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General introduction  1 

1 General introduction 

 

“I suggest that comprehensive study of the psychological as well as biological correlates of 

depression can provide a new understanding of this debilitating disorder” 

 Aaron T. Beck, American Journal of Psychiatry, 2008 

 

Major depression is one of the most debilitating diseases of our times. Depression 

represents a highly prevalent, costly and burdensome disease, recently considered to be 

among the worldwide leading causes of disability adjusted life years (Evans & Charney, 

2003; World Health Organization, 2001). Aside from environmental factors, a strong 

genetic contribution to the etiology of (unipolar) depression is assumed with estimations of 

heritability ranging around 40-50% (Sullivan, Neale, & Kendler, 2000). However, during 

decades of genetic association studies, there has been limited success in identifying robust 

candidate genes. Although several genetic variations have been identified - many of them 

affecting serotonin signal transduction - that were significantly associated with major 

depression or depression related personality traits in various single studies, these 

encouraging findings have been contrasted with several null findings or even contradictive 

results.  

 Associations of single polymorphisms with clinically defined phenotypes have been 

criticized for shortcomings and methodological difficulties, particularly in psychiatric 

genetics (Malhotra & Goldman, 1999) . In the context of complex polygenetic inheritance, 

epistasis, and epigenetic phenomena, single polymorphisms are unlikely to produce more 

than weak statistical effects, necessitating large samples, often exceeding several hundred 

subjects. Furthermore, it seems likely that there are etiological subgroups within major 

depression that would obscure effects at the broader group level. More importantly, genetic 

effects on the symptom level are mediated by their molecular and cellular effects on 

information processing in distinct brain circuitries. To understand the phenotypic 

heterogeneity in the context of a genetically complex background, researchers have begun 

to focus on endophenotypes within major depression and on elucidating their underlying 

genes (Hasler, Drevets, Manji, & Charney, 2004). Specifically, examining genetic effects 
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on neurobiological correlates of emotion processing in depression might represent a next 

step in understanding of genetic contribution to variability in the clinically defined 

phenotype.  

 During the last decade, an increasing number of studies have investigated such 

functional correlates of major depression by means of functional magnetic resonance 

imaging (fMRI). A common finding of neurobiological abnormalities in major depression 

is amygdala hyperactivity. Amygdala hyperactivity has been demonstrated in acutely 

depressed patients compared with controls at rest (Drevets et al., 2002), in expectation of 

negative pictures (Abler, Erk, Herwig, & Walter, 2007), in response to negative verbal 

stimuli (Siegle, Steinhauer, Thase, Stenger, & Carter, 2002; Siegle, Thompson, Carter, 

Steinhauer, & Thase, 2007), and emotional faces (Sheline et al., 2001), which was shown to 

resolve after antidepressant therapy (Fu et al., 2004; Sheline et al., 2001). Amygdala hyper-

responsiveness to negative stimuli might represent the neural correlate of a stronger or 

deeper processing (Beck, 2008). Therefore, an increased responsiveness of the amygdala 

has been implicated in the pathogenesis of major depression, probably by causing 

negatively biased emotion processing (Dannlowski et al., 2007; Phillips, Drevets, Rauch, & 

Lane, 2003; Whalen, Shin, Somerville, McLean, & Kim, 2002). 

 Increased amygdala responsiveness has already been successfully employed as 

functional endophenotype for genetic association studies. Since the landmark study of 

Hariri and colleagues (Hariri et al., 2002), several studies have shown that genetic variation 

particularly in the serotonergic system has strong impact on amygdala responsiveness 

(Munafò, Brown, & Hariri, 2008). These studies founded the emerging research field called 

“imaging genetics” (Hariri, Drabant, & Weinberger, 2006) and for the first time, bridged 

the gap between molecular genetics and cognitive neuroscience. 

 However, the majority of studies investigating amygdala functioning in depression 

or using the imaging genetics approach employed paradigms using overt stimulus 

presentation with conscious processing of emotional stimuli. Nevertheless, according to 

neurobiological theories of emotions, the amygdala is particularly implicated in the rapid 

and automatic processing of emotional significance preceding conscious awareness 

(Ledoux, 1996). In healthy subjects, several studies have confirmed that the amygdala is 
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engaged during processing of emotional stimuli, even if presented briefly (< 40 ms) and 

backward-masked, and thus without conscious awareness (Whalen et al., 1998). Amygdala 

reactivity to covertly but not to overtly presented negative faces has been associated with 

individual differences in trait anxiety (Etkin et al., 2004). Thus, using covert stimulus 

presentation might be a more appropriate approach in order to investigate the role of the 

amygdala in dispositional emotional reactivity.  

In the following experiments, we therefore have investigated automatic amygdala 

activity in response to emotional facial expressions presented briefly and backward-

masked. The goals of the present thesis were: 

1. To show that in major depression emotion processing is already biased on an 

automatic level of processing in the amygdala. We hypothesized that depressed 

patients show stronger amygdala responsiveness to negative facial expressions, also 

if the stimuli were not processed consciously. 

2. To use this neurobiological trait as potential endophenotype. In two independent 

studies we investigated two recently discovered genetic variations, which have 

already been associated with depression and negatively biased emotion processing. 

We speculated that carriers of genetic risk variations in the investigated genes 

would show stronger automatic amygdala responsiveness to masked negative facial 

expressions. 

 

In experiment 1 (chapter 2), we investigated automatic amygdala responsiveness to masked 

negative and positive faces in depressed patients and healthy controls using the subliminal 

affective priming paradigm of (Murphy & Zajonc, 1993)). In experiment 2 (chapter 3), we 

employed the same paradigm in a larger sample of healthy subjects. These subjects were 

genotyped for a prominent functional polymorphism in the serotonin transporter gene (5-

HTTLPR). We investigated automatic amygdala responsiveness dependent on 5-HTTLPR 

genotype. Finally, in experiment 3 (chapter 4), we used a combined pharmacogenetic and 

imaging genetics approach to investigate the clinical and neurobiological impact of genetic 

variation in the neuropeptide Y (NPY) gene, which has been implicated in the 

pathophysiology of major depression.  
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2 Experiment 1: Automatic amygdala response bias in major 

depression1 

 

“Odi et amo. Quare id faciam fortasse requiris. Nescio. Sed fieri sentio et excrucior.” 

Gaius Valerius Catullus, Carmen 85 

 

2.1 Summary 

Background: Cognitive theories of depression predict mood-congruent negative biases 

already at automatic stages of processing, although several behavioral studies seem to 

contradict this notion. That is, depression should potentiate emotional reactivity to negative 

emotional cues whereas it should reduce reactivity in response to positive stimuli. 

Assessing neurobiological substrates of automatic emotion processing might be a more 

sensitive challenge for automatic negative bias in depression than behavioral measures. 

Methods: In 30 acutely depressed inpatients and 26 healthy controls, automatic amygdala 

responses to happy and sad facial expressions were assessed by means of functional 

magnetic resonance imaging (fMRI) at 3 Tesla. In order to examine automatic responses, a 

presentation paradigm using subliminal, backward-masked stimuli was employed. A 

detection task was administered to assess participants’ awareness of the masked emotional 

faces presented in the fMRI experiment. Results: Detection performance was at chance 

level for both patients and healthy controls, suggesting that the neurobiological reactions 

took place in absence of conscious awareness of the emotional stimuli. A robust emotion by 

group interaction was observed in the right amygdala. Whereas healthy controls 

demonstrated stronger responses to happy faces, depressed patients showed the opposite. 

Furthermore, amygdala responsiveness to happy facial expression was negatively correlated 

with current depression severity. Conclusions: Depressed patients exhibit potentiated 

amygdala reactivity to masked negative stimuli along with a reduced responsiveness to 

masked positive stimuli compared to healthy individuals. Thus, depression is characterized 

                                                 
1 Reprinted from Biological Psychiatry, Vol. 67(2), Suslow T. et al., Automatic mood-congruent 
amygdala responses to masked facial expressions in major depression, pp. 155-160, Copyright © 2010, 
with permission from Elsevier. 
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by mood congruent processing of emotional stimuli in the amygdala already at an 

automatic level of processing.  
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2.2 Introduction 

Early cognitive theories of depression highlight the importance of negative biases affecting 

several if not all cognitive processes. Beck, for instance, suggested that depressogenic 

schemas operate in all aspects and stages of cognition, favoring or facilitating the 

processing of negative (mood-congruent) stimuli in major depression (Beck, 1967). Similar 

predictions can be derived from Bower’s network model (Bower, 1981). According to these 

theories, mood congruency effects should be observable already at early, automatic 

processing stages. Pervasive negative mood states in depressed patients might contribute to 

an enhanced emotional reactivity to negative emotional cues (i.e. negative potentiation) and 

reduce reactivity in response to positive emotional stimuli (i.e. positive attenuation) (Beck, 

2008; Depue & Iacono, 1989; Scher, Ingram, & Segal, 2005). Other theories propose that 

depression is rather characterized by cognitive biases in late or controlled stages of 

information processing (Mathews & MacLeod, 2005; Williams, Watts, MacLeod, & 

Mathews, 1997). Indeed, findings of negative biases in late stages of attention or explicit 

memory appear quite consistently in the literature, whereas findings of automatic emotion 

processing biases in major depression are rare (Dannlowski et al., 2006). However, most 

studies investigating cognitive bias in depression made use of reaction-time paradigms with 

behavioral measures as dependent variable. Neurobiological analyses might provide a more 

sensitive assessment of automatic emotion processing in depression, compared to 

behavioral testing.  

 The amygdala is a central structure in the limbic emotion processing circuit (Davis 

& Whalen, 2001). In addition to a slower, cortical route, the amygdala receives direct 

projections from the thalamus, allowing a rapid response to emotionally salient stimuli, 

even before conscious cortical representations have been formed (Ledoux, 1996). 

Amygdala hyperactivity has been implicated in the pathogenesis of major depression, 

probably by causing negatively biased emotion- processing (Phillips, Drevets, Rauch, & 

Lane, 2003; Whalen, Shin, Somerville, McLean, & Kim, 2002). Therefore, the amygdala 

was selected as region of interest in the present study. Functional magnetic resonance 

imaging was used to examine differences between depressed patients and healthy controls 

in automatic amygdala reactivity to facial emotions. Emotional faces were presented briefly 
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and masked backward by neutral faces to prevent conscious emotion processing. Facial 

expression serves as an important social signal that modulates interpersonal interactions 

(Ekman, 1984). The amygdala has been shown to be activated reliably by facial emotions, 

even when facial expressions were presented below the threshold of conscious awareness 

(Etkin et al., 2004; Killgore & Yurgelun-Todd, 2004; Liddell et al., 2005; Nomura et al., 

2004). According to a recent meta-analysis of neuroimaging studies on amygdala 

activation, there is evidence for hemispheric lateralization during the processing of 

emotional stimuli. The right amygdala may subserve a high-speed detection role for 

unconscious stimuli (Costafreda, Brammer, David, & Fu, 2008). 

 We hypothesized that relative to healthy controls, acutely depressed patients show 

stronger automatic (right) amygdala activation in response to mood congruent (sad) facial 

expressions and less automatic activation to mood-incongruent (happy) facial expressions. 

 

2.3 Methods and Materials 

2.3.1 Subjects 

Datasets of 30 right-handed inpatients with an acute major depressive episode according to 

DSM-IV criteria (American Psychiatric Association, 1994), diagnosed with the SCID-I 

interview (Wittchen, Wunderlich, Gruschwitz, & Zaudig, 1997) and 26 healthy control 

subjects were analyzed (see Table 1). Exclusion criteria were any neurological 

abnormalities, substance abuse, former electroconvulsive therapy, mood stabilizers, 

neuroleptic or benzodiazepine treatment. All patients were under antidepressant treatment 

(see Table 2 for details) which was coded in terms of dose and treatment duration into 

medication levels from 1 to 4, according to the suggestions of Sackeim (Sackeim, 2001). 

The study was approved by the Ethics Committee of the University of Münster. After 

complete description of the study to the subjects, written informed consent was obtained. 

Only patients with primary major depression were included (indicated by earlier onset and 

predominant symptoms). Secondary life-time diagnoses were undifferentiated somatoform 

disorder (n=4), social phobia (n=4), dysthymia (n=3), OCD (n=2), panic disorder (n=1), 
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specific phobia (n=1), generalized anxiety disorder (n=1), and pain disorder (n=1). Two 

patients had two and one patient had three comorbid disorders. 

 

Table 1    Characteristics of study participants in experiment 1 

 Patients (n = 30) Controls (n = 26) p-value, according to 
χ²- or t-tests (2-tailed) 

Age 38.8 (11.4) 36.2 (13.4) 0.44 

Sex (m/f) 17/13 12/14 0.59 

HAMD1 24.8 (4.9) 0.6 (0.8) <0.001 

HAMA2 21.1 (5.8) 1.5 (1.7) <0.001 

Total education time 13.6 (1.7) 14.2 (1.8) 0.24 

Antidepressant potency3 2.6 (1.2)   

Number of episodes 2.7 (2.0)   

Life-time hospitalization 
(weeks) 

7.6 (8.7)   

Duration of illness 

(months) 

72.2 (75.0) 

 

  

Evaluation sad prime  -0.13 (0.23) -0.01 (0.33) 0.12 

Evaluation happy prime  -0.08 (0.33) -0.04 (0.27) 0.60 

Evaluation neutral prime -0.10 (0.25) -0.03 (0.24) 0.29 

Evaluation no-face prime 

Latency sad prime  

Latency happy prime 

Latency neutral prime 

Latency no-face prime 

-0.07 (0.29) 

1403.0 (537.7) 

1398.0 (575.7) 

1400.3 (543.4) 

1395.3 (511.6) 

-0.03 (0.28) 

1319.6 (317.6) 

1315.6 (345.2) 

1286.1 (338.2) 

1303.3 (322.1) 

0.58 

0.51 

0.54 

0.38 

0.45 
Evaluation values reflect mean evaluative responses to the neutral face mask during the 

fMRI experiment dependent on prime condition (mean (s.d.)). 1HAMD, Hamilton Rating 

Scale for Depression (Hamilton, 1960), 2HAMA, Hamilton Rating Scale for Anxiety 

(Hamilton, 1959), 3Antidepressant potency, coded in terms of dose and treatment duration 

into medication levels from 1 to 4 (Sackeim, 2001). 
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Table 2    List of antidepressant medication in the patient sample  

Medication Number of patients* 

Mirtazapine 10 

Venlafaxine 9 

Escitalopram 4 

Citalopram 3 

Reboxetine 3 

Duloxetine 2 

Fluoxetine 2 

Sertraline 2 

Clomipramin 1 

Buproprion 1 

Doxepine 1 

Values reflect number of patients treated with the respective medication; * Eight patients 

have been treated with a combination of 2 antidepressants, therefore the total number 

exceeds n=30 

 

2.3.2 fMRI methods  

Facial stimuli in the fMRI experiment consisted of grey-scale normalized sad, happy, and 

neutral expressions of 10 individuals (Ekman & Friesen, 1976). Emotional and neutral 

faces were presented for 33 msec and masked by neutral faces of the same individuals. To 

avoid identity of prime and mask in the neutral face condition, vertically mirrored faces 

were used as neutral primes. That is, neutral prime faces were produced by mirror-inversion 

(left to right) of neutral mask faces. Eighty trials were shown: 20 with sad, 20 with happy, 

and 20 with neutral prime faces; in 20 trials no prime-faces were presented. Faces were 

shown in two fixed pseudo-random sequences with the restriction of no repetition of an 
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individual and no more than one repetition of a prime condition on consecutive trials. Each 

trial lasted 9 sec. A fixation cross presented for 800 msec preceded a prime face shown for 

33 msec which was followed by the corresponding neutral face mask, presented for 467 

msec. A blank screen followed for 7.700 msec. During this time-period subjects had to 

evaluate whether the neutral (mask) face expressed rather negative or positive feelings, by 

pressing one of four buttons (−1.5, −0.5, +0.5, and +1.5). In each hand, participants held a 

fiber-optic response pad with two buttons (the positive or the negative response keys). One 

half of the sample gave positive responses with the left hand; the other with the right hand. 

Judgments and reaction times were registered. Images were projected to the rear end of the 

scanner (Sharp XG-PC10XE with additional HF shielding). T2* functional data were 

acquired at a 3 T scanner (Gyroscan Intera 3T, Philips Medical Systems, Best, NL), using a 

single shot echoplanar sequence with parameters selected to minimize distortion in the 

region of central interest, while retaining adequate signal to noise ratio (S/N) and T2* 

sensitivity (Robinson, Windischberger, Rauscher, & Moser, 2004). Volumes consisting of 

40 axial slices were acquired (matrix 642, resolution 3.5×3.5×3.5mm; TR=3sec, 

TE=30msec, FA=90°). Functional imaging data were motion-corrected, spatially 

normalized to standard MNI space (Montreal Neurological Institute) and smoothed 

(Gaussian kernel, 8mm FWHM) using Statistical Parametric Mapping (SPM5, 

http://www.fil.ion.ucl.ac.uk/spm). An event-related analysis design was used. For each 

subject, trials were averaged separately for each prime condition, reducing the data to four 

average trials per subject. Brain responses to the prime stimulus categories were isolated by 

convolving a vector of onset times of the emotional and neutral primes and the no-face 

condition with a canonical hemodynamic response function. Since the two baseline 

conditions (neutral face and no face) did not differ with respect to amygdala responses 

elicited across both groups (p>.05, uncorrected), only the crucial contrasts of happy vs. 

neutral and sad vs. neutral expressions are reported. These two individual 1st level contrasts 

were entered into an ANOVA using the flexible factorial model implemented in SPM5, 

with emotion as within-subjects factor and group as between-subjects factor. A third factor 

“subjects” was also included in the model to account for the individual constants. In order 

to test whether the masked presentation of sad and happy expressions resulted in activation 
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of the amygdala, the main effect of each emotion condition (vs. the neutral prime baseline) 

was assessed separately within the whole sample. The model was used to calculate the main 

effects of group (patients vs. controls), emotion (happy vs. sad), and the crucial group x 

emotion interaction at a threshold of p<.05, family wise error (FWE) corrected for the 

amygdalae. The amygdala was defined according to (Tzourio-Mazoyer et al., 2002) and the 

amygdala mask was created by means of the WFU pickatlas (Maldjian, Laurienti, Kraft, & 

Burdette, 2003). To explore the nature of the group x emotion interaction, t-tests were used 

to investigate the effect of emotion within each group separately (paired t-tests) and to 

compare the activation due to masked sad and happy faces between groups at p<.05, 

uncorrected. At the location of maximal group x emotion interaction, the contrast values of 

happy vs. neutral and sad vs. neutral faces were extracted and used for exploratory 

analyses, controlling for potential effects of gender, detection task performance,  

medication level, number of episodes, comorbidity status, and duration of illness. These 

variables were included either as factor (gender) or covariate (detection task performance) 

in the group x emotion ANOVA, or (within the patient group) correlated with the extracted 

contrast values.  

 For exploratory reasons, a supplementary whole-brain analysis was conducted at 

p<0.001, uncorrected, with a cluster threshold of k=25 voxels. Finally, amygdala 

responsiveness to happy and sad faces was correlated with depression severity and anxiety 

level as measured with the Hamilton Depression Scale (HAMD; (Hamilton, 1960)) and the 

Hamilton Anxiety Scale (HAMA; (Hamilton, 1959)) within the patient sample.  

 

2.3.3 Detection task  

After the fMRI experiment, all subjects were asked whether they had noticed anything 

extraordinary during the scanner experiment. Then, subjects took part in a forced-choice 

detection task outside the scanner. The detection task consisted of 40 trials of the same 

stimulus presentation conditions and the same stimuli as in the fMRI experiment. Subjects 

were told that immediately before the face with the neutral expression another face was 

shown so briefly that it was very difficult to perceive. They should recognize the expression 

of the face presented before the neutral face. Subjects were informed that the covert face 
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could have a happy, a sad, or a neutral expression and that in some cases no covert face was 

shown. Subjects should indicate via button press which prime condition (happy, sad, 

neutral, no face) was presented before the neutral mask. A’ was calculated as non-

parametric measure of sensitivity, taking into account hit rate and false alarm rate, with 

A’=0.5 indicating chance level (Grier, 1971).  

 

2.4 Results 

2.4.1 Detection task  

After the fMRI experiment, all subjects reported that they had not recognized any briefly 

presented emotional faces, even after being informed about their presence. In the detection 

task, average sensitivity of healthy controls and patients did not differ significantly from 

chance level, either for happy (controls: A’=0.49; patients: A’=0.51), sad (controls: 

A’=0.54; patients: A’=0.51), or neutral prime faces (controls: A’=0.48; patients: A’=0.43), 

according to t-tests (all ps > .2). Importantly, both groups did not differ concerning their 

sensitivity indexes for emotional or neutral faces (all ps > .55). 

 

2.4.2 Behavioral results  

Patients and controls did not differ in their evaluative ratings of the neutral mask faces or 

their reaction times, irrespective of prime condition (see Table 1). 

 

2.4.3 fMRI results  

Across both groups, the paradigm successfully elicited automatic amygdala responses to 

both masked happy and masked sad faces, compared with masked neutral faces, despite 

subjective unawareness of the emotional primes (see Fig. 1).  
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Figure 1    Amygdala responses to subliminal sad and happy faces 

Coronal slices (y = 4) depicting amygdala responsiveness to subliminal sad (left) and happy 

(right) faces (vs. neutral faces) across both study groups (p < 0.05, FWE corrected). Both 

emotion conditions yielded strong bilateral amygdala responses. 

 
 

 

The ANOVA based on the contrasts of happy vs. neutral and sad vs. neutral expressions 

yielded no significant main effect of emotion or group within the amygdala. However, the 

hypothesized emotion x group interaction was observed in a cluster within the right 

amygdala, x = 30, y = 4, z = -20; t(54)=3.56, d = 0.97; puncorrected = .00039; pFWE-corrected = 

.016; cluster size k = 7 (Figure 2). To determine the amygdalar subregion where differential 

processing of emotion faces occurred, the SPM Anatomy toolbox Version 1.5 (Eickhoff et 

al., 2005) was administered. The emotion x group interaction was located in the lateral and 

basal nuclei of the amygdala. Depressed patients showed higher amygdala responses to sad 

faces, than to happy faces, x = 28, y = 4, z = -20, t(29) = 2.91, p = .003, d = 1.08, k = 20, 

and compared with amygdala responses to sad facial expressions in healthy controls, x = 

30, y = 2, z = -22, t(54) = 2.34, p = .011, d = 0.64, k = 29. Conversely, healthy controls 

showed the opposite pattern, with stronger amygdala responses to happy compared with sad 
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faces, x = 32, y = 0, z = -26, t(25) = 2.74, p = .006, d = 1.10, k = 94, and with the depressed 

patients’ amygdala responses to happy faces, x = 34, y = 4, z = -20, t(54) = 2.26, p = .016, d 

= 0.62, k = 5.  

 

Figure 2    Group x emotion condition interaction in the amygdala 

Left: coronal view (y=4), depicting significant group x emotion interaction in the right 

amygdala, thresholded at p<0.05, FWE corrected for the amygdala volume.  

Right: bar graphs depicting the mean contrast value for happy-neutral and sad-neutral 

extracted from x=30, y=4, z=-20, dependent on emotion and study group. 

 

 
 

 

Introducing gender as additional factor or detection performance (A’) as covariate did not 

alter the emotion x group interaction. Furthermore, there were no associations of 

medication level, number of episodes, comorbidity status or duration of illness on amygdala 

responsiveness to happy or sad faces in the patient group (all ps> .17).  

 The results of the supplementary whole-brain analysis of group x emotion 

interaction are reported in Table 3. 
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Table 3    Whole brain results of group x emotion interaction. 

Results of a whole brain analysis of group x emotion interaction effects at p < 0.001, 

uncorrected, k = 25 voxels.  

Anatomical region Side Cluster 

size 

x y z Z-

score 

p-value 

IFG (orbital part) extending to 

STP, Insula, and PHG 

L 57 -28 14 -24 4.26 0.00001 

Fusiform Gyrus L 25 -38 -56 -14 4.14 0.00002 

Gyrus Rectus L+R 69 0 42 -24 4.02 0.00003 

MFG L 41 -38 26 40 3.77 0.00008 

MTG R 48 64 -52 0 3.74 0.00009 

ITG, extending to MTG L 28 -54 2 -34 3.67 0.00012 

MTG, extending to ITG L 27 -60 -16 -24 3.67 0.00012 

STP, extending to Amygdala*, 

PHG, IFG (orbital part), and Insula 

R 51 28 12 -24 3.53 0.00021 

Coordinates are given in MNI space. IFG, inferior frontal gyrus; MTG, middle temporal 

gyrus; ITG, inferior temporal gyrus; PHG, parahippocampal gyrus; STP, superior temporal 

pole. * 4 voxels of the cluster fall inside the right amygdala at p < 0.001, with peak 

coordinates at x=30, y=4, z=-20, Z=3.36, p= 0.00039 

 

A correlation analysis in the patient sample yielded no significant correlation of HAMD-

scores and amygdala responsiveness to sad faces. However, a negative correlation of 

HAMD-scores and amygdala responsiveness to happy faces was observed, again confined 

to the right amygdala, x = 26, y = -8, z = -12 (coordinates of the voxel with the highest 

correlation (r = -.565)); t(28) = 3.62; puncorrected = .00058; pFWE-corrected = .025; k = 98. Thus, 

patients with weaker automatic amygdala responsiveness to happy facial expressions 

suffered from higher depression levels. The correlation of HAMA-scores and amygdala 

responsiveness to happy or sad faces yielded no significant results but showed a trend in the 

same direction. 
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2.5 Discussion 

The present neuroimaging data provide evidence for a differential response pattern of the 

amygdala to subliminal emotion stimuli in depressed patients, as compared to healthy 

individuals. Our findings are consistent with the idea of automatic mood-congruent 

cognitive biases in major depression - as well as in mentally healthy subjects. As 

hypothesized, amygdalar reactivity in depressed patients was increased to masked negative 

emotional stimuli and decreased to masked positive emotional stimuli - in comparison with 

healthy controls. Thus, it appears that depression is characterized by a dysregulation of 

automatic neurobiological responsivity, showing negative potentiation and positive 

attenuation. In line with previous research on amygdala responsiveness, the backward-

masked emotional faces successfully elicited robust amygdala responses. In accordance 

with previous research, differences in amygdala activation between groups were found in 

the right amygdala, which seems to be specifically important for the processing of 

unconscious stimuli (Costafreda, Brammer, David, & Fu, 2008).  

The results of the detection task and the subjective experience reported by our 

participants indicate that the neurobiological reactions took place in absence of conscious 

awareness of the emotional stimuli. Healthy controls showed a stronger amygdala response 

to happy facial expression than to sad expression. This asymmetry is consistent with fMRI 

data reported by Killgore and Yurgelun-Todd (2004) and previous research from our 

laboratory (Dannlowski, Ohrmann, Bauer, Kugel, Arolt, Heindel, & Suslow, 2007). In a 

broader methodological context, the present data parallel several psychophysiological 

studies that demonstrated a positive or protective processing bias in healthy subjects 

(Deldin, Keller, Gergen, & Miller, 2001; Rottenberg, Gross, & Gotlib, 2005). Also in line 

with previous neuroimaging research, compared with healthy controls, depressed patients 

manifested stronger amygdala responses to negative stimuli (Abler, Erk, Herwig, & Walter, 

2007; Sheline et al., 2001; Siegle, Steinhauer, Thase, Stenger, & Carter, 2002; Siegle, 

Thompson, Carter, Steinhauer, & Thase, 2007; Surguladze et al., 2005).  

The present data suggesting a dysfunctional reactivity of the amygdala to emotion 

stimuli at an automatic processing level in major depression complement behavioral 

findings that depression is characterized by processing biases in late or controlled stages of 
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information processing (Mathews & MacLeod, 2005; Williams, Watts, MacLeod, & 

Mathews, 1997). It appears that neurobiological methods such as fMRI may represent a 

more sensitive way of assessing automatic emotion processing in depression than 

behavioral testing. Future studies on emotion processing in depression should combine 

different methods of response assessment and evaluate directly the relationship between 

response levels for different types of processing (automatic vs. controlled). In contrast with 

results from previous psychological studies based on the affective priming paradigm 

(Murphy & Zajonc, 1993; Murphy, Monahan, & Zajonc, 1995), no evaluative shifts due to 

masked facial emotions (compared to the neutral or the no prime condition) were observed 

in our experiment. The absence of priming effects could be due at least in part to the fact 

that we applied sad instead of angry facial expression in the negative prime condition. 

However, the pattern of our findings can also be interpreted in the sense that functional 

neuroimaging could represent a more sensitive tool to detect and measure subtle emotion 

processing compared to behavioral tests. 

 Numerous researchers have argued that the amygdala plays a central role in 

generating negative emotional experience (Abercrombie et al., 1998; Nomura et al., 2004; 

Schaefer et al., 2002). From this perspective, greater amygdala responsivity to negative 

faces in depressed patients could directly affect their mood state in a negative way. 

However, in the present study, no correlation was observed between severity of current 

depression and amygdala response to sad faces. Instead, we found an inverse relationship 

between intensity of depressive symptoms and amygdala response to happy faces. It is 

known that the amygdala modulates vigilance in order to exponentiate subsequent 

information processing throughout the brain (Davis & Whalen, 2001). A low automatic 

reactivity of the amygdala to positive stimuli could implicate less engagement in the 

encoding of positively valenced stimuli, or reduced recruitment of attentional resources that 

can bring (peripheral) emotional stimuli to conscious awareness (Adolphs et al., 1999; 

Amaral, 2002). Conversely, high amygdala responsivity to negative stimuli in depression 

was shown to be associated with automatic evaluative biases (Dannlowski, Ohrmann, 

Bauer, Kugel, Arolt, Heindel, Kersting, et al., 2007) and could bias negatively attention and 

higher cognitive processes. According to our results the between-group difference in 

 



Experiment 1: Automatic amygdala response bias in major depression 18  

amygdalar activation in response to emotion faces was located in the basolateral nuclei. 

Findings from previous research indicate that basolateral amygdala activation in response 

to masked fearful faces is positively associated with trait anxiety (Etkin et al., 2004). The 

basolateral complex could represent an integral part of an amygdalar-cortical network for 

unconscious emotional vigilance. Recruitment of visual and prefrontal areas by the 

basolateral amygdala could enhance the allocation of attentional resources for processing of 

sad stimuli and reduce the processing of positive or happy stimuli in depression. The 

basolateral amygdala is also known to regulate the consolidation of memory through its 

projections to many other brain regions involved in storing new information (Chavez, 

McGaugh, & Weinberger, 2009; McGaugh, 2004). Depressed patients’ differential 

responsivity of the basolateral amygdala to emotion stimuli may contribute to a preferential 

encoding of mood-congruent stimuli.   

 The present findings may also shed light on the problematic interpersonal 

functioning of depressed patients (Gotlib & Hammen, 2002). Our results show that 

automatic, subcortical reactions of depressed individuals are strong to negative but only 

weak to positive socio-emotional signals. Individuals manifesting a selective bias favoring 

the processing of negative facial responses may tend to experience interpersonal failures. 

Reduced responsiveness to positive facial expressions, which has already been shown in 

depressed patients on a behavioral level (Suslow et al., 2004), could lead to disturbed 

relationships, in the sense of less attunement and mutual involvement (Bouhuys, Geerts, & 

Mersch, 1997; Surguladze et al., 2004). 

Some limitations must be acknowledged. All patients were medicated, which might 

represent a confounding factor. However, previous research has repeatedly shown that 

antidepressant agents reduce amygdala responses to negative stimuli (Fu et al., 2004; 

Harmer, Mackay, Reid, Cowen, & Goodwin, 2006; Norbury, Mackay, Cowen, Goodwin, & 

Harmer, 2007; Sheline et al., 2001), but enhance amygdala or subcortical responses to 

positive faces (Fu et al., 2007; Schaefer, Putnam, Benca, & Davidson, 2006). Given this 

consistent pattern, the medication in our sample would rather counteract the effects 

observed in our study (which might therefore be even stronger in unmedicated patients). 

Furthermore, our subjects were severely depressed inpatients. Thus, our results might not 
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generalize to more moderately depressed non-hospitalized patients, who constitute the 

usually recruited study population for behavioral studies of cognitive bias in depression. A 

larger sample size, with a broader spectrum of illness severity, would be necessary to 

investigate whether the mood congruency effects observed in our sample are restricted to 

severely affected patients or not. To control the effect of hospitalization on amygdala 

reactivity it would be necessary to include hospitalized, non-depressed subjects as second 

control group.  

 In sum, our study provides compelling support for the notion that depression is 

characterized by mood-congruent emotion processing already at early and automatic 

processing stages. Future studies should investigate potential effects of 

psychopharmacological and psychotherapeutic treatment on automatic mood congruent 

amygdala activation and its relation to clinical features or treatment response. 

 

 



Experiment 2: 5-HTTLPR genotype biases automatic amygdala responsiveness 20  

3 Experiment 2: 5-HTTLPR genotype biases automatic 

amygdala responsiveness2 

 

3.1 Summary 

A functional polymorphism in the serotonin transporter gene (5-HTTLPR) has been 

reported to modulate amygdala responsiveness to negative environmental cues. However, it 

remains unclear whether 5-HTTLPR modulates amygdala responses specifically to 

negative stimuli or rather to emotionally salient stimuli in general. In 44 healthy subjects, 

amygdala responses to subliminally presented happy and sad facial expressions were 

assessed by means of fMRI at 3 Tesla. All subjects were genotyped for 5-HTTLPR and the 

recently discovered 5-HTT rs25531. We observed a robust emotion by genotype group 

interaction in the right amygdala. Risk allele carriers (S or LG) showed similar amygdala 

responses to happy faces compared to homozygous LALA carriers but increased amygdala 

responses to sad faces. The right amygdala was the only anatomical region across the whole 

brain demonstrating this interaction at a reasonable threshold. It appears that whereas 5-

HTT gene variation modulates automatic amygdala responsiveness to sad faces, no such 

association was found for happy faces. We conclude that 5-HTTLPR genotype 

predominantly impacts the central processing predominantly of negative environmental 

cues but not of emotionally salient stimuli in general. 

                                                 
2 Reprinted from Neuroimage, epub ahead of print, Dannlowski U. et al., Emotion specific modulation of 
automatic amygdala responses by 5-HTTLPR genotype, Copyright © 2010, with permission from Elsevier. 
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3.2 Introduction 

Serotonin (5-HT) plays a major role in limbic neural transmission. During the last decade, 

genetic variants in the serotonin system have been described that modulate cognitive and 

neurobiological aspects of emotion processing. The most widely studied genetic variation is 

a common functional promoter polymorphism in the serotonin transporter gene (5-

HTTLPR). A variety of studies has shown that the 5-HTTLPR low expressing risk allele 

(S) is associated with increased neurobiological, physiological, and cognitive responses 

particularly to negative stimuli (Beevers, Gibb, McGeary, & Miller, 2007; Brocke et al., 

2006; Osinsky et al., 2008). Presumably the best established finding is that 5-HTTLPR 

biases the responsiveness to negative emotional stimuli of the amygdala, a core structure 

for early and rapid emotion processing. Since the seminal demonstration by Hariri et al. 

(Hariri et al., 2002), several studies have replicated these findings with different types of 

stimuli and tasks (Munafò, Brown, & Hariri, 2008). Furthermore, also the structure and 

connectivity of the amygdala regulatory areas appears to be modulated by 5-HTTLPR 

genotype (Pezawas et al., 2005; Pezawas et al., 2008). A common interpretation argues that 

the S-allele is associated with enhanced neural processing particularly of negative, aversive 

environmental cues, which could thereby increase the risk for emotional disorders in the 

context of aversive or stressful experiences. This notion corresponds well with the repeated 

finding that the 5-HTTLPR S-allele increases the risk for depression in the context of 

stressful life-events (Caspi et al., 2003). However, in the majority of imaging genetics 

studies, only negative stimuli have been used. Among the few studies also employing 

positive stimuli, results are inconclusive (Canli et al., 2005; Dannlowski et al., 2008; Heinz 

et al., 2005).  

 To the best of our knowledge, no study ever investigated valence-specific effects of 

5-HTTLPR by directly comparing the 5-HTTLPR effect on amygdala responsiveness 

towards negative and positive stimuli. If the neurobiological effect of 5-HTTLPR indeed 

constitutes a risk factor for emotional disorders, it should be absent or at least less 

pronounced for limbic responses to positive cues. In the present study we sought to address 

this question directly with an established paradigm that assesses automatic aspects of 

amygdala responsiveness towards negative and positive facial expressions (Kugel et al., 
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2008; Suslow et al., 2009; Suslow et al., 2010). A backward-masking procedure was 

selected to prevent conscious awareness of the emotional faces, therefore preventing 

voluntary emotion regulation processes. We predicted an interaction of genotype and 

emotional valence in the amygdala. Specifically, we predicted a significant modulation of 

amygdala responsiveness towards negative stimuli by 5-HTTLPR genotype, but a 

significantly weaker or even absent genotype effect for positive facial cues.  

 

3.3 Materials and Methods  

3.3.1 Subjects  

Forty-four right-handed healthy German subjects participated (Table 4). Exclusion criteria 

were any previous or present psychiatric condition, neurological abnormalities, any 

psychotropic medication or drug use, and the usual MRI-contraindications. The study was 

approved by the Ethics Committee of the University of Münster. After complete description 

of the study to the subjects, written informed consent was obtained.  

 

3.3.2 Genotyping  

All subjects were genotyped for the 5-HTTLPR polymorphism, including SNP rs25531 

(A/G), according to published protocols (Deckert et al., 1997; Wendland, Martin, Kruse, 

Lesch, & Murphy, 2006) with minor variation. Primers 5’-

GGCGTTGCCGCTCTGAATGC-3’ and 5’- GAGGGACTGAGCTGGACAACCAC-3’ 

(10pM each) were used for 20µl PCR containing 60 ng DNA, 200 μM dNTPs, H2O and 0.5 

U HotStar Taq Polymerase with 1.5 mM MgCl2, 1xQ-Solution and 1xBuffer (Qiagen), with 

an initial 15-min denaturation step at 95°C followed by 35 PCR cycles of 94°C (60s), 64°C 

(60s) and 72°C (120s) and a final extension step of 10 min at 72°C. For RFLP analysis 

PCR products were digested with HpaII at 37°C overnight, separated in 15% 

polyacrylamide gels (1xTBE, 230 V/cm) for 3.5 h and visualized by silver staining, which 

resulted in fragments between 62 and 340 bp length allowing differentiation and 

assignment of all 5-HTT-LPR and -rs25531 genotypes. The genotype distribution of 5-

HTTLPR (20 LL, 15 LS, 9 SS) and rs25531 (38 AA, 6 AG, 0 GG) did not differ 
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significantly from the expected numbers calculated according to the Hardy-Weinberg 

equilibrium (both p > 0.05). Following the majority of previous studies, subjects were 

grouped into risk allele carriers (S or LG) and homozygous non-risk (LA) allele carriers.  

 

Table 4    Characteristics of study participants in experiment 2 

Sociodemographic and affective characteristics of study participants, and mean evaluative 

responses to the neutral face mask during the fMRI experiment dependent on prime 

condition (mean (s.d.)) 

 LALA (n=15) S or LG carrier 

(n=29) 

p-value, according 

to χ²- or t-tests (2-

tailed) 

Age 29.7 (9.2) 30.9 (10.8) 0.72 

Sex (m/f) 7/8 18/11 0.33 

BDI 3.4 (4.3) 3.8 (3.5) 0.75 

STAI-trait 35.4 (7.0) 35.5 (9.6) 0.98 

Verbal IQ (MWT-B) 121.3 (12.9) 116.3 (13.8) 0.26 

Total education time 13.8 (1.6) 14.0 (1.8) 0.71 

Evaluation sad prime  0.06 (0.31) -0.09 (0.29) 0.13 

Evaluation happy prime  0.11 (0.26) -0.04 (0.37) 0.16 

Evaluation neutral prime 0.09 (0.25) -0.08 (0.29) 0.07 

Evaluation no-face prime 0.07 (0.32) -0.09 (0.28) 0.11 

 

 

3.3.3 fMRI methods  

The fMRI methods have been published previously (Suslow et al., 2009; Suslow et al., 

2010). In short, facial stimuli with sad, happy, and neutral expressions were briefly (33 ms) 
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presented as prime stimuli (Ekman & Friesen, 1976) . Neutral faces of the same individuals 

served as masking stimuli. To avoid complete identity of prime and mask in the neutral face 

condition, mirrored faces were used as neutral primes. 80 trials were shown: 20 with sad, 

20 with happy and 20 with neutral prime faces. In 20 trials no-face primes were presented. 

The no-face prime condition consisted of neutral faces in which central facial features (i.e., 

eyes, nose, and mouth) had been replaced by a surface without contours. Each trial had 

duration of 9 s. A fixation cross presented for 800 ms preceded a prime face shown for 33 

ms which was followed by the corresponding neutral face mask for 467 ms. A blank screen 

followed for 7.7 s. Subjects were instructed to evaluate whether neutral (mask) faces 

expressed rather negative or rather positive feelings, by pressing one of four buttons (−1.5, 

−0.5, +0.5, and +1.5). Judgments and reaction times were registered.  

T2* functional data were acquired at a 3 T scanner (Gyroscan Intera 3T, Philips 

Medical Systems, Best, NL) using a single shot echoplanar sequence. Volumes consisting 

of 40 axial slices were acquired (matrix 642, resolution 3.5×3.5×3.5mm; TR=3s, TE=30ms, 

FA=90°). Functional imaging data were motion-corrected, spatially normalized to standard 

MNI space (Montreal Neurological Institute) and smoothed (Gaussian kernel, 8 mm 

FWHM) using Statistical Parametric Mapping (SPM5, http://www.fil.ion.ucl.ac.uk/spm). 

For each subject, trials were averaged for each prime condition. Brain responses to the 

prime stimulus categories were isolated by convolving a vector of onset times of the 

emotional, neutral, and no-face conditions with a canonical hemodynamic response 

function. As described previously, two individual 1st level contrasts images (happy-neutral, 

sad-neutral) were entered into a factorial model, with emotion (happy vs. sad) as within-

subjects factor and genotype group (S or LG carriers vs. LALA) as between-subjects factor. 

The model was used  

a) to test for the expected group x emotion interaction in the whole brain at an 

uncorrected threshold of p<0.001, cluster threshold k=10.  

b) for the amygdala, a region of interest analysis with a family-wise error (FWE) 

correction was performed using the anatomical definition of (Tzourio-Mazoyer et al., 

2002).  
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c) to explore the nature and robustness of the group x emotion interaction. 

Therefore, contrast values in the significantly interacting area were extracted for each 

subject and emotion quality and processed further using the SPSS 17.0 software package. 

As additional analyses, gender was added as additional between-subjects factor, and age, 

verbal intelligence (MWT-B, (Lehrl, 1995)), trait anxiety (STAI-T, (Laux, Glanzmann, 

Schaffner, & Spielberger, 1981)), depression level (BDI, (Beck & Steer, 1987)), detection 

task performance for masked angry, sad, and neutral faces, and evaluative ratings were 

entered as covariates. T-tests were used on the extracted contrast values in order to compare 

the activation due to masked sad and happy faces between genotype-groups.  

Given previous reports of 5-HTTLPR biasing amygdala-prefrontal connectivity in 

overt emotion processing tasks (Friedel et al., 2009; Heinz et al., 2005; Pezawas et al., 

2005), we further conducted an exploratory functional connectivity analysis of the 

amygdala. The methods have already been described in Dannlowski et al. (Dannlowski et 

al., 2009). Briefly, the time course of bilateral amygdala activity was extracted for each 

participant and then entered as a regressor (‘seed’) in a subsequent fixed-effects first 

(individual) level analysis of the same subject. The presentation conditions and movement 

parameters were also modeled as nuisance variables to control movement and co-activation 

by the task. The resulting contrast images containing individual brain-wide connectivity of 

the amygdala were then entered into random effects group comparisons. The WFU 

PickAtlas Toolbox (Maldjian, Laurienti, Kraft, & Burdette, 2003) was used to create a 

mask for the prefrontal cortex (including all parts of the inferior, middle, and superior 

frontal gyrus, anterior cingulate gyrus, gyrus rectus, encompassing all parts of Brodmann’s 

area 9, 10, 11, 24, 25, 32, and 44-47). The genotype groups were compared at p<0.001, 

cluster threshold k=10. 

 

3.3.4 Prime Detection task  

After the fMRI experiment, subjects took part in a forced-choice prime detection task 

outside the scanner. The prime detection task consisted of 40 trials of the same stimulus 

presentation conditions and the same stimuli as in the fMRI experiment (33 ms prime 

presentation, followed by a neutral face mask of the same actor). However, in the prime 
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detection task, the subjects were asked to indicate the prime condition that was presented 

before the neutral mask via button press. A’ was calculated as non-parametric measure of 

sensitivity, taking into account hit rate and false alarm rate, with A’=0.5 indicating chance 

level (Grier, 1971).  

 

3.4 Results 

3.4.1 Detection task  

During debriefing, no subject reported having seen any briefly presented emotional faces 

during the fMRI task, even when informed about their presence. Data from the prime 

detection task confirmed this: The sensitivity indices in the whole sample did not differ 

from chance level neither for happy (A’=0.58, t(41)=1.02, p=0.32), sad (A’=0.53, 

t(41)=1.22, p=0.23) or neutral primes (A’=0.51, t(41)=0.31, p=0.76; two datasets were lost 

due to technical difficulties). Importantly, the two genotype-groups did not differ 

concerning their sensitivity indexes for any prime condition (all ps > 0.25). 

 

3.4.2 Behavioral results  

The genotype-groups did not differ significantly concerning their evaluative ratings of the 

neutral mask faces, irrespective of prime condition, albeit there was a general trend for 

more negative evaluative ratings in all prime conditions in the S/LG-group (Table 4). 

 

3.4.3 fMRI results  

a) The whole-brain analysis yielded the hypothesized emotion x genotype-group interaction 

in one single cluster, x=28, y=6, z=-16; Z=4.02; puncorrected=0.00003; k=18, located in the 

right amygdala, labeled by the AAL-toolbox (Tzourio-Mazoyer et al., 2002); see Figure 3 

and Table 5.  

b) FWE-correction for the bilateral amygdala volume confirmed the detected cluster also at 

a corrected p-value (pFWE-corrected=0.01, k=6).  
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Figure 3    Whole brain emotion x genotype interaction 

Panel a) Glass brain depicing whole-brain emotion by genotype interaction, thresholded at 

p<0.001, k=10. Panel b): Bar graphs depicting the mean contrast value extracted from the 

right amygdala for the happy-neutral and sad-neutral contrast dependent on genotype 

group. Error bars, s.e.m.  

 

 
 
Table 5    Amygdala activation dependent on condition and baseline 

Contrast values extracted from the right amygdala for happy and sad face condition vs. the 

neutral face or no face baseline, respectively. 

Contrast LALA (n=15) S or LG carrier (n=29) 

Sad – neutral -0.124 (0.584) 0.312 (0.758) 

Happy – neutral 0.309 (0.458) 0.359 (0.806) 

Sad – no face 0.254 (0.715) 0.490 (0.647) 

Happy – no face 0.687 (0.560) 0.538 (0.827) 

 

 



Experiment 2: 5-HTTLPR genotype biases automatic amygdala responsiveness 28  

c) In the subsequent analyses using the extracted contrast values from the significant cluster 

in a), the emotion x genotype group interaction remained highly significant if gender (as 

additional factor) or age, verbal intelligence, trait anxiety, depression level, evaluative 

responses, or detection task performance (as covariates) were added to the design (see 

Table 6 for details). None of the covariates had a significant effect on amygdala 

responsiveness to sad or happy expressions, including the questionnaire measures.  

 

Table 6    Effects of covariates on group x genotype interaction in the amygdala  

Results of the genotype group (LALA vs S/LG carrier) x emotion condition (happy vs. sad) 

ANOVA depending on the inclusion of various covariates. All covariates had no influence 

on the group x emotion interaction term and had no significant effect on amygdala 

responsiveness.   

Covariate Main effect of covariate Group x emotion interaction term in the 

presence of covariate 

None --- F(1,42)=21.1, p<.001 

Gender* F(1,40)=0.43, p=.52 F(1,40)=20.2, p<.001 

Age F(1,41)=0.35, p=.56 F(1,41)=20.6, p<.001 

Verbal 

intelligence 

F(1,41)=0.19, p=.66 F(1,41)=19.3, p<.001 

BDI-score F(1,41)=1.26, p=.27 F(1,41)=21.4, p<.001 

STAI-T score F(1,41)=0.10, p=.75 F(1,41)=21.8, p<.001 

Overall detection 

task performance 

F(1,41)=0.15, p=.70 F(1,41)=17.6, p<.001 

*Gender was added as additional factor.  

 

 While there were no differences between genotype-groups concerning amygdala 

responses to happy faces, t(42)=0.5, p=0.62, risk-allele carriers showed a significantly 

increased amygdala responsiveness to sad faces, compared with homozygous LA carriers, 

t(42)=2.93, p=0.006.  
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 It should be noted that the genotype group x emotion interaction term is not affected 

by the choice of the baseline condition (neutral faces) and the statistics remain identical, if 

the no face condition was used as baseline. However, since there have been reports of 5-

HTTLPR biasing amygdala responsiveness to a neutral baseline in overtly presented 

emotion processing tasks (Canli et al., 2005; Heinz et al., 2007), we additionally extracted 

the contrast values for sad, happy, and neutral faces (vs. no face condition) for each subject 

separately. Also using the no face baseline, S carriers showed stronger amygdala 

responsiveness to sad faces compared to the LL genotype, t(42)=2.62, p=0.012. No 

differences were found for happy, t(42)=0.77, p=0.46, or neutral faces, t(42)=0.32, p=0.75. 

See Table 5 for the contrast values using the no-face baseline. 

 The functional connectivity analysis revealed no significant prefrontal area in which 

amygdala connectivity differed among the genotype groups. 

 

3.5 Discussion 

As a main result, our study yields strong evidence that, at an automatic level of processing, 

5-HTTLPR genotype differentially modulates amygdala responses for negative and positive 

emotional content. In replication of previous studies, risk allele carriers demonstrated 

increased amygdala responsiveness to negative facial expressions (Bertolino et al., 2005; 

Canli et al., 2005; Dannlowski et al., 2007; Dannlowski et al., 2008; Hariri et al., 2002; 

Hariri et al., 2005; Heinz et al., 2005; Smolka et al., 2007). However, no such modulatory 

effect was found for positive faces, as evident from an emotion by valence interaction. 

Strikingly, the right amygdala was the only anatomical area across the whole brain 

exhibiting this interaction at a reasonable statistical threshold. Due to the masking 

procedure, participants were unaware of the presence of any emotional stimuli. Therefore, 

conscious and strategic aspects of processing, particularly voluntary emotion regulation 

processes, should have been sufficiently avoided. Hence, we had no hypotheses regarding 

genotype-group by valence interaction in cortical areas, particularly in parts of the 

prefrontal cortex, which is involved rather in conscious aspects of emotion processing.  

 To the best of our knowledge, this is the first report of a genotype-group by 

stimulus-valence interaction in brain activation. The few previous imaging genetics studies 
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using both positive and negative stimuli showed heterogeneous results. While two studies 

in medicated depressed patients (Dannlowski et al., 2007; Dannlowski et al., 2008) reported 

similar 5-HTTLPR effects on amygdala responsiveness to positive and negative stimuli, 

and one study reported even stronger 5-HTTLPR effects for positive stimuli in panic 

disorder (Domschke et al., 2006), other research indicated somewhat stronger genetic 

effects on amygdala responsiveness to negative stimuli in healthy subjects (Canli et al., 

2005; Heinz et al., 2005; Smolka et al., 2007). However, no study has ever directly tested 

potential valence effects for significance. Furthermore, none of these studies has focused on 

the automatic stage of amygdala responsiveness, e.g. by using a masking procedure, which 

would prevent voluntary emotion regulation processes. 

 Our results parallel a recent pharmaco-fMRI study that studied automatic amygdala 

responses to subliminally presented fearful and happy faces before and after 

pharmacological challenge with a selective serotonin reuptake inhibitor (Harmer, Mackay, 

Reid, Cowen, & Goodwin, 2006). The authors reported that automatic amygdala responses 

to masked negative faces were attenuated by serotonergic pharmacological intervention, 

while no effect on amygdala responsiveness to positive faces was observed due to 

serotonergic challenge.  

An alternative interpretation of our results could be that the LALA carries show 

diminished amygdala activation by sad facial expressions, rather than the S carriers having 

increased responsiveness. This notion fits well with a recent neuropsychological study that 

reported a similar 5-HTTLPR genotype by emotion interaction regarding visual attention to 

positive and negative pictures in healthy subjects. In keeping with the notion of a 

“protective bias”, LL carriers preferentially attended to positive compared to neutral 

pictures and to neutral, compared to negative pictures, whereas carriers of the S-allele 

showed an even-handed attention allocation (Fox, Ridgewell, & Ashwin, 2009). 

It might be surprising that in our sample apparently more amygdala responsiveness 

was elicited by masked happy faces compared with negative facial expressions. However, 

most previous imaging studies used anxiety-relevant, particularly fearful faces, whereas in 

our study, depression-relevant stimuli (sad faces) were employed. A recent meta-analysis 

found no differences between happy and sad facial expressions regarding amygdala 
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responsiveness (Costafreda, Brammer, David, & Fu, 2008). Moreover, the only three 

independent studies that compared subliminally presented happy and sad faces reported 

stronger amygdala responsiveness to happy compared with sad faces (Dannlowski et al., 

2007; Juruena et al., 2009; Killgore & Yurgelun-Todd, 2004), which is fully in line with 

our present data. 

Unlike previous studies (Friedel et al., 2009; Heinz et al., 2005; Pezawas et al., 

2005), we have detected no effect of 5-HTTLPR on amygdala-prefrontal functional 

connectivity. It is interesting to note that reduced amygdala-prefrontal connectivity has 

been interpreted in terms of a prefrontal – limbic emotion regulation deficit (Dannlowski et 

al., 2009; Friedel et al., 2009), which represents a controlled stage of emotion processing. 

Furthermore, all of the above mentioned studies used emotional stimuli that were overtly 

presented. In contrast, the present study used subliminally presented emotional faces, 

explicitly to target automatic emotion processing and to avoid controlled emotion 

regulation processes, which involve prefrontal areas. 

 The present findings provide further insight into how 5-HTTLPR could increase the 

risk for emotional disorders. Stronger processing of negative emotional content is one of 

the crucial findings in depression (Beck, 2008). A preference for enhanced processing of 

negative stimuli in depression has been described already for early, pre-attentive stages of 

cognition (Dannlowski et al., 2006), corresponding well with repeated findings of increased 

amygdala responsiveness to negative stimuli in major depression (Abler, Erk, Herwig, & 

Walter, 2007; Fu et al., 2004; Sheline et al., 2001; Siegle, Steinhauer, Thase, Stenger, & 

Carter, 2002; Siegle, Thompson, Carter, Steinhauer, & Thase, 2007; Suslow et al., 2010). 

Stronger amygdala responsiveness to subliminally presented negative, opposed to positive 

facial cues, has also been associated with automatic negative cognitive biases (Dannlowski 

et al., 2007; Dannlowski et al., 2007) and elevated trait anxiety (Etkin et al., 2004), which 

in turn, increases the risk for depression. The present study provides further evidence that at 

least part of these neurobiological abnormalities have a genetic background within the 

serotonergic signal transduction. 

 The evidence of a direct effect of 5-HTTLPR genotype on the clinical phenotype of 

major depression remains under debate, as reflected by the recent meta-analysis by (Risch 
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et al., 2009). However, particularly in the absence of clear genotype – phenotype 

associations and in the context of heterogeneous, purely clinically defined phenotypes, the 

endophenotype approach becomes a valuable approach. This strategy bears the potential to 

reveal distinct neurogenetic pathways, which might be able to outline different dimensions 

of depression-related psychopathology, and ultimately, could thereby lead to 

neurobiologically defined, more homogeneous subgroups.    

 Some limitations should be acknowledged. The sample size was limited, albeit in 

the range of several previous imaging genetics studies. While the recommended sample 

size for detecting 5-HTTLPR effects on amygdala responsiveness has been estimated N>70 

(Munafò, Brown, & Hariri, 2008), and therefore, our study would be underpowered, our 

goal was to detect a genotype x emotion interaction, for which no previously published 

effects sizes were available for a power-analysis. Furthermore, we were not able to 

establish an association of amygdala responsiveness and affective characteristics, 

particularly trait anxiety, potentially due to the lack of statistical power, limited variance in 

our healthy control group regarding questionnaire measures, and the employment of sad 

rather than fearful or angry faces. While the subjects were screened for psychiatric 

disorders, including drug and alcohol abuse, smoking habits were not assessed in the 

present sample. Since the participants in our study were genotyped after their participation, 

the groups were not perfectly matched for socio-demographic variables such as gender. 

However, since there were no significant differences among the groups regarding all 

assessed variables, and inclusion of these variables as additional covariates did not alter the 

results, it seems very unlikely that our results are confounded by such factors. 

 In sum, the present study extends previous findings of a strong genetic influence on 

individual variation in early stages of limbic emotion processing. Future studies would 

strongly benefit from larger sample sizes, gene-gene interaction analyses and multiple 

paradigms to target different aspects of emotion processing, e.g. emotion regulation or 

reward processing.  
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4 Experiment 3: Neuropeptide Y gene biases amygdala 

responsiveness in depression3 

 

4.1 Summary 

Anxious features of depression have been suggested to particularly complicate the course of 

antidepressant treatment and to possibly constitute a separate nosological entity. Since 

neuropeptide Y (NPY) has been found to play a pivotal role in the pathomechanism of both 

anxiety and depression, NPY is a promising candidate in the investigation of the clinical 

phenotype of “anxious depression”. 

In the present study, NPY gene tagging variants were investigated for an influence 

on antidepressant treatment response in a sample of 256 patients with DSM-IV diagnosed 

major depression, with particular emphasis on the subgroup of 91 patients with anxious 

depression. Additionally, NPY gene impact on amygdala activation during facial emotion 

processing was analyzed in a subsample of 35 depressed patients applying an imaging 

genetics approach.  

In anxious depression, the functional NPY rs16147 -399C/T variant was associated 

with treatment response, with the less active C allele conferring slow response after 2 

weeks and failure to achieve remission after four weeks of treatment. The rs16147 C allele 

was further associated with stronger bilateral amygdala activation in response to 

threatening faces in an allele-dose fashion.  

In conclusion, the present results point towards a possible influence of functional 

NPY gene variation on antidepressant treatment response in anxious depression, potentially 

conveyed by altered emotional processing.  

                                                 
3 Reprinted from European Neuropsychopharmacology, epub ahead of print, Domschke K. et al., 
Neuropeptide Y (NPY) gene: Impact on emotional processing and treatment response in anxious depression, 
Copyright © 2010, with permission from Elsevier. 
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4.2 Introduction 

Depression and anxiety disorders occur highly comorbidly with increased morbidity, poorer 

acute and long-term outcome as well as increased suicide risk (Lydiard & Brawman-

Mintzer, 1998). The clinical phenotype of anxious depression has been suggested to 

possibly constitute a diagnostic entity of its own requiring specific diagnostic and 

therapeutic attention (Silverstone & von Studnitz, 2003). Indeed, accumulating evidence 

points to anxious features of depression complicating the course of antidepressant treatment 

(Bagby, Ryder, & Cristi, 2002; Fava et al., 2008; Nelson, 2008). A recent study from our 

lab reported significantly decreased response rates after four (26.3% vs 54.2%, p=0.0005) 

and six (65.3% vs 78.1%, p=0.014) weeks of treatment for anxious depression as defined 

by a HAM-D anxiety/somatization factor score ≥7 in 340 Caucasian inpatients with a 

DSM-IV major depressive episode (MDE), particularly in the subsample of major 

depression (MDD) (N=256) (Domschke, Deckert, Arolt, & Baune, 2008).  

Neuropeptide Y (NPY) (MIM *162640) is widely expressed in the central nervous 

system including the amygdala (Marcos et al., 1999) and has repeatedly been suggested to 

play a pivotal role in the pathophysiology of anxiety and depression as well as the 

mediation of treatment response in both disorders (Heilig et al., 2004; Obuchowicz, 

Krysiak, & Herman, 2004), which renders NPY a promising candidate in the investigation 

of the clinical phenotype of anxious depression. 

NPY as well as NPY Y1 receptor knock-out mice and rats treated with NPY Y1 

receptor antagonists exhibit significantly higher anxiety levels as compared to wild-type 

animals (Bannon et al., 2000; Karl, Burne, & Herzog, 2006; Wahlestedt, Pich, Koob, Yee, 

& Heilig, 1993). Reciprocally, in a wide range of animal models anxiolytic-like effects of 

NPY have been observed (Bannon et al., 2000; Broqua, Wettstein, Rocher, Gauthier-

Martin, & Junien, 1995; Heilig et al., 1993; Heilig, Söderpalm, Engel, & Widerlöv, 1989; 

Karl, Burne, & Herzog, 2006; Karlsson, Holmes, Heilig, & Crawley, 2005; Sajdyk, 

Vandergriff, & Gehlert, 1999; Tovote et al., 2004; Wahlestedt, Pich, Koob, Yee, & Heilig, 

1993). In animal models of depression, suppressed central NPY levels have been reported 

(Caberlotto et al., 1999; Caberlotto, Fuxe, Overstreet, Gerrard, & Hurd, 1998), while anti-

depressant treatment led to an up-regulation of central NPY synthesis (Husum, Mikkelsen, 
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Hogg, Mathé, & Mørk, 2000; Mathé et al., 2007; Stenfors, Mathé, & Theodorsson, 1994; 

Wahlestedt et al., 1990). Accordingly, central NPY administration resulted in 

antidepressant-like effects (Redrobe, Dumont, Fournier, & Quirion, 2002; Stogner & 

Holmes, 2000). In depressed patients as well as in post-mortem tissue of suicide victims, a 

robust suppression of cerebrospinal fluid (CSF) NPY levels has been found (Heilig et al., 

2004; Widerlöv, Lindström, Wahlestedt, & Ekman, 1988). Long-term treatment with the 

selective serotonin reuptake inhibitor (SSRI) citalopram led to a significant increase in 

NPY CSF concentrations (Nikisch et al., 2005). Anti-anxiety as well as anti-stress effects of 

NPY have been suggested to be in part mediated by the amygdala, particularly the 

lateral/basolateral complex (Primeaux, Wilson, Cusick, York, & Wilson, 2005; Sajdyk, 

Schober, & Gehlert, 2002), where NPY and GABA are co-localized (McDonald & Pearson, 

1989). 

In anxiety and anxiety disorders, particular evidence for a risk locus on chromosome 

4q31-34 encompassing the NPY gene (chromosome 4q31.3-q32) has been reported (Kaabi 

et al., 2006). Neuropeptide Y system polymorphisms have been found to be possibly 

involved in the pathogenesis of panic disorder (Domschke, Hohoff, et al., 2008) and 

unipolar depression with a significantly elevated frequency of the NPY rs16147 -399C 

allele in depressed patients (Heilig et al., 2004), while another study failed to detect an 

influence of NPY gene variation on panic disorder or major depression (Lindberg et al., 

2006). NPY rs16147 located in the promoter region of the gene is of particular functional 

relevance, since the -399C allele has been shown to alter NPY expression in vitro by 

accounting for 30% decrease in mRNA expression (Zhou et al., 2008). Furthermore, a low-

NPY-expression diplotype containing the NPY -399C allele was reported to be associated 

with increased amygdala activity in response to threat-related facial expressions in healthy 

probands (Zhou et al., 2008). 

Thus, given the converging lines of support for a pivotal role of NPY in both 

anxiety and depression as well as growing evidence for the combined clinical phenotype of 

anxious depression to be associated with impaired treatment response, in the present study 

the influence of NPY gene tagging variants on antidepressant treatment response was 

investigated in a sample of patients with major depression, particularly the subtype of 
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anxious depression. In order to identify potentially mediating neurobiological mechanisms, 

we further investigated the impact of NPY gene variants that were significantly associated 

with poor treatment response in our sample on amygdala activity by means of functional 

magnetic resonance imaging (fMRI). The amygdala is a core structure in limbic emotion 

processing circuitries (Davis & Whalen, 2001). Several studies have shown that depression 

(Phillips, Drevets, Rauch, & Lane, 2003a) as well as trait anxiety and anxiety disorders 

(Etkin & Wager, 2007) are associated with increased amygdala responsiveness particularly 

to negative facial expressions. Consequently, amygdala responsiveness to negative facial 

cues is regarded having endophenotype character (Hariri, Drabant, & Weinberger, 2006; 

Hasler, Drevets, Manji, & Charney, 2004), a notion which has stimulated several studies in 

the emerging research field of imaging genetics, including the study by Zhou et al. (2008) 

as mentioned above. Therefore, we have analyzed NPY rs16147 and rs9785023 impact on 

amygdala activation during facial emotion processing in a subsample of 35 depressed 

patients. We hypothesized that the low expressing variants, particularly rs16147 C alleles, 

are associated with increased amygdala responsiveness to negative facial expressions. 

 

4.3 Materials and Methods 

4.3.1 Samples 

Samples of 268 unrelated Caucasian patients with current major depression (MDD) (mean 

age: 49.7+15.4; f=154, m=114) and 72 patients with bipolar disorder, major depressive 

episode (mean age: 45.9+14.5; f=40, m=32), admitted for inpatient treatment were 

consecutively recruited at the Department of Psychiatry, University of Muenster, Germany, 

between 2004 and 2006. For pharmacogenetic analyses, only patients with an HAM-D 

admission score >10 and a treatment cycle of at least 6 weeks from baseline were 

considered leaving a sample of N=256 patients with MDD (mean age: 50.4+14.9; f=145, 

m=111). Patients with Schizoaffective Disorders or comorbid Substance Abuse Disorders, 

mental retardation, pregnancy and neurological, neurodegenerative disorders or other 

clinically unstable medical illnesses impairing psychiatric evaluation were not included in 
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this analysis. In order to minimize the risk of ethnic stratification, Caucasian descent was 

ascertained by Caucasian background of both parents.  

From the overall sample, a subsample of N=35 patients (mean age: 37.3+12.6; f=24, 

m=11) with complete rs16147 genotype and fMRI data was drawn for the imaging genetics 

analysis. Besides the usual MRI contraindications, additional exclusion criteria were any 

neurological abnormalities, substance abuse, former electroconvulsive therapy, age of 60 

and above and benzodiazepine treatment. Patients were scanned shortly after admission 

(mean HAM-D score 22.6+3.5). The genotype distribution of rs16147 in the imaging 

sample was TT: N=13, CT: N=14 and CC: N=8. Since the genotype distribution of 

rs9785023 was in complete linkage disequilibrium with rs16147 in our imaging sample, 

only imaging genetics data of rs16147 are reported. According to t-tests or χ²-tests, TT 

homozygotes and C allele carriers did not differ significantly concerning age, gender, 5-

HTTLPR genotype, presence of anxious depression, HAM-D score, number of episodes, 

duration of illness, or education years (all p>0.2).  

Clinical data were obtained and analyzed in the context of a genetic study as 

approved by the local ethics committee of the University of Muenster, Muenster, Germany. 

After complete description of the study to the subjects, written informed consent was 

obtained. The present sample has previously been analysed for association between other 

candidate genes (e.g. catechol-O-methyltransferase, monoamine oxidase A) and 

antidepressant treatment response in published studies (Baune et al., 2008; Domschke et al., 

2008).  

 

4.3.2 Assessment 

Patients’ diagnoses were obtained by the use of a structured clinical interview (SCID-I) 

according to the criteria of DSM-IV (Wittchen, Wunderlich, Gruschwitz, & Zaudig, 1997). 

Clinical course of depression was assessed with the Hamilton Depression scale (HAM-D-

21) on a weekly basis. Anxious depression (n=110, 32.3%; f=31.7%, m=32.6%; n.s.) was 

defined as published by Fava et al. (2008) and as applied in our previous study on 

pharmacoresponse in anxious vs. non-anxious depression (Domschke, Deckert, Arolt, & 

Baune, 2008). More specifically, a HAM-D anxiety/somatization factor score ≥7 was 
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regarded as high levels of anxiety. The anxiety/somatization factor, derived from Cleary 

and Guy’s (1977) factor analysis of the HAM-D scale, includes six items from the original 

17-item version: the items for psychic anxiety, somatic anxiety, gastrointestinal somatic 

symptoms, general somatic symptoms, hypochondriasis and insight.  

 

4.3.3 Response 

Treatment response (HAM-D reduction >50%) and remission (HAM-D <7) after 4 and 6 

weeks of antidepressant treatment were applied as response parameters as defined by Fava 

et al. (2008) and based on our previous study on pharmacoresponse in anxious vs. non-

anxious depression (Domschke, Deckert, Arolt, & Baune, 2008). In addition, the outcome 

measure of slow vs. fast response after 2 weeks (cutoff 50% HAM-D score reduction after 

2 weeks) of treatment was applied. Side effects were not systematically assessed in detail.  

 

4.3.4 Medication 

Patients with MDD (N=256) were treated in a naturalistic setting with a variety of 

antidepressant medication (mirtazapine: N=28 (10.9%), citalopram/escitalopram: N=38 

(14.8%), venlafaxine: N=45 (17.6%), mirtazapine plus citalopram/escitalopram: N=38 

(14.8%); mirtazapine plus venlafaxine: N=63 (n=24.6%), other (TCA, MAO inhibitors, 

lithium): N=44 (17.2%)). As co-medication atypical neuroleptics (quetiapine, olanzapine, 

risperidone; N=121, 47.3%) as well as mood stabilizer (lithium, valproate acid; N=60, 

23.4%) were used in addition to antidepressant treatment.  Benzodiazepines were used in 3 

cases only. None of the included patients had received electroconvulsive therapy within six 

months before the present investigation.  

 

4.3.5 SNP selection and genotyping 

Tagging SNPs covering the NPY gene region were selected by in silico analyses (UCSC 

human genome browser, HapMap). Further SNPs were included in the present study based 

on previous association findings in non-mental diseases as well as known functional 

relevance: SNP1 (rs16157), SNP2 (rs16147), -485T/C (Itokawa et al., 2003) analogous to -
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399C/T (Lindberg et al., 2006; Mottagui-Tabar et al., 2005; Zhou et al., 2008), SNP3 

(rs16139, 1128T/C, Leu-7-Pro (Karvonen et al., 1998)), SNP4 (rs9785023, 1258G/A 

(Skibola et al., 2005)), SNP5 (rs16474). In the present study, SNPs were named using ‘rs’ 

numbers and the respective alleles were called according to NCBI single nucleotide 

polymorphism database (http://www.ncbi.nlm.nih.gov/projects/SNP/). Genotypes of 

rs16147 were grouped according to functionality with the -399C allele conferring decreased 

mRNA expression (Zhou et al., 2008). 

DNA isolated from EDTA anticoagulated venous blood samples was genotyped for 

the above mentioned polymorphisms by TaqMan 5’-exonuclease assays blind to disease 

status (ABI Prism 7900 Sequence Detection System, SDS software version 2.1, Applied 

Biosystems, Darmstadt, Germany).  

 

4.3.6 Statistical analysis 

Continuous variables were compared between two categories using student t-test and 

proportions between categorical variables were analysed using Chi-square test. Since in our 

previous study anxious depression had the strongest effects on pharmacoresponse in the 

subsample of MDD (Domschke, Deckert, Arolt, & Baune, 2008), the subsequent 

pharmacogenetic analyses were restricted to patients with MDD (see results section).  

For pharmacogenetic analyses, the variables of treatment response and remission at 

weeks 4 and 6 of antidepressant treatment were entered as dependent variables, while NPY 

SNPs were considered as independent variables using single logistic regression models. 

Variables such as age, gender, polypharmacy, treatment with antidepressants plus 

neuroleptics, duration of depressive illness, lifetime number of depressive episodes, number 

of hospitalizations due to depression, class of antidepressant, i.e. SSRIs, SNRA, NaSSRA, 

TCA, MAO-inhibitors, antidepressants plus mood stabilizer or antipsychotic and family 

history of psychiatric disorders were included as covariates in logistic regression models, if 

a significant effect on treatment response or remission in anxious depression was observed 

in univariate analyses.  

False Discovery Rate (FDR) (Benjamini & Hochberg, 1995) was applied to control 

for multiple testing and prevent from Type I error. FDR was calculated for the number of 
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hypotheses tested in the pharmacoresponse analyses of anxious depression vs. non-anxious 

depression as reported earlier plus the hypotheses tested in pharmacogenetic analyses as 

presented in this manuscript. The resulting FDR has a corrected p-value of p≤0.014.  

Quanto (Gauderman, 2002; Gauderman, 2002) was used to approximate statistical 

power given the following assumptions: two-tailed a=0.05, 91 cases with anxious 

depression, failure of remission of 0.86 and a log additive genetic model. For statistical 

power of 0.80 (beta=0.20), the minimum detectable genotypic relative risk is 3.7 for high 

risk C-allele frequency of 0.43 (rs16147).  

Effect sizes in previous imaging genetics studies have generally been large, often 

exceeding r=0.5. Our imaging genetics sample size had sufficient power to detect effect 

sizes of r=0.41 with sufficient power (1-ß=0.8), calculated with the G*power 3.0.4 software 

(Faul, Erdfelder, Lang, & Buchner, 2007). Hardy-Weinberg equilibrium was examined 

using the program Finetti provided as an online source (http://ihg.gsf.de/cgi-

bin/hw/hwa1.pl; Wienker TF and Strom TM). 

 

4.3.7 fMRI Methods 

All technical details of fMRI data acquisition and processing have been reported 

(Dannlowski et al., 2007; Dannlowski et al., 2007; Dannlowski et al., 2008). Briefly, 

subjects viewed alternating 30 s blocks of masked happy, sad, angry, and neutral facial 

stimuli (Ekman & Friesen, 1976) interleaved with a 30 s resting state (a gray rectangle). 

Emotional faces were presented twice per second for 33 ms directly followed by a 467 ms 

mask depicting a neutral face, resulting in subjective unawareness regarding the presence of 

emotional stimuli. This backward-masking procedure is widely used in the imaging 

literature to investigate automatic responsiveness patterns of the amygdala (Etkin et al., 

2004; Morris et al., 1996; Sheline et al., 2001; Whalen et al., 1998) and has the advantage 

that it should be unconfounded by higher processes such as elaboration or rumination.  

Functional imaging data were preprocessed (motion corrected, normalized to 

standard MNI space, and smoothed) with a published protocol using SPM2, (Wellcome 

Department of Cognitive Neurology, London, UK). In the first (individual) level analysis, 

activity during masked happy, sad, and angry face blocks was contrasted with the neutral 
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face baseline condition. Voxel values of each amygdala, as defined by automated 

anatomical labeling (Tzourio-Mazoyer et al., 2002) were extracted, summarized by mean 

and tested among the different conditions using the MarsBaR toolbox (Brett, Anton, 

Valabregue, & Poline, 2002). This procedure resulted in one average fMRI contrast value 

for each emotion condition for each amygdala. For comparability and display reasons, we 

further computed voxel-wise statistics by entering the first level contrast images into a 

second level random-effects group analysis with a statistical threshold set at p<0.05, using 

FDR correction for each amygdala. Outside the amygdalae, a threshold of p<0.05, corrected 

for the entire brain was employed.  

 

4.4 Results 

4.4.1 Sample characteristics 

The distribution of rs16157, rs16147, rs16139, rs9785023 and rs16474 genotypes did not 

significantly differ from the expected numbers calculated on the basis of observed allele 

frequencies according to the Hardy-Weinberg equilibrium for the overall patient sample 

(rs16157: p=0.82; rs16147: p=0.92; rs16139: p=0.91; rs9785023: p=0.90; rs16474: p=0.92) 

and the sample of patients with MDD (rs16157: p=0.98; rs16147: p=0.90; rs16139: p=0.74; 

rs9785023: p=0.91; rs16474: p=0.95). 

In the sample of 340 patients with MDE, the subsamples stratified for gender 

(f=194; m=146) and anxious (N=110, 32.4%; f=31.7%; m=32.6%; n.s.) vs. non-anxious 

depression (N=230, 67.7%; f=68.3%; m=67.4%; n.s.) did not significantly differ for 

education, marital status or age, except that patients with anxious depression were older 

than non-anxious depressed patients (52.4 vs. 47.8 y, p=0.016). There were no differences 

between anxious or non-anxious depression regarding lifetime number of depressive 

episodes, hospitalizations or duration of illness. 

In the overall sample, mean HAM-D score at admission was 22.2+8.3 and at 

discharge it was 5.8+5.2, without showing any differences between genders. While patients 

with anxious depression had a higher HAM-D score at admission as compared to non-

anxious depression (28.5+7.5 vs. 19.2+6.9; p=0.001), symptoms of depression were similar 
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at discharge among both groups (HAM-D: 6.3+5.8 vs. 5.5+4.9; p=0.2). Thus, all further 

pharmacogenetic analyses were additionally adjusted for HAM-D score at admission. 

The type of antidepressant (SSRI vs others), antidepressant treatment alone 

(monotherapy vs. polypharmacy) or in combination with mood stabilizers (antidepressant 

alone vs. antidepressant plus mood stabilizer) or with neuroleptics (antidepressant alone vs 

antidepressant plus atypical neuroleptics) as well as the historical number of depressive 

episodes (continuous variable), duration of illness, number of hospitalizations (both 

continuous variables) and HAM-D score at baseline were not related to NPY genotypes. 

 

4.4.2 Pharmacogenetic analyses 

Since the strongest effects of anxious depression (N=91) on response and remission were 

found in patients with MDD (N=256), the following pharmacogenetic analyses focus 

primarily on the subsample of patients with MDD. Table 1 presents the results on the 

effects of the NPY SNPs on response (cut-off 50% HAM-D score reduction) and remission 

after 4 and 6 weeks of antidepressant treatment in patients with anxious depression. Failure 

to achieve remission after 4 weeks was related to both rs16147 (CC/CT (N=61) vs TT 

(N=30): OR=3.7, 95%CI 1.02-13.7; p=0.04) and rs9785023 (AA/AG (N=56) vs GG 

(N=35): OR=3.8, 95%CI 1.01-13.8; p=0.05). In contrast, 50% response at 4 or 6 weeks was 

not related to either of both SNPs. All other NPY SNPs showed no significant associations 

with pharmacoresponse (see Table 7). 

 In a next step, we calculated if rs16147 and rs9785023 were associated with slow vs 

fast response after 2 weeks (cut-off 50% HAM-D score reduction) of treatment. The 

grouped rs16147 CC/CT genotype was also associated with slow response after 2 weeks of 

treatment (CC/CT vs TT: OR=3.9, 95%CI 1.4-10.7, p=0.009), whereas rs9785023 showed 

no significant (p=0.5) association with outcome after 2 weeks. After applying FDR (cut-off 

p≤0.014) to all pharmacogenetic results, the association between NPY rs16147 CC/CT 

grouped genotype and slow response after 2 weeks of treatment remained significant. In the 

sample of patients with non-anxious MDD (N=165) as well as in the overall sample of 

patients with MDD (N=256), we did not discern any impact of NPY gene variants on 

antidepressant treatment response. 
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Table 7    Pharmacogenetic data 

Pharmacoresponse dependent on NPY SNPs in patients with anxious depression (N=91) in 

the subsample of MDD (N=256) 

 

NPY SNPs Poor Response  No Remission  

 OR, 95% CI p-value OR, 95% CI p-value 

rs16157     

 At week 4 1.2; 0.5-3.1 0.70 0.99; 0.3-3.5 0.99 

 At week 6 1.3; 0.5-3.4 0.55 1.2; 0.4-3.3 0.43 

rs16147     

 At week 4 2.1, 0.8-5.8 0.14 3.7, 1.02-13.7 0.04 

 At week 6 1.9, 0.7-5.1 0.18 1.2, 0.4-3.5 0.8 

rs16139     

 At week 4 0.27; 0.03-2.8 0.27 0.39; 0.08-1.9 0.17 

 At week 6 1.1; 0.1-8.1 0.95 0.9; 0.1-9.7 0.92 

rs9785023     

 At week 4 2.2, 0.8-5.9 0.14 3.8, 1.01-13.8 0.05 

 At week 6 2.0, 0.8-5.1 0.17 1.1, 0.3-3.5 0.8 

rs16474     

 At week 4 1.4, 0.4-4.4 0.6 0.3; 0.04-2.9 0.3 

 At week 6 1.3; 0.4-4.0 0.7 0.7; 0.2-2.9 0.66 

OR denotes odds ratio and CI denotes confidence interval; response defined as HAM-D 

reduction >50%; remission defined as HAM-D <7 according to Fava et al, (2008); OR is 

adjusted for age, gender, baseline HAM-D score, number of hospitalizations, treatment 

with antidepressants plus atypical antipsychotics; genotypes were grouped by combining 

the less frequent homozygous plus the heterozygous genotype vs the more frequent 

homozygous genotype; details of the groups and N’s of genotypes are reported in the 

results section; bold / italic: significant p=values. 
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4.4.3 Imaging genetics 

In line with our hypotheses and data previously reported in healthy subjects (Zhou et al., 

2008), we observed a strong association of NPY rs16147 with automatic amygdala 

responses to angry faces (see Figure 4). 

 

Figure 4    Amygdala responsiveness dependent on NPY rs16147 genotype 

 

 

Right panel: Coronal view (y=4) of a voxel-wise regression of C alleles (0, 1, or 2) on the 

angry vs neutral face contrast in N=35 depressed patients showing a linear increase of 

amygdala responsiveness with increasing numbers of low-expressing C alleles, x=-24, y=4, 

z=-18, r=0.53, puncorrected=0.0005, pcorrected=0.023. The color bar represents effect size r. For 

display reasons, the image was thresholded at p<0.05, uncorrected. L, left.  

Left panel: fMRI angry – neutral contrast values extracted from location x=-24, y=4, z=-18, 

dependent on genotype. Error bars, SEM.   

 

As expected, carriers of the C allele showed stronger bilateral amygdala activation 

(averaged contrast value amygdala left: 0.19±0.60; right: 0.19±0.56) compared with TT 

homozygotes (left: -0.26±0.52, t(33)=2.23, p=0.032; right: -0.17±0.36, t(33)=2.06, 
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p=0.047). A similar effect was observed for amygdala responses to sad faces, although 

activation differences failed to reach significance (left: t(33)=1.96, p=0.059; right: 

t(33)=1.86, p=0.072). There was no significant impact of rs16147 on amygdala 

responsiveness to masked happy faces (both p>0.2).  

 As can be seen in figure 4, the effect of rs16147 apparently follows an allele-dose 

fashion with a maximal correlation of C alleles and amygdala responsiveness at MNI-

coordinates x=-24, y=4, z=-18, r=0.53, Z=3.27, puncorrected=0.0005, pFDRcorrected=0.023, 

cluster size k=35 voxels. No areas outside the amygdalae were associated with NPY 

rs16147 genotype at the corrected threshold.  

 Since our imaging subsample comprised only N=10 patients with anxious 

depression, it was not possible to calculate rs16147 effects on amygdala responsiveness 

only in this subgroup without violating statistical pre-requirements. However, on an 

exploratory level, also in this small subgroup, an almost significantly larger left amygdala 

responsiveness to masked angry faces was detected in TT homozygotes (N=5) compared 

with C allele carriers (N=5), t(8)=2.27, p=0.053, indicating that the anxious depressed 

patients were among the effect carriers. Furthermore, no differences between anxious and 

non-anxious depression with respect to amygdala responsiveness towards any emotion 

category was observed in the present imaging sample.  

 

4.5 Discussion 

The present pharmacogenetic analysis of NPY gene variants supports a potential role of the 

functional -399C/T polymorphism (rs16147) in the mediation of antidepressant treatment 

response in the clinical phenotype of anxious depression. The -399C allele of NPY SNP 

rs16147 was associated with impaired treatment response with a slower initial response 

after 2 and lower rates of remission after 4 weeks of treatment.  

This finding is in line with and extends a report of the -399C allele being associated 

with the categorical diagnosis of unipolar depression (Heilig et al., 2004). Given an about 

30% decrease in mRNA expression conferred by the -399C allele (Zhou et al., 2008), 

decreased NPY levels might underlie the presently observed effect in anxious depression. 

This is consistent with previous findings of NPY knock-out animals exhibiting significantly 
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elevated anxiety levels (Bannon et al., 2000; Karl, Burne, & Herzog, 2006; Wahlestedt, 

Pich, Koob, Yee, & Heilig, 1993) as well as suppressed NPY levels in animal models of 

depression or depressed patients (Caberlotto et al., 1999; Caberlotto, Fuxe, Overstreet, 

Gerrard, & Hurd, 1998; Heilig et al., 2004; Widerlöv, Lindström, Wahlestedt, & Ekman, 

1988).  

Reciprocally, the present observation further supports a potentially beneficial effect 

of NPY agonists in the treatment of depression as well as anxiety disorders or particularly 

the clinical phenotype of anxious depression, respectively, as suggested by a wide range of 

animal models reporting anxiolytic- as well as antidepressant-like effects of NPY (Broqua, 

Wettstein, Rocher, Gauthier-Martin, & Junien, 1995; Heilig et al., 1993; Heilig, Söderpalm, 

Engel, & Widerlöv, 1989; Karlsson, Holmes, Heilig, & Crawley, 2005; Redrobe, Dumont, 

Fournier, & Quirion, 2002; Sajdyk, Vandergriff, & Gehlert, 1999; Stogner & Holmes, 

2000; Tovote et al., 2004).  

Furthermore, the present study suggestes NPY gene variation as a potential 

neurobiological pathomechanism underlying the clinical phenomenon of anxious features 

complicating the course of antidepressant treatment in depression (Bagby, Ryder, & Cristi, 

2002; Domschke, Deckert, Arolt, & Baune, 2008; Fava et al., 2008; Nelson, 2008). It 

therefore further supports the notion of anxious depression or an intermediate clinical 

phenotype common to major depression and anxiety disorders to possibly constitute a 

diagnostic entity of its own requiring specific diagnostic and therapeutic attention (Lydiard 

& Brawman-Mintzer, 1998; Silverstone & von Studnitz, 2003).  

Our imaging genetics data in patients with depression provide in-vivo evidence of 

increased amygdala responsiveness in low-NPY-expression -399C allele carriers, thereby 

replicating and extending previous in-vitro and in-vivo findings of a low-NPY-expression 

diplotype containing the NPY -399C allele reported to be associated with increased 

amygdala activity in response to threat-related facial expressions in healthy probands (Zhou 

et al., 2008). Increased amygdala sensitivity to aversive, particularly threatening stimuli as 

a potential pathomechanism of depression or anxious depression in particular fits well with 

the amygdala’s pivotal role as a core structure of the fear circuit, strongly implicated in 

aversive conditioning, and the modulation of stress responses. Furthermore, increased 
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automatic amygdala responsiveness to negative faces has been associated with negative 

cognitive biases in major depression (Dannlowski, Ohrmann, Bauer, Kugel, Arolt, Heindel, 

Kersting, et al., 2007), which were in turn associated with a chronic course of disease and 

poor treatment response (Dannlowski et al., 2006). It should be stressed, that NPY 

modulation of amygdala responsiveness was confined to negative, particularly threat 

relevant facial expressions, whereas no significant effect on the processing of happy facial 

cues was observed. This finding further underscores a particular role of NPY expression 

level on processing of anxiety-relevant information, and not emotion processing in general. 

Finally, the present imaging genetics finding of low-NPY-expression genotypes being 

associated with increased amygdala sensitivity to aversive stimuli provides an argumentum 

e contrario for previously reported anti-anxiety as well as anti-stress effects of NPY to be 

partly mediated by the amygdala, particularly the lateral/basolateral complex (Primeaux, 

Wilson, Cusick, York, & Wilson, 2005; Sajdyk, Schober, & Gehlert, 2002), where NPY 

and GABA are co-localized (McDonald & Pearson, 1989). 

The following limitations have to be considered while interpreting the present 

results: Patients were recruited in a naturalistic setting allowing for a large sample size, 

however, implying treatment with a variety of antidepressants, no standardized dosage 

regime and no standardized control for plasma drug levels. Thus, treatment compliance 

could be only controlled for by routine nurse observations lacking objective measures of 

compliance, which has to be considered a possible major confounding factor. Furthermore, 

none of the patients was drug naïve with respect to antidepressant medication, with, 

however, no detailed data on the type of antidepressant pre-medication being available. 

Antidepressant treatment prior to the present investigation might have influenced the 

presently evaluated treatment response, which could not be controlled for in detail. In 

addition, since a-priori only patients with a treatment cycle of at least 6 weeks from 

baseline were included in the present study, no drop-outs due to non-response could be 

accounted for. Also, comorbidity with personality disorders could not be controlled for, 

which might have confounded the present pharmacogenetic finding. The imaging 

subsample was relatively small and underpowered for more subtle effects, albeit in the 

range of several previous imaging genetics studies.  
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In conclusion, the present results point towards a possible influence of NPY gene 

variation on antidepressant treatment response in anxious depression, potentially conveyed 

by altered emotional processing. The remarkable convergence of neurobiological, 

pharmacogenetic and imaging genetics data provides further support for a role of the NPY 

system in depression, anxiety or the clinical phenotype of anxious depression, respectively, 

and potentially aids in the future evaluation of pharmacological treatment options involving 

the NPY system in those disorders. 
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5 General Discussion 

“I have reason to hope that future research will perhaps provide a new paradigm which for 

the first time can integrate findings from psychological and biological studies to build a 

new understanding of depression.” 

Aaron T. Beck, American Journal of Psychiatry, 2008 

 

The present series of studies sought to integrate neurocognitive and genetic research to 

investigate a neurogenetic path of depression psychopathology (automatic emotion 

processing in the amygdala). In the first study (chapter 2), a neurobiological characteristic 

of depressed patients was demonstrated. It was shown that limbic responsiveness to 

negative (mood-congruent) facial expressions is exaggerated in depression, whereas limbic 

responsiveness to positive facial expressions is blunted. These findings are well in line with 

and were discussed in the context of classical cognitive theories of depression. Importantly, 

the participants of the study were unaware of the presence of emotional stimuli, since they 

have been presented in a backward-masked fashion. Therefore, it was concluded that the 

mood-congruent processing bias observed in the patient’s amygdala occurs at an early, 

automatic stage of processing. 

 In experiment 2 (chapter 3), the genetic underpinnings of this neurobiological 

emotion processing bias were explored. Among the most prominent genetic variations 

discussed in the context of depression and emotion processing is the 5-HTTLPR 

polymorphism. A variety of studies has already investigated the neurobiological and 

cognitive effects of 5-HTTLPR genotype, showing that the 5-HTTLPR low expressing risk 

alleles (S or LG) are associated with increased neurobiological, physiological, and cognitive 

responses particularly to negative stimuli (Beevers, Gibb, McGeary, & Miller, 2007; 

Brocke et al., 2006; Osinsky et al., 2008). Therefore, a sample of healthy subjects (n=44) 

was genotyped for 5-HTTLPR and underwent the same affective priming task as in 

experiment 1 during fMRI scanning. As expected, a robust emotion by genotype group 

interaction was observed in the right amygdala. Risk allele carriers showed similar 

amygdala responses to happy faces compared to homozygous LALA carriers but increased 

amygdala responses to sad faces. Interestingly, the right amygdala was the only anatomical 

 



General Discussion  50  

region across the whole brain demonstrating this interaction at a reasonable threshold. It 

appears that whereas 5-HTT gene variation modulates automatic amygdala responsiveness 

to sad faces, no such modulatory effect is evident for the processing of happy faces. 

Therefore, it could be concluded that 5-HTTLPR genotype predominantly impacts the 

central processing of negative environmental cues but not of emotionally salient stimuli in 

general. 

 Finally, in experiment 3, we investigated a recently discovered variation in the NPY 

gene, a neuropeptide which has been reported having antidepressant and anxiolytic 

properties. It was demonstrated that the risk allele (-399C) in this well characterized 

polymorphism resulting in reduced NPY transcription, is associated with reduced 

pharmacoresponse in a sample of depressed patients. Furthermore, the same risk allele is 

associated with increased amygdala responsiveness to subliminally presented aversive 

facial expressions. Thus, the data reveil a remarkable convergence of pharmacogenetic and 

imaging genetics data. It was concluded that NPY genotype influences the maintenance of 

depression potentially by biasing limbic responsiveness towards an increased processing of 

negative stimuli. 

 The present three experiments yield strong evidence for a genetic underpinning of 

the commonly observed emotion processing biases in major depression, in this case, 

particularly for the automatic aspects of emotion processing. It appears that the 

neurobiological response pattern observed in depressed patients in experiment 1 (automatic 

amygdala-hyperresponsiveness to negative stimuli) has an endophenotype character and is 

associated with genetic variation in at least two independent molecular systems 

(serotonergic system and neuropeptides). Albeit this conclusion cannot be drawn directly 

from the present data, it appears that potential susceptibility genes for depression exert their 

influence on the clinically defined phenotype indirectly, mediated by their effect on 

neurobiological correlates of emotion processing, particularly limbic activity (Figure 5). 
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Figure 5    Indirect genetic effects on depression mediated by limbic activity 
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The present experiments have several limitations that should be acknowledged. First, the 

sample sizes were low and the experiments could be regarded underpowered, even for 

imaging genetics studies. E.g., a recent meta-analysis estimated the effect size of 5-

HTTLPR on amygdala responsiveness as d=0.56, which would require a sample size of 

N>70 to detect such effects with sufficient statistical power. Furthermore, just two genetic 

polymorphisms have been selected for this thesis, although several more genetic variations 

have been discovered which might also contribute to the amygdala responsiveness patterns 

reported here.   

 The depressed patients in experiment 1 and experiment 3 were all under 

antidepressant medication, which could have biased the imaging data. However, using 

medication level as regressor did not change the pattern of results. It will be a demanding 

challenge for future studies to gather samples of depressed patients free from psychotropic 

medicine large enough for imaging genetics research. 

 Since no longitudinal fMRI data were acquired, no conclusions regarding the effect 

of treatment on amygdala responsiveness can be drawn. Furthermore, it is unknown, 

whether the amygdala hyper-responsiveness observed in depressed patients is a 

predisposing factor for - or a consequence of the disease.  

However, despite all limitations, we observed a remarkable convergence of 

neurobiological, pharmacogenetic and imaging genetics data that potentially aids in the 

future evaluation of pharmacological treatment options involving the NPY and 5-HTTLPR 

system in depression. The strength and consistency of imaging genetics studies are hardly 
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rivaled by other research field involving genetic association studies or functional imaging 

of higher cognitive or emotional processes. This particular endophenotype approach 

bridges a wide gap between the limited effects of single genetic variations and complex 

heterogeneous pathological entities like major depression. Further studies should 

investigate the effect of haplotypes, gene-gene, and gene-environment interaction in 

longitudinal investigations. 
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6 Deutsche Zusammenfassung 

Die depressive Störung ist in der Bevölkerung hoch prävalent und zählt unter allen 

Erkrankungen weltweit zu einem der Hauptverursacher verminderter Lebensqualität und ist 

damit ein bedeutender sozioökonomischer Faktor. Neben Umwelteinflüssen, verschiedenen 

körperlichen sowie psychischen Faktoren konnte ein starker genetischer Einfluss auf die 

Pathogenese der Depression nachgewiesen werden, mit einer geschätzten Heretabilität von 

etwa 40-50%. Dem beachtlichen genetischen Einfluss bei depressiven Erkrankungen steht 

eine sehr heterogene Befundlage hinsichtlich positiver Assoziationsbefunde mit möglichen 

Kandidatengenen gegenüber. Auch nach Jahrzehnten der Forschung mittels genetischer 

Assoziationsstudien konnte noch keine Genvariante widerspruchsfrei als Risikomarker für 

Depression identifiziert werden.  

 Genetische Assoziationsstudien bei psychiatrischen Erkrankungen wurden vielfältig 

wegen ihrer begrenzten Aussagekraft und methodischer Probleme im Kontext 

polygenetischer Erbgänge, Gen-Gen-, sowie Gen-Umwelt-Interaktionen und der rein 

klinisch definierten Phänotypen kritisiert. Neurobiologisch definierte Endophänotypen 

sollten hingegen stärker und direkter den Einfluss relevanter genetischer Polymorphismen 

abbilden können. Als mögliche Endophänotypen für die depressive Störung wurden 

Veränderungen neurobiologischer Aktivierungsmuster in limbischen Arealen 

vorgeschlagen, welche bei Depressiven oft beobachtet wurden. Einer der häufigsten 

Befunde bei Depressiven ist eine Hyperaktivität der Amygdala, einer zentralen Struktur in 

einem kortiko-limbischen Emotionsverarbeitungsnetzwerks. Derartige Befunde einer 

hyperresponsiven Amygdala auf eine Vielzahl negativer Reize, insbesondere auf negative 

Gesichter könnte das neurobiologische Substrat einer tieferen und anhaltenderen 

Verarbeitung darstellen. Daher ist das Ziel des vorliegenden Dissertationsprojektes:  

 

1. Die Charakterisierung der Amygdalaresponsivität depressiver Patienten 

2. Die Untersuchung der Effekte zweier bekannter genetischer Polymorphismen 

auf die Amygdalaresponsivität 
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Da die Amygdala vor allem im Kontext rascher, automatischer emotionaler Prozesse 

diskutiert wird, kamen in den vorliegenden Experimenten sogenanntes backward-masking 

zum Einsatz, eine Technik, in der Stimuli sehr kurz und maskiert präsentiert werden, dass 

die Probanden sie nicht mehr bewusst wahrnehmen können. 

 In Experiment 1 (Kapitel 2) wurde die Amygdalaresponsivität auf negative und 

positive emotionale Gesichter in einer Stichprobe depressiver Patienten (n=30) und 

soziodemografisch vergleichbaren gesunden Kontrollen (n=27) untersucht. Hierbei kam das 

sublimiale affektive Priming Experiment von Murphy und Zajonc (1993) zum Einsatz. 

Obwohl die Probanden nicht in der Lage waren, die maskiert präsentierten emotionalen 

Gesichter bewusst wahrzunehmen, zeigte sich über beide Gruppen hinweg eine robuste 

Amygdalaaktivierung durch traurige und fröhliche Gesichter im Vergleich zu neutralen 

Gesichtern. Wie vermutet zeigte sich als Hauptbefund eine starke Gruppe x Emotion 

Interaktion in der rechten Amygdala: Während Depressive eine signifikant stärkere 

Amygdalaaktivierung auf negative Gesichter zeigten, fand sich bei Gesunden das genau 

umgekehrte Muster einer stärkeren Aktivierbarkeit auf maskiert präsentierte fröhliche 

Gesichter. Das Ausmaß der Aktivierung durch fröhliche Gesichter sagte eine geringere 

Depressivität in der Patientengruppe vorher. Depressive Patienten scheinen also eine 

verzerrte Verarbeitung emotionaler Stimuli in der zentralen Schaltstelle des limbischen 

Systems aufzuweisen. Eine derart negativ verzerrte, automatische Verarbeitung emotionaler 

Reize könnte somit zur Entstehung und Aufrechterhaltung der Depression beitragen. 

 In Experiment 2 (Kapitel 3) wurde eine mögliche genetische Disposition für eine 

derartige Amygdalahyperreaktivität auf negative Gesichter untersucht. Einer größere 

(n=44) Gruppe gesunder Probanden wurde daher für einen bekannten Polymorphismus im 

Serotonintransportergen (5-HTTLPR) typisiert, dessen Risikoallel (S-Allel) bereits mit 

einer tieferen Verarbeitung negativer Reize, inklusive einer erhöhten 

Amygdalaresponsivität assoziiert wurde. In Experiment 2 kam das Selbe experimentelle 

Paradigma, wie in Experiment 1 zum Tragen. Es zeigte sich, dass die Nicht-

Risikoallelträger eine starke wiederum rechte Amygdalaresponsivität auf positive Gesichter 

aufweisen, während Träger eines oder zweier Risikoallele eine ebenso starke 

Amygdalaresponsivität auf negative Gesichter zeigen. Dieser Befund qualifizierte sich in 
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einer robusten Genotyp x Emotion Interaktion, die sich selbst in einer whole-brain Analyse 

ausschließlich in der rechten Amygdala manifestierte, und somit einen Amygdala-

spezifischen Befund darstellt. Interessanterweise war lediglich die Amygdalareaktivität auf 

negativen Gesichtsausdruck durch den Genotyp beeinflusst, nicht jedoch 

Amygdalareaktivität auf positive Gesichter. Es scheint also, dass der in Experiment 1 

gewonnene Befund einer automatischen Amygdalaresponsivität auf negative Stimuli 

Endophänotyp-Charakter besitzt und eine genetische Grundlage im serotonergen System zu 

haben scheint. Im foglenden Experiment wurde eine weitere genetische Variante 

untersucht, die bereits mit Depression und aberranter Emotionsverarbeitung assoziiert 

wurde. 

 In Experiment 3 (Kapitel 4) kam schließlich ein kombinierter Pharmakogenetik und 

Imaging Genetics Ansatz zum Tragen, um die klinischen und neurobiologischen Effekte 

genetischer Varianten im Neuropeptid Y (NPY) zu untersuchen. NPY, das in Interneuronen 

mit GABA kolokalisiert ist, hat eine nachgewiesene anxiolytische Wirkung und depressive 

Patienten scheinen eine Minderexprimierung dieses Neuropeptids aufzuweisen. Im 

Pharmakogenetikteil wurde ein bekannter Promotorpolymorphismus im NPY-Gen (-

399C/T; rs16147) hinsichtlich seines Effektes auf die Ansprechensrate auf antidepressive 

Behandlung untersucht. Es zeigte sich, dass die Risiko-Variante (C-Allel), die mit einer 

verminderten NPY-Expression einhergeht, auch mit einem verminderten Ansprechen auf 

Pharmakologische Behandlung assoziiert war. Dieser Befund zeigte sich vor allem in der 

Substichprobe, die als „anxious depression“ eingestuft wurde.  

 Im Imaging Genetics Teil des Experimentes wurden die neurobiologischen 

Auswirkungen des -399C-Allels erforscht. Hierfür wurde eine Teilstichprobe (n=35) der 

Patientenstichprobe mittels fMRT untersucht. Auch hierbei kamen emotionale Gesichter 

zum Einsatz, die den Patienten erneut maskiert, also nicht bewusst wahrnehmbar präsentiert 

wurden. Wie vermutet war das Risikoallel assoziiert mit einer verstärkten 

Amygdalaaktivierung durch negative, besonders wütende Gesichter. Patienten mit einer 

Genvariante, die mit verminderter NPY Expression einhergeht, zeigen also sowohl 

vermehrtes Therapieversagen, als auch eine Amygdalahyperreaktivität auf negative Stimuli. 

Es scheint also auch im System der Neuropeptide genetische Varianten zu geben, welche 
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die neurobiologischen Korrelate der Emotionsverarbeitung beeinflussen und damit 

(vermutlich indirekt) Einfluss auf den klinisch definierten Phänotyp aufweisen. 

 Der hier vertretene Forschungsansatz des „Imaging Genetics“ schlägt eine Brücke 

über die Kluft zwischen kleinen Effekten einzelner genetischer Polymorphismen und den 

komplexen klinisch-psychiatrischen Phänotypen. Aus diesem Verständnis sind erhebliche 

Impulse für neue und individualisierbare Therapiestrategien denkbar. Die Identifizierung 

verschiedener neurogenetischer Pfade, bei denen unterschiedliche Transmittersysteme zu 

differenzierbaren Aktivitätsmustern führen, welche sich wiederum in unterscheidbaren 

psychopathologischen Phänomenen äußern, könnte schließlich zu einer neuen 

Klassifikation depressiver Störungen mit neurobiologisch abgrenzbaren nosologischen 

Entitäten führen. Zwar ist aus dieser Forschung bisher noch keine eine Aussage über den 

individuellen Patienten möglich, jedoch lässt dieser multidisziplinäre Ansatz jetzt schon 

großes Potential hinsichtlich einer profunden Weiterentwicklung unseres 

Grundlagenverständnisses der Depression erkennen.  
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