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Introduction

Cohomogeneity one manifolds are Riemannian manifolds with an action of
a lie group such that the orbit space is one dimensional. They can be seen
as generalisations of homogeneous spaces, but offer a richer structure which
has been used for explicit constructions in the past. In particular, Bergery
used cohomogeneity one manifolds to construct invariant Einstein metrics,
and later Bryant and Salamon found cohomogeneity one metrics with ex-
ceptional holonomy groups, which is not possible in the homogeneous case.
For details and many references see e.g. Alekseevsky and Alekseevsky [1992],
Alekseevsky and Podestá [1997], Alekseevsky and Alekseevsky [1993] and Ale
[1992].

An interesting connection arises with nonnegative or positive sectional
curvature. Most constructions of nonnegatively or positively curved mani-
folds arise from product and quotient constructions, starting with lie groups
and their bi-invariant metric. Grove and Ziller found a large class of non-
negatively curved manifolds within the cohomogeneity one category in Grove
and Ziller [2000]: If there are two orbits of codimension two, there is a metric
of nonnegative sectional curvature (this in particular includes the principal
L-bundles over S4 with L = SO(3) or L = SO(4)). Later Grove and Ziller
showed that every cohomogeneity one manifolds supports a metric of non-
negative Ricci curvature, and one of positive Ricci curvature if and only if the
fundamental group is finite (Grove and Ziller [2002]). The naturally arising
question if every cohomogeneity one manifold with finite fundamental group
allows a metric of positive sectional curvature was answered negatively in
Grove et al. [2006], where the Brieskorn variety is shown to be a counter
example.

This work is concerned with the classification of cohomogeneity one man-
ifolds with positive euler characteristic where the acting group G is classical
simple. The first result is the following theorem, which hints at the impor-
tance of the classification result. The action is called primitive if there is no
subgroup L ⊂ G with a G-equivariant map M → G/L.

Theorem 0.1. Suppose the compact, connected lie group G acts primitively
on the manifold M with positive euler characteristic such that M/G = [0, 1].
Suppose there is no normal subgroup of G that acts orbit equivalently, and
that G is not simple. Then one of the following applies:

1. The action of G is equivalent to a cohomogeneity one action of a rank
1 symmetric space.

2. G is covered by G′×S3 where G′ is simple and one of the singular orbits
has codimension 3.
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While the classification result itself was moved to its own subsection
within the introduction (due to the vast array of tables required), it should
be noted that the number of examples in each dimension is finite. We know
of no abstract reason for this. For each simple classical lie group G we will
give a table of cohomogeneity one G-manifolds of positive euler characteris-
tic in the following subsection. We will prove theorem 0.1 in section 2, after
we have established the basics and notation in section 1. Because of the
diagram-chase like qualities of the classification, we give an overview over
the general procedure in section 3. In sections 4-9, the actual classification
is carried out.

This classification would not have been possible without my advisor Burkhard
Wilking, who I am indebted to for constant support throughout the years.
I’d also like to thank Wolfgang Ziller for his help during my visit in 2007.
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The result

Each simply connected, primitive cohomogeneity one G-manifolds of positive
euler characteristic, where G is a classical simple group acting almost effec-
tively, is, up to equivalence (that is, up to an outer automorphism of G, up
to G-equivariance) one of the following:

• One of the classified cohomogeneity one manifolds of dimension less or
equal to 7 (see 1.5.1 on page 17).

• One of the actions with a fixed point described in 1.5.2 on page 17

• Contained in the following tables.

The entries of the following tables are of the form H ⊂ K−,K+, where K+

has maximal rank in G, and K±/H are spheres. The manifolds M is then
equivalent to

G×K− D
l−+1 ∪ G×K+ D

l++1

where Dl±+1 is the unit ball with boundary ∂Dl−±+1 = K±/H, where the
action of K± is extended linearly from the sphere K±/H, and G×K± D

l±+1 is
the quotient of G ×Dl±+1 by the diagonal action of K± (see 1.1 on page 12
for more details).

The tables for the Spin-groups (including SU(4) ' Spin(6)) only list the
effective actions (the non-effective ones are listed for the SO-groups), but
those are given as π(H) ⊂ π(K−), π(K+), where π : Spin(n) → SO(n) is
the projection. The diagram of the original action can be reconstructed as
H = π−1(π(H))0,K± = π−1(π(K±)) (see section 3 on page 20 and 3.1 on
page 20) in those cases.

• G = SU(3)

S1 ⊂ SU(2), S(U(1)U(2))

S1 ⊂ S(U(2)U(1)), S(U(1)U(2))

S1 ⊂ SO(3), S(U(1)U(2))

S1 ⊂ SO(3),T2

Z3SO(3) ⊂ Z3SO(3),T2
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• G = SO(6)

SO(4) ⊂ SO(5), SO(2)SO(4)

Z2SO(4) ⊂ Z2SO(5), SO(2)SO(4)

SO(2)SO(3) ⊂ SO(3)SO(3), SO(2)SO(4)

SO(2)SO(2) ⊂ SO(2)SO(3),U(2)SO(2)

U(2) ⊂ SO(4),U(3)

T2 ⊂ SO(3)SO(2), SO(2)U(2)

where T2 = {diag(z1, 1, 1, z2)}

• G = SU(4)

S1SU(2) ⊂ S(U(2)U(2)), S(U(1)U(3))

where S1 = {diag(z̄2, z4, z̄, z̄)} ⊂ N(SU(2))

S1SU(2) ⊂ S(U(2)U(2)), S(U(1)U(3))

where S1 = {diag(z̄2, 1, z, z)} ⊂ N(SU(2))

S1 ⊂ σ(S(U(1)U(3))), S(U(1)U(3))

where S1 = {diag(z̄, z, 1, 1)} and σ exchanges the first two coordinates
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• G = SU(n), n ≥ 5

S1SU(n− 2) ⊂ σ(U(n− 1)),U(n− 1)

where S1 = {diag(z̄, z, 1, . . . , 1)} and σ exchanges first two coordinates

S1SU(n− 2) ⊂ S(U(2)U(n− 2)),U(n− 1)

where S1 = {diag(z̄n−2, zn−2, z̄, . . . , z̄)} ⊂ N(SU(n− 2))

S1SU(n− 2) ⊂ S(U(2)U(n− 2)),U(n− 1)

where S1 = {diag(z̄n−2, 1, z, . . . , z)} ⊂ N(SU(n− 2))

S1SU(n− 2) ⊂ SU(2)SU(n− 2),U(n− 1)

where S1 = {diag(z̄, z, 1, . . . , 1)} ⊂ N(SU(n− 2))

S1SU(n1 − 1)SU(n2) ⊂ S(U(n1 − 1)U(n2 + 1)), S(U(n1)U(n2))

where S1 = {diag(z̄n2 , . . . , z̄n2︸ ︷︷ ︸
×n1−1

, 1, zn1−1, . . . , zn1−1︸ ︷︷ ︸
×n2

)

and SU(n1 − 1)SU(n2) ⊂ H acts trivially on Cn1 (n1 + n2 = n− 1, n1, n2 > 1)

• G = SO(2n+ 1), n ≥ 3

SO(2n− 1) ⊂ SO(2)SO(2n− 1), SO(2n)

O(2n− 1) ⊂ SO(2)SO(2n− 1),O(2n)

SO(2n1 + 1)SO(2n2 − 1) ⊂ SO(2n1 + 2)SO(2n2 − 1), SO(2n1 + 1)SO(2n2)

where n1 + n2 = n

SO(2)SO(2n− 3) ⊂ U(2)SO(2n− 3), SO(2)SO(2n− 2)

SO(2n1 − 1)U(n2) ⊂ SO(2n1 − 1)U(n2 + 1), SO(2n1)U(n2)

where n1 + n2 = n

T2SU(n− 2) ⊂ SO(3)S1SU(n− 2), SO(2)U(n− 1)

where S1 = {diag(1, 1, 1, z, . . . , z)},T2 = {diag(1, z, z2, 1, . . . , 1)} · S1

and SO(3) ↪→ SO(5) is irreducible (SO(5) being the upper left block)
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• G = Spin(2n+ 1), n ≥ 3

S1
kSU(2) ⊂ U(3), SO(2)SO(5), n = 3

where S1
k = {diag(z2, zk, zk, 1)}, k = 1,−3 and

SU(2) acts trivially on Re1,Re2,Re7
SU(2)S1

HSU(2) ⊂ U(2)SO(5), SO(5)U(2), n = 4

where S1
H = {diag(zl1 , zl1 , 1, zl2 , zl2)} and 1 = 2, l2 = 1 or l1 = 1 = l2.

• G = Sp(n), n ≥ 2

Sp(n− 2)∆Sp(1) ⊂ Sp(n− 2)SO(2)∆Sp(1), Sp(n− 1)Sp(1)

where ∆Sp(1) is the diagonal Sp(1) in the upper left Sp(2)-block

and SO(2) is the standard SO(2) in this same block

Z2∆Sp(1) ⊂ SO(2)∆Sp(1),Z2Sp(1)Sp(1), n = 2

where Z2 is generated by

0 1

1 0

 and

SO(2) and ∆Sp(1) are as above

S1Sp(n− 2) ⊂ U(2)Sp(n− 2), S1Sp(n− 1)

where S1 = {diag(z, z̄2, 1, . . . , 1)} or {diag(z, 1, . . . , 1)}

U(n1)Sp(n2 − 1) ⊂ U(n1 + 1)Sp(n2 − 1),U(n1)Sp(n2), n1 + n2 = n

S1
HSp(n− 2) ⊂ Sp(1)Sp(n− 2), S1Sp(n− 1)

where S1
H = {diag(z, z3, 1, . . . , 1)} and Sp(1) ↪→ Sp(2) (upper left block)

given by the irreducible SO(3) ↪→ SO(5)

T2
HSp(n− 3) ⊂ S1SO′(3)Sp(n− 3),T2Sp(n− 2)

where S1 = {diag(z, z, z, 1, . . . , 1)}, T2
H = {diag(1, z, z̄, 1, . . . , 1)} · S1

and SO′(3) is the conjugation of the standard upper left

SO(3)-block by


1 0 0

0 1 i

0 1 −i


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• G = SO(2n), n ≥ 4

S1SU(n− 1) ⊂ σ(U(n)),U(n)

where S1 = {diag(z, 1, . . . , 1)} or S1 = {diag(1, z, . . . , z)} and

σ is conjugation by diag(−1, 1, . . . , 1)

SO(2n1)SO(2n2 − 1) ⊂ SO(2n1 + 1)SO(2n2 − 1), SO(2n1)SO(2n2)

where n1 + n2 = n

Z2SO(2n− 2) ⊂ Z2SO(2n− 1), SO(2)SO(2n− 2)

where Z2 ⊂ SO(2)

U(n1 − 1)SO(2n2) ⊂ U(n1 − 1)SO(2n2 + 1),U(n1)SO(2n2)

where n1 + n2 = n

T2SU(n− 2) ⊂ SO(3)S1SU(n− 2), SO(2)U(n− 1)

where S1 = {diag(1, 1, 1, 1, z, . . . , z)}, T2 = {diag(z, 1, . . . , 1)} · S1

and SO(3) is the upper left block
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1 Preliminaries

In this section, we will cover the basics of cohomogeneity one manifolds,
and list the properties most usefull to us, especially those connected to the
topology of M . We will also treat some properties of representations of
certain simple lie groups, which we will make use of later in the classification.

1.1 Cohomogeneity one actions

Suppose a compact Lie group G acts on the manifold M such there is a 1-
codimensional orbit G/H. It is known (see Bredon [1972] or Mostert [1957])
that M/G is homeomorphic to either S1 or [−1, 1] in the compact case, or
R or [0, 1) in the noncompact case. The structure of all cases can be found
in the pioneer work of Mostert Mostert [1957], and also (in more detail) in
various papers by Alekseevsky, see e.g. Alekseevsky and Alekseevsky [1992].
We list the most important properties:

1.1.1 The noncompact case.

If M/G = R, all orbits are regular and M is actually a fibre bundle over
M/G with fibre G/H, which is neccessarily trivial, since R is contractible.
Therefore, M is G-equivalent to G/H×R. In the case M/G = [0, 1), there is
exactly one singular orbit, say G/K (where K ⊃ H). Then K/H is a sphere
Sm ⊂ Rm+1, and the action of K on Sm can be extended linearly to Rm+1.
M is G-equivalent to G×K Rm+1, on which G acts by left translation on the
first factor.

1.1.2 The compact case.

If M/G = S1, all orbits are regular and M is a fibre bundle over S1 with fibre
G/H. It’s easily seen by the homotopy sequence of that bundle that π1(M)
is infinite in this case. Also we have χ(M) = 0, so we will not be concerned
with this case.

The most interesting case is M/G = [−1, 1], which is the one we are
concerned with in this paper, and which we therefore lay out in more detail.
Choose any G-invariant Riemannian metric on M . There are two singular
orbits, so choose a minimal geodesic c : [−1, 1] → M between them, such
that π ◦ c = id[−1,1] for the projection π : M → [−1, 1]. Denote the isotropy
groups by H = Gc(0) and K± = Gc(±1). By the slice theorem (see e.g. Bredon
[1972]) there are tubular neighbourhoods G×K±D± of the singular orbits K±,
where D± is the disc of radius 1 normal to the singular orbit K±. Since the
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action of G on M has cohomogeneity one, the action of K± on Sl± = ∂D± is
transitive, with isotropy group H. Now M is constructed from the tubular
neighbourhoods by gluing them along their common boundary π−1(0) '
G/H:

M ' G×K− D− ∪G/H G×K+ D+

This uniquely determines M in terms of the groups G ⊃ K−,K+ ⊃ H: The
action of K± on the sphere Sl± = K±/H is linear and can therefore be extended
to an action on the ball D±, which in turn allows M be constructed as above.
Note that the only condition imposed besides the inclusions is that K±/H is
a sphere of any dimension. We call the collection of groups {G,K−,K+,H}
the group diagram of M , where it is understood that K± ⊂ G and H ⊂ K±.
The group diagram is of course not uniquely determined by M , since we
did not assume effectiveness of the action of G: If G ⊃ K−,K+ ⊃ H is the
group diagram of an ineffective cohomogeneity one manifold with ineffective
kernel H′, the effective version of the G action has group diagram G/H′ ⊃
K−/H

′,K+/H ⊃ H/H′. But even effective group diagrams are not uniquely
determined by M (e.g., spheres can be represented by many such diagrams).

1.2 Equivalence, uniqueness of diagrams and primitiv-
ity

For the remainder of this work, we assume that we are in the second case
described in 1.1.2 on the previous page, and we use the notation introduced
there.

The classification of cohomogeneity one manifolds will be done up to
equvariant diffeomorphism: If M1,M2 carry a cohomogeneity one action of
G, we will call M1 and M2 G-equivariantly diffeomorphic if there is a diffeo-
morphism ψ : M1 →M2 such that ψ(gp) = gψ(p) for all g ∈ G, p ∈M1. This
will determine the group diagram of a cohomogeneity one G-manifold M up
to the following operations (see Grove et al. [2008]):

• Switching K− and K+

• Conjugating each group of the group diagram with an element of G

• Replacing K− by aK−a
−1 for some a ∈ N(H)0, the unity component of

the normalizer of H in G, while keeping H and K+ unmodified.

Of course, the classification works the other way around: We will classify
the possible diagrams up to the listed operations and therefore get a list for
the equivariant diffeomorphism types of cohomogeneity one G-manifolds for

13



a fixed lie group G. We will not classify cohomogeneity one manifolds up to
equivariant diffeomorphism, but up to a slightly coarser equivalence relation:

Definition 1.1. Two cohomogeneity one G-manifolds M1,M2 are called equiv-
alent, if they are equivariantly diffeomorphic up to a automorphism of G, i.e.
if there is an automorphism ϕ of G and a diffeomorphism ψ : M1 →M2 such
that ψ(gp) = ϕ(g)ψ(p) for all g ∈ G, p ∈M1.

It is clear that applying an automorphism of G to all groups in the diagram
of a cohomogeneity one manifold yields an equivalent cohomogeneity one
manifold.

From a diagram G ⊃ K−,K+ ⊃ H and an embedding G ↪→ G′ we get
a cohomogeneity one G′-manifold from the diagram G′ ⊃ K−,K+ ⊃ H. To
further diminish the items of the classification we will require minimality
with respect to this extension process:

Definition 1.2. A comohogeneity one G-manifold M is called primitive, if
for every group diagram G ⊃ K−,K+ ⊃ H of M there is no subgroup L ⊂ G
such that K−,K+ ⊂ L.

Nonprimitivity of M is equivalent to the existence of a G-equivariant
map M → G/L for some subgroup L ( G. In this case, M is equivalent
to G ×L N , where N is the cohomogeneity one manifold determined by the
group diagram L ⊃ K−,K+ ⊃ H (see Alekseevsky and Alekseevsky [1992]).
The action of L on N does not need to be effective, even if the one of G on
M is.

As a motivation for studying primitive G-manifolds, note that if N has
non-negative curvature, so has G ×L N . The technical value of primitivity
lies mostly in the following lemma, taken from Grove et al. [2008]:

Lemma 1.3. Assume the primitive cohomogeneity one action of G on M is
effective (almost effective). Then the intersection H− ∩ H+ of the ineffective
kernels H± of K±/H is trivial (finite).

1.3 The topology

The description of M as a double disc bundle in 1.1.2 on page 12 of course
allows a computation of the fundamental group in terms of the group dia-
gram. Vice versa, assuming M being simply connected, one arrives at the
following properties of the groups involved:

Proposition 1.4 (Grove et al. [2008]). Let M be a simply connected coho-
mogeneity one G-manifold. Then there are no exceptional orbits, and, in the
notation of 1.1.2 on page 12, we have l± ≥ 1, that is, dim K± > dim H.

14



A more direct computation using van Kampen’s theorem, carried out in
Hoelscher [2007], yields the following usefull properties:

Proposition 1.5. With the assumptions and notation of 1.4 on the preceding
page:

• If l+ > 1 and l− ≥ 1, then K− is connected

• If both l± > 1, then all of H,K−,K+ are connected

We will utilize this proposition frequently without further mention: The
only way the group K+ can be non-connected is when the “other sphere”
K−/H is 1-dimensional.

Another result concerns the euler characteristic of M (Alekseevsky and
Podestá [1997]). Since G ×K± D± contains the singular orbit G/K± as a
deformation rectract, the Mayer-Vietoris exact sequence can be applied to
obtain the following exact sequence:

. . .→ H i(M)→ H i(K−)⊕H i(K+)→ H i(G/H)→ H i+1(M)→ . . .

This allows the following corollary:

Corollary 1.6. Let M be a cohomogeneity one G-manifold with orbit space
[−1, 1]. Using notation from 1.1.2 on page 12, the euler characteristic of M
is given by

χ(M) = χ(G/K−) + χ(G/K+)− χ(G/H)

In particular, χ(M) > 0 implies that one of χ(G/K±) is greater than zero,
which is equivalent to one of the singular isotropy groups K± having maximal
rank in G.

For G simple, the maximal subgroups of maximal rank have been clas-
sified by Borel and Siebenthal (see e.g. Goto and Grosshans [1978]), up to
an automorphism of G. This can easily be generalized to semisimple and
compact groups, as well as to the non-maximal subgroups. We list the result
for the classical groups in table 15 on page 65.

Corollary 1.7. Suppose χ(M) > 0 and that K+ has the same rank as G.
Then the group H has corank 1 in G, i.e. the sphere Sl+ is odd dimensional.

Proof. Suppose l+ is even. Suppose p ∈ G/K+ is in the singular orbit given
by K+. Then the dimension of the slice representation at p is given by
dimM−dim G/K+. But both M and G/K+ have positive euler characteristic,
so they are even dimensional, and so is the slice representation at p. But
then the sphere of the slice at p is odd dimensional, yet its dimension is l+,
a contradiction.

We note that in the case that corank(H) = 1 and corank(K+) = 0 we can
derive χ(M) > 0. This is not true in general for corank(H) = 0.
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1.4 Properties of the isotropy groups

Again, we carry over the assumptions and notation from 1.1.2 on page 12
and 1.3 on page 14. Since G is compact, it is finitely covered by a group G̃
of the form Tk × G1 × · · · × Gl where Tk is a k-dimensional torus, the center
of G̃, and G1, . . . ,Gl are simple normal subgroups. We call k + l the number
of factors of G, which is well-defined since G is a finite quotient of G̃. The
fact that if G acts transitively on a sphere, the isotropy group has at least
k + l − 1 factors (see table 16 on page 65) leads to the following lemma:

Lemma 1.8. If G acts almost effectively and primitively, K+ has at most 4
factors.

Proof. Denote the number of factors of a group H by f(H). Since H± are
normal subgroups of H, it is clear that

f(H+) + f(H−)− f(H+ ∩ H−) ≤ f(H)

so that

f(H+) + f(H−)− f(H) ≤ f(H+ ∩ H−)

By the classification of effictive transitive actions on spheres (see table 16
on page 65) we have f(H)− f(H±) = f(H/H±) ≤ 2, which implies

2f(H)− f(H−)− f(H+) ≤ 4

and consequently

f(H)− 4 ≤ f(H+) + f(H−)− f(H) ≤ f(H+ ∩ H−)

But now f(H+∩H−) = 0 by lemma 1.3 on page 14, so that f(H) ≤ 4. By
the classification of sphere actions we know f(K+) ≤ 5, but if f(K+) = 5, we
know that K+/H = S1 or K+/H = S3, and (H)0 = (H+)0 has 4 factors. This
is a contradiction to H+ ⊂ H/H−, given by primitivity. So f(K+) ≤ 4.

Remark 1.9. Since we are concerned with almost effective actions, any fac-
tor of K+ that acts trivially on K+/H (that is, is contained in H+), cannot
act trivially on K−/H, so it has to occur as a factor of an isotropy group
of an effective transitive sphere action in table 16 on page 65, up to finite
quotients. If K+ has 4 factors K1 · · ·K4, we can after rearranging the order
assume that K1K2 act transitively almost effectively on a sphere, and K3K4

appear as the isotropy group of a transitive effective action on a sphere, up
to finite quotients. This will limit the choices when looking for possibilities
for K+ from table 15 on page 65.
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Lemma 1.10. The kernel of the action is the largest normal subgroup shared
by G and H

Proof. It is clear that the kernel of the action is a normal subgroup of both
G and H. Conversely, any subgroup of H which is normal in G fixes the whole
geodesic c pointwise, and since it’s normal, it fixes the whole of M .

Remark 1.11. For G simple, the only normal subgroups are finite and there-
fore central. So the kernel of the action is the intersection of H with the center
of G.

1.5 Known classification results

1.5.1 Cohomogeneity one manifolds of low dimension

Cohomogeneity one manifolds of dimension up to seven have been classified,
with no assumption on the Euler characteristic: Neuman (Neumann [1968])
classified those of dimension three, Parker (Parker [1986]) those of dimen-
sion four (with one omission, as observed by C. Hoelscher), and Hoelscher
(Hoelscher [2007]) classified those of dimension five to seven.

1.5.2 Cohomogeneity one manifolds with a fixed point

If the action of G on M has a fixed point, the classification is particularly
easy: There are the obvious actions with two fixed points on spheres, and
the following groups acting on compact rank one symmetric spaces:

CPn : SU(n),U(n)

HPn : Sp(n), Sp(n)× Sp(1), Sp(n)× U(1)

CP2n+1 : Sp(n), Sp(n)× U(1)

CaP2 : Spin(9)

The details can be found in Hoelscher [2007]
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2 Proof of theorem 0.1

We start with a little lemma concerning orbit equivalent subactions, which
will be used in the proof:

Lemma 2.1. Let M be the cohomogeneity one G-manifold given by the dia-
gram H ⊂ K−,K+, and suppose G = G1 × G2. If the projection of H onto the
second factor is G2, then the subaction of G1× 1 on M is also cohomogeneity
one.

Proof. The claim be tested on any orbit G/Gx, where Gx is one of H,K±.
For any (g1, g2)Gx ∈ G/Gx, there is some (h1, g2) ∈ H by the assumption.
Then (g1, g2)Gx = (g1h

−1
1 , 1)(h1, g2)Gx = (g1h

−1
1 , 1)Gx, so (g1, g2)Gx is in the

G1 × 1-orbit of (1, 1)Gx.

We can now prove theorem 0.1 on page 5.

Proof. By virtue of M having positive euler characteristic, we can assume
K+ has maximal rank in G. We also assume G = G1 × · · · × Gl where each
Gi is either simple or S1. Then also K+ = K1

+× · · · ×Kl
+, where each Ki

+ is a
subgroup of Gi of maximal rank, and we can assume that K1

+ acts transitively
on the sphere K+/H. Let pri be the projection from G onto the i-th factor.
By the lemma above, pri(H) 6= Gi for all i = 1, . . . , l.

We claim l = 2. Suppose l > 2 and let p2 : G → G2 × · · · × Gl be
the projection. Because K1

+ acts transitively, we have p2(K+) = p2(H), and
primitivity implies p2(K−) = G2×· · ·×Gl (otherwise, K± ⊂ p−1

2 (p2(K−)) 6= G,
a contradiction to primitivity). But pr2(H) 6= G2, so p−1

2 (G2) ∩ K− acts
transitively on K−/H, which implies p3(K−) = p3(H) for the projection p3 :
G → G3 × · · · × Gl. By the lemma above, G1 × G2 acts orbit equivalent, a
contradiction. Therefore l = 2.

For now suppose that K− ∩ G2 is not finite. We have pr2(K−) = G2,
so K− ∩ G2 is a normal subgroup of G2 (if (1, k2) ∈ K− ∩ G2 and g2 ∈ G2

is arbitrary, then there is some (k, g2) ∈ K−, and (1, g2)(1, k2)(1, g
−1
2 ) =

(k, g2)(1, k2)(k
−1, g−1

2 ) ∈ K− ∩ G2). By assumption, K− ∩ G2 = G2. But
pr2(H) 6= G2, so G2 ⊂ K− acts transitively on K−/H, and therefore pr1(K−) =
pr1(H). By primitivity, pr1(K+) = G1, and from K+ having the same rank as
G we can deduce that G1 is a normal subgroup of K+. We now divide cases
by the dimension of the sphere Sl− :

• Suppose l− is even, that is, the rank of K− is the same as the rank of
H. That implies that pr2(H) has full rank in G2 and therefore H is a
product subgroup of G. So we have
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K− = K1
− × G2

H = K1
− × H2

K+ = G1 × H2

where G1/K
1
− and G2/H2 are spheres. This is easily recognized as a

so called sum-action on a sphere of even dimension (see e.g. Hoelscher
[2007]).

• If l− is odd, that is, the rank of K− is rank(H) + 1 = rank(G), then
we have the following situation: K− = K1

− × G2,K+ = G1 × K2
+. If we

define Hi := H ∩ Gi, we have that Gi/Hi is a sphere for i = 1, 2, and
H1 × H2 is a normal subgroup of H of corank 1. Then we can find a
rank 1 normal subgroup ∆H of H that commutes with H1 × H2 such
that H = (H1 × H2)∆H. We have K1

− = pr1(H) and K2
+ = pr2(H).

Now consider the cohomogeneity one G1 × G2-manifold given by the
group diagram H1 × H2 ⊂ H1 × G2,G1 × H2, which is a sphere S2n+1 of
odd dimension as above. We claim that M is the quotien of S2n+1 by
a free action of H/(H1 × H2). For that we only need to consider the
following actions of H/(H1 × H2) on the orbits of S2n+1:

– H/(H1×H2) acts freely on G1/H2×G2/H1 with quotient G1×G2/H.

– H/(H1×H2) acts freely on G1/G1×G2/H2 = G2/H2 with quotient
G2/pr2(H).

– H/(H1×H2) acts freely on G1/H1×G2/G2 = G1/H1 with quotient
G1/pr1(H).

In conclusion, the orbits of the action of G on the quotient of S2n+1 by
H/(H1×H2) are those of the action of G on M , which finishes this part
of the proof (see section 1 on page 12).

Lastly, consider K− ∩ G2 finite. Then rank(G2) = 1 and K−/H is even
dimensional (if rank(K−) = rank(G), i.e. the sphere is odd dimensional,
then K− is a product with pr2(K−) = G2, a contradiction; also K− ∩G2

has corank 0 or 1 in G2, which implies rank(G2) ≤ 1). We also have
pr2(K−) = G2 and pr2(H) 6= G2, so G2 is covered by S3 and K−/H = S2.
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3 The general procedure

In this section we will describe the actual procedure for the classification.
We will treat each of the simple groups separately, and make extra sections
for SU(3) and SU(4).

For each classical simple group G, we will first list the result, the table
of group diagrams of cohomogeneity one G-manifolds up to equivalence. In
order to prove this result, we will then list the possibilities for the subgroup
K+ of maximal rank, combining table 15 on page 65, lemma 1.8 on page 16
and remark 1.9 on page 16. This is simply an exercise in book-keeping. The
conditions listed ensure that the different cases really are disjoint. Note that
for the sake of organisation we divided cases such as SO(n), n ≥ 2 into the
cases SO(2) and SO(n), n ≥ 3.

By what was said in section 1.2 on page 13, we can assume K+ has the
standard block structure. We will then use table 16 on page 65 to list the
possibilities for the isotropy group H of the action of K+ on the sphere K+/H.
Again, wen can conjugate the diagram by an element of K+ to ensure H is
of a given form. After that, we can again use the same table to list the
possibilities for K−. Lemma 1.3 on page 14 will be used without further
mention to discard some of the possibilities. The last step is to check the
possible embeddings of K− into G, i.e. which are equivalent and which give a
primitive diagram.

3.1 The Spin-groups

The cases of the Spin-groups will be divided into two different cases each.
First, we will classify the non-effective actions, i.e. those that are actually
action of the special orthogonal group. After that, we will classify the ef-
fective actions of the Spin-groups. The procedure for the latter ones differs
slightly from the general procedure described above: We will apply the pro-
jection π : Spin(n)→ SO(n) to the whole diagram and classify the resulting
diagrams. The list of subgroups of maximal rank is easily deduced from
table 15 on page 65.

Since we know the action is effective, we have −1 /∈ H (where −1 is the
element that projects to the identity of SO(n) but which is not the identity
element of Spin(n)) by remark 1.11 on page 17. This shortens the list of
possibilities for K+, because it implies that H does not contain a subgroup of
type Spin(n), n ≥ 3.

We have −1 ∈ K+ from the following fact: The preimage π−1(K) of a
subgroup K ⊂ SO(n) is connected if and only if the inclusion K ↪→ SO(n)
induces a surjection on the fundamental group. This is the case for all max-
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imal rank subgroups of SO(n), so their preimages contain −1 in the unity
component. This implies that π(K+)/π(H) is a real projective space, and the
possibilities for π(H) can be deduced from table 16 on page 65. A priori,
we cannot assume −1 ∈ K−, so we list the possibilities for π(K−) under the
assumption that π(K−)/π(H) is either a sphere or a projective space. For a
subgroup of SO(n) of a given isomorphism type it is easy to decide whether
the above criterion applies, so we can decide if K−/H is a sphere, and carry
on as above.

We will find that −1 ∈ K− in each case. The diagram can then be
reconstructed by the fact that then K± = π−1(π(K±)) and H = π−1(π(H))0.
For convenience of notation, we will always give the SO(n)-diagram π(H) ⊂
π(K−), π(K+). By abuse of notation, we will discard the π, which will not
lead to confusion, since everything is discussed in SO(n) anyways.

There is another simple fact we will make use of. In the situation de-
scribed above, note that SO(n)/π(H) is not simply connected, because Spin(n)/H
is a nontrivial cover. This implies in particular that π(H) ↪→ SO(n) does not
induce a surjection on the fundamental group.

3.1.1 Notation

We adopt the following notation: The defining representations of SO(n),
SU(n), and Sp(n) will be denoted by ρn, µn, and νn respectively. We will use
ρo to denote the trivial one-dimensional representation of any group.

We assume that a fundamental system of roots has been chosen for each
of the simple groups. Any irreducible representation of a simple lie group (of
rank n) is given by a string of n nonnegative integers, which gives the heighest
weight of the representation as a linear combination of the fundamental roots.
We will denote this representation by its string (c1, . . . , cn). So e.g. (1, 0) will
denote the first fundamental representation of a rank 2 simple lie group. By
the dimension formula of Weyl it is clear that the dimension of an irreducible
representation of a simple lie group is strictly increasing in the entries of the
string in the following sense: If (c1, . . . , cn) and (c′1, . . . , c

′
n) denote are two

irreducible representations of the same simple lie group, and we have ci ≤ c′i,
then dim(c1, . . . , cn) ≤ dim(c′1, . . . , c

′
n). If additionally cj is strictly smaller

than c′j for at least one index 1 ≤ j ≤ n, then the inequality is strict.
We will denote the lie algebras of the groups G, K−, K+, H, H− and H+

by g, k−, k+, h, h− and k+, as usual.
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4 G = SU(3)

For a general overview of the classification procedure, see section 3 on page 20.
We claim that up to equivalence, the diagrams of the simply connected primi-
tive cohomogeneity one SU(3)-manifolds with positive euler characteristic are
given by table 1.

Table 1: SU(3)-cohomogeneity one manifolds

S1 ⊂ SU(2),U(2)

S1 ⊂ S(U(2)U(1)), S(U(1)U(2))

S1 ⊂ SO(3), S(U(1)U(2))

S1 ⊂ SO(3),T2

Z3SO(3) ⊂ Z3SO(3),T2

By the classification of Borel an Siebenthal (see table 15 on page 65), we
have K+ = U(2) or K+ = T2. If dim H ≥ 2, we have dimM = dim G/H + 1 ≤
7, so M appears in Hoelscher [2007]. So we will assume H = S1 for the rest
of this section.

First assume K+ = U(2), where SU(2) is embedded in the lower right
block. By what was said above and what follows from B.2 on page 66, we
have H = S1

k where

S1
k = {diag(z̄, zk+1, z−k) | z ∈ S1}

If K− acts almost effectively Sl− , we have K− ∈ {U(2), SO(3), SU(2)}.
Otherwise K− = T2, which we will treat later in this section, or K− = S1

kSU(2)
where S1

k is normal in K− and does not intersect SU(2). The first is only
possible for k = −2 or k = 1, but in both cases the (unique) SU(2) in its
normalizer is intersected.

For an almost effective action of SU(2), we need to find an SU(2) that
contains S1

k, which implies k = −1 or k = 0. Both cases are equivalent by
a change of the last 2 coordinates, which fixes K+, so we can assume k = 0,
which gives a primitive example, because N(H)0 = T2. If K− ' U(2), we
will argue that we can assume both K± contain the same maximal torus. Of
course, we can conjugate the maximal torus of K− into the standard one,
and by changing the conjugation with an element of K+, we may assume it
preserves S1

k. But then both S1
k and its conjugate are diagonal, so by changing
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the conjugation with an element of the Weyl group, we may assume it actually
preserves S1

k pointwise, so it is contained in its centralizer, which is in N(S1
k)0.

Now both K± contain the same maximal torus, so they are conjugate by an
element of the Weyl group, and since one of those elements fixes K+, we
can assume K− = S(U(2)U(1)). Checking the possible isotropy groups of
K−, we see k = ±1. For k = 1, the normalizer of S1

1 contains an SU(2)
in which we can realize the exchange of the first and the third coordinate,
transforming K− into K+, so this is not a primitive example. For k = −1, we
have N(S1

−1)0 = T2, so this example is primitive.
Now we will show that there is one example for K− = SO(3). For that

we will argue that K− is conjugate to the standard SO(3) in N(S1
k)0. Since

there is only one 3-dimensional representation of SO(3), we know K− is con-
jugate to the standard subgroup. But all SO(2) ⊂ SO(3) are conjugate, so
we may assume this conjugation preserves the standard SO(2), i.e. it is in
its normalizer O(2)× S1, where S1 is given by diag(z, z, z̄2). But every con-
jugation of O(2) on SO(2) can be realized in SO(2) itself, so we can assume
the conjugation comes from N(SO(2))0. But now S1

k can only be contained
in SO(3) if it’s conjugate to SO(2), so the embedding S1

k ↪→ SU(3) must have
a 1-dimensional trivial subrepresentation, implying k = 0,−1. Both of those
are conjugate to the standard SO(2), so by the argument above we can as-
sume K− is the standard SO(3). Since S1

−1 and S1
0 can be transformed into

each other by an outer automorphism of K+ (complex conjugation, which is
also an automorphism of SU(3)) that leaves SO(3) invariant, we just get 1
example from this case.

The second and last case to consider is K+ = T2. We have H0 = S1,
therefore (K−)0 is one of SO(3),U(2), SU(2),T2.

If (K−)0 = T2, it is contained in the centralizer of H0 as well as (K+)0, so
both are conjugate in N(H)0 in particular. Since a maximal torus has finite
index in its normalizer, this shows that no primitive example arises in this
case.

If (K−)0 = SU(2), then H0 is a maximal torus in K−. By conjugating the
diagram we may assume (K−)0 is given by the lower 2x2-block, and H0 the
standard maximal torus therein. This determines the maximal torus T2 in
SU(3), and both of K− and K+ are contained in U(2).

For (K−)0 = U(2): If H0 is regular, i.e. Z(H)0 = T2 ⊂ U(2), this is
obviously not primitive. If H0 is not regular, its isotropy representation has
2 equal eigenvalues, and we may assume we have h = R · diag(i, i,−2i).
Its isotropy representation therefore has 2 equivalent 2-dimensional factors,
which are in fact equivalent in N(H)0, so we can conjugate (K−)0 into
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U(2) =

{(
det Ā 0

0 A

)
| A ∈ U(2)

}
without changing T2, so there is also no new primitive example.

In the case (K−)0 = SO(3), K− is actually given by the standard em-
bedding, for SO(3) has no outer automorphisms and its only faithfull 3-
dimensional representation is irreducible. The latter also implies that its cen-
tralizer is given by Z3, the set of diagonal matrices, so we have N(SO(3)) =
SO(3)Z3. Since T 2 is uniquely determined by H0 = S1, we obtain two new ex-
amples, both of which are primitive for the isotropy representation of SO(3)
in SU(3) is irreducible, so SO(3) is a maximal subgroup not containing K+.
The examples are S1 ⊂ {SO(3),T2} and S1Z3 ⊂ {SO(3)Z3,T

2}. Note that
K+ is connected, since l− = 2.
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5 G = SU(4)

For a general overview of the classification procedure, see section 3 on page 20.
For special remarks regarding Spin-groups (we have SU(4) ' Spin(6)), see
section 3.1 on page 20.

We claim that up to equivalence the diagrams of the simply connected
primitive cohomogeneity one SU(4)-manifolds with positive euler character-
istic are given by tables 2 and 3.

Table 2: SO(6)-cohomogeneity one manifolds

SO(4) ⊂ SO(5), SO(2)SO(4)

Z2SO(4) ⊂ Z2SO(5), SO(2)SO(4)

SO(2)SO(3) ⊂ SO(3)SO(3), SO(2)SO(4)

SO(2)SO(2) ⊂ SO(2)SO(3),U(2)SO(2)

U(2) ⊂ SO(4),U(3)

T2 ⊂ SO(3)SO(2), SO(2)U(2)

where T2 = {diag(z1, 1, 1, z2)}

Table 3: SU(4)-cohomogeneity one manifolds

S1SU(2) ⊂ S(U(2)U(2)), S(U(1)U(3))

where S1 = {diag(z̄2, z4, z̄, z̄)} ⊂ N(SU(2))

S1SU(2) ⊂ S(U(2)U(2)), S(U(1)U(3))

where S1 = {diag(z̄2, 1, z, z)} ⊂ N(SU(2))

S1 ⊂ σ(S(U(1)U(3))), S(U(1)U(3))

where S1 = {diag(z̄, z, 1, 1)} and σ exchanges the first two coordinates

By the classification of Borel and Siebenthal, given in table 15 on page 65
and remark 1.9 on page 16, we know K+ is one of U(3), S1SU(2)SU(2), S1U(2).

First, we deal with that case that Sp(2) is contained in any of the regular
isotropy groups. Since rank(Sp(2)) = 2 < rank(SU(4)), and Sp(2) is a max-
imal connected subgroup of SU(4), we can deduce (K−)0 = Sp(2). Because
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K+ has maximal rank in SU(4), and the rank of K+ and H can differ by at
most 1, we see rank(H) = rank(K−), so K−/H must be an even dimensional
sphere. By the classification of transitive effective actions on spheres (see
table 16 on page 65), we know H = Sp(1)Sp(1), where the common central
element of H,K−, SU(4) is in the kernel of the action of G, so this is actu-
ally an action of SO(6) = SU(4)/{±Id}, and (K−)0 = SO(5), (H)0 = SO(4).
Since rank(K+) = 3, we have K+ = S1SO(4). Both K+ and H can have at
most 2 components, so S1 can act with weight 1 or 2 on the slice, giving two
primitive examples.

Now we divide cases by K+, under the assumption that K− does not
contain Sp(2) as a factor (which is true for K+ by the classification anyways).

So now assume K+ = U(3), where SU(3) is the lower right block. If
SU(3) ⊂ H, then it’s easily seen that K− = SU(4) by table 16 on page 65,
which is listed in subsection 1.5.2 on page 17. So we can assume SU(3) 6⊂
H, which implies that U(3) acts almost effectively on the slice, giving H =
S1

kSU(2), where

S1
k = {diag(z̄2, z2(k+1), z̄k, z̄k) | z ∈ S1}

and SU(2) is the lower right block (see section B.2 on page 66). We now
divide cases by the rank of K− and its dimension:

• If rank(K−) = rank(H), we have K−/H = S2 and K−/H− = SO(3).
Moreover, the semisimple part of H is contained in H−, and therefore
K− ⊂ N(SU(2)) = S1SU(2)SU(2). That implies K− = SU(2)SU(2),
and since H ⊂ SU(2)SU(2), we have k = 0. This leaves one primitive
example (note that this action is not effective).

From now on, we can assume rank(K−) > rank(H). We divide cases by
the dimension of K−/H, which is easily seen to be bounded by 5.

• If K−/H = S1, we have T2SU(2) = K− ⊂ N(H)0. If k 6= 2, we have
N(H)0 = T2SU(2) ⊂ K+, so there will be no primitive example. For
k = −2, we have N(H)0 = S1SU(2)SU(2), and it is easily seen that up
to conjugation in N(H)0 we have K− ⊂ K+. As before, this contradicts
primitivity.

• If K−/H = S3, then K− = S(U(2)U(2)). Since K−/H is a sphere, we
have that SU(2)∩H is trivial, where SU(2) is the upper left block. This
leads to k = ±1 and gives 2 examples, which are obviously primitive.

• Lastly, consider K−/H = S5. This implies K− = U(3), and by studying
the isotropy representation of SU(4)/H, there are two possibilities for
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K−, but since primitivity implies K− 6= K+, we know K− = σK+σ,
where

σ =


0 1 0 0
−1 0 0 0
0 0 1 0
0 0 0 1


Then K−/H is a sphere if and only if σSU(3)σ−1 ∩ H = SU(2)(where
SU(3) and SU(2) are the lower right blocks). We easily see that

σSU(3)σ−1 ∩ H = {diag(z̄2, z, z̄k, z̄k) · A | z2(k+1) = 1, A ∈ SU(2)}

and this implies k = 0,−2. If k = 0, we have N(H)0 = T2SU(2), which
does not contain σ, so this is a primitive example. If k = −2, we
have N(H)0 = S1SU(2)SU(2), so up to conjugation in N(H)0 we have
K− = K+, which is not possible. This finishes the case K+ = U(3).

The cases left are (K+)0 = S(U(1)U(1)U(2)) and (K+)0 = S(U(2)U(2)).
Common for both consider SU(2) ⊂ H+. This would imply that SU(2) needs
to act on K−/H, and therefore K− = U(3) or K− = Sp(2), which are cases we
have considered before.

Now assume (K+)0 = S(U(2)U(2)) and SU(2) 6⊂ H+. It is clear than that
(H+)0 = S1, and K+/H+ = SO(4), implying SU(4) acts as SO(6). Switching
to SO(6), we have (K+)0 = SO(2)SO(4) and H0 = SO(2)SO(3), where SO(2)
is the upper left and SO(3) and SO(4) are the lower right block. Since SO(2)
must act on K−/H, and the isotropy representation of SO(6)/H decomposes
in one irreducible factor of dimension 3,6 and 2 each, it’s easy to deduce
K− = SO(3)SO(3), which gives a primitive example. Note that both l± > 1,
so all groups are connected.

The last case to consider is (K+)0 = S(U(1)U(1)U(2)), where SU(2) 6⊂ H+,
as we have argued above. This implies K+/H = S3, and since H/H− contains
S1 as a factor, we see l− > 1, so all groups are connected. We have H = T2,
and consider cases by the rank of N(K−):

• Suppose rank(N(K−)) = 3. We consider the standard representation
ρ of SU(4) on C4 and its restriction to K± and H. We know ρ|K± de-
composes into a two-dimensional and two one-dimensional irreducible
factors, while ρ|H decomposes into four one-dimensional irreducible fac-
tors.
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Consider for a moment the subcase that ρ|H decomposes into 4 in-
equivalent subrepresentations Ce1 ⊕ Ce2 ⊕ Ce3 ⊕ Ce4. Then the two-
dimensional irreducible subspaces of ρ|K± are neccessarily given by
V± = Cei± ⊕ Cej± for some i± 6= j±. If V+ ∩ V− 6= 0, then after per-
mutation we can assume V± ⊂ Ce2 ⊕ Ce3 ⊕ Ce4. But that means that
both K± are contained in the lower 3x3-block, a contradiction. But if
V+∩V− = 0, we can use a permutation again to assume V+ = Ce1⊕Ce2
and V− = Ce3⊕Ce4, which implies K± ⊂ S(U(2)U(2)), again a contra-
diction.

So we assume that ρ|H has two equivalent one-dimensional subrepre-
sentations (note that it could not be three for any embedding T2 ↪→
SU(4)). This implies N(H) = S(U(2)U(1)U(1)), where after a permu-
tation we may assume that Ce1 and Ce2 are the equivalent subrep-
resentations of ρ|H. Now we can argue exactly as before, using that
V± = A(Cei± ⊕ Cej±) for some A ∈ N(H)0. Since we may conju-
gate K± by any element in N(H)0 without changing the manifold, we
can actually assume that V± = Ceipm ⊕ Cej± and arrive at a con-
tradiction as before. This finishes the subcase rank(N(K−)) = 3 of
(K+)0 = S(U(1)U(1)U(2)).

• The last case to consider is rank(N(K−)) = 2 and (K+)0 = S(U(1)U(1)U(2)).
This readily implies rank(K−) = 2 and therefore K−/H = S2. The rep-
resentation ρ|K− (see the item before for the notation) can not be irre-
ducible, because otherwise its restriction to the semisimple part would
be irreducible as well, which would imply rank(K−) = 1. By virtue of
rank(N(K−)) = 2 it is clear that ρ|K− either decomposes into two 2-
dimensional irreducible subrepresentations, or into one 3-dimensional
and one 1-dimensional irreducible subrepresentation. This leaves us
with two cases:

a)

K− =

{(
A

Ā

)
| A ∈ U(2)

}
b) K− = S1SO(3) where SO(3) is the upper left block and

S1 = diag(z, z, z, z̄3)

In case b), we can use conjugation in SO(3) to achieve

H = {diag(z1, z̄1, 1, 1)} · {diag(z2, z2, z2, z̄
3
2)}

28



Thus ρ|H decomposes into four inequivalent one-dimensional subrepre-
sentations Cei, i = 1, . . . , 4, and the irreducible three-dimensional rep-
resentation corresponding to ρ|K− is Ce1⊕Ce2⊕Ce3. By primitivity, the
irreducible 2-dimensional subspace of ρ|K+ is given by Cei ⊕ Ce4, i =
1, . . . , 3, and the whole group picture is determined by i. Since ex-
changing the first two coordinates leaves K− and H invariant, the cases
i = 1 and i = 2 are equivalent, which leaves two possible examples. We
claim that K+/H is not a sphere for i = 3, but it is for i = 2, which
gives a primitive example.

i = 3: Since SU(2) acts transitively on K+/H with isotropy SU(2)∩H, we
need to show the latter is not trivial. An element of H being in
SU(2) is equivalent to the three equations z1z2 = 1, z̄1z2 = 1 and
z2
2 = 1. This is obviously true for z1 = z2 = −1, which constitutes

a nontrivial element of SU(2) ∩ H.

i = 2: Exchange the first an the third coordinate, moving SU(2) to the
lower right block and conjugating H into

diag(z1, 1, z̄1, , 1)diag(z2, z2, z2, z̄
3
2)

We can read of the equations as before. This time the second
coordinate show that any element of H ∩ SU(2) fulfills z2 = 1,
which readily implies z1 = 1 from the first coordinate, so that in
this case H ∩ SU(2) is trivial.

In case a), we use the fact that −Id ∈ SU(4) is in the kernel of the
action, and replace SU(4) with SO(6). This gives K− = SO(2)SO(3)
(where SO(2) is in the upper left and SO(3) in the lower right block)
and H = SO(2)SO(2), where the two trivial subrepresentation of ρ|H
are spanned by e3 and e4. By primitivity, we have K+ = U(2)SO(2),
giving one primitive example.
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6 G = SU(n), n ≥ 5

For a general overview of the classification procedure, see section 3 on page 20.
We claim that, up to equivalence, the diagrams of the simply connected
primitive cohomogeneity one SU(n)-manifolds (n ≥ 5) with positive euler
characteristic are given by table 4.

Table 4: SU(n)-cohomogeneity one manifolds for n > 4

S1 ⊂ σ(U(n− 1)),U(n− 1)

where S1SU(n− 2) = {diag(z̄, z, 1, . . . , 1)} and σ exchanges first two coordinates

S1SU(n− 2) ⊂ S(U(2)U(n− 2)),U(n− 1)

where S1 = {diag(z̄n−2, zn−2, z̄, . . . , z̄)} ⊂ N(SU(n− 2))

S1SU(n− 2) ⊂ S(U(2)U(n− 2)),U(n− 1)

where S1 = {diag(z̄n−2, 1, z, . . . , z)} ⊂ N(SU(n− 2))

S1SU(n− 2) ⊂ SU(2)SU(n− 2),U(n− 1)

where S1 = {diag(z̄, z, 1, . . . , 1)} ⊂ N(SU(n− 2))

S1SU(n1 − 1)SU(n2) ⊂ S(U(n1 − 1)U(n2 + 1)), S(U(n1)U(n2))

where S1 = {diag(z̄n2 , . . . , z̄n2︸ ︷︷ ︸
×n1−1

, 1, zn1−1, . . . , zn1−1︸ ︷︷ ︸
×n2

)

and SU(n1 − 1)SU(n2) ⊂ H acts trivially on Cn1 (n1 + n2 = n− 1, n1, n2 > 1)

The possibilities for K+ are summarized in table 5 (again, we refer to
section 3 on page 20).

2a) In this case we assume K+ = U(n− 1), where we can assume SU(n− 1)
is the lower right block (this also determines the center of U(n − 1)).
If SU(n − 1) ⊂ H+, we have SU(n) ⊂ K−, which is treated in 1.5.2
on page 17. If n > 5 and SU(n − 1) 6⊂ H+, we can use table 16 on
page 65 to see that K+/H+ is U(n− 1), so by B.2.1 on page 66 we have
H = S1

kSU(n− 2) where

S1
k = {diag(z̄n−2, z(k+1)(n−2), z−k, . . . , z−k) | z ∈ S1}
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Table 5: Possibilities for K+

Factors Subcase Group Conditions

2 2a U(n− 1) n > 2

3 3a S(U(n1)U(n2)) n1, n2 > 1, n1 + n2 = n

3 3b S1U(n− 2) n > 3

4 4a S(U(1)U(n1)U(n2) n1, n2 > 1, n1 + n2 = n− 1

For n = 5, there is the additional possibility that SU(4) = Spin(6) acts
with isotropy Spin(5) = Sp(2), i.e. H = S1Sp(2). But K+/H+ = SO(6)
implies S1 ⊂ H+, and K+/S

1 = SO(6)/{±Id}, which by table 16 on
page 65 cannot act transitively on any sphere. So the above claim
holds for n = 5 as well. We differentiate between the possible values
for H− (the kernel of the action of K− on K−/H).

If K− acts almost effectively on K−/H, we have K− ' U(n− 1), and by
studying the isotropy representation of H in G we see that primitivity
implies K = σK+σ

−1 where

σ =



0 1

−1 0

1
. . .

1


where the empty spaces are filled up with zeroes. H can only occur as
an isotropy group for a transitive almost effective action on a sphere
of K− in the case k = 0 or k = −2. In the latter case, we have
N(H)0 = SU(2)H, which contains σ, so this is not a primitive example.
In the former case, K− and K+ are not conjugate by an element of
N(H)0 = T2SU(n− 2), so we get a primitive example.

The next case is H− = S1
k. Either S1

k intersects SU(n − 2) and H/H−
is a proper quotient of SU(n− 2), and K−/H− = SO(7), which follows
from studying the classification of transitive effective actions on spheres
given in table 16 on page 65. Since N(S1

k) does not contain Spin(7) or
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SO(7), this is impossible. The other possibility is that S1
k does not

intersect SU(n− 2), which is the case exactly if n− 2 divides k. Since
SU(n − 1) ⊂ N(S1

k), we have k = n − 2, which is impossible because
SU(n− 1) ∩ S1

n−2 6= 0.

If (H−)0 = SU(n− 2), we have H/H− ' S1 and K−/H ∈ {S2,S3}. Also
K− ⊂ N(SU(n−2)) = S1SU(2)SU(n−2). If K− = SU(2)SU(n−2), that
implies k = 0 and gives a primitive example. If K− = N(SU(n − 2)),
the condition that SU(2) ∩ H is trivial is

SU(2) ∩ H = {diag(z̄n−2, zn−2, 1, . . . , 1) | (zk)n−2 = 1} is trivial

which implies |k| = 1 and gives 2 primitive examples.

3a) For the case K+ = S1SU(n1)SU(n2), we will first do the most general
case and after that care for the exceptional actions. Since n1, n2 > 1,
one of SU(n1), SU(n2) must act on Sl+ , and we may assume it’s SU(n1).

Let’s first show that without any further assumptions, we have Sp(2) 6⊂
H. Otherwise n1 = 4 (and S1SU(4) 6= U(4) as well, but we don’t need
that), and H = S1Sp(2)SU(n−4). This would mean S1SU(n−4) ⊂ H−,
but N(Sp(2))0 = H, so K−/H could not possibly be a sphere of positive
dimension.

Now assume n1 > 3, n2 > 2. By the previous paragraph the action

of K+ on K+/H is given as follows: The matrix

A 0

0 B

 with A ∈

U(n1), B ∈ U(n2), detA detB = 1 acts as (detA)kA, giving

H =



A′

a

B

 | a detA′ detB = 1 and ak+1 = detA′
k


for some k ∈ Z. Now SU(n2) cannot act trivially on K−/H. If n2 = 4,
we could have K−/H− ' SO(7), but there is no SO(7) or Spin(7) in
the normalizer N(H) = S(U(n1 − 1)U(n2)). Since n2 > 2, by the
classification of effective actions on spheres we have K− = S1SU(n1 −
1)SU(n2 + 1), where SU(n1 − 1) is the upper left and SU(n2 + 1) the
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lower right block. The action of K− on K−/H is given in a similar
fashion as before, giving the isotropy group

H̃ =



A′

a

B

 | a detA′ detB = 1 and al+1 = detB
l


for some l ∈ Z. We have H̃ = H only in the case k = l = 0 as follows:
For any matrix in H ∩ H̃ we have

det Ā′ = a detB ⇒ ak+1 = ak detBk ⇒ a = detBk

det B̄ = a detA′ ⇒ al+1 = al detA′l

⇒ detBk(l+1) = det B̄l ⇒ detBk(l+1)+l = 1

⇒ k(l + 1) + l = 0⇒ k = l = 0 because k, l ∈ Z

giving the only primitive example in this case.

Now assume n1 = 2, which by n ≥ 5 implies n2 ≥ 3. Since corank(H) =
1 (see lemma 1.7 on page 15), we have l+ = 3. If K+/H = S3, we have
H = S1SU(n2). If n2 = 4, we could again have K−/H− = SO(7), but
there’s no SO(7) or Spin(7) in SU(6). This shows K− = U(n−1), which
is a case we treated before.

The next case is n1 = 3 and n2 ≥ 2. But n2 > 2 actually implies that
the argument given in the beginning of this section applies as well, so
we only need to deal with the case n2 = 2. Then H = S1

kSU(2)SU(2),
where

S1
k = {diag(z2−2k, zk, zk, z̄, z̄) | z ∈ S1}

If K−/H = S5, then again the argument above yields one primitive
example (corresponding to k = 1 here). From the classification of
transitive actions on a sphere and the fact that SU(2) ⊂ H/H−, we
are left with 2 further possibilities: K−/H− = SO(5) and K−/H− =
SO(4).In the first case we can deduce K− = S1Sp(2), which implies
k = −1, but then K+/H = RP5. In the latter case, we would have
SU(2) ⊂ H−, but there is no SO(4) or Spin(4) = SU(2) × SU(2) in the
normalizer N(SU(2)) in SU(5).
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The last case to consider is n1 > 3, n2 = 2. We will argue that there
is no additional possibility to the one given at the beginning of this
section. We have H = S1SU(n− 3)SU(2), and since n− 3 ≥ 3 we have
SU(n− 3) ⊂ H−. But N(SU(n− 3)) = S1SU(3), so the only possibility
is SU(3) ⊂ K−/H−, which is the aforementioned argument.

4a) We assume SU(n1) is the upper left, SU(n2) the lower right block. Note
that this determins the center T2 of K+. By remark 1.9 on page 16 and
the fact that in this case K+ has 4 factors, we can assume (H−)0 =
S1SU(n2) and therefore H = T2SU(n1 − 1)SU(n2), where SU(n1 − 1)
is the upper left and SU(n2) is the lower right block. If we assume
K− ' U(n1 − 1)U(n2 + 1) and n1 > 2 then we know the resulting
manifold will not be primitive for the following reason: K− ↪→ SU(n)
induces a 1-dimensional subrepresentation, which by the choice of K+

and H is necessarily given by en1 or en1+1. The first case implies K± ⊂
S1SU(n1)SU(n2 + 1), and the second K± ⊂ U(n− 1).

We divide the remainig cases:

• If n1 = 2, then H = T2SU(n2), and H ↪→ SU(n) induces 3 one-
dimensional subrepresentations via the standard representation.
We know K− ' T2SU(n2 +1), for which we only need to note that
T2Sp(2) is not a subgroup of SU(4) by table 15 on page 65. Now
K− ↪→ SU(n) induces 2 one-dimensional subrepresentations, and
if one of those is given by e3, we have K± ⊂ U(n − 1). But in
the other case K± ⊂ S1SU(2)SU(n − 2), so there is no primitive
example in this case.

• We will now argue that indeed K− ' U(n1 − 1)U(n2 + 1) in all
other cases. By primitivity we know (H/H−)0 = S1SU(n2), so
by the classification given in table 16 on page 65 this is true for
n1 ≥ 3, n2 ≥ 3. Having already dealt with the case n1 = 2, we only
need to consider n1 ≥ 3, n2 = 2, but again we only need to note
that T2Sp(2)SU(n1− 4) is not a subgroup of SU(n) by table 15 on
page 65. This shows K− ' U(n1 − 1)U(n2 + 1) as desired, and we
know that the manifold is not primitive by what was said above.

3b) If SU(n − 2) ⊂ H+, we have SU(n − 1) ⊂ K− (remember that n ≥ 5),
so that K− ' U(n − 1), which was treated before. So now assume
SU(n − 2) 6⊂ H+, which implies H = T2SU(n − 3). We distinguish the
cases SU(n− 3) 6⊂ H− and its opposite.

• If SU(n − 3) 6⊂ H−, we have K− ' K+. The factor SU(n − 2)
of K− then has a 2-dimensional trivial subrepresentation when
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consideres as a subgroup of SU(n) which is necessarily given by
Cei ⊕ Cej for i, j ∈ {1, 2, 3}:
∗ If i = 1, j = 2, we have K− = K+, so the example is not

primitive.

∗ If i = 1, j = 3, we have K± ⊂ S(U(1)U(n − 1)), so again this
is not primitive

∗ If i = 2, j = 3, exchange the coordinates e1 and e2, after which
we are in the previous case again. Note that this exchange
might change every group of the diagram, yet still shows that
it is not primitive.

• If SU(n − 3) ⊂ H−, we have H/H− ' S1, which implies K−/H−
is one of U(2), SO(3). In the first case K− ' S(U(2)U(n − 3)),
which was previously treated in case 4a. In the latter case, we
have K− ' SO(3)U(n − 3), and we conjugate the whole diagram
to make K− standard: SO(3) is the upper left block, SU(n − 3)
the lower right and S1 is diagonally embedded, so it commutes
with both SO(3) and SU(n− 3) but does not act trivially on any
of the Cei for i ∈ {1 . . . , n}. We can assume H is then given by
S1

1S
1
2SU(n− 3) where

S1
1 = {diag(z1, 1, z̄1, 1, . . . , 1) | z1 ∈ S1}

and

S1
2 = {diag(z̄n−3

2 , z̄n−3
2 , z̄n−3

2 , z3
2 , . . . , z

3
2) | z2 ∈ S1}

Now K+ = S(U(1)U(1)U(n − 2)) is determined by SU(n − 2),
which again has a 2-dimensional trivial subrepresentation when
restricting the standard representation of SU(n), which is neces-
sarily given by Cei ⊕ Cej for i, j ∈ {1, 2, 3} and i 6= j. Note that
the cases i = 1, j = 2 and i = 2, j = 3 are equivalent, and we
claim this gives a (primitive) example. The last case i = 1, j = 3
does not give an example for K+/H is not a sphere:

∗ If i = 1, j = 2, an element of H that is also in SU(n−2) satisfies
z1z̄

n−3
2 = 1 and z̄n−3

2 from the first two coordinates, which
implies z1 = 1 and so diag(1, 1, 1, z3

2 , . . . , z
3
2) ∈ SU(n − 3),

which shows SU(n− 2) ∩ H = SU(n− 3), so K+/H = SU(n−
2)/(H ∩ SU(n− 2)) is a sphere.

∗ If i = 1, j = 3, an element of H is in SU(n− 2) if and only if
z1z̄

n−3
2 = 1 and z̄1z̄

n−3
2 from the first and the third coordinate.
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Choose any z2 such that zn−3
2 = −1 and z1 = −1, so that

these equations are fulfilled. But then note that the second
coordinate of this element is −1, which shows that it is in
H ∩ SU(n − 2), but not in SU(n − 3). Therefore K+/H =
SU(n− 2)/(H ∩ SU(n− 2)) is not a sphere.
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7 G = SO(2n + 1), n ≥ 3

For the general procedure of the classification see section 3 on page 20. Up to
equivalence, the simply connected primitive cohomogeneity one SO(2n+ 1)-
manifolds (n ≥ 3) are given by table 6.

Table 6: SO(2n+ 1)-cohomogeneity one manifolds for n > 2

SO(2n− 1) ⊂ SO(2)SO(2n− 1), SO(2n)

O(2n− 1) ⊂ SO(2)SO(2n− 1),O(2n)

SO(2n1 + 1)SO(2n2 − 1) ⊂ SO(2n1 + 2)SO(2n2 − 1), SO(2n1 + 1)SO(2n2)

where n1 + n2 = n

SO(2)SO(2n− 3) ⊂ U(2)SO(2n− 3), SO(2)SO(2n− 2)

SO(2n1 − 1)U(n2) ⊂ SO(2n1 − 1)U(n2 + 1), SO(2n1)U(n2)

where n1 + n2 = n

T2SU(n− 2) ⊂ SO(3)S1SU(n− 2), SO(2)U(n− 1)

where S1 = {diag(1, 1, 1, z, . . . , z)},T2 = {diag(1, z, z2, 1, . . . , 1)} · S1

and SO(3) ↪→ SO(5) is irreducible (SO(5) being the upper left block)

The possibilities for K+ are given by table 7 (again we refer to section 3
on page 20.

If a group of complex matrices is involved (e.g. U(n)), we will deliber-
atly use complex notation for the corresponding real matrices. In particu-
lar, for eiϕ = z ∈ S1, we will use diag(z, . . . , z) for the matrix containing cosϕ sinϕ

− sinϕ cosϕ

 on the diagonal 2× 2-blocks and 0 everywhere else.

1a) We have H = SO(2n − 1). There are two possibilities for K−, namely
K− ' SO(2n) and K− ' SO(2)SO(2n − 1). The first choice does not
lead to a primitive manifold, since either K− = K+ or K− is conjugate
to K+ via the matrix
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Table 7: Possibilities for K+

Factors Subcase Group Conditions

1 1a SO(2n) –

2 2a SO(2n1)SO(2n2) n1, n2 ≥ 3, n1 + n2 = n

2 2b SO(2n1 + 1)SO(2n2) n2 ≥ 2, n2 + n2 = n

2 2c SO(2)SO(2n− 2) n ≥ 4

2 2d SO(2)SO(2n− 1) –

2 2e U(n) –

3 3a SO(2n1)U(n2) n1, n2 ≥ 2, n1 + n2 = n

3 3b SO(2n1 + 1)U(n2) n2 ≥ 2, n1 + n2 = n

3 3c SO(2)U(n− 1) –

3 3d SO(2n− 4)SO(4) n ≥ 5

3 3e SO(2)SO(4) n = 3

3 3f SO(2n− 3)SO(4) –

4 4a U(n1)U(n2) n1, n2 ≥ 2, n1 + n2 = n

4 4b U(n− 2)SO(4) n ≥ 4

4 4c SO(4)SO(4) n = 4


0 1 0

−1 0 0

E2n−1


which exchanges the first two coordinates and is in N(H)0. There is
only one SO(2) in the normalizer of SO(2n − 1), so the second choice
leads to exactly one primitive manifold.

We do have l− = 0 here, so K+ might be non-connected. It is clear then
that H = Z2SO(2n− 1) ' O(2n− 1) and K+ = Z2SO(2n) ' O(2n).
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2a) We can assume H = SO(2n1 − 1)SO(2n2), and it is clear that K− '
SO(2n1− 1)SO(2n2 + 1). There are two possibilities for SO(2n2 + 1) in
the normalizer of SO(2n1−1), both of which are conjugate by a change
of coordinate, which can be achieved by conjugation with a matrix
similar to the one given in 1a, which is in N(H)0 = SO(2)SO(2n1 −
1)SO(2n2). But it is obvious for at least one of the two possibilities
that K± ⊂ SO(2n).

2b) Since corank(H) = 1 by corollary 1.7 on page 15, we have H = SO(2n1−
1)SO(2n2 + 1), implying K− = SO(2n1−1)SO(2n2 + 2). This gives one
primitive example.

2c) First assume H = SO(2)SO(2n− 3). Further assuming K−/H− = U(2),
we see K− ' U(2)SO(2n − 3). The choices for U(2) in the normal-
izer of SO(2n − 3) are given by the center, which is given by either
{diag(z, z, 1, . . . , 1) | z ∈ S1} or {diag(z̄, z, 1, . . . , 1) | z ∈ S1}. But
complex conjugation of the first component in T2 ⊂ SO(4) is given by
conjugation with diag(−1, 1, . . . , 1), which leaves H invariant as well as
K+, so we only get one new example.

The next possibility is K− ' SO(3)SO(2n−3), and again from checking
the isotropy representation there are 2 choices for SO(3), but both are
conjugate by a change of two coordinates, which is in N(H)0 as in 1a.
The result is not primitive.

If H = ZkSO(2n − 2), we have K− = ZkSO(2n − 1). In the case that
H is connected, there are several choices for K− = SO(2n− 1), but all
of them are conjugate in N(H)0 = SO(3)SO(2n− 2), and obviously not
primitive. If H is not connected, there’s only one choice for SO(2n−1),
but again K± ⊂ SO(2)SO(2n− 1).

2d) We only need to note SO(2n − 1) ⊂ H+, since corank(H) = 1 by
corollary 1.7 on page 15, which leads to (K−)0 = SO(2n) which was
treated in 1a.

2e) We cannot have SU(n) ⊂ H+, for that would imply SU(n + 1) ⊂ K−,
but there is no embedding of SU(n + 1) ↪→ SO(2n + 1) (as seen easily
from checking representations). So we know H = S1

kSU(n− 1), where

S1
k = {diag(1, z(k+1)(n−1), z−k, . . . , z−k) | z ∈ S1}

and SU(n− 1) is in the lower right block.
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First assume k = −1. We have N(H)0 = SO(3)SU(n−1). If K− ' U(n),
there are several choices, but all of them can be conjugated into SO(2n)
by a simple change of coordinates, which is in N(H)0, so there’s no
primitive example. We cannot have SU(n − 1) ⊂ H−, but S1 6⊂ H−,
since there are no subgroups in N(SU(n−1)) of type U(2), SO(3), SU(2)
containing S1

k. Lastly U(n− 1) ⊂ H− implies K− ' SO(2)U(n− 1), and
again conjugation in N(H)0 leads to K− ⊂ K+.

Now for k 6= −1 we have N(H)0 = SO(2)U(n − 1). If K− ' U(n)
there are two choices for embedding U(n), but both are in SO(2n) as
well as K+. We cannot have H = H−, because N(H)0 ⊂ U(n), so we
would not get a primitive manifold. For the same reasons as before,
SU(n− 1) ⊂ H−, but S1

k 6⊂ H− is not possible

3a) If H = SO(2n1−1)U(n2), it is clear that K− ' SO(2n1−1)U(n2+1), and
there are 2 choices for embedding K− into SO(2n+ 1) while containing
H, corresponding to the embedding of the additional coordinate of its
center over the one of H. Both are conjugate by

diag(1, . . . , 1︸ ︷︷ ︸
2n1−1

,−1, 1, . . . , 1︸ ︷︷ ︸
2n2+2

)

where we assume that U(n2) is embedded as the lower right block, and
SO(2n1 − 1) in the upper left. This conjugation is not in N(H)0 =
SO(2)H, but restricted to K− it is the same as conjugation with

diag(−1, . . . ,−1︸ ︷︷ ︸
2n1−1

,−1, 1, . . . , 1︸ ︷︷ ︸
2n2+2

)

which is in SO(2n1) and leaves both K+ and H invariant. So we only
obtain one example, which is primitive, because K− is a maximal sub-
group of maximal rank not containing and not contained in K+ (and
not isomorphic to it).

The second possibility is H = SO(2n1)U(n2 − 1)k (where U(n2 − 1)k =
S1

kSU(n2−1) similar to 2a). It is clear that K− ' SO(2n1+1)U(n2−1)k,
and for k 6= −1 there is just one possibility for that, which is not
primitive, for K± ⊂ SO(2n1 + 1)SO(2n2). If k = −1, there are actually
3 possibilities, but all again differ only by a change of coordinates,
which can be done in N(H)0 = SO(3)H, so again no primitive example
arises.
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3b) We cannot have H+ = U(n2), for that would imply SO(2n1)U(n2 +1) ⊂
K−, but this can’t be embedded into SO(2n+1). Also, H+ 6= ZkSU(n2)
for any k, because SO(2n1 + 1)SU(n2) is not isotropy group of any
almost effective transitive action on a sphere.

So we have H = SO(2n1 + 1)U(n2 − 1)k (see 3b for notation), and
therefore SO(2n1 + 2) ⊂ K− is in the normalizer of U(n2− 1)k, which is
only possible for k = −1. If k = −1, we have 2 possibilities for K−, both
conjugate by a change of coordinates, which is in N(H)0 = SO(2)H. We
are left with K− = SO(2n1 + 2)U(n2 − 1), which is primitive as shown
in 3a.

3c) First suppose SU(n − 1) ⊂ H+. This implies SU(n) ⊂ K− by primi-
tivity and the classification of transitive actions on spheres. Therefore
(K−)0 ' U(n), which is contained in case 2e. From now on we assume
SU(n− 1) 6⊂ H+.

By remark 1.9 on page 16 we can deduce H0 = T2SU(n − 2). Sup-
pose SU(n − 2) 6⊂ H− (note that this implies n > 3). Then K−/H− '
S1SU(n − 1). Now we can deduce K± ⊂ SO(2n) as follows: All ir-
reducible real representations of K± and H are even-dimensional, so
there is at least one 1-dimensional trivial representation given by the
embedding K− ↪→ SO(2n + 1), which of course stays trivial when re-
stricted to H. If the embedding H ↪→ SO(2n + 1) induces only one
such representation, then this is neccessarily the same as the one for
K+, which shows the claim. If H ↪→ SO(2n + 1) induces three trivial
1-dimensional representations, then N(H)0 ⊃ SO(3), and we may again
assume K− ⊂ SO(2n) by section 1.2 on page 13.

Now we are left with the case H = T2SU(n − 2) and SU(n − 2) ⊂ H−,
which implies l− = 2 or l− = 3. We divide cases by the possibilities for
K−:

• Suppose l− = 2, K− ' SO(3)S1SU(n−2) and SO(3) ↪→ SO(2n+1)
is irreducible in SO(5) ⊂ N(S1SU(n− 2)). We note that SO(2) ⊂
SO(3) has weights 1 and 2 in SO(5) in this case, and therefore we
have H = S1

1S
1
2SU(n− 2), where SU(n− 2) is the lower right block

and

S1
1 = {diag(1, z, z2, 1, . . . , 1) | z ∈ S1}

S1
2 = {diag(1, . . . , 1︸ ︷︷ ︸

5

, z, . . . , z︸ ︷︷ ︸
n−2

| z ∈ S1}
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This yields one primitive example.

• If l− = 2, K− ' SO(3)S1SU(n − 2) and SO(3) ↪→ SO(5) ⊂
N(SU(n− 2)) has a trivial 2-dimensional subrepresentation, then
we can reconjugate the diagram to achieve H = S1

1S
1
2SU(n − 2)

where SU(n− 2) is the lower right block and

S1
1 = {diag(1, z, 1, . . . , 1) | z ∈ S1}

S1
2 = {diag(1, 1, 1, zl2 , zk2 , . . . , zk2) | z ∈ S1}

where l2, k2 ∈ Z. The trivial 1-dimensional subrepresentation of
K+ ↪→ SO(2n+ 1) is then neccessarily given by Re1, which shows
K± ⊂ SO(3)U(n − 2), and there is no primitive example in this
case.

• If l− = 2 and K− ' SU(2)S1SU(n − 2), we have K± ⊂ SO(2n)
by the same reasoning that we used in the first paragraph of this
case.

• If l− = 3, then K− ' U(2)U(n− 2) and again K± ⊂ SO(2n) by the
same reasoning that we used in the first paragraph of this case.

3d-f) All these are subject to the considerations in 2a and 2b, since the corank
of H in G is 1 by corollary 1.7 on page 15, so that K+/H is not S2.

4a) We can assume H = T2SU(n1−1)SU(n2) and therefore K− = T2SU(n1−
1)SU(n2 + 1). We will identify K− via its center. It has to commute
with SU(n1−1)SU(n2), so we need to look at embeddings S1 ↪→ SO(3),
all of which are conjugate in SO(3) up to complex conjugation. But
this implies that K± ⊂ SO(2n) after conjugating K− with an element
of N(H)0, which contains the SO(3) in question.

4a-b) Again, we have corank(H) = 1 by corollary 1.7 on page 15, so in par-
ticular K+/H 6= S2. All the other cases have been treated before.

7.1 G = Spin(2n+ 1), n ≥ 3

For the general procedure of the classification see section 3 on page 20. For
comments on the procedure for the spin groups, see 3.1 on page 20. Up to
equivalence, the simply connected primitive cohomogeneity one Spin(2n+1)-
manifolds (n ≥ 3) are given by table 8.

The possibilities for K+ are given by table 9.
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Table 8: Spin(2n+ 1)-cohomogeneity one manifolds for n > 2

S1
kSU(2) ⊂ U(3), SO(2)SO(5), n = 3

where S1
k = {diag(z2, zk, zk, 1)}, k = 1,−3 and

SU(2) acts trivially on Re1,Re2,Re7
SU(2)S1

HSU(2) ⊂ U(2)SO(5), SO(5)U(2), n = 4

where S1
H = {diag(zl1 , zl1 , 1, zl2 , zl2)} and 1 = 2, l2 = 1 or l1 = 1 = l2.

Table 9: Possibilities for K+

Factors Subcase Group Conditions

2 2a Spin(2)Spin(6) n = 4

2 2b Spin(6)Spin(6) n = 6

2 2c Spin(2)Spin(5) n = 3

2 2d Spin(5)Spin(6) n = 5

2 2e Û(n) –

3 3a Û(n− 3)Spin(6) n ≥ 5

3 3b Û(n− 2)Spin(5) n ≥ 4

3 3c Spin(2)Û(n− 1) –

4 4a Û(n1)Û(n2) n1, n2 ≥ 1, n1 + n2 = n

2a) We transfer the whole situation into SO(9) and have K+ = S1SO(6) and
H = S1SU(3), where we can write S1 = {diag(1, zl, zk, . . . , zk) | z ∈ S1}.
But K+/H being a projective space implies SO(6) ∩ H = SU(3), which
can be written as

SO(6) ∩ H = {diag(1, zl, zk, zk, zk) · A | A ∈ SU(3), zl = 1}

so that z3k = 1 whenever zl = 1, which implies that l divides 3k. But
gcd(k, l) = 1, and by reparametrisation we can assume l = 1, 3. We
now divide cases by (H−)0:

• If (H−)0 = SU(3), we know K−/H− is U(2) or SO(3). But the
normalizer N(SU(3)) = SO(3)S1 does not contain SU(2), and
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K−/H− = SO(3) implies k = 0, in which case we have that
H ↪→ SO(9) is surjective on the fundamental group, a contra-
diction.

• If (H−)0 = S1, we haveN(S1) = S1U(3) for k 6= 1, so we will not get
a primitive example in this case. If k = 1, we have N(S1) = U(4),
but both K± are contained in SO(8), so again no primitive example
can be found here.

• If H− is finite, we have K− = S1SU(4) or K− = S1SO(6), but in
both cases K± ⊂ SO(8) again, a contradiction to primitivity.

2b) Again, by virtue of −1 ∈ K+ \ H we look at the situation in SO(13).
We have SO(6) ⊂ H+, and therefore l± > 1, so that all of K±,H are
connected. But SO(6) ⊂ H implies that SO(13)/H is simply connected,
a contradiction, because Spin(13)/(π−1(H))0 is a nontrivial cover.

2c) We transfer the discussion to SO(7). Then we have H = S1SU(2), where
S1 = {diag(zl, zk, zk, 1) | z ∈ S1} (where (k, l) = 1) and SU(2) is given
accordingly. We have SO(5)/SU(2) = RP 7 so that SO(5) ∩ H = SU(2),
so that z2k = 1 whenever zl = 1, implying that l divides 2k. But
(k, l) = 1, so that l divides 2, and therefore l = ±1,±2. But the image
of π1(S

1) → π1(SO(7)) is given by l mod 2 ∈ Z2, implying l = 2 (if
l = ±1, SO(7)/H is simply connected, a contradiction as before) and k
is odd. We assume l = 2 (possibly reparametrizing S1)and divide cases
by (H−)0:

• If H− = H, we have K− ⊂ N(H) and N(H)0 = T2SU(2) ⊂ K+, a
contradiction to primitivity.

• If (H−)0 = S1, we have N(S1) = T2SU(2) ⊂ K+ as before, a
contradiction.

• If (H−)0 = SU(2), we have N(SU(2)) = S1SU(2)SO(3). Since
H/H− = S1, we have K−/H− = U(2) or SO(3). But the only SU(2)
in N(H−) is also in H−, and the SO(3)-factor does not contain S1,
so there’s no example in this case either.

• If H− is finite, we have either K− ' U(3) or K− ' SO(2)SO(5),
where the second case of course does not give a primitive manifold.
SU(3) is determined by H, and the center of K− is determined by
H up to the first coordinate. It is either given by {diag(z, z, z)}
or {diag(z̄, z, z}. But conjugation of the first coordinate fixes
both K+ and H, so we can assume K− is the standard upper
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left block. Since U(3) ↪→ SO(7) is surjective on the fundamen-
tal group, π−1(U(3)) is connected and contains −1, so that K−/H
is a projective space. Now SU(3)∩H = SU(2) , which implies k = 1
or k = −3 (note that SU(3)∩H/SU(2) = Z2 and that z = ±1 gives
lements of SU(2)). Those are obviously two primitive examples.

2d) This follows the exact same reasoning of case 2b above, and does not
give a primitive example.

2e) Since −1 ∈ K+, again we transfer the situation to SO(2n + 1). We
have SU(n) 6⊂ H+, since otherwise SU(n + 1) ⊂ K−, but there is no
embedding SU(n + 1) ↪→ Spin(2n + 1). So we know H = S1

kSU(n − 1)
where

S1
k = {(diag(1, z(k+2)(n−1), z−k, . . . , z−k) | z ∈ S1}

and k is odd (see section B.2.3 on page 68). This implies N(H)0 =
T2SU(n−1) ⊂ K+, so that H 6= H− and l− > 1. Also, N(SU(n−1))0 =
SO(3)U(n − 1), but the SO(3)-factor does not contain S1

k, so in fact
l− > 2. Looking at both normalizers and checking against the list of
effective transitive sphere actions ( 16 on page 65) we also see l− > 3.
For n ≥ 5, this implies K− ' U(n), but it is already determined by
S1

k (note that k cannot be -2), so that K± ⊂ SO(2n) and no primitive
example arises in this case.

If n ≤ 4, there are two additional possibilities for K−, coming from the
accidental isomorphisms Sp(2) ' Spin(5) and SU(4) ' Spin(6). They
have already been considered in 2c and 2a respectively.

3a) We have −1 ∈ K+, so we transfer the situation to SO(2n + 1) again.
We cannot have SO(6) ⊂ H, for that would imply that SO(2n+ 1)/H is
simply connected. But then SU(n−3) ⊂ H+, because SO(6)×SU(n−3)
can not act transitively almost effectively on a projective space. Now
also SO(5) 6⊂ H for the same reasons as above, so we actually have
H = SU(3)S1SU(n − 3). Since K− can not contain SU(3)SU(n − 2)
(which has no embedding into SO(2n+ 1)), we have that SU(n− 3) is
contained in the isotropy group of an almost effective tansitive action
on a sphere of a group that does not contain SU(n−2) as a transitively
acting factor. This implies n = 5 or n = 6.

If n = 5, we have K− = SU(3)S1SO(5) (note that SO(5)/SU(2) is a
projective space and Spin(5) = Sp(2)), but SO(5) is determined by

45



SU(3) and SU(2), and it’s easy to see K± ⊂ SO(6)SO(5), so that this is
not primitive.

If n = 6, we have H = SU(3)S1SU(3) and the above reasoning implies
K− = SU(3)S1SO(6), but again K± ⊂ SO(6)SO(6).

3b) Again, we look at the image of the diagram in SO(2n + 1) and have
K+ = U(n− 2)SO(5). We have SO(5) 6⊂ H (because G/H is not simply
connected), so SU(n− 2) ⊂ H−, which implies H = SU(n− 2)S̃1SU(2).
Now SU(n − 1)SU(2) ⊂ K− is a contradiction (we can see there is
no such embedding into SO(2n + 1) by looking at the dimensions of
representations), and since SU(n − 2) ⊂ H− we have n = 4 or n = 5.
But n = 5 implies K− ' SU(2)S1SO(6), which does not give a primitive
example by 3a).

So we are left with n = 4, and K− = SU(2)S1SO(5). We know S̃1 ⊂ H
commutes with both SU(2)-factors, so it is of the form

S̃1 = {diag(zl1 , zl1 , 1, zl2 , zl2) | z ∈ S1}

for some l1, l2 ∈ Z with (l1, l2) = 1. Since complex conjugation on U(2)
can be realized by a matrix in SO(4), we can reconjugate the diagram
so that l1, l2 ≥ 0, without changing K±. Now since K+/H is a projective
space, we know SO(5) ∩ H = SU(2), so we know that zl1 = ±1 for all
z that satisfy zl2 = 1, i.e. l2 | 2l1. But l1, l2 are coprime, so l2 | 2, so
l2 = 1 or l2 = 2. By symmetry reasons (K− is a conjugate of K+ by just
exchanging the first 4 coordinates with the last 4), also l1 = 1 or l1 = 2.
Exchanging K+ and K− does not change the manifold by section 1.2
on page 13, we can assume l1 ≥ l2 and are left with 2 examples. Since
exchanging the first 4 coordinates with the last 4 is not in in the unity
component of the normalizer of H (all automorphisms in N(H)0 are
inner), those 2 examples are primitive.

3c) Since −1 ∈ K+, we translate the situation to SO(2n+ 1). First assume
SU(n − 1) ⊂ H+. This implies K− ' U(n), so no primitive example
arises. Note that H/H− contains S1SU(n− 1), which also excludes the
cases n = 3 and K− ⊃ Sp(2) and n = 4 and K− ⊃ SO(6).

So now assume H = T2SU(n − 2). We have S1 ⊂ H/H−, so either
H/H− = S1 or H/H− = S1SU(n − 2). The latter case just implies
K− ' K+ , which does not give a primitive example for the following
reason: Note that if all of H,K± have a trivial one-dimensional subrep-
resentation from their inclusion into SO(2n+ 1), these are neccessarily
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the same, so K± ⊂ SO(2n). Otherwise H has three one-dimensional
trivial subrepresentations, and then SO(3) ⊂ N(H)0, which includes
the change of coordinate which allows us to assume K± act trivial on
the same one-dimensional subspace, and K± ⊂ SO(2n) as before.

So we know H/H− = S1, and we divide cases by l− = 3 and l− = 2:

• If l− = 2, then K−/H− is either SO(3) or SU(2). The first case
would imply that Spin(3) ⊂ (π−1(K−))0 acts on the sphere Sl− ,
but −1 ∈ Spin(3) has to acts trivial, a contradiction. In the sec-
ond case K− has a trivial 1-dimensional subrepresentation as a
subgroup of SO(2n + 1), which is necessarily given by Re1 (be-
cause we have SU(2) ⊂ N(S1SU(n− 2)), so this is not a primitive
example.

• If l− = 3, we have K−/H− = U(2), so that K− = T2SU(2)SU(n−2).
First assume that H as a subgroup of SO(2n + 1) has exactly
one 1-dimensional trivial subrepresentation. This is neccessarily
Re1, and the same is true for K−, which also has exactly one 1-
dimensional trivial subrepresentation on which H need to act triv-
ially, too. The other possibility is that H has three 1-dimensional
trivial subrepresentations, but then N(H)0 ⊃ SO(3)SU(n− 2) and
so by conjugation in N(H)0 we can assume that K− acts trivially
on Re1, again a contradiction to primitivity.

4a) Just as in 4a) of case G = SO(2n+1), no primitive example can arise in
this case. The proof carries over verbatim by transferring the situation
to SO(2n+ 1).
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8 G = Sp(n), n ≥ 2

For a general description of the classification procedure, see section 3 on
page 20.

We claim that for n > 1 the simply connected primitive cohomogeneity
one Sp(n)-manifolds with positive euler characteristic are given by table 10.
Note that we will not treat Sp(2) ' Spin(5) the way we deal with the spin
groups as described in section 3.1 on page 20, but just follow the procedure
for the non-Spin groups.

Table 10: Sp(n)-cohomogeneity one manifolds for n > 1

Sp(n− 2)∆Sp(1) ⊂ Sp(n− 2)SO(2)∆Sp(1), Sp(n− 1)Sp(1)

where ∆Sp(1) is the diagonal Sp(1) in the upper left Sp(2)-block

and SO(2) is the standard SO(2) in this same block

Z2∆Sp(1) ⊂ SO(2)∆Sp(1),Z2Sp(1)Sp(1), n = 2

where Z2 is generated by

0 1

1 0

 and

SO(2) and ∆Sp(1) are as above

S1Sp(n− 2) ⊂ U(2)Sp(n− 2), S1Sp(n− 1)

where S1 = {diag(z, z̄2, 1, . . . , 1)} or {diag(z, 1, . . . , 1)}

U(n1)Sp(n2 − 1) ⊂ U(n1 + 1)Sp(n2 − 1),U(n1)Sp(n2), n1 + n2 = n

S1
HSp(n− 2) ⊂ Sp(1)Sp(n− 2), S1Sp(n− 1)

where S1
H = {diag(z, z3, 1, . . . , 1)} and Sp(1) ↪→ Sp(2) (upper left block)

given by the irreducible SO(3) ↪→ SO(5)

T2
HSp(n− 3) ⊂ S1SO′(3)Sp(n− 3),T2Sp(n− 2)

where S1 = {diag(z, z, z, 1, . . . , 1)}, T2
H = {diag(1, z, z̄, 1, . . . , 1)} · S1

and SO′(3) is the conjugation of the standard upper left

SO(3)-block by


1 0 0

0 1 i

0 1 −i


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The possibilities for K+ are given by table 11.

Table 11: Possibilities for K+

Factors Group Conditions

2 U(n) –

2 Sp(n1)Sp(n2) n1 + n2 = n

2 S1Sp(n− 1) –

2 T2 n = 2

3 U(n1)Sp(n2) n1 > 1, n1 + n2 = n

3 S1U(n− 1) n ≥ 3

3 S1Sp(n1)Sp(n2) n1 + n2 + 1 = n

3 Sp(1)Sp(n1)Sp(n2) n1 + n2 + 1 = n

3 T2Sp(n− 2) n ≥ 3

4 U(n1)U(n2) n1, n2 > 1, n1 + n2 = n

4 Sp(1)Sp(n1)Sp(1)Sp(n2) n1, n2 ≥ 1, n ≥ 4

4 Sp(1)Sp(n1)S
1Sp(n2) n1, n2 ≥ 1, n ≥ 4

4 T2Sp(n1)Sp(n2) n1, n2 ≥ 1, n ≥ 4

4 Sp(1)Sp(n1)U(n2) n1 ≥ 1, n2 ≥ 2, n ≥ 4

4 S1Sp(n1)U(n2) n1 ≥ 1, n2 ≥ 2, n ≥ 4

2a) If n 6= 2, SU(n) cannot be contained in the kernel, for that would
mean SU(n) ⊂ K− ∩ H would act almost effectively on K−/H, so that
SU(n + 1) ⊂ K−. But there’s no embedding of SU(n + 1) ↪→ Sp(n)
save the case n = 1, which is not included here. This is easily seen by
looking at the dimensions of representations.

So assume SU(n) 6⊂ H+. Now we know H is given by S1
kSU(n−1) where

S1
k is given by

S1
k = {diag(z(k+1)(n−1), z−k, . . . , z−k) | z ∈ S1}
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The unity component of the normalizer of H in Sp(n) is given by either
Sp(1)U(n− 1) (for k = −1) or S1S1

kSU(n− 1) (for k 6= −1), where S1 is
the standard one in the left upper Sp(1) block. Let’s first assume K− 6=
U(n). For k = −1, we can have K− = Sp(1)U(n− 1), giving a primitve
manifold. There’s also the case K− = S1H, where by conjugation in
N(H)0 we can assume S1 ⊂ K− is standard. But this is not primitive,
for K− ⊂ K+. For k 6= −1 there’s only the case S1H where S1 is
standard, which isn’t primive.

If K− ' U(n), we can determine the embedding via the center as in
case 2a) of section 9 on page 58, which also leads to K− = Ū(n) as the
only primitive possibility, which only works in the cases k = −1 or k =
0. But Û(n) = σ(U(n)) where σ is conjugation by diag(j, 1, . . . , 1) ∈
N(H)0 for k = −1, 0, so no primitive manifold arises.

Lastly assume SU(n) ⊂ H+ which implies n = 2 as said above. Since
now H0 = SU(2) and there’s no embedding of SU(3) into Sp(2), we
have (K−)0 ' Sp(1)Sp(1). We reconjugate the diagram so that (K−)0 is
standard, and (H)0 = ∆Sp(1) is diagonal. This already determines the
maximal subgroup of maximal rank K+ = S1∆Sp(1). If all groups are
connected, this gives a primitive manifold. The normalizer of (K−)0 in
Sp(2) is Z2Sp(1)Sp(1), where the outer automorphism in Z2 switches
the two Sp(1)-factors. This gives H = Z2∆Sp(1) and K+ as before,
another primitive manifold.

2b) First assume Sp(n2) ⊂ H+. If n1 > 2, so that H = Sp(n1 − 1)Sp(n2)
and we know from primitivity that Sp(n2) ⊂ H/H− and therefore K− =
Sp(n1 − 1)Sp(n2 + 1). Note that in the case n2 = 2 we have H '
Sp(n−3)Spin(5), but we cannot have H ' Sp(n−3)Spin(6), because that
would be a maximal rank subgroup, but not isomorphic to one of the
groups we have given in table 15 on page 65. In the case n2 = 1 we have
H = Sp(n−2)Sp(1) so that we can have K− = Sp(n−2)Spin(4) = Sp(n−
2)Sp(1)Sp(1). But the standard representation of Sp(n) restricted to H
factors into 3 nonequivalent irreducible representations Hn−2 ⊕H⊕H
where the last factor is acted on trivially. This already determines K−,
which is standard, which would imply Sp(1) ⊂ H−∩H+, a contradiction.

If n1 ≤ 2 the possibilities given above arise as well, but we need to note
that because of corank(H) = 1 by corollary 1.7 on page 15 we cannot
have K+/H+ ' SO(3) or SO(5).

Of course, if Sp(n1) ⊂ H+ we may just exchange Sp(n1) with Sp(n2), so
now we assume that none of both is contained in H+, which amounts
to either n1 = 1 or n2 = 1 (just assume the latter) and H = Sp(n −
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2)∆Sp(1). The identity component of the normalizer of H in G is given
by N(H)0 = S1∆Sp(1)Sp(n− 2), where S1 is given by SO(2) ↪→ Sp(2).
We can go through the possibilities for K− by studying the isotropy
representation. Two of the possibilities amount to K− ' K+, one of
which is obviously not primitive (K− = K+), and the other one where
K− is obtained from K+ by exchanging the first two coordinates. This
is given by conjugation with the matrix having0 −1

1 0


as the upper left 2x2-block, and extended by the identity to the other
coordinates. This is in N(H)0 though, so no new primitive manifold
arises. We can also have K− = Sp(1)Sp(1)Sp(n−2), where both possible
cases (the additional Sp(1) can be in the diagonal or offdiagonal in the
upper right block of Sp(2)) are conjugate (in Sp(2) this conjugation is
given by

1√
2

 1 1

−1 1


But this is in N(H)0 as well, so again no primitive example arises. The
last case is K− = S1∆Sp(1)Sp(n− 2) where S1 is given by the standard
embedding SO(2) ↪→ Sp(2), i.e. K− ' U(2)Sp(n−2), which is primitive
for the same reasons as above. Note that we have l− = 1 here, so that
components may occur. But the Normalizer of K+ in G is K+ itself save
the case n = 2, which was already treated in 2a.

2c) We cannot have K+/H+ = S1, since that would imply Sp(n− 1) ⊂ H+

and therefore K− = Sp(n).

The almost effective actions of S1Sp(n − 1) on spheres are given by
(z, A) · v = Avzl with isotropy group Sp(n−2)∆S1

l , where ∆S1
l is given

by

S1
l := {diag(z, zl, 1, . . . , 1) | z ∈ S1}

First assume Sp(n− 2) 6⊂ H−. If ∆S1
l ⊂ H−, we have K− = S1

l Sp(n− 1)
where S1

l normalizes the Sp(n−1) factor. That is only possible for l = 0
and K− = K+. If ∆S1

l 6⊂ H−, then we have K− ' K+ with only two
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choices for K−. One is K− = K+, and the other is K− = σ(K+), where
σ is the coordinate change which exchanges the first 2 coordinates.
But this implies l = 1, where we have N(H)0 = U(2)Sp(n − 2), which
includes σ, so this manifold is not primitive as well.

From now on we assume Sp(n − 2) ⊂ H−, that is, H/H− = S1. First
also assume K−/H− = S2, which implies K− = Sp(1)Sp(n − 2). Note
that Sp(1) and ∆S1

l have to share a common central element of order
2. If l is even, that element is diag(−1, 1, . . . , 1), which already implies
that Sp(1) is standard in the upper left corner and l = 0, obiously not a
primitive manifold. If n is odd, that element is diag(−1,−1, 1, . . . , 1),
which is central in the upper left Sp(2) block, so we can look for embed-
dings Sp(1) ↪→ Sp(2) via embeddings SO(3) ↪→ SO(5). There are 2 of
those: The standard embedding, which corresponds to l = 1 by the in-
duced weights for the isotropy representation of S1 ' SO(2). This will
not be primitive, because N(H)0 contains U(2) in the upper left 2x2-
block which acts transitively on the possible extensions S1

1 ↪→ Sp(1),
and K− = Sp(n − 2)∆Sp(1) is contained in Sp(1)Sp(n − 1) as well
as K+. The other possible embedding is given via the representation
on the traceless symmetric 3x3-matrices by conjugation (in represen-
tation terms, that’s given by (4)) and corresponds to l = 3. Note
that this representation is irreducible, so that K− is not contained in
Sp(1)Sp(n− 1), which is the maximal subgroup containing K+, so that
the corresponding manifold is primitive.

The last case is K−/H− = S3. Since, as before, Sp(n − 2) ⊂ H−,
we shift the discussion into the upper left Sp(2)-block. The isotropy
representation of ∆S1

l in Sp(2) has 4 summands of dimension 2 and at
least one trivial of dimension one. Only the two off-diagonal summands
(of weight l ± 1) belong to groups not contained in Sp(1)Sp(1), which
would not lead to a primitive manifold, because K− ⊂ K+. The off-
diagonal summands belong to the standard SU(2) in Sp(2) as well as
its conjugate by 1 0

0 j


Note that this conjugation leaves K+ invariant and just exchanges ∆S1

l

with ∆S1
−l in H, so we may just assume K− = SU(2)∆S1

l , which leaves
l = 0,−2 (see section B.2 on page 66). In both cases, K± are two dif-
feren maximal subgroups of maximal rank, so the manifolds are prim-
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itive.

2d) We have H0 = S1, and by checking the isotropy representation as in the
last paragraph of the previous case we can see (K−)0 = U(2) (note that
again conjugation by diag(1, j) leaves K+ invariant, and H additionally).
Now K+ ⊂ K− and no primitive manifold arises.

3a) First, suppost Sp(n2) ⊂ H+, so that H = S1
kSU(n1 − 1)Sp(n2) where

S1
k = {diag(z(k+1)(n1−1), z−k, . . . , z−k︸ ︷︷ ︸

n1−1

, 1, . . . , 1︸ ︷︷ ︸
n2

) | z ∈ S1}

By primitivity Sp(n1) 6⊂ H−, so that we must have Sp(n2 + 1) ⊂ K−,
which is contained in the normalizer of SU(n1 − 1), which implies k =
−1 if n1 6= 2, which gives a primitive manifold. If n1 = 2, we have
K− ' S1Sp(n− 1), which was treated in 2c.

Now let SU(n1) ⊂ H+. Then K+ = S1SU(n1)Sp(n2) acts in the following
way: For (z, A) ∈ S1Sp(n2) we have Sl+ 3 v 7→ Avz−kn1 . The isotropy
group H is given by H = S1

kSU(n1)Sp(n2 − 1), where

S1
k = {diag(z, . . . , z︸ ︷︷ ︸

n1

, zkn1 , 1, . . . , 1︸ ︷︷ ︸
n2−1

) | z ∈ S1}

By primitivity SU(n1) 6⊂ H−. For n1 6= 2 this implies SU(n1 + 1) ⊂ K−,
which implies k = 0 and K− = U(n1 + 1)Sp(n2 + 1) or its conjugate by

diag(1, . . . , 1︸ ︷︷ ︸
n1

, j, 1, . . . , 1︸ ︷︷ ︸
n2

)

But this conjugation leaves H invariant as well as K+, so both manifolds
are equivalent. Note that we cannot have S1 ⊂ H− for we do have
S1 ⊂ H+. This is one primitive example.

If n1 = 2, there is an additional posibbility: K− ' S1Sp(2)Sp(n − 3).
We conjugate the whole diagram to make K− standard. Then H =
S1

l Sp(1)Sp(n− 3) where

S1
l = {diag(z, zl, 1, . . . , 1) | z ∈ S1}

and S1
l ∩Sp(1) is trivial. It is clear from this that K+ ' S1Sp(1)Sp(n−2),

a contradiction to the original assumption K+ ' U(2)Sp(n − 2) (note

53



though that the case K+ ' S1Sp(1)Sp(n− 2) will be treated later, and
not give a primitive example).

3b) We choose K+ such that SU(n − 1) ⊂ K+ is the lower right block. If
we assume SU(n − 1) ⊂ H+, then by primitivity we have K− ' U(n),
which is treated in case 2a. So we can assume SU(n− 1) 6⊂ H+, which
implies H = T2SU(n − 2). If SU(n − 2) 6⊂ H−, then K− ' S1U(n − 1).
By primitivity, SU(n−1) ⊂ K− is the upper left block. But K± ⊂ U(n)
where U(n) is either standard or has center diag(z̄, z, . . . , z).

So from now on we can assume SU(n− 2) ⊂ H−, i.e. H/H− ' S1. This
implies l− = 2 or l− = 3, and we divide cases by K−:

• If l− = 2 and K− = SU(2)U(n− 2), we reconjugate the diagram to
make K− standard. Then H = S1

1U(n − 2) where U(n − 2) is the
lower right block and

S1
1 = {diag(z, z̄, 1, . . . , 1) | z ∈ S1}

This way we see there are 2 choices for SU(n − 1) ⊂ K+, both of
which are equivalent. Now we claim that the factor SU(2) ⊂ K−
is uniquely determined by S1

1 up to conjugation in N(S1
1)0, which

finishes this case, because then K± ⊂ U(n) up to conjugation in
N(H)0.

To prove the claim we restrict the discussion to the upper left Sp(2)
block. We have Sp(2) ' Spin(5), but SU(2) ⊂ Sp(2) contains the
central element, so it corresponds to SO(3) ⊂ SO(5), and S1 ⊂
SU(2) ⊂ Sp(2) to SO(2) ⊂ SO(3) ⊂ SO(5). But SO(3) ⊂ SO(5) is
uniquely determined up to conjugation in N(SO(2)). So there is
no primitive example in this case.

• If l− = 2 and K− = Sp(1)SU(n−2)S1, we claim K± ⊂ Sp(1)Sp(n−
1). As above, we restrict the discussion to the upper left Sp(2)
block to show that Sp(1) is uniquely determined by S1 it contains.
In SO(5), SO(2) has either three 1-dimensional trivial subrepre-
sentations, and the SU(2) containing it is unique in N(SO(2))0, or
only one, but then the SU(2) containing it is already determined.
This shows the claim if Sp(1) does not contain the central element
of Sp(2). If Sp(1) contains the central element of Sp(2), the dis-
cussion above shows that is is also uniquely determined by the S1

it contains. Again, no primitive example arises in this case.

54



• If l− = 3 then either K− = U(2)U(n− 2) or K− = S1Sp(1)U(n− 2)
we can use the same arguments as above to show that the manifold
is not primitive.

3c) Suppose S1Sp(n1) ⊂ H+, so that H = S1Sp(n1)Sp(n2 − 1). We have
S1Sp(n1) 6⊂ H− by primitivity, so that K+ ' S1Sp(n1 + 1)Sp(n2 − 1).
But the S1 factor of H is not diagonally embedded into the factors
S1Sp(n1 + 1) so that S1 ⊂ K− can only act trivially on Sl− , which
implies S1 ⊂ H−, a contradiction.

Sp(n1)Sp(n2) can only occur as the isotropy group of a transitive ef-
fective action on a sphere in the case n1 = 1. But even in that case
H = ZkSp(n1)Sp(n2) cannot result in K− = Sp(1)Sp(n2 + 1) because as
above Sp(1) ⊂ H is not diagonally embedded into K−.

So now we can assume H = Sp(n1 − 1)Sp(n2)∆S1
l , where we assume

Sp(n1) in the upper left block, Sp(n2) in the lower right, and

∆S1
l = {diag(1, . . . , 1︸ ︷︷ ︸

n1−1

, zl, z, 1, . . . , 1︸ ︷︷ ︸
n2

) | z ∈ S1}

Note that this choice actually means K+ = Sp(n1)S
1Sp(n2) so that

S1 acts on the (n1 + 1)st coordinate. If |l| 6= 1, this implies K− =
Sp(n1− 1)S1σ(Sp(n2 + 1)), where σ exchanges the Koordinates n1 and
n1+1. This is not primitive, for K± ⊂ ϕ(S1Sp(n−1)) where ϕ exchanges
the first with the (n1 + 1)st coordinate. If |l| = 1, we can actually have
Sp(n2 + 1) ⊂ K− embedded as the lower right block, but in this case
it’s even easier to see that the resulting manifold is not primitive.

3d) This case is completely analogous to 3c (for l = 1) in showing that
the only possibility is H = Sp(n1 − 1)Sp(n2) which does not lead to a
primitive manifold again (because K± ⊂ Sp(1)Sp(n− 1)).

3e) First suppose Sp(n − 2) ⊂ H+. This implies Sp(n − 1) ⊂ K− and K−
is a subgroup of maximal rank, so we can refer to one of the previous
cases.

So we can assume H = T2Sp(n − 3). If Sp(n − 3) 6⊂ H−, we have
K− ' K+, and we claim that this is not a primitive manifold. For this
note that both K± (acting on Hn) have 2 one-dimensional subrepresen-
tations, while H has 3, which contain the ones of K±. So we see that
K± have a common one-dimensional subrepresentation, which shows
K± ⊂ Sp(1)Sp(n− 1), so the manifold is not primitive.
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We are left with the case Sp(n − 3) ⊂ H−, which implies l− = 2 or
l− = 3. We divide cases by K+

• If l− = 2 and K− ' SO(3)S1Sp(n−3), we have S1 ⊂ N(SO(3)Sp(n−
3). We reconjugate the diagram so that K− is standard and
SO(2) ⊂ H/H− is the upper left block. Then furthermore con-
jugate the diagram by the matrix having1 i

1 −i


in the upper left block, extended by the identity matrix En−2.
This conjugates SO(2) ⊂ H into

{diag(z, z̄, 1, . . . , 1) | z ∈ S1}

Now S1 ⊂ H− is in N(SO(3)Sp(n − 3)) and therefore T2 ⊂ H is
given by

{diag(z, z, z, 1, . . . , 1) | z ∈ S1} · {diag(z, z̄, 1, . . . , 1} | z ∈ S1}

This completely determines K+ and we find one primitive example.

• If l− = 2 and K− ' SU(2)S1Sp(n−3), we reconjugate the diagram
to put K− into standard form, which gives H = S1

1S
1
2Sp(n − 3)

where Sp(n− 3) is the lower right block and

S1
1 = {diag(z, z̄, 1, . . . , 1) | z ∈ S1}

S1
2 = {diag(1, 1, z, 1, . . . , 1) | z ∈ S1}

From this it is clear that Sp(n− 2) ⊂ K+ is the lower right block.
But H ∩ Sp(n− 2) 6= Sp(n− 3), so K+/H is not a sphere.

• If l− = 3 and K− ' U(2)S1Sp(n − 3), we again reconjugate the
diagram to make K− standard. Then N(H)0 contains SO(3), so
we can assume that Sp(n − 2) ⊂ K+ is the lower right block, so
we have K± ⊂ Sp(2)Sp(n− 2), and the manifold is not primitive.

4a) The fact that U(n) is given as the centralizer of its center S1 in Sp(n)
leads to the same reasoning as in case 4a of 9 on page 58 to show that
no primitive manifolds arise in this case.
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4b-4d) We will show that no primitive manifold can arise in these cases, be-
cause both K± have a common one-dimensional subrepresentation when
acting on Hn, showing K± ⊂ Sp(1)Sp(n−1). For this, denote the num-
ber of one-dimensional subrepresentations of the standard representa-
tion of a subgroup H ↪→ Sp(n) by s(H). Note that if K± acts on a
one-dimensional subspace of Hn, so does H.

• If n1, n2 ≥ 2, then s(K+) = 2, s(H) = 3, s(K−) = 2 and it is clear
that both K± share a one-dimensional invariant subspace.

• If n1 = 1 and Sp(n1) 6⊂ H+, then s(K+) = 3, s(H) = 3, s(K−) = 2
and it is clear that the claim holds.

• If n1 = 1, Sp(n1) ⊂ H+ and n2 > 1, then s(K+) = 3, s(H) =
4, s(K−) = 3 and the claim holds.

• If n1 = 1 = n2, then s(K+) = 4 = s(H), s(K−) = 3 and the claim
holds.

4e) Suppose H = ∆Sp(1)Sp(n1 − 1)U(n2). Then SU(n2 + 1) ⊂ K− ∩
N(∆Sp(1)Sp(n1−1), a contradiction. So we can assume H = Sp(1)Sp(n1)U(n2−
1)k for some k ∈ Z. Then K− = Sp(1)Sp(n1 + 1)U(n2 − 1) and k = 1.
If n2 ≥ 2, this is exactly the previous case by exchanging K− and K+.
If n2 = 2, then N(H) ⊃ SO(3), so we can assume Sp(n1 + 1) ⊂ K− is
the upper left block, which shows K± ⊂ Sp(n1 + 1)Sp(n2).

4f) First assume H = T2Sp(n1 − 1)SU(n2). This implies K− ' T2Sp(n1 −
1)SU(n2 + 1) by the classification of actions on a sphere (note that
this is true even in the case n2 = 2, because Sp(2)/SU(2) is not a
sphere). By primitivity, SU(n2 + 1) ⊂ K− is completely determined for
n1 > 1 and we have K± ⊂ Sp(n1)Sp(n2 + 1), so the manifold is not
primitive. If n1 = 1, we have SO(2) ⊂ N(H)0, so we can assume that
SU(n2 + 1) ⊂ K− is the lower right block and the claim holds, too.

The second possibility is H = T2Sp(n1)SU(n2 − 1). If K− ' T2Sp(n1 +
1)SU(n2 + 1) and n2 > 2 we can argue as before to show K± ⊂ Sp(n1 +
1)Sp(n2). If in addition n2 = 2, we have SO(3) ⊂ N(H)0 so we can
assume Sp(n− 2) ⊂ K− is the upper left block, and the claim holds.
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9 G = SO(2n), n ≥ 4

For a general description of the classification procedure, see section 3 on
page 20.

We claim that for n ≥ 4 the simply connected primitive cohomogeneity
one SO(2n)-manifolds with positive euler characteristic are given by table 12

Table 12: SO(2n)-cohomogeneity one manifolds for n ≥ 4

S1SU(n− 1) ⊂ σ(U(n)),U(n)

where S1 = {diag(z, 1, . . . , 1)} or S1 = {diag(1, z, . . . , z)} and

σ is conjugation by diag(−1, 1, . . . , 1)

SO(2n1)SO(2n2 − 1) ⊂ SO(2n1 + 1)SO(2n2 − 1), SO(2n1)SO(2n2)

where n1 + n2 = n

Z2SO(2n− 2) ⊂ Z2SO(2n− 1), SO(2)SO(2n− 2)

where Z2 ⊂ SO(2)

U(n1 − 1)SO(2n2) ⊂ U(n1 − 1)SO(2n2 + 1),U(n1)SO(2n2)

where n1 + n2 = n

T2SU(n− 2) ⊂ SO(3)S1SU(n− 2), SO(2)U(n− 1)

where S1 = {diag(1, 1, 1, 1, z, . . . , z)}, T2 = {diag(z, 1, . . . , 1)} · S1

and SO(3) is the upper left block

The possibilities for K+ are given by table 13.
If a group of complex matrices is involved (e.g. U(n)), we will deliber-

ately use complex notation for the corresponding real matrices. In partic-
ular, for eiϕ = z ∈ S1, we will use diag(z, . . . , z) for the matrix containing cosϕ sinϕ

− sinϕ cosϕ

 on the diagonal 2× 2-blocks and 0 everywhere else.

2a) If SU(n) ⊂ H+, we have SU(n + 1) ⊂ K−, a contradiction to K− being
a subgroup of SO(2n). So H is given by S1

kSU(n − 1), where S1
k =

{diag(z(k+1)(n−1), z−k, . . . , z−k)} by subsection B.2 on page 66 of the
appendix. We have N(SU(n − 1))0 = S1U(n − 1) ⊂ K+, therefore
SU(n− 1) 6⊂ H− and therefore K− is isomorphic to U(n).

58



Table 13: Possibilities for K+

Factors Group Conditions

2 U(n) –

2 SO(2n1)SO(2n2) n1, n2 > 2, n1 + n2 = n

2 SO(2)SO(2n− 2) –

3 U(n1)SO(2n2) n1 > 1, n2 > 2, n1 + n2 = n

3 U(n− 1)SO(2) –

3 SO(2n− 4)SO(4) n > 4

4 U(n1)U(n2) n1, n2 > 1, n1 + n2 = n

4 U(n− 2)SO(4) –

4 SO(4)SO(4) n = 4

The center of K− can be conjugated into the standard diagonal S1,
and must of course commute with SU(n − 1), so it is determined up
to the first complex coordinate, which can be z or z−1. By primitivity,
K− 6= K+, so the center of K− is given by z 7→ diag(z−1, z, . . . , z), and
therefore K− = ϕ(U(n)), where ϕ is conjugation by diag(−1, 1, 1, . . . , 1).
Since ϕ only fixes H for k = 0,−1, we are left with 2 comomogeneity-
1-manifolds, both of which are primitive indeed: Conjugation by

diag(−1, 1, . . . , 1)

on U(n) has the same image as conjugation by

diag(1, 1,−1, 1, . . . ,−1, 1)

(they only differ by diag(−1, 1, . . . ,−1, 1), which is complex conjuga-
tion), but this restricts to complex conjugation on U(n − 1), which
is an outer automorphism and cannot possibly come from an element
of N(H)0 = S1U(n1). Note that both of K± must be connected, for
l± = 2n− 1 > 1.

2b) If K+ = SO(2n1)SO(2n2) with n1, n2 > 2, we may assume that H =
SO(2n1)SO(2n2 − 1) is standard, and since l+ = 2n1 − 1 > 1 we
know K− is connected. Since the action of SO(2n) is primitive and
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almost effective, we have K− = SO(2n1 + 1)SO(2n2 − 1). This is
the primitive action of SO(2n) on the Grassmanian G2n2(R2n+1) =
SO(2n+ 1)/SO(2n1 + 1)SO(2n2)

2c) K+/H+ is not as O(2n− 2) since O(2n− 2) is not the direct product of
SO(2n− 2) and Z2. If K+/H− is SO(2n− 2), this is the exact same as
case 2b), giving K− = SO(3)SO(2n−3). So K+/H− = S1, which implies
H = ZkSO(2n − 2) for some k. Now H− can’t contain SO(2n − 2), so
K− must contain SO(2n − 1) as a transitively acting factor. Since
the normalizer of SO(2n − 1) in SO(2n) is S(O(1)O(2n − 1)) we are
restricted to k = 1 or k = 2 (note that l+ = 1, so actually components
may occur). For k = 1 this is analogous to case 2b), the action of
SO(2n) on the Grassmanian SO(2n + 1)/SO(2n − 1)SO(2). For k = 2
we know SO(2n − 1)Z2 is isomorphic to O(2n − 1) (since Z2 acts by
an inner automorphism), but K−/H− is not O(2n− 1) since this would
imply H/H− ' O(2n− 2) which is not isomorphic to SO(2n− 2)× Z2,
which in turn H is. So K−/H− = SO(2n − 1), giving a non-effective
action.

3a) K+/H+ is not SO(2n2), since that would imply that K− has SU(n1+1) as
a simple factor as well as SO(2n2−1). So K+/H+ = U(n1), and therefore
H = U(n1 − 1)kSO(2n2). Since the action is primitive and almost
effective, K−/H− must contain SO(2n2 +1) as a simple factor, and since
l+ = 2n1 + 1 > 1, K− must be connected. So K− = U(n1−1)kSO(2n2 +
1), but the normalizer of U(n1− 1)k does not contain SO(2n2 + 1) save
the case k = 0. The embedding of K− and H into SO(2n) gives a
faithfull representation, and we can see that there is a 2-dimensional
trivial subrepresentation for H, while there is a 1-dimensional trivial
subrepresentation for K−. It is clear that the latter is contained in the
former and determines K−. But N(H)0 = U(n1 − 1)SO(2)SO(2n2) acts
transitively on the 2–dimensional trivial representation (via the factor
SO(2)), so by conjugating with an element of N(H)0 we can achieve K−
is standard.

This is the action of SO(2n) on SO(2n+ 1)/U(n1)SO(2n2 + 1), which is
primitive because K+ is a maximal connected subgroup of SO(2n1)SO(2n2)
which in turn is maximal connected in SO(2n). Both of these do not
contain K−, even up to components.

3b) In addition to the possibility from 3a) (giving the action of SO(2n)
on SO(2n + 1)/U(n − 1)SO(3)), there are 2 other possibilities. First,
if H = U(n − 2)SO(2), we can have K− = U(n − 2)U(2). From the
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isotropy representation of H in G we see that U(2) is contained in the
lower right SO(4) block. It is determined by SU(2) ⊂ U(2), and it is
known that SO(4) = SU(2)SU(2), so there are 2 choices for the SU(2)
factor. One of those leads to K− being contained in U(n), not giving a
primitive manifold (for K+ ⊂ U(n) as well). The other one is obtained
from the first by an outer automorphism, given by conjugation with
diag(1, . . . , 1,−1). But this automorphism fixes both H and K+, so the
resulting manifold is equivalent to the first one.

Secondly we can have K+/H ' U(n − 1), so that H = T2SU(n − 2).
First assume SU(n− 2) 6⊂ H−, which implies K+ ' K−. Both K± have
a 2-dimensional subrepresentation from their embedding into SO(2n),
which is neccessarily given by Re1 ⊕ Re2 or Re3 ⊕ Re4, and we chose
K+ the way that this is Re1 ⊕ Re2. If it’s the same for K−, we have
K± ⊂ U(n), so the manifold is not primitive. If it is Re3⊕Re4, we look
at the center of U(n− 1) ⊂ K−. If it is given by

{diag(z, 1, 1, z, . . . , z) | z ∈ S1}

we again have K± ⊂ U(n). If it is given by

{diag(z̄, 1, 1, z, . . . , z) | z ∈ S1}

we have K± ⊂ σ(U(n)), where σ is conjugation by diag(−1, 1, . . . , 1).

So now we can assume SU(n− 2) ⊂ H−, which implies H/H− = S1, and
therefore l− = 2 or l− = 3. We divide cases by K−:

• If K− = S1SU(2)SU(n− 2), we look at the centralizer of SU(2) in
the upper left SO(4)-block: It is either given by diag(z, z), so that
K± ⊂ U(n), or diag(z̄, z), which implies K± ⊂ σ(U(n)), where σ is
as above.

• If K− = SO(3)S1SU(n− 2) with SO(3) ⊂ N(S1SU(n− 2)), we can
reconjugate the diagram to achieve that K− acts trivially on Re4.
This implies H = S1

1S
1
2SU(n− 2) with SU(n− 2) in the lower right

block and

S1
1 = {diag(z, 1, . . . , 1) | z ∈ S1}

S1
2 = {diag(1, 1, 1, 1, z, . . . , z) | z ∈ S1}

We note that SU(n − 1) ⊂ K+ is in N(S1
1), so it is in the lower

right block. This gives one primitive example.
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• If K− ' U(2)U(n−2), we can use the same reasoning above to see
that the manifold is not primitive.

3c) There are 2 actions arising in the same way as described in 2b), namely
SO(2n) acting on either SO(2n + 1)/SO(2n − 3)SO(4) or SO(2n +
1)/SO(2n − 4)SO(5). We only need to note that l+ is odd by corol-
lary 1.7 on page 15.

4a) None of the actions arising are primitive. We have

H = T2SU(n1)SU(n2 − 1) and H+ = S1SU(n1)

Since H− ∩ H+ is finite, SU(n1) ⊂ H cannot act trivial in K−, and
therefore K− is isomorphic to U(n1 + 1)U(n2 − 1). As in case 2a) we
can determine the embedding via the center. The standard embedding
yields K−,K+ ⊂ U(n) and therefore not a primitive action, so the center
has to be given by

(z1, z2) 7→ (z1, . . . , z1︸ ︷︷ ︸
n1

, z−1
1 , z2, . . . , z2)

which implies that bot K− and K+ are contained in the subgroup of
SO(2n) isomorphic to U(n) with center(z, . . . , z︸ ︷︷ ︸

n1

, z−1, z−1, . . . , z−1) | z ∈ S1


4b) This case is completely analogous to case 3a), because SO(4) cannot

act as SO(3) for the same reason as in 3c).

4c) Again, no new example other than the ones arising from case 2b can
occur because l+ is odd by corollary 1.7 on page 15.

9.1 Spin(2n), n ≥ 4

For a general description of the classification procedure, see section 3 on
page 20. Changes of this procedure for the Spin-groups are described in
section 3.1 on page 20.

We claim that there are no simply connected primitive cohomogeneity
one Spin(2n)-manifolds with positive euler characteristic for n ≥ 4 such that
the element -1 (which projects to the identity, but is not the identity itself)
does not act trivially (i.e. it is not an action of SO(2n)).
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First, it is easily seen that in the case n = 4, there can only be examples
that are coming from an SO(8)-example. Consider the maximal torus T4

of Spin(8), containing the maximal torus T3 of H (the corank of H is 1 by
corollary 1.7 on page 15). The group of involutions Z4

2 in T4 contains the
center Z2

2 of Spin(8), which therefore has nonempty intersection with the
group of involutions Z3

2 of T3. Therefore, H contains an element of the center
of Spin(8). Since the quotient of Spin(8) by any central Z2 is SO(8), this
shows the claim.

Now we have reduced the table of possibilities for K+ to those given in
table 14(where Û(n) is the preimage of U(n) ⊂ SO(2n)), where n > 4.

Table 14: Possibilities for K+

Factors Group Conditions

2 Û(n) –

3 Û(n− 1)Spin(2) –

3 Û(n− 3)Spin(6) –

4 Û(n1)Û(n2) n1, n2 > 1, n1 + n2 = n

The last case is easily dismissed as well, since we already know from
section 9 on page 58 that no such manifold will be primitive (the proof
carries over almost verbatim).

2a) We look at the projection of the diagram in SO(2n). For the same
reasons as in 2a) of section 9 on page 58 we know SU(n) 6⊂ H, so
H = S1

kSU(n− 1), where

S1
k = {diag(z(k+2)(n−1), z−k, . . . , z−k) | z ∈ S1}

and k is odd. As already shown in 2a) of section 9 on page 58 we have
K− ' U(n) as well, and since the diagram is primitive, K− = ϕ(U(n))
where ϕ is the conjugation by diag(−1, 1, . . . , 1), which restricts to
complex conjugation of the first component on S1

k. The latter is only
invariant under ϕ in the cases k = 0,−2, but the quotients are spheres
in these cases and so there are no new cases here.

3a) As before, we will consider the situation in SO(2n). As in case 3a) of
section 9 on page 58, we have that H is given as U(n− 2)kSO(2), where
U(n− 2)k is determined by
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S1
k := {diag(1, z(k+2)(n−2), z−k, . . . , z−k) | z ∈ S1}

with k odd. Analogous to case 3b) of 9 on page 58 we know that k−/h−
is given by either so(3) or R⊕ su(2). But both cases imply k = −2, a
contradiction.

3b) Again, we will consider the diagram of subgroups of SO(2n). If K+/H+ =
SU(4), we have H = SU(n − 3)S1SU(3), a contradiction, because K−
would have to contain SU(n− 2), but there is no embedding of SU(n−
2)SU(3) into SO(2n). The same reasoning shows H 6= U(n − 3)O(5).
We are left with H = S1

kSU(n− 4)SO(6) where S1
k is given by

S1
k = {diag(z(k+2)(n−4), z−k, . . . , z−k 1, . . . , 1︸ ︷︷ ︸

6 times

)}

with k odd. But in that case SO(2n)/H is simply connected, a contra-
diction.
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A Tables

G K+

SU(n) S(U(n1)U(n2) · · ·U(nk))

where n1 + n2 + . . .+ nk = n

SO(2n) SO(2n1) · · · SO(2nk)U(m1) · · ·U(ml)

where
∑
ni +

∑
mi = n

SO(2n+ 1) SO(2k + 1)SO(2n1) · · · SO(2nk)U(m1) · · ·U(ml)

where k +
∑
ni +

∑
mi = n

Sp(n) U(n1) · · ·U(nk)Sp(m1) · · · Sp(ml)

where
∑
ni +

∑
mi = m

Table 15: Connected subgroups K+ of maximal rank of the simple classical
Lie groups

Dimension K H Isotropy representation

n SO(n+ 1) SO(n) ρn

2n+1 SU(n+ 1) SU(n) µn ⊕ id
2n+1 U(n+ 1) U(n) µn ⊕ id
4n+3 Sp(n+ 1) Sp(n) νn ⊕ 3id

4n+3 Sp(n+ 1)Sp(1) Sp(n)∆Sp(1) νn⊗̂ν1 ⊕ id⊕̂ρ3

4n+3 Sp(n+ 1)U(1) Sp(n)∆U(1) νn⊗̂φ⊕ id⊗̂φ⊕ id
15 Spin(9) Spin(7) ρ7 ⊕∆8

7 Spin(7) G2 φ7

6 G2 SU(3) µ3

Table 16: Transitive effective actions on the sphere Sn
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B Some computations

B.1 The normalizer of U(n) in SO(2n)

The group U(n) is given as the centralizer of an element in SO(2n) of order
4, which is unique up to sign, and the standard U(n) is given by the matrix J

containing

(
0 1
−1 0

)
on the diagonal 2x2-blocks, and 0 everywhere else. Let

p = diag(−1, 1,−1, 1, . . .), so that conjugation with p corresponds to complex
conjugation on U(n), and let N be the normalizer of U(n) in SO(2n). An
element g ∈ SO(2n) is in N if and only if for all u ∈ U(n) the element gug−1

is in U(n) again, i.e. commutes with J :

g ∈ N ⇔ gug−1J = Jgug−1 ∀u ∈ U(n)⇔ ug−1Jg = g−1Jgu ∀u ∈ U(n)

The last equation says that g−1Jg is in the centralizer of U(n), which is its
center. But g−1Jg is of order 4, so it’s either J or −J . By U(n) being
connected, we have

N = {g ∈ SO(2n) | g−1Jg = J} ∪ {g ∈ SO(2n) | g−1Jg = −J}

If n is odd, the second set is empty by looking at the determinant, so we
have N = U(n). If n is even, one easily sees that p satisfies pJp = −J , so we
have

N = Z2 · U(n) = U(n) ∪ pU(n)

B.2 Sphere actions of U(n)

B.2.1 Actions of U(n+ 1) on spheres

The group U(n+1) is the quotient of S1×SU(n+1) by the subgroup Cn+1 of n-
th roots of unity (embedded diagonally), so the representations of U(n+1) are
exactly the representations of S1 × SU(n) with kernel Cn+1. The irreducible
representations of S1 × SU(n+ 1) are the tensor products of irreducible rep-
resentations of S1 and SU(n+1) respectively. Since any action on a sphere is
linear, it gives rise to an irreducible representation of U(n+ 1), and checking
through the possibilities of table 16 on the preceding page, it is clear that we
are looking for irreducible representations of real dimension 2 or 2n+ 2.

Representations of real dimension 2 of S1×SU(n+1) are given as φm⊗̂ρ0,
where φm is the representation of S1 on C given by (z, v) 7→ zmv. Requiring
the kernel to be Cn+1 leads to the condition that n divides m, or m = k(n+1)
for some k ∈ Z. This is U(n+ 1) acting on C via (A, v) 7→ (detA)kv.
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Since all irreducible representations of S1 are complex of dimension 1, we
find the irreducible representations of dimension 2n + 2 of S1 × SU(n + 1)
by looking for the representations of SU(n + 1) that are either of dimension
n + 1 and irreducible or that are of dimension 2n + 2 and possess a real
structure. The first case leads to the standard representation µ1, which in
turn gives the representation φm⊗̂µ1 of S1× SU(n+ 1). Requiring this to be
a representation of U(n+1) leads to constraints on m as above and results in
the representation (A, v) 7→ (detA)kAv on Cn+1 ' R2n+2. As for the second
case, the only representation of SU(n + 1) of dimension 2n + 2 possessing a
real structure is µ1 ⊕ µ̄1 (for n ≥ 5 this is clear for reasons of dimension; in
the lower-dimensional cases some extra representations have to be checked
from the tables). This leads to an irreducible representation on R2n+2, which
is the same as the one we obtained from the first case.

B.2.2 Identifying the S1

From the previous subsection we know that the actions of U(n) on spheres
of greater dimension than 1 are given in the following way: A ∈ U(n) acts
by (detA)kA. It is easily seen that the isotropy group of such an action is
given by


a 0 0 · · ·
0
0 A
...

 | A ∈ C, A ∈ U(n− 1), ak+1 = detA
k


Also one easily verifies that this is S1

kSU(n− 1) where

S1
k = {diag(z(k+1)(n−1), z−k, . . . , z−k) | z ∈ S1}

Replace z by zn and write this as a product of

diag(zn−1, zn−1, . . . , zn−1)

and

diag(z(k+1)(n−1)n−(n−1), z−kn−(n−1), . . . , z−kn−(n−1))

where the first is an element of the center and the second in SU(n), so
one can figure out the isotropy group if the group is embedded in a larger
one.
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B.2.3 Actions of U(n) on real projective spaces

If U(n) acts transitively almost effectively on the real projective space RP 2n−1,
the isotropy group is given by S1

l,kSU(n− 1), where

S1
l,k = {diag(zl, z−k, . . . , z−k) | z ∈ S1}, gcd(k, l) = 1

We want to show l = (k + 2)(n− 1).
To prove that, we look at the map π1(S

1
l,k)→ π1(U(n)) induced by inclu-

sion. We have π1(RP 2n−1) = Z2, so the image has index 2 in the fundamental
group of U(n). We know S1

l,k is homotopic to

{diag(zl, z−k(n−1), 1 . . . , 1)} = {diag(z
l
a , z−k n−1

a , 1, . . . , 1)}

where a = gcd(l, n− 1). This in turn is homotopic to

{diag(z
l
a
−k n−1

a , 1, . . . , 1)}

By what we said above, it is clear that | l
a
− k n−1

a
| = 2. First suppose

l
a
− k n−1

a
= 2. Then l

a
= k n−1

a
+ 2, and we consider the following sequence

(where homotopy is denoted by '):

{diag(zk n−1
a , z−k n−1

a , 1, . . . , 1)}

={diag(z(k n−1
a

+2)(n−1), z−k(n−1)n−1
a , 1, . . . , 1)}

'{diag(z(k n−1
a

+2)(n−1), z−k n−1
a , z−k n−1

a , . . . , z−k n−1
a )}

By replacing k by k n−1
a

, we arrive at the aforementioned form. A similar
computation shows the same if l

a
− k n−1

a
= −2.

The converse of the claim is also clear from the above computation: The
index of the image of S1

l,k in the fundamental group of U(n) has index 2, if
l = (k + 2)(n− 1) and gcd(l, k) = 1.
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