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1 Introduction

1.1 The Farrell-Jones Conjecture

The Farrell-Jones Conjecture, if true for a group G and a ring R, provides
a strategy for computing the K-theory of the group ring R[G] in terms of
the K-theory of group rings of the form R[V] where V is a virtually cyclic
subgroup of G. (There is also a version of the Farrell-Jones Conjecture for
L-theory but we are not interested in that version here.)

In the particular case R = Z, the Farrell-Jones Conjecture would allow
us to more easily compute K∗(Z[G]). This case is interesting in topology be-
cause the Whitehead group, which for example appears in the s-cobordism
thoerem, is a quotient of K1(Z[G]).

The Farrell-Jones Conjecture also has direct applications to other con-
jectures, such as the Kaplansky Conjecture about idempotents in the group
ring R[G]. See [BLR08b] or [LR05] for more information about the Farrell-
Jones Conjecture and its applications.

In [BLR08c] Bartels-Lück-Reich proved that the Farrell-Jones Conjecture
holds for a hyperbolic group G. Their proof made use of special covers
of G × X where X is the Rips complex associated to G and X is the com-
pactification using the Gromov boundary. These covers were constructed
in [BLR08a], using a flow space, first defined by Mineyev in [Min05]. Spe-
cial covers were constructed over this flow space and then pulled-back
to G × X along a suitable embedding.

In this thesis we construct a flow space for a relatively hyperbolic group,
i.e. a group G that is hyperbolic relative to a set of peripheral subgroups.
The hope is to use this flow space to prove that if the Farrell-Jones Conjec-
ture holds for all the peripheral subgroups then the Farrell-Jones Conjec-
ture also holds for the group G.
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1.2 Relatively hyperbolic groups

The concept of a hyperbolic group was first introduced by Gromov
in [Gro87] and since then there has been considerable research on hyper-
bolic groups.

Relative hyperbolicity generalises this concept by allowing the group to
be non-hyperbolic so long as it only behaves in a non-hyperbolic manner
within certain subgroups. So, informally, a group G is hyperbolic relative
to a set P of subgroups if G is hyperbolic outside the subgroups P ∈ P and
their conjugates (see section 2.4 for an exact definition). Hence, if the sub-
groups P ∈ P are themselves hyperbolic then G is hyperbolic everywhere,
and thus is a hyperbolic group (see [Osi06, Corollary 2.41] for a proof of
this fact).

Since we have refrained from giving an exact definition here we instead
give some examples of groups and subgroups to which they are relatively
hyperbolic.

• A group is hyperbolic if and only if it is hyperbolic relative to the triv-
ial subgroup, hence relative hyperbolicity is indeed a generalisation
of hyperbolicity.

• If G = A ∗ B is a free product then G is hyperbolic relative to {A, B}.
More generally, if G = A ∗H B is a free product amalgamated over a
finite subgroup H then G is hyperbolic relative to {A, B}.

• If X is a systolic complex with isolated flats and G acts cocompactly
and properly discontinuously on X then G is hyperbolic relative to
its maximal virtually abelian subgroups of rank 2 (see [Els, Corollary
5.14]).

• A limit group is hyperbolic relative to its maximal non-cyclic abelian
subgroups (proven independently by F. Dahmani as [Dah03a, Theo-
rem 4.5] and E. Alibegović as [Ali05, Theorem 3.4]).

• More geometrically, the fundamental group of a hyperbolic manifold
with finite volume is hyperbolic relative to the cusp subgroups.

Many facts about hyperbolic groups have been proven to hold for rel-
atively hyperbolic groups, assuming that the fact holds for all of the pe-
ripheral subgroups. For example, Osin proved that a relatively hyperbolic
group G has a solvable word problem if all the peripheral subgroups have
a solvable word problem (see [Osi06, Theorem 5.1]) and that if none of the
peripheral subgroups contain a copy of a Baumslag-Solitar group then nei-
ther does G (see [Osi06, Corollary 4.22]).
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Therefore it is reasonable to ask if a group G is hyperbolic relative to P
and the Farrell-Jones Conjecture holds for all the peripheral subgroups then
does it also hold for G?

The Farrell-Jones Conjecture can be generalised to allow an arbitray
family of subgroups instead of using virtually cyclic subgroups. With this
more general version there is a transitivity principle, (see [LR05, Theorem
2.9]) that says;

Suppose E ,F are two families of subgroups of G with E ⊆ F and for
F ∈ F let E ∩ F = {E ∩ F | E ∈ E}. If the Farrell-Jones Conjecture with the
family F holds for G and the Farrell-Jones Conjecture with the family E ∩ F
holds for all F ∈ F then the Farrell-Jones Conjecture with the family E
holds for G.

Then given a group G that is hyperbolic relative to P we can define
the family F [P ] to consist of all virtually cyclic subgroups and all periph-
eral subgroups, and then ask whether the Farrell-Jones Conjecture with the
family F [P ] holds for G. The transitivity principle would then imply that if
the Farrell-Jones Conjecture (with the family of virtually cyclic subgroups)
is true for all the peripheral subgroups then it is also true for G.

1.3 The flow space

If a group G is hyperbolic relative to a set P of subgroups then Mineyev
and Yaman in [MY06] constructed a simplicial complex X associated to G,
which can be thought of as an analogue of the Rips complex for a hyper-
bolic group. In particular, the space X is contractible, has finite dimen-
sion, and its 1-skeleton is a Gromov hyperbolic metric space. Further-
more, we can define a Gromov boundary for X and hence get a topological
space X = X ∪ ∂X (see section 2.5).

In [Min05] Mineyev also defined a flow space associated to what he calls
a ’hyperbolic complex’, which is a simplicial complex whose 1-skeleton is
a uniformly locally finite, Gromov-hyperbolic graph.

If (Y, dY) is a uniquely geodesic metric space then we can take the flow
space FS(Y) to be the space of all geodesics in Y. These geodesics may be
finite or infinite in length, so we say a map c : R → Y is a generalised geodesic
if there are real numbers t0 ≤ t1 ∈ [−∞, ∞] such that c|(t0,t1) is a geodesic
and c is constant on (−∞, t0] and [t1, ∞). Then

FS(Y) := {c : R → Y | c is a generalised geodesic}
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with the topology defined by the metric

dFS(c, c′) :=


R
e−

1
2 |t|dY


c(t), c′(t)


dt.

The flow on FS(Y) is given by translation on R, i.e. Φτ(c)(t) := c(t + τ).
Then the flow space constructed by Mineyev in [Min05] is a space that for-
mally replicates what happens in the case of a uniquely geodesic space.

Unfortunately, the space X constructed in [MY06] does not have a uni-
formly locally finite 1-skeleton (in fact the 1-skeleton is not locally finite at
all) and so the construction in [Min05] is not applicable.

Therefore, the construction of the flow space has to be adapted to use
the properties we do have about the 1-skeleton of X, in particular we need
to use the uniform fineness of the 1-skeleton.

Fineness is a property about graphs that is weaker than local finiteness,
and can be thought of as a kind of local finiteness for edges. Fineness was
introduced by Bowditch in [Bow97] and in this thesis will be a fundamental
ingredient in the construction of the flow space. In section 2.3 we will give
a definition of fineness and state the facts we will need later on.

Chapter 7 is about the properties of this flow space. In section 7.1 we
examine the topology of the flow space induced by the metric, and in par-
ticular prove theorem 7.3 that says there is a homeomorphism


X × X\∆(X)


× R −→


FS(X)\FS(X)R, d̃



where the domain of the map has the standard product topology.
The important properties are found in section 7.4, where we look at

what happens when two formal geodesics have a common end-point. We
prove that under the action of the flow two such formal geodesics become
arbitrarily close, as stated in the following theorem.

Theorem (7.5). Let X be a simplicial complex whose 1-skeleton is a uniformly
fine, Gromov hyperbolic graph. For any x, x′ ∈ X, y ∈ X and all t, t′ ∈ R there
exists a constant t0 ∈ R such that

dFS


Φτ(x, y, t), Φτ(x′, y, t′ + t0)


−→ 0 as τ → ∞.

Since we are specifically interested in when we start with a relatively
hyperbolic group we can say even more;

Theorem (7.6). Let G be a group that is hyperbolic relative to a finite collection P
of subgroups and let X be the associated simplicial complex from section 3.1. Fix a
base-point x0 ∈ X and let G act on G × X via the diagonal action.

There is a continuous G-equivariant map j : G × X → FS(X) that satisfies
the following property;
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For any α > 0 there is a function fα : R → [0, ∞) with fα(τ) → 0 as τ → ∞,
and there is a β = β(α) > 0 such that for all g, h ∈ G and y ∈ X, if dG(g, h) ≤ α
then there exists some t0 ∈ [−β, β] such that for all τ ∈ R

dFS (Φτ j(g, y), Φτ+t0 j(h, y)) ≤ fα(τ).

An informal explanation as to what this theorem is actually saying can
be found after its appearance in section 7.4.

1.4 Outline of the Construction

The goal of this thesis is the construction of a flow space associated to a
simplicial complex X whose 1-skeleton G is a uniformly fine, Gromov hy-
perbolic graph (such as the simplicial complex X associated to a relatively
hyperbolic group in [MY06]).

The set underlying the flow space FS(X) is defined in section 3.3 and
uses the idea of Mineyev in [Min05]. The definition of the metric on FS(X)
is the complicated part. In section 3.4 we start the construction of this met-
ric, but it will not be completed until section 6.3. The construction requires
that the double difference


x, x′|y, y′


:= d(x, y)− d(x, y′)− d(x′, y) + d(x′, y′)

of four points x, x′, y, y′ ∈ X can be extended to allow x, x′ to be points
in the boundary ∂X. However, this is not necessarily possible if we start
with the standard metric on G and so we need to create a new metric on G
for which the double difference can be extended. In the original hyper-
bolic case covered by Mineyev, the construction of this metric was done
in [MY02] building on work in [Min01].

A possible way to adapt the work from [Min01] was suggested Mineyev
and Yaman in [MY06] and is done here explicitly in chapter 4, although we
do not use precisely their suggested method.

The idea is to consider the vertex set V = V(G) and edge set E = E(G)
as bases of Q-vector spaces QV and QE respectively, and then construct a
map g : QV ⊕ QV → QE such that g(a, b) is the end result of some kind
of projection from b to a. The projection is built from many small steps in
an iterative fashion. Each step is a projection by a distance µ, where µ is a
fixed constant.

We start with a map fℵ : QV ⊕ QV → QE in section 4.1 that depends
on a constant ℵ. This map is the first step in the projection towards the
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sphere of radius ℵ around a. The element fℵ(a, b) ∈ QE is in essence an
average over the intersection of a sphere around a with a neighbourhood
of the geodesics from a to b. This averaging procedure is why we need to
work over edges instead of vertices, because we can use fineness to ensure
we are averaging over finite sets, whereas if we worked with vertices then
the analogous sets could be infinite. Hyperbolicity tells us that if b and c
are close then the geodesics from a to c are close to the geodesics from a
to b, in particular we get the following;

Lemma (4.6). There exists a constant η0 ∈ (0, 1) such that for a, b, c ∈ V
if d(b, c) ≤ 2µ and

d(a, b) = (m + 1)µ + ℵ = d(a, c)

for some m ∈ N then

| fℵ(a, b)− fℵ(a, c)|1 ≤ 2η0.

Section 4.2 is concerned with what happens when we iterate fℵ. Then
in section 4.3 we define the map gℵ : QV ⊕ QV → QE, which is given by
repeatedly applying the small step fℵ until we reach the sphere of radius ℵ.
A crucial property of this map is the following proposition,

Proposition (4.18). If 2µ ≥ 7δ+ 4 then there are constants L > 0 and λ ∈ (0, 1)
such that for all a, b, b′ ∈ V

|gℵ(a, b)− gℵ(a, b′)|1 ≤ Lλ(b|b′)a

where (b|b′)a =
1
2


d(a, b) + d(a, b′)− d(b, b′)


is the Gromov product.

Then in section 4.4 we take an average over such gℵ using initial spheres
of differing radii to get the map g.

The element g(a, b) ∈ QE was the result of a projection from b to a, but
turning around our point of view we can also think of it as the first step
in moving a towards b. By counting how many times we have to apply g
to move a to b we get a function r : QV ⊕ QV → [0, ∞) which is our first
attempt at a new metric on V = V(G). This function is defined and studied
in section 5.1. Although this work is based on ideas from [MY02] the results
in chapter 5 are completely new.

The main results about the function r are summarised below.

Theorem. The function r : QV ⊕ QV → [0, ∞) satisfies

(i) There exists a constant K ≥ 1 such that for all a, b ∈ V

1

K
d(a, b) ≤ r(a, b) ≤ d(a, b).
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(ii) There exists a constant N ≥ 0 such that for all a, a′ ∈ V

|r(a, b)− r(a′, b)| ≤ d(a, a′) + N.

(iii) There exists a constant M ≥ 1 such that for all a, b, b′ ∈ V

|r(a, b)− r(a, b′)| ≤ M d(b, b′).

(iv) There exist constants C > 0, ω ∈ (0, 1) such that for all a, a′, b, b′ ∈ V
if d(a, a′) ≤ 1 and d(b, b′) ≤ 1 then

|r(a, b)− r(a, b′)− r(a′, b) + r(a′, b′)| ≤ Cωd(a,b).

This theorem is a combination of proposition 5.2, lemma 5.5, propo-
sition 5.8, and proposition 5.10. The hardest of these is proposition 5.10
whose proof takes up all of section 5.2. From r we can define a func-
tion d̂ : V × V → [0, ∞) which is a metric on V. This is done in section 5.3.

Before we can use this to define a metric on the flow space though we
need to extend d̂ to all of X. An attempt at an extension was given by
Mineyev in [Min05] and this extension was later used by Bartels-Lück-
Reich in [BLR08a], but this extension is not a metric so in section 6.1 we
give a framework for extending a metric from the vertex set of a simpli-
cial complex to the whole simplicial complex. In particular this fixes the
problem in [Min05] which carried over to [BLR08a].

Then in section 6.2 we show what happens in our case when we use d̂
as an input for this framework to get a metric d̃ on X. The main results
about this metric d̃ are proposition 6.12 and theorem 6.13, which tell us the
following two facts about the double difference

⟨a, a′ ≀ b, b′⟩ := d̃(a, b)− d̃(a, b′)− d̃(a′, b) + d̃(a′, b′)

with respect to d̃;

Theorem. There are constants C > 0, ω ∈ (0, 1) such that for all a, a′, b, b′ ∈ V
if d(a, a′) ≤ 1 and d(b, b′) ≤ 1 then

⟨a, a′ ≀ b, b′⟩
 ≤ 1

2
Cωd(a,b).

Moreover, the double difference extends continuously to X × X × X × X.

Using this extension we can construct a metric on the flow space in
terms of d̃, which is done in section 6.3.
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2 Prerequisites

We begin the thesis with some definitions and facts that are (mostly) not
new but it will be helpful to have these results stated somewhere and so we
do that here.

However, section 2.6 may not be a new idea but I have not seen the
argument written up in such generality elsewhere.

2.1 Graphs

First of all we recall some definitions and fix some notation related to
graphs.

Definition 2.1. A graph Γ is a set V = V(Γ) of vertices together with a
set E = E(Γ) of edges and two maps ϕ± : E → V such that ϕ±(e) are
the end-points of the edge e. Two vertices are adjacent if there is an edge
between them, an edge is incident to a vertex if the vertex is one of the end-
points of the edge, and two edges are coincident if they share an end-point.

If v is a vertex of a graph Γ then define the graph Γ − v to have vertex
set V(Γ− v) := V(Γ)\{v} and whose edge set consists of all edges of Γ that
do not have v as an end-point.

A path between two vertices u, v in a graph Γ is a sequence e1, . . . , ek of
edges such that for every

• u is an end-point of e1,

• v is an end-point of e2,

• for all i = 1, . . . , k − 1 the edges ei and ei+1 are coincident.
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A path that starts and ends at the same vertex is called a loop, and a loop
that does not hit any vertex more than once is called a circuit (sometimes
such a loop is also called a cycle).

A graph is connected if for any pair of vertices u, v there is a path from u
to v. A connected graph Γ is 2-vertex-connected if for every vertex v ∈ V(Γ)
the graph Γ − v is connected.

We will always assume that a graph is connected.
The length of a path is the number of edges in the path. Then we can

define the distance dΓ(u, v) between two vertices u, v of Γ to be the length of
the shortest path between u and v. This gives every edge length 1, and the
metric dΓ on V can naturally be extended to a path metric on all of Γ. We
call dΓ the word metric on Γ, where the terminology comes from geometric
group theory and the concept of Cayley graphs (see definition 2.2).

A geodesic in Γ is a map α : [t0, t1] → Γ with t0, t1 ∈ [0, ∞) such that for
all t, t′ ∈ [t0, t1]

dΓ


α(t), α(t′)


=
t − t′

 .

If α is a geodesic in Γ and x0 = α(s0), x1 = α(s1) are points on the image of α
with s0 ≤ s1 then let α[x0,x1] denote the part of the geodesic α between x0

and x1, i.e. α[x0,x1] ≡ α|[s0,s1].
For x, x′ ∈ Γ we will use [x, x′] to denote a geodesic that starts at x and

ends at x′. For any pair x, x′ ∈ V of vertices in Γ let Geod[x, x′] be the set
of geodesics in Γ from x to x′, let V[x, x′] be the set of all vertices of Γ that
lie on some geodesic from Geod[x, x′], and for k ∈ N let V[x, x′; k] be the
vertices from V[x, x′] whose distance from x is k.

Similarly, for any pair x, x′ ∈ V of vertices, let E[x, x′] be the set of all
edges of Γ that form part of some geodesic from Geod[x, x′], and for k ∈ N

let E[x, x′; k] be the edges from E[x, x′] whose distance from x is k.

We are interested in groups, in particular we want to consider a group
as a metric space. We do this via Cayley graphs.

Definition 2.2. Let G be a group and let S ⊆ G\{e} be a generating set
of G. The Cayley graph of G with respect to S is the graph Cay(G; S) whose
vertex set is G and for every s ∈ S and every g ∈ G we add an edge from g
to gs.

Remark 2.3. I have defined a Cayley graph such that the Cayley graph
of Z/2Z is a circle; two vertices with a pair of edges between them.

Any graph has a canonical metric as in definition 2.1, and so we get
a metric on a Cayley graph of a group. By restricting this metric to the
vertex set we get a metric on the group itself, which we call the word metric
on G with respect to S and denote by dS since it depends on the choice of
generating set.
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If we use a different generating set then we get a different graph (and
thus a different metric on G), but there is some notion of equivalence be-
tween the two graphs.

Definition 2.4. Let X, Y be metric spaces. Suppose A ≥ 1 and B ≥ 0
are fixed constants. A (not necessarily continuous) map f : X → Y is an
(A, B)-quasi-isometric embedding if for all x1, x2 ∈ X,

1

A
dX(x1, x2)− B ≤ dY ( f (x1), f (x2)) ≤ A dX(x1, x2) + B.

A (not necessarily continuous) map f : X → Y is quasi-dense if there exists
a constant C ≥ 0 such that Y is contained in the C-neighbourhood of the
image of f , i.e. for any y ∈ Y there is some x ∈ X with dY (y, f (x)) ≤ C.
A (not necessarily continuous) map f is an (A, B)-quasi-isometry if it is a
quasi-dense (A, B)-quasi-isometric-embedding.

The particular constants A, B are not always important and so are of-
ten omitted from the notation; a map f is a quasi-isometry if there are con-
stants A ≥ 1 and B ≥ 0 such that f is an (A, B)-quasi-isometry.

Two metric spaces X, Y are quasi-isometric if there exists a quasi-isometry
between them.

Remark 2.5. The property of being quasi-isometric is an equivalence rela-
tion on the class of metric spaces. In particular, the composition of two
quasi-isometries is a quasi-isometry and if there exists a quasi-isometry
X → Y then there exists a quasi-isometry Y → X.

Proposition 2.6. Let G be a finitely generated group. For any finite generating
set S the inclusion (G, dS) ↩→ Cay(G; S) is a quasi-isometry.

Moreover, for any two finite generating sets S1, S2, the graphs Cay(G; S1)
and Cay(G; S2) are quasi-isometric.

Proof. The canonical inclusion G ↩→ Cay(G, S) is an isometric embedding
and is also 1

2 -dense, hence it is a quasi-isometry.
Given two finite generating sets S1, S2 of G we can write all the elements

of S2 as words over S1, and vice versa. With this we can write a word in
the generators from S1 as a word in the generators from S2, and so we can
compare dS1

with dS2
. See [BH99, Example I.8.17(3)] for full details.

In particular, the metric spaces (G, dS1
) and (G, dS2

) are quasi-isometric.
Therefore we will often think of G as a metric space without explicitly stat-
ing which generating set is used.

For our purposes we will not always want to work with a Cayley graph
associated to a group, instead we will want to use a graph on which the
group acts with certain properties. A group acts freely, isometrically, and
cocompactly on its Cayley graph, but we consider a slightly weaker type of
group action.
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Recall that a group action G y X is free if the stabiliser of every point
is trivial, is proper if for every compact subset K ⊆ X the number of ele-
ments g ∈ G such that g · K ∩ K ̸= ∅ is finite, and is cocompact if there is a
compact subset K ⊂ X such that G · K = X. A metric space is a length space
if the distance between any two points is equal to the infimum of lengths
of paths between them.

Lemma 2.7 (Švarc-Milnor Lemma). If a group G acts properly, isometrically,
and cocompactly on a length space X then G is finitely generated and quasi-
isometric to X.

Proof. See [BH99, Proposition I.8.19].

2.2 Hyperbolicity

The concept of Gromov hyperbolicity has been quite extensively stud-
ied, and there exist a few books on the topic, see [GdLH90] for example.
Hence here we only give a brief overview of facts we will need, omitting
many details and proofs.

Definition 2.8. Let (X, d) be a geodesic metric space, i.e. for any pair of
points there is a geodesic between them. Define the Gromov product of three
points x, x′, y ∈ X to be

(x|x′)y =
1

2


d(x, y) + d(x′, y)− d(x, x′)


.

If ∆ is a geodesic triangle in X with corners x, y, z then we can find a point ιz

on [x, y] such that d(x, ιz) = (y|z)x and d(ιz, y) = (x|z)y. Similarly we can
define a point ιx on [y, z] and a point ιy on [x, z].

Given δ ≥ 0, a geodesic triangle ∆ = ∆(x, y, z) is δ-thin if whenever y′

is a point on [x, y] and z′ is a point on [x, z] such that

d(x, y′) = d(x, z′) ≤ (y|z)x

then d(y′, z′) ≤ δ.

x

y

z
ιy

ιz

ιx

z′

y′

≤ δ
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A geodesic metric space X is δ-hyperbolic if every geodesic triangle is
δ-thin, and a geodesic metric space is called Gromov hyperbolic if it is δ-hy-
perbolic for some δ ≥ 0.

Note that if a metric space is δ-hyperbolic then it is also δ′-hyperbolic
for all δ′ ≥ δ, so we may always assume δ ≥ 1.

For alternative definitions see [BH99, Proposition III.H.1.17].
In the degenerate case that y = z we have (y|y)x = d(x, y), which im-

mediately gives the following lemma.

Lemma 2.9. Suppose X is a δ-hyperbolic space. Fix x, y ∈ X. For all k ≤ d(x, y)
and all z, z′ ∈ V[x, y; k] we have d(z, z′) ≤ δ.

One useful alternative formulation of Gromov hyperbolicity is given by
the next proposition.

Proposition 2.10. A geodesic metric space X is Gromov hyperbolic if and only if
there exists some δ ≥ 0 such that for any four points x, y, z, w ∈ X,

(x|z)w ≥ min {(x|y)w, (y|z)w} − δ. (2.1)

Proof. See [BH99, Proposition III.H.1.22].

Since we defined the Gromov product in terms of distances, we do not
need X to be a geodesic space in order to make sense of the Gromov prod-
uct (x|z)w and so we can use inequality (2.1) to define Gromov hyperbolic-
ity for non-geodesic metric spaces.

Definition 2.11. An arbitrary metric space X is Gromov hyperbolic if there
exists some δ ≥ 0 such that inequality (2.1) holds for all x, y, z, w ∈ X.

Remark 2.12. The condition that equation (2.1) holds for all x, y, z, w ∈ X is
equivalent to the condition that

d(x, y) + d(z, w) ≤ max{d(x, z) + d(y, w), d(x, w) + d(y, z)}+ 2δ

holds for all x, y, z, w ∈ X.

We are interested in groups as metric spaces (via Cayley graphs as in
definition 2.2). We want to say that a group is hyperbolic if its Cayley
graph is Gromov hyperbolic, but the Cayley graph of a group is only de-
fined up-to quasi-isometry, so we need that the property of being Gromov
hyperbolic is preserved under quasi-isometries.

Proposition 2.13. Let X, Y be geodesic metric spaces. Suppose X and Y are
quasi-isometric. If X is δ-hyperbolic then there exists some δ′ ≥ 0 such that Y
is δ′-hyperbolic.

Proof. See [BH99, Theorem III.H.1.9].
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Proposition 2.13 needs the metric spaces to be geodesic metric spaces,
so we cannot apply this to the inclusion (G, dS) ↩→ Cay(G; S). However,
every graph with its canonical metric is a geodesic metric space, which
leads to the following corollary of proposition 2.13.

Corollary 2.14. Let G be a finitely generated group. Suppose S1, S2 ⊆ G\{e}
are two finite generating sets of G. The graph Cay(G; S1) is Gromov hyperbolic if
and only if the graph Cay(G; S2) is Gromov hyperbolic.

Thus the following definition makes sense.

Definition 2.15. A finitely generated Group G is hyperbolic if for one (and
hence for all) finite generating sets S ⊆ G\{e} the Cayley graph Cay(G; S)
is Gromov hyperbolic.

Remark 2.16. We could use definition 2.11 to define Gromov hyperbolicity
for a group G with generating set S, but then we would have to worry
about whether or not this depended on the choice of generating set.

We can formulate hyperbolicity for a group in terms of actions of the
group on Gromov hyperbolic metric spaces, using the Švarc-Milnor lemma
(lemma 2.7).

Proposition 2.17. A finitely generated group G is hyperbolic if and only if there
exists a Gromov hyperbolic graph on which G acts properly, isometrically, and
cocompactly.

Proof. If a group is hyperbolic then its Cayley graph (with respect to any
finite generating set) is Gromov hyperbolic, and G acts on it properly, iso-
metrically, and cocompactly.

Conversely, if there exists such a graph Γ then by the Švarc-Milnor
lemma (lemma 2.7) the group G is quasi-isometric to Γ. Hence Γ is quasi-
isometric to the Cayley graph of G (with respect to some finite generating
set) by proposition 2.6. Then proposition 2.13 tells us that the Cayley graph
of G is Gromov hyperbolic.

It is this formulation of a hyperbolic group that we will generalise to
define a relatively hyperbolic group in section 2.4.

2.3 Fine graphs

Although proposition 2.17 only requires the graph to be Gromov hy-
perbolic, it follows from the existence of a proper, cocompact group action
(by isometries) that the graph is locally finite.
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Being locally finite is too strong of a condition for our purposes. We
need to use a weaker notion for defining a relatively hyperbolic group.

Definition 2.18. A graph Γ is fine if for all n ∈ N and all edges e ∈ E there
are only finitely many circuits containing e and whose length is ≤ n.

A graph Γ is uniformly fine if for all n ∈ N there is a constant K ∈ N

such that for any edge e ∈ E there are at most K circuits containing e and
whose length is ≤ n.

A locally finite graph is automatically fine, but a fine graph is not nec-
essarily locally finite, as in the example below.

Construct a graph by starting with two vertices u, v and then for every
positive integer n ∈ N>0 add a path of length n from u to v.

u

v

· · ·

This graph is not locally finite, but it is fine.

I have given the definition of a fine graph that I have seen used the most
often. However the definition of a fine graph in [MY06] is a uniformly fine
graph in our terminology. When this difference is important in the state-
ment or proof of something then it will be made clear what changes have
to be made. The difference will not pose a problem for our main results
since we will only consider fine graphs with a group acting cocompactly
on them, and such graphs are automatically uniformly fine, due to the fol-
lowing lemma.

Lemma 2.19. Let G be a group that acts on a graph Γ such that there are only
finitely many orbits of edges. If Γ is fine then Γ is uniformly fine.

Proof. Fix n ∈ N. We need to bound the number of circuits of length ≤ n
through an arbitrary edge e of Γ.

Pick a representative ei of every G-orbit of edges of Γ. Let ki be the
number of circuits through ei of length ≤ n, which is finite since the graph
is fine. Now set K = maxi ki, which is finite since there are only finitely
many G-orbits of edges.

Given an arbitrary edge e there is an ei and g ∈ G such that ge = ei.
Then for every circuit c of length ≤ n containing e, the loop gc is a circuit
of length ≤ n containing ei. Thus the number of circuits of length ≤ n
containing e is ≤ ki ≤ K. Therefore the graph is uniformly fine.
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There are alternative formulations of the fineness condition, which give
alternative ways to think of a fine graph and these will be useful for later
proofs.

To state these alternative formulations we need some more terminology.
An arc in a graph is a path that hits every vertex at most once, i.e. a path
that never returns to a vertex that it has already visited. An inner vertex of
an arc is a vertex hit by the arc but is not an end-point of the arc. Two arcs
are independent if the they do not have any inner vertices in common. (So
we allow independent arcs to share end-points.)

Lemma 2.20 ([Bow97, Proposition 2.1]). Let Γ be a graph. The following are
equivalent;

(i) Γ is fine.

(ii) For all x, x′ ∈ V and n ∈ N the set of arcs of length n connecting x to x′ is
finite.

(iii) For all x, x′ ∈ V and n ∈ N there does not exist an infinite collection of
pairwise independent arcs of length n connecting x to x′.

In particular, from lemma 2.20(ii) by setting n = d(x, x′) we immedi-
ately obtain the following corollary;

Corollary 2.21. If Γ is a fine graph then for any pair x, x′ of vertices of Γ there are
only finitely many geodesics from x to x′.

2.4 Relatively hyperbolic groups

As with hyperbolic groups, there are many different definitions of a
relatively hyperbolic group. Each definition has its own advantages and
disadvantages. The first definition we give comes from [Bow97] (cf. propo-
sition 2.17).

Definition 2.22. A finitely generated group G is hyperbolic relative to a set P
of infinite subgroups of G if there exists a graph Γ with a G-action such that

• the graph Γ is connected, Gromov-hyperbolic, and fine,

• there are only finitely many G-orbits of edges of Γ,

• the stabiliser of any edge is finite,
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• the stabiliser of any vertex is finite or a conjugate of an element of P ,

• for all P ∈ P and g ∈ G there is precisely one vertex whose stabiliser
is gPg−1,

• the set P is finite,

• every element of P is finitely generated.

We call the elements of P (and their conjugates) the peripheral subgroups.

This definition is combinatoric and neatly states all the properties re-
quired of the graph Γ. However, it doesn’t give any clue as to how to find
such a graph, nor is it easy to show that a group is not relatively hyperbolic
to a set of subgroups. There is an alternative definition that is more explicit,
which comes from [GM08].

Definition 2.23. Let G be a finitely generated group and let P be a finite
set of finitely generated subgroups of G. Let S be a finite generating set
of G that is compatible with P , i.e. for all P ∈ P the set S ∩ P generates P.
Let Cay(G, S) be the Cayley graph of G with respect to S. For every coset gP
of every peripheral subgroup P ∈ P add a new vertex vgP to Cay(G; S) and
join every element of gP to this new vertex with an edge. Call the resulting
graph the coned-off Cayley graph of G with respect to S and P . Denote this

graph by Cay(G, S;P).
Then we say that G is hyperbolic relative to P if the coned-off Cayley

graph Cay(G, S;P) is Gromov hyperbolic and fine.

Remark 2.24. Farb introduced the coned-off Cayley graph in [Far98], in
which a group G was defined to be hyperbolic relative to a finite set P of
subgroups if and only if the coned-off Cayley graph is Gromov hyperbolic.
This is a strictly weaker condition.

For example consider the group Z2 = ⟨a, b | [a, b] ⟩ relative to the sub-
group ⟨a⟩. The coned-off Cayley graph is Gromov hyperbolic but is not
fine.

However, Farb often uses a property he calls bounded coset penetration,
and the coned-off Cayley graph is Gromov hyperbolic and fine if and only
if it is Gromov hyperbolic and satisfies the bounded coset penetration prop-
erty (see proposition 1 and lemma 5 in the appendix of [Dah03b]).

The action of the group G on the Cayley graph Cay(G, S) extends to

an action of G on the coned-off Cayley graph Cay(G, S;P), specifically G
acts by left multiplication on non-cone vertices and h· vgP := vhgP. Then
the action of G on the coned-off Cayley graph satisfies all the conditions
from definition 2.22. Thus if G is hyperbolic relative to P in the sense of
definition 2.23 then G is also hyperbolic relative to P in the sense of defini-
tion 2.22.
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The converse is not so easy to show. In [Bow97] Bowditch proved that
definition 2.22 is equivalent to the original definition given by Gromov
in [Gro87]. Szczepański showed in [Szc98] that the Gromov definition im-
plies the coned-off Cayley graph is Gromov hyperbolic, and then Dahmani
in the appendix of his thesis ([Dah03b]) proved that the coned-off Cayley
graph is also fine.

2.5 The boundary of a fine, Gromov hyperbolic graph

The ultimate aim of this thesis is to define a flow space, and this will be
done using geodesics. We will often refer to the end-points of a geodesic
but we want to allow geodesics of infinite length, so we need some concept
of a boundary.

Definition 2.25. Let Γ be a fine, δ-hyperbolic graph. A geodesic ray is a
geodesic α : [0, ∞) → Γ. Two geodesic rays α, α′ : [0, ∞) → Γ are asymptotic
if there is a constant C ≥ 0 such that d (α(t), α′(t)) ≤ C for all t ∈ [0, ∞).

Given a fixed base-point x0 ∈ Γ, we can define the (visual) boundary of Γ

to be the set of geodesic rays starting at x0 modulo the equivalence relation
of being asymptotic, i.e.

∂Γ := {α : [0, ∞) → Γ | α is a geodesic ray with α(0) = x0}/ ∼

where α ∼ α′ if and only if they are asymptotic. We write α(∞) for the point
of ∂Γ represented by the geodesic ray α.

Set Γ = Γ ∪ ∂Γ. We want a topology on Γ, but it should not change
the topology on Γ, i.e. we want the inclusion Γ ↩→ Γ to be an embedding.
Moreover, if we insist that Γ ⊆ Γ is an open subset then to define a topology
on Γ we only need to define neighbourhoods of points on the boundary.
For this, note that every point of Γ can be represented by a geodesic (of
finite length) starting at x0. Thus we define a generalised geodesic ray to be a
map α : [0, ∞) → Γ that is either a geodesic ray or there exists some l ≥ 0
such that α|[0,l] is a geodesic and α|[l,∞) is constant. Denote by α(∞) the

end-point in Γ of α.
Then given a fixed constant r > δ and a point ξ ∈ ∂Γ represented by a

geodesic ray α0 with α0(0) = x0, we can define a base of neighbourhoods
of ξ to be sets of the form

Ux0(α0, n, r) :=


α(∞)


α is a generalised geodesic with α(0) = x0

and d(α0(n), α(n)) ≤ r


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for n ∈ N. We need r > δ so that we can always find a neighbourhood in
the intersection of two such sets. It doesn’t matter if r > δ is fixed or not,
since for any n, r, r′ hyperbolicity gives

Ux0(α0, n + r′, r′) ⊆ Ux0(α0, n, δ) ⊆ Ux0(α0, n, r).

The boundary of a δ-hyperbolic geodesic metric space X has been oft
studied, but many facts about the boundary use the assumption that X is a
proper metric space, see for example [BH99, Section III.H.3]. A fine graph
is not necessarily a proper metric space. However, properness is only used
to construct the limit of a sequence of geodesic rays, by invoking Arzelà-
Ascoli. So if we have an appropriate method for constructing geodesic rays
then facts about proper Gromov hyperbolic spaces will also hold for fine
graphs.

The corollary of Arzelà-Ascoli we need is the following.

Lemma 2.26. Let Γ be a fine, δ-hyperbolic graph. Given any point x1 ∈ Γ

and any sequence (yn)n∈N of points in Γ, let βn be a geodesic from x1 to yn.
If (yn|ym)x1

→ ∞ as n, m → ∞ then there is a subsequence of (βn)n∈N that
converges to a geodesic ray α1.

Proof. We construct the geodesic ray α1 one edge at a time, showing that at
every step there will be a next edge that is contained in infinitely many of
the βn. Formally we use a kind of inductive proof by contradiction.

Suppose (βnk
)k∈N is a subsequence of (βn)n∈N such that the first l edges

of all the βnk
coincide but that the (l + 1)-th edges are distinct, i.e. for

all k ̸= k′ the (l + 1)-th edge of βnk
is not the same as the (l + 1)-th edge

of βnk′
. Let x2 be the vertex where all the βnk

split.

x1
x2

βn1

βn2

βn3

βn4

We may assume that all the geodesics βnk
start at x2.

Since (yn|ym)x2 ≥ (yn|ym)x1
− d(x1, x2) → ∞ we can pick N ∈ N large

enough such that for all k, l ≥ N we have (ynk
|ynl

)x2 ≥ [δ + 1] =: d,
where [δ + 1] denotes the integer part of δ + 1. For k ≥ N set zk = βnk

(d).
Then d(zN , zk) ≤ δ by hyperbolicity and the choice of N. Let γk be a
geodesic from zk to zN . The concatenation of γk with βnk

|[0,d] is a path
from x2 to zN whose length is ≤ d + δ, from which we get an arc ak from x2

to zN whose length is ≤ d + δ.
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Since d > δ we know that each geodesic γk cannot pass through x2.
Therefore the first edge of ak is the same as the first edge of βnk

. Hence
we have a sequence (ak)k∈N of distinct arcs from x2 to zN , all of which
have length ≤ d + δ. This contradicts the fineness of the graph, using
lemma 2.20.

This means there cannot exist such a subsequence (βnk
)k∈N

that coin-
cide on the first l edges but all take a different (l + 1)-th edge.

So we can pass to a subsequence of (βn)n∈N consisting of geodesics that
all agree on the first edge. Then we can pass to a further subsequence of
geodesics that agree on the first two edges. Iterating this gives a sequence
of subsequences ((βk,n)n∈N)k∈N

such that the geodesics {βk,n | n ∈ N} co-
incide on the first k edges. Then the diagonal sequence (βn,n)n∈N converges
to a geodesic ray α1.

Now that we have this lemma, we can use arguments as in the proper
case to deduce facts about the boundary of a fine graph. In particular, the
boundary ∂Γ and the topology on Γ are independent of the choice of base-
point. (See [BH99, Proposition III.H 3.7(1) on page 429].) Note however,
that the space Γ need not be compact, unlike for a proper Gromov hyper-
bolic metric space.

The Cayley graph of a group is only defined up to quasi-isometry; us-
ing different generating sets of the group yields quasi-isometric graphs.
Hence it is important to look at what a quasi-isometry does to the bound-
ary. For this, it is helpful to give an alternative definition of the boundary
in terms of quasi-geodesic rays. But first we recall the definition of the
Hausdorff distance; Let X be a metric space. The Hausdorff distance of two
subsets A, B ⊆ X is given by

dH(A, B) = max


sup
a∈A

inf
b∈B

dX(a, b) , sup
b∈B

inf
a∈A

dX(a, b)


.

Definition 2.27. Let Γ be a δ-hyperbolic graph. A quasi-geodesic in Γ is a
quasi-isometric embedding of the form α : [0, l] → Γ. A quasi-geodesic ray
in Γ is a quasi-isometric embedding of the form α : [0, ∞) → Γ.

Two quasi-geodesic rays α, α′ : [0, ∞) → Γ are asymptotic if the Haus-
dorff distance between their images is finite.

Then given any choice of base-point x0 ∈ Γ we can define the bound-
ary ∂qΓ of Γ to be the set of quasi-geodesic rays starting at x0 up to asymp-
toty.

Proposition 2.28. If Γ is a fine δ-hyperbolic graph with base-point x0, then there
is a natural bijection ∂Γ → ∂qΓ.
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Proof. Any geodesic ray is a quasi-geodesic ray. Two geodesic rays are
asymptotic as geodesic rays if and only if they are asymptotic as quasi-
geodesic rays, so there is a natural map ∂Γ → ∂qΓ, which is injective.

For surjectivity; Given a quasi-geodesic ray α we can use lemma 2.26 to
construct a geodesic ray β that is asymptotic to α.

Using quasi-geodesic rays we can show that a quasi-isometry f : Γ → Γ′

induces a homeomorphism f∂ : ∂Γ → ∂Γ. (See [BH99, Theorem III.H 3.9].)
The definition of the boundary in terms of geodesic rays may be intu-

itive but it is not always the most convenient to work with. There is an
alternative formulation in terms of sequences of points and the Gromov
product.

Definition 2.29. Let Γ be a fine, δ-hyperbolic graph and let x0 be a fixed
base-point. Define the boundary of Γ to be

∂sΓ := {(xn)n∈N | (xn|xm)x0 → ∞ as n, m → ∞}/ ∼

where (xn)n∈N ∼ (yn)n∈N if and only if (xn|yn)x0 → ∞ as n → ∞. To
see that ∼ is indeed an equivalence relation on the set of such sequences
we need to use proposition 2.10. If a sequence (xn)n∈N in Γ represents a
point ξ ∈ ∂sΓ then we write ξ = lim xn and xn → ξ.

This does not depend on the choice of base-point x0 since for any other
choice y0

(xn|xm)x0 =
1

2


d(xn, x0) + d(xm, x0)− d(xn, xm)



≤
1

2


d(xn, y0) + d(y0, x0) + d(xm, y0) + d(y0, x0)− d(xm, xn)



= (xn|xm)y0 + d(x0, y0)

and similarly (xn|xm)y0 ≤ (xn|xm)x0 + d(x0, y0).

Remark 2.30. Given any geodesic ray α : [0, ∞) → Γ with α(0) = x0 we can
set xn = α(n) to get a point in ∂sΓ. Asymptotic rays yield the same point
in ∂sΓ so we have a map ∂Γ → ∂sΓ.

Conversely, given any sequence of points (xn)n∈N representing a point
in ∂sΓ we can use lemma 2.26 to construct a geodesic ray α such that

lim xn = lim α(n) ∈ ∂sΓ

and so we have an inverse ∂sΓ → ∂Γ.

Therefore we may choose to represent a point in the boundary by a
geodesic ray or a sequence of points whose Gromov product tends to infin-
ity.

The concept of a Gromov product can be extended to the boundary us-
ing the ∂sΓ definition.
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Definition 2.31. Let Γ be a fine, Gromov hyperbolic graph. For any two
points x, y ∈ Γ ∪ ∂sΓ and any point z ∈ Γ define the Gromov product of x, y
at z to be

(x|y)z := sup lim inf
n→∞

(xn|yn)z

where the supremum is taken over all sequences (xn)n∈N and (yn)n∈N in Γ

such that xn → x and yn → y.

Remark 2.32. Since the Gromov product is continuous on Γ, if x lies in Γ

then we may take the sequence (xn)n∈N to be constantly x, i.e.

(x|y)z = sup lim inf
n→∞

(x|yn)z

where the supremum is taken over all sequences (yn)n∈N such that yn → y
as n → ∞. In particular, if x and y both lie in Γ then this supremum just
gives back the original Gromov product.

Furthermore, for arbitrary x, y ∈ Γ and z ∈ Γ we can use a diagonal ar-
gument to find two sequences (xn)n∈N and (yn)n∈N converging to x and y
respectively such that

(x|y)z = lim
n→∞

(xn|yn)z.

Proposition 2.33. Let Γ is a fine, δ-hyperbolic graph. For any x, y, z ∈ Γ ∪ ∂sΓ

and w ∈ Γ the Gromov product (x|y)w has the following properties.

(i) (x|y)w = ∞ if and only if x = y ∈ ∂sΓ;

(ii) (x|z)w ≥ min{(x|y)w, (y|z)w} − 2δ;

(iii) Suppose x, y ∈ ∂sΓ. If (xn)n∈N and (yn)n∈N are sequences in Γ that tend
to x and y respectively then

(x|y)w − 2δ ≤ lim inf
n→∞

(xn|yn)w ≤ (x|y)w.

Proof. Let (xn)n∈N, (x′n)n∈N, (yn)n∈N, (y′n)n∈N, (zn)n∈N be sequences in Γ

that converge to x, x, y, y and z respectively.
(i) If x ∈ ∂sΓ then (xn|x′n)w → ∞ by definition, and so (x|x)w = ∞. So

we just need to show the converse.
If x or y are in Γ then the Gromov product is finite, since it is bounded

by the distance to w. So assume x, y ∈ ∂sΓ. If x ̸= y then by definition of
the equivalence relation there is some constant K such that (xn|yn)w ≤ K
for infinitely many n. Hence lim infn→∞(xn|yn)w ≤ K. Then by proposi-
tion 2.10

lim inf
n→∞

(xn|yn)w ≥ lim inf
n→∞


min{(xn|x

′
n)w, (x′n|y

′
n)w, (y′n|yn)w} − 2δ



= lim inf
n→∞

(x′n|y
′
n)w − 2δ (2.2)
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since (xn|x′n)w and (yn|y′n)w both tend to ∞. Therefore (x|y)w ≤ K + 2δ
which is finite.

(ii) The argument again uses proposition 2.10. If y ∈ Γ then we may
assume yn = y = y′n and use inequality (2.1) for xn, y, zn. If y ∈ ∂sΓ

then (yn|y′n)w → ∞ and

lim inf
n→∞

(xn|zn)w ≥ lim inf
n→∞


min{(xn|yn)w, (yn|y

′
n)w, (y′n|zn)w} − 2δ



= min


lim inf
n→∞

(xn|yn)w, lim inf
n→∞

(y′n|zn)w


− 2δ.

This holds for arbitrary such sequences so it must also hold when taking
the supremum.

(iii) The upper bound is immediate since (x|y)w is defined to be the
supremum over all such values. The lower bound follows from inequal-
ity (2.2).

Remark 2.34. We can use the (extended) Gromov product to define a topol-
ogy on Γ ∪ ∂sΓ, by saying a base for the neighbourhoods of a point x ∈ Γ

is given by metric balls Br(x), and a base for the neighbourhoods of a
point ξ ∈ ∂sΓ is given by the sets

WR(ξ) := {x ∈ Γ ∪ ∂sΓ | (x|ξ)x0 ≥ R}. (2.3)

with R ≥ 0.
The advantage of this method is that it allows us to define the bound-

ary ∂sX of an arbitrary Gromov hyperbolic metric space X, where we use
definition 2.11 to define hyperbolicity for a metric space when it is not a
geodesic metric space. We can still extend the Gromov product as in defi-
nition 2.31, and the statements in proposition 2.33 still hold. Hence we can
define a topology on X := X ∪ ∂sX.

Proposition 2.35. Let Γ be a fine, Gromov hyperbolic graph. The natural map
Γ ∪ ∂Γ → Γ ∪ ∂sΓ, using the identity on Γ and the natural bijection ∂Γ → ∂sΓ

from remark 2.30, is a homeomorphism.

Proof. It is automatically a bijection, so we only need to show it is continu-
ous and its inverse is continuous. The topology on Γ is unchanged, and it
is an open subset, hence we only need to look at neighbourhoods of points
at infinity.

Fix a base-point x0 ∈ Γ and a point ξ ∈ ∂Γ. By definition there exists a
geodesic ray α0 : [0, ∞) → Γ with α0(0) = x0 and α0(∞) = ξ. Then a base
of neighbourhoods for ξ in Γ ∪ ∂Γ is comprised of sets of the form

Ux0(α0, n, r) :=


α(∞)


α is a generalised geodesic with α(0) = x0

and d(α0(n), α(n)) ≤ r



for n ∈ N, where r > δ is some fixed constant.
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Furthermore, a base of neighbourhoods for ξ in Γ ∪ ∂sΓ is comprised of
sets of the form

WR(ξ) := {x ∈ Γ ∪ ∂sΓ | (x|ξ)x0 ≥ R}

for R > 0. We need to show that for every n ∈ N we can find some R′
> 0

such that WR′(ξ) ⊆ Ux0(α0, n, r), and conversely for every R > 0 there is
some n′ ∈ N such that Ux0(α0, n′, r) ⊆ WR(ξ).

Given n ∈ N take R′
> n + 2δ. For any x ∈ WR′(ξ) we can find a

generalised geodesic ray α from x0 to x. Proposition 2.33(iii) tells us that

n < (x|ξ)x0 − 2δ ≤ lim inf
m→∞

(α(m)|α0(m))x0 ≤ (x|ξ)x0

and in particular, for some large m ∈ N we have n ≤ (α(m)|α0(m))x0 .
Then hyperbolicity gives d(α(n), α0(n)) ≤ δ, and therefore x ∈ Ux0(α0, n, r).
Since x was arbitrary, we conclude WR′(ξ) ⊆ Ux0(α0, n, r).

Conversely, suppose we are given R > 0, so that we need to find n′ ∈ N

such that Ux0(α0, n′, r) ⊆ WR(ξ). If x ∈ Ux0(α0, n′, r) then there is a gener-
alised geodesic ray α from x0 to x such that d(α(n′), α0(n′)) ≤ r. Hence

(α(n′)|α0(n
′))x0 =

1

2


d(α(n′), x0) + d(α0(n

′), x0)− d(α(n′), α0(n
′))


≥ n′ −
1

2
r. (2.4)

Now we aim to show that (x|ξ)x0 ≥ (α(n′)|α0(n′))x0 . To see this, note
that the Gromov product doesn’t decrease as we travel along the geodesic
rays α, α0, i.e. for all m ≥ n′;

(α(m)|α0(m))x0 =
1

2
(d(α(m), x0) + d(α0(m), x0)− d(α(m), α0(m)))

≥ m −
1

2


d(α(m), α(n′)) + d(α(n′), α0(n

′)) + d(α0(n
′), α0(m))



= n′ −
1

2
d(α(n′), α0(n

′))

= (α(n′)|α0(n
′))x0 .

So we can use proposition 2.33(iii) to get

(α(n′)|α0(n
′))x0 ≤ lim inf

m→∞
(α(m)|α0(m))x0 ≤ (x|ξ)x0 .

Combining this with inequality (2.4) gives (x|ξ)x0 ≥ n′ − 1
2 r. Therefore, if

we take n′ ≥ R + 1
2 r then Ux0(α0, n′, r) ⊆ WR(ξ).

This proves that we get the same topology around ξ regardless of which
base we use, and so the map Γ ∪ ∂Γ → Γ ∪ ∂sΓ is a homeomorphism.



2. Prerequisites 25

This allows us to talk about the space Γ without needing to specify if
we are using ∂Γ or ∂sΓ to define the boundary and the topology.

Remark 2.36. If X is a proper geodesic Gromov hyperbolic metric space
then the space X is compact. However, it is not necessarily true that Γ

is compact for an arbitrary fine, δ-hyperbolic graph Γ. There is a way to
define Γ to make it compact (see [Bow97, Proposition 8.6], where as sets
his ∆(K) is equivalent to our Γ) but this changes the topology on Γ, which
we want to avoid doing here.

2.6 Metrising X

In section 2.5 we defined a boundary of a fine, Gromov hyperbolic
graph Γ, and used this to define a space Γ. It is known that if Γ is a lo-
cally finite, Gromov hyperbolic graph then the space Γ is metrisable. (See
for example, [BH99, Exercise 3.18(4)].)

We want to use a similar argument to show that the space Γ is still
metrisable, even under the weaker assumptions that the graph Γ is fine and
Gromov hyperbolic. We can actually do this more generally for any Gro-
mov hyperbolic metric space X, where we use definition 2.11 to define hy-
perbolicity when the space is not a geodesic metric space, and remark 2.34
to define the topological space X.

To show X is metrisable we use uniform structures;

Definition 2.37. Let S be a set. A family B of subsets of S × S is a base of a
uniform structure on S if

(i) Every B ∈ B is symmetric;

(ii) The diagonal ∆(S) is contained in every B ∈ B;

(iii) For any B1, B2 ∈ B there exists a B ∈ B such that B ⊆ B1 ∩ B2;

(iv) For all B ∈ B there exists a B′ ∈ B such that for all x, y, z ∈ S

(x, y), (y, z) ∈ B′ ⇒ (x, z) ∈ B.

Moreover, a uniform structure is separated if for all x ̸= y ∈ S there
exists some B ∈ B such that (x, y) /∈ B.

A metric on a set Y determines a separated uniform structure whose
base consists of elements of the form Br := {(x, y) | dY(x, y) < r}.



2. Prerequisites 26

Conversely, a base B of a uniform structure on a set S induces a topol-
ogy on S where for any point x ∈ S the sets B[x] := {y ∈ S | (x, y) ∈ B}
form a base for the neighbourhoods of x (see [Kel55, Theorem 6.5]). We will
refer to the set S with this induced topology as a uniform space. We can use
the following theorem to say when a uniform space is metrisable.

Theorem 2.38. A uniform space S is metrisable if and only if the uniform struc-
ture is separated and has a countable base.

Proof. See [Kel55, Theorem 6.13], and note that a uniform space is Haus-
dorff if and only if the uniform structure is separated.

So to prove a topological space is metrisable, it suffices to find a count-
able base for a separated uniform structure that induces that topology on
the set. This is how we will show that X is metrisable when X is a Gromov
hyperbolic metric space.

The topology induced on X by the uniform structure should coincide
with the original topology induced by the metric dX, so for any ϵ ∈ Q+

set Uϵ = {(x, y) ∈ X | dX(x, y) < ϵ}. For neighbourhoods at infinity, fix
a base-pt x0 ∈ X and consider the sets Wr := {(x, y) ∈ X | (x|y)x0 ≥ r}
with r ∈ Q+. Then set Bϵ,r = Uϵ ∪ Wr and B = {Bϵ,r | ϵ, r ∈ Q+}.

The goal is to show that B is the base of a separated uniform structure
on X and that the topology induced by B coincides with the topology given
in remark 2.34.

Proposition 2.39. Let X be a δ-hyperbolic metric space. The family B is a base of
a separated uniform structure on X.

Proof. We need to show that the family B satisfies properties (i)-(iv) from
definition 2.37, and that B is separated.

(i) All of the sets Uϵ and Wr are symmetric, hence every Bϵ,r is symmet-
ric.

(ii) For any ϵ > 0 we know ∆(X) ⊆ Uϵ, and by proposition 2.33(i) we
know (x|x)x0 = ∞ for all x ∈ ∂sX, thus ∆(∂sX) ⊆ Wr for any r ∈ Q+.
Combining the two tells us that ∆(X) ⊆ Bϵ,r.

(iii) Given Bϵ1,r1
and Bϵ2,r2 take ϵ = min{ϵ1, ϵ2} and r = max{r1, r2}.

Then Bϵ,r ⊆ Bϵ1,r1
∩ Bϵ2,r2 .

(iv) Given Bϵ,r ∈ B we know Bϵ,r = Uϵ ∪Wr. We need to find ϵ′, r′ ∈ Q+

such that
(x, y), (y, z) ∈ Bϵ′,r′ ⇒ (x, z) ∈ Bϵ,r. (2.5)

We have different cases depending on whether the points are in X or ∂sX.
If x, y, z ∈ X then we must have (x, y), (y, z) ∈ Uϵ′ and then (x, z) ∈ U2ϵ′ by
the triangle inequality. If y ∈ ∂sX or x, z ∈ ∂sX then (x, y), (y, z) ∈ Wr′ and
so (x, z) ∈ Wr′−2δ by proposition 2.33(ii). This leaves the case y ∈ X and
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exactly one of x, z is in the boundary. Without loss of generality z ∈ ∂sX.
Hence (x, y) ∈ Uϵ′ and (y, z) ∈ Wr′ and applying proposition 2.33(ii) gives

(x|z)x0 ≥ min{(x|y)x0 , (y|z)x0} − 2δ

≥ min{d(y, x0)− d(x, y), (y|z)x0} − 2δ

≥ min{(y|z)x0 − ϵ′, (y|z)x0} − 2δ

≥ r′ − ϵ′ − 2δ

and so (x, z) ∈ Wr′−ϵ′−2δ. Therefore if we take ϵ′ = 1
2 ϵ and r′ = r + 1

2 ϵ + 2δ
we know that (2.5) holds.

So we have proven that B is a base of a uniform structure on X. It
remains to prove that the base is separated.

Given x, y ∈ X with x ̸= y, if x, y /∈ ∂sX then dX(x, y) is finite and
for ϵ < dX(x, y) we know that (x, y) /∈ Uϵ. Otherwise, at least one of
the points x, y lies in the boundary. Since x ̸= y we know (x|y)x0 < ∞

(see proposition 2.33(i)) and so for r > (x|y)x0 we must have (x, y) /∈ Wr.
Therefore the base is separated.

The family B is also countable, since we took the parameters ϵ, r to be
in Q+, and thus the topology induced by this uniform structure is metris-
able by theorem 2.38. However, we have to check that this induced topol-
ogy is the topology we want on X.

Proposition 2.40. Let X be a Gromov hyperbolic metric space. The topology on X
induced by the separated uniform structure B coincides with the topology given in
remark 2.34.

Proof. Fix x ∈ X and consider neighbourhoods of the point x in the two
topologies. Let τ denote the topology given in remark 2.34 and let τB de-
note the topology induced by the uniform structure.

We know that the sets Bϵ,r[x] := {y ∈ X | (x, y) ∈ Bϵ,r} define a base for
the neighbourhoods of x in τB .

If x ∈ X then the sets Uϵ[x] form a base for the neighbourhoods of x in τ,
and for any R > dX(x, x0) the set WR[x] is empty. Hence for any ϵ, r ∈ Q+

we have Bϵ,R[x] = Uϵ[x] ⊆ Bϵ,r[x] and so τB coincides with τ on X.
It remains to consider neighbourhoods of x ∈ ∂sX. By definition the

sets Wr[x] form a base of open neighbourhoods of x in τ, and we also know
that the sets Bϵ,r[x] form a base of neighbourhoods of x in τB . But Uϵ[x] = ∅

for any ϵ ∈ Q+ and so Wr[x] = Bϵ,r[x].
Therefore the topologies τB and τ coincide on all of X.

Combining the results of this section leads to the following theorem.

Theorem 2.41. If X is a Gromov hyperbolic metric space then the space X as
defined in remark 2.34 is metrisable.



2. Prerequisites 28

Proof. The family B = {Uϵ ∪ Wr|ϵ, r ∈ Q+} is a countable base of a sep-
arated uniform strucutre, using proposition 2.39, and by proposition 2.40
the topology induced on X by B coincides with the topology defined in
remark 2.34. Then theorem 2.38 says the space is metrisable.

2.7 Angles in a graph

The concept of angles in a graph was used by Dahmani in his Ph.D.
thesis ([Dah03b]) and expanded upon by Mineyev and Yaman in [MY06].
In this section we give definitions and state the results we will need from
that article.

Definition 2.42. Let Γ be a graph. Given two coincident edges e = (a, b)
and e′ = (a, b′) that are both incident to a vertex a in Γ define the angle
between e and e′ at a to be the distance between b and b′ in the graph Γ − a,
i.e.

anga(e, e′) := dΓ−a(b, b′)

where we define anga(e, e′) = ∞ if b and b′ are in different components
of Γ − a.

Given any geodesic α in Γ and an internal vertex a of α we define the
angle of α at a to be the angle between the pair of edges in α that are incident
to a, and we denote this by anga(α). Set maxang(α) to be the maximum of
all the angles of α.

a

b

b′ a

α

In order to try to motivate why angles in a graph may be useful, recall
the coned-off Cayley graph from definition 2.23, and here we use the de-
generate case P = {G}, where G is a finitely generated group. If S is a

finite generating set of G then the coned-off Cayley graph Cay(G, S; {G})
is formed by taking the standard Cayley graph Cay(G, S) and adding a
new vertex vG to Cay(G, S) with edges joining it to every element of G =
V(Cay(G, S)).

If g and g′ are two non-adjacent elements in the Cayley graph Cay(G, S)
then in the coned-off Cayley graph the path given by the edges (g, vG)
and (vG, g′) is a geodesic (of length 2). So by attaching the cone-vertex
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we have shortened all distances to at most 2, which loses the information
given by the word metric dS on G with respect to the finite generating set S.
However, this information is retained via angles, namely for any g, g′ ∈ G

angvG


(g, vG), (vG, g′)


= dS(g, g′).

Thus we can think of angles in the coned-off Cayley graph Cay(G, S;P)
as a way of extracting information about the geometry of the original Cay-
ley graph Cay(G, S).

The following lemma shows what angles in a Gromov hyperbolic graph
can tell us about the behaviour of geodesics and geodesic triangles.

Lemma 2.43 ([MY06, Lemma 3]). Let G be a graph with the path metric d having
δ-thin triangles. There exists a constant κ depending only on δ such that given
vertices a, b, c, and geodesics α ∈ Geod[b, c], β ∈ Geod[a, c] and γ ∈ Geod[a, b]
we have the following:

(i) If angz(α) > κ for some z ∈ α distinct from b and c, then z ∈ β, or z ∈ γ.

(ii) If z ∈ α, d(c, z) < (a|b)c and angz(α) > κ, then z ∈ β.

(iii) If angc(α, β) > κ, then c ∈ γ.

(iv) If b = a i.e. γ is a null geodesic, then angc(α, β) ≤ κ.

Sketch Proof. We give a quick sketch of why the first part is true. The other
parts can be proven analogously.

Let z± be the two vertices of α that are adjacent to z. If we assume that
the point z does not lie on either β or γ then we can use the triangle to find
a path from z− to z+ that does not pass through z, and this is how we can
bound the angle of α at z.

There are two possibilities; maybe we have to use all sides of the trian-
gle to create the path z− to z+, or perhaps we only need to jump to one other
side. The two pictures below indicate the idea behind how to construct a
path z− to z+ that bypasses z.

a

b

c

z

a

b

c

z

For details see [MY02, Lemma 3].
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For working with angles it is helpful to consider a metric on edges de-
fined in terms of angles, but first we show that the angle at a vertex a ∈ V
defines a metric on the edges incident to a, which follows from the next
lemma.

Lemma 2.44 ([MY06, Proposition 1]). Given three coincident edges e1, e2, e3

that are all incident to a vertex a in a graph G one has

• anga(e1, e2) = anga(e2, e1).

• anga(e1, e3) ≤ anga(e1, e2) + anga(e2, e3).

Definition 2.45. Let Γ be a graph and let e, e′ be a pair of arbitrary edges
of Γ. An admissable sequence of edges from from e to e′ is a sequence e0, e1, . . . , ek

of edges of Γ such that e0 = e, ek = e′, and for every i = 1, . . . , k the
edges ei−1 and ei are coincident.

Then the snake distance dζ from e to e′ is defined by

dζ(e, e′) := inf
k

∑
i=1

ang(ei−1, ei)

where the infimum is taken over all admissable sequences of edges from e
to e′.

Remark 2.46. If Γ is a connected graph then the function dζ : E× E → [0, ∞]
is an extended metric on the set of edges of Γ. Recall that an extended
metric is a function satisfying all the properties of being a metric except it
is allowed to take the value ∞.

Furthermore, if Γ is 2-vertex-connected then dζ : E × E → [0, ∞) is a
metric on the set of edges, and we call this metric the snake metric.

This metric on E is invariant under the action of Isom(Γ) on E, meaning
for any isometry ψ of Γ and any edges e, e′ ∈ E

dζ

ψ(e), ψ(e′)


= dζ(e, e′).

As noted earlier, the fineness condition for a graph is weaker than being
locally finite. In particular, the balls around an arbitrary vertex in a fine
graph need not be finite. However, we do have a kind of local finiteness for
edges;

Lemma 2.47. Let Γ be a graph. If Γ is fine then any ball in the metric space (E, dζ)
is finite, i.e.

∀R > 0, ∀e ∈ E, ∃k ∈ N,
Bζ

R(e)
 ≤ k.

where B
ζ
R(e) := {e′ ∈ E | dζ(e, e′) ≤ R}.
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This is a version of [MY06, Lemma 11] using our terminology. In that
paper their definition of a fine graph coincides with our definition of a uni-
formly fine graph. With this stronger condition they can show that the balls
in (E, dζ) are uniformly finite, so the parameter k would not depend on e
(although it would still depend on R).

We can think of an edge as a subset of a graph, and so we can set

d(e, e′) = inf{d(e, e′) | x ∈ e, x′ ∈ e′}.

The snake metric is defined using admisssable sequences of edges, and
such a sequence determines a path in the graph, so we can compare d(e, e′)
to dζ(e, e′).

Lemma 2.48 ([MY06, Lemma 6]). Let Γ be a hyperbolic graph. For any arbitrary
edges e, e′ ∈ E,

d(e, e′) ≤ dζ(e, e′).

Corollary 2.49. Let Γ be a hyperbolic graph. Let e, e′ ∈ E be arbitray edges.
Let x ∈ V be an end-point of e and let x′ ∈ V be an end-point of e′. Then

d(x, x′) ≤ dζ(e, e′) + 2.

We have already explained how fineness of a graph tells us something
about dζ , but for a relatively hyperbolic group as in definition 2.22 we also
require the graph to be Gromov hyperbolic, and then we can use the fol-
lowing lemma to get a version of hyperbolicity for dζ (cf. definition 2.8).

Lemma 2.50 ([MY02, Proposition 10]). A connected graph Γ is δ-hyperbolic
if and only if there exists a constant δ′ ≥ 0 such that for every geodesic trian-
gle ∆(x, y, z) in Γ, if ey is an edge on [x, y] and ez is an edge on [x, z] with

d(x, ey) = d(x, ez) ≤ (y|z)x

then
dζ(ey, ez) ≤ δ′.

Sometimes a picture can be very illustrative;

x

y

z
ιy

ιz

ιx

ez

ey

dζ ≤ δ′

A corollary to lemma 2.50 is the degenerate case where y = z;
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Corollary 2.51. Let Γ be a δ-hyperbolic graph. Fix two distinct points x, y ∈ Γ.
For any k ≤ d(x, y)− 1 and for all e, e′ ∈ E[x, y; k] we have dζ(e, e′) ≤ δ.

Note that lemma 2.50 is not claiming that the space (E, dζ) is Gromov
hyperbolic (in the sense of definition 2.11).

Remark 2.52. Although the edge-hyperbolicity uses a different constant δ′

we may always assume δ is large enough for edge-hyperbolicity, i.e. we
take our new δ to be the maximum of the old δ and the δ′.



3 Construction of the Flow Space

The purpose of this thesis is to construct a flow space associated to a
relatively hyperbolic group G. We already have an associated graph Γ (as
per definition 2.22), but for a flow space we would like to start with a sim-
plicial complex associated to the group, so in section 3.1 we show how to
turn the graph Γ into a simplicial complex which has nice properties, eg is
contractible.

Section 3.2 is a short detour into what a flow space over a tree would
look like in order to motivate the definition of the flow space more gener-
ally in section 3.3. Then in section 3.4 we begin to outline how to construct
a metric on the flow space.

3.1 The MY-space

Associated to a hyperbolic group G we have a Cayley graph Γ and over
this we can build a Rips complex Pr(Γ) with parameter r by adding an
edge (u, v) to Γ whenever dΓ(u, v) ≤ r and then taking the flag complex
over the resulting graph, i.e. we add as many simplices as the resulting
graph allows.

In this case if the parameter r is sufficiently large then the Rips com-
plex Pr(Γ) is finite-dimensional and contractible simplicial complex (see
[BH99, Theorem III.Γ.3.21]). Moreover, it is a universal space for proper
actions of the group G (see [MS02]).

If the group G is hyperbolic relative to a finite set P of subgroups then
we use the coned-off Cayley graph instead, but we want to retain some
of the information about distances in the original Cayley graph so we do
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not take the Rips complex over the coned-off Cayley graph but perform a
similar construction that also takes angles into account (since angles are a
way of retaining information about distances in the original Cayley graph,
see the comments after definition 2.42).

Definition 3.1. Let Γ be a graph and fix a parameter η ≥ 1. For vertices v, v′

of Γ, an η-geodesic is a geodesic α in Γ from v to v′ of length ≤ η such
that maxang(α) ≤ η.

The MY-space over Γ with parameter η is the simplicial complex Xη(Γ)
with vertex set V(Xη(Γ)) = V(Γ) such that {v0, . . . , vk} spans a simplex
in Xη(Γ) if and only if for every pair vi, vj there is an η-geodesic in Γ from vi

to vj.
I call this simplicial complex the “MY-space” to reflect who first defined

it, namely Mineyev and Yaman in [MY06].

Note that an edge has no inner vertices, so its maximum angle is 0.
Therefore, if η ≥ 1 then the graph Γ embeds into the 1-skeleton of Xη(Γ).

The MY-space will be our replacement of the Rips complex. To help
motivate why the MY-space is a good replacement we quote two properties
about it in the next two propositions.

Proposition 3.2 ([MY06, Corollary 17]). Let Γ be a uniformly fine, δ-hyperbolic
graph. If η ≥ 1 then the MY-space Xη(Γ) is finite-dimensional.

For proposition 3.2 it is important that the graph is uniformly fine. To
see this, let Kn denote the complete graph on n vertices and consider the
graph Γ :=


n∈N Kn, where the base-point of each Kn is a vertex. Then for

any η ≥ 1 the space Xη(Γ) is


n∈N ∆n, a wedge of simplices. The graph Γ

is fine and 2-hyperbolic but the space Xη(Γ) is infinite-dimensional.

Proposition 3.3 ([MY06, Theorem 19]). Let Γ be a fine, δ-hyperbolic graph.
Let κ be the constant from in lemma 2.43. Then for η ≥ 3κ the MY-space Xη(Γ)
is contractible.

By definition if G is a group that is hyperbolic relative to P then there
is a fine, δ-hyperbolic graph Γ on which G acts with finitely many orbits of
vertices and edges and such that the stabiliser of any vertex is finite or an
element of P . So for κ as in lemma 2.43 and η ≥ 3κ we know that Xη(Γ) is
contractible. Moreover, the graph Γ is uniformly fine by lemma 2.19 so we
also know that Xη(Γ) is finite-dimensional.

Ergo, associated to a relatively hyperbolic group G we have a finite-
dimensional, contractible simplicial complex Xη(Γ) on which the group
acts. It would be nice if this action were cocompact. To prove this we need
another lemma from [MY06].

Lemma 3.4 ([MY06, Lemma 15]). Let Γ be a fine, δ-hyperbolic graph. Fix η ≥ 1.
For any edge e = (a, b) of Xη(Γ) there are only finitely many vertices c of Xη(Γ)
that are connected to both a and b by edges in Xη(Γ).
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Corollary 3.5. If Γ is a fine, δ-hyperbolic graph and η ≥ 1 then every edge
of Xη(Γ) is contained in only finitely many simplices.

Now we prove that the action of G on Xη(Γ) is cocompact.

Proposition 3.6. Let G be a group and let Γ be a fine graph on which G acts
cocompactly. Fix a parameter η ≥ 1. For all k ∈ N there are only finitely many
G-orbits of k-simplices in the simplicial complex Xη(Γ).

Proof. It suffices to prove that there are only finitely many G-orbits of edges
in Xη(Γ) because then corollary 3.5 says there are only finitely many G-or-
bits of k-simplices.

To show that there are only finitely many G-orbits of edges in Xη(Γ) it
is enough to show that there are only finitely many G-orbits of η-geodesics
in Γ. We prove this by showing that for any edge e in Γ there are only
finitely many η-geodesics whose first edge is e, and then use the fact that
there are only finitely many G-orbits of edges in Γ. So it is enough to show
that for a fixed edge e1 of Γ there are only finitely many η-geodesics in Γ

whose first edge is e1.
Let α be an η-geodesic in Γ whose first edge is e1 and let ek be the k-th

edge of α. The geodesic α gives an admissable sequence of edges from e1

to ek (recall from definition 2.45 that a sequence of edges is admissable if
consecutive edges are coincident). The angle between consecutive edges
of α is ≤ η, hence

dζ(e1, ek) ≤
k

∑
i=2

ang(ei−1, ei) ≤ (k − 1)η.

So for any edge e of α, we have dζ(e1, e) ≤ η(η − 1), since the length of α
is bounded by η. By lemma 2.47 there are only finitely many such edges,
therefore there are only finitely many η-geodesics whose first edge is e1.

The 1-skeleton of any simplicial complex is a graph. We will often work
with the 1-skeleton of Xη(Γ), which we denote by Gη(Γ). Hence we want
to know how graph properties of Γ can be translated to Gη(Γ).

Lemma 3.7. Let Γ be a graph and let dΓ denote the canonical metric on Γ. Fix the
parameter η ≥ 1 and let G = Gη(Γ) denote the 1-skeleton of Xη(Γ). If dG denotes
the canonical metric on the graph G then the inclusion map (Γ, dΓ) ↩→ (G, dG) is
a quasi-isometry.

Proof. The vertex set of a graph is quasi-dense and V(Γ) = V(G) =: V,
hence it is enough to show that the identity map idV : (V, dΓ) → (V, dG) is
a quasi-isometry. It follows from the definition of G that for any x, y ∈ V

dG(x, y) ≤ dΓ(x, y) ≤ η dG(x, y)

and therefore the identity map is a quasi-isometry.
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Gromov hyperbolicity is preserved under quasi-isometries (see propo-
sition 2.13) so lemma 3.7 yields the following corollary.

Corollary 3.8. If Γ is a Gromov hyperbolic graph then the graph Gη(Γ) is Gromov
hyperbolic (for any η ≥ 1).

The graph property fineness is not preserved by quasi-isometries, but
we can use still say something due to a lemma by Bowditch;

Lemma 3.9 ([Bow97, Lemma 4.5]). Let G be a group. Let V be a set on which G
acts with finite pair stabilisers, i.e. for all u, v ∈ V there are only finitely many
elements of G that fix both u and v. Let K, L be connected G-invariant graphs
with vertex set V and with finite quotient under G, i.e. there are only finitely
many G-orbits of vertices and finitely many G-orbits of edges.

If K is fine then L is fine.

Remark 3.10. If we start with a relatively hyperbolic group G and have an
associated graph Γ, as in definition 2.22, then for any η ≥ 1 the 1-skeleton
of Xη(Γ) is a uniformly fine, Gromov hyperbolic graph, by corollary 3.8
and lemma 3.9, where the uniformity of the fineness uses lemma 2.19 and
proposition 3.6.

The group G acts on X via the action of G on V = V(Γ) = V(X). There
are only finitely many orbits of simplices, by proposition 3.6.

We end this section by saying something about the stabilisers of the G-
action on X.

Before we can do that though, we need a result from Osin about the
intersection of peripheral subgroups.

Lemma 3.11 ([Osi06, Proposition 2.36]). If a group G is hyperbolic relative to a
finite set P of subgroups then for all P, P′ ∈ P and for all g, g′ ∈ G either

gPg−1 = g′P′g′−1

or gPg−1 ∩ g′P′g′−1
 < ∞.

Osin uses yet another definition of relatively hyperbolicity in terms of
(finite) relative presentations and relative Dehn functions, but Theorem
6.10 in the appendix of [Osi06] proves the equivalence of his definition to
the definition given in section 2.4 here.

Proposition 3.12. Let G be a group that is hyperbolic relative to a finite set P of
subgroups and let Γ be an associated graph (as in definition 2.22).

For any x ∈ X := Xη(Γ) either the stabiliser of x is finite or x ∈ V.
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Proof. Suppose x ∈ X has an infinite stabiliser H. Write x = ∑v∈V xvv in
barycentric coordinates. The group H must permute the support of x, but
the support of x is finite thus the stabiliser of every v ∈ supp(x) is infinite.

So for every v ∈ supp(x) we can find some gv ∈ G and Pv ∈ P such
that the stabiliser of v is gvPvg−1

v .
Furthermore, by considering the diagonal action of H on (supp(x))2 we

see that the pair stabilisers are infinite, i.e. the intersection of the stabilisers
of any two vertices in the support of x is infinite. But by lemma 3.11 the
intersection of two distinct conjugates of elements of P is always finite.
Therefore there cannot be any pair stabilisers, and the support of x is a
single vertex v, in which case x = v.

3.2 Motivation

The motivation for the flow space comes from considering the a tree T,
since a tree is the special case of a 0-hyperbolic graph. Consider the space T
as defined in section 2.5. Between any pair of points in T there is a unique
geodesic. Then we say that a map c : R → T is a generalised geodesic if there
exists t−, t+ ∈ R := R ∪ {−∞, ∞} such that

• c|(−∞,t−] is constant;

• c|[t−,t+] is a geodesic;

• c|[t+,∞)] is constant.

So intuitively, we have a geodesic c which we extend to a map R → T by
making it constant at either end (if it is not already an infinite geodesic).

Then the flow space is defined to be the set of generalised geodesics in T.
We make this a metric space via

d(c, c′) :=


t∈R
e−

1
2 |t|

2
dT(c(t), c′(t)) dt.

Finally, we can define a flow Φ on this space via Φτ(c)(t) := c(t + τ).
This doesn’t work for a general Gromov hyperbolic space because the

geodesics are not necessarily unique. Hence we need to formally replicate
the idea.
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3.3 The flow space

Let X be a simplicial complex whose 1-skeleton is a fine, Gromov hy-
perbolic graph. In our motivating example of a tree T, the image of a gen-
eralised geodesic c : R → T is determined by its end-points, hence our first
attempt at a flow space is X × X. It is possible for our generalised geodesic
to be stationary (i.e. c(−∞) = c(∞)) but if one end-point lies in the bound-
ary then the generalised geodesic cannot be stationary. Thus we consider
the set (X × X)\∆(∂X), where ∆(∂X) is the diagonal of ∂X × ∂X.

This determines the ‘image’ of a generalised geodesic but we also need
a way of encoding the parametrisation. Going back to our motivating ex-
ample, fix a base-point x0 ∈ T. For any geodesic c in T there is a unique
point on c that is closest to x0. Then we can determine the parametrisation
of c by what time it hits this point (or leaves the point if this unique point
is the starting point). This gives us a value t ∈ R. Therefore, we consider
the space ((X × X)\∆(∂X))× R.

However, there are stationary geodesics, for which the time coordinate
plays no role. So we quotient out by the relation (x, x, t) ∼ (x, x, t′).

We are not quite finished. In a tree T, if a generalised geodesic c starts
at a point x ∈ T then the flow Φτ(c) should converge to the stationary
geodesic at x as τ → −∞. To replicate this we use R instead of R in our def-
inition of the flow space, i.e. we consider ((X × X)\∆(∂X))× R, where we
want the point (x, y,−∞) to correspond to the stationary geodesic at x. This
is only possible if x /∈ ∂X so we need to remove such points beforehand.
Then we know that the stationary geodesic at x is given by the point (x, x, t)
(for any t ∈ R) so we need to identify (x, y,−∞) with (x, x,−∞). Similarly
we need to identify (x, y, ∞) with (y, y, ∞).

Putting everything together, we obtain the following definition.

Definition 3.13. Let X be a simplicial complex whose 1-skeleton is a fine,
Gromov hyperbolic graph. First set

X′ :=



(x, y, t) ∈ X × X × R



x, y ∈ ∂X ⇒ x ̸= y,
t = −∞ ⇒ x /∈ ∂X,
t = ∞ ⇒ y /∈ ∂X



 (3.1)

and then define the flow space as the quotient FS(X) := X′/ ∼ where

∀x ∈ X, ∀t, t′ ∈ R, (x, x, t) ∼ (x, x, t′);
∀x, y, y′ ∈ X, (x, y,−∞) ∼ (x, y′,−∞);
∀x, x′, y ∈ X, (x, y, ∞) ∼ (x′, y, ∞).

The topology on FS(X) is defined to be the quotient topology, where we
give X × X × R the product topology and X′ the subspace topology. The
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flow on FS(X) is given by

Φτ(x, y, t) := (x, y, t + τ). (3.2)

Note that we do have Φτ(x, y, t) → (x, x,−∞) as τ → −∞ with this defini-
tion, and analogously for τ → ∞.

This formulation of a flow space was first given by Mineyev in [Min05],
where he used the notation ◦∗X for the flow space FS(X).

A quick remark about this definition. In the motivating example of a
tree T we thought of the flow space as the generalised geodesics c : R → T
and then said that given a base-point x0 ∈ T we could always get a pa-
rameter t. This gives an identification of the space of generalised geodesics
with the abstract flow space as in definition 3.13, but this identification de-
pends on the choice of base-point. Using a different base-point would still
yield an identification of the two versions of a flow space but it would not
necessarily give a generalised geodesic c the same parameter t ∈ R.

Therefore, although we do not use a choice of base-point in this defini-
tion we will often think of one as being implicit. Sometimes we will want
to explicitly use a base-point, in which case we will use the following defi-
nition.

Definition 3.14. Let X be a finite-dimensional simplicial complex whose
1-skeleton G is a fine, Gromov hyperbolic graph. Suppose d̃ is a metric
on X whose restriction to X(0) coincides with dG . Given any fixed base-
point x0 ∈ X, for any x, y ∈ X define the map θx0

x,y : R → [−(y|x0)x, (x|x0)y]
by

θx0
x,y(t) :=





−(y|x0)x if t ≤ −(y|x0)x

t if − (y|x0)x ≤ t ≤ (x|x0)y

(x|x0)y if (x|x0)y ≤ t

and observe that for the case x = y the map θx0
x,x is identically zero.

The idea is to replicate what happens in a tree. If we have a fixed
base-point x0 ∈ X then we can think of (x, y, 0) as the formal generalised
geodesic whose ‘closest’ point to x0 is at time 0. Then for arbitrary t we just
use the flow relation (x, y, t) = Φt(x, y, 0).

So the map θx0
x,y can be thought of as evaluation at time 0; starting at the

point on [x, y] that is ‘closest’ to x0 we move a distance |θx0
x,y(t)| along [x, y]

and the sign says which direction, namely towards x if negative and to-
wards y if positive.
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3.4 Constructing a metric

If X is a Gromov hyperbolic metric space then we would like to define
a metric on FS(X). In our motivating example, we defined the distance
between c, c′ ∈ FS(T) by integrating over the image of the generalised
geodesics c, c′. Note that c(s) = Φs(c)(0) for all s ∈ R so it is enough
to know distances between the points c(0) and c′(0) for all c, c′ ∈ FS(X).

Back in the general case the idea is to think of a point (x, y, t) ∈ FS(X)
as a formal generalised geodesic. Then there should be a point (x, y, t)0 ∈ X
that corresponds to the formal generalised geodesic evaluated at time t = 0.
However, we have no such evaluation map FS(X) → X so we need a way
of calculating the distance without using an evaluation map.

We start by defining a function X × FS(X) → R that in a sense gives a
distance from a point z ∈ X to the ‘point’ (x, y, t)0.

Then for any two points (x, y, t), (x′, y′, t′) ∈ FS(X) we can compare
how close (x, y, t)0 and (x′, y′, t′)0 are to a point z ∈ X. If we do this for all
points z ∈ X then we should be able to say something about how close the
‘points’ (x, y, t)0 and (x′, y′, t′)0 are.

To define a distance from (x, y, t)0 to a point z ∈ X we want to find a
point (x, y)z on the formal generalised geodesic [x, y] that is ‘closest’ to z
and then the distance from (x, y, t)0 to z is the distance along the formal
generalised geodesic from (x, y, t)0 to (x, y)z plus the distance from (x, y)z

to z. The distance from z to the point (x, y)z is the distance from z to the
formal generalised geodesic [x, y], which is given by the Gromov prod-
uct (x|y)z.

To make sense of (x, y, t)0 we need a base-point x0 ∈ X (see defini-
tion 3.14). We need to know what the distance between (x, y)z and (x, y, t)0

is in terms of x0, x, y, t and z. If (x, y)0 denotes the point of [x, y] that is
‘closest’ to x0 then by definition the distance between (x, y)0 and (x, y, t)0

is |θx0
x,y(t)|, where θx0

x,y(t) is positive if (x, y)0 lies between (x, y, t)0 and x,
and is negative if (x, y)0 lies between (x, y, t)0 and y. So for x, y ∈ X we can
write the distance between (x, y, t)0 and (x, y)z as the following expression
in terms of Gromov products;

θx0
x,y(t)− ((y|z)x − (y|x0)x) = θx0

x,y(t)−

(x|x0)y − (x|z)y



x y

x0

(x, y)0

z

(x, y)z(x, y, t)0
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However, if x and y are in the boundary then all of the Gromov products
are infinite and so the expression does not make sense. We get around this
problem by looking specifically at the value (y|z)x − (y|x0)x;

Definition 3.15. Let X be an arbitrary metric space. The double difference of
four points x, y, z, w ∈ X is

(x, y|z, w) := (y|z)x − (y|w)x. (3.3)

Before returning to the problem of defining a metric on our flow space,
we list some properties of the double difference.

Proposition 3.16. Let X be an arbitrary metric space. The double difference sat-
isfies the following properties for any points in X;

(0) (x, x′|y, y′) = 1
2 (dX(x, y)− dX(x, y′)− dX(x′, y) + dX(x′, y′));

(1) (x, x′|y, y′) = (y, y′|x, x′);

(2) (x, x′|y, y′) = −(x′, x|y, y′) = −(x, x′|y′, y);

(3) (x, x|y, y′) = 0 = (x, x′|y, y);

(4) (x, x′|y, y′) + (x′, x′′|y, y′) = (x, x′′|y, y′);

(5) (x, y|z, w) + (z, x|y, w) + (y, z|x, w) = 0.

Now we want to define the distance from a point z ∈ X to (x, y, t)0

for (x, y, t) ∈ FS(X) to be (x|y)z + |θx0
x,y(t) − (x, y|z, x0)| but for this we

need to know that the double difference is defined for x, y ∈ ∂X.
This is not necessarily true for an arbitrary metric space X. Moreover,

it is not true for an arbitrary Gromov hyperbolic graph. To solve this we
construct a new metric on a uniformly fine, δ-hyperbolic graph such that
the double difference with respect to this new metric can be extended to
the boundary. Then we can use this new metric to define a metric on FS(X)
using the argument laid out above, which is done formally in section 6.3.



4 Projecting Along Geodesics

In section 3.4 we started to sketch how to define a metric on the flow
space FS(X) for a Gromov hyperbolic metric space X, but we encountered a
problem that the double difference (as in definition 3.15) is not well-defined
for points on the boundary of X.

In this section we will use the work of [Min01] together with the modi-
fication suggested in [MY06] to define a projection map g that will be used
in chapter 5 to construct the metric d̂ on the vertex set of X.

Our projection map g is essentially the map f̄ as in [MY06, Proposi-
tion 45], where several facts about the map f̄ are stated but not explicitly
proven. Instead it is said that the proofs are analogous to proofs given in
[Min01]. In this section we will define the projection map g, dependent
upon three constants I, J, and R, and prove the following theorem.

Theorem 4.1. Let G be a uniformly fine, Gromov hyperbolic graph. There is a
map g : QV ⊕ QV → QE that satisfies the following properties;

(i) It is invariant under isometries of G (where Isom(G) acts on G × G diago-
nally).

(ii) For all a, b ∈ V, for every integer ℵ with I ≤ ℵ ≤ J the support of g(a, b)
contains E[a, b;ℵ].

(iii) For all a, b ∈ V and all x ∈ supp(ϕg(a, b)), d(x, b) ≤ d(a, b)− 1.

(iv) For all a, b ∈ V and all x ∈ supp


ϕg(a, b)


there is an ℵ with I ≤ ℵ ≤ J
such that for all uℵ ∈ V[a, b;ℵ] we have d(x, uℵ) ≤ 3δ + R + 2 =: C0.

(v) For all a, b ∈ V, diam

supp(ϕg(a, b))


≤ 2C0 + J − I.

(vi) There exist constants L > 0 and λ ∈ (0, 1) such that for all a, b, b′ ∈ V

|g(a, b)− g(a, b′)|1 ≤ Lλ(b|b′)a .
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(vii) There exists a constant ν ∈ (0, 1) such that for all a, a′, b ∈ V if

• d(a, b) ≥ J + 1 and d(a′, b) ≥ J + 1

• |d(a, b)− d(a′, b)| ≤ J − I

• (a|b)a′ ≤ J and (a′|b)a ≤ J then

|g(a, b)− g(a′, b)|1 ≤ 2ν.

where the map ϕ : QE → QV picks out the end-points of every edge.

Many of the objects in the statement of theorem 4.1 are yet to be defined
but all will be explained in this section. At the very end of chapter 4 we will
give the proof of the theorem, which will just show where in the section to
look for the proof of the relevant facts.

4.1 The first projection

On our uniformly fine δ-hyperbolic graph we want to define a new met-
ric that has better convergence properties than the word metric. To do this
we modify the ideas used in [Min01].

In the following picture we consider two points b, b′ and a third point a
that is comparatively far away. The upper arc perpendicular to [a, b] (blue
if you have colour) is the intersection of a sphere around a with the δ-neigh-
bourhood of the geodesic [a, b], whereas the lower arc perpendicular to
[a, b′] (red) is the intersection of the sphere around a with the δ-neighbour-
hood of the geodesic [a, b′].

Fig. 4.1: Overlapping Neighbourhoods

a

b

b′

The geodesics may not overlap but by hyperbolicity their δ-neighbour-
hoods will overlap close to a. The idea behind the new metric therefore
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is to average over the δ-neighbourhoods of the geodesics between the two
points. We will need to use the fineness of the graph to ensure we are aver-
aging over something finite. So we average over edges.

For this average to make sense, we work in QE, the Q-vector space with
basis E. For any finite subset S ⊆ E define the average of S to be

av(S) :=
1

|S| ∑
s∈S

s ∈ QE.

Then in QE we can measure the size of the overlap using the l1-norm,
which we denote by |..|1, i.e.

∑
s∈S

qss


1

:= ∑
s∈S

|qs|.

In lemma 2.50 we needed d(a, e) = d(a, e′) so we want to keep the dis-
tance to a constant. Therefore, given e ∈ E[a, V] we define the flower of
radius r around e with centre a to be the set

Fl[a, e; r] := E[a, V; d(a, e)] ∩ B
ζ
r (e).

Similarly, for a vertex b ∈ V[a, V] we can define the flower of radius r around b
with centre a to be Fl[a, b; r] := V[a, V; d(a, b)] ∩ Br(b).

By taking the average we can turn the flower of radius r around e with
centre a into an element of QE[a, V], and so for a fixed vertex a and flower
radius r we get a map avFl(a;r) : E[a, V] → QE[a, V], which we can extend
Q-linearly to get a map avFl(a;r) : QE[a, V] → QE[a, V].

We do not want to project all the way to the vertex a so we need a con-
stant ℵ > 0 such that inside the ball of radius ℵ around a we should not
change b much. We will only spread out at certain distances away from a, so
we need a second constant µ > 0 such that we only spread out when d(a, b)
is the initial constant ℵ plus a multiple of the moving constant µ. First, we
define a function fℵ : QV ⊕ QV → QE which is moving one step before
spreading out.

Definition 4.2. Let G be a fine, δ-hyperbolic graph. Define a Q-bilinear
map fℵ : QV ⊕ QV → QE on vertices as follows; Given two vertices a, b
of G either d(a, b) ≤ ℵ or there is an m ∈ N such that

mµ + ℵ < d(a, b) ≤ (m + 1)µ + ℵ

and then fℵ is given by

fℵ(a, b) :=





0 if a = b
av(E[a, b; d(a, b)− 1]) if 1 ≤ d(a, b) ≤ ℵ
av(E[a, b; mµ + ℵ]) if mµ + ℵ < d(a, b) < (m + 1)µ + ℵ
avFl(a;δ)(av(E[a, b; mµ + ℵ])) if d(a, b) = (m + 1)µ + ℵ
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The function fℵ depends on both ℵ and µ. We will keep µ fixed so it
is suppressed in the notation. In section 4.4 we will allow ℵ to vary so we
want to keep track of it in the notation.

For understanding what the map does it is more intuitive to consider
the end-points closest to a, namely let ιa : QE[a, V] → QV[a, V] be the Q-
linear extension of the map that given an edge e ∈ E[a, V] picks out the
end-point of e that is closest to a and consider ιa fℵ(a, b) ∈ QV.

a b1
b2

If the vertex b does not lie on one of the spheres then we just project to
the next sphere by averaging along all of the geodesics from b to a. So b1 in
the picture is sent to the (blue) dots.

The interesting part happens when b lies on one of the spheres, in which
case we take the projection as in the previous case but then we also spread
out when we reach the next sphere. This is represented in the picture by b2

being moved to the (orange) bars on the next-smallest sphere.

Remark 4.3. If a ̸= b then the element fℵ(a, b) ∈ QE is a convex combina-
tion, i.e. all coefficients are non-negative and their sum is 1. Furthermore,
the map fℵ is invariant under the diagonal Isom(G)-action on QV × QV.

The map fℵ is only interesting when d(a, b) > ℵ, and the next lemma
gives some properties of the support of fℵ(a, b) in this case.

Lemma 4.4. Let G be a fine, δ-hyperbolic graph. Suppose a, b ∈ V have dis-
tance d(a, b) > ℵ. Pick m ∈ N such that

mµ + ℵ < d(a, b) ≤ (m + 1)µ + ℵ.

Then the following statements hold;

(i) E[a, b; mµ + ℵ] ⊆ supp( fℵ(a, b));

(ii) For any e ∈ E[a, b; mµ + ℵ], supp( fℵ(a, b)) ⊆ Fl[a, e; 2δ].

Proof. (i) Follows immediately from the definition.
(ii) Corollary 2.51 gives dζ(e, e′) ≤ δ for all e, e′ ∈ E[a, b; mµ + ℵ]. In

particular, the triangle inequality shows Fl[a, e′; δ] ⊆ Fl[a, e; 2δ].
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If d(a, b) < (m + 1)µ + ℵ then fℵ(a, b) = av(E[a, b; mµ + ℵ]) and so

supp( fℵ(a, b)) = E[a, b; mµ + ℵ] ⊆ Fl[a, e; 2δ].

If d(a, b) = (m + 1)µ + ℵ then fℵ(a, b) = avFl(a;δ)(av(E[a, b; mµ + ℵ])).
So

supp( fℵ(a, b)) =


ē∈E[a,b;mµ+ℵ]

Fl[a, ē; δ] ⊆ Fl[a, e; 2δ].

We will iterate this projection via ιa so it will be useful to also know
what the support of ιa fℵ(a, b) is like.

Corollary 4.5. Suppose we have the same set-up as in lemma 4.4. Then

(i) V[a, b; mµ + ℵ] ⊆ supp(ιa fℵ(a, b));

(ii) For any v ∈ V[a, b; mµ + ℵ], supp(ιa fℵ(a, b)) ⊆ Fl[a, v; 2δ + 2].

Proof. Use lemma 4.4 and corollary 2.49.

So we know that the support is never too far away from any geodesic
from a to b.

The spreading out in the fourth case in the definition is done to create
an overlap, as in figure 4.1. If two vertices b, c are close then we want the
supports of ιa fℵ(a, b) and ιa fℵ(a, c) to remain close, and furthermore we
want the intersection of the supports to be non-empty.

For there to be a global bound we assume G is uniformly fine, in which
case the balls in the edge-metric dζ are uniformly finite, by lemma 2.47, and
we set

B
ζ
δ = max

Bζ
δ(e)

 : e ∈ E


.

Lemma 4.6. Let G be a fine, δ-hyperbolic graph. Let a, b, c ∈ V be three vertices
satisfying

• ∃m ∈ N such that d(a, b) = (m + 1)µ + ℵ = d(a, c);

• d(b, c) ≤ 2µ.

Then for all eb ∈ supp( fℵ(a, b)) and for all ec ∈ supp( fℵ(a, c)),

dζ(eb, ec) ≤ 3δ.

In particular d(ιaeb, ιaec) ≤ 3δ + 2. Moreover, if G is uniformly fine then there
exists a constant η0 ∈ (0, 1) such that

| fℵ(a, b)− fℵ(a, c)|1 ≤ 2η0.
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Proof. By the definition of fℵ, there is an edge ēb ∈ E[a, b; mµ + ℵ] such
that eb ∈ Fl[a, ēb; δ]. Pick ēc analogously. Under our assumptions on the
distances between a, b, c we know that (b|c)a ≥ mµ + ℵ. Hence lemma 2.50
tells us that dζ(ēb, ēc) ≤ δ. Thus

dζ(eb, ec) ≤ dζ(eb, ēb) + dζ(ēb, ēc) + dζ(ēc, ec) ≤ 3δ.

In particular corollary 2.49 gives d(ιaeb, ιaec) ≤ 3δ + 2.

Now suppose that G is uniformly fine (hence B
ζ
δ is finite). To simplify

the notation a bit, set Eab = E[a, b; mµ + ℵ], and for e ∈ Eab set Fle =
Fl[a, e; δ]. Similarly we can define Eac and Flē for ē ∈ Eac.

Then by definition we have

fℵ(a, b) =
1

|Eab|
∑

e∈Eab

1

|Fle|
∑

e′∈Fle

e′ , fℵ(a, c) =
1

|Eac|
∑

ē∈Eac

1

|Flē|
∑

ē′∈Flē

ē′.

For any e ∈ Eab and ē ∈ Eac we have dζ(e, ē) ≤ δ since (b|c)a ≥ mµ + ℵ.
So Fle ∩ Flē ̸= ∅ and therefore

| fℵ(a, b)− fℵ(a, c)|1

≤
1

|Eab|
∑

e∈Eab

1

|Fle|
∑

e′∈Fle

1

|Eac|
∑

ē∈Eac

1

|Flē|
∑

ē′∈Flē

|e′ − ē′|1 (4.1)

=
1

|Eab|
∑

e∈Eab

1

|Eac|
∑

ē∈Eac

2
|Fle||Flē| − |Fle ∩ Flē|

|Fle||Flē|

≤
1

|Eab|
∑

e∈Eab

1

|Eac|
∑

ē∈Eac

2


1 −

1

(B
ζ
δ)

2



= 2


1 −

1

(B
ζ
δ)

2



and the proof is finished by setting η0 = 1 − 1

(B
ζ
δ )

2
∈ (0, 1).

4.2 Iterated projections

Using fℵ we can project to the next sphere of radius mµ + ℵ around a.
We can iterate these projections in the natural way.

Definition 4.7. Let G be a fine, δ-hyperbolic graph. Given k ∈ N define

f
(k)
ℵ : QV ⊕ QV → QE to be the Q-bilinear function that is defined induc-

tively on vertices by
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• f
(0)
ℵ (a, b) := fℵ(a, b);

• f
(k+1)
ℵ (a, b) := f

(k)
ℵ (a, ιa fℵ(a, b)).

Remark 4.8. As with fℵ(a, b), for a ̸= b the element f
(k)
ℵ (a, b) ∈ QE is a

convex combination, in fact it is a convex combination in QE[a, V] so we can

always consider ιa f
(k)
ℵ (a, b). Furthermore, the map f

(k)
ℵ is invariant under

the action of Isom(G).

This recursive definition has an equivalent form, given in the following
lemma.

Lemma 4.9. Let G be a fine, δ-hyperbolic graph. For all a, b ∈ V and for all k ∈ N

f
(k+1)
ℵ (a, b) = fℵ(a, ιa f

(k)
ℵ (a, b)).

Proof. Induct on k.

The case k = 0 follows straight from the definition of the map f
(0)
ℵ .

For the inductive step;

f
(k+1)
ℵ (a, b) = f

(k)
ℵ (a, ιa fℵ(a, b))

= fℵ(a, ιa f
(k−1)
ℵ (a, ιa fℵ(a, b)))

= fℵ(a, ιa f
(k)
ℵ (a, b))

where the first equality uses the definition of f
(k+1)
ℵ , the second equality is

the inductive hypothesis and the third equality is the definition of f
(k)
ℵ .

From now on we will have to make an assumption about the constant µ,

which is how far we move in each step of the recursive function f
(k)
ℵ . Since

we will later introduce more constants and more conditions we will start a
list of all the assumptions we are making which we can add to later on.

Assumptions 4.10. We assume that the constant µ always satisfies the in-
equality

2µ ≥ 3δ + 2. (4.2)

The right-hand side of inequality (4.2) is chosen so that we can iterate
lemma 4.6. We know that 3δ + 2 bounds d(ιaeb, ιaec) with eb in the support
of fℵ(a, b) and ec in the support of fℵ(a, c) (for suitable vertices a, b, c ∈ V),
but in lemma 4.6 we assume d(b, c) ≤ 2µ, so to iterate the lemma we have
to assume µ satisfies inequality (4.2).

As with fℵ it is helpful to have an idea what the support of f
(k)
ℵ (a, b) is

like. This leads to the following lemma (cf lemma 4.4).
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Lemma 4.11. Let G be a fine, δ-hyperbolic graph. Suppose a, b ∈ V have dis-
tance d(a, b) > ℵ. Pick m ∈ N such that

mµ + ℵ < d(a, b) ≤ (m + 1)µ + ℵ.

Then for all k ∈ {0, . . . , m};

(i) E[a, b; (m − k)µ + ℵ] ⊆ supp( f
(k)
ℵ (a, b));

(ii) For any e ∈ E[a, b; (m − k)µ + ℵ], supp( f
(k)
ℵ (a, b)) ⊆ Fl[a, e; 3δ].

Proof. We induct on k.
The case k = 0 is lemma 4.4.
Now for the inductive step.

(i) Assume E[a, b; (m − k)µ + ℵ] ⊆ supp( f
(k)
ℵ (a, b)). We want to look at

the support of f
(k+1)
ℵ (a, b). For any e ∈ E[a, b; (m − k)µ + ℵ] we know that

any geodesic from a to b restricts to a geodesic from a to ιae. In particular

E[a, b; (m − (k + 1))µ + ℵ] ⊆ E[a, ιae; (m − (k + 1))µ + ℵ].

Lemma 4.4 shows

E[a, ιae; (m − (k + 1))µ + ℵ] ⊆ supp( fℵ(a, ιae))

but by the alternative inductive definition of f
(k+1)
ℵ given in lemma 4.9

we know that supp( fℵ(a, ιae)) ⊆ supp( f
(k+1)
ℵ (a, b)) and bringing this al-

together we obtain

E[a, ιae; (m − (k + 1))µ + ℵ] ⊆ supp( f
(k+1)
ℵ (a, b)).

(ii) Fix e ∈ E[a, b; (m − (k + 1))µ + ℵ]. We need to show that for any

edge e1 ∈ supp( f
(k+1)
ℵ (a, b)) we have dζ(e, e1) ≤ 3δ. By the definition

of f
(k+1)
ℵ there is some e′1 ∈ supp( f

(k)
ℵ (a, b)) with e1 ∈ supp( fℵ(a, ιae′1)).

Pick e′ ∈ E[a, b; (m − k)µ + ℵ] such that there is a geodesic from a to b that

contains both e and e′. Then by part (i) we know e′ ∈ supp( f
(k)
ℵ (a, b)).

The inductive hypothesis says dζ(e′, e′1) ≤ 3δ, and then corollary 2.49
gives d(ιae′, ιae′1) ≤ 3δ + 2 ≤ 2µ. So lemma 4.6 tells us that dζ(e, e1) ≤ 3δ,
as desired.

If we start with two vertices b, c then we already know that fℵ creates
an overlap if d(b, c) is small, and we hope that by iterating this overlap be-

comes larger, in other words we want | f
(k)
ℵ (a, b)− f

(k)
ℵ (a, c)|1 to get smaller.

This is formalised in the following lemma (cf lemma 4.6).

Lemma 4.12. Let G be a fine, δ-hyperbolic graph. Let a, b, c ∈ V be three vertices
satisfying



4. Projecting Along Geodesics 50

• ∃m ∈ N such that d(a, b) = (m + 1)µ + ℵ = d(a, c);

• d(b, c) ≤ 2µ.

For any k ∈ {0, . . . , m}, x ∈ supp


ιa f
(k)
ℵ (a, b)


, and y ∈ supp


ιa f

(k)
ℵ (a, c)


,

d(x, y) ≤ 3δ + 2.

Moreover, if G is uniformly fine then

| f
(k)
ℵ (a, b)− f

(k)
ℵ (a, c)|1 ≤ 2ηk

0

where η0 ∈ (0, 1) is the constant from lemma 4.6.

Proof. We induct on k.
The case k = 0 is exactly lemma 4.6.

For the inductive step, use the alternative recursive definition of f
(k+1)
ℵ

given in lemma 4.9, which says f
(k+1)
ℵ (a, b) = fℵ(a, ιa f

(k)
ℵ (a, b)). So for

any x ∈ supp(ιa f
(k+1)
ℵ (a, b)) there is some bx ∈ supp(ιa f

(k)
ℵ (a, b)) such

that x ∈ supp(ιa fℵ(a, bx)). Similarly for y ∈ supp(ιa f
(k+1)
ℵ (a, c)) there is

a corresponding cy ∈ supp(ιa f
(k)
ℵ (a, c)).

By the inductive hypothesis d(bx, cy) ≤ 3δ+ 2 ≤ 2µ. Thus we can apply
lemma 4.6 to deduce that d(x, y) ≤ 3δ + 2.

Moreover, suppose G is uniformly fine. We keep the notation as in the

proof of lemma 4.6. By definition f
(k+1)
ℵ (a, b) = f

(k)
ℵ (a, ιa fℵ(a, b)). Using the

Q-linearity of f
(k)
ℵ we can proceed analogously to the proof of lemma 4.6

and we get

| f
(k+1)
ℵ (a, b)− f

(k+1)
ℵ (a, c)|1

≤
1

|Eab|
∑

e∈Eab

1

|Fle|
∑

e′∈Fle

1

|Eac|
∑

ē∈Eac

1

|Flē|
∑

ē′∈Flē

| f
(k)
ℵ (a, ιae′)− f

(k)
ℵ (a, ιa ē′)|1.

Lemma 4.6 also tells us that d(ιae′, ιa ē′) ≤ 3δ + 2 ≤ 2µ, hence the inductive
hypothesis gives

| f
(k)
ℵ (a, ιae′)− f

(k)
ℵ (a, ιa ē′)|1 ≤ ηk

0

and therefore

| f
(k+1)
ℵ (a, b)− f

(k+1)
ℵ (a, c)|1

≤
1

|Eab|
∑

e∈Eab

1

|Fle|
∑

e′∈Fle

1

|Eac|
∑

ē∈Eac

1

|Flē|
∑

ē′∈Flē

|e′ − ē′|1ηk
0

but this is just the sum (4.1) multiplied by the constant ηk
0. Hence we con-

clude
| f

(k+1)
ℵ (a, b)− f

(k+1)
ℵ (a, c)|1 ≤ 2ηk+1

0

which finishes the induction.
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4.3 The total projection

Now we consider what happens when we repeatedly project until we
reach the ball of radius ℵ around a.

Definition 4.13. Let G be a fine, δ-hyperbolic graph. Define a Q-linear
map gℵ : QV ⊕ QV → QE on vertices as follows;

For all a, b ∈ V, if d(a, b) > ℵ then there exists an m ∈ N such that

mµ + ℵ < d(a, b) ≤ (m + 1)µ + ℵ

and then

gℵ(a, b) :=


fℵ(a, b) if d(a, b) ≤ ℵ

f
(m)
ℵ (a, b) if d(a, b) > ℵ

.

Remark 4.14. The element gℵ(a, b) ∈ QE is a convex combination if a ̸= b,
and the map gℵ is invariant under the action of Isom(G).

Previous results about f
(k)
ℵ (a, b) immediately carry over to gℵ(a, b). In

particular lemma 4.11 gives;

Lemma 4.15. Let G be a fine, δ-hyperbolic graph. Suppose a, b ∈ V have dis-
tance d(a, b) > ℵ. Pick m ∈ N such that

mµ + ℵ < d(a, b) ≤ (m + 1)µ + ℵ.

Then the following statements hold;

(i) E[a, b;ℵ] ⊆ supp(gℵ(a, b));

(ii) For any e ∈ E[a, b;ℵ], supp(gℵ(a, b)) ⊆ Fl[a, e; 3δ].

Furthermore, lemma 4.12 yields the following lemma;

Lemma 4.16. Let G be a fine, δ-hyperbolic graph. Let a, b, c ∈ V be three vertices
satisfying

• ∃m ∈ N such that d(a, b) = (m + 1)µ + ℵ = d(a, c);

• d(b, c) ≤ 2µ.

Then for all x ∈ supp(ιagℵ(a, b)), and all y ∈ supp(ιagℵ(a, c)),

d(x, y) ≤ 3δ + 2.

Moreover, if G is uniformly fine then

|gℵ(a, b)− gℵ(a, c)|1 ≤ 2ηm
0

where η0 ∈ (0, 1) is the constant from lemma 4.6.
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Up to now we have been assuming that d(b, c) ≤ 2µ, and that they both
lie on a sphere of radius (m + 1)µ + ℵ around a. We want to drop these
conditions on the vertices b, c to get a general result about what happens
when the second variable of gℵ is changed.

However, we will have to assume a bit more about the constant µ. So
we have to update the assumption 4.10 to the following;

Assumptions 4.17. We assume that the constant µ always satisfies the in-
equality

2µ ≥ 7δ + 4. (4.3)

If we consider lemma 4.12 with b = c then we know that the diameter of
the support of ιa f

(k)
ℵ (a, b) is bounded by 3δ + 2. Hence if we have three

vertices a, b, b′ ∈ V and know that there is some vertex x0 in the support

of ιa f
(k)
ℵ (a, b) and some x′0 in the support of ιa f

(k)
ℵ (a, b′) with d(x0, x′0) ≤ δ

then we can bound the distance between an arbitrary element in the sup-

port of ιa f
(k)
ℵ (a, b) and an arbitrary element in the support of ιa f

(k)
ℵ (a, b′)

by 7δ + 4. This is why we now assume that inequality (4.3) holds.

Proposition 4.18. Let G be a uniformly fine, δ-hyperbolic graph. There are con-
stants L > 0, λ ∈ (0, 1) such that for all a, b, b′ ∈ V,

|gℵ(a, b)− gℵ(a, b′)|1 ≤ Lλ(b|b′)a .

Proof. Set L = max


2η

− ℵ
µ

0 , η
−1− ℵ

µ

0


and λ = η

1
µ

0 ∈ (0, 1) where η0 is the

constant from lemma 4.6.

First consider the case (b|b′)a ≤ ℵ. Here we have

|gℵ(a, b)− gℵ(a, b′)|1 ≤ |gℵ(a, b)|1 + |gℵ(a, b′)|1

≤ 2

= 2η
− ℵ

µ

0 η
ℵ
µ

0

≤ 2η
− ℵ

µ

0 η
(b|b′)a

µ

0

≤ Lλ(b|b′)a

and so the proposition is true in this special case.
Now consider the case (b|b′)a > ℵ. Then there is some n ∈ N such that

nµ + ℵ < (b|b′)a ≤ (n + 1)µ + ℵ.
There is also some m ∈ N such that mµ + ℵ < d(a, b) ≤ (m + 1)µ + ℵ.

So m ≥ n since d(a, b) ≥ (b|b′)a. Set k = m − n and S = supp(ιa f
(k)
ℵ (a, b)).

Write ιa f
(k)
ℵ (a, b) = ∑x∈S αxx and then gℵ(a, b) = ∑x∈S αxgℵ(a, x). Observe

that for x ∈ S we have d(a, x) = nµ + ℵ.
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Similarly for b′ we find m′ ≥ n, and analogously define k′, S′, and α′
x′

for x′ ∈ S′. Again, observe that d(a, x′) = nµ + ℵ for all x′ ∈ S′.
We wish to apply lemma 4.16 to a, x, x′ with x ∈ S and x′ ∈ S′ but we

need a bound on the distance between x and x′.
Fix a vertex x0 ∈ V[a, b; nµ + ℵ] and a vertex x′0 ∈ V[a, b′; nµ + ℵ].

Then x0 ∈ S and x′0 ∈ S′ using lemma 4.11(i). Moreover, d(x0, x′0) ≤ δ
by considering a geodesic triangle with corners a, b, b′ and that contains
the two vertices x0, x′0 (this uses the fact d(a, x) = d(a, x′) ≤ (b|b′)a). So
for any x ∈ S and any x′ ∈ S′, using the triangle-inequality together with
lemma 4.12 gives

d(x, x′) = d(x, x0) + d(x0, x′0) + d(x′0, x′)

≤ 3δ + 2 + δ + 3δ + 2

= 7δ + 4

≤ 2µ.

Thus we can apply lemma 4.16 to get

|gℵ(a, x)− gℵ(a, x′)|1 ≤ ηn
0 .

Therefore

|gℵ(a, b)− gℵ(a, b′)|1 =

∑
x∈S

αxgℵ(a, x)− ∑
x′∈S′

α′
x′gℵ(a, x′)


1

≤ ∑
x∈S

∑
x′∈S′

αxα′
x′ |gℵ(a, x)− gℵ(a, x′)|1

≤ ∑
x∈S

∑
x′∈S′

αxα′
x′η

n
0

= ηn
0

≤ η
−1− ℵ

µ

0 η
(b|b′)a

µ

0

≤ Lλ(b|b′)a .

4.4 Varying the initial sphere

Proposition 4.18 gives us some control over what happens when we
change the second variable of gℵ, but we still have no control over what
happens when we change the first variable. The support of gℵ(a, b) (for
d(a, b) large) is contained in the sphere of radius ℵ around a. Even if a′ is
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close to a there need not be a large overlap between E[a, V;ℵ] and E[a′, V;ℵ]
To compensate for this, we take an average over many different initial
spheres.

So we introduce two new constants to designate the start and end of
the range over which we will average. We will use I for the radius of the
smallest initial sphere to be considered, and J for the largest. We also need
a third constant R that will be the radius of the balls in the edge metric
over which we average each gℵ(a, b). This is made formal in the following
definition.

Definition 4.19. Let G be a fine, δ-hyperbolic graph. Define the Q-linear
map g : QV ⊕ QV → QE on vertices a, b ∈ V by

g(a, b) :=
1

1 + J − I

J

∑
ℵ=I

av
B

ζ
R
(gℵ(a, b)).

Some facts about gℵ(a, b) carry straight to g(a, b). For example, g(a, b)
is a convex combination if a ̸= b, the map g is invariant under the action
of Isom(G), and lemma 4.15 gives the following lemma about g(a, b).

Lemma 4.20. Let G be a uniformly fine, δ-hyperbolic graph. Let a, b ∈ V be two
distinct vertices of G with d(a, b) > J. For every ℵ with I ≤ ℵ ≤ J pick an
edge eℵ ∈ E[a, b;ℵ]. Then

(i) Every eℵ is contained in the support of g(a, b);

(ii) For any e ∈ supp(g(a, b)) there exists some ℵ between I and J such that
dζ(e, eℵ) ≤ 3δ + R.

The support of g(a, b) is not necessarily contained in E[a, V] so we can-
not apply ιa to it. Recall that in the definition of a graph (see definition 2.1)
we included the existence of two maps ϕ± : E → V that pick out the end-
points of an edge. These maps can be Q-linearly extended and then we can
take the average of the two end-points of an edge, to wit; let ϕ : QE → QV
be the Q-linear map defined by

ϕ(e) :=
1

2
ϕ+(e) +

1

2
ϕ−(e).

Then the composition ϕg is a Q-bilinear map QV ⊕ QV → QV.

Corollary 4.21. Let G be a uniformly fine, δ-hyperbolic graph. Let a, b ∈ V be
two distinct vertices of G with d(a, b) > J. For every ℵ with I ≤ ℵ ≤ J pick a
vertex uℵ ∈ V[a, b;ℵ]. Then

(i) Every uℵ is in the support of ϕg(a, b);

(ii) For every x ∈ supp(ϕg(a, b)) there exists some ℵ between I and J such
that d(x, uℵ) ≤ 3δ + R + 2 =: C0;
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(iii) diam(supp(ϕg(a, b))) ≤ 2C0 + J − I.

Proof. The first two statements follow from lemma 4.20. The third state-
ment follows from the second statement.

And since av
B

ζ
R

is Q-linear we can use proposition 4.18 to bound how

much g(a, b) changes with b.

Proposition 4.22. Let G be a uniformly fine, δ-hyperbolic graph. There are con-
stants L > 0, λ ∈ (0, 1) such that for all a, b, b′ ∈ V,

|g(a, b)− g(a, b′)|1 ≤ Lλ(b|b′)a .

Proof. Proposition 4.18 tell us that |gℵ(a, b)− gℵ(a, b′)|1 ≤ Lλ(b|b′)a for any ℵ
and then, using the Q-linearity of av

B
ζ
R

we get

av
B

ζ
R
gℵ(a, b)− av

B
ζ
R
gℵ(a, b′)


1
=
av

B
ζ
R
(gℵ(a, b)− gℵ(a, b′))


1

= |gℵ(a, b)− gℵ(a, b′)|1

≤ Lλ(b|b′)a

Then g(a, b)− g(a, b′) is an average of the av
B

ζ
R
gℵ(a, b)− av

B
ζ
R
gℵ(a, b′) so its

l1-norm is also bounded by Lλ(b|b′)a .

For what follows we will need assumptions on the constants R and I.
Hence we add to the assumption 4.17 to now assume the following.

Assumptions 4.23. We assume the constants µ, R, and I are chosen to sat-
isfy the following inequalities;

2µ ≥ 7δ + 4

R ≥ 4δ

I ≥ C0 + 1

where C0 = 3δ + R + 2 is the constant that appears in corollary 4.21(ii). We
will use the lower bound on R to show that there is an overlap in propo-
sition 4.25. The proof of that proposition will be via induction, for which
we need to know that the distance from b to any element in the support
of ϕg(a, b) is strictly less than d(a, b). This fact is the focus of the next
lemma, and needs the lower bound on I.

Lemma 4.24. Let G be a uniformly fine, δ-hyperbolic graph. If a, b ∈ V sat-
isfy d(a, b) > J + 1 then for all x ∈ supp(ϕg(a, b)),

d(x, b) ≤ d(a, b)− 1.
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Proof. Given x ∈ supp(ϕg(a, b)) for any uℵ ∈ V[a, b;ℵ] corollary 4.21 tells
us that there is some ℵ with d(x, uℵ) ≤ C0 where C0 = 3δ + R + 2 as in
corollary 4.21(ii). Then

d(x, b) ≤ d(x, uℵ) + d(uℵ, b)

≤ C0 + d(a, b)− d(a, uℵ)

≤ C0 + d(a, b)− I

≤ d(a, b)− 1.

Next we turn to look at what happens when we change the first vari-
able of g. We consider a special case (as we did when first considering the
effect of changing the second variable). We will need to use hyperbolicity
of the triangle ∆(a, a′, b) around the corner b, so we assume that the ver-
tices a, a′, b ∈ V satisfy |d(a, b)− d(a′, b)| ≤ J − I to ensure that we can find
some ℵ,ℵ′ with I ≤ ℵ,ℵ′ ≤ J such that d(a, b)− ℵ = d(a′, b)− ℵ′ and we
also assume that both (a|b)a′ and (a′|b)a are bounded by J so that we may
apply hyperbolicity to move from the geodesic [a, b] to the geodesic [a′, b].

Proposition 4.25. Let G be a uniformly fine, δ-hyperbolic graph. There is a con-
stant ν ∈ (0, 1) such that for all a, a′, b ∈ V, if

• d(a, b) ≥ J + 1 and d(a′, b) ≥ J + 1

• |d(a, b)− d(a′, b)| ≤ J − I

• (a|b)a′ ≤ J and (a′|b)a ≤ J

then
|g(a, b)− g(a′, b)|1 ≤ 2ν.

Proof. Without loss of generality d(a′, b) ≤ d(a, b). So the first assump-
tion becomes 0 ≤ d(a, b) − d(a′, b) ≤ J − I. Pick an edge e0 ∈ E[a, b; J].
Then supp(gJ(a, b)) ⊆ Fl[a, e0; 3δ] by lemma 4.15. The idea behind the
proof is to show that there is a corresponding edge e′0 ∈ E[a′, b] such that
d(e′0, b) = d(e0, b) ≤ (a|a′)b and I ≤ d(a′, e′0) ≤ J. The first condition allows
us to bound dζ(e0, e′0) and the second condition ensures that e′0 contributes
to g(a′, b). These two facts lead to a bound on the size of the overlap be-
tween g(a, b) and g(a′, b).

So pick an edge e′0 ∈ E[b, a′; d(b, e0)]. Then d′ := d(a′, e′0) ≤ J and from
the first assumption we also obtain

d′ = d(a′, b)− 1 − d(b, e′0)

= d(a′, b)− 1 − d(b, e0)

= d(a′, b)− d(a, b) + d(a, e0)

≥ −(J − I) + J

= I
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Thus I ≤ d′ ≤ J and av
B

ζ
R
(gd′(a′, b)) contributes to g(a′, b).

The picture below shows a geodesic triangle with vertices a, a′, b.

b

a′

a

The (yellow) bars represent the union of the supports of the gℵ(a, b)
and gℵ(a′, b) for I ≤ ℵ ≤ J. The dashed (blue) line is part of a sphere
around b that intersects both (yellow) bars. The thick (green) dots are the
inner points of the triangle.

We know that (a′|b)a ≤ J and so d(e0, b) ≤ (a|a′)b, thus we can apply
hyperbolicity (see lemma 2.50) to get dζ(e0, e′0) ≤ δ.

Also, by lemma 4.15, the support of gJ(a, b) is contained in Fl[a, e0; 3δ].
Hence for all e ∈ supp(gJ(a, b))

dζ(e, e′0) ≤ dζ(e, e0) + dζ(e0, e′0)

≤ 3δ + δ

= 4δ.

Then for any e′ ∈ supp(gd′(a′, b)) we have e′ ∈ Fl[a′, e′0; 3δ] (by lemma 4.15)

and so e′0 ∈ B
ζ
R(e)∩ B

ζ
R(e

′). Thus there is an overlap between av
B

ζ
R
(gJ(a, b))

and av
B

ζ
R
(gd′(a′, b)). We bound this analogously to the proof of lemma 4.6.

av
B

ζ
R
(gJ(a, b))− av

B
ζ
R
(gd′(a′, b))


1

≤ ∑
e∈SJ

∑
e′∈S′

d′

αe

|Bζ
R(e)|

α′
e′

|Bζ
R(e

′)|
∑

ē∈B
ζ
R(e)

∑
ē′∈B

ζ
R(e

′)

|ē − ē′|1

≤ 2


1 −

1

(B
ζ
R)

2


(4.4)

where SJ := supp(gJ(a, b)), S′
d′ := supp(gd′(a′, b)) and we express gJ(a, b)

and gd′(a′, b) as the convex combinations

gJ(a, b) = ∑
e∈SJ

αee , gd′(a′, b) = ∑
e′∈S′

d′

α′
e′e

′.



4. Projecting Along Geodesics 58

So

g(a, b)− g(a′, b)

1

=


1

1 + J − I

J

∑
ℵ=I

av
B

ζ
R
(gℵ(a, b))−

1

1 + J − I

J

∑
ℵ′=I

av
B

ζ
R
(gℵ′(a′, b))


1

≤
1

(1 + J − I)2

J

∑
ℵ,ℵ′=I

av
B

ζ
R
gℵ(a, b)− av

B
ζ
R
(gℵ′(a′, b))


1

.

All these summands are bounded by 2, but the particular summand with
ℵ = J and ℵ′ = d′ can be bounded as in inequality (4.4). Thus

g(a, b)− g(a′, b)

1
≤

1

(1 + J − I)2


2

(1 + J − I)2 − 1


+ 2


1 −

1

(B
ζ
R)

2



= 2


1 −

1

(1 + J − I)2(B
ζ
R)

2


.

Therefore we set

ν = 1 −
1

(1 + J − I)2(B
ζ
R)

2
∈ (0, 1)

to conclude |g(a, b)− g(a′, b)|1 ≤ 2ν.

We end the section by proving theorem 4.1, which summarises what
has been done in this section.

Proof of Theorem 4.1. (i) The map g is invariant by construction, this was
explicitly stated after the definition of g in definition 4.19.

(ii) The support of g(a, b) contains the sets E[a, b;ℵ] for I ≤ ℵ ≤ J as
stated in lemma 4.20, which followed immediately from lemma 4.15, which
itself followed straight from lemma 4.11.

(iii) The support of ϕg(a, b) has distance strictly less than d(a, b) to b by
lemma 4.24.

(v) The diameter of supp


ϕg(a, b)


was bounded in corollary 4.21(iii),
which is an easy corollary of lemma 4.20.

(vi) The bound when varying the second coordinate of g was obtained
in proposition 4.22, but the bulk of the work behind the proposition came
in proposition 4.18 where the bound was obtained for the map gℵ with
arbitrary initial constant ℵ.

(vii) The bound when varying the first coordinate of g was obtained in
proposition 4.25.



5 A New Metric on the Vertex Set

Given a uniformly fine, Gromov hyperbolic graph G we need to use the
map g : QV ⊕ QV → QE from theorem 4.1 to construct a metric on V. In
section 5.1 we will define a function r : QV ⊕QV → [0, ∞), and prove some
properties about this function, which will help for the triangle inequality.
Section 5.2 is about the double difference of this function r. Then in sec-
tion 5.3 we can define the metric d̂ on the vertex set V of the graph G, and
state some properties that this metric satisfies.

5.1 A first attempt at a metric

In chapter 4 we constructed the element ϕg(a, b) ∈ QV for vertices a, b
in a fine, Gromov hyperbolic graph G, by moving b in small steps towards a.
This can also be thought of as moving a one step closer to b, and then we
can count how many steps it takes to move a to b.

Definition 5.1. Let G be a uniformly fine, δ-hyperbolic graph. As in chap-
ter 4 we need to fix the constants µ, R, I, and J satisfying the inequalities
given as assumptions 4.23. The map r : QV ⊕ QV → [0, ∞) is defined re-
cursively, given on vertices a, b ∈ V by

r(a, b) :=





0 if a = b
1 if 0 < d(a, b) ≤ J + 1
1 + r (ϕg(a, b), b) if d(a, b) > J + 1

and then Q-linearly extending. To see that the map is well-defined we need
to use theorem 4.1(iii) to say that the distance from b to any vertex in the



5. A New Metric on the Vertex Set 60

support of ϕg(a, b) is strictly less than d(a, b), thus the recursion must stop
in ≤ d(a, b) steps.

The map r : QV ⊕ QV → [0, ∞) is our first attempt at a metric. It is
positive-definite but not symmetric. However we can symmetrise it later.
We want something resembling the triangle-inequality. Since r is not sym-
metric, we will consider |r(a, b)− r(a′, b)| and |r(a, b)− r(a, b′)| separately.
But before that, we compare the function r to the original metric d on V.

Proposition 5.2. Let G be a uniformly fine, δ-hyperbolic graph. For all ver-
tices a, b ∈ V we have

1

J + 1
d(a, b) ≤ r(a, b) ≤ d(a, b).

Proof. Induct on d(a, b).
If a = b then by definition r(a, b) = 0.
If 0 < d(a, b) ≤ J + 1 then r(a, b) = 1 ≤ d(a, b) but also

1

J + 1
d(a, b) ≤

1

J + 1
(J + 1) = 1.

If d(a, b) > J + 1 then r(a, b) = 1 + r(ϕg(a, b), b). For any x in the
support of ϕg(a, b) theorem 4.1(iii) tells us that d(x, b) ≤ d(a, b)− 1, so the
inductive hypothesis gives

1

J + 1
d(x, b) ≤ r(x, b) ≤ d(x, b).

If we write ϕg(a, b) = ∑x∈V αxx where αx ∈ [0, 1] and ∑x∈V αx = 1, which
can be done since ϕg(a, b) is a convex combination, then

r(a, b) = 1 + ∑
x∈V

αxr(x, b)

≤ 1 + ∑
x∈V

αxd(x, b)

≤ 1 + ∑
x∈V

αx


d(a, b)− 1



= d(a, b).

Moreover, for any x ∈ supp(ϕg(a, b)),

d(x, b) ≥ d(a, b)− d(a, x) ≥ d(a, b)− J
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and so

r(a, b) = 1 + ∑
x∈V

αxr(x, b)

≥ 1 + ∑
x∈V

αx

J + 1
d(x, b)

≥ 1 + ∑
x∈V

αx

J + 1


d(a, b)− J



≥
1

J + 1
d(a, b).

Remark 5.3. The function r : QV ⊕ QV → [0, ∞) is invariant under the
action of Isom(G), i.e. if ψ is an isometry of G (with respect to the word
metric d) then for all a, b ∈ V

r

ψ(a), ψ(b)


= r(a, b).

For what follows we need to make more assumptions about the con-
stants I and J, so we add to assumptions 4.23 to get;

Assumptions 5.4. We assume the constants µ, R, I, and J are chosen to sat-
isfy the following inequalities;

2µ ≥ 7δ + 4

R ≥ 4δ

I ≥ C0 + δ + 1

J − I ≥ C0 + δ + 1 + I

where C0 is the constant from theorem 4.1(iv). We have increased the lower
bound on I and introduced a lower bound on J. These new assumptions
are there to allow us to show that the distance from a′ to an element in the
support of ϕg(a, b) is strictly less than d(a, a′), under certain conditions on
the vertices a, a′, b. This is for the induction in the proof of lemma 5.5.

Now we turn to the triangle inequality. The next lemma gives a bound
for |r(a, b)− r(a′, b)| in terms of d(a, a′).

Lemma 5.5. Let G be a uniformly fine, δ-hyperbolic graph. There exists a con-
stant N ≥ 0 such that for all vertices a, a′, b ∈ V we have

|r(a, b)− r(a′, b)| ≤ d(a, a′) + N.

Proof. Without loss of generality, d(a′, b) ≤ d(a, b). Pick N ≥ J + 2 large
enough to satisfy the equation

(1 − ν)N ≥ 2ν(C0 + J) (5.1)
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where ν ∈ (0, 1) is the constant from theorem 4.1(vii) and C0 is the constant
from theorem 4.1(iv).

The idea behind the proof is to move at least one of a, a′ closer to b and
use the inductive definition of r, hence we induct over d(a, b) + d(a′, b). But
first we need a start point for the induction.

If d(a′, b) ≤ J + 1 then r(a′, b) ∈ {0, 1} by definition. Thus

|r(a, b)− r(a′, b)| ≤ r(a, b) + r(a′, b)

≤ d(a, b) + 1

≤ d(a, a′) + d(a′, b) + 1

≤ d(a, a′) + (J + 1) + 1

≤ d(a, a′) + N.

Furthermore, if d(a, b) + d(a′, b) ≤ 2(J + 1) then d(a′, b) ≤ J + 1, so for
the inductive step we may assume J + 1 ≤ d(a′, b) ≤ d(a, b). Then by the
inductive definition r(a, b) = 1 + r(ϕg(a, b), b) and similarly for r(a′, b).

The idea is to move a to ϕg(a, b), which is closer to b, by theorem 4.1(iii).
So moving a to ϕg(a, b) reduces d(a, b) + d(a′, b) and we can apply the in-
ductive hypothesis. However, ϕg(a, b) need not be closer to a′, and may
even be further away. Hence we split the proof into three cases;

Case 1 When a and a′ are about the same distance away from b and this
distance is large in comparison to d(a, a′).

Case 2 When a and a′ are about the same distance away from b but d(a, a′)
is comparatively large.

Case 3 When a and a′ are not roughly the same distance away from b.

In the first case we will move a to ϕg(a, b) and a′ to ϕg(a′, b) to get
closer to b. This may increase d(a, a′) but we can use theorem 4.1(vii) to
compensate for this possibility.

In the second case we will move only a to ϕg(a, b), but using the hy-
perbolic nature of the graph we can show that we have moved closer to a′

too.
In the third case, we move only a, and this moves us closer to a′ too

because a was much further away from b than a′ is.
Before tackling these three cases we fix some notation.
Let ∆ = ∆([a, b], [a′, b], [a, a′]) be a geodesic triangle with vertices a, a′, b.

For I ≤ ℵ ≤ J let uℵ be the vertex of [a, b] whose distance from a is ℵ, and
let u′

ℵ be the vertex of [a′, b] whose distance from a′ is ℵ.

Case 1: Assume the following;

• d(a, b)− d(a′, b) ≤ J − I
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• (a|b)a′ ≤ J and (a′|b)a ≤ J

i.e., assume that a and a′ are about the same distance away from b and
that this distance is large in comparison to d(a, a′). We are interested in the
expression

|r(a, b)− r(a′, b)| = |r(ϕg(a, b), b)− r(ϕg(a′, b), b)|

= |r(ϕ(g(a, b)− g(a′, b)), b)|.

There is some cancellation between g(a, b) and g(a′, b), which is forum-
lated in theorem 4.1(vii). To use this cancellation we define two new ele-
ments g+, g− ∈ QV by:

• g+ − g− = g(a, b)− g(a′, b)

• all coefficients of g± are positive

• supp(g+) ∩ supp(g−) = ∅

These three conditions determine g+ and g−. All we have done is cancel out
as much as possible from g(a, b)− g(a′, b). In particular, since the support
of g+ is disjoint from the support of g− we have

|g+|1 + |g−|1 = |g+ − g−|1

= |g(a, b)− g(a′, b)|1

≤ 2ν.

Moreover, if we let ϵ : QV → Q be the augmentation homomorphism then
the non-negativity of the coefficients of g± yields |g±|1 = ϵ(g±). Then

|g+|1 − |g−|1 = ϵ(g+)− ϵ(g−)

= ϵ(g+ − g−)

= ϵ(g(a, b)− g(a′, b))

= ϵ(g(a, b))− ϵ(g(a′, b))

= |g(a, b)|1 − |g(a′, b)|1

= 0

Therefore |g+|1 = |g−|1.
Combining the previous two facts gives

|g±|1 =
1

2
(|g+|1 + |g−|1) ≤ ν.

Write ϕg+ = ∑x∈V αxx and g− = ∑x′∈V α′
x′x

′.
Observe that the support of ϕg+ is contained in the support of ϕg(a, b)

and the support of ϕg− is contained in the support of ϕg(a′, b) and thus
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theorem 4.1(iii) tells us that for all x ∈ supp(ϕg+) and all x′ ∈ supp(ϕg−)
we have

d(x, b) + d(x′, b) ≤ d(a, b)− 1 + d(a′, b)− 1.

Hence we can apply the inductive hypothesis to x, x′, b to obtain

|r(x, b)− r(x′, b)| ≤ d(x, x′) + N.

Moreover, we know from theorem 4.1(iv) that there is some ℵ and some ℵ′

between I and J such that dζ(x, uℵ) ≤ C0 and dζ(x′, u′
ℵ′) ≤ C0. Therefore

|r(x, b)− r(x′, b)| ≤ d(x, uℵ) + d(uℵ, u′
ℵ′) + d(u′

ℵ′ , x′) + N

≤ 2C0 + (J + d(a, a′) + J) + N.

Now we have

|r(a, b)− r(a′, b)| = |r(ϕg+, b)− r(ϕg−, b)|

=

∑
x∈V

αxr(x, b)− ∑
x′∈V

α′
x′r(x′, b)



≤ ∑
x,x′∈V

αxα′
x′

|g±|1

r(x, b)− r(x′, b)


≤ ∑
x,x′∈V

αxα′
x′

|g±|1
(2C0 + 2J + d(a, a′) + N)

= |g±|1(2C0 + 2J + d(a, a′) + N)

≤ ν(2C0 + 2J + d(a, a′) + N)

≤ d(a, a′) + N

since we chose N large enough to satisfy equation (5.1). This finishes case 1.

Case 2: Assume that J < (a′|b)a.
Here the Gromov product is large and so any element in the support

of ϕg(a, b) should be closer to a′ than a is, and so we only move a.
Write ϕg(a, b) = ∑x∈V αxx with ∑x∈V αx = 1. For any x in the support

of ϕg(a, b) we can find an ℵ such that d(x, uℵ) ≤ C0. Let vℵ be the point
on the geodesic [a, a′] with d(a, vℵ) = ℵ = d(a, uℵ). Since ℵ ≤ J < (a′|b)a

hyperbolicity gives d(uℵ, vℵ) ≤ δ. Then the distance from x to a′ is;

d(x, a′) ≤ d(x, uℵ) + d(uℵ, vℵ) + d(vℵ, a′)

≤ C0 + δ + (d(a, a′)− d(a, vℵ))

= C0 + δ + d(a, a′)− ℵ

≤ C0 + δ + d(a, a′)− I

≤ d(a, a′)− 1.



5. A New Metric on the Vertex Set 65

Using theorem 4.1(iii) we can apply the inductive hypothesis to x, a′, b.
Hence;

|r(a, b)− r(a′, b)| = |1 + r(ϕg(a, b), b)− r(a′, b)|

≤ 1 + ∑
x∈V

αx|r(x, b)− r(a′, b)|

≤ 1 + ∑
x∈V

αx


d(x, a′) + N)



≤ 1 + N + ∑
x∈V

αx(d(a, a′)− 1)

= d(a, a′) + N.

This finishes case 2.

Case 3: Assume that |d(a, b) − d(a′, b)| > J − I, i.e. assume that a is
much further away from b than a′ is. Since we have already covered the
possibility J < (a′|b)a in case 2, we may also assume that (a′|b)a ≤ J.

Write ϕg(a, b) = ∑x∈V αxx with ∑x∈V αx = 1. For any x in the support
of ϕg(a, b) take ℵ with d(x, uℵ) ≤ C0. We aim to show that d(x, a′) is smaller
than d(a, a′).

If ℵ = d(uℵ, a) ≤ (a′|b)a then we can repeat the argument in case 2 to
get d(x, a′) ≤ d(a, a′)− 1.

If d(uℵ, a) > (a′|b)a then d(b, uℵ) ≤ (a|a′)b and we use hyperbolicity
to move to [a′, b] and bound how far we need to travel along [a′, b] to a′.
Let wℵ ∈ [a′, b] satisfy d(b, wℵ) = d(b, uℵ). Then hyperbolicity tells us
that d(wℵ, uℵ) ≤ δ. Thus

d(uℵ, a′) ≤ d(uℵ, wℵ) + d(wℵ, a′)

≤ δ + (d(a′, b)− d(b, wℵ))

= δ + d(a′, b)− d(b, uℵ)

= δ + d(a′, b)− (d(a, b)− d(a, uℵ))

≤ δ + d(a′, b)− d(a, b) + J

≤ δ − (J − I) + J

= δ + I

Moreover we know

d(a, a′) ≥ |d(a, b)− d(a′, b)| > J − I

and so

d(x, a′) ≤ d(x, uℵ) + d(uℵ, a′)

≤ C0 + (δ + I)

≤ (d(a, a′)− (J − I)) + C0 + δ + I

≤ d(a, a′)− 1.
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Then we proceed as in case 2 and conclude

|r(a, b)− r(a′, b)| = d(a, a′) + N.

This finishes case 3.
That covers all possible cases and therefore we have finished the induc-

tive proof.

The following corollary can be thought of as a means for bounding the
size of error terms in later proofs.

Corollary 5.6. Let G be a uniformly fine, δ-hyperbolic graph. Let ϵ : QV → Q

be the augmentation homomorphism. There is a constant D > 0 such that for
any b ∈ V and any z ∈ QV if ϵ(z) = 0 then

|r(z, b)| ≤ D|z|1diam(supp(z)).

Proof. Let z = ∑v∈V αvv. Then ∑v∈V αv = 0 since z is a cycle. So we can
write z in the form z = ∑i∈I βi(ui − wi) where βi > 0 and ∑i∈I βi =

1
2 |z|1.

Set D = 1
2 (1 + N), where N is the constant from lemma 5.5. Applying

lemma 5.5 gives

|r(z, b)| ≤ ∑
i∈I

βi|r(ui, b)− r(wi, b)|

≤ ∑
i∈I

βi


d(ui, wi) + N



≤
1

2
|z|1

diam(supp(z)) + N



≤ D|z|1diam(supp(z)).

The next lemma goes towards proving that geodesics with respect to d
will not be not far away from being geodesics with respect to the new met-
ric (which is defined in section 5.3).

Lemma 5.7. Let G be a uniformly fine, δ-hyperbolic graph. There exists a con-
stant C1 ≥ 0 such that if α is a geodesic in G from a ∈ V to b ∈ V then for all
vertices b0 on α and all vertices ã ∈ N(α[a,b0], C0)

|r(ã, b)− r(ã, b0)− r(b0, b)| ≤ C1.

a b
b0

ã

ã′
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Proof. We induct on d(ã, b0). Let L > 0 and λ ∈ (0, 1) be the constants from
proposition 4.18, N > 0 be the constant from lemma 5.5, and D > 0 be the
constant from corollary 5.6. In the induction we will acquire error terms
but these error terms become exponentially small as d(ã, b) increases, so
we take as our inductive hypothesis that

|r(ã, b)− r(ã, b0)− r(b0, b)| ≤ C′
1

d(ã,b0)

∑
k=0

λk

where C′
1 := max{2(J + 1)+ 4C0 + N, DLλ−2C0(2C0 + 2J)}. If we can prove

this then setting C1 = C′
1 ∑k∈N λk = C′

1/1 − λ finishes the proof.
To start the induction, assume d(ã, b0) ≤ J + 1 + 2C0. Then

|r(ã, b)− r(ã, b0)− r(b0, b)| ≤ |r(ã, b)− r(b0, b)|+ r(ã, b0)

≤ (d(ã, b0) + N) + d(ã, b0)

≤ 2(J + 1 + 2C0) + N

≤ C′
1

d(ã,b0)

∑
k=0

λk

using lemma 5.5, proposition 5.2 and the definition of C′
1.

For the inductive step assume d(ã, b0) > J + 1 + 2C0. By the induc-
tive definition r(ã, b0) = 1 + r(ϕg(ã, b0), b0). Also, there is some vertex ã′

on α[a,b0] such that d(ã, ã′) ≤ C0. Then d(ã′, b) = d(ã′, b0) + d(b0, b) and

d(ã, b) ≥ d(ã′, b)− d(ã, ã′) ≥ d(ã′, b0)− d(ã, ã′) ≥ d(ã, b0)− 2d(ã, ã′)

> J + 1 + 2C0 − 2C0 = J + 1

so r(ã, b) = 1 + r(ϕg(ã, b), b). Thus

|r(ã, b)− r(ã, b0)− r(b0, b)| = |r(ϕg(ã, b), b)− r(ϕg(ã, b0), b0)− r(b0, b)|

≤ |r(ϕg(ã, b0), b)− r(ϕg(ã, b0), b0)− r(b0, b)|

+|r(ϕg(ã, b)− ϕg(ã, b0), b)|.

We will bound these two terms separately, using the inductive hypoth-
esis for the first term (the inductive term) and corollary 5.6 for the sec-
ond term (the error term). We start by considering the inductive term.
Write ϕg(ã, b0) = ∑y∈V αyy with ∑y∈V αy = 1. Then

|r(ϕg(ã, b0), b)− r(ϕg(ã, b0), b0)− r(b0, b)|

≤ ∑
y∈V

αy|r(y, b)− r(y, b0)− r(b0, b)|
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Theorem 4.1(iii) gives d(y, b0) ≤ d(ã, b0) − 1 for any y ∈ supp(ϕg(ã, b0))
and so we can apply the inductive hypothesis to get

|r(y, b)− r(y, b0)− r(b0, b)| ≤ C′
1

d(y,b0)

∑
k=0

λk

≤ C′
1

d(ã,b0)−1

∑
k=0

λk.

We still need to bound the error term |r(ϕg(ã, b)− ϕg(ã, b0), b)|. Apply-
ing corollary 5.6 gives

|r(ϕg(ã, b)− ϕg(ã, b0), b)|

≤ D|g(ã, b)− g(ã, b0)|1diam(supp(ϕg(ã, b)− ϕg(ã, b0))).

and by theorem 4.1(vi) we have

|g(ã, b)− g(ã, b0)|1 ≤ Lλ(b|b0)ã .

Hence we need a lower bound for (b|b0)ã and an upper bound for the diam-
eter of the support of ϕg(ã, b)− ϕg(ã, b0). We consider the Gromov product
first.

(b|b0)ã =
1

2
(d(ã, b) + d(ã, b0)− d(b, b0))

≥
1

2


d(ã′, b)− C0 + d(ã′, b0)− C0 − d(b, b0)



= d(ã′, b0)− C0

≥ d(ã, b0)− 2C0.

So λ(b|b0)ã ≤ λd(ã,b0)−2C0 . We still need an upper bound for the diameter
of the support. Theorem 4.1(v) tells us that the diameter of the support
of ϕg(ã, b) is bounded by 2C0 + J − I, as is the diameter of the support
of ϕg(ã, b0). We can bound the distance from an element in the support
of ϕg(ã, b) to an element in the support of ϕg(ã, b0) by going via the ver-
tex ã, hence we get a bound of 2C0 + 2J. Therefore

|r(ϕg(ã, b)− ϕg(ã, b0), b)| ≤ DLλd(ã,b0)−2C0(2C0 + 2J).

Bringing everything together gives

|r(ã, b)− r(ã, b0)− r(b0, b)| ≤ C′
1

d(ã,b0)−1

∑
k=0

λk + DLλd(ã,b0)−2C0(2C0 + 2J)

≤ C′
1

d(ã,b0)

∑
k=0

λk.

This finishes the inductive proof and the lemma follows as given at the start
of this proof.
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For the triangle inequality we also need to look at |r(a, b)− r(a, b′)|.

Proposition 5.8. Let G be a uniformly fine, δ-hyperbolic graph. There exists a
constant M > 0 such that for all a, b, b′ ∈ V

|r(a, b)− r(a, b′)| ≤ M d(b, b′).

The proof will be by induction but in this induction there will be error
terms so it is easier to use a different inductive hypothesis, which is given
in the next lemma.

Lemma 5.9. Let G be a uniformly fine, δ-hyperbolic graph. For any a, b, b′ ∈ V
we have

|r(a, b)− r(a, b′)| ≤ d(b, b′) + 2(J + 1) +
1

2
L
(b|b′)a

∑
j=1

λj(2j + d(b, b′)).

The term 2(J + 1) is for the start of the induction, and the sum bounds
the size of the error terms that we pick up. Before proving lemma 5.9 we
will show how it implies proposition 5.8.

Proof of Proposition 5.8. If d(b, b′) = 0 then b = b′ and the inequality is
trivially satisfied (both sides equal zero). So assume that d(b, b′) > 0. In
particular d(b, b′) ≥ 1. Set M = 1 + 2(J + 1) + 1

2 L ∑
∞
j=1 λj(2j + 1), where

the infinte sum ∑
∞
j=1 λj(2j + 1) converges by using the ratio test. Then by

lemma 5.9;

|r(a, b)− r(a, b′)| ≤ d(b, b′) + 2(J + 1) +
1

2
L
(b|b′)a

∑
j=1

λj(2j + d(b, b′))

≤


1 + 2(J + 1) +

1

2
L

∞

∑
j=1

λj(2j + 1)


d(b, b′)

= M d(b, b′).

We still need to prove lemma 5.9.

Proof of Lemma 5.9. Without loss of generality d(a, b) ≥ d(a, b′). The proof
is by induction on (b|b′)a.

If (b|b′)a ≤ J + 1 then we use proposition 5.2;

|r(a, b)− r(a, b′)| ≤ r(a, b) + r(a, b′)

≤ d(a, b) + d(a, b′)

= d(b, b′) + 2(b|b′)a

≤ d(b, b′) + 2(J + 1).
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This is the starting point for our induction.
So assume that (b|b′)a > J + 1. Then d(a, b) ≥ d(a, b′) ≥ (b|b′)a > J + 1

and so

|r(a, b)− r(a, b′)| = |1 + r(ϕg(a, b), b)− 1 − r(ϕg(a, b′), b′)|

= |r(ϕg(a, b), b)− r(ϕg(a, b′), b′)|.

The idea is to say that since the Gromov product (b|b′)a is large there
is a large overlap between g(a, b) and g(a, b′), and for any element in the
support of both g(a, b) and g(a, b′) we can apply the inductive hypothesis.
We still need to worry about the elements in the support of one but not
both, however these elements should not contribute much to the final total,
and will be swallowed in the sum.

Formally, define new chains g+, g−, g0 by saying that all their coeffi-
cients are positive, and that they satisfy;

• supp(g+) ∩ supp(g−) = ∅

• g(a, b)− g(a, b′) = g+ − g−

• g(a, b) = g+ + g0

• g(a, b′) = g− + g0.

Then g0 represents the overlap and g± represent the parts outside the
overlap. Using the linearity of r we have

|r(ϕg(a, b), b)− r(ϕg(a, b′), b′)|

= |r(ϕg+, b) + r(ϕg0, b)− r(ϕg0, b′)− r(ϕg−, b′)|

≤ |r(ϕg+, b)|+ |r(ϕg0, b)− r(ϕg0, b′)|+ |r(ϕg−, b′)|.

We want to bound these three terms. The middle term is the inductive term.
The first and third terms are error terms.

We start with the error terms |r(ϕg+, b)| and |r(ϕg−, b′)|. The contribu-
tion from these terms should be small because |g+|1 and |g−|1 are small.
More precisely, by considering the augmentation homomorphism (as in
case 1 of the proof of lemma 5.5) we know

|g+|1 − |g−|1 = |g(a, b)|1 − |g(a, b′)|1 = 0

and thus |g+|1 = |g−|1. Moreover it follows from theorem 4.1(vi) that

2|g±|1 = |g+|1 + |g−|1 = |g+ − g−|1 = |g(a, b)− g(a, b′)|1 ≤ Lλ(b|b′)a .
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Write ϕg+ = ∑x∈V α+
x x. Theorem 4.1(iii) tells us that d(x, b) ≤ d(a, b)−

1 for all x ∈ supp(ϕg+) ⊆ supp(ϕg(a, b)). Hence proposition 5.2 gives;

|r(ϕg+, b)| ≤ ∑
x∈V

α+
x |r(x, b)|

≤ ∑
x∈V

α+
x d(x, b)

≤ ∑
x∈V

α+
x d(a, b)

= |g+|1d(a, b)

Similarly |r(ϕg−, b′)| ≤ |g−|1d(a, b′). Therefore

|r(ϕg+, b)|+ |r(ϕg−, b′)| ≤ |g+|1d(a, b) + |g−|1d(a, b′)

≤
1

2
Lλ(b|b′)a


d(a, b) + d(a, b′)



=
1

2
Lλ(b|b′)a


d(b, b′) + 2(b|b′)a


.

Now consider the inductive term |r(ϕg0, b)− r(ϕg0, b′)|. In barycentric
coordinate write ϕg0 = ∑y∈V α0

yy so

|r(ϕg0, b)− r(ϕg0, b′)| ≤ ∑
y∈V

α0
y|r(y, b)− r(y, b′)|.

We want to apply the inductive hypothesis to |r(y, b)− r(y, b′)|, so we
need to know that (b|b′)y < (b|b′)a. The support of ϕg0 is contained in both
the support of ϕg(a, b) and the support of ϕg(a, b′) then theorem 4.1(iii)
tells us that d(y, b) ≤ d(a, b)− 1 and d(y, b′) ≤ d(a, b′)− 1. Thus

(b|b′)y =
1

2


d(y, b) + d(y, b′)− d(b, b′)



≤
1

2


d(a, b)− 1 + d(a, b′)− 1 − d(b, b′)



= (b|b′)a − 1.

Hence I can apply the inductive hypothesis to get

|r(y, b)− r(y, b′)| ≤ d(b, b′) + 2(J + 1) +
1

2
L
(b|b′)y

∑
j=1

λj

2j + d(b, b′)



≤ d(b, b′) + 2(J + 1) +
1

2
L
(b|b′)a−1

∑
j=1

λj

2j + d(b, b′)



and so

|r(ϕg0, b)− r(ϕg0, b′)|

≤ |g0|1


d(b, b′) + 2(J + 1) +

1

2
L
(b|b′)a−1

∑
j=1

λj(2j + d(b, b′))


.
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Combining this with the bound on the other two terms together with the
fact |g0|1 ≤ 1 gives

|r(a, b)− r(a, b′)| ≤ |r(g+, b)|+ |r(g0, b)− r(g0, b′)|+ |r(g−, b′)|

≤
1

2
Lλ(b|b′)a


d(b, b′) + 2(b|b′)a



+d(b, b′) + 2(J + 1) +
1

2
L
(b|b′)a−1

∑
j=1

λj(2j + d(b, b′))

= d(b, b′) + 2(J + 1) +
1

2
L
(b|b′)a

∑
j=1

λj(2j + d(b, b′))

as claimed.

5.2 Convergence of the double difference

The reason for altering the metric on G was to be have better conver-
gence properties at the boundary, namely we wanted to extend the double
difference to the boundary (see section 3.4). Recall from proposition 3.16
that the double difference can be written as

(a, a′|b, b′) =
1

2


d(a, b)− d(a, b′)− d(a′, b) + d(a′, b′)


.

Hence we look at R(a, a′, b, b′) := r(a, b)− r(a, b′)− r(a′, b) + r(a′, b′). Our
goal for this section is the following proposition about the behaviour of R.

Proposition 5.10. Let G be a uniformly fine, δ-hyperbolic graph. There exists
constants C ≥ 0 and ω ∈ (0, 1) such that for all a, a′, b, b′ ∈ V, if d(a, a′) ≤ 1
and d(b, b′) ≤ 1 then

|R(a, a′, b, b′)| ≤ Cωd(a,b).

We will use induction on d(a, b) + d(a′, b) to prove proposition 5.10, for
which we will move a and/or a′ towards b and b′. However, when we do
this we will not always be able to assume d(x, x′) ≤ 1 to apply the inductive
hypothesis to R(x, x′, b, b′). Therefore we have to allow d(a, a′) to be larger
in the inductive hypothesis. This forces us to take account of d(a, a′) in the
right-hand side of the inequality.

To make life easier, we fix some notation:

D(a, a′, b) := d(a, b) + d(a′, b)

ζ := 2C0 + 2(J − I) + δ.
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Then the inductive hypothesis we will actually use is the following.

Proposition 5.11. Let G be a uniformly fine, δ-hyperbolic graph. There are con-
stants A, B > 0 and ρ ∈ (0, 1) such that for any a, a′, b, b′ ∈ V, if d(a, a′) ≤ ζ
and d(b, b′) ≤ 1 then

|R(a, a′, b, b′)| ≤ (A d(a, a′) + B)ρD(a,a′,b).

Before proving the more induction-friendly proposition 5.11, we show
how it implies proposition 5.10

Proof of Proposition 5.10. In proposition 5.10 we assume that d(a, a′) ≤ 1, so
proposition 5.11 tells us

|R(a, a′, b, b′)| ≤ (A + B)ρD(a,a′,b).

Moreover D(a, a′, b) ≥ 2d(a, b)− 1 since d(a′, b) ≥ d(a, b)− 1 by the trian-
gle inequality. Hence

|R(a, a′, b, b′)| ≤ (A + B)ρ2d(a,b)−1

and proposition 5.10 follows from setting the constants C = (A + B)ρ−1

and ω = ρ2.

Throughout the rest of this section we keep the notation and assump-
tions as in proposition 5.11, namely we assume the following;

Assumptions. Suppose G is a uniformly fine, δ-hyperbolic graph and as-
sume a, a′, b, b′ ∈ V are vertices such that d(a, a′) ≤ ζ and d(b, b′) ≤ 1.
Moreover assume, without loss of generality, that d(a, b) ≥ d(a′, b).

We are also still assuming that the constants µ, R, I and J satisfy the
inequalities as laid out as assumptions 5.4.

The proof of proposition 5.11 will be an induction on D(a, a′, b). We
begin with a lemma which will start the induction.

Lemma 5.12. For any ξ > 0, if D(a, a′, b) ≤ ξ then

|R(a, a′, b, b′)| ≤ 2ξ + 2.

Proof. We use proposition 5.2 as follows:

|R(a, a′, b, b′)| ≤ r(a, b) + r(a, b′) + r(a′, b) + r(a′, b′)

≤ d(a, b) + d(a, b′) + d(a′, b) + d(a′, b′)

≤ 2d(a, b) + d(b, b′) + 2d(a′, b) + d(b, b′)

≤ 2ξ + 2.
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Now we need to prove the inductive step.
We shall split into two cases and get an inequality in each case.
The first case is when the distance from a to b is much larger than the

distance from a′ to b. This is covered in lemma 5.13.
The second case is when a and a′ have roughly the same distance to b.

This is covered in lemma 5.14.
After this has been done we will need to show that the constants A, B, ρ

can be chosen such that these inequalities are always satisfied, which is
done in lemma 5.24.

Note that (a′|b)a ≥ (a|b)a′ since d(a, b) ≥ d(a′, b) (by assumption). Also,
by the definition of ζ and the assumptions 5.4

d(a, a′) ≤ ζ

= 2C0 + 2(J − I) + δ

≤ 2J − δ − 2

< J (5.2)

In particular, both (a|b)a′ < J and (a′|b)a < J.
First we consider the case where d(a, b) is much larger than d(a′, b).

Lemma 5.13. If D(a, a′, b) > 2(J + 2) and d(a, b)− d(a′, b) > J − I then

|R(a, a′, b, b′)| ≤ (A d(a, a′)− A + B)ρD(a,a′,b)−J−C0

+2DLλ
1
2 (D(a,a′,b)−ζ−2)(2C0 + J − I).

Proof. The idea is use ϕg to move a towards b and b′, and by doing so
we will also have moved closer to a′. There will be a large overlap be-
tween ϕg(a, b) and ϕg(a, b′), on which we can apply the inductive hypoth-
esis and this will give the first term on the right-hand side of the inequality.
Then there are two small error terms given by the part of ϕg(a, b) that is
not also in ϕg(a, b′) and vice versa. These two error terms will be bounded
using corollary 5.6 and yield the second term of the inequality.

That is the rough idea. Now we have to go through the argument for-
mally. We are assuming that d(a, b) ≥ d(a′, b). Hence

2d(a, b) ≥ d(a, b) + d(a′, b) = D(a, a′, b) > 2(J + 2)

and so d(a, b) > J + 2. Then, by definition, r(a, b) = 1 + r(ϕg(a, b), b).
Since d(b, b′) ≤ 1 the triangle inequality yields

d(a, b′) ≥ d(a, b)− d(b, b′) > J + 1

and so r(a, b′) = 1 + r(ϕg(a, b′), b′). Therefore

|R(a, a′, b, b′)| = |r(ϕg(a, b), b)− r(ϕg(a, b′), b′)− r(a′, b) + r(a′, b′)|.
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As it is, the right-hand side cannot be written in terms of summands of
the form R(x, a′, b, b′). However, there will be an overlap in the support
of g(a, b) and the support of g(a, b′) and on this overlap we could try to use
the inductive hypothesis. We make this formal, as in the proof of lemma 5.9,
by defining new 0-chains g+, g−, g0 to have the following conditions;

• all coefficients of g+, g−, g0 are positive

• g(a, b)− g(a, b′) = g+ − g−

• g(a, b)− g+ = g0 = g(a, b′)− g−

• supp(g+) ∩ supp(g−) = ∅.

It follows, using a similar argument as the one in the proof of lemma 5.9,
that

α := |g+|1 = |g−|1 ≤
1

2
Lλ(b|b′)a .

Here the chain g0 represents the overlap. Now

|R(a, a′, b, b′)|

= |r(ϕg(a, b), b)− r(ϕg(a, b′), b′)− r(a′, b) + r(a′, b′)|

= |r(ϕg+, b) + r(ϕg0, b)− r(ϕg−, b′)− r(ϕg0, b′)− r(a′, b) + r(a′, b′)|

= |R(ϕg0, a′, b, b′) + r(ϕg+, b)− r(ϕg−, b′)|.

The function R is not linear so for any arbitrary element ∑x∈V αxx ∈ QV the
equality R(∑x∈V αxx, a′, b, b′) = ∑x∈V αxR(x, a′, b, b′) does not necessarily
hold but it does hold if ∑x∈V αx = 1. Here |g0|1 = 1 − α. To get around this
problem, we fix a vertex x0 ∈ V[a, b; I] and consider ϕg0 + αx0;

|R(a, a′, b, b′)|

= |R(ϕg0, a′, b, b′) + r(ϕg+, b)− r(ϕg−, b′)|

= |R(ϕg0 + αx0, a′, b, b′) + r(ϕg+ − αx0, b)− r(ϕg− − αx0, b′)|

≤ |R(ϕg0 + αx0, a′, b, b′)|+ |r(ϕg+ − αx0, b)|+ |r(ϕg− − αx0, b′)|.

Now we have an inductive term and two error terms, which can be
bounded using corollary 5.6. We know |ϕg± − αx0|1 ≤ 2α but we need to
bound the diameter of the support of ϕg± − αx0. For this we need to bound
the diameter of the support of ϕg± as well as their maximal distances to x0.
Observe that supp(g+) ⊆ supp(g(a, b)) and x0 ∈ supp(ϕg(a, b)), which
follows from theorem 4.1(ii). Then theorem 4.1(v) shows that the diameter
of the support of ϕg+ − αx0 is bounded by 2C0 + J − I.

Similarly supp(ϕg−) ⊆ supp(ϕg(a, b′)) whose diameter is bounded
by 2C0 + J − I. However we do not necessarily have x0 ∈ supp(ϕg(a, b′))
so it remains to bound the maximal distance from x0 to an element in the
support of ϕg−.
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Fix a geodesic triangle ∆ with corners a, b, b′ such that ∆ contains the
point x0, and let x′0 be the vertex of ∆ between a and b′ whose distance
to a is I. Then x′0 ∈ supp(ϕg(a, b′)) and d(x′0, y) ≤ C0 + J − I for any
element y ∈ supp(ϕg−) using theorem 4.1(ii).

We want to use hyperbolicity to get d(x0, x′0) ≤ δ but for this we need
to know that (b|b′)a ≥ I. Recall that d(a, b) ≥ d(a′, b) and then;

(b|b′)a =
1

2
(d(a, b) + d(a, b′)− d(b, b′))

≥
1

2
(d(a, b) + d(a, b)− 2d(b, b′))

≥
1

2
(D(a, a′, b)− 2) (5.3)

≥ I.

So hyperbolicity gives d(x0, x′0) ≤ δ and since C0 ≥ δ we conclude that

diam(supp(ϕg± − αx0)) ≤ 2C0 + J − I.

Therefore corollary 5.6 gives

|r(ϕg± − αx0, b)| ≤ D|ϕg± − αx0|1diam(supp(ϕg± − αx0))

≤ DLλ(b|b′)a(2C0 + J − I).

We want the power of λ in terms of D(a, a′, b) and not (b|b′)a. However,
inequality (5.3) gives (b|b′)a ≥ 1

2 (D(a, a′, b) − 2) ≥ 1
2 (D(a, a′, b) − ζ − 2).

Thus
|r(ϕg± − αx0, b)| ≤ DLλ

1
2 (D(a,a′,b)−ζ−2)(2C0 + J − I).

Now consider the inductive term |R(ϕg0 + αx0, a, b, b′)|. Using barycen-
tric coordinates write ϕg0 + αx0 = ∑x∈V αxx. Then

∑
x∈V

αx = |ϕg0 + αx0|1 = |ϕg0|1 + α = 1.

Thus R(ϕg0 + αx0, a, b, b′) = ∑x∈V αxR(x, a, b, b′).
Before we can apply the inductive hypothesis to R(x, a, b, b′) we need to

know that d(x, a) ≤ ζ and D(x, a′, b) < D(a, a′, b).
Observe that supp(ϕg0) ⊆ supp(ϕg(a, b)). Moreover it follows from

lemma 4.15 that x0 ∈ supp(ϕgI(a, b)). Then for all x ∈ supp(ϕg0 + αx0)
theorem 4.1(iii) says d(x, b) ≤ d(a, b)− 1 and so

D(x, a′, b) = d(x, b) + d(a′, b) ≤ D(a, a′, b)− 1.

We still need to show d(x, a′) ≤ ζ before we can use the inductive hy-
pothesis. Consider a geodesic triangle ∆ with corners a, a′, b such that ∆

contains x0. For I ≤ ℵ ≤ J let uℵ ∈ [a, b] satisfy d(a, uℵ) = ℵ. In
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particular uI = x0. To bound d(x, a) we need to consider the possibili-
ties ℵ ≤ (a′|b)a and ℵ > (a′|b)a separately.

Suppose ℵ ≤ (a′|b)a. Let vℵ ∈ [a, a′] be the vertex with d(vℵ, a) = ℵ. By
hyperbolicity d(uℵ, vℵ) ≤ δ. Then using theorem 4.1(iv)

d(x, a′) ≤ d(x, uℵ) + d(uℵ, vℵ) + d(vℵ, a′)

≤ C0 + δ + d(a, a′)− I

≤ d(a, a′)− 1.

In particular, d(x, a′) ≤ d(a, a′) ≤ ζ.
So suppose ℵ > (a′|b)a and let wℵ be the vertex of the [a′, b] in the

triangle ∆ with d(wℵ, b) = d(uℵ, b). Hyperbolicity tells us d(uℵ, wℵ) ≤ δ.
Therefore

d(x, a′) ≤ d(x, uℵ) + d(uℵ, wℵ) + d(wℵ, a′)

≤ C0 + δ + d(a′, b)− d(wℵ, b)

= C0 + δ + d(a′, b)− d(uℵ, b)

= C0 + δ + d(a′, b)− d(a, b) + d(a, uℵ)

≤ C0 + δ − (J − I) + J

≤ J − I − 1

≤ d(a, b)− d(a′, b)− 1

≤ d(a, a′)− 1

and in particular, d(x, a′) ≤ d(a, a′) ≤ ζ.
Now the inductive hypothesis holds and

|R(x, a′, b, b′)| ≤ (A d(x, a′) + B)ρD(x,a′,b)

≤ (A d(a, a′)− A + B)ρD(x,a′,b)

We need to remove the dependence on x so we need an upper bound
for ρD(x,a′,b). Since ρ ∈ (0, 1), we need a lower bound on D(x, a′, b);

D(x, a′, b) = d(x, b) + d(a′, b)

≥ d(a, b)− d(a, uℵ)− d(uℵ, x) + d(a′, b)

≥ d(a, b)− J − C0 + d(a′, b)

= D(a, a′, b)− (J + C0).

Therefore

|R(x, a′, b, b′)| ≤ (A d(a, a′)− A + B)ρD(a,a′,b)−(J−C0).
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and so

|R(ϕg0 + αx0, a′, b, b′)| ≤ ∑
x∈V

αx|R(x, a′, b, b′)|

≤ ∑
x∈V

αx(A d(a, a′)− A + B)ρD(a,a′,b)−(J−C0)

= (A d(a, a′)− A + B)ρD(a,a′,b)−(J−C0).

So to conclude the proof, we put these terms together and obtain

|R(a, a′, b, b′)| ≤ |R(ϕg0 + αx0, a′, b, b′)|

+|r(ϕg+ − αx0, b)|+ |r(ϕg− − αx0, b′)|

≤ (A d(a, a′)− A + B)ρD(a,a′,b)−(J−C0)

+2DLλ
1
2 (D(a,a′,b)−ζ−2)(2C0 + J − I)

which is exactly the inequality that the lemma claims to be true.

Next consider the case where d(a, b) is roughly the same as d(a′, b). Set

ξ = 2 max


J + 1,

ln 2 − ln L

ln λ


+ 2ζ + 2. (5.4)

We aim for the following lemma;

Lemma 5.14. Suppose D(a, a′, b) ≥ ξ + 1. If d := d(a, b)− d(a′, b) ≤ J − I
then there exists some constant η2 ∈ (0, 1) such that

|R(a, a′, b, b′)| ≤ η2(Aζ + B)ρD(a,a′,b)−2(C0+J)

+4DLλ
1
2 (D(a,a′,b)−ζ−2)(2C0 + J − I).

The idea here is to move both a and a′. As in the proof of lemma 5.13 we
consider the overlap between ϕg(a, b) and ϕg(a, b′). But we also consider
the overlap between ϕg(a′, b) and ϕg(a′, b′). This gives us four error terms
and something to which we can apply the inductive hypothesis.

However, there is an overlap of the overlaps, and on this double overlap
the double difference R will vanish. This is where the constant η2 will come
from.

Before we can do this we need to know that d(a, b) > J + 1 so that we
do use the recursive definition of r. We need this for all four pairings of
vertices.

Lemma 5.15. Suppose D(a, a′, b) > ξ. Then

d(a, b) > J + 1, d(a, b′) > J + 1, d(a′, b) > J + 1, d(a′, b′) > J + 1.
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Proof. These four inequalities follow from the triangle inequality and the
assumption d(a, b) ≥ d(a′, b).

d(a, b) ≥
1

2


d(a, b) + d(a′, b)


>

1

2
ξ ≥ J + 1 + ζ + 1.

d(a, b′) ≥ d(a, b)− d(b, b′) > J + 1.

d(a′, b) ≥ d(a, b)− d(a, a′) > J + 1 + 1.

d(a′, b′) ≥ d(a′, b)− d(b, b′) > J + 1.

This tells us that r(a, b) = 1 + r(ϕg(a, b), b) and so on for the other
pairings. Hence

R(a, a′, b, b′) = r(ϕg(a, b), b)− r(ϕg(a, b′), b′)

−r(ϕg(a′, b), b) + r(ϕg(a′, b′), b′).

Recall that g(a, b) = 1
1+J−I ∑

J
ℵ=I av

B
ζ
R
gℵ(a, b). The condition d ≤ J − I

means that J − d ≥ I. The idea is to use an argument similar to the proof of
lemma 5.13 to split r(ϕg(a, b), b)− r(ϕg(a, b′), b′) into four terms,

r(ϕg(a, b), b)− r(ϕg(a, b′), b′) = r(ϕg0 + αy0, b)− r(ϕg0 + αy0, b′)

+r(ϕg+ − αy0, b)− r(ϕg− − αy0, b′)

for some well-chosen y0 ∈ V. The third and fourth terms are error terms
and can be bounded using corollary 5.6. We can also do this for a′ in place
of a, although we want to use the same y0. This leaves the expression

r(ϕg0 + αy0, b)− r(ϕg0 + αy0, b′)− r(ϕg′0 + α′y0, b) + r(ϕg′0 + α′y0, b′)

= R(ϕg0 + αy0, ϕg′0 + α′y0, b, b′)

and here we want to use an argument similar to the one used in case 1 of
the proof of lemma 5.5; we want to use the cancellation between ϕg0 + αy0

and ϕg′0 + α′y0.
To summarise, we need to pick a suitable y0, split up once, bound the

terms involving cycles, split up a second time, and apply the inductive
hypothesis.

For I ≤ ℵ ≤ J define new elements gℵ,+, gℵ,−, gℵ,0 ∈ QE by

• all coefficients are positive

• g(a, b)− gℵ,+ = gℵ,0 = g(a, b′)− gℵ,−

• gℵ(a, b)− gℵ(a, b′) = gℵ,+ − gℵ,−

• supp(gℵ,+) ∩ supp(gℵ,−) = ∅.
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Then set g+ = 1
1+J−I ∑

J
ℵ=I av

B
ζ
R
(gℵ,+). Similarly we can define g− and g0.

Observe that g(a, b) = g+ + g0 and g(a, b′) = g− + g0 but the supports
of g+ and g− are not necessarily disjoint.

Later on it will be important that we split prior to taking the averages,
which is why we have deviated slightly from the method of proof in lem-
mas 5.9 and 5.13.

For bounding the error terms we need to first bound the size of |gℵ,±|1
and |g′ℵ,±|1.

Lemma 5.16. For all ℵ,

αℵ := |gℵ,+|1 = |gℵ,−|1 ≤
1

2
Lλ

1
2 (D(a,a′,b)−ζ−2).

Proof. Using the argument in the proof of lemma 5.9 we get that

|gℵ,+|1 = |gℵ,−|1 ≤
1

2
Lλ(b|b′)a .

(It was shown for g instead of gℵ but the proof is identical.) So we need
to find a lower bound for the Gromov product (b|b′)a. We are still assum-
ing d(a, b) ≥ d(a′, b) so inequality (5.3) in the proof of lemma 5.13 still
holds, i.e. (b|b′)a ≥ 1

2 (D(a, a′, b)− 2). Combining this with the inequality
for |gℵ,±|1 finishes the proof of the lemma.

Analogously, we can define g′ℵ,+, g′ℵ,−, gℵ,0 for a′ in place of a. There is a
version of lemma 5.16 here;

Lemma 5.17. For all ℵ,

α′
ℵ := |g′ℵ,+|1 = |g′ℵ,−|1 ≤

1

2
Lλ

1
2 (D(a,a′,b)−ζ−2).

Proof. Using the same argument as the proof of lemma 5.16 gives

|g′ℵ,+|1 = |g′ℵ,−|1 ≤
1

2
Lλ(b|b′)a′

and so we need a lower bound of (b|b′)a′ ;

(b|b′)a′ =
1

2
(d(a′, b) + d(a′, b′)− d(b, b′))

≥
1

2
(d(a, b)− d(a, a′) + d(a′, b)− 2d(b, b′))

≥
1

2
(D(a, a′, b)− ζ − 2) (5.5)

thus we get the inequality as claimed.
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Before we get to the inductive part we quickly deal with the error terms.

Lemma 5.18. Suppose D(a, a′, b) ≥ ξ + 1. Given any vertex y0 ∈ V[a, b; J] all
four terms

• |r(ϕg+ − αy0, b)|

• |r(ϕg− − αy0, b′)|

• |r(ϕg′+ − α′y0, b)|

• |r(ϕg′− − α′y0, b′)|

are bounded from above by the expression

DL(2C0 + J − I)λ
1
2 (D(a,a′,b)−ζ−2). (5.6)

Proof. We want to use corollary 5.6.
We already know that ϕg+ − αy0 is a cycle in QV but we need to bound

the diameter of its support. The support of ϕg+ is contained in the support
of ϕg(a, b) and it follows from theorem 4.1(ii) that y0 ∈ supp(ϕg(a, b)).
Then theorem 4.1(v) tells us that the diameter of the support of ϕg+ − αy0

is bounded by 2C0 + J − I.
Therefore, using lemma 5.16 with corollary 5.6 gives

|r(ϕg+ − αy0, b)| ≤ DL(2C0 + J − I)λ
1
2 (D(a,a′,b)−ζ−2).

We want to do a similar thing for the other terms.
The support of ϕg− is contained in the support of ϕg(a, b′) so using the

argument as above all we need to do is bound the distance from an ele-
ment in the support of ϕg(a, b′) to y0. Consider a geodesic triangle with
corners a, b, b′ that contains the point y0. Inequality (5.3) in the proof of
lemma 5.13 states (b|b′)a ≥ 1

2 (D(a, a′, b) − 2). But D(a, a′, b) ≥ ξ by as-
sumption and then from the definition of ξ (see equation (5.4)) we ob-
tain (b|b′)a ≥ J. Hence we can use hyperbolicity to go from y0 to the
geodesic [a, b′]. Using this, together with theorem 4.1(v), for every y in
the support of ϕg(a, b′);

d(y, y0) ≤ C0 + J − I + δ ≤ 2C0 + J − I.

Therefore we can bound |r(ϕg− − αy0, b′)|1.
We want to use a similar argument to bound the remaining two terms.

We need to use lemma 5.17 instead of lemma 5.16 but the rest of the ar-
gument is very similar. Observe that the support of ϕg′+, ϕg′− is contained
in the support of ϕg(a′, b), ϕg(a′, b′) respectively. Hence the only thing we
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need to do is bound the maximal distance from y0 to the an element in the
support of ϕg(a′, b) or ϕg(a′, b′).

For y ∈ supp(ϕg(a′, b)) we can consider a geodesic triangle ∆ whose
corners are a, a′, b and that contains the point y0, and then the assump-
tion (a′|b)a allows us to use hyperbolicity around the vertex b. This to-
gether with theorem 4.1(iv) gives d(y, y0) ≤ C0 + J − I + δ. This leads to
the bound for |r(ϕg′+ − α′y0, b)|.

For y′ ∈ supp(ϕg(a′, b′)) we need to go further and consider a geodesic
triangle ∆′ whose corners are a′, b, b′ such that it shares the side [a′, b] with
the triangle ∆, as in the picture below.

a

a′

b
b′

y

y0

Inequality (5.5) states (b|b′)a′ ≥
1
2 (D(a, a′, b)− ζ − 2), and by assump-

tion this leads to (b|b′)a′ ≥ J. Hence we can consider hyperbolicity in ∆′

around the vertex a′ and conclude that d(y′, y0) ≤ C0 + J − I + 2δ, where
again we also need to use theorem 4.1(iv). Thus we get the bound on the
term |r(ϕg′− − α′y0, b′)|.

Now we can move on to the term |R(ϕg0 + αy0, ϕg′0 + α′y0, b, b′)|. The
idea is to show that there is an overlap between ϕg0 + αy0 and ϕg′0 + α′y0 on
which R = 0 and use an argument similar to that in the proof of lemma 5.9.

Once again we define new elements in QV; fix an element y0 ∈ V[a, b; J]
and define h+, h−, h0 ∈ QV by the following properties

• all coefficients are positive

• h+ − h− = ϕg0 + αy0 − (ϕg′0 + α′y0)

• ϕg0 + αy0 − h+ = h0 = ϕg′0 + α′y0

• supp(h+) ∩ supp(h−) = ∅.

So h0 represents the overlap. These chains depend on the choice of y0

in V[a, b; J] but from now on we keep y0 fixed so it is suppressed in the
notation.

For any x ∈ V, R(x, x, b, b′) = 0, so h0 does not contribute anything and
we need only consider R(h+, h−, b, b′). Hence we try to find a lower bound
for |h0|1, i.e. a lower bound for how much cancels out.

The idea is to show that any edge e0 ∈ E[a, b; J] is R-close to every el-
ement in the support of gJ,0 and to every element in the support of g′J−d,0.
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Then the coefficient of e0 in av
B

ζ
R
gJ,0 is at least |gJ,0|1/B

ζ
R, where B

ζ
R is the max-

imum size of a ball of radius R in the edge metric dζ , which is finite by
lemma 2.47 and the comments following it. This allows us to bound the
coefficient of y0 in ϕav

B
ζ
R
gJ,0 from below by |gJ,0|1/2B

ζ
R. Similarly we will get

a lower bound for the coefficient of y0 in ϕav
B

ζ
R
g′J−d,0 of |g′J−d,0|1/2B

ζ
R. From

this we get a lower bound on |h0|1.
First we look for a lower bound of |gJ,0|1 and |g′J−d,0|1.

Lemma 5.19. If D(a, a′, b) ≥ ξ + 1 then |gJ,0|1 ≥ 1 − λ and |g′J−d,0|1 ≥ 1 − λ.

Proof. Note that |gJ,0|1 = 1− αJ ≥ 1− 1
2 Lλ

1
2 (D(a,a′,b)−ζ−2) using lemma 5.16.

Moreover, we have

1

2
(D(a, a′, b)− ζ − 2) ≥

ln 2 − ln L

ln λ
+ 1

by the definition of ξ. Hence λ
1
2 (D(a,a′,b)−ζ−2) ≤ 2

L λ and so |gJ,0|1 ≥ 1 − λ.
Similarly |g′J−d,0|1 ≥ 1− λ, except we need to use lemma 5.17 instead of

lemma 5.16.

We can use the lower bounds in lemma 5.19 to find lower bounds for
the coefficient of y0 in ϕav

B
ζ
R
(gJ,0) and in ϕav

B
ζ
R
(g′J−d,0), which will allow

us to get the bound in the following lemma.

Lemma 5.20. Suppose D(a, a′, b) ≥ ξ + 1. If d := d(a, b)− d(a′, b) ≤ J − I
then there is a constant η1 ∈ (0, 1) such that for all I ≤ ℵ,ℵ′ ≤ J;

(i)
ϕav

B
ζ
R
(gℵ,0) + αℵy0


1
= 1 =

ϕav
B

ζ
R
(g′ℵ′,0) + α′

ℵ′y0


1
;

(ii)
ϕav

B
ζ
R
(gJ,0) + αJy0 −


ϕav

B
ζ
R
(g′J−d,0) + α′

J−dy0


1
≤ 2η1.

Proof. For the first part;

|ϕav
B

ζ
R
(gℵ,0) + αℵy0|1 = |gℵ,0|1 + αℵ = 1

and similarly for |ϕav
B

ζ
R
(g′ℵ′,0) + α′

ℵ′y0|1.

For the second part, we look at the contribution from y0 to find a bound
on how much of the coefficient of y0 gets cancelled. Let β J be the coefficient
of y0 in ϕav

B
ζ
R
(gJ,0) and let β′

J−d be the coefficient of y0 in ϕav
B

ζ
R
(g′J−d,0).

Then

|ϕav
B

ζ
R
(gJ,0) + αJy0 − (ϕav

B
ζ
R
(g′J−d,0) + α′

J−dy0)|1

≤ |ϕav
B

ζ
R
(gJ,0)− β Jy0|1 + αJ

+|ϕav
B

ζ
R
(g′J−d,0)− β′

J−dy0|1 + α′
J−d + |β J − β′

J−d|

= |gJ,0|1 − β J + αJ + |g′J−d,0|1 − β′
J−d + α′

J−d + |β J − β′
J−d|

= 2 − 2 min{β J , β′
J−d}
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and so we need a lower bound for β J and β′
J−d.

The vertex y0 ∈ V[a, b; J] must be the end-point of an edge e0 ∈ E[a, b; J]
and by lemma 4.15 this edge is contained in the support of gJ(a, b). The
support of gJ,0 is also contained in the support of gJ(a, b) so for any edge e
in the support of gJ,0 it follows from lemma 4.15 that dζ(e0, e) ≤ 3δ ≤ R.

So e0 is contained in B
ζ
R(e) for any edge e in the support of gJ,0 and thus

we know that β J ≥ |gJ,0|1/2B
ζ
R. Then we can apply lemma 5.19 to deduce

that β J ≥ (1 − λ)/2B
ζ
R.

Analogously, if we can show that e0 is R-close to any edge in the support
of g′J−d,0 then we would know that β′

J−d ≥ (1 − λ)/2B
ζ
R.

Fix an edge e′0 ∈ E[a′, b; J − d]. The support of g′J−d,0 is contained in

the support of g(a′, b), hence lemma 4.15 tells us that the support of g′J−d,0

is contained in Fl[a′, e′0; 3δ]. We picked e′0 such that d(b, e′0) = d(b, e0), and
the fact (a′|b)a < J (see inequality (5.2)) gives d(b, e0) ≤ (a|a′)b so by the
edge-hyperbolicity of G (given in lemma 2.50) dζ(e0, e′0) ≤ δ. Therefore, for
any edge e in the support of g′J−d,0 we deduce dζ(e, e0) ≤ 4δ ≤ R.

Thus β′
J−d ≥ (1 − λ)/2B

ζ
R.

So both β J and β′
J−d are bounded from below by (1 − λ)/2B

ζ
R. Therefore

|ϕav
B

ζ
R
(gJ,0) + αJy0 − (ϕav

B
ζ
R
(g′J−d,0) + α′

J−dy0)|1 ≤ 2 − 2 min{β J , β′
J−d}

≤ 2 − 2


1 − λ

2B
ζ
R



= 2η1

where η1 := 1 − 1−λ

2B
ζ
R

.

Now we need to use this to give a lower bound on |h0|1, which equates
to an upper bound on |h+|1 and |h−|1.

Lemma 5.21. Suppose D(a, a′, b) ≥ ξ + 1. If d := d(a, b)− d(a′, b) ≤ J − I
then there exists η2 ∈ (0, 1) such that;

(i) |h+|1 = |h−|1

(ii) |h±|1 ≤ η2.

Proof. The first fact can be proven using the augmentation homomorphism,
see case 1 of the proof of lemma 5.5 for an example of how the argument
works.

So we just need to bound |h±|1. Since all the coefficients are positive
and the supports are disjoint we know |h+|1 + |h−|1 = |h+ − h−|1. Then
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using the definitions gives

|h±|1 =
1

2
|ϕg0 + αy0 − (ϕg′0 + α′y0)|1

≤
1

2(1 + J − I)2

J

∑
ℵ,ℵ′=I

ϕav
B

ζ
R
(gℵ,0) + αℵy0 − (ϕav

B
ζ
R
(g′ℵ′,0) + α′

ℵ′y0)

1

Every summand is bounded by 2, and furthermore lemma 5.20 tells us that
the summand with ℵ = J and ℵ′ = J − d is bounded by 2η1 with η1 ∈ (0, 1).
So this gives

|h±|1 ≤
1

2(1 + J − I)2


2

(1 + J − I)2 − 1


+ 2η1



= 1 −
1 − η1

(1 + J − I)2

and setting η2 = 1− 1−η1

(1+J−I)2 ∈ (0, 1) completes the proof of the lemma.

This means that if we write h+ = ∑x∈V α+
x x and h− = ∑x′∈V α−

x′x
′ then

R(h+, h−, b, b′) =
1

|h±|1
∑

x,x′∈V

α+
x α−

x′R(x, x′, b, b′).

Now we want to apply our inductive hypothesis to R(x, x′, b, b′). For this,
we need to know that the conditions for the inductive hypothesis are sat-
isfied, namely we need d(x, x′) ≤ ζ and D(x, x′, b) < D(a, a′, b). More-
over, after we have applied the inductive hypothesis we will want to trans-
late back from being in terms of d(x, x′) and D(x, x′, b) to being in terms
of d(a, a′) and D(a, a′, b).

Lemma 5.22. Suppose D(a, a′, b) ≥ ξ + 1. If d := d(a, b)− d(a′, b) ≤ J − I
then for any x ∈ supp(h+) and any x′ ∈ supp(h−)

(i) D(a, a′, b)− 2(C0 + J) ≤ D(x, x′, b) ≤ D(a, a′, b)− 2;

(ii) d(x, x′) ≤ ζ.

Proof. (i) The support of h+ is contained in the support of ϕg0 + αy0, and
the support of g0 is contained in both the support of g(a, b) and the support
of g(a, b′), so it is enough to prove the lemma for x ∈ supp(ϕg(a, b)). For
such x we have d(x, b) ≤ d(a, b)− 1 by theorem 4.1(iii). Moreover,

d(x, b) ≥ d(a, b)− d(a, x) ≥ d(a, b)− (C0 + J)

using theorem 4.1(iv).
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a b

x

Similarly for any x′ ∈ supp(ϕg′0) ⊆ supp(ϕg(a′, b)) we have

d(a′, b)− (C0 − J) ≤ d(x′, b) ≤ d(a′, b)− 1.

We still need to find bounds for the possibility that x or x′ is y0. By defini-
tion y0 ∈ V[a, b; J] so d(y0, b) = d(a, b)− J.

(ii) It follows from theorem 4.1(ii) that y0 ∈ supp(ϕg(a, b)) so we fix an
arbitrary x ∈ supp(ϕg(a, b)) and consider two possibilities depending on
whether x′ = y0 or x′ is in the support of ϕg(a′, b). .

If x′ = y0 then d(x, x′) ≤ diam(supp(ϕg(a, b))) ≤ 2C0 + J − I ≤ ζ,
using theorem 4.1(v).

b

a′

a

x

x′

Recall that (a′|b)a ≤ J, which follows from inequality (5.2). So we can use
theorem 4.1(iv) together with the assumption d(a, b) − d(a′, b) ≤ J − I to
show that if x′ ∈ supp(ϕg(a′, b)) then

d(x, x′) ≤ 2C0 + δ + 2(J − I) ≤ ζ.

(See the picture above.)
Therefore for any x ∈ supp(ϕg0 + αy0) and x′ ∈ supp(ϕg′0 + α′y0) we

have d(x, x′) ≤ ζ.

With lemma 5.22 we can apply the inductive hypothesis to R(x, x′, b, b′)
for x ∈ supp(h+) and x′ ∈ supp(h−).

Corollary 5.23. Suppose D(a, a′, b) ≥ ξ + 1. If d := d(a, b)− d(a′, b) ≤ J − I
then

|R(h+, h−, b, b′)| ≤ η2(Aζ + B)ρD(a,a′,b)−2(C0+J)

where η2 is the constant from lemma 5.21.
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Proof. Write h+ = ∑x∈V α+
x x and h− = ∑x′∈V α−

x′x
′ so that

R(h+, h−, b, b′) =
1

|h±|1
∑

x,x′∈V

α+
x α−

x′R(x, x′, b, b′).

Lemma 5.22(ii) shows d(x, x′) ≤ ζ and D(x, x′, b) ≤ D(a, a′, b)− 2 so we
can apply the inductive hypothesis to R(x, x′, b, b′) to get

|R(x, x′, b, b′)| ≤ (A d(x, x′) + B)ρD(x,x′,b).

Moreover lemma 5.22(i) tells us D(x, x′, b) ≥ D(a, a′, b)− 2(C0 + J). There-
fore

|R(h+, h−, b, b′)| ≤
1

|h±|1
∑

x,x′∈V

α+
x α−

x′(Aζ + B)ρD(a,a′,b)−2(C0+J)

= |h±|1(Aζ + B)ρD(a,a′,b)−2(C0+J)

and |h±|1 was bounded by η2 in lemma 5.21.

And so we can finish the inductive step in proving proposition 5.11 for
this case, i.e. we can give the proof of lemma 5.14;

Proof of Lemma 5.14. Split up R(a, a′, b, b′) into the five terms

R(a, a′, b, b′) = R(ϕg0 + αy0, ϕg′0 + α′y0, b, b′)

+ r(ϕg+ − αy0, b)

− r(ϕg− − αy0, b′)

− r(ϕg′+ − α′y0, b)

+ r(ϕg′− − α′y0, b′).

The inductive term R(ϕg0 + αy0, ϕg′0 + α′y0, b, b′) = R(h+, h−, b, b′) using
corollary 5.23 and lemma 5.18 yields a bound for the four error terms, and
combining these bounds gives

|R(a, a′, b, b′)| ≤ 4DLλ
1
2 (D(a,a′,b)−ζ−2)(2C0 + J − I)

+η2(Aζ + B)ρD(a,a′,b)−2(C0+J).

To finish the proof of proposition 5.11 it remains to show that we can
choose the constants A, B and ρ appropriately.

Lemma 5.24. For any ξ > 0 there exists constants A, B > 0 and ρ ∈ (0, 1)
such that for any a, a′ with 1 ≤ d(a, a′) ≤ ζ and all b, b′ with d(b, b′) ≤ 1 the
following three inequalities hold;

2ξ + 2 ≤ Aλ
1
2 ξ (5.7)
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(A d(a, a′)− A + B)ρ−J−C0 + K


λ

1
2

ρ

D(a,a′,b)

≤ A d(a, a′) + B (5.8)

η2(Aζ + B)ρ−2(C0+J) + 2K


λ

1
2

ρ

D(a,a′,b)

≤ A d(a, a′) + B (5.9)

where K := 2DL(2C0 + J − I)λ− 1
2 (ζ+2).

Proof. First pick A > K large enough such that 2ξ + 2 ≤ Aλ
1
2 ξ . Then

pick ρ1 ∈ (λ
1
2 , 1) such that η2 < ρ

2(C0+J)
1 , which is possible since η2 < 1

and ρ
2(C0+J)
1 ↗ 1 as ρ1 ↗ 1.

Next choose B > A large enough such that

B ≥
η2 Aζρ

−2(C0+J)
1 + 2K

1 − η2 ρ
−2(C0+J)
1

and finally pick ρ ∈ (ρ1, 1) such that for any l = 1, . . . , ζ

ρ−(C0+J) ≤
Al + B − K

A(l − 1) + B

which is possible since B > A > K and ρ−(C0+J) ↘ 1 as ρ ↗ 1.
It remains to show that the three inequalities (5.7), (5.8), and (5.9) are

satisfied. The constant A was chosen to satisfy inequality (5.7) but we need
to check the other two. For inequality (5.8);

(Ad(a, a′)− A + B)ρ−(C0+J) + K


λ

1
2

ρ

D(a,a′,b)

≤ (Ad(a, a′)− A + B)ρ−(C0+J) + K

≤ A d(a, a′) + B

where the first inequality uses ρ ≥ ρ1 ≥ λ
1
2 and the second inequality

follows from the choice of ρ, since d(a, a′) ≤ ζ. For inequality (5.9);

η2(Aζ + B)ρ−2(C0+J) + 2K


λ

1
2

ρ

D(a,a′,b)

≤ η2(Aζ + B)ρ
−2(C0+J)
1 + 2K

≤ B

≤ A d(a, a′) + B

where the first inequality uses ρ ≥ ρ1 ≥ λ
1
2 , and the second inequality uses

the choice of B.

Now we can finally prove proposition 5.11;
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Proof of Proposition 5.11. Note that if a = a′ or b = b′ then R(a, a′, b, b′) = 0
so we may assume they are distinct. In particular d(a, a′) ≥ 1. Set

ξ = 2 max


J + 1,

ln 2 − ln L

ln λ


+ 2ζ + 2.

Then use lemma 5.24 to get constants A, B > 0 and ρ ∈ (0, 1) satisfying the
inequalities (5.7), (5.8), and (5.9).

We induct on D(a, a′, b).
For D(a, a′, b) ≤ ξ lemma 5.12 says |R(a, a′, b, b′)| ≤ 2ξ + 2 but then by

the choice of A we know |R(a, a′, b, b′)| ≤ Aλ
1
2 ξ . We picked ρ ≥ λ

1
2 hence

|R(a, a′, b, b′)| ≤ Aρξ ≤ AρD(a,a′,b) ≤ (A d(a, a′) + B)ρD(a,a′,b).

For the inductive step assume D(a, a′, b) ≥ ξ + 1.
If |d(a, b) − d(a′, b)| > J − I then lemma 5.13 combined with inequal-

ity (5.8) gives

|R(a, a′, b, b′)| ≤ (A d(a, a′) + B)ρD(a,a′,b)

as desired. Otherwise |d(a, b)− d(a′, b)| ≤ J − I and then use lemma 5.14
and inequality (5.9).

Thus we have finished the proof of proposition 5.11 and with that we
have also proven proposition 5.10.

5.3 A metric on vertices

With the results we have already established we can now follow the
arguments in [MY02] to define a metric. First we must symmetrise the
function.

Definition 5.25. Let G be a uniformly fine, δ-hyperbolic graph. Define a
function s : V × V → R≥0 by

s(x, y) :=
1

2


r(x, y) + r(y, x)


.

Some properties of r immediately carry over to s and we summarise
these properties in the following lemma.

Lemma 5.26. Let G be a uniformly fine, δ-hyperbolic graph.
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(i) The function s : V × V → R≥0 is invariant under the diagonal action
of Isom(G) on V × V.

(ii) There exists a constant J + 1 ≥ 1 such that for all a, b ∈ V we have

1

J + 1
d(a, b) ≤ s(a, b) ≤ d(a, b).

(iii) There exist constants N, M ≥ 1 such that for all a, a′, b ∈ V

|s(a, b)− s(a′, b)| ≤
1

2
(1 + M)d(a, a′) +

1

2
N.

(iv) There exists a constant C1 > 0 such that for a, b ∈ V and x ∈ V[a, b]

|s(a, b)− s(a.x)− s(x, b)| ≤ C1.

(v) There exists constants C > 0 and ω ∈ (0, 1) such that for a, a′, b, b′ ∈ V
if d(a, a′) ≤ 1 and d(b, b′) ≤ 1 then

|s(a, b)− s(a′, b)− s(a, b′) + s(a′, b′)| ≤ Cωd(a,b).

Proof. The function is Isom(G)-invariant since r is Isom(G)-invariant. The
second part comparing s to d follows from proposition 5.2. The third part
combines lemma 5.5 and proposition 5.8. The fifth part, which is a double
difference type result, comes from proposition 5.10. The fourth part, which
says geodesics with respect to d are almost geodesic with respect to the
wannabe metric s, uses a degenerate form of lemma 5.7, where b0 = x
and ã = a, to bound

|r(a, b)− r(a, x) + r(x, b)| ≤ C1.

We have to apply lemma 5.7 a second time, swapping the roles of a and b
to get

|r(b, a)− r(b, x)− r(x, a)| ≤ C1

and then taking the average gives the inequality in s.

For a metric we need the triangle inequality to hold. We don’t have it
yet but we do have the following lemma.

Lemma 5.27. There exists a constant C2 > 0 such that for all x, y, z ∈ V,

s(x, z) ≤ s(x, y) + s(y, z) + C2.
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Proof. The idea for the proof comes from [MY02, Proposition 11]. Let ∆ be
a geodesic triangle with corners x, y, z, and let ιx, ιy, ιz be the inner points
of ∆, as in definition 2.8. Then

s(x, z) ≤ s(x, ιy) + s(ιy, z) + C1

≤


s(x, ιz) +

1

2
(1 + M)d(ιz, ιy) +

1

2
N



+


1

2
(1 + M)d(ιy, ιx) +

1

2
N + s(ιx, z)


+ C1

≤ s(x, ιz) + s(ιx, z) + (1 + M)δ + N + C1

≤ (s(x, y) + C1) + (s(y, z) + C1) + (1 + M)δ + N + C1

where the first and fourth inequalities use lemma 5.26(iv), the second in-
equality uses lemma 5.26(iii), and the third inequality uses δ-hyperbolicity.
Then the lemma is finished by setting C2 = (1 + M)δ + N + 3C1.

This is not quite the triangle inequality, but we can now define our met-
ric.

Definition 5.28. Let G be a uniformly fine, δ-hyperbolic graph. Define a
function d̂ : V × V → R by

d̂(x, y) =


s(x, y) + C2 if x ̸= y
0 if x = y

where C2 is the constant from lemma 5.27.

Theorem 5.29. Let G be a uniformly fine, δ-hyperbolic graph. The function d̂ is a
metric on V. Moreover it satisfies the following properties;

(i) It is invariant under the action of Isom(G) on V.

(ii) Let C2 ≥ 0 be the constant from lemma 5.27. For all a, b ∈ V

1

J + 1
d(a, b) ≤ d̂(a, b) ≤ d(a, b) + C2.

(iii) There exists a constant C3 > 0 such that for a, b ∈ V and x ∈ V[a, b]

0 ≤ d̂(a, x) + d̂(x, b)− d̂(a, b) ≤ C3.

(iv) There exist constants C > 0, ω ∈ (0, 1) such that for all a, a′, b, b′ ∈ V
if d(a, a′) ≤ 1 and d(b, b′) ≤ 1 then

d̂(a, b)− d̂(a′, b)− d̂(a, b′) + d̂(a′, b′)
 ≤ Cωd(a,b). (5.10)
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Proof. It is symmetric since s is defined to be symmetric, and it satisfies the
triangle inequality because of lemma 5.27. If x ̸= y ∈ V then by defini-
tion d̂(x, y) ≥ C2 > 0 so it is positive-definite. Therefore d̂ is a metric on V.

Moreover it is invariant under graph automorphisms of G because s is
invariant.

For any a ̸= b ∈ V, lemma 5.26(ii) says 1
J+1 d(a, b) ≤ s(a, b) ≤ d(a, b)

and thus we obtain part (ii).
Part (iii) follows from lemma 5.26(iv), if we set C3 = C1 + 2C2. (Note

that d̂(a, x) + d̂(x, b) − d̂(a, b) is always non-negative by the triangle in-
equality.)

For part (iv) we can use lemma 5.26(v) to get

|s(a, b)− s(a′, b)− s(a, b′) + s(a′, b′)| ≤ Cωd(a,b).

If all four vertices are distinct then the four copies of C2 cancel out and
so we get inequality (5.10). If a = a′ or b = b′ then the left-hand side
of inequality (5.10) is zero. Finally if one of {a, a′} is equal to one of {b, b′}
then diam{a, a′, b, b′} ≤ 2 (with respect to the metric d) so the left-hand side
of inequality (5.10) is bounded by 8+ 4C2 (using part (ii)). If we increase C
(if necessary) such that 8 + 4C2 ≤ Cω2 then inequality (5.10) holds here
too.

Remark 5.30. In part (iii) of theorem 5.29 the notation V[a, b] still refers to
geodesics with respect to the original metric d on G. When we talk about
actualy geodesics we will only ever consider geodesics in G with respect to
the word metric.

We can now define Gromov products and the double difference in terms
of this new metric.

Definition 5.31. Let G be a uniformly fine, δ-hyperbolic graph. Let d̂ be the
metric on V from theorem 5.29. Define the Gromov product (with respect
to d̂) of three vertices a, a′, b ∈ V to be

⟨a|a′⟩b =
1

2


d̂(a, b) + d̂(a′, b)− d̂(a, a′)


.

Define the double difference (with respect to d̂) of four vertices a, a′, b, b′ ∈ V
by

⟨a, a′|b, b′⟩ =
1

2


d̂(a, b)− d̂(a′, b)− d̂(a, b′) + d̂(a′, b′)


.

Here we are using angular brackets to distinguish from the Gromov prod-
uct and double difference defined using the word metric on the graph. We
could define the double difference in terms of the Gromov product, as in
definition 3.15.
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The generic facts about the double difference in proposition 3.16 still
hold. Moreover theorem 5.29 gives us a couple of facts for this new Gromov
product and new double difference.

Theorem 5.32. Let G be a uniformly fine, δ-hyperbolic graph.

(i) There exists a constant C3 > 0 such that for a, b ∈ V and x ∈ V[a, b]

0 ≤ ⟨a|b⟩x ≤
1

2
C3.

(ii) There exist constants C > 0, ω ∈ (0, 1) such that for all a, a′, b, b′ ∈ V
if d(a, a′) ≤ 1 and d(b, b′) ≤ 1 then

⟨a, a′|b, b′⟩
 ≤ 1

2
Cωd(a,b). (5.11)

Note that if x lies on a geodesic (with respect to the word metric d on G)
between a and b then (a|b)x = 0. Part (i) of theorem 5.29 says that ⟨a|b⟩x is
bounded by some global constant.

Before showing how to extend this metric to the boundary of the graph,
we need to extend the metric from the vertex set to all of the graph. More
generally, in section 6.1 we will show how to extend a metric on the ver-
tex set of a simplicial complex to the whole simplicial complex, and then
show in section 6.2 that if we start with the metric d̂ constructed here (see
theorem 5.29) then we can extend the double difference to the boundary
(theorem 6.13).



6 The Metric on the Flow Space

In chapter 5 we defined a new metric d̂ on the vertex set of our space X
but to proceed with the construction from section 3.4 of a metric on the
flow space of X we need to extend the metric d̂ to the whole simplicial
complex X.

In section 6.1 we will work more generally, with an arbitrary simplicial
complex X and a metric d̂ defined on the vertices of X, such that d̂ is (A, B)-
quasi-isometric to the word metric dG , where G is the 1-skeleton of X. Then
in section 6.2 we will prove some properties of this metric on X when we
start with the d̂ defined in section 5.3.

6.1 Extending a metric

In [Min05] Mineyev defined an extension of a metric d̂ by taking a bi-
linear expansion with respect to the barycentric coordinates, see [Min05,
Equation (31) on page 436]. If x = ∑u∈V xuu and y = ∑v∈V yvv then define

d̂(x, y) = ∑
u,v∈V

xuyv d̂(u, v). (6.1)

This extension was also used by Bartels-Lück-Reich in their proof of
The Farrell-Jones Conjecture for hyperbolic groups (see [BLR08a, Section
6]). However, this extension does not define a metric, since it does not
always satisfy the condition d̂(x, x) = 0.

For example, suppose x ∈ X is not a vertex. Then we can find two
vertices u, v ∈ V such that in barycentric coordinates the values xu, xv are
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both non-zero. Thus

d̂(x, x) ≥ xuxv d̂(u, v) > 0.

In this section we show how to define a metric d̃ on X whose restriction
to the vertex set coincides with d̂ and moreover if x, y ∈ X are sufficiently
far apart then d̃(x, y) = d̂(x, y), i.e. the distance is given by the bilinear
expansion of the barycentric coordinates (see theorem 6.9).

Since the applications of the metric in [Min05] and [BLR08a] only make
use of the large-scale geometry of the metric, their arguments work with d̃
instead of d̂, requiring only minor tweaking. For example [Min05, Propo-
sition 38], which was quoted by Bartels-Lück-Reich as [BLR08a, Proposi-
tion 6.4], can be tweaked as demonstrated in proposition 7.2, which ex-
plains how to modify the proof given by Mineyev to use the extension d̃
instead of d̂. Therefore the results obtained in those papers are valid.

Even though the bilinear extension is not a metric, it nevertheless satis-
fies the triangle inequality;

Lemma 6.1. Let X be a simplicial complex and let d̂ be a metric on the vertex set
of X. Extend d̂ to a function on X×X by bilinearly extending, as in equation (6.1).
Then for all x, y, z ∈ X,

d̂(x, z) ≤ d̂(x, y) + d̂(y, z).

Proof. Write x, y, z in barycentric coordinates, and then

d̂(x, z) = ∑
u,w∈X(0)

xuzw d̂(u, w)

= ∑
u,v,w∈X(0)

xuyvzw d̂(u, w)

≤ ∑
u,w∈X(0)

xuyvzw(d̂(u, v) + d̂(v, w))

= ∑
u,v,w∈X(0)

xuyvzw d̂(u, v) + ∑
u,v,w∈X(0)

xuyvzw d̂(v, w)

= ∑
u,v∈X(0)

xuyv d̂(u, v) + ∑
v,w∈X(0)

yvzw d̂(v, w)

= d̂(x, y) + d̂(y, z).

So this bilinear extension is almost a metric. It only fails to be a metric
locally, with the problem that d̂(x, x) need not be zero. To construct an
actual metric we will take the minimum of this bilinear extension and a
genuine metric on X. We want this to extend the metric on the vertex set so
we want the genuine metric on X to be greater than d̂ on the vertex set.

The metric we will use is a length metric induced by the l1-metric on
each simplex.
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Definition 6.2. Let X be a simplicial complex. For any simplex σ of X let d1
σ

be the l1-metric on σ, i.e. for all points x, y ∈ σ,

d1
σ(x, y) :=

1

2 ∑
u∈σ(0)

|xu − yu|. (6.2)

The factor 1
2 is to ensure that the distance between adjacent vertices is 1.

Then for x, y ∈ X define a path in X from x to y to be a sequence of
points x = a0, a1, . . . , ar = y in X such that for every i = 1, . . . , r there is a
simplex σi of X that contains both ai−1 and ai. The length of such a path is
the sum ∑

r
i=1 d1

σi
(ai−1, ai).

The length of a path does not depend on how we choose the simplices σi

because if a simplex τ is a subsimplex of σ then d1
τ ≡ d1

σ|τ.
Then we define a metric on X by setting d1

X(x, y) to be the infimum of
lengths of all such paths from x to y.

We start by giving some properties of this metric.

Proposition 6.3. Let X be a simplicial complex.

(i) For any simplex σ in X, the restriction of d1
X to σ coincides with d1

σ.

(ii) The diameter of any simplex is 1, unless the simplex is a vertex.

(iii) If x, y ∈ X have disjoint supports then d1
X(x, y) ≥ 1.

Proof. (i) Given any two points x, y contained in one simplex σ, by consid-
ering the trivial path x = a0, a1 = y we get d1

X(x, y) ≤ d1
σ(x, y) so we only

need to show the inequality in the other direction.
Fix a simplex σ and two points x, y ∈ σ. Consider a path a0, a1, . . . , ar

from x to y in X. Since it is a path we can find simplices σi for i = 1, . . . , r
such that σi contains both ai−1 and ai. Let Y ⊆ X be the union of all the σi

(which is a subcomplex of X) and denote the vertex set of Y by Y0 and
let ∆ = ∆Y0−1 be the standard simplex of dimension Y0 − 1, where we iden-
tify the vertex set of ∆ with Y0

There is a canonical inclusion Y → ∆, and so we can think of Y as a
subcomplex of ∆. Thus for each i we have d1

σi
(ai−1, ai) = d1

∆(ai−1, ai) and
then the triangle inequality tells us that the length of the path a0, . . . , ar is
at least d1

∆(a0, ar) = d1
σ(x, y).

We can do this for any path from x to y so d1
X(x, y) ≥ d1

σ(x, y). Therefore
we can conclude that d1

X|σ ≡ d1
σ.

(ii) It follows from equation (6.2) that if two points x, y lie in a common
simplex σ then the distance between them is d1

σ(x, y) ≤ 1. Taking x, y to be
distinct vertices of σ shows that the bound is strict.

(iii) If v is a vertex in the support of x but not in the support of y then
any path from x to y must eventually take the v-coordinate down from xv
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to zero. Formally, if a0, . . . , ar is a path from x to y let ai,v denote the v-coor-
dinate of ai. Then the v-coordinate contributes

r

∑
i=1

1

2
|ai−1,v − ai,v| ≥

1

2


r

∑
i=1

(ai−1,v − ai,v)



=
1

2
|a0,v − ar,v| =

1

2
xv

and thus the v-coordinate contributes at least 1
2 xv to d1

X(x, y).
Similarly if w is in the support of y but not the support of x then any

path must take the w-coordinate from zero up to yw, hence the w-coordinate
contributes at least 1

2 yw to d1
X(x, y).

Therefore if the support of x is disjoint from the support of y then we
get at least 1

2 from the coordinates in the support of x and at least 1
2 from

the coordinates in the support of y. Thus d1
X(x, y) ≥ 1.

If take the minimum of the bilinear extension (6.1) and this metric d1
X

then we could encounter two problems, namely the triangle inequality
might not be satisfied and this minimum might not restrict to d̂ on the ver-
tex set.

If the metric d̂ is quasi-isometric to the word metric on the 1-skeleton
of X then we can fix both problems by re-scaling the metric d1

X.

Definition 6.4. Let X be a simplicial complex and let d̂ be a metric on the
vertices of X that is (A, B)-quasi-isometric to the word metric induced by
the 1-skeleton of X. Set d̂ : X × X → R to be the bilinear extension of d̂ as
in equation (6.1). Define a function d̃ : X × X → R by

d̃(x, y) := min


d̂(x, y) , 3(A + B)d1
X(x, y)


. (6.3)

To prove that this function satisfies the triangle inequality we will use
the following lemma.

Lemma 6.5. Let X be a simplicial complex and let d̂ be a metric on the vertices
of X that is (A, B)-quasi-isometric to the word metric induced by the 1-skeleton
of X. If d̂ : X × X → R is the bilinear extension of d̂ as in equation (6.1) then for
all x, y, z ∈ X,

d̂(x, z) ≤ d̂(x, y) + 2(A + B)d1
X(y, z). (6.4)

Proof. First we will consider the special case where y and z lie in a common
simplex σ. By definition, we can expand bilinearly and obtain

d̂(x, z) = ∑
u,w∈X(0)

xuzw d̂(u, w)

= ∑
u,w∈X(0)

xuyw d̂(u, w) + ∑
u,w∈X(0)

xu(zw − yw) d̂(u, w)

= d̂(x, y) + ∑
u,w∈X(0)

xu(zw − yw) d̂(u, w).
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Fix a vertex v0 of σ. Then d̂(u, w) ≤ d̂(u, v0) + d̂(v0, w) for any ver-
tices u, w of X. The distance d̂(u, v0) is independent of the vertex w so we
have ∑u,w∈X(0) xu(zw − yw) d̂(u, v0) = 0. Moreover, since v0 is joined to any

vertex of σ by an edge, we know d̂(v0, w) ≤ A + B. Therefore

∑
u,w∈X(0)

xu(zw − yw) d̂(u, w) ≤ ∑
u,w∈X(0)

xu|zw − yw|(A + B)

= 2(A + B)d1
σ(y, z).

But then from proposition 6.3(i) we get d1
σ(y, z) = d1

X(y, z).
Putting all this together gives the desired inequality in this special case.
For the general case, consider a path y = a0, a1, . . . , ar = z from y to z

(in the sense of definition 6.2). Then

d̂(x, z) = d̂(x, y) +
r

∑
i=1


d̂(x, ai)− d̂(x, ai−1)



We know that ai−1 and ai lie in a common simplex so by the special case we
have d̂(x, ai)− d̂(x, ai−1) ≤ 2(A + B)d1

X(ai, ai−1). Thus

d̂(x, z) ≤ d̂(x, y) +
r

∑
i=1

2(A + B)d1
X(ai, ai−1)

= d̂(x, y) + 2(A + B)l(a)

where l(a) is the length of the path a0, . . . , ar.
This holds for any path from y to z so we conclude

d̂(x, z) ≤ d̂(x, y) + 2(A + B)d1
X(y, z).

With this lemma, we can prove that the function d̃ is a metric on the
simplicial complex.

Proposition 6.6. Let X be a simplicial complex and let d̂ be a metric on the vertices
of X that is (A, B)-quasi-isometric to the word metric induced by the 1-skeleton
of X. Set d̂ : X × X → R to be the bilinear extension of d̂ as in equation (6.1).
Then d̃ defined by equation (6.3) is a metric on X.

Proof. It is symmetric non-negative since it is the minimum of two func-
tions that are both symmetric non-negative. For all x ∈ X,

0 ≤ d̃(x, x) ≤ 3(A + B)d1
X(x, x) = 0

so d̃(x, x) = 0. For any two distinct points x ̸= y ∈ X then d1
X(x, y) > 0

since d1
X is a metric on X. Moreover we can find vertices u ̸= v with xu ̸= 0

and yv ̸= 0, thus d̂(x, y) ≥ xuyv d̂(u, v) > 0. Therefore d̃(x, y) > 0.
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The last thing to check for d̃ to be a metric is the triangle inequality.
Given three points x, y, z ∈ X we need to show

d̃(x, z) ≤ d̃(x, y) + d̃(y, z).

Both d1
X and d̂ satisfy the triangle inequality on X, where we use lemma 6.1

for d̂, and in the mixed case we can use lemma 6.5.

We want the metric d̃ to restrict to d̂ on the vertex set. Hence we need
to look at the metric d1

X on the vertex set.

Lemma 6.7. Let X be a simplicial complex, and let G be the 1-skeleton of X. For
any u, v ∈ V we have

dG(u, v) = d1
X(u, v). (6.5)

Proof. Any path in the 1-skeleton is also a path in X, so dG(u, v) ≥ d1
X(u, v).

It remains to prove that the length of any path in X from u to v is at
least dG(u, v).

For k = 0, . . . , d := dG(u, v) let Sk = {z ∈ V | dG(u, z) = k}. The idea is
that the support of any path from u to v must meet every Sk and moreover
the weight must come from u and through each Sk before arriving at v (the
path could be longer but we are only looking for a lower bound).

Let u = a0, a1, . . . , ar = v be a path in X from u to v. So for any i there is
always a simplex σi that contains both ai−1 and ai. Write each ai = ∑z∈V az

i z
in barycentric coordinates and for all k set

wk(ai) = ∑
z∈Sk

az
i ∈ [0, 1]

which is the weight of the point ai in the sphere Sk.
The length of this path a is

length(a) =
r

∑
i=1

d1
σi
(ai−1, ai)

=
r

∑
i=1

∑
z∈V

1

2

az
i−1 − az

i



≥
1

2

r

∑
i=1

d

∑
k=0

∑
z∈Sk

az
i−1 − az

i



≥
1

2

r

∑
i=1

d

∑
k=0

∑
z∈Sk

az
i−1 − ∑

z∈Sk

az
i



=
1

2

d

∑
k=0

r

∑
i=1

|wk(ai−1)− wk(ai)| .

Now we try to find a lower bound for the sums ∑
r
i=1 |wk(ai−1)− wk(ai)|.
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If k = 0 then

r

∑
i=1

|w0(ai−1)− w0(ai)| ≥


r

∑
i=1


w0(ai−1)− w0(ai)




= |w0(a0)− w0(ar)|

= 1

since a0 = u ∈ S0 and ar = v ∈ Sd. Similarly for k = d we get

r

∑
i=1

|wd(ai−1)− wd(ai)| ≥ |wd(a0)− wd(ar)| = 1.

So we are left with 1 ≤ k < d. We claim that for such a k we can find
some ik ∈ {1, . . . , d − 1} such that wk(aik

) = 1.
If for now we assume the claim is true, then

r

∑
i=1

|wk(ai−1)− wk(ai)|

=
ik

∑
i=1

|wk(ai−1)− wk(ai)|+
r

∑
i=ik+1

|wk(ai−1)− wk(ai)|

≥


ik

∑
i=1


wk(ai−1)− wk(ai)


+


ik

∑
i=ik+1


wk(ai−1)− wk(ai)




=
wk(a0)− wk(aik

)
+
wk(aik

)− wk(ar)


= 2

and we would get

length(a) ≥
1

2

d

∑
k=0

r

∑
i=1

|wk(ai−1)− wk(ai)|

≥
1

2


1 + 2(d − 2) + 1



= d = dG(u, v).

Therefore, to finish the proof of the lemma we need to prove the claim
that for all k = 1, . . . , d − 1 there is some ik with wk(aik

) = 1.
For all i there is a simplex containing both ai and ai−1 hence every ver-

tex in the support of ai is joined to any vertex in the support of ai−1 by an
edge. In particular, if wk−1(ai−1) ̸= 0 then wk+1(ai) = 0 because we may
move at most one further away from u with successive ai’s. So if we pick ik

minimal with wk+1(aik+1) ̸= 0 then wk−1(aik
) = 0 and wk+1(aik

) = 0. So
all the weight of aik

has to be at the sphere Sk, but ∑k wk(aik
) = 1. There-

fore wk(aik
) = 1.

This proves the claim, and with it also finishes the proof of the lemma
by the earlier argument.
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Now we can prove that d̃ restricts to d̂ on vertices. In fact we can prove
a stronger result.

Lemma 6.8. Let X be a simplicial complex, and let G denote its 1-skeleton. Let d̂ be
a metric on the vertices of X that is (A, B)-quasi-isometric to the word metric dG .
For all x, y ∈ X if the support of x is disjoint from the support of y then

d̃(x, y) = d̂(x, y).

In particular, d̃ coincides with d̂ on the vertex set.

Proof. Start by considering vertices u, v ∈ V. If u ̸= v then dG(u, v) ≥ 1.
Moreover, by assumption we have d̂(u, v) ≤ A dG(u, v) + B. Therefore

d̂(u, v) ≤ A dG(u, v) + B

≤ (A + B) dG(u, v)

since B ≥ 0 and then applying lemma 6.7 yields

d̂(u, v) ≤ (A + B) d1
X(u, v). (⋆)

Note that if u = v then (⋆) is trivially true, so inequality (⋆) holds for all
vertices u, v ∈ V.

Now consider the general case x, y ∈ X with disjoint supports. Since the
support of x is disjoint from the support of y, we must have d1

X(x, y) ≥ 1
by proposition 6.3(iii). Moreover, for any u ∈ supp(x) proposition 6.3(ii)
tells us that d1

X(u, x) ≤ 1, and similarly for v ∈ supp(y). Therefore

d̂(x, y) = ∑
u,v∈V

xuyv d̂(u, v)

≤ ∑
u,v∈V

xuyv(A + B)d1
X(u, v)

≤ ∑
u,v∈V

xuyv(A + B)

d1

X(u, x) + d1
X(x, y) + d1

X(y, v)


≤ ∑
u,v∈V

xuyv(A + B)3d1
X(x, y)

= 3(A + B)d1
X(x, y)

and then d̃(x, y) = d̂(x, y) since d̃ is defined to be the minimum of these
two expressions.

To summarise this section, we have the following theorem;

Theorem 6.9. Let X be a simplicial complex, and let G denote its 1-skeleton. Let d̂
be a metric on the vertex set V of X. If d̂ is quasi-isometric to dG then there exists
a metric d̃ on all of X such that for any x, y ∈ X if the support of x is disjoint from
the support of y then d̃(x, y) = d̂(x, y). In particular, d̃ ≡ d̂ on vertices.

Moreover, if d̂ is preserved under simplicial automorphisms of X then so is d̃.
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We have a metric on all of X, and we want to know that it doesn’t
change the large-scale geometry from d̂.

Proposition 6.10. Let X be a simplicial complex, and let G denote its 1-skeleton.
Let d̂ be a metric on the vertex set V of X that is (A, B)-quasi-isometric to dG . The
metric d̃ from theorem 6.9 is (1, 2(A + B))-quasi-isometric to d̂.

Proof. Fix x, y ∈ X. If the support of x is disjoint from the support of y
then d̃(x, y) = d̂(x, y), so suppose there exists some v ∈ supp(x)∩ supp(y).
Then

d̂(x, v) = ∑
u∈V

xu d̂(u, v) ≤ ∑
u∈V

xu(A + B) = (A + B)

and similarly d̂(v, y) ≤ (A + B). Therefore

d̃(x, y) ≤ d̃(x, v) + d̃(v, y)

≤ d̂(x, v) + d̂(v, y) ≤ 2(A + B) ≤ d̂(x, y) + 2(A + B).

Moreover,

d̂(x, y) ≤ d̂(x, v) + d̂(v, y) ≤ 2(A + B) ≤ d̃(x, y) + 2(A + B).

So
d̂(x, y)− 2(A + B) ≤ d̃(x, y) ≤ d̂(x, y) + 2(A + B).

6.2 Extending our metric

If X is a simplicial complex whose 1-skeleton G is a uniformly fine,
Gromov hyperbolic graph then the metric d̂ defined in section 5.3 is quasi-
isometric to the word metric (theorem 5.29(ii)) so theorem 6.9 provides an
extension d̃, which is defined on all of X.

This extension is preserved under simplicial automorphisms of X since
d̂ is preserved under simplicial automorphisms of X.

We constructed the metric d̂ to have better convergence properties to-
wards the boundary, which was formulated in terms of the double differ-
ence in theorem 5.32(ii), and we want the metric d̃ to also satisfy these
better convergence properties.

As with the metrics d and d̂ we can define the Gromov product with respect
to d̃ of three points x, y, z ∈ X to be

⟨x ≀ y⟩z =
1

2


d̃(x, z) + d̃(y, z)− d̃(x, y)


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and the double difference with respect to d̃ of four points x, x′, y, y′ ∈ X to be

⟨x, x′ ≀ y, y′⟩ =
1

2


d̃(x, y)− d̃(x, y′)− d̃(x′, y) + d̃(x′, y′)


.

Remark 6.11. We can relate the double difference with respect to d̃ to the
double difference with respect to d̂: Theorem 5.29(ii) tells us that d̂ is quasi-
isometric to d, so proposition 6.10 says that there is some constant B′ ≥ 0
such that d̃ is (1, B′)-quasi-isometric to d̂. Hence for any x, x′, y, y′ ∈ X;

⟨x, x′|y, y′⟩ − 2B′ ≤ ⟨x, x′ ≀ y, y′⟩ ≤ ⟨x, x′|y, y′⟩+ 2B′. (6.6)

The inequality from theorem 5.32(ii) holds for the double difference
with respect to d̃, since the metric d̃ agrees with d̂ on the vertex set, i.e. we
have the following;

Proposition 6.12. Let X be a simplicial complex whose 1-skeleton is a uniformly
fine, Gromov hyperbolic graph. Let d̂ be the metric from section 5.3 and let d̃ be the
extension given by theorem 6.9. There exist constants C > 0 and ω ∈ (0, 1) such
that for all a, a′, b, b′ ∈ V if d(a, a′) ≤ 1 and d(b, b′) ≤ 1 then

⟨a, a′ ≀ b, b′⟩
 ≤ 1

2
Cωd(a,b). (6.7)

If we apply theorem 6.9 to the word metric of the 1-skeleton G of X then
we get a metric d̃G , and the metric space (X, d̃G) is Gromov hyperbolic,
in the sense of definition 2.11. Therefore we can define the boundary ∂sX
using sequences as in definition 2.29 define a topology on X := X ∪ ∂sX
using remark 2.34. Now we can finally extend the double difference with
respect to d̃ from the vertex set to all of X.

Theorem 6.13. Let X be a simplicial complex whose 1-skeleton G is a uniformly

fine, Gromov hyperbolic graph. Set S to be the subset of X
4

:= X × X × X × X
consisting of points (x, x′, y, y′) such that

• x, y ∈ ∂X ⇒ x ̸= y;

• x, y′ ∈ ∂X ⇒ x ̸= y′;

• x′, y ∈ ∂X ⇒ x′ ̸= y;

• x′, y′ ∈ ∂X ⇒ x′ ̸= y′.

Then the double difference with respect to d̃ extends continuously to S and satisfies

(a) ⟨a, a′ ≀ b, b′⟩ = ⟨b, b′ ≀ a, a′⟩;

(b) ⟨a, a′ ≀ b, b′⟩ = −⟨a′, a ≀ b, b′⟩ = −⟨a, a′ ≀ b′, b⟩;
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(c) ⟨a, a ≀ b, b′⟩ = 0 = ⟨a, a′ ≀ b, b⟩;

(d) ⟨a, a′ ≀ b, b′⟩+ ⟨a′, a′′ ≀ b, b′⟩ = ⟨a, a′′ ≀ b, b′⟩;

(e) ⟨a, b ≀ c, x⟩+ ⟨c, a ≀ b, x⟩+ ⟨b, c ≀ a, x⟩ = 0;

(f) There are constants α ≥ and β ≥ 0 such that for all vertices a, a′, b, b′ ∈ V

1

α
(a, a′|b, b′)− β ≤ ⟨a, a′ ≀ b, b′⟩ ≤ α(a, a′|b, b′) + β.

Proof. This is essentially [Min05, Theorem 35]. There the double difference

is extended further to a larger subset of X
4
, but the proof works by first

extending to the set S. To extend it further requires allowing the double
difference to take values ±∞, but here we want the double difference to
only take values in R so we only extend to the smaller set S.

A couple of modifications must be made to the proof given by Mineyev
in [Min05]. Firstly, his definition of a hyperbolic complex requires the
1-skeleton to be uniformly locally finite, but since we have theorem 5.29
the only property required of the graph is Gromov hyperbolicity.

Secondly, his extension is given by taking the bilinear extension of the
metric d̂ on the vertex set, but as noted earlier this does not give a met-
ric. Hence we have used a different extension, namely d̃ defined by equa-
tion (6.3). However, this extension d̃ coincides with d̂ on the vertex set (see
lemma 6.8). So we can use the argument in the proof of [Min05, Theorem
35] to extend the double difference to the boundary using sequences of ver-
tices.

When considering sequences of arbitrary points (i.e. not necessarily
vertices) we know from lemma 6.8 that d̃(x, y) = d̂(x, y) whenever the sup-
port of x is disjoint from the support of y. So if (xn)n∈N is a sequence of
points that converges to x ∈ ∂X and (yn)n∈N is a sequence of points that
converges to y ∈ X\{x} then for sufficiently large n, the support of xn will
be disjoint from the support of yn and thus we can use the bilinear exten-
sion formula (6.1).

For part (f), Mineyev in [Min05, Theorem 35(h)] shows an equivalence
between ⟨−,−|−,−⟩ and (−,−|−,−) but we can go to ⟨−,− ≀−,−⟩ using
remark 6.11.

We know that for points x, y, z, w ∈ X, the double difference relates to
the Gromov product via the equation

⟨x, y ≀ z, w⟩ = ⟨y ≀ z⟩x − ⟨y ≀ w⟩x (6.8)

and, in particular ⟨x, y ≀ z, x⟩ = ⟨y ≀ z⟩x. Hence we can use theorem 6.13 to
extend the Gromov product to the boundary.
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Theorem 6.14. Let X be a simplicial complex whose 1-skeleton G is a uniformly

fine, Gromov hyperbolic graph. Set T to be the subset of X
3

:= X × X × X
consisting of points (x, y, z) such that

• x /∈ ∂X;

• y, z ∈ ∂X ⇒ y ̸= z.

Then the Gromov product ⟨y ≀ z⟩x with respect to d̃ extends continuously to T and
satisfies

⟨a, a′ ≀ b, b′⟩ = ⟨a′ ≀ b⟩a − ⟨a′ ≀ b′⟩a (6.9)

whenever (a, a′, b, b′) ∈ S (where S is defined as in theorem 6.13) and a /∈ ∂X.

Proof. If (x, y, z) ∈ T then (x, y, z, x) ∈ S and we can define the Gromov
product in terms of the double difference: ⟨y ≀ z⟩x := ⟨x, y ≀ z, x⟩.

Equation (6.9) follows from theorem 6.13(d), where the properties (a)
and (b) are also used implicitly.

This extension of the Gromov product coincides with the sup lim inf
extension given in definition 2.31, since for any x ∈ X and y, z ∈ X with y ̸=
z, if (yn) and (zn) are sequences in X converging to y and z respectively then
the continuity of the double difference given by theorem 6.13 gives

lim inf
n→∞

⟨yn ≀ zn⟩x = lim inf
n→∞

⟨x, yn ≀ zn, x⟩

= ⟨x, y ≀ z, x⟩

= ⟨y ≀ z⟩x.

In particular, this means the facts from proposition 2.33 still hold.

We cannot extend ⟨−,− ≀ −,−⟩ to all of X
4

because it would need to
be ±∞ in places, as the next lemma demonstrates.

Lemma 6.15. Let X be a simplicial complex whose 1-skeleton G is a uniformly
fine, Gromov hyperbolic graph. If (xn)n∈N is a sequence in X that converges to a
point x ∈ ∂X then for any y, z ∈ X\{x} if y ̸= z then

⟨x, y ≀ xn, z⟩ −→ −∞ as n → ∞.

Proof. Pick a sequence (zk)k∈N in X that converges to z. Then by continuity,
as k → ∞ we get ⟨z, zk ≀ y, x⟩ −→ ⟨z, z ≀ y, x⟩ = 0. Therefore we can pick k
large enough such that |⟨z, zk ≀ y, x⟩| ≤ 1.

Combining theorems 6.13 and 6.14 gives

⟨x, y ≀ xn, z⟩ = ⟨z, xn ≀ y, x⟩

= ⟨z, zk ≀ y, x⟩+ ⟨zk, xn ≀ y, x⟩

≤ 1 + ⟨xn ≀ y⟩zk
− ⟨xn ≀ x⟩zk

.
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Since the sequence (xn)n∈N converges to a point x ∈ ∂sX the Gromov prod-
uct ⟨xi ≀ xj⟩zk

tends up to ∞ as i, j → ∞. Hence

⟨xn ≀ x⟩zk
≥ lim inf

m→∞
⟨xn ≀ xm⟩zk

−→ ∞ as n → ∞.

By remark 2.32 we can pick sequences (x′n) and (yn) in X with x′n → x
and yn → ∞ as n → ∞ such that limn→∞⟨x′n ≀ yn⟩zk

= ⟨x ≀ y⟩zk
. Then

⟨x′n ≀ yn⟩zk
≥ min{⟨x′n ≀ xn⟩zk

, ⟨xn ≀ y⟩zk
, ⟨y ≀ yn⟩zk

} − 4δ

by proposition 2.33(ii). Since the sequences (xn) and (x′n) both converge
to x ∈ ∂sX proposition 2.33(i) says ⟨x′n ≀ xn⟩zk

→ ∞ as n → ∞. Also,
the Gromov product ⟨y ≀ yn⟩zk

tends to infinity, repeating the argument
for ⟨xn ≀ x⟩zk

above. Therefore

lim
n→∞

⟨xn ≀ y⟩zk
≤ lim

n→∞
⟨x′n ≀ y⟩zk

+ 4δ

= ⟨x ≀ y⟩zk
+ 4δ

which is finite since x ̸= y.
Bringing this all together,

lim
n→∞

⟨x, y ≀ xn, z⟩ ≤ 1 + ⟨x ≀ y⟩zk
+ 2δ − lim

n→∞
⟨xn ≀ x⟩zk

= −∞.

6.3 A metric on the flow space

In section 3.4 we outlined a plan to construct a metric on FS(X) for a
metric space X. We needed to extend the double difference to points on the
boundary and to do this we constructed a new metric d̃ in the case that X
is a simplicial complex whose 1-skeleton is a uniformly fine, δ-hyperbolic
graph (see theorem 6.13).

For the rest of this section, we assume that X is such a simplicial com-
plex, and that x0 ∈ X is a fixed base-point, and we try to apply the con-
struction from section 3.4 to the metric space


X, d̃


.

Definition 6.16. We start by using the metric to interpret the parameter t of
a point in the flow space (cf definition 3.14). For any point (x, y, t) ∈ FS(X)
define a map θ̃x0

x,y : R → [−⟨y ≀ x0⟩x, ⟨x ≀ x0⟩y] by

θ̃x0
x,y(t) =





−⟨y ≀ x0⟩x if t ≤ −⟨y ≀ x0⟩x

t if − ⟨y ≀ x0⟩x ≤ t ≤ ⟨x ≀ x0⟩y

⟨x ≀ x0⟩y if ⟨x ≀ x0⟩y ≤ t
.
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With this, we have an idea of how far (x, y, t)0 (the fictitious point at
time zero) is from the point of [x, y] that is ‘closest’ to the base-point. Using
the family of maps


θ̃x0

x,y|x, y ∈ X


we can define a distance from (x, y, t)0 to
an arbitrary point z ∈ X.

Definition 6.17. Define a map lx0 : X × FS(X) → [0, ∞) by

lx0 (z, (x, y, t)) = ⟨x ≀ y⟩z +
θ̃x0

x,y(t)− ⟨x, y ≀ z, x0⟩
 .

This function is well-defined by theorems 6.13 and 6.14, since z and x0 are
both points in X, and not the boundary.

Remark 6.18. If x := [(x, x, 0)] ∈ FS(X) is a stationary point then for
any z ∈ X we have lx0(z, x) = d̃(z, x).

Thus we can say what the distance is from (x, y, t)0 to z but we are inter-
ested in the distance from (x, y, t)0 to (x′, y′, t′)0. We do this by comparing
their distances to z.

Definition 6.19. Define a function βx0 : X × FS(X)× FS(X) → R by

βx0(z, c, c′) = lx0(z, c)− lx0(z, c′). (6.10)

The next lemma states a couple of simple properties about the func-
tion βx0 . The proofs are straight-forward and hence omitted.

Lemma 6.20. The function βx0 satisfies the following properties;

(i) βx0 is invariant under the induced diagonal action of Isom(X) on FS(X);

(ii) For any x, x′, z ∈ X, βx0(z, x, x′) = d̃(z, x)− d̃(z, x′);

(iii) βx0 is anti-symmetric with respect to the FS(X) × FS(X) factors, i.e. for
all z ∈ X and for all c, c′ ∈ FS(X), βx0(z, c, c′) = −βx0(z, c′, c);

(iv) For all c1, c2, c3 ∈ FS(X) and all z ∈ X,

βx0(z, c1, c3) = βx0(z, c1, c2) + βx0(z, c2, c3).

Some more interesting properties;

Lemma 6.21. For any x, y ∈ X, if c1 = (x, y, t) and c2 = (x, y, t2) in FS(X) for
some t1, t2 ∈ R then for any z ∈ X,

|βx0(z, c1, c2)| ≤
θ̃x0

x,y(t1)− θ̃x0
x,y(t2)

 .

Moreover, if x ∈ X then

βx0(x, c1, c2) = θ̃x0
x,y(t1)− θ̃x0

x,y(t2).
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Proof. If c1 = (x, y, t1) and c2 = (x, y, t2) then the Gromov product ⟨x ≀ y⟩z

cancels itself out. The special case with x ∈ X uses ⟨x, y ≀ x, x0⟩ = −⟨y ≀ x0⟩x

(by equation (6.9)) and θ̃x0
x,y(t)+ ⟨y ≀ x0⟩x is always positive (by the definition

of θ̃x0
x,y).

The general case of x ∈ X can be shown by considering the various
possibilities in turn. If both θ̃x0

x,y(t1) and θ̃x0
x,y(t2) are greater than ⟨x, y ≀ z, x0⟩

then βx0(z, c1, c2) = θ̃x0
x,y(t1)− θ̃x0

x,y(t2). If they are both less than ⟨x, y ≀ z, x0⟩

then βx0(z, c1, c2) = θ̃x0
x,y(t2)− θ̃x0

x,y(t1). This only leaves the possibility that
one is greater and one is lesser. Without loss of generality, we assume
that θ̃x0

x,y(t1) < ⟨x, y ≀ z, x0⟩ < θ̃x0
x,y(t2). Hence

|βx0(z, c1, c2)| =

⟨x, y ≀ z, x0⟩ − θ̃x0

x,y(t1)
−
⟨x, y ≀ z, x0⟩ − θ̃x0

x,y(t2)



=
2⟨x, y ≀ z, x0⟩ − θ̃x0

x,y(t1)− θ̃x0
x,y(t2)



and if 2⟨x, y ≀ z, x0⟩ ≤ θ̃x0
x,y(t1) + θ̃x0

x,y(t2) then

|βx0(z, c1, c2)| = θ̃x0
x,y(t1) + θ̃x0

x,y(t2)− 2⟨x, y ≀ z, x0⟩

≤ θ̃x0
x,y(t2)− θ̃x0

x,y(t1)

since ⟨x, y ≀ z, x0⟩ ≥ θ̃x0
x,y(t1) by assumption.

Similarly the assumption ⟨x, y ≀ z, x0⟩ ≤ θ̃x0
x,y(t2) can be used to get the

inequality if 2⟨x, y ≀ z, x0⟩ ≥ θ̃x0
x,y(t1) + θ̃x0

x,y(t2).
We have gone through all the possibilities so the inequality in the state-

ment of the lemma must always hold.

Definition 6.22. Define the function Lx0 : FS(X)× FS(X) → R by

Lx0(c, c′) = sup
z∈X

βx0(z, c, c′)
 . (6.11)

Informally, the function Lx0 should represent the distance between the
points of c, c′ at time zero.

Proposition 6.23. The function Lx0 is a pseudometric on FS(X). Moreover, it
satisfies the following properties;

(i) For all x, x′ ∈ X, Lx0(x, x′) = d̃(x, x′);

(ii) For any x, y ∈ X, if c1 = (x, y, t1) and c2 = (x, y, t2) in FS(X) then

Lx0(c1, c2) =
θ̃x0

x,y(t1)− θ̃x0
x,y(t2)

 .

Proof. To show that Lx0 is a pseudometric, we need to show it is symmetric,
positive semi-definite, and satisfies the triangle inequality.



6. The Metric on the Flow Space 109

The function βx0 is anti-symmetric, so taking the absolute value makes it
symmetric and non-negative. To show that Lx0(c, c) = 0 for any c ∈ FS(X),
we use lemma 6.21.

Finally, the triangle inequality follows from lemma 6.20(iv).
Therefore the function Lx0 is indeed a pseudometric on FS(X).
Property (i) follows from the triangle inequality and lemma 6.20(ii).
It remains to show (ii). If x /∈ ∂X then it follows from lemma 6.21. So

assume x ∈ ∂X. Take a sequence (xn)n∈N of points in X that converge to x.
Then

βx0(xn, c1, c2) = lx0(xn, c1)− lx0(xn, c2)

=
θ̃x0

x,y(t1)− ⟨x, y ≀ xn, x0⟩
−
θ̃x0

x,y(t2)− ⟨x, y ≀ xn, x0⟩


but ⟨x, y ≀ xn, x0⟩ → −∞ as n → ∞ by lemma 6.15, thus we can find some
large n such that both θ̃x0

x,y(t1)− ⟨x, y ≀ xn, x0⟩ and θ̃x0
x,y(t2)− ⟨x, y ≀ xn, x0⟩ are

positive. Therefore

Lx0(c1, c2) ≥
θ̃x0

x,y(t1)− θ̃x0
x,y(t2)



and lemma 6.21 provides the other inequality, hence we get equality.

To make Lx0 into a metric we need to be able to distinguish between
two points of FS(X). We do this by not only considering the points at time
zero, but along the entire formal generalised geodesic, with an appropriate
weighting.

Recall that the flow Φ on FS(X) is given by Φτ(x, y, t) := (x, y, t + τ).

Definition 6.24. Define the function dFS : FS(X)× FS(X) → R by

dFS(c1, c2) =


R

Lx0 (Φτ(c1), Φτ(c2))

2e|τ|
dτ. (6.12)

Proposition 6.25. The function dFS is a metric on FS(X).

Proof. That dFS is a pseudometric follows immediately from the fact that Lx0

is a pseudometric, thus it only remains to prove that if c1 ̸= c2 ∈ FS(X)
then dFS(c1, c2) ̸= 0. Write c1 = (x1, y1, t1) and c2 = (x2, y2, t2). First we
show that if x1 ̸= x2 then dFS(c1, c2) > 0.

If xi /∈ ∂X then Φτ(ci) → xi as τ → −∞. But βx0(x1, x1, x2) = −d̃(x1, x2)
by lemma 6.20(ii). Hence

βx0(x1, Φτ(c1), Φτ(c2))
 −→ d̃(x1, x2) as τ → −∞.

Therefore if x1, x2 /∈ ∂X and x1 ̸= x2 then the integral for dFS(c1, c2) is non-
zero.
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Suppose x1 ∈ ∂X but x2 /∈ ∂X. For τ << 0 we know that lx0(x0, Φτ(c2))
is bounded by ⟨x2 ≀ y2⟩x0 + ⟨x0 ≀ y2⟩x2 but

lx0(x0, Φτ(c1)) = ⟨x1 ≀ y1⟩x0 − (t1 + τ)

and so |βx0(x0, Φτ(c1), Φτ(c2))| → ∞ as τ → −∞. Since Lx0 is defined as a
supremum over X of βx0 we get that Lx0(Φτ(c1), Φτ(c2)) is also unbounded,
and then the integral defining dFS(c1, c2) must be non-zero.

So suppose x1, x2 ∈ ∂X and x1 ̸= x2. First assume x1 ̸= y2. For any z ∈
X the Gromov product ⟨x1 ≀ x2⟩z is finite (since x1 ̸= x2). Thus

⟨x1 ≀ y1⟩z − ⟨x2 ≀ y2⟩z =

⟨x1 ≀ y1⟩z − ⟨x1 ≀ x2⟩z


−

⟨x1 ≀ x2⟩z − ⟨x2 ≀ y2⟩z



= ⟨z, x2 ≀ y2, x1⟩ − ⟨z, x1 ≀ x2, y1⟩.

As z → x1 we can make ⟨z, x2 ≀ y2, x1⟩ arbitrarily large (by lemma 6.15)
and ⟨z, x1 ≀ x2, y1⟩ arbitrarily close to 0. In particular, we can pick z ∈ X
such that ⟨x1 ≀ y1⟩z > ⟨x2 ≀ y2⟩z. Next set τ = t2 − ⟨x2, y2 ≀ z, x0⟩, i.e. choose τ
to minimise lx0(z, Φτ(c2)). Then

βx0


z, Φτ(c1), Φτ(c2)


= ⟨x1 ≀ y1⟩z + |θ̃x0

x1,y1
(t1 + τ)− ⟨x1, y1 ≀ z, x0⟩|

−⟨x2 ≀ y2⟩z − |θ̃x0
x2,y2

(t2 + τ)− ⟨x2, y2 ≀ z, x0⟩|

= ⟨x1 ≀ y1⟩z − ⟨x2 ≀ y2⟩z

+|θ̃x0
x1,y1

(t1 + τ)− ⟨x1, y1 ≀ z, x0⟩|

≥ ⟨x1 ≀ y1⟩z − ⟨x2 ≀ y2⟩z

> 0

and it follows that Lx0(Φτ(c1), Φτ(c2)) > 0 and thus dFS(c1, c2) > 0.
Similarly, if x1, x2 ∈ ∂X with x1 ̸= x2 and x2 ̸= y1 we get dFS(c1, c2) > 0.
However, if x1, x2 ∈ ∂X with x1 ̸= x2 but x1 = y2 and x2 = y1, which

intuitively means that c2 is the formal geodesic c1 in reverse, then we need a
different argument. Fix some τ such that t1 + τ ̸= −(t2 + τ), and pick z ∈ X
such that

⟨x1, y1 ≀ z, x0⟩ ≥ max{t1 + τ,−(t2 + τ)}.

We can find such a z ∈ X since if (zn)n∈N is a sequence in X with zn → y1

as n → ∞ then ⟨x1, y1 ≀ zn, x0⟩ → ∞ as n → ∞ by lemma 6.15. Then

βx0


z, Φτ(c1), Φτ(c2)


= ⟨x1 ≀ y1⟩z + |(t1 + τ)− ⟨x1, y1 ≀ z, x0⟩|

−

⟨x2 ≀ y2⟩z + |(t2 + τ)− ⟨x2, y2 ≀ z, x0⟩|



= ⟨x1, y1 ≀ z, x0⟩ − (t1 + τ)

−

⟨x1, y1 ≀ z, x0⟩+ (t2 + τ)



= −(t1 + τ)− (t2 + τ)

̸= 0
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by the choice of τ. Hence Lx0


Φτ(c1), Φτ(c2)


> 0 and thus dFS(c1, c2) > 0.

Thus if x1 ̸= x2 then dFS(c1, c2) > 0. Similarly if y1 ̸= y2. So assume
that x1 = x2 =: x and y1 = y2 =: y. If x = y then c1 = x = c2 which
contradicts the assumption c1 ̸= c2, so assume x ̸= y. Then

|βx0(x0, Φτ(c1), Φτ(c2)| =


θ̃x0

x,y(t1 + τ)− ⟨x, y ≀ x0, x0⟩


−
θ̃x0

x,y(t2 + τ)− ⟨x, y ≀ x0, x0⟩



=
θ̃x0

x,y(t1 + τ)− θ̃x0
x,y(t2 + τ)



and we can find some τ0 ∈ R such that t1 + τ0 ∈ (−⟨y ≀ x0⟩x, ⟨x ≀ x0⟩y)
and then θ̃x0

x,y(t1 + τ0) = t1 + τ0. If t1 ̸= t2 then θ̃x0
x,y(t2 + τ0) ̸= t1 + τ0 and

so Lx0(Φτ0(c1), Φτ0(c2) > 0.
Therefore c1 ̸= c2 implies dFS(c1, c2) > 0, so dFS is a metric on FS(X).



7 Properties of the Flow Space

In section 3.3 we defined the set underlying the flow space, and subse-
quently a metric on FS(X) was constructed, culminating in section 6.3.

This section is dedicated to properties of the metric space


FS(X), dFS


.

Section 7.1 is about the topology of this metric space, section 7.2 considers
what happens we change the base-point of X, and section 7.3 shows how an
isometric group action on X induces an isometric action on the flow space.

Then section 7.4 contains some nice results about the convergence of
formal geodesics in the flow space.

7.1 The induced topology

Given a simplicial complex X whose 1-skeleton is a uniformly fine, Gro-
mov hyperbolic graph we can define the flow space as in section 3.3. This is
a topological space, which for now we denote by (FS(X), τ) and use FS(X)
to denote the underlying set. In section 6.3 we defined a metric on the
set FS(X). We would like the topology induced by this metric to coincide
with the original topology τ as given in definition 3.13.

It follows from the definition of the flow space that the diagonal map
X → (FS(X), τ) is an embedding. We can also consider the diagonal map
X → (FS(X), dFS).

Proposition 7.1. Let X be a simplicial complex whose 1-skeleton is a uniformly
fine, Gromov hyperbolic graph. The map (X, d̃) → (FS(X), dFS) given by send-
ing x ∈ X to the class x := [(x, x, 0)] ∈ FS(X) is an isometric embedding.
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Proof. For any x, x′ ∈ X it follows from lemma 6.20(ii) and the triangle in-
equality that Lx0(x, x′) = d̃(x, x′). The geodesics are stationary with respect
to the flow so in equation (6.12) we get

dFS(x, x′) =


R

d̃(x, x′)

2e|τ|
dτ = d̃(x, x′).

Next we consider what happens away from the stationary geodesics.
For this, we would like to quote [Min05, Proposition 48]. However, the
proof of that proposition uses [Min05, Proposition 38], whose proof used
the bilinear extension of the metric d̂ from the vertex set to all of X (see
equation (6.1)). Hence we state the latter proposition in our case so that we
can fix this small problem, as well as explain why the rest of the argument
still holds.

Proposition 7.2. Let X be a simplicial complex whose 1-skeleton is a uniformly
fine, Gromov hyperbolic graph. Let S be as in theorem 6.13. There exists a con-
stant λ0 ∈ [0, 1) such that for all λ ∈ [λ0, 1) there is a T ≥ 0 such that for
all a, b, c, u ∈ X if

• (a, c, u, b) ∈ S;

• (b, c, u, a) ∈ S;

• T ≤ max{⟨a, c ≀ u, b⟩, ⟨b, c ≀ u, a⟩} =: m

then (a, b, u, c) ∈ S and
|⟨a, b ≀ u, c⟩| ≤ λm.

Proof. If a, b, c, u are vertices or boundary points then we can use the proof
of [Min05, Proposition 38], which only uses Gromov hyperbolicity of the
1-skeleton as well as facts established in our case in theorem 5.29.

In order to extend to arbitrary points in X we need to do a bit more
work, since we need to show that under the assumptions given we can use
the bilinear extension of d̂, i.e. we want

⟨a, b ≀ u, c⟩ = ⟨a, b|u, c⟩

so that we can write ⟨a, b ≀ u, c⟩ in terms of the double difference of vertices
in the support of the points a, b, u, c.

Let A, B be the constants appearing in a quasi-isometry between d̂ and
the word metric on the vertex set of X, so that

d̃(x, y) = min{d̂(x, y), 3(A + B)d1
X(x, y)}.

The diameter (with respect to the metric d1
X) of any simplex is ≤ 1 by propo-

sition 6.3(ii). Moreover, if the supports of two points x, y ∈ X are disjoint
then d̃(x, y) = d̂(x, y), by lemma 6.8. Therefore, if d̃(x, y) > 6(A + B) then
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the supports of x, y are disjoint and d̃(x, y) = d̂(x, y). So we are interested
in finding a lower bound for the distances used to define ⟨a, b ≀ u, c⟩.

Without loss of generality suppose m = ⟨b, c ≀ u, a⟩. Theorem 6.14 gives

⟨b, c ≀ u, a⟩ = ⟨c ≀ u⟩b − ⟨c ≀ a⟩b

≤ min


d̃(c, b), d̃(u, b)


and then the assumption T ≤ m gives T ≤ d̃(c, b), d̃(u, b). Moreover,

⟨b, c ≀ u, a⟩ = −⟨a, u ≀ b, c⟩ = −(⟨u ≀ b⟩a − ⟨u ≀ c⟩a)

≤ min


d̃(u, a), d̃(c, a)


and so T ≤ d̃(c, a), d̃(u, a) as well.
Thus if we take T ≥ 6(A + B) then for all four of these pairings d̃ ≡ d̂,

and we get ⟨a, b ≀ u, c⟩ = ⟨a, b|u, c⟩. Since we are allowed to increase T as
we wish, the rest of the proof works as in [Min05, Proposition 38].

Theorem 7.3. Let X be a simplicial complex whose 1-skeleton is a uniformly fine,
Gromov hyperbolic graph. Let ∆(X) be the diagonal subset of X × X. Let FS(X)R

denote the stationary orbits, i.e. the orbits fixed by the flow. The map


X × X\∆(X)


× R →


FS(X)\FS(X)R, d̃


; (x, y, t) →→ [x, y, t]

is a homeomorphism.

Proof. The proof is as for [Min05, Proposition 48]. It works in our case using
the results we have already proven, for example our theorem 5.32 covers
both [Min05, Theorem 32] and [Min05, Proposition 33].

7.2 Change of base-point

The metric dFS on FS(X) constructed in section 6.3 depends on the
choice of base-point x0 ∈ X.

However, we do not want the topology of FS(X) to depend on this
base-point so we must look at what would happen if we chose a different
base-point.

Let dx0
FS denote the metric on the flow space using x0 as base-point.

Proposition 7.4. Let X be a simplicial complex whose 1-skeleton is a fine, Gromov
hyperbolic graph. Let x0, y0 ∈ X be two choices of base-point. The map


FS(X), dx0

FS


→


FS(X), d
y0

FS


; (x, y, t) →→ (x, y, t − ⟨x, y ≀ x0, y0⟩)

is an isometry.
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Proof. The maps θ̃x0
x,y and θ̃

y0
x,y, which allow us to interpret the parameter t,

are related by the equation

θ̃x0
x,y(t)− ⟨x, y ≀ x0, y0⟩ = θ̃

y0
x,y(t − ⟨x, y ≀ x0, y0⟩)

and so for any z ∈ X

lx0


z, (x, y, t)


= ly0


z, (x, y, t − ⟨x, y ≀ x0, y0⟩)


.

From this it follows that

dx0
FS


(x, y, t), (x′, y′, t′)



= d
y0

FS


(x, y, t − ⟨x, y ≀ x0, y0⟩), (x′, y′, t′ − ⟨x′, y′ ≀ x0, y0⟩)



i.e. the map (x, y, t) →→ (x, y, t − ⟨x, y ≀ x0, y0⟩) is an isometry.

Therefore, although the metric on the flow space depends on the choice
of base-point, the topology of the flow space does not.

7.3 The group action on FS(X)

If X is a simplicial complex with a uniformly fine, Gromov hyperbolic
1-skeleton then we have constructed a flow space FS(X). If a group G
acts simplicially on X then the metric d̃ is invariant under G and we could
consider the action of G on FS(X) given by

g· (x, y, t) := (gx, gy, t).

However, the metric dFS is not necessarily invariant under this group ac-
tion. The problem arises from the dependence of the metric dFS on the
base-point x0. Hence we define the action of G on FS(X) via

g· (x, y, t) :=


gx, gy, t + ⟨x, y ≀ x0, g−1x0⟩


.

With this definition, we can show

lx0


gz, g· (x, y, t)


= lx0


z, (x, y, t)



for any z ∈ X. From which it follows that for any c, c′ ∈ FS(X) we
have Lx0(g· c, g· c′) = Lx0(c, c′) and thus dFS is invariant under G.

So now the G-action on X induces a G-action on FS(X) that preserves
the metric dFS.
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7.4 Convergence of formal geodesics

If a space is uniquely geodesic, i.e. between any pair of points there is
precisely one geodesic between them, then the flow space is just the space
of all generalised geodesics. More generally, the flow space was defined to
formally replicate the space of generalised geodesics, even if we start with
a Gromov hyperbolic metric space that is not necessarily a geodesic space.

We already know that if y ∈ X then (x, y, t) → y as t → ∞, where y

denotes the point of the flow space represented by (y, y, 0). Recall that the
flow is defined by Φτ(x, y, t) = (x, y, t + τ) so more generally we can say
that Φτ(x, y, t) → y as τ → ∞. In particular, for any x, x′ ∈ X and t, t′ ∈ R

dFS


Φτ(x, y, t), Φτ(x′, y, t′)


−→ 0 as τ → ∞. (7.1)

If y ∈ ∂X then there is no such point y in the flow space, but we could still
ask for (7.1) to hold. However, since a geodesic ray will never reach its end-
point, it is possible that one geodesic is always running behind the other.
For example, consider R as a graph with vertex set Z and base-point 0.
Then for all τ ∈ [0, ∞)

dFS (Φτ(0, ∞, 0), Φτ(0, ∞, 1)) = 1

by proposition 6.23(ii). Hence we have to add the quantifier “there exists
a t0 ∈ R” where this t0 will bring the parametrisations of the geodesics in
line. It turns out, that this is the only change we need.

Theorem 7.5. Let X be a simplicial complex whose 1-skeleton is a uniformly fine,
Gromov hyperbolic graph. For any x, x′ ∈ X, y ∈ X and all t, t′ ∈ R there exists
a constant t0 ∈ R such that

dFS


Φτ(x, y, t), Φτ(x′, y, t′ + t0)


−→ 0 as τ → ∞.

Proof. This follows from [BLR08a, Theorem 8.9]. That article builds on the
work in [Min05] and as such it assumes the 1-skeleton of the simplicial
complex is uniformly locally finite, but this assumption is only necessary
for quoting the results from [Min05], and these results have been proven
for a uniformly fine 1-skeleton in this thesis.

Given the existence of the metric d̃ that satisfies nice properties (e.g.
theorem 6.13 and proposition 7.2) the proof of the theorem is mainly com-
putational.

Recall that if a group G is hyperbolic relative to a finite collection P
of subgroups then, by definition, we can find a fine, Gromov hyperbolic
graph Γ on which G acts such that there are only finitely many G-orbits of
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vertices and edges. The construction from section 3.1 applied to this graph
yields a simplicial complex X = Xη(Γ) whose 1-skeleton is a uniformly
fine, Gromov hyperbolic graph. We can define a boundary of X as in sec-
tion 2.5, and then we also have the space X, on which G acts. In this case
we can use [BLR08a, Theorem 1.5] to say something stronger.

(Recall that the action of G on the flow space is via equation (7.3).)

Theorem 7.6. Let G be a group that is hyperbolic relative to a finite collection P
of subgroups and let X be the associated simplicial complex from section 3.1. Fix a
base-point x0 ∈ X and let G act on G × X via the diagonal action.

There is a continuous G-equivariant map j : G × X → FS(X) that satisfies
the following property;

For any α > 0 there is a function fα : R → [0, ∞) with fα(τ) → 0 as τ → ∞,
and there is a β = β(α) > 0 such that for all g, h ∈ G and y ∈ X, if dG(g, h) ≤ α
then there exists some t0 ∈ [−β, β] such that for all τ ∈ R

dFS (Φτ j(g, y), Φτ+t0 j(h, y)) ≤ fα(τ). (7.2)

The theorem has a lot of quantifiers so we shall try to give an infor-
mal explanation of its statement. The map j : G × X → FS(X) sends the
pair (g, y) to some point along the flow orbit with ends g· x0 and y, i.e. there
is some t(g,y) such that j(g, y) = (g· x0, y, t(g,y)). Although we haven’t ex-
plained how to choose t(g,y) it should vary uniformly continuously with g.

The number t0 represents how far the formal geodesic (g· x0, y, t(g,y))
is ahead or behind the formal geodesic (h· x0, y, t(h,y)) and so |t0| should

be bounded by some expression involving d̃(g· x0, h· x0) and |t(g,y) − t(h,y)|,
and this expression would vary uniformly continuously with g, h. There-
fore, the bound β on |t0| should depend only on α.

g· x0

h· x0

y

Then the theorem states that Φτ j(g, y) and Φτ+t0 j(h, y) converge uni-
formly as τ → ∞.

Proof of Theorem 7.6. The proof is as for the proof of [BLR08a, Theorem 1.5],
but we need to make one remark here.

To prove the map j is continuous they use the fact that X is metrisable,
so we need to use section 2.6 to show X is metrisable for our choice of X.



8 A Flow Space for a Relatively
Hyperbolic Group

Now we want to summarise what happens in the case of a relatively
hyperbolic group.

If a group G is hyperbolic relative to a finite set P of subgroups of G
then, by definition, we can find a fine, Gromov hyperbolic graph Γ on
which G acts with certain properties (see definition 2.22 for the full list of
properties). To such a graph there is an associated simplicial complex X =
Xη(Γ) (which also depends upon a choice of parameter η ≥ 1), and this
simplicial complex is contractible and finite-dimensional. Furthermore, the
1-skeleton G = Gη(Γ) of X is a fine, Gromov hyperbolic graph. This was all
done in section 3.1.

The group G acts on X such that there are only finitely many orbits
of simplices, and in particular we can say that G is uniformly fine using
lemma 2.19.

Therefore there is a metric space (FS(X), dFS) associated to X, which
has a flow Φ : FS(X) × R → FS(X) such that two points c1, c2 with the
same end-point in X converge under this flow (see theorem 7.5). Moreover,
there is an embedding j : G×X → FS(X) such that for any y ∈ X and g, h ∈
G the elements j(g, y) and j(h, y) in FS(X) converge uniformly under the
flow (see theorem 7.6).

We hope that we will be able to use this flow space to help prove a
version of the Farrell-Jones Conjecture for relatively hyperbolic groups, as
explained at the very start of this thesis.
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