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Abstract

Background: There is a rising public and political demand for prospective cancer cluster monitoring. But there is little
empirical evidence on the performance of established cluster detection tests under conditions of small and
heterogeneous sample sizes and varying spatial scales, such as are the case for most existing population-based cancer
registries. Therefore this simulation study aims to evaluate different cluster detection methods, implemented in the
open soure environment R, in their ability to identify clusters of lung cancer using real-life data from an epidemiological
cancer registry in Germany.

Methods: Risk surfaces were constructed with two different spatial cluster types, representing a relative risk of RR = 2.0
or of RR = 4.0, in relation to the overall background incidence of lung cancer, separately for men and women. Lung
cancer cases were sampled from this risk surface as geocodes using an inhomogeneous Poisson process. The
realisations of the cancer cases were analysed within small spatial (census tracts, N = 1983) and within aggregated large
spatial scales (communities, N = 78). Subsequently, they were submitted to the cluster detection methods. The test
accuracy for cluster location was determined in terms of detection rates (DR), false-positive (FP) rates and positive
predictive values. The Bayesian smoothing models were evaluated using ROC curves.

Results: With moderate risk increase (RR = 2.0), local cluster tests showed better DR (for both spatial
aggregation scales > 0.90) and lower FP rates (both < 0.05) than the Bayesian smoothing methods. When the
cluster RR was raised four-fold, the local cluster tests showed better DR with lower FPs only for the small spatial scale.
At a large spatial scale, the Bayesian smoothing methods, especially those implementing a spatial neighbourhood,
showed a substantially lower FP rate than the cluster tests. However, the risk increases at this scale were mostly diluted
by data aggregation.

Conclusion: High resolution spatial scales seem more appropriate as data base for cancer cluster testing and
monitoring than the commonly used aggregated scales. We suggest the development of a two-stage approach that
combines methods with high detection rates as a first-line screening with methods of higher predictive ability at the
second stage.
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Background
The introduction of a prospective and systematic cluster
monitoring has been debated in Germany for a long
time [1]. The German state of Lower Saxony is currently
considering the introduction of such a monitoring sys-
tem because unexplained incidence elevations have been
observed for various cancer sites in the municipality of
Asse which hosts a nuclear waste repository [2]. It is
current practice in the German epidemiological cancer
registries that only “event related” cluster investigations
are conducted. These respond to requests from the pub-
lic, from medical doctors or health departments and
arise on the basis of suspected putative cancer clusters
in certain, mostly small, spatial areas. Statistical testing
in these cases usually involves the estimation of stan-
dardized incidence ratios (SIR), that is, the ratio of the
cases of a certain malignant entity in a given area in rela-
tion to the number expected on the basis of the rates for
this cancer type in an appropriate reference population.
If the SIR rise is statistically significant, a cluster is sus-
pected and further investigation is needed to verify an
association with a specific source of exposure [3].
A cluster is commonly defined as a geographically

confined group of cancer cases of sufficient size that are
unlikely to have occurred by chance [4]. However, this
approach has serious methodological limitations: On the
one hand, no hypothesis driven analyses are possible
since the clusters are detected before the hypothesis of
elevated cancer risk areas is formulated (also known as
Texas sharpshooter fallacy) [5]. On the other hand, there
is a substantial multiple testing problems given the
multitude of tests (different communities, different time
periods, different cancer diagnoses) that must be per-
formed. More importantly, such event-driven cluster in-
vestigations rarely discover smaller or weaker exposure
related clusters nor do they help to identify novel etio-
logic associations [6,7]. By contrast, extensive small-scale
monitoring (or prospective cluster monitoring) avoids
many of these problems, in particular the post-hoc bias
introduced by finding a cluster in randomness. There-
fore, a data and hypothesis driven analysis should be
preferred employing the whole spatial and temporal ex-
tent of registry data. Additional benefits may be seen in
a better use of the full set of cancer registry data which
is one major purpose for running cancer registries.
Moreover, a monitoring that covers a complete region
has advantages in terms of not only screening the puta-
tive exposure-associated tumours over time and space
but to encompass also other cancer sites which are re-
lated to differential spatial distributions. Thus, the spatial
incidence patterns of tumours, like breast and prostate
cancer, can indicate how screening behaviour varies over
space and time. Monitoring can also provide data about
the spatial and temporal variation of lifestyle associated
tumours that belong to certain risk behaviours (like alco-
hol or tobacco consumption).
Spatially focussed data may therefore have important im-

plications for public health policies. To conduct compre-
hensive and extensive spatial risk monitoring programs,
various methods have been made available that range from
local cluster tests to full Bayesian smoothing methods [5].
Usually, there is no a priori knowledge about the location
of “true” clusters in the application of such methods.
This study was planned and conducted with the aim of

evaluating the performance of commonly used local
cluster tests and Bayesian smoothing methods in terms
of their detection and prediction rates when applied in a
simulated spatial risk surface. The second aim of the
study was to assess the spatial resolution of the methods,
that is, to test on which spatial scale clusters are still suf-
ficiently identifiable. The spatial units used were 78
communities and 1983 census tracts. The community
level is the lowest spatial unit in the common adminis-
trative division of Germany and corresponds to the LAU
2 (level of local administrative units) in the EU. There
exist several simulation studies that evaluated the statis-
tical performance of cluster detection tests [8-14] but
only few investigated the performance of these tests
when using different spatial aggregation level [9,10,15].
Most of these simulation studies were designed for set-
tings with huge sample sizes (10 000-50 000 cases)
which cannot be directly compared to the conditions de-
scribed above where cancer registries deal with much
smaller samples sizes and a lower spatial resolution of
the administrative data. We aimed to investigate the ac-
curacy and precision of cluster detection tests and
Bayesian smoothing techniques when applied to a set-
ting with smaller areas, lower population numbers and
fewer cancer cases. For this simulation study a common
type of cancer, lung cancer in men and women in the
age group between 40 and 79 years, was chosen as sam-
ple data.

Data and methods
Study area
The study area is located in the northwestern part of
Germany (Regierungsbezirk Münster). It consists of 78
communities (Gemeinden), including 4 municipalities
(kreisfreie Städte), and corresponds to 1983 census tracts.
The mean population density of the Regierungsbezirk is
1533 inhabitants per km2, ranging from 4 to 13615 inhabi-
tants per km2 between communities (Figure 1). The popu-
lation data for the 78 communities for the year 2005 and
the information on geometric boundaries were obtained
from [16]. The population data and the geometric infor-
mation at census tract-level were purchased from [17];
they were derived from electoral districts with approxi-
mately equal size (ca. 500 households).
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Figure 1 Overview of the study area (Regierungsbezirk Münster) with the modelled cluster areas. Two different spatial aggregation scales
are shown: (a) the 78 communities and (b) the 1983 census tracts with the associated population density. Location of the study area in
Germany (c).
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Simulation design
For this simulation study, lung cancer (ICD-10: C34)
cases occurring in men and women in the age group be-
tween 40 and 79 years were chosen as sample data.
Spatial cancer risk surfaces were constructed by arbitrar-
ily defining two artificial cluster areas at the level of the
census tracts. Within these cluster areas, two magni-
tudes of risk elevation were applied such that the lung
cancer risk was computationally set to be either two-
(RR1 = 2.0) or four-fold (RR2 = 4.0) as high as the ob-
served risk. The two risk areas were nested within larger
communities. The northern cancer cluster (encompass-
ing 6 of the total 50 census tracts in that community)
had more rural characteristics, that is, a larger area and
lower population density. The second cancer cluster was
generated in the south (encompassing 37 out of a total
of 99 census tracts composing the entire community)
with more urban characteristics, that is, a smaller area
and units with higher population density (Figure 1).
The expected numbers of cancer cases (Ei) per census
tract were estimated employing the age-standardized in-
cidence rate for lung cancer as obtained from the data-
base of the epidemiological cancer registry of North
Rhine-Westphalia [18]. The observed cases (Oi) were
sampled from the four constructed risk surfaces (urban
& rural cluster with either RR1 = 2.0 or RR2 = 4.0) as geo-
codes using an inhomogeneous Poisson point process
(Figure 2). 1000 realisations of the process for each clus-
ter and RR magnitude were generated using function
rpoispp from the R package spatstat. These realisations
(Oi) were aggregated within census tracts and communi-
ties, respectively, and used for the subsequent local clus-
ter tests and Bayesian smoothing methods (Figure 3).

Local cluster tests
Local cluster tests aim to provide information about the
spatial location of suspected clusters. The statistical con-
cept behind the local cluster tests rests on the assumption
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Figure 2 Overview of the simulation process/design. In the defined cluster areas relative risks of two resp. four and in the remaining study a
relative risk of one were assigned. The geocoded observed cases (Oi) were generated using an inhomogeneous Poisson process.
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that disease risk is constant across the study population
(constant risk hypothesis or null hypothesis, implying
identical risk for each individual). The standardized inci-
dence ratio (SIR), defined as ratio of observed to expected
cases, is commonly used as a measure of relative disease
risk. A constant risk implies that SIR = 1.0. A SIR value
that is significantly larger than 1 indicates a disease clus-
ter. Two types of local cluster tests were applied: The first
is based on local measurements of spatial autocorrelation
(local Moran’s I) and the second is based on variously de-
fined windows that scan the study region for elevated dis-
ease risk (Kulldorff spatial scan statistic; Besag & Newell)
[19]. We applied the methods provided in the R packages
DCluster (version 0.2-2) [20] and spdep [21]. For local
Moran’s I, Kulldorff spatial scan statistic, and the method
of Besag & Newell [20], all computations were performed
with R version (2.13.1) [22].

- Local Moran’s I
The local Moran’s I measures the deviations of a value
in comparison to the mean of the neighbouring areas. In
this study, the standardized residuals, as defined in [5],
were used. At census tract level, a significantly positive
statistic of I (p-value ≤ 0.05) was used in order to detect
adjacent census tracts of high risk (hot spot clustering).
By contrast, at community level, significantly negative
values of I (p-value ≤0.05) were considered because here
the aim is detection of communities that deviate ex-
tremely from neighbouring communities (local outliers).
The R-function localmoran from R package spdep [21]
was used under the assumption of normality and
through the randomisations approach [5]. Due to the
small number of spatial neighbours at community level,
the exact (localmoran.exact) form of the standard devi-
ates were calculated because the assumption of the nor-
mal distribution potentially lead to errors of inference
[23,24]. The p-values were adjusted for multiple testing
using the false discovery rate (FDR) [25]. This criterion
controls the expected proportion of false discoveries
among the rejected hypotheses and has been found to
be more powerful in the detection of spatial clusters
than the family-wise error rates [26]. The FDR approach
is implemented in the R-function p.adjustSP from the
package spdep [21] which additionally adjusts by ac-
counting for spatial neighbours: the p-values are based
on the number of neighbours (+1) of each region, rather
than the total number of regions.

- Kulldorff’s spatial scan statistic
The Kulldorff spatial scan statistic [27] is based on the
likelihood ratio statistics. In this approach, a variable cir-
cular scan window was applied to the study area, with
radius increasing up to 50% of the population at risk.
The actual likelihood ratio is calculated for each circle
as the ratio of observed to expected cases within and
outside the scan window (Lactual). The likelihood func-
tion assuming Poisson distributed cases is proportional
to:

c
E c½ �

� �c C−c
C−E c½ �

� �C−c
I c > E c½ �ð Þ ð1Þ

where c is the number of cases, E[c] is the expected
number of cases within a circle and (C-c) and (C-E(c))
the observed and expected cases outside the scan window.
We chose the indicator function to be 1.0 if the observed
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Figure 3 Spatial aggregation scales of the realised observed cases. The observed cases (Oi) were aggregated to the census tracts (a), and to
the communities (b).

Lemke et al. International Journal of Health Geographics 2013, 12:54 Page 5 of 18
http://www.ij-healthgeographics.com/content/12/1/54
number of cases was higher than expected. Under the null
hypothesis, assuming a constant risk over the study area,
datasets are generated and the maximum likelihood ratio
(L0) is saved. The statistical significance is computed by
means of Monte-Carlo simulation and yields the probabil-
ity that Lactual is exceeded anywhere in the study area;
clusters least consistent with the null hypothesis are
highlighted. The Kulldorff spatial scan statistic adjusted
for the multiple testing by the use of one test only. The
analyses were conducted with function opgam from the R
package DCluster [20], the significance was defined at the
0.05 level and the p-values were calculated using 9999
Monte-Carlo realizations. The most likely clusters were
considered with a p-value ≤ 0.05.
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- Approach of Besag & Newell
In the method of Besag & Newell [28] the scan window
is defined by the number of enclosed cases (k). In the
case of rare diseases, like cancer, the number of enclosed
cases varies between 2 and 10 [19]. This approach evalu-
ates the probability whether the specified k cases are ob-
served in fewer regions [5]. To this end, the actual
number of regions (li) is compared with the number of
regions under the constant risk hypothesis (Li) using a
Poisson distribution (1-Pr(Li ≤ li) ~ Poisson(Ei)). The
analyses were made with the R function opgam R pack-
age DCluster [20] and the p-values were adjusted using
the FDR approach implemented in the R-function p.ad-
just from the package stats [29]. The number of k
enclosed cases was arbitrarily chosen and we used kCT =
5, kCT = 10, kCT = 13 for census tracts and kcom = 15,
kcom = 20, and kcom = 30 for communities.

Bayesian smoothing methods
Smoothing methods do not primarily detect clusters.
Their aim is to model/estimate the spatial distribution of
the true underlying disease risk because mapping the
crude SIR has major drawbacks, especially the instability
of the estimates in region with low background popula-
tion. Smoothing methods therefore try to remove the
random noise caused by the unstable estimates. It is also
possible to deploy these smoothing methods in the field
of cancer surveillance with the aim to identify risk areas.

- Empirical Bayes smoothing
The Bayesian smoothing methods define the risk meas-
ure as a random variable and therefore assign a distribu-
tion to the estimate of the “true” risk (= theta(θi)). In the
empirical procedures, the parameters defining this risk
distribution (= priors) are estimated from the data. The
estimates of theta were stabilized through borrowing in-
formation from the prior mean. The amount of strength
borrowed depends on the stability of the crude local SIR
(or risk measure) as measured by the prior variance [5].
Three models were applied: two global (non-spatial)

models (Poisson-Gamma (PG) model and log-normal
model) with smoothing the risk estimates towards the
global mean, and a local (spatial) model that smoothes
the risk to a spatial neighbourhood mean. Both global
models were implemented in the DCluster R package
[20] and the local model in the spdep package [21]. The
PG-model assumes that the observed cases (Oi) are Pois-
son distributed and because it is likely that the counts
(Oi) are overdispersed, it is reasonable to define theta as
Gamma distributed with θi ~ Gamma(α,β). The priors α
(mean) and β (variance) were estimated using the EM-
algorithm from [30]. The R-function used was empbays-
mooth from R package DCluster [20]. In the log-normal
model, the SIR is estimated as the logarithm of theta
assuming a normal distribution with common mean (α)
and variance (β) [31]. These priors are also estimated
using the EM-algorithm proposed by Clayton & Kaldor
[30]. This model is implemented in the DCluster pack-
age [21] under the function lognormalEB. In the local EB
model (Marshall 1991) the crude risk estimate is shrunk
toward a local (neighbourhood) mean. The EB estimator
of Marshall (1991) assumes no prior distribution of the
risk estimates and is therefore based only on their prior
mean (α) and variance (β). The local EB estimator is im-
plemented in the R-function EBlocal from the package
spdep [21]. The spatial neighbourbood definition is
based on the rook contiguity where a spatial neighbour
shares at least a common border.

- Hierarchical Bayes smoothing (BYM model)
In hierarchical Bayes methods, the parameters describing
the distribution of thetai are not estimated from data but
are further specified through hyperpriors. The hyper-
priors describe the distribution of the priors and are esti-
mated by means of MCMC-simulations. These are used
to derive the posterior distribution of thetai. The BYM-
model [32] split the variation of the thetai into two com-
ponents: a correlated random term (ui) that depends on
values from the neighbourhood (= correlated heterogen-
eity), and an uncorrelated random component (vi) which
describes the heterogeneity (= uncorrelated heterogeneity)
in the study area. The BYM model was implemented in
the WinBUGS software using MCMC methods, in par-
ticular Gibbs sampling [33]. A burn-in of 20 000 iterations
was performed and the posterior distribution was ob-
tained using a sample of 10 000 iterations. The point esti-
mates of theta from the four Bayesian models were used
in the subsequent (cluster) evaluations.

Evaluation of the simulation results
There were two simulated cluster communities out of a
total of 78 communities and 43 artificial cluster tracts at
the level of the 1983 census tracts. The accuracy of the
local cluster tests was assessed by cross-classifying the
‘true’ reference status in the simulated risk surface with
the results of the different cluster tests. The categorization
was dichotomous, that is, we distinguished only cluster
and non-cluster. Based on the cross-classifications, we ob-
tained numbers of correctly detected clusters (True Posi-
tives, TP), falsely detected clusters (False Positives, FP),
non-detected clusters (False Negatives, FN) and correctly
classified non-clusters (True Negatives, TN) as means
(census tracts) and as sums (communities) over 1000
realizations. We calculated the detection rate (= true
positive rate) as DR = TP/(TP + FN)) and the specificity
as Sp = TN/(FP + TN) for each cluster test. Further-
more, the positive predictive value was calculated as
PPV = TP/(TP + FP) and the likelihood ratio of a positive
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test as LR + = (TP/(TP + FN)/ (FP/(FP + TN), with the
PPV providing information about the probability that a
positive test result correctly predicts a true cluster, and
the LR + describing how many times more likely a positive
test result is in a cluster area compared to non-cluster
areas. The described measures are presented with 95%
confidence intervals (CI) at census tract level.
The statistical power, that is, the probability of accept-

ing the null hypothesis of a constant risk over the study
area although it is not true, was assessed for the local
cluster tests and for each of the eight dataset combina-
tions (2 cluster sites × 2 risk magnitudes × 2 gender
groups). We use an approximate approach, because local
Moran’s I provides no global statistic. The approximate
power of rejecting the null hypothesis (no clustering)
was calculated as proportion of at least one minimum
p-values ≤ 0.05 over 1000 realizations of each dataset
Table 1 Summary results of 1000 realizations from an inhomo

Lung cancer
cases

Cluster Expected1

(mean)
Observed

(mean) RR = 2.02
SIR (mean)
RR = 2.0

Census tracts
level

Males Urban cluster 18 35 1.92

Females Urban cluster 6 13 2.13

Males Rural cluster 3 6 2.08

Females Rural cluster 1 2 2.2

Males No cluster,
urban

1000

996

1
No cluster,

rural
1004

Females No cluster,
urban

358

369 1

No cluster,
rural

371 1.03

Community
level

Males Urban cluster 49 66 1.35

Females Urban cluster 18 25 1.36

Males Rural cluster 30 33 1.11

Females Rural cluster 11 12 1.06

Males No cluster,
urban

942

934 1

No cluster,
rural

967 1.03

Females No cluster,
urban

336

333 1

No cluster,
rural

346 1.03

CI = confidence interval of 1000 realizations.
1Expected under the null hypothesis (= background incidence).
2Observed with sampling using an inhomogeneous Poisson process.
3Boice-Monson Method.
combination. The results of the Bayesian smoothing
methods were assessed using the Receiver Operating
Characteristics (ROC) curves since they do not require
a specific cut-off-value of the risk estimate for defining
a cluster. The ROC curves plot the false positive rate
versus the detection rate. For each cluster site, risk
magnitude, gender and data aggregation level a ROC
curve is presented for the four Bayesian methods aver-
aged over the 1000 realizations.

Results
Results of the simulation process
The results of the eight (2 cluster types × 2 risk magni-
tudes × 2 gender groups) times 1 000 risk realizations
are displayed in Table 1 which contains the mean of the
expected counts based on the background incidence, the
observed sampled counts based on the artificial risk
geneous Poisson process

SIR 95% Poisson
CI3 RR = 2.0

Observed
(mean) RR = 4.02

SIR (mean)
RR = 4.0

SIR 95% Poisson
CI3RR = 4.0

1.38-2.67 69 3.78 3.03-4.85

1.26-3.72 25 4.24 2.27-7.04

0.90-4.45 12 4.11 2.82-6.17

0.50-7.99 4 4.32 1.5-10.66

0.94-1.06 998 1 0.94-1.10

0.94-1.06 1010 1 0.95-1.07

0.94-1.06 358 1 0.9-1.1

0.94-1.15 363 1 0.91-1.12

1.10-1.71 99 2.03 1.66-2.46

0.94-2.10 37 2.07 1.49-2.84

0.78-1.55 39 1.32 0.95-1.78

0.62-1.92 13 1.25 0.69-2.04

0.93-1.06 966 1.03 0.99-1.13

0.96-1.09 983 1.04 0.98-1.11

0.9-1.1 346 1.03 0.93-1.14

0.93-1.1 354 1.05 0.95-1.17
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surface, and the simulated relative risk increases
(expressed as SIR). On the census tract scale, an ef-
fective realization of the two-and four-fold risk in-
creases was achieved on average for the urban and
rural clusters in men and women. However, the 95%
Poisson CIs were much narrower in the urban clus-
ters while they clearly included the null value for a
RR1 = 2.0 in the rural clusters. The mean SIR values for
the non-cluster areas were 1.0 with a narrow 95% CI. On
the community scale, the SIR values were much more
weakly elevated: the point estimates ranged from 1.06 to
1.35 with RR1 = 2.0 and from 1.25 to 2.07 for a RR2 = 4.0.
At this scale, only the urban clusters with a simulated
RR2 = 4.0 and the male urban cluster for RR1 = 2.0
showed 95% CIs for the SIR that did not include the null
value. On the other hand, the CIs were wide in the rural
clusters and they included mostly the null value. The aver-
age SIR was 1.0 in the non-cluster areas with narrow CIs.

Results of the local cluster tests
The statistical power of the Kulldorff spatial scan statis-
tic, the approach of Besag & Newell (BN) and local Mor-
an’s I (LMI) is given in Table 2. The results show at the
census tract scale that all tests have a sufficient power
(100%) to detect clustering under the eight risk (data-
set) combinations. At community scale the power is gen-
erally decreased, but while the Kulldorff spatial scan
statistic and the LMI still had statistical power (>63%) to
detect clustering, the BN method showed a considerable
loss in power. In fact, only the female urban cluster
realization with a four-fold risk increase could be identi-
fied with 90% power for 30 enclosed cases (k = 30).
The accuracy of the cluster locations at census tract

level using the eight different model realizations are dis-
played in Table 3 for male and in Table 4 for female lung
cancer cases. All local cluster tests showed a very high
Table 2 Power of the Kulldorff spatial scan statistic, the Besa
detecting spatial clustering

Census tracts

Besag & Newell Kulldorff spatial
scan statistic

k = 5 k = 10 k = 13

RR = 2.0 urban Males 1.0 1.0 1.0 1.0

Females 1.0 1.0 1.0 1.0

rural Males 1.0 1.0 1.0 1.0

Females 1.0 1.0 1.0 1.0

RR = 4.0 urban Males 1.0 1.0 1.0 1.0

Females 1.0 1.0 1.0 1.0

rural Males 1.0 1.0 1.0 1.0

Females 1.0 1.0 1.0 1.0
specificity reflecting the large number of non-cluster
areas. For all local cluster tests there is an increase in
the mean detection rate (DR) with increasing risk mag-
nitudes in the cluster areas. The increase of the mean
DR is especially distinct in the urban cluster. Kulldorff
spatial scan statistic had the highest detection rate in the
urban cluster regardless of the risk magnitude but it also
produced the highest number of false positives which re-
sulted in low values for PPV and LR+. With a cluster
RR1 = 2.0, the Besag & Newell test for the urban cluster
had only mean DRs lower than 0.5 while the positive
predictive power (PPV) was in the range of Kulldorff
spatial scan statistic for that risk. With cluster RR2 = 4.0,
the mean DR for the BN rose above 0.9 with PPVs be-
tween 0.27 and 0.48, whereas Kulldorff spatial scan stat-
istic had only a mean PPV 0.09. The local Moran’s I
showed the weakest ability of all applied local cluster
tests to detect and predict clusters with RR1 = 2.0 but it
had the highest mean PPV (0.51) for the urban clusters
of lung cancer in males when RR2 = 4.0. Further, it was
the only method where the mean DR increased with
simultaneously decreasing of FPs when the RR was
higher. However, the test accuracy in women was gener-
ally lower than in men. Of note, in the rural clusters of
lung cancer, the DR, PPV and LR + were all consistently
very low, both in men and women and regardless of the
risk magnitude.
At the community level, a high number of non-cluster

communities (n = 76) was compared in each dataset
combination to only one community that harboured the
cluster areas in its borders (Table 5). Generally, however,
the same pattern can be observed as at census tract
level: The urban clusters are better detected than the
rural ones and the clusters were better detected in the
male population than in the female. The overall DR for
the Kulldorff spatial scan statistic and LMI increased
g & Newell statistic, and the local Moran’s I statistic for

Communities

Local
Moran’s I

Besag & Newell Kulldorff spatial
scan statistic

Local
Moran’s I

k = 15 k = 20 k = 30

1.0 0.21 0.22 0.23 0.86 0.78

1.0 0.25 0.39 0.42 0.76 0.84

1.0 0.19 0.21 0.22 0.75 0.82

1.0 0.22 0.4 0.35 0.73 0.82

1.0 0.22 0.23 0.26 1.0 0.63

1.0 0.25 0.36 0.9 0.98 0.78

1.0 0.19 0.21 0.25 0.8 0.83

1.0 0.23 0.49 0.48 0.74 0.83



Table 3 Summary of the local cluster test results for male lung cancer for both risk magnitudes, by census tract level

Urban cluster Rural cluster

Test Parameter TP FP FN DR Sp PPV LR+ TP FP FN DR Sp PPV LR+

RR = 2 Besag & Newell k = 5 Mean 4 15 33 0.11 0.99 0.08 16.6 1 16 5 0.11 0.99 0.02 18.0

CI [95%] 0-16 2-24 20-36 0-0.43 0.98-0.99 0-0.32 0-131.5 0-4 4-29 2-6 0-0.67 0.98-1 0-0.13 0-131.8

k = 10 Mean 12 32 25 0.33 0.98 0.28 24.0 1 32 5 0.10 0.98 0.02 6.8

CI [95%] 2-37 7-48 0-35 0.054-1 0.97-0.99 0.06-0.74 3.3-149 1-0 15-58 5-6 0-0.67 0.97-0.99 0-0.13 0-49.4

k = 13 Mean 15 39 22 0.41 0.98 0.29 25.4 1 38 5 0.09 0.98 0.01 5.5

CI [95%] 2-37 6-60 0-34 0.054-1.24 0.96-0.99 0.06-0.77 3.5-181.7 3-1 17-62 3-5 0-0.67 0.96-0.99 0-0.11 0-41.1

Kulldorff spatial scan Mean 30 135 7 0.82 0.93 0.27 24.6 0 98 6 0.03 0.95 0.00 1.0

statistic CI [95%] 2-37 11-588 0-33 0.05-1 0.64-0.99 0.034-0.63 1.8-90.6 0-1 14-425 5-6 0-0.03 0.7-0.99 0-0.03 0-1.5

Local Moran’s I Mean 6 30 31 0.17 0.98 0.17 12.1 0 34 6 0.00 0.98 0.00 0.0

CI [95%] 0-15 18-43 22-37 0-0.41 0.97-1 0-0.38 0-33 0-0 21-48 6-6 0-0 0.98-1 0-0 0-0

RR=4 Besag & Newell k = 5 Mean 22 16 15 0.59 0.99 0.27 86.6 3 16 3 0.55 0.99 0.08 82.0

CI [95%] 12-34 4-26 3-24 0.32-0.92 0.98-0.99 0.14-0.48 35.9-305 0-6 5-30 0-6 0-0.16 0.99-1.0 0-0.2 0-0

k = 10 Mean 34 39 3 0.92 0.98 0.48 51.7 2.781 35 3 0.46 0.98 0.08 29.2

CI [95%] 29-37 12-66 0-7 0.78-1 0.96-0.99 0.34-0.72 26.3-133.5 0-6 11-63 0-6 0-0.16 0.98-1 0-0.19 0-105.2

k = 13 Mean 35 49 2 0.95 0.97 0.44 43.3 3 42 3 0.43 0.98 0.06 22.8

CI [95%] 32-37 16-86 7-10 0.86-1 0.95-0.99 0.28-0.66 21.2-102.4 0-6 12-82 0-6 0-0.16 0.97-1.0 0-0.17 0-105.2

Kulldorff spatial scan Mean 37 475 0 1.00 0.76 0.09 5.7 1 136 5 0.12 0.93 0.01 2.8

statistic CI [95%] 37-37 103-914 0-0 1-1 0.53-0.94 0.04-0.25 2.1-17.7 0-1 18-460 5-6 0-0.027 0.7-0.98 0-0.036 0-2

Local Moran I Mean 24 24 13 0.65 0.99 0.51 57.7 0 35 6 0.00 0.98 0.00 0.0

CI [95%] 15-31 13-35 6-22 0.41-0.84 0.98-0.99 0.34-0.68 27.1-109.2 0-0 21-48 6-6 0-0 0.96-0.99 0-0 0-0
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Table 4 Summary of the local cluster test results for female lung cancer for both risk magnitudes, by census tract level

Urban cluster Rural cluster

Test Parameter TP FP FN DR Sp PPV LR+ TP FP FN DR Sp PPV LR+

RR = 2 Besag & Newell k = 5 Mean 5 24 32 0.14 0.99 0.09 13.41 0 23 6 0.04 0.99 0.01 5.12

CI [95%] 0-19 6-50 18-37 0-0.51 0.97-1 0-0.33 0-66.4 0-3 6-50 3-6 0-0.5 0.97-1 0-0.08 0-43

k = 10 Mean 10 42 27 0.27 0.98 0.19 16.36 0 40 6 0.05 0.98 0.01 3.44

CI [95%] 0-31 6-99 5-37 0-0.86 0.94-1 0-0.6 0-74.7 0-4 3-114 2-6 0-0.67 0.94-1 0-0.08 0-25

k = 13 Mean 12 49 25 0.32 0.97 0.18 16.55 0 45 6 0.05 0.98 0.01 3.65

CI [95%] 0-35 6-120 2-37 0-0.95 0.94-1 0-0.51 0-71 0-4 3-114 2-6 0-0.67 0.94-1 0-0.07 0-24.7

Kulldorff spatial scan Mean 14 117 23 0.38 0.94 0.14 10.3 1 98 6 0.14 0.95 0.01 4.6

statistic CI [95%] 0-37 13-625 0-37 0-1 0.62-1 0-0.47 0-46.2 0-6 11-429 5-6 0-1 0.78-1 0-0.12 0-44.9

Local Moran’s I Mean 4 38 33 0.10 0.98 0.09 5.64 0 41 6 0.00 0.99 0 0

CI [95%] 0-10 24-51 27-33 0-0.27 0.97-0.99 0-0.25 0-17.5 0-0 26-55 6-6 0-0 0.97-0.99 0-0 0-0

RR = 4 Besag & Newell k = 5 Mean 23 26 14 0.61 0.99 0.23 56.27 1 25 5 0.17 0.99 0.02 15.04

CI [95%] 7-34 8-53 3-30 0.19-0.92 0.97-1 0.08-0.42 10.7-163 0-4 7-53 2-6 0-0.67 0.97-1 0-0.15 0-82.4

k = 10 Mean 32 53 5 0.87 0.97 0.41 40.92 1 43 5 0.176 0.98 0.02 8.61

CI [95%] 16-37 13-113 0-20 0.46-1 0.94-1 0.2-0.7 14.2-122.7 0-5 7-105 1-6 0-0.83 0.95-1 0-0.13 0-61.8

k = 13 Mean 34 63 3 0.93 0.97 0.37 33.86 2 52 5 0.16 0.97 0.02 5.6

CI [95%] 18-37 17-141 0-18 0.51-1 0.93-0.99 0.19-0.65 11.8-98.7 0-6 5-133 0-6 0-0.83 0.93-1 0-0.1 0-36.6

Kulldorff spatial scan Mean 37 264 0 0.99 0.86 0.19 13.6 0 109 6 0.06 0.94 0.00 1.6

statistic CI [95%] 31-37 36-873 0-5 0.84-1 0.55-0.98 0.04-0.45 2.2-43.2 0-1 14-441 5-6 0-0.17 0.72-0.99 0-0.03 0-11.4

Local Moran’s I Mean 13 34 24 0.35 0.98 0.28 21.54 0 40 6 0.00 0.98 0.00 0.0

CI [95%] 4-21 20-49 16-33 0.11-0.57 0.97-0.99 0.11-0.45 6.2-43.5 0-0 27-54 6-6 0-0 0.97-0.99 0-0 0-0
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Table 5 Summary of the results for male and female lung cancer, by community level

Male lung cancers Female lung cancers

RR Method Parameter TP urban FP urban TP rural FP rural TP urban FP urban TP rural FP rural

RR = 2.0 Besag & k = 15 sum 210 80 1 269 27 17 1 361

Newell DR 0.21 0.00 0.03 0.00

PPV 0.72 0.00 0.61 0.00

LR+ 202.13 135.9 0.00

k = 20 sum 220 40 240 92 39 51 414 384

DR 0.22 0.24 0.04 0.41

PPV 0.85 0.72 0.43 0.52

LR+ 423.50 200.87 60.4 69.45

k = 30 sum 220 150 1 361 50 57 1 842

DR 0.22 0.00 0.05 0.00

PPV 0.59 0.00 0.47 0.00

LR+ 112.93 0.00 67.5 0.00

Kulldorff sum 501 3974 92 3770 744 3220 80 3996

spatial scan DR 0.50 0.09 0.74 0.08

statistic PPV 0.11 0.02 0.19 0.02

LR+ 9.71 1.88 17.7 1.54

Local sum 190 1512 37 1728 34 126 52 1569

Moran’s I DR 0.19 0.04 0.03 0.05

exact PPV 0.11 0.02 0.21 0.03

LR+ 9.68 1.65 20.78 2.55

RR = 4.0 Besag & k = 15 sum 126 172 2 260 242 130 1 368

Newell DR 0.13 0.00 0.24 0.00

PPV 0.42 0.01 0.65 0.00

LR+ 56.41 0.59 143.34 0.00

k = 20 sum 232 102 224 120 384 382 464 610

DR 0.23 0.22 0.38 0.46

PPV 0.69 0.65 0.50 0.43

LR+ 175.14 143.73 77.40 58.57

k = 30 sum 250 80 2 321 920 810 2 1105

DR 0.25 0.00 0.92 0.00

PPV 0.76 0.01 0.53 0.00

LR+ 240.63 0.48 87.46 0.00

Kulldorff ’s sum 999 11542 351 5590 916 6506 155 4469

spatial scan DR 1.00 0.35 0.92 0.16

statistic PPV 0.08 0.06 0.12 0.03

LR+ 6.66 4.83 10.84 2.67

Local sum 398 732 106 1636 304 1130 72 1588

Moran’s I DR 0.40 0.11 0.30 0.07

exact PPV 0.35 0.06 0.21 0.04

LR+ 41.87 4.99 20.72 3.49

TP = true positive, FP = false positive; DR = detection rate, PPV = positive predictive value.
LR + = likelihood ratio of a positive test result.
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with higher simulated cluster RR and the Kulldorff
spatial scan statistic had the highest DRs, but at the cost
of an immense number of FPs. The DRs using the BN
test were similar for the two cluster RR magnitudes but
the FPs were higher when the RR was higher. Only the
LMI showed that increases of the DR were accompanied
by remarkable FP decreases.

Results of the Bayesian smoothing methods
The results of the Bayesian smoothing techniques are
summarized using ROC curves in Figure 4 (census
tracts) and Figure 5 (communities). Across all cluster
types and cluster risk magnitudes, the methods that im-
plement a spatial neighbourhood, and therefore smooth
the risk estimate towards a local mean, performed better
than the global methods. At census tract scale and with
a cluster RR1 = 2.0, the local EB method had the highest
mean DR (between 0.6 and 0.7) with the lowest average
FP rate at a threshold of 1.4 in the urban clusters. For
the rural cluster the threshold was the same but the
mean DR was lower (0.5-0.6) with a higher mean FPR.
In the female population, the ROC curves are close to
the diagonal line, denoting that the methods have only a
minor (urban cluster) or no (rural cluster) discrimin-
atory power. With increasing cluster risk magnitude the
test accuracy for all methods was improved, that is,
the area under the curve (AUC) was augmented. For
the urban cluster in men (Figure 4e), the BYM model
showed a slightly better performance than the local
EB: the BYM model achieved its highest mean DR
(>0.8) with a minimum FPR (<0.05) at threshold values
between 1.2 and 1.4 while the local EB had at compar-
able threshold values a higher FPR (>0.2). For the
urban cluster in women (Figure 4g), the same pattern
was observed: For same risk threshold of 1.2 the local
EB model had a higher DR (>0.8) but with a higher
mean FPR (>0.20), while the BYM model had a lower
mean DR (≈0.5) but with a lower FPR (<0.05).
In general, similar patterns were observed at the com-

munity level. The local EB achieved the highest accuracy
among all smoothing methods and test accuracy in-
creased with increasing cluster risk magnitude. However,
for RR1 = 2.0, the mean DR were lower and the mean
FPR higher as at census tract level. With increasing
cluster RR magnitude the mean DR for the urban clus-
ters (Figure 5e and f ) increased to almost 1.0 with a
mean FP <0.05 at thresholds between 1.2 and 1.4.

Discussion
The aim of this simulation study was to evaluate differ-
ent methods in their ability to identify spatial clusters
of lung cancer using real-life data from an epidemio-
logical cancer registry in Germany. Little is known
about the performance of local cluster tests and
Bayesian smoothing methods under conditions that
differ by relative risks and spatial scale, that is, small
and large population sizes and the respective data ag-
gregations. We found that the local Bayesian smooth-
ing models (local EB and BYM) generally had a better
test accuracy than the global models. However, at census
tract level and for a RR = 2.0, the local clusters tests gener-
ally showed lower FPRs than the Bayesian smoothing
methods but with comparable DRs. Also when increasing
the cluster RR magnitude, the local cluster tests had lower
FPRs with comparable the DRs. Only at the community
level and for a four-fold risk magnitude this pattern was
reversed: with comparable DR the smoothing models had
lower FPRs.
We implemented a simulation process with eight dif-

ferent conditions under which the method performance
was evaluated. The conditions encompassed the compar-
isons of two magnitudes of cluster risk elevations (RR1 =
2.0 and RR2 = 4.0), of small scale (census tracts) and
large scale (communities) population samples and, on
each scale, that of densely (urban) with that of sparsely
(rural) populated areas. At the census tract level, there
was high agreement between the risk increments realised
in the simulation and the underlying RR, that is, the rea-
lised relative risks were RR ≈ 2.0 resp. RR ≈ 4.0 for both,
the urban and the rural clusters. This came, however,
with a loss in precision, that is, wider confidence inter-
vals, in the rural clusters: smaller observed and ex-
pected counts lead to higher variances of the SIR, a
phenomenon known as the ‘small number problem’ or
SNP. By contrast, the risk realisations at the commu-
nity level were affected by a dilution effect because the
higher aggregation at this spatial scale tends to mark-
edly attenuate the two-to four-fold risk increases that
were present in only a fraction of all the areas that
constituted the community. Of note, only 36% of the
urban community population was actually affected by
the risk increase and only 10% in the rural cluster
community. Therefore, given aggregated large scale
conditions, risk elevations that are present in only a
fraction of the total population result in lower total
risk elevations at the aggregated level such that cluster
detectability is a priori always reduced. Likewise, differ-
ences in the precision of the realised risk between the
male and female populations could also be attributed to
different numbers given that lung cancers in males are
about three times as frequent as in females. Thus, urban
clusters at census tract level in men represented in our
study the most favourable condition for the test methods
to perform, whereas rural cluster at community level in
women reflected the most adverse condition. In summary,
the described conditions affect the ability of the tests to
detect cancer clusters and need to be considered appropri-
ately when interpreting test results.



Figure 4 Averaged ROC curves of the four applied Bayesian smoothing models at census tract level. The letter indicating the different
risk realizations: (a) urban cluster in the male population (RR = 2.0); (b) rural cluster the male population (RR = 2.0); (c) urban cluster in the female
population (RR = 2.0); (d) rural cluster the male population (RR = 2.0); (e) urban cluster in the male population (RR = 4.0); (f) rural cluster in the
male population (RR = 4.0); and (g) rural cluster in the female population (RR = 4.0).
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Figure 5 Averaged ROC curves of the four applied Bayesian smoothing models at community level. The letter indicating the different risk
realizations: (a) urban cluster in the male population (RR = 2.0); (b) rural cluster the male population (RR = 2.0); (c) urban cluster in the female
population (RR = 2.0); (d) rural cluster the male population (RR = 2.0); (e) urban cluster in the male population (RR = 4.0); (f) rural cluster in the
male population (RR = 4.0); and (g) rural cluster in the female population (RR = 4.0).
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Local cluster tests
At census tract level, all cluster tests showed a power of
100% for the eight simulation scenarios, probably because
the risk was realized in a sufficient manner. The statistical
power is primarily influenced by two factors: the sample
size and the true difference between the null and alterna-
tive hypothesis [34]. Therefore, the subsequent analysis of
the location accuracy of the tests is not affected by low
power. By contrast, on the community level a decrease in
power was observed that was most likely due to the dilu-
tion of the realized risk as a consequence of data aggrega-
tion and the different samples sizes (male vs female
population, urban versus rural population density). The
fact, that the LMI showed the lowest power for the most
favourable cluster scenario, e.g. highest risk realization
und highest sample size (urban cluster in male & fe-
male population with a RR2 = 4.0) was probably due to
a less production of false positive locations than in the
other cluster scenarios. In addition, it became also ap-
parent that the power of the BN method is very sensi-
tive to the choice of k. Regarding the accuracy of
location, Kulldorff ’s spatial scan statistic had the great-
est ability among the local cluster tests to correctly
identify lung cancer clusters in urban as well as rural
environments; this was particularly true at the census
tract level. However, the predictive power, that is, the
probability that a positive test result correctly repre-
sented a cluster, was at the same time low due to the
high numbers of FPs. These results are consistent with
the findings of Aamondt et al. [35] who applied a com-
parable simulation design in order to evaluate the
sensitivity and specificity of three local cluster tests
(Kulldorff spatial scan statistic, BYM, GAM) in Norwegian
municipalities (comparable in area and population sizes to
German communities). They found an average detection
rate for urban clusters of 75% when simulating a risk in-
crease of 50% (RR = 1.5) and of 80% for a RR = 4.0. For a
comparable rural cluster they reported a detection rate of
51% (RR = 1.5) and of 87% (RR = 4), respectively. The
higher DR values for the rural cluster in [35] were attribut-
able to a larger sample size, that is, 1.1% of the total
Norwegian population was included in this cluster.
Unfortunately, Aamondt et al. [35] provide no infor-
mation about the numbers of the FPs and therefore
about the predictive abilities of the applied tests.
Huang et al. [36] showed in their simulation study that
Kulldorff ’s spatial scan statistic achieved only a PPV of
0% for a RR of 1.2 for lung cancer in male and female
with a sample size of 5000 cases. The poor predictive
power of the Kulldorff spatial scan statistic has been
noted before: areas with a low incidence rate (far below
the global mean) can be included in the cluster area
and the local average within this cluster remains suffi-
ciently elevated [12,37]. The BN method is based on
the number of k enclosed disease cases which influ-
ences greatly the power and therefore the detection
rate and the predictive power of the test. At census
tract level, the BN method had a mean DR for both
risk magnitudes that was lower than that of Kulldorff ’s
spatial scan statistic for the k-threshold nearest to true
number of enclosed cases. Nevertheless, the BN method
had a slightly better predictive performance than Kull-
dorff ’s spatial scan statistic because it produced far less
FPs. This, however, turns out to be particularly distinct for
the urban cluster scenario in females for a RR2 = 4.0 at
community level, where a power and DR of >90% were
achieved with only minimal increased FPs as compared to
the Kulldorff spatial scan statistic. But this was only ac-
complished with the choice of k that was nearest to the
true number of observed cases (k = 30).Costa & Assun-
cao [38] reported in their comparison of the Kulldorff
spatial scan statistic and the BN method that the methods
perform similarly in urban settings with a sufficiently large
background population but show major differences in
sparsely populated areas. We observed this pattern in par-
ticular in the female urban cluster but not for the male
population because the k-threshold was far different from
the true number of enclosed cases.
The LMI method level showed the weakest ability to

identify clusters and had the lowest ability to predict the
cluster correctly (compared to Kulldorff spatial scan stat-
istic and the BN method for best k-threshold). These
findings confirm previous simulation studies [8,11-13]
which mentioned that LMI had the poorest performance
of the local cluster tests. But for the urban cluster in
males an interesting trend was observed: With increas-
ing the risk it was the only local cluster test where the
increases of TPs were accompanied by a decrease of FP.
However, this could be only observed in the urban cluster
realization in males, denoting that the applied version of
LMI is sensitive to the small number problem. Therefore,
it appears reasonable to include a modified version of the
LMI in an R package that adjusts for heterogeneous popu-
lation densities as proposed in [39]. At the community
level only spatial outliers are detected, and the exact ver-
sion of the test was applied because only few spatial
neighbours exist which makes the normality assump-
tion arguable. For a twofold elevated cluster risk, the
risk realization in the community is too small to be de-
tected as a spatial outlier unlike for a four-fold risk in-
crease: here the LMI had a greater ability to detect the
cluster community than the BN method.

Bayesian smoothing methods
The use of Bayesian smoothing methods for cluster de-
tection are generally characterized by a decision whether
the DR should be maximised or the FPR should be mini-
mised for a specific RR cut-off that serves as threshold
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value for defining a cluster. The results of the Bayesian
models are discussed with the objective of evaluating the
DR of each of the four models at a minimum FPR (or
high specificity).
The global models (PG and log normal) showed poorer

test accuracy than the local models and the differences be-
tween these two global models were not very distinct. The
global models have no definition of a spatial neighbour-
hood and therefore the risk estimates were smoothed to-
wards the global mean. This is expressed by the course of
their ROC curves which were very close to the plot diag-
onal implying very low test accuracy. This was particularly
clear for cluster RR = 2.0, where all models failed to detect
the rural cluster in females, possibly due to the low realized
risk caused by small sample sizes and dilution effects in
this cluster type. For the four-fold RR the test accuracy was
augmented for all models, however, the global models were
still less accurate than the local ones. Of note, the differ-
ences were more distinct than for the two-fold RR
realization, implying that the risk signal in the cluster
areas were not oversmoothed but rather consolidated.
This became particularly apparent in the male urban
cluster where the test accuracy of the BYM model ex-
ceed that of the local EB model (showing both higher
DR together with a lower FPR). This describes also the
situation where the BYM model was most powerful,
namely moderate sized expected counts (>50) and/or
high excess risk [40]. Only few simulation studies are
available that compare Bayesian smoothing methods to
local cluster tests. The results are consistent with the
findings of Aamondt et al. [35] who found in a compar-
able cluster setting a mean sensitivity between 0-1% for a
relative risk of 1.5 but a sensitivity of 85-99% for a RR =
4.0. Similarly, Richardson et al. [40] reported that the
BYM model is essentially conservative for moderate rela-
tive risks (RR < 2.0) and they concluded that it is nearly
impossible to detect localized risk areas if these are not
based on a large (RR > 3.0) excess risk or, in the case of a
moderate risk (RR > 2.0), on substantial numbers of ex-
pected counts of approximately 50 or more. At commu-
nity level, the expected counts are consolidated by data
aggregation although it was noted that the rural cluster in
females could neither be detected at RR = 2.0 nor at RR =
4.0, most likely because of the dilution effects in this clus-
ter. The local EB had a mean DR for a RR = 2.0 that was
comparable to that of Kulldorff ’s spatial scan statistic al-
though with a higher FPR. However, with a four-fold rela-
tive risk in a cluster, all Bayesian models had the same
higher test accuracy for the male urban cluster, denoting
that the expected counts and the relative risk was realized
in a sufficient manner This resulted in a performance that
was better than that of the local cluster tests. This was also
observed for the female urban cluster but the ROC curves
were affected by the reduced sample size.
Strengths and limitations
There are strengths and limitations of this study. A
major strength of this study is the modelling of real can-
cer incidence data in small and large sample sizes with
moderately to highly increased risks and at different
spatial scales of data aggregation. Furthermore, the model-
ling of the observed cases as Poisson distributed reflects a
more meaningful assumption than a fixed sample size and
it increases the applicability of the study results to realistic
cancer cluster patterns. This study was limited in terms of
the local cluster tests used. Dozens of local cluster tests
exist [41-44] and it is possible that other tests may be
more successful to detect and predict the clusters. How-
ever, a main objective of this study was to apply well-
known methods that are available in an open source
environment. For creating a continuous risk surface on
the basis of area data, Poisson kriging [45] may be
used. This technique may result in less smoothing,
however, to our knowledge the Poisson kriging approach
is not yet properly implemented in an R-package. This ap-
plies also to the use of the modified version of local Mor-
an’s I as described in [38] that adjusts for heterogeneous
population densities.

Summary and conclusion
In summary, this simulation study suggests that for the
identification of geographic cancer clusters the use of a
smaller spatial scale is generally preferable to a higher
data aggregation scale. One reason is that cancer is a
fairly rare disease and that cancer clusters tend to be
limited in time and small in place. Data aggregation re-
sults in diluted risks masking the existence of small high
risk areas within a larger aggregate of many average risk
areas; this impedes the detection of small cancer clusters
with a moderate, and even high, risk increase. This is
not balanced out by the higher numerical precision ob-
tained by using larger aggregates. With regard to the
tests applied, the local cluster tests seem preferable to
the smoothing methods for clusters with a moderate risk
increase at both spatial scales. Only with very high clus-
ter risks, the local Bayesian smoothing models have
lower FPRs for comparable DRs on the aggregate spatial
level (community level). It should be noted that, despite
the high DR, the Kulldorff spatial scan statistic had a
very low predictive ability whereas, by contrast, the BN
method showed a good test accuracy but was extremely
sensitive to the right choice of the k threshold. Further,
the LMI method is expected to probably show a better
performance when adjustments for the heterogeneous
background populations can be achieved. For the smooth-
ing methods, the study suggests that the local models are
generally preferable to the global models.
In conclusion, the commonly used scale of entire com-

munities is too coarse for a systematic cluster monitoring.
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Smaller scales have to be preferred to enhance more
effective cluster detections. We suggest a two-stage ap-
proach that combines highly sensitive methods as a
first-line screening with methods of higher predictive
ability in order to reduce the number of false positive
results. For small-scaled data the results of the Kull-
dorff spatial scan statistic pre-screening could be used
to refine the parameter k and then the BN methods ap-
pears suitable to re-evaluate the identified clusters.
When using a higher data aggregation level, the local
EB model appears more suitable. Future research into
cancer cluster detection should focus on the numerical
and statistical stabilization of the risk measures. Thus, it
should be quantitatively evaluated which cancer entities
are actually appropriate for a prospective cluster monitor-
ing or whether, in cases of low incidence rates with too
low count numbers, cluster monitoring should not be en-
couraged. In addition, the reduction of risk measure vari-
ability needs to be emphasized in sparsely populated
areas. Apart from spatial aggregation (only to a degree
that avoids too much loss of the risk signal), temporal ag-
gregation, especially in the female population and for rare
tumours, should be considered to help stabilize the risk
measures.
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