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Preface

Let G be a discrete group. A model for the classifying space EF (G) with respect to
a family F of subgroups of G is just a terminal object in the G-homotopy category
of G-CW -complexes whose isotropy groups belong to F . It can be shown that such
a model always exists, and it is obvious from this de�nition that any two models
are G-homotopy equivalent. However, it is often desirable to �nd explicit models
which are �small� in some sense.
For instance, if Tr is the family which consists only of the trivial subgroup, then

a model for ETr (G) = EG can be characterized up to G-homotopy equivalence as
being a free G-CW -complex which is non-equivariantly contractible. These spaces,
as well as their quotients G\EG = BG, have been studied for a long time. A
well-known theorem of Eilenberg and Ganea states that the minimal dimension of
a model for EG equals the cohomological dimension cdZ(G) of G except possibly if
cdZ(G) = 2 when the minimal dimension might be three.
Similarly, for the family Fin of all �nite subgroups of G, questions on the type

of models for EFin(G) = EG have been closely investigated by many authors (see
[Lüc05] for a survey), and in numerous situations models for EFin(G) arise in a nat-
ural geometrical way. In this thesis, we focus on the problem of constructing explicit
models for EVCyc(G), where VCyc is the family of all virtually cyclic subgroups: this
case does not seem to be very well understood. One reason why it is interesting to
study these classifying spaces is that they appear in the formulation of the Baum-
Connes isomorphism conjecture about the topological K-theory of reduced group
C∗-algebras and in the Farrell-Jones isomorphism conjecture about the algebraic
K- and L-theory of group rings, respectively. These conjectures predict that one
may compute these K- and L-groups by evaluating certain equivariant homology
theories at the aforementioned classifying spaces.
In the �rst chapter, this will be explained in more detail among other things we

will need later on. Then, in the next chapter, we will review some of the construc-
tions of models for EFin(G) before dealing with models for EVCyc(G). In particular,
we will construct such a model if G is locally virtually cyclic. The third chapter
is based on the observation that, for some classes of groups, it is possible to pro-
duce a model for EVCyc(G) from a given model for EFin(G). This not only leads to
a computation of the relative homology groups which are direct summands of the
source of the Farrell-Jones assembly map, but also yields bounds on the dimension
that models for EVCyc(G) can have. The last chapter is devoted to an explanation of
the relation of amenable group actions and the Baum-Connes and Farrell-Jones iso-
morphism conjectures. We will see that the classifying spaces EF (G) are amenable
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Preface

G-spaces if and only if F consists of amenable groups.

Conventions

We will always work in the category of compactly generated spaces introduced in
[Ste67]. In this category, the adjunction map(X × Y, Z) → map

(
X, map(Y, Z)

)
is

always a homeomorphism, and the product of two CW -complexes is again a CW -
complex.
Furthermore, groups will always be assumed to be discrete, and all group actions

on spaces are actions from the left unless otherwise stated.
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1 Classifying Spaces

In this chapter, we will introduce some basic notions that will turn up throughout
the work at hand. First of all, this includes the classifying space EF (G) with respect
to a family F of subgroups of a discrete group G.

Next, we want to explain what the isomorphism conjectures of Baum-Connes and
Farrell-Jones have to do with these spaces. These conjectures state that so-called
assembly maps should be isomorphisms, which are maps on certain equivariant
homology theories induced by the projection EF (G)→ pt, the family F consisting
of all �nite (in the Baum-Connes case) or all virtually cyclic (in the Farrell-Jones
case) subgroups of G.

Finally, we will de�ne the homotopy colimit of a space over a category and re-
prove some of its well-known properties, using the notion of a classifying space of a
category.

1.1 Classifying Spaces for Families of Subgroups

The purpose of the following is to de�ne the classifying space EF (G). To be more
precise, we will de�ne it to be a G-CW -complex. Moreover, the proofs of its exis-
tence and universal property will brie�y be reviewed.

De�nition 1.1 (Family of subgroups). A family F of subgroups of a group
G is a collection of subgroups of G which is closed under conjugation and taking
subgroups, i.e. if H ∈ F , then also g−1Hg ∈ F for every g ∈ G, and K ∈ F for
every subgroup K ⊂ H.

Examples of such families F are

Tr , Fin , Cyc, VCyc, All ,

denoting the families consisting only of the trivial subgroup, all �nite subgroups, all
cyclic subgroups, all virtually cyclic subgroups and all subgroups of G, respectively.
Bear in mind that a group is virtually cyclic if it contains a cyclic subgroup of �nite
index.

The restriction of F to a subgroup H ⊂ G is F ∩H := {K ∩H | K ∈ F }, and
we set Sub(H) := All ∩H.

De�nition 1.2 (G-CW -complex). A G-CW -complex is a G-space X together
with a G-invariant �ltration ∅ = X−1 ⊂ X0 ⊂ X1 ⊂ . . . ⊂

⋃
n≥0 Xn = X such that

1



1 Classifying Spaces

X = colimn∈N Xn and Xn is obtained from Xn−1 by attaching equivariant G-cells,
i.e. there is a pushout ∐

i∈In

G/Hi × Sn−1

��

// Xn−1

��∐
i∈In

G/Hi ×Dn // Xn

A G-CW -complex is the same as a CW -complex with a G-action by cellular maps
such that for each open cell e and each g ∈ G with ge ∩ e 6= ∅ one has gx = x for
all x ∈ e.

A G-CW -complex X is said to be �nite if G\X is compact, or, equivalently, if
it has only �nitely many equivariant cells G/Hi ×Dn. It is called of �nite type if
every n-skeleton Xn is �nite and n-dimensional if X = Xn but X 6= Xn−1.

De�nition 1.3 (Classifying space for a family of subgroups). Let F be a
family of subgroups of G. A model for the classifying space EF (G) is a G-CW -
complex X such that the �xed-point set XH is empty if H /∈ F and is contractible
if H ∈ F .

Lemma 1.4 (Universal property of EFFF (G)). The G-CW -complex X is a model

for EF (G) if and only if the following holds:

• The isotropy groups of X belong to F , and

• if Y is any G-CW -complex with isotropy groups belonging to F , then there is

precisely one G-map Y → X up to G-homotopy.

Proof. If X is as in the assumptions, then it remains to show that XH is contractible
for H ∈ F . Since XH is a CW -complex, it su�ces to show that all its homotopy
groups vanish. However, by assumption, there is a G-map G/H×Sn → X, which is,
furthermore, unique up to G-homotopy. Its adjoint is a map Sn → map(G/H, X) =
XH which is unique up to homotopy. Hence πn(XH) is trivial.
If X is a model for EF (G), then the projection XH → pt is a homotopy equiv-

alence for all H ∈ F . This implies by the Whitehead theorem for families (cf. e.g.
[Lüc89, Prop. 2.3]) that the induced map [Y, X]G → [Y, pt]G between G-homotopy
classes of G-maps of G-CW -complexes is bijective.

Thus, a model for EF (G) is just a terminal object in the G-homotopy category
of G-CW -complexes whose isotropy groups are in F . This implies immediately
that any two models for EF (G) must be G-homotopy equivalent. The existence of
models for EF (G) is also not di�cult to show:

Proposition 1.5. There exists a model for EF (G) for any group G and family of

subgroups F .
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1.1 Classifying Spaces for Families of Subgroups

Proof. Let X0 :=
∐

H∈F G/H and assume by induction that Xn is a G-CW -complex

with isotropy groups belonging to F such that πk(XH
n ) is trivial for H ∈ F and

0 ≤ k ≤ n − 1. For H ∈ F , we choose a collection
{
fH,i : Sn → XH

n | i ∈ I
}
of

cellular maps which constitutes a complete system of representatives of the elements
in πn(XH

n ). Then, the G-CW -complex Xn+1 is de�ned by the G-pushout

∐
H∈F , i∈I

G/H × Sn

��

`
H,i
gfH,i

// Xn

��∐
H∈F , i∈I

G/H ×Dn+1 // Xn+1

in which the maps f̃H,i denote the adjoints of the maps fH,i. This completes the
induction step since for H ∈ F any map Sn → XH

n+1 is homotopic to a map into
XH

n by the cellular approximation theorem, and any such map can be extended to
Dn+1 by construction. Finally, by taking the colimit of the Xn, we obtain a model
for EF (G).

There is also a functorial construction of models for EF (G), see Example 1.26.

Example 1.6. The following is a list of immediate examples of classifying spaces:

• The one point space G/G is a model for EF (G) if and only if F = All .

• EG := ETr (G) is just a free G-CW -complex which is contractible after forget-
ting the G-action. It also occurs as the total space of the universal principal
G-bundle G→ EG→ BG.

• EG := EFin(G) is sometimes called the universal G-CW -complex for proper
G-actions. If G is torsion-free, then EG = EG.

We will end this section by stating a lemma we will frequently use.

Lemma 1.7. Let H ⊂ G be an inclusion of groups and s : G/H → G a (set-

theoretic) section of the projection.

(1) Let X be an H-space. Then the induced G-space G ×H X is naturally G-

homeomorphic to the G-space G/H × X which is de�ned by g · (α, x) :=(
gα, s(gα)−1gs(α)x

)
.

In particular, if K ⊂ G is another subgroup, then

(G×H X)K ∼=
∐

α∈G/H,
s(α)−1Ks(α)⊂H

Xs(α)−1Ks(α)

are naturally homeomorphic spaces.
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1 Classifying Spaces

(2) Let Y be a G-space. Then the G-space G ×H resH
G Y is naturally G-homeo-

morphic to the diagonal G-space G/H × Y .

Proof. In the situation of (1), the following G-maps are inverse to each other:

G×H X � G/H ×X

[g, x] 7→
(
gH, s(gH)−1gx

)
[s(α), x]←[ (α, x)

The homeomorphism of the �xed-point sets then follows from the observation that
for α ∈ G/H one has kα = α for every k ∈ K if and only if s(α)−1Ks(α) ⊂ H.
As for (2), the following G-maps are inverse to each other:

G×H resH
G Y � G/H × Y

[g, y] 7→ (gH, gy)

[s(α), s(α)−1y]←[ (α, y)

1.2 Equivariant Homology Theories

The goal of this section is to formulate the Baum-Connes and Farrell-Jones conjec-
tures. In order to do so, we will explain a general way of constructing homology
theories on pairs of spaces over a category.

1.2.1 Spaces over a Category

De�nition 1.8 (Space over a category). Let C be a small category. A covari-

ant (or contravariant) C -space is a covariant (or contravariant) functor X : C →
Spaces from C to the category of compactly generated spaces. A map X → Y
of C -spaces is a natural transformation of functors. The space homC (X, Y ) of
such maps is equipped with the subspace topology of the obvious inclusion into∏

c∈ob(C) map
(
X(c), Y (c)

)
.

One can take coproducts, colimits, etc. in the category of C -spaces by applying
the usual constructions for spaces objectwise. Furthermore, it becomes clear what a
homotopy of maps of C -spaces should mean once we have said that from a C -space
X we obtain the C -space X × [0, 1] by sending c ∈ ob(C ) to X(c)× [0, 1].

Example 1.9 (Orbit category). Let G be a group and F a family of subgroups.
The orbit category Or(G, F ) with respect to F is the category with homogeneous
G-spaces G/H for H ∈ F as objects and G-maps as morphisms. Note that a map
G/H → G/K is a G-map if and only if it is of the form rg0 : gH 7→ gg0K, where
g0 ∈ G is such that g−1

0 Hg0 ⊂ K. We abbreviate Or(G) := Or(G, All ).
Every left G-space X yields a contravariant Or(G, F )-space mapG(−, X) = X−

by assigning the space mapG(G/H, X) = XH of �xed-points to an object G/H of
Or(G, F ).

4



1.2 Equivariant Homology Theories

De�nition 1.10 (Balanced product of CCC -spaces). Let X be a contravariant
and Y a covariant C -space. The balanced product of X and Y over C is de�ned to
be the space

X ×C Y :=
∐

c∈ob(C)

X(c)× Y (c)/ ∼,

where ∼ denotes the equivalence relation generated by
(
X(f)(x), y

)
∼
(
x, Y (f)(y)

)
for all x ∈ X(d), y ∈ Y (c) and morphisms f : c→ d in C .

In the following note that morC (−,−) can be considered as a covariant C op × C -
space by equipping morC (c, c′) with the discrete topology. Then, for a D-space
X and a covariant functor F : C → D, the restriction of X by F is the C -space
resF X = F ∗X given by c 7→ X

(
F (c)

)
. If X is a co- or contravariant C -space, the

induction of X by F is the co- or contravariant D-space indF X given by

d 7→ morD(F, d)×C X or d 7→ X ×C morD(d, F )

respectively.

Lemma 1.11 (Adjointness of induction and restriction). Suppose that Y is

a covariant D-space and X a C -space of the required variance to make the following

statements meaningful, and that F : C → D is a covariant functor. Then:

(1) There are homeomorphisms

homD
(
morD(F,−), Y

) ∼=←− resF Y
∼=−→ morD(−, F )×D Y

of covariant C -spaces.

(2) There are natural homeomorphisms

indF X ×D Y
∼=−→ X ×C resF Y,

homD(indF X, Y )
∼=−→ homC (X, resF Y ).

Analogous results hold for a contravariant D-space Y .

Proof. The second homeomorphism of (1) comes from the mutually inverse maps
which are given by

Y
(
F (c)

)
3 y 7→ [idF (c), y]

Y (f)(y)←[ (f, y) ∈ morD
(
d, F (c)

)
× Y (d)

and the �rst is the Yoneda lemma.
Now (2) follows from (1) using the associativity of the balanced product of spaces

over a category (see [Mac98, section IX.8]) and the adjointness of the balanced
product of C -spaces and homD (cf. [DL98, Lemma 1.5]).
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1 Classifying Spaces

Lemma 1.12. Let α : H ↪→ G be an injective group homomorphism and X an

H-space. Then α de�nes a functor α : Or(H)→ Or(G) in the obvious way, and

indα(X−)
∼=−→ (G×α X)−

are homeomorphic Or(G)-spaces.

Proof. A homeomorphism ν : X−− ×Or(H) mapG

(
−, G/α(−−)

)
→ (G ×α X)− is

de�ned by setting
ν(G/K)[x, rg] := [g, x].

To put it di�erently, ν corresponds under the natural homeomorphism

homOr(G)

(
indα X, (G×α X)−

) ∼= homOr(H)

(
X−, resα(G×α X)−

)
of Lemma 1.11 (2) to ν̃ : X− → resα(G×α X)− given by ν̃(H/K)(x) = [1, x].

De�nition 1.13 (CCC -CW -complex). A (contravariant) C -CW -complex is a con-
travariant C -space X together with a �ltration ∅ = X−1 ⊂ X0 ⊂ X1 ⊂ . . . ⊂⋃

n≥0 Xn = X by contravariant C -spaces such that X = colimn→∞ Xn and Xn is
obtained from Xn−1 by attaching free C -n-cells for any n ≥ 0, i.e. there is a pushout
of C -spaces ∐

i∈In

morC (−, ci)× Sn−1

��

// Xn−1

��∐
i∈In

morC (−, ci)×Dn // Xn

the ci being objects in C for every element i of an index set In, and the vertical
maps being inclusions of C -spaces.

Example 1.14. If X is a G-CW -complex, then the Or(G)-space X− is an Or(G)-
CW -complex. This is because a pushout telling how Xn is obtained from Xn−1 by
attaching equivariant n-cells remains a pushout after taking �xed-points. Thus, we
get a pushout of C -spaces telling how X−

n is obtained from X−
n−1, an Or(G)-cell of

the form mapG(−, G/H)×Dn corresponding to a G-cell G/H ×Dn of X.

The next lemma indicates that standard results for CW -complexes have straight-
forward analogues for C -CW -complexes. We remark that a C -CW -approximation of
a C -space X consists of a C -CW -complex Y and a map f : Y → X of C -spaces which
is a weak homotopy equivalence, meaning that f(c) is a weak homotopy equivalence
of spaces for all c ∈ ob(C ).

Lemma 1.15.

(1) Any C -space X possesses a C -CW -approximation (Y, f). Moreover, if (Y ′, f ′)
is another C -CW -approximation of X, then there is a homotopy equivalence

g : Y → Y ′ which is uniquely determined up to homotopy by the property that

f ′ ◦ g is homotopic to f .

6



1.2 Equivariant Homology Theories

(2) A weak homotopy equivalence of C -CW -complexes is already a homotopy equiv-

alence.

(3) Let Z be a C -CW -complex and f : X → Y a weak homotopy equivalence of

covariant C -spaces. Then idZ ×C f : Z ×C X → Z ×C Y is a weak homotopy

equivalence.

Proof. This is taken from [DL98, Thm. 3.7, Cor. 3.5 and Thm. 3.11].

1.2.2 Construction of Equivariant Homology Theories

Analogously to the notion of a space over a category, one can speak of pointed
spaces, spectra, etc. over a category. For instance, the balanced product X ∧C Y
of two pointed C -spaces is given as in De�nition 1.10, merely replacing the disjoint
union by a one-point union and the cross product by a smash product. Of course,
results like Lemma 1.11 carry over.
We �x notation and emphasize that a spectrum E is a collection of pointed spaces
{En}n∈Z together with pointed maps σn : En ∧ S1 → En+1, the structure maps,
while a map of spectra f : E → F is given by pointed maps fn : En → Fn that
are compatible with these structure maps, i.e. σF

n ◦ (fn ∧ idS1) = fn+1 ◦ σE
n . The

homotopy groups of a spectrum are given by

πk(E) := colim
n→∞

πk+n(En)

for k ∈ Z. Here the required maps πk+n(En) → πk+n+1(En+1) come from the
composition of the suspension homomorphism and the homomorphism induced by
the structure map.
A covariant C -spectrum E can also be viewed as a collection {E(−)n}n∈Z of

pointed C -spaces, the structure maps being maps of pointed C -spaces. Thus it is
clear that for any pointed C -space X we get a spectrum X ∧C E. Now, setting

H C
n (X, A;E) := πn

(
Y+ ∪B+ cone(B+) ∧C E

)
de�nes an unreduced homology theory on pairs of C -spaces satisfying the disjoint
union axiom such that weak homotopy equivalences of such pairs induce isomor-
phisms on homology, see [DL98, Lemma 4.4]. Here (Y, B) is a C -CW -approximation
of (X, A), and Y+ := Y q pt is the pointed C -space obtained from Y by adjoining
the trivial C -space as a base point.

Example 1.16 (Borel homology). The set of morphisms of Or(G, Tr ) can be
identi�ed with G by sending rg : G/1 → G/1 to g−1 ∈ G. Then, a contravariant
Or(G, Tr )-space is the same as a right G-space (analogously for Or(G, Tr )-spectra),
whereas an Or(G, Tr )-CW -complex is the same as a free G-space, and

H Or(G,Tr )
n (X;E) = πn

(
(X × EG)+ ∧G E

)
=: HG

n (X;E)

can be identi�ed with Borel homology.

7



1 Classifying Spaces

Let S be a G-set. The corresponding transport groupoid GG(S) is the groupoid
having as its set of objects the set S, while the morphisms from s0 to s1 are the
elements g ∈ G that satisfy gs0 = s1. This yields a functor GG : Or(G)→ Groupoids
in the obvious way.

In the case of a G-CW -pair (X, A) and a covariant functor E : Groupoids → Spectra
which sends equivalences of groupoids to maps of spectra inducing an isomorphism
on homotopy groups, we de�ne

H G
n (X, A;E) := H Or(G)

n

(
X−, A−;E ◦ GG

)
. (1.17)

It is shown in [Sau02]:

Proposition 1.18. The various functors H G
n (−;E) for all groups G, which are

de�ned in (1.17), match up to form an equivariant homology theory.

This means in particular that there is an induction structure, i.e. if α : H → G is
a group homomorphism and (X, A) an H-CW -pair such that ker(α) acts freely on
X, there are natural isomorphisms

indα : H H
n (X, A;E)

∼=−→ H G
n

(
G×α (X, A);E

)
for n ∈ Z which have certain properties like being functorial in α and being com-
patible with the boundary homomorphisms.

Notation 1.19. For a cellular map f : X → Y of G-CW -complexes, we set

H G
n (f : X → Y ;E) := H G

n

(
cyl(f), X;E

)
,

where X is considered as a G-subcomplex of the mapping cylinder of f .

1.2.3 Formulation of the Isomorphism Conjectures

We will adopt the point of view of [DL98] to formulate the isomorphism conjectures
[BCH94, Conj. 3.15] of Baum-Connes and [FJ93, Conj. 1.6] of Farrell-Jones.

Let R be an associative ring with unit and involution. One can construct covariant

Groupoids-spectra Ktop, KR and L〈−∞〉
R which send equivalences of groupoids to

maps of spectra inducing an isomorphism on homotopy groups, such that

πn

(
Ktop(GG(G/H))

)
= Kn(C∗

r H),

πn

(
KR(GG(G/H))

)
= Kn(RH),

πn

(
L〈−∞〉

R (GG(G/H))
)

= L〈−∞〉
n (RH),

see [DL98, section 2] and [Joa03]. These groups denote the topological K-theory of
the reduced group C∗-algebra of H and the algebraic K- and L-theory of the group
ring RH, respectively.

8



1.3 Homotopy Colimits

Conjecture 1.20. The Baum-Connes isomorphism conjecture for a group G states

that the assembly map

H G
n

(
EFin(G);Ktop

)
→ H G

n (pt;Ktop) = Kn(C∗
r G), (1.21)

which is the map induced by the projection EFin(G) → pt, is an isomorphism for

n ∈ Z.
The Farrell-Jones isomorphism conjecture for the group ring RG states that the

assembly maps

H G
n

(
EVCyc(G);KR

)
→ H G

n (pt;KR) = Kn(RG), (1.22)

H G
n

(
EVCyc(G);L〈−∞〉

R

)
→ H G

n (pt;L〈−∞〉
R ) = L〈−∞〉

n (RG) (1.23)

coming from the projection EVCyc(G)→ pt are isomorphisms for n ∈ Z.

While the Baum-Connes conjecture is known to be true for quite a large class
of groups, not that much is known in the Farrell-Jones case, re�ecting the fact
that there the family VCyc of virtually cyclic subgroups of G has to be taken into
account, which usually is harder to handle than the family Fin . The point behind
these conjectures is to compute the target of the assembly map (the group which is
of interest) by looking at the source which might be more accessible to calculations.
For a survey on this matter, we encourage the reader to consult [LR05].
Note that, because of the universal property of EVCyc(G), there is a G-map

EFin(G)→ EVCyc(G) which is unique up to G-homotopy. We mention the following
result taken from [Bar03]:

Proposition 1.24 (The relative homology groups split o�). The canonical

G-map EFin(G) → EVCyc(G) induces a split injection on H G
n (−;KR). Hence there

is an isomorphism

H G
n

(
EFin(G);KR

)
⊕H G

n

(
EFin(G)→ EVCyc(G);KR

) ∼=−→ H G
n

(
EVCyc(G);KR

)
.

The same holds for H G
n (−;L〈−∞〉

R ), provided that for any virtually cyclic subgroup

V ⊂ G one has K−i(RV ) = 0 for su�ciently large i.

1.3 Homotopy Colimits

In section 2.3, we will establish a concrete model for EF (G) in case that G is a
colimit of subgroups {Gi}i∈I of which models for EF ∩Gi(Gi) are given. Below, we
will compile the necessary facts on homotopy colimits that will be needed there.

De�nition 1.25 (Classifying space of a category). A model for the classifying
space EC of the category C is a C -CW -approximation of the trivial contravariant
C -space pt. EC is uniquely determined up to homotopy equivalence of C -spaces
(see Lemma 1.15 (1)).
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1 Classifying Spaces

There is a functorial construction for EC which will be explained now. Recall that
the geometric realization BbarC of C is the geometric realization |N·C | of its nerve.
In particular, BbarC has a canonical CW -structure, the n-cells corresponding to
sequences c0 → c1 → . . .→ cn of morphisms in C none of which is the identity. Any
functor F : C → D induces a cellular map BbarF : BbarC → BbarD, and a natural
transformation of two functors F and G induces a homotopy between BbarF and
BbarG. One says that C is contractible if BbarC is.
For �xed c1, c2 ∈ ob(C ), the objects of the category c1 ↓ C ↓ c2 are all diagrams

in C of the form c0
f−→ c

g−→ c2. A morphism from c0
f−→ c

g−→ c2 to c0
f ′−→ c′

g′−→ c2 is
given by a morphism h : c→ c′ in C such that h ◦ f = f ′ and g′ ◦ h = g.
If F : C → D is a functor and d ∈ ob(D), the objects of the category d ↓ F

of objects F -under d are all morphisms in D of the form f : d → F (c), and the
morphisms from f : d → F (c) to f ′ : d → F (c′) are all morphisms h : c → c′ in C
such that F (h) ◦ f = f ′. Similarly, one can de�ne the category F ↓ d of objects

F -over d. If F is the identity functor on D, these categories are denoted by d ↓ D
and D ↓ d, respectively.
Moreover, in the obvious way we obtain covariant C op×C -, Dop- and D- categories

− ↓ C ↓ −, − ↓ F and F ↓ −, respectively. Now we set

EbarC := pt×C Bbar(− ↓ C ↓ −) = Bbar(− ↓ C ).

This gives a model for EC by [DL98, Lemma 3.19(3)].

Example 1.26 (Functorial construction for EFFF (G)). A model for EF (G)
yields a model EF (G)− for E Or(G, F ). On the other hand, consider the covari-
ant Or(G, F )-space I which is given by sending G/H to itself. Then a model for
E Or(G, F ) de�nes the G-CW -complex E Or(G, F )×Or(G,F ) I, which is a model for
EF (G), see [DL98, Lemma 7.6].

De�nition 1.27 (Colimit and homotopy colimit). Let X be a covariant C -
space. Its colimit and homotopy colimit are de�ned by

colim
C

X := pt×C X and hocolim
C

X := EC ×C X

respectively, where pt is the trivial C -space. Note that hocolimC X is only de�ned
up to homotopy equivalence.

The following theorem lists the main properties the notion of homotopy colimit
should have. They are well-known, cf. [HV92], but we will give a proof in our context
below. As for assertion (2) of the theorem, recall that a non-empty category C is
�ltered if for any two objects c0 and c1 in C there is an object c in C together with
morphisms c0 → c and c1 → c, and if for any two morphisms f, g : c0 → c1 in C
there is a morphism h : c1 → c2 in C such that h ◦ f = h ◦ g.

Theorem 1.28 (Properties of hocolim). Let X and Y be covariant D-spaces

and F : C → D a covariant functor. Then:
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1.3 Homotopy Colimits

(1) (Homotopy invariance)

Every weak homotopy equivalence X → Y of D-spaces induces a weak homo-

topy equivalence

hocolim
D

X → hocolim
D

Y.

(2) (Co�nality)

If for all d ∈ ob(D) the category d ↓ F is contractible, e.g. if C is �ltered and

F co�nal, then there is a weak homotopy equivalence

hocolim
C

F ∗X → hocolim
D

X.

(3) (Reduction)

There is a homotopy equivalence

hocolim
C

F ∗X
'−→ Bbar(− ↓ F )×D X.

Proof. The proof of (1) can be found in [DL98, Thm. 3.11].

As for (3), there are homeomorphisms

EbarC×C F ∗X
∼=−→ Bbar(− ↓ C )×C morD(−, F )×D X

∼=−→ Bbar(− ↓ F )×D X, (1.29)

the �rst due to Lemma 1.11 (1) and the second coming from the homeomorphism

Bbar(− ↓ C )×C morD(−, F )
∼=−→ Bbar(− ↓ F ) (1.30)

of contravariant D-spaces de�ned as follows. Let us denote by morD(−, F ) the
Dop×C -category given by sending an object (d, c) of Dop×C to the category with set
of objects equal to morD

(
d, F (c)

)
and set of morphisms equal to the identities. Then

BbarmorD(−, F ) = morD(−, F ). We have that Bbar = |−|◦N·, where |−| has a right
adjoint and therefore (cf. [Mac98, section V.5]) preserves arbitrary colimits such as
the balanced product of two C -spaces (cf. [Mac98, Prop. IX.5.1]). This means that
we only need to construct a natural equivalence N·(− ↓ C ) ×C N·

(
morD(−, F )

)
→

N·(− ↓ F ) of simplicial Dop-spaces, and one such is induced by the mutually inverse
maps

Nn(− ↓ C )×C Nn

(
morD

(
d, F (−)

))
� Nn(d ↓ F )[

c

��

= c

��

= . . . = c

��
c0 // c1 // . . . // cn

,
d
��

F (c)

]
7→

d
��

= d
��

= . . . = d
��

F (c0) // F (c1) // . . . // F (cn)[
c0

‖
= c0

��

= . . . = c0

��
c0 // c1 // . . . // cn

,
d
��

F (c0)

]
←[

d
��

= d
��

= . . . = d
��

F (c0) // F (c1) // . . . // F (cn)

11



1 Classifying Spaces

Concerning (2), we �rst remark that if C is �ltered and F co�nal, then the
category d ↓ F is �ltered for every d ∈ ob(D), and any �ltered category is con-
tractible, see e.g. [Qui73, Cor. 2 in � 1 on p. 93]. Now let us prove the assertion.
It is not di�cult to check that, for any c ∈ ob(C ), the natural transformation

morD
(
−, F (c)

)
→ − ↓ D ↓ F (c) of contravariant D-categories which is given on

objects by sending f : d → F (c) to f ◦ idd induces a weak homotopy equivalence
morD

(
−, F (c)

)
→ Bbar

(
− ↓ D ↓ F (c)

)
of D-CW -complexes. By Lemma 1.15 (2),

this is even a homotopy equivalence. Using Lemma 1.11 (1), it follows that there is
weak homotopy equivalence F ∗X → Bbar(− ↓ D ↓ F ) ×D X of covariant C -spaces
and thus, by Lemma 1.15 (3), a weak homotopy equivalence

EbarC ×C F ∗X → EbarC ×C Bbar(− ↓ D ↓ F )×D X.

Furthermore, because of Lemma 1.11 (1) and EbarC = Bbar(− ↓ C ) together with
(1.30), there is a homeomorphism

EbarC ×C Bbar(− ↓ D ↓ F )×D X
∼=−→ Bbar(− ↓ F )×D Bbar(− ↓ D ↓ −)×D X.

The contravariant D-space Bbar(− ↓ F ) is, by assumption, weakly homotopy equiv-
alent to the trivial contravariant D-space pt. As Bbar(d ↓ D ↓ −) is a Dop-CW -
complex for d ∈ ob(D), we obtain, by the analogue of Lemma 1.15 (3), a weak ho-
motopy equivalence η : Bbar(− ↓ F )×D Bbar(− ↓ D ↓ −)→ pt×DBbar(− ↓ D ↓ −)
of contravariant D-spaces. One can actually show that the source and target of η
carry the structure of D-CW -complexes. Hence Lemma 1.15 (2) implies that η is
even a homotopy equivalence. Thus we �nally obtain a homotopy equivalence

Bbar(− ↓ F )×D Bbar(− ↓ D ↓ −)×D X
'−→ pt×DBbar(− ↓ D ↓ −)×D X,

the latter being equal to EbarD ×D X by de�nition.

Corollary 1.31. Let C be a �ltered category and X a covariant C -space. Then

there is a homotopy equivalence

hocolim
C

X
'−→ colim

c∈C
Ebar(C ↓ c)×C↓c I∗c X,

where Ic : C ↓ c→ C denotes the functor given on objects by sending c′ → c to c′.

Proof. The statement follows from the following homeomorphisms, which will be
explained below:

EbarC ×C X = Bbar(− ↓ C )×C X

∼= Bbar
(
colim
c∈C

− ↓ C ↓ c
)
×C X (1.32)

∼= colim
c∈C

(
Bbar(− ↓ C ↓ c)×C X

)
(1.33)

∼= colim
c∈C

Ebar(C ↓ c)×C↓c I∗c X. (1.34)
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1.3 Homotopy Colimits

The natural equivalence η1 : colimc∈C − ↓ C ↓ c → − ↓ C of C -categories which is
given by η1(c′)[c′ → c′′ → c] := (c′ → c′′) yields the homeomorphism of (1.32). The
one of (1.34) comes from (1.29) and the natural equivalence η2 : − ↓ Ic → − ↓ C ↓ c
of contravariant C -categories given by η2(c′)

(
c′ → Ic(c′′ → c)

)
:= (c′ → c′′ → c).

Finally, the homeomorphism of (1.33) holds because − ×C X has a right ad-
joint (cf. [DL98, Lemma 1.5]) and hence preserves arbitrary colimits (cf. [Mac98,
section V.5]), and because Bbar commutes with colimC . The latter is true since
Bbar = |−| ◦ N·, where |−| has a right adjoint, and N· preserves �ltered colimits,
too, by the following argument. Let s, t : mor(D)→ ob(D) be the maps that assign
to a morphism in D its source and target respectively. Then Nn(D) is the n-fold

pullback of the diagram mor(D) s−→ ob(D) t←− mor(D). The claim follows since
ob(−) and mor(−) obviously preserve colimC and �ltered colimits preserve �nite
limits, see [Mac98, Thm. IX.2.1].
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2 Models for Classifying Spaces

One reason why �nding concrete models for the classifying spaces EG and EVCyc(G)
is of interest is that they appear in the formulation of the isomorphism conjec-
tures 1.20 of Baum-Connes and Farrell-Jones. In this chapter, after reviewing
well-known constructions for EG in case G acts on a tree or is word-hyperbolic,
we address the general question whether there are �nite-dimensional models for
EVCyc(G) or models of �nite type.

Moreover, we will present a model for EF (G) in the last section which leads to a
model for EVCyc(G) if G is locally virtually cyclic.

2.1 The Case of the Family of Finite Subgroups

In a number of situations it is possible to construct nice models for EG. We will
explain three of them to be able to refer to them later. A survey on models for EG
for various groups G is given in [Lüc05], where also type questions are discussed.

2.1.1 Groups acting on Trees

In this section, we �rst want to explain the notion of a graph of groups and its
associated Bass-Serre tree.

Given two sets V and E, the vertices and edges, and a map r : E×{−1, 1} → V ,
assigning to an edge its initial and terminal vertices, let X be the one-dimensional
CW -complex given by the pushout

E × {−1, 1}

��

r // V

��

E × [−1, 1] // X

(2.1)

A graph of groups G on X consists of collections of groups {Gv}v∈V and {Ge}e∈E ,
together with injective group homomorphisms fe,ε : Ge → Gr(e,ε) for e ∈ E and
ε ∈ {±1}. The fundamental group π = π1(G , X,X0) of G with respect to a maximal

subtree X0 ⊂ X (i.e. X0 is a contractible subcomplex, and if X0 ⊂ Y ⊂ X such
that Y is contractible, then X0 = Y ) is the following group. Let {te}e∈E be a set of
abstract symbols indexed by E. Then π is generated by the set

⋃
v∈V Gv ∪{te}e∈E ,

and the relations in π are the relations in Gv for all v ∈ V , the relation te = 1
whenever e ∈ E is an edge of X0, and the relation t−1

e fe,−1(g)te = fe,1(g) for every
e ∈ E and g ∈ Ge.
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2.1 The Case of the Family of Finite Subgroups

It is shown in [Ser80, Cor. I.5.2.1] that the obvious maps Gv → π are injective.
Thus we can identify Gv with its image in π. Now we de�ne the one-dimensional
π-CW -complex T by the π-pushout∐

e∈E

π/fe,−1(Ge)× {−1, 1}

��

q
//
∐
v∈V

π/Gv

��∐
e∈E

π/fe,−1(Ge)× [−1, 1] // T

where the restriction of q to π/fe,−1(Ge) × {−1} is the projection π/fe,−1(Ge) →
π/Gr(e,−1), and the restriction to π/fe,−1(Ge) × {1} is the π-map π/fe,−1(Ge) →
π/Gr(e,1) sending gfe,−1(Ge) to gteGr(e,1). Then T is contractible after forgetting
the π-action (see [Ser80, Thm. I.5.12]) and is called the Bass-Serre tree of G with

respect to X0.
Conversely, suppose T is a one-dimensional G-CW -complex that is non-equivari-

antly contractible. We choose a G-pushout∐
e∈E

G/Ge × {−1, 1}

��

q
//
∐
v∈V

G/Gv

��∐
e∈E

G/Ge × [−1, 1] // T

(2.2)

Then X := G\T is given by a pushout as in (2.1) if we de�ne r : E×{−1, 1} → V to
be the map which sends (e, ε) to the unique element v ∈ V for which q

(
G/Ge×{ε}

)
is

equal to G/Gv. Keep in mind that there is a ge,ε ∈ G satisfying g−1
e,εGege,ε ⊂ Gr(e,ε)

such that q is determined on G/Ge×{ε} by q(1Ge, ε) = ge,εGr(e,ε). Now consider the
graph of groups G on X de�ned by the collections of groups {Gv}v∈V and {Ge}e∈E ,
together with the injective homomorphisms fe,ε : Ge → Gr(e,ε) given by conjugation
with ge,ε. It follows from [Ser80, Thm. I.5.13] that, after a choice of a maximal
subtree X0 ⊂ X, one obtains an isomorphism G ∼= π1(G , X,X0). Moreover, up to
isomorphism, this construction is inverse to the one above.

Remark 2.3 (Model for EG). By �in�ating the equivariant cells� of T in (2.2),
one gets a model for EG. More precisely, consider the G-pushout∐

e∈E

G×Ge EGe × {−1, 1}

��

Q
//
∐
v∈V

G×Gv EGv

��∐
e∈E

G×Ge EGe × [−1, 1] // X

(2.4)

in which the restriction of Q to G×Ge EGe × {ε} is the G-map sending [g, x, ε] to
[g,Efe,ε(x)] ∈ G ×Gr(e,ε)

EGr(e,ε), where Efe,ε : EGe → EGr(e,ε) denotes an fe,ε-
equivariant map. Then, by Lemma 1.7 (2), X has the same G-homotopy type as
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the diagonal G-space T × EG. Hence X is a model for EG. This is due to the
fact that, in the situation of a �nite group acting on a tree, the �xed-point set is
contractible, see e.g. [Lüc05, Thm. 4.7].
Suppose, for instance, G = G1 ∗H G2 is an amalgamated product of groups G1

and G2 over a common subgroup H. Endow [0, 1] with the obvious CW -structure
consisting of two 0-cells v1, v2 and one 1-cell e. Then G is the fundamental group
π1

(
G , [0, 1], [0, 1]

)
of the graph of groups G given by Gvi

:= Gi for i = 1, 2 and
Ge := H, together with the inclusions of H into G1 and G2 respectively. In�ating
the equivariant cells of the associated Bass-Serre tree yields a model for EG which
is built of models for EH, EG1 and EG2, and the pushout (2.4) can be written

G×H EH

��

// G×G1 EG1

��

G×G2 EG2 // EG

Similarly, suppose G = H oα Z is a semidirect product with respect to an auto-
morphism α : H → H. Consider S1 with the CW -structure consisting of a single
0-cell v and a single 1-cell e. Obviously, G is the fundamental group π1

(
G , S1, {v}

)
of the graph of groups G given by Gv := H and Ge := H, together with the homo-
morphisms idH and α. The model for EG of (2.4) is then just a mapping telescope
of the α-equivariant map Eα : EH → EH that is in�nite to both sides.

2.1.2 Word-hyperbolic Groups

Let G be a �nitely generated group. We choose a �nite symmetric subset S ⊂ G
that generates G, where symmetric means S = S−1. We can impose a metric dS on
G by setting

dS(g1, g2) := min
{
n ∈ N | g−1

1 g2 = s1 · · · sn for si ∈ S
}
,

which is obviously invariant under left translation by elements of G and called word
metric.
To a pair (G, S) as above one can then associate its Rips complex:

De�nition 2.5 (Rips complex). For r ∈ N, the Rips complex Pr(G, S) is the
geometric realization of the simplicial complex whose n-simplices are given by (n +
1)-tuples (g0, . . . , gn) of pairwise distinct elements of G such that dS(gi, gj) ≤ r for
1 ≤ i, j ≤ n.

Remark 2.6. One can make the following easy observations concerning the Rips
complex:

• Because of the left invariance of the word metric, we have a simplicial G-action
on Pr(G, S) by setting g · (g0, . . . , gn) := (gg0, . . . , ggn).

• The 0-skeleton of Pr(G, S) coincides with G.
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2.1 The Case of the Family of Finite Subgroups

• P1(G, S) =: Γ(G, S) is the Cayley graph of G with respect to S. It is the graph
with vertex set G in which there is exactly one edge from g1 to g2 if and only
if dS(g1, g2) = 1. By requiring that any edge be isometric to the unit interval
[0, 1], the Cayley graph becomes a metric space in which any two points can
be joined by a geodesic.

In general, the 1-skeleton of Pr(G, S) is just the Cayley graph Γ(G, S′) for
S′ = {g ∈ G | 0 < dS(g, 1) ≤ r}.

The class of word-hyperbolic groups consists of those groups whose Cayley graphs
�resemble a tree�. More precisely:

De�nition 2.7 (Word-hyperbolic group). Let G be a �nitely generated group
and S ⊂ G a �nite symmetric set generating G. Then (G, S) is said to be δ-
hyperbolic if there is a real number δ ≥ 0 with the property that any triangle in
Γ(G, S) whose sides are geodesics is δ-slim, i.e. the δ-neighbourhood of the union of
any two of the sides contains the third.
A �nitely generated group G is word-hyperbolic if there is a �nite symmetric set

S ⊂ G generating G and a δ ≥ 0 such that (G, S) is δ-hyperbolic.

If S and S′ are two �nite symmetric sets generating G, then it is not very di�cult
to show that Γ(G, S) is quasi-isometric to Γ(G, S′). This implies that Γ(G, S)
satis�es the slim triangle condition if and only if Γ(G, S′) does, see [BH99, Thm. 1.9]
(of course, the required δ varies in general).

Example 2.8. There are two classes of groups for which it is immediate that they
are word-hyperbolic.

• One can see directly from De�nition 2.7 that �nite groups are word-hyperbolic.
This is because all geodesic triangles in Γ(G, S) are δ-slim for δ the diameter
of Γ(G, S).

• Free groups are word-hyperbolic since, for the canonical choice of S, the graph
Γ(G, S) is a tree and thus 0-hyperbolic.

The following result is proved in [MS02]:

Theorem 2.9. Let G be a group and S ⊂ G a �nite symmetric set generating

G such that (G, S) is δ-hyperbolic for some δ ≥ 0. Then the second barycentric

subdivision of the Rips complex Pr(G, S) is a �nite model for EG, provided that

r ≥ 16δ + 8.

2.1.3 Crystallographic Groups

The symmetry group of Rn is among the most studied groups, at least for n ≤ 3.
We will now consider certain subgroups:

De�nition 2.10 (Crystallographic group). An n-dimensional crystallographic

group is a discrete cocompact subgroup of the Lie group of all isometries of Rn.
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2 Models for Classifying Spaces

A concise treatment on this matter is given in [Far81]. It follows from [Abe78,
Cor. 4.14] (see also [Lüc05, Thm. 4.4]):

Theorem 2.11. Let G be an n-dimensional crystallographic group. Then Rn can

be endowed with the structure of a G-CW -complex in such a way that one gets a

�nite model for EG.

2.2 The Case of the Family of Virtually Cyclic Subgroups

We will now turn to the investigation of questions about the type of the classifying
spaces EVCyc(G). Firstly, it is shown in general how statements about the type of
EG (G) lead to statements about EF (G) if F ⊂ G are two families of subgroups of
G.

Proposition 2.12. Let F ⊂ G be families of subgroups of G. Suppose that for any

H ∈ G there is an n-dimensional model for EF ∩H(H). Then the existence of an

m-dimensional model for EG (G) implies the existence of an (n + m)-dimensional

model for EF (G).
The same is true if one replaces �k-dimensional� everywhere by ��nite� or ��nite

type�.

Proof. Let Z be an m-dimensional G-CW -complex with isotropy groups in G . We
will show that then Z×EF (G) is G-homotopy equivalent to an (n+m)-dimensional
G-CW -complex, which implies the claim of the proposition as EG (G)×EF (G) is a
model for EF (G).
We utilize induction over the dimension d of Z. If Z = ∅, then there is nothing

to show, so let d ≥ 0. Crossing the G-pushout telling how Zd arises from Zd−1 with
EF (G) yields a G-pushout∐

i∈Id

G/Hi × EF (G)× Sd−1

��

q
// Zd−1 × EF (G)

��∐
i∈Id

G/Hi × EF (G)×Dd // Zd × EF (G)

(2.13)

Due to Lemma 1.7 (2) and the fact that resHi
G EF (G) is a model for EF ∩Hi(Hi),

there is a G-homotopy equivalence fi : G×Hi EF ∩Hi(Hi)→ G/Hi×EF (G). We set
f0 :=

∐
i fi × idSd−1 . Furthermore, by induction hypothesis, there is a G-homotopy

equivalence f1 : Z ′ → Zd−1×EF (G), where Z ′ is an (n+d−1)-dimensional G-CW -
complex. We denote the G-homotopy inverse of f1 by g1.

For i :
∐

i G×Hi EF ∩Hi(Hi)×Sd−1 → cyl(g1 ◦ q ◦ f0) and p : cyl(g1 ◦ q ◦ f0)→ Z ′

the obvious inclusion and projection, f1 ◦ p ◦ i 'G q ◦ f0 holds. Since i is a G-
co�bration, f1 ◦ p can be altered within its G-homotopy class to yield a G-map
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2.2 The Case of the Family of Virtually Cyclic Subgroups

f ′1 : cyl(g1 ◦ q ◦ f0) → Zd−1 × EF (G) such that f ′1 ◦ i = q ◦ f0. Now consider the
(n + d)-dimensional G-CW -complex Z ′′ which is de�ned by the G-pushout∐

i∈Id

G×Hi EF ∩Hi(Hi)× Sd−1

��

i // cyl(g1 ◦ q ◦ f0)

��∐
i∈Id

G×Hi EF ∩Hi(Hi)×Dd // Z ′′

(2.14)

The G-homotopy equivalences f0 and f ′1 induce a map of G-pushouts from (2.14)
to (2.13), and, as the left vertical arrows in these diagrams are G-co�brations,
Zd × EF (G) is G-homotopy equivalent to Z ′′ by [Lüc89, Lemma 2.13].

As an application, recall that every virtually cyclic group V has a �nite one-
dimensional model for EV . In fact, if V is in�nite virtually cyclic, then V admits
a surjection with �nite kernel either to Z or to Z/2 ∗ Z/2, see [FJ95, Lemma 2.5].
Hence a model for EZ, or for E(Z/2 ∗ Z/2) respectively, yields a model for EV by
restriction.
However, a model for EZ is the real line on which Z acts by translation, the

Z-CW -structure consisting of one free equivariant 0- and 1-cell. On the other hand,
note that Z/2 ∗ Z/2 is isomorphic to Z o Z/2 = 〈a, b | bab = a−1, b2 = 1〉. The
subgroups generated by b and ab represent the two conjugacy classes of �nite sub-
groups. One can de�ne a model for E(Z o Z/2) with two equivariant 0-cells and
one free equivariant 1-cell by the equivariant pushout

Z o Z/2× {−1, 1}

��

pr−1 q pr1
// (Z o Z/2)/〈b〉 q (Z o Z/2)/〈ab〉

��

Z o Z/2× [−1, 1] // E(Z o Z/2)

where pr−1 : ZoZ/2×{−1} → (ZoZ/2)/〈b〉 and pr1 : ZoZ/2×{1} → (ZoZ/2)/〈ab〉
are the canonical projections and the left vertical arrow is the inclusion. Explicitly,
this model for E(Z o Z/2) is the real line with the action anbm · x = n + (−1)mx.
It follows with the help of Proposition 2.12:

Corollary 2.15. Let G be a group and n ≥ 2. If no model for EG is of dimension

less than n (or �nite, or of �nite type), then no model for EVCyc(G) is of dimension

less than n− 1 (or �nite, or of �nite-type).

This expresses in a way that �nding models for EVCyc(G) must be more demanding
than for EG. Furthermore, the question arises whether one can also derive an
upper bound for the minimal dimension of models for EVCyc(G) from the minimal
dimension of models for EG. An answer to this problem will be given in section 3.1
if G satis�es a certain condition.
The proof of the next result is along the lines of the proof of [Lüc00, Thm. 3.1

and Thm. 3.2].
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Theorem 2.16 (Behaviour under group extensions). Suppose we are given

an exact sequence 1→ K → G
p−→ Q→ 1 of groups.

(1) Assume that Q is a torsion group that possesses an upper bound b on the orders

of its �nite subgroups, and that there is a k-dimensional model for EVCyc(K)
and a q-dimensional model for EQ. Then there is a (kb + q)-dimensional

model for EVCyc(G).

(2) Assume that for any virtually cyclic subgroup V ⊂ Q there is a �nite model

for EVCyc
(
p−1(V )

)
, and that there is a �nite model for EVCyc(Q). Then there

is also a �nite model for EVCyc(G).

The same is true if one replaces ��nite� everywhere by ��nite type�.

We remark that, concerning the condition on Q in Theorem 2.16 (1), there are
indeed in�nite torsion groups which have an upper bound on the orders of their
�nite subgroups. For instance, the so-called Tarski monster groups constructed in
[Ol'82] have this property.
As for Theorem 2.16 (2), it is not clear which groups (if any but the virtually

cyclic ones) possess a model for EVCyc(G) of �nite type, let alone a �nite model.
This is illustrated by the following example, which shows in particular that models
for EVCyc(G) behave badly with respect to direct products of groups even in the
most basic situations (but also cf. Corollary 3.11).

Example 2.17. Let G be an extension 1→ Z→ G→ Z→ 1. This sequence splits,
so G = Z o Z is a semidirect product, and either G = 〈a, b | ba = ab〉 = Z ⊕ Z or
G = 〈a, b | ba = a−1b〉.
Assume �rst that G = Z⊕ Z. We get an explicit model for EVCyc(G) as follows.

Note that the maximal cyclic subgroups of G are precisely those which are generated
by anbm, where n, m ∈ Z are coprime. Let {Ci}i∈N be the collection of all the
maximal cyclic subgroups and pi : G → G/Ci the projections. Since the quotients
G/Ci are in�nite cyclic, we can choose models Xi for E(G/Ci) whose underlying
space is the real line. Every Xi carries a G-action coming from pi. As Ci∩Cj = {1}
if i 6= j, the map pi × pj : G → G/Ci × G/Cj is injective in this case. Via this
map, Xi ×Xj is a model for EG. Now the G-CW -complex X is de�ned to be the
G-pushout ∐

i∈N
Xi ×Xi+1 × {0, 1}

��

`
i pri

//
∐
j∈N

Xj

��∐
i∈N

Xi ×Xi+1 × [0, 1] // X

(2.18)

where pri : Xi×Xi+1×{0, 1} →
∐

j∈N Xj is the map which projects Xi×Xi+1×{0}
to Xi and Xi ×Xi+1 × {1} to Xi+1, while the left vertical arrow is the inclusion.
From (2.18) it is easy to see that X is a three-dimensional model for EVCyc(G).

Since G\(Xi ×Xi+1) as well as G\Xi ×G\Xi+1 are models for BG, it is also clear

20



2.2 The Case of the Family of Virtually Cyclic Subgroups

that dividing out the G-action in (2.18) yields a pushout

∐
i∈N

G\Xi ×G\Xi+1 × {0, 1}

��

`
i pri

//
∐
j∈N

G\Xj

��∐
i∈N

G\Xi ×G\Xi+1 × [0, 1] // Y

such that Y is homotopy equivalent to G\X. Applying the Mayer-Vietoris sequence
shows that H3(Y ) is isomorphic to a free abelian group of in�nite rank. In fact, one
can deduce from the above pushout that Y is built of a countable number of copies
of S1, the join construction S1 ∗ S1 = S3 being applied to two consecutive copies.
In particular, any model for EVCyc(G) must at least be of dimension three (more
generally, it will be shown in Example 3.10 that if G is �nitely generated abelian of
rank n, the minimal dimension of models for EVCyc(G) is n + 1).
If G = 〈a, b | ba = a−1b〉, then note that a and b2 generate a free abelian normal

subgroup of index two in G. Hence at any rate, by Theorem 2.16 there is a six-
dimensional model for EVCyc(G) in this case. In anticipation of section 3.1, however,
we brie�y want to indicate why the minimal dimension of a model for EVCyc(G) is
actually three. Of course, it cannot be smaller since Z⊕ Z ⊂ G, which means that
from every model for EVCyc(G) one obtains a model for EVCyc(Z⊕Z) by restricting the
G-action. On the other hand, G certainly satis�es the assumptions of Theorem 3.7.
Using the fact that there is a two-dimensional model for EG due to [Lüc05, Ex. 5.26],
this yields a three-dimensional model for EVCyc(G).
We remark that in neither of the above cases there can be a model for EVCyc(G)

of �nite type, cf. the next lemma.

Lemma 2.19. Let G be a group and F a family of subgroups. Suppose that there

is a model for EF (G) with a �nite 0-skeleton. Then there is a �nite subset F ′ ⊂ F
such that any H ∈ F is subconjugated to an element of F ′.

In particular, if there is a model for EG with �nite 0-skeleton, then G contains

only �nitely many conjugacy classes of �nite subgroups.

Proof. Let G/H1, . . . , G/Hn be the �nitely many equivariant 0-cells of EF (G). For
any H ∈ F , the set of G-maps from G/H to EF (G) must be non-empty. However,
every G-map G/H → EF (G) is G-homotopic to a G-map G/H → G/Hi for some
i by the equivariant version of the cellular approximation theorem. Hence H must
be subconjugated to one of the Hi.

We want to conclude this section with an explanation of how L2-Betti numbers
are related to the minimal dimension of models for EF (G) in case F is a family
of amenable subgroups of G. First of all, let us recall some de�nitions (a good
reference for the matter in this section is [Lüc02, ch. 6]).
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2 Models for Classifying Spaces

We denote by l2(G) the Hilbert space of square-summable formal sums over G
with complex coe�cients, where the scalar product is given by〈∑

g∈G

λg · g,
∑
g∈G

µg · g
〉

:=
∑
g∈G

λgµg.

Left multiplication with elements in G induces an isometric G-action on l2(G).
The group von Neumann algebra N (G) is, by de�nition, the algebra B(l2(G))G of
G-equivariant bounded operators l2(G)→ l2(G).
To any module M over the ring N (G) one can assign its von Neumann dimension

dimN (G)(M) ∈ [0,∞]. If, for instance, M is �nitely generated projective, then
dimN (G)(M) =

∑n
i=1 〈ai,i(1), 1〉 for any (n × n)-matrix A = (ai,j) with entries in

N (G) such that A2 = A and the image of the N (G)-homomorphism N (G)→ N (G)
given by right multiplication with A is N (G)-isomorphic to M .
The homology groups HG

n

(
X; N (G)

)
of the G-CW -complex X with coe�cients in

N (G) are the homology groups of the N (G)-chain complex N (G)⊗ZGC∗(X), where
C∗(X) denotes the cellular ZG-chain complex of X. The n-th L2-Betti number of

X then is
b(2)
n

(
X; N (G)

)
:= dimN (G)

(
HG

n (X; N (G))
)
.

For a group G, one sets b
(2)
n (G) := b

(2)
n

(
EG; N (G)

)
.

Theorem 2.20 (L2-Betti numbers and minimal dimension of EFFF (G)). Let
G be a group and n ∈ N such that b

(2)
n (G) 6= 0. Let F be a family of subgroups of

G such that every H ∈ F is amenable. Then any model for EF (G) must be at least

n-dimensional.

Proof. Since EG×EF (G) equipped with the diagonal G-action is a model for EG, it

su�ces to show that b
(2)
n

(
X; N (G)

)
= b

(2)
n

(
EG×X; N (G)

)
for all G-CW -complexes

X with amenable isotropy groups and all n ∈ N (see also [Lüc02, Th. 6.54(2)]).
Moreover, since the dimension function satis�es dimN (G)(N) = dimN (G)(M) +
dimN (G)(Q) whenever there is a short exact sequence 0 → M → N → Q → 0
of N (G)-modules, one only needs to show that the map HG

n

(
EG × X; N (G)

)
→

HG
n

(
X; N (G)

)
which comes from the projection has a kernel and a cokernel of triv-

ial dimension. We can furthermore assume that X, being the directed colimit of its
�nite G-CW -subcomplexes, is itself �nite, as directed colimits are compatible with
HG

n

(
−; N (G)

)
and exact sequences and behave nicely with respect to dimN (G). Fi-

nally, by induction over the number of equivariant cells, this reduces to X = G/H
for an amenable subgroup H.
Using Lemma 1.7 (2) together with the fact that both HG

n

(
−; N (G)

)
and dimN (G)

are compatible with induction, it remains to show that for an amenable group H
the projection induces a map HH

n

(
EH; N (H)

)
→ HH

n

(
pt; N (H)

)
whose kernel

and cokernel have trivial dimension. Suppose �rst that H is �nite. In this case
N (H) = CH and the claim is obvious. If H is in�nite amenable, then it is known
that all its L2-Betti numbers vanish. On the other hand, it is not hard to show that
dimN (H)

(
N (H)⊗ZH Z

)
= 0, which �nishes the proof.
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Example 2.21. Let G be such that b
(2)
1 (G) 6= 0 but b

(2)
i (G) = 0 for all i 6= 1, e.g.

G = Z ∗ Z. Then it follows from the Künneth formula for L2-Betti numbers that

b(2)
n

( n∏
i=1

G

)
= b

(2)
1 (G)n 6= 0.

2.3 A Model for Colimits of Groups

In the following keep in mind that, for an inclusion H ⊂ K ⊂ G of groups and a fam-
ily F of subgroups of G, there is a canonical cellular G-map f : G×H EF ∩H(H)→
G×K EF ∩K(K). Explicitly, one can simply put f := idG×Kf ′ for a cellular K-map
f ′ : K ×H EF ∩H(H) → EF ∩K(K), which one obtains from the universal property
of EF ∩K(K) and the equivariant version of the cellular approximation theorem.
We will also consider directed sets as �ltered categories in the obvious way.

Theorem 2.22. Assume that the group G =
⋃

i∈I Gi is a directed union of sub-

groups. Let F be a family of subgroups of G with the property that any H ∈ F is

contained in some Gi, e.g. F consists of �nitely generated subgroups of G. If models

Xi for EF ∩Gi(Gi) are chosen, then hocolimi∈I G×Gi Xi will be a model for EF (G).

Proof. We de�ne the I-space F by F (i) := G×Gi Xi for i ∈ I. Whenever Y is an I-
CW -complex, the map λg : F → F of I-spaces which is given by left multiplication
with g ∈ G induces a G-action on Y ×I F by requiring that g acts as idY ×Iλg. It
will be shown below that for all subgroups H ⊂ G the natural inclusion FH → F
induces a homotopy equivalence(

hocolim
I

F
)H '←− hocolim

I
FH . (2.23)

From this it follows that the isotropy groups of hocolimI F are contained in F
because F is closed with respect to taking subgroups.
Furthermore, if H ∈ F , it su�ces to prove the contractibility of hocolimI FH .

Note that F (i)H ' (G/Gi)H for i ∈ I by Lemma 1.7 (1), in fact naturally in i. Thus,
according to Theorem 1.28 (1), we only need to show that hocolimi∈I(G/Gi)H ' pt.
This is, however, equivalent to showing that

C := colim
i∈I

Ebar(I ↓ i)×I↓i (G/GJi(−))
H ' pt, (2.24)

where for i ∈ I the functor Ji : I ↓ i → I is given on objects by sending j → i to
j, see Corollary 1.31. Certainly C is connected due to the directedness of I. Next
we explain why for n ≥ 1 any map f : Sn → C must be null-homotopic. Recall (cf.
page 10) that for i′ ≤ i an n-cell of Ebar(I ↓ i)(i′ → i) corresponds to a sequence
i′ ≤ i0 < i1 < . . . < in ≤ i in I. Hence, for each pair i ≤ j ∈ I, the structure map∐

i′≤i

Ebar(I ↓ i)(i′ → i)× (G/Gi′)H/ ∼ →
∐
i′≤j

Ebar(I ↓ j)(i′ → j)× (G/Gi′)H/ ∼
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2 Models for Classifying Spaces

in the above colimit is an inclusion of CW -complexes because it simply comes from
the collection of maps of the form

(i′ ≤ i0 < i1 < . . . < in ≤ i , gGi′) 7→ (i′ ≤ i0 < i1 < . . . < in ≤ j , gGi′).

Since f(Sn) is contained in a �nite subcomplex of C, it is therefore already contained
in Ebar(I ↓ i)×I↓i (G/GJi(−))H for an appropriate i ∈ I. However, since I ↓ i has a
terminal object, the trivial contravariant I ↓ i-space pt is an I ↓ i-CW -complex and
hence homotopy equivalent to Ebar(I ↓ i) by Lemma 1.15 (2). This implies that
the projection induces a homotopy equivalence Ebar(I ↓ i) ×I↓i (G/GJi(−))H →
pt×I↓i(G/GJi(−))H = (G/Gi)H , the latter being a discrete space. This settles
(2.24).

It remains to show the rather obvious claim of (2.23). If we choose a classifying
space EI for I, then, by de�nition, hocolimI F = EI ×I F and hocolimI FH =
EI ×I FH , both being well-de�ned up to homotopy equivalence. Suppose �rst that
EI is �nite-dimensional, then the assertion will be proved using induction over the
skeleta of EI. Since EI−1 = ∅, the induction start is trivial. Assuming n ≥ 0, there
is a pushout ∐

j∈Jn

morI(−, ij)× Sn−1

��

// EIn−1

��∐
j∈Jn

morI(−, ij)×Dn // EIn

to which we can apply − ×I FH , or we can apply − ×I F and then take H-�xed
points. In either case, the resulting squares∐

j∈Jn

morI(−, ij)×I FH × Sn−1

��

// EIn−1 ×I FH

��∐
j∈Jn

morI(−, ij)×I FH ×Dn // EIn ×I FH

(2.25)

and ∐
j∈Jn

(
morI(−, ij)×I F

)H × Sn−1

��

// (EIn−1 ×I F )H

��∐
j∈Jn

(
morI(−, ij)×I F

)H ×Dn // (EIn ×I F )H

(2.26)

are again pushouts as the balanced product over a category by a �xed functor
possesses a right adjoint and thus preserves arbitrary colimits, cf. [DL98, Lemma 1.5]
and [Mac98, section V.5]. Now the natural inclusion FH → F induces a map of
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2.3 A Model for Colimits of Groups

pushouts from (2.25) to (2.26), where

morI(−, ij)×I FH × Sn−1 →
(
morI(−, ij)×I F

)H × Sn−1,

morI(−, ij)×I FH ×Dn →
(
morI(−, ij)×I F

)H ×Dn

are homeomorphisms by Lemma 1.11 (1), and EIn−1 ×I FH → (EIn−1 ×I F )H is
a homeomorphism by the induction hypothesis. Hence EIn ×i FH → (EIn ×I F )H

is also a homeomorphism.

In the general case we can write EI = colimn∈N EIn, so that there are homeo-
morphisms EI×I FH ∼= colimn∈N(EIn×I FH) ∼= colimn∈N(EIn×I F )H , the second
by what we have just shown. Now (2.23) follows from the fact that colimn∈N and
(−)H commute.

Corollary 2.27. Assume, in the situation of Theorem 2.22, that there is an n ∈ N
such that all the EF ∩Gi(Gi) have models of dimension not exceeding n. If there is a
d-dimensional model for EI, then there is an (n+d)-dimensional model for EF (G).

Lemma 2.28. Let I be a directed set and d ∈ N ∪ {∞} the minimal dimension of

a model for EI. Then:

(1) I has got a maximal element if and only if d = 0.

(2) If there is a countable co�nal subset of I, then d ≤ 1.

Proof. If i0 is the maximal element of I, then morI(−, i0) is a zero-dimensional
model for EI. Conversely, the existence of a zero-dimensional model for EI means
that there is a family {ik}k∈K in I such that for every i ∈ I one has i ≤ ik for a
unique k ∈ K. However, since I is directed, this implies K = {k0}, and ik0 is the
maximal element of I. This settles (1).

As for (2), if I does not have a maximal element, let J = {ik | k ∈ N} ⊂ I be
co�nal. For n ∈ N let Jn := {ik | k ≤ n}, then Jn is �nite and J =

⋃
n∈N Jn. We

set j0 := i0 and choose jn ∈ I for n ≥ 1 such that jn is strictly greater than any
element in Jn ∪ {jn−1}. Obviously, {jn | n ∈ N} ⊂ I is co�nal and isomorphic to N
as a directed set. Now a one-dimensional model for EI is given by the pushout

∐
n∈N

morI(−, jn)× {−1, 1}

��

`
n qn

//
∐
m∈N

morI(−, jm)

��∐
n∈N

morI(−, jn)× [−1, 1] // EI

where qn : morI(−, jn)×{−1, 1} →
∐

m∈N morI(−, jm) is the natural transformation
which is given on morI(−, jn)×{−1} by composition with idjn and on morI(−, jn)×
{1} by composition with jn → jn+1.
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Of course, one may ask oneself whether a generalized version of Lemma 2.28 holds,
saying that there is an (n + 1)-dimensional model for EI whenever I has a co�nal
subset of cardinality ℵn. This could neither be proved nor disproved. We refer to
Theorem 2.32 instead.

Example 2.29. Let G be a countable group and F the family of all �nitely gen-
erated subgroups. It follows from Corollary 2.27 and Lemma 2.28 that there is a
one-dimensional model for EF (G).
Furthermore, in this case we can write G =

⋃
n∈N Gn for an ascending chain

G0 ⊂ G1 ⊂ . . . of �nitely generated subgroups of G. The model hocolimn∈N G/Gn

for EF (G) of Theorem 2.22 is then the Bass-Serre tree of the following graph of
groups (see section 2.1.1). Its underlying CW -complex is just the ray of non-negative
real numbers with the natural CW -structure. The vertex groups are the groups
{Gn}n∈N, at the edge from n to n + 1 is the group Gn, and the corresponding edge
homomorphisms are given by idGn and the inclusion of Gn into Gn+1, respectively.

Note that the assumption in Example 2.29 that G be countable is necessary.
In fact, suppose that G is a locally �nite group of cardinality ℵn. Then [KT97,
Thm. A] implies cdQ(G) = n + 1. However, it is known that for any group K there
is a one-dimensional model for EK if and only if cdQ(K) ≤ 1, see [Dun79, Thm 1.1].

Proposition 2.30 (Torsion-free locally virtually cyclic groups). The family

of countable locally virtually cyclic groups that are torsion-free consists precisely of

all subgroups of the additive rationals Q.

Proof. If G is a subgroup of Q, then any �nitely generated subgroup of G is in�nite
cyclic. Conversely, let G be a countable locally virtually cyclic group that is torsion-
free. Then every �nitely generated subgroup of G is trivial or in�nite cyclic, from
which it follows that G is abelian. Moreover, by [Bie76, Thm. 4.7(b)], we have
cdZ(G) ≤ cdZ(Z) + 1 = 2. Now the claim follows from the classi�cation of solvable
groups of cohomological dimension two in [Gil79, Thm. 5].

Example 2.31. For a prime number p ∈ N, consider the colimit of the sequence
Z p−→ Z p−→ Z→ . . ., all maps being multiplication by p. It can be identi�ed with the
subgroup Z[1/p] ⊂ Q consisting of all fractions whose denominators are powers of p.
By the results of this section, there is a one-dimensional model for EVCyc

(
Z[1/p]

)
.

There is something more we want to show:

Theorem 2.32 (Groups that are locally FFF ). Let G be a group of cardinality ℵn

and F the family of all �nitely generated subgroups of G. Then EF (G) has a model

of dimension n + 1.

Proof. We use induction on n ∈ N. The case n = 0 has already been settled in
Example 2.29, so let n > 0. We can write G =

⋃
α<ωn

Gα for subgroups Gα of
cardinality ℵn−1 such that Gα ⊂ Gβ if α ≤ β. By induction hypothesis, for α < ωn

there are models Xα for EF ∩Gα(Gα) of dimension n. The induction step now must
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provide us with an (n + 1)-dimensional model for EF (G). If we set Gωn
:= G,

this will be accomplished by using trans�nite induction for α ≤ ωn to construct
(n + 1)-dimensional models Yα for EF ∩Gα(Gα) such that Gγ ×Gα Yα ⊂ Gγ ×Gβ

Yβ

is a Gγ-subcomplex if α ≤ β ≤ γ.
Let Y0 := X0. Now suppose that α has got a predecessor. Then the universal

property of EF ∩Gα(Gα) yields a Gα-map fα : Gα ×Gα−1 Xα−1 → Xα, which we
can assume to be cellular by the equivariant version of the cellular approximation
theorem. We de�ne Yα by the Gα-pushout

Gα ×Gα−1 Xα−1

id×gα−1

��

iα // cyl(fα)

��

Gα ×Gα−1 Yα−1 // Yα

in which iα is the obvious inclusion into the mapping cylinder of fα and gα−1 the up
to Gα−1-homotopy unique homotopy equivalence which comes from the universal
property of EF ∩Gα−1(Gα−1). It follows that Yα is Gα-homotopy equivalent to Xα

and hence a model for EF ∩Gα(Gα). Moreover, Yα is clearly (n + 1)-dimensional.
Finally, if α is a limit ordinal, we de�ne Yα to be the union of the Gα ×Gβ

Yβ for
β < α.
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3 Constructing Models for EVCycVCycVCyc(G)
from EFinFinFin(G)

This chapter deals with the observation that for certain classes of groups G it is
possible to obtain a model for EVCyc(G) from a model for EFin(G) by attaching
equivariant cells.
This not only leads to a computation of the relative homology groups which

are direct summands of the source of the Farrell-Jones assembly map (1.22) (and
sometimes (1.23), cf. Proposition 1.24), but also yields bounds on the dimension of
models for EVCyc(G).

3.1 Constructing Models out of Given Ones

We start by �xing notation. Recall that, given an inclusion H ⊂ G of groups,
the normalizer of H in G is the subgroup NGH :=

{
g ∈ G | g−1Hg = H

}
of G.

Moreover, we point out that in our context the Weyl group is de�ned to be the
quotient WGH := NGH/H.

Notation 3.1. Let F ⊂ G be families of subgroups of a group G. We shall say
that G satis�es (MG , F ) if every subgroup H ∈ G \ F is contained in a unique
M ∈ G \ F that is maximal with this property, i.e. M ⊂ M ′ for an M ′ ∈ G \ F
implies M = M ′.

We now state and prove an important result of this section.

Theorem 3.2. Let G be a group which satis�es (MG , F ). We denote by M a

complete system of representatives of the conjugacy classes of maximal subgroups

M ∈ G \ F . Assume that F ∩NGM ⊂ Sub(M) for every such M . Then there is a

cellular G-pushout ∐
M∈M

G×NGM EF ∩NGM (NGM)
`

M id×fM

��

i // EF (G)

��∐
M∈M

G×NGM EWGM // EG (G)

in which the WGM -spaces EWGM are considered as NGM -spaces via the canonical

projections NGM � WGM , the NGM -maps fM : EF ∩NGM (NGM) → EWGM are

unique up to NGM -homotopy, and i is an inclusion of G-CW -complexes.
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Proof. Let M ∈ M . Since the NGM -space EWGM is a model for ESub(M)(NGM),
the assumption yields an NGM -map fM : EF ∩NGM (NGM) → EWGM which is
unique up to NGM -homotopy. Similarly, since all the isotropy groups of the G-
CW -complex

∐
M G ×NGM EF ∩NGM (NGM) belong to F , there is precisely one

G-map i :
∐

M G ×NGM EF ∩NGM (NGM) → EF (G) up to G-homotopy. By the
equivariant version of the cellular approximation theorem, we can assume fM and i
to be cellular. Moreover, by replacing i with the inclusion into its mapping cylinder,
it can be arranged for i to be an inclusion of G-CW -complexes.

Now let us de�ne the G-CW -complex X to be the G-pushout∐
M∈M

G×NGM EF ∩NGM (NGM)
`

M id×fM

��

i // EF (G)

��∐
M∈M

G×NGV EWGM // X

(3.3)

We claim that X is a model for EG (G). In order to prove this, let sM : G/NGM → G
be sections of the projections, and let a subgroup H ⊂ G be given. Then, taking
H-�xed points of (3.3) and applying Lemma 1.7 (1) yields a pushout∐

M∈M

∐
α∈G/NGM,

sM (α)−1HsM (α)⊂NGM

EF ∩NGM (NGM)sM (α)−1HsM (α)

`
M

`
α fM,α

��

i // EF (G)H

��∐
M∈M

∐
α∈G/NGM,

sM (α)−1HsM (α)⊂NGM

EWGM sM (α)−1HsM (α) // XH

(3.4)

in which i is an inclusion of CW -complexes.

Assume that H /∈ G . Then the entries in the upper row of (3.4) are clearly
empty. However, so is the lower left entry because EWGM sM (α)−1HsM (α) = ∅ unless
sM (α)−1HsM (α) ⊂M . Hence in this case XH = ∅.
If H ∈ G \ F , the entries in the upper row of (3.4) are again empty. Thus it

su�ces to show that the lower left entry is contractible. By assumption, there is a
unique M ∈ M to which H is subconjugated, say g−1Hg ⊂ M for an appropriate
g ∈ G, whose projection to G/NGM we denote by γ. Then g−1sM (γ) ∈ NGM so
that sM (γ)−1HsM (γ) ⊂M . Moreover, if sM (α)−1HsM (α) ⊂M , we have

M =
(
(sM (α)−1HsM (α)

)
max

= sM (α)−1HmaxsM (α) = sM (α)−1gMg−1sM (α),

where we write Kmax for the unique maximal element in G \ F containing a given
element K in G \ F . This means that g−1sM (α) ∈ NGM , hence α = γ. It follows
that the lower left entry of (3.4) is equal to EWGM , and this is non-equivariantly
contractible.
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3 Constructing Models for EVCyc(G) from EFin(G)

Finally, if H ∈ F , the upper right entry of (3.4) is contractible. This implies that
the same will hold for XH if we can show that all the maps fM,α are homotopy
equivalences. But this is clear since the source and target spaces are contractible,
the latter because F ∩NGM ⊂ Sub(M).

In order to derive the conclusion we are interested in from Theorem 3.2, we need
the following simple observation:

Lemma 3.5. Let G be a group and V ⊂ G a maximal virtually cyclic subgroup.

Then WGV is torsion-free. In particular, every �nite subgroup of NGV is already

contained in V .

Proof. Let p : NGV � WGV be the projection. If H ⊂ WGV is a �nite subgroup,
then p−1(H) contains V as a subgroup of �nite index. Thus, p−1(H) is virtually
cyclic and therefore equal to V because V is maximal virtually cyclic. This implies
that H is trivial.

Corollary 3.6. Let G be a group which satis�es (MFin , Tr ) or (MVCyc, Fin). We

denote by M a complete system of representatives of the conjugacy classes of maxi-

mal �nite subgroups F ⊂ G or of in�nite maximal virtually cyclic subgroups V ⊂ G,

respectively. Then there are cellular G-pushouts∐
F∈M

G×NGF ENGM

`
F id×fF

��

i // EG

��∐
F∈M

G×NGF EWGF // EG

or

∐
V ∈M

G×NGV ENGV

`
V id×fV

��

i // EG

��∐
V ∈M

G×NGV EWGV // EVCyc(G)

respectively, the maps being as in Theorem 3.2.

Proof. In order to apply Theorem 3.2, we have to show that Tr ∩ NGF ⊂ Sub(F )
for any maximal �nite subgroup F ⊂ G, and that Fin ∩ NGV ⊂ Sub(V ) for any
in�nite maximal virtually cyclic subgroup V ⊂ G. The former is trivial, and the
latter follows from Lemma 3.5.

For examples of groups satisfying one of the conditions of Corollary 3.6, we refer
to Remark 3.14 and Examples 3.10 and 3.22. The next goal is to show that one can
actually prove a version of the above result for groups that only virtually satisfy
(MVCyc, Fin).

Theorem 3.7. Suppose that 1→ K → G→ Q→ 1 is an exact sequence of groups

such that K satis�es (MVCyc, Fin) and Q is �nite. We identify K with its image in

G and denote by M a complete system of representatives of the conjugacy classes in

G of in�nite subgroups V ⊂ K that are maximal virtually cyclic in K. Then there
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3.1 Constructing Models out of Given Ones

is a cellular G-pushout ∐
V ∈M

G×NGV ENGV

`
V id×EπV

��

i // EG

��∐
V ∈M

G×NGV EWGV // EVCyc(G)

in which the WGV -spaces EWGV are regarded as NGV -spaces via the canonical

projections πV : NGV � WGV , the maps EπV : ENGV → EWGV are NGV -

equivariant, and i is an inclusion of G-CW -complexes.

Proof. With the help of a functorial construction of classifying spaces, the projec-
tions πV induce the desired NGV -maps EπV : ENGV → EWGV . Furthermore,
since all the isotropy groups of the G-CW -complex

∐
V G ×NGV ENGV are ob-

viously �nite, there is precisely one G-map i :
∐

V G ×NGV ENGV → EG up to
G-homotopy. By the equivariant version of the cellular approximation theorem, we
can assume that all the EπV and i are cellular. After replacing i with the inclu-
sion into its mapping cylinder, we can moreover assume that i is an inclusion of
G-CW -complexes.

Now, we de�ne the G-CW -complex X to be the G-pushout∐
V ∈M

G×NGV ENGV

`
V id×EπV

��

i // EG

��∐
V ∈M

G×NGV EWGV // X

and want to show that X is a model for EVCyc(G). To do so, we choose sections
sV : G/NGV → WGV of the projections and a subgroup H ⊂ G. Taking H-�xed
points of the above G-pushout then yields, in connection with Lemma 1.7 (1), a
pushout ∐

V ∈M

∐
α∈G/NGV,

sV (α)−1HsV (α)⊂NGV

ENGV sV (α)−1HsV (α)

`
V

`
α EπV

��

i // EGH

��∐
V ∈M

∐
α∈G/NGV,

sV (α)−1HsV (α)⊂NGV

EWGV sV (α)−1HsV (α) // XH

(3.8)

in which i is an inclusion of CW -complexes.

Let us �rst assume that H is not virtually cyclic. If V ∈ M and α ∈ G/NGV are
such that Hα := sV (α)−1HsV (α) ⊂ NGV , then πV (Hα) ∼= Hα/Hα ∩ V must be an
in�nite subgroup of WGV as Hα ∩ V is virtually cyclic. This means that the lower
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3 Constructing Models for EVCyc(G) from EFin(G)

left entry of (3.8) is empty. Clearly, the entries in the upper row are also empty,
hence XH = ∅ in this case.

If H is in�nite virtually cyclic, we claim that there is precisely one in�nite maximal
virtually cyclic subgroup V ⊂ K such that H ⊂ NGV and |πV (H)| < ∞. As for
its existence, note that H ∩ K is in�nite virtually cyclic since G/K = Q is �nite
by assumption. Hence, H ∩K is contained in an in�nite maximal virtually cyclic
subgroup V ⊂ K because K satis�es (MVCyc, Fin). For every h ∈ H, however,
H∩K = h−1H∩Kh is contained in h−1V h as well. Thus, again because K satis�es
(MVCyc, Fin), we have that H ⊂ NGV . Moreover, |πV (H)| = |H/H ∩ V | < ∞
since H ∩ V is in�nite virtually cyclic. To establish the uniqueness of such a V , let
V ′ ⊂ K be another in�nite maximal virtually cyclic subgroup with the according
properties. In particular, H ∩ V ′ is also of �nite index in H, which implies that
the same holds for H ∩ V ∩ V ′. Thus, V ∩ V ′ is in�nite virtually cyclic, and it
follows that V = V ′ as K satis�es (MVCyc, Fin). From what we have just shown,
it can readily be deduced that there is precisely one possible choice of V ∈ M and
α ∈ WGV such that sV (α)−1HsV (α) ⊂ NGV and

∣∣πV

(
sV (α)−1HsV (α)

)∣∣ <∞. So
the lower left entry of (3.8) is contractible, whereas the entries in the upper row are
empty, and it follows that XH is contractible.

Finally, if H is �nite, then the left vertical arrow in (3.8) clearly is a homotopy
equivalence. Thus XH is homotopy equivalent to EGH , which is contractible.

Remark 3.9 (Dimension of the constructed models). In the situation of
Theorem 3.2, suppose one takes a k-dimensional model for EF (G) and, for M ∈ M ,
models for EF ∩NGM (NGM) of dimension l(M) and models for EWGM of dimension
m(M). Then the model that is constructed for EG (G) is of dimension n, where

n = sup {k, l(M) + 1, m(M) |M ∈ M }.

The analogous statement holds in the situation of Theorem 3.7.

We are now prepared to dwell on the problem of �nding models for EVCyc(G) in
the case of a �nitely generated abelian group G (see also Example 2.17).

Example 3.10 (Finitely generated abelian groups). Let G be a �nitely gen-
erated abelian group of rank n ≥ 2, i.e. G = Zn ⊕ F , where F is �nite abelian.
Pick elements a1, . . . , an ∈ G that generate Zn. Then the maximal virtually cyclic
subgroups of G are precisely those V (r1, . . . , rn) := 〈ar1

1 · · · arn
n 〉⊕F for which there

is some choice of distinct i, j ∈ {1, . . . , n} such that ri and rj are coprime inte-
gers. Furthermore, it is immediate that either V (r1, . . . , rn) = V (s1, . . . , sn) or
V (r1, . . . , rn) ∩ V (s1, . . . , sn) = F for all such maximal virtually cyclic subgroups.
It follows that no model for EVCyc(G) can be of �nite type, cf. Lemma 2.19. More-

over, G satis�es (MVCyc, Fin), and we deduce from Remark 3.9 that there exists
an (n + 1)-dimensional model for EVCyc(G) since there is an n-dimensional model
for EG.
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3.1 Constructing Models out of Given Ones

However, there cannot exist a model of lesser dimension. This is due to the fact
that dividing out the G-action in the pushout of Corollary 3.6 and keeping in mind
that the normalizer of any subgroup of G is G itself yields the pushout

∐
V ∈M

G\EG

`
V G\fV

��

`
V id

// G\EG

��∐
V ∈M

B(G/V ) // G\EVCyc(G)

While G\EG is homotopy equivalent to the n-dimensional CW -complex Tn =∏n
i=1 S1, the space B(G/V ) is homotopy equivalent to the (n − 1)-dimensional

CW -complex Tn−1. Thus the Mayer-Vietoris sequence belonging to this diagram
reads

. . .→ 0→ Hn+1

(
G\EVCyc(G)

)
→
⊕
V ∈M

Hn(G\EG)
L

V id
−−−−→ Hn(G\EG)→ . . . ,

which implies that Hn+1

(
G\EVCyc(G)

)
is free abelian of in�nite rank, proving the

claim.

Provided that F = Tr or Fin , it is obvious that whenever one has models for
EF (G1) and EF (G2), their product will be a model for EF (G1 ×G2). As we have
already pointed out in section 2.2, the analogous statement fails drastically in the
case of F = VCyc. However, one can say a bit more under the assumption that
G1 × G2 virtually satis�es (MVCyc, Fin) (note that the property (MVCyc, Fin) is
not stable under forming direct products).

Corollary 3.11. Let G = G1 × G2 be a group which �ts into an exact sequence

1 → K → G → Q → 1 such that K satis�es (MVCyc, Fin) and Q is �nite. We

identify K with its image in G and denote by M a complete system of representatives

of the conjugacy classes in G of in�nite subgroups V ⊂ K that are maximal virtually

cyclic in K. Let

l := sup
V ∈M
{minimal dimension of ENGV },

m := sup
V ∈M
{minimal dimension of EWGV }.

Suppose there are models for EVCyc(G1) and EVCyc(G2) of dimension d1 and d2

respectively. Then l ≤ d1+d2+2, and there is an n-dimensional model for EVCyc(G),
where

n = max{d1 + d2 + 2, l + 1, m}.

Moreover, this estimate for n is best possible.
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3 Constructing Models for EVCyc(G) from EFin(G)

Proof. Proposition 2.12 shows that for i = 1, 2 there are (di+1)-dimensional models
for EGi. Their product then constitutes a model for EG of dimension d1 + d2 + 2.
Thus, by Remark 3.9, there is a model for EVCyc(G) of the dimension claimed.
Furthermore, since a model for EG yields by restriction a model for ENGV , the
inequality l ≤ d1 + d2 + 2 holds.

Finally, the given estimate on the dimension of EVCyc(G) is sharp as can be seen
in the case when Q is the trivial group and G1 = G2 = Z, in which d1 = d2 = 0,
l = 2 and m = 1, while there is no model for EVCyc(G) of dimension less than three,
see Example 2.17 or Example 3.10.

We end this section by explaining how the results in [CFH06] on the dimension
of models for EVCyc(G) for crystallographic groups G �t into our framework.

Example 3.12 (Crystallographic groups). For given n ≥ 2, let G be a crystal-
lographic subgroup of the isometry group of Rn. Let us denote by T ⊂ G the group
consisting of all the translations in G. Then T is normal in G. Furthermore, the
Bieberbach theorem (see e.g. [Far81, Thm. 14]) states that T is �nitely generated
free abelian of rank n and that G/T is �nite. In particular, Example 3.10 shows
that there cannot be a model for EVCyc(G) of dimension less than n + 1.
On the other hand, Theorem 3.7 applied to the exact sequence 1 → T → G →

G/T → 1 can be utilized as follows to produce an (n + 1)-dimensional model for
EVCyc(G). First note that in Theorem 2.11 we have already seen that Rn, with an
appropriate G-CW -structure, is a model for EG. For every subgroup C ⊂ T which
is maximal cyclic in T , the restriction of Rn to the NGC-operation can then be used
as a model for ENGC. As C is generated by a single non-trivial translation of Rn,
there is a unique line in Rn which contains 0 ∈ Rn and is invariant under the action
of C. Let Rn−1

C ⊂ Rn be the hyperplane which is orthogonal to this line, and let
pC : Rn → Rn−1

C be the orthogonal projection. It is immediate from the construction
that one can impose a WGC-action on Rn−1

C by setting πC(n) · pC(x) := pC(nx),
where πC : NGC � WGC is the canonical projection.

Now, in [CFH06] it is shown that one can choose a CW -structure for Rn−1
C which

turns this space into a model for EWGC. Hence, Theorem 2.16 yields indeed a
model for EVCyc(G) of dimension n + 1.

3.2 Computation of the Relative Homology Groups

As a further application of Corollary 3.6, we will see in this section that the relative
homology groups which split o� from the source of the Farrell-Jones assembly map
simplify considerably if the involved group satis�es (MVCyc, Fin).
First of all, suppose E : Groupoids → Spectra is a functor that sends equivalences

of groupoids to maps of spectra inducing an isomorphism on homotopy groups (the

main example to keep in mind here is when E is one of Ktop, KR or L〈−∞〉
R , cf.

section 1.2). If H ⊂ G is an inclusion of groups and F a family of subgroups of

34



3.2 Computation of the Relative Homology Groups

NGH, let p[H, F ] be the map(
resH

NGH EF (NGH)
)−
+
∧Or(H) resOr(H)

Or(NGH) E
(
GNGH(NGH/−)

)
��

pt−+ ∧Or(H) resOr(H)
Or(NGH) E

(
GNGH(NGH/−)

)
‖

E
(
GNGH(WGH)

)
of spectra which is induced by the projection on the �rst and the identity on the
second factor. We will now implement an action of WGH on the source and target
of p[H, F ] with respect to which p[H, F ] is equivariant. This follows ideas of Lück.
For a �xed element n0 ∈ NGH, we denote by cn0(n) := n0nn−1

0 conjugation in
NGH by n0. Then cn0 induces a functor cn0 : Or(NGH) → Or(NGH) by sending
an object NGH/K to NGH/cn0(K) and a morphism rn to rcn0 (n). Analogously, we
get a functor cn0 : Or(H) → Or(H). Furthermore, there is a natural equivalence
ρn−1

0
: GNGH → c∗n0

GNGH of Or(NGH)-groupoids which for an object NGH/K of

Or(NGH) is given by the functor

nK

n′

��

nn−1
0 cn0(K)

n′
��

7→

n′nK n′nn−1
0 cn0(K)

which is an isomorphism of categories. Lastly, we have an H-homeomorphism
φn0 : H ×cn0

resH
NGH EF (NGH)→ resH

NGH EF (NGH) de�ned by [h, z] 7→ hn0z.
Now, let n0 act on the source of p[H, F ] as the composition(

resH
NGH EF (NGH)

)−
+
∧Or(H) resOr(H)

Or(NGH) E
(
GNGH(NGH/−)

)
id∧ resE(ρ

n−1
0

)

��(
resH

NGH EF (NGH)
)−
+
∧Or(H) resOr(H)

Or(NGH) E
(
c∗n0

GNGH(NGH/−)
)

‖(
resH

NGH EF (NGH)
)−
+
∧Or(H) c∗n0

resOr(H)
Or(NGH) E

(
GNGH(NGH/−)

)
adj (cf. Lemma 1.11 (2))

��

indcn0

(
resH

NGH EF (NGH)
)−
+
∧Or(H) resOr(H)

Or(NGH) E
(
GNGH(NGH/−)

)
ν∧id (cf. Lemma 1.12)

��(
H ×cn0

resH
NGH EF (NGH)

)−
+
∧Or(H) resOr(H)

Or(NGH) E
(
GNGH(NGH/−)

)
φn0∧id

��(
resH

NGH EF (NGH)
)−
+
∧Or(H) resOr(H)

Or(NGH) E
(
GNGH(NGH/−)

)
,
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and, similarly, on the target of p[H, F ], merely replacing EF (NGH) by pt. Explic-
itly, we have n0 · z ∧ e = n0z ∧ resE(ρn−1

0
)(e), and it is straightforward to show that

this action is trivial on H ⊂ NGH. Hence it descends to an action of WGH which
is surely compatible with p[H, F ].

Notation 3.13. We write E[H, F ] for the homotopy co�bre of the WGH-equivari-
ant map p[H, F ]. In particular, E[H, F ] is a WGH-spectrum.

Remark 3.14 (The p-chain spectral sequence). Let G be a group and assume
that either

(1) G satis�es (MFin , Tr ), and for every maximal �nite subgroup F ⊂ G we have
NGF = F , or

(2) G is torsion-free, satis�es (MCyc, Tr ), and for every maximal cyclic subgroup
C ⊂ G we have NGC = C.

Examples of (1) are

• groups G that are an extension 1 → Zn → G → H → 1 where H is �nite
and the conjugation action of H on Zn is free outside 0 ∈ Zn (see [LS00,
Lemma 6.1 and Lemma 6.3]),

• Fuchsian groups (see [LS00, Lemma 4.5]), and

• one-relator groups (cf. [LS77, Prop. 5.17, Prop. 5.18 and Prop. 5.19]),

whereas (2) holds, for instance, for torsion-free word-hyperbolic groups, see Exam-
ple 3.22.
We denote by M in the situation of (1) a complete system of representatives of

the conjugacy classes of maximal �nite subgroups, or of maximal cyclic subgroups
in the situation of (2). Then, Theorem 3.16 will yield an exact sequence

. . .→
⊕

H∈M

πn

(
EH−

+ ∧Or(H) E
(
GH(H/−)

))
→
⊕

H∈M

πn

(
E
(
GH(H/H

))
→ H G

n

(
EG→ EF (G);E

)
→
⊕

H∈M

πn−1

(
EH−

+ ∧Or(H) E
(
GH(H/−)

))
→ . . . ,

where F = Fin in the situation of (1), and F = Cyc in the situation of (2). This is
precisely what one gets from the p-chain spectral sequence, cf. [DL03, Cor. 3.13].

Lemma 3.15. Let H ⊂ G be an inclusion of groups and π : NGH � WGH the

projection. For a free WGH-CW -complex X and a family F of subgroups of NGH
consider the projection q : π∗X × EF (NGH) → π∗X to the �rst factor. Then for

every n ∈ Z there is an isomorphism

H NGH
n (q;E)

∼=−→ HWGH
n

(
X;E[H, F ]

)
which is natural in X.
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Proof. We will show below that if Z is an NGH-CW -complex, then there are iso-
morphisms(

π∗X × Z
)−
+
∧Or(NGH) E

(
GNGH(NGH/−)

)
f1−→ X+ ∧WGH

((
π∗(WGH)× Z

)−
+
∧Or(NGH) E

(
GNGH(NGH/−)

))
f2−→ X+ ∧WGH

((
NGH ×H resH

NGH Z
)−
+
∧Or(NGH) E

(
GNGH(NGH/−)

))
f3−→ X+ ∧WGH

((
resH

NGH Z
)−
+
∧Or(H) resOr(H)

Or(NGH) E
(
GNGH(NGH/−)

))
of spectra which are natural in Z and X. Thus, taking Z to be EF (NGH) and pt
yields a map from the long exact homology sequence

. . .→ H NGH
n

(
π∗X × EF (NGH);E

)
→H NGH

n (π∗X;E)→ H NGH
n (q;E)

→ H NGH
n−1

(
π∗X × EF (NGH);E

)
→ . . .

to the sequence

...

��

HWGH
n

(
X;
(
resH

NGH EF (NGH)
)−
+
∧Or(H) resOr(H)

Or(NGH) E
(
GNGH(NGH/−)

))
��

HWGH
n

(
X; pt−+ ∧Or(H) resOr(H)

Or(NGH) E
(
GNGH(NGH/−)

))
��

HWGH
n

(
X;E[H, F ]

)
��

HWGH
n−1

(
X;
(
resH

NGH EF (NGH)
)−
+
∧Or(H) resOr(H)

Or(NGH) E
(
GNGH(NGH/−)

))
��

...

which is exact by construction of E[H, F ], and, according to the �ve lemma, the
maps H NGH

n (q;E)→ HWGH
n

(
X;E[H, F ]

)
must be isomorphisms.

It remains to show that there are maps f1, f2 and f3 as above which are isomor-
phisms of spectra. Starting with f1, we �rst have to establish suitable WGH-actions
on X and

(
π∗(WGH) × Z

)−
+
∧Or(NGH) E

(
GNGH(NGH/−)

)
. The former becomes

a right WGH-space by setting x · w := w−1x, and the latter a left WGH-spectrum
as follows. For w ∈ WGH, consider the homeomorphism ηw :

(
π∗(WGH)× Z

)−
+
→(

π∗(WGH)×Z
)−
+
of Or(NGH)-spaces which comes from the NGH-homeomorphism

(w′, z) 7→ (w′w−1, z). Then w acts as the automorphism ηw ∧ id of spectra. Now
we de�ne f1 as the map that is given by

(x, z) ∧ e 7→ x ∧ (1, z) ∧ e.
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3 Constructing Models for EVCyc(G) from EFin(G)

Then f1 is indeed an isomorphism, its inverse being given by x ∧ (w, z) ∧ e 7→
(wx, z) ∧ e.

As for the de�nition of f2, let φ : π∗(WGH) × Z → NGH ×H resH
NGH Z be the

NGH-homeomorphism (
π(n), z

)
7→ [n, n−1z]

of Lemma 1.7 (2). The induced map φ ∧ id :
(
π∗(WGH)× Z

)−
+
∧Or(NGH) E(. . .)→(

NGH ×H resH
NGH Z

)−
+
∧Or(NGH) E(. . .) is an isomorphism of spectra. Next, we

de�ne a left WGH-action on the target of φ ∧ id by requiring that π(n0) ∈ WGH
acts as the automorphism which makes the following diagram commute:

(
π∗(WGH)× Z

)−
+
∧Or(NGH) E(. . .)

∼=ηπ(n0)∧id

��

φ∧id

∼=
//
(
NGH ×H resH

NGH Z
)−
+
∧Or(NGH) E(. . .)

��
�
�
�

(
π∗(WGH)× Z

)−
+
∧Or(NGH) E(. . .)

φ∧id

∼=
//
(
NGH ×H resH

NGH Z
)−
+
∧Or(NGH) E(. . .)

Explicitly, π(n0) · [n, z] ∧ e := [nn−1
0 , n0z] ∧ e. We eventually obtain a well-de�ned

map f2 := id∧φ∧ id, which is an isomorphism with inverse given by x∧ [n, z]∧ e 7→
x ∧

(
π(n), nz

)
∧ e.

Finally, in order to get f3, let Ψ:
(
NGH ×H resH

NGH Z
)−
+
∧Or(NGH) E(. . .) →(

resH
NGH Z

)−
+
∧Or(H) resOr(H)

Or(NGH) E(. . .) be the isomorphism of spectra which comes

from the homeomorphism
(
NGH ×H resH

NGH Z
)−
+
∼= indOr(NGH)

Or(H)

(
resOr(H)

Or(NGH) Z
)−
+
of

Or(NGH)-spaces (see Lemma 1.12) and Lemma 1.11 (2). This means that Ψ is
given by

[n, z] ∧ e 7→ z ∧E
(
GNGH(rn)

)
(e).

We introduce a left WGH-action on the target of Ψ in the same way we did when
de�ning E[H, F ], see page 35. That is, π(n0) · z ∧ e := n0z ∧ resE(ρn−1

0
)(e). It

is then immediate that Ψ is compatible with the WGH-actions on its source and
target, so f3 := id∧Ψ is a well-de�ned isomorphism of spectra. The inverse of f3 is
given by x ∧ z ∧ e 7→ x ∧ [1, z] ∧ e.

Theorem 3.16. Let G be a group which satis�es (MFin , Tr ) or (MVCyc, Fin).
We denote by M a complete system of representatives of the conjugacy classes of

maximal �nite subgroups F ⊂ G or of in�nite maximal virtually cyclic subgroups

V ⊂ G, respectively. Then for every n ∈ Z there are natural isomorphisms

H G
n

(
EG→ EFin(G);E

) ∼=−→
⊕
F∈M

HWGF
n

(
EWGF ;E[F, Tr ]

)
or

H G
n

(
EFin(G)→ EVCyc(G);E

) ∼=−→
⊕
V ∈M

HWGV
n

(
EWGV ;E[V, Fin ]

)
respectively.
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3.2 Computation of the Relative Homology Groups

Proof. We carry out the proof only when G satis�es (MVCyc, Fin) because the other
case works analogously. Using the model for EVCyc(G) of Corollary 3.6, it follows
from the properties of an equivariant homology theory that

H G
n

(
EFin(G)→ EVCyc(G);E

) ∼=−→
⊕
V ∈M

H NGV
n (fV : ENGV → EWGV ;E)

are naturally isomorphic. Since, by Lemma 3.5, the diagonal NGV -space EWGV ×
ENGV is a model for ENGV , the projection p : EWGV × ENGV → ENGV is an
NGV -homotopy equivalence. Hence we get a natural isomorphism

H NGV
n (fV ◦ p;E)

∼=−→ H NGV
n (fV ;E),

cf. [Lüc89, Lemma 4.17]. Now fV ◦ p, by the universal property of EWGV , must
be NGV -homotopic to the projection q : EWGV × ENGV → EWGV , so that an
application of Lemma 3.15 �nishes the proof.

For the following, which has already been stated in [LJP05], let R be an associative
ring with unit and recall that the n-th Whitehead group of RG is WhR

n (G) :=
H G

n (EG → pt;KR). If R = Z, then WhZ
1 (G) = Wh(G) is the classical Whitehead

group.

Corollary 3.17. Let G be a torsion-free group satisfying (MCyc, Tr ) such that

NGC = C holds for every maximal cyclic subgroup C ⊂ G. If M is a complete

system of representatives of the conjugacy classes of maximal cyclic subgroups of G,

then for all n ∈ N we have

H G
n

(
EG→ EVCyc(G);KR

) ∼=−→
⊕
C∈M

WhR
n (C).

In particular, if G is a torsion-free word-hyperbolic group, then

WhR
n (G) ∼=

⊕
C∈M

WhR
n (C).

Proof. The �rst statement follows from Theorem 3.16 since H
{1}
n

(
pt;KR[C; Tr ]

)
=

πn

(
KR[C; Tr ]

)
, while the latter is equal to WhR

n (C) by de�nition, due to the as-
sumptions on G.

The addendum is true since, by recent work of Bartels-Lück-Reich ([BLR]), word-
hyperbolic groups are known to satisfy the Farrell-Jones conjecture for algebraic K-
theory. It has already been proved in [BR05, Theorem 1.4] that this conjecture holds
for fundamental groups of Riemannian manifolds with strictly negative sectional
curvature.
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3 Constructing Models for EVCyc(G) from EFin(G)

3.3 A Class of Groups

Let G be a countable group all of whose non-virtually cyclic subgroups contain a
copy of the free group Z ∗ Z on two generators. In [LJP05, Prop. 6] it is shown
that G then satis�es (MVCyc, Fin), while every in�nite maximal virtually cyclic
subgroup of G is self-normalizing.
We want to enlarge the class of groups considered in [Lüc05, Thm. 8.11] to incor-

porate groups with these properties.

Theorem 3.18. Suppose that the countable group G satis�es the following two

conditions:

• Every in�nite cyclic subgroup C ⊂ G has �nite index
[
CG(C) : C

]
in its

centralizer.

• Every ascending chain H1 ⊂ H2 ⊂ . . . of �nite subgroups of G becomes sta-

tionary, i.e. there is an n0 ∈ N such that Hn = Hn0 for all n ≥ n0.

Then every in�nite virtually cyclic subgroup V ⊂ G is contained in a unique maximal

virtually cyclic subgroup Vmax ⊂ G. Moreover, Vmax is equal to its normalizer

NG(Vmax), and
Vmax =

⋃
C⊂V

NG(C),

where the union is over all in�nite cyclic normal subgroups C of V .

Proof. We �x an in�nite virtually cyclic subgroup V ⊂ G and denote by {Cn}n∈N
the collection of its in�nite cyclic normal subgroups. Note that since every index
[V : Cn] is �nite, [V : C1 ∩ . . . ∩ Cn] must also be �nite for n ∈ N. Thus, if we set
Zn := C1 ∩ . . . ∩ Cn, then Zn ⊂ Cn, and Z1 ⊃ Z2 ⊃ . . . is a descending chain of
in�nite cyclic normal subgroups of V .
If C ′ ⊂ C are two in�nite cyclic subgroups of G, then NG(C) ⊂ NG(C ′) because

if C = 〈c〉, then C ′ = 〈ck〉 for some k ∈ N, and for g ∈ NG(C) we have gckg−1 =
(gcg−1)k = c±k, hence g ∈ NG(C ′). It follows in our situation that NG(Cn) ⊂
NG(Zn), which implies

∞⋃
n=1

NG(Cn) =
∞⋃

n=1

NG(Zn). (3.19)

Furthermore, NG(Z1) ⊂ NG(Z2) ⊂ . . . is an ascending chain, which becomes sta-
tionary by the following argument. Namely, we can estimate[

NG(Zn) : NG(Z1)
]
≤
[
NG(Zn) : CG(Z1)

]
=
[
NG(Zn) : CG(Zn)

]
·
[
CG(Zn) : CG(Z1)

]
,

and the �rst factor on the right is not greater than 2 since there is an injection
NG(Zn)/CG(Zn) ↪→ aut(Zn), while the second does not exceed an appropriate con-
stant as we will show below. Summarizing, we see that for a su�ciently large n0 ∈ N
the right hand side of (3.19) is equal to NG(Zn0) =: Vmax.
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3.3 A Class of Groups

With this de�nition, it is obvious that Vmax is virtually cyclic since the �nite index
subgroup CG(Zn0) has got the same property due to the assumption imposed on G.
In addition, V ⊂ Vmax since Zn0 ⊂ V is normal. Now suppose W ⊂ G is an in�nite
virtually cyclic subgroup such that V ⊂W . We claim that Vmax = Wmax. In order
to prove this, let ZW ⊂ W be in�nite cyclic normal such that Wmax = NG(ZW ).
Then ZW ∩ V is a �nite index subgroup of W and so must again be in�nite cyclic
normal. Thus, there is a ZV ⊂ ZW ∩ V such that Vmax = NG(ZV ), compare the
above construction. Since Wmax = NG(ZV ) as well, the claim follows. From this
we can deduce immediately that Vmax is indeed maximal among virtually cyclic
subgroups of G containing V and that it is uniquely determined by this property.
Finally, we will show that NG(Vmax) is virtually cyclic, so that it is equal to Vmax.

Let C ⊂ Vmax be in�nite cyclic and note that Vmax contains only �nitely many
subgroups of index [Vmax : C]. This implies that the group D which we de�ne as
the intersection of all conjugates of C in NG(Vmax) has �nite index in Vmax and
is therefore in�nite cyclic as well. Obviously, D is normal in NG(Vmax), so that
NG(Vmax) ⊂ NG(D) holds, the latter being virtually cyclic since CG(D) is so by
assumption.
It remains to prove that

{[
CG(Zn) : CG(Z1)

] ∣∣n ∈ N
}
possesses an upper bound

in N. Let Qn := CG(Zn)/Zn. Then the Hochschild-Serre spectral sequence which
belongs to the group extension 1 → Zn → CG(Zn) → Qn → 1 yields an exact
sequence

H2

(
Qn;H0(Zn)

)
→ H0

(
Qn;H1(Zn)

)
→ H1

(
CG(Zn)

)
→ H1

(
Qn;H0(Zn)

)
→ 1

for every n ∈ N, cf. [Bro82, Cor. VII.6.4]. Here, the action of Qn on H∗(Zn) is
induced from conjugation, hence it is trivial as Zn is central in CG(Zn). For this rea-
son, H1

(
Qn;H0(Zn)

)
is just the abelianization of Qn and thus �nite. Furthermore,

H0

(
Qn;H1(Zn)

) ∼= H1(Zn) ∼= Zn while H2

(
Qn;H0(Zn)

)
is a torsion group, whence

it follows that we get an injection Zn ↪→ H1

(
CG(Zn)

)
with �nite cokernel. In partic-

ular, if we denote by Tn the torsion subgroup of H1

(
CG(Zn)

)
, then H1

(
CG(Zn)

)
/Tn

is in�nite cyclic. Let pn : CG(Zn) → CG(Zn)ab ∼= H1

(
CG(Zn)

)
→ H1

(
CG(Zn)

)
/Tn

be the canonical projection, and let cn ∈ CG(Zn) be such that p(cn) is a generator.
Consider the commutative diagram

1 // ker(p1)

��

// CG(Z1)

��

p1
// H1

(
CG(Z1)

)
/T1

��

// 1

1 // ker(p2)

��

// CG(Z2)

��

p2
// H1

(
CG(Z2)

)
/T2

��

// 1

...
...

...

which has exact rows and in which all the vertical arrows are inclusions. Since all
the ker(pn) are certainly �nite,

⋃∞
n=1 ker(pn) is again �nite, say of order a ∈ N, by
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3 Constructing Models for EVCyc(G) from EFin(G)

the assumption on G. Then in particular
[
ker(pn) : ker(p1)

]
≤ a for all n ∈ N,

so
{[

CG(Zn) : CG(Z1)
] ∣∣n ∈ N

}
will be bounded if we can show that the index of

H1

(
CG(Z1)

)
/T1 in H1

(
CG(Zn)

)
/Tn is less than a constant which does not depend

on n ∈ N.
In order to construct such a constant, let rn ∈ Z be such that p1(c1) is mapped

to pn(cn)rn under the inclusions in the above diagram. Then, by exactness, there is
a kn ∈ ker(pn) such that c1 = kncrn

n . Since the order of ker(pn) divides a, the group
aut
(
ker(pn)

)
contains at most a! elements, so that any φn ∈ aut

(
ker(pn)

)
satis�es

φa!
n = id. Setting d := a · a!, we thus get for such a φn the identity

d−1∏
i=0

φi
n(k) =

a∏
j=1

j·a!−1∏
i=(j−1)·a!

φi
n(k) =

(
a!−1∏
i=0

φi
n(k)

)a

= 1

for all k ∈ ker(pn). Specializing to φn(k) := crn
n kc−rn

n yields

cd
1 = (kncrn

n )d =

(
d−1∏
i=0

φi
n(kn)

)
· crnd

n = crnd
n .

If z1 is a generator of Z1, then there exists an s ∈ Z such that p1(z1) = p1(c1)s. This
means z−1

1 cs
1 ∈ ker(p1), hence zd

1 = csd
1 . Altogether this implies that if dZ1 denotes

the cyclic group generated by zd
1 , we have dZ1 = 〈crnds

n 〉 and thus cn ∈ CG(dZ1).
We can �nally de�ne b :=

[
CG(dZ1) : dZ1

]
, which is �nite by assumption and

constitutes the required constant. This is due to the fact that cb
n ∈ dZ1, so there is a

tn ∈ Z such that cb
n = crndstn

n . Hence rn divides b, and the index of H1

(
CG(Z1)

)
/T1

in H1

(
CG(Zn)

)
/Tn equals |rn| by construction.

Lemma 3.20. Let G be a group with the property that every non-virtually cyclic

subgroup of G contains a copy of Z ∗ Z. Then G satis�es the conditions of Theo-

rem 3.18.

Proof. It is obvious that any ascending chain H1 ⊂ H2 ⊂ . . . of �nite subgroups
of G must become stationary since, otherwise,

⋃
n Hn would be an in�nite torsion

subgroup of G, contradicting the assumptions on G. To prove the �rst condition of
Theorem 3.18, let C ⊂ G be in�nite cyclic. Its centralizer CG(C) is virtually cyclic,
provided it does not contain Z ∗ Z. Assuming it does, then Z ∗ Z ∩ C = {1} as
Z ∗ Z does not commute with any of its in�nite cyclic subgroups. Hence one of the
generators of Z ∗ Z together with a generator of C generate a copy of Z⊕ Z inside
G, which contradicts the assumptions imposed on G.

Remark 3.21. It follows from the Kurosh subgroup theorem (see e.g. [Ser80,
Thm. I.5.14]) that the class of groups satisfying the conditions of Theorem 3.18
is closed under arbitrary free products, whereas this is not the case for the class of
groups considered in [Lüc05, Thm. 8.11].
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3.3 A Class of Groups

Example 3.22 (Word-hyperbolic groups). Any word-hyperbolic group G sat-
is�es the conditions of Theorem 3.18. The �rst is satis�ed by [BH99, Cor. 3.10(2)].
Furthermore, G contains only �nitely many conjugacy classes of �nite subgroups.
This follows from Lemma 2.19 in conjunction with the fact that the second barycen-
tric subdivision of the Rips complex Pr(G) for a su�ciently large r is a �nite model
for EG, see Theorem 2.9.
In this situation, Corollary 3.6 implies that a model for EVCyc(G) can be obtained

from a model for EG via the pushout∐
V ∈M

G×V EV

`
V prV

��

i // EG

��∐
V ∈M

G/V // EVCyc(G)

(3.23)

where prV is induced from the projection EV → pt. Recall there are one-dimen-
sional models for EV (see page 19). Hence the existence of an n-dimensional model
for EG implies the existence of a model for EVCyc(G) of dimension max{n, 2}.
However, if G is not virtually cyclic, then it contains in�nitely many conjugacy

classes of maximal in�nite virtually cyclic subgroups, see [Gro87, Cor. 5.1.B], and
thus no model for EVCyc(G) can be of �nite type due to Lemma 2.19.

Example 3.24 (Free groups). As a special case of Example 3.22, consider a free
group G. We remind the reader that the Cayley graph Γ(G, S) (see section 2.1.2)
for the canonical choice of a generating set S of G is a tree on which G acts freely, so
it is a one-dimensional model for EG = EG. We have already seen in Example 3.22
that then a two-dimensional model for EVCyc(G) exists.
This is, at the same time, a model of minimal dimension. To show this, we may

assume that G be �nitely generated because for any subgroup H ⊂ G a model
for EVCyc(G) yields a model for EVCyc(H) by restriction. Now we divide out the
G-action in (3.23) and consider the Mayer-Vietoris sequence

. . .→ 0→ H2

(
G\EVCyc(G)

)
→
⊕
C∈M

H1(C\EC)→ H1(G\EG)→ . . .

which belongs to the resulting pushout. Note that all the spaces C\EC are ho-
motopy equivalent to S1, while G\EG is homotopy equivalent to

∨r
i=1 S1, where

r <∞ denotes the rank of G. Thus, H1(G\EG) ∼=
⊕r

i=1 H1(S1), and since the set
M of representatives of the conjugacy classes of in�nite cyclic subgroups C ⊂ G
is in�nite, we conclude that H2

(
G\EVCyc(G)

)
is free abelian of in�nite rank. The

claim follows.
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4 Amenable Actions

The notion of an amenable group (which is a group carrying an invariant mean)
can be generalized to the notion of an amenable action of a group. There are two
di�erent versions in the literature, one introduced by Greenleaf (see [Gre69]), the
other by Zimmer (see e.g. [Zim77]). For a comparison of the two as well as for a
thorough survey on the matter, we refer to [ADR00].

In this chapter, we concentrate on the latter de�nition and explain in how far
there is a relation to the Baum-Connes and Farrell-Jones isomorphism conjectures.
Moreover, we prove some stability properties of amenable actions and show that
any G-CW -complex with amenable isotropy groups is amenable as a G-space.

We stress that, in this chapter, groups are supposed to be countable and discrete,
and spaces are Hausdor�.

4.1 De�nition of Amenable Actions

Let us recall some notions from measure theory. Let X be a space equipped with
its Borel σ-algebra B. A Radon measure on X is a measure µ : B → [0,∞] that
is locally �nite, i.e. every point of X has an open neighbourhood of �nite measure,
and inner regular, i.e. for every B ∈ B we have

µ(B) = sup {µ(K) | K ⊂ B, K ⊂ X compact}.

Notation 4.1. We denote by prob(X) the set of all Radon probability measures
on X. If, moreover, X carries an action of a group G, we can de�ne a G-action on
prob(X) by setting

(g · µ)(A) := µ(g−1A)

for A ∈ B.

A signed measure on X is a σ-additive map µ : B→ [−∞,∞] such that µ(∅) = 0
and not both∞ and −∞ are contained in the image of µ. One gets obvious examples
of signed measures by taking the di�erence µ−λ of two ordinary measures µ and λ,
one of which has to be �nite for this to make sense. As it turns out, these are at the
same time the only examples, which is a consequence of the Hahn decomposition
theorem (cf. [Coh80, Thm. 4.14 and Cor. 4.15]): any signed measure µ on X can be
expressed as µ = µ+ − µ−, where µ+ and µ− are ordinary measures on X, at least
one of them being �nite. Moreover, µ+ and µ− are uniquely determined by µ. The
variation of µ is de�ned to be the measure |µ| := µ+ + µ−.
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4.1 De�nition of Amenable Actions

Now consider the space M(X) of all �nite signed measures on X. We can impose
a norm on it by setting ‖µ‖1 := |µ|(X), which turns M(X) into a Banach space.
If X is locally compact, the Riesz representation theorem states that the Banach
subspace MR(X) of all µ ∈M(X) such that µ+ and µ− are Radon measures is the
dual of C0(X), cf. [Coh80, Thm. 7.2.8]. To be more precise, there is an isometric
isomorphism

MR(X)
∼=−→ C∗

0 (X), µ 7→
(

f 7→
∫

X
f dµ

)
.

If X is even countable and discrete, any µ ∈ prob(X) ⊂ MR(X) can and will be
regarded as a map X → [0, 1] such that

∑
x∈X µ(x) = 1. In this case it is not hard

to show that the topologies of pointwise, weak-∗ and norm convergence on prob(X)
all coincide.

De�nition 4.2 (Amenable action). Let X be a G-space. A sequence (µn)n∈N of
continuous maps X → prob(G) is called an approximate invariant continuous mean

for the given action (a.i.c.m. in short) if

∀g ∈ G ∀K ⊂ X compact: sup
x∈X

∥∥g · µx
n − µgx

n

∥∥
1

n→∞−−−→ 0,

where we write µx
n for the probability measure µn(x) on G.

An action G y X is called amenable if it admits an approximate invariant con-
tinuous mean.

This is the de�nition of [ADR00, Ex. 2.2.14(2)]. However, there only amenable
actions on locally compact, second countable spaces (e.g. manifolds) are considered,
and not all results carry over directly to amenable actions on arbitrary spaces. Con-
sider instead the following property a space X may or may not have:

(∗) There exist compact subsets Kn ⊂ X for n ∈ N such that X =
⋃

n∈N Kn

and every compact K ⊂ X is contained in some Kn.

For instance, any locally compact, second countable space has this property, as fol-
lows from [Sch69, Satz I.7.8.2]. Another example are CW -complexes with countably
many cells.

Lemma 4.3 (Characterization of amenability for spaces satisfying (∗)).
Consider the following two statements about a G-space X:

(1) G y X is amenable.

(2) For every �nite subset F ⊂ G, compact subset K ⊂ X and ε > 0, there is a

map µ : X → prob(G) such that

sup
x∈K

∥∥g · µx − µgx
∥∥

1
≤ ε

holds for all g ∈ F .
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4 Amenable Actions

Then (1) implies (2). If X satis�es (∗), the converse is also true.

In particular, the action G y pt is amenable if and only if G is an amenable

group.

Proof. This is straightforward. For the addendum, note that if X = pt, then (2) is
nothing but Reiter's condition (P1), which characterizes the amenability of a group,
see [Pat88, Thm. 4.4].

4.2 Relations to Assembly Maps

4.2.1 Baum-Connes Assembly Map

In this section, we want to explain how one can prove that for a word-hyperbolic
group G the Baum-Connes assembly map (1.21) is injective, namely by constructing
a compact amenable G-space.

First of all, recall the de�nition of word-hyperbolicity of groups in De�nition 2.7.
For doing concrete calculations, it is, however, often more convenient to consider an
equivalent notion. So let G be a �nitely generated group and d the word metric on
G with respect to some �nite symmetric subset that generates G. Then we denote
by

(x · y) :=
1
2
(
d(x, 1) + d(y, 1)− d(x, y)

)
the Gromov product of x, y ∈ G. If, for instance, the Cayley graph Γ(G, S) is a tree,
then (x · y) equals the distance from 1 ∈ G ⊂ Γ(G, S) to the geodesic joining x and
y in Γ(G, S). It follows from [BH99, Prop. 1.22]:

Lemma 4.4. A �nitely generated group G is word-hyperbolic if and only if there is

a δ ≥ 0 such that

(x · y) ≥ min
{
(x · z), (y · z)

}
− δ

holds for all x, y, z ∈ G.

In the following we �x a word-hyperbolic group G and a δ ≥ 0 as in Lemma 4.4.
We say that a sequence (xi) in G converges at in�nity if (xi · xj)→∞ as i, j →∞,
and that two such sequences (xi) and (yi) are equivalent if (xi ·yj)→∞ as i, j →∞.
The Gromov boundary ∂G of G is then de�ned to be the set of equivalence classes
of sequences in G that converge at in�nity. If an a ∈ ∂G is represented by (xi),
then we write a = lim xi.

One can extend the Gromov product to a, b ∈ G ∪ ∂G by

(a · b) := sup
{

lim inf
i,j→∞

(xi · yj)
∣∣ lim xi = a, lim yi = b

}
,

where it is understood that an element of G is represented by the constant sequence
at this element.
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4.2 Relations to Assembly Maps

Now, keeping in mind the invariance of the word metric d under left translation, it
is easy to see that for x, y, g ∈ G we have the inequality

∣∣(x ·y)− (gx ·gy)
∣∣ ≤ d(g, 1).

In particular, it makes sense to de�ne a G-action on ∂G by setting

g · a := lim gxi

for any sequence (xi) in G such that lim xi = a.
Let Pr(G) be the Rips complex of G. Consider the space Pr(G) := Pr(G) ∪ ∂G

equipped with the topology in which the neighbourhoods of an a ∈ ∂G are the sets
UR(a) for R > 0, where UR(a) consists of all elements x ∈ G ∪ ∂G ⊂ Pr(G) ∪ ∂G
such that (a · x) ≥ R, together with the simplices of Pr(G) that they span.

Proposition 4.5. With the topology de�ned above, Pr(G) is a compact metrizable

space that contains Pr(G) as a dense open subset.

Proof. This is intrinsic in [Gro87] (see also [BH99, III.H.3.18(4)]).

Let a ∈ ∂G, k ∈ N and denote by I(a, k) the set of all geodesics γ : [0,∞[→ Pr(G)
in the 1-skeleton of Pr(G) such that d

(
γ(0), 1

)
< k and lim γ(i) = a. Moreover, for

l > 0 let χ(a, k, l) be the characteristic function on
⋃

γ∈I(a,k) γ
(
[l, 2l]

)
. Finally, we

de�ne for n ∈ N Borel maps µn : ∂G→ prob(G) by

µa
n(g) :=

1√
n

∑
k<

√
n

χ(a, k, n)(g).

Then it is carried out in [ADR00, App. B] that the collection of these µn satis�es∥∥µa
n

∥∥
1
> 0 for a ∈ ∂G and

∀g ∈ G : sup
a∈∂G

∥∥g · µa
n − µga

n

∥∥
1∥∥µa

n

∥∥
1

n→∞−−−→ 0,

which implies by [ADR00, Cor. 3.3.8] that G y ∂G is an amenable action. This is
relevant because of the following result taken from [Hig00, Thm. 1.1]:

Theorem 4.6. If the group G acts amenably on some compact space, then the

Baum-Connes assembly map (1.21) for G is split injective.

More recently, it has been shown that the Baum-Connes assembly map is actually
an isomorphism for word-hyperbolic groups, see [MY02].

4.2.2 Assembly Maps in algebraic K- and L-Theory

Given a group G, the Baum-Connes assembly map can also be shown to be injective
provided that EFin(G) is a �nite G-CW -complex and has a suitable metrizable
compacti�cation EFin(G) to which the G-action extends, cf. [Hig00, Thm. 1.2].
Here �compacti�cation� means that EFin(G) is compact and contains EFin(G) as a
dense open subset.
A similar statement can be made in the context of algebraic K- and L-theory:
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4 Amenable Actions

Theorem 4.7. Let G be a group having a �nite model for EFin(G) which admits a

metrizable compacti�cation EFin(G) to which the G-action extends. Assume that

• EFin(G)
H

is contractible and EFin(G)H ⊂ EFin(G)
H

is dense for any �nite

subgroup H ⊂ G, and

• every compact K ⊂ EFin(G) becomes small at in�nity, i.e. for every neigh-

bourhood U ⊂ EFin(G) of a ∈ EFin(G) \ EFin(G) there exists a neighbourhood

V ⊂ EFin(G) of a such that gK ∩ V 6= ∅ implies gK ⊂ U for g ∈ G.

Then, for any associative ring R with unit, the projection EFin(G)→ pt induces an
assembly map

H G
n

(
EFin(G);KR

)
→ H G

n (pt;KR) = Kn(RG)

in algebraic K-theory which is split injective. Moreover, the according assembly map

in algebraic L-theory is split injective provided that for every �nite subgroup H ⊂ G
one has K−i(RH) = 0 for su�ciently large i.

Proof. This is proved in [Ros04] and [Ros06], generalizing a theorem of Carlsson-
Pederson in [CP95].

The purpose of [RS05] is to show that if G is word-hyperbolic and one takes the
Rips complex Pr(G) as a model for EFin(G) (see Theorem 2.9), together with its
compacti�cation considered in Proposition 4.5, then the assumptions of Theorem 4.7
will be satis�ed. We mention also that, lately, the Farrell-Jones assembly map 1.22
for algebraic K-theory has been shown to be an isomorphism for word-hyperbolic
groups, see [BLR].
We �nally refer to [BR06], where the authors generalize results of [Ros04] and

are in that way able to prove the claim of Theorem 4.7 for discrete subgroups of
virtually connected Lie groups, too.

4.3 Properties of Amenable Actions

Some of the stability properties of amenable actions are collected in this section.
The more or less straightforward proofs of these results are included for the sake of
completeness.

Proposition 4.8. For G-spaces X and Y , the following holds:

(1) If G y X is amenable and A ⊂ X is G-invariant, then G y A is also

amenable.

(2) If f : X → Y is a G-equivariant map and G y Y is amenable, then G y X
is also amenable.

In particular, if G is an amenable group, then G y X is always amenable.

(3) If G y X is amenable, then so is G y X × Y , where G acts diagonally.
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4.3 Properties of Amenable Actions

Proof. For the addendum in (2), one takes Y = pt and uses Lemma 4.3. Everything
else is completely obvious.

Theorem 4.9 (Amenability under induction and restriction). Let H ⊂ G
be an inclusion of groups. Then the following holds:

(1) (Induction)

The H-space X is amenable if and only if the G-space G×H X is amenable.

(2) (Restriction)

If the G-space Y is amenable, then so is the H-space resH
G Y .

Proof. In order to prove (1), we �rst choose a section s : H\G→ G of the projection.
Assume now that G y G ×H X is amenable, and that an a.i.c.m. is given by(
µn : G ×H X → prob(G)

)
n∈N. With the help of the H-equivariant embedding

i : X → G×H X, x 7→ [1, x], we de�ne for n ∈ N maps

νn : X → prob(H), x 7→
(
h 7→

∑
α∈H\G

µi(x)
n

(
hs(α)

))

which are indeed continuous due to the estimate
∥∥νx

n−νy
n

∥∥
1
≤
∥∥µi(x)

n −µ
i(y)
n

∥∥
1
. Since

for h ∈ H and a compact K ⊂ X we have

sup
x∈K

∥∥h · νx
n − νhx

n

∥∥
1

= sup
y∈i(K)

∑
h′∈H

∣∣∣∣ ∑
α∈H\G

(
µy

n

(
h−1h′s(α)

)
− µhy

n

(
h′s(α)

))∣∣∣∣
≤ sup

y∈i(K)

∥∥h · µy
n − µhy

n

∥∥
1

and the latter tends to 0 as n→∞, the H-space X is amenable.

To show the converse, let
(
µn : X → prob(H)

)
n∈N be an a.i.c.m. for H y X.

Consider the space G/H ×X with the G-action g · (α, x) :=
(
gα, s(gα)−1gs(α)x

)
.

We de�ne for each n ∈ N maps νn : G/H ×X → prob(G) by

(α, x) 7→ ν(α,x)
n :=

{
s(α) · µx

n on s(α)H ⊂ G,

0 on G \ s(α)H.

Now let g ∈ G and L ⊂ G/H ×X be compact. We can choose a �nite F ⊂ G/H
and a compact K ⊂ X such that L ⊂ F × X. For any ε > 0, there is an N ∈ N
with the property

∀n ≥ N ∀α ∈ F : sup
x∈K

∥∥s(gα)−1gs(α)µx
n − µs(gα)−1gs(α)x

n

∥∥
1
≤ ε,

49



4 Amenable Actions

which implies that for n ≥ N the following holds:

sup
y∈L

∥∥g · νy
n − νgy

n

∥∥
1

≤ sup
α∈F

sup
x∈K

∥∥g · ν(α,x)
n − νg(α,x)

n

∥∥
1

= sup
α∈F

sup
x∈K

∑
g′∈gs(α)H

=s(gα)H

∣∣s(α) · µx
n(g−1g′)− s(gα) · µs(gα)−1gs(α)x

n (g′)
∣∣

= sup
α∈F

sup
x∈K

∥∥s(gα)−1gs(α) · µx
n − µs(gα)−1gs(α)x

n

∥∥
1

≤ ε.

The assertion follows as by Lemma 1.7 (1) the G-space G/H ×X de�ned above is
G-homeomorphic to G×H X.

It remains to show (2). In this case, let G/H×Y be the G-space with the diagonal
action, which according to Lemma 1.7 (2) is G-homoeomorphic to G×H resH

G Y . It
is amenable by Proposition 4.8 (3) since the same holds for Y . Hence resH

G Y is an
amenable H-space as follows from (1).

Setting X = pt in Theorem 4.9 (1) yields:

Corollary 4.10 (Amenable G-sets). Let H ⊂ G be an inclusion of groups. Then

G y G/H is amenable if and only if H is an amenable group.

Recall that the class of amenable groups is closed with respect to forming directed
unions and group extensions. The following two propositions show that similar
statements hold when dealing with amenable actions.

Proposition 4.11 (Amenability and colimits). Let X be a G-space satisfying

(∗). Assume that G =
⋃

i∈I Gi is a directed union of subgroups such that all Gi y X
are amenable. Then G y X is also amenable.

Proof. We prove the proposition by verifying (2) of Lemma 4.3. So let a �nite subset
F ⊂ G, a compact K ⊂ X and an ε > 0 be given. We can choose an i ∈ I such
that F ⊂ Gi, and a map ν : X → prob(Gi) such that

∀g ∈ F : sup
x∈K

∥∥g · νx − νgx
∥∥

1
≤ ε.

Then µ : X → prob(G) de�ned by

x 7→ µx :=

{
νx on Gi,

0 on G \Gi

will certainly have the desired property.
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4.3 Properties of Amenable Actions

Proposition 4.12 (Amenability and group extensions). Let X be a G-space.

We denote by A := {g ∈ G | gx = x for all x ∈ X} the kernel of the action and set

Q := G/A. Consider the following statements:

(1) G y X is amenable.

(2) A is an amenable group and Q y X is amenable.

Then (1) implies (2). If X satis�es (∗), the converse is also true.

Proof. Let p : G � Q be the projection and s : Q → G a set-theoretic map such
that p ◦ s = idQ. We will �rst show (1) ⇒ (2). If G y X is amenable, then so
is A y {x} for any x ∈ X according to Theorem 4.9 (2) and Proposition 4.8 (1).
Thus A is amenable by Lemma 4.3.

As for the second assertion, we choose an a.i.c.m.
(
µn : X → prob(G)

)
n∈N for

G y X and de�ne for n ∈ N maps

νn : X → prob(Q), x 7→
(
β 7→

∑
g∈p−1(β)

µx
n(g)

)
.

Then, if K ⊂ X is compact and β ∈ Q, we choose a g0 ∈ G such that p(g0) = β,
and it follows that

sup
x∈K

∥∥β · νx
n − νβx

n

∥∥
1

= sup
x∈K

∑
β′∈Q

∣∣∣ ∑
g∈p−1(β′)

µx
n(g−1

0 g)− µg0x
n (g)

∣∣∣
≤ sup

x∈K

∥∥g0 · µx
n − µg0x

n

∥∥
1
,

the latter tending to 0 as n→∞. Hence Q y X is amenable.

In order to verify (2)⇒ (1) when X satis�es (∗), we will check (2) of Lemma 4.3.
So let a �nite subset F ⊂ G, a compact K ⊂ X and an ε > 0 be given. Since
Q y X is amenable, there is a µQ : X → prob(Q) such that

∀g ∈ F : sup
x∈K

∥∥g · µx
Q − µgx

Q

∥∥
1
≤ ε

2
. (4.13)

We now want to construct a �nite subset L ⊂ Q with the property that

∀g ∈ F ∀x ∈ K :
∑
β∈L

µx
Q(g−1β) > 1− ε

8
. (4.14)

To do so, we �rst �x x ∈ K. Then there is a �nite Lx ⊂ Q such that
∑

β∈Lx
µx

Q(β) >
1− ε/8. Because of the continuity of µQ, the set

Ux :=
{

y ∈ X
∣∣∣ ∥∥µx

Q − µy
Q

∥∥
1

<

∑
β∈Lx

µx
Q(β)− (1− ε

8)
|Lx|

}
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4 Amenable Actions

is an open neighbourhood of x, and∑
β∈Lx

µy
Q(β) >

∑
β∈Lx

(
µx

Q(β)−
∑

β′∈Lx
µx

Q(β′)− (1− ε
8)

|Lx|

)
= 1− ε

8

holds for all y ∈ Ux. As K is compact, that way we can choose x1, . . . , xn ∈ K such
that K ⊂

⋃n
i=1 Uxi . Then L′ :=

⋃n
i=1 Lxi ⊂ Q is �nite and

∑
β∈L′ µx

Q(β) > 1− ε/8
for x ∈ K. Now obviously L :=

⋃
g∈F gL′ satis�es (4.14).

Furthermore, we set E :=
{
s(β)−1gs(g−1β) | β ∈ L, g ∈ F

}
, which is a �nite

subset of A, and pick µA ∈ prob(A) such that

∀a ∈ E : ‖a · µA − µA‖1 ≤
ε

4
. (4.15)

We can at last de�ne µG : X → prob(G) by

µx
G(g) := µA

(
s(gA)−1g

)
µx

Q(gA)

and compute for g ∈ F and x ∈ K that∥∥g · µx
G − µgx

G

∥∥
1
≤
∑
g′∈G

∣∣µA

(
s(g−1g′A)−1g−1g′

)
− µA

(
s(g′A)−1g′

)∣∣ · µx
Q(g−1g′A)

+
∑
g′∈G

µA

(
s(g′A)−1g′

)
·
∣∣µx

Q(g−1g′A)− µgx
Q (g′A)

∣∣
=
∑
β∈Q

∑
a∈A

∣∣µA

(
s(g−1β)−1g−1s(β)a

)
− µA(a)

∣∣ · µx
Q(g−1β)

+
∑
β∈Q

∑
a∈A

µA(a) ·
∣∣µx

Q(g−1β)− µgx
Q (β)

∣∣
=
∑
β∈L

∥∥s(β)−1gs(g−1β) · µA − µA

∥∥
1
· µx

Q(g−1β)

+
∑

β∈Q\L

∥∥s(β)−1gs(g−1β) · µA − µA

∥∥
1
· µx

Q(g−1β)

+
∥∥g · µx

Q − µgx
Q

∥∥
1
.

Combining (4.13), (4.14) and (4.15) now yields the desired inequality∥∥g · µx
G − µgx

G

∥∥
1
≤ ε

4
·
∑
β∈L

µx
Q(g−1β) + 2 · ε

8
+

ε

2
≤ ε

for g ∈ F and x ∈ K.

The assumptions of the following theorem are, for instance, satis�ed when X is
locally compact and second countable, see [Bre93, Prop. III.7.2 and Thm. I.12.12].
Under this hypothesis, an analogous result is proved in [ADR00, Cor. 2.1.17]. An-
other situation in which the assumptions are satis�ed is when X is a free G-CW -
complex. The result is then a special case of Theorem 4.21.
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Theorem 4.16 (Amenability of free proper actions). Let X be a G-space

such that G\X is paracompact. If the action on X is free and proper, then it is also

amenable.

Proof. With G acting freely and properly on the Hausdor� space X, it is easy to see
that any x ∈ X possesses an open neighbourhood U such that gU ∩U = ∅ whenever
g 6= 1. So by restricting the projection p : X → G\X, we get homeomorphisms
U → p(U) and in this way an open covering {Vi}i∈I of G\X together with continuous
sections si : Vi → X of p|p−1(Vi). By re�ning {Vi}i∈I if necessary, we may assume
that this covering is locally �nite, so that we can choose a subordinate partition of
unity {hi : G\X → [0, 1]}i∈I .

Now consider, for x ∈ X and g ∈ G, the subset

I(x, g) :=
{
i ∈ I | p(x) ∈ Vi, gsi

(
p(x)

)
= x

}
of I. We have I(gx, g′) = I(x, g−1g′), and the �nite set I(x) := {i ∈ I | p(x) ∈ Vi}
is the disjoint union

I(x) =
∐
g∈G

I(x, g).

Therefore, setting

µx(g) :=
∑

i∈I(x,g)

hi

(
p(x)

)
for x ∈ X and g ∈ G gives rise to a map µ : X → prob(G) such that µgx = g · µx.
If the continuity of µ can be shown, then the assertion of the theorem will follow.

In order to carry this out, let x ∈ X and an ε > 0 be given. We can choose an
open neighbourhood V of p(x) which meets only �nitely many Vi non-trivially. Let
J := {i ∈ I | V ∩ Vi 6= ∅}. As for all i ∈ J \ I(x) we have hi

(
p(x)

)
= 0, there exists

an open neighbourhood W1 of x with the property

∀y ∈W1 : p(y) ∈ V and
∑

i∈J\I(x)

hi

(
p(y)

)
≤ ε

2
.

Furthermore, there is an open neighbourhood W2 of x such that

∀y ∈W2 ∀i ∈ I(x) :
∣∣hi

(
p(x)

)
− hi

(
p(y)

)∣∣ ≤ ε

2 · |I(x)|
.

Finally, it follows from the construction of the si : Vi → X that for every i ∈ I(x)
there is exactly one gi ∈ G such that gisi

(
p(x)

)
= x. Then W3 :=

⋂
i∈I(x) gisi(Vi)

is an open neighbourhood of x and

∀y ∈W3 ∀g ∈ G : I(x, g) ⊂ I(y, g).
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All of these estimates can eventually be assembled so that for all y ∈
⋂3

k=1 Wk we
get ∥∥µx − µy

∥∥
1

=
∑
g∈G

∣∣∣ ∑
i∈I(x,g)

hi

(
p(x)

)
−

∑
i∈I(y,g)

hi

(
p(y)

) ∣∣∣
≤
∑
g∈G

∑
i∈I(x,g)

∣∣hi

(
p(x)

)
− hi

(
p(y)

)∣∣ +
∑
g∈G

∑
i∈I(y,g)\

I(x,g)

hi

(
p(y)

)
≤ ε.

This �nishes the proof.

4.4 Isotropy Groups of Amenable Actions

Although all isotropy groups of an amenable action must be amenable groups, it
is, in general, not true that every action with amenable isotropy groups is already
amenable itself. Both will be explained in this section as well as the fact that the
latter statement does hold in the world of G-CW -complexes.

Theorem 4.17 (Isotropy groups of amenable actions). If the G-space X is

amenable, then the isotropy groups Gx are amenable for every x ∈ X.

Proof. By Theorem 4.9 (2), the action of Gx ⊂ G on X is amenable, hence so is
Gx y {x} by Proposition 4.8 (1). Now the claim follows from Lemma 4.3.

If G is an amenable group, any action G y X is amenable (see Lemma 4.3 (2)),
and it is easy to obtain a G-invariant measure in prob(X) from an invariant mean
on G. As we will see now, the reverse implication is also true. We remark that
results corresponding to the following are well-known, cf. e.g. [AD79, Cor. 4.3] for
the case of a free ergodic G-action on X.

Theorem 4.18. Let X be an amenable G-space and assume that there is a sequence

(µn)n∈N in prob(X) such that

∀g ∈ G : ‖g · µn − µn‖1
n→∞−−−→ 0.

Then the group G must be amenable.

Proof. The proof is accomplished by showing that G satis�es Reiter's condition (P1).
So let a �nite F ⊂ G and an ε > 0 be given. By assumption, we can choose an
m ∈ N such that ‖g · µm − µm‖1 ≤ ε/4 for all g ∈ F . Since µm is a regular measure,
there is a compact K ⊂ X such that µm(X \K) ≤ ε/4.
Furthermore, the amenablity of G y X gives rise to maps νn : X → prob(G) for

n ∈ N with the property

∀g ∈ G ∀L ⊂ X compact: sup
x∈L

∥∥g · νx
n − νgx

n

∥∥
1

n→∞−−−→ 0.

54



4.4 Isotropy Groups of Amenable Actions

Let us choose an l ∈ N such that
∥∥g · νx

l − νgx
l

∥∥
1
≤ ε/4 on K for all g ∈ F .

Now we de�ne λ ∈ prob(G) by setting

λ(g) :=
∫

X
νx

l (g) dµm(x).

Then we get for all g ∈ F the inequality

‖g · λ− λ‖1 ≤
∑
g′∈G

∣∣∣∣ ∫
X

g · νx
l (g′) dµm(x) −

∫
X

νgx
l (g′) dµm(x)

∣∣∣∣
+
∑
g′∈G

∣∣∣∣ ∫
X

νgx
l (g′) dµm(x) −

∫
X

νgx
l (g′) d(g−1 · µm)(x)

∣∣∣∣.
The �rst sum on the right can be estimated by

. . . ≤
∑
g′∈G

∫
X

∣∣g · νx
l (g′)− νgx

l (g′)
∣∣ dµm(x)

=
∫

X

∥∥g · νx
l − νgx

l

∥∥
1
dµm(x)

≤ 2 · µm(X \K) +
ε

4
· µm(K)

≤ 3
4

ε

and the second by

. . . =
∑
g′∈G

∣∣∣∣ ∫
X

νx
l (g′) d(g · µm)(x)−

∫
X

νx
l (g′) dµm(x)

∣∣∣∣
≤
∑
g′∈G

∫
X

νx
l (g′) d|g · µm − µm|(x)

= ‖g · µm − µm‖1

≤ ε

4
.

This means that ‖g · λ− λ‖1 ≤ ε for all g ∈ F , hence Reiter's condition (P1) is
indeed satis�ed.

In the following example, Theorem 4.18 is applied to show that, in general, the
converse of Theorem 4.17 does not hold: an action of a group on a space with
amenable isotropy groups need not be amenable.

Example 4.19 (A non-amenable free action). Suppose that G is a countably
in�nite group. It acts on the space {0, 1}G =

∏
g∈G{0, 1} via shifting, i.e.

g0 · (xg)g∈G := (xg0g)g∈G.
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Note that {0, 1}G is a Polish space, as is any countable product of Polish spaces, cf.
[Coh80, Prop. 8.1.3]. Consider the Borel subspace

X :=
{
x ∈ {0, 1}G | gx 6= x for all g 6= 1

}
=
⋂
g 6=1

(
X〈g〉)c, (4.20)

where the X〈g〉 =
{
x ∈ {0, 1}G | gx = x

}
are closed in {0, 1}G. The induced action

of G on X is free by de�nition of X, but we will show now that it is not amenable
except in the trivial case where G is an amenable group.
First of all, it follows from [Coh80, Prop. 8.1.10] that the measure µ on {0, 1}G

which comes from the equiprobability on {0, 1} is a Radon measure since {0, 1}G
is Polish. Then this is also true for its restriction to X. Moreover, µ is obviously
G-invariant. Finally, we will show that X has positive measure with respect to µ,
in fact µ(X) = 1.
Let us prove that the complement of X is a null set. Regarding (4.20), it is enough

to show that µ
(
X〈g〉) = 0 for any g 6= 1. For a subset S ⊂ G we denote by X(S)

the Borel set of all elements x ∈ X for which either xg = 0 or xg = 1 holds for all
g ∈ S. Then, if {gi}i∈I is a system of representatives of 〈g〉\G, we have

X〈g〉 =
⋂
i∈I

X
(
〈g〉 · gi

)
,

and

µ
(
X
(
〈g〉 · gi

))
=

{
21−|〈g〉| if |〈g〉| <∞,

0 if |〈g〉| =∞

for every i ∈ I. Thus, in the case of an in�nite 〈g〉, it is immediate that µ
(
X〈g〉) = 0.

Otherwise, we can assume I = N and calculate

µ
(
X〈g〉) = lim

n→∞
µ

( n⋂
i=1

X
(
〈g〉 · gi

))
= lim

n→∞

(
21−|〈g〉|)n = 0.

Having shown that µ is a G-invariant element of prob(X), Theorem 4.18 im-
plies that G y X is an example of a non-amenable free action whenever G is not
amenable.

The above example should be compared to [Zim77, Thm. 2.4], where free ergodic
group actions are characterized as being amenable if and only if the associated
Murray-von Neumann construction yields a factor that is hyper�nite.
In contrast to this, if the space being acted upon by a group G has the structure

of a G-CW -complex, then it su�ces to look at the isotropy groups in order to
determine whether the action is amenable or not:

Theorem 4.21. Let X be a G-CW -complex with amenable isotropy groups. Then

G y X is amenable.
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4.4 Isotropy Groups of Amenable Actions

Proof. In case X is �nite-dimensional, we can use induction over the skeleta of X
to prove the statement. The induction start is trivial since X−1 is empty. For n ≥ 0
there is a pushout ∐

i∈In

G/Hi × Sn−1

j

��

`
i qi

// Xn−1

J

��∐
i∈In

G/Hi ×Dn

`
i Qi

// Xn

and, by induction hypothesis, there are maps µk : Xn−1 → prob(G) for k ∈ N such
that

∀g ∈ G ∀K ⊂ Xn−1 compact: sup
x∈K

∥∥g · µx
k − µgx

k

∥∥
1

k→∞−−−→ 0.

Note that the maps µk ◦ qi : G/Hi × Sn−1 → prob(G) for k ∈ N have the corre-
sponding property.
Since all the groups Hi are amenable by assumption, it follows from Corollary 4.10

that the G-spaces G/Hi are amenable. Hence we can choose for all k ∈ N maps
νi,k : G/Hi → prob(G) such that

∀g ∈ G ∀F ⊂ G/Hi �nite: sup
α∈F

∥∥g · να
i,k − νgα

i,k

∥∥
1

k→∞−−−→ 0.

From now on, we will identify the cone on Sn−1, which is by de�nition CSn−1 :=
Sn−1 × [0, 1]/Sn−1 × {1}, with the disk Dn using the homeomorphism

CSn−1 ∼=−→ Dn, [z, t] 7→ (1− t)z.

Under this identi�cation, Sn−1 × {0} ⊂ CSn−1 corresponds to Sn−1 ⊂ Dn. We �x
an i ∈ In and consider for each k ∈ N the map

ν̃i,k : G/Hi ×Dn → prob(G)
(α, [z, t]) 7→ (1− t) · (µk ◦ qi)(α, z) + t · νi,k(α)

It is well-de�ned since prob(G) is a convex space, and it agrees with µk ◦ qi on
G/Hi × Sn−1 ⊂ G/Hi ×Dn. Furthermore, the following holds for every g ∈ G and
every �nite subset F ⊂ G/Hi:

sup
(α,[z,t])
∈F×Dn

∥∥g · ν̃i,k
(α,[z,t]) − ν̃i,k

(gα,[z,t])
∥∥

1

= sup
(α,[z,t])
∈F×Dn

∥∥(1− t) · g · (µk ◦ qi)(α,z) + t · g · να
i,k − (1− t) · (µk ◦ qi)(gα,z) − t · νgα

i,k

∥∥
1

≤ sup
(α,z)∈
F×Sn−1

∥∥g · (µk ◦ qi)(α,z) − (µk ◦ qi)(gα,z)
∥∥

1
+ sup

α∈F

∥∥g · να
i,k − νgα

i,k

∥∥
1

k→∞−−−→ 0.
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4 Amenable Actions

Let ν̃k :
∐

i∈In
G/Hi ×Dn → prob(G) be de�ned as the disjoint union of the maps

ν̃i,k. Then the universal property of pushouts provides us with maps µ̃k : Xn →
prob(G) which make the following diagram commute:

∐
i∈In

G/Hi × Sn−1

j

��

`
i qi

// Xn−1

J

�� µk

��

∐
i∈In

G/Hi ×Dn

fνk

..

`
i Qi

// Xn

fµk

&&NNNNNNN

prob(G)

Now we can show that Xn is an amenable G-space. Let g ∈ G and a compact
K ⊂ Xn be given, and let us choose compact subsets K1 ⊂

∐
i G/Hi × Dn and

K2 ⊂ Xn−1 such that K ⊂ (
∐

i Qi)(K1) ∪ J(K2). Then

sup
y∈K

∥∥g · µ̃k
y − µ̃k

gy
∥∥

1
≤ sup

x∈K1

∥∥g · (µ̃k ◦
∐

i
Qi

)x − (µ̃k ◦
∐

i
Qi

)gx∥∥
1

+ sup
x∈K2

∥∥g · (µ̃k ◦ J)x − (µ̃k ◦ J)gx
∥∥

1

= sup
x∈K1

∥∥g · ν̃k
x − ν̃k

gx
∥∥

1
+ sup

x∈K2

∥∥g · µx
k − µgx

k

∥∥
1
,

while both of the latter terms tend to 0 as k →∞.
Finally, we will treat the general case, in which X =

⋃
n∈N Xn is the colimit of

its skeleta. By what we have just shown, we obtain for all n ∈ N maps µn
k : Xn →

prob(G) indexed by k ∈ N such that µn
k |Xn−1 = µn−1

k and (µn
k)k∈N is an a.i.c.m. for

G y Xn. If we de�ne µk := colimn µn
k for each k ∈ N, then these maps will form

an a.i.c.m. for G y X. This is due to the fact that any compact K ⊂ X is already
contained in Xn for any n that is su�ciently large.
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