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Abstract. We consider the Hopfield model with n neurons and an increasing number p =
p(n) of randomly chosen patterns and use Stein’s method to obtain rates of convergence for
the central limit theorem of overlap parameters, which holds for every fixed choice of the
overlap parameter for almost all realizations of the random patterns.

1. Introduction

1.1. The Hopfield model. The so-called Hopfield model was introduced by
Figotin and Pastur in [17] and [18] as a model for a spin glass. They studied a
class of spin glass models which also included the one with the energy function
known today as the Hopfield model, which was also introduced by Hopfield
in [16] in the context of neural networks as a model for an associative mem-
ory with n ∈ N neurons. Thus Hopfield linked the study of neural networks
to the one of spin models. The success of this model was mainly based on
this reinterpretation of the model and therefore it may be right to call it the
Hopfield model. Being a model for the associative memory it is not derived di-
rectly from a physical or biological system. Roughly speaking, the recognition
and/or retrieval of one out of p ∈ N stored patterns constitutes the central
problem of the model. This means that one wants to store a certain amount
of information and perform the quite difficult task to recognize it on the basis
of partial or corrupted data, which is not easy for a usual search algorithm.

We consider a system of n ∈ N neurons. Each neuron can be in one of two
possible states, either −1 or 1. We will denote by σi ∈ {−1, 1} the neural
activity of the ith neuron, i ∈ {1, . . . , n} and thus, in the context of spin sys-
tems, σi would be the spin variable at i ∈ {1, . . . , n}. Thus a spin configuration
(σ1, . . . , σn) is taken from the set of spin configurations {−1, 1}n. In general the
instantaneous configuration of all the spin variables at a given time describes
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the state of such a network. Furthermore let (Ω,B,P) be an abstract probabil-
ity space. The model consists of p ∈ N stored patterns on this space which will
be denoted by ξµ, µ ∈ {1, . . . , p}. Thus ξµ = (ξµ1 , . . . , ξ

µ
n) ∈ {−1, 1}n describes

the codification of the µth stored pattern. (σi)i∈N and (ξµi )i∈N with µ ∈ N

are considered to be random variables and we will assume that the family of
random variables {σi, ξ

µ
j | i, j, µ ∈ N} is independent. Additionally we assume

that the random variables satisfy P(σi = ±1) = 1/2 and P(ξµj = ±1) = 1/2.

Thus we denote by Pξ = (12δ−1 + 1
2δ1)

⊗N
2

the marginal distribution of the

patterns ξ = (ξµi )i,µ∈N, and similarly, by Pσ = (12δ−1 +
1
2δ1)

⊗N the marginal
distribution of the spin variables σ = (σi)i∈N. As n → ∞ p can either be fixed
or increasing with n. Now let

Hn(σ, ξ) = − 1

2n

p∑

µ=1

n∑

i,j=1

ξµi ξ
µ
j σiσj , n ∈ N,(1)

denote the Hopfield Hamiltonian. At this point one might notice the symme-
try of the Hamiltonian Hn(−σ, ξ) = Hn(σ, ξ), showing that the Hopfield model
cannot distinguish between a spin configuration and its negative. Governed by
this Hamiltonian, [1] presented a generalized Glauber single-spin dynamics
on the set of spin configurations at finite temperature 1/β ∈ (0,∞), which
describes a reversible and irreducible Markov process. The equilibrium distri-
bution of this process is the finite-volume Gibbs measure

dPn,β,ξ(σ) =
1

Zn,β,ξ
exp (−βHn(σ, ξ)) dPσ,(2)

where the partition function Zn,β,ξ is the appropriate normalization.
In the sequel the focus of attention will be on the investigation of the behav-

ior of the so-called overlap under the equilibrium distribution Pn,β,ξ as n → ∞.
Let

ξi = (ξµi )µ∈{1,...,p}, i ∈ {1, . . . , n},(3)

be the vector consisting of the ith components of the first p patterns. If p is
not constant and grows with n, ξi ∈ R

p still depends on n via the dimension.
We define the overlap by

1

n
Sn(σ, ξ) =

1

n

n∑

i=1

ξiσi ∈ R
p,(4)

with ξiσi = (ξ1i σi, . . . , ξ
p
i σi)

t. With the overlap we obtain a comparison be-
tween the spin configuration σ and the stored patterns ξµ, µ ∈ {1, . . . , p},
meaning that the µth overlap parameter—the µth component of (4)—equals
one if and only if σi = ξµi for all i ∈ {1, . . . , n}. Definition (4) provides the
opportunity to express the Hamiltonian (1) in a more convenient way. It can
be rewritten as the quadratic function of the overlap

Hn(σ, ξ) = −n

2

∥∥∥∥
1

n
Sn(σ, ξ)

∥∥∥∥
2

,
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where ‖ · ‖ denotes the Euclidean norm in R
p. If there is no opportunity for

confusion we will drop the explicit dependence on σ and ξ and write Sn and
Hn instead of Sn(σ, ξ) and Hn(σ, ξ), respectively.

In the case p = 1 the Hopfield model and the Curie–Weiss model are the
same up to a change of variables. For our investigation of the Hopfield model
we focus on the so called Curie–Weiss equation given by

βx = arctanh(x).(5)

This equation is also called mean field or fixed point equation. Its derivation
can for example be found in [11]. Of course this equation may have many solu-
tions. Let x±(β) denote for β > 0 the largest (respectively smallest) solution
x ∈ (−1, 1) of (5). It was shown that x+(β) = −x−(β) 6= 0 for β > βc, where
βc = 1 is the critical inverse temperature. For β ≤ βc we have x±(β) = 0.
This definition of the Curie–Weiss equation can be extended to the case of the
external magnetic field with strength h 6= 0 yielding

βx+ h = arctanh(x).(6)

Here let x(β, h) denote the solution of (6) which satisfies sign(x) = sign(h). As
we will see these solutions of the Curie–Weiss equation discussed above play
an important role when discussing the Hopfield model. Abbreviate

x∗ :=

{
x+(β), if h = 0,

x(β, h), otherwise.

For investigating the behavior of the overlap, we also extend the notion of the
Gibbs measure Pn,β,ξ given in (2) to the case of an external magnetic field hel
with strength h 6= 0 in the direction of the lth unit vector el ∈ R

p. Thus, let

dPn,β,hel,ξ(σ) =
1

Zn,β,hel,ξ
exp (−βHn + 〈Sn, hel〉) dPσ,(7)

where Zn,β,hel,ξ denotes the appropriate normalization.
For β > 0 and h 6= 0 having the direction of the lth unit vector el it was

shown in [5], that under the assumption p/n → 0 for Pξ-almost all realizations

of the patterns ξ, the distribution of the overlap Sn

n under the Gibbs measure
Pn,β,hel,ξ converges weakly as first n → ∞ and then h → 0± toward the Dirac
measure concentrated in x±(β)el. The authors in [5] stated that the condition
on p is the weakest possible under which the law of large numbers is satisfied.
Note that for β ≤ βc = 1 we have x+(β) = 0 and thus δ0 is the unique limiting
measure in the high-temperature region. For β > 1 the measures of the law of
large numbers are all distinct and they were referred to as so-called extremal
measures.

The corresponding large deviation principle (LDP for short) was established
in [2]. Under the assumption p(n)/n → 0 for almost all ξ the sequence (Sn

n )n
under the Gibbs measure Pn,β,ξ obeys a LDP with speed n and deterministic
rate function I. If the inverse temperature β is different from the critical
inverse temperature βc = 1 and p(n)/n → 0, the overlap parameter multiplied
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by nγ with 1/2 < γ < 1 obeys a LDP with speed n1−2γ and a quadratic rate
function, see [8]. The latter result is known as a moderate deviations principle
(MDP for short).

On the scale of fluctuations, when analyzing the distribution of
√
n(Sn/n−

x∗el), the disorder becomes visible. Indeed, for p(n)/n → 0 and (β, h) 6= (1, 0)
the overlap under Pn,β,ξ satisfies Pξ-almost surely a central limit theorem with
a covariance matrix which could be expected from the analogy with the Curie–
Weiss model and a centering which differs in the case β > 0 or h 6= 0 from the
naively expected one by a ξ-dependent adjustment, see [12] and [3]. In this
paper we are aiming to give an alternative proof of these central limit theorems
for the overlap parameter under Pn,β,ξ. We will apply Stein’s method. This
method has emerged as a powerful tool for assessing the quality of distribu-
tional approximations and it is notable for avoiding the use of transforms, and
for supplying bounds, such as those of Berry–Esseen quality, on approxima-
tion error in the presence of dependence. We will be able to present rates of
convergence for central limit theorems for the overlap parameter, which are
optimal for the Hopfield model with a finite number of randomly chosen pat-
terns. As in the Curie–Weiss model at the critical temperature (β, h) = (1, 0)
the fluctuations are non Gaussian and the limiting distribution has a random
component, see [14] and [25]. Interesting enough the random term occurring in
the central limit theorem is no longer present on a moderate deviations scale,
where the overlap parameter has to be multiplied be nγ with 1/4 < γ < 1:
here for certain choices of p(n) the rescaled overlap parameter obeys a MDP
with speed n1−4γ and a rate function that is basically a fourth power, see [8].
Anyhow, in this paper we do not consider the case (β, h) = (1, 0).

1.2. Statement of the main results. General assumption. From now on
we make the assumption that p = p(n), p ≤ n is a nondecreasing function of
n for all n ∈ N.

As in [13] we choose a preferred pattern in two different ways. We consider
the unbiased Hamiltonian (1) and investigate the fluctuations under the con-
dition that the overlap is already in a neighborhood of x∗el. Alternatively, the
preferred pattern can be chosen by introducing the magnetic field as in (7).
In the case of (1) with β < βc the central limit theorem holds with center
zero. Otherwise the limit theorem requires a ξ-dependent adjustment of a de-
terministic centering. Therefore one has to control the influence of the random
patterns. For fixed ǫ > 0 we define

α :=
1

n
max

{
p,

(
3 logn

log(1 + ǫ)

)4}
,

ǫn :=
√
α(2 +

√
α)(1 + ǫ).(8)

By [13, Prop. 2.1] we see that the operator norm of

Σn(ξ) =
1

n

n∑

i=1

ξiξ
t
i − IdRp
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converges to zero for Pξ-almost all ξ: for Pξ-almost all ξ, there exists an
n0(ξ) ∈ N such that for all n ≥ n0(ξ)

‖Σn(ξ)‖ ≤ ǫn.(9)

The following index set depends on the dimension p, on the inverse temperature
β, the presence or absence of an external magnetic field h and its direction el:

L :=






{sign(h)l}, in the case h 6= 0,

{1}, in the case 0 < β < βc and h = 0,

{−p, . . . ,−1, 1, . . . , p}, in the case β > βc and h = 0.

(10)

The index set L is used to describe those directions that the overlap favors un-
der the equilibrium measure. In (βc, 0) the central limit theorem fails (see [13]).
The following result has been proven for h = 0 and p increasing at least linearly
with logn in [4]. In [13, Prop. 2.3], the assertions were extended to the case of
small p and h > 0. The result is an important step for defining the centering.

Proposition 1.3. Let β > 0 and h ≥ 0 such that (β, h) 6= (βc, 0) and l ∈
{−p, . . . ,−1, 1, . . . , p}. For λ ∈ R

p, we define the ξ-dependent function

Φ(λ) : = − 1

2β
‖λ− hel‖2 +

1

n

n∑

j=1

log cosh〈λ, ξj〉.(11)

Then, for all strictly positive c1 < (1−β(1− (x∗)2))/β, there exists an r1 > 0,
depending on β, h and c1 only, and for Pξ-almost all ξ, there exists an n1(ξ) ≥
n0(ξ), which does not depend on the choice of l, such that for all n ≥ n1(ξ)
the following assertions hold:

(1) For all λ in the closed ball Br1((arctanhx
∗)el), the matrix −D2Φ(λ)

is uniformly positive definite in the sense that

〈u,−D2Φ(λ)u〉 ≥ c1‖u‖2 for all u ∈ R
p.

(2) On the set Br1((arctanhx
∗)el), the map Φ has a unique maximum

which is attained in the point λn
l (ξ) satisfying

|λn
l (ξ)− (arctanhx∗)el| ≤ c2ǫn

with c2 = 2|x|/c1. In particular, λn
l (ξ) = 0 in the case β < βc and

h = 0.

Remark 1.4. The function Φ defined in (11) is sometimes called quenched
free-energy of the Hopfield model. If the realizations ξ1, . . . , ξn take all pos-
sible values with the same frequency and n is a multiple of 2p, then λn

l (ξ) =
(arctanhx∗)el.

The random centering is given by

xn
l (ξ) =

1

β
(λn

l (ξ)− hel)(12)

with the help of λn
l (ξ) for l ∈ {−p, . . . ,−1, 1, . . . , p}. Even if it is not indicated

by the name it remains important to notice that (12) still depends on β and
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h. We have to extend this definition because (12) is only defined for Pξ-almost
all ξ and n ≥ n1(ξ). We assign

xn
l (ξ) =

1

β
(arctanhx∗ − h)el = x∗el(13)

whenever λn
l (ξ) is not defined. The second equality of (13) is due to the Curie–

Weiss equation (6). Using Proposition 1.3 we see that for β < βc the centering
satisfies xn

l (ξ) = 0, while for β > βc the centering is close to the limiting point
x∗ in the sense that

‖xn
l (ξ) − x∗el‖ ≤ 1

β
c2ǫn → 0(14)

as n → ∞ for some constant C and ǫn defined in (8).
From now on we will write random vectors in R

d in the form w = (w1, . . . ,
wd)

t, where wi are R-valued variables for i = 1, . . . , d. If a matrix Σ is symmet-
ric, nonnegative definite, we denote by Σ1/2 the unique symmetric, nonnegative
definite square root of Σ. Id denotes the identity matrix and from now on Z
will denote a random vector having standard multivariate normal distribu-
tion. The expectation with respect to the measure Pn,β,hel,ξ will be denoted
by E := EPn,β,hel,ξ

.

Let πk : Rp → R
k (with k ≤ p) denote the canonical projection.

Theorem 1.5. Let β, h > 0, l ∈ Z, l 6= 0, and k ∈ N. We assume that p
depends on n in a nondecreasing way satisfying p = o(n1/4). Let x = xn

l (ξ) be
defined as in (12) and W be the following random variable:

W :=
√
nπk

(
Sn

n
− x

)
.

If Z has the k-dimensional standard normal distribution, under the measure
Pn,β,hel,ξ, we have, for every three times differentiable function g and Pξ-almost
all ξ,

∣∣∣Eg(W )− Eg
(
Σ1/2Z

) ∣∣∣ ≤ Cmax

{
p
√
pǫn,

p2

n1/2

}
,

for a constant C and Σ := E [W W t].

Remark 1.6. The rate of convergence obtained here is useless unless

max

{
p
√
pǫn,

p2

n1/2

}
→ 0.(15)

In [4, Thm. 1.1] the authors proved that the condition p/n → 0 is sufficient
in order to state the central limit theorem and show the weak convergence.
The condition p = o(n1/4) is between the bound obtained in [12] and [13]. In
[13] and [4] there is no information available on the speed of convergence. Our
theorem implies weak convergence.
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In order to state a result for nonsmooth test functions g in the multivariate
setting, we introduce a class of test functions G following [20]. Let again
Φ denote the standard normal distribution function in R

d. We define for
g : Rd → R

g+δ (x) = sup{g(x+ y) | |y| ≤ δ},(16)

g−δ (x) = inf{g(x+ y) | |y| ≤ δ},(17)

g̃(x, δ) = g+δ (x)− g−δ (x).(18)

Let G be a class of real measurable functions on R
d such that

(1) The functions g ∈ G are uniformly bounded in absolute value by a constant,
which we take to be 1 without loss of generality.

(2) For any d× d matrix A and any vector b ∈ R
d, g(Ax+ b) ∈ G.

(3) For any δ > 0 and any g ∈ G, g+δ (x) and g−δ (x) are in G.
(4) For some constant a = a(G, d), sup

g∈G

{ ∫

Rd

g̃(x, δ)Φ(dx)

}
≤ aδ.

Obviously we may assume a ≥ 1. Considering the one dimensional case, we
notice that the collection of indicators of all half lines and indicators of all
intervals form classes in G that satisfy these conditions with a =

√
2/π and

a = 2
√
2/π respectively. This was shown for example in [21]. In dimension

d ≥ 1 the class of indicators of all measurable convex sets in R
d is known to

be such a class with a = 2
√
d, see [15, Thm. 1.3]. Using this class of functions

we are able to present rates of convergence for nonsmooth test functions.

Theorem 1.7. Let β, h > 0, l ∈ Z, (l 6= 0) and k ∈ N. We assume that p
depends on n in a nondecreasing way satisfying (logn) p2/n1/2 → 0 as n → ∞.
Let x = xn

l (ξ) be defined as in (12) and W be as in Theorem 1.5. If Z has the
k-dimensional standard normal distribution, under the measure Pn,β,hel,ξ, we
have, for all g ∈ G with |g| ≤ 1 and Pξ-almost all ξ,

∣∣∣∣Eg(W )− Eg
(
Σ1/2Z

) ∣∣∣∣ ≤ C log(n)max

{
p
√
pǫn,

p2

n1/2

}
,

for a constant C and Σ := E [W W t].

In the case where p is fixed the rate gets much simpler since we do not need
the projection in order to reduce the size of the vector W .

Theorem 1.8. Let β, h > 0, l ∈ Z and l 6= 0. We assume that p is fixed. Let
x = xn

l (ξ) be defined as in (12) and W be the following random variable:

W :=
√
n

(
Sn

n
− x

)
.

If Z has the p-dimensional standard normal distribution, under the measure
Pn,β,hel,ξ, we have, for every three times differentiable function g and Pξ-almost
all ξ, ∣∣∣Eg(W )− Eg

(
Σ1/2Z

) ∣∣∣ ≤ Cn−1/2,
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for a constant C and Σ := E [W W t].

With the same techniques necessary to prove Theorem 1.7 we get a theorem
similar to Theorem 1.8 with rate log(n)n−1/2.

When there is no external field it is natural to ask for the fluctuations of
the overlap around x∗el. With L as in (10) we determine the conditional
fluctuations and a rate of convergence:

Theorem 1.9. Let β > 0, β 6= βc, h = 0, l ∈ L and k ∈ N. We assume that
p depends on n in a nondecreasing way satisfying p = o(n1/4). Let x = xn

l (ξ)
be defined as in (12) and W be as in Theorem 1.5. Then, if Z has the k-
dimensional standard normal distribution, under the conditional measure

Pn,β,ξ

(
·
∣∣∣∣
Sn

n
∈ B(x∗el, ǫ)

)
,

we have for every three times differentiable function g and Pξ-almost all ξ,
∣∣∣Eg(W )− Eg

(
Σ1/2Z

) ∣∣∣ ≤ Cmax

{
p
√
pǫn,

p2

n1/2

}
,

for a constant C and Σ := E [W W t].

Note that also for the case of h = 0 a theorem for nonsmooth test functions
could be stated, similar to Theorem 1.7, and additionally we obtain a theorem
if p is fixed with rate n−1/2 in the same way as in Theorem 1.8.

In Section 2 of the present paper, we introduce Stein’s method and present
two plug-in theorems for multivariate normal approximation. Section 3 con-
tains some auxiliary results which will be necessary for the proofs given in
Section 4.

2. Stein’s method of exchangeable pairs

Starting with a bound for the distance between univariate random variables
and the normal distribution Stein’s method was first published in [22] (1972).
In [23] Stein introduced his exchangeable pair approach. At the heart of the
method is a coupling of a random variableW with another random variableW ′

such that (W,W ′) is exchangeable, i.e. their joint distribution is symmetric.
Stein proved further on that a measure of proximity of W to normality may be
provided by the exchangeable pair if W ′−W is sufficiently small. He assumed
the property that there is a number λ > 0 such that the expectation of W ′−W
with respect to W satisfies

E[W ′ −W |W ] = −λW.

Heuristically, this condition can be understood as a linear regression condition:
if (W,W ′) were bivariate normal with correlation ̺, then E[W ′|W ] = ̺W and
the condition would be satisfied with λ = 1 − ̺. Stein proved that for any
uniformly Lipschitz function h

|Eh(W )− Eh(Z)| ≤ δ‖h′‖

Münster Journal of Mathematics Vol. 7 (2014), 731–752
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with Z denoting a standard normally distributed random variable and

δ = 4E

∣∣∣∣1−
1

2λ
E
[
(W ′ −W )2|W

]∣∣∣∣+
1

2λ
E|W −W ′|3.

Stein’s approach has been successfully applied in many models, see e.g. [23] or
[24] and references therein. In [21] the range of application was extended by
replacing the linear regression property by a weaker condition assuming that
there is also a random variable R = R(W ) such that

E[W ′ −W |W ] = −λW +R.

While the approach has proved successful also in nonnormal contexts (see [6],
[7] and [9]) it remained restricted to the one-dimensional setting for a long
time. Applying the linear regression heuristic in the multivariate case leads to
a new condition due to [19]:

(19) E[W ′ −W |W ] = −ΛW +R

for an invertible d × d matrix Λ and a remainder term R = R(W ). Different
exchangeable pairs, obviously, will yield different Λ and R.

The theorems for smooth test functions are based on a nonsingular multi-
variate normal approximation theorem taken from [19]. To present this the-
orem we fix some more notations. The transpose of the inverse of a matrix
will be presented in the form A−t := (A−1)t. Furthermore we will need the
supremum norm, denoted by ‖ · ‖ for both functions and matrices. For deriva-
tives of smooth functions f : Rd → R, we use the notation ∇ for the gradient
operator. For a function f : Rd → R, we abbreviate

|f |1 := sup
i

∥∥∥∥
∂

∂xi
f

∥∥∥∥, |f |2 := sup
i,j

∥∥∥∥
∂2

∂xi∂xj
f

∥∥∥∥,

and so on, if these derivatives exist.

Theorem 2.1 (Reinert, Röllin: 2009). Assume that (W,W ′) is an exchange-
able pair of Rd-valued random vectors such that

E[W ] = 0, E[W W t] = Σ,

with Σ ∈ R
d×d symmetric and positive definite. If (W,W ′) satisfies (19) for

an invertible matrix Λ and a σ(W )-measurable random vector R and if Z
has d-dimensional standard normal distribution, we have for every three times
differentiable function g,

(20)
∣∣∣Eg(W )− Eg

(
Σ1/2Z

)∣∣∣ ≤ |g|2
4

A+
|g|3
12

B +

(
|g|1 +

1

2
d‖Σ‖1/2|g|2

)
C,
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where, with λ(i) :=
d∑

m=1

∣∣(Λ−1)m,i

∣∣,

A =

d∑

i,j=1

λ(i)
√
V
[
E[(W ′

i −Wi)(W ′
j −Wj) | W ]

]
,

B =

d∑

i,j,k=1

λ(i)
E|(W ′

i −Wi)(W
′
j −Wj)(W

′
k −Wk)|,

C =

d∑

i=1

λ(i)
√
V [Ri].

The advantage of Stein’s method is that the bounds to a multivariate normal
distribution reduce to the computation of, or bounds on, low order moments,
here bounds on the absolute third moments, on a conditional variance and
on the variance of the remainder term. Such variance computations may be
difficult, but we will get rates of convergence at the same time.

In the same context as in [19] the authors in [10] proved the following the-
orem, presenting bounds for non smooth test functions. Their development
differs from [19] using the relationship to the bounds in [21].

Theorem 2.2. Let (W,W ′) be an exchangeable pair with E[W ] = 0 and
E[WW t] = Σ with Σ ∈ R

d×d symmetric and positive definite. Again we assume
that (W,W ′) satisfies (19) for an invertible matrix Λ and a σ(W )-measurable
random vector R and additionally, for i ∈ {1, . . . , d}, |W ′

i −Wi| ≤ A. Then

sup
g∈G

∣∣∣Eg(Σ−1/2W )− Eg(Z)
∣∣∣ ≤ C

[
||Σ−1/2||2 log(t−1)A1

+ (||Σ−1/2||+ ||Σ−1/2||2 log(t−1)||Σ||1/2)A2

+A3A3 (| log t|+ a) + a||Σ−1/2||A
]
,

where

A1 =

d∑

m,i,j=1

|(Λ−1)m,i|
√
V
[
E[(W ′

i −Wi)(W ′
j −Wj)|W ]

]
,

A2 =

d∑

m,i=1

|(Λ−1)m,i|
√
E [R2

i ],

A3 =
d∑

m,i=1

|(Λ−1)m,i|,

C denotes a constant that depends on d, a > 1 is taken from the conditions
on G, defined after Theorem 1.7, and t is chosen such that

√
t = 2CA3A3,

provided it is less than 1.
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3. Auxiliary results

The quenched free-energy Φ defined in (11) will appear in the regression
condition (19).

Lemma 3.1. For Φ defined in (11) we obtain

1

n

n∑

j=1

ξij tanh(〈λ, ξj〉) =
1

β
(λi − hδi,l) +

∂

∂λi
Φ(λ).

Proof. Differentiating with respect to λi yields

∂

∂λi
Φ(λ) = − 1

β
(λi − hδi,l) +

1

n

n∑

j=1

sinh(〈λ, ξj〉)
cosh(〈λ, ξj〉)

ξij

= − 1

β
(λi − hδi,l) +

1

n

n∑

j=1

tanh(〈λ, ξj〉)ξij .

Rearranging the equality yields the result. �

Moreover we consider

Cn
l (ξ) := −D2Φ(λn

l (ξ)) =
1

β
IdRp − 1

n

n∑

i=1

cosh−2
(
〈λn

l (ξ), ξi〉
)
ξiξ

t
i ,

with λn
l (ξ) are defined in Proposition 1.3.

Lemma 3.2. Let β > 0 and h ≥ 0 such that (β, h) 6= (βc, 0). Choose an l ∈ Z,
l 6= 0, satisfying |l| ≤ p in the case of bounded p. Then there exists a constant
c3 > 0 such that

sup
l∈L

∥∥∥∥C
n
l (ξ)−

1

β
[1− β(1− (x∗)2]IdRp

∥∥∥∥ ≤ c3
√
pǫn

for Pξ-almost all ξ and all n ≥ n1(ξ).

Here ‖ · ‖ denotes the operator norm. The proof of Lemma 3.2 is given in
[13, Lemma 3.2] and uses (9), Proposition 3.1 and that with (6) x∗ satisfies
cosh−2 arctanhx∗ = 1− (x∗)2.

Using the notation

mj
i (σ, ξ) :=

1

n

p∑

µ=1

n∑

r=1

r 6=j

ξµi ξ
µ
r σr,(21)

mi(σ, ξ) :=
1

n

p∑

µ=1

n∑

r=1

ξµi ξ
µ
r σr,(22)

the next lemma states an exact expression for the conditional probability that
will occur in the linear regression condition (19).
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Lemma 3.3. Let σi ∈ {−1, 1}. Then we obtain for the conditional distribution
of a single spin

Pn,β,hel,ξ(σi = t | (σk)k 6=i) =
exp(βmi

i(σ, ξ)t + hξlit)∑
k∈{−1,1}

exp(βmi
i(σ, ξ)k + hξlik)

and thus

E[σi | (σk)k 6=i] = tanh(βmi
i(σ, ξ) + hξli),

where E denotes the expectation with respect to Pn,β,hel,ξ.

Proof. Direct calculations yield

Pn,β,hel,ξ(σi = t | (σk)k 6=i)

=
Pn,β,hel,ξ({σi = t} ∩ (σk)k 6=i)

Pn,β,hel,ξ((σk)k 6=i)

=

exp

[
β
2n

p∑

µ=1

(ξµi )2+ 2β
2n

p∑

µ=1

n∑

j=1

j 6=i

ξµi ξµj σj t+
β
2n

p∑

µ=1

n∑

k,j=1

k,j 6=i

ξµk ξ
µ
j σjσk+hξlit+h

n∑

j=1

j 6=i

ξljσj

]

∑

k∈{−1,1}

exp

[
βp
2n+ 2β

2n

p∑

µ=1

n∑

j=1

j 6=i

ξµi ξµj σjk+
β
2n

p∑

µ=1

n∑

k,j=1

k,j 6=i

ξµk ξµj σjσk+hξlik+h
n∑

j=1

j 6=i

ξljσj

]

=
exp(βmi

i(σ, ξ)t + hξlit)∑
k∈{−1,1}

exp(βmi
i(σ, ξ)k + hξlik)

,

where we canceled equivalent expressions in numerator and denominator and
used the expression for mi

i(σ, ξ). Thus

E[σi | (σk)k 6=i] = P ({σi = 1} ∪ (σk)k 6=i)− P ({σi = −1} ∪ (σk)k 6=i)

=
exp(βmi

i(σ, ξ) + hξli)− exp(−βmi
i(σ, ξ) − hξli)

exp(βmi
i(σ, ξ) + hξli) + exp(−βmi

i(σ, ξ) − hξli)

= tanh(βmi
i(σ, ξ) + hξli). �

Higher order moments of the rescaled empirical spin vector of the Hopfield
model, appearing in Theorems 1.5 up to 1.9, can be bounded as follows:

Lemma 3.4. For W as in Theorems 1.5 up to 1.9 we obtain that for any l ∈ N

and j ∈ {1, . . . , p}
E
∣∣W l

j

∣∣ ≤ const.(l).

Proof. First we will have to make a transformation with the well-known Hub-
bard–Stratonovich approach, expressing the distribution of Sn in the Hopfield
model in terms of Φ. This approach was for example used in [5, Lemma 2.2] and
in [8]. Let Id denote the p×p identity matrix and for β > 0 and h ≥ 0 we pick a
random vector V in a way that L(V ) equals a p-dimensional centered Gaussian
vector with covariance matrix β−1Id and V is chosen to be independent from
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all other random variables involved. Additionally λ := λn
l (ξ) denotes the

maximum point of Φ taken from Proposition 1.3. First we note that

Pn,β,hel,ξ (Sn ∈ dy) = Z−1
n,β,hel,ξ

exp

(
β

2n
〈y, y〉+ 〈y, hel〉

)
Pn(Sn ∈ dy),

where Pn(Sn ∈ dy) =
n∏

i=1

ρ(dσi) and ρ(dσi) =
1
2δ−1(dσi) +

1
2δ1(dσi). Further-

more for u ∈ R
p we have

∫

Rp

exp

(
β

n
〈u, y〉+ 〈y, hel〉

)
Pn(Sn ∈ dy)

=

∫

Rp

exp


β

n

p∑

µ=1

n∑

j=1

ξµj σjuµ +

p∑

µ=1

n∑

j=1

ξµj σjhe
µ
l




n∏

i=1

ρ(dσi)

=

n∏

i=1

∫

R

exp

(
β

n
〈ξ·iσi, u〉+ 〈ξ·iσi, hel〉

)
ρ(dσi)

= exp

(
n∑

i=1

log cosh〈ξ·i,
βu

n
+ hel〉

)
.

Hence, for t ∈ R, x := xn
l (ξ) and A(n) =

√
nt+ nx we obtain

P

(
V +

√
n

(
Sn

n
− x

)
≤ t

)
= P (

√
nV + Sn ≤ A(n))

= Z−1
n,β,hel,ξ

∫

Rp

exp

(
β

2n
〈y, y〉+ 〈y, hel〉

)

·
∫

v≤A(n)−y

(
β

2πn

)p/2

exp

(
− β

2n
〈v, v〉

)
dvPn(Sn ∈ dy).

The substitution u = v + y and abbreviation Cp,n := Z−1
n,β,hel,ξ

(
β

2πn

)p/2
yield

P (V +
√
n

(
Sn

n
− x

)
≤ t) = Cp,n

∫

Rp

exp (〈y, hel〉)

·
∫

u≤A(n)

exp

(
− β

2n
〈u, u〉

)
exp

(
β

n
〈u, y〉

)
duPn(Sn ∈ dy).
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The abbreviation C̃p,n = Cp,nn
p/2 yields

P

(
V +

√
n

(
Sn

n
− x

)
≤ t

)

= Cp,n

∫

u≤A(n)

exp

(
− β

2n
〈u, u〉+

n∑

i=1

log cosh〈ξ·j ,
βu

n
+ hel〉

)
du

= C̃p,n

∫

z≤t

exp

(
− β

2n
〈
√
nz + nλ− nhel,

√
nz + nλ− nhel〉

+
n∑

i=1

log cosh〈ξ·j ,
βz√
n
+ λ− hel + hel〉

)
dz

= C̃p,n

∫

z≤t

exp

(
nΦ

(
βz√
n
+ λ

))
dz,

where we used the substitution u =
√
nz + nx for the second equality. Thus,

we have

L
(
V +

√
n

(
Sn

n
− x

))
= Z̃−1

n,β,hel,ξ
exp

[
nΦ

(
λ+

βx

n

)]
dx,(23)

where Z̃−1
n,β,hel,ξ

denotes a normalization. Applying this transformation does
not change the finiteness of any of the moments of the Wj . Thus the new mea-
sure has the density (23). Using second-order multivariate Taylor expansion
of Φ (see (37)) and the fact that λ is a maximum point of Φ we see that the
density of this new measure with respect to the Lebesgue measure is given by

const. exp

[
−1

2
〈y,−D2Φ(λ) y〉

]

(up to negligible terms). With Proposition 1.3(a) we know that for any (β, h) 6=
(βc, 0) the Hessian −D2Φ(λ) is uniformly positive definite. This fact combined
with the transformation of integrals yields that a measure with this density has
moments of any finite order. �

4. Proofs of the Theorems

Constructing an exchangeable pair in the Hopfield model to obtain an ap-
proximate linear regression property (19) leads us to Φ taken from (11). Let
(β, h) 6= (βc, 0), and let x := xn

l (ξ) denote the unique global maximum point
of Φ, see Proposition 1.3. For k ∈ N fixed, k ≤ p, we consider

W :=
√
nπk

(
Sn

n
− x

)
=

√
n

(
1

n

n∑

j=1

ξ1j σj − x1, . . . ,
1

n

n∑

j=1

ξkj σj − xk

)t

.

We start by constructing an exchangeable pair. Therefore we produce a spin
collection σ′ = (σ′

i)i≥1 via a Gibbs sampling procedure: We take I to be a
random variable that is uniformly distributed over {1, . . . , n} and independent

Münster Journal of Mathematics Vol. 7 (2014), 731–752



On rates of convergence for the overlap in the Hopfield model 745

from all other random variables involved. Exchanging the spin σi with σ′
i

drawn from the conditional distribution of the ith coordinate given (σj)j 6=i

under Pn,β,hel,ξ, independently from σi, we obtain

(24) W ′ := W +
1√
n

(
ξ1Iσ

′
I , . . . , ξ

k
I σ

′
I

)
− 1√

n

(
ξ1IσI , . . . , ξ

k
I σI

)
.

In this case (W,W ′) is an exchangeable pair. Let F := σ(σi, ξ
µ
j |i, j, µ ∈ N).

We obtain that for any i = 1, . . . , k:

E[W ′
i −Wi|F ] =

1√
n
E
[
ξiIσ

′
I − ξiIσI |F

]
.

Using the law of total probability for the conditional expectation and indepen-
dence we have

E[W ′
i −Wi|F ] =

1√
n

1

n

n∑

j=1

E
[
ξijσ

′
j − ξijσj |F

]
.

Since σi and ξij , i, j ∈ N, are measurable with respect to F we obtain

E[W ′
i −Wi|F ] = − 1√

n

1

n
Sn,i +

1√
n

1

n

n∑

j=1

ξijE
[
σ′
j |F
]
.

With the help of independence and the construction of the exchangeable pair
we obtain E

[
σ′
j |F
]
= E

[
σ′
j |σ1, . . . , σn

]
= E [σj |(σk)k 6=j ]. Applying Lemma 3.3

yields

E[W ′
i −Wi|F ] = − 1√

n

1

n
Sn,i +

1√
n

1

n

n∑

j=1

ξij tanh(βm
j
j(σ, ξ) + hξlj)

= − 1√
n

1

n
Sn,i +

1√
n

1

n

n∑

j=1

ξij tanh(βmj(σ, ξ) + hξlj) +R1,i,

with

R1,i :=
1√
n

1

n

n∑

j=1

ξij

[
tanh(βmj

j(σ, ξ) + hξlj)− tanh(βmj(σ, ξ) + hξlj)
]
.(25)

Now it is important to note that

tanh(βmj(σ, ξ) + hξlj) = tanh〈β Sn

n
+ hel, ξj〉.

Thus, with Lemma 3.1, we have

1

n

n∑

j=1

ξij tanh(βmj(σ, ξ) + hξlj) =
1

β

(
β
Sn,i

n
+ hδi,l − hδi,l

)

+
∂

∂λi
Φ

(
β
Sn

n
+ hel

)
.
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This equation yields

E[W ′
i −Wi|F ] =

1√
n

∂

∂λi
Φ

(
β
Sn

n
+ hel

)
+R1,i.(26)

We continue by applying (12) and (38) (see Appendix) to the first summand in
(26). Since λn

l (ξ) is a unique maximum point of Φ(λ) we have ∂
∂λi

Φ(λn
l (ξ)) = 0.

We also note that
βSn,i

n + hδi,l − (λn
l (ξ))i = βWi√

n
. Thus, the first summand in

(26) is equal to

1√
n

k∑

t=1

(
∂2

∂λi∂λt
Φ(λn

l (ξ))

)
βWt√

n
+R2,i,

with

(27) R2,i :=

p∑

t=k

(
∂2

∂λi∂λt
Φ(λn

l (ξ))

)
βWt

n
+

p∑

l,t=1

O
(

1√
n

Wl√
n

Wt√
n

)
.

Abbreviating

R(i) := R1,i +R2,i,(28)

we have

E [W ′
i −Wi | F ] =

1

n

k∑

t=1

(
∂2

∂λi∂λt
Φ(λn

l (ξ))

)
βWt +R(i)

=
β

n
〈
[
D2Φ(λn

l (ξ))
]
i,k

,W 〉+R(i),(29)

where 〈·, ·〉 denotes the Euclidean scalar product and
[
D2Φ(λn

l (ξ))
]
i,k

denotes

the first k entries of the ith row of the matrix D2Φ(λn
l (ξ)). We obtain

(30) E [W ′ −W | F ] =
β

n

[
D2Φ(λn

l (ξ))
]
|k×k

W +R(W ),

with R(W ) = (R(1), . . . , R(k)). We define Λ := β
n

[
−D2Φ(λn

l (ξ))
]
|k×k

. With

Proposition 1.3(a) −D2Φ(λn
l (ξ)) is uniformly positive definite and thus Λ is

invertible. We conducted the linear regression condition for the sigma-algebra
F but it should be noted that it yields also the linear regression condition for
the sigma-algebra generated by W since W is measurable with respect to F .
In this case the linear regression condition (19) is fulfilled.

Proof of Theorem 1.5. With (30) we are able to apply Theorem 2.1. Since
the Hessian matrix of Φ and β itself are constants we have λ(i) = O(n). We
continue by estimating C taken from Theorem 2.1. We start by giving a bound
for R1,i, defined in (25). Since the tanh(x) is 1-Lipschitz we obtain

|R1,i| =

∣∣∣∣∣∣
1√
n

1

n

n∑

j=1

ξij

[
tanh(βmj

j(σ, ξ) + hξlj)− tanh(βmj(σ, ξ) + hξlj)
]
∣∣∣∣∣∣
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≤ 1√
n

1

n

n∑

j=1

∣∣∣βmj
j(σ, ξ) + hξlj − (βmj(σ, ξ) + hξlj)

∣∣∣

=
β√
n

1

n

n∑

j=1

∣∣∣∣∣
1

n

p∑

µ=1

(
ξµj
)2

σj

∣∣∣∣∣

=
β√
n

1

n

n∑

j=1

∣∣∣∣
1

n
pσj

∣∣∣∣ ≤
βp√
n

1

n
.

For the estimation of R2,i we note that by Lemma 3.4 we have for the second
part of (27)

E




p∑

l,t=1

O
(

1√
n

Wl√
n

Wt√
n

)
 = O

[
p2

n3/2

]
.

For the first part of (27) we note that by Lemma 3.2, since i /∈ {k + 1, . . . , p}
and t ∈ {1, . . . , k},

∣∣∣∣
∂2

∂λi∂λt
Φ(λn

l (ξ))

∣∣∣∣ ≤ c3
√
pǫn

since this expression is a nondiagonal entry of the matrix −Cn
l (ξ). Thus we

obtain that

E

[
p∑

t=k

(
∂2

∂λi∂λt
Φ(λn

l (ξ))

)
βWt

n

]
= O

[
p
√
pǫn

n

]
,

and finally

E|R2,i| = O
[
max

{
p
√
pǫn

n
,

p2

n3/2

}]
.(31)

Thus we have

C =

k∑

i=1

λ(i)
√
E [R(i)2] = O

[
max

{
p
√
pǫn,

p2

n1/2

}]
.

The next thing we notice is that for all i ∈ {1, . . . , k}

|W ′
i −Wi| =

∣∣∣∣
1√
n
ξiI(σ

′
I − σI)

∣∣∣∣ ≤
1√
n
.

We easily obtain that the bound B = O(n−1/2). The only thing left to do is
to calculate the tedious conditional variance in A. We have:

E[(W ′
i −Wi)(W

′
j −Wj) | F ] =

1

n3

n∑

t,r=1

ξitσtξ
j
rσr +

1

n3

n∑

t,r=1

E[ξitσ
′
tξ

j
rσ

′
r | F ]

− 2

n3

n∑

t,r=1

ξjrξ
i
tσrE[σ

′
t | F ]

=: A1 +A2 +A3.(32)
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To bound the variances of these three terms we abbreviate

m̃i(σ, ξ) :=
1

n

n∑

t=1

ξitσt =
1√
n
Wi + xi.

Thus,

V[A1] =
1

n2
V
[
m̃i(σ)m̃j(σ)

]
=

1

n2
V

[
Wi Wj

n
+

Wi√
n
xj +

Wj√
n
xi

]

≤ 1

n2
const.max

{
1

n2
V
[
Wi Wj

]
,
1

n
V
[
Wi

]}

≤ 1

n2

const.

n2

(
E[W 2

i W
2
j ] + nE[Wi]

)
.

Using Lemma 3.4 we obtain V[A1] = O(n−3). For A2 we obtain

A2 =
1

n3

n∑

t,r=1

E
[
ξitσ

′
tξ

j
rσ

′
r|F
]
=

1

n
E

[(
1

n

n∑

t=1

ξitσ
′
t

)(
1

n

n∑

r=1

ξjrσ
′
r

)
|F
]
.

Next we use the identity V[X ] = E[X2]− (E[X ])2 for a random variable X and
a conditional version of Jensen’s inequality in order to obtain that V [A2] ≤
V [A1] = O(n−3), since σ′ is an identical copy of σ. With Lemma 3.3 we get

−A3/2 =
1

n3

n∑

t,r=1

ξjrσr E[ξ
i
tσ

′
t | F ]

=
1

n3

n∑

t,r=1

ξjrσrξ
i
t tanh(m

t
t(σ, ξ) + hξlt)

=
1

n3

n∑

t,r=1

ξjrσrξ
i
t

[
tanh(mt

t(σ, ξ) + hξlt)− tanh(mt(σ, ξ) + hξlt)
]

+
1

n3

n∑

t,r=1

ξjrσrξ
i
t tanh(mt(σ, ξ) + hξlt)

=: M1 +M2.(33)

Using the same estimations as for R
(1)
n (i) we obtain

M1 ≤
∣∣∣∣∣
1

n2

n∑

r=1

ξjrσr

∣∣∣∣∣

∣∣∣∣
βp

n

∣∣∣∣ =
∣∣∣∣
1

n
βp

(
Wj√
n
+ xj

)∣∣∣∣ .

Hence V[M1] = O
[
p2

n3

]
by Lemma 3.4. Additionally we get by using Lemma 3.1,

(38) and the abbreviation Φ(2),i,j(λ) := ∂2

∂λi∂λt
Φ(λn

l (ξ))

M2 =
1

n

(
Wj√
n
+ xj

)(
Wi√
n
+ xi +

∂

∂λi
Φ

(
β
Sn

n
+ hel

))
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=

(
Wj

n
√
n
+

xj

n

)
Wi√

n
+ xi +

p∑

t=1

(
Φ(2),i,t(λ)

) βWt√
n

+

p∑

l,t=1

O
[
WlWt

n

]
 .

Since we are estimating the variance of the expressions, constant expressions
will vanish. Hence using Lemma 3.4 and Lemma 3.2 in the same way as for
(31) we have

V[M2] = O
[
max

{
p3ǫ2n
n3

,
p2

n3

}]
.

Therefore V[A3] can be bounded by O
[
max

{
p3ǫ2n
n3 , p2

n3

}]
. Thus the variance

in A of Theorem 2.1 can be bounded by 9 times the maximum of the variances
of A1, A2, A3. Consequently we obtain

A =

k∑

i,j=1

λ(i)
√
V
[
E[(W ′

i −Wi)(W ′
j −Wj)|W ]

]
= O

[
max

{
p3/2ǫn
n1/2

,
p√
n

}]

and this completes the proof. �

Proof of Theorem 1.7. Having seen the proof of Theorem 1.5 this proof gets
very simple. We first note that Theorem 2.2 can be applied since the regression
condition is the same as for Theorem 1.5. A1 matches A taken from the same

proof and thus log(n)A1 = O
[
log(n)max

{
p3/2ǫn
n1/2 , p

n

}]
. Using Lemma 3.4

and the estimation of the C-term in 1.5 we have that the second expression

is O
[
log(n)max

{
p3/2ǫn
n1/2 , p√

n

}]
. The same Lemma, A = 1√

n
and A3 = O(n)

yield that the third and fourth expression have the orderO(log(n)n−1/2). Thus
the theorem is proven. �

Proof of Theorem 1.8. In order to prove the theorem we have to make small
adjustments to the proof of Theorem 1.5. Using the same techniques as before
we arrive at

E [W ′ −W | F ] =
β

n

[
D2Φ(λn

l (ξ))
]
W +R(W ),

with R(W ) = (R(1), . . . , R(p)), where R(i) = R1,i + R̃2,i with R1,i taken from
(25) and

(34) R̃2,i :=

p∑

l,t=1

O
(

1√
n

Wl√
n

Wt√
n

)
.

This expression is the central difference to the proof of Theorem 1.5. Whereas
the expression (27) contained the expression

p∑

t=k

(
∂2

∂λi∂λt
Φ(λn

l (ξ))

)
βWt

n
,(35)

which made us use Lemma 3.2, (35) is now part of ΛW since p is a constant and
we do not need a projection to define W . Thus our expression (34) contains
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just the second expression of the right hand side of (27). Fortunately this
can be estimated using Lemma 3.4. Thus, without using Lemma 3.2, the
computation of the rate of convergence gets a lot easier. Again it only remains
to estimate A, B and C taken from Theorem 2.1. We note that B is the same
as in Theorem 1.5. Thus B = O(n−1/2). R1,i is the same as in (25) and is

bounded in the same way as in Theorem 1.5. Since R̃2,i was part of (27) and
p is fixed we obtain by using Lemma 3.4

E|R̃2,i| = O(n−3/2).(36)

In comparison to Theorem 1.5 and the bound in (31) we notice that the first
part of the maximum is not existent since the expression (35) is not part of

R̃2,i and the second part of the maximum is the same as the bound in (36)

with p constant. Using the bound on R1,i and R̃2,i we obtain C = O(n−1/2).
If we split the expectation of the expression A in the same way as in (32) and
we note that A1 and A2 are estimated in exact the same way as for the proof
of Theorem 1.5. Finally we note that for p fixed we can also split A3 as in (33)
and that with the same reasons that led to (36) V[M1] = V[M2] = O(n−3).
Hence, A = O(n−1/2). �

Proof of Theorem 1.9. The proof uses the fact that the conditional joint dis-
tribution of the (σi)i, conditioned on the event

{∥∥Sn

n − x∗el
∥∥ < ǫ

}
, is given

by

Pn,β,ξ(σ) =
1

Z̃n,β,ξ

exp
(
−βHn(σ, ξ)

)
1B(x∗el,ǫ)

(
Sn

n

)
,

where Z̃n,β,ξ denotes a normalization. Thus we are able to follow the lines of
the proof of Theorem 1.5. �

5. Appendix

For the proofs of the theorems for the Hopfield model we need a multivariate
second-order Taylor expansion of Φ(λ) defined in (3.1). Let us denote by
D2Φ(λ) the Hessian matrix {∂2Φ(λ)/∂λi∂λj , i, j = 1, . . . , p} of Φ at λ. We
obtain

(37) Φ(u) = Φ(λ) +

p∑

k=1

∂

∂uk
Φ(λ)(uk − λk) +

1

2
〈(u − λ), D2Φ(λ) · (u− λ)〉

+
1

6

p∑

t,k,j=1

R̃t,k,j(ut − λt)(uk − λk)(uj − λj),

with
∣∣R̃t,k,j

∣∣ ≤
∥∥ ∂3

∂uk∂ut∂uj
Φ
∥∥. For any fixed m ∈ {1, . . . , p} and any λ, u ∈ R

p

it follows that
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(38) q
∂

∂um
Φ(u) =

∂

∂um
Φ(λ) +

∑

k=1

∂2

∂uk∂um
Φ(λ)(uk − λk)

+

p∑

k,t=1

O((uk − λk)(ut − λt)).
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