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Abstract. In this paper, we introduce and study the persistence approximation property
for quantitative K-theory of filtered C∗-algebras. In the case of crossed product C∗-algebras,
the persistence approximation property follows from the Baum–Connes conjecture with co-
efficients. We also discuss some applications of the quantitative K-theory to the Novikov
conjecture.
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1. Introduction

The idea of quantitative operator K-theory was first introduced in [15] to
study the Novikov conjecture for groups with finite asymptotic dimension.
In [9], we introduced a general quantitative K-theory for filtered C∗-algebras.
Examples of filtered C∗-algebras include group C∗-algebras, crossed product
C∗-algebras, Roe algebras, foliation C∗-algebras and finitely generated C∗-
algebras. For a C∗-algebra A with a filtration, the K-theory of A can be
approximated by the quantitative K-theory groups Kε,r

∗ (A) when r goes to
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infinity. The crucial point is that quantitative K-theory is often more com-
putable using certain controlled exact sequences (see, e.g., [9, 15]). The study
of K-theory for the Roe algebra can be reduced to that of quantitative K-
theory for the Roe algebra associated to finite metric spaces, which in essence
is a finite-dimensional linear algebra problem.

The main purpose of this paper is to introduce and study the persistence
approximation property for quantitative K-theory of filtered C∗-algebras.
Roughly speaking, the persistence approximation property means that the
convergence of Kε,r

∗ (A) to K∗(A) is uniform. More precisely, we say that
the filtered C∗-algebra A has persistence approximation property if for each
ε in (0, 1

4 ) and r > 0, there exist r′ ≥ r and ε′ in [ε, 14 ) such that an element
from Kε,r

∗ (A) is zero in K∗(A) if and only if it is zero in Kε′,r′

∗ (A). The main
motivation to study the persistence approximation property is that it provides
an effective way of approximating K-theory with quantitative K-theory. In
the case of crossed product C∗-algebras, the Baum–Connes conjecture with
coefficients provides many examples that satisfy the persistence approxima-
tion property. It turns out that this property provides geometrical obstruction
for the Baum–Connes conjecture. In order to study this obstruction in full
generality, we consider the persistence approximation property for filtered C∗-
algebra A ⊗ K (ℓ2(Σ)), where A is a C∗-algebra and Σ is a discrete metric
space with bounded geometry. For this purpose,

• we introduce a family of quantitative local assembly maps valued in the
quantitative K-theory for A⊗ K (ℓ2(Σ));

• proceeding as in [9, §6.2] for the quantitative Baum–Connes assembly
maps, we set quantitative statements for these local quantitative Baum–
Connes assembly maps.

These quantitative statements can be viewed as a geometric version of those
stated in [9, §6.2]. We also show that if these statements hold uniformly for the
family of finite subsets of a discrete metric space Σ with bounded geometry,
the coarse Baum–Connes conjecture for Σ is satisfied. In particular, in the
case of a finitely generated group Γ provided with the metric arising from any
word length, these uniform statements for finite metric subsets of Γ imply
the Novikov conjecture for Γ on homotopy invariance of higher signatures.
We point out that in this case, these statements reduce to finite-dimensional
problems in linear algebra and analysis.

The paper is organized as follows. In Section 2, we review the main re-
sults of [9] concerning quantitative K-theory. In Section 3, we introduce the
persistence approximation property. We prove that if Γ is a finitely gener-
ated group that satisfies the Baum–Connes conjecture with coefficients and
which admits a cocompact universal example for proper actions, then for any
Γ-C∗-algebra A, the reduced crossed product A ⋊r Γ satisfies the persistence
approximation property. In the special case of the action of the group Γ on
C0(Γ) by translation, we get a canonical identification between C0(Γ)⋊Γ and
K (ℓ2(Σ)) that preserves the filtration structure. Hence, the persistence ap-
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proximation property can be stated in a completely geometrical way. This
leads us to consider this property for the algebra A ⊗ K (ℓ2(Σ)), where A is
a C∗-algebra and Σ is a proper discrete metric space, with filtration structure
induced by the metric of Σ. In Section 4, following the idea of the Baum–
Connes conjecture in order to compute the quantitative K-theory groups for
A ⊗ K (ℓ2(Σ)), we construct a family of quantitative assembly maps νε,r,dΣ,A,∗.
In view of the proof of the persistence approximation property in the crossed
product algebras case, we introduce a geometrical assembly map ν∞Σ,A,∗ (which

plays the role of the Baum–Connes assembly map with relevant coefficients).
Following the route of [11], we show that the target of these geometric assembly
maps is indeed the K-theory of the crossed product algebra of an appropriate
C∗-algebra AC0(Σ) by the groupoid GΣ associated in [11] to the coarse struc-
ture of Σ. In Section 5, we study the Baum–Connes assembly map for the pair
(GΣ,AC0(Σ)) and we show that the bijectivity of the geometric assembly maps
ν∞Σ,A,∗ is equivalent to the Baum–Connes conjecture for (GΣ,AC0(Σ)). We set

in the geometric setting the analog of the quantitative statements of [9, §6.2]
for the quantitative Baum–Connes assembly maps and we prove that these
statements hold when Σ coarsely embeds into a Hilbert space. We then apply
these results to the persistence approximation property for A⊗ K (ℓ2(Σ)). In
particular, we prove it when Σ coarsely embeds into a Hilbert space, under
an assumption of coarse uniform contractibility. This condition is the analog
of the existence of a cocompact universal example for proper actions in the
geometric setting and is satisfied for instance for Gromov hyperbolic discrete
metric spaces. In Section 6, we show that for a discrete metric space with
bounded geometry, if the quantitative statements of Section 5 for ν∞F,A,∗ hold
uniformly when F runs through finite subsets of Σ, then Σ satisfies the coarse
Baum–Connes conjecture.

2. Survey on quantitative K-theory

In this section, we collect the main results of [9] concerning quantitative
K-theory and that we shall use throughout this paper. Quantitative K-theory
was introduced to describe propagation phenomena in higher index theory
for noncompact spaces. More generally, we use the framework of filtered C∗-
algebras to model the concept of propagation.

Definition 2.1. A filtered C∗-algebra A is a C∗-algebra equipped with a
family (Ar)r>0 of closed linear subspaces indexed by positive numbers such
that

• Ar ⊆ Ar′ if r ≤ r′;
• Ar is stable under involution;
• Ar · Ar′ ⊆ Ar+r′ ;
• the subalgebra

⋃
r>0Ar is dense in A.

If A is unital, we also require that the identity 1 is an element of Ar for every
positive number r. The elements of Ar are said to have propagation r.
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Let A and A′ be C∗-algebras filtered by (Ar)r>0 and (A′
r)r>0, respectively.

A ∗-homomorphism of C∗ -algebras φ : A → A′ is a filtered homomorphism
(or a homomorphism of filtered C∗-algebras) if φ(Ar) ⊆ A′

r for any positive
number r.

If A is not unital, let us denote by A+ its unitarization, i.e.

A+ =
{
(x, λ) | x ∈ A, λ ∈ C

}

with the product

(x, λ)(x′, λ′) = (xx′ + λx′ + λ′x, λλ′)

for all (x, λ) and (x′, λ′) in A+. Then A+ is filtered by

A+
r =

{
(x, λ) | x ∈ Ar, λ ∈ C

}
.

We also define ρA : A+ → C, (x, λ) 7→ λ.

2.2. Definition of quantitative K-theory. Let A be a unital filtered C∗-
algebra. For any positive numbers r and ε, we call

• an element u in A an ε-r-unitary if u belongs to Ar, ‖u
∗ · u − 1‖ < ε and

‖u · u∗ − 1‖ < ε. The set of ε-r-unitaries on A will be denoted by Uε,r(A).
• an element p in A an ε-r-projection if p belongs to Ar, p = p∗ and ‖p2−p‖ <
ε. The set of ε-r-projections on A will be denoted by Pε,r(A).

Notice that an ε-r-unitary is invertible, and that if p is an ε-r-projection in
A with ε < 1

4 , then it has a spectral gap around 1
2 and then gives rise by

functional calculus to a projection κ0(p) in A such that ‖p− κ0(p)‖ < 2ε.
For any integer n, we set

Uε,r
n (A) = Uε,r(Mn(A)), Pε,r

n (A) = Pε,r(Mn(A)).

For any unital filtered C∗-algebra A, any positive numbers ε and r and any
positive integer n, we consider inclusions

Pε,r
n (A) →֒ Pε,r

n+1(A), p 7→

(
p 0
0 0

)

and

Uε,r
n (A) →֒ Uε,r

n+1(A), u 7→

(
u 0
0 1

)
.

This allows us to define

Uε,r
∞ (A) =

⋃

n∈N

Uε,r
n (A), Pε,r

∞ (A) =
⋃

n∈N

Pε,r
n (A).

For a unital filtered C∗-algebra A, we define the following equivalence rela-
tions on Pε,r

∞ (A) × N and on Uε,r
∞ (A):

• If p and q are elements of Pε,r
∞ (A), l and l′ are positive integers, then

(p, l) ∼ (q, l′) if there exist a positive integer k and an element h of
Pε,r
∞ (A[0, 1]) such that h(0) = diag(p, Ik+l′ ) and h(1) = diag(q, Ik+l).

• If u and v are elements of Uε,r
∞ (A), then u ∼ v if there exists an element h

of U3ε,2r
∞ (A[0, 1]) such that h(0) = u and h(1) = v.
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If p is an element of Pε,r
∞ (A) and l is an integer, we denote by [p, l]ε,r the

equivalence class of (p, l) modulo ∼. If u is an element of Uε,r
∞ (A) we denote

by [u]ε,r its equivalence class modulo ∼.

Definition 2.3. Let r and ε be positive numbers with ε < 1
4 . We define:

(i) Kε,r
0 (A) = Pε,r

∞ (A) × N/∼ for A unital and

Kε,r
0 (A) =

{
[p, l]ε,r ∈ Pε,r(A+)× N/∼ | rankκ0(ρA(p)) = l

}

for A nonunital and κ0(ρA(p)) being the spectral projection associated
to ρA(p);

(ii) Kε,r
1 (A) = Uε,r

∞ (A+)/∼, with A = A+ if A is already unital.

Then Kε,r
0 (A) turns to be an abelian group [9, Lem. 1.15] where

[p, l]ε,r + [p′, l′]ε,r = [diag(p, p′), l + l′]ε,r

for any [p, l]ε,r and [p′, l′]ε,r in Kε,r
0 (A). According to [9, Lem. 1.15], Kε,r

1 (A)
is equipped with a structure of abelian group such that

[u]ε,r + [u′]ε,r = [diag(u, v)]ε,r

for any [u]ε,r and [u′]ε,r in Kε,r
1 (A).

Recall from [9, Cor. 1.19 and 1.21] that for any positive numbers r and ε
with ε < 1

4 , we have that

Kε,r
0 (C) → Z, [p, l]ε,r 7→ rankκ0(p)− l

is an isomorphism and Kε,r
1 (C) = {0}.

For any filtered C∗-algebra A and any positive numbers r, r′, ε and ε′ with
ε ≤ ε′ < 1

4 and r ≤ r′, we have natural group homomorphisms

• ιε,r0 : Kε,r
0 (A) → K0(A), [p, l]ε,r 7→ [κ0(p)]−[Il] (where κ0(p) is the spectral

projection associated to p);
• ιε,r1 : Kε,r

1 (A) → K1(A), [u]ε,r 7→ [u];
• ιε,r∗ = ιε,r0 ⊕ ιε,r1 ;

• ιε,ε
′,r,r′

0 : Kε,r
0 (A) → Kε′,r′

0 (A), [p, l]ε,r 7→ [p, l]ε′,r′ ;

• ιε,ε
′,r,r′

1 : Kε,r
1 (A) → Kε′,r′

1 (A), [u]ε,r 7→ [u]ε′,r′ ;

• ιε,ε
′,r,r′

∗ = ιε,ε
′,r,r′

0 ⊕ ιε,ε
′,r,r′

1 .

If some of the indices r, r′ or ε, ε′ are equal, we shall not repeat it in ιε,ε
′,r,r′

∗ .
The following result is a consequence of [9, Rem. 1.17].

Proposition 2.4. Let A be a C∗-algebra filtered by (Ar)r>0.

(i) For any ε in (0, 1
4 ) and any y in K∗(A), there exist a positive number r

and an element x in Kε,r
∗ (A) such that ιε,r∗ (x) = y.

(ii) There exists a positive number λ > 1 independent of A such that the
following is satisfied: Let ε be in (0, 1

4 ), let r be a positive number and let
x be an element in Kε,r

∗ (A) such that ιε,r∗ (x) = 0 in K∗(A). Then there
exists a positive number r′ with r′ > r such that

ιε,λε,r,r
′

∗ (x) = 0 in Kλε,r′

∗ (A).
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If φ : A → B is a homomorphism of filtered C∗-algebras, then since φ pre-
serves ε-r-projections and ε-r-unitaries, it obviously induces, for any positive
number r and any ε ∈ (0, 14 ), a group homomorphism

φε,r
∗ : Kε,r

∗ (A) → Kε,r
∗ (B).

Moreover, the quantitative K-theory is homotopy invariant with respect to ho-
motopies that preserve propagation [9, Lem. 1.26]. There is also a quantitative
version of Morita equivalence [9, Prop. 1.28].

Proposition 2.5. If A is a filtered algebra and H is a separable Hilbert space,
then the homomorphism

A → K (H )⊗A, a 7→



a

0
. . .




induces a (Z2-graded) group isomorphism (the Morita equivalence)

Mε,r
A : Kε,r

∗ (A) → Kε,r
∗ (A⊗ K (H ))

for any positive number r and any ε ∈ (0, 1
4 ).

2.6. Quantitative objects. In order to study the functorial properties of
quantitative K-theory, we introduce the concept of a quantitative object.

Definition 2.7. A quantitative object is a family O = (Oε,r)0<ε< 1
4 ,r>0 of

abelian groups, together with a family of group homomorphisms

ιε,ε
′,r,r′

O : Oε,r → Oε′,r′

for 0 < ε ≤ ε′ < 1
4 and 0 < r ≤ r′ such that

ιε,ε,r,rO = IdOε,r

for any 0 < ε < 1
4 and r > 0; and

ιε
′,ε′′,r′,r′′

O ◦ ιε,ε
′,r,r′

O = ιε,ε
′′,r,r′′

O

for any 0 < ε ≤ ε′ ≤ ε′′ < 1
4 and 0 < r ≤ r′ ≤ r′′.

Example 2.8. (i) Our prominent example will be of course quantitative K-
theory K∗(A) = (Kε,r

∗ (A))0<ε< 1
4 ,r>0 of a filtered C∗-algebra A with structure

maps

ιε,ε
′,r,r′

∗ : Kε,r
∗ (A) → Kε′,r′

∗ (A)

for 0 < ε ≤ ε′ < 1
4 and 0 < r ≤ r′.

(ii) If (Oi)i∈N is a family of quantitative objects with Oi = (Oε,r
i )0<ε< 1

4
,r>0

for any integer i, we define
∏

i∈N

Oi =
(∏

i∈N

Oε,r
i

)

0<ε< 1
4 ,r>0

.

Then
∏

i∈N
Oi is also a quantitative object. In the case of a constant family

(Oi)i∈N with Oi = O a quantitative object, we set ON for
∏

i∈N
Oi.
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2.9. Controlled morphisms. Obviously, the definition of controlled mor-
phism [9, §2] can be then extended to quantitative objects.

Definition 2.10. A control pair is a pair (λ, h), where

• λ ≥ 1;
• h : (0, 1

4λ) → [1,+∞), ε 7→ hε is a map such that there exists a non-

increasing map g : (0, 1
4λ) → [1,+∞), with h ≤ g.

The set of control pairs is equipped with a partial order: (λ, h) ≤ (λ′, h′) if
λ ≤ λ′ and hε ≤ h′

ε for all ε ∈ (0, 1
4λ′ ).

Definition 2.11. Let (λ, h) be a control pair and let O = (Oε,r)0<ε< 1
4
,r>0 and

O′ = (O′ε,r)0<ε< 1
4
,r>0 be quantitative objects. A (λ, h)-controlled morphism

F : O → O′ is a family F = (F ε,r)0<ε< 1
4λ ,r>0 of group homomorphisms

F ε,r : Oε,r → O′λε,hεr

such that for any positive numbers ε, ε′, r and r′ with 0 < ε ≤ ε′ < 1
4λ , r ≤ r′

and hεr ≤ hε′r
′, we have

F ε′,r′ ◦ ιε,ε
′,r,r′

O = ι
λε,λε′,hεr,hε′r

′

O′ ◦ F ε,r.

When it is not necessary to specify the control pair, we will just say that F
is a controlled morphism. If O = (Oε,r)0<ε< 1

4 ,r>0 is a quantitative object, let
us define the identity (1, 1)-controlled morphism

IdO = (IdOε,r )0<ε< 1
4 ,r>0 : O → O.

Recall that if A and B are filtered C∗-algebras and if F : K∗(A) → K∗(B) is a
(λ, h)-controlled morphism, then F induces a morphism F : K∗(A) → K∗(B)
uniquely defined by ιε,r∗ ◦ F ε,r = F ◦ ιε,r∗ .

If (λ, h) and (λ′, h′) are two control pairs, define

h ∗ h′ :
(
0,

1

4λλ′

)
→ (0,+∞), ε 7→ hλ′εh

′
ε.

Then (λλ′, h ∗ h′) is again a control pair. Let

O = (Oε,r)0<ε< 1
4
,r>0, O′ = (O′ε,r)0<ε< 1

4
,r>0, O′′ = (O′′ε,r)0<ε< 1

4
,r>0

be quantitative objects, let

F = (F ε,r)0<ε< 1
4αF

,r>0 : O → O′

be an (αF , kF )-controlled morphism, and let

G = (Gε,r)0<ε< 1
4αG

,r>0 : O′ → O′′

be an (αG , kG)-controlled morphism. Then the family of homomorphisms
G ◦ F :O→O′′ is the (αGαF , kG ∗ kF )-controlled morphism defined by the
family

(GαFε,kF,εr ◦ F ε,r : Oε,r → O′′αGαFε,kF,εkG,αF ,εr)0<ε< 1
4αFαG

,r>0.
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Notation 2.12. LetO = (Oε,r)0<ε< 1
4 ,r>0 andO′ = (O′ε,r)0<ε< 1

4 ,r>0 be quan-
titative objects, let F = (F ε,r)0<ε< 1

4
,r>0 : O → O′ be an (αF , kF )-controlled

morphism, let G = (Gε,r)0<ε< 1
4 ,r>0 : O → O′ be an (αG , kG)-controlled mor-

phism, and let (λ, h) be a control pair. We write

F
(λ,h)
∼ G

if

• (αF , kF ) ≤ (λ, h) and (αG , kG) ≤ (λ, h);
• for every ε in (0, 1

4λ ) and r > 0, we have

ι
αFε,λε,kF,εr,hεr
O′ ◦ F ε,r = ι

αGε,λε,kG,εr,hεr
O′ ◦Gε,r.

Definition 2.13. Let (λ, h) be a control pair, and let F : O → O′ be an
(αF , kF )-controlled morphism with (αF , kF ) ≤ (λ, h). F is called (λ, h)-
invertible or a (λ, h)-isomorphism if there exists a controlled morphism
G : O′ → O such that

G ◦ F
(λ,h)
∼ IdO and F ◦ G

(λ,h)
∼ IdO′ .

The controlled morphism G is called a (λ, h)-inverse for G.

In particular, if A and B are filtered C∗-algebras and if G : K∗(A) → K∗(B)
is a (λ, h)-isomorphism, then the induced morphism G : K∗(A) → K∗(B) is
an isomorphism and its inverse is induced by a controlled morphism (indeed
induced by any (λ, h)-inverse for F).

If A = (Ai)i∈N is any family of filtered C∗-algebras and if H a separable
Hilbert space, set

A∞
c,r =

∏

i∈N

K (H )⊗Ai,r

for any r > 0 and define the C∗-algebra A∞
c as the closure of

⋃
r>0 A

∞
c,r in∏

i∈N
K (H )⊗Ai.

Lemma 2.14. Let A = (Ai)i∈N be a family of filtered C∗-algebras. With
notations of Example 2.8 (ii), consider

FA,∗ = (F ε,r
A )0<ε, 1

4
,r>0 : K∗(A

∞
c ) →

∏
K∗(Ai),

where

F ε,r
A,∗ : Kε,r

∗ (A∞
c ) →

∏

i∈N

Kε,r
∗ (Ai)

is the map induced on the jth factor and up to the Morita equivalence by
the restriction to A∞

c of the evaluation
∏

i∈N
K (H ) ⊗Ai → K (H )⊗ Aj at

j ∈ N. Then, FA,∗ is an (α, h)-controlled isomorphism for a control pair (α, h)
independent of the family A.

We postpone the proof of this lemma until the end of the next subsection.
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2.15. Control exact sequences.

Definition 2.16. Let (λ, h) be a control pair. Let

O = (Oε,r)0<ε< 1
4 ,r>0, O′ = (O′

ε,r)0<ε< 1
4 ,r>0, O′′ = (O′′

ε,r)0<ε< 1
4 ,r>0

be quantitative objects, let

F = (F ε,r)0<ε< 1
4λ ,r>0 : O → O′

be an (αF , kF )-controlled morphism, and let

G = (Gε,r)0<ε< 1
4αG

,r>0 : O′ → O′′

be an (αG , kG)-controlled morphism. Then the composition

O
F
−→ O′ G

−→ O′′

is said to be (λ, h)-exact at O′ if G ◦ F = 0 and if for any

0 < ε <
1

4max{λαF , αG}
,

any r > 0 and any y in O′ε,r such that Gε,r(y) = 0 in O′′
ε,r , there exists an

element x in Oλε,hεr such that

Fλε,hεr(x) = ι
ε,αFλε,r,kF,λεhεr
O′ (y) in O′αFλε,kF,λεhεr.

A sequence of controlled morphisms

· · ·Ok−1
Fk−1
−−−→ Ok

Fk−−→ Ok+1
Fk+1
−−−→ Ok+2 · · ·

is called (λ, h)-exact if for every k, the composition

Ok−1
Fk−1
−−−→ Ok

Fk−−→ Ok+1

is (λ, h)-exact at Ok.

Examples of controlled exact sequences in quantitative K-theory are pro-
vided by controlled six-term exact sequences associated to a completely filtered
extensions of C∗-algebras [9, §3].

Definition 2.17. Let A be a C∗-algebra filtered by (Ar)r>0, let J be an ideal
of A, and let us set Jr = J ∩ Ar. The extension of C∗-algebras

0 → J → A → A/J → 0

is called a completely filtered extension of C∗-algebras if the bijective contin-
uous linear map

Ar/Jr → (Ar + J)/J

induced by the inclusion Ar →֒ A is a complete isometry, i.e.

inf
y∈Mn(Jr)

‖x+ y‖ = inf
y∈Mn(J)

‖x+ y‖

for any integer n, any positive number r and any x in Mn(Ar).
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Notice that in this case, the ideal J is filtered by (Jr)r>0 and A/J is filtered
by (Ar + J)r>0. A particular case of a completely filtered extension of C∗-
algebra is the case of a filtered and semi-split extension of C∗-algebras [9,
Lem. 3.3] (or a semi-split extension of filtered algebras), i.e. extension

0 → J → A → A/J → 0,

where

• A is filtered by (Ar)r>0;
• there exists a completely positive and completely contractive (if A is not
unital) cross-section s : A/J → A such that

s(Ar + J) ⊆ Ar

for any number r > 0.

For any extension of C∗-algebras

0 → J → A → A/J → 0

we denote by ∂J,A : K∗(A/J) → K∗+1(J) the associated boundary map.

Proposition 2.18. There exists a control pair (αD , kD) such that for any
completely filtered extension of C∗-algebras

0 → J → A
q
−→ A/J → 0,

there exists an (αD, kD)-controlled morphism of odd degree

DJ,A = (∂ε,r
J,A)0<ε< 1

4αD
,r>0 : K∗(A/J) → K∗+1(J)

which induces in K-theory ∂J,A : K∗(A/J) → K∗+1(J).

Moreover, the controlled boundary map enjoys the usual natural properties
with respect to extensions.

Theorem 2.19. There exists a control pair (λ, h) such that for any completely
filtered extension of C∗-algebras

0 → J

−→ A

q
−→ A/J → 0,

the following six-term sequence is (λ, h)-exact:

K0(J)
∗

// K0(A)
q∗

// K0(A/J)

DJ,A

��

K1(A/J)

DJ,A

OO

K1(A)q∗
oo K1(J).∗

oo

In the particular case of a filtered extension of C∗-algebras

0 → J

−→ A

q
−→ A/J → 0

that splits by a filtered morphism, the following sequence is (λ, h)-exact:

0 → K0(J)

−→ K0(A)

q
−→ K0(A/J) → 0.
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Proof of Lemma 2.14. Assume first that all the Ai are unital. Then the result
is a consequence of [9, Prop. 1.30]. If Ai is not unital for some i, then for every
integer i, let us endow

Ãi =
{
(x, λ) | x ∈ Ai, λ ∈ C

}

with the product

(x, λ)(x′, λ′) = (xx′ + λx′ + λ′x, λλ′)

for all (x, λ) and (x′, λ′) in Ai. Then Ãi is filtered by

Ãi,r =
{
(x, λ) | x ∈ Ai,r, λ ∈ C

}
.

Set then Ã = (Ãi)i∈N. Let us denote by C the constant family of the C∗-
algebra C. Then

0 → A∞
c → Ã∞

c → C∞
c → 0

is a split extension of filtered C∗-algebras. Then we have the commutative
diagram

0 // K∗(A
∞
c ) //

FA,∗

��

K∗(Ã
∞
c ) //

F
Ã,∗

��

K∗(C
∞
c ) //

FC,∗

��

0

0 //
∏

i∈N
K∗(Ai) //

∏
i∈N

K∗(Ãi) // KN
∗ (C)

// 0,

with (λ, h)-exact rows for the control pair (λ, h) of Theorem 2.19. The result
is now a consequence of a five-lemma type argument. �

2.20. KK-theory and controlled morphisms. Let A be a C∗-algebra and
let B be a filtered C∗-algebra filtered by (Br)r>0. Let us define A ⊗ Br as
the closure of the algebraic tensor product of A and Br in the spatial tensor
product A ⊗ B. Then the C∗-algebra A ⊗ B is filtered by (A ⊗ Br)r>0. If
f : A1 → A2 is a homomorphism of C∗-algebras, let us set

fB : A1 ⊗B → A2 ⊗B, a⊗ b 7→ f(a)⊗ b.

Recall from [3] that for C∗-algebras A1, A2 and B, Kasparov defined a ten-
sorization map

τB : KK∗(A1, A2) → KK∗(A1 ⊗B,A2 ⊗B).

If B is a filtered C∗-algebra, then for any z in KK∗(A1, A2) the morphism

K∗(A1 ⊗B) → K∗(A2 ⊗B), x 7→ x⊗A1⊗B τB(z)

is induced by a control morphism [9, Thm. 4.4].

Theorem 2.21. There exists a control pair (αT , kT ) such that

• for any filtered C∗-algebra B;
• for any C∗-algebras A1 and A2;
• for any element z in KK∗(A1, A2).
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There exists an (αT , kT )-controlled morphism

TB(z) = (τε,rB )0<ε< 1
4αT

,r>0 : K∗(A1 ⊗B) → K∗(A2 ⊗B)

with same degree as z that satisfies the following:

(i) TB(z) : K∗(A1 ⊗ B) → K∗(A2 ⊗ B) induces the right multiplication by
τB(z) in K-theory.

(ii) For any elements z and z′ in KK∗(A1, A2), we have

TB(z + z′) = TB(z) + TB(z
′).

(iii) Let A′
1 be a filtered C∗-algebra and let f : A1 → A′

1 be a homomorphism
of C∗-algebras. For any z in KK∗(A

′
1, A2), we have

TB(f
∗(z)) = TB(z) ◦ fB,∗.

(iv) Let A′
2 be a C∗-algebra and let g : A′

2 → A2 be a homomorphism of
C∗-algebras. For any z in KK∗(A1, A

′
2), we have

TB(g∗(z)) = gB,∗ ◦ TB(z).

(v) We have

TB([IdA1 ])
(αT ,kT )

∼ IdK∗(A1⊗B).

(vi) For any C∗-algebra D and any element z in KK∗(A1, A2), we have

TB(τD(z)) = TB⊗D(z).

(vii) For any semi-split extension of C∗-algebras 0 → J → A → A/J → 0
with corresponding element [∂J,A] of KK1(A/J, J) that implements the
boundary map, we have

TB([∂J,A]) = DJ⊗B,A⊗B.

Moreover, TB is compatible with Kasparov products [9, Thm. 4.5].

Theorem 2.22. There exists a control pair (λ, h) such that the following holds:
Let A1, A2 and A3 be separable C∗-algebras and let B be a filtered C∗-algebra.
Then for any z in KK∗(A1, A2) and any z′ in KK∗(A2, A3), we have

TB(z ⊗A2 z
′)

(λ,h)
∼ TB(z

′) ◦ TB(z).

In the case of a finitely generated group, we also have a controlled version
of the Kasparov transformation. Let Γ be a finitely generated group. Recall
that a length on Γ is a map ℓ : Γ → R+ such that

• ℓ(γ) = 0 if and only if γ is the identity element e of Γ;
• ℓ(γγ′) ≤ ℓ(γ) + ℓ(γ′) for all element γ and γ′ of Γ;
• ℓ(γ) = ℓ(γ−1).

In what follows, we will assume that ℓ is a word length arising from a finite
generating symmetric set S, i.e.

ℓ(γ) = inf
{
d | γ = γ1 · · · γd with γ1, . . . , γd in S

}
.

Let us denote by B(e, r) the ball centered at the neutral element of Γ with
radius r, i.e. B(e, r) = {γ ∈ Γ | ℓ(γ) ≤ r}. Let A be a separable Γ-C∗-algebra,
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i.e. a separable C∗-algebra provided with an action of Γ by automorphisms.
For any positive number r, we set

(A⋊red Γ)r :=
{
f ∈ Cc(Γ, A) with support in B(e, r)

}
.

Then the C∗-algebra A ⋊red Γ is filtered by ((A ⋊red Γ)r)r>0. Moreover, if
f : A → B is a Γ-equivariant morphism of C∗-algebras, then the induced
homomorphism fΓ : A⋊red Γ → B ⋊red Γ is a filtered homomorphism. Recall
from [3] that for Γ-C∗-algebras A and B, Kasparov also defined a natural
transformation

J red
Γ : KKΓ

∗ (A,B) → KK∗(A⋊red Γ, B ⋊red Γ)

that preserves Kasparov products. Then for any z inKK∗(A,B) the morphism

K∗(A⋊red Γ) → K∗(B ⋊red Γ), x 7→ x⊗A⋊redΓ JΓ(z)

is induced by a control morphism [9, Thm. 5.3].

Theorem 2.23. There exists a control pair (αJ , kJ ) such that

• for any separable Γ-C∗-algebras A and B,
• for any elements z and z′ in KKΓ

∗ (A,B),

there exists an (αJ , kJ )-controlled morphism

J red
Γ (z) = (J red,ε,r

Γ (z))0<ε< 1
4αJ

,r>0 : K∗(A⋊red Γ) → K∗(B ⋊red Γ)

of same degree as z that satisfies the following:

(i) The controlled morphism J red
Γ (z) : K∗(A⋊red Γ) → K∗(B⋊redΓ) induces

right multiplication by J red
Γ (z) in K-theory.

(ii) For any elements z and z′ in KKΓ
∗ (A,B), we have

J red
Γ (z + z′) = J red

Γ (z) + J red
Γ (z′).

(iii) For any Γ-C∗-algebra A′, any homomorphism f : A → A′ of Γ-C∗-
algebras and any z in KKΓ

∗ (A
′, B), we have

J red
Γ (f∗(z)) = J red

Γ (z) ◦ fΓ,∗.

(iv) For any Γ-C∗-algebra B′, any homomorphism g : B → B′ of Γ-C∗-
algebras and any z in KKΓ

∗ (A,B), we have

J red
Γ (g∗(z)) = gΓ,∗ ◦ J

red
Γ (z).

(v) If 0 → J → A → A/J → 0 is a semi-split exact sequence of Γ-C∗-algebras
and [∂J,A] is the element of KKΓ

1 (A/J, J) that implements the boundary
map ∂J,A, we have

J red
Γ ([∂J,A]) = DJ⋊redΓ,A⋊redΓ.

The controlled Kasparov transformation is compatible with Kasparov prod-
ucts [9, Thm. 5.4].
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Theorem 2.24. There exists a control pair (λ, h) such that the following holds:
For any separable Γ-C∗-algebras A, B and D, any elements z in KKΓ

∗ (A,B)
and z′ in KKΓ

∗ (B,D), we have

J red
Γ (z ⊗B z′)

(λ,h)
∼ J red

Γ (z′) ◦ J red
Γ (z).

We have a similar result for maximal crossed products [9, Thms. 5.5 and 5.6].

2.25. Quantitative assembly maps. Let Γ be a finitely generated group
and let B be a Γ-C∗-algebra B. We equip Γ with any word metric. Recall
that if d is a positive number, then the Rips complex of degree d is the set
Pd(Γ) of probability measures on Γ with support of diameter at most d. Then
Pd(Γ) is a locally finite simplicial complex and provided with the simplicial
topology, Pd(Γ) is endowed with a proper and cocompact action of Γ by left
translation. Recall from [9] that for any Γ-C∗-algebra B, there exists a family
of quantitative assembly maps

µε,r,d
Γ,B,∗ : KKΓ

∗ (C0(Pd(Γ)), B) → Kε,r
∗ (B ⋊red Γ),

with d > 0, ε ∈ (0, 14 ) and r ≥ rd,ε, for a function

[0,+∞)× (0, 14 ) → (0,+∞) : (d, ε) 7→ rd,ε

independent ofB and Γ, non-decreasing in d and non-increasing in ε. Moreover,

the maps µε,r,d
Γ,B,∗ induce the usual assembly maps

µd
Γ,B,∗ : KKΓ

∗ (C0(Pd(Γ)), B) → K∗(B ⋊red Γ),

i.e. µd
Γ,B,∗ = ιε,r∗ ◦ µε,r,d

Γ,B,∗. Let us recall now the definition of the quantitative

assembly maps. Observe first that any x in Pd(Γ) can be written down in a
unique way as a finite convex combination

x =
∑

γ∈Γ

λγ(x)δγ ,

where δγ is the Dirac probability measure at γ in Γ. The functions

λγ : Pd(Γ) → [0, 1]

are continuous and γ(λγ′) = λγγ′ for all γ and γ′ in Γ. The function

pΓ,d : Γ → C0(Pd(Γ)), γ 7→
∑

γ∈Γ

λ1/2
e λ1/2

γ

is a projection of C0(Pd(Γ)) ⋊red Γ with propagation less than 2d. Let us set
then rd,ε = 2kJ ,ε/αJ

d. Recall that kJ can be chosen non-increasing and in
this case, rd,ε is non-decreasing in d and non-increasing in ε.

Definition 2.26. For any Γ-C∗-algebra A and any positive numbers ε, r and
d with ε < 1

4 and r ≥ rd,ε, we define the quantitative assembly map

µε,r,d
Γ,A,∗ : KKΓ

∗ (C0(Pd(Γ)), A) → Kε,r
∗ (A⋊red Γ),

z 7→
(
J
red, ε

αJ
, r
kJ ,ε/αJ

Γ (z)
)(
[pΓ,d, 0] ε

αJ
, r
kJ ,ε/αJ

)
.
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Then according to Theorem 2.23, the map µε,r,d
Γ,A,∗ is a homomorphism of

groups. For any positive numbers d and d′ such that d ≤ d′, we denote by

qd,d′ : C0(Pd′(Γ)) → C0(Pd(Γ))

the homomorphism induced by the restriction from Pd′(Γ) to Pd(Γ). It is
straight-forward to check that if d, d′ and r are positive numbers such that

d ≤ d′ and r ≥ rd′,ε, then µε,r,d
Γ,A,∗ = µε,r,d′

Γ,A,∗ ◦ qd,d′,∗. Moreover, for every positive

numbers ε, ε′, d, r and r′ such that ε ≤ ε′ < 1
4 , rd,ε ≤ r, rd,ε′ ≤ r′, and r ≤ r′,

we get by definition of a controlled morphism that

ιε,ε
′,r,r′

∗ ◦ µε,r,d
Γ,A,∗ = µε′,r′,d

Γ,A,∗ .

3. Persistence approximation property

In this section, we introduce the persistence approximation property for
filtered C∗-algebras. In the case of a crossed product C∗-algebra by a finitely
generated group, we prove that the persistence approximation property follows
from the Baum–Connes conjecture with coefficients.

Let B be a filtered C∗-algebra. As a consequence of Proposition 2.4, we see
that there exists for every ε ∈ (0, 1

4 ) a surjective map

lim
r>0

Kε,r
∗ (B) → K∗(B)

induced by (ιε,r∗ )r>0. Moreover, although this morphism is not a priori one-
to-one, if ε is a positive and small enough number, then for every positive
number r and any x inKε,r

∗ (B), there exist positive numbers ε′ in [ε, 14 ) (indeed
independent of x and B) and r′ > r such that

ιε,r∗ (x) = 0 =⇒ ιε,ε
′,r,r′

∗ (x) = 0 in Kε′,r′

∗ (B).

It is of relevance to ask whether this r′ depends on x, in other words whether
the family (Kε,r

∗ (B))0<ε< 1
4 ,r>0 provides a persistence approximation forK∗(B)

in the following sense: for any ε in (0, 1
4 ) small enough and for any r > 0, there

exist ε′ in (ε, 1
4 ) and r′ ≥ r such that for any x in Kε,r

∗ (B), we have

ιε,ε
′,r,r′

∗ (x) 6= 0 in Kε′,r′

∗ (B) =⇒ ιε,r∗ (x) 6= 0 in K∗(B).

Let us consider the following statement, for a filtered C∗-algebra B and
positive numbers ε, ε′ and r′ such that 0 < ε ≤ ε′ < 1

4 and 0 < r ≤ r′:
PA∗(B, ε, ε′, r, r′): for any x ∈ Kε,r

∗ (B),

ιε,r∗ (x) = 0 in K∗(B) =⇒ ιε,ε
′,r,r′

∗ (x) = 0 in Kε′,r′

∗ (B).

Notice that PA∗(B, ε, ε′, r, r′) can be rephrased as follows: The restriction
of ιε

′,r′

∗ : Kε′,r′

∗ (B) → K∗(B) to ιε,ε
′,r,r′

∗ (Kε,r
∗ (B)) is one-to-one.

In this section, we investigate the following persistence approximation prop-
erty: Given ε small enough and r positive numbers, do there exist positive
numbers ε′ and r′ with 0 < ε ≤ ε′ < 1

4 and r < r′ such that PA∗(B, ε, ε′, r, r′)
holds?
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3.1. The case of crossed products.

Theorem 3.2. Let Γ be a finitely generated group. Assume that

• Γ satisfies the Baum–Connes conjecture with coefficients;
• Γ admits a cocompact universal example for proper actions.

Then there exists a universal constant λpa ≥ 1 such that for any ε in (0, 1
4λpa

)

and any r > 0, there exists r′ ≥ r such that PA∗(A⋊redΓ, ε, λpaε, r, r
′) for any

Γ-C∗-algebra A.

Proof. Notice first that since Γ satisfies the Baum–Connes conjecture with
coefficients and admits a cocompact universal example for proper actions, there
exist positive numbers d and d′ with d ≤ d′ such that for any Γ-C∗-algebra B,
the following is satisfied:

• For any z in K∗(B⋊redΓ), there exists x in KKΓ
∗ (C0(Pd(Γ)), B) such that

µd
Γ,B,∗(x) = z.

• For any x in KKΓ
∗ (C0(Pd(Γ)), B) such that µd

Γ,B,∗(x) = 0, we have

q∗d,d′(x) = 0 in KKΓ
∗ (C0(Pd′(Γ)), B),

where q∗d,d′ : KKΓ
∗ (C0(Pd(Γ)), B) → KKΓ

∗ (C0(Pd′(Γ)), B) is induced by

the inclusion Pd(Γ) →֒ Pd′(Γ).

Let us fix such d and d′, let λ be as in Proposition 2.4, pick (α, h) as in Lemma
2.14 and set λpa = αλ. Assume that this statement does not hold. Then there
exist

• ε in (0, 1
4λpa

) and r > 0,

• an unbounded increasing sequence (ri)i∈N bounded below by r,
• a sequence of Γ-C∗-algebras (Ai)i∈N,
• a sequence of elements (xi)i∈N with xi in Kε,r

∗ (Ai ⋊red Γ)

such that, for every integer i,

ιε,r∗ (xi) = 0 in K∗(Ai ⋊red Γ)

and

ιε,λpaε,r,ri
∗ (xi) 6= 0 in Kλpaε,ri

∗ (Ai ⋊red Γ).

We can assume without loss of generality that r ≥ rd′,ε.
Since

(∏

j∈N

K (H )⊗Aj

)
⋊red Γhεr =

∏

j∈N

(K (H )⊗Aj ⋊red Γhεr)

and according to Lemma 2.14, there exists an element

x ∈ Kαε,hεr
∗

((∏

j∈N

K (H )⊗Aj

)
⋊red Γ

)
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that maps to ιε,αε,r,hεr
∗ (xi) for all integers i under the composition

Kαε,hεr
∗

((∏

j∈N

K (H )⊗Aj

)
⋊red Γ

)
→ Kαε,hεr

∗ (K (H )⊗Ai ⋊red Γ)

Mαε,hεr
Ai−−−−−−→ Kαε,hεr

∗ ( Ai ⋊red Γ),

where the first map is induced by the ith projection

(1)
∏

j∈N

K (H )⊗Aj → K (H )⊗Ai

and the map Mαε,hεr
Ai

is the Morita equivalence of Proposition 2.5. Let

z ∈ KKΓ
∗

(
C0(Pd(Γ)),

∏

j∈N

K (H )⊗Aj

)

such that

µd
Γ,

∏
j∈N

K (H )⊗Aj ,∗
(z) = ιαε,hεr

∗ (x) in K∗

((∏

j∈N

K (H )⊗Aj

)
⋊red Γ

)
.

Recall from [8, Prop. 3.4] that we have an isomorphism

(2) KKΓ
∗

(
C0(Pd(Γ)),

∏

j∈N

K (H )⊗Aj

)
∼=
−→

∏

j∈N

KKΓ
∗ (C0(Pd(Γ)), Aj)

induced on the ith factor and up to the Morita equivalence

KKΓ
∗ (C0(Pd(Γ)), Aj) ∼= KKΓ

∗ (C0(Pd(Γ)),K (H )⊗Aj)

by the ith projection (1). Let (zj)j∈N be the element of
∏

j∈N

KKΓ
∗ (C0(Pd(Γ)), Aj)

corresponding to z under this identification. Since the quantitative Baum–
Connes assembly maps are compatible with the usual ones, we get that

µd
Γ,

∏
j∈N

K (H )⊗Aj ,∗
(z) = ιαε,hεr

∗ ◦ µd,αε,hεr
Γ,

∏
j∈N

K (H )⊗Aj ,∗
(z).

But then, according to item (ii) of Proposition 2.4, there exists R ≥ hεr such
that

ιαε,λpaε,hεr,R
∗ (x) = ιαε,λpaε,hεr,R

∗ ◦ µd,αε,hεr
Γ,

∏
j∈N

K (H)⊗Aj ,∗
(z)

= µd,λpaε,R
Γ,

∏
j∈N

K (H )⊗Aj ,∗
(z).

Using once again the compatibility of the quantitative assembly maps with the
usual ones, we obtain by naturality that µd

Γ,Ai,∗
(zi) = 0 for every integer i and

hence
qd,d′,∗(zi) = 0 in KKΓ

∗ (C0(Pd′(Γ)), Ai).

Using once more equation (2), we deduce that

qd,d′,∗(z) = 0 in KKΓ
∗

(
C0(Pd′(Γ)),

∏

j∈N

K (H )⊗Aj

)
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and since

µd,λpaε,R
Γ,

∏
j∈N

K (H )⊗Aj ,∗
(z) = µd′,λpaε,R

Γ,
∏

j∈N
K (H )⊗Aj ,∗

◦ qd,d′,∗(z)

that

ιαε,λpaε,hεr,R
∗ (x) = 0 in Kλpaε,R

∗

((∏

j∈N

K (H )⊗Aj

)
⋊red Γ

)
.

By naturality, we see that ιε,λpaε,r,R
∗ (xi) = 0 in Kλpaε,R

∗ (Ai ⋊red Γ) for every
integer i. Picking an integer i such that ri ≥ R, we have

ιε,λpaε,r,ri
∗ (xi) = ιλpaε,R,ri

∗ ◦ ιε,λpaε,r,R
∗ (xi) = 0

which contradicts our assumption. �

Specifying the coefficients in the previous proof gives the next proposition.

Proposition 3.3. Let Γ be a finitely generated group and let A be a Γ-C∗-
algebra. Assume that

• Γ admits a cocompact universal example for proper actions;
• the Baum–Connes assembly map for Γ with coefficients in

ℓ∞(N,K (H )⊗A)

is onto;
• the Baum–Connes assembly map for Γ with coefficients in A is one to one.

Then for some universal constant λpa ≥ 1, any ε in (0, 1
4λpa

) and any r > 0

there exists r′ ≥ r such that PA(A⋊red Γ, ε, λpaε, r, r
′) is satisfied.

Since for any C∗-algebra B, the Baum–Connes assembly map for Γ with
coefficients in C0(Γ, B) (B being provided with the trivial action) is an iso-
morphism and since C0(Γ, B) ⋊red Γ ∼= B ⊗ K (ℓ2(Γ)), Proposition 3.3 leads
to the following corollary.

Corollary 3.4. Let Γ be a finitely generated group and let B be a C∗-algebra.
Assume that

• Γ admits a cocompact universal example for proper actions;
• the Baum–Connes assembly map for Γ with coefficients in

ℓ∞(N, C0(Γ,K (H )⊗B))

is onto.

Then for some universal constant λpa ≥ 1, any ε in (0, 1
4λpa

) and any r > 0

there exists r′ ≥ r such that PA(B ⊗ K (ℓ2(Γ)), ε, λpaε, r, r
′) is satisfied. More-

over, if Γ satisfies the Baum–Connes conjecture with coefficients, then r′ does
not depend on B.

If we take B = C in the previous corollary, we obtain the following linear
algebra statement.
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Proposition 3.5. Let Γ be a finitely generated group and let H be a separable
Hilbert space. Assume that

• Γ admits a cocompact universal example for proper actions;
• the Baum–Connes assembly map for Γ with coefficients in

ℓ∞(N, C0(Γ,K (H )))

is onto.

Then for some universal constant λ ≥ 1, any ε in (0, 1
4λ) and any r > 0 there

exists R ≥ r such that the following holds:

• If u is an ε-r-unitary of K (ℓ2(Γ)⊗H )+CIdℓ2(Γ)⊗H , then u is connected
to Idℓ2(Γ)⊗H by a homotopy of λε-R-unitaries.

• If q0 and q1 are ε-r-projections of K (ℓ2(Γ)⊗ H ) such that

rankκ0(q0) = rankκ0(q1),

then q0 and q1 are connected by a homotopy of λε-R-projections.

3.6. Induction and geometric setting. The conclusions of Corollary 3.4
and of Proposition 3.5 concern only the metric properties of Γ (indeed as we
shall see later up to quasi-isometries). For the purpose of having statements
analogous to Corollary 3.4 in a metric setting, we need to have a completely
geometric description of the quantitative assembly maps

µd,ε,r
Γ,

∏
i∈N

C0(Γ,K (H )⊗Ai),∗
: KKΓ

∗

(
C0(Pd(Γ)),

∏

i∈N

C0(Γ,K (H )⊗Ai)
)

→ K∗

((∏

i∈N

C0(Γ,K (H )⊗Ai)
)
⋊red Γ

)

(see the proof of Theorem 3.2). We study in this subsection a slight general-
ization of these maps to the case of induced algebras from the action of a finite
subgroup of Γ.

Let Γ be a discrete group equipped with a proper length ℓ. Let F be a finite
subgroup of Γ. For any F -C∗-algebra A, let us consider the induced Γ-algebra

IΓF (A) =
{
f ∈ C0(Γ, A) | f(γ) = kf(γk) for every k in F

}
.

Then left translation on C0(Γ, A) provides a Γ-C∗-algebra structure on IΓF (A).
Moreover, there is a covariant representation of (IΓF (A),Γ) on the algebra of
adjointable operators of the right Hilbert A-module A⊗ ℓ2(Γ), where

• if f is in IΓF (A), then f acts on A ⊗ ℓ2(Γ) by pointwise multiplication by
γ 7→ γ−1(f(γ));

• Γ acts by left translations.

The induced representation then provides an identification between the algebra
IΓF (A)⋊red Γ and the algebra of F -invariant elements of A⊗K (ℓ2(Γ)) for the
diagonal action of F , the action on K (ℓ2(Γ)) being by right translation. Let
us denote by AF,Γ the algebra of F -invariant elements of A ⊗ K (ℓ2(Γ)) and
by

ΦA,F,Γ : IΓF (A) ⋊red Γ → AF,Γ

Münster Journal of Mathematics Vol. 10 (2017), 201–268



220 Hervé Oyono-Oyono and Guoliang Yu

the isomorphism induced by the above covariant representation. The length ℓ
gives rise to a filtration structure (IΓF (A) ⋊red Γr)r>0 on IΓF (A) ⋊red Γ (recall
that (IΓF (A)⋊red Γr) is the set of functions of Cc(Γ, I

Γ
F (A)) with support in the

ball of radius r centered at the neutral element). The right invariant metric
associated to ℓ also provides a filtration structure on K (ℓ2(Γ)) and hence on
A⊗K (ℓ2(Γ)). This filtration is invariant under the action of F and moreover
the isomorphism ΦA,F,Γ : IΓF (A) ⋊red Γ → AF,Γ preserves the filtrations. By
using the induced algebra in the proof of Corollary 3.4, we get the following
result.

Proposition 3.7. Let F be a finite subgroup of a finitely generated group Γ
and let A be an F -C∗-algebra. Assume that

• Γ admits a cocompact universal example for proper actions;
• the Baum–Connes assembly map for Γ with coefficients in

ℓ∞(N, C0(Γ,K (H )⊗ IΓF (A)))

is onto.

Then for some universal constant λpa ≥ 1, any ε in (0, 1
4λpa

) and any r > 0

there exists r′ ≥ r such that PA∗(AF,Γ, ε, λpaε, r, r
′) is satisfied. Moreover, if Γ

satisfies the Baum–Connes conjecture with coefficients, then r′ does not depend
on F and A.

In [7], an isomorphism

(3) IΓF (Ps(Γ))∗ : lim
X

KKF
∗ (C(X), A)

∼=
−→ KKΓ

∗ (C0(Ps(Γ)), I
Γ
F (A))

was stated for any F -C∗-algebra, where X runs through F -invariant compact
subsets of Ps(Γ). In order to describe this isomorphism, let us first recall the
definition of induction for equivariant KK-theory. Let A and B be F -C∗-
algebras and let (E , ρ, T ) be a K-cycle for KKF

∗ (A,B), where

• E is a right B-Hilbert module provided with an equivariant action of F ;
• ρ : A → LB(E) is an F -equivariant representation of A into the algebra
LB(E) of adjointable operators of E ;

• T is an F -equivariant operator of LB(E) satisfying the K-cycle relations.

Let us define

IΓF (E) =
{
f ∈ C0(Γ, E) | f(γ) = kf(γk) for every k in F

}
.

Then IΓF (E) is a right IΓF (B)-Hilbert module for the pointwise scalar product
and multiplication, and the representation ρ : A → LB(E) gives rise in the
same way to a representation

IΓF ρ : IΓF (A) → LIΓF (B)(I
Γ
F (E)).

Let IΓFT be the operator of LIΓF (A)(I
Γ
F (E)) given by the pointwise multiplica-

tion by T . It is then plain to check that (IΓF (E), I
Γ
F ρ, I

Γ
F T ) is a K-cycle for

KKΓ
∗ (I

Γ
FA, I

Γ
FB) and that, moreover, (E , ρ, T ) → (IΓF (E), I

Γ
F ρ, I

Γ
F T ) gives rise

to a well-defined morphism IΓF : KKF
∗ (A,B) → KKΓ

∗ (I
Γ
F (A), I

Γ
F (B)).
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Back to the definition of the isomorphism of equation (3), let F be a finite
subgroup of a discrete group Γ and let X be an F -invariant compact subset
of Ps(Γ) for s > 0. If we equip Γ × X with the diagonal action of F , where
the action on Γ is by right multiplication, then there is a natural identification
between IΓF (C(X)) and C0((Γ×X)/F ). The map

(Γ×X)/F → Ps(Γ), [(γ, x)] 7→ γx

then gives rise to a Γ-equivariant homomorphism

ΥΓ
F,X : C0(Ps(Γ)) → IΓF (C(X)).

Then for any F -C∗-algebra A, the morphism

KKF
∗ (C(X), A) → KKΓ

∗ (C0(Ps(Γ)), I
Γ
F (A)), x 7→ ΥΓ,∗

F,X(IΓF (x))

is compatible with the inductive limit over F -invariant compact subsets of
Ps(Γ) and hence we eventually obtain a natural homomorphism

IΓF (Ps(Γ))∗ : lim
X

KKF
∗ (C(X), A) → KKΓ

∗ (C0(Ps(Γ)), I
Γ
F (A))

which turns out to be an isomorphism.
Let us consider now the composition

(4) ΦA,F,Γ,∗ ◦ µ
ε,r,s

Γ,IΓFA,∗
◦ IΓF (Ps(Γ))∗ : lim

X
KKF

∗ (C(X), A) → Kε,r
∗ (AF,Γ),

where X runs through F -invariant compact subsets of Ps(Γ). Both sides of
these maps only involve Γ as a metric space equipped with an isometric action
of F . Our aim in the next section is to provide a geometric definition for this
family of quantitative assembly maps.

4. Coarse geometry

Let Σ be a discrete proper metric space. For s a positive number, the Rips
complex of degree s is the set Ps(Σ) of probability measures on Σ with support
of diameter less than s. If Σ is equipped with a free action of a finite group
F by isometries and if A is an F -C∗-algebra, define then AF,Σ as the set of
invariant elements of A⊗K (ℓ2(Σ)) for the diagonal action of F . For F trivial,
we set A{e},Σ = AΣ. The filtration (A ⊗ K (ℓ2(Σ))r)r>0 on A ⊗ K (ℓ2(Σ)) is
preserved by the action of the group F . Hence, if AF,Σ,r stands for the set of
F -invariant elements of A⊗ K (ℓ2(Σ))r, then (AF,Σ,r)r>0 provides AF,Σ with
a structure of filtered C∗-algebra. Our aim in this section is to investigate the
permanence approximation property for AF,Σ. Let us set PAF,Σ,A,∗(ε, ε

′, r, r′)
for the property PA∗(AF,Σ, ε, ε

′, r, r′), i.e. the restriction of

ιε
′,r′

∗ : Kε′,r′

∗ (AF,Σ) → K∗(AF,Σ)

to ιε,ε
′,r,r′

∗ (Kε,r
∗ (AF,Σ)) is one-to-one.

Considering isometric actions of a finite group for the above persistence
approximation property might have two interesting applications:

• Study the persistence approximation property for crossed product of a
discrete proper group on a proper C∗-algebra.
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• Using the previous point and some Poincaré duality for some examples of
groups satisfying the Baum–Connes conjecture, try to compute explicitly
r′ in the persistence approximation property (see Theorem 3.2) in terms
of ε and r.

Following the route of the proof of Theorem 3.2, and in view of equation (4),
let us set

KF
∗ (Ps(Σ), A) = lim

X
KKF

∗ (C(X), A),

where in the inductive limit, X runs through F -invariant compact subsets of
Ps(Σ) for s > 0. Our purpose is to define a family of local quantitative coarse
assembly maps

νε,r,sF,Σ,A,∗ : KF
∗ (Ps(Σ), A) → Kε,r

∗ (AF,Σ),

for s > 0, ε ∈ (0, 1
4 ), r ≥ rs,ε and

[0,+∞)× (0, 1
4 ) → (0,+∞) : (s, ε) 7→ rs,ε

a function independent on A, non-decreasing in s and non-increasing in ε such
that, if F is a subgroup of a discrete group Γ equipped with right invariant met-
ric arising from a proper length, then νε,r,sF,Γ,A,∗ coincides with the composition

of equation (4).

4.1. A local coarse assembly map. Let Σ be a proper discrete metric space,
with bounded geometry and equipped with a free action of a finite group F by
isometries and let A be an F -algebra. Recall that AF,Σ is defined as the set of
invariant elements of A⊗ K (ℓ2(Σ)) for the diagonal action of F . Notice that
since the action of F on Σ is free, the choice of an equivariant identification
between Σ/F × F and Σ (i.e. the choice of a fundamental domain) gives rise
to a Morita equivalence between AF,Σ and A ⋊ F . The aim of this section is
to construct for s > 0 a family of local coarse assembly maps

νsF,Σ,A,∗K
F
∗ (Ps(Σ), A) → K∗(AF,Σ).

Let us define first for any F -algebras A and B a map

τF,Σ : KKF
∗ (A,B) → KK∗(AF,Σ, BF,Σ)

analogous to the Kasparov transformation.
Let z be an element in KKF

∗ (A,B). Then z can be represented by an
equivariant K-cycle (π, T,H ⊗ ℓ2(F )⊗B) where

• H is a separable Hilbert space;
• F acts diagonally on H ⊗ ℓ2(F ) ⊗ B, trivially on H and by the right
regular representation on ℓ2(F );

• π is an F -equivariant representation of A in the algebra LB(H ⊗ℓ2(F )⊗B)
of adjointable operators of H ⊗ ℓ2(F )⊗B;

• T is an F -equivariant selfadjoint operator of LB(H ⊗ℓ2(F )⊗B) satisfying
the K-cycle conditions, i.e. [T, π(a)] and π(a)(T 2 − IdH ⊗ℓ2(F )⊗B) belong

to K (H ⊗ ℓ2(F ))⊗B, for every a in A.
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Let HB,F,Σ be the set of invariant elements in H ⊗ ℓ2(F ) ⊗ B ⊗ K (ℓ2(Σ)).
Then HB,F,Σ is obviously a right BF,Σ-Hilbert module, and π induces a rep-
resentation πF,Σ of AF,Σ on the algebra LBF,Σ(HB,F,Σ) of adjointable op-
erators of HB,F,Σ and T gives rise also to a selfadjoint element TB,F,Σ of
LBF,Σ(HB,F,Σ). Moreover, by choosing an equivariant identification between
Σ/F×F and Σ, we can check that the algebra of F -equivariant compact opera-
tors on H ⊗ℓ2(F )⊗ℓ2(Σ)⊗B coincides with the algebra of compact operators
on the right BF,Σ-Hilbert module HB,F,Σ. Hence, (πF,Σ, TB,F,Σ,HB,F,Σ) is a
K-cycle for KK∗(AF,Σ, BF,Σ). Furthermore, its class in KK∗(AF,Σ, BF,Σ)
only depends on z and thus we end up with a morphism

(5) τF,Σ : KKF
∗ (A,B) → KK∗(AF,Σ, BF,Σ).

It is also quite easy to see that τF,Σ is functorial in both variables. Namely,
for any F -equivariant homomorphism f : A → B of F -algebras, let us set
fF,Σ : AF,Σ → BF,Σ for the induced homomorphism. Then for any F -algebras
A1, A2, B1 and B2 and any homomorphism of F -algebra f : A1 → A2 and
g : B1 → B2, we have

τF,Σ(f
∗(z)) = f∗

F,Σ(τF,Σ(z))

and

τF,Σ(g∗(z)) = gF,Σ,∗(τF,Σ(z))

for any z in KKF
∗ (A2, B1).

We are now in a position to define the index map. Observe that any x in
Ps(Σ) can be written as a finite convex combination

x =
∑

σ∈Σ

λσ(x)δσ,

where

• δσ is the Dirac probability measure at σ in Σ;
• for every σ in Σ, the coordinate function λσ : Ps(Σ) → [0, 1] is continuous
with support in the ball centered at σ and with radius 1 for the simplicial
distance.

Moreover, for any σ in Σ and k in F , we have λkσ(kx) = λσ(x). Let X be a
compact F -invariant subset of Pd(Σ). Let us define

PX : C(X)⊗ ℓ2(Σ) → C(X)⊗ ℓ2(Σ)

by

(6) (PX · h)(x, σ) = λ1/2
σ (x)

∑

σ′∈Σ

h(x, σ′)λ
1/2
σ′ (x)

for any h in C(X)⊗ ℓ2(Σ). Since
∑

σ∈Σ λσ = 1, it is straight-forward to check

that PX is an F -equivariant projection in C(X)⊗K (ℓ2(Σ)) with propagation
less than 2s. Hence, PX gives rise in particular to a class [PX ] in K0(C(X)F,Σ).
For any F -C∗-algebra A, the map

KKF
∗ (C(X), A) → K∗(AF,Σ), x 7→ [PX ]⊗C(X)F,Σ

τF,Σ(x)
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is compatible with the inductive limit over F -invariant compact subsets of
Ps(Σ) and hence gives rise to a local coarse assembly map

νsF,Σ,A,∗ : KF
∗ (Ps(Σ), A) → K∗(AF,Σ).

This local coarse assembly map is natural in the F -algebra. Furthermore, let
us denote for any positive numbers s and s′ such that s ≤ s′ by

qs,s′,∗ : KF
∗ (Ps(Σ), A) → KF

∗ (Ps′(Σ), A)

the homomorphism induced by the inclusion Ps(Σ) →֒ Ps′(Σ). Then it is
straight-forward to check that

νsF,Σ,A,∗ = νs
′

F,Σ,A,∗ ◦ qs,s′,∗.

4.2. Quantitative local coarse assembly maps. With notation of Section
4.1, if Σ is a proper discrete metric space equipped with an action of a finite
group F by isometries, then since the action of F preserves the filtration of
A⊗K (ℓ2(Σ)), the C∗-algebraAF,Σ inherits a structure of a filtered C∗-algebra
from A ⊗ K (ℓ2(Σ)). Our aim is to define a quantitative version of the local
assembly map νsF,Σ,A,∗. The argument of the proof of Theorem 2.21, can be
easily adapted to prove the next theorem.

Theorem 4.3. There exists a control pair (αT , kT ) such that

• for any proper discrete metric space Σ equipped with a free action of a
finite group F by isometries,

• for any F -C∗-algebras A and B,
• for any z in KKF

∗ (A,B),

there exists an (αT , kT )-controlled morphism

TF,Σ(z) = (τε,rF,Σ(z))0<ε< 1
4αT

: K∗(AF,Σ) → K∗(BF,Σ)

that satisfies the following:

(i) TF,Σ(z) : K∗(AF,Σ) → K∗(BF,Σ) induces the right multiplication by the
element τF,Σ(z) ∈ KK∗(AF,Σ, BF,Σ), defined by equation (5), in K-
theory.

(ii) For any elements z and z′ in KKF
∗ (A,B), we have

TF,Σ(z + z′) = TF,Σ(z) + TF,Σ(z
′).

(iii) Let A′ be an F -C∗-algebra and let f : A → A′ be an F -equivariant
homomorphism of C∗-algebras. Then TF,Σ(f

∗(z)) = TF,Σ(z) ◦ fF,Σ,∗ for
all z in KKF

∗ (A′, B).
(iv) Let B′ be an F -C∗-algebra and let g : B′ → B be a homomorphism of C∗-

algebras. Then TF,Σ(g∗(z)) = gF,Σ,∗ ◦ TF,Σ(z) for any z in KKF
∗ (A,B′).

(v) We have

TF,Σ([IdA])
(αT ,kT )

∼ IdK∗(AF,Σ).
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(vi) For any semi-split extension of F -C∗-algebras 0 → J → A → A/J → 0
with corresponding element [∂J,A] of KK1(A/J, J) that implements the
boundary map, we have

TF,Σ([∂J,A]) = DJF,Σ,AF,Σ .

We can proceed as in the proof of Theorem 2.22 to get the compatibility of
TF,Σ with the Kasparov product.

Theorem 4.4. There exists a control pair (λ, h) such that the following holds:
Let F be a finite group acting freely by isometries on a discrete metric space
Σ and let A1, A2 and A3 be F -C∗-algebras. Then for any z in KK∗(A1, A2)
and any z′ in KK∗(A2, A3), we have

TF,Σ(z ⊗A2 z
′)

(λ,h)
∼ TF,Σ(z

′) ◦ TF,Σ(z).

Let us set rs,ε = 2skT ,ε/αT
for any ε in (0, 14 ) and s > 0. Then for any

F -C∗-algebra A and any r ≥ rs,ε, the map

KKF
∗ (C(X), A) → Kε,r

∗ (AF,Σ),

x 7→
(
τ
ε/αT ,r/kT ,ε/αT

F,Σ (x)
)
([PX , 0]ε/αT ,r/kT ,ε/αT

)

is compatible with the inductive limit over F -invariant compact subsets of
Ps(Σ) and hence gives rise to a quantitative local coarse assembly map

νε,r,sF,Σ,A,∗ : KF
∗ (Ps(Σ), A) → Kε,r

∗ (AF,Σ).

The quantitative local coarse assembly maps are natural in the F -algebras. It
is straight-forward to check that

• ι∗ε,ε′,r,r′ ◦ν
ε,r,s
F,Σ,A,∗ = νε

′,r′,s
F,Σ,A,∗ for any positive numbers ε, ε′, r, r′ and s such

that ε ≤ ε′ < 1
4 , rs,ε ≤ r, rs,ε′ ≤ r′ and r ≤ r′;

• νε,r,s
′

F,Σ,A,∗ ◦qs,s′,∗ = νε,r,sF,Σ,A,∗ for any positive numbers ε, r, s and s′ such that

ε < 1
4 , s ≤ s′ and rs′,ε ≤ r;

• νsF,Σ,A,∗ = ιε,r∗ ◦ νε,r,sF,Σ,A,∗ for any positive numbers ε, r and s such that
ε < 1

4 and rs,ε ≤ r.

Let F be a finite subgroup of a finitely generated group Γ equipped with a
right invariant metric. Let us show that

νε,r,sF,Γ,A,∗ : KF
∗ (Ps(Γ), A) → Kε,r

∗ (AF,Γ)

coincides with the composition of equation (4). Using the naturality of the
map Φ·,F,Γ : IΓF (·) ⋊red Γ → ·F,Γ and by construction of TF,Γ and J red

Γ (see
[9, §5.2]), we get the following.

Lemma 4.5. Let F be a finite subgroup of a finitely generated discrete group Γ.
Then for any F -algebras A and B and any x in KKF

∗ (A,B), we have

ΦB,F,Γ,∗ ◦ J
red
Γ (IΓF (x)) = TF,Γ(x) ◦ ΦA,F,Γ,∗.
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Proposition 4.6. Let Γ be a finitely generated group, let F be a finite subgroup
of Γ and let A be an F -C∗-algebra. Then for any positive numbers ε, r and s
with ε < 1

4 and r ≥ rs,ε, the following diagram is commutative:

KKΓ
∗ (C0(Ps(Γ)), I

Γ
F (A))

µs,ε,r

Γ,IΓ
F

(A),∗
// Kε,r

∗ (IΓF (A)⋊red Γ)

Φε,r
A,F,Γ,∗

��

KF
∗ (Ps(Γ), A)

IΓF (Ps(Γ))∗

OO

νε,r,s
F,Γ,A,∗

// Kε,r
∗ (AF,Γ).

Proof. Let us set (α, k) = (αJ , kJ ) = (αT , kT ). Let X be an F -invariant
compact subset of Ps(Γ) and let x be an element of KKF

∗ (C(X), A). The
definition of the quantitative assembly maps was recalled in Section 2.25. We
have set

pΓ,s : Γ → C0(Ps(Γ)), γ 7→ λ1/2
e λ1/2

γ .

Then

zΓ,s = [pΓ,s, 0] ε
α
, r
kε/α

defines an element in

K
ε
α , r

kε/α

0 (C0(Ps(Γ))⋊ Γ).

Moreover, we have the equalities

Φε,r
A,F,Γ,∗ ◦ µ

s,ε,r

Γ,IΓF (A),∗
◦ IΓF (Ps(Γ))∗(x)(7)

= Φε,r
A,F,Γ,∗ ◦

(
J
red, ε

α , r
kε/α

Γ (ΥΓ,∗
F,X ◦ IΓF (x))

)
(zΓ,s)

= Φε,r
A,F,Γ,∗ ◦

(
J
red, ε

α , r
kε/α

Γ (IΓF (x))
)
◦Υ

Γ, ε
α , r

kε/α

F,X,Γ,∗ (zΓ,s)

= T
ε
α , r

kε/α

F,Γ (x) ◦ Φ
ε
α , r

kε/α

C(X),F,Γ,∗ ◦Υ
Γ, ε

α , r
kε/α

F,X,Γ,∗ (zΓ,s),

where

• ΥΓ
F,X,Γ : C0(Ps)⋊ Γ → IΓF (C(X))⋊ Γ is the morphism induced by ΥΓ

F,X ;

• the second equality in (7) is a consequence of the naturality of J red
Γ (see

Section 2);
• the third equality in (7) is a consequence of Lemma 4.5.

Since

Φ
ε
α , r

kε/α

C(X),F,Γ,∗ ◦Υ
Γ, ε

α , r
kε/α

F,X,Γ,∗ (zΓ,s) = [ΦC(X),F,Γ ◦ΥΓ
F,X,Γ(pΓ,s), 0] ε

α , r
kε/α

,

the proposition is then a consequence of the equality

ΦC(X),F,Γ ◦ΥΓ
F,X,Γ(pΓ,s) = PX ,

where PX is the projection of C(X)F,Σ defined by equation (6). �
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4.7. A geometric assembly map. In order to generalize Proposition 3.7 to
the setting of proper discrete metric spaces equipped with an isometric action
of a finite group F , we need

• an analog of the algebra ℓ∞(N,K (H )⊗ IΓF (A))⋊red Γ for an action on a
C∗-algebra A of a finite subgroup F of a finitely generated group Γ;

• an assembly map that computes its K-theory.

For a familyA = (Ai)i∈N of F -C∗-algebras, let us defineAF,Σ,r =
∏

i∈N
Ai,F,Σ,r

and let AF,Σ be the closure of
⋃

r>0AF,Σ,r in
∏

i∈N
Ai,F,Σ. Then AF,Σ is

obviously a filtered C∗-algebra. We set for the trivial group A{e},Σ = AΣ and
thus, if Σ is acted upon by a finite group F by isometries, F acts on AΣ and
preserves the filtration. Clearly, AF,Σ is the F -fixed points algebra of AΣ. If
A = (Ai)i∈N is a family of F -C∗-algebras, we set A∞ = (K (H ) ⊗ Ai)i∈N,
where K (H ) is equipped with the trivial action of F . We can then define A∞

F,Σ

and A∞
Σ from A∞ as above. For an F -C∗-algebra A, we set AN = (Ai)∈∈N for

the constant family of F -C∗-algebras A = Ai for all integers i and define from

this AN

F,Σ and AN,∞
F,Σ as above. For any family A = (Ai)i∈N of F -C∗-algebras,

let us consider the following controlled morphism:

GF,Σ,A,∗ = (Gε,r
F,Σ,A)0<ε< 1

4
,r>0 : K∗(A

∞
F,Σ) →

∏

i∈N

K∗(Ai,F,Σ),

where
Gε,r

F,Σ,A,∗ : Kε,r
∗ (A∞

F,Σ) →
∏

i∈N

Kε,r
∗ (Ai,F,Σ)

is the map induced on the jth factor and up to the Morita equivalence by the
restriction to A∞

F,Σ of the evaluation
∏

i∈N
K (H )⊗Ai,F,Σ → K (H )⊗Aj,F,Σ

at j ∈ N. As a consequence of Lemma 2.14, we have the following.

Lemma 4.8. There exists a control pair (α, h) such that

• for any finite group F ,
• for any proper discrete metric space Σ provided with an action of F by
isometries,

• for any family A = (Ai)i∈N of F -algebras,

the controlled morphism

GF,Σ,A,∗ : K∗(A
∞
F,Σ) →

∏

i∈N

K∗(Ai,F,Σ)

is an (α, h)-controlled isomorphism.

For any families of F -C∗-algebras A = (Ai)i∈N and B = (Bi)i∈N of F -C∗-
algebras and any family f = (fi : Ai → Bi)i∈N of F -equivariant homomor-
phisms, let us set

fF,Σ =
∏

i∈N

fi,F,Σ : AF,Σ → BF,Σ

and
f∞
F,Σ =

∏

i∈N

IdK (H ) ⊗ fi,F,Σ : A∞
F,Σ → B∞

F,Σ.
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Then together with Theorem 4.3, Lemma 4.8 yields the following.

Corollary 4.9. There exists a control pair (α, h) such that

• for any proper discrete metric space Σ equipped with a free action of a
finite group F by isometries,

• for any families of F -C∗-algebras A = (Ai)i∈N and B = (Bi)i∈N,
• for any z = (zi)i∈N in

∏
i∈N

KKF
∗ (Ai, Bi),

there exists an (α, h)-controlled morphism

T ∞
F,Σ(z) = (τ∞,ε,r

F,Σ (z))0<ε< 1
4α ,r>0 : K∗(A

∞
F,Σ) → K∗(B

∞
F,Σ)

that satisfies the following:

(i) For any elements z = (zi)i∈N and z′ = (z′i)i∈N in
∏

i∈N
KKF

∗ (Ai, Bi), we
have

T ∞
F,Σ(z + z′) = T ∞

F,Σ(z) + T ∞
F,Σ(z

′)

for z + z′ = (zi + z′i)i∈N.
(ii) For A′ = (A′

i)i∈N a family of F -C∗-algebras and f = (fi : A
′
i → Ai)i∈N a

family of F -equivariant homomorphisms of C∗-algebras, we have

T ∞
F,Σ(f

∗(z)) = T ∞
F,Σ(z) ◦ f

∞
F,Σ,∗,

where f∗(z) = (f∗
i (zi))i∈N.

(iii) For B′ = (Bi)i∈N a family of F -C∗-algebras and g = (gi : Bi → B′
i)i∈N a

family of F -equivariant homomorphism of C∗-algebras, we have

T ∞
F,Σ(g∗(z)) = g∞F,Σ,∗ ◦ T

∞
F,Σ(z),

where g∗(z) = (gi,∗(zi))i∈N.
(iv) If we set IdA = (IdAi)i∈N, then

T ∞
F,Σ([IdA])

(α,k)
∼ IdK∗(A∞

F,Σ).

(v) For any family of semi-split extensions of F -C∗-algebras

0 → Ji → Ai → Ai/Ji → 0

with corresponding element [∂Ji,Ai ] of KK1(Ai/Ji, Ji) that implements
the boundary maps, let us set J = (Ji)i∈N, A = (Ai)i∈N, A/J =
(Ai/Ji)i∈N and [∂J ,A] = ([∂Ji,Ai ])i∈N ∈

∏
i∈N

KKΓ
1 (Ai/Ji, Ji). Then

we have
T ∞
F,Σ([∂J ,A]) = DJ∞

F,Σ,A∞
F,Σ

.

The following proposition is a consequence of Theorem 4.4 and Lemma 4.8.

Proposition 4.10. There exists a control pair (λ, h) such that the following
holds: Let F be a finite group acting freely by isometries on a discrete metric
space Σ and let A = (Ai)i∈N, B = (Bi)i∈N and B′ = (B′

i)i∈N be families
of F -C∗-algebras. Let us set z ⊗B z′ = (zi ⊗Bi z

′
i)i∈N for any z = (zi)i∈N in∏

i∈N
KKF

∗ (Ai, Bi) and any z′ = (z′i)i∈N in
∏

i∈N
KKF

∗ (Bi, B
′
i). Then we have

T ∞
F,Σ(z ⊗B z′)

(λ,h)
∼ T ∞

F,Σ(z
′) ◦ T ∞

F,Σ(z).

Münster Journal of Mathematics Vol. 10 (2017), 201–268



Persistence approximation property 229

If F is a finite group and if A = (Ai)i∈N is a family of F -C∗-algebras, let
us consider the family A⊗K (ℓ2(F )) = (Ai ⊗K (ℓ2(F )))i∈N, provided by the
diagonal action of F where the action on K (ℓ2(F )) is induced with the right
regular representation. If moreover F acts on Σ by isometries, A∞

Σ is indeed
an F -C∗-algebra and we have a natural identification of filtered C∗-algebras

(8) A∞
Σ ⋊ F ∼= (A⊗ K (ℓ2(F )))∞F,Σ,

where A∞
Σ ⋊F is filtered by (C(F,A∞

Σ,r))r>0. Applying Proposition 4.10 to the

family MA,F = (MAi,F )i∈N ∈
∏

i∈N
KKF

∗ (Ai, Ai⊗K (ℓ2(F ))) of F -equivariant
Morita equivalences, we get the following lemma.

Lemma 4.11. There exists a control pair (α, h) such that for any finite group
F , any family A = (Ai)i∈N of F -C∗-algebras and any discrete metric space
Σ equipped with a free action of F by isometries, we have that, under the
identification of equation (8),

M∞
A,F := T ∞

F,Σ(MA) : K∗(A
∞
F,Σ) → K∗(A

∞
Σ ⋊ F )

is an (α, h)-controlled isomorphism.

Recall that to any F -invariant compact subset X of Ps(Σ) a projection
PX of C(X)F,Σ is associated. Indeed PX(x) is for every x in X the matrix
with almost all vanishing entries indexed by Σ × Σ defined by PX(x)σ,σ′ =

λσ(x)
1/2λσ′(x)1/2 (recall that (λσ)σ∈Σ is the set of coordinate functions on

Pr(Σ)). For any family X = (Xi)i∈N of compact F -invariant subsets of Ps(Σ),
let us set CX = (C(Xi))i∈N and consider the projection P∞

X = (PXi ⊗ e)i∈N

of C∞
X ,F,Σ, where e is a fixed rank-one projection of K (H ). The propagation

of P∞
X is less than 2s. Hence for the control pair (α, h) of Corollary 4.9, any

family A = (Ai)i∈N of F -C∗-algebras, any ε ∈ (0, 14 ), any s > 0 and any
r ≥ rs,ε, the map

∏

i∈N

KKF
∗ (C(Xi), Ai) → Kε,r

∗ (A∞
F,Σ), z 7→ τ

∞,ε/α,r/hε/α

F,Σ (z)(P∞
X )

is compatible with inductive limit of families X = (Xi)i∈N of compact F -
invariant subsets of Ps(Σ). By composition with the controlled isomorphism

T ∞
F,Σ(MA) : K∗(A

∞
F,Σ) → K∗(A

∞
Σ ⋊ F ),

we get for a function (0, 14 )×(0,∞) → (0,∞), (ε, s) 7→ rs,ε non-decreasing in s,
non-increasing in ε and independent of F , Σ and A and for any ε in (0, 14 ), any
positive numbers s and r such that r ≥ rs,ε a quantitative geometric assembly
map

ν∞,ε,r,s
F,Σ,A,∗ :

∏

i∈N

KF
∗ (Ps(Σ), Ai) → Kε,r

∗ (A∞
Σ ⋊ F ).

Therefore, for s a fixed positive number, the family of maps (ν∞,ε,r,s
F,Σ,A,∗)ε>0,r≥rs,ε

gives rise to a geometric assembly map

ν∞,s
F,Σ,A,∗ :

∏

i∈N

KF
∗ (Ps(Σ), Ai) → K∗(A

∞
Σ ⋊ F )
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uniquely defined by ν∞,s
F,Σ,A,∗ = ιε,r∗ ◦ ν∞,ε,r,s

F,Σ,A,∗ for any positive numbers ε, r and
s such that ε < 1

4 and r ≥ rs,ε.
The quantitative assembly maps ν∞,ε,r,s

F,Σ,A,∗ are compatible with inclusions of
Rips complexes: let

q∞s,s′,∗ :
∏

i∈N

KF
∗ (Ps(Σ), Ai) →

∏

i∈N

KF
∗ (Ps′(Σ), Ai)

be the map induced by the inclusion Ps(Σ) →֒ Ps′(Σ), then we have

ν∞,ε,r,s′

F,Σ,A,∗ ◦ q∞s,s′,∗ = ν∞,ε,r,s
F,Σ,A,∗

for any positive numbers ε, s, s′, and r such that ε ∈ (0, 1
4 ), s ≤ s′, r ≥ rs′,ε,

and thus
ν∞,s′

F,Σ,A,∗ ◦ q
∞
s,s′,∗ = ν∞,s

F,Σ,A,∗

for any positive numbers s and s′ such that s ≤ s′.
Eventually, we can take the inductive limit over the degree of the Rips

complex and set

Ktop,∞
∗ (F,Σ,A) = lim

s>0,

∏

i∈N

KF
∗ (Ps(Σ), Ai)

= lim
s>0,(Xs

i )i∈N

∏

i∈N

KKF
∗ (C(Xs

i ), Ai),

where in the inductive limit on the right-hand side, s runs through positive
numbers and (Xs

i )i∈N runs through families of F -invariant compact subset of
Ps(Σ). We get then an assembly map

(9) ν∞F,Σ,A,∗ : Ktop,∞
∗ (F,Σ,A) → K∗(A

∞
Σ ⋊ F ).

4.12. The groupoid approach. In order to generalize the proof of Propo-
sition 3.7 in the setting of a discrete metric space, our purpose in this sec-
tion is to follow the route of [11] and to show that if A = (Ai)i∈N is a fam-
ily of C∗-algebras, then A∞

Σ is the reduced crossed product of the algebra∏
i∈N

C0(Σ, Ai⊗K(H)) by the diagonal action of the groupoid attached to the
coarse structure of the discrete metric space Σ.

The coarse groupoid GΣ associated to a discrete metric space Σ with bound-
ed geometry was introduced in [11]. The groupoid GΣ has the Stone–Čech
compactification βΣ of Σ as unit space, and the Roe algebra of Σ is the reduced
crossed product of ℓ∞(Σ,K (H )) by an action of GΣ. Let us describe the
construction of this groupoid. If (Σ, d) is a discrete metric space with bounded
geometry. Then a subset E of Σ×Σ is called an entourage for Σ if there exists
r > 0 such that

E ⊆
{
(x, y) ∈ Σ× Σ | d(x, y) < r

}
.

If E is an entourage for Σ, denote by Ē its closure in the Stone–Čech com-
pactification βΣ×Σ of Σ × Σ. Then there is a unique structure of a groupoid
on

GΣ =
⋃

E entourage

Ē ⊆ βΣ×Σ
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with the Stone–Čech compactification βΣ of Σ being the unit space which
extends the pair groupoid Σ × Σ. Let o : GΣ → βΣ and t : GΣ → βΣ

be respectively the source (origin) and range (target) map. For any C(βΣ)-
algebra B, let o∗B = C0(GΣ)⊗o B and t∗B = C(GΣ)⊗tB be respectively the
balanced product of C0(GΣ) and B relatively to the C(βΣ)-algebra structures
on B induced by o and t. If g is a continuous function in C0(GΣ) and b is
an element in B, we denote respectively by g ⊗o b and g ⊗t b the elementary
tensors of g and b in o∗B and t∗B. For a family A = (Ai)i∈N of C∗-algebras,
let us set AC0(Σ) =

∏
i∈N

C0(Σ, Ai). Then the diagonal action of ℓ∞(Σ) by
multiplication clearly provides AC0(Σ) with a structure of C(βΣ)-algebra. Our
aim is to show that GΣ acts diagonally on AC0(Σ) and that AC0(Σ) ⋊red GΣ is
canonically isomorphic to AΣ.

Let C0(GΣ,A) be the closure in
∏

i∈N
C0(Σ× Σ, Ai) of

{
(fi)i∈N | ∃r > 0, ∀i ∈ N, ∀(σ, σ′) ∈ Σ2, d(σ, σ′) > r ⇒ fi(σ, σ

′) = 0
}
.

For an entourage E and an element f = (fi)i∈N of AC0(Σ), let us define

fE
t = (fE

t,i)i∈N and fE
o = (fE

o,i)i∈N

by

fE
t,i(σ, σ

′) = χE(σ, σ
′)fi(σ) and fE

o,i(σ, σ
′) = χE(σ, σ

′)fi(σ
′)

for any integer i and any σ and σ′ in Σ.

Lemma 4.13. Let A = (Ai)i∈N be a family of C∗-algebras. Then we have
isomorphisms of C(GΣ)-algebras

Ψt : t
∗AC0(Σ) → C0(GΣ,A)

and

Ψo : o
∗AC0(Σ) → C0(GΣ,A)

only defined by Ψt(χE ⊗t f) = fE
r and Ψo(χE ⊗o f) = fE

o for any f in AC0(Σ)

and any entourage E for Σ.

Proof. It is clear that the definitions of Ψt and Ψo by the formulas above are
consistent. Moreover, Ψt and Ψo are isometries. Let us prove for instance
that Ψt is an isomorphism. Surjectivity of Ψt amounts to proving that for
any (hi)i∈N in

∏
i∈N

C0(Σ × Σ, Ai) and any entourage E, the family of maps
h = (χEhi)i∈N is in the range of Ψt. According to [11, Lem. 2.7], we can
assume that the restrictions s : E → Σ and r : E → Σ are one-to-one. For any
integer i, then define fi : Σ → Ai by

fi(σ) =

{
hi(σ, σ

′) if there exists σ′ such that (σ, σ′) is in E,

0 otherwise.

Then fi is in C0(Σ, Ai) for every integer i and if we set f = (fi)i∈N, then
fE
t = h and hence h is in the range of Ψt. �
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Let us define VΣ = Ψt ◦ Ψ−1
o . Then VΣ : o∗AC0(Σ) → s∗AC0(Σ) is an

isomorphism of C(GΣ)-algebras that can be described on elementary tensors
as follows. For an entourage E such that the restrictions o : E → Σ and
t : E → Σ are one-to-one, for every σ in t(E) there exists a unique σ′ in
o(E) such that (σ, σ′) is in E. For any f = (fi)i∈N in AC0(Σ), we define
E ◦ f = (E ◦ fi)i∈N in AC0(Σ), where for any integer i,

E ◦ fi(σ) =

{
fi(σ

′) if σ is in r(E) and (σ, σ′) is in E,

0 otherwise.

Then under the above assumptions, we have VΣ(χE ⊗o f) = χE ⊗t E ◦ f .

Lemma 4.14. For every family A = (Ai)i∈N of C∗-algebras,

VΣ : o∗AC0(Σ) → t∗AC0(Σ)

is an action of the groupoid GΣ on AC0(Σ).

Proof. For an element γ in GΣ, let

VΣ,γ : AC0(Σ)o(γ) → AC0(Σ)t(γ)

be the map induced by VΣ on the fiber of AC0(Σ) at o(γ). Let γ and γ′ be
elements in GΣ such that o(γ) = t(γ′). Let E and E′ be entourages such that
the restrictions of o and t to E and E′ are one-to-one and such that γ ∈ Ē and
γ′ ∈ Ē′. Let us set

E ◦ E′ =
{
(σ, σ′′) ∈ Σ× Σ | ∃σ′ ∈ Σ, (σ, σ′) ∈ E and (σ′, σ′′) ∈ E′

}
.

Then γ ·γ′ is in E ◦ E′ and the restrictions of o and s to E ◦E′ are one-to-one.
Moreover, we clearly have (E ◦E′)◦f = E ◦ (E′ ◦f) for all f in AC0(Σ). Hence,
we get

VΣ,γ·γ′(fo(γ′)) = (E ◦ E′ ◦ f)t(γ)

= VΣ,γ((E
′ ◦ f)o(γ))

= VΣ,γ((E
′ ◦ f)t(γ′))

= VΣ,γ ◦ VΣ,γ′(fo(γ)). �

Proposition 4.15. Let Σ be a discrete metric space with bounded geometry
and let A = (Ai)i∈N be a family of C∗-algebras. Then we have a natural
isomorphism

IΣ,A : AC0(Σ) ⋊red GΣ

∼=
−→ AΣ.

Proof. Following the proof of [11, Lem. 4.4], we obviously have that JΣ,A =⊕
i∈N

C0(Σ, Ai) is a GΣ-invariant ideal of AC0(Σ). For any σ′ in Σ, we have at
any element of Σ a canonical identification of the fiber of JΣ,A with

⊕
i∈N

Ai

and under this identification, the action of Σ × Σ ⊆ GΣ on JΣ,A is trivial.
According to [11, Lem. 4.3], the reduced crossed product AC0(Σ) ⋊red GΣ is
faithfully represented in the right JΣ,A-Hilbert module

L2(GΣ, JΣ,A) ∼= L2(GΣ,AC0(Σ))⊗AC0(Σ)
JΣ,A.
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But we have a natural identification of JΣ,A-right Hilbert modules

L2(GΣ, JΣ,A) ∼= C0

(
Σ,

(⊕

i∈N

Ai

)
⊗ ℓ2(Σ)

)
.

Under this identification, the representation of AC0(Σ) ⋊red GΣ indeed arises

from a pointwise action on (
⊕

i∈N
Ai)⊗ ℓ2(Σ). As such, the underlying repre-

sentation of AC0(Σ) ⋊red GΣ on (
⊕

i∈N
Ai)⊗ ℓ2(Σ) is faithful. Let us describe

this action.

• An element f = (fi)i∈N in AC0(Σ)
∼=

∏
i∈N

Ai⊗C0(Σ) acts on (
⊕

i∈N
Ai)⊗

ℓ2(Σ) in the obvious way.
• If E is an entourage, then the action of χE on (

⊕
i∈N

Ai)⊗ℓ2(Σ) is defined
by pointwise multiplication by Id⊕

i∈N
Ai

⊗ TE, where the operator TE is

defined by TE,σ,σ′ = χE(σ, σ
′) for any σ and σ′ in Σ.

The algebra AΣ acts also faithfully on (
⊕

i∈N
Ai)⊗ ℓ2(Σ) by pointwise action

at each integer i of Ai ⊗ K (ℓ2(Σ)) on Ai ⊗ ℓ2(Σ). It is then clear that if f is
in AC0(Σ) and E is an entourage, then fTE is in AΣ. Conversely, let us show

any element in AΣ acts on (
⊕

i∈N
Ai)⊗ ℓ2(Σ) as an element of AC0(Σ)⋊redGΣ.

Let (Ti)i∈N be an element of AΣ,r. We can assume that for every integer i,
there exists a finite subset Xi of Σ such that Ti = (Ti,σ,σ′)(σ,σ′)∈Σ2 lies indeed

in Ai ⊗ K (ℓ2(Xi)). Applying [11, Lem. 2.7] to the union of the support of
the Ti when i runs through integers, we can actually assume without loss of
generality that there exists an entourage E such that

• the restrictions of o and t to E are one-to-one;
• for any integer i and any σ and σ′ in Σ, the inequality Ti,σ,σ′ 6= 0 implies
that (σ, σ′) is in E.

Define then, for any integer i,

fi(σ) =

{
Ti,σ,σ′ if there exists σ′ ∈ Xi such that (σ, σ′) ∈ E ∩ (Xi ×Xi),

0 otherwise.

Then fi is in C0(Σ, Ai) for every integer i and if we set f = (fi)i∈N, then fTE

acts on (
⊕

i∈N
Ai)⊗ ℓ2(Σ) as (Ti)i∈N. �

If Σ is equipped with an action of a finite group F by isometries, then the
diagonal action of F on Σ induces an action of F on GΣ by automorphisms of
groupoids. Moreover, for any family A = (Ai)i∈N of F -C∗-algebras, the action
of GΣ on AC0(Σ) =

∏
i∈N

C0(Σ, Ai) is covariant with respect to the pointwise
diagonal action of F . Hence, we end up in this way with an action of F on
AC0(Σ) ⋊red GΣ by automorphisms. Namely, let us consider the semi-direct
product groupoid

GF,Σ = GΣ ⋊ F = {(γ, x) ∈ GΣ × F}

provided with the source map

GF,Σ → βΣ, (γ, x) 7→ o(x−1(γ))
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and range map

GF,Σ → βΣ, (γ, x) 7→ t(γ)

and composition rule (γ, x)·(γ′, x′) = (γ ·x(γ′), xx′) if o(x−1(γ)) = t(γ′). Then
AC0(Σ) is actually a GF,Σ-C

∗-algebra and we have a natural identification

(10) (AC0(Σ) ⋊red GΣ)⋊ F ∼= AC0(Σ) ⋊red GF,Σ.

On the other hand, F also acts for each integer i on K (ℓ2(Σ)) ⊗ Ai and
hence pointwise on AΣ. The isomorphism of Proposition 4.15 is then clearly
F -equivariant and hence gives rise under the identification of equation (10) to
an isomorphism

(11) IF,Σ,A : AC0(Σ) ⋊red GF,Σ

∼=
−→ AΣ ⋊ F.

Since C(βN×Σ) ∼= ℓ∞(N × Σ), the C∗-algebra AC0(Σ) is a C(βN×Σ)-algebra
for any family A. Let us show that βN×Σ is actually provided with an action
of GΣ on the right that makes AC0(Σ) into a βN×Σ ⋊GΣ-algebra.

Let p : βN×Σ → βΣ be the (only) map extending the projection N× Σ → Σ
by continuity. Let x be an element of βΣ, let γ be an element of GΣ such that
t(γ) = x and let E ⊆ Σ× Σ be an entourage such that

• γ belongs to Ē;
• the restrictions of o and t to E are one-to-one.

Let (nk, σk)k∈N be a sequence in N×Σ converging to some z in βN×Σ and such
that σk is in t(E) for every integer k. For any integer k, let σ′

k be the unique
element of o(E) such that (σk, σ

′
k) is in E. Then the sequence (nk, σ

′
k)k∈N

converges in βN×Σ to an element z′ such that p(z′) = o(γ). This limit does not
depend on the choice of E and (nk, σk)k∈N that satisfy the conditions above.
If we set z · γ = z′, we obtain an action of GΣ on βN×Σ on the left. Obviously,
the restriction of βN×Σ ⋊ GΣ to the saturated open subset N × Σ of βN×Σ is
the union of pair groupoids on {n} × Σ. If A is a family of C∗-algebras, the
multiplier action of C(βN×Σ) is GΣ-equivariant and hence we end up with an
action of βN×Σ ⋊GΣ on AC0(Σ).

If Σ is endowed with an action of a finite group F by isometries, then the
diagonal action of F on N × Σ (trivial on N) gives rise to an action of F on
βN×Σ by homeomorphisms which makes the action of GΣ covariant. Hence
βN×Σ is provided with an action of GF,Σ = GΣ⋊F . Moreover, if A is a family
of F -C∗-algebras, then AC0(Σ) is a βN×Σ ⋊GF,Σ-algebra.

Consider now the spectrum β0
N×Σ of the ideal ℓ∞(N, C0(Σ)) of C(βN×Σ) ∼=

ℓ∞(N × Σ). Then β0
N×Σ is a saturated open subset of βN×Σ, the pointwise

multiplication of ℓ∞(N, C0(Σ)) on AC0(Σ) =
∏

i∈N
C0(Σ, Ai) provides AC0(Σ)

with a structure of C(β0
N×Σ)-algebra and thus we see that AC0(Σ) is indeed

a β0
N×Σ ⋊GΣ-algebra. The balanced products of AC0(Σ) respectively with

C0(GΣ), C0(βN×Σ⋊GΣ) and C0(β
0
N×Σ⋊GΣ) over the origin map coincide (us-

ing the C(βN×Σ)-linearity). The same holds for the balanced products over the
target map. Hence, by construction of the reduced groupoid, the three crossed
products AC0(Σ)⋊redGΣ, AC0(Σ)⋊red(βN×Σ⋊GΣ) and AC0(Σ)⋊red(β

0
N×Σ⋊GΣ)
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coincide. If Σ is equipped with an action of a finite group F by isometries,
then β0

N×Σ is F -invariant and hence endowed with an action of GF,Σ. More-
over, for any family A of F -C∗-algebras, AC0(Σ) is a β0

N×Σ ⋊GF,Σ-algebra. Let
us set then GN

Σ (resp. G0,N
Σ ) for the groupoid βN×Σ ⋊ GΣ (resp. β0

N×Σ ⋊ GΣ),
and if Σ is provided with an action of a finite group F by isometries, set then
GN

F,Σ = GN

Σ ⋊ F .

Lemma 4.16. Let E be a subset of N × Σ × Σ and assume that there exists
r > 0 such that for all integers i and all σ and σ′ in Σ, the element (i, σ, σ′)
in E implies that d(σ, σ′) < r. Then there exist

• f1, . . . , fk in ℓ∞(N× Σ);
• E1, . . . , Ek entourages of Σ included in

⋃
i∈N

{(σ, σ′) ∈ Σ2 | (i, σ, σ′) ∈ E},

such that χE(i, σ, σ
′) =

∑k
j=1 fj(i, σ)χEj (σ, σ

′) for every integer i and all σ

and σ′ in Σ.

Proof. Let us set E1 =
⋃

i∈N
{(σ, σ′) ∈ Σ2 | (i, σ, σ′) ∈ E}. Using [11, Lem. 2.7],

we can assume without loss of generality that the restrictions of s and r to E1

are one-to-one. Define then f1 : N× Σ → C by

f1(i, σ) =

{
1 if there exists σ′ in Σ such that (i, σ, σ′) is in E,

0 otherwise.

Then χE(i, σ, σ
′) = f1(i, σ)χE1(σ, σ

′) for every integer i and all σ and σ′ in Σ.
�

5. The Baum–Connes assembly map for (GF,Σ,AC0(Σ))

Recall that the definition of the Baum–Connes assembly map has been ex-
tended to the setting of groupoids in [12]. Let G be a locally compact groupoid
equipped with a Haar system and let B be a C∗-algebra acted upon by G. Then
there is an assembly map

µG,B,∗ : Ktop
∗ (G,B) → K∗(B ⋊red G),

where Ktop
∗ (G,B) is the topological K-theory for the groupoid G with co-

efficients in B. Our aim in this section is to describe the left-hand side of
this assembly map for the action of GΣ on A∞

C0(Σ) and then to show that
the Baum–Connes conjecture is equivalent to the bijectivity of the geometric
assembly map

ν∞F,Σ,A,∗ : Ktop,∞
∗ (F,Σ,A) → K∗(A

∞
Σ ⋊ F )

defined in Section 4.7. Using results of [11] on the Baum–Connes conjecture for
groupoid affiliated to coarse structures, we get examples of coarse spaces that
satisfy the permanence approximation property. Notice that GN

F,Σ is clearly a

σ-compact and étale groupoid and that according to [11, Lem. 4.1], the Baum–
Connes conjectures for the action of GF,Σ on A∞

C0(Σ) and for the action of GN

F,Σ

on A∞
C0(Σ) are indeed equivalent.
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5.1. The classifying space for proper actions of the groupoid G
N

Σ. For
a σ-compact and étale groupoid G, the following description for the left-hand
side of the assembly map was given in [13, §3]. Let K be a compact subset of
G and let us consider the space PK(G) of probability measures η on G such
that for all γ and γ′ in the support of η,

• γ and γ′ have same target;
• γ−1 · γ′ is in K.

We endow PK(G) with the weak-∗ topology, and equip it with the natural left
action of G. Then according to [13, Prop. 3.1], the action of G on PK(G) is
proper and cocompact. If K ⊆ K ′ is an inclusion of compact subsets of G,
then for any G-algebra B, the inclusion PK(G) →֒ PK′(G) induces a morphism
KKG

∗ (C0(PK(G)), B) → KKG
∗ (C0(PK′(G)), B) and we have

Ktop
∗ (G,B) = lim

K
KKG

∗ (C0(PK(G)), B),

where in the inductive limit, K runs through compact subsets of G. If the
groupoid G is provided with an action of a finite group F by automorphisms,
then for any F -invariant subset of G, the space PK(G) is F -invariant and for
any G⋊ F -algebra B, we get

Ktop
∗ (G⋊ F,B) = lim

K
KKG⋊F

∗ (C0(PK(G)), B),

where in the inductive limit, K runs through compact and F -invariant subsets
of G. If Σ is a proper discrete metric space and if r is a nonnegative number,
let us set

Er =
{
(σ, σ′) ∈ Σ× Σ | d(σ, σ′) ≤ r

}
,

and then consider the element χr = 1 ⊗C(βΣ) χEr of Cc(G
N

Σ). Then we have

χ2
r = χr for the pointwise multiplication as continuous functions in C0(G

N

Σ)
and hence

suppχr =
{
γ ∈ GN

Σ | χr(γ) = 1
}

is a compact subset of GN

Σ. Let us set then Pr(G
N

Σ) = Psuppχr (G
N

Σ). If Σ
is provided with an action of a finite group F by isometries, χr being F -
invariant, we see that Pr(G

N

Σ) is for any r > 0 provided with an action of F by
homeomorphisms.

For any ω in βN×Σ and any subset Y of some Pr(G
N

Σ), let us set Yω for
the fiber of Y at ω, i.e. the set of probability measures of Y supported in the
set of elements of GN

Σ with range ω. If W is a subset of βN×Σ then define
Y/W =

⋃
ω∈W Yω. Let us define

Pr(G
0,N
Σ ) = Pr(G

N

Σ)/β0
N×Σ

.

Fix a positive number r and let (n, σ, x) be any element in N × Σ × Pr(Σ).
Since (n, σ) is in β0

N×Σ and since the fiber of GN

Σ at (n, σ) for the target map
is Σ, we see that (n, σ, x) can be viewed as an element in Pr(G

0,N
Σ ). For any

family X = (Xi)i∈N of compact subsets of Pr(Σ), let us set ZX for the closure
of {

(n, σ, x) ∈ N× Σ× Pr(Σ) | n ∈ N, σ ∈ Xn, x ∈ Xn

}
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in Pr(G
N

Σ) (we view an element σ of Σ as an element of Pr(Σ), the Dirac
measure at σ).

Lemma 5.2. Let r be a positive number and let X = (Xi)i∈N be a family of
compact subsets of Pr(Σ). Then ZX is a compact subset of Pr(G

0,N
Σ ).

Proof. Since Xi is a compact subset of the locally finite simplicial complex
Pr(Σ), there exists a finite set Yi of Σ such that every element ofXi is supported
in Yi. Applying Lemma 4.16 to

E =
{
(n, σ, σ′) ∈ N× Σ× Σ | σ ∈ Yn, σ

′ ∈ Yn, d(σ, σ
′) ≤ r

}
,

we see that there exist f1, . . . , fk in ℓ∞(N × Σ) ∼= C(βN×Σ) and E1, . . . , Ek

entourages of Σ of diameter less than r such that

χE(i, σ, σ
′) =

k∑

j=1

fj(i, σ)χEj (σ, σ
′)

for every integer j and all σ and σ′ in Σ. Set then

χ̃E =
k∑

j=1

fj ⊗C(βΣ) χEj ∈ Cc(G
0,N
Σ ).

Then χ̃E is valued in {0, 1}. The set of probability measures η such that
η(χ̃E) = 1 is closed in the unit ball of the dual of Cc(G

N

Σ) equipped with the
weak topology and hence is compact. Since η(χ̃E) = 1 for any η in ZX , we get
that ZX is compact in Pr(G

N

Σ). But since we also have η(χ̃Ef) = η(f) for any
η in ZX and any f in Cc(G

N

Σ) and since χ̃E is in Cc(G
0,N
Σ ), we deduce that ZX

is included in Pr(G
0,N
Σ ). �

Corollary 5.3. Let r be a positive number and let X = (Xi)i∈N be a family
of compact subsets of Pr(Σ). Then the closure of

⋃
i∈N

{i}×Σ×Xi in Pr(G
N

Σ)

is a GN

Σ-invariant and GN

Σ-compact subset of Pr(G
0,N
Σ ).

Proof. The closure of
⋃

i∈N
{i} ×Σ×Xi in Pr(G

N

Σ) is the GN

Σ-orbit of ZX and

hence is GN

Σ-invariant and GN

Σ-compact in Pr(G
0,N
Σ ). �

5.4. Topological K-theory for the groupoid GF ,Σ with coefficients

in AC0(Σ). The aim of this subsection is to show that for any free action
of a finite group F by isometries on Σ and any family A = (Ai)i∈N of F -

C∗-algebras, we have a natural identification between Ktop
∗ (GN

F,Σ,A
∞
C0(Σ)) and

Ktop,∞
∗ (F,Σ,A).
Let Σ be a discrete metric space with bounded geometry. For any GN

Σ-
invariant and GN

Σ-compact subset Y of Pr(G
0,N
Σ ), the restriction Y/{i}×Σ×Pr(Σ)

is an invariant and cocompact subset of {i} × Σ × Pr(Σ) for the action of
the groupoid of pairs Σ × Σ. Hence, there exists a family X Y = (XY

i )i∈N of
compact subsets of Pr(Σ) such that

(12) Y/{i}×Σ×Pr(Σ) = {i} × Σ×XY
i
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for every integer i. Notice that if Σ is provided with an action of a finite
group F by isometries and if Y as above is moreover F -invariant, then XY

i

is F -invariant for every integer i. For any GN

F,Σ-invariant and GN

Σ-compact
subset Y of Pr(G

0,N
Σ ) and any family A = (Ai)i∈N of F -C∗-algebras, consider

the following composition (recall that A∞
C0(Σ) =

∏
i∈N

C0(Σ, Ai ⊗ K (H ))):

iY : KKGN

F,Σ
∗ (C0(Y ),A∞

C0(Σ)) →
∏

i∈N

KKF
∗ (C(XY

i ),K (H )⊗Ai)(13)

→
∏

i∈N

KKF
∗ (C(XY

i ), Ai),

where

• XY
i is for any integer i defined by equation (12);

• the first map is induced by groupoid functoriality with respect to the family
of groupoid morphisms

F →֒ (N× Σ× Σ)⋊ F, x 7→ (i, σ, x(σ), x),

where i runs through integers and σ is a fixed element of Σ (recall that
N× Σ× Σ is an F -invariant subgroupoid of GN

Σ);
• the second map is given for every integer i by the Morita equivalence
between K (H )⊗Ai and Ai.

Let A = (Ai)i∈N and B = (Bi)i∈N be families of F -algebras and let z =
(zi)i∈N be a family in

∏
i∈N

KKF
∗ (Ai, Bi). Without loss of generality, for every

integer i, we can assume that zi is represented by an F -equivariant K-cycle
(ℓ2(F )⊗ H ⊗Bi, πi, Ti) where

• H is a separable Hilbert space;
• F acts diagonally on ℓ2(F ) ⊗ H ⊗Bi by the right regular representation
on ℓ2(F ) and trivially on H ;

• πi is an F -equivariant representation of Ai in the algebra LBi(ℓ
2(F ) ⊗

H ⊗Bi) of adjointable operators of ℓ2(F )⊗ H ⊗Bi;
• Ti is an F -equivariant selfadjoint operator of LBi(ℓ

2(F )⊗ H ⊗Bi) satis-
fying the K-cycle conditions, i.e. [Ti, πi(a)] and πi(a)(T

2
i −Idℓ2(F )⊗H ⊗Bi

)

belong to K (ℓ2(F )⊗ H )⊗Bi for every a in Ai.

Note that we have an identification between the algebras LBi(ℓ
2(F )⊗H ⊗Bi)

and LK (H )⊗Bi
(ℓ2(F ) ⊗ K (H ) ⊗ Bi). Indeed these two C∗-algebras can be

viewed as the multiplier algebra of K (ℓ2(F ) ⊗ H ) ⊗ Bi. We see that the
pointwise diagonal multiplication by

N → LK (H )⊗Bi
(ℓ2(F )⊗ K (H )⊗Bi), i 7→ Ti

gives rise to an F -equivariant adjointable operator T∞
C0(Σ) of the right B∞

C0(Σ)-

Hilbert module
∏

i∈N

C0(Σ, ℓ
2(F )⊗ K (H )⊗ Bi) ∼= ℓ2(F )⊗ B∞

C0(Σ).
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The family of representations (πi)i∈N gives rise to a representation π∞
C0(Σ) of

AC0(Σ) on the algebra of adjointable operators of
∏

i∈N

C0(Σ, ℓ
2(F )⊗ K (H )⊗Bi).

It is then straight-forward to check that π∞
C0(Σ) and T∞

C0(Σ) are indeed GN

F,Σ-

equivariant and that T∞
C0(Σ) satisfies the K-cycle conditions. Therefore, we

obtain in this way a K-cycle for KKGN

F,Σ
∗ (AC0(Σ),B

∞
C0(Σ)) and we can define

then a morphism

τ∞C0(Σ) :
∏

i∈N

KKF
∗ (Ai, Bi) → KKGN

F,Σ
∗ (AC0(Σ),B

∞
C0(Σ))

which is moreover bifunctorial, i.e. if A = (Ai) and B = (Bi) are families of
F -algebras, then

• for any family A′ = (A′
i) of F -algebras and any family f = (fi)i∈N of

F -equivariant homomorphisms fi : Ai → A′
i, we have

τ∞C0(Σ)(f
∗(z)) = f∗

C0(Σ)(τ
∞
C0(Σ)(z))

for any z in
∏

i∈N
KKF

∗ (A′
i, Bi), where fC0(Σ) : AC0(Σ) → A′

C0(Σ) is in-

duced by f = (fi)i∈N;
• for any family B′ = (B′

i) of F -algebras and any family g = (gi)i∈N of
F -equivariant homomorphisms gi : Bi → B′

i, we have

τ∞C0(Σ)(g∗(z)) = g∞C0(Σ),∗(τ
∞
C0(Σ)(z))

for any z in
∏

i∈N
KKF

∗ (Ai, Bi), where g
∞
C0(Σ) : B

∞
C0(Σ) → B′∞

C0(Σ) is induced

by g = (gi)i∈N.

Recall that for a family X = (Xi)i∈N of compact subsets in some Pr(Σ), we
defined CX = (C(Xi))i∈N. If X ′ = (X ′

i)i∈N is another such family satisfying
Xi ⊆ X ′

i for any integer i (we say that (X ,X ′) is a relative pair of families),
then let us set CX ,X ′ = (C0(X

′
i \Xi))i∈N. Let Z be a GN

Σ-compact subset of
some PK(GN

Σ) for a given compact subset K in GN

Σ. Let us fix r > 0 such that
PK(GN

Σ) ⊆ Pr(G
N

Σ) and let X = (Xi)i∈N be a family of compact subsets in
Pr(Σ) such that ZX ⊆ Z. Define then the GN

Σ-equivariant homomorphism

ΛZ
X : C0(Z) → CX ,C0(Σ), f 7→ (fi)i∈N,

with fi in C0(Σ × Xi) defined by fi(σ, x) = f(i, σ, x) for any integer i, any
σ in Σ and any x in Xi. In the same way, if (Z,Z ′) is a relative pair of
GN

Σ-compact subsets of PK(GN

Σ) and if (X ,X ′) is a relative pair of families of
compact subsets in Pr(Σ) such that ZX ⊆ Z and ZX ′ ⊆ Z ′, the restriction of

ΛZ′

X ′ to C0(Z
′ \ Z) gives rise to a GN

Σ-equivariant homomorphism

ΛZ,Z′

X ,X ′ : C0(Z
′ \ Z) → CX ,X ′,C0(Σ).

If (Z,Z ′) is a relative pair of GN

Σ-compact subsets of PK(GN

Σ) and if X ′ is a
family of compact subsets in Pr(Σ) such that ZX ′ ⊆ Z ′, then there exists
a unique family X ′

/Z = (X ′
i,/Z)i∈N of compact subsets in Pr(Σ) such that
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(X ′
/Z ,X

′) is a relative pair of families and ZX ′
/Z

= ZX ′ ∩Z. If the relative pair

(Z,Z ′) is moreover F -invariant, then (X ′
/Z ,X

′) is a relative pair of families of

F -invariant compact spaces and the map
∏

i∈N

KKF
∗ (C0(X

′
i \X

′
i/Z ), Ai) → KKGN

F,Σ
∗ (C0(Z

′ \ Z),A∞
C0(Σ)),

z = (zi)i∈N 7→ ΛZ,Z′,∗
X ,X ′ (τ∞C0(Σ)(z))

is compatible with family of inclusions (Xi →֒ X ′
i)i∈N of F -invariant compact

subsets. Hence, taking the inductive limit and setting

KF,∞
∗ (Z,Z ′,A) = lim

X ′

∏

i∈N

KKF
∗ (C0(X

′
i \X

′
i/Z), Ai),

where X ′ = (X ′
i)i∈N runs through the family of compact F -invariant subsets

in Pr(Σ) such that ZX ′ ⊆ Z ′, we end up with a morphism

(14) υZ,Z′

F,Σ,A,∗ : KF,∞
∗ (Z,Z ′,A) → KKGN

F,Σ
∗ (C0(Z

′ \ Z),A∞
C0(Σ)).

We set KF,∞
∗ (Z,A) for KF,∞

∗ (∅, Z,A) and υZ
F,Σ,A,∗ for υ∅,Z

F,Σ,∅,A,∗.

Lemma 5.5. Let Z be a GN

F,Σ-invariant closed subset of some PK(GN

Σ) for K
a compact subset of GN

Σ. Assume that the restriction to Z of the anchor map
for the action of GN

Σ on PK(GN

Σ) is locally injective, i.e. there exists a covering
of Z by open subsets for which the restriction of the anchor map is one-to-one.
Then for any family A = (Ai)i∈N of F -algebras,

υZ
F,Σ,A,∗ : KF,∞

∗ (Z,A) → KKGN

F,Σ
∗ (C0(Z),A∞

C0(Σ))

is an isomorphism.

Proof. According to [13], since A∞
C0(Σ) is indeed a C(β0

N×Σ)-algebra, there is
an isomorphism

(15) lim
Z′

: KKGN

F,Σ
∗ (C0(Z

′),A∞
C0(Σ)) → KKGN

F,Σ
∗ (C0(Z),A∞

C0(Σ)),

where

• in the inductive limit of the left-hand side, Z ′ runs through GN

Σ-compact
and F -invariant subsets of Z/β0

N×Σ
;

• the map is then induced by the inclusion Z ′ →֒ Z.

Under the identification of equation (15), the family of maps defined by equa-
tion (13),

iZ′ : KKGN

F,Σ
∗ (C0(Z

′),A∞
C0(Σ)) →

∏

i∈N

KKF
∗ (C(XZ′

i ), Ai),

where Z ′ runs through GN

Σ-compact and F -invariant subsets of Z/β0
N×Σ

, pro-
vides an inverse for υZ

F,Σ,A,∗. �

Münster Journal of Mathematics Vol. 10 (2017), 201–268



Persistence approximation property 241

Since for any compact subset K of GN

Σ, there exists r > 0 such that
PK(GN

Σ) ⊆ Pr(G
N

Σ), we get that

(16) Ktop,∞
∗ (F,Σ,A) = lim

K
KF,∞

∗ (PK(GN

Σ),A),

where in the right-hand side, K runs through compact F -invariant subsets of
GΣ, and the inductive limit is taken under the maps induced by inclusions
PK(GN

Σ) →֒ PK′(GN

Σ) corresponding to relative pairs (K,K ′) of F -invariant
compact subsets of GN

Σ. The maps

υ
PK(GN

Σ)
F,Σ,A,∗ : KF,∞

∗ (PK(GN

Σ),A) → KGN

F,Σ
∗ (C0(PK(GN

Σ)),A
∞
C0(Σ))

are then obviously compatible with the inductive limit of equation (16) and
hence give rise to a morphism

υF,Σ,A,∗ : Ktop,∞
∗ (F,Σ,A) → Ktop

∗ (GN

F,Σ,A
∞
C0(Σ)).

We end this subsection by proving that υF,Σ,A,∗ is an isomorphism. The
idea is to use the simplicial structure of PK(GN

Σ) to carry out a Mayer–Vietoris
argument. In order to do that, we need first to reduce to the case of a second-
countable and étale groupoid. Recall from [11, Lem. 4.1] that there exists
a second countable étale groupoid G′

Σ with compact base space β′
Σ and an

action of G′
Σ on βΣ such that GΣ = βΣ ⋊ G′

Σ. The groupoid G′
Σ then acts

on βN×Σ through the action of GΣ and βN×Σ ⋊ GΣ = βN×Σ ⋊ G′
Σ. For any

subset X of a G′
Σ-space, let us set X

N

Σ = βN×Σ×β′
Σ
X . If Σ is provided with an

action by isometries of a finite group F , then G′
Σ can be chosen provided with

an action of F by automorphisms that makes the action on βΣ and hence on
βN×Σ equivariant. If we set G′

F,Σ = G′
Σ ⋊ F , then for any family A = (Ai)i∈N

of F -algebras, AC0(Σ) is a G′
F,Σ-algebra. Let Y be a locally compact space

equipped with a proper and cocompact action of G′
F,Σ. Then the map

KKGN

F,Σ
∗ (C0(Y

N

Σ ),AC0(Σ)) → KKG′
F,Σ

∗ (C0(Y ),AC0(Σ))

obtained by forgetting the C(βN×Σ)-action is an isomorphism. Moreover, up
to the identification

AC0(Σ) ⋊red G
N

F,Σ
∼= AC0(Σ) ⋊red G

′
F,Σ,

the Baum–Connes conjecture for GN

F,Σ and for G′
F,Σ for the coefficient AC0(Σ)

are equivalent [11]. For any compact subset K of G′
Σ, we have a natural

identification
PKN

Σ
(GΣ) ∼= PK(G′

Σ)
N

Σ.

For a compact subset K of G′
Σ, fix a positive number r such that

PKN

Σ
(GΣ) ⊆ Pr(G

N

Σ).

Let Y be a G′
F,Σ-invariant closed subset of PK(G′

Σ) and let X = (Xi)i∈N be a
family of F -invariant compact subsets of Pr(G

N

Σ) such that ZX ⊆ Y N

Σ . Let us
consider the composition

Λ′Y
X : C0(Y ) → C0(Y

N

Σ )
Λ

Y N
Σ

X−−−→ CX ,C0(Σ),
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where the first map of the composition is induced by the projection Y N

Σ → Y .
Let us also consider the relative version: let (Y, Y ′) be a relative pair of G′

F,Σ-
invariant closed subsets of PK(G′

Σ) and let (X ,X ′) be a relative family of
compact F -invariant subsets of Pr(G

N

Σ) such that ZX ⊆ Y N

Σ and Z ′
X ⊆ Y ′N

Σ .
Define

Λ′Y,Y ′

X ,X ′ : C0(Y
′ \ Y ) → CX ,X ′,C0(Σ)

as the restriction of Λ′Y
X to C0(Y

′ \Y ′). Let us then proceed as we did to define

υY,Y ′

F,Σ,A,∗ in equation (13).

If τ ′∞C0(Σ)(·) stands for the restriction of τ∞C0(Σ)(·) to KKG′
F,Σ

∗ (·, ·), then the
map

∏

i∈N

KKF
∗ (C0(X

′
i \X

′
i,/Y N

Σ
), Ai) → KKG′

F,Σ
∗ (C0(Y

′ \ Y ),A∞
C0(Σ)),

z = (zi)i∈N 7→ Λ′Y,Y ′,∗
X ,X ′ (τ ′∞C0(Σ)(z))

is compatible with the family of inclusions (Xi →֒ X ′
i)i∈N of F -invariant com-

pact subset. Hence, proceeding as in the definition of υ·,·
F,Σ,A,∗, we end up as

in equation (14) with a morphism

υ′Y,Y ′

F,Σ,A,∗ : KF,∞
∗ (Y N

Σ , Y ′N
Σ ,A) → KKG′

F,Σ
∗ (C0(Y

′ \ Y ),A∞
C0(Σ)),

which is indeed the composition

KF,∞
∗ (Y N

Σ , Y ′N
Σ ,A)

υY,Y ′

F,Σ,A,∗
−−−−−→ KKGN

F,Σ
∗ (C0(Y

′N
Σ \ Y N

Σ ),A∞
C0(Σ))

∼=
−→ KKG′

F,Σ
∗ (C0(Y

′ \ Y ),A∞
C0(Σ)),

where the second map is induced by the projection Y ′N
Σ → Y ′. We set also

υ′Y
F,Σ,A,∗ for υ′∅,Y

F,Σ,A,∗.

Lemma 5.6. Let Y be a G′
F,Σ-simplicial complex in the sense of [13, Def. 3.7]

lying in some PK(G′
F,Σ) for K a compact subset of G′

F,Σ. Then for any family
A = (Ai)i∈N of F -algebras,

υ
Y N

Σ

F,Σ,A,∗ : KF,∞
∗ (Y N

Σ ,A) → KKGN

F,Σ
∗ (C0(Y

N

Σ ),A∞
C0(Σ))

is an isomorphism.

Proof. Notice first that, as we have already mentioned, this is equivalent to
proving that

υ′Y
F,Σ,A,∗ : KF,∞

∗ (Y N

Σ ,A) → KKG′
F,Σ

∗ (C0(Y ),A∞
C0(Σ))

is an isomorphism. Let us prove the result by induction on the dimension of
the G′

F,Σ-simplicial complex Y . If Y has dimension 0, the anchor map for the
action of GN

F,Σ is locally injective and hence, the result is a consequence of
Lemma 5.5. We can assume without loss of generality that Y is typed and
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that the action of G′
F,Σ is typed preserving. Let Y0 ⊆ Y1 ⊆ · · · ⊆ Yn = Y be

the skeleton of Y , and assume that we have proved that

υ
Y N

n−1,Σ

F,Σ,A,∗ : KF,∞
∗ (Y N

n−1,Σ,A) → KGN

F,Σ
∗ (C0(Y

N

n−1,Σ),A
∞
C0(Σ))

is an isomorphism. Since Y is second countable, the inclusion Yn−1 →֒ Yn gives
rise to a long exact sequence

· · · → KKG′
F,Σ

i (C0(Yn−1),A
∞
C0(Σ))

→ KKG′
F,Σ

i (C0(Yn),A
∞
C0(Σ))

→ KKG′
F,Σ

i (C0(Yn \ Yn−1),A
∞
C0(Σ))

→ KK
G′

F,Σ

i−1 (C0(Yn−1),A
∞
C0(Σ)) → · · · .

In the same way, we have a long exact sequence

· · · → KF,∞
i (Y N

n−1,Σ,A)

→ KF,∞
i (Y N

n,Σ,A)

→ KF,∞
i (Y N

n−1,Σ, Y
N

n,Σ,A)

→ KF,∞
i−1 (Y N

n−1,Σ,A) → · · · .

By naturality of the morphisms Λ′·,·
·,· and τ ′∞C0(Σ)(·), these two long exact se-

quences are intertwined by the maps υ·,·
F,Σ,A,∗. Using a five-lemma argument,

the proof of the result amounts to showing that

υ
′Y N

n−1,Σ,Y N

n,Σ

F,Σ,A,∗ : KF,∞
∗ (Y N

n−1,Σ, Y
N

n,Σ,A) → KKG′
F,Σ

∗ (C0(Yn \ Yn−1),A
∞
C0(Σ))

is an isomorphism. Let Y ′ be the set of centers of n simplices of Y . Since the
action of G′

F,Σ is type preserving, we have a G′
F,Σ-equivariant identification

(17) Yn \ Yn−1
∼= Y ′ × ∆̊,

where ∆̊ is the interior of the standard simplex, and where the action of G′
F,Σ

on Y ′ × ∆̊ is diagonal through Y ′. Let then [∂Yn−1,Yn ] be the element of
KKG′

F,Σ
∗ (C0(Y

′), C0(Yn \ Yn−1)) that implements up to the identification of
equation (17) the Bott periodicity isomorphism. We can assume without loss

of generality that in the definition of KKF,∞
∗ (Y N

n−1,Σ, Y
N

n,Σ,A), the inductive

limit is taken over families X = (Xi)i∈N of F -invariant compact subsets of
some Pr(Σ) such that

• Xi is for every integer i a finite union of n-simplices with respect to the
simplicial structure inherited from Y ;

• ZX ⊆ Y N

n,Σ.

Let X be such a family and let X ′
i be for every integer i the set of centers of

n-simplices of Xi. Let us set then X ′ = (X ′
i)i∈N. Since the action of F is type

preserving, we have an F -equivariant identification

(18) Xi \Xi/Y N

n−1,Σ

∼= X ′
i × ∆̊,
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the action of F on ∆̊ being trivial. Let [∂i] be the element of

KKF
∗ (C(X ′

i), C0(Xi \Xi/Y N

n−1,Σ
))

that implements up to this identification the Bott periodicity isomorphism.
Set then

[∂̃] = ([∂i])i∈N ∈
∏

i∈N

KKF
∗ (C(X ′

i), C0(Xi \Xi/Y N

n−1,Σ
)).

The Bott generator of KK∗(C, C0(∆̊)) can be represented by a K-cycle
(C0(∆̊,Cl), φ, T ) for some integer l, where φ is the obvious representation of
C on C0(∆̊,Cl) by scalar multiplication, and T is an adjointable operator on
C0(∆̊,Cl) that satisfies the K-cycle conditions. Then for any integer i, the
element [∂i] of KKF

∗ (C(X ′
i), C0(Xi \Xi/Y N

n−1,Σ
)) can be represented by the

K-cycle
(C0(X

′
i × ∆̊,Cl), φi, IdC(X′

i)
⊗ T ),

where C0(X
′
i × ∆̊,Cl) is viewed as a right C0(Xi \Xi/Y N

n−1,Σ
)-Hilbert module

by using the identification of equation (18) and φi is the obvious diagonal
representation of C0(X

′
i) on C0(X

′
i × ∆̊,Cl). Let [∂X ,C0(Σ)] be the class of the

K-cycle
(∏

i∈N

C0(Σ×X ′
i × ∆̊,Cl),

∏

i∈N

IdC0(Σ) ⊗ φi,
∏

i∈N

IdC0(Σ×X′
i)
⊗ T

)

in KKG′
F,Σ

∗ (CX ′,C0(Σ), CX/Y N
n−1,Σ

,X ,C0(Σ)). Then we have

(19) Λ′Y ′,∗
X ′ ([∂X ,C0(Σ)]) = Λ

′Yn−1,Yn

X/Y N
n−1,Σ

,X ,∗[∂Yn−1,Yn ].

Let z = (zi)i∈N be a family in
∏

i∈N
KKF (C0(Xi \Xi/Y N

n−1,Σ
), Ai). Then using

the characterization of the Kasparov product (see [3] and [5] for the groupoid
case), we get that

Λ′Y ′,∗
X ′ ([∂X ,C0(Σ)])⊗ τ∞C0(Σ)(z) = Λ′Y ′,∗

X ′ (τ∞C0(Σ)([∂̃]⊗ z)).

This in turn implies that

[∂Yn−1,Yn ]⊗ Λ
′Yn−1,Yn,∗
X/Y N

n−1,Σ
,X (τ∞C0(Σ)(z)) = Λ

′Yn−1,Yn

X/Y N
n−1,Σ

,X ,∗([∂Yn−1,Yn ])⊗ τ∞C0(Σ)(z)

= Λ′Y ′,∗
X ′ ([∂X ,C0(Σ)])⊗ τ∞C0(Σ)(z)

= Λ′Y ′,∗
X ′ (τ∞C0(Σ)([∂̃]⊗ z)),

where the first equality is a consequence of bifunctoriality of the Kasparov
product and the second equality holds by equation (19). From this, we get the
existence of a commutative diagram

KF,∞
∗ (Y N

n−1,Σ, Y
N

n,Σ,A)
∼=

//

υ
′Yn−1,Yn

F,Σ,A,∗

��

KF,∞
∗ (Y ′N

Σ ,A)

υ′Y ′

F,Σ,A,∗

��

KKG′
F,Σ

∗ (C0(Yn \ Yn−1),A
∞
C0(Σ))

[∂Yn−1,Yn ]⊗
// KKG′

F,Σ
∗ (C0(Y

′),A∞
C0(Σ)),
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where the top row is obtained by taking inductive limit over morphisms
(
[∂i]⊗ : KKF

∗ (C0(Xi \Xi/Y N

n−1,Σ
), Ai)

∼=
−→ KKF

∗ (C(X ′
i), Ai)

)
i∈N

relative to families X = (Xi) of F -invariant compact subsets of some Pr(Σ)
such that

• Xi is for every integer i a finite union of n-simplices;
• ZX ⊆ Y N

n,Σ.

Since Y ′ is a G′
F,Σ-simplicial complex of degree 0 and (as we have already seen)

υ′Y ′

F,Σ,A,∗ is an isomorphism, we have that υ
′Yn−1,Yn

F,Σ,A,∗ is an isomorphism. From
this we deduce that υ′Yn

F,Σ,A,∗ is an isomorphism and hence that

υ
Y N

n,Σ

F,Σ,A,∗

is an isomorphism. �

Corollary 5.7. Let Σ be a proper discrete metric space provided with an action
of a finite group F by isometries. Let A = (Ai)i∈N be a family of F -algebras.
Then,

υF,Σ,A,∗ : Ktop,∞
∗ (F,Σ,A) → Ktop

∗ (GN

F,Σ,A
∞
C0(Σ))

is an isomorphism.

5.8. The assembly map for the action of GF ,Σ on A∞

C0(Σ). The aim of
this subsection is to show that up to the identifications provided on the left-
hand side by Corollary 5.7 and on the right-hand side by equation (11), the
maps

µGN

F,Σ,A∞
C0(Σ),∗

: Ktop
∗ (GN

F,Σ,A
∞
C0(Σ)) → K∗(A

∞
C0(Σ) ⋊red G

N

F,Σ)

and
ν∞F,Σ,A,∗ : Ktop,∞

∗ (F,Σ,A) → K∗(A
∞
Σ ⋊ F )

coincide for any family A = (Ai)i∈N of F -algebras and any proper discrete
metric space Σ equipped with a free action of F by isometries.

Fix a rank-one projection e in K (H ) and define

 : C → K (H), λ 7→ λe.

Let us consider the family of homomorphisms

(A = ⊗ IdAi : Ai → Ai ⊗ K (H ))i∈N.

Proposition 5.9. For any families of F -algebras A = (Ai)i∈N and B =
(Bi)i∈N and any element z = (zi)i∈N in

∏
i∈N

KKF
∗ (Ai, Bi), we have for any

proper discrete metric space Σ equipped with a free action of F by isometries
a commutative diagram

K∗(AC0(Σ) ⋊red G
N

F,Σ)
⊗J

GN
F,Σ

(τ∞
C0(Σ)(z))

//

A,F,Σ,∗◦IF,Σ,A,∗

��

K∗(B
∞
C0(Σ) ⋊red G

N

F,Σ)

IF,Σ,B∞,∗V

��

K∗(A
∞
Σ ⋊red F )

τ∞
F,Σ(z)

// K∗(B
∞
Σ ⋊red F ),
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where up to the identifications

K∗(A
∞
Σ ⋊red F ) ∼= K∗(A

∞
F,Σ) and K∗(B

∞
Σ ⋊red F ) ∼= K∗(B

∞
F,Σ),

the morphism τ∞F,Σ(z) is induced in K-theory by the controlled morphism

T ∞
F,Σ(z) : K∗(A

∞
F,Σ) → K∗(B

∞
F,Σ).

Proof. Assume first that the family z = (zi)i∈N is of even degree. According
to [4, Lem. 1.6.9], there exist for any integer i

• an F -algebra A′
i;

• two F -equivariant homomorphisms αi : A
′
i → Bi and βi : A

′
i → Ai such

that the induced element [βi] ∈ KKF
∗ (A′

i, Ai) is invertible and such that
zi = αi,∗([βi]

−1).

By naturality of ·,F,Σ and IF,Σ,·,∗ and by left functoriality of τ∞C0(Σ), JGN

Σ
and

τ∞F,Σ, we can actually assume that for any integer i, we have

zi = [βi]
−1

for a homomorphism βi : Bi → Ai such that the induced element [βi] ∈
KKF

∗ (Bi, Ai) is KK-invertible. Let us consider the family of homomorphisms
β = (βi)i∈N. Using the bifunctoriality of τ∞F,Σ, we see that τ∞F,Σ(z) is an iso-

morphism with inverse β∞
F,Σ,∗. But then, if we set [IdA] = ([IdAi ])i∈N, using

once again the naturality of ·,F,Σ and IF,Σ,·,∗ and right functoriality of JGN

F,Σ

and τ∞F,Σ, we have

β∞
F,Σ,∗ ◦ IF,Σ,B∞,∗(JGN

F,Σ
(τ∞C0(Σ)(z))) = IF,Σ,A∞,∗(JGN

F,Σ
(τ∞C0(Σ)(β∗(z))))

= IF,Σ,A∞,∗(JGN

F,Σ
(τ∞C0(Σ)([IdA]))).

But up to the identifications provided by IF,Σ,·, then JGN

F,Σ
(τ∞C0(Σ)([IdA])) co-

incides with A,F,Σ,∗ and hence we get the result in the even case.
If z = (zi)i∈N is a family of odd degree, then, for every integer i, the element

zi of KKF
1 (Ai, Bi) can be viewed up to Morita equivalence as implementing

the boundary element of a semi-split extension of F -algebras

0 → K (H )⊗Bi → Ei → Ai → 0.

If we set E = (Ei)i∈N, then the induced extension

0 → B∞
C0(Σ) → EC0(Σ) → AC0(Σ) → 0

is a semisplit extension of the GN

F,Σ-algebra and hence gives rise to an extension
of C∗-algebras

0 → B∞
C0(Σ) ⋊red G

N

F,Σ → EC0(Σ) ⋊red G
N

F,Σ → AC0(Σ) ⋊red G
N

F,Σ → 0.

Moreover, by naturality of IF,Σ,·, we have a commutative diagram with exact
rows

0 // B∞
C0(Σ) ⋊red G

N

F,Σ
//

IF,Σ,B∞

��

EC0(Σ) ⋊red G
N

F,Σ
//

IF,Σ,E

��

AC0(Σ) ⋊red G
N

F,Σ
//

IF,Σ,A

��

0

0 // B∞
Σ ⋊ F // EΣ ⋊ F // AΣ ⋊ F // 0.
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By using naturality of the boundary map in K-theory, the result in the odd
case is a consequence of the two following observations:

• JGN

F,Σ
(τ∞C0(Σ)(z)) implements the boundary map of the top extension.

• If ∂B∞
Σ ⋊F,EΣ⋊F stands for the boundary map of the bottom extension, then

∂B∞
Σ ⋊F,EΣ⋊F = τ∞F,Σ(z) ◦ A,F,Σ,∗. �

Proposition 5.10. Let Σ be a discrete metric space provided with a free action
of a finite group F by isometries. Let A = (Ai)i∈N be a family of F -algebras.
Then we have a commutative diagram

Ktop,∞
∗ (F,Σ,A)

υF,Σ,A,∗
//

ν∞
F,Σ,A,∗

��

Ktop
∗ (GN

F,Σ,A
∞
C0(Σ))

µ
GN

F,Σ
,AC0(Σ),∗

��

K∗(A
∞
Σ ⋊ F )

I−1
F,Σ,A∞,∗

// K∗(A
∞
C0(Σ) ⋊red G

N

F,Σ).

Proof. Let Z = PK(GN

Σ) for K an F -invariant subset in GN

Σ. Let us fix r > 0
such that Z ⊆ Pr(G

N

Σ). Let us define

φZ : Z → C, η 7→ η(χ0),

where χ0 is the characteristic function of the diagonal of Σ×Σ. Then φZ is a
cut-off function for the proper action of GN

Σ on Z. Let

PZ,GN

Σ
: Z ×βN×Σ

GN

Σ → C, (η, γ) 7→ φZ(η)
1/2φZ(η · γ)1/2

be the Mishchenko projection of C0(Z)⋊redGΣ associated to φZ . For a family
X = (Xi)i∈N of F -invariant compact subsets of Pr(G

N

Σ) such that ZX ⊆ Z,
let us consider PX = (PXi)i∈N in CX ,F,Σ, where PXi is for each integer i the
projection defined by equation (6) of Section 4.1. Recall that then, P∞

X =
(PXi ⊗ e)i∈N in C∞

X ,Σ for e a fixed rank-one projection in K (H). Notice that

[P∞
X ] = ∞CX,F,Σ,∗

[PX ] in K0(C
∞
X ,F,Σ))

∼= K0(C
∞
X ,Σ⋊F ). Thus the commutativity

of the diagram amounts to showing that

IF,Σ,A∞,∗

(
[PZ,GN

Σ
]⊗ JGN

Σ
(ΛZ,∗

X (τ∞C0(Σ))(z))
)
= τ∞F,Σ(z)([CX,F,Σ (PX )])

for all z in
∏

i∈N
KKF

∗ (C0(Xi), Ai) up to the identification K∗(A
∞
Σ ⋊ F ) ∼=

K∗(A
∞
F,Σ). But it is straight-forward to check that

ΛZ
X (φZ) = (φΣ,i)i∈N

with φΣ,i : Σ×Xi → C, (σ, x) 7→ λσ(x). Hence, if

ΛZ
X ,GN

F,Σ
: C0(Z)⋊GN

F,Σ → CX ,C0(Σ) ⋊red G
N

F,Σ

stands for the map induced by ΛZ
X on the reduced crossed-products, we have

(20) IF,Σ,CX
◦ ΛZ

X ,GN

F,Σ
(PZ,GN

Σ
) = PX .
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From this, we deduce

IF,Σ,A∞,∗([PZ,GN

Σ
]⊗ JGN

F,Σ
(ΛZ

X ,∗(τ
∞
C0(Σ))(z)))

= IF,Σ,A∞,∗([Λ
Z,

X ,GN

F,Σ

(PZ,GN

F,Σ
)]⊗ JGN

F,Σ
(τ∞C0(Σ))(z)))

= [ΛZ
X ,GN

F,Σ
(PX ,GN

Σ
)]⊗ IF,Σ,A∞,∗(JGN

F,Σ
(τ∞C0(Σ))(z))

= τ∞F,Σ(z) ◦ 
∞
CX ,F,Σ,∗ ◦ IF,Σ,CX ,∗ ◦ Λ

Z
X ,GN

F,Σ,∗([PZ,GN

Σ
])

= τ∞F,Σ(z) ◦ 
∞
CX ,F,Σ,∗([PX ]),

where the first equality holds by naturality of JGN

F,Σ
and left functoriality of

the Kasparov product, the second equality holds by right functoriality of the
Kasparov product, the third equality is a consequence of Proposition 5.9, and
the fourth equality holds by equation (20). �

As a consequence of Corollary 5.7 and Proposition 5.10 we obtain the fol-
lowing theorem.

Theorem 5.11. Let F be a finite group acting freely on a discrete metric space
Σ with bounded geometry. Let A = (Ai)i∈N be a family of C∗-algebras. Then
the three following assertions are equivalent:

(i) ν∞F,Σ,A,∗ : Ktop,∞
∗ (F,Σ,A) → K∗(A

∞
Σ ⋊ F ) is an isomorphism.

(ii) The groupoid GF,Σ satisfies the Baum–Connes conjecture with coefficients
in A∞

C0(Σ).
(iii) The groupoid GN

F,Σ satisfies the Baum–Connes conjecture with coefficients
in A∞

C0(Σ).

5.12. Quantitative statements. We are now in a position to state the analog
of the quantitative statements of [9, §6.2] in the setting of discrete metric spaces
with bounded geometry.

Let F be a finite group, let Σ a be discrete metric space with bounded
geometry provided with an action of F by isometries, and let A be an F -
algebra. Let us consider the following statements for d, d′, r, r′, ε and ε′ positive
numbers with d ≤ d′, ε′ ≤ ε < 1

4 , rd,ε ≤ r and r′ ≤ r:

QIF,Σ,A,∗(d, d
′, r, ε): For any element x in KF

∗ (Pd(Σ), A), the following
holds:

νε,r,dF,Σ,A,∗(x) = 0 in Kε,r
∗ (AF,Σ) =⇒ q∗d,d′(x) = 0 in KF

∗ (Pd′(Σ), A).

QSF,Σ,A,∗(d, r
′, r, ε′, ε): For every y in Kε′,r′

∗ (AF,Σ), there exists an element
x in KF

∗ (Pd(Σ), A) such that

νε,r,dF,Σ,A,∗(x) = ιε
′,ε,r′,r

∗ (y).

The following results provide numerous examples that satisfy these quanti-
tative statements.
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Theorem 5.13. Let F be a finite group, let Σ be a discrete metric space with
bounded geometry provided with a free action of F by isometries, and let A be
an F -algebra. Then the following assertions are equivalent:

(i) For any positive numbers d, ε and r with ε < 1
4 and r ≥ rd,ε, there exists

a positive number d′ with d′ ≥ d for which QIF,Σ,A,∗(d, d
′, r, ε) is satisfied.

(ii) The assembly map

ν∞F,Σ,A,∗ : Ktop,∞
∗ (F,Σ, AN) → K∗(A

N,∞
Σ ⋊ F )

is one-to-one.
(iii) The assembly map

µ∞
GF,Σ,AN,∞

C0(Σ)
,∗
: Ktop

∗ (GF,Σ, A
N,∞
C0(Σ)) → K∗(A

N,∞
C0(Σ) ⋊red GF,Σ)

is one-to-one.

Proof. Notice that injectivity for

µ∞
GF,Σ,AN,∞

C0(Σ)
,∗

and µ∞
GN

F,Σ,AN,∞
C0(Σ)

,∗

are equivalent. Thus the equivalence of (ii) and (iii) is a consequence of Corol-
lary 5.7 and Proposition 5.10.

Let us prove that points (i) and (ii) are equivalent. Assume that condition
(i) holds. Let x = (xi)i∈N be a family of elements in some KF

∗ (Pd(Σ), A) such

that ν∞,d
F,Σ,A,∗(x) = 0. By definition of ν∞,d

F,Σ,A,∗(x), we have

ιε
′,r′

∗ (ν∞,ε′,r′,d
F,Σ,A,∗ (x)) = 0

for any ε′ in (0, 14 ) and r′ ≥ rd,ε′ . Hence, by Proposition 2.4, we can find
ε in (0, 1

4 ) and r ≥ rd,ε such that ν∞,ε,r,d
F,Σ,A,∗(x) = 0. But up to the controlled

isomorphisms of Proposition 4.10 and of Lemma 4.11, ν∞,ε,r,d
F,Σ,A,∗(x) coincides

with
∏

i∈N
νε,r,dF,Σ,A,∗(xi), so up to rescaling ε and r by a (universal) control pair,

we can assume that

νε,r,dF,Σ,A,∗(xi) = 0

for every integer i. Let d′ ≥ d be a number such that QIF,Σ,A,∗(d, d
′, r, ε) is

satisfied. Then we get that qd,d′,∗(xi) = 0 and hence qd,d′,∗(x) = 0.
Let us prove the converse. Assume first that there exist positive numbers

d, ε and r with ε < 1
4 and r ≥ rd,ε and such that for all d′ ≥ d, the condition

QIΣ,F,A,∗(d, d
′, r, ε) does not hold. Let us prove that ν∞,d

F,Σ,A,∗ is not one-to-one.
Let (di)i∈N be an increasing and unbounded sequence of positive numbers such
that di ≥ d for every integer i. For every integer i, let xi be an element in
KF

∗ (Pd(Σ), A) such that

νε,r,dF,Σ,A,∗(xi) = 0 in Kε,r
∗ (AF,Σ) and qd,di,∗(xi) 6= 0 in KF

∗ (Pdi(Σ), A)

and set x = (xi)i∈N. Then we have ν∞,d
F,Σ,A,∗(x) = 0 and qd,di,∗(x) 6= 0 for all i.

Since the sequence (di)i∈N is unbounded, we deduce that the kernel of ν∞F,Σ,A,∗

is nontrivial. �
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Theorem 5.14. There exists λ > 1 such that for any finite group F , any
discrete metric space Σ with bounded geometry, provided with a free action of
F by isometries, and any F -algebra A, the following assertions are equivalent:

(i) For any positive numbers ε and r′ with ε < 1
4λ , there exist positive num-

bers d and r with rd,ε ≤ r and r′ ≤ r for which QSF,Σ,A,∗(d, r
′, r, ε, λε)

is satisfied.
(ii) The assembly map

ν∞F,Σ,A,∗ : Ktop,∞
∗ (F,Σ, AN) → K∗(A

N,∞
Σ ⋊ F )

is onto.
(iii) The assembly map

µGF,Σ,AN,∞
C0(Σ)

,∗ : Ktop
∗ (GF,Σ, A

N,∞
C0(Σ)) → K∗(A

N,∞
C0(Σ) ⋊red GF,Σ)

is onto.

Proof. Notice that surjectivity for

µ∞
GF,Σ,AN,∞

C0(Σ)
,∗

and µ∞
GN

F,Σ,AN,∞
C0(Σ)

,∗

are equivalent. Thus the equivalence of (ii) and (iii) is a consequence of Corol-
lary 5.7 and Proposition 5.10.

Choose λ as in Proposition 2.4 and assume that condition (i) holds. Let z

be an element in K∗(A
N,∞
Σ ⋊ F ) and let y be an element in Kε,r′

∗ (AN,∞
F,Σ ) such

that ιε,r
′

∗ (y) corresponds to z up to the identification

K∗(A
N,∞
Σ ⋊ F ) ∼= K∗(A

N,∞
F,Σ ).

Let yi be the image of y under the composition

(21) Kε,r′

∗ (AN,∞
F,Σ ) → Kε,r′

∗ (K (H )⊗AF,Σ)
∼=
−→ Kε,r′

∗ (AF,Σ),

where the first map is induced by the evaluation AN,∞
F,Σ → AF,Σ ⊗ K (H ) at

the ith coordinate and the second map is the Morita equivalence. Let d and
r be numbers with r ≥ r′ and r ≥ rd,ε and such that QSF,Σ,A,∗(d, r

′, r, ε, λε)
holds. Then for any integer i, there exists an xi in KF

∗ (Pd(Σ), A) such that

νλε,r,dF,Σ,A,∗(xi) = ιε,λε,r
′,r

∗ (yi) in Kλε,r
∗ (AF,Σ).

Consider then x = (xi)i∈N in Ktop,∞
∗ (F,Σ, AN). By construction of the map

ν∞F,Σ,A,∗, we clearly have ν∞F,Σ,A,∗(x) = z.

Conversely, assume that there exist positive numbers ε and r′ with ε < 1
4λ

such that for any positive numbers r and d with r ≥ r′ and r ≥ rd,ε, statement
QSF,Σ,A,∗(d, r

′, r, ε, λε) does not hold. Let us prove then that ν∞F,Σ,A,∗ is not

onto. Assume first, for the sake of simplicity, that A is unital. Let (di)i∈N

and (ri)i∈N be increasing and unbounded sequences of positive numbers such
that ri ≥ rdi,λε and ri ≥ r′. Let yi be an element in Kε,r′

∗ (AF,Σ) such that
ιε,λε,r

′,ri
∗ (yi) is not in the range of νλε,ri,di

F,Σ,A,∗. There exists an element y in
Kε,r′

∗ (AN,∞
F,Σ ) such that for every integer i, the image of y under the composition
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of equation (21) is yi. Assume that for some d′ there is an x inKtop,∞
∗ (F,Σ, AN)

such that, up to the identification K∗(A
N,∞
Σ ⋊ F ) ∼= K∗(A

N,∞
F,Σ ),

ιε,r
′

∗ (y) = µ∞,d′

F,Σ,A,∗(x).

Using Proposition 2.4, we see that there exists a positive number r with r′ ≤ r
and rd′,λε ≤ r such that

ν∞,λε,r,d′

F,Σ,A,∗ (x) = ιε,λε,r
′,r

∗ (y).

But then, if we choose i such that ri ≥ r and di ≥ d′, we get by using
the definition of the geometric assembly map ν∞,·,·,·

F,Σ,·,∗ and by equation (21)
that ιε,λε,r

′,ri
∗ (yi) belongs to the image of νλε,ri,di

F,Σ,A,∗, which contradicts our as-
sumption. If A is not unital, then we use the control pair of Lemma 2.14 to
rescale λ. �

Replacing in the proof of “(ii)⇒ (i)” of Theorems 5.13 and 5.14 the constant
family AN by a family A = (Ai)i∈N of F -algebras, we can prove indeed the
following result.

Theorem 5.15. Let Σ be a discrete metric space with bounded geometry pro-
vided with a free action of a finite group F by isometries.

(i) Assume that for any family A = (Ai)i∈N of F -algebras, the assembly map

µGF,Σ,A∞
C0(Σ),∗

: Ktop
∗ (GF,Σ,A

∞
C0(Σ)) → K∗(A

∞
C0(Σ) ⋊red GF,Σ)

is one-to-one. Then for any positive numbers d, ε, r with ε < 1
4 and

r ≥ rd,ε, there exists a positive number d′ with d′ ≥ d such that statement
QIΣ,F,A,∗(d, d

′, r, ε) is satisfied for every F -algebra A.
(ii) Assume that for any family A = (Ai)i∈N of F -algebras, the assembly map

µGF,Σ,A∞
C0(Σ),∗

: Ktop
∗ (GF,Σ,A

∞
C0(Σ)) → K∗(A

∞
C0(Σ) ⋊red GF,Σ)

is onto. Then for some λ > 1 and for any positive numbers ε and r′ with
ε < 1

4λ , there exist positive numbers d and r with rd,ε ≤ r and r′ ≤ r
such that QSΣ,F,A,∗(d, r

′, r, ε, λε) is satisfied for every F -algebra A.

Recall from [11, 16] that if Σ coarsely embeds in a Hilbert space, then the
groupoid GF,Σ satisfies the Baum–Connes conjecture for any coefficients. In
the case of space of finite asymptotic dimension and when the group F is
trivial, following the idea of [15], more precise statements are given in [10]
without using infinite dimension analysis. We shall briefly describe them here.

Recall first that for a metric set X and a positive number r, a cover (Ui)i∈N

has r-multiplicity n if any ball of radius r in X intersects at most n elements
in (Ui)i∈N.

Definition 5.16. Let Σ be a proper discrete metric set. Then Σ has finite
asymptotic dimension if there exists an integer m such that for any pos-
itive number r, there exists a uniformly bounded cover (Ui)i∈N with finite
r-multiplicity m+1. The smallest integer that satisfies this condition is called
the asymptotic dimension of Σ.
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Let Σ be a proper metric space with asymptotic dimension m. Then there
exists a sequence of positive numbers (Rk)k∈N and for any positive integer k a
cover (U

(k)
i )i∈N of Σ such that

• Rk+1 > 4Rk for every positive integer k;

• U
(k)
i has diameter less than Rk for all positive integers i and k;

• for any positive integer k, the Rk-multiplicity of (U
(k+1)
i )i∈N is m+ 1.

The sequence (Rk)k∈N is called the m-growth of Σ.
From now on, if Σ is a discrete metric space, then

QIΣ,A,∗(d, d
′, r, ε) and QSΣ,A,∗(d, r, r

′, ε, ε′)

respectively stand for QI{e},Σ,A,∗(d, d
′, r, ε) and QS{e},Σ,A,∗(d, r, r

′, ε, ε′). The
following results were proven in [10].

Theorem 5.17. Let m be an integer and let (Rk)k∈N be a sequence of positive
numbers such that Rk+1 > 4Rk for every integer k. Then, for any positive
numbers d, ε and r with ε < 1

4 and r ≥ rd,ε, there exists a positive number
d′ with d′ ≥ d for which QIΣ,A,∗(d, d

′, r, ε) is satisfied for any discrete proper
metric space Σ with bounded geometry, asymptotic dimension m and m-growth
(Rk)k∈N and any C∗-algebra A.

Theorem 5.18. There exists a positive number λ > 1 for which for any integer
m and any sequence of positive numbers (Rk)k∈N such that Rk+1 > 4Rk for
every integer k, the following is satisfied: For any positive numbers ε and r′

with ε < 1
4λ , there exist positive numbers d and r with rd,ε ≤ r and r′ ≤ r for

which QSΣ,A,∗(d, r
′, r, ε, λε) is satisfied for any discrete proper metric space Σ

with bounded geometry, asymptotic dimension m and m-growth (Rk)k∈N and
any C∗-algebra A.

The proofs of these theorems extend without difficulties to the equivariant
case with respect to isometric actions of a given finite group.

5.19. Application to the persistence approximation property. Let F
be a finite group, let Σ be a discrete metric space with bounded geometry
provided with a free action of F by isometries and let A be an F -algebra. We
apply the results of the previous section to the persistence approximation for
AF,Σ: For any ε small enough and any r > 0 there exist ε′ in (ε, 1

4 ) and r′ ≥ r
such that PAΣ,F,A,∗(ε, ε

′, r, r′) is satisfied.
Notice that the approximation property is coarse invariant. To apply quan-

titative statements of the last subsection to our persistence approximation
property, we have to define the analog of the existence of a cocompact uni-
versal example for proper action of a discrete group in the setting of discrete
proper metric space.

Definition 5.20. A discrete metric space Σ provided with a free action of
a finite group is coarsely uniformly F -contractible if for every d > 0 there
exists d′ > d such that any invariant compact subset of Pd(Σ) lies in an F -
equivariantly contractible invariant compact subset of Pd′(Σ).
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Example 5.21. Any (discrete) Gromov hyperbolic metric space provided
with a free action of a finite group F by isometries is coarsely uniformly F -
contractible [6].

Lemma 5.22. Let Σ be a proper discrete metric space provided with a free
action of a finite group F by isometries. Assume that Σ is coarsely uniformly
F -contractible. Then for any positive number d, there exists a positive number
d′ such that the following is satisfied: For any x in KF

∗ (Pd(Σ), A) such that
νdF,Σ,A,∗(x) = 0 in K∗(AF,Σ), we have

qd,d
′

∗ (x) = 0 in KF
∗ (Pd′(Σ), A).

Proof. Let A be an F -algebra and let x be an element of KF
∗ (Pd(Σ), A) such

that νdF,Σ,A,∗(x) = 0 in K∗(AF,Σ). Let d′ ≥ d be a positive number such that

every invariant compact subset of Pd(Σ) lies in an F -equivariantly contractible
invariant compact subset of Pd′(Σ). Then

qd,d
′

∗ (x) ∈ K∗(Pd′(Σ), A)

comes indeed from an element of KKF
∗ (C({p}), A) ∼= KKF

∗ (C, A) for p an F -
invariant element in Pd′(Σ). But under the identification between K∗(AF,Σ)
and K∗(A⋊ F ) given by Morita equivalence (see Section 4.1), the map

KKF
∗ (C, A) → K∗(AF,Σ), x 7→ [P{p}]⊗C({p})F,Σ

τF,Σ(x)

is the Green–Julg duality isomorphism for finite groups [2]. Since

νd
′

F,Σ,A,∗ ◦ q
d,d′

∗ (x) = νdF,Σ,A,∗(x) = 0,

we deduce that qd,d
′

∗ (x) = 0. �

Theorem 5.23. There exists λ > 1 such that for any finite group F and any
F -algebra A the following holds: Let Σ be a discrete metric space with bounded
geometry, provided with a free action of F by isometries. Assume that

• the assembly map

µGF,Σ,AN,∞
C0(Σ)

,∗ : Ktop
∗ (GF,Σ, A

N,∞
C0(Σ)) → K∗(A

N,∞
C0(Σ) ⋊red GF,Σ)

is onto;
• Σ is uniformly F -contractible.

Then for any ε in (0, 1
4λ) and any r > 0, there exists r′ > 0 such that

PAF,Σ,A,∗(ε, λε, r, r
′) holds.

Proof. In view of Corollary 5.7 and Proposition 5.10, we get that under the
assumptions of the theorem,

ν∞F,Σ,A,∗ : Ktop,∞
∗ (F,Σ,A) → K∗(A

∞
Σ ⋊ F )

is onto for any F -algebra A. Consider λ as in Theorem 5.14. Let ε and r
be positive numbers with ε < 1

4λ and let d and r′ be positive numbers with
r′ ≥ rd,ε such that QSΣ,F,A,∗(d, r, r

′, ε, λε) is satisfied for every F -algebra A.
Choose d′ as in Lemma 5.22 with respect to d. We can assume without loss
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of generality that r′ ≥ rd′,λε. Let y be an element of Kε,r
∗ (AF,Σ) such that

ιε,r∗ (y) = 0 in K∗(AF,Σ). Then there exists x in K∗(Pd(Σ), A) such that

νλε,r
′,d

F,Σ,A,∗(x) = ιε,λε,r,r
′

∗ (y). Then we have

νdF,Σ,A,∗(x) = ιλε,r
′

∗ ◦ ιε,λε,r,r
′

∗ (y)

= ιε,r∗ (y)

= 0

and hence, according to Lemma 5.22,

ιε,λε,r,r
′

∗ (y) = νλε,r
′,d

F,Σ,A,∗(x)

= νλε,r
′,d′

F,Σ,A,∗ ◦ q
d,d′

∗ (x)

= 0. �

Similarly, using Theorem 5.15, we get:

Theorem 5.24. There exists λ > 1 such that for any finite group F the fol-
lowing holds: Let Σ be a discrete metric space with bounded geometry, provided
with a free action of F by isometries. Assume that

• for any family A = (Ai)i∈N of F -algebras, the assembly map

µGF,Σ,A∞
C0(Σ),∗

: Ktop
∗ (GF,Σ,A

∞
C0(Σ)) → K∗(A

∞
C0(Σ) ⋊red GF,Σ)

is onto;
• Σ is coarsely uniformly F -contractible.

Then for any ε in (0, 1
4λ) and any r > 0, there exists r′ > 0 such that

PAF,Σ,A,∗(ε, λε, r, r
′) holds for any F -algebra A.

Corollary 5.25. There exists λ > 1 such that for any finite group F and any
discrete Gromov hyperbolic metric space Σ provided with a free action of F by
isometries, the following holds: For any ε in (0, 1

4λ ) and any r > 0, there exists
r′ > 0 such that PA∗,F,Σ,A(ε, λε, r, r

′) holds for any F -algebra A.

6. Applications to Novikov conjecture

In this section, we investigate the connection between the quantitative state-
ments of Section 5.12 and the Novikov conjecture. More precisely, we consider
the uniform version of these statements for the family of all finite subsets of a
discrete metric space Σ with bounded geometry and we apply them to prove
the coarse Baum–Connes conjecture.

6.1. The coarse Baum–Connes conjecture. Let us first briefly recall the
statement of the coarse Baum–Connes conjecture. Let Σ be a discrete metric
space with bounded geometry and let H be a separable Hilbert space. Set
C[Σ]r for the space of locally compact operators on ℓ2(Σ)⊗H with propagation
less than r, i.e. operators that can be written as blocks T = (Tx,y)(x,y)∈Σ2 of
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compact operators of H such that Tx,y = 0 if d(x, y) > r. The Roe algebra of
Σ is then

C∗(Σ) =
⋃

r>0

C[Σ]r ⊆ L(ℓ2(Σ)⊗ H )

and is by definition filtered by (C[Σ]r)r>0. The analog of the Baum–Connes
assembly maps in the setting of coarse geometry was defined in [1] as a family
of coarse assembly maps (we shall recall the definition of these maps later on)

µs
Σ,∗ : K∗(Ps(Σ)) → K∗(C

∗(Σ))

compatible with the maps K∗(Ps(Σ)) → K∗(Ps′(Σ)) induced by the inclusions
of Rips complexes Ps(Σ) →֒ Ps′(Σ) for s ≤ s′. Taking the inductive limit, we
end up with the coarse Baum–Connes assembly map

µΣ,∗ : lim
s>0

K∗(Ps(Σ)) → K∗(C
∗(Σ)).

We say that Σ satisfies the coarse Baum–Connes conjecture if µΣ,∗ is an iso-
morphism.

The coarse Baum–Connes conjecture is related to the quantitative state-
ments of Section 5.12 in the following way. If Σ is a discrete metric space,
then

QIΣ,∗(d, d
′, r, ε) and QSΣ,∗(d, r, r

′, ε, ε′)

respectively stand for QI{e},Σ,C,∗(d, d
′, r, ε) and QS{e},Σ,C,∗(d, r, r

′, ε, ε′).

Theorem 6.2. Let Σ be a discrete metric space with bounded geometry. As-
sume that there exists a positive number ε0 with ε0 < 1

4 such that the following
assertions hold:

(i) For any positive numbers d, ε and r with ε < ε0 and r ≥ rd,ε, there exists
a positive number d′ with d′ ≥ d such that QIX,∗(d, d

′, r, ε) holds for any
finite subset X of Σ.

(ii) For any positive numbers ε and r with ε < ε0, there exist positive num-
bers d, ε′ and r′ with r′ ≥ rd,ε′ , r′ ≥ r and ε′ in [ε, 1

4 ) such that
QSX,∗(d, r, r

′, ε, ε′) holds for any finite subset X of Σ.

Then Σ satisfies the coarse Baum–Connes conjecture.

This theorem will be proved in Section 6.8. Let us recall now the definition
of the coarse Baum–Connes assembly maps given in [11, §2.3]. Indeed, the
definition of the coarse Baum–Connes assembly map was extended to Roe
algebras with coefficients in a C∗-algebra. Let H be a separable Hilbert space,
let Σ be a proper discrete metric space with bounded geometry, and let B be
a C∗-algebra. Define C∗(Σ, B), the Roe algebra of Σ with coefficients in B,
as the closure of locally compact with finite propagation operators in the C∗-
algebra of adjointable operators on the right Hilbert B-module ℓ2(Σ)⊗H ⊗B.
Then C∗(Σ, B) is a sub-C∗-algebra of LB(ℓ

2(Σ)⊗H ⊗B). This construction
is moreover functorial. Any morphism f : A → B induces in the obvious way a
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C∗-algebra morphism fΣ : C∗(Σ, A) → C∗(Σ, B). For any C∗-algebras A and
B, an analog in the setting of coarse geometry of the Kasparov transformation
has been defined in [11, §2.3] as a natural transformation

σΣ : KK∗(A,B) → KK∗(C
∗(Σ, A), C∗(Σ, B)).

Let (H ⊗B, π, T ) be a non-degenerateK-cycle for KK∗(A,B). Define then

T̃ = Idℓ2(Σ)⊗H ⊗T acting on the Hilbertian rightB-module ℓ2(Σ)⊗H ⊗H ⊗B.
The map

LA(ℓ
2(Σ)⊗ H ⊗A) → LB(ℓ

2(Σ)⊗ H ⊗ H ⊗B), T 7→ T ⊗π IdH ⊗B

induces, by restriction and under the identification between LB(ℓ
2(Σ)⊗ H ⊗

H ⊗B) and LK (H )⊗B(ℓ
2(Σ)⊗ H ⊗ K (H )⊗B), a morphism

π̃ : C∗(Σ, A) → M(C∗(Σ, B ⊗ K (H ))),

where M(C∗(Σ, B ⊗ K (H ))) stands for the multiplier algebra of C∗(Σ, B ⊗
K (H )). Then

(M(C∗(Σ, B ⊗ K (H ))), π̃, T̃ )

is aK-cycle forKK∗(C
∗(Σ, A), C∗(Σ, B⊗K (H ))) and hence, under the iden-

tification between C∗(Σ, B⊗K (H )) and C∗(Σ, B) we end up with an element
in KK∗(C

∗(Σ, A), C∗(Σ, B)). We obtain in this way a natural transformation

σΣ : KK∗(A,B) → KK∗(C
∗(Σ, A), C∗(Σ, B)).

This transformation is also bifunctorial, i.e. for any C∗-algebra morphisms
f : A1 → A2 and g : B1 → B2 and any element z in KK∗(A2, B1), we have

σΣ(f
∗(z)) = f∗

Σ(σΣ(z)) and σΣ(g∗(z)) = gΣ,∗(σΣ(z)).

If z is an element of KK∗(A,B), we define

SΣ(z) : K∗(C
∗(Σ, A)) → K∗(C

∗(Σ, B)), x 7→ x⊗C∗(Σ,A) σΣ(z)

induced by right multiplication by σΣ(z).
Notice that if

(22) 0 → J → A → A/J → 0

is a semi-split extension of C∗-algebras, then C∗(Σ, J) can be viewed as an
ideal of C∗(Σ, A) and we get then a semi-split extension of C∗-algebras

(23) 0 → C∗(Σ, J) → C∗(Σ, A) → C∗(Σ, A/J) → 0.

If z is the element of KK1(A/J, J) corresponding to the boundary element
of the extension (22), then SΣ(z) : K∗(C

∗(Σ, A/J)) → K∗+1(C
∗(Σ, J)) is the

boundary morphism associated to the extension (23).
For a C∗-algebra A, let us denote by SA its suspension, i.e.

SA = C0((0, 1), A),

by CA its cone, i.e.

CA = {f ∈ C0([0, 1], A) | f(1) = 0},
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and by ev0 : CA → A the evaluation map at zero. Let us consider for any
C∗-algebra A the Bott extension

0 → SA → CA
ev0−−→ A → 0,

with associated boundary map ∂A : K∗(A) → K∗+1(SA). It is well known that
the corresponding element [∂A] of KK1(A,SA) is invertible with inverse up to
Morita equivalence the element of KK1(A⊗ K (ℓ2(N)), SA) corresponding to
the Toeplitz extension

0 → A⊗ K (ℓ2(N)) → T0 ⊗A → SA → 0.

Lemma 6.3. For any C∗-algebra A, the morphism SΣ([∂A]
−1) is a left inverse

for SΣ([∂A]).

Proof. Consider the following commutative diagram with exact rows:

0 // SC∗(Σ, A) //



��

CC∗(Σ, A) //

��

C∗(Σ, A) //

=

��

0

0 // C∗(Σ, SA) // C∗(Σ, CA) // C∗(Σ, A) // 0,

where

• the top row is the Bott extension for C∗(Σ, A) with boundary map

∂C∗(Σ,A) : K∗(C
∗(Σ, A)) → K∗+1(SC

∗(Σ, A));

• the bottom row is the extension induced for Roe algebras by the Bott
extension for A with boundary map

SΣ([∂A]) : K∗(C
∗(Σ, A)) → K∗+1(C

∗(Σ, SA));

• the left and the middle vertical arrows are the obvious inclusions.

Consider similarly the commutative diagram

0 // C∗(Σ, A) ⊗ K (ℓ2(N)) // CC∗(Σ, A⊗ T0) // C∗(Σ, SA) // 0

0 // C∗(Σ, A) ⊗ K (ℓ2(N))

OO

// C∗(Σ, A)⊗ T0

OO

// SC∗(Σ, A)



OO

// 0,

where

• the bottom row is the Toeplitz extension for C∗(Σ, A);
• the top row is the extension induced for Roe algebras by the Toeplitz
extension for A;

• the left and the middle vertical arrows are the obvious inclusions.

By naturality of the boundary map in the first commutative diagram, we see
that

SΣ([∂A]) = ∗ ◦ ∂C∗(Σ,A),

where ∗ : K∗(SC
∗(Σ, A)) → K∗(C

∗(Σ, SA)) is the map induced in K-theory
by the inclusion  : SC∗(Σ, A) →֒ C∗(Σ, SA). Using now the naturality of
the boundary map in the second commutative diagram, we see that up to
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Morita equivalence, SΣ([∂A]
−1) ◦ ∗ is the boundary map for the Toeplitz ex-

tension associated to C∗(Σ, A) and hence is an inverse for ∂C∗(Σ,A). Therefore,

SΣ([∂A]
−1) is a left inverse for SΣ([∂A]). �

The transformation SΣ is compatible with the Kasparov product in the
following sense.

Proposition 6.4. If A, B and D are separable C∗-algebras, let z be an element
in KK∗(A,B) and let z′ be an element in KK∗(B,D). Then we have

SΣ(z ⊗B z′) = SΣ(z
′) ◦ SΣ(z).

Proof. Assume first that z is even. Then according to [4, Thm. 1.6.11], there
exist

• a C∗-algebra A1,
• a morphism ν : A1 → B,
• a morphism θ : A1 → A such that the associated element [θ] inKK∗(A1, A)
is invertible,

such that z = ν∗([θ]
−1). By bifunctoriality of the Kasparov product, we have

z ⊗B z′ = ν∗([θ]
−1)⊗B z′ = [θ]−1 ⊗A1 ν

∗(z′).

Since σΣ and hence SΣ are natural, we see that SΣ([θ]
−1) is invertible, with

inverse induced by θΣ : C∗(Σ, A1) → C∗(Σ, A). Then using once again the
naturality of SΣ, we have

SΣ(z ⊗B z′) ◦ θΣ,∗ = SΣ(ν
∗(z′))

= SΣ(z
′) ◦ νΣ,∗

= SΣ(z
′) ◦ νΣ,∗ ◦ SΣ([θ]

−1) ◦ θΣ,∗

= SΣ(z
′) ◦ SΣ(ν∗([θ]

−1)) ◦ θΣ,∗

= SΣ(z
′) ◦ SΣ(z) ◦ θΣ,∗.

Since θΣ,∗ is invertible, we deduce that SΣ(z ⊗B z′) = SΣ(z
′) ◦ SΣ(z). If z′ is

even, we proceed similarly.
If z and z′ are both odd. Let [∂B] be the element of KK1(B,SB) corre-

sponding to the boundary morphism ∂B : K∗(B) → K∗+1(SB) associated to
the Bott extension 0 → SB → CB → B → 0. Then

SΣ(z ⊗B z′) = SΣ(z ⊗B [∂B ]⊗SB [∂B ]
−1 ⊗B z′)

= SΣ([∂B ]
−1 ⊗B z′) ◦ SΣ(z ⊗B [∂B])

= SΣ([∂B ]
−1 ⊗B z′) ◦ SΣ([∂B]) ◦ SΣ([∂B]

−1) ◦ SΣ(z ⊗B [∂B ])

= SΣ(z
′) ◦ SΣ(z),

where the second and the fourth equality hold by the even cases, and the third
equality is a consequence of Lemma 6.3. �

Now let Σ be a discrete metric space with bounded geometry. Let H be
a separable Hilbert space and fix a unit vector ξ0 in H . For any positive
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number s, let Qs,Σ be the operator of LC0(Ps(Σ))(C0(Ps(Σ)) ⊗ ℓ2(Σ) ⊗ H )
defined by

(Qs,Σ · h)(x, σ) = λ1/2
σ (x)

∑

σ′∈Σ

λ
1/2
σ′ (x)〈h(x, σ′), ξ0〉ξ0,

where h in C0(Ps(Σ)) ⊗ ℓ2(Σ) ⊗ H is viewed as function on Ps(Σ) × Σ with
values in H (recall that (λσ)σ∈Σ is the family of coordinate functions in Ps(Σ)).
Then Qs,Σ is a projection of C∗(Σ, C0(Ps(Σ))). Let B be a C∗-algebra. Then
the maps

µs
Σ,B,∗ : KK∗(Ps(Σ), B) → K∗(C

∗(Σ, B)),

z 7→ [Qs,Σ]⊗C∗(Σ,C0(Ps(Σ))) σΣ(z)

are compatible with the maps K∗(Ps(Σ)) → K∗(Ps′(Σ)) induced by the inclu-
sion of Rips complexes Ps(Σ) →֒ Ps′(Σ). Taking the inductive limit, we obtain
the coarse Baum–Connes assembly map with coefficients in B,

µΣ,B,∗ : lim
s

KK∗(Ps(Σ), B) → K∗(C
∗(Σ, B)).

If µΣ,B,∗ is an isomorphism, we say that Σ satisfies the coarse Baum–Connes
conjecture with coefficients in B. When B = C, we set µs

Σ,∗ for µs
Σ,C,∗, µΣ,∗

for µΣ,C,∗ and we say that Σ satisfies the coarse Baum–Connes conjecture if

µΣ,∗ : lim
s

K∗(Ps(Σ)) → K∗(C
∗(Σ))

is an isomorphism. Recall that if Γ is a finitely generated group, and if |Γ|
stands for the metric space arising from any word metric, then the coarse
Baum–Connes conjecture for |Γ| implies the Novikov conjecture on higher sig-
natures for the group Γ.

6.5. A geometric assembly map for families of finite metric spaces.

To prove Theorem 6.2, we will need a slight modification of the map ν∞F,Σ,A,∗

defined by equation (9). Let A = (Ai)i∈N be a family of C∗-algebras and let
X = (Xn)n∈N be a family of discrete proper metric spaces. Define A∞

X as the
closure of the set of

x = (xn)n∈N ∈
∏

n∈N

An ⊗ K (ℓ2(Xn)⊗ H )

such that, for some r > 0, xn has propagation less than r for every integer n.
Then A∞

X is obviously a filtered C∗-algebra. When A is the constant family
Ai = C, we set C∗(X ) for A∞

X . According to Lemma 2.14, there exists for
a universal control pair (α, h), any family A = (Ai)i∈N of C∗-algebras and
any family X = (Xn)n∈N of discrete proper metric spaces, an (α, h)-controlled
isomorphism

K∗(A
∞
X ) →

∏

n∈N

K∗(An ⊗ K (ℓ2(Xn)))
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induced on the j factor and up to Morita equivalence by the restriction to A∞
X

of the evaluation
∏

n∈N

An ⊗ K (ℓ2(Xn)⊗ H ) → Aj ⊗ K (ℓ2(Xj)⊗ H ).

Proceeding as in Corollary 4.9, we see that there exists a universal control pair
(α, h) such that

• for any family X = (Xn)n∈N of finite metric spaces,
• for any families of C∗-algebras A = (Ai)i∈N and B = (Bi)i∈N,
• for any z = (zi)i∈N in

∏
i∈N

KK∗(Ai, Bi),

there exists an (α, h)-controlled morphism

T ∞
X (z) = (τ∞,ε,r

X (z))0<ε< 1
4α ,r>0 : K∗(A

∞
X ) → K∗(B

∞
X )

that satisfies in this setting the analogous properties to those listed in Corollary
4.9 and Proposition 4.10 for T ∞

F,Σ(·). Let us denote by

τ∞X (z)K∗(A
∞
X ) → K∗(B

∞
X )

the morphisms induced in K-theory by T ∞
X (z), i.e.

τ∞X (z) ◦ ιε,r∗ (x) = ιαε,hεr
∗ ◦ τ∞,ε,r

X (z)(x)

for any positive numbers ε and r with ε < 1
4α and any x in Kε,r(A∞

X ). Re-
call that for a finite metric space Z and a positive number s, the C∗-algebra
C(Ps(Z)) ⊗ K (ℓ2(Z)) inherits a structure of a filtered C∗-algebra from the
one on K (ℓ2(Z)) (arising from the metric on Z). The projection Qs,Z of
C(Ps(Z))⊗ K (ℓ2(Z)) is defined by

Qs,Z(h)(y, z) = λ1/2
z (y)

∑

z′∈Z

h(y, z′)λ
1/2
z′ (y)

for any h in C(Ps(Z)) ⊗ ℓ2(Z) ∼= C(Ps(Z) × Z) where (λz)z∈Z is the family
of coordinate functions of Ps(Z), i.e. y =

∑
z∈Z λz(y) for any y in Ps(Z).

Then Qs,Z has propagation less than 2s. If we fix any rank-one projection e
in K (H ), for any family X = (Xi)i∈N of finite metric spaces, then Q∞

s,X =

(Qs,Xi ⊗ e)i∈N is a projection of propagation less than 2s in A∞
X , where A is

the family (C(Ps(Xi)))i∈N.
Now we can proceed as in Section 4.7 to define a quantitative geometric

assembly map valued in C∗(X ). For any ε in (0, 1
4 ), any positive numbers s

and r such that r ≥ rd,ε, define

ν∞,ε,r,s
X ,∗ :

∏

i∈N

K∗(Ps(Xi)) → Kε,r
∗ (C∗(X )),

z 7→ τ
∞,ε/α,r/hε/α

X (z)([Q∞
s,X , 0]ε/α,r/hε/α

).

The family of maps (ν∞,ε,r,s
X ,∗ )0<ε< 1

4
,r>rs,ε is obviously compatible with the

structure maps of K∗(C
∗(X )), i.e.

ιε,ε
′,r,r′

∗ ◦ ν∞,ε,r,s
X ,∗ = ν∞,ε′,r′,s

X ,∗
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for 0 < ε ≤ ε′ < 1
4 and rs,ε < r ≤ r′. This allows us to define

ν∞,s
X ,∗ :

∏

i∈N

K∗(Ps(X )) → K∗(C
∗(X ))

as ν∞,s
X ,∗ = ιε,r∗ ◦ ν∞,ε,r,s

X ,∗ . The quantitative assembly maps are also compatible
with inclusion of Rips complexes. Let

q∞s,s′,∗ :
∏

i∈N

K∗(Ps(Xi)) →
∏

i∈N

K∗(Ps′(Xi))

be the map induced by the family of inclusions Ps(Xi) →֒ Ps′(Xi). Then we
have

ν∞,ε,r,s′

X ,∗ ◦ q∞s,s′,∗ = ν∞,ε,r,s
X ,∗

for any positive numbers ε, s, s′, and r such that ε ∈ (0, 1
4 ), s ≤ s′, r ≥ rs′,ε,

and thus

ν∞,s′

X ,∗ ◦ q∞s,s′,∗ = ν∞,s
X ,∗

for any positive numbers s and s′ such that s ≤ s′.
Let Σ be a graph space in the sense of [14], i.e. Σ =

⊔
i∈N

Xi, where (Xi)i∈N

is a family of finite metric spaces such that

• for any r > 0, there exists an integer Nr such that for any integer i, any
ball of radius r in Xi has at most Nr element;

• the distance between Xi and Xj is at least i+ j for any distinct integers i
and j.

If XΣ stands for the family (Xi)i∈N, we obviously have an inclusion of filtered
C∗-algebras XΣ : C∗(XΣ) →֒ C∗(Σ).

Proposition 6.6. Let Σ be a graph space Σ =
⊔

i∈N
Xi as above and let s be a

positive number such that d(Xi, Xj) > s if i 6= j. Then we have a commutative
diagram

∏
i∈N

K∗(Ps(Xi))
ν∞,s
X,∗

//

≃

��

K∗(C
∗(XΣ))

XΣ,∗

��

K∗(Ps(Σ))
µs
Σ,∗

// K∗(C
∗(Σ)),

where in view of the equality Ps(Σ) =
⊔

i∈N
Ps(Xi), the left vertical map is the

identification between
∏

i∈N
K∗(Ps(Xi)) and K∗(

⊔
i∈N

Ps(Xi)).

The proof of this proposition will require some preliminary steps. If A =
(Ai)i∈N is a family of C∗-algebras, we set A⊕ =

⊕
n∈N

Ai. The orthogonal

family (Ai⊗K (ℓ2(Xi)⊗H ))i∈N of corners in A⊕⊗K (ℓ2(Σ)⊗H ) gives rise to
a one-to-one morphism A,XΣ : A∞

XΣ
→ C∗(Σ,A⊕). Let z = (zi)i∈N be a family

in
∏

i∈N
KK∗(Ai,C). Recall that we have a canonical identification between∏

i∈N
KK∗(Ai,C) and KK∗(A

⊕,C). Let z̃ be the element of KK∗(A
⊕,C)

corresponding to z under this identification.
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Lemma 6.7. For any family A = (Ai)i∈N of C∗-algebras, any graph space
Σ =

⊔
i∈N

Xi and any z in
∏

i∈N
KK∗(Ai,C), we have a commutative diagram

K∗(A
∞
XΣ

)
τ∞
XΣ

(z)
//

A,XΣ,∗

��

K∗(C
∗(XΣ))

XΣ,∗

��

K∗(C
∗(Σ,A⊕))

SΣ(z̃)
// K∗(C

∗(Σ)).

Proof. Assume first that z is odd. Let us fix a separable Hilbert space H . For
each integer i, let (H , πi, Ti) be the K-cycle for KK∗(Ai,C) representing zi
with πi : Ai → L(H ) a representation and Ti in L(H ) satisfying the K-cycle
conditions. Let us set

Pi =
Ti + IdH

2

and

Ei =
{
(x, T ) ∈ Ai ⊕ L(H ) | Piπi(x)Pi − T ∈ K (H )

}
.

We have an inclusion

K (H ) →֒ Ei, T 7→ (0, T )

as an ideal and a surjection

Ei → Ai, (x, T ) → x.

Up to Morita equivalence, zi induces by left multiplication the boundary mor-
phism of the semi-split extension

0 → K (H ) → Ei → Ai → 0.

Let E be the family (Ei)i∈N and set CH for the constant family (K (H ))i∈N.
Then the extension

0 7→
∏

i∈N

K (H )⊗ K (ℓ2(Xi)⊗ H ) →
∏

i∈N

Ei ⊗ K (ℓ2(Xi)⊗ H )

→
∏

i∈N

Ai ⊗ K (ℓ2(Xi)⊗ H ) → 0

restricts to a semi-split extension of filtered C∗-algebras:

0 7→ CH∞
XΣ

→ E∞
XΣ

→ A∞
XΣ

→ 0.

Up to the identification between K∗(CH
∞
XΣ

) and K∗(C
∗(XΣ)) arising from

Morita equivalence between C and K (H ), the boundary morphism associated
to this extension is

T ∞
XΣ

(z) : K∗(A
∞
XΣ

) → K∗+1(C
∗(XΣ)).
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In the same way, let

E =
{
((xi)i∈N, T ) ∈

(⊕

n∈N

Ai

)
⊕ L(ℓ2(N,H ))

|
(⊕

i∈N

piπi(xi)pi

)
− T ∈ K (ℓ2(N,H ))

}
.

As before we have a semi-split extension

(24) 0 → K (ℓ2(N)⊗ H ) → E → A⊕ → 0.

Moreover,

SΣ(z̃) : K∗(C
∗(Σ,A⊕)) → K∗+1(C

∗(Σ))

is, up to the identification between K∗(C
∗(Σ)) and K∗(C

∗(Σ,K (ℓ2(N)⊗H )))
arising from Morita equivalence, the boundary morphism for the extension

0 → C∗(Σ,K (ℓ2(N)⊗ H )) → C∗(Σ, E) → C∗(Σ,A⊕) → 0

induced by the extension of equation (24). For every integer i, there is an
obvious representation of K (H ⊗ ℓ2(Xi))⊗Ei on the right E-Hilbert module
H ⊗ ℓ2(Σ)⊗E as a corner which gives rise when i runs through integers to a
C∗-morphism ′E,XΣ

: E∞
XΣ

→ C∗(Σ, E) such that

′E,XΣ
(CH∞

XΣ
) ⊆ C∗(Σ,K (ℓ2(N)⊗ H )).

We have then a commutative diagram

(25) 0 // CH∞
XΣ

//

′E,XΣ

��

E∞
XΣ

//

′E,XΣ

��

A∞
XΣ

//

A,XΣ

��

0

0 // C∗(Σ,K (ℓ2(N)⊗ H )) // C∗(Σ, E) // C∗(Σ,A⊕) // 0.

The restriction morphism

CH∞
XΣ

′E,XΣ−−−−→ C∗(Σ,K (ℓ2(N)⊗ H ))

is homotopic to the composition

(26) CH
∞
XΣ

→ C∗(Σ,K (H )) → C∗(Σ,K (ℓ2(N)⊗ H )),

where the first map is induced by the obvious representation of

CH
∞
XΣ

=

∞∏

i=1

K (H ⊗ ℓ2(Xi))⊗ K (H )

on the K (H )-right Hilbert module H ⊗ ℓ2(Σ)⊗ K (H ) (each factor acting
as a corner); the second map is induced by the morphism

K (H ) → K (ℓ2(N)⊗ H ), x 7→ x⊗ e,

where e is any rank-one projection in K (ℓ2(N)). But up to the identification on
one hand betweenK∗(CH ∞

XΣ
) andK∗(C

∗(XΣ)), and on the other hand between
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K∗(C
∗(Σ,K (ℓ2(N) ⊗ H ))) and K∗(C

∗(Σ)), the morphism of equation (26)
induces in K-theory

XΣ,∗ : K∗(C
∗(XΣ)) → K∗(C

∗(Σ)).

Since in the commutative diagram (25), SΣ(z̃) is the boundary morphism asso-
ciated to the top row and T ∞

XΣ
(z) is the boundary morphism associated to the

bottom row, the lemma in the odd case is then a consequence of the naturality
of the boundary morphisms.

If z is even, set

[∂A] = ([∂Ai ])i∈N ∈
∏

i∈N

KK∗(Ai, SAi)

and

[∂A]
−1 = ([∂Ai ]

−1)i∈N ∈
∏

i∈N

KK∗(SAi, Ai).

Let us also define the families SA = (SAi)i∈N and CA = (CAi)i∈N and set

z′ = ([∂Ai ]
−1 ⊗Ai zi)i∈N ∈

∏

i∈N

KK∗(SAi,C).

Using the odd case and the compatibility of the transformation T ∞
XΣ

(·) with
Kasparov products, we get that

XΣ,∗ ◦ T
∞
XΣ

(z) = XΣ,∗ ◦ T
∞
XΣ

(z′) ◦ T ∞
XΣ

([∂A])(27)

= SΣ(z̃′) ◦ SA,XΣ,∗ ◦ T
∞
XΣ

([∂A]).

Under the canonical identifications (SA)⊕ ≃ SA⊕ and (CA)⊕ ≃ CA⊕, we
have a commutative diagram

0 // SA∞
XΣ

//

SA,XΣ

��

CA∞
XΣ

//

CA,XΣ

��

A∞
XΣ

//

A,XΣ

��

0

0 // C∗(Σ, SA⊕) // C∗(Σ, CA⊕) // C∗(Σ,A⊕) // 0,

where the rows both arise from the family of Bott extensions

(0 → SAi → CAi → Ai → 0)i∈N.

Then

T ∞
XΣ

([∂A]) : K∗(A
∞
XΣ

) → K∗+1(SA
∞
XΣ

)

is the boundary morphism for the top row, and

SΣ([∂A⊕ ]) : K∗(C
∗(Σ,A⊕)) → K∗+1(C

∗(Σ, SA⊕))

is the boundary morphism for the bottom row.
By naturality of the boundary extension, we get that

SA,XΣ,∗ ◦ T
∞
XΣ

([∂A]) = SΣ([∂A⊕ ]) ◦ A,XΣ,∗.

Hence, using Proposition 6.4, we deduce from equation (27) that

XΣ,∗ ◦ T
∞
XΣ

(z) = SΣ([∂A⊕ ]⊗A⊕ z̃′) ◦ A,XΣ,∗.
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But using the Connes–Skandalis characterization of Kasparov products, we get

that [∂A⊕ ]⊗A⊕ z̃′ = z̃ and hence

XΣ,∗ ◦ T
∞
XΣ

(z) = SΣ(z̃) ◦ A,XΣ,∗. �

Proof of Proposition 6.6. Let z = (zi)i∈N be a family in
∏

i∈N

K∗(Ps(Xi)) =
∏

i∈N

KK∗(C(Ps(Xi)),C).

Then under the identification between the groups
∏

i∈N
KK∗(C(Ps(Xi)),C)

and KK∗(C0(Ps(Σ)),C) given by the equality

C0(Ps(Σ)) =
⊕

i∈N

C(Ps(Xi)),

we have a correspondence between z and z̃ and hence the commutativity of
the diagram amounts to proving the equality

(28) SΣ(z̃)([Qs,Σ, 0]) = XΣ,∗ ◦ T
∞
XΣ

(z)([Q∞
s,XΣ

, 0]).

Let us consider the family A = (C(Ps(Xi)))n∈N. Since d(Xi, Xj) ≥ s if i 6= j,
we see that A,XΣ(Q

∞
s,XΣ

) = Qs,Σ and hence

SΣ(z̃)([Qs,Σ, 0]) = SΣ(z̃) ◦ A,XΣ,∗([Q
∞
s,XΣ

, 0]).

Equality (28) is then a consequence of Lemma 6.7. �

6.8. Proof of Theorem 6.2. Let Σ be a discrete metric space with bounded
geometry that satisfies the assumptions of Lemma 6.7. According to [14], we
can assume by using a coarse Mayer–Vietoris argument that Σ is a graph space
Σ =

⊔
i∈N

Xi.
Let us show that µΣ,∗ is one-to-one. Let d be a positive number and let x be

an element in K∗(Pd(Σ)) such that µΣ,∗(x) = 0. Fix ε > 0 small enough and
choose a positive number λ as in the second point of Proposition 2.4. We can
assume without loss of generality that d(Xi, Xj) ≥ d if i 6= j. Then Pd(Σ) =⊔

i∈N
Pd(Xi) and up to the corresponding identification between K∗(Pd(Σ))

and
∏

i∈N
K∗(Pd(Xi)), we can view x as a family (xi)i∈N in

∏
i∈N

K∗(Pd(Xi)).
According to Proposition 6.6, we get that

XΣ,∗ ◦ ν
∞,d
XΣ,∗(x) = 0.

If we fix r ≥ rd,ε, then we have

XΣ,∗ ◦ ν
∞,d
XΣ,∗ = XΣ,∗ ◦ ι

ε,r
∗ ◦ ν∞,ε,r,d

XΣ,∗

= ιε,r∗ ◦ ε,rXΣ,∗ ◦ ν
∞,ε,r,d
XΣ,∗ .

Hence according to the second point of Proposition 2.4, there exists r′ ≥ r
such that

λε,r
′

XΣ,∗ ◦ ν
∞,λε,r′,d
XΣ,∗ (x) = 0.
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Therefore, replacing λε by ε and r′ by r, we see that there exist ε in (0, 1
4 ) and

a positive number r such that

ε,rXΣ,∗ ◦ ν
∞,ε,r,d
XΣ,∗ (x) = 0.

We can also assume without loss of generality that d(Xi, Xj) ≥ r if i 6= j and
hence

ν∞,ε,r
XΣ,∗ (x) = 0 in Kε,r

∗ (C∗(XΣ)).

Using the controlled isomorphism between the groups K∗(C
∗(XΣ)) and∏

i∈N
K∗(K (ℓ2(Xi))), we see that up to rescaling ε and r, we can assume

that

νε,r,dXi,∗
(xi) = 0 in Kε,r

∗ (K (ℓ2(Xi)))

for every integer i. Let then d′ ≥ d be such that QIX,∗(d, d
′, r, ε) is satisfied

for every finite subset X of Σ. We have then qd,d′,∗(xi) = 0 in K∗(Pd′(Xi))
for every integer i and therefore qs,s′,∗(x) = 0 in K∗(Pd′(Σ)). Hence µΣ,∗ is
one-to-one.

Let us prove that µΣ,∗ is onto. Let z be an element in K∗(C
∗(Σ)) and

fix ε′ small enough. Then for some positive number r′, there exists y′ in
Kε′,r′

∗ (C∗(Σ)) such that z = ιε
′,r′

∗ (y′). Pick ε in [ε′, 1
4 ), d a positive number

and r ≥ r′ such that QSX,∗(d, r
′, r, ε′, ε) holds for any finite subset X of Σ. We

can assume without loss of generality that d(Xi, Xj) > r and d(Xi, Xj) > d if
i 6= j. Then there exists an element y in Kε′,r′

∗ (C∗(XΣ)) such that

ε
′,r′

XΣ,∗(y) = y′.

For every integer i, let yi be the image of y under the composition

Kε′,r′

∗ (C∗(XΣ)) → Kε′,r′

∗ (K (ℓ2(Xi)⊗ H )) → Kε′,r′

∗ (K (ℓ2(Xi))),

where

• the first morphism is induced by the restriction to C∗(XΣ) of the ith pro-
jection

∏
n∈N

K (ℓ2(Xn)⊗ H ) → K (ℓ2(Xi)⊗ H );
• the second morphism is the Morita equivalence.

For every integer i, there exists xi in K∗(Pd(Xi)) such that

νε,r,dXi,∗
(xi) = ιε

′,ε,r′,r
∗ (yi).

Set then x = (xi)i∈N in
∏

i∈N
K∗(Pd(Xi)). Then ν∞,d

XΣ,∗(x) = ιε,r∗ (y) and hence

according to Proposition 6.6 and under the identification between K∗(Pd(Σ))
and

∏
i∈N

K∗(Pd(Xi)), we get that

µd
Σ,∗(x) = XΣ,∗(ι

ε,r
∗ (y)) = ιε,r∗ (y′) = z.

Hence µΣ,∗ is onto.
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