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Abstract. In this work a definition of charactersin the context of the theory
of localy analytic representations of p-adic reductive groups is proposed.
This character will be a function on a compact subgroup & in a maximal
torus of the reductive group G.

As an elementary tool we develop a theory of evaluability of formal
characters of S-representations. To an admissible G-representation V we
then associate a projective system of S-representations; the design of this
approximating system constitutes the technical heart of this work. If the
components of the projective system possess evaluable formal characters and
their values converge to a function on & then this function is the desired
character of V.

We show that our definition generalizes the one established in the smooth
representation theory. We determine the characters of the locally analytic
principal series representations of the group SL»(Qp) and of the Iwahori
subgroup of a split-reductive group.
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Ut! Olicrosse! Godemite!
(J. Neukirch, Algebraische Zahlentheorie, p. 46)

Introduction

In the smooth representation theory of p-adic groups one associates to every
admissible representation V of a group G a trace ®y which is a linear form on
the Hecke algebra H(G) of G. A theorem of Howe and Harish-Chandra states
that if G is reductive and V is finitely generated as a G-module then the trace
"coincides® with a smooth function 6 (the so-called character of V) on the

regular set G™ of G; this means that ©y(f) = [6(x) f(x) dx for every compactly

supported smooth function f on G™9.

The main obstacle to introducing the concept of character to the locally analytic
representation theory of p- adic groups is the following fact: While on any
admissible smooth G-representation the Hecke algebra H(G) acts by finite rank
operators, on an admissible locally analytic G-representation the distribution
algebra D(G) of G (which takes the role of the Hecke algebra in the locally
analytic setting) acts by operators which in general are not even nuclear.
Therefore there is no obvious way to assign a trace ®(1) to the operators
A e D(G) in order to obtain a linear form ® on D(G) which would - by
reflexivity - point a way to define a character function on the group. In this
work we propose a definition of what it means for an admissible locally analytic
representations of a p-adic reductive group G to possess a character on a subset
S of a compact subgroup of a maximal torus of G. This definition will depend
on the choice of aminimal parabolic subgroup.

In the following we explain our proposal, thereby giving an outline of the
sections of this work. We first develop a theory of formal characters for
representations of commutative groups which do not necessarily act by finite
rank (or nuclear) operators but satisfy a certain finiteness condition on weight
multiplicities, a condition we call finite trigonalisability (Sections 1-3). To such
afinitely trigonalisable representation V of agroup £ over afield K we associate
a formal character ®, which is a "formal function", i.e. a forma sum of K-
valued functions on S. Given a subset S c S, we study the conditions under
which a formal function f on S may be evaluated on S, thus yielding an actual

function evg () on S. If the formal character ®y is evaluable on S in this sense
then the function



evg (By): S ->K

is called the character on S of V.

An appendix of Section 3 contains a smilar theory of formal traces of
endomorphisms satisfying a finiteness condition on algebraic multiplicities.

Let p be aprime number, and let K | L | Qp be atower of complete valued fields
such that L | Qp is finite and K is discretely valued. Let G be (the group of L-
rational points of) a connected reductive group over L, Sc G a maximal split
torus over L, and N the unipotent radical of a minimal parabolic subgroup
containing S, with Lie algebra n. Let V be an admissible locally analytic

representation of G over K. Sections 4 to 8 prepare the definition of an n-

character of V, to be given in Section 9. To this end we carry out a two-folded
approximation process. Let § be a compact subgroup of the torus S, and choose
a compact open subgroup Gy c G containing §. We view V only as a
representation of the group Go. By a result of Schneider-Teitelbaum V is the
compact inductive limit of a system (Vj),,y Of localy analytic Go-

representations on K-Banach spaces ([32], Proposition 6.5). In a second step,

one can use the associated Lie agebra action to form the subspaces Vi(“) cV; of
vectors which are n- adically finite, i.e. which are annihilated by some power of

n in the enveloping algebra U(n). The spaces Vi(“) are stable under the compact
commutative group . Now we can formulate a first definition.

Definition (preliminary version). Let S ¢ & be a subset. Suppose that each
Sy-representation V™ possesses a character 6, on S and that the sequence of
functions (6;),.y converges pointwise. Then the limit function 6 = lim 6, is called
then- character on S of V.



The problem with this preliminary definition is that the limit of the above
sequence of characters on S behaves not very well with respect to a change in
the choice of the compact inductive system (V;) (for an illustration of this

phenomenon compare the two examples in Section 3). As a consequence we
have to specify a "canonical" compact inductive system giving V in the limit. It
turns out that thisis easier to do in the dual setting.

Let D(Go, K) be the distribution algebra of Gg; this is a noetherian Fréchet
algebra over K. Associated to any open subgroup H c Gy which is a uniform
pro- p-group there is a family || [l (r € p?, p* <r < 1) of Banach algebra
norms on D(Gp, K) such that the completions D r)(Go, K) with respect to these
norms realize the structure of a Fréchet-Stein algebra of D(Gg, K); this implies
in particular that D(Go, K) = lim;D r(Go, K) as Fréchet spaces. Moreover, by
admissibility the strong dual M = V| of our Gp-representation is equal to the
projective limit

M= “(_mrM(H,r)

where M = Dwn(Go, K)®D(GO,K)M. In order to obtain a "canonical"
projective system - not depending on the choice of H - we consider all uniform
open subgroups (satisfying certain technical assumptions) of Gy at the same
time. More exactly, we view M as the projective limit of the system

(M(H’r))(H,r)

with a suitable directed ordering on the set of pairs (H, r). A large part of
Sections 5- 7 is devoted to the investigation of the transition maps of this

projective system; here an elementary but important result is a kind of
elementary divisor theorem for uniform pro- p-groups. The second

approximation step, corresponding to the passage to n-adically finite vectors
described above, is to consider the system of quotient representations

M(H,r) /nk M(H,r) (k (S N) of S)

Definition (final version). Set S c § be a subset. Suppose that

« each S-representation My / nk M r) possesses aformal character ® r k;



« for each pair (H, r) the sequence (OH,N ke of formal functions converges
to aformal function ® ) which isevaluableon S;;

« the net of evaluations (evs (O r))) converges pointwise to a function

(H.n)
onS.

Then the function s+ §(s™*) is called the n- character on S of V.

It turns out that this definition does not depend on the choice of the compact
open subgroup Gy ¢ G containing . We emphasize that we do not claim that
every admissible representation possesses an n-character.

The theory of admissible locally analytic representations includes as a special
case the theory of admissible smooth representations. Section 10 is devoted to
the verification that our n-characters generalize the classical concept of
charactersin the smooth theory.

We finally caculate the n-character in two examples of genuine locally
analytic representations: The locally analytic principal series of SLo(Qp)
(Section 12) and of the Iwahori subgroup in a split reductive p-adic group

(Section 13). These sections may be read independently of each other; they rely
on results about explicit Banach space bases and filtrations of completed
distribution algebras developped in Sections 7 and 8.

As an appendix we give an alternative definition of a character which islimited
to principal series representations, but has the advantage of being independent of
the choice of a minimal parabolic subgroup. In case the group is SL»(Q) we
obtain a character formula which (up to a dlight modification) was aready
conjectured by Y. Moritain his 1984 paper [21]. In fact this conjectured formula
was one of the main motivations for the hope that a character (as a function on a
subset of the group) of an admissible locally analytic representation should exist.

| would like to thank my advisor Peter Schneider for his good advice, my
colleagues Jan Kohlhaase, Enno Nagel, Tobias Schmidt and Matthias Strauch
for afew helpful discussions, my friends and fellows Alexis Pangalos and Stefan
Wiech who accompanied me from Hamburg to Minster, and the group Sport for
Homerun.



|. Formal characters

1. Evaluation of formal sumsof functions

Let Sbe aset, and let R be an integral domain. The ring structure on R induces a
ring structure on the set Map(S, R) of al mappings S— R and a group structure

on the set Map(S, R*) of al mappings S— R*. Let X c Map(S, R¥) be a
subgroup. Let Z[X] denote the Z -module of al mappings X — Z, written as
formal sums

2aex me) (M € Z).

We endow Z[X] with the product topology of the discrete groups Z. Thus
Z[X] is a Hausdorff and complete abelian group and contains the group ring

Z[X] of X as a dense subgroup (cf. [5]; Chap. 2, Sect. 3, Proposition 10; Chap.
3, Sect. 2, Proposition 25). Thistopology has the following features:
 Let | be adirected set. A net (fi =2, nia &), in Z[X] converges to an

element f = 3, med) € Z[X] if and only if for every A € X there exists an
index i el suchthatnj, =ny forall j=i.

» Given an arbitrary set |, afamily (fi = 3} nix &), _, in Z[X] is summable
if and only if for each A € X the family (ni,),_, in Z has finite support; in this

case the sum of the family (f;),_, isgiven by

2i i =20 i) ed) e Z[X]
([4], Chap. 1V, 84, No. 2, Lemma l).
We will call two elements f = 3}, mye(d), g = 3, M &) € Z[X] multipliable
if the family (3, x N, M, e e()t))#ex issummable, i.e. if for each A € X there are
but finitely many pairs (u1, p2) € Xx X such that py up = A and n,, m,, # 0. If
thisisthe case then we call the element

fgi=2 (3, num 1) ed) € Z[X]

10



the product of f and g. This definition restricts to the usual multiplication on the
group ring Z[X] c Z[X]; moreover, it endows Z[X] with the structure of a
Z[X]- module.

Let S c Sbeasubset. The ring homomorphism
&Vg . Z[X] — Map(S, R
ame) — Yymls
may be extended "by taking quotients' in the following way: Since R is an
integral domain the subset Sg ¢ Z[X] of al h such that evg(h) has no zeros is
multiplicative. Moreover, evg(h) is invertible in the ring of mappings

S - QuotR for any such h. Therefore we can form the localization Sgt Z[X],
and evg extends uniquely to aring homomorphism

Sgt Z[X] » Map(S, Quot R).

Let Z[X]g denote the subset of all elements f € Z[X] for which there exist
ge Z[X] and he Sg with hf =g. This is in fact a Z-submodule of Z[X]:
indeed, given two equations hf =g, " " =g we have hh'(f + f’) = g +
hg', and Sg ismultiplicative. We obtain a Z-linear map

Z[X]g - S5t Z[X].

by sending such an element f to the quotient g/h (thisis well-defined: if h f =
g, f=g thengh’=hh f =g h), and by composition the Z-linear map

evs : Z[X]g —» Map(S, Quot R).

Definition 1.1. Let f € Z[X], S cS a subset, xe S. If f is contaned in
Z[X]g then f is caled evaluable on S and the value evg(f) (X) € Quot(R) is
called thevalue of f in x.

Remark 1.2. (i) The notation ") ,_x m A" common in group rings would be
ambiguous here: if A, u € X are such that A + u € X then one has to distinguish
between the elements e(A + u) and &) + e(u). However, if S is a generating

11



subset of a group G and the group X consists of restrictions to S of characters
G- R* then evs is injective, and we could write "}, m A" instead of
"2 e)".
(if) On the other hand the above appliesto X = R* (take S a singleton); in this
case we have the ring homomorphism
ev: Z[R] — R
2ame) — ymaA
which of courseisfar from being injective.

(iii) The Z-linear map evg is multiplicative in the following sense: if f, g are
multipliableand if f, g, f g e Z[X]g then evg(f g) = evg(f) evg(Q).

(iv) The value of f in x in the situation of Definition 1.1 does not depend on
the ambient subset S: If S’ c S is a subset then Z[X]g c Z[X]y and
evg (f) (¥ =evg(f)(¥ foral f € Z[X]g andx e S".

(V) Suppose that the set Sg contains no zero divisors. Then the natural map
Z[X]g — Sg'Z[X] is injective. Example: S is a topological space, S c S'is
dense, R is a complete topological ring, X consists of continuous mappings, and

the evaluation homomorphism evs is injective (cf. (i) above). Then Sg contains
no zero divisors.

2. Formal characters. Characterson a subset

Let C|K be an extension of fields, V a K-vector space, S a commutative group,
and let p: S— GL(V) be afixed K-linear representation of S on V. Let pc) be
the C-linear representation of S on V) = C®k V obtained by extension of

scalars. Let X(S) be the group of charactersS— C*.

Definition 2.1.
(i) Let A € X(S be acharacter. For x € Slet A(x). denote the homothety on V(c,
defined by A(X). The subspace of Vc,

12



Viey = ) U ker (o - Ax).)"

xeSkel

is called the generalized weight space of weight A of p(c). Its dimension is called
the algebraic multiplicity of A in p(c).
(if) Assume that V(c, is the sum of the generalized weight spaces of p, and

that the algebraic multiplicity of each A € X(S) in p(c) is finite. Then we say that
the representation p is finitely trigonalisable over C or possesses a formal
character over C, and the element

Chip):= 3 dimc(Vig)) e € ZIX(S]
AeX(9

is called the formal character of p.
(iii) In addition to (ii), assume that S c S is a subset such that Ch(p) is
evaluableon S. Then we say that p possesses a character on S, and the map
evg(Ch(p)):S - C

Is called the character on S of p.

Remark 2.2. (i) Suppose p is finitely trigonalisable over C. Since (L) =
pe) We have Vie, = (Vo) for al A, hence p(c, is finitely trigonalisable, with
Ch(p) = Ch(p)). On the other hand, the formal character Ch(p) does not
depend on the particular choice of C. Indeed, if C’ | C is an extension then X(S
embeds into X'(§ = Hom(S C™*), Z[X(S] embeds into Z[X'(S] (via
"extension by zero"), and by exactness of the scalar extension functor we have

ker(pcH(®) - 1)< = (ker(picy(9) = A')k)(C')

foral ke N, 1 e X(S), se S hence (V(AC))(C,) = Vi, for all 2 € X(9), and hence
the element Ch(p) € Z[X'(S] stays the same whether calculated in Z[X(S)] or
inZ[X(9].

(i) If dimg(V) <o and each p(x) (xe S) is trigonalisable over C in the

classical sense then p is finitely trigonalisable over C and possesses a (K-
valued) character on S which coincides with the usual character of the finite-

13



dimensional representation p (cf. [4], 85, Prop. 19).

Lemma 2.3 (direct sums). Let V = @, V; be a decomposition into a direct sum
of p-stable subspaces. Then V is finitely trigonalisable over C if and only if
each subrepresentation p |y, is finitely trigonalisable over C and the family of

formal characters (Ch(py, )) _, issummablein Z[X(S)]; in that case

Ch(p) = Y Ch(p Ivi).

Proof. This follows from V¢, = ®ici(Vi)c, and Vi, = Dic (V) for each

A € X(S), where (V; )(AC) denotes the generalized weight space of weight A of the
subrepresentation p(c |, - O

Lemma 2.4 (subrepresentations). Let W c V be a p-stable subspace.
(i) The generalized weight space of weight A of (p w)c) isequal to W) N V(AC).
(i) Wie) N Zaexs Vio) = Zaexis (Wi M Vig))-
(iii) pw is finitely trigonalisable over C if and only if Wic) € X\ cx(s V{‘C) and
dimc(Wie) N Vi) < oo for all A e X(S); if thisis the case then

Chiplw) = % dime(Wc) N Vi) ).
AeX(9
Proof. (i) follows from the obviously equality (o lw)c) = P(c) I, -

(ii) It is clear that ¥ .xs (Wic) N V) is contained in Wicy N Siexcs Vie) -
Vice versa, assume w € Wc) N Siexs Vie)- There is a finite subset A c X(S)
such that w= ¥, ., Va With vy € Vi, Put U = ¥, Vi), and for xe Sandae C
define the generalized eigen space U*2 = |,y (Ker pc)(X) lu —a)k c U. Thus

Vi) = Mies U@ for 1 € A. We claim that there even is a finite subset T ¢ S
such that

14



Vie)= N U™ foral A e A,

xeT

Indeed, there exists a finite subset T c € which, for any two distinct A, 1’ € A,
contains an element x such that A(x) # A’(x). Since for any x € T the direct sum
decomposition U = 3}, V(*C) refines the direct sum decomposition U = Y, U*2
we have, for any A € A, (g UM® = V(Aé) ® ... ® V@ with 1, ..., ln € A.
But A; £ would imply UX*® M U*%® = 0 for some xe T, and thereby
Myer U¥A® N Vig, = 0. This proves Vi, = Nyer UAX,

Now w is contained in a finite-dimensional subspace U’ c U which is stable
under each pc)(X) (x € T). (Namely, write T = {Xg, ..., X}, for each A € A and

each x; € T choose ky;j € N such that (po(c)(Xi) — /\(xi))k"*‘ (Vy) is zero, and let U’
be the span of the elements pc)(X) ... pio/(*) " Vi (A € A, 0 <k < ky;).) By
the finite-dimensional theory (e.g. [4], 85, Prop. 19) the space U’ as well as the
stable subspace U’ (W, are trigonalisable simultaneously for the p(c)(X)
(xeT), so that the decomposition w =}, vy necessarily aready takes place
inside U’ (1 W).

(iii) followsimmediately from (i) and (ii). o

Lemma 2.5 (increasing filtrations). Let Vo c Vi c ... cV be an increasing
sequence of p-stable subspaces, and put V,, := Uiy Vi- Then p |y, is finitely
trigonalisable over C if and only if p |y, is finitely trigonalisable over C for each

i € N and the sequence (Ch(p |y, ))ieN convergesin Z[X(S)]; in that case

limiey Ch(p v;) = Ch(p Iv..).
Proof. Suppose that each p|y, is finitely trigonalisable over C and
limey Ch(p Iy, ) exists. According to Lemma 2.4, (Vi) ¢, € Yaexcs Vi, for all i,

hence (Vo) © SaexsViey ad for each A, (Vo) NV =

Ui (Vi) o) N Vig)- The existence of the above limit means that for each A there

15



exists an ip such that (Vi) NV, = (Vio)(c)ﬂvfc) for al i=>io. Hence

Vodo NVigy = (Vi) o Vi), hence Chy,_(p) = limiey Chy,(p). - The reverse

directionisclear. o

Corollary 2.6 (block matrices). (i) Suppose p has a matrix representation of

the form
Ao(9) *
SH [ A(S) ]

0

with finite dimensional matrix representations s Aj(s) of S over K which are
trigonalisable over C (i e N). If the family (Ch(A));_y is summable in Z[X(9)]
then the representation p is finitely trigonalisable over C with formal character
Chp = Sy Ch(A).

(ii) Suppose that pc) has a matrix representation s (a; j(s))i,jeNxN over C in
triangular form with the property that each character A € X(S occurs only
finitely often (say n, times) as a diagonal character s+~ g;;i(s). Then p isfinitely

trigonalisable over C with formal character > n, Q).

Proof. (i) follows from Lemma 2.5 together with Remark 2.2 (ii). - (ii) is a
special case of (i). o

Corollary 2.7 (tensor products). Let p1, p» be two countable-dimensional
finitely trigonalisable representations of S over K.

(i) If p; and p, have lower triangular form (w.r.t. suitable bases) and the formal
characters Ch(p;) and Ch(p,) are multipliable then the representation p; ® po of
Sisfinitely trigonalisable over K with Ch(p) = Ch(p1) - Ch(py).

@ii) If p; has lower triangular form and p, is finiteedimensiona and

trigonalisable over C then the formal characters Chp; and Chp, are
multipliable and the S-representation p; ® p» is finitely trigonalisable over C

with Ch(p) = Ch(p1) - Ch(p>).

16



Proof. In each case (o1 ® P2 is isomorphic to a countable-dimensional matrix

representation over C in triangular form in which the various diagonal characters
occur only finitely many times, and part (ii) of the previous corollary applies. o

Lemma 2.8 (decreasing filtrations). Lee VoWgyoW;D...,
VoW, oW o ... betwo decreasing sequences of p-stable subspaces of finite
codimension in V such that for every i € N there exists j € N with W) ¢ W, and
W, c W/. If each quotient representation p; of p on V /W, is trigonalisable over
C and the sequence (Ch(py)),y converges in Z[X(S)] then the same is true for
the quotient representations p{ of p onV / W/, and

limiey Ch(pi) = limien Ch(pf).

Proof. Let i e N. Choose j € N such that W; ¢ W/. Then V /W is a quotient of
the finite-dimensional vector space V/W,. Hence with p; aso p| is
trigonalisable over C, and the set of weights of p/ (with multiplicities) is a subset
of the set of weights of p;. This meansthat di mc((v / V\/{)?C)) < dime((V /W, )?C))

for al A. Since i was arbitrary and the sequence (Ch(V/ W,-))j converges it

follows that the sequence (Ch(V /W)
the samelimit. o

eN

iy Converges; namely, by symmetry, to

17



3. Conver gent nets of characterson a subset

We keep the notations of the previous section. Suppose that V is the union of an
increasing sequence Vo c Vi C ... of p-stable subspaces. We have seen (Lemma
2.5) that if each V; istrigonalisable over C and the sequence of formal characters
Ch(V;) convergesin Z[X(9] then V is finitely trigonalisable over C, its formal
character being the limit of the Ch(V;). However, if the sequence (Ch(V;)); does

not converge but each representation V; possesses a character on asubset S ¢ S
we may still ask if the sequence of characterson S’ converges in some sense.

Convention. By weak convergence of a net of C-valued functions we shall
aways mean pointwise convergence with respect to the discrete topology on C.

Example 3.1. Let p be a prime number, and let v, denote the valuation of Q
normalized by vp(p) = 1. Let S= 7. Let V = C*(Z,, K) be the K-vector space
of locally constant K-valued functions on Z,, endowed with the S- operation
pS)(f) == (z— f(s2) (seS, feV, zeZp). For any heN consider the
digoint open covering Up; := i+ p"Z, (0<i < p") of Z,. Then V is the union
of the p-stable subspaces

Vpi={f:Z, - K; f constanton Uy, forall 0 <i < p"} (heN).

Since each S-representation Vj, is finite-dimensiona it possesses a character 6
= evg(ChVy) on S The value of 6, in se Sis the trace of the operator s on V..
The characteristic functions 1y, (0<i < p") form a basis of Vi, Letting ( *(Jm)
denote the dual basis we obtain

Oh(s) = ZOsi<ph Jlflh,i (Sﬂuh,i)
#{0<i<phsti+p'Zpy=i+p"zy)
#{0<i<p"vp(i)=h-vy(st-1)

— pmi n(hyvp(st-1))

18



according to Lemma 3.2 below. Hence 6,(1)=p", and if s#1 and

h=vy(s™t - 1) then 6h(s) = Vo(s-1) — st - 1|_1. It follows that the sequence
(evs(1y(ChVp)), .y converges weakly to the function 6:S-{1} - K,

s [st-1] 7

Lemma 3.2. For any two integers 0 < a < 8 there are p* elementsi contained in
{0,1, ..., pP -1} satisfying vy(i) = B - @.

Proof. p* isthe cardinality of theimage of p*~*Z inZ /pf Z. o

The next example shows that the limit function 6 obtained in Example 3.1 is not
an invariant of p but depends on the particular system (V},) exhausting V.

Example 3.3. Define S, V, p as in the previous example, but this time consider
the subsets

. {zhzeipt™M+p"Zy) ;ieN-{0)
Uhi={ h :
p'Z, ;i=0
of Qp(heN).Forze Qwehavezle Z, - p"Z, & ze pt" 7, - pZp, and

pl—th_pzp:.Ui pl_h+phZ

iel

where | := {1 =i < p2"1, vy(i) < h}. Hence the family (Ohvi)ieIU{O} is adigoint

open covering of Z,. AgainV isthe union of the p-stable subspaces

Vhi={f:Z, - K; f constanton Uy foralli e 1 U{0}} (heN).
We calculate
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On(9) 1= evs(ChVp) = T o 15 (Sﬂoh’i)
1+#{iel;sipt"+p'z,=ipt"+p'z,)
1+#{iel,vpi)+Vp(s—=1)=2h-1};

here we used leL~Jh0 =1, foralls. Forany fixed s+ 1 and h >> 0 we have v,(i)

Uno
+Vp(s-1) < 2h-1fordliel,ie On(s) = 1. This means that the sequence
(evs-y(Ch \7h))heN converges weakly to the function S— {1} » K, s 1.

Appendix: Formal traces

(The content of this appendix is not needed elsewhere in thiswork.)

Let C|K be afield extension, V a K-vector space, and let u e Endg (V) be an
endomorphism. We abbreviate Vi) = CQk V, Uc) = 1c®Uu € Endc(V(g)). In
this section we consider the space of formal functions Z[C*] (cf. Remark 1.2

(iD)).

Definition. (i) Let A € C. Let A. € Endc(V(c)) denote the homothety defined by
A. The subspace

V(AC) = U ker(u(c) - A)k
keN

of V(¢ is caled the generalized eigenspace of uc, corresponding to A. Its
dimension di mC(V(*C)) is called the algebraic multiplicity of A in u).

(ii) If V() is the sum of the generalized eigenspaces of u, and the algebraic
multiplicity of each A € C* in u, is finite then we say that the endomorphism u

is finitely trigonalisable over C or possesses a formal trace over C, and the
element

Tr(w) = 3, dime(V,) e) € Z[C*]
AeC*
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is called the formal trace of u.

Remark. (i) As in the previous section it follows from the exactness of the
scalar extension functor that if u is finitely trigonalisable over C then Tr(u) does
not depend on the particular choice of C.

(if) The assumptions of part (ii) of the definition are satisfied if u has finite rank
and is trigonalisable in the classical sense (i.e. C contains all eigenvalues of u);

in this case Tr(u) is contained in Z[K*], and the element ev(Tr(u)) € K is the
usual trace of the endomorphism u.

The following results are proved completely analogously as in the case of formal
characters.

Lemma. (i) Let V =D, Vi be a decomposition into a direct sum of u- stable
subspaces. Then u is finitely trigonalisable over C if and only if each restriction

uly; isfinitely trigonalisable over C and the family of formal traces (Tr(u v, ))iel

issummablein Z[C*]; in that case

Tr(u) = 3 Tr(uly,).

iel
(i) Let W c V be a u-stable subspace. Then u |y is finitely trigonalisable over
C if and only if Wic) ¢ Yyccx Vig, and dime(We) N Vi) < oo for al A e C*; if
thisis the case then

Trulw) = 3 dimc(We) N V) ).
AeC*

(iii) Let Vo c V1 c ... cV be an increasing sequence of u-stable subspaces,
and put V,, = Uy Vi- Then uly, is finitely trigonalisable over C if and only if
uly, isfinitely trigonalisable over C for eachi e N and the sequence (Tr(ully,)). _
convergesin Z[C*]; in that case

limise Tr(uly) = Tr(uly,).

(iv) Lee VOWp O Wy D ..., VOW;D> W] > ... betwo decreasing sequences
of u-stable subspaces of finite codimension in V such that for every i €N there
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exists j e N with W) ¢ Wi and Wj c W/. If each quotient endomorphism u; of u
on V/W is trigonalisable over C and the sequence (Tr(u;)),., converges in
Z[C*] then the same is true for the quotient endomorphisms u of u on V / W/,
and

limise Tr(U) = limise Tr(u). o

Corollary (block matrices). Suppose u isrepresented by a matrix of the form
Ao *
A

0

with finite dimensional matrices A; over K which are trigonalisable over C
(ieN). If the family (Tr(A)),.y is summable in Z[C*] then u is finitely
trigonalisable over C with formal character Tr(u) = >y Tr(A). O

Remark. Thefield K being embedded into Z[C*] via

ec) ;c+0,
CH{ 0 :c=0,

in the above corollary it is crucial to demand that the formal traces of the A; be
summable. It may happen that the usua traces tr(A) € K, viewed as elements of
3

Z[C*]), are summable and u is not finitely trigonalisable: consider A = 1

1
with pairwise different elements g; € K. Then tr(A) = &, Tr(A) = &@&) + &1) +
e(—1), and the generalized eigenspaces V,, V(& are infinite-dimensional. - A
similar remark appliesto part (iii) of the above lemma.
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II. Distribution algebras of p-adic groups

This second part provides certain results concerning completed distribution
algebras. The most important three are the following: the question when there
are natural maps between completions with respect to different norms of the

same distribution algebra (Section 5- 7), explicit bases of completed distribution
algebras (viewed as K-Banach spaces; Section 7), and the description of the g-
adic filtration by means of these bases (Section 8).

Notations. Let p be a prime number, and let C|K|L|Q, be a tower of

complete valued fields such that L |Qp is finite of degree n, K is discretely
valued, and C is algebraically closed. Let o, be the ring of integers of L, 7. € o_
a prime element, and || the absolute value on L normalized by

lm |, = (# o./m)"L. For the basic ideas of the theory of localy analytic
representations of p-adic groups we refer to the series of papers [29], [30], [31],
[32], [33]. For a commutative group S, let X(S be the group of characters
S— C*. By an L-anaytic group we mean afinite-dimensional Lie group over L
in the sense of [6]. For such an L-analytic group G with Lie algebra g we denote
by

« C¥(G, K) the locally convex K-vector space of localy analytic functions
G- K,

+ D(G, K) = C¥(G, K),, (strong dual) the K-algebra of distributions on G,
endowed with the convolution product,

« U(g) theenveloping L-algebra of g, viewed as a subalgebra of D(G, K),

« U(g, K) theclosure of U(g) ®_K in D(G, K)

(cf. [29], Section 2). Finaly, we let Rbp(G) denote the Qp-analytic group
obtained from G by scalar restriction ([8], 5.14); the underlying topological
groups of G and of Rbp(G) coincide.
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4. Exp and Log

Let G be an L-analytic group with L-Lie algebra g. On a suitable small additive
open subgroup V c g there exists an exponential mapping ¢ :V — G; thisis a
locally L-analytic map satisfying ¢(mx) = ¢(x)" (x € V, me Z) and having the
identity map g —» g as the tangent map in 0 (cf. [6], 111.4.3 and 111.7.2).

Exponential mappings are not unique. However, using the logarithmic mapping
of G one can make a natural choice as follows: Put

G :={geG;3meN: |imgmp”=1}_

N—oo

Then G; is an open set of G, equal to the union of all compact subgroups of G,
and closed under taking integral powers ([6], 111.7.6, Lemma 1, Proposition 10
(i), and Corollary of Proposition 13). There is a unique map Log;: Gf — g
with the following two properties:

« Logs(@™ =mLogg(g) foral ge G, me Z,

 there are an open neighbourhood U of 1 in G, an open neighbourhood V of
0 in g, and a bijective exponential mapping ¢:V - U of G such that
LogG lu = ¢_1;
and thismap islocaly L-analytic ([6], I11.7.6, Proposition 10).

Proposition 4.1. Let G be an L-analytic group and H c G an L-analytic
subgroup. Then Hf = G¢ (1 H and Logg |4, = Log,,.

Proof. The first assertion is obvious. Let V be an open neighbourhood of O in the
Lie agebra g of G such that Log(;1 lv is an exponential mapping of G. According
to [6], I11.4.4, Proposition 8, there is an open neighbourhood V’ of 0 in Lie(H)

such that Logg,1 lv restricts to an exponential mapping Log(‘;l |, of H. Since also

Logg(@™ = mLog(g) for all ge Hyf and me Z, the restriction Logé1 ln, is a
logarithmic mapping of H, necessarily equal to Log,. o
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Thus we shall often simply write Log,, = Log when dedling with various L-
anaytic subgroups H of a fixed L-analytic group G. We shall reserve the
notation Exp, = Exp for exponential mappings which are inverse maps of
logarithmic mappings.

Another notational remark: we capitalize the symbols Exp, Log in order to
distinguish them from the exponential and logarithmic series in (completed)
distribution algebras; these will always be denoted exp, log respectively. In a
small neighbourhood of 1, O respectively both concepts coincide; for a more
precise statement cf. Remark 7.3.

Example 4.2. Let G be a unipotent L-group, i.e. an agebraic L-group
isomorphic to a closed subgroup of the upper strictly triangular subgroup of
some GL/L. Let G(L) be the corresponding group of L-rational points and g

its Lie algebra. Then G(L); = G(L), g is nilpotent ([10], 1V.2.2, Corollaire 2.13),
and we have the global bijections

il Log
()<Ex_pg

([10], IV.2.4 Proposition 4.1) which are given by the restrictions of the matrix
logarithm resp. the matrix exponential of GL y(L).

If xe g is an element in the domain of Exp and H c G is an L- analytic

subgroup with Lie algebra h c g then the fact "x € h" does not generally imply
"Exp(x) € H": this is clear if one considers proper open subgroups H c G.
However, in the case of algebraic groups we have the following:

Proposition 4.3. Let H c G be an inclusion of affine algebraic L-groups. Let
G =G(L), H = H(L) be the respective groups of L-rational points, viewed as L-
analytic groups, with respective Lie agebras g and h. There is an open
neighbourhood g~ c g, depending only on G, such that Exp(g™~ (1 h) c H.

Proof. There exist a number me N and an inclusion of affine algebraic L-
groups G -» GL, /L ([10], Corollaire 11.5.5.2); hence by Proposition 4.1 we may
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assume G = GLy, /.. Then g is equal to the algebra of mx m-matrices over L.

Let EXP:g— G(L[T]) denote the formal exponential mapping defined in
Section 11.6.3.1 of [10]. In our case it is given by

EXPx) = 3 & KTk = (z X Tk)
k=0 k=0 i ]

where xK = (x}'?)ij (cf. [10], Exemple 11.6.3.3). Let L(T) c L[T] be the

subalgebra of power series converging on the closed unit ball. There is an open
neighbourhood g~ c g on which Exp is defined and given by the convergent

series Zkzoki!x". This means that for x € g~ the coefficients of the matrix
EXP(x) converge in L if we substitute T = 1, hence they are contained in L(T).

Themap Exp: g~ - G(L) therefore factors as follows:
¢ 5 ST 5 6L

According to [10], Corollaire 11.6.3.4 (c), the restriction of EXP: g - G(L[T]) to

h is equa to the intrinsically defined map EXP:h — H(L[T]); hence by
restriction we obtain the map

¢ Nh =5 GLTYOHLITD = HITY) —5 HL)

which proves our assertion. o

5. Uniform pro- p groups

In this section we clarify how two arbitrary uniform pro- p-groups in the sense
of [11] can intersect. Instead of recalling the formal definition of such groups
(cf. [11], Section 4.1) we will collect their basic properties.

Let H be a uniform pro- p-group of dimension d eN. Any d-tupel h =

(hy, ..., hg) of topological generators of H will be called an ordered basis of H
and gives rise to a homeomorphism
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Un: 28 — H
a +— hi*...hy
and thereby to an isomorphism of locally convex K-vector spaces
Yi, 1 C"(H, K) » C™N(Z8, K).

The uniform pro- p-group H is a Qp-analytic group with globa chart y;®.
Conversely, every Qp-analytic group G contains a uniform pro- p-group H as
an open subgroup. A basis of neighbourhoods of 1 inH (aswell asin G) isgiven
by the lower p-series of H, i.e. the uniform pro- p-groups HP" = {hpm; he H}
(meN).

In the book [11] a map log:H — A into a certain Zy-Lie agebra A

(constructed inside a completion of the group ring of H over Q) is defined and
shown to be an isomorphism when the underlying set of H is endowed with a

Z,- Lie algebrastructure as follows:

z-g:=limgn

N—oo
g+h:=lim(g” b,
N—oo
[g, h] := Iim(g‘pn h=?" g?" hlo")p_2n
N—->oo0

(9, heH, z=limy, z, € Z, with z, e N; cf. [11], Definitions 1.25, 4.12, 4.29
and Corollary 7.14).

Lemma 5.1. Let H be a uniform pro- p-group with Lie algebrah. Then H; = H,
andthemapLog: (H, +, [, ]) = hisan embedding of Z,-Lie algebras.

Proof. SinceH iscompact we have H = H;s.

Log is Zp-linear: Let geH and z=Ilimy, 2z, € Zp with z,eN. Since
addition in (H, +, [, ]) satisfiesg® = g+ ... + g (z, times) and by continuity we
have Log(z- g) = limp_. LOg(g*) = limn_ Z, Log(g) = zLog(Q).

Log is injective: Proposition 12 of [6], I11.7.6, assures that the kernel of Log

27



consists of torsion elements, henceistrivial by Theorem 4.5 of [11].

Log is additive and respects the bracket: Let g, he H, x = Log(g), y = Log(h).
Then

Log(g+ h)

lim Log ((gp" hP")pfn)

N—oco

lilll p~"Log (Exp (p" %) Exp(p"y)

= X+y;

the last equality is an instance of [6], 111.7.2, Proposition 4 (1). Finally, using [6],
[11.7.2, Proposition 4 (2), we calculate

Log ([g, h)

N—oo
lim p=2" Log(Exp(—p" %) Exp(-p" ) EXp(p" %) EXp(p" y)
= [%,y].0

. n n p’zn
lim Log([gp , h¥’] )

Thus if H is a uniform pro- p-group which at the same time is an L- analytic
subgroup of some L-analytic group G we will identify the Zy-Lie algebra A
mentioned above with the Z-Lie subalgebra Log(H) of the L-Lie algebraof G,
thereby identifying the map log: H — A defined in [11] with our logarithmic
mapping Log: H — Log(H).

We know that Log(H) is free as a Z,-module and that the ordered bases of H
correspond under Log to the Z,-bases of Log(H) ([11], Theorem 4.17 and Ex. 3
(i) of Section 8). Although we will not make any use of it we mention that the
inverse map of Log: H — Log(H) is an exponential mapping (cf. [11], Ex. 3 (iv)
of Section 8), and we will always denote it by Exp.

Proposition 5.2 (elementary divisor theorem for uniform pro- p- groups).

Let H be a uniform pro- p-group of dimension d. Let H' c H be a closed
subgroup which is a uniform pro- p-group. There are an ordered basis

(hg, ..., hg) of H and integers 0 < (1) < ... < a(d) (d =d) such that

(hf”(l), hgi’“")) is an ordered basis of H’. The number d’ and the tuple

28



(a(1), ..., a(d)) are uniquely determined by H and H’. Moreover, H’ is open in
Hif andonly if d’ = d.

Proof. Let A = Log(H), A’ = Log(H") denote the respective Z ,-Lie agebras of

H, H’. Then A’ is a submodule of the free rank- d- Z,-module A (cf. [11],
Theorem 4.17, Proposition 4.31 and Corollary 7.14). According to the
elementary divisor theorem for principal ideal domains (cf. [4], VII, &4,

Proposition 9) there are a Zp-basis (x1, ..., xq) of A and elementscy, ..., cy €
Z, (d <d), uniquely determined by A and A’ up to a unit in Z,, such that
(C1 %1, ..., Cy X¢) IS @ Zp-basis of A’ and cy|Cy| ... |cg. After scaling by a
unit in Z, we may in fact attain ¢ =p*® with natura numbers
a(l) <... < a(d). But then (Expxy, ..., EXp%g) is an ordered basis of H and

(EXp(C1 X1), ..., EXP(Cy %)) = (Expx)™", ..., (Expxg)™"") is an ordered
basis of H’.

- - ~pfD _pfld)
Let (hl, hd) be another ordered basis of H suchthat h ..., h is an

ordered basis of H’, 0 < B(1) < ... < B(d”), d” <d. Again by [11], Theorem
4.17 and Corollary 7.14, we have that (Log(h), ..., Log(h)) is a Z-basis of A

i)

and (Log(ﬁpﬂ( )s s Log(ﬁpﬁ(d ))) = (P Log(h), ..., PP Log(h)) isaZ - basis
of the free submodule A’. By the uniqueness of the above elementary divisors
C1, ..., ¢gwededuced’ = d”, B(1) = a(d), ..., B(d) = a(d).

If d’ equals d then H’ contains a member of the lower p-series of H and hence
isopenin H. The converse follows from [11], Proposition 4.4. o

Remark 5.3. The above proposition has no converse, in the following sense:
Let H be a uniform pro- p-group with ordered basis (hy, ..., hy), and let
a(l), ...,a(d)=0. Then the closed subgroup H’ of H generated by

(hfaw, ...,hgi’("’)) in general is not uniform. Example: the pro- p- groups
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1 pzy, 7p 1 pZy pZp 1 pz, P2y
1 pz, | 1 pz, |areuniform while 1 pz, |isnot.

1 1 1

Corollary 5.4. Let H be a uniform pro- p-group, g€ H. Then there is an

ordered basis (hy, ..., hy) of H and anumber a € N such that g = hY’ .

Proof. The group H has no torsion ([11], Theorem 4.5), hence the closed
subgroup generated by g is a uniform pro- p-group (isomorphic to Z,, cf. [11],
Proposition 1.26 (iii)). Now apply Proposition 5.2. o

Definition 5.5. (i) Given a pair of uniform pro- p groups H, H’” such that H” c H
is a closed subgroup we call the sequence @ = (a(1), ..., a(d")) determined by
the above proposition the sequence of p- elementary divisors of H” in H, and we
call a(d") the highest p- elementary divisor of H” in H.

(ii) Let H, H” be uniform pro- p-groups which are open subgroups of some

topological group G. Choose ke N such that HP cH’, and let o be the
sequence of p-elementary divisors of HP* in H’. Then the number

ud(H, H") := a(d) — a(1)
is called the uniform defect of H and H’.

Part (i) of the definition is justified by the subsequent lemma; note that the
uniform defect of the two groups is zero if and only if one is a member of the
lower p-series of the other. Note also that, in the situation of part (i) of the

definition, the highest p-elementary divisor of H’ in H is zero if and only if H’
is compatible with H in the sense of [19], Section 1.3.

Lemma 5.6. Let G be a topological group. Let H, H” be open subgroups of G
which are uniform pro- p-groups. Let k, k', I, I’ €N such that HP ¢ H’pk’,
HP - HP. Let o (resp. ) be the sequence of p-elementary divisors of H in
H'P (resp. of H’?" in HP). Then the differences a(d) — a(1) and A(d) — A(1) are
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equal and do not depend on the choicesof k, K', I, I.

Proof. If we replace k, k' by k, k with k> k, say, then the numbers a(i) are
replaced by (i) = a(i) + k— k- K + K’ (note that regarding Lemma 4.10 of [11]
this makes sense even in the case a(i) < a(i)). Hence the quantity a(d) — a(1)
does not depend on the choice of k, k’. Similarly for g(d) — B(1).

Let (hy, ..., he) be an ordered basis of H'® such that (W*", ..., h¥"") is an
ordered base of HP'. Fix N = a(d). Then H'™™ has the ordered basis (h | ...,

th) and is contained in HP. We see that the unique p-elementary divisors of

HP™ in HP are givenby N — a(d) < ... = N - a(1). Consequently, by the first
part of the proof, B(d) — (1) = (N — (1)) = (N — a(1)) = a(d) — a(1). O

Lemma 5.7. Let H be a uniform pro- p-group and H’ ¢ H an open normal
subgroup which is a uniform pro- p-group. Let a be the sequence of p-
elementary divisors of H” in H and choose an ordered basis (hg, ..., hy) of H

(1)

such that (hf hgﬂd)) is an ordered basis of H’. Then the elements

h'll, hl;’ (0 =<1, < p®) constitute a system of representativesfor H /H’.
. ky p*@ 41y kg PP @+ly .

Proof. A general element of H may be written as h; ... hy with

k, € Zp, 0=, < p™; since H’ is normal in H this element is contained in

h'll...h'dd H’. Hence the family (h'll h'g’) contains a system of

0<l,<pe®
representatives. The same argument applies to the normal subgroup group H pr®
of H’. But we know that the group H /HP"® has cardinality p?@ (cf. Section

42 of [11]), so the mentioned family already has to be a system of
representatives. o
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6. Distribution algebras of uniform pro- p groups

We study the restriction of norms of distribution algebras of a uniform group to
distribution algebras of uniform subgroups, thereby generalizing a result of T.

Schmidt (cf. [26], Proposition 4.5 and Lemma 4.6).

Let H be a uniform pro- p-group of dimension d, viewed as a Qp- anaytic

group. The distribution algebra D(H, K) is a K- Fréchet algebra and contains the
group ring Z,[H]. The image of a group element he H in Z,[H] c D(H, K)
will be denoted by oy, (the "Dirac distribution” of h).

Convention. In the following we will view RY and N9 as partially ordered sets
viathe product ordering

(g, ..,a9)=<(by,....,by) ©@a, <b,foral0<v=<d.
Then
1(d) :={(ry, ... ra); 1, ..., rae p2 N [p7L, 1)} c RY

is a directed set, and the subset {(r, ..., 1); r € p2 N [p~%, 1)} of diagonal tuples
iscofinal in 1(d). As amatter of notation we write

|a|: Z all/!
1<v=d

re= 171 ro,
1<v=d

AY =3ty

foralr eRY, A=Ay, ..., \q) € D(H, K)¢, @ e N,

Choose an ordered basis h = (hy, ..., hg) of H, and put b = (by, ..., bg) :=
On, =1, ..., 6n,—1) € Z,[H]". Then for each f e C™H,K) the Mahler
expansion ([20], I11, 1.2.4) of the function ¥ (f) isgiven by
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vin(H)= X b () ().

aeNd

From the characterization of locally analytic functions on Z‘F’, by means of their

Mahler coefficients ([20], I1I, 1.3.9) it follows that every distribution A €
D(H, K) has a unigque convergent expansion

A= Y d, b"

aeNd

with a family (d,),n In K satisfying limyy,.ldy| 1 = 0 for any r e I(d).

Conversely, any such family (d,) defines an element A € D(H, K) by the above
formula. For every r € I(d) we defineanorm|| ||, on D(H, K) by

IAlln,r := sup [dg[r;

aeNd
the dominant index of A, i.e. the maxima (cf. the above convention) index
a € N9 satisfying ||Allp, = |d,| r® will be denoted by
« = domp ((Q).
Then the original Fréchet topology on D(H, K) is defined by the family of norms
Il llny (r €1(d)). Let Dy, (H, K) denote the completion of D(H, K) with respect

to the norm || ||s,,; thisis a K-Banach space alowing the family (ba)(xeNd as an

orthogonal basis.
Putk=1lif p+2,k=2if p=2Incase(r, ..., r) € I(d) isadiagonal tuple we
know by the work of Schneider-Teitelbaum that the norm

I lle =11 M,

Is multiplicative and does not depend on the choice of the ordered basis h, and
that the completion

.....

is a noetherian K-Banach algebra (cf. [32], Theorem 4.5, Remark 4.6 and the
remarks following Theorem 4.10; take into account that the map h - max(m + «;
he HP") isa p-vauation of H). Before stating the main result of this section we
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provide two lemmata.

Lemma 6.1. Let H be a uniform pro- p-group with ordered basis h =
(hy,...,hg) and put b = (6h, -1, ..., On,—1). Let reld). Let
(Ai = Yy @0 b”),_, be afamily in Dn(H, K) such that, for eechiel, § =
dom, (%) isthe only element of N9 satisfying

illny = [leis b7l
If the mapping i - domp (A;): 1 — N9 is injective (resp. bijective) then (Aig I

an orthogonal family (resp. an orthogonal basis) in Dy (H, K).

Proof. For diagonal tuples r = (ro, ..., rp) thisis [26], Corollary 4.2, based on
Lemma 2 of Section 1.4 in [15]. One easily checks that the proofs of these
results literally carry over to general tuplesr € 1(d). o

Lemma6.2. (i) Leta, b, ¢, d eN. Then

2 O™ = {

k=0

c® ifb=a,
0 ifb<a.

(ii) Leta, b, he N. Then

=1 ifb=ap",
—k hi :
Igo(—l)a (ﬁ)(pb) =0 ifb<aorb>aph
=0(modp) ifb+ap".

Proof. (i) We use induction on c, the case c=0 being well-known. The

addition  theorem  gives (i)(Ckgd) = ZF:o(E)(If)((C_é)_Irm)
o (1) () (54" ). hence

) = B0 2 0 ()

kZO |:0 kZO



If b<athen b-1<a-1, and the assertion follows by induction. If b = a then
by induction ¥_q(—1)> <" (3N (CHE*) = (e 1)*", and the assertion
follows from the binomial formula.

(ii) (owed to E. Nagel) We have (f(‘)(p;k) #0 only for a=k and p"k= p"b,
whence the cases b = ap" and b > ap". The case b < a is a specia case of part
(). - We claim the following:

(phk)={0 (modp) if b= phiforal 0<i <Kk,
5 )71 (Y) (modp) if b= p"iforsome0=<i=<k.

A summand in the sum (p:)k) = ph) (E:) is congruent to 1 mod p if

by +...+b.=b (bl

and only if

(x) each b, (0 < v <K) isequal to either 0 or p"
and is zero mod p in all other cases. But the number of tuples (b, ..., by)
satisfying by + ... + by = band (x) isequal to

{0 ifb+phiforal0<i<a,

(II() ifb=piforsome0<i<a

asin the latter case i tokens of p" have to be distributed onto k possible indices
(without consideration of order). This provesour claim.

Sincealso(p:)k) = ('I‘) forb> p"kandi > k we conclude

C B

&0 > D*(2) (") ifb=p"iforsome0=i=<a,

) {O ifb#phiforal0<i=<a,
k=0

and the lemma follows from the part (i). o

Proposition 6.3. Let H be a uniform pro- p-group of dimensiond. Let H' c H

be an open subgroup which is a uniform pro- p-group. Let ¥ eNY be the
sequence of p-elementary divisors of H” in H. Choose r € I(d) and an ordered

35



. . pY(l) p}’(d) . . .
basish = (hy, ..., hg) of H such that r’ := (r1 y e Iy ) is contained in 1(d),

. .y . ’ pY(l) pV(d) . .
the norm || ||, is multiplicative, and h ::( 1 - Ng )lsan ordered basis of

H’. Then the norm || ||y, on D(H’, K) is equal to the restriction of the norm
I lln,, on D(H, K) to D(H’, K) and in particular is multiplicative.

Proof. Write b = (6, — 1, ..., 6n, — 1), b = (6n, — 1, ..., 6, — 1). We have to
show that

132 ;o™
for every convergent series
(*) Spene di 0 (d), € K)

in D(H’, K).
We first determine, for each 8 € N9, the expansion

h,r = ”Elld& b,a

|hﬂﬂ'

b” = 3 tgab” (g, €K).

aeNd

. :Bv _ (v
We calolate b = (b, + 1P =1 = Huo-17" (§) (b, + 2" =

pV(V)

S0 Zizo (D (B,)(' ! )b';; therefore

tpa= T1 2 (—1)/3“I (ﬁl)(l Zy:y))-

1<v=d =0

Incase 8=(0, ..., 1, ..., 0) isthe v-th unit vector this reducesto

@y

to,..1...0 = ,
0 ; otherwise.

Our next claim isthat, for every 8 € N9, there is a unique element S; of N9 such

that ||b”

s : . A
he = |ltes, P ﬁ||h’r. First observe that the assumption on r” implies that,
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for every 1<v<d, Pt s |pl. Using the fact that p divides (pf)) for all

1 <k < p"™ we obtain
() (V) () () (V)
(G )| == | e = ()]

foral 1 <k < p'™. Thisprovesour claimincase = (0, ..., 1, ..., 0) isthe v-
th unit vector: letting S := (0, ..., P, ..., 0) = p® B, we have

k
v

ltss, 01, >t 7|, forall e+,

p)’(V)

b’ = mfx ”tﬁﬂ bw”h,r = ||t:3'Sﬁ bﬁ”h,r =

|h,r

For general 5 we have, by multiplicativity of the norm || ||y, ,

(**) b/ﬁ o= I—I ||b:/||ﬁlr — H rvpy(V) Br — r’ﬁ.
' l<v=d ' l<y=d
On the other hand,
|tBa| = ] Z(_l)ﬁv—l(ﬁv)(lpy(”) { =1 ifa:(ﬁl p}’(l)' vees Bd p)/(d))_
7 1<v=d |I=0 ! @ <1 : otherwise

by Lemma 6.2. It follows that Sz := (81 P, ..., Ba P"?P) e N? is the unique
element such that

ltss, b7, =15 =r% =[],
and our claimis established.

Since the elements S; (8 € NY) are pairwise different it follows from Lemma

6.1 that the family (b”)
This means that

e is orthogonal in the K-Banach space Dy (H, K).

12 da bl = maxicl [0,

for every convergent series 3,d, b in D(H, K) and a fortiori for our
convergent series (x) in D(H’, K) c D(H, K). Together with (xx) thisimplies
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I d; b™

|h’,r’

e = Max|do| 17 = [|2, dy b
! a

aswas to be shown. o

7. Distribution algebras of L-analytic groups

Let H be an L-analytic group with Lie algebrah, and letr € p2 N [p7%, 1). The
map D(Rbp(H), K) - D(H, K) dual to the canonica injection C™(H, K) -

C™(Rg,(H), K) is an epimorphism of K- Fréchet algebras ([31], Section 1). We
let || ||; denote the residue norm on D(H, K) induced from the norm || ||, on
D(Rbp(H), K) via this epimorphism, and we let D, (H, K) (resp. U; (h, K)) denote
the completion of D(H, K) (resp. of U(h, K)) with respect to the norm || ||;.

The property of an L-analytic group H of being uniform pro- p only depends
on its underlying topological group, not on its being viewed as an L-analytic or
Qp-analytic group. There is a finer concept of uniformity adapted to the
circumstances of L-analytic groups (cf. [27], Section 2):

Definition 7.1. An L-analytic group H with Lie algebrah is called L- uniformif
itisauniform pro- p-group and the Z,-lattice Log(H) c hiisan o - lattice.

If H isL-uniform, (x4, ..., Xq) isano_-basis of Log(H) and (vy, ..., Vn) isaZp-
basis of o, then the family

(hij := Expvi Xj)lsisn,lsjsd

is an ordered basis of H; conversely, any L-analytic group H which is auniform
pro- p-group with an ordered basis of the above form is L-uniform. According
to [19], Proposition 1.3.5, every L-anaytic group possesses a basis of
neighbourhoods of 1 consisting of open L-uniform subgroups. We remark that if
H is L-uniform with ordered basis (hj;) as above then every uniform pro- p-
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group with an ordered basis of the form (hij pa(j)). ~with a(d), ..., a(d) e N, andin
ij

particular every lower p-series member of H, is L-uniform aswell.
Recdlthatk =1if p+2,k=2if p=2.Forr € (0, 1) define

e(r) = sup{mp € Nag; |mp?| r*™ = [m-2| r<Mfor all me N.4}.

Theorem 7.2 (Frommer-Kohlhaase). Let H be an L-uniform group with Lie
agebrah. Letr € p2 N [p2, 1).

(i) Let X = (%1, ..., %q) be an o -basis of Log(H). Then (X%)
orthogonal basis of U, (h, K).

(@ii) Dr(H, K) is a freeright U, (h, K)-module of rank n-d-e(r). More exactly:
Let (hy, ..., hng) be an ordered basis of H and put b := (6n, - 1, ..., o, —1).

Then (b”) isa U (h, K)-basis of D(H, K).

aeNd iS an

aeN" a; <e(r),...,an g <e(r)

Proof. This is essentially Theorem 1.4.2 of [19]. The orthogonal basis property
of the family (X%) for the norm || ||; is proved in [27], Proposition 2.4. For the
description of e(r) cf. [15], Section 1.4. o

Remark 7.3. Let H be an L-analytic group which is a uniform pro- p- group,
andletr e p? N [p7L 1)

(1) Let g € H. Then the serieslog ¢4 convergesin D, (H, K), and

logdy = Logg.

(2) What is the significance of the number €(r)? We have:

a) if (x1, ..., %q) IS a Zp-basis of Log(H) then e(r) = dom(x;) for each
1=<i=d;inparticular |xi|l. = e(r) r<<";

b) e(r) isa p-power, and e(rP") = pXe(r) fork e N;

0) |pIPP < rxe® < |pY P "and ¢(r) - co monotonely for r — 1;
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d) Let g € HYM, x := Logg. Then the series expx converges in D;(H, K). In
particular, 64 = expx € U, (h, K) and

EXP X = Opxpx-

Proof. (1) Let (hy, ..., hq) be an ordered basis of H, and write as usua b =
(b1, ..., bg), bi =n — 1. According to Corollary 5.4 we may assume g = hlpm
(meN). Hence |I6g— 1|l = ||Zk21('°|j)b'{||r <1 < 1, so0 the series logdy
converges ([6], Section 11.8.4).

We identify the Lie algebrah of H with the Lie algebra of Rbp(H). Then Log,,
coincides with LogRbp(H), and the epimorphism D(R; H, K) - D(H, K) is
compatible with the embeddings H - D(Rg, H, K), H - D(H, K) and with the
embeddings h - D(R}Qp H, K), h- D(H, K). Hence by continuity of this

epimorphism, in order to show logdy = Logg we may restrict to the case
L = Qp. But then

Log(g) =tLog(g), log(sh) =tlogdg

for al t € Z and hencefor al t € Z,,. For sufficiently small t we deduce

SexptLogg = EXP(t10gdg) = ¥ () Gg— D"

n=0

_ (_1)n—1

Using the formulalim_g % (;) 2

we compute

(_1)n—1 . 1 t . 1 .
109% = 2, =5 o =17 =iy (0 € =" =g Goross = 1)

the last expression is precisely Logg (cf. the description of the embedding
h c D(H, K) at the end of Section 2 in [30]).

(2) @ This is clear by definition of €(r), since % = Zn>l(—l)“_1%bi”,
bi := 0expx; — 1, Dy part (1).



b) First observe that the expression |m2|r<™ (meN.,) attains its maximal
values at p-powers m. Thuswe may describe (r) as the maximum of the set

{p; ko €N, po r<P® > pkr<P for all k e N}

Let ky eN. The condition "pro r<P® > pkr«P for al ke N" is equivalent to

"ploreP® > pkkipeP for all ke N (since pkrP < pOr<P’ for negative K),

K pk0+k1

P k
and further to "plots(rP™) = p(rP™) " for all ke N". This means that

e(rP™) = e(r) pla.

c) Write k e(r) = pk. By definition, [p™|r? > |p=&D|rP"*, hence p* = |p| >
r®-D P hence p~P-b > rP, Also by definition, |p™|r?* = [p~*D|rP", hence
r=P)P > |p| = pL, hence r? = pY/(1-P7) = pPA-P This also implies
€(r) - oo for r - 1. In order to show monotony, let r’ <r, and write e(r) = p,
er')=p¥, I’ =rs. By definition, p¥ r<P* &P > pkpep P 5 gk pep g
which impliesk’ < k.

d) According to [6], Section 11.8.4, we have to show that ||x||; < |p/Y/*Y.
There is a basis (%) of Log(H) satisfying x = p™x; (Corollary 5.4), and by

assumption p™ = €(r). By part ), ||x|l; = p"™||x1ll; = pT™e(r) << < r<<O and
our claim follows from part c). o

Now fix a compact L-analytic group G. Let H c G be an open normal subgroup
which is a uniform pro- p-group, and letr e p@ N [p‘l, 1). In Section 5 of [32]
the algebra D(G, K) is endowed with a norm depending on the pair (H, r) in the
following way: Let R be a system of representatives of G/H. Let
A € D(Rg,(G), K), and write

A= 3 AxOx

XeR

according to the decomposition D(R(bp(G), K) = eaXeRD(Rbp(H), K) 6x. Then
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A = maX [|Axl|,
XeR

defines a norm on D(Rg, (G), K) which is independent of the choice of R (cf.
[26], Section 4.2). We let || ||, denote the residue norm on D(G, K) induced

from this norm via the epimorphism D(Rbp(G), K) - D(G, K), and we denote
the completion of D(G, K) with respect to thisnorm by D (G, K). Then

D(H,r)(G, K) = DI’(Ha K) Ox
xXeR

as K-Banach spaces (cf. [23], Remark 2.2.5). By [32], Theorem 5.1 (and proof),
D.n (G, K) isanoetherian K-Banach algebra

Recall that a basis of a K-Banach space (M, || ||) is a family (Tj),., in M such
that every u € M has a representation as a convergent sum u = >, & T; with a
uniquely determined family (&), in K (cf. [24], p. 53).

Corollary 7.4. Let H c G be an L-uniform open normal subgroup, and let r
PR N [pt, 1). Let X = (x4, ..., Xq) be an o -basis of Log(H). Let R be a system
of representatives of G/HE" . Then the family (X2 d)
Banach space D (G, K).

2eNd xeR isabasis of the K-

Proof. Let (h;) be an ordered basis of H, h := (6hi)i, b := (6, — 1).. In Theorem

i
7.2 (i) we may replace the U, (g, K)-basis (b“)a«(r) of Dy(H, K) by the basis

(0") e SINCE

(ha)a<e(r) = (ba)a<e(r) .T’ (ba)a<e(r) = (ha)a<e(r) 'T_l

with base change matrices T = ((;)) wpeery T = (D" (Z)) o peer). LEL R
be any system of representatives of G/H. From the decomposition D (G, K)

= @®yer Dr(H, K) 6, we obtain that (h” ) is a U, (g, K)-basis of

a<e(r),yeR’
Dun(G, K). Now if h*6, (a<er),yeR) and 6k (xeR) ae two
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representatives contained in the same coset of HE" then h” 5, 65! is a unit in
U(g, K) (Remark 7.3 (2) d)). Hence (6x),.x is adso a U(g, K)-basis of
D (G, K). The corollary follows then from Theorem 7.2 (i). o

Proposition 7.5. Let H, H" ¢ G be open normal subgroups which are uniform
pro- p-groups. Let r, 1’ € p2 N [p~%, 1). Suppose that one of the following
conditions holds:

()H =Handr’ =r;

(i) H' c H, r" =1, r*P" = p~1 where m is the highest p-elementary divisor of
H inH;

(iii) thereisanme N such that H = HP", 1" = rP",

Then there is a continuous K-algebra homomorphism Dy (G, K) -
D.n (G, K) extending the identity map D(G, K) —» D(G, K). In case (iii) this
homomorphism is a topological isomorphism.

Proof. First note that a continuous K-linear map Dy (G, K) = D (G, K)
fixing G (that is, fixing the Dirac distributions ¢4 for g € G) is automatically a
K-algebra homomorphism extending the identity on D(G, K).

(i) We have || [l <l Il on D(Rg, (H), K), hence|| Il < | ll; on D(H, K), hence
the identity on D(H, K) extends to a norm-decreasing map Dy (H, K) -
D:(H, K). This induces a norm-decreasing K-linear map D (G, K) =
EBXE(;O/H Dy (H, K) 6y = @XeGO/H Dr(H, K) 0x = D (G, K) which fixes G.

(i) Let (a(d), ..., a(d) = m) be the sequence of p-elementary divisors of H” in
H. By assumption we have r” = (r*P", ..., r*"?) e 1(d), so we may apply
Proposition 6.3 to obtain a an ordered basis h” of H’ such that the norm || llry v
on D(%p(H’), K) is equal to the restriction of the norm || ||, on D(Rbp(H), K) to

D(Rbp(H’), K). It follows from [26], Corollary 4.9, that the residue norm on

D(H’, K) induced from || ||y~ is equivalent to the restriction of the norm || ||
on D(H, K) to D(H’, K), and for the respective completions we have



Di(H,K)= & Dy »(H', K)dx
xeH/H’

as K-Banach spaces. On the other hand there is, similarly as in part (i) of this
proof, the natural continuous K-linear map D,(H’, K) - Dy »(H’, K), and
thereby the continuous K-linear map

DinG K =| ® @& Di(H,K) 5y5X)
yEGo/H xeH/H’
-— & DI’(Hl K) 5y = D(H,I’)(Gl K)y
yeGy/H

fixing G.

(iii) The restriction of the norm || ||, on D(Rbp(H), K) to D(R}@p(HF’m), K) is
equal to the norm || ||» on D(Rg,(HP"), K) (Proposition 6.3), hence ([26],
Corollary  49)  Di(H,K) = &,mDwr(H”, K).  Consequently,

D(Hpmlrpm)(G, K) = @yeGO/H @XEH/Hpm Drpm(Hp’“, K) 5y5x = EByeGO/H D, (H, K) 5y
=Dnn(G, K). o

8. Decreasing filtrations of the enveloping algebra

Let G be an L-analytic group with Lie algebra g and exponential mapping Exp.
Let V be a localy analytic G-representation. The Lie algebra action on V is
given by

&V = S EXp(tx) Vo

(x € g, ve V); it naturally extends to an action of the enveloping algebra U(g) of
g. For keN let g¢ c U(g) denote the subset of elements of the form x; ... xk
withx1, ..., ®%c € g.

Definition 8.1. A vector ve V is caled g-adically finite if gv =0 for some
keN.



From the formula xgv= gAd(g)'1 (X)V (x€g9, g€ G, veV, cf. [14] Saz
3.1.3) it follows that the g-adically finite vectors form an invariant subspace of
V.

Let T(g) = ®renTX(g) be the graded tensor L-algebra of g, with TX(g) denoting

the subspace of homogeneous tensors of order k (k € N). We have the canonical
epimorphism

m:T(g) - U@©),z218...0 2 21 ... Z,

and 7(T*(g)) is equal to the L-vector subspace of U(g) generated by g¥. The sum
of the n(T(g)) is of course not direct anymore, we rather have n(T(g)) c

Siwk L g€ for k= 1. The L-vector spaces
Un() = 2 (@) (meN)
=m

constitute the (increasing) canonical filtration of the L-algebra U(g) considered

in [6], 1.2.6, and [12], 2.3.1. On the other hand, for each me N we obviously
have

9" U(9) = (X % ui; X € g™, yi € U(g)} = 3 7(TX(9),

k=m
and this L-vector space is equal to the left, as well as to the two-sided ideal in
U(g) generated by g™. As the spaces (TX(g)) are finite-dimensional the ideals
g™U(g) are of finite codimension in U(g). Moreover, gkU(g)-g™U(g) c
g“"™U(g) forall k, me N,

Definition 8.2. The decreasing filtration (gU(g)),_ is caled the g-adic

filtration of the algebra U(g).

N

Clearly, a vector is g-adically finite if and only if it is annihilated by the ideal

gk U(g) for some ke N. Recall that a vector v is called U(g)- finite (cf. [13],
Definition 4.1.10) if it is contained in afinite-dimensional U(g)-stable subspace
of V, or equivalently: if it is annihilated by a left ideal in U(g) of finite
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codimension. By a lemma of Emerton ([13] 4.1.11) this is equivalent to the
condition that v is locally finite, i.e. contained in a finite-dimensional subspace
of V stable under an open subgroup of G. Obviously, every g-adically finite

vector is U(g)-finite. The converse does not hold as Example 8.3 below
indicates.

Example 8.3. Let G = o, the additive group of integers of L. Then Exp is the
identity map on o, . Let V be the locally analytic regular representation of G, that
is, V is the locally convex K-vector space C*(G, K) endowed with the
trandation action of G. The Lie agebra action is given by x; f=-f’
(x1=1€L, f €V, here f’ denotes the dervative of f).

(8 A vector f € Vis g-adically finiteif and only if it islocally polynomial, i.e.
if and only if for each x € G thereis a polynomial P with coefficientsin K such
that f(2) = P(y — x) for al y in aneighbourhood of x.

(b) Choose an open subgroup U c G such that the series .y X"/m!
convergesfor x € U. The vector

e: G — K

{ZmeNxm/m! ;xe U
0 yX¢ U

X

isnot g-adically finite but is U(g)-finite: We havex, e=—e, hencegte=Le#
0 for al keN, while the ideal generated by x;+1 in U(g) is of finite
codimension and annihilates e.

More generally one can show the following: Let G be the group of L- rational
points of a unipotent algebraic L-group and let V be the left regular
representation on C*(G, K). A vector f € V is g-adically finiteif and only if it
is locally polynomia with respect to the canonical chart of the second species
associated to any ordered basis of g.

We denote by g = C%(g) > C*(g) > ... the lower central seriesof g.

Lemma 8.4. Let G be the group of L-rationa points of a unipotent L- group.
Foranyge GandmeN,
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(Ad(9) - idg) (C™(g)) c C™X(g).

Proof. Let x = Log(g). We may view G as a group of strictly upper triangular

matrices in some GL, (Example 4.2). Hence Exp is defined on the whole of g,

and we have the equality Ad(Exp(x)) = exp(ad(x)) in GL(g). For all y € C™(g),
(Ad(Q) - idy) (y) = exp(ad(®)) (w) — y = [x, y] + 3[x, [x, Y]l + ...

Since C™(g) is an idea in g it follows that (Ad(g) —id,) (y) is contained in
[x, CM(g)] c C™(g). O

For the rest of this section, we fix an open normal L-uniform subgroup H c G
and anumber r € p@ N [p~%, 1). Let (x4, ..., %q) be an o_-basis of Log(H) and

R asystem of representatives for H4"\ G. Then the family
(X(fl v ng 59)aeNd,geR

is a basis of the K-Banach space Dy (G, K) (Corollary 7.4). We further
assume R to be of the following form: There exists afamily g = (di5),__4 sel in

G such that R = {g15-...-Qap; B ). For keN, let M(g, k) ¢ D (G, K)
denote the closed K-vector subspace generated by the elements

X1 gy, - Xy bg, (Bel,aeNd notala; <k).
The next two lemmata compare this space with the closed subspace

9“Dn(G, K) = {2 %i Ai; % € g% A € D (G, K))
of D (G, K).

Lemma8.5. (i) Letge G, x € g. InD (G, K) we have
g % 05 = Ad(g) (%).
(ii) Forany k e N,
M(g, K) ¢ gD (G, K).
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Proof. There exists ce L* such that cx e Log(H“"). Put h:= Exp(cx). By

Remark 7.3, 6gx 85" = ¢ 16glogdn) 50 = ¢ Yy (D" nlgsh gt =
_ n

ct 2n=1 (_1)n ' n_l(éghg‘l) =c log((sghg‘1

is contained in HE", After eventually making ¢ smaller we may apply Corollary

3 (i) of [6], 111.4.4, to obtain c™* Log(ghg™) = ¢ Ad(g) (Exp(h)) = Ad(g) (),

) = ctLog(ghg™), since ghg™

whence (i). In order to prove (ii), we have to show that x3* &g, ... X4" Jg,, IS
contained in g Dy (G, K) for B e 1, @ e N9, not al o; < k. But from part (i) it
follows that there exist k' =k and A e g such that xi*dg,, ... x4' 6g,, =

AGg,, .. Og,,. O

Lemma 8.6. Let G be the group of L-rational points of a unipotent L- group,

and choose m= 2 such that C™(g) = 0. Suppose that each C'(g) is spanned by a
subfamily of the basis (x4, ..., %q). Let kg, ko € N such that d mk; < k;. Then

gkl D(H,I’)(G) K) C M(g' k2)

Proof. By our assumption on R, gk D.r)(G, K) isthe closed K-vector subspace
of D (G, K) generated by the elements

AT %" 6, ... 0, (Aegh, aeNd, Bel),
and hence a'so by the elements
Abg,, ...0q, (Aeg k=k,Bel).

We fix such an element and introduce some notations: For z € g define N(2) :=
max {i eN; z e C'(g)} if z+ 0, N(0) := co. Put

A= {((zi'j)lsjsk(i))lsigd; Zi,j SHE k(l) c N}

Every family z = ((Zi‘j):LSJSk(i))lsisd € A givesriseto an element



AMzZ) =211 ...214) 5gm v Zd1 ---Zdkd) 5gdﬁ € D (G, K),

and we define N(z) = 2 N(zij), L(z) 1= X k(). Findly, let 8 denote the
subset of D (G, K) of elements of the form

U =Cxy* Oy - Xy o, (CEK @€ N9,

and for such an element € B put L(u) =2 a;i. Clearly, if L(u)=dk; then
u € M(g, k). Thus it will suffice to show that our fixed generator A 6g, , ... dg,,
isafinite sum of elements i, € B with L(u,) = dko.

We claim the following:
(+) Let z € A with £L(2) = k. There exists a finite family (u,) in 8 and a finite

family (z) in A such that
@ A=) =X pu +2AEY),

(b) L(uy) =kforallv,
() k—=1<L(=z") <kand N(z") = N(z) + 1L for al v.

In order to prove (+), we first observe that A(z) is a linear combination of
elements of the form A(y) with y = (yij)) € A, al yij € {x1, ..., ®a}, L) = L(2)
and (using our assumption on the basis) N(y) = N(z). Hence we may assume
that A(2) itself hasthisform. Next, for al 1 <i, j < d we have

() & % = % %) + [%j, %] With N([%j, x]) = N(x) + N(xj) +1
and, according to Lemma8.5 (i) and Lemma 8.4,

(I1) %} 6q, , = 0, Xj — Ydg , With N(y) = N(x)) + 1,
where y = 4, ¥j dy
operations of type (I) and (1) to A(z) we indeed obtain

:‘;—XJ’ = Ad(gip) (xj) — %j. Applying a finite number of

M2) = &5 8, - %e? Sy, + Ty AEY) (@ €N, Taj =k, 20 € A)

such that the elements 2z satisfy the condition (c) of (+).
To conclude the proof, we observe that our chosen generator A 6g, , ... dg,, has

the form A(z) for some z € A with L(z) = k. Since k = k; = dky, and since the
procedure (+) "increases N and "decreases £" according to (c), we may apply
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it to A(2) and then recursively to the summands A(z") in (a) until we arrive at an
equation

A2) =3,y +3,2EY) (1 € B,2Y € A)
with either £(z") = dkp, or £(z") > dk, and N(2") > (m- 1) £L(z") for each
v. In view of (b) this aso implies L(u,) =dk, for each v. Moreover, if
L(z") = dky then in virtue of (c) we have N(z") = k—dk, > (m=1)dky, =
(m-1) £(z*) as well in this case. But for each z”) = (2{7) the relation N(z"")
> (M- 1) £(z") implies that at least one z{) is contained in C™(g), and thereby
A(z") = 0 by the choice of m. Hence

AMz) =2, 1, Withu, € B, L) =dks. O

Remark 8.7. The g-adic filtration (g*U(g)) isin general not separated. In fact,

in case [g, g] = g it is even stationary with gk U(g) = g U(g) for al k= 1. If on
the other hand g is nilpotent then a simplified version of Lemma 8.6 shows that
the g-adic filtration is cofina with the filtration given by the subspaces
generated by the elements

X' xy" (@ eNd notdl a; < k)

(keN, (1, ..., %q) a fixed basis of g); and this filtration clearly is separated.
Bourbaki considers yet another decreasing filtration which is independent of the

choice of a particular basis: letting S’k(g)ch(g) denote the subspace of
symmetric tensors, the canonical map 7 : T(g) » U(g) restricts to isomorphisms
of L-vector spaces

S*(g) = UK(g) = n(SXg).
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(keN), and each Uy(g) is the direct sum of the UX(g) (k <m) (compare [3],
[11.6.3, Remark; [6], 1.2.4, Corollary 4 and subsequent discussion). Again, a
proof similar to that of Lemma 8.6 shows that the g-adic filtration is cofinal

with the filtration (3. UX(g)), , Provided g is nilpotent.
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IIl. n-characters of admissible representations of reductive p-
adic groups

Notations. For the remaining sections we fix the following situation: Let G be a
connected reductive group over L. Let S ¢ G be a maximal L-split L-torus. Let
W be the Weyl group and @4 the system of non-divisible roots of (G, S). Let
P c G be a minima parabolic subgroup containing S, and let I denote the
unipotent radical of the parabolic subgroup containing S and opposite to P. Let
G=6G(L), S=9(L), P=P(L), N =1(L) denote the corresponding groups of L-
rational points, considered as L-analytic groups. Finaly, let
=900 D ga

aeCI)nd

be the L-linear root space decomposition of the Lie algebra g of G; here go
denotes the Lie algebra of S. By an abuse of language we shall call root space
vectors the nonzero elements of g which are contained in some g, (a € ®,q Or

a=0).
We will consider admissible representations of open subgroups G; c G over K.

9. Definition of n- characters

Definition 9.1. Let G’ c G be an L-subgroup such that the Lie algebra g’ of G’

Is spanned by root space vectors. Let Gy ¢ G’(L) be an open compact subgroup.
We define E(Gp) to be the set of pairs (H, r) where

(@ H c Gg is an open normal L-uniform subgroup such that the o, - lattice
Log(H) is spanned by root space vectors and is contained in the neighbourhood

(9')" c ¢ specifiedin Proposition 4.3, and
() rep?N[p™ 1)

Let us keep the notations of the definition. The groups H c Gy with property (a)
form a basis of neighbourhoods of 1 in Gy. Indeed, let H' ¢ Gy be an arbitrary
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open normal L-uniform subgroup. Then the o -lattice A’ = Log(H”) contains an
o_-lattice A spanned by root space vectors and contained in (g’)”; moreover, A
> p™A’ for some me N. The property of H” of being uniform pro- p translates
to the fact that the lattice A’ is powerful, i.e. [A’, A’] c p* A’ ([11], Section 9.4).
But [p™A, p"A] c [pMA/, pP"A’] € pPPMA’ ¢ pfp™ A, hence pTA is
powerful and the uniform pro- p-group H := Exp(p™ A) is an open subgroup of
H’ satisfying the above properties. This proves our claim.
For apair (H, r), (H’, r")) in E(Gp) consider the following condition:

thereexistk, k' € Nsuchthat H'P c HP",
+) P s P s L

,ka+m

r > pd,

where m denotes the highest p-elementary divisor of H? in H?. We define a
binary relation on E(Gg) by declaring (H, r) < (H’, r’) if and only if there is a
finite sequence

(H, r) = (Ho, ro), (Hy, ry), ..., H, rp =(H", 1) (j=0)

in B(Gg) such that ((Hi_q, ri—1), (Hi, rj)) satisfies (+) for al 1<i<j. This
relation is reflexive and transitive by construction, and in fact is a directed
preordering: indeed, given two elements (H, r), (H’, r’) of E(Gp) we find a k’

with H’® c H; letting m denote the highest p-elementary divisor of H’® in H
and choosing s< 1 such that s = max {rp_k', p‘('(p“m)fl, r'} we have (H,r) <

(H,sand (H", r") < (H’, ).
The following result exhibits the crucial properties of the <- relation:

Lemma9.2. Let (H, r), (H’, r") € E(Gp) such that (H, r) < (H’, r’). Then:
(i) The identity map D(Gp, K) - D(Gg, K) extends to a continuous K- algebra
homomorphism

D r1y(Go, K) = D, (Go, K).

(i) H'<") ¢ He®),
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Proof. For both (i) and (ii) we may assume that (+) aready holds for the pair
(H, r), (H’, r"). Proposition 7.5. yields maps D 1) (Go, K) — D( v r,pk/)(Go, K)

(Go, K) = D) (Go, K). This proves (i). By

HP

- D )(Go, K) - D(

(Hpk,r'pkl Hpk,rpk)
’ E(rpk) ) v E(r,pk’)
Remark 7.3 b), H<" = (H¥)" / and H'<™ = (H'p ) . Now (ii) follows

from (+) and the monotony of themapr - €(r). o

Let G; be an open subgroup of G, let § be a compact subgroup of G; () S, and
let V be an admissible locally analytic G;-representation over K, with strong
dual M =V|{. From now we take Gy to be a compact open subgroup of G;
containing S, and we simply write E(Gp) = E. (Such a group Gy always exists,
cf. [35], 3.2.) For each pair (H, r) € E we define the left D 1 (Go, K)- module

M#H,r) :=DHin(Go, K) @ M;
D(Go.K)

here D(Gg, K) acts on M through the inclusion Gy —» G;. Note that since V is
admissible M ) is a finitely generated module over the noetherian K- Banach

algebra D 1(Gop, K) and hence carries a canonical K-Banach space topology
([32], Proposition 2.1). Using Lemma 9.2 (i) we obtain a projective system

(M(Hvr))(H,r)eE'

Remark 9.3. M = |lim M -

—— (H,neE

Proof. Since V is admissible M is a coadmissible module over the Fréchet- Stein
algebra (D(H’, K), (|| lIr),<;) for any fixed choice of a uniform open normal
subgroup H’ c Gy (viewed as an L-analytic group). Regarding [32], Corollary
3.1, this means that M = (Ii_mKl M . Hence it suffices to show that the

system (M ), is cofinal in (Mg r)) Let (H,r) € E. There existsa k’ e N

Hn"

with H'P* c H. Let m denote the highest p-elementary divisor of H’® in H.



Chooser’ < 1 suchthat r’ = max {rpfk/, p‘(ka/”“)fl}. Then(H, r)<(H’, r").o

Fix apar (H, r) € E. Let n denote the Lie algebra of N. Since Gy c G Is open
the universal enveloping algebra U(n) is contained in Dy (G, K) and thereby

acts on My ). Moreover, since S normalizes I, the subspace nk M IS So-
invariant for any keN, and we will view the quotients My /n* M) as
representations of &,.

Recall that by weak convergence of a net of C-valued functions we aways
mean pointwise convergence with respect to the discrete topology on C.

Definition 9.4. Let S ¢ § be a subset. Suppose thereisapair (Ho, ro) € E and a
number ko € N such that the following holds:
(i) for every pair (H, r) = (Ho, ro) the representations M(H,r)/nk Mm . (K= ko)

are finitely trigonalisable over C and the sequence Ch(Mg) /n M(H,r))kzko

converges to an element Oy iN Z[X(S)1;

(i) O, isevaluableon S for every (H, r) = (Ho, ro);

(iii) the net of functions (evg (®(H'r)))(H,r)z(HO,rO) converges weakly to a function
0:S - C.

Then we say that the G;-representation V possesses an n- character on S, and

the function 6y : S —» C defined by 6y(s) = 9(5‘1) is called the n- character (or
simply the character) on S of V.

Remark 9.4. The character 6, (existence and value) depends only on the G;-

representation V, the groups N and &, and the subset S, while Gy should be
considered as an auxiliary group which may be replaced by any other compact
open subgroup of G; containing . Indeed, let Hyo c Gy an open subgroup
containing &. Then Z(Hp) is a preordered subset of E(Gg) which is cofinal: if

(H,1) €E(Gp) then (HP,r)eE(Hy) for sufficiently large keN, and
(HP,r) = (H, ). Let (H, r) € E(Ho). Then
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Dhry(Ho, K)  ® D(Gg, K) =Dnyy(Ho, K) ® [ ® D(Ho, K)5x)
D(Ho.K) D(Ho.K) \X€H0\Go

= @ |DHnMHo K)Y ® D(Ho, K)dx|= D) (Go, K),
xeH\Gy D(HO,K)

hence D(H,r)(Ho, K) ®D(HO,K) M = D(H,r)(HO, K) ®D(HO,K) D(Go, K) ®D(GO,K) M
= Dn.r)(Go, K) ®Dp(Gy.K) M as S-representations.

Proposition 9.5. Let S ¢ § be a subset. Suppose that V = &, V; is the finite
direct sum of G;-stable subspaces V. If each V; possesses an n-character 6y, on
S then V possesses an n-character 6y on S, and

HV: ZHV|

iel

Proof. For the strong duals we have M = @i M® where MV := (V).
Furthermore, M@ = Dwn(Go, K)  ®pg k) (®iaMD) =
®ict (D.n(Go, K) ®pye, ) MV) = @iaMi,) for adl (H,n e, and finaly

Mt /n Man = ®ici (MG ) /0 M) for al k because the direct sum is n-
stable. By assumption we find a pair (Ho, ro) such that for all (H, r) = (Ho, ro)

and for every i the formal characters Ch(M{, ,, /n* M{, ) exist and converge to

an element
Oty = lim Ch(M{,r) /nf M)
Hence (Lemma 2.3) each M ) / nk My r) possesses aformal character satisfying
Ch(Mg,ry /n* M) = 2 Ch(M{,, /n* M ).

Therefore
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2 ®Elk)|.r) 2 limcCh (M((Ig,r) /nk M((L)i.r))

iel il kooo

lim 3 Ch(M{,, /n* M, ;)

koo je|

ILLTo Ch (M(H,r) /nk M(H,r)) = . ®(H,r) .

For each i, by assumption, the elements @%iﬂ',,) are evaluable on S and the

evaluations converge weakly to a function 69 :S — C. Therefore, since
Z[X(S)]g is a Z-module and evg is Z-linear, the elements O, are

evaluableon S and

&vs (O (9) = X evs (O% 1) 9

Hence the functions evg (® 1)) converge weakly to 3, V. o

10. The smooth case

In this section we intend to show that, modulo restriction to &, Definition 9.4
generalizes the concept of character of the smooth representation theory.

Let V be a smooth representation of an open subgroup G; c G over K. Let

H(Gy1) be the Hecke agebra of Gy, i.e. the K-vector space of compactly
supported localy constant K-valued functions on G;, endowed with the

convolution product. Choose a Haar measure u on G;. Then H(G;) actson V by
therule

(f,v)> ff-v' du
G,
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(f e H(Gy), ve V; here v : Gy —» V denotes the locally constant orbit map

g~ gV). The smooth representation V is called admissible if every f € H(G;)
has finite rank as an operator on V, equivaently: if the subspace of H- invariants

VH c V isfinite-dimensional for every compact open subgroup H c G; (cf. [9],
p. 119). If thisisthe case then the linear form

Ov:HG)-»>K, ftrfVoV,ve ff-\/' du
G,

is defined.

Definition 10.1. Let G’ c G; be an open subset. Let V be an admissible smooth
representation of G;. Let 6: G” —» C bealocally constant function such that

Ov(f)= [ f-0du
G,

for all functions f € H(G;) whose support is contained in G’. Then we say that

V possesses a character on G’, and the function 6 is called the character on G’
of V.

For finitely generated smooth representations there is the following classical
result (cf. [18], Corollary of Theorem 2; [34], Corollary 4.8.2):

Theorem 10.2 (R. Howe, Harish-Chandra). Let G c G be the subset of
regular elements. Let V be an admissible smooth representation of G such that V
isfinitely generated as a G-module. Then V possesses a character on G™9.

Now let Gy ¢ G; be acompact open subgroup, and consider the quotient algebra
D*(Go, K) := D(Go, K)/(9)

where (g) c D(Go, K) is the closed two-sided ideal generated by the Lie algebra
g of G. This quotient algebra may be viewed as the strong dual of the subspace
H(Gg) = C®(Gg, K) ¢ C*N(Gp, K) of localy constant functions (cf. [30],
Section 2). As a topological K-vector space D*(Gg, K) is generated by the
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distributions 6« uy where 6y denotes the Dirac distribution of an element x € Gg
and uy denotes the normalized Haar measure of an open subgroup H c Go ([1],
Section 2.1; compare also [7], Ex. 22 of 1V.2). Note that for any open normal
subgroup H c Gy the finite-dimensional group ring K[Go /H] may be viewed as
the subring of D*(Gg, K) with K-basis (6 luH)xeGo/H'
For apair (H, r) € 2 = E(Gp) we put
D& .n(Go, K) 1= Din,r)(Go, K)/(9)

where this time (g) is the closed two-sided ideal in D ) (Go, K) generated by g.

Recall (Remark 7.3) that H" is an open normal subgroup of G, depending on
(H, ).

Lemma10.3. Let (H, r) € E. We have a canonical isomorphism of K- algebras

Dfr)(Go, K) = K[Go/H"].

Proof. By Corollary 7.4 we have D (G, K) = ®xerU: (g, K) 6x where R is a
system of representatives of Go/H"”. We claim that the closed ideal in
D.n(Go, K) generated by g isequal to

XeR

Itisclear that | iscontained in that ideal and contains g because g U, (g, K) isthe
closed ideal in U (g, K) generated by g. Now for any %, y € U(g), X, y € Gg we
have

with z € U(g), ze R and h e H"; moreover, if either x or y are non-constant

then z is non-constant (Lemma 8.5 (i)). Since o € U, (g, K) (Remark 7.3) this
showsthat | isan ideal, thereby proving our claim.

It follows that D, (Go, K) = Dwr(Go, K)/I as a K-vector space is
isomorphic to ®yerK dx = K[Gg/H "] under the map 6y + | = &y pyeo, and this
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map is obviously multiplicative. o

Let V be an admissible smooth representation of G;. Following [30], Section 2,
we may view V as a locally analytic representation by endowing the underlying
K-vector space with the finest locally convex topology; among the locally
analytic representations such a representation is characterized by the fact that V
Is admissible (in the sense of locally analytic representation theory) with trivial
Lie algebra action ([32], Theorem 6.6). The dual M = V{ isin this case the full

linear dual V*, and the action of D(Gg, K) on M factors through D*(Gg, K).
Using the above lemma we can describe the coherent sheaf structure of the
coadmissible D(Gg, K)-module M interms of the pairs (H, r) € 2: We have

Mt =DnHn(Go, K) ® V*=Dg(Go, K) ® V-
D(GoK) D*=(Go.K)

as D> (Gy, K)-modules; hence

M(H,r) = K[GO/He(r)] ® V*= (VHe(r))*
D=(Go,K)

(compare also the proof of [32], Theorem 6.6). Note that the space of H€"-
invariants VA is Gy-stable since HE" ¢ Gg isnormal.

The restriction of VH to the commutative group & is finitely trigonalisable
over C and possesses a character on &, namely the restriction to § of the usual
character

Q(H,r) . Go - K, g [ tr(g. :VHe<r) N VHe(r))

of VA" (cf. Remark 2.2 (ii)). The function 6y, is constant on the cosets of

H<" and its connection to the linear form Gy, is given by

(%) Ov (ﬂg H“”) = fﬂg heo Oy die = u(HD) 61 1(Q)
G,
for every g € Gy (compare [9], Section 1.5, equation (12)).

Lemma10.4. Let G’ ¢ G; beanopensubset, S .= G.
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(1) If the smooth representation V possesses a character 6 on G’ then the net of

functions (O r |g)(H rez COnverges weakly to therestriction 6 |g .

(ii) If the net of functions (G ls) converges weakly to a function

(H,neE
6:S — K which extends to a locally constant K-valued function G’ —» K then
there is an open subset G” c G’ containing S such that the smooth
representation V possesses a character on G” which coincideswith6 on S.

Proof. (i) Let g € S. Since G’ c G; isopen and regarding Lemma 9.2 we find a
pair (Ho, ro) such that gH"” c G’ and such that the function 6 is constant on
gH® foral (H, r) = (Hg ro); these two conditionsimply

6(@) = W(HE) ™ [ Iy 0du = u(HO) ™ Oy (Igper)
Gy

and therefore, using the equality (x), that the value 64 ,)(9) is constant for all
(H, 1) = (Ho ro).

(ii) We denote the locally constant extension of 6 to G’ again by 6, and for each
ge S we choose a par (Hg, rg) such that 6 (Q) = 6(g) for al (H,r) =

(Hg, rg). By eventually increasing (Hg, rg) we attain that 6 is constant on

g ng(rg) c G’ (Lemma9.2) and hence, using (x) again,

(%) fﬂg yeo Odu = u(HM) 6(g) = @\/(Jlg Hs(r))
G,

for al (H, r) = (Hg, rg). Let G” be the union of all gng(rg) (g€ S). Then (xx)
shows that @y (f) = fG f 0du for al f with supp(f) c G, i.e. the restriction of @

to G” isacharacter of Von G”. o

Theorem 10.5. Let V be the admissible localy analytic representation
associated to an admissible smooth representation of G over K according to the
above method. Let S ¢ & be an open subset. The following assertions are
equivalent:

(i) V possesses an n-character 6 on S, and there is an open subset G’ ¢ G
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containing S’ such that 6 extendsto alocally constant function ¢’ : G’ - K;
(i) there is an open subset G” ¢ G containing S such that the underlying
admissible smooth representation of V possesses a character 67 on G”.

If these assertions hold then ¢ and 6” agreeon S.

Proof. Since n acts trivially on V we have M) /0 Mgy = Mgy for all
k € N. The theorem then follows from the preceding lemma. o

Remark 10.6. Lemma 10.3 indicates in particular that we can characterize the
subspace C. (Go, K) ¢ C*(Gp, K) of functions which are constant on the

cosets of HY" by means of the | || ,-norm: We have

Ciran(Go, K) = K[Go /H " = D, ;,(Go, K)".
This phenomenon is very peculiar to the smooth situation as we are going to
illustrate in the case Gg = Z,. Fix heN, and let On(Zp, Qp) ¢ C*(Zp, Qp)
denote the subspace of functions which are holomorphic on the cosets of p" Zp.

On the other hand, for r € (0, 1] (resp. (0, 1)) we consider the space C;(Zp, Qp)

(resp. Cri(Zp, Qp)) of al continuous functions f:Z, - Qp, with Mahler
expansion f =3, ybn(" ) satisfying limy,. by r™" =0 (resp. (b r™), oy is
bounded). Put A, := p"(p - 1 Ifo<r< p~*n < s< 1then

Cri(Zp, Qp) < On(Zp, Qp) < Cs(Zp, Qp).

Proof. First observethat for any A € Q andt := p~* we have

f e Gy & (vp(bn) —nA), _ bounded below.

Next, by a criterion of Y. Amice ([20], 1.3.8) f is holomorphic on the cosets of

p~" n-ch(n)

1 = +oo; here ch(n) = Y& denotes the

p"Z,, if and only if lim vp(by) —
N—oco

sum of p-adic digitsof n= Y a p' (0 < & < p). In other words:
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f € On(Zp, Qp) & limvp(bn) — NAn + p" Ap ch(n) = +oo.

"Cr1(Zp, Qp) € On(Zp, Qp)": follows from ch(n) - +co.

"On(Zp, Qp) € Cs(Zp, Qp)": Choose A = Ap —6 < Ap (6 > 0) suchthat s= p™
> p~n. Then Vp(bn) — NA = Vp(b) — Ny + N6 > Vp(bn) — NA, + p A, ch(n) for
n>> 0, sincech(n)/n - 0.

"Cii(Zp, Qp) # On(Zp, Qp)": Choose (bn) such that vp(bn) = naA, -
p" A ch(n) /2. Then vp(bn) — nAp + p"Anch(n) = p" Ay ch(n)/2 - +co, hence
f € On(Zp, Qp). On the other hand vp(by) —naAy = —p"Apch(n)/2 is not
bounded below.

"On(Zp, Qp) # Cs(Zp, Qp)": Choose (by) such that vp(br) = N, — p" A, ch(n).
Then vp(b) — nA, - p" A, ch(n) is constant, hence f ¢ On(Zp, Qp). It sufficesto
show that vp(by) — NA — +oo for al A < Ap. Put e = A — 4. Choose N € N such
that p"Anch(n)/n < /2 and ne/2 = M for al n=N. Then vy(b,) — nA =
n(e—-p"Anch(n)/n)=Mforaln=N.o

11. Preliminarieson principal seriesrepresentations

Let M c P be the Levi subgroup containing S. Let y be a K-linear locally
analytic P-representation which is the composite of a locally analytic character
M(L) » K* and the canonical map P - M(L). The locally analytic principal
series representation of G induced from y is defined to be the locally convex K-
Vector space

V = IndS(y) = (F € C"(G, K); F(@p) = x(P)* F(Q))

together with the left trandation action of the group G. Below we will see that V
isindeed admissible.

Using the Bruhat-Tits decomposition the locally convex vector space V may be
identified with a finite direct sum of function spaces on compact unipotent
groups. For the purpose of explicit calculations we will give the identification in
extenso.
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Let Gy be the Iwahori subgroup of G of the same type as P. Then Gg is open
and is contained in a special maximal compact subgroup G; c G. The lwasawa
decomposition G = Gy P ([9], Section 3.5) induces an isomorphism of G;-
representations

Vo = Indptg, (x ls,) — Vv
F — (gpr x AP F@) (@eGy,peP)
Flo, — F
For weW put P, = wPwW!NGy N, = WNw!ING, Then

G1 = Upew Go WP (digoint union; cf. [9], section 3.5). On the other hand, for
each w € W the map

VoNC™(GoWP, E) — Inde? (xw) =1 Vi
F —  FoRy

is a well-defined isomorphism of Gg-representations, here Ry : Gg - GowP
denotes right multiplication with some fixed representative of w in Ng(S), and
yw : Pw = E is defined by composing y with conjugation by w1, Furthermore,
the product map N, x Py, — Gg is an isomorphism of L-analytic manifolds (cf.
[23], Lemma 3.3.2). Let 7y, : Gg = Ny, 7, : Go —» Py, denote the components of
the inverse map. An element F € V,, is determined by its restriction to N,, which
in turn can be any function, whence the restriction isomorphism V,, —

C®(Nyw, K). The inverse map C*'(Ny, K) —» V,, is explicitely given by f -
(xatomy)- (fomy,). Identifying the Go-representation V,, with C™(N,, K) we
finally obtain the direct sum decomposition of Go- representations

vV — D Vv,
weW
F — (FeRuln,)

wew °

The preimage F € V of an element (fy),,cy € GwewVw iSgiven by

Flowp) = x(W i) wp) ™ fu(ra(d) (beGo, we W, peP).



Note that since Gy c G is open we aso have the Lie agebra action of g on each

Vw. We let ny, denote the Lie algebra of Ny, and we put S = S Gg. As an easy
consequence of the explicit description of the above decomposition we obtain
the following:

Lemma 11.1. Fix aWeyl group element w € W.
(i) Theaction of Gy on Vy, isgiven by
x )W = xaH(malxy)) fma(xty))
(xe Go, f € Vy, Yy € Ny). Special cases:

xB) () = yw f(xtyx) ifxeS,
xf)y) =f(xty) if xe Ny
(ii) The Lie algebraaction on V,, isgiven by
®H® = O 5yt TaExp(-t %) Y) oo
+ L f(my(exp(-tx) y) o
(xeg, f €V, ye Ny). Specid case:

EHY) = 5 HEPtYho ifxeny.o

Passing to the duas M := V|, = D(G, K) Qppk) ¥’ and MY = (Vy), =
D(Go, K) ®pp, k) Xw (WeW) we get the direct sum decomposition of
D(Gp, K)- modules

The above decomposition Go = Ny, Py, induces an isomorphism of K- Fréchet
spaces

D(Go, K) — D(Nw, K) & D(Py, K)
K

A —  Ao(my)  ®Ao(my)”
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(cf. [23], Proposition 3.3.4). Hence the natural map

D(Nw, K)® xyy — D(Go, K) ® xi = MY
K D(Py.K)

A®a — A®a

is an isomorphism. If we identify MY = D(N,, K) then the restriction of the
D(Gg, K)-action on MY to D(Ny, K) is simply left multiplication in D(Ny, K).
Hence MY is finitely generated as a D(Gg, K) module; in other words, V,, is
strongly admissiblein the sense of [29], Section 3. Consequently:

Corollary 11.2. V is strongly admissible as alocally analytic Go- representation.
O

This result is aso proved in [33], Section 6 (for the case L = Qp; the argument
given however works also for general L).

For the remainder of this section we fix a Weyl group element we W. Let
Ay Cc Py be the root system basis corresponding to the minimal parabolic
subgroup wPw! and let &, c ®,q denote the subset of negative roots with
respect to Ay; thus ny = @aca,9a aNd Ny = [T5cq, Ua (direct span in any fixed
order), where U, denotes the intersection of the root subgroup Us(L) with Gg
([2] 21.11). Since w w1 is unipotent we have the global bijections

wN W—l ﬂ)
— Ny,
Exp

inducing bijections Ny, 2 Log(Ny) c nyw, Ua 2 Log(U,) C ga (cf. Example 4.2).

Proposition 11.3. Let H c Gg be an open L-uniform subgroup such that the o, -
lattice Log(H) c g has abasis ¥ consisting of root space vectors and is contained
in the neighbourhood g~ c g specified in Proposition 4.3. Then H () N,, and
H M Py are closed L-uniform subgroups of H and the o, -lattices Log(H (1) Ny)
and Log(H (" Py) are spanned by the elements of X they contain.
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Proof. Let p,, denote the Lie algebra of P,,. The intersections Log(H) (1 n,, and
Log(H) N pw are o -Lie subalgebras of Log(H). Moreover, the L-vector spaces
ny and p,, are direct sums of the root spaces g, (a€ @ U {0}) they contain.
Therefore the o, -lattices Log(H) (1 ny and Log(H) () pw are spanned by the
elements of X they contain. This aso implies that the quotients
Log(H)/(Log(H) (M ny) and Log(H)/(Log(H) ( pw) are Z-torsion free. Hence
([11], Proposition 7.15 (i)) those lattices correspond to closed Qp- uniform
subgroups H’ := Exp(Log(H) nw), H” = Exp(Log(H) (\pw) of H. By
construction H, H” arein fact L- uniform.

It remains to be seen that H = H(\ Ny, H” = HPy. If g € H( Ny then
Log(g) € Log(H) M Log(Ny) < Log(H) M nw, hence g € H’. In the other
direction, if g € H’ then Log(g) € Log(H) () ny, and from Proposition 4.3 we
obtaing € H' MYwWNw™? = H (| Ny. Thus we have proved H' = H( Ny. The
equality H” = H (1 P, is shown analogously. o

Corollary 11.4. Let (H, r), (H’, ") € 2(Gp). Then (H(\ Ny, 1), (H (\ Ny, ') €
Z(Ny) and HNPw, 1), HNOPw ) € EPy. If (Hr)<H,r) then
HANw, D<=MH NNy, rHandH Py, r)<H Py, ).

Proof. The first assertion follows from Proposition 11.3. For the second

assertion we certainly may assume that there already exist natural numbers k, k’
satisfying the condition (+) from Section 9. By Proposition 11.3 there is an

ordered basis h of H (resp. H’) such that the elements of h contained in H () Ny
(resp. H () Ny) form an ordered basis of H () Ny, (resp. H () Ny). We deduce

HON™ = H* Nw, (H' N Ne)™ = HP Ny Since the highest p-
dementary divisor of H® Ny in HP N Ny, clearly is smaller than or equal to

the highest p-elementary divisor of H'® in HP it follows that the pair
((H ) Nw, 1), (H () Ny, ")) satisfies (+) as well (using the same numbersk, k’).
- Analogously one provesthat (H (Y Py, r) < (H' (N Py, ). O
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If the reductive group G is split over L then the root spaces g, are one-
dimensional, and the group N,, is "as good as L-uniform”, in the following
sense: Write @, = {ay, ..., aq}. Let xj € go, be a generator of the o, - lattice
Log(Uy ). Let (vi,...,Vn) be a Zy-basis of o, hij:=Exp(v ¥j). Then
(V1 ¥, ..., Vo Xj) iSaZp-basis of Log(Uy, ), and as Ny is directly spanned by its
subgroups U, every element g € N,y has a unique representation

9= & - G (9eUs)

t t t {,
= hij...h%1 ... hllg...hng (tij e Zp)

Lemma 11.5. Assume G to be split over L and L |Q, unramified, and define
(hi;) as above. Let H c Ny, be an L-uniform normal open subgroup such that
Log(H) is spanned by root space vectors. There are integers a(1, 1), ..., a(n, d)

poz(l 1D

e N such that the elements h%; ", ..., h%"" form an ordered basis of H. A

system of representatives of N, /H is given by the elements htll .htn”{j
O=tj< p"("”).

Proof. Let (%), ..., ;) be an o_-basis of Log(H) with Xj € g (A=<j=d).As
Log(H) c Log(Ny) is an o -sublattice we have xj = cj xj for some ¢j € o, and
since L is unramified over Q, we may choose the x| such that x; = p*? x; for

some a(j) eN. The elements Exp(vi xj) = EXp(v; x,-)p”“) = pa“ l=<i=<n,

1 < j < d) constitute an ordered basis of H. This provesthe first assertl on.

Since H c Ny is normal the family (htll . h:]”g contains a system of

)Oﬁti'<pa<i'j)
representatives (cf. the proof of Lemma 5.7). Suppose hi% ... h™¢ = h% ... hi h
with 0 < t;j, ujj < p®*) and h € H. We have to show that tjj = Ujj.

Put h® := h'! .. ho¥ (1< j=<d). Thenhift ... b h = h® ... h@ hy ... hg with
uniquely determi nded elementsh; € H () Uy, and we claim that further
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(+) h® .. h@ hy ... hg=h®hy ... h@ Ry
with suitable h} e H (M Uq-

To see this, consider arbitrary elements ni, ..., n, € N,, and ge H, each
contained in some root subgroup. If g # 1 and U, is the root subgroup containing
g then let k(g) denote the height of the root —a, i.e. the unique natural number k
such that —a = b; + ... + by with simpleroots by, ..., by (with respect to Ay). If
g = 1weput k(g) := co. Since H isnormal in N,, we have

(++) N...Nrg=0gN101... N G

with commutators g; = (nj, ) € H (1= j =<r); moreover, each g; is a finite
product of root subgroup elements g;; € H satisfying k(gi;) = k(@ +1 ([2],
Proposition 14.5, in particular the assertion marked (x)). Similarly,

(+++) gni...nr =01 N1...0 Nr g

with commutators gj = (g, nj) € H (1 < j <), each one a finite product of root
subgroup elements g ; € H satisfying k(g ;) = k(g) + 1.

As there is a bound kg € N such that k(g) > kg implies g = 1, a finite number of

recursive applications of transformations of the form (++) or (+++) to the left
hand side of (+) gives the right hand side of (+). Indeed, in a first step we use

(++) to move each h; according to the root subgroup it belongs to and obtain
h® h@ .. hD hyhy...hg=hDhy K@ hyhy ... K hy by

where each appearing b is a finite product of root subgroup elements b, with

k(ht\) = k(hj) + 1. In a second step, each of these hf, (unless equal to 1) is

moved according to the root subgroup it belongs to, using either (++) or (+++).
Along the way commutators appear, being products of root subgroup elements

h with k(h,) = k(hj) + 2. In a third step the h?,, (unless equal to 1) are

moved, and so on. After finitely many steps all commutators are equal to 1, and
we are done.

) ) ) -1
From (+) we deduce htllj hL”J’ (hli}‘ ...hy') " € H for dl j and thereby, since
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the groups Uy, are commutative, hitijj hi_juij € H and hence u;; = tj; for al i, j. o

We finish this section by stating a result describing the D(Ggp, K)- modules

Miin = DHn(Go, K) ® MY= Dyn(Go, K) ®
D(Gy.K) D(Pw,K)

that were considered in Section 9 for the pairs (H, r) € E(G).

Proposition 11.6 (Frommer-Orlik-Strauch). There is a pair (Ho, o) € E(Gp)
such that the natural K-linear map

() DN (Nw, K)® xiy & D (Go, K) & xyy
K D(Pw,K)

iIsatopological isomorphismfor al (H, r) = (Ho, ro).

Proof. For fixed H this is Proposition 3.4.2 of [23]; the case L = Q,, is already

contained in [15], Proposition 7. We adapt the proof to our directed set
E = E(Gyp).

Let (H, r) € E. Let us assume that the D(P,, K)-action on y{, extends to a
continuous Dnp,,rn(Pw, K)-action. Then

DH,(Go, K) ® xiw = Dnn(Go, K) ® Xw-
D(PWrK) D(Hﬂpwyr)(PW1K)

Moreover, the decomposition Gg = N, P, induces an isomorphism of K-
Banach spaces

D, (Go, K) = DN, (Nw, K) % Dnnp,,n(Pw, K)

(cf. [23], Proposition 3.3.4; note that by Proposition 11.3 our groups H, H () Ny,
H (1 Py satisfy the same conditions as the corresponding groups Po, Uy, Py, o

constructed in Section 3.3.3 of that paper). Hence the map (x) is bijective. The
canonical topology on the finitely generated D) (Go, K)- module

D.n(Go, K)®pep, k) Xw 1S €qua to the quotient topology with respect to the
obvious surjection D 1) (Go, K) = D r)(Go, K) ®pep, k) Xw- HENce the map ()
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IS a continuous bijection and consequently, by the open mapping theorem, a
topological isomorphism.

It remains to show that there exists a pair (Hg, ro) € 2 such that for any
(H, r) = (Hp, ro) the D(Py, K)-action on yj, extends to a continuous

Dmnp,.n(Pw, K)-action. Using Proposition 3.4.2 (i) of [23] we find a pair
(Ho, ro) and an extension to a continuous D(HomPW,ro)(PW’ K)-action. Let (H, r) =

(Ho, ro). We then know (Corollary 11.4 and Lemma 9.2) that there is a
continuous K-algebra homomorphism

D(Hﬂpw,r)(PW’ K) - D(HOﬂPWJO)(PW’ K)

inducing the desired continuous extension of the D(P,, K)-action on y{,. o

12. Theprincipal series of SL,(Q,)

We specialize the setting of Section 11 to the following situation: Let G be the
Qp-analytic group SL>(Qp), Sc G the standard torus, P c G the lower Borel
subgroup containing S, and let N ¢ G be the subgroup of upper strictly triangular
matrices, with Lie algebra n. Let y : Q5 — K* be a locally analytic character,
extended to P via the map ( a oL ) - a 1. We want to calculate the n- character
of the locally analytic G- representation

Vy = Indg()( )

on the subset § () G™® of regular elements.
As representatives for the two elements of the Weyl group W of (G, S we

choose w, = ( ! L ) W_ = ( L -1 ) Adopting the previous notations we get the

Zy pZp

z, z; )mG’SOZ{(a a_l)?aEZE}, Py, =

(5 ) 0o n = (P nen = (= (2 )

Zy 73 P
Identifying the two latter groups in the obvious way with Z, the underlying

following subgroups of G: Gg = (
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locally analytic vector spaces of the components (VX)W+, (Vy),, are copies of

C™(Z,, K). Put

For a function f e C*(U,K) on an open subset Uc Q, we denote by

% f:U - K thederivative of f. E.g., the derivative of y satisfies
d _ 1
X @=cx)Z" x@2
wherewe let c(x) := 1= x ().
Lemma 12.1. (i) The action of Gy on (VX)W+ isgiven by

(* °*)f)@ = fe-b),

1

(2 1))@= xa-pea™ ()

(( 2 - ) f) @ =x@ ' f(a?2).
Theaction of Go on (V,),, isgiven by

(* °*)f)@=x@-pb2™ f(55)

(2.)1)0=reo.

((a - ) f)(z) = x(a f(a®2).
(ii) The Lie agebraaction on (VX)W+ satisfies

& hH@=-5;f@
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x-H@=cy pzf@+p? & f(2.
ThelLieagebraactionon (V,) sdtisfies

xH@=-51®

x: H@=c pzf@+pZ 7 1@

Proof: In our case the Bruhat-Tits decomposition G; = Gy W P isrealised by

(a b) (; bid)wl(g‘l d); Ib| < |d|,
B U I e A E

1 b/d

and for the projections ry; we have my, (9) = ( L ) o, () = (1/ d

c

NEAC)

- (C/la . ) T (g) = (a lt/’a)for g= (2 z) € Go. Now apply Lemma11.1. o

In Section 11 we saw that dually to the Ggp-stable decomposition
V, = (VX)W+ ®(Vy),, Wehave the decomposition of D(Go, K)- modules
M= (V) = M*@&M"

where M= = D(Go, K) ®pp,, k) Xw, = D(Nw,, K)®k xy,, and that there is a
pair (Ho, ro) € E such that for al (H, r) = (Ho, ro),

Mt = M ® M

where M 1y = D, .n(Nw, » K) ®k xy, (Proposition 11.6). Wefix elements
. : 1p
h,:=1€Z, corresponding to (o 1 ) € Ny, ,
: : 10
h_:=1eZ, correspondingto (1 X ) € Ny

under the above identification, and as usual we put b, := 6, —1 € M*. Then x..
=log(1+ b.).
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Lemma 12.2. Define operators A, I1, : M* - M* (ze Z,,) by

A(Tanbl) = (1+by) Y nag bl
My(¥aqbl) = ) a1 +b.)*-1)".
Then
AX X f(X) =AA(T),
AX f(zx) =11, A (f)
forall A € M* and f € C*(Z,, K).

Proof. Thisiscontained in [29], Lemma4.3. O

Fix apair (H, r) = (Ho, ro) in E. Recall (Remark 7.3) that (r) is a p-power with
the property that for all ze N\fv(i” we have ¢, = exp(Log 2) (convergent series in
M r))- Moreover, the group H (1 Ny, is of the form m* Z, with a p-power m®.
We choose N_ ) = {0, ..., (r)m* -1} as a system of representatives for

Nu, /(H N Ny,)”. Forne Nand ze Z, we put
TE, :=x16,=log(1+b,)" (1+b,)" € M*.

According to Corollary 7.4 the family (T3,) is a basis of the Banach

neNieN ) m

space M, ). We further introduce the elements

~+ n
Thzi= 'Zo(?) Cnjz Tiz € M* (z#0),
J:

~t

T;,O = TI’-‘T—,O e Mi,
wherefor j < nwe put

Cnjz =27 () + ) +j+1) ... (C(x)+n-1).

74



From now on, we suppose that |c(y)| < 1. Moreover, by eventually increasing
(H, r) we attain [|x+|| ) = 1 (Remark 7.3 (2) @)). These assumptions are needed
in order to prove the following result:

Lemma 12.3. The family (T’ii) isabasis of the Banach space M .

neNieN_¢ ) m

Proof. For every ne N and every ze Z,, the matrix ((Ij()Ck’j’Z)o . possesses
<jk<

the inverse ((—1)j+k('j‘)ck,j,z) indeed, I_io(;)C|,j,z(—1)l+k('|()C|<,|,z =

O=<j,k=n

Chjz Zn] (1) ( 'I‘) ( : ) = Sik (Kronecker’'s symbol) and
=0

L j+ (1 k n i+ k(1 .

Eo -1 (J-)Cl,j,z(|)ck,l,z = Ck,j,ng(—l) (l)(]) = 0jk, SINCE € jzCkl,z = Ckjz

n
forall j<l=<kcjj,=1foraljand 3 (-1 () () = gjx foral j, k=n.
=0

It follows that every A € M, ., may be written as

A= % byTi= % Sby 8D (Mo T

neNieN_ ) m iEN_¢rym NEN jeN

with uniquely determined elements by,; € K. We have to show that for each i the
last two sums on the right hand side commute, i.e. letting A,; :=

bnj (=" (T) Cnj Tii we have to show that for every & > 0 there is exists an

No € N such that [|Anl| < & whenever n>= ng and j > 0 (cf. [25], Section 23).

(H.r)
But by our assumption on c(y) we have|c; ;| < 1 for all j, k, and therefore

||An,j|| = bn,i (?)T;iH(H,r)

Hn —

P
= ||bn; (T) kgo('i) Ciki Tii < [bnil ' max ||Tki,i||(H’r)-

Hn
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Moreover, the assumption ||x.ll, =1 implies that maXOSkanTﬁiH(H =

||Tf_1'_-,i ||(H,r)'

il = 1onil [Tl

Since the sum 3, bn; Ty; converges in M, we indeed have

< ¢ for large n, independently of j. o

Lemma 12.4. (i) The action of atorus element s = (a - ) € S onM™* sdtisfies

S- TF{Z = x(@) a2n TrT,aZ .

The Lie algebraaction on M* satisfies

+ _ T+
X+'Tn,z— n+1,z*

(if) Theaction of s = (a ol ) € S on M~ satisfies

sT,=x@h)a? T 2,
TheLiealgebraaction on M~ satisfies
Xy- T;z =-p z T-;+1,z (z+0),
% Tno=—pncy) +n-1) To_io.

Proof. (i) For ye Z, and f € C*(Z,, K) define f, e C*(Z,, K) by fy(x) =
f(yx). According to Lemma 12.1 (i) and Lemma 12.2, (sT7,) (f) = Ti,(s1 f) =
x@ Tiffe) = x@ Me(logd+by)" (1+by)")(f) = x(@ a" log(1+b,)"
L+b)* % (f) = y(a) a2" T, 2, (F), whence the first assertion of (i). Since the
action of D(N, , K) on M* isjust left multiplication the second assertion is also
Clear.

(i) Similarly as in part (i) we caculate (sTy,)(f) = x(a™)To,(fy2) =
x(a™)a2" T (f) which already proves the first assertion for z= 0. For z+ 0
we conclude
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sTy, = 2L o( )Z(C(x) + ) ...(c(y) +n—=1) ST},

= x@h)Zo(f)a? 2 e +))..con+n-DT 2,

= x(@h a2 o (") (@22 " e + ) ) +n-D T,

= x(@aY)a?" Tz,
Finally, by Lemma 12.1 (ii) the Lie agebra action on M~ satisfies (x_ A) (f) =
AM-x_f) = AL 1) and (-p iz 2)(f) = Aptx.f) = cCAND) +
A? /\(% f)=cx)AA(f) + x- A2A(f) in the notation of Lemma 12.2. Turning

to our elements T, T,,, we obtain

ATy, = (b (M (14 by +log(d + b)" 21+ b))
= NTi4,+2T5,,

A%T,, = nN-DTh,,+2Nn2T 1, + 2Ty,

—ptx Ty, = cNTg,+c0 2Ty,

+ NN-D T, +2n2T,+ 2 Th,
= nc+n=-DT1,+2CN)+2M T, +Z T,
thereby proving the second assertion of (ii) in casez= 0O; for z+ 0 we calculate
Yo(7)Z2 e +1) (e +n=1) (-ptx. T)
= S5 ()27 +i) L c ) =1+ DT
+ Zio(7) 2 +1)...(c() +n= D) z(c(y) +2D) T
+ ()2 e +i-D e +n-D 2T,
= S (M2 ) +D) e+ T
= 2T,

_p4X+Tmz

n+1,z»

because ;") (i +1) + (") () +2i) + (," ) ) +i-D = (" )n+2(7 1 )n

+ (?__zl)n + (T)en + (1)) et = (”+1)(c()()+n) by the recursion formula
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This proves the second assertion of (ii). o

Now fix a number k e N; in case —c(y) € N assume k > —c(y). Note that since
the decomposition M =M*@ M~ is n-stable we have M(H,,)/nk Mun =

(Mo /m M) @ (M) /0 M)
Corollary 12.5. (i) Put I := N4 xXN_.4) . The elements
T +nfMy,, (nDelf)
constitute a basis of the K-vector space M, / nk M-
(i) Put

{(n, 0);n>—-c(y)} if —c(y) eN,

I =N XNegnm — .
k kX Reerym {{(n,O);nzO} if —c(y)e&N.

The elements
T;,i +nK Mg ((n, D) ely)

congtitute a basis of the K-vector space My / nk M -

Proof. This follows from the description of the action of n on M* given in

Lemma 12.4. For (i), in the case —c(y) € N observe that %, T, = 0 if and only

ifn=0orn=1-c(y), and that %, T;’O is a nonzero scalar multiple of T';_Lo in

al other cases; hence ¥ - Span(T,,0; n = 0) = Span(T,,o; N = 1~ c(x)) provided
k>1-c(y).o

For any ze Z, we define elements Q*(2) € e(r) m* Zp and R*(2) e Ny = by Z
= Q"2 + R*(2.

Lemmal26. Lets= (a o ) €.

(1) The coefficientsbfy ;) v i € K defined by the equations
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STy = Zniet: Doy arin Tni (0, 1) €15)
inMg ;) /nE Mg, , satisfy
by =0 ifn<n ori# R (a2i’),
biniy = x@a2" if i = R (a2i).
(if) The coefficientsb,j) v /) € K defined by the equations
ST;/,V = Ynpel Bnivr i Tr_l,i (', i) ely)
inMg ) /n Mg, satisfy

Bniymin =0 ifn>n"ori+ R‘(a‘2 i'),

b = X M@ X dnjma?i(a?2-1)" ifi =R (a2i),

J,meN

where

dn,j,m = % Cj+m,j,l(_]-)j+m+n (T)(J;m)

Proof. (i) First, sTy; = x@a2" T

Y ey by Lemma 124 (). But T ., = 7
. , 2 +(a2 i/ +(a2 i’ .

= SFET S2EN g ) o exp(Qr(a?i)logsy) =

exp(Q*(821") x4) = Yo = QF(a2 i)" % Hence

sTh = x@a"™ 3, % Q+(a2i’)m T+

=0 n+mR*(@2i’)’

. . . . . AL
This proves our assertion, sincen’ + m=n’ implies i, Q+(a2 |) =1
m!

(ii) Similarly asin part (i), thistime using Lemma 12.4 (ii), we calcul ate
_ 1\ 2 1 A2 i \M e
STy = X(a l)a 2 mgoﬁ Q (a i ) Tn’+m,R‘(a‘2i’)'

Hence
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= n _
STI"I/,i/ = Z ( ] )Cn”j'i/ STj,i'
j=0

5 () ewie xat)a® 5 Q@) T ey

j,m=0

S (Tewirx(@t)a?
j,mn=0

Q_(a_z i,)m (_1)j+m+n (j;m) Cj+m,n,R(a‘2 i) T;,Fr(a‘z i)

It already follows that by niy =0 if n>n" or i+ R (a2i). If i =R (a2

thenQ (a2i)=a2i—i=i(a?- 1), and therefore
by = jlzm('j‘)cn,j,i x(at)a2l % im(a2 - 1)'“ (=)™ (J'+nm)c,-+m,n,i
= (a1 )
because Cpji Cj+mn;i = Cj+mji =1 " Cj+mj1. O

Theorem 12.7. Assume |c(y)| < 1. The Go-representation V), possesses an n-
character on § () G™9 given by

a x@™ x(@) x() a2
9 = _
VX(( at )) |1—a‘2|p(1—a‘2) " |1—a2|p(1—a2) 1-a2

where

_(1-cly) if —c(p)eN,
Mo -= { 0 otherwise.

Proof. Using Proposition 9.5 we will treat (V)()W+ and (Vy),, Separately.

Step 1: We fix apair (H, r) and a number k € N (both large enough), and we
determine the formal character of the representation M, | / n“Mz , of S.

First of all this representation possesses a formal character ®; € Z[X(S)] (over

the field C) whose value in any s= (a - ) € S is equal to the trace of the
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operator on M(iH,r)/nk M ) defined by s (Remark 2.2 (ii)). Hence, in the
notations of Lemma 12.6 (i),

k-1
s (05) 9= T blimy =X 91 ¥ a2

(el n=0
where I(s) € N is the number of fixpoints of the permutation i - R*(a?i) of the

set N_oym- L€t £:S - K* denote the character (a al) - al, and let

¥+ e Z[X(S)] denote the formal character of the matrix representation of &

(" a2 ) = Gimen)
1 1P L9 2in ] .. .
al iR (a®1") (1)EN Ly me XN ey

Then I(s) = evg (¥7) (), and hence

k-1
evs, (05) (9 = e'VSD(e(X_l) vy e(e)'z") (9

by multiplicativity of the evaluation map. But since this map is also injective
(Remark 1.2 (i)) we deduce

k-1
=) ¥ 3 e

Similarly, in the notations of Lemma 12.6 (ii),

~ k-lemm-1 -
5@ (= X bphon=2 2 bapmht 2 bnonos
(nely n=0 i= n=0

here we understand the sum ch(")( ...)tobezeroif —c(y) ¢ N. Lettingl=(s) e N
denote the number of fixpoints of the permutation i —» R~ ( 2 ) of the set
NZerym =Neerym — {0} we have

k=1 erym -1 m
Z Z b(l"l i),(ni) — X(S) l (S) Z Z dn] m a J (a 1) .
n=0 =1 n=0 j,meN

Moreover, if —c(y) € N then we calculate
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-c(x) -c(x) n

bn.0.00 X3 %3 Hm'l aZifa2-1)" (- 1)J+mn(1)(1+nm)

n=0 n=0 j=0 m=0

—c(x) —C(Y)—j j+m ¢

X(S) Z Z Z J+mjla_2](a_ ) ( 1)J+m+n(1)(]+m)

n

—Cx)

= X (9 Z a=2i;

the second equality holds since Cj.mj1 =0 whenever j<-c(y)<j+m, the

third equality follows from ¥,y (- 1)’+m+”(1)('+m) Smo- Hence

k-1 . m
V5@ () = xOI (9 X % thjma®® (s(9-1)

n=0 j,meN
—c(x) o
+ x© Y &9
j=0
Again by theinjectivity of evs we deduce

ket 2j 2 m
O = ee¥)y 3 doymee?! (ee)?-1)

n=0 j,meN
—c(x) 2]
+ e(x) _ZO &e)
J:

where ¥~ € Z[X(S)] denotes the formal character of the matrix representation

of §

= . 2 .
-1 iR (a~“i P * *
a ( ) (l,l )€N<e(r) m- XN<5(r)m'

Step 2: We keep the pair (H, r) from the first step and form the limit k - co in
Z[X(S)] of the formal charactersjust obtained:
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Oy 1= JIMO = oy ) X ee) ),

jeN

e(r)e®) 3 djme®? (ee?-1)"

n,j,meN

Oy, =1limey
(Hn) k— oo K

—-c(x)

+ () % ee)’)
J:

= ¥ Y ee)?]

jeN
—c(x) i
+ o) 2, ete)’
J:

since

2in,j,m0njm e (e(e)” - l)m

= Simm Cmj1 €@ () - 1) 5, (-1 (M) ()

= Sim o Cirmia &&)2 ()7 — 1) 6mo

- DECEE

Step 3: Evaluation of ®f ) on the subset (G = {(a - ); a++1} of

regular elements: In Z[X(S)] we have the equalities (1 - e(e)*?) ¥y 8(6)™) =
1, whence ©(, ,, is contained in the submodule Z[[X(So)]]smereg (cf. Definition
1.1), and
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Indeed, evs, (¥*) (s) is the number of fixpoints of the permutation i > R*(a2i) of
the setN_) . For eachi wehave i = R*(a2i) < vp(a2i—i) = vple(nm') <
Vp(i) = Vp(e(r)m*) — vp(a2 — 1); since vp(e(r) m*) = vy(a® — 1) by assumption,
there are precisdy p*(@-1) = |1—a2|;1 dements i in N_, satisfying that
condition (Lemma 3.2). Similarly, there are p*»l@*~2) = |1- a‘2|;l elementsi in
Neerym satisfying i = R(a2i). Since evg (¥7) (9) is the number of fixpoints of

the permutation i - R™(a2i) of the set N* - the second formula follows

from the additional observation that O always is a fixpoint of that permutation.
This proves our claim.

By multiplicativity of the evaluation map we obtain
-1 -1
vgn6=(Ofn) () = x@[1-a " (1-2%) ",

xat)([1-a2f) - 1)(1- a2)

+ x(@?) _E)z) a2l

evs,n6= () (9

(@t i-a? (1-a?)”

(rle e i —ctp e
x (@b (1- a‘z)_1 a2@-c) jif —c(y) eN

provided e(r) m* > |a*2 - 1|;1.

Step 4: For any given s, there certainly exists a pair (H,r)=(Hy, r1) € B
satisfying e(r) m* = |a*? — 1|;1. But then this condition is also satisfied for each
pair (H, r) = (Hy, rp): thisfollows from Lemma 9.2 (ii) and the fact that e(r) m*
is equal to the order of N, / (Nw, N H)E(”. Furthermore, the expression
evs, e« (O ) (S) does not depend on the particular choice of (H, r). Hence the

family (evsnce(©f; ) 41y CONverges weakly. Composing the limit function



with the map s+ s then gives the asserted formula. o

Remark 12.7. Suppose that y is a smooth character, i.e. c(y) = 0. We can then

consider the smooth principal series representation Vi* = IndS( x)” of G induced
from y, and with the above method one can show that this representation
possesses an n-character on § () G™9, given by

ool o) o

(However, since the action of n istrivial the computations become much simpler
here; the two components (Vy) ~ identify with C*(Z,, K).) As predicted by
Theorem 10.5 this formula coincides with the known character formula of the

smooth principal series of SL»(Qp) (cf. [16], p. 200; note that they use
normalized induction).

Letting & denote the character (a - ) — a1 we obtain the exact sequence of

representations of G

d
00— Ve =V, 5V, — 0;

d

here T denotes the derivation on each component (VX)Wi = CN(Z,, K).
Theorem 12.7 yields
by ((a )): @t . @ @
AL at 1-a?| (1-a?) [1-a3 (1-a?) 1-&
p p
& ((a )): x@*a? y@a&  y@ad
S\l at |1-a?| (1-a?) [1-a?| (1-a?) 1-&?
p P

(note that c(e? x) = 2 ¢ —N). It is easily verified that the alternating sum of the
three charactersis zero.
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More generally, assume —c(y) € N. The character y is then the product of the
algebraic character e“X and the smooth character e~ y. As an application of
the theory developped in [29] and [30] Schneider and Teitelbaum prove that in
this case (and only in this case) V, is reducible. More exactly they construct an
exact sequence of G- representations

ag
0 — Vi ®Viaw y Vy — Vo y 0

where the algebraic induction Vj"c& = indS(e%W) is a the same time the
irreducible Q,-rational G-representation of highest weight £°X) w.r.t. the upper
Borel subgroup (cf. [30], Section 4). We have ¢(£>72W) ) = 2 — () ¢ —N,
hence Theorem 12.7 gives the characters

a _ x@ @  x(@at2ow
QV*(( at )) - |1—a‘2|p(1—a‘2) " |1—a2|p(1—a2) 1-a?

9 (( a )) B X(a)_l a—2+2c()() X(a) a2—2c;()() _ X(a) az_zc()()
ngfzo(x))( alll™ |1_a—2| ) (1_a—2) |1_a2|p (1_a2) 1-82

The character of the smooth G-representation V2, P isgiven by

a )\ _x@aw y@aw
ot ) g e

Finaly, for the character of the rational G-representation Vjﬁn the Weyl
character formulayields

_ a1 a _ at-1 _ al-cp)
(a a )Qvia)(( al))_a a .

(cf. [17], p. 298, Theorem 7.1.1). Again, it is easy to check that the alternating
sum of the charactersis zero:
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()0 ) - e

X(a)_l aC(X) a—1+C(X)_al—C()() X(a) a—C()() al_c(X)—a_l+C(/\/)
|1—8._2| a—al |1_a2| al-a
P p

=0 (")) s ()

In determining the n-character of V, it became visible that the calculations on

the component (VX)W+ are much easier to do than on (V,),, , the reason being
that n = ny, acts on the dual ((V,),, ). ~ D(Nw, K) simply by left multiplication.
Thisfact will be exploited further in the next section.

13. Theprincipal seriesof the lwahori subgroup

We resume the assumptions and notations of Section 11 and fix a Weyl group
element w € W; thus Gy is the lwahori subgroup of the reductive group G of the
same type as P, and we have the decomposition Go = N,y - P,y (direct span). Let

nW:ga]_@...@gad

be the root space decomposition of the Lie algebra n,, of N,. Let G c G

denote the set of regular elements, and put S := S () G™9. By the end of this
section we will be able to prove the following result:

Theorem 13.1. Assume G to be split over L and L unramified over Q. The Go-

representation Indgv‘j (xw) possesses an ny-character 6 on S, given by

1
H(S) = xw(9) ’
WO Il i) e ),
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The dual D(Ggy, K)-module of Indgvf( Yw) IS given by M = (Indg'vfj( )(w)); =
D(Go, K) ®p(p,.k) Xw = D(Nw, K) ®k xi. According to Proposition 11.6 thereis
apair (Hp, ro) such that for all (H, r) = (Ho, ro) we have

MH,r) = DN (Nw, K)‘%X\'N-
With these identifications the subalgebra D(Ny, K) ¢ D(Gg, K) simply acts by
left multiplication on M and on M ).
Let (x4, ..., Xq) be a basis of the o, -lattice Log(H () Ny) c ny consisting of
root space Vectors x; € go; such a basis exists by Proposition 11.3. Let
(V1, ..., Vo) beaZy-basis of o, and put

hij :=Exp(vixj)) (I<isn1<j=<d).

We apply Lemma 11.5 to obtain a sequence of p-powers m = (Mg, ..., Myg)
such that (hi}, ..., hﬁ‘gd) isan ordered basisof H (| N,y and

(it ... hﬁ&d)o%m

is a system of representatives of Ny, /(H () Ny) (where by "0 < @ < m" we mean
"O<a;j <mjforalli, j*). Inparticular,
(hcﬁl ;yad )Osa<e(r)~m

is a system of representatives of N,/ (H" (N N,). Then Corollary 7.4 tells us
that the family

B1 Ba ¢y Ind
(xl - Xy 5h11 o 6h”d )a<€(r) m, g=0

is a basis of the K-Banach space M ). For ke N let M(k) ¢ My denote the
closed K-vector subspace generated by the elements

. ﬁl Q11 1 ﬁd 14 |
Aaﬁ -— Xl 6hll .“6hnl Xd 6hld .“5hnd

(@eN" o <erym, BeNd, B «K). From the formula [ga, go] = gasb for all
roots a, b (where we understand ga4p = 0 if a+ b is not a root) it follows that
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[nw, nw] IS generated by the one-dimensional spaces ga.n (& b e {ay, ..., aq})
and, by iteration, that the v-th lower central series member C”(ny) is generated
by the spaces gy, +..+b, (b1, ..., b, €{ay, ..., ag}). Hence from Lemma 8.5 (ii)
and Lemma 8.6, applied to the family

g= (hljwlj hnjanj)

1<j=d,a<e(r)m’

we obtain that the filtrations (M(K)),oy and (nf M(H'r))keN are nested into each
other. Once we know that the spaces M(k) are stable under S we may apply
Lemma 2.8 to calculate the limit of the sequence (Ch(Mg ) /n& M), in

keN
Z[X(S)] by means of the sequence (Ch(M ) / M(k)))keN.

The action of an element se S on M isgiven by
SA= xy'(9)A®

where A® denotes the distribution f — A(fs) and fs denotes the function
(x> f(sxs™)) (Lemma 11.1 (i)). In the next two lemmata we calculate A® for
the elements A = A, s defined above.

For atuple 8 e N and s e § write
ais)P = a9 ... ag(9 e LX;

thus we obtain a character @ = (s~ a(s)’) € X(S).

Lemmal3.2.Letse S, a e N"9, B e N9, Then

Ay = a(s)ﬁ( [T Sghn S_l)xfl ( [T Gy Sl)xgd.

l<i<n l<i<sn "1

Proof. First of al,
6X(f5) = 6SXS_1(f)

for al xe Ny and f € C*(Ny, K). Next, the linear form x; on C*(Ny, K)
satisfies
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x(f) = lt'jg f(Exp(tz:j))—f(l)

(cf. [30], Section 2). But by [6], 111.4.4 Corollary 3 of Proposition 8, and since x;
is a root vector of weight aj, we calculate fy(Exp(txj) = f(SExp(txj)s™) =
f(Exp(Ad(s) (t %)) = f(Exp(a;(s) t xj)). Hence

f(Exp(aj(9) tx))-f(1)
t

Xj(fs)=|tLrQ = a;(9) xj(f).

Thus we have shown 6y = d;, 1 and %% = aj(9)x; for al i, j. The lemma

follows now from the convolution formula: for any two distributions A, 4 we
have

A (f) = pxe Ay - fs(y X))

p((x e Ay = fyx)g)),)
A® L) (f). o

Notations: For any ¢ € Z, we define elements Q;;(c) € e(r)m;j Z, and R;;(C)
Nearym; by €= Qj(©) + Rj(0). Forany ac o, andany 1 <i’ < nwewriteayv; =
2i<isn b(a)i‘i, v; with coefficients b(a)i,i, e Zp_

Lemma13.3.Letse §, @ eN"9, 8 e N with @ < €(r) m. Then

1
p=a9’ % 7 QS ) AR gy
)/ENnd

where y! = L%, Wl = O+ +7ni)1sjsd’ Rs ) =
(R(lei'sn a/i,j b(aj (S))I i'))lsisn,lsjsd' Q(S, a’) =
(QZ<iv<n @ j b@;(9);;,) Vi)

l<i=nl<j=d’

Proof. We work on with the result of the preceding lemma: Fix 0 < j < d. Then
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H 53hus, = n 6SEXp(aierirxj)S’l

1<i’<n 1<i’<n

= [1I 6Exp(Ad(s)(a|]v X))~ [1 5Exp(aj(s)ai,jvi, xj)

1<i’<n 1<i’=n

- H 6EXP(215ign0fuj b(a;(9)),;, v XJ) 1—[ 6EXP(Zlgi’gn“|] blay(9),;, vi *J)

1<i’<n 1<i<n

= 11 6EXD(R Vi x )5EXD(QijViX,) n 5hu] Exp(Qi; Vi ;)

1<i<n
where we put R j = R(X1i 2 @i b(@j(9), ) and Qi = Q(Ty<i<n @i j b(@;(9);,)-
Now Exp(Qi Vi ¥j) = hi Qi is contained in HE", so accordi ng to Remark 7.3 (2)
d), OExp(@vix) = exp(Qij Vi X)) = ZyeN (Q.J vi)” x . Hence
( I1 5sh"s-1)xfj :( [1 ( E,'JJ P (QI]VI) X D ’B]

1<i<n

l<i=n yeN
i Vit +YntBj
= ) - (H (Qljvl)y)( I1 5h,l) ' :
yeN" 1<izn 1<i=n

Combined with the preceding lemmathis gives

A&S‘)B:a(S)ﬂ( H 6Sha'1 -1 .. ( H 6Sh|éd Sl)x’gd

1<i=n 1<i<n

1 .
=as’f 3 S| I Qv
nd 77 | 1<i<n

veN
1<j=d

( H é‘Ril) Yuut.. +7nl+,81. ( I—I 6 ) Yid*t-- +7nd+:3d

1<i<n 1<i=n

which is precisaly the desired formula. o
Corollary 13.4. The space M(k) is stable under the action of §. o

Corollary 13.5. The S-representation M)/ M(K) is isomorphic to a block
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matrix representation of § of the form

X\?\Il a(o ..... 0) A O

where A is the matrix representation of & defined by A(),) = 0w Rse)
(@, @ € N_g)ym; here ¢ denotes Kronecker’s symbol).

Proof. A K-basis of My /M(K) is given by the elements A, 5 (o <e(r)ym,
B <Kk). Since, in the notations of Lemma 13.3, "B+ |y|=p" implies

% Q(s, @)” = 1" the corollary followsimmediately from that lemma. o

We continue to denote by A the S-representation defined in the preceding
corollary. Recall that S = § () G™.

Lemmal3.6.Letse S.
(i) a9 # 1fordl 1< j<d.

(ii) If e(r) mj = |a,-(s)—1|[1 foradll<i<n,1<j<dthen

tr(A9) = lag(s) — I ... [ag(s) — 1| .

Proof. (i) follows from the description of G™9 given in [34], p. 197; or from [2],

Lemmal2.2.
(if) The trace of A(s) is equal to the number of fixpoints of the permutation

@+ R(s, ) of the set N, . We observe
a =R a)
& aij = RX1nb@j(9);, avj) foralli, j
& Vp(Tizien b@(9);, @i — aij) = Vp(e(r) myj) for al i, j.
But
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vo(det((ba®); ), = 1)) = Vp(Nyg,@(9) - D) = vi@(9) - 1

1<i,i’<n
(cf. [22], 1. (2.2) and II. (4.8); recall that L | Qp is unramified). Since we assume

Vp(e(r)myj) = v (aj(s) — 1) there are, for each j, precisely p(@©-1) typles
(@1j, ..., agj) In N<€(r)mlj X ... X N<E(r)mdj satisfying the above condition
(independently of the particular values of m; and e(r)). Consequently the

number of fixpoints equalsT; pi(@i9-1) = [T laj(s) - 1[1.

Lemma 13.7. (i) The representations A and M) /n* Mg,y of S (ke N) are
finitely trigonalisable over C. The sequence of formal characters

(Ch(M,) /n M(H'r)))keN convergesin Z[X(S)] to the element

Dy = € xat)-Ch(A)- T €@P).

BeNd
(i) @, isevauableon S.
(ili) Letse S. If e(r)ym; = |a,-(s)—1|[1 foradl1<i<n,1<j=<dthen

) 1
evs (@) (9) = xw(® " 1 .
(P ) X 1sj=d (1-aj (9) 11-3j(9)|,

Proof. (i) We have seen that the decreasing sequences M(0) > M(1) > M(2) o ...
and n® My > ntMpr) > n2 Mgy O ... are nested into each other. It is clear
that the finite-dimensional S-representations A, My / M(K), M(H,r)/nk M)
are finitely trigonalisable over C. According to Corollary 13.5, and using
Corollary 2.6, we have

ChM )/ M(K) = e(xv-vl)-Ch(A)-ﬁzke(aﬁ),

hence

Il(im Ch(Mg,) /M(K) = g xyt)-Ch(A) - 3 @)
- BeNd
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By Lemma 2.8 thisis also the limit of the sequence (Ch(Mr) /0% Mg 1)),y
(i) In Z[X(S)] we have the equality

D) = () - e@) (Tpen&@)™) ... (&1) - &@g) (Xp,cn H@a)™)
= (e(1)—&@)) ... (1) — &(@n)) Lyne &(@F) .

Hence (&(1) - &(@y)) ... (&(1) - &(@y)) Pnyn = € xw’) Ch(A), where & xyt) Ch(A)
Is contained in Z[X(S)] and, regarding Lemma 13.6 (i), (1) —e&@)) ...
(e(1) — e(aq)) is contained in the set Sg (cf. Section 1). This means that ) IS
evaluableon S'.

(i) By Remark 1.2 (iii) we may calculate the respective values of e x,!),
Ch(A), Y e@’) in se S separately. In case of € x,!) and Ch(A) these are
simply the usual character values in s (Remark 2.2 (ii)), which means in the
latter case: the trace of the finite dimensional operator A(S) as calculated in
Lemma 13.6. Finally, the proof of part (ii) above shows that ev(3; v« &%) (9)

=(@1-a(9) " ... (1-aqg(s) ". Multiplication of these values gives the asserted
formula. o

Corollary 13.8. The sequence of functions (evs (P r))) converges weakly

(H,nHeE
to the function

_ 1
S - K, s xw®™ I :
X 1<j=d (1_aj (S)) |1_aj (S)lL

Proof. For every se S there certainly exists a pair (Hy, r1) = (Ho, ro) satisfying
the hypothesis of part (iii) of Lemma 13.7. If (H,r) = (Hy, ry) then
He® ¢ H,“™ (Lemma 9.2), and so the pair (H, r) satisfies that hypothesis as

well. It remains to observe that the formulain Lemma 13.7 (iii) does not depend
on the particular pair (H, r) provided that hypothesisis satisfied. o

This completes the proof of Theorem 13.1.



Appendix: Morita character of a principal seriesrepresentation

We again use the notations of Section 11; thus G is (the L-points of) a
connected reductive group, S is a maximal split torus, P is a minimal parabolic
subgroup containing S, and y is a character of P. Recall that the principal series
representation V = IndS( x) of G has adecompositionV = ®yecwVw, stable under
the Iwahori subgroup Gy. The components V,, were treated in Section 13. Put S

= S G

Definition. Suppose that for each Weyl group element w € W the representation
Vw of Gp possesses an ny-Character 6, on S. Then we call the sum 6 =
Ywew Bw the Morita character of V.

This definition has the advantage that it does not depend on the choice of a
particular minimal parabolic subgroup. Moreover, it also generalizes the concept
of character of the smooth principal series: This is follows from the results of

Section 10, since the action of n,, plays no role. As an immediate consequence
of Theorem 13.1 we obtain:

Theorem. Suppose that G ist split over L and L is unramified over Q,. Then V
possesses a Morita character. o

We specialize to the following situation: Let G be the Qp-analytic group
SL2(Qp), Sc G the standard torus, P c G the lower Borel subgroup containing
S. Then S = {(a ol );aqt a‘l}. Let xy:Qp — K* be a localy anaytic
character, extended to P via the map (a oL ) al Let V= Indg’()() be the

principal seriesrepresentation of G induced from y.

The case W:(l 1): Then yw=yx and n,=gp Where b is the root
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(a a_1)|—>a2. Consequently, according to Theorem 13.1, QW((a - )) =
_l _2 —1 _2 —1

y@*(1-a?) |1-a? .

The case W:(l _1): Then yw=x! and ny =gy, hence in this case

ew(( t )) = y@(1-a) " |1-a?| "

Hence the Morita character of V on S isgiven by the formula

9((3 at )) - (1 —a)—(gt)af;l—a‘ﬂ * (1 —a)z()(Ti =i

x@ tala-y@a?la™

(a-at)|a-a?

This formula is a slight modification of the character formula for the principal
seriesof SL,(Qp) conjectured by Y. Moritain [21], p. 296.
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