k®¥
 Qk

- = e H ΧL e HY-L Ú
n, j,mÎN

dn, j,m eH¶L2 j IeH¶L2 - 1M
m

+ e H ΧL Ú
j=0

-cH ΧL
eH¶L2 j

= eH ΧL Y- Ú
jÎN

eH¶L2 j

+ eH ΧL Ú
j=0

-cH ΧL
eH¶L2 j

since

Ún, j,m dn, j,m eH¶L2 j IeH¶L2 - 1M
m

= Új,m ������1
m!

 c j+m, j,1  eH¶L2 j IeH¶L2 - 1M
m

 Ún H-1L j+m+n  I n
j

M I j+m
n

M

= Új,m ������1
m!

 c j+m, j,1  eH¶L2 j IeH¶L2 - 1M
m

 ∆m,0

= Új eH¶L2 j .

Step  3:  Evaluation  of  QHH,rL
±  on  the  subset  S0 Ý Greg  =  {K a

a-1
O;  a ¹ ±1}  of

regular elements: In ZPXHS0LT we have the equalities I1 - eH¶L¡2M ÚjÎN eH¶L¡2 j  =

1,  whence  QHH,rL
±  is  contained  in  the  submodule  ZPXHS0LTS0ÝGreg  (cf.  Definition

1.1), and

evS0ÝGreg IÚjÎN eH¶L¡2 jM KK a

a-1
OO = I1 - a±2M-1

.

We claim that if ΕHrL m± =  ΕHrL m±¤p
-1 ³ ¡a±2 - 1¥

p

-1
 then

evS0
HY+L KK a

a-1
OO = ¡1 - a2¥

p

-1
,

evS0
HY-L KK a

a-1
OO = ¡1 - a-2¥

p

-1
- 1.

Indeed, evS0
HY+L HsL is the number of fixpoints of the permutation i # R+Ia2  iM of

the set N<ΕHrL m+ . For each i we have  i = R+Ia2  iM  �  vpIa2  i - iM ³ vpHΕHrL m+L  �

vpHiL  ³  vpHΕHrL m+L  -  vpIa2 - 1M;  since  vpHΕHrL m+L ³ vpIa2 - 1M  by  assumption,

there  are  precisely  pvpIa2-1M  =  ¡1 - a2¥
p

-1
 elements  i  in  N<ΕHrL m+  satisfying  that

condition (Lemma 3.2). Similarly, there are pvpIa-2-1M  = ¡1 - a-2¥
p

-1
 elements i in

N<ΕHrL m-  satisfying  i = R-Ia-2  iM. Since  evS0
HY-L HsL is the number of fixpoints of

the  permutation  i # R-Ia-2  iM  of  the  set  N<ΕHrL m-
*  the  second  formula  follows

from the  additional  observation that  0  always  is  a  fixpoint  of  that  permutation.
This proves our claim.
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Indeed, evS0
HY+L HsL is the number of fixpoints of the permutation i # R+Ia2  iM of

the set N<ΕHrL m+ . For each i we have  i = R+Ia2  iM  �  vpIa2  i - iM ³ vpHΕHrL m+L  �

vpHiL  ³  vpHΕHrL m+L  -  vpIa2 - 1M;  since  vpHΕHrL m+L ³ vpIa2 - 1M  by  assumption,

there  are  precisely  pvpIa2-1M  =  ¡1 - a2¥
p

-1
 elements  i  in  N<ΕHrL m+  satisfying  that

condition (Lemma 3.2). Similarly, there are pvpIa-2-1M  = ¡1 - a-2¥
p

-1
 elements i in

N<ΕHrL m-  satisfying  i = R-Ia-2  iM. Since  evS0
HY-L HsL is the number of fixpoints of

the  permutation  i # R-Ia-2  iM  of  the  set  N<ΕHrL m-
*  the  second  formula  follows

from the  additional  observation that  0  always  is  a  fixpoint  of  that  permutation.
This proves our claim.

 By multiplicativity of the evaluation map we obtain

evS0ÝGreg IQHH,rL
+ M HsL = ΧHaL ¡1 - a2¥

p

-1
 I1 - a2M-1

,

evS0ÝGreg IQHH,rL
- M HsL = ΧIa-1M J¡1 - a-2¥

p

-1
- 1N I1 - a-2M-1

+ ΧIa-1M Ú
j=0

-cH ΧL
a-2 j

= Χ Ia-1M ¡1 - a-2¥
p

-1
 I1 - a-2M-1

- :
Χ Ia-1M I1 - a-2M-1

if - cH ΧL Ï N

Χ Ia-1M I1 - a-2M-1
 a-2 H1-cH ΧLL if - cH ΧL Î N

provided ΕHrL m± ³ ¡a±2 - 1¥
p

-1
.

Step  4:  For  any  given  s,  there  certainly  exists  a  pair  HH, rL = HH1, r1L Î X

satisfying ΕHrL m±  ³ ¡a±2 - 1¥
p

-1
. But then this condition is also satisfied for each

pair HH, rL ³ HH1, r1L: this follows from Lemma 9.2 (ii) and the fact that ΕHrL m±

is  equal  to  the  order  of  Nw± � HNw± Ý HLΕHrL.  Furthermore,  the  expression

evS0ÝGreg IQHH,rL
± M HsL does not depend on the particular choice of HH, rL. Hence the

family  IevS0ÝGreg IQHH,rL
± MMHH,rL  converges  weakly.  Composing  the  limit  function

with the map s # s-1 then gives the asserted formula. �
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Step  4:  For  any  given  s,  there  certainly  exists  a  pair  HH, rL = HH1, r1L Î X

satisfying ΕHrL m±  ³ ¡a±2 - 1¥
p

-1
. But then this condition is also satisfied for each

pair HH, rL ³ HH1, r1L: this follows from Lemma 9.2 (ii) and the fact that ΕHrL m±

is  equal  to  the  order  of  Nw± � HNw± Ý HLΕHrL.  Furthermore,  the  expression

evS0ÝGreg IQHH,rL
± M HsL does not depend on the particular choice of HH, rL. Hence the

family  IevS0ÝGreg IQHH,rL
± MMHH,rL  converges  weakly.  Composing  the  limit  function

with the map s # s-1 then gives the asserted formula. �

Remark 12.7.  Suppose that Χ  is a smooth character, i.e. cH ΧL = 0. We can then

consider the smooth principal series representation VΧ
¥  = IndP

GH ΧL¥  of G induced

from  Χ,  and  with  the  above  method  one  can  show  that  this  representation

possesses an n-character  on S0 Ý Greg, given by

ΘVΧ
¥ KK a

a-1
OO = ��������������������������

ΧHaL-1

¡1-a-2¥
p

 + �����������������������
ΧHaL

¡1-a2¥
p

.

(However, since the action of n is trivial the computations become much simpler

here;  the  two  components  IVΧ
¥M

w±
 identify  with  C¥HZp, KL.)  As  predicted  by

Theorem  10.5  this  formula  coincides  with  the  known  character  formula  of  the

smooth  principal  series  of  SL2HQpL  (cf.  [16],  p.  200;  note  that  they  use

normalized induction).

Letting ¶  denote  the character K a

a-1
O # a-1  we obtain the exact  sequence of

representations of G

0 � VΧ
¥ �

Ì
VΧ �

��������
d

d x
V¶2 Χ � 0 ;

here  �������d
d x

 denotes  the  derivation  on  each  component  HVΧLw±
 =  CanHZp, KL.

Theorem 12.7 yields

ΘVΧ KK a

a-1
OO = ��������������������������������������������������

ΧHaL-1

¡1-a-2¥
p

 I1-a-2M
 + ��������������������������������������������

ΧHaL
¡1-a2¥

p
 I1-a2M

 - ����������������������
ΧHaL a2

1-a2
,

ΘV
¶2  Χ

KK a

a-1
OO = ��������������������������������������������������

ΧHaL-1  a-2

¡1-a-2¥
p

 I1-a-2M
 + ��������������������������������������������

ΧHaL a2

¡1-a2¥
p

 I1-a2M
 - ����������������������

ΧHaL a2

1-a2

(note that cI¶2 ΧM = 2 Ï -N). It is easily verified that the alternating sum of the

three characters is zero.

More generally, assume -cH ΧL Î N.  The character Χ  is  then the product of the

algebraic character ¶cH ΧL  and the smooth character ¶-cH ΧL Χ.  As an application of

the theory developped in [29] and [30] Schneider and Teitelbaum prove that  in

this case (and only in this case) VΧ  is reducible. More exactly they construct an
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algebraic character ¶cH ΧL  and the smooth character ¶-cH ΧL Χ.  As an application of

the theory developped in [29] and [30] Schneider and Teitelbaum prove that  in

this case (and only in this case) VΧ  is reducible. More exactly they construct an

exact sequence of G- representations

0 � V¶cH ΧL
alg Ä V¶-cH ΧL  Χ

¥ � VΧ � V¶2-2 cH ΧL  Χ � 0

where  the  algebraic  induction  V¶cH ΧL
alg  =  indP

GH¶cH ΧLL  is  at  the  same  time  the

irreducible Qp-rational  G-representation  of highest weight ¶cH ΧL  w.r.t. the upper

Borel  subgroup  (cf.  [30],  Section  4).  We  have  cI¶2-2 cH ΧL ΧM  =  2  -  cH ΧL  Ï  -N,

hence Theorem 12.7 gives the characters

ΘVΧ KK a

a-1
OO = ��������������������������������������������������

ΧHaL-1

¡1-a-2¥
p

 I1-a-2M
 + ��������������������������������������������

ΧHaL
¡1-a2¥

p
 I1-a2M

 - ��������������������������������������
ΧHaL a2-2 cH ΧL

1-a2
,

ΘV
¶2-2 cI ΧM  Χ

KK a

a-1
OO = ��������������������������������������������������

ΧHaL-1  a-2+2 cH ΧL

¡1-a-2¥
p

 I1-a-2M
 + ��������������������������������������������

ΧHaL a2-2 cH ΧL

¡1-a2¥
p

 I1-a2M
 - ��������������������������������������

ΧHaL a2-2 cH ΧL

1-a2
.

The character of the smooth G-representation  V¶-cH ΧL  Χ
¥  is given by

ΘV
¶-cI ΧM  Χ
¥ KK a

a-1
OO = �����������������������������������

ΧHaL-1  acH ΧL

¡1-a-2¥
p

 + ��������������������������������
ΧHaL a-cH ΧL

¡1-a2¥
p

.

Finally,  for  the  character  of  the  rational  G-representation  V¶cH ΧL
alg  the  Weyl

character formula yields

Ia - a-1M Θ
V

¶cI ΧM
alg KK a

a-1
OO = acH ΧL-1 - a1-cH ΧL.

(cf.  [17],  p.  298,  Theorem 7.1.1).  Again,  it  is  easy to check that  the alternating

sum of the characters is zero:

ΘV
¶2-2 cI ΧM  Χ

KK a

a-1
OO - ΘVΧ KK a

a-1
OO = ������������������������������������������������������������

ΧHaL-1  Ia-2+2 cH ΧL-1M
¡1-a-2¥

p
 I1-a-2M

 + ���������������������������������������������������
ΧHaL Ia2-2 cH ΧL-1M
¡1-a2¥

p
 I1-a2M

 = �����������������������������������
ΧHaL-1  acH ΧL

¡1-a-2¥
p

 × ����������������������������������������������a-1+cH ΧL-a1-cH ΧL

a-a-1
 + ���������������������������������

ΧHaL a-cH ΧL

¡1-a2¥
p

 × ����������������������������������������������a1-cH ΧL-a-1+cH ΧL

a-1-a

  = ΘV
¶-cI ΧM  Χ
¥ KK a

a-1
OO × Θ

V
¶cI ΧM
alg KK a

a-1
OO.
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ΘV
¶2-2 cI ΧM  Χ

KK a

a-1
OO - ΘVΧ KK a

a-1
OO = ������������������������������������������������������������

ΧHaL-1  Ia-2+2 cH ΧL-1M
¡1-a-2¥

p
 I1-a-2M

 + ���������������������������������������������������
ΧHaL Ia2-2 cH ΧL-1M
¡1-a2¥

p
 I1-a2M

 = �����������������������������������
ΧHaL-1  acH ΧL

¡1-a-2¥
p

 × ����������������������������������������������a-1+cH ΧL-a1-cH ΧL

a-a-1
 + ���������������������������������

ΧHaL a-cH ΧL

¡1-a2¥
p

 × ����������������������������������������������a1-cH ΧL-a-1+cH ΧL

a-1-a

  = ΘV
¶-cI ΧM  Χ
¥ KK a

a-1
OO × Θ

V
¶cI ΧM
alg KK a

a-1
OO.

  
  

In  determining the  n-character  of  VΧ  it  became visible  that  the  calculations on

the  component  HVΧLw+
 are  much  easier  to  do  than  on  HVΧLw-

,  the  reason  being

that n = nw+  acts on the dual IHVΧLw+
M
b

¢
> DHNw, KL simply by left multiplication.

This fact will be exploited further in the next section.

13. The principal series of the Iwahori subgroup

We resume the  assumptions  and  notations  of  Section 11  and  fix  a  Weyl  group

element w Î W; thus G0  is the Iwahori subgroup of the reductive group G of the
same type as P, and we have the decomposition G0 = Nw × Pw (direct span). Let

nw = ga1
 Å ¼ Å gad

 

be  the  root  space  decomposition  of  the  Lie  algebra  nw  of  Nw.  Let  Greg Ì G

denote  the  set  of  regular  elements,  and  put  S¢  :=  S0  Ý Greg.  By the  end of  this
section we will be able to prove the following result:

Theorem 13.1. Assume G to be split over L and L unramified over Qp. The G0-

representation IndPw

G0 H ΧwL possesses an nw-character  Θ on S¢, given by

ΘHsL = ΧwHsL Û
1£ j£d

�����������������������������������������������������������������1
I1-a j

-1HsLM ¡1-a j
-1HsL¥

L

.

The  dual  DHG0, KL-module  of  IndPw

G0 H ΧwL  is  given  by  M  =  JIndPw

G0 H ΧwLN
b

¢
 =

DHG0, KL ÄDHPw ,KL  Χw
¢  > DHNw, KL ÄK Χw

¢ . According to Proposition 11.6 there is

a pair HH0, r0L such that for all HH, rL ³ HH0, r0L we have
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The  dual  DHG0, KL-module  of  IndPw

G0 H ΧwL  is  given  by  M  =  JIndPw

G0 H ΧwLN
b

¢
 =

DHG0, KL ÄDHPw ,KL  Χw
¢  > DHNw, KL ÄK Χw

¢ . According to Proposition 11.6 there is

a pair HH0, r0L such that for all HH, rL ³ HH0, r0L we have

MHH,rL > DHHÝNw ,rLHNw, KL Ä
K

Χw
¢ .

With  these  identifications  the  subalgebra  DHNw, KL  Ì  DHG0, KL  simply  acts  by
left multiplication on M and on MHH,rL. 

Let  Hx1, ¼, xdL  be  a  basis  of  the  oL-lattice  LogHH Ý NwL  Ì  nw  consisting  of

root  space  vectors  xi Î gai ;  such  a  basis  exists  by  Proposition  11.3.  Let

Hv1, ¼, vnL be a Zp-basis  of oL, and put

hi j := ExpHvi x jL   (1 £ i £ n, 1 £ j £ d).

We  apply  Lemma  11.5  to  obtain  a  sequence  of  p-powers  m  =  Hm11, ¼, mndL

such that (h11
m11 , ¼, hnd

mnd ) is an ordered basis of H Ý Nw and

Ih11
Α11  ¼ hnd

Αnd M
0£Α<m

is a system of representatives of Nw � HH Ý NwL (where by "0 £ Α < m" we mean

"0 £ Αi j < mi j for all i, j"). In particular,

Ih11
Α11  ¼ hnd

Αnd M
0£Α<ΕHrL×m

is  a  system  of  representatives  of  Nw � HHΕHrL Ý NwL.  Then  Corollary  7.4  tells  us

that the family

Jx1
Β1  ¼ xd

Βd  ∆h11

Α11  ¼ ∆hnd

Αnd N
Α<ΕHrL m, Β³0

is a basis of the K-Banach  space MHH,rL.  For k Î N  let MHkL Ì MHH,rL  denote the

closed K-vector  subspace generated by the elements

ΛΑ,Β := x1
Β1  ∆h11

Α11  ¼ ∆hn1

Αn1 ¼ xd
Βd  ∆h1d

Α1d  ¼ ∆hnd

Αnd

(Α Î Nn d,  Α < ΕHrL m,  Β Î Nd,  Β e k).  From  the  formula  @ga, gbD  =  ga+b  for  all

roots  a, b  (where  we  understand  ga+b = 0  if  a + b  is  not  a  root)  it  follows  that

@nw, nwD  is  generated  by  the  one-dimensional  spaces  ga+b  (a, b Î 8a1, ¼, ad<)
and,  by iteration, that the Ν-th  lower central series member CΝHnwL  is generated

by  the  spaces  gb1+¼+bΝ  (b1, ¼, bΝ Î 8a1, ¼, ad<).  Hence  from  Lemma  8.5  (ii)

and Lemma 8.6, applied to the family 88



(Α Î Nn d,  Α < ΕHrL m,  Β Î Nd,  Β e k).  From  the  formula  @ga, gbD  =  ga+b  for  all

roots  a, b  (where  we  understand  ga+b = 0  if  a + b  is  not  a  root)  it  follows  that

@nw, nwD  is  generated  by  the  one-dimensional  spaces  ga+b  (a, b Î 8a1, ¼, ad<)
and,  by iteration, that the Ν-th  lower central series member CΝHnwL  is generated

by  the  spaces  gb1+¼+bΝ  (b1, ¼, bΝ Î 8a1, ¼, ad<).  Hence  from  Lemma  8.5  (ii)

and Lemma 8.6, applied to the family

g = Ih1 j
Α1 j  ¼ hn j

Αn j M
1£ j£d,Α<ΕHrL m

,

we  obtain  that  the  filtrations  HMHkLLkÎN  and  Inw
k  MHH,rLM

kÎN
 are  nested  into  each

other.  Once  we  know  that  the  spaces  MHkL  are  stable  under  S0  we  may  apply

Lemma  2.8  to  calculate  the  limit  of  the  sequence  IChIMHH,rL � nw
k  MHH,rLMM

kÎN
 in

ZPXHS0LT by means of the sequence HChHMHH,rL � MHkLLLkÎN
.

The action of an element s Î S0 on M is given by

s Λ = Χw
-1HsL ΛHsL

where  ΛHsL  denotes  the  distribution  f # ΛH fsL  and  fs  denotes  the  function

Ix # f Is x s-1MM  (Lemma 11.1 (i)). In the next two lemmata we calculate ΛHsL  for

the elements Λ = ΛΑ,Β defined above.

For a tuple Β Î Nd and s Î S0 write

aHsLΒ := a1HsLΒ1  ¼ adHsLΒd  Î L´;

thus we obtain a character aΒ = Is # aHsLΒM Î XHS0L.

Lemma 13.2. Let s Î S0, Α Î Nn d, Β Î Nd. Then

ΛΑ,Β
HsL  = aHsLΒ 

i
k
jjj Û

1£i£n
∆s hi1

Αi1  s-1

y
{
zzz x1

Β1 ¼
i
k
jjj Û

1£i£n
∆s hid

Αid  s-1

y
{
zzz xd

Βd .

Proof. First of all,

∆xH fsL = ∆s x s-1 H f L

for  all  x Î Nw  and  f Î CanHNw, KL.  Next,  the  linear  form  x j  on  CanHNw, KL
satisfies

x jH f L = lim
t®0

 ��������������������������������������
f IExpIt x jMM- f H1L

t
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x jH f L = lim
t®0

 ��������������������������������������
f IExpIt x jMM- f H1L

t

(cf. [30], Section 2). But by [6], III.4.4 Corollary 3 of Proposition 8, and since x j

is  a  root  vector  of  weight  a j,  we  calculate  fsHExpHt x jL  =  f Is ExpHt x jL s-1M  =

f HExpHAdHsL Ht x jLLL = f HExpHa jHsL t x jLL. Hence

x jH fsL = lim
t®0

 ����������������������������������������������
f IExpIa jHsL t xMM- f H1L

t
= a jHsL x jH f L.

Thus  we  have  shown  ∆hi j

HsL = ∆s x s-1  and  x j
HsL = a jHsL x j  for  all  i, j.  The  lemma

follows  now  from  the  convolution  formula:  for  any  two  distributions  Λ, Μ  we
have

HΛ ΜL H fsL = ΜHx # ΛHy # fsHy xLLL
= ΜIIx # ΛIHy # f Hy xLLsMM

s
M

= HΛHsL ΜHsLL H f L. �

Notations: For any c Î Zp  we define elements Qi jHcL  Î  ΕHrL mi j Zp  and Ri jHcL  Î

N<ΕHrL mi j  by c = Qi jHcL + Ri jHcL. For any a Î oL and any 1 £ i¢ £ n we write a vi¢  =

Ú1£i£n bHaLi,i¢  vi with coefficients bHaLi,i¢ Î Zp.

Lemma 13.3. Let s Î S0, Α Î Nn d, Β Î Nd with Α < ΕHrL m. Then

 ΛΑ,Β
HsL  = aHsLΒ Ú

ΓÎNn d

�����1
Γ!

 QHs, ΑLΓ  ΛRHs,ΑL,Β+ Γ¤

where  Γ !  :=  Ûi, j Γi j !,   Γ¤  :=  HΓ1 j + ¼ + Γn jL1£ j£d,  RHs, ΑL  :=

IRIÚ1£i¢£n Αi¢ j bHa jHsLLi i¢ MM
1£i£n,1£ j£d

,  QHs, ΑL  :=

IQIÚ1£i¢£n Αi¢  j bHa jHsLLi i¢ M viM1£i£n,1£ j£d
.

Proof. We work on with the result of the preceding lemma: Fix 0 £ j £ d. Then

Û
1£i¢£n

∆
s hi¢ j

Αi¢ j  s-1  = Û
1£i¢£n

∆s ExpIΑi¢ j  vi¢  x jM s-1  

= Û
1£i¢£n

∆ExpIAdHsL IΑi¢ j  vi¢  x jMM = Û
1£i¢£n

∆ExpIa jHsL Αi¢ j  vi¢  x jM 

= Û
1£i¢£n

∆
ExpJÚ1£i£nΑi¢ j  bIa jHsLM

i,i¢  vi  x jN
 = Û

1£i£n
∆

ExpJÚ1£i¢ £nΑi¢ j  bIa jHsLM
i,i¢  vi  x jN

 

= Û
1£i£n

∆ExpIRi j  vi  x jM  ∆ExpIQi j  vi  x jM = Û
1£i£n

∆hi j

Ri j  ∆ExpIQi j  vi  x jM
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Û
1£i¢£n

∆
s hi¢ j

Αi¢ j  s-1  = Û
1£i¢£n

∆s ExpIΑi¢ j  vi¢  x jM s-1  

= Û
1£i¢£n

∆ExpIAdHsL IΑi¢ j  vi¢  x jMM = Û
1£i¢£n

∆ExpIa jHsL Αi¢ j  vi¢  x jM 

= Û
1£i¢£n

∆
ExpJÚ1£i£nΑi¢ j  bIa jHsLM

i,i¢  vi  x jN
 = Û

1£i£n
∆

ExpJÚ1£i¢ £nΑi¢ j  bIa jHsLM
i,i¢  vi  x jN

 

= Û
1£i£n

∆ExpIRi j  vi  x jM  ∆ExpIQi j  vi  x jM = Û
1£i£n

∆hi j

Ri j  ∆ExpIQi j  vi  x jM

where we put Ri j  = RIÚ1£i¢£n Αi¢ j bHa jHsLLi i¢ M and Qi j  = QIÚ1£i¢£n Αi¢ j bHa jHsLLi i¢ M.

Now ExpHQi j vi x jL = hi j
Qi j  is contained in HΕHrL, so according to Remark 7.3 (2)

d), ∆ExpIQi j  vi  x jM = expHQi j vi x jL = ÚΓÎN �����1
Γ!

 HQi j viLΓ  x j
Γ. Hence

i
k
jjj Û

1£i£n
∆s hi j

Αi j  s-1

y
{
zzz x j

Β j  = 
i

k
jjjj Û

1£i£n

i

k
jjjj∆hi j

Ri j  Ú
ΓÎN

�����1
Γ!

 HQi j viLΓ  x j
Γy

{
zzzz

y

{
zzzz x j

Β j

= Ú
ΓÎNn

��������������������1
Γ1! ¼Γn!

 
i
k
jjj Û

1£i£n
HQi j viLΓi

y
{
zzz

i
k
jjj Û

1£i£n
∆hi j

Ri j y
{
zzz x j

Γ1+¼+Γn+ Β j

Combined with the preceding lemma this gives

ΛΑ,Β
HsL  = aHsLΒ 

i
k
jjj Û

1£i£n
∆s hi1

Αi1  s-1

y
{
zzz x1

Β1 ¼
i
k
jjj Û

1£i£n
∆s hid

Αid  s-1

y
{
zzz xd

Βd

= aHsLΒ Ú
ΓÎNn d

�����1
Γ!

 

i

k

jjjjjjjjjj
Û

1£i£n
1£ j£d

HQi j viLΓi j

y

{

zzzzzzzzzz

i
k
jjj Û

1£i£n
∆hi1

Ri1 y
{
zzz x1

Γ11+¼+Γn 1+ Β1 ¼
i
k
jjj Û

1£i£n
∆hid

Rid y
{
zzz xd

Γ1 d +¼+Γn d + Βd

which is precisely the desired formula. �

Corollary 13.4. The space MHkL is stable under the action of S0. �

Corollary  13.5.  The  S0-representation  MHH,rL � MHkL  is  isomorphic  to  a  block

matrix representation of S0 of the form
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Corollary  13.5.  The  S0-representation  MHH,rL � MHkL  is  isomorphic  to  a  block

matrix representation of S0 of the form

i

k

jjjjjjjjjjjjjj

Χw
-1  aH0,¼,0L A 0

Χw
-1  aH1,0,¼,0L A

¸

* Χw
-1  aHk-1,¼,k-1L A

y

{

zzzzzzzzzzzzzz

where  A  is  the  matrix  representation  of  S0  defined  by  AHsLHΑ,Α¢L  =  ∆Α¢ ,RHs,ΑL

(Α, Α¢ Î N<ΕHrL m; here ∆ denotes Kronecker’s symbol).

Proof.  A  K-basis  of  MHH,rL � MHkL  is  given  by  the  elements  ΛΑ,Β  (Α < ΕHrL m,

Β < k).  Since,  in  the  notations  of  Lemma  13.3,  "Β +  Γ¤ = Β"  implies

" �����1
Γ!

 QHs, ΑLΓ = 1" the corollary follows immediately from that lemma. �

We  continue  to  denote  by  A  the  S0-representation  defined  in  the  preceding

corollary. Recall that S¢ = S0 Ý Greg.

Lemma 13.6. Let s Î S¢.

(i) a jHsL ¹ 1 for all 1 £ j £ d.

(ii) If ΕHrL mi j ³  a jHsL - 1¤L
-1 for all 1 £ i £ n, 1 £ j £ d then

trHAHsLL =  a1HsL - 1¤L
-1  ¼  adHsL - 1¤L

-1.

Proof. (i) follows from the description of Greg  given in [34], p. 197; or from [2],

Lemma 12.2.
(ii)  The  trace  of  AHsL  is  equal  to  the  number  of  fixpoints  of  the  permutation

Α # RHs, ΑL of the set N<ΕHrL m
n d . We observe

Α = RHs, ΑL
� Αi j = RIÚ1£i¢£n bHa jHsLLi i¢  Αi¢ jM for all i, j

  � vpIÚ1£i¢£n bHa jHsLLi i¢  Αi¢ j - Αi jM ³ vpHΕHrL mi jL for all i, j.

But

vpJdetJIbHa jHsLLi,i¢ M
1£i,i¢£n

- 1NN = vpINLÉQp
Ha jHsL - 1LM = vLHa jHsL - 1L
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vpJdetJIbHa jHsLLi,i¢ M
1£i,i¢£n

- 1NN = vpINLÉQp
Ha jHsL - 1LM = vLHa jHsL - 1L

(cf. [22], I. (2.2) and II. (4.8); recall that L È Qp  is unramified). Since we assume

vpHΕHrL mi jL ³ vLHa jHsL - 1L  there  are,  for  each  j,  precisely  pvLIa jHsL-1M  tuples

HΑ1 j, ¼, Αd jL  in  N<ΕHrL m1 j
 ´  ¼  ´  N<ΕHrL md j

 satisfying  the  above  condition

(independently  of  the  particular  values  of  mi j  and  ΕHrL).  Consequently  the

number of fixpoints equals Ûj pvLIa jHsL-1M = Ûj  a jHsL - 1¤L
-1.

Lemma  13.7. (i) The  representations  A  and  MHH,rL � nk  MHH,rL  of  S0  (k Î N)  are

finitely  trigonalisable  over  C.  The  sequence  of  formal  characters

IChIMHH,rL � nk  MHH,rLMM
kÎN

 converges in ZPXHS0LT to the element

FHH,rL := eI Χw
-1M × ChHAL × Ú

ΒÎNd

eIaΒM.

(ii) FHH,rL is evaluable on S¢.

(iii) Let s Î S¢. If ΕHrL mi j ³  a jHsL - 1¤L
-1 for all 1 £ i £ n, 1 £ j £ d then

evS¢ HFHH,rLL HsL = ΧwHsL-1  Û
1£ j£d

 �������������������������������������������������������������1
H1 -a j HsLL  1-a jHsL¤L

.

Proof. (i) We have seen that the decreasing sequences MH0L É MH1L É MH2L É ¼

and n0  MHH,rL  É  n1  MHH,rL  É  n2  MHH,rL  É  ¼  are nested into each other. It  is clear

that  the  finite-dimensional  S0-representations  A,  MHH,rL � MHkL,  MHH,rL � nk  MHH,rL

are  finitely  trigonalisable  over  C.  According  to  Corollary  13.5,  and  using

Corollary 2.6, we have

ChHMHH,rL � MHkLL = eI Χw
-1M × ChHAL × Ú

Β<k
eIaΒM,

hence

lim
k®¥

 ChHMHH,rL � MHkLL = eI Χw
-1M × ChHAL × Ú

ΒÎNd

eIaΒM.

By Lemma 2.8 this is also the limit of the sequence IChIMHH,rL � nk  MHH,rLMM
kÎN

.
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By Lemma 2.8 this is also the limit of the sequence IChIMHH,rL � nk  MHH,rLMM
kÎN

.

(ii) In ZPXHS0LT we have the equality

eH1L = HeH1L - eHa1LL IÚΒ1ÎN eHa1LΒ1 M ¼ HeH1L - eHadLL IÚΒd ÎN eHadLΒn M

= HeH1L - eHa1LL ¼ HeH1L - eHadLL ÚΒÎNd eIaΒM .

Hence HeH1L - eHa1LL ¼ HeH1L - eHadLL FHH,rL  = eI Χw
-1M ChHAL, where eI Χw

-1M ChHAL
is  contained  in  Z@XHS0LD  and,  regarding  Lemma  13.6  (i),  HeH1L - eHa1LL  ¼

HeH1L - eHadLL is contained in the set SS¢  (cf. Section 1). This means that FHH,rL  is

evaluable on S¢. 

(iii)  By  Remark  1.2  (iii)  we  may  calculate  the  respective  values  of  eI Χw
-1M,

ChHAL,  ÚΒÎNd eIaΒM  in  s Î S¢  separately.  In  case  of  eI Χw
-1M  and  ChHAL  these  are

simply  the  usual  character  values  in  s  (Remark  2.2  (ii)),  which  means  in  the

latter  case:  the  trace  of  the  finite  dimensional  operator  AHsL  as  calculated  in

Lemma 13.6.  Finally,  the proof of  part  (ii) above shows that evIÚΒÎNd eIaΒMM HsL

= H1 - a1HsLL-1  ¼ H1 - adHsLL-1. Multiplication of these values gives the asserted
formula. �
 

Corollary 13.8. The sequence of functions HevS¢ HFHH,rLLLHH,rLÎX  converges weakly

to the function

S¢ ® K, s # ΧwHsL-1  Û
1£ j£d

����������������������������������������������������������1
I1-a jHsLM  1-a jHsL¤L

.

Proof. For every s Î S¢  there certainly exists a pair HH1, r1L ³ HH0, r0L satisfying

the  hypothesis  of  part  (iii)  of  Lemma  13.7.  If  HH, rL  ³  HH1, r1L  then

HΕHrL Ì H1
ΕHr1L  (Lemma  9.2),  and  so  the  pair  HH, rL  satisfies  that  hypothesis  as

well. It remains to observe that the formula in Lemma 13.7 (iii) does not depend

on the particular pair HH, rL provided that hypothesis is satisfied. �

This completes the proof of Theorem 13.1.
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This completes the proof of Theorem 13.1.

Appendix: Morita character of a principal series representation

We  again  use  the  notations  of  Section  11;  thus  G  is  (the  L-points  of)  a

connected reductive group, S  is  a  maximal split  torus, P  is  a  minimal parabolic
subgroup containing S, and Χ is a character of P. Recall that the principal series

representation V  = IndP
GH ΧL of G has a decomposition V = ÅwÎW Vw, stable under

the Iwahori subgroup G0. The components Vw  were treated in Section 13. Put S¢

:= S0 Ý Greg. 

Definition. Suppose that for each Weyl group element w Î W  the representation

Vw  of  G0  possesses  an  nw-character  Θw  on  S¢.  Then  we  call  the  sum  Θ  :=

ÚwÎW Θw the Morita character of V .

This  definition  has  the  advantage  that  it  does  not  depend  on  the  choice  of  a
particular minimal parabolic subgroup. Moreover, it also generalizes the concept
of  character  of  the  smooth  principal  series:  This  is  follows  from  the  results  of

Section 10,  since the action of nw  plays no role.  As an immediate consequence

of Theorem 13.1 we obtain:

Theorem.  Suppose that G  ist split over L  and L  is unramified over Qp.  Then V

possesses a Morita character. �

We  specialize  to  the  following  situation:  Let  G  be  the  Qp-analytic  group

SL2HQpL,  S Ì G  the  standard torus,  P Ì G  the  lower  Borel  subgroup containing

S.  Then  S¢  =  :K a

a-1
O; a ¹ a-1>.  Let  Χ : Qp

´ ® K´  be  a  locally  analytic

character,  extended  to  P  via  the  map  K a

* a-1
O # a-1.  Let  V = IndP

GH ΧL  be  the

principal series representation of G induced from Χ.

The  case  w = K
1

1
O:  Then  Χw = Χ  and  nw = gb  where  b  is  the  root

K a

a-1
O # a2.  Consequently,  according  to  Theorem  13.1,  ΘwKK a

a-1
OO  =

ΧHaL-1  I1 - a-2M-1
 ¡1 -a-2¥-1

.
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The  case  w = K
1

1
O:  Then  Χw = Χ  and  nw = gb  where  b  is  the  root

K a

a-1
O # a2.  Consequently,  according  to  Theorem  13.1,  ΘwKK a

a-1
OO  =

ΧHaL-1  I1 - a-2M-1
 ¡1 -a-2¥-1

.

The  case  w = J -1

1
N:  Then  Χw = Χ-1  and  nw = g-b,  hence  in  this  case

ΘwKK a

a-1
OO = ΧHaL I1 - a2M-1

 ¡1 -a2¥-1
.

Hence the Morita character of V  on S¢ is given by the formula

Θ KK a

a-1
OO = �������������������������������������������������

ΧHaL-1

I1 -a-2M ¡1 -a-2¥
+ �������������������������������������������

ΧHaL
I1 -a2M ¡1 -a2¥

= ������������������������������������������������������������������������������
ΧHaL-1 a  a¤- ΧHaL a-1   a¤-1

Ia -a-1M ¡a -a-1¥
.

This  formula  is  a  slight  modification  of  the  character  formula  for  the  principal

series of SL2HQpL conjectured by Y. Morita in [21], p. 296.
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