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Abstract

In the present work, the eigenvalue equation W2 + W# = W, which is
closely related to the evolution equation of a curvature operator under the
Ricci flow, is analyzed for Weyl curvature operators W. A proof that under
certain conditions # is maximal if and only if W is the Weyl curvature of
S™x S™ is given. Moreover, infinite series of new solutions to this eigenvalue
equation are constructed.
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Introduction

Hamilton introduced the Ricci flow in 1982 in [Hal] to prove that compact
three-manifolds which admit Riemannian metrics of positive Ricci curvature
are spherical space forms. In the subsequent years, the Ricci flow evolved
to a powerful tool in differential geometry. It was used in many proofs of
important results such as Perelman’s proof of the Poincaré conjecture in
[P1] and [P2], the proof of the differentiable sphere theorem by Brendle and
Schoen in [BS], and Bohm and Wilking’s proof that compact Riemannian
manifolds with positive curvature operators are space forms in [BW], to
name but a few.
Hamilton showed in [Ha2] that the evolution equation of the Riemannian
curvature operator is given by the partial differential equation

OR _Ap— 2(R? + R™).
ot
Hamilton’s maximum principle asserts that an open, convex, O(n)-invariant
subset of the space S%(s0(n)) of algebraic curvature operators which is in-
variant under the associated ordinary differential equation % = R?> + R*
defines a Ricci flow invariant curvature condition. Even more importantly,
pinching sets of such curvature conditions are constructed to show that the
Ricci flow evolves to metrics with constant sectional curvature. Notice, if
such an invariant curvature condition C' contains an operator R ¢ (I) with

R? + R* =0R (1)

for # € R, no such pinching family can exist. Here, 6 is called the eigenvalue
of R. This is why a classification of solutions to (1) would be very desirable.
The curvature operators of compact, irreducible symmetric spaces and also
their Weyl curvature operators provide such solutions. For example, for even
integers n > 4 the normalized Weyl curvature operator of S 7 x S7 satisfies

equation (1) with 6 = 7”2(71_71% =: 6p(n).
In the present work, the following result will be proven.
Theorem A. Let n > 16 be an even integer, and let W € (W), with

W] = 1 be given such that W2 + W# = W for a § > 6p(n). Then
0 = 0p(n), and W is the normalized Weyl curvature of Sz x Sz.



The conjecture is that this is also true for all even integers n > 12 and all
operators W € (W).

Here, (W) C S%(so0(n)) denotes the space of Wely curvature operators and
(W), its subspace of operators which are diagonal with respect to the stan-
dard basis e; A ea,...,e,—1 A ey of so(n). Those operators W € (W), can
be expressed as a symmetric n x n-matrices (w;;)1<i,j<n With 0 on the di-
agonal via W(e; A ej) = wije; Aej for all 1 < i < j < n. The condition
that W is Weyl then reduces to > ;' ; w;; = 0 for all 1 < j < n. Further,
if W € (W)g, the same is also true for W2 + W#. Here, the Lie theoretic
quadratic #: S%(so(n)) — S%(so(n)); R — R¥ is defined by

1
(R* (v),w) = —itr (ady o Roady, o R)

for v, w € so(n), where ad: A%(so(n)) — so(n) denotes the adjoint represen-
tation of so(n).

Moreover, SO(n) acts on S%(so(n)) by means of the adjoint representation
Ad: SO(n) — Aut(so(n)) of SO(n) via g.R = AngAdg. For curvature
operators R of compact, irreducible symmetric spaces of dimension at least
3 the isotropy group SO(n)g is infinite.

In the present work, the following result will be proven.

Theorem B. There exist solutions in (W), to equation (1) with at most
finite isotropy groups in dimension p and p? for a prime number p such that
4 divides p—1 with eigenvalue 0 and in dimension mn for integers 3 < n < m
with positive eigenvalue.

Clearly, these new examples do not emerge from symmetric spaces since
their isotropy groups are not infinite. The solutions in dimension p and
p? will be constructed by means of the Legendre Symbol (%) € {£1}, a
number theoretic quantity that measures whether a given integer a is a
square modulo a given odd prime number p or not. The solution to (1) in

dimension p is of the form
B )
) 0

DESC)
P P
and it gives rise to the constructions in dimension p?. The series in dimension
mmn will be constructed without using number theory.

Since all of the new solutions are purely algebraic and do not arise from

symmetric spaces, a general classification of solutions to equation (1) seems
to be complicated.
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The proof of theorem A will be separated into several steps. First of all, it
will be shown in section 3.1 that the normalized Weyl curvature operator of
S% % 8%, which will be called Wy, is a solution to (1) with eigenvalue 6o (n).
Then for W as in the statement the related operator || will be defined by

(IWl(ei Aej), ei Aej) = [(Wei Aej), ei Nej)l

for all 1 <i < j < n. Since |Wy| is somehow close to the normalized iden-
tity, its scalar curvature is almost maximal under all normalized curvature
operators. The idea is now to show that the same is also true for |IW|. The
first step of this will be to prove in section 3.2 that the scalar curvature of
|W| cannot be contained in a certain interval with upper bound close to the
scalar curvature of the normalized identity. It will then be proven via con-
tradiction in the sections 3.3, 3.4, and 3.5 that actually the scalar curvature
of |WW] has to be greater than the lower bound and therefore also greater
than the upper bound of this interval. In order to do this, some estimates for
related quantities will be proven. Afterwards, this will be used in section 3.6
to show that W has only two distinct eigenvalues which in fact agree with
those of Wy and that the dimensions of their eigenspaces are the same as
those of the eigenvalues of Wy. It will then be deduced via the classification
of symmetric spaces that the eigenspace of the positive eigenvalue of W is
isomorphic to the Lie subalgebra so(%) ® so(%) of so(n), from which finally
follows that W is equal to Wj.

All solutions W to (1) constructed for theorem B will be expressed as gener-
alized circulant matrices. The part for the solutions in dimension p and p?
will then be proven via the basic properties of the Legendre symbol. By the
definition of Legendre symbols it can be seen that W? is the identity on so(p)
and so0(p?), respectively, and further properties of the Legendre symbol will
finally be used to show that W# is equal to —1 times the identity. The part
in dimension mn will be proven via a straight forward computation. For all
solutions it will be shown that ker(W2#I — W#) = {0}, which implies that
their isotropy groups are at most finite.

The present work is structured into three parts. In section 1.1, a brief intro-
duction to the theory of Ricci flows with a focus on the evolution of curvature
operators will be given. Moreover, the space of algebraic curvature opera-
tors and the #-map will be discussed in the sections 1.2 and 1.3. Finally,
the set of algebraic curvature operators which are diagonal with respect to
the standard basis of so(n) will be analyzed more explicitly in section 1.4.
In chapter 2, some results about Legendre symbols will be given in section
2.1 as well as a generalized version of the definition of a circulant matrix.
Theorem B will then be proven in the sections 2.2 and 2.3.

In chapter 3, the proof of theorem A will be given. It will be divided into
six sections.
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Chapter 1

Preliminaries

1.1 The Ricci flow and the evolution of curvature
operators

Introduced by Hamilton in [Hal], a Ricci flow on a smooth manifold M is
a family of Riemannian metrics (g(t)),c; on M for an interval I C R such
that g(t) satisfies the Ricci flow equation

99(t)
ot

Clearly, if the metric changes with ¢, also all related geometric quantities
do so as well. The Riemannian curvature operator R(t) of (M, g(t)) for
t € I carries all information of the different curvature quantities, and the
understanding of its behaviour under the Ricci flow is hence a major con-
cern. Using Uhlenbeck’s Trick (cf. [CK], chapter 6), the following evolution
equation for the curvature operator R(t) of g(¢) can be obtained:

%]: = AR+2(R?+ RY). (1.1)

= -2 Rng(t) .

The term R* will be explained more explicitly in section 1.3. There is the
following related ordinary differential equation to this partial differential
equation:
AR _ po | p#

i R*+ R7™. (1.2)
Due to Hamilton’s maximum principle (cf. [CT], chapter 10.2.2), in many
cases it suffices to analyze equation (1.2) instead of the much more complex
equation (1.1). More specifically, let (g(t))¢c[o,7) be a Ricci flow on a smooth
manifold M such that for every point p € M the curvature operator R,(0) in
p at the initial time satisfies a certain curvature condition, that is R,(0) € C
for all p € M and an O(n)-invariant subset C of S%(so(n)). Here, S%(s0(n))



is the set of algebraic curvature operators, which will be discussed in the
next section, and A?(T,M) is identified with so(n). Moreover, let C' be
invariant under the ordinary differential equation (1.2), that is all solutions
S: [to,t1) — S%(so(n)) of (1.2) with S(¢y) € C have the property that
also S(t) € C for all t € (tp,t1). Then also R,(t) satisfies these curvature
condition for all p € M and all t € (0,7T).

1.2 Algebraic curvature operators

If V is a Euclidean vector space, the exterior product A?V will be endowed
with the natural inner product given by

(vnw,zAy) = (v, z)(w,y) = (v, y){w,z)

for all v,w,x,y € V. Moreover, two endomorphisms A and B on V induce
a linear map on A%V by

AANB: NV = A’V v Aw — %(A(v) A B(w) + B(v) A A(w)) .

Clearly, AANB = BAA. In the following, S?(V) will always denote the set of
selfadjoint endomorphisms on a given vector space V, and it will be endowed
with the inner product given by (A, B) = tr (AB) for A,B € S*(V). It is
easy to see that AA B € S?(A2V) for all A, B € S?(V). Furthermore, A2R"™
will be identified with so(n) as follows:

Let eq,..., e, be the standard basis of R”. Then for 1 <i < j <ne; Aej
will be identified with E;;, where

1 ifk=4l=j
(Eij)yy =3 -1 ifk=j1=1i,

0 otherwise

for all 1 < k,1 < n. Under this identification the scalar product on so(n)
corresponds to

1
An element R € S%(so(n)) that satisfies the first Bianchi identity
(R(x ANy),zAw)y +(R(y A z),z ANw) + (R(z Ax),y ANw) =0

for all x,y, z,w € R" is called an algebraic curvature operator, and the set of
all algebraic curvature operators will be denoted with S%(so(n)). A straight
forward calculation shows that A A B € S%(so(n)) for all A, B € S?(R").
The Ricci curvature Ric(R): R™ — R™ and the scalar curvature scal(R) of



an algebraic curvature operator R can be defined analogously to those of a
Riemannian curvature operator by

n n
(Ric(R Z (ei Neg),ej Ne) = Z Ryijr,  and
k=1 k=1

scal(R) = tr Ric(R).

Moreover, the traceless Ricci tensor of R can be defined as

scal(R)

n

id.

RiC()(R) = RIC(R) —

For n > 4 there is the following natural decomposition of S%(so(n)) into
O(n)-invariant, irreducible, and orthogonal subspaces (cf. [C*], proposition
11.8):

S2(s0(n)) = (I) @ (Ricy) ® (W) @ A'R".

Here, (I) is the space of multiples of the identity I = id Aid on so(n), (W) is
defined to be the kernel of the map Ric: S%(so(n)) — S%(R"); R — Ric(R)
and is called the set of Weyl curvature operators, and (Ricg) is the subspace

(Ricg) = {A Aid € S%(so(n ’A € S?(R") and tr A = 0}

It is known that R € S%(so(n)) is an algebraic curvature operator if and
only if the A*R™-part of R vanishes (cf [C*], chapter 11.2.2). Thus,

S%(s0(n)) = (I) @ (Rico) ® (W).

In the following, the projections of a curvature operator R € S%(so(n)) onto
(I), (Ricp), and (W) will be denoted with Ry, RRic,, and Rw, respectively.
Then

scal(R)

2
= 71 d ichn, —
R[ n(n—l) an RR 0 " —

;Rico A id (1.3)
(cf. [CT], chapter 11.2.2.3). Moreover, set Rgic := R + RRic,-

1.3 The #-map and its properties

Let N = n(”z_l) = dim(so(n)). Following Hamilton (cf. [Ha2]), # will be
defined as the map

4: S2(s0(n)) x S2(s0(n)) — S%(s0(n)); (R, S) — R#S



given by

| N
(R#S)(v),w) = 5 > {[R(ba), S(b5)], v} {[bas bs], w)
a,B=1
for v,w € so(n) and an orthonormal basis by, ...,by of so(n). Again follow-

ing Hamilton, the notation
R” := R#R

will be used. # has the following properties (cf [Ha2] or [C*], chapter 11.1.2
and 11.4.2):

e # is an O(n)-equivariant bilinear map.
e # is symmetric in R and S.
e Let R € S4(s0(n)) be given. Then

—2
R+ R#L = (n = D)R; + " Rricy (1.4)

In particular, [+1% = (n—1)I and W+W#I = 0 for every W € (W).
Moreover, R#S can be described invariantly via the following.

Lemma 1.3.1. Let ad: A%s0(n) — so(n);v Aw ~ [v,w] denote the adjoint
representation of so(n), and let ad, : s0(n) — so(n); w — [v, w] for v € so(n).
Then

(R#S)(v), w) = —%tr (adw R ad,S)

for all R, S € S%(s0(n)) and all v, w € so(n).

Proof. Let by, ...,by be an orthonormal basis of so(n), and let v, w € so(n)
and R, S € S%(s0(n)) be fixed. Then

((R#5)(v), w) = ([R(ba), S(bp)], v) ([ba, bs], w)

N =
Q
—

DN |

(ads(py) (R(ba)), v) (ads, (ba), w)

Q
Jant

(ba, (RadyS) (bg)) (ba,adw (b))

DN | =

M= i M= 3=

Q
—

10



because adl = —ads and adg(w) = [0,W] = —[, 7] = —adg(d) for all
0, € so(n) and because R is selfadjoint. Since by, ... by is an orthonormal
basis of so(n), it follows that

((B#S)(v), w) = ((Rad,S) (bs), adw (bs))

ki
I

N | =
™ =

<(_adwR advs) (bﬁ)’ b5>

Il
DN | =
[]=

Il
—

N~ ™

tr (ady,Rad,S),

which was to be proven. ]

The quadratic R?+ R* for R € S%(s0(n)) is of major interest in the present
work. First of all, R? + R¥ satisfies the first Bianchi identity for all R €
S%(s0(n)) (cf. [CT], chapter 11.2.3). Moreover, the following properties are
known for this expression and will be used later (cf. [CT], corollary 11.18):

Ric(R® + R*);j = Y Ric(R)uRyiju forall1<i,j<mnand (1.5)

k=1
scal(R? + R™) = Z (Ric(R)ij)*. (1.6)
ij=1
In particular,
W24+ W# e (W) (1.7)

for all W € (W).

1.4 Diagonal algebraic curvature operators

In the present work, the focus will be on those algebraic curvature operators
which are diagonal with respect to the standard basis e; Aea,...,e,_1 A€y
of s0(n). Referring to this basis, such an operator R € S%(s0(n)) can be
expressed as a symmetric n X n-matrix (7;)1<i j<n instead of being viewed
as a diagonal N x N-matrix via

R(ei Nej) =1ije; Nej forall 1 <i< j<mnand
Ty =0 forall 1 <4 < n.
In the following, the sets of all n-dimensional diagonal algebraic curvature

operators and of all n-dimensional diagonal Weyl curvature operators will
be denoted with S%’d(so(n)) and (W)7, respectively. Moreover, in the rest

11



of the present work, operators in S?B,d(so(n)) and (W)} will be identified
with their associated matrices with respect to the standard basis. With
this notation, it is easy to see that for R = (74;)1<i j<n, S = (Sij)1<ij<n €
Séd(so(n)) the following properties hold:

[ ] <R, S> =tr (RS) = Z Tijsij'

1<i<j<n
& il
rie  ifi=j,
e Ric(R);; = k=1 zk J forall 1 <4, <mnand
0 otherwise
n
scal(R) = Z rij = 2(R, I).
ij=1
Therefore, W € S% ;(so(n)) is Weyl if and only if >°7_; w;; = 0 for all

1 <1< n.

e The operator R is also contained in S% 4(s0(n)) and is given by
(RQ)ij = 7"22]- foralll1 <i<j<n.

e The operator R#S is also contained in S%7d(so(n)) and is given by the

n
formula (R#S);; = % > (riksjr + mjksic) for all 1 <@ < j < n since
k=1

((R#S)(ei Nej)sex Ner)
1
=5 2 2. rwscalleaNesecAealeiNeg)
1<a<b<n 1<c<d<n
([ea N ep,ec A eg],ex Aep)

Sikdji Y > ravscallea Aey, ec Aedl e Aes)?

1<a<b<n 1<c<d<n

Sikdji Y > TabSed

_1
2
_1
2 1<a<b<n 1<c<d<n
<_5ac ep N eg+ 0peea Aeg+ dgqgep N ee— 0pgea N ec, e N €j>2
1
= §5ik5jz > > Tabscd(—(Sac (0vi0aj — Ovj0ai)
1<a<b<n 1<c<d<n
2
+ Gpe (Gaiaj — 0aj0a) + Gaa (bi0ej — Gj0ci) — Opa (Bailej — dajlici))
1
= 0ubii Y. > rabSad (5ac (0vidaj + 0vj04;)

2 1<a<b<n 1<c<d<n

+ Obe (0aibdj + 6ajddi) + dad (Ovidej + Opj0ci) + Oba (daidej + 5aj56i))

12



1
= 25z‘k5ﬂ< > (TaiSaj + TajSai) + D TiSpi+ Y. TajSia

1<a<i 1<b<j 1<a<j

+ > (rasip+ ijsz'b))
j<b<n
1 n

= §5ik5jl Z (TaiSaj + TajSai)

a=1

foralll<i<j<nandall<k<l<n.

13
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Chapter 2

Some new examples

In order to find sets of algebraic curvature operators which are invariant
under the evolution equation of curvature operators under the Ricci flow, a
classification of solutions to the eigenvalue equation

R? + R* =0R (2.1)

for € R and R € S%(s0(n)) would be very desirable. The curvature opera-
tors of irreducible, compact symmetric spaces and also their Weyl curvatures
are such solutions as the theorem below will show. In addition, infinite series
of new solutions to equation (2.1) in (W)’ that do not arise from symmetric
spaces will be constructed in certain dimensions n in section 2.2. Since they
are purely algebraic, a general classification of solutions to (2.1) seems to be
complicated.

Theorem 2.0.1. Let R be a curvature operator of an irreducible, compact
symmetric space and let W denote its Weyl curvature. Then there exists
0 € R with

R2+ R* =0R and WZ2+W# =0W.

Proof. Let (M, g) be an irreducible, compact symmetric space with curva-
ture operator R. Then g is an Einstein metric with an Einstein constant
6 > 0, that is Ric, = fg. Moreover, g(t) := (1 —20t)g for t € [0, 55) =: J
defines a Ricci flow on M with g(0) = g since

for all t € J. The last step is true because Ric is invariant under scaling.

Let Ry denote the curvature operator of (M, g(t)). Then Ry, = ﬁR
for all t € J, and thus, %Rg(t) = %R for all t € J. Moreover VR = 0
because (M, g) is symmetric, and thus, AR = 0. In total this shows together

15



with the evolution equation for curvature operators under the Ricci flow

10

RP*+R*¥=-— R
+ 2 0t |, 9(t

)= 0R.

Consider now the decomposition R = R; + RRgic, + Rw of R as mentioned
in section 1.2. Since g is an Einstein metric, Rgic, = 0. Thus,

OR =(R; + Rw)? + (Rr + Rw)"
=R} + R} + R% + Riy, + 2(R/Rw + Ri#Rw).
As seen in (1.4) and (1.7) in section 1.3, it is true that Ry Rw + Ri# Rw = 0,
R? + RY e (I), and R3, + R%, € (W). Therefore,
ORw = ((Rr + Rw)? + (R; + Rw)*)
=R}y + Ry,

which concludes the proof. ]

2.1 Legendre symbols and circulant matrices

The most of the new solutions to equation (2.1) that will be constructed in
this chapter will use a number theoretic function that measures whether a
given integer is a quadratic modulo a given prime number or not. This map
is called Legendre symbol and is defined as follows.

Definition 2.1.1. Let p be an odd prime number, and let a be an integer.
The Legendre symbol ( ) of a and p is defined as

>
1 if 22 =a (mod p) has a solution and a Z 0 (mod p),
<Z> =4 —1 if 22 =a (mod p) has no solution,
0 ifa=0 (mod p).

The following properties hold for the Legendre symbol (cf. [S], chapter
1.3.2).

Theorem 2.1.2. Let p be an odd prime number, and let a and b be integers.
Then

1. a =b (mod p) implies <a) = (b>7
p

p

) =a'7 (mod p) (Euler),

(
s () :(—1)’31:{1_1 o Eij 2

16



()G s
D b/ \p

S <Z) _
1=0 p

For more information about Legendre symbols, their properties, and ways
for explicit calculations see for example [S], chapter I, or [SF], chapter V.3.
Another number theoretic result that will be used for the construction of
new solutions to equation (2.1) is the lemma below (cf. [S], chapter 1.2.1).

[y

Lemma 2.1.3. Let p be an odd prime number, and let a be a nonnegative
integer. Then

p! {—1 (mod p) ifa>1andp—1la,
(

mod p)  otherwise.

By means of theorem 2.1.2 and lemma 2.1.3, the next lemma can be proven.

Lemma 2.1.4. Let p be an odd prime number, and let k& ¢ pZ be an integer.

Then

Pf (i(i+k)> .
i=0 p .

Proof. Let 0 <¢ < p—1. Then (@) =0ifandonlyifi=0o0ri+ k=0

(mod p), which is true for exactly one 1 < i < p—1, since k ¢ pZ. Therefore,

Z( Hk) {-(p-2),....p—2} (2.2)

=0

Set ¢ := 772;1. Property 2 of theorem 2.1.2 shows

3 ( Z+k) pzzl(i2—|—ik:)q (mod p). (2.3)

=0 =0

M

Using binomial expansion leads to

17



since for 0 < j < ¢ lemma 2.1.3 shows that

—1 e
pz:ip_l_j _ —1 (mod p) ifj=0,

= 0 (mod p) otherwise.

The claim is now an immediate result from (2.2), (2.3), and (2.4). O

The solutions to equation (2.1) which will be constructed in this section are
of a very special form. This is a generalization of a so called circulant matrizx,
that is a matrix which is fully determined by its first row, and each other
row can be received from the previous one by shifting each entry by one (cf.
[D], chapter 3). Even though not every solution to (2.1) constructed in the
present work is a circulant matrix in the sense of [D], this terminology will
be adopted as follows.

Definition 2.1.5. Let m and n be positive integers with n > 2. A ma-
trix A € R™X™" ig said to be an (m,n)-circulant matriz if there exist
AO) A=) g Rmxmoguch that

A0) AL A@ o A=)

Alm=1)  40) A1)  A(n-2)

A= A2 A=) 40) An=3)
Ail) A.(2) A.(3) . AiO)

Then A will shortly be written as A = circ (A(O), . ,A("_1)>.
Remark.

1. Only (1,n)-circulant matrices as in the definitition above are also cir-
culant matrices in the sense of [D].

2. Suppose that R = circ (A ) is an (m, n)-circulant matrix
with AN = (AT Ll = (AGH ) AB) = (AGHT jf
n is even and AD) = (A(" 1))T,...,A ("3 = (A(n+1)) if n is odd,

respectively, and that A is symmetric with (A(®); = 0 for all 1 <
¢t < n. Then R is symmetric and all entries on its diagonal are equal
to 0. Thus, R can be understood as an operator in S?B’d(so(mn)) as
pointed out in section 1.4.

Notation 2.1.6. For integers n and a let [a],, denote the unique element in
a+nZNn{0,...,n—1}.

With this notation, the following is obvious.

Lemma 2.1.7. Let m and n be positive integers with n > 2, and let A €
RmMnxmn - The following are equivalent:
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1. Ais an (m,n)-circulant matrix.

2. im+k,jm+1 = a[ifz}nm+k,[jfz}nm+l for all 0 < Z,j <n-— 1, all 1 < k‘,l <
n, and all z € Z.

3. Qimtkjm+l = Ok [j—i],ms for all0 <4,7 <n—1landall 1 <k,l <m.

Circulant matrices have some useful properties as the following lemma will
show.

Lemma 2.1.8. Let m and n be positive integers with n > 2. If R and S
are (m,n)-circulant matrices, the same is also true for the matrices A and B
given by a;; = r45s;; and b;; = %2?2”1 (rixsjr + rjpsi) for 1 <, 5 < mn. In
particular, if R, S € Séd(so(mn)) are (m,n)-circulant matrices, the same is
also true for the operators RS and R#S.

Proof. Obviously, A is an (m,n)-circulant matrix. Furthermore, by lemma
2.1.7,

bim+k,jm+l
1 n—1 m
n 5 Z Z (Tim+k,mm+y Sim+lam+y + Sim+kazm+ty ij+l,xm+y)
z=0y=1

1n—1 m

= 9 Z Z (rkv[i—i]nm-l-y Sjm+lam+y T Sk,[z—ilam+y 74]'771—&-l7crzm+y)
z=0y=1

1 n—1—i m

=5 2 2 ("hledamty Simttimety + Skfalamby Tim e imey)
r=—1i y=1

1 n—1l—t m

= 5 Z Z (Tk,[m]nery S[j—ilnm+L,[x]nmty

r=—1 y=1
+5k, (2] nm+y T[j—i]nm+l,[gc]nm+y>

1n71 m

D) > > (Tk,wmﬂ/ Slj—ilnm-+lamty T Skamty T[jfi]nm+l,xm+y)
z=0y=1

= bk, [j—i]ym+1
forall 0 <i,7 <n—1andall 1 <k,I <m. Applying again lemma 2.1.7

proves that B is an (m,n)-circulant matrix. If now R, S € S%yd(so(mn)),
then

mn

1
(R#S5):; = 3 > (riwsie + Tjksi)
k=1

forall 1 < i < j < mn as shown in section 1.4. This concludes the proof. [
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2.2 Infinite series of new solutions to W2 + W# =
oW

Now, new solutions to equation (2.1) can be given in the dimensions p, p?,
and 2p for a prime number p such that 4 divides p — 1. Moreover, another
infinite series of new solutions to equation (2.1) in dimension mn will be
constructed for integers m,n > 2.

Theorem 2.2.1. Let p be a prime number such that 4 divides p — 1, and

let W := circ ((%) , (%) ey (%)) € RP*P, Then W defines an operator

in (W)b with W2 4+ W# = 0.

Proof. Since 4 divides p— 1, it follows from 1, 4, and 3 of theorem 2.1.2 that

)= (50 =G 5) = (57 )
p p p p p

Thus, W is symmetric, and since every entry on the diagonal of W is equal
to (%) = 0, W defines an operator in S%d(so(p)). W is Weyl because of 5

of theorem 2.1.2, and W2 = I = idg(p)

that W# = —I. Note that Wi; = (%) for all 1 <14,7 < n. Because of the

multiplicity of the Legendre symbol and of lemma 2.1.4,

Wﬁ_g(k) (W)_pzl(w> _

k=0 \P p k=0 p

is obvious. Thus, it remains to show

for all 2 < j < p. Since W7 is a (1,p)-circulant matrix by lemma 2.1.8,
W# = circ(0,—1...,—1) = —I, which concludes the proof. O

Example 2.2.2.

e The solution to W2 4+ W# = 0 for p = 5 presented in the previous
theorem is given by

0 + — — +

0 + - -

W = 0 + -
0

o+

where + stands for 1 and — for —1.

e The solution to W2 4+ W# = 0 for p = 13 presented in the previous
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theorem is given by

0+ — + + — — — — + + — +
0+ — + + — — — — + + -
0 + — + + - - — - + +
0 + — + + — — — — +
0 + — + + — — — —
0 + — + + - — -
W= 0+ — + + - —|,
0 + — + + -
0 + — + +
0 + — +
0 + -
0 +
0

where again + stands for 1 and — for —1.
Theorem 2.2.3. Let p be a prime number such that 4 divides p — 1. Set
A = circ(0,1,...,1) € RP*? and

A® .= circ (—1, (Zl) e (z(p—l))) c RP*P
p p

for1 <i<p-—1, andlet W := circ (A(O),A(l), . ,A(pfl)). Then W defines
an operator in (W)Z2 with W2 + W# = 0.

Proof. Due to equation (2.5) and the multiplicity of the Legendre symbol,
AW is symmetric for all 0 < i < p — 1. The same arguments show A®) =
AP for all 1 < i < p—1. Therefore, W is symmetric, and also every entry
on the diagonal of W is equal to 0. Hence, W € S?B’d(so(pz)). W is Weyl
because

p? p—1 p "
Z Wij = Z Z (A )ij
j=1 k=0 j=1
p—1 .
k
e (- 50
k=1 P/ i \P
=0
forall1 <i< p2 by 5 of theorem 2.1.2. Since wW2=171= idﬁo(pg), it remains
to prove that W# = —I. Due to lemma 2.1.8, it is enough to show that

(W#)1; = —1 for all 2 < j < p? since all A® are circulant matrices.
Let A§Z) for0<i<p-—1and1<j<pdenote the jth row of A(i), that is

(52 () () (52

21



for 1 <i < p-—1. Then <Ag0),A§.0)> =p—2forall 2 <j <p Letnow
1<i<p-—1and2<j <p be fixed. The application of the properties of
the Legendre symbol and lemma 2.1.4 shows now

P A2 (00 (1) (k10

v) = p

Therefore,

again by 5 of theorem 2.1.2.
Fixnow 1 <i,k<p—1withi#p—Fkand 2 <j <p. Then

a1 () (S

p p Ji5\p

en(52)

and
<A§i)’A§[i+’f]p)>
_ (4R —)) i(i+k)\ X
() (57
_(i(j—l))
p
:_(Z(jljl))_((l+k);j_1))_(l(lzk)>-

The last step follows again from lemma 2.1.4. If now ¢ = 0 or ¢ = p — k,
then

A0 4®y _ (FYS= (L) _ g — 40 40
<1’1>_727_0_<171>

p) = \p
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and

(4D APy (g)#gﬂ(g) — o (M)

o (S5 G ()
i—1

Using again lemma 2.1.4, all together leads to

p—1 ) )
(W#)l,kp+1 _ Z<A§z)7Ag[z+k]p)>
1=0

:p_2+(p_1):1 (i(i—i-k:))

and

1=0

forall 1 <k <p-—1andall 2 <j <p. The penultimate step follows again
from lemma 2.1.4, the multiplicity of the Legendre symbol and a rearrange
of the indices in the second sum. The last step is again 5 of theorem 2.1.2.
Thus, (W#)lj = —1 for every 2 < j < p?, which concludes the proof.

Theorem 2.2.4. Let p be a prime number such that 4 divides p — 1, and

let a; := — (1 + (1%) \/21)7—1) for 1 <14 < p— 1. Moreover, set

©0) . 0 2(p—1) G ._ (@i a
AW (2(19—1) 0 and AW : 4 a;

23



for 1 <i<p-—1, and let W := circ (A(O), . ,A(p_1)>. Then W defines an
operator in <W)§p with W2 + W# =2(2p — 1)W.

Proof. Set 0 :=2(2p—1). Clearly, a; = ap—; for all 1 <i < p—1. Therefore,
W is symmetric by equation (2.5). In addition, all entries on its diagonal
are equal to 0. Since

2p p—1 .

S Wy =2p-1)-2% <1+ (]> \/2])—1) =0

=1 =1 p
for all 1 <7 < 2p by 5 of theorem 2.1.2, it follows that W & <W>?lp. Consider
now

a%:2p+2(;> V2p—1=2(p—1-—a;)

for all 1 < ¢ < p — 1. Therefore,

p—1 p—1 .
i
(W#)12 =2 ; ai =4 ; (p + <p) \/2197—1> =4dp(p — 1), (2.6)
and thus,

(W2 + W#)m =4(p—1)° +4p(p—1) =4(p—1)(2p— 1) = OW1a.

Furthermore,

(V%) 0

= 2172_:1 aap—q, +4(p —1)a;
=

0 (45 ()4 (5 0
e ()

—2(p-2) -2~ 1)~ 4 -1 —4p (1 ) VI~ 1
= dpa; —2(p— 1) (2.7)

forall1 <i<p-—1andalll<j k<2 by theorem 2.1.2 and lemma 2.1.4,
and hence,

(W2 + W#)jz”k = a? +4pa; — 2(p — 1)
=2(p—1—a;) +4pa; —2(p — 1)
= 2(2p — 1a;
= OW; 254k
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forall1 <i<p-—1andalll<j k<2 This proves the claim by means of
lemma 2.1.8. O

Remark. Let W be as in theorem 2.2.4. Then

p—1
IW> =4p(p—1)>+2p Y a7
=1

=4p(p— 1) +4p*(p — 1)
=dp(p—1)(2p—1)

by equation (2.6). Let W := % Then W2 + W# = W with

i_ 2(2p—1) [ 2p—1
2yl -D(2p-1) \plp—1)

which tends to 0 as p — oo.

In addition to the solutions to the eigenvalue equation (2.1) which are all
constructed above by means of Legendre symbols, there is also the following
series of new solutions.

Theorem 2.2.5. Let m,n > 2 be integers, and let x := %_11 and y := —%.

Moreover, set A := circ (0,1,---,1), B :=circ(z,y, -+ ,y) € R™*™ and let
W :=circ (A4, B,...,B) € R™*™" Then W defines an operator in (W)}""

withW2+W#:(m—1—i)W.

n—1

Proof. Set 6 :=m —1— %. Clearly, W is symmetric and all entries on its
diagonal are equal to 0. Moreover,

mn

> Wij=m—1+4n-1z+(m-1)(n—1)y

=m—-1+m—-1-2(m—1)
=0

for all 1 < ¢ < mn. Therefore, W € (W)7"". Consider now

(W#)lj =m—2+2(n—Day+ (n—1)(m—2)y*

1 —9
=m—2-40 T "
n—1 n—1
g 4 (2.8)
=m-2— .
n—1
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for 2 < j < m. Therefore, <W2 + W#)l‘ = Wy, for 2 < 5 < m. Moreover,
J

(W#)l,ierl =2m—-1)y+(n—2) (9:2 + (m — 1)y2)
C4m-1)  (n=2)(m—-1)*> 4(n-2)(m-1)

n—1 (n—1)2 (n—1)2
m—1(m-—1)(n—2)—4
_ 2.9
n—1 n—1 (2:9)
forall 1 <i¢<n—1, and thus,
—1 —1 —2)—14
1,im+1 n—1 n—1
m—l( 4 )
= m—1-—
n—1 n—1
= OW1im+1
for all 1 <4 <n — 1. Finally,
Uy
1,im+j
=2z + (m— 2)y) + (n— 2) (229 + (m — 2)y?)
:2m71_ m—2 (n72)(m71)+4(m72)(n72)
n—1 n—1 (n—1)2 (n—1)2
:_Qm—3_4 n—2
n—1 (n—1)2
2 (m-=3)(n—1)+2(n—-2)
- on-—1 n—1
2 2
=— —-1- 2.1
nl(m n1> (2.10)

forall 1 <i<n-—1and 2 <j <m, and hence,

2
-]l —— ) =0W PR
(m n—l) 1,5m-+j

(W2 T W#>1,im+j - y2 -1

forall 1 <i<mn-—1and 2 < j < m. This proves the claim by means of
lemma 2.1.8. O

Remark. Let W be as in theorem 2.2.5. Then

HW||2 _ nm(m —-1) nnh-1)

(m:L‘2 +m(m — 1)y2)
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Somoiogh CEEUEY
\/mn(m—l)(n+m+2) \/mn n — 1)(71 +m+ 2) ’
2(n—1)

which tends to 0 as m — oo or n — oo.
Moreover, it is easy to see that m — 1 — —%- = 0 if and only if (m,n) €

{(3,3),(2,5), (5,2)} nT

2.3 The isotropy groups of the new solutions

The adjoint representation Ad: SO(n) — Aut(so(n)) of SO(n) defines an
action of SO(n) on S%(so(n)) via g.R = AngAdg for g € SO(n) and
R € S%(s0(n)). In this part, the isotropy group

SO(n)r = {g € SO(n)|AdgRAd} = R}

of a curvature operator R € S%(so0(n)) under this action will be analyzed for
solutions to the eigenvalue equation R? + R# = @R. This will first be done
for curvature operators of symmetric spaces and afterwards for the solutions
constructed in the previous section.

Proposition 2.3.1. Let M = G/H be a symmetric space with H connected.
Let further p = eH € M, where e denotes the unit element in G, and let R,
be the curvature operator of M at p. Then dh, € SO(n)g, for all h € H.

Proof. Ad acts under the identification A*(T,M) = A?(R™) = so(n) via
Ady(z ANy) = gz A gy for all g € SO(n) and all z,y € T,M. Let h € H,
that is h is an isometry on M with h(p) = p and dh, € SO(n). Since the
(3, 1)-curvature tensor Rp(-,-)- is invariant under isometries, it follows that

Ryl A y)sz Ay = Byl ), 2

= (dhpRy(x, y)w, dhyz),
= (Ry(dhpx, dhpy)dhpw, dhyz),
= (Ry(dhpx A dhpy), dhyz A dhpw),
= ((Rp Addh )@ Ay), Adan, (2 A w))p
=

(Adgp, Bp Adap, ) (z Ay), 2 Aw)p

for all x,y,2z,w € T,M. Thus, AddThpRp Adgp, = R, for all h € H, which
was to be proven. ]

In particular, if there exists an h € H with dh;, not equal to the identity in
G, then the isotropy group of R, is infinite.
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Let now R be an arbitrary algebraic curvature operator, and suppose that
v € s0(n) satisfies g(t) := exp(tv) € SO(n)g for all t € (—¢,€) for an € > 0,
that is

AdyyRAd) =R (2.11)
for all ¢t € (—e,€). Since %h:OAdg(t) = ady (o) = ady, taking the derivative
of (2.11) at t = 0 yields

d T
0 - £‘t:0 (Adg(t)RAdg(t))

=ad,R — Rad,

= [ad,, R].
If now the other way around v € so(n) satisfies [ad,, R] = 0, it follows that
Adg(t)RAdZ;(t) is constant. Since ¢g(0) = e is the unit element of SO(n), g(t)
satisfies (2.11). In total this shows that the isotropy group of R is in one to
one correspondence to

so(n)r := {v € so(n)|[ad,, R] = 0}.

Note that the standard scalar product on the vector space of endomorphisms
on so(n) is given by (-,-): End(so(n)) x End(so(n)) — R; (A, B) ~ tr (ABT)
and that

lad,, R]T = (ad,R — Rad,)T = Radl —adlR
= —Rad, + ad,R = [ad,, R].

for all v € so(n) and all R € S%(so(n)). Therefore, in order to compute the
isotropy groups of the solutions to the eigenvalue equation (2.1) constructed
in the previous section, the following lemma will be useful.

Lemma 2.3.2. Let R € S3(s0(n)), and let v,w € so(n). Then
tr ([ady, B [ady B]) = 4((R*1 — R¥)(0), w).
Proof. Let R € S%(s0(n)) and v, w € so(n) be given. Then
tr ([ady, R] [ady R]) = tr ((ad,R — Rad,) (adywR — Rady)) .
Since

tr (Rad,Rad,,) = tr (ad,Rad,R) and



it follows that
tr ([ady, R] [adyR]) = 2tr (advR ady R — ad, R? adw)
= 4((R*#I — R*)(v), w)
by lemma 1.3.1, which was to be proven. O
Thus, the following is true.

Corollary 2.3.3. Let R € S%(so(n)). Then there is a one to one corre-
spondence between SO(n)r and ker(R?#I — R¥).

Proof. An element v € so(n) is contained in ker(R2#I — R¥) if and only
if tr ([ady, R][ady, R]) = 0 for all w € so(n) by the previous lemma. Since
this trace defines an inner product on {[ad,, R]|w € so(n)}, it follows that
v € ker(R?*#1—R¥) if and only if v € s0(n) g, which concludes the proof. [

Clearly, it follows that the isotropy group of a given curvature operator R
is at most finite if and only if R?#I — R* has no kernel.

Now, the isotropy groups of the solutions to equation (2.1) constructed in
the previous section can be analyzed.

Proposition 2.3.4. Let W be as in theorem 2.2.1 or 2.2.3. Then SO(n)w
is finite.

Proof. Because of W2 = I, W# = —I, and I* = (n — 2)I, it follows that
W24 —W# = (n—1)I. Thus, ker (W2#1 - W#) = {0}, which concludes
the proof. O

Proposition 2.3.5. Let W be as in theorem 2.2.4. Then
ker(WQ#I — W#) = <€1 A €2> @ (63 VAN €4> DD <€2p_1 VAN 62p>.

Proof. Consider first
p—1
(W2#1)12 =2 ; af = (W#)u'

Therefore, (WQ#I — W#>12 = 0. Moreover,

p—1
(WZ#I)M% =4(p—1)>+2 5:21 af — af

=4(p—1)2+4p(p—1)—2p—2<;>\/2197—1
:2<4p2—7p—|—2— (;) m)
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forall 1 <i<p-—1andall1<j k<2 by equation (2.6), and thus,
—9 (4]92 —Tp+2— <Z> V2p = 1)
p
+23p—1) +4p (;) V2 —1

=2(2p— 1) +2(2p—1)2 (;)

>0

(WQ#I B W#>j,2i+k

forall1 <i<p-—1landalll<jk <2 by equation (2.7). Since W is a
(2, p)-circulant matrix, the same is true for W2#I — W# by lemma 2.1.8.
This proves the statement. O

Proposition 2.3.6. Let W be as in theorem 2.2.5. Then

1. SO(n)w is finite if m > 3 or n > 3, and

2. ker (W2#I — W#) =(e1 Neq) ®(eaNe3)if m=mn=2.
Proof. Consider first

(W2#I) =m—-2+(n-1) <x2+(m—1)y2)

15
(m—1)(m+3)

=m-2
m + n—1

for all 2 < j < m. Therefore,

(m —1)(m + 3) 4 (m+1)?
n—1 +n—1_ n—1

>0

(W21 - w#) =
1j
for all 2 < j < m by equation (2.8). Furthermore,

(W), == 1+ (= 2027+ (1= 1) = 1)y?

1,im—+1
~m—=1n-12%*+Mn-2)(m—-1)+4(n—-1)
on-—1 n—1

for all 1 <1i < n — 1, which shows together with equation (2.9)

_ om—1
Lim+1 m
(m—1)(n+1)2
=T -1y

(W21 - w) (n=1)?+4(n—1)+4)

>0
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forall 1 <¢ <n — 1. Finally

(WQ#I)MmH —m—1+(n—-1D2>+((n—1)(m—1) - 1)y’
_(m=1)(n—-1)(m+n+2)—4
- (n—1)?

forall1 <i<n-—1andall 2 <j<m. This shows together with equation
(2.10)

_(m-=1)(n—-1)(m+n+4)-38
Lim+j (n—1)2

(WQ#I - W#)

forall 1 <i<n-—1andall 2<j<m. Since m,n > 2, this is equal to 0
if and only if m = n = 2, and it is positive otherwise. By means of lemma

2.1.8, this shows all together ker (W2#I — W#> ={0}ifm>30orn>3
and ker (W2#I - W#) = (e1 Neg) @ (ea Aes) if m =n = 2, which was to
be proven. O
Thus, it is now clear that the solutions constructed in the previous section

in the dimensions p, p?, and mn for m > 3 or n > 3 do not emerge from
symmetric spaces, which concludes the proof of theorem B.
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Chapter 3

Proof of theorem A

Let m be a positive integer, and let n = 2m. In this part, it will be proven
that for solutions (W, #) to the eigenvalue equation

W24+ W# =ow (3.1)

such that 6 € R and W € (W)} with [|[IV| = 1 the eigenvalue 6 is maximal if
and only if W is the normalized Weyl curvature operator of S x S™. Note
that the condition ||W|| = 1 is not a restriction but a necessary assumption
since also (sW, sf) satisfies (3.1) for every solution (W, 0) of (3.1) and every
s € R. This can easily be seen by the computation

(sW)2+ (sW)# = s? (W24 WH) = s20W.

The following lemma will show that the Weyl curvature of S” x S™ actually
is a solution to (3.1) and will also specify its eigenvalue.

Lemma 3.0.1. Let m > 2 be an integer, let n = 2m, and define

_ ﬁ\/(nf 1)(n — 2)'

fo(n)
Let further denote Wy the normalized Weyl curvature of S™ x S™. Then
W + W = b(n)Wp.

The proof of lemma 3.0.1 will be given in section 3.1. Now, the main theorem
of the present work can be stated.

Theorem 3.0.2. Let m > 8 be an integer, and let n = 2m. Let further
6 > 0p(n) be given such that there exists W € (W)} with |[W| = 1 and
W24+ W# = 0W. Then § = 0y(n), and W is the normalized Weyl curvature
of §™ x S™.
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The following section will prove lemma 3.0.1, while the rest of the present
work is dedicated to the proof of theorem 3.0.2 and will roughly be divided
into three parts. Instead of working directly with W, a related operator
called |W| will be analyzed. In section 3.2 a gap phenomenon for the scalar
curvature of |W| will be proven, that is the scalar curvature of |W| cannot
lie in a certain interval. The second part needs the most work. There will
be shown that the scalar curvature cannot be smaller than the lower bound
of this interval, which will be done in the sections 3.3, 3.4, and 3.5. Finally,
in the last section, it will be deduced that W is in fact the normalized Weyl
curvature of §™ x ™

Remark. Let Wy be the normalized Weyl curvature operator of S™ x ™1
for m > 2, and let n = m(m + 1). Then

W5 + Wi = o(n)Wo

for 50( ) =2 n +1 ; can be proven. The conjecture is now that there
exists an analogue version of theorem 3.0.2 for Wy and Ho(n).

Moreover, p(n) < 0y(n) for all n > 3, and most of the results will be proven
for Og(n) and will therefore work for both, the even and the odd dimensional
case. Only at the end of the whole proof it will be needed that 6 > 6y(n)
instead of only 6 > 6y(n). Thus, if the odd dimensional version of the
theorem is also true, then better estimates will be needed.

The following will be supposed to be true for the rest of the present work.

Assumption 1. Let m > 8 be an integer, and let n = 2m. Moreover, let
8 > 0p(n) and W € (W) with |W| =1 be given such that

W2+ W# = oWw.

Furthermore, the following notation will be used in the rest of the present
work.

Notation 3.0.3. Let m, n, 6, W be as in assumption 1.

e If not stated differently, all components of elements in S?(R") and
in S%(so(n)) will be understood with respect to the standard basis
€1,...,en and ey Aea,...,e,_1 A ey, respectively.

e Define algebraic curvature operators W,, W_ > 0 by

Wij if Wij > 0 —Wij if Wi < 0,

and (W_),; := {0

forall 1 <7 < j <n. Then of course W =W, — W_.

0  otherwise otherwise

(W), {
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e If R € S%}d(so(n)) is any other diagonal curvature operator, define
R+,R, by

i ifwi~20, T34 ifwz--<0,
(Ry); = { ’ ’ and (R-);; := { ! ’

0 otherwise 0 otherwise

forall 1 <i< j<mn,and thus, R= Ry + R_.

e Set

W1 =Wy +W_, Ric := Ric(|W]),

Ricg := Rico(|W]), scal := scal(|W]),
r:= ||Ric]|, ro := |[Rico|,
- 1
= 2 \; := Ricy;, and

n
i := (Rico)s
forl1 <i<n.

e Define E € S%,d(so(n)) with ||E|| =: e such that E L Ric A Ric and

V1—e?
= ——— R i E.
|W| HRic/\RicHRIC/\RIC+

e In many cases it will be more convenient to work with the normalized
Ricci curvature instead of working with Ric. Thus, set

_ Ric

=

S :

e Finally, recall that

fo(n) = V2 (n=1)r-2) and fy(n) =2 (n—-1)(n-3)

and define

) = S5 =V

3.1 The Weyl curvature of S x S™

In this section, a proof for lemma 3.0.1 will be given. Let m > 2, and let
n = 2m. The curvature operator of S™ x S is given by

N idsu(m) 0
RSmXSm == ( 0 1d50(m) .
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Let Wgm«gm denote the Weyl curvature of S™ x S™. Since

Ric(Rgmxsm) = (m — 1)id,
n(n — 2)

5 , and

scal(Rgmyxgm) = 2m(m — 1) =
RiCO(RSmxSm) = 0,

it follows by the decomposition of curvature operators given in section 1.2
that

n—2
Wemxgm =Rgmygm — =1

2-n 2 P
0 1 L= =0 -
1 2=n 2=n 2—-n

— n n n

2(n — 1) 0 1 1

1

Set now Wy := miiz:\\ and consider

n 2 n\n — n2 n — 2
HWsmxSm\Z:(z(n_l)) < (4 2)-1-4( n22)>

- (Q(nn— 1))2 — 1)2(71 -

Therefore,
2-n  2— 2—
0 1 L= =" -
1 2=n 2=n 2-n
Wno = n n n
TV =1)(n-2) 0 1 1
1

Therefore, by the formula for R#S for operators R, S € S%d(so(n)) which

was given in section 1.4, W& + W# can be computed as follows.
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Letfirst 1<i<j<morm+1<1i<j<2m. Then

2 n n(n—2\?
(W3+W5¢)U=MM<1+2—2+2< - >>

:(n—l)Q(n—Q)n22(1+nn2>

2

N
n—1)(n—2
—2)

\[\/—n

2]'

Ifnow 1 <i<mand m+1<j <2m, then

2 n—2\2 n—2
(WOQ—FW(#)z’j:(nfl)(an) << n > —(n-2) n >

_ 2 (n—2)( B

(n—1)(n—2) n?

IW
n—l (n—2
_\[\/ )(n —2) WO)

Hence, W@ + W = 6y(n)Wp for o(n) := 2 "=0=2),

n

This proves lemma 3.0.1.

3.2 A gap phenomenon for the scalar curvature

The normalized Weyl curvature operator Wy of S™ x S™ has the property
that up to a sign all entries agree almost with each other for large m. The
operator which can be obtained by taking the absolute value of each entry
of Wy is therefore almost equal to the normalized identity, and its scalar
curvature is almost maximal under all normalized curvature operators. The
idea is now to show that the same is also true for |W|. In fact, it will be
proven that the scalar curvature of |[W| has to be greater than or equal
to (n + 1)f(n) with |W| and fy(n) as in notation 3.0.3, which is close to
scal(Hf—”) = v2y/n(n —1). In order to show this, the existence of a gap
for the scalar curvature of |W| will be proven in this section, that is it will
be shown that scal cannot be contained in a certain interval. In the whole
section notation 3.0.3 will be used, and assumption 1 will be supposed to
hold.
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By assumption 1, (W, ) satisfies (3.1). Obviously, the same is not necessarily
the case for |[WW|, but at least the following result is true.

Lemma 3.2.1. Let assumption 1 hold, and set

X (W) = 4 (Wi W), +2 (W) + (W)F)
Then

O|W| = |W|? + |W|* —2W2 — X(W).
In particular, X (W) > 0, and thus,

OW| < WP+ [W|# — 22,

Proof. Define W¥ := (Wy)# and W2 := (Wy)? = (W?)_. Because of
W =W, —W_ and W = W2 + W#_ it is clear that

oW, =W?+ (W#)  and oW = —W? — (W¥) .
Moreover,
W = (W, —W_)#* =w? + w# —ow, 4#w_,
and therefore,
(W#)+ = (Wt + Wiﬂ+ —2(W, #W_), and
—(w#) =—(WE+wF) 2w
Furthermore,
W# = (Wy + W)# =W + W# 2w, 4w
Combined, this shows
OlW| =W — W2+ (W#) —(Ww#)_
= W2 —2w? 4 (W¥ + W#)+ (W HW),
— (WE+WHE) oW
=W — oW + |WI# —a (W), —2 (W +wH)

which concludes the proof since X (W) > 0 is obvious by the definitions of
W4 and W_. O

The following lemma gives an inequality for the scalar curvature of |[WW|.
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Lemma 3.2.2. Let assumption 1 hold, and set Cy(W) := scal(X(W)),
where X (W) is defined as in lemma 3.2.1. Then

On = 1% — 4|W_||2 — Cx(W).
In particular, Cx (W) > 0, and thus,
O\ < r? —4|W_| 2

Proof. As seen in equation (1.6), it is known that

scal(R* + R¥) = > (Ric(R);)*
ij=1
for all operators R € S%(s0(n)). This shows together with lemma 3.2.1

fscal = scal(|[W|? + |W|#) — 2scal (Wz) — Cy(W)

:Z (Ric)? =4 > (W2) —Cu(W)
i=1 1<i<j<n ( )”
r? = 4| W_|* — Cp(W).
Moreover, Cx (W) > 0 because X (W) > 0. This concludes the proof. O

In order to apply lemma 3.2.2, the following upper bound for ||IW_|| will be
useful.

Lemma 3.2.3. The following is true:
2([W_[” > 1= /1~ [[[W]gicl[>-

Proof. Set a := [Wy[|* — [[W_|* = (Wi + W, W, = W) = ([W|,W).
Since W and |W| are both operators of norm 1,

a® < [[[Wlew lI? = 1 = [[[W]icl*-

By construction of W, and W_, |[W||? + |[W_||? = 1. Therefore,

2IW_? =1 = Wl = a+ Wl > 1= /1= [[[W]l,
which was to be shown. O
The following lemma will give a better understanding of |||W|gjc/|-
Lemma 3.2.4. Let R € S%(s0(n)). Then

scal(R)?
2(n—1)(n —2)°

1 .
| Rriell* = mHRIC(R)Hz -
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Proof. As pointed out in equation (1.3),

scal(R)
n(n —1)

Since (I, Rico(R) Aid) = 0 and since ||I]|* = @,

RRiC =

It 2 Rico(R) Aid.

1(R)? 4
scal(R)” - [Rico(R) A id||2.

Henicl = 56— )

Let vy,...,v, denote the eigenvalues of Rico(R), and let by,...,b, be the
corresponding orthonormal eigenbasis. Then

1
<(R1C0(R) A ld)(bl AN bj), b; A bj> = 5 (Vi + Vj)
for all 1 < i < j <n. Therefore, since Y ;- ; v; = tr (Rico(R)) = 0,

4[Rico(R) Aid[)* = Y (wi+vy)°

1<i<j<n
= (”—1)ZVi2+2 Z Vi Vj
i=1 1<i<j<n
= (n_Q)ZVi2+ > vy
i=1 i,j=1
= (n—2) |Rico(R)||*.
Furthermore,
I(R) . |I?
Rico(R)[|2 = HRic(R) _ Scan( )i
1(R)? (R
= |Ric(R)|)? + Scafb L 2scan( ) Ric(R), d)
1 2
~ [Ric(m)|* ~ <Y

since (Ric(R),id) = scal(R). Therefore, all together shows

2 scal(R)? 1 ) 2 scal(R)?
IRl = 5o + = (IRie(R)? — =52
1 . scal(R)?
= — _||Ric(R)|I? —
w2 IR = 5o =5 =9y
which was to be proven. ]

The following result will be the last step in order to prove the gap phe-
nomenon.
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Lemma 3.2.5. Let assumption 1 hold. Then there exists a 6’ > 6 such that
< —3\? 2(nA)? —3\?  40'n)
n—2 (n—1)(n—2) n—2 n—2
Proof. Because of the lemmata 3.2.2 and 3.2.3,

Ok < 12 — 4| W_||? < 1% — 2 (1 iz H|W1Rm\|2) .

Now, choose 6’ > 6 with equality. Then lemma 3.2.4 shows

(o3 =72 +2)" =4 (1= W ?)

B 1 (n))?
_4<1_n—2r2+2(n—1)(n—2)>’

which is equivalent to

2(715‘)2 Y 2\ 2 Y n—3,
—— = ({'n) — 40'n) — 4
(n—1)(n—2) (n T) Ao n—2
- —3\?2 n—3\2 40'n\
= (0nx— 12+ 27 ) —4( ) .
< " At n—2 n—2 +n—2
This proves the claim. O

The mentioned gap phenomenon for the scalar curvature of |IW| can now be
obtained from the previous result as follows.

Corollary 3.2.6. Let assumption 1 hold. Then
scal ¢ ((n = 3)0p(n), (n + 1)do(n))
Proof. In lemma 3.2.5 the existence of a #’ > 6 with

n—3\%2 20'n\ (n\)?
0§2(n—2) _n—2+(n—1)(n—2)

was shown. Since 8 > 6y(n) > 6p(n) by assumption 1,
n—3)(n+1); - ;2 ni)?
MGO(”)Q —hm i+ —(1)&» —9)
(n — 3)(n + 1)8p(n)? — 2(n — 1)fp(n)nX + (n))?
(n—1)(n—2)
(nj\ —(n— 3)50(n)) (nj\ —(n+ 1)0~0(n))
(=D —2) ’

which proves the claim. O

0<

It will be shown in the following~ three sections that actually scal has to be
greater than or equal to (n + 1)0y(n).
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3.3 Estimates for 72, scal, tr Ric®, and tr Ric?

The goal for the next three sections will be to prove that the scalar curvature
of [W| has to be strictly greater than (n — 3)fp(n), from which scal >
(n + 1) (n) would follow by corollary 3.2.6. In this part, estimates for and
relations between 72, scal, tr Ric?, and tr Ric* will be proven, where all the
abbreviations and definitions of notation 3.0.3 will be used. Also it will be
supposed that assumption 1 holds.

The proof of the lower bound for the scalar curvature that will be given here
will work via contradiction. Therefore, the following will be assumed for the
whole section.

Assumption 2. Assume scal < (n — 3)8(n).

Lemma 3.3.1. Let assumptions 1 and 2 hold. Then

n—2x A
1= 1.
— 390(n)sca 0o(n)sca

7’22

Proof. Let 0’ be as in lemma 3.2.5. It was shown that

r? =0'n\+2

n—3 \/4(n —-3)?2 40'n\ 2(n)2
n— n—22 n—-2 ((-1)(n-2)

The right hand side of this equation is obviously increasing in #’, and since
0" >0 >0y(n),

(n—3)?2 40(n)nA 2(n\)2
(n—2)2 n—2 (n—1)(n—2)

~ - n—3
r2290(n)n/\+2n_2—\/4

The radicand can be written as

(n—3)%  46p(n)nA 2(nA)?

Y22 a2 T )m-2)
B <2n—3 Oo(m)nA\”  Go(n)2(n))? 2(n))?2
\'m-2  n-3 (n — 3)? (n—1)(n—-2)
_(yn—=3  bo(n)nA ? 2(n\)? n—1 1
_<2n—2 n—3>  n—2 ((n+1)(n—3)_n—1)
_ (2n— 3 ég(n)n)\>2 2% ((n— 12— (n+ L(n - 3))

n—2 n—3 (n+1)(n—1)(n—2)(n—-23)

B (271 -3 Hg(n)nﬂ>2 B 8(n\)?
\'m-2  n-3 (n+1)(n—1)(n—2)(n—23)
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Since nA < (n — 3)fp(n) by assumption 2,

Oo(n)nA = (n—1)(n—3) n—3
; < fo(n)* (n—2)(n+1)§2n—2'

Therefore
4(n -3 400 (n)nX 2(n\)2 o™ 3 Go(n)nA
(n —2)2 n—2 m—1)(n—-2)" n-—2 n—3

In summary, this proves

1 . -
re>(1+ ——3 Oo(n)nA - 390(77,)77)\ Oo(n)nA,

which was claimed. O

The quantities __, tr 53, and tr S* are bounded below and related as follows.

Lemma 3.3.2. Let assumptions 1 and 2 hold. Then

1. trS* < trS3 and

B 2
. (:: 32)2 < ' o < (tr $3)% < tr S*.
- SCa

Proof. Recall that A\; = Ric;; for all 1 <4 < n. Since S > 0 and [|S| =1,
the eigenvalues %, ceey )‘7” of S are for all 1 < 4 < n bounded above by 1
and below by 0. Thus, inequality 1 is obviously true.

The last inequality of 2 can be shown by the following computation:

n 2 n n
() = 5 (L08) < w3yt = st

2
where just the Cauchy-Schwarz inequality and the fact that > 7 ; ré =
|S]|?> = 1 were used.

For the second inequality of 2 consider

scal tr Ric® — rt = Z Z )\2)\2
J=1 ,5=1
1 n
-3 ”221 (AXS + A0x = 22207)

Aidj (Ai = Ag)°

|
:M3
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since A; > 0 for all 1 <4 <n, which proves ﬁ < tr S8,
Lemma 3.3.1 and assumption 2 show now the first inequality of 2:
2 —_ 920 _
roon 200(n)> n—2 ‘
scal? ~ n—3 scal ~ (n—3)2

This concludes the proof. ]
Furthermore, ||Ric A Ric|| = 72||S A S|| can be computed via the following.

Lemma 3.3.3. If A € S%(R"), then ||[A A A| = %\/HAH‘l—trA‘l. In
particular, [|[S A S| = %\/1 — tr.S4.

Proof. Let aq,...,a, denote the eigenvalues of A, and let by,...,b, be the
corresponding orthonormal eigenbasis. Then ((AAA)(b; Abj), b; Abj) = a;a;
for all 1 <14 < j <n. The following computation proves the claim:

JANAIP= Y (aia))?

1<i<j<n
1 n n
2 2 4
D) Z a;d; — Z“z‘
ij=1 i=1
1
=3 (llAf* = tr A%) .
0
Recall that |W| decomposes as
v1—e2
©_RicARic + E, (3.2)

Wle Y-"°
W |IRic A Ric||

where E € S%yd(so(n)) with E L Ric A Ric and e = ||E||. With this, the
following estimate for 2 can be obtained.

Lemma 3.3.4. Let assumption 1 hold. Then

0r2 < V2r2\V/1 — tr 41 — €2 — 2(Ric(W?), Ric).
Proof. The application of lemma 3.2.1 shows

ORic < Ric ([W[2 + [W[#) — 2Ric (W?2).
Therefore,

0r? < (Ric (|W* + [W[#) , Ric) — 2(Ric (W2) , Ric). (3.3)
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Because of (Ric A Ric);; = A\jAj forall 1 <4 < j <n and

Ric ([W]? + W) =" [Wl;x
j=1

i
for all 1 <14 < n by equation (1.5) in chapter 1.3,

n
(Ric ([W[2+ [W[#)  Ric) = 3~ [W]iA\ih
ij=1
=2 Y WA
1<i<j<n
= 2(|W|, Ric A Ric)
= 2||Ric A Ric||v1 — €2
— r2v/2V/1 — tr S4V/1 — e2,
where in the penultimate step (3.2) and E L Ric A Ric were used. The last

equality follows from lemma 3.3.3.
Together with inequality (3.3) this concludes the proof. O

The inequality in lemma 3.3.4 will be one of the main tools for the construc-
tion of a contradiction to assumption 2, but the term —2(Ric(W?), Ric) is
not easy to work with, and without that term the inequality is not strong
enough. Thus, it is necessary to find an estimate for that term which is on
the one hand easy enough to work with and on the other strong enough for
a contradiction. This will be done in the next chapter.

However, some preparations will be needed first for which lemma 3.3.4 will
also be useful. The next lemma will prove a first estimate for (Ric(1W?), Ric)
which will again not be strong enough for contradicting assumption 2, but
it will be sufficient to apply lemma 3.3.4 for getting useful bounds for tr $4,
scal, 2, and e.

Lemma 3.3.5. The following is true:
1
4(n —2)
Proof. Set \; := Ric(W_);; for 1 <i <n. Then

(Ric(W?), Ric) > tr Ric?.

(Ric (WE) ,Ric(W_)) = A7 Z(W_)fj and (3.4)

i=1 7j=1

2
trRic(W-_)> =3 A7 =3 A7 (Z(W_)ij) . (3.5)
i=1 i=1

Jj=

—_
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Clearly, (W_);; =0 for all 1 <i <n. Since W € (W), for every 1 <i <n
either (W_);; = 0 for at least one 1 < j <n with j # i or \; = 0. Consider
the function

n—2 2
f:R"2 S5 R; (T1,...,Tp_2) — (Z 1:1> .
i=1

It is easy to see that f attains its maximum under the side conditions

Z?:_fx? =landxz; >0foralll1 <i<n-—-2inz =+ =xp—9 = 711_2.
Since f (\/ﬁ, cee \/ﬁ) =n — 2, it follows that
n—2 2 n—2
(Sa) co-a¥a
i=1 i=1
which is scale invariant. This shows together with (3.4) and (3.5)
. 2 . . 3
(Ric (W2), Ric (W_)) > ——trRic(W-)".
Because of Ric = 2 Ric (WW_), the claim is proven. O
Now, an upper bound for tr §* can be given.
16
Lemma 3.3.6. Let assumptions 1 and 2 hold. Then tr §* < R
n
Proof. From the lemmata 3.3.1, 3.3.2, and 3.3.5 it is known that
r éo(n) 2

1
i 2 ic) > —— trRic® >
(Ric (1W2) . Ric) > n—2) R 2 A T Scal = 4(n - 3)

Since 6 > fy(n), lemma 3.3.4 shows now

Oo(n) <V2v/1 —tr S4 — 2(9;3(11)3),

which leads to

fo(n)? 1 2
tr St <1 — 02 <1+2(n_3)>
(

:1_(71—1) -3) ( 2n_5)>2

(n+1)(n—-2) \2(n—3
_ 8n?—4ln+49
4(n+ 1)(n—2)(n - 3)
16
“8n+9’
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where the last inequality follows from
(8n2 — 41n 4 49) (814 9) — 64(n + 1) (n — 2)(n — 3)
=—4In+57<0
for all n > 2. Therefore, the statement is proven. O

The following lower bounds for the scalar curvature and the norm of the
Ricci curvature of |[W| can be obtained from the previous results.

Corollary 3.3.7. Let assumptions 1 and 2 hold. Then

—28n 49~ 8 9 A
1. scal > n nt Oo(n) = nt Oo(n) and
n—3 16 16
(n—2)?8n+9 8n+9,
2. r2> Oo(n)? = Oo(n)2.
e A TR T
Proof. Since 5%12 > 8%?9 by the lemmata 3.3.2 and 3.3.6, estimate 1 follows

immediately from lemma 3.3.1.
Estimate 2 is just a direct consequence of 1 and the repeated application of
lemma 3.3.1. O

Consider e = ||E|| as defined in notation 3.0.3. Since [|[W|| = 1, it is clear
that e < 1. However, a better bound for e can be obtained from the previous
results as the following lemma will show.

Lemma 3.3.8. Let assumptions 1 and 2 hold. Then e? < %

Proof. As proven in the lemmata 3.3.4 and 3.3.5,

N 1
2 < 2 _ 4 52 : 3.
Oo(n)r= <r V2v/1 —trS4V/1 —e 72(71 — 2)trRlc

Dividing this by 2 shows that this is equivalent to

G (n) < irSil —e2— " 4163
fo(n) < V2vV1—trS4/1—e 2(n—2)trS

Therefore,

_ 2
r 3
EP (90(71) + 72(n_2)trS )
- 2(1 — tr.S4)
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Since L < (tr 5’3)2 <trS*andr > Z—:géo(n)\/g by lemma 3.3.2 and corol-

lary 3.?’).7, respectively,
Oo(n)? n 1 2
2 n-1 <1+2ﬂ(n—3)>
 n(n=3) 8n®—(48-4V2)n+73-12V2
(n+1)(n—2) 8(n — 3)2
(16 — 4v/2)n? — (65 — 12v/2)n + 48
8(n+1)(n—2)(n—23) ‘

62§1—

Consider now
24(n+1)(n —2)(n —3) — 2n ((16 —4V2)n? — (65 — 12vV2)n + 48)
=8(vV2 —1)n® + (34 — 24v2)n? — 72n + 144
=: f(n).
Then f(3) = 18,
f'(n) = 24(V2 — 1)n® + (68 — 48v/2)n — 72, and
f"(n) = 48(V2 — 1)n + 68 — 48v/2.

Thus, f/(3) = 72v/2 — 84 > 0 and f"(n) > f"(3) = 96v/2 — 76 > 0 for all
n > 3. Therefore, f is nonnegative on [3,00), and hence,

|

e? <

Y

[\~

n
(6]

—+

which was to be shown. O

3.4 An estimate for —2(Ric(W?), Ric)

As mentioned before, the goal of this chapter will be to find an upper bound
for —2(Ric(W2), Ric) which could help to use lemma 3.3.4 for the construc-
tion of a contradiction for assumption 2. For the whole section it will be
supposed that assumptions 1 and 2 hold, and notation 3.0.3 will be used.
Recall that there exists an operator F € S?B,d(so(n)) with e := ||E|| such
that

e F 1 Ric A Ric and

V1 —e?
Ric A Rid| Ric A Ric +

The following result will be useful and is well known (cf. [CT], lemma 11.15).
Note that in the present work the scalar product on S?(R™) is given by

(A, B) = tr (AB),

whereas in [CT] it differs by the factor 3.

. W=
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Lemma 3.4.1. Let R € S%(s0(n)) and A € S?(R™) be given. Then
(R, AA2id) = (Ric(R), A).
With this, —2(Ric(W?2), Ric) can be decomposed as follows.
Lemma 3.4.2. Define
T) :=2(W_ (Ric A Ric) ,Ric A 2id) and
Ty = —2(W_E, Ric A 2id).
Then
o Vi-e
|IRic A Ric]|
Proof. Because of lemma 3.4.1 and W2 = W_|W|,
(Ric(W?2), Ric) = (W2, Ric A 2id)
= (W_|W|, Ric A 2id)
_ Vi=é
|Ric A Ric]|
+ (W_E, Ric A 2id),

—2(Ric(W?), Ric) = Ty + To.

(W_ (Ric A Ric) , Ric A 2id)

which was to be proven. O

In the rest of this chapter, estimates for the two terms 77 and 75 will be
calculated.

3.4.1 An estimate for T}
In this part, the following estimate for T will be proven.
Lemma 3.4.3. Let € > @. Then
Ty >nX* + X2(2 — )2 — M\(1 + e)trRic}.
In order to prove lemma 3.4.3, the next lemmata will be needed.

Lemma 3.4.4. Let R € S%(s0(n)), and let vy, ...,v, be the eigenvalues of
Rico(R). Then

n n
LY (vitv;) =0, 2. > vy = —|Rico(R)|?,
i,j=1 bj=1
i#] i#]
n n
3.3 (V2 + Z/JQ) = 2(n — 1)||Rico(R)|)?, 4. > v2v; = —tr Rico(R)3,
i,j=1 i,y=1
i#] i#]
n
5. Z (v + 1/]3) = 2(n — 1)trRico(R)>.
ij=1
]
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Proof. Since Y"1 ; v; = tr Rico(R) = 0, the following calculations prove the
claims:

n

ZVZ—H/] Z(n—Q)Vﬁ—ZVj):O,
j=1

ivj 1 ’L:1
i#j
n n n
> vy =Y 2= Z = —||Rico(R)|?,
ij=1 i=1  j=1 im1
i#£] J#z
n n n
Z (VZZ + VJQ) = Z (n— 2)Vi2 + Z l/j2 =2(n— 1)|]Rico(R)H2,
i,7=1 i=1 j=1
i#]j
n n n n
Z Vv = Z Z - Z v} = —trRico(R)?,
t,j=1 i=1  j=1 i=1
i#j J#
n n
S+ => [(n-2)y +ZV = 2(n — 1)tr Rico(R)®,
ij=1 i=1
i#]j

Lemma 3.4.5. Let z,y > —1 and € > @ be given. Then
0<2+e) (22 +97) +ay(d+2 +y).
Proof. Let F': [—1,00) x [-1,00) = R be defined by

(x,y) — (2+¢) (x2+y2) +zy(d+2x+y)

for e > \/@_3, and let f be the restriction of F' to (—1,00) x (—1,00).
Clearly, f is differentiable with

Y f(a.y) = ((4+ 2€)z + dy + 2y +y2>

(44 2€)y + 4x + 2zy + 22

for every (z,y) € (—1,00) x (—1,00). Let now (z,y) € (—1,00) x (—1,00)
be a critical point of f. The subtraction of the second equation from the

first of Vf(z,y) = (8) leads to

0=(4+26)(z—y)+4(y—2)+y° -2 = (x+y —2)(y — ).

If x =y, then 0 = (8 + 2¢)z + 322. Therefore, z = y = 0 since z > —1.
If x + y = 2¢, then

0= (44 2€)(2e — y) + 4y + 2y(2e — ) + 1/
= — % + 2ey + Se + 42
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Hence, y = € = v/5e2 + 8¢ and = = € F V/5e? + 8e.

Consider now the function
fi[-1,00) 5 Rz — Fz,—1) = (1+€)2® =3z +2+e.
3

It is easy to see that f has a global minimum in PTgEmsk Further, F is

obviously nonnegative on [0, 00) x [0, 00). Moreover,
xhaHolo F(z,y) =
for every y € [—1,0) because the map x — F(x,y) is for every y € [-1,0) a

parabola that opens upward. Since F'(0,0) = 0 and since F' is symmetric in
x and y, all of this shows that the global minimum of F' has to be

win {0,F (e V5 486, Va1 80) 1 (50— 1)

(1+e
if € — v/be? + 8 > —1, or else it is

3
min {0, F (2(14‘6)’ —1) } .
However,
F (e +v/5¢2 + 8, e — V/5e + 8¢ )
= (2+¢) (12¢2 + 16¢) — (4e® + 8¢ ) (4 + 2¢)
=4e*(2+¢)

>0
for all € > ¥3-10 quch that F (e + vV5e2 + 8¢, ¢ — V/be2 + 86) is defined, and

2
3 9 9 1
F(Q(l—i—e)’_l) =(2+9 <4(1+6)2+1)_2(1+6) <1+2(1+e))
9
2—4(1+€)+2+6
€ +12e—1
41+

which is nonnegative for all € > @. This proves the claim. O

This will now be helpful to show the following.

Lemma 3.4.6. Let € > @ and R € S%(so(n)) with R > 0 be given.
Then
(R (Ric(R) A Ric(R)), Ric(R) A 2id)

- scal(R)* n scau?lz(;?)2

(2 - ¢)||Rico(R)||?

n3
_ scal(R)

n

(1 + e)tr Rico(R)>.
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scal(R)

Proof. Let Ag := —,—,and let ny,...,n, and v1, ..., v, be the eigenvalues
of Ric(R) and Ricy(R), respectively. Without loss of generality, it can be
assumed that 9 > --- > n, as well as v; > --- > v,. Further, let by,...,0,

denote the corresponding orthonormal basis of eigenvectors of Ric(R). All
components of algebraic curvature operators in this proof will be understood
with respect to this basis.

Since Ric(R) = Agid+Rico(R), 7; = Agr +v; for every 1 < i < n. Therefore,

((Ric(R) A Ric(R)) (Ric(R) A 2id)),;
= ((Ric(R) A Ric(R)) (Ric(R) A 2id) (b; A bj), by A bj)
= mn; (i + ;)
= (An+u) (Ar+v) (22 +vi +v))
=205 + 3\, (v +vj) + AR (4I/Z'Vj +v2 + 1/]2> + vivj (v; + vj)
(3.6)

for every 1 <i,j < n with i # j.

Suppose first that there exists 1 < i < n with v; # 0. In particular, v, <0,
and thus, v, = —1 can be assumed since the inequality in the statement of
the lemma is scale invariant. Therefore, lemma 3.4.5 can be applied. Hence,

0<(2+¢) (1/12 + VJQ) + dvivy + vy (v + vj)
< Ar ((2 +e€) (1/12 + V?) + 4Vi1/j) + vy (v + vj)

for all e > @ and all 1 < 4,5 < n. Here, the second inequality results
from Ag =0, — v, > 1 and

(2+¢) (v +2) + vy > 2w +v5)* > 0.
This shows together with equation (3.6) that

((Ric(R) A Ric(R)) (Ric(R) A 21d)),;;

> 20+ 30k (i + 1) — Ar(1+¢) (v +23)

foralleZ@andalllgi,jgnwithiyéj.
The right hand side of this inequality defines now an algebraic curvature

operator of Ricci type, that is the Weyl part vanishes. This can be seen as
follows: Let

R 1= 2X + 3 (0 + 15) — A1+ ) (v + v2)
Then
Ric(R)ii =2(n — 1)A% 4 3(n — 2) ARy
~ Ar(+ ) ((n = 202 + [Rico(R)|?)
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for 1 <i<n,

scal(R) = 2n(n — 1)A% — Ar(1 + €)2(n — 1)||Rico(R)|?,

and

scal(R)

RiCo(R)Z‘Z‘ ZRiC(R)Z‘Z‘ — n
n

—3(n ~ 2)%i = R(1+ €) ((n - 202 = "= [Rieo(R)|?)

for 1 < i < n. Thus, since (Rico(R) Aid);ji = : (Rico(}?)ii + Rico(R)jj> for
all 1 <14,5 <n with i # 7,

(RI + RRicg)...A
ijji

 scal(R) 1 .5 T

= n 1) + — (RICO(R)“ + Rlco(R)j])

2(1+¢)

=2\} —

_ ) 1 _
Ag|[Rico(R)||* + — (3(n — )Nh(v; + 1)

a0 10207 ) - 2R ) |
= Rijji

for all 1 < i,j < n with i # j. Thus, Ry = 0 by the decomposition of
curvature operators as seen in chapter 1.2.
If now v =--- = v, = 0 is assumed, then

((Ric(R) A Ric(R)) (Ric(R) A 2id)),,;; = 2A%
by equation (3.6), and thus, (Ric(R) A Ric(R)) (Ric(R) A 2id) € (I).
Since R decomposes as R = %I + —2 Rico(R) A id + Rw, in both cases

lemma 3.4.4 shows
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(R (Ric(R) A Ric(R)), Ric(R) A 2id)

5\3 Vi + vy < <
2 Z (n_1+ j) (2)\%+3)\%(V1+V])

1<i<j<n n—2

—Ar(1+e¢) (V,? + Vf))

- 1 < (< 3 2

n—1 n-—2

ig—=1
i#]
_ 3 14 6
2 2, 2 .
+)\R(<n—2_n—1> (Vi+yj)+n—2yzyj)
S 1+
—_ )\Rn—; (yf’ —|—I/]3 +1/z-2yj +Vi1/]2)>
DY 3 1+e 6
_ 4 ‘R o o o . 2
=¥+ 50 (200 - 1) (25 - ) - ) [Rieo(R)|
CARLEE o 1) ) Ric(R)?
2 n—2 0

= nA%h + A%5(2 — €)||Rico(R)||> — Ar(1 + €)tr Rico(R)3.
This concludes the proof. ]

Now, the proof of lemma 3.4.3 is just a direct application of lemma 3.4.6.

Proof of lemma 3.4.3. With R := 2W_, the lemma follows directly from
lemma 3.4.6 and the fact that Ric(2W_) = Ric. O

3.4.2 An estimate for 75

In this section, the following estimate for T5 will be proven.

Lemma 3.4.7. Let assumptions 1 and 2 hold. Then
Ty < fo(n)r? (1 — V1= 62)
1 — 2 4\2 _ 34
N (nsMJ (tr 542 — (tr 53) )

1— (trS3)
The proof of lemma 3.4.7 will be separated into several steps. The first of

these will be to introduce the quantity X in the following lemma and to
show that T and X are related as follows.
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Lemma 3.4.8. Let

V1—e2

X :=e|W(Ric A 2id)|| — [[Ric A Ric]|

((Ric A Ric)(Ric A 2id), E).

Then
Ty < X — (Ric A 2id, E?).
Proof. Since W =W, —W_, |[W| =W, + W_, and

V1 —e2

W= - Y1"¢ RicARic+E
W= TRie A Rig e/ Rie + B,

the Cauchy-Schwarz inequality shows
—2(W_E, Ric A 2id) = —2(W_(Ric A 2id), E)
= (W(Ric A 2id), E) — (|W](Ric A 2id), E)
< X — (Ric A 2id, E?),
which was to be proven. O

The main work will now be to estimate the terms of X. To do this, the next
two lemmata will be needed.

Lemma 3.4.9. Let A € S?(R") and a positive integer k be given. Then
(trAk)2 < tr A2k=Dgr A2 Furthermore, if k is odd, then in addition
(tr Ak)2 < tr AF—Lgr ARHL,

Proof. The following computation proves the first inequality by means of
the Cauchy-Schwarz inequality:

(tr AF)* = (AP A)2 < | AR A2 = tr A2 Der A2,
Let k£ now be odd. Then

(trAF)” = (A5 A2 < AT 2| ATE |2 = tr AP e AR
again by the Cauchy-Schwarz inequality. This concludes the proof. O
Lemma 3.4.10. Let A € S?(R") with A > 0 be given. Then

(A A A)(AA 2id)|? §||A/\1AH2<(A/\ A)(A A 2id), A A A)?

2
+ tr A%tr A* — (tr A3> .
If in addition ||A|| = 1, then

(1—trA4%)?

(A A A)(AA2id)|? < (trA4 + (trA3)2> s
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Proof. Let aq,...,a, denote the eigenvalues of A. Then

IANA)AA2i)12P= D (aia;(a; +aj))?

1<i<j<n

_ 4 2 3 3 2 4
= Z (ai aj + 2a;a; + a; aj>
1<i<j<n

n n
4 2
= Z (aiaj—i—a?a?) —2Za?
i=1

ij=1
2. A4 3)2 6
=trA“trA Jr(trA) —2tr A°. (3.7)
For the first inequality consider the following:

(ANA)AN2id), ANA)y= > ald;(a; + aj)

(]
1<i<j<n
n n
— 3.2 5
= Z a;a; — Zal
i,7=1 =1

=tr A% tr A3 — tr A°.
This shows together with lemma 3.3.3 and equation (3.7)
T (trA2 At~ (r4%)" — (A A A) (AN zid)|y2> 1A A A2
+ (AN A)(AA2id), AN A)?
= <tr A8 — (e A3)2> ((tr A2)2 —tr A4> + (tr A% A% — e A5>2
= (r A2)2tr A° —tr At tr A° 4 (b A3)2 tr A*
—2tr A% tr A3 tr A% + (trA5)2
= (\/‘m— trA5) <2trA2trA3 — Vtr At tr A6 — trA5)
+ (1r AWV AT — e A7V A9)

The application of lemma 3.4.9 proves

Vir Adtr AS —tr A5 >0

and
2tr A% tr A% — Vitr Attr A6 — tr A5 > 2 (trA2trA3 — \/trA4trA6) )
Since the eigenvalues aq,...,a, of A are all bounded below by 0,

n n
tr A2 tr A% = Z a?a? > Z a;la? = Vtr At tr AS.
ij=1

ij=1
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Thus, T' > 0, which proves the first inequality.
Let now ||A]| = 1. Consider

(1- trA4>2 - (1 —2tr A 4 (trA3)2> <1 - (trA3>2>
= (trA4)2 —2tr A (tr A3)2 + (trA3>4
= <tr At (o A3)2)2
>0,
which is equivalent to

(1 —tr A1)
1— (tr A3)?
Equation (3.7), inequality (3.8), and lemma 3.4.9 can be combined to

1-2tr A+ (tr A3)2 < (3.8)

—tr AY?
(trA4 + (trA3)2> m — (AN A)(AA2id)|?

> (trA4 + (trA3)2> (1 —2tr A’ + (b A3)2)
—trAt (trA3)2—|—2trA6
=2 (trA4)2 — tr A% (trA3)2 + (trA3)4 +2tr AS
=200 4% -3 (6 A?) 4 oAt (a?) 4 (trA4 - (trA3)2>2
> tr A — 2tr A3 tr A% 4 tr A* (trA3)2 + <trA4 = (trA3)2>2
> tr A® — 2tr A3Vtr A% tr A6 + tr A* (trA3)2 + (trA4 - (trA3)2>2

2 2\ 2
= (\/ tr AS — Vtr Adtr A3) + (tr At — (tr A3) )
>0,
which proves inequality 2. ]

Now, the first term of X can be estimated.
Lemma 3.4.11. Let

(1—tr %) (tr$* + (tr 53)°
Y = <2 (1 — 62) r? . —((tr 53)2 )

1/2
+tr (B2 (Ric A 2id)2)> .
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Then

V1 —e?

- - . . . 2.d 2 E )
YHRiC/\RiC”((Rlc/\Rlc)(Rlc/\ id)*, E)

IW(RicA2id)|| <Y +

Proof. Since |[W (Ric A 2id)|| = |||[W|(Ric A 2id)|| and

V1 — e? V1_ 2
W|=-———° RicARic+E =2 _SAS+E
[Ric A Ric] oo

by lemma 3.3.3, it follows that

2r? (1 —¢?)
1—trS*

+ ||E(Ric A 2id)||?

W (Ric A 2id)||? = 1(S A S)(S A 2id)||2

(E, (Ric A Ric)(Ric A 2id)?).

Since ||E(Ric A 2id)||? = tr (E?(Ric A 2id)?), this shows with lemma 3.4.10

1 —e?

W(Ric A 2id)[* < Y2 42—
W (Ric A 2id)[|* < V2 + | Ric A Ric||

(E, (Ric A Ric)(Ric A 2id)?).

2
In general it is true that every a,b € R with a # 0 satisfy a®+b < (a + %) ,
which concludes the proof since obviously Y # 0. O

To avoid or reduce long and too complex terms the following abbreviation
will be used.

Notation 3.4.12. Let ¢ € R and A € S?(R") with A > 0 be given . Then
R.(A) will be defined as

Re(A) := (AN A)(AA2id) — c(ANA)(AA2id)2
Corollary 3.4.13. Let h:= 3. Then X <eY — HRiviCngCH(E,Rh(RiC».

Proof. This follows directly from lemma 3.4.11 and the definitions of X and
Ry, (Ric). O

The next step will be to analyze and to bound the term (E, Rj(Ric)). For
this the following lemma will be useful.

Lemma 3.4.14. Let A € S?(R") with eigenvalues a1, ...,a, > 0, and let
¢ > 0 with ¢(2a;;, + a;, + aiy) < 2 for all distinct 1 < 4y,1i9,i3 < n be given.
Then

ANA

2 2
) <trA*tr A% — (trA%)".
!A/\AH> ( )

|R(A)? <RC<A>
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Proof. Without loss of generality, let a; > --- > a,. Using the first estimate
of lemma 3.4.10 shows

2
I Re(A)|? — tr Attr A2 4 (tr A%)

< ((ANAP, (AN2id)") = 20 (AN A2, (AN 2id)%)
1

2 1\ 2

Furthermore,

(Re(A), AN A2 = (AN A2 AN2i) +E (AN AP, (AA2id))

—2c((ANAP, AN2id) (AN A2 (AN2id)?).
(3.10)

To deduce the proof of the lemma from (3.9) and (3.10) the occurring terms
will now be compared separately. Consider first

(AN A2 (AN2id)%) A A AP
— (AN A2, AN 2id> (AN AP, (AN2id))
= Z Z a akal ( a; +aj)3 — (a; + aj)(a +al)2)

<i<j<n 1<k<I<n

Z Z a akal ( a; + aj)3 + (ax + a)?
1<i<j<n 1<k<i<n
— (@i + a5)(ax + @) = (a; + a;)*(ax + ar))

1
25 Z Z a akal az+(l]+ak+az)(ai+aj—ak—al)2,

1<i<j<n 1<k<i<n

M\’—‘

The last step is true since in general 23 + 3% — xy? — 2%y = (z + y)(z — y)?
for all x,y € R. Moreover,

(AN AP, (AN 21d)4> JAR AP = {(An AP, (AA2i0)2)

2
=YY el o) - ( > a%azwa»?)

1<i<j<n 1<k<i<n 1<i<j<n

Z Z a akal ( a; + aj)4 + (ar + al)4
1<i<j<n 1<k<iI<n
— 2(ai + a;)%(ax + @)?)

1 2
=_ Z Z a? akal az+a]—|—ak+al) (a; + a; — ap, — a)

1<i<j<n 1<k<i<n

l\.')\r—l
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since in general z* +y* — 222y = (z+y)%(z —y)? for all 2,y € R. Therefore,

2
TANAL R vz = Ry, ANA No o atip a2 4 (10 47)
AN Al

Z Z a? akal (ai + aj + ap, + a)(a; + a; — ap — a7)?
1<i<j<n 1<k<I<n

(=2 +c(a; +aj + ai + ar))
<0.

M\HO

The last step is true because of the following: a; > 0 for all 1 < ¢ < n.
Further, by assumption,

—2+cla;+a;+ap+a) < —2+c¢(2a1 +az+az) <0

foralll<i<j<nandalll<k<lI<nifnoti=k=1and j=1=2
since a; > --- > ap for all 1 < i < n. However, if i = k and j = [, then
a; + aj — ap —a; = 0. Hence, the statement is proven. O

The term (E, Rp,(Ric)) can now be estimated by means of the above lemma
as follows.

Corollary 3.4.15. Let assumptions 1 and 2 hold. Then

—(E, Rp(Ric)) < req/tr $4 — (tr $3)2.

Proof. Without loss of generality, Ay > --- > A, can be assumed. The goal
is now to show h(2A; + A2 + A3) < 2 to apply lemma 3.4.14.
By definition of h,

ey/1 — (tr §3)?

MQ (1—e2) (1—tr84) (tr 84 + (tr $%)%) '

h <

Moreover, % < (tr 5’3)2 < trSt < % by the lemmata 3.3.2 and 3.3.6 and
e? < % by lemma 3.3.8. Therefore,

2 n—1 3
—_ 3 JR—
(trS) < — e < o
-2 2n—3
1—trS4Zn , 1—e?> n , and
n 2n

tr 54 4 (trS3)2 >

Sl
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-1)
Thus, h < \/ n(n Furthermore,
2n —3)(n —2)

6r? > 6 (AT + 23 + Ag)
= (2A1 + A2 4+ A3)2 4+ 207 + 502 503 — 40 0 — 4003 — 2003
= (2A1 + Ao+ 23)% + (A1 — 20) + (A — 2X3)% + (A2 — A3)?,

and hence, 2)\; + A2 + A3 < V6r. Therefore,

(n—1)
h(2A1 4+ A2 + A3) < \/QTL— n_2)

Because of
8(2n —3)(n —2) —9n(n — 1) = Tn? —47Tn 4+ 48 > 0

for all n > 6, h (2A1 + A2 + A3) < 2 follows.
Let Rp(Ric)grg)+ be the projection of Rpy(Ric) to the orthogonal comple-

ment of S A S. Then, by lemma 3.4.14 and since E L SA S, e = ||E||, and
SAS __ _RicARic
TSAS] = TRicARic]’

N Rp(Ric)gpg)t o >
(7w < <||Rh< Fngye] )

Ric A Ric \ 2
— : 2 : o
\/HRh(RIC)H <Rh(RIC), ||Ric/\RicH>

2
< \/err Ric* — (tr Ric3)
= r3\/tr §% — (tr $3)%.

This concludes the proof. O

Now, a proof of lemma 3.4.7 can be given.
Proof of lemma 3.4.7. The combination of the definition of Y, lemma 3.3.3,
and the corollaries 3.4.13 and 3.4.15 shows

X 1 eY
< — E, Rp(Ri
Vi— = TRienRie] 2 i (RiOn +

4 _ 3)2
<Vare \/trS (tr S3)

1—trS4

1—e2

(1—tr 84 (0S4 + (r5%)?) g (B2(Ric A 2id)?)
* 1— (trS3)2 TR
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Moreover, it is easy to see that 2zy < ax®+ % for all a,z,y € R with a > 0.
This will be applied to

v 0o(n)
v
€T :ﬂ and
=
A —trsT) (tr 5S4+ (tr 53)2) L (E2(Ric A 2id)?)
v 1— (tr $3) 2r3(1—e?)
\/trS4 — (tr §3)?
+ _—.
1—trS4

However, before doing so, it will be useful to show that

(1—trSY) (trST+ (09%)%) 5t — (1 59)°

<2tr 8%
1— (trS3)? 1—trst  — 7

Therefore, consider

(1 o 54)2 (tr 54 (tr 53)2> 4 (tr 54— (tr 53)2) (1 - (tr 53)2>
28 (1- (%)) (1- us?)
= —trs* (1 53)2 + (tr 53)4 + (tr 54)3 — (tr 54)2 (i 53>2

= ((wrs?)’ = (1r5°)") (s (w5)’)

<0,

where the last step is a consequence of lemma 3.3.2. Combining everything
shows
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X
V1-—e2
e*r?fy(n) | tr (EB*(Ric A2id)?)  2V1—¢é? (tr st

Sovioe 200 (n)r2v/1 — €2 " 0o(n)
trS4 + (tr$3)*  tr (E2(Ric A 2id)?)
+\/mJ 1— (tr 53)2 + 2r2 (1 —e2) (1 —tr 54)>
Lt (BA(Rien2id?) [ (trst = (tr$%)%) (1- (1r$%)%)
200 (n)r2v/1 — €2 (1—trsh? (tr 5%+ (tr 53)%)

e2r20p(n)  2v1 — €2 4 (tr §4)? — (tr §3)*
Wi-2 | o) (trs +¢ 1= (tr 59)° ) '

The last inequality is true since /7 +y < /z + ﬁ for arbitrary xz,y € R
with x,y > 0. Furthermore,

(trst = (")) (1= (8Y7) (2 - ) (1 )
(1-tr S (tr$* + (tr$%)7) ~ 2(1_2)2 n—2

_l’_

n) (n—3)2
~ n(n?—10n+18) ((n—3)*— (n —2))
N 2(n —2)3(n — 3)2

1
< =
-2
by the lemmata 3.3.2 and 3.3.6 and because n(n2 —10n+18) > 0 for n > 8
as well as (n — 2)% —n(n? — 10n + 18) = 4n? — 6n — 8 > 0 for n > 3. Since
AL > > A, RicA2id < (A1 + A2)] < scall. Therefore,

tr (E(Rie A 2id)%) [ (trs*— (tr5%)?) (1- (tr$%)%)

20 (n)r? (1—tr$4? (tr 5%+ (tr 53)%)
2 . .
< tr (E (RIC~/\ 2id)) scal 1+ V2
2r264(n) 2
In+1 21y .
< =
S 1tr (E*(Ric A 2id))

< tr(E?(Ric A 2id)).
Here, the penultimate inequality follows from
scal n—3 n+1

200 (n) = (n—2)0(n)2  2(n—1)
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by lemma 3.3.1. The last inequality is true since %Z—ﬂ <1 forall n > 3.
Everything together shows now

e?r2hp(n) 2 (1—€?) 4 (tr §4)% — (tr $3)*
X < 2 + 3o(n) (trS Jr\l 1— (tr 59)? )
+ tr (B%(Ric A 2id))

Since tr (E?(Ric A 2id)) = (RicA2id, E?), % <1-vV1-e2 and (1-¢?) <
V1 — €2, the claim follows from lemma 3.4.8. O

3.5 The scalar curvature cannot be too small

In this part, the contradiction for assumption 2 will be constructed. The
main tool for this step in the proof of theorem 3.0.2 will be the following
result, which in fact was proven in the three previous sections. In the whole
chapter notation 3.0.3 will be used, and assumption 1 will be supposed. Of
course, assumption 2 will only assumed to be true until the contradiction is
constructed.

Corollary 3.5.1. Let assumptions 1 and 2 hold. Then

_ M 2222 — B\ trRic]
Bo(m)r? — Vary/T— 51 4 LA T2 10— 1pA D

||IRic A Ric]|
9 4\2 _ 3\4
< = tr St + (tr S) “rf) .
o(n) 1— (trS3)
Proof. Since % > \/@73, lemma 3.4.3 can be applied with ¢ = % The

combination of the lemmata 3.4.2, 3.4.3, and 3.4.7 shows now

— 2(Ric(W?), Ric)

1 - 62 —4 23—2 2 13— 3
S S 4 ¢y C e W 7 00
= " |Ric A Ric]| (” TR T rRICO)
V1—e2 4)2 _ 3)4
n 2 Nl € (gt (tr S%) (t(rg' )
Bo(n) 1— (tr %)

+ 6o(n)r? (1 —V1- 62) .

Moreover, in lemma 3.3.4 it was shown that

fo(n)r? < v2r2\/1 —tr 41 — €2 — 2(Ric(W?), Ric)

since fp(n) < . The combination of both inequalities divided by v/1 — €2
yields what was claimed. O
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The rough idea for the construction of the contradiction to assumption 2
will be to use corollary 3.5.1 for deducing a convex function on a compact
interval with endpoints of the interval equal to the bounds of n\ given by
corollary 3.3.7 and assumption 2 which is nonnegative in nA. It will then
be shown that this function is negative at the boundary points, which is
a contradiction. In order to prepare the construction of this function, the
following results will be needed.

Lemma 3.5.2. The global minimum of the function

622 — 6z + 1 2+E2w—1 23

: (0,1 —1,0] —» R; — —
g: (0,1] x [-1,0] () 52 Yt VT

263
is g5

Proof. Assume that g has a critical point (z,y) € (0,1) x (—=1,0) in the
interior. Then

Vy(z,y) = <<6 — 6z + 1)% + 1]121(295 - 1)> B <0> |

which is equivalent to

( Bz -1y + 1z ) _ (0)
(622 — 6z + 1)y + 15(22% — z) 0)"

Since x # %, because otherwise % = 0 by the first equation, y =
Using the second equation shows

11z
12(1-3z) "

0=62%—6x+1+ (22— 1)(1—3z) = —x,

which is a contradiction. Thus, g has no critical point in the interior. Con-
sider now the boundary functions

2
-2
Gi: (0,1] = Rz — g(x,—1) = W and
1 11 23
s -1 R; 1 — —
Go: [=1,0] > Ryy = g(L,y) = 5y° + Sy + 15
Then Gi(z) = 1322 — = for all z € (0,1), which vanishes if and only if

4
x = 2. Further Gf (—) = (%) > 0. Since limy\ o Gi(x) = oo and
Gl(l) — 12

, G attains its global minimum in 3z with a value of
(12) 37 1 <25> 263
G| = — — = =—.
25 12 12 288

w\w
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Moreover, Ga(y) = % (y + 12) + 231 > égé for all y € [—1,0].
Finally, let (zg, yr)ken be a convergent sequence in (0, 1] x [—1,0] with

lim zp =0 and lim y; =: Yoo € [—1,0].
k—o0

k—o00

If yoo = 0, then z—z <0 for all k € N and —3y; — 13 < 0 for k large enough.
Hence,
23w ( e, 11) 23

11
9Tk, y) = 3y + st gt 2y ) 2 1

Yy

for k large enough. Otherwise limg_, o i = —o00, and thus,

. . 11 23 11
mﬂg@mwﬁzlmﬁﬁﬁ+yk++yk<yk—3w—-) 0.
k—o0 k—o0

6 12 2wy, 12
Therefore, the absolute minimum of g is ggg O

By means of the lemma above the following result can be proven.

Lemma 3.5.3. Let assumptions 1 and 2 hold, and let d € R with d < ggg
be given. Then

1 < 2 5 13- .
§tr Ric* + nA* + (12 - d) 2N — T;AtrRicg — %7’4 > 0.

Proof. Without loss of generality, let pu; < --- < py for 1 <1 < n be all
different eigenvalues of Ricg, and let Z; for all 1 <+ <[ be the dimension of
the eigenspace of y;. Since the statement of the lemma is invariant under
scaling, A = 1 can be assumed. Then p; = A\; — A > —1 for every 1 < i < n,
and therefore, —1 < py < --- <y <n — 1. Moreover,

=71 + 202N + 02\ and

tr Ric* = tr Ricg + 4\ tr Ric + 62%rg + nA’.
Therefore,

1 < 23
<2tr Ric* + nA\* + (12
171 11 23 3
= <2trRlcO+ l—trRlc0+ (12 d) 2 o E‘;)

l

To —
I e (B )y ] )
- lnlh z1n'uZ 2 z‘:1n'uZ '

1 o 13< . 3
- - d) e E)\ tr Ric) — 2nr4)
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Consider now the set

n
K = U {(:cl,...,xk,yl,...,yk) GRZk Ti1,...,Tk € [0,1],
k=1

k k
_1§y1g...Sykén—l,zxizl’zxi%:o}.

=1 =1

Since K is compact, the continuous function f: K — R given by

k k
1 11
f(xlv"'amkayla"'ayk) = ileyf_}' szly?
i=1 =1

k k 2

+ (23 - d) S it — o (szyz2>
12 i=1 2\i3

has a global minimum. Let M be this minimum. In order to prove the

lemma, it is sufficient to show that M > 0 since (%, e %, Plyeees Ml) € K.

Assume M < 0. Let 1 <k <n and (z1,...,2kY1,...,Yx) € K be chosen

such that f(x1,...,%%,91,...,yx) = M and such that if 1 < k' < k and

(.fl,.. . ,(Z‘kl,gl,...,gk/) € K, then f((f‘l,...,i'k/,:ljl,. . .,gk/) > M.

In particular, it is easy to see that if k > 1, then z; # 0 and y; # 0 for all

1<i<kandy <--- < yg.

Moreover, k = 1 is impossible since then x1y; = 0 by the definition of K

and f(x1,y1) = 0, which would contradict the assumption M < 0.

For now, assume k > 3. Then there exist a1, ..., ar with a; # 0 for at least

one 1 <14 < k such that Zle a; = 0 and Zle a;y; = 0. Set

tmin i= max —— <0 and tmax = min —— >0,
1<i<k|a;>0 a5 1<i<k|a;<0 @

and define z;(t) := x; + ta; for t € [tmin, tmax). Then

zi(t) >0 forall 1 <i <k,

k k k
sz(t) = sz + tZai =1, and hence, z;(t) <1, and
i=1

=1 =1
k k k
Sowit)yi =Y wyi+tY ay; =0
i=1 i=1 i=1

for au t < [tmilhtmax]' ThU_S, (I’l(t), . "xk(t)7y17 R 7yk) S K fOI' all t c
[tmina tmax]- Define now

f: [tmin7tmax] — Rat = f(xl(t)a . 7xk‘(t)ayl7° . ayk) .
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f attains its minimum in ¢t = 0 because f does so in (1,..., Tk, Y1, .-, Yk)-
Since
2

k
=-3 (le?ﬁ) <0
i=1

for all ¢ € (tmin, tmax)s f is concave. Hence, f has to be constant, which
contradicts the choice of k because x;(tmin) = 0 for at least one 1 < i < k.
Thus, k = 2. Since (z1,22,y1,y2) € K and x1,22 € (0,1), it follows that
1 =1— x5 and yo = —="2y;. Hence, by assumption,

€2

0>f(x1,22,y1,92)

=(1-22)y @(H = )y?+§(1‘u?f;§2)2>yl
B (52) S 52 )

1x22(6x26x2+12 11225 — 1 23 )
= Y1 To

— —d
T 21‘% 9 12 9 it 12
which is equivalent to

625 —6ra+1 5  112z9—1 L2
2132 1T 12 T

d>

This contradicts the precondition on d since d > 222 by lemma 3.5.2. Thus,
M > 0, and the lemma is proven. ]

For the preparation of the next step in the construction of the contradiction
the following lemma will be useful.

Lemma 3.5.4. Let k> 12, Y > —1+ 2, and z € [0, %2] with

k% — Tk + 8 k—4 1 5 2k—-2)—2z 9
<Y Ty Ly
REr k-2  Brk-2" " = K +
be given. Then
2k —9 3x
) e By
TR
Proof. Let Yy := 2fk39 + 8k2 Then
20k —2) -z 5 k* — Tk + 8 k—4 1,
i ShO A YA ¥’ _ _—
2 O T G Dk—2) Re-2 w2’

16k? — 24k +9 , 4k* — 8k® — 106k? + 111k — 54
T 16k5(k — 2) v
8k5 — 92k* — 24k3 + 179k? + 9k + 162
a 16kS(k + 1)(k — 2)
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Consider the function
FIRS Rk — (8k5 — 92k* — 243 + 179K% + 9k + 162) :

Since f(—1) = —256, £(0) = —162, f(1) = —242, f(2) = 512, and f(12) =
—67518, all critical points of f are contained in (—oo, 12). Thus, f restricted
to [12,00) has to be monotonically decreasing. Since f(12) < 0,

_8k5 — 92k* — 24k3 + 179k2 + 9k + 162
16k5(k +1)(k — 2) =

for every k > 12.

16k2—24k+9 4k—3)2 k—2
Because of 1A 9 — (64k4) >0forall k#0and 0 <z < 5=,

16k2 — 24k +9 4k* — 8k3 — 106k2 + 111k — 54

6kt 16K5(k — 2)
- 16k* — 24k +9k — 2 4k" — 8k® — 106k* + 111k — 54
= 64k* k 16k5(k — 2)
56k% — 593k2 4 576k — 252
T 64k5(k — 2)
Define now

g R Rk — (56k3 — 593k% + 576k — 252) .

Then g(10) = —2208 and ¢'(k) = —168k>+1186k—576 < ¢’(10) = —5516 for
all £ > 10, which shows that g restricted to [10, c0) is nonpositve. Therefore,

16k? — 24k + 9 2 4k* — 8k3 — 106k? + 111k — 54
64k* 16k5(k — 2)

T

for all k > 12 and z € [0, 52].
Further, it is easy to see that the map Y — %Y—FYQ is strictly mono-
tonically increasing on [—1 +24 L, oo) since its vertex lies at % =

-1+ % + 55 Therefore,

2(k —2) — 2(k —2) —
< k? — 7k +38 n k—4 x—LxQ
T REk+1D)(E-2)  k2(k-2) 4k2
forall Y € {—1 + %, YO) since 57 < %, which concludes the proof. O

With the help of lemma 3.5.4, the following result can be proven. The
inequality stated there will be the main ingredient for the convex function
mentioned above.
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Lemma 3.5.5. Let assumptions 1 and 2 hold, and let = := ntr S*—1. Then

1)\ 3
0<— 26371_3) <(n5\)2 — (TAL)\)> — 20y(n) (2n —9 4 335) n\

tr $4)? — (tr 3)*
ro sty 15 (rf) :
1— (trS3)
Proof. Recall that ||Ric A Ric|| = %\/ 1 — tr S%. The idea is to use corollary
3.5.1. For that define

< 23
—||Rlc/\Rch (60 r2 — /21 — tr S4r )+n)\4+— 222

12
4 23
:(157%)7“4\/ 1—trS4 —r? 4 trRict + A\t + = B réA? — —)\trRicg

and

1 263
Y = - 2A2>
rd ( 288" 0

Lemma 3.5.3 proves now

1 3 0
r4—§trRic4— 2nr + Y > i(@)r4\/1—tr5’4, (3.11)

which shows on the one hand with the known fact % <trS*< % that

1 6
Y2—1+§trs4+i+ O(n)\/l—trS4

R
2—1+Z+9i§g) n;2
2—1+%. (3.12)

Here, the last step is true because of the following: Consider
nn—1)(n—3)—(n+1)=n>—4n*+2n — 1 =: f(n).

Since f(4) = 7 and f'(n) = 3n®> —8n+2 > f/(4) = 18 for all n > 4, f

(n—1)(n—3)

restricted to [4,00) is nonnegative, which shows S 1
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- wn fo(n)? _ (n=1)(n—=3) _ 3n—5
On the other hand, it follows with =5%- = (Z+1)(Z—2) =1- m and
tr §4 = 42 from (3.11) that

(-5 7) = (- aess) (- ).

Since
— _ — 2 _
_ Bn-=5)(n-1) 5 N 3(2n —1) __n"—Tn+8 and
nn+1)(n—2) 2n? 2n? n?(n+1)(n — 2)
3n—5 2 n?—3n+4 n—4

nn+1)(n—2) n2 n2(n+1n—-2) " n2(n-2)
it follows that

n? —Tn+8 n—4 22 2(n—-2)—=x

- Y +Y?2
n2(n+1)(n—2)+n2(n—2)x 4n? — +

By (3.12) and lemma 3.5.4, this can only be true if

2n—9 3z

Y > —_—.
+ 8n?

= 4n3

Note that indeed x € {0, "772} since tr S < 871—6&-9 < % — %, which follows

from lemma 3.3.6 and from
16n° —2(8n+9)(n—1) = —2n4+ 18 <0 (3.13)

for all n > 9.
The application of corollary 3.5.1 and the definitions of X and Y show now

263 232 (2n -9 3z ) A

28870 An3 " 8n?
< X
4\2 _ 34
<2 |RicARid|| [trst+ | 5D (trf L) iy
o(n) 1— (trS3)
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Since 72 > nA\fy(n) by lemma 3.3.1,

BX <1 - W) oL ((mf B (n;)4>

72 72 n? nr?
3
1 - A
> L (a2 - &) (315)
n nbo(n)
The mult1phcat10n of (3.14) with % =3 Jeads with the applications of (3.15),
||IRic A Ricl|| = \/1 —tr 5% and lemma 3.3.1 to
263 n-—3 (n))® Mm—9 3z

- . _
0<— T2 —2) <(n)\) — néo(n)> —20p(n) (4n$ + 8712) nA

4 . (tr §4)2 — (tr $3)*\ 1
+ = (trS + \l I (r59)? )ﬁ\/l—trS‘l.

Oo(n

This concludes the proof because

0o (n)? (n—1)(n—2) n—>5

1
1— -1 — < —<trst
2 mt)(n—-3) m+)mn-3) —n-"""
which shows W\ﬁ)\/l —trS54 <1. a
o(n

Finally, all the work that was done before will be needed in the following
result to prove assumption 2 to be wrong.

Lemma 3.5.6. Let assumption 1 hold. Then
scal > (n 4 1)fp(n).

Proof. Suppose that assumption 2 is true, that is scal < (n—3)fy(n). Then,
by corollary 3.3.7, the scalar curvature lies in [8"+9 bo(n), (n — 3)fp(n )}
lemma 3.5.5 it is known that

263 n-—3 =\ 2 (nS\)S ~ 2n—-9 3z <
<= - — — - T4 ==
0 144 n2(n — 2) <(n)\) nbo(n) 260(n) ( 4n? 8n2) nA

. (tr §4)% — (tr 83)*
Q(trS +\l 1— (tr 59)? )

with = ntr S*—1 as in lemma 3.5.5. The right hand side of this inequality
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can be viewed as a function

RHS: [8”12; 9 o(n), (n — 3)50(71)} SR

fo, 263 n=3 [, t3 25()<2n—9+3x>t
e A - S —9%n(n) (2 2T
14412(n — 2) nfo(n) 0 And " 8n?

. (tr §4)? — (tr §3)*
2<trS —i—d 1= (tr5%)? )

with nonnegative maximum since RHS(n)) > 0. The second derivative

263 n—3 3t
RHS"(t) = ——= 11— —

is nonnegative since 0 ( ;2 38”+9 >1forallt e [8%‘9 ég(n), (n— 3)90(72)}.
Thus, RHS is convex, and hence, it attains its maximum on the boundary.
The idea is now to estimate in both boundary points the terms of RH.S to
create a contradiction to the fact that the maximum of RHS is nonnegative.
Recall that L < (tr 53) <trSt < g% +9 < 2 _ 2 where the last inequality
was shown in (3.13) in the proof of lemma 3.5.5. Further, consider the
function

12 2 tr §4)? — 42
f [ } LRy 5D -9
lL—y
2_ 4
Then f'(y) = % The numerator satisfies
8 16 8 2
2 4 s 6 5 2
v 2+ (18 < G- gt <0 (3.16)
for all n > 1. To see this, consider the function

f:R—=Ryn— —nd+4n? —8n +4.
Then f(1) = —1 and f'(n) = —3n +8n — 8 < 0 for all n € R, and hence,
(3.16) is true. Thus, f is monotonically decreasing in y. Therefore,
J (rsh? — () _ |- Vi _ 3
( <

1— (tr$3)° N

n_ = .
1-41 nn—1) " n-—1

Case 1. Assume that the maximum is attained in o (n )84 Then

n—3 , 5 (8n+9)\? 8n+9
- 1 —
2 =20 ( 16 ) ( 161 )

_ 2n-1 (8n+9)28n—9

n2n+1\ 16 16n
(=1 +1)8n-9)
- 32n3
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and
8n + 9

<b>

= 2do() (Z57 + o ) o)
o (P )

2n
<2001 (ap—g * 5 *
(n—1)(Tn — 24)
4n?(n — 2) -
In total this shows
263(n—1)(n+1)(8—9) (n—1)(Tn— 24)

0<—

= 144 32n3  4n2(n—2)
1+ 2v/3
poltr 23
n n—1
20n—1)(n+1)(8n—9) n?2+15n—-24 2 23
__7( )( 3)( )Jr ! $+7+7f
11 32n 4n?(n — 2) n n-—1
_5(n—1)(n—|—1)(8n—9)+n2+l5n—24+g+ 305
- 88n3 4n3 n 88(n—1)
since %4612 > %(1],2[< 38085,n +15m —24 >0 for n > 2, and x < ==, By

multiplication with 88n3(n — 1) this is equivalent to
0< —5(n—1)2(n—+1)(8n —9) +22(n— 1) (n2 +15n — 24)
+ 176n2(n — 1) + 30503
= —40n* + 588n® + 127n* — 943n + 573
=:g(n).
However, g(15) = —25497, ¢/(15) = —140233, and g"(n) = —480n>+3528n+
254 < 0 for n > 8, which implies that g is monotonically decreasing on

[15,00). Thus, g(n) < 0 for all n > 15, which is a contradiction.
Case 2. Assume now that the maximum is attained in (n—3)6y(n). Consider

n—3 - (n — 3)2
o o IOR ULk (1 o 2)>

o (n— 3)4(n —1)(4n —9)

n3(n—2)3(n+1)
9 (n—3)3(4n —9)
n3(n+1)(n—1)

The last step is true since (n — 1)?(n —3) — (n —2)3 =n? —5n+5 > 0 for
all n > 4. Moreover,

—20p(n)?(n — 3) (

2n — 9 3:1:) 3 (n—1)(n—3)2
B ) x
4n3 8n2) = 2n’(n+1)(n—2)
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Therefore,
273(n —3)*(4n—9) 3 (n—1)(n —3)?
T2+ D(n—1) 2n(n+ )n-2)"

1+ 2v/3
L 23
n—1

0<

+2

To see that this is again increasing in x, consider

3m—1)n-32% 2 n3+17n%—53n+27

2n2(n+1)(n—=2) n 202(n+1)(n—2)

This is positive for n > 3 since the numerator at n = 3 is equal to 48 and its
derivative is equal to 3n? 4 34n — 53, which is positive for n > 2. Because

250 n—2
2\/§ S 3 and © § )

273(n —3)3(4n —9) n3 +17n% —53n +27 2 250
0<— + + =+ s
2n3(n+1)(n —1) 2n3(n +1) n  72(n—-1)

which is by multiplication with 72n3(n + 1)(n — 1) equivalent to
0 < —273(n — 3)%(4n — 9) + 36(n — 1) (n3 +17n* — 53n + 27)
+ 14402 (n? = 1) 4 250n°(n + 1)
= —662n" + 1311103 — 54261n + 98703n — 67311
=: h(n).

However, h(15) = —59616, h'(15) = —1616202, and h”(n) = —7944n% +
786661 — 108522 < 0 for n > 9, which implies that h is monotonically de-
creasing on [15,00). Thus, h(n) < 0 for all n > 15, which is a contradiction.
Hence, scal > (n — 3)fy(n), which proves lemma 3.5.6 by means of corollary
3.2.6. 0

3.6 Conclusion: W is the normalized Wely curva-
ture of S x S™

As seen in the previous chapter, the scalar curvature of || has to be greater
than or equal to (n + 1)fp(n). This result will be used in this section to
conclude that W is in fact the normalized Weyl curvature of S x S™. In
the whole section assumption 1 will be supposed to hold, and in addition to
notation 3.0.3 the following notation will be used.

Notation 3.6.1. In the following, let @ € (—1,1) and b € [0, 1] be chosen
such that

I
W] =v1—a2— 02— +aW +bX (3.17)

1]
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foran X € S?B,d(so(n)) with | X[ =1and X L Waswellas X L I. Clearly,
a® +b% < 1.
Further, let I, 1, X, X_ be defined as in notation 3.0.3, and set
dy :=trl; =dim(Im(/;)) and d_:=trl_ =dim (Im(I-)),

where Im(7;) and Im(/_) denotes the image of I, and I_, respectively, in
so(n).
Lemma 3.6.2. The following is true:

1. 2tr W_ =1 —a? =0 |1,

2. 2|W_|?=1-a, and

3. r2=2(n—1) (1 —a® =) + (n — 2)b?|| Xric, || *-

Proof. Since 0 = tr W =tr Wy —tr W_, tr I = ||I||?, and tr X = (X, ) = 0,
the first equation can be obtained by taking the trace from (3.17).
For the second equation subtract W from (3.17). Then

1
2W7 = \/1—a2—b2m—|—(a—1)W—l—bX.
Taking the square of the norm of this shows
YW_P=1-a®> -+ (a— 1)  +b* =2(1 — a),

which proves equation 2.

For equation 3 apply Ric to both sides of (3.17) and take the square of
the norm of the result. Since ||Ric(I)||? = n(n —1)? = 2(n — 1)|I||* and
Ric(W) = 0, this yields

r? =2(n—1) (1 - a? = %) + b?|[Ric X |2

Thus, it remains to show that |Ric X||> = (n — 2)||XRic,||>- This can be
proven as follows:

Recall from chapter 1.2 that Xric, = %id A Rico(X), and let vy,..., vy
denote the eigenvalues of Rico(X). Then

4 . .
[ XRico || :mnld A Rico(X)|1?

4 1
:(n —2)2 Z Z(Vi )’

1<i<j<n

ij=1

1 n n
:m (Z (1/12 —i—VJZ —I—QVZ‘I/]') _Z4Vi2)
i=1

:M (2(n = 2)[|Rico (X)||? + 2 (tr (Rico(X)))°)

1
=—— JRic(X)]?
— [Ric(X)|%,
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where the last equality results from tr (Ricg(X)) = 0 and Ric(X) = Rico(X)
since scal(X) = (X, I) = 0. This concludes the proof. O

The quantities a, b, d4, and d_ will in the following be analyzed more
precisely. As a consequence of the lower bound of the scalar curvature of
|W| which was calculated in the previous sections, a? +b? cannot be too big.
This will be shown in the following lemma.

Lemma 3.6.3. Let assumption 1 hold. Then

3

2, 12
b < ———.
@t ~n(n-—2)

Proof. Since scal(W) = scal(X) = 0,

_ Ny
(n+1)0p(n) <scal = H?Hbscal(I) =Vv1—a?—-0b%/2n(n—1)

by lemma 3.5.6. Taking the square of this inequality and using the definition
of 6p(n) show

(n+1)(n—1)(n—23)
n—2

2

<2n(n—1) (1—a2—b2),

which is equivalent to

(n+1)(n-3) 3
n(n —2) n(n—2)

a> 4+ <1 -

This was to be proven. O

The next step will be to show that |W| has only components in the direction
of I and W, that is b has to vanish, and to compute concrete values for a,
d4, and d_. The first part in order to find these values will be to improve
the bounds of @ and b which are already known from the definition of ¢ and
b and from lemma 3.6.3.

Lemma 3.6.4. Let assumption 1 hold. Then

1 3 1 3
-, — d be |0 .
R P n2’n—1] o el’\/n(n—l)(n—2)|

Proof. By lemma 3.2.2 it is known that fg(n)scal < 72 —4||W_||2. Therefore,

2
200(n) tr W_ < % — oW |12 (3.18)
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since 4tr W_ = 2tr |W| = scal. The left hand side of (3.18) satisfies

28y (m) e = vaY DO
= (- 1y 2V, (3.19)

n

which was proven in lemma 3.6.2. Multiplying (3.18) with (n — 1)~! and
applying (3.19) as well as 2 and 3 of lemma 3.6.2 show

n—2 n—2
Vica2—R<l-a®—b+-———
n ¢ A TC

<124l __ 1
- n—1 2(n-1)

9 5 a—1
b ”XRicoH + n—1

b2

since || XRic, || < || X|| = 1. Taking the square of this inequality results in

n—2 9 9 5 a—1)\? n? 4
_ _ < _
- (1 a b)_(l a +n1) +4(n71)2b

n 5 a—1Y\ 4
1—- b*.
n—l( a+n—1)

This is equivalent to

n a—1 n—2 n?
b2 1— 2 )_ _ b2
<n—1( L — n 4(n —1)2

< (1—@24-2:1)2_”;2(1—@2)

2 n —
:(1—@)((1—&)(l+a—ni1) - n2(1+a)>. (3.20)

Define now G: [—\/n(n3_2), \/n(n‘g_z)} X [0, ﬁ — R by

n
G = 1 — o2 — 2
(@,y) == — ( a® + PR T YL

:c—l) n—2 n?
n—1

and set z := a — ﬁ Note that a € [—\/n(n3_2),\/n(n3_2)} and b €

[O, \ /ﬁ} by the definition of ¢ and b and by lemma 3.6.3. Thus, by
(3.20),

B2G(a,b) <(1— a) ((Z:f —z) (1+2)% - ";2 (z+nﬁl>)
——(1-a)z (z2+ =z + n(n2_ 1)). (3.21)
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Considering the definition of G shows
n n—2 3 1 3 n—2
Gla.y) anl (nl na(n—2) n-1 n(n2)> on
3n
C4n—12(n-2)
8n3 — 51n2 + 60n — 16 — 4n+/3n(n — 2)
- dn(n —1)%(n — 2)
8n® —59n* + 60n — 16
dn(n —1)%2(n —2)

for all x € {—\/n 3 \/ 3 } and y € {0 ,/i}. The numerator at
(n—2)?\/ n(n—2) » '\ n(n—2)

n =7 is equal to 257, and its derivative is equal to 24n? — 118n + 60, which

is positive for all n > 5. Therefore, G is nonnegative, and hence,

022(22+ i Z+ 2 )
n—1 n(n—1)

by (3.21), which can only be true if

c n n3 —8n+8
z €| —o0,— —
" 2(n—1) dn(n —1)2

n n3 —8n + 8
U |— + )
2(n—1) dn(n —1)2
However,
1 3 1
z=0— —— 2> — -
n—1 nn—2) n-1
- n n3 —8n+8
2(n—1) dn(n —1)2
n 1 n—2
i — = > 0 and
S n-1 21~ "
n® —8n +8 3 _n4—2n3—2on2+48n—28>0
dn(n—1)2 nn-2) dn(n —1)%2(n — 2) '

The last step is true because at n = 5 the numerator is equal to 87 and its
first derivative is equal to 198 and because the second derivative is given
by 12n% — 12n — 40, which is positive for all n > 3. Therefore, z has to be
contained in the second interval. Moreover, consider

n3 —8n+8 n 3’
n4(n_1)<4n(n—1)2 - <2(”‘ D ”2> )
:n3—9n+9
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Then f(3) =9 and f'(n) = 3n? — 9, which is positive for all n > 2. Thus, f
restricted to [3,00) is nonnegative, and hence,

n n3 —8n+8 3
- + p—
2(n—1) dn(n—1)2 = n?

Therefore, z € [—n%, 0], which implies a € [ﬁ - %, ﬁ}

G(a,b) can now be estimated as follows:
n <n —2 1 ) n—2 3n
n—1\n—-1 (n—1)>2 n 4(n—1)%2(n—2)
_ 8n* —51n® + 95n® — 64n + 16

dn(n —1)3(n — 2)

G(a,b) >

Consider
n (80" = 51n° + 9507 — 64n + 16) — 8(n — 1)3(n — 2)2
= 5n* — 57n® + 136n? — 112n + 32
=: g(n).
Since ¢g(9) = 1292, ¢'(9) = 3065, and ¢"(n) = 60n? — 342n + 272, which is
positive for all n > 5, g restricted to [9,00) is nonnegative. Therefore,

2(n—2)

G(a,b) > ——

n
Thus,

n 2 n?
b2S—(l_a)z(22+n—1z+n(”_l)) 2(n—2)

by inequality (3.21). Furthermore, —z (z2 + %z) <O0and —(1—a)z < —z
since z € {—%, 0} and a > 0. Therefore,

zn

< 22
- (n—=1)(n-2) (3.22)
< 3
“nn—-1)(n-2)’
which concludes the proof. ]

In order to compute concrete values for a, b, dy, and d_, the following to
results will be useful.

Lemma 3.6.5. The following is true:

(1-a*-1?) (W + a> =02 (IX 412 = X1 +a).
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Proof. Since W = W, —W_ and |W| = W, +W_, it follows with (3.17) on
the one hand that

vV1—a?—10b? b
Wy=———1T —X d
S G 1 R B

1—a?2—b? b
w.=———7T +——X_.

(1+a)| 1] 1+a

Subtracting the second equation from the first and taking the trace show

\/1—a2—b2< dy d_ >+b<trX+ _trX)

0= —
]| l—a 1+a l—a 1+4a

This is via multiplication with 1 — a? equivalent to

Vi—Z

b(tr Xy —tr X_)=— i

(dy —d-+al7]?) (3.23)

since tr X4 +tr X_ =tr X =0 and dy +d_ = || I||.
On the other hand, W, and W_ can also be written as

1/1_ 2 _ H2

W+ = H(Jz_HbI+ + CLW+ + bX+ and
V1 — 2_b2

W_ = #L —aW_ +bX_.

Taking the scalar product of the difference of both equations with bX shows

V1—aZ—12
0 :#b(u)@ —tr X_) + ab® + b (HX+H2 - \|X_||2)

since X L W and (|W|, X) = b. With (3.23) follows now

0= = (10— 12) (S a) 8 (1l = X P +a).

which concludes the proof. O
From the lemma above the following result can be obtained.

Corollary 3.6.6. The following is true:

dy —d_
11]]2

14+a
1—a2—0p2

+a‘ <v?

Proof. Since | X|| =1, =1 < || X4||*> — [|X_||?> < 1. Therefore, lemma 3.6.5
shows on the one hand

d —d_ , l+a
PN B Sl e —
D T
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and on the other

d+_d7 2 l_a 2 1+a
_ — <pb <b .
< HE *“)— 1—a2—12 = 1—a?— 02

This proves the statement. ]

Now, concrete values for dy, d_, a, and b can be calculated.

Lemma 3.6.7. Let assumption 1 hold. Then dy = 22 4 = %2,
and b= 0.

CL_n 1

Proof. Assume first that d, 7é n(”_Z). Since d, = trl,, there exists a
ke {—@,...,—1,1,..., n? } with dy = "2 4 k. Thus, d_ = 2 — k.
Let z=a — ﬁ be defined as in lemma 3.6.4. Then

‘2(d+—d_)+a_’ Ak +z‘ 4 31
n(n —1) ~n(n—1) “nn-1) n?2 = n?
Therefore,
1 9 1+a
oy T
n2 —  1-—a?— b2
3 i1
Sn(n—l)(n—Q)l— L 3
(n—1)2 n(n—1)(n—2)
3n
= .24
n* —4n3 +4n? — 3n + 3 (3:24)

by corollary 3.6.6 and lemma 3.6.4. Define f(n) :=n* — Tn3 4 4n? — 3n + 3.
Then f(7) = 178, f'(7) = 396, and f"(n) = 12n? —42n+8 > f"(4) = 32 for
all n > 4. Hence, f restricted to [7 00) is positive, which contradicts (3.24).
Therefore, d, = ™= T 2 and d_

2(dy —d_)
n(n—1)

T
As a consequence, =

= —z. Using again corollary 3.6.6

and a < -L; as well as 62 < m, which was shown in (3.22), a
related calculation to that in (3.24) proves

ZTLS

< - )
“ —An® +4n% —3n + 3

A similar argument as above shows that g(n) := n* — 5n3 4+ 4n? — 3n + 3
is positive for n > 5. Thus, z has to vanish, which proves a = ﬁ and
b=0. O

Corollary 3.6.8. Let assumption 1 hold, and define ay := m=T=2)

and a_ = a+”772. Then

Wy=a4ly and W_o =a_1_.
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Proof. Since [W| = +v1— aQﬁ + aW with a = 1+ by lemma 3.6.7,
V1—a? B 2

Wy=——-I1 = |————1
T a—al) T (n—1)(n—-2)""
and
1 — a2 _
R S Sy 2 n—2;
(L+a)ll1] (n—1)(n-2) n
This was to be proven. ]

It is now known that the eigenvalues of W are the same as those of W, and
also the dimensions of their eigenspaces agree, but it is still not clear if W
is in fact equal to the normalized Weyl curvature operator of S™ x S™.

Remark 3.6.9. Usually,in the present work S%’d(so(n)) is understood to
be the set

{R = (14j)1<ij<n € eR™"RT = Rand r;; =0 for all 1 <i < n}.

The permutation group Sy, acts on this set by (0.R)ij = 75-1(;)0-1(;) for all
1<i<j<mnandall o€, oRand R may be different as matrices,
but they define the same operator with respect to different bases, namely
t0 S12€5-1(1) A €5-1(2), - - + 5 Sn—1,n€s-1(n—1) A €g—1(y) fOr 545 1= sgn(o1(j) —
o7 1(i)) and e; Aea, ..., en_1 A ey, respectively. Therefore, in order to prove
theorem 3.0.2, it is enough to show that there exists a ¢ € S, with W =
U.Wo.

To use this remark, the operators I; and I_ as well as their images in so(n)
will now be analyzed more precisely.

Lemma 3.6.10. Let assumption 1 hold. Then
tr_ If =0 and tr_I7 = 0,
where tr_ R := (R, I_) for operators R € S%(so(n)).

Proof. First of all, since a = %1, observe that

r? — 4||W_ ||2—2n—1< a?) - 2(1-a)
( 2) 2n—2
n—1 n—1

2(n—2)
by lemma 3.6.2. Furthermore,

90( )tl"W_ —90 Cl a_

\/n—l n—2 -2
=2 (n—1) n—2

n_
2
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Therefore,
On\ = Oscal = 20tr |W| = 40tr W_ > 2(n — 2).
Recall now the definitions
X(W) =4 (Wi #W_), +2(W+w#)  and
Cy (W) = scal(X (W))

that were made in lemma 3.2.1 and 3.2.2, respectively. Combined with
lemma 3.2.2, everything together shows

2(n —2) < Ond =1r* —4[|W_||? — Cx(W) =2(n — 2) — Cx(W),

which implies CxW = 0 since Cx(W) > 0. Because of X (W) > 0, this
also proves X (W) = 0. In particular, (Wf) = 0 and (WZ%) = 0. By
corollary 3.6.8, this shows

1 1
tr_ If = —tr Wf =0 and tr_I7 = —5tr_ w# = 0,
af ot

which concludes the proof. ]

In the following, it will be shown that Im(7 ) is a Lie subalgebra of so(n) that
is isomorphic to so(m)@®so(m), which will be helpful to conclude that W is a
permutation of Wy. In order to prove this, the following definition together
with the proposition thereafter will be needed (both cf. [He], chapter IV.3).

Definition 3.6.11. Let g be a real Lie algebra with center 3, and let s be
an involutive automorphism of g with set of fixed points £ such that € is a
compactly embedded subalgebra of g and such that €N 3 = {0}. Then the
pair (g, s) is called an effective orthogonal symmetric Lie algebra. Is further
G a connected Lie group with Lie algebra g and K a Lie subgroup of G with
Lie algebra &, then the pair (G, K) is said to be associated with the effective
orthogonal symmetric Lie Algebra (g, s).

For effective orthogonal symmetric Lie algebras the following is true.

Proposition 3.6.12. Let (g,s) be an effective orthogonal symmetric Lie
algebra with set of fixed points € and with center of g equal to {0}. Moreover,
let (G, K) be associated with (g, s) such that G is simply connected and K
is connected. Then G/K is a Riemannian symmetric space.

Together with the classification of symmetric spaces (for example cf. [Be]
or [He]) this will help to prove the following.

Lemma 3.6.13. Let assumption 1 hold, and let £ = Im(/;). Then

t ~ so(m) @ so(m).
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Proof. Set p := Im(I/_). Then so(n) = ¢ @ p. Consider further the map
s: s0(n) — so(n) given by s(z +y) =z —y for x € L and y € p. It will be
shown that (so(n), s) is an effective orthogonal symmetric Lie algebra.
Clearly, s is involutive with set of fixed points equal to €. To prove that € is
a Lie subalgebra of so(n), it is enough to show that [¢, €] C &.

Let z:= Y wjjeNej,y:= Y yije; Nej € s0(n) and define zj; :=
1<i<j<n 1<i<j<n
Tij, Yji =y forall 1 <i < j<nandx;:=0,y;:=0forall 1 <i<mn.

Then
[Tyl= D > wgymlei Aejren Ael
1<i<j<n 1<k<i<n

= Z Z TijYkl (_5ik€j Nep+ 5jk e; Nep+ 0y e;j Neg
1<i<j<n 1<k<i<n

_5jl e N eg)
== Z (wijya — Tayij) ej N e + Z Tijyi€i N e
1<i<j<l<n 1<i<j<l<n
+ Y wmiykiei New— > (TijUk — ThjYig) €i A ek
1<k<i<j<n 1<i<k<j<n

= > ((iﬂz‘kyzj — TijYik) €5 N ek + (TijYjk — ki) €i A ey
1<i<j<k<n

+ (ZjkYik — TikYjk) € N €j>- (3.25)

Let now x,y € €. Since all entries of I are in {0,1} and since

n
O=tr_IF = > S I, 0e

1<a<b<nc=1
I+ab:0

by lemma 3.6.10, it follows that if I, , = 0 for some 1 < a < b < n, then
foralll1<c<nlI;,, =0o0r Iy, =0. Thus, foralll <c<n x4 =yYogc=0
or Tp. = ype = 0. Hence, [x,y] € € by (3.25), which proves that ¢ is a Lie
subalgebra of so(n).

Suppose now z,y € p. Since also all entries of I_ are in {0, 1} and since

n
O=tr_I"= " N

1<a<b<nc=1

I+ =0
by lemma 3.6.10, it follows analogously that if I , = 0 for some 1 < a <
b <mn, then for all 1 < ¢ <n x4 = Yac = 0 or Tpe = Yo = 0. With (3.25),
this proves [p,p] C L.
Let now z € £ and y € p. Choose 1 < a < b < n with I__,; = 0 and
let 1 < ¢ <n If I, =0, then also I.,. = 0 as seen above. Thus,
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TacYbe — TohelYae = 0. An analogue argument shows ZecYpe — ToelYae = 0 if
Iy, =0. Letnow Iy ., I,. #0. Then I_,. = I_, = 0, which implies that
Yac = Ybe = 0. Therefore, T4cYpe — TocYae = 0. In total this shows with (3.25)
that [€,p] C p.

Let now z1,22 € € and y1,y2 € p be given. Then [z, z2], [y1,y2] € € and
[1,y2], [y1, 2] € p as seen above. Therefore,

(1 — y1, 22 — Yo

= |21, 22] + [y1,92] — [21,92] — [y1, 22]

s ([z1,x2] + [y1, y2] + (21, y2] + [y1, 22])
s ([z1 +y1, 2 + y2]) .

[s(x1 +y1), s(22 + y2)] =

Hence, s is an automorphism. Since the center of so(n) is equal to {0},
(so(n), s) is an effective orthogonal symmetric Lie algebra, and proposition
3.6.12 can be applied:

Spin(n) is the universal cover of SO(n), is hence simply connected and has
so(n) as Lie algebra. Let K be a connected Lie subalgebra of Spin(n) with
Lie algebra €. Since dim(Spin(n)/K) = dimp = % = m? by lemma 3.6.7,
the classification of symmetric spaces (cf. [Be|, 7.102 Table 1) shows now
that € has to be isomorphic to so(m) @ so(m). This was to be proven. [J

Finally, the proof of theorem 3.0.2 can be given.

Proof of theorem 3.0.2. Since ¢ = Im(I, ), there exists A C {(1,2),(1,3)...,
(n—1,n)} with

t= @ <€i A €j> (3.26)

(3,5)EA

Define Ay, := {j € {1,...,n}lex Nej € £} for 1 < k < n. Then 4, = A;
for all | € Ay, since e; Aej = [e; A ey, ex Nej] € Eif j € Ay, and conversely
exNej = [exAep,epAej] € Bif j € Aj. Further, set iy, := @ pea, a<h(€aNeb)-
Clearly i = i; for every | € Ag. The following will show that i is an ideal
intforalll <k <n:

If a,b € Ay, then e, A ey = [eq A eg, e A ey € €. Moreover,

[eqa A ey, ec A eq] = Opeea N eq — Oacep A eq + 0gqeh N €c — Opgea N e € ik

for all a,b,c,d € Ag. Therefore, i is a Lie subalgebra of £. Assume that
there exists a ¢ Ap and b € Aj such that e, A ey, € €. Then e, A e =
[ea Nep, epAeg] € € by the choice of b, which is a contradiction to the choice of
a. Let now a,b € A and ¢,d ¢ Ay, be given. Then d4c = 0g4q = Ope = Ipg = 0.
Thus, [eq A ep,ec A eg] = 0 € ii. This proves that ix is an ideal for every
1 <k < n. Moreover, i, is equal to the ideal i(ex A e;) generated by e A e;
for every j € Ay \ {k}.
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Since ¢ ~ s0(m) @ so(m) by lemma 3.6.13, € has only two nontrivial ideals,
which both are isomorphic to so(m). Assume now that there exists 1 < k <
n with i = €. In particular, {(a,b)|a,b € Ay and a < b} = A, which implies
that for every 1 < j < n either i; = ¢ or i; = {0}.

Let i # {0} now be any ideal in € and suppose that there exists a linear
combination x = x1 e, A ey + x2€. A €gq in i with (a,b), (¢,d) € A. Without
loss of generality, a # ¢ and a # d can be assumed. Further, choose [ € Ay
with [ ¢ {a,b,c,d} which is possible because m > 8 and #A4 = m(m —1) by
lemma 3.6.7. Since i is an ideal, 21 e; A e, = [e; A eq, 2] € i, which implies
that i = €. Analogously, if any ideal i in £ contains a linear combination of s
different basis vectors of the form e, A e, for (a,b) € Aand 1 < s < n, it can
be shown that i also contains a linear combination of s — 1 vectors of that
form. Via induction it can be seen that every ideal in ¢ not equal to {0}
contains an element of the form e, A ej, for some (a,b) € A. Therefore, € is a
simple lie algebra, which is of course a contradiction to £ ~ so(m) @ so(m).
Thus, every ideal that is generated by a vector of the form e, A e, has to
be isomorphic to so(m). Clearly, not every e, A e, can generate the same
ideal since otherwise k ~ so(m). Thus, there exist (a,b),(¢,d) € A such
that i, = i(eq A €p) =~ s0(m), ic = i(e. A eq) ~ so(m), and ¢ =i, ®i.. In
particular, there exists a permutation o € S,, with

ig = <€g(1) N 60(2)> ®---D <€o(m_1) A eg(m)> and
i = <ea(m+1) N ea(m+2)> ©-- D <ea(2m71) A ea(2m)>'

This is true since dim(i,) = dim(i.) = W, which implies #A4, = #A. =
m, and A, N A, = (). This shows together with corollary 3.6.8 that W =

o~L.Wp, which concludes the proof of theorem 3.0.2 by means of remark
3.6.9. 0
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