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Preface

Let G be a discrete group. A model for the classifying space E¢ (G) with respect to
a family F of subgroups of G is just a terminal object in the G-homotopy category
of G-C'W-complexes whose isotropy groups belong to #. It can be shown that such
a model always exists, and it is obvious from this definition that any two models
are G-homotopy equivalent. However, it is often desirable to find explicit models
which are “small” in some sense.

For instance, if 77 is the family which consists only of the trivial subgroup, then
a model for F7(G) = EG can be characterized up to G-homotopy equivalence as
being a free G-C'W-complex which is non-equivariantly contractible. These spaces,
as well as their quotients G\FG = BG, have been studied for a long time. A
well-known theorem of Eilenberg and Ganea states that the minimal dimension of
a model for EG equals the cohomological dimension c¢dz(G) of G except possibly if
cdz(G) = 2 when the minimal dimension might be three.

Similarly, for the family #in of all finite subgroups of G, questions on the type
of models for Ey;,(G) = EG have been closely investigated by many authors (see
[Liic05] for a survey), and in numerous situations models for Eg;,(G) arise in a nat-
ural geometrical way. In this thesis, we focus on the problem of constructing explicit
models for Eqp,.(G), where VCyc is the family of all virtually cyclic subgroups: this
case does not seem to be very well understood. One reason why it is interesting to
study these classifying spaces is that they appear in the formulation of the Baum-
Connes isomorphism conjecture about the topological K-theory of reduced group
C*-algebras and in the Farrell-Jones isomorphism conjecture about the algebraic
K- and L-theory of group rings, respectively. These conjectures predict that one
may compute these K- and L-groups by evaluating certain equivariant homology
theories at the aforementioned classifying spaces.

In the first chapter, this will be explained in more detail among other things we
will need later on. Then, in the next chapter, we will review some of the construc-
tions of models for Eg;,(G) before dealing with models for iy, (G). In particular,
we will construct such a model if G is locally virtually cyclic. The third chapter
is based on the observation that, for some classes of groups, it is possible to pro-
duce a model for Ey,(G) from a given model for Eg;,(G). This not only leads to
a computation of the relative homology groups which are direct summands of the
source of the Farrell-Jones assembly map, but also yields bounds on the dimension
that models for Fy, (G) can have. The last chapter is devoted to an explanation of
the relation of amenable group actions and the Baum-Connes and Farrell-Jones iso-
morphism conjectures. We will see that the classifying spaces F«(G) are amenable
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Preface

G-spaces if and only if ¥ consists of amenable groups.

Conventions
We will always work in the category of compactly generated spaces introduced in
[Ste67]. In this category, the adjunction map(X X Y, Z) — map(X, map(Y, Z)) is
always a homeomorphism, and the product of two C'W-complexes is again a CW-
complex.

Furthermore, groups will always be assumed to be discrete, and all group actions
on spaces are actions from the left unless otherwise stated.
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1 Classifying Spaces

In this chapter, we will introduce some basic notions that will turn up throughout
the work at hand. First of all, this includes the classifying space E'¢ (G) with respect
to a family F of subgroups of a discrete group G.

Next, we want to explain what the isomorphism conjectures of Baum-Connes and
Farrell-Jones have to do with these spaces. These conjectures state that so-called
assembly maps should be isomorphisms, which are maps on certain equivariant
homology theories induced by the projection E¢(G) — pt, the family F consisting
of all finite (in the Baum-Connes case) or all virtually cyclic (in the Farrell-Jones
case) subgroups of G.

Finally, we will define the homotopy colimit of a space over a category and re-
prove some of its well-known properties, using the notion of a classifying space of a
category.

1.1 Classifying Spaces for Families of Subgroups

The purpose of the following is to define the classifying space E¢(G). To be more
precise, we will define it to be a G-C'W-complex. Moreover, the proofs of its exis-
tence and universal property will briefly be reviewed.

Definition 1.1 (Family of subgroups). A family F of subgroups of a group
G is a collection of subgroups of G which is closed under conjugation and taking
subgroups, i.e. if H € ¥, then also g 'Hg € F for every g € G, and K € F for
every subgroup K C H.

Examples of such families ¥ are
Tr, Fin, Cyc, VCyc, Al,

denoting the families consisting only of the trivial subgroup, all finite subgroups, all
cyclic subgroups, all virtually cyclic subgroups and all subgroups of GG, respectively.
Bear in mind that a group is virtually cyclic if it contains a cyclic subgroup of finite
index.

The restriction of ¥ to a subgroup H C Gis ¥ NH ={KNH| K € F}, and
we set Sub(H) = A4ll N H.

Definition 1.2 (G-CW-complex). A G-CW -complez is a G-space X together
with a G-invariant filtration 0 = X_1 Cc XgoC X; C ... C Unso Xn = X such that



1 Classifying Spaces

X = colim, ey X, and X, is obtained from X,,_; by attaching equivariant G-cells,
i.e. there is a pushout

H G/HZ x §n—1 —— X1

=l ]

i€l

A G-CW-complex is the same as a CW-complex with a G-action by cellular maps
such that for each open cell e and each g € G with ge Ne # () one has gx = x for
all x € e.

A G-CW-complex X is said to be finite if G\X is compact, or, equivalently, if
it has only finitely many equivariant cells G/H; x D™. 1t is called of finite type if
every n-skeleton X, is finite and n-dimensional if X = X, but X # X,,_1.

Definition 1.3 (Classifying space for a family of subgroups). Let F be a
family of subgroups of G. A model for the classifying space E¢(G) is a G-CW-
complex X such that the fixed-point set X is empty if H ¢ # and is contractible
itHe¥F.

Lemma 1.4 (Universal property of E¢(G)). The G-CW -complez X is a model
for E¢(G) if and only if the following holds:

e The isotropy groups of X belong to F, and

o if Y is any G-CW -complex with isotropy groups belonging to F, then there is
precisely one G-map Y — X up to G-homotopy.

Proof. If X is as in the assumptions, then it remains to show that X is contractible
for H € F. Since X is a CW-complex, it suffices to show that all its homotopy
groups vanish. However, by assumption, there is a G-map G/H x S™ — X, which is,
furthermore, unique up to G-homotopy. Its adjoint is a map S™ — map(G/H, X) =
XH which is unique up to homotopy. Hence m,(XH) is trivial.

If X is a model for E¢(G), then the projection X — pt is a homotopy equiv-
alence for all H € F. This implies by the Whitehead theorem for families (cf. e.g.
|ILiic89l Prop. 2.3|) that the induced map [Y, X]g — [Y, pt]g between G-homotopy
classes of G-maps of G-C'W-complexes is bijective. O

Thus, a model for E¢(G) is just a terminal object in the G-homotopy category
of G-CW-complexes whose isotropy groups are in #. This implies immediately
that any two models for F#(G) must be G-homotopy equivalent. The existence of
models for E¢(G) is also not difficult to show:

Proposition 1.5. There exists a model for Ex(G) for any group G and family of
subgroups F.



1.1 Classifying Spaces for Families of Subgroups

Proof. Let Xo = [[ <y G/H and assume by induction that X, is a G-C'W-complex
with isotropy groups belonging to ¥ such that m(XH) is trivial for H € ¥ and
0<k<n-—1. For H € F, we choose a collection {fH,i: S”—>X£I | GI} of
cellular maps which constitutes a complete system of representatives of the elements
in 7,(XH). Then, the G-CW-complex X,y is defined by the G-pushout

HH,iJ?f\I,Ji
H G/H x §" ——— X,

He¥ il J l

1 ¢/Hxp" — Xoia
Hef¥,iel

in which the maps f;[/z denote the adjoints of the maps fx;. This completes the
induction step since for H € F any map S™ — Xﬁrl is homotopic to a map into
XH by the cellular approximation theorem, and any such map can be extended to
D"t by construction. Finally, by taking the colimit of the X,,, we obtain a model
for E_r;'(G) ]

There is also a functorial construction of models for E¢(G), see Example
Example 1.6. The following is a list of immediate examples of classifying spaces:
e The one point space G/G is a model for E¢(G) if and only if F = A4l

e EG = FE7(Q) is just a free G-CW-complex which is contractible after forget-
ting the G-action. It also occurs as the total space of the universal principal
G-bundle G — EG — BG.

o EG := Ey,(G) is sometimes called the universal G-CW-complex for proper
G-actions. If G is torsion-free, then EG = EG.

We will end this section by stating a lemma we will frequently use.

Lemma 1.7. Let H C G be an inclusion of groups and s: G/H — G a (set-
theoretic) section of the projection.

(1) Let X be an H-space. Then the induced G-space G Xy X is naturally G-
homeomorphic to the G-space G/H x X which is defined by g - (a,x) =
(9, s(g90) ' gs(@)z).

In particular, if K C G is another subgroup, then

(G XHX)K ~ H Xs(a)_le(a)

acG/H,
s(a)"'Ks(a)CH

are naturally homeomorphic spaces.
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(2) Let Y be a G-space. Then the G-space G X reng s naturally G-homeo-
morphic to the diagonal G-space G/H X Y.

Proof. In the situation of , the following G-maps are inverse to each other:

GxgX=G/HxX

lg,2] — (9H,s(gH) ' gx)
[s(a), z] — (o, @)

The homeomorphism of the fixed-point sets then follows from the observation that
for o € G/H one has ka = o for every k € K if and only if s(a) ' Ks(a) C H.
As for , the following G-maps are inverse to each other:

GxpreslY = G/H xY
[9,y] — (9H, gy)
[s(cr), s() " 'y] = (o, ) O

1.2 Equivariant Homology Theories

The goal of this section is to formulate the Baum-Connes and Farrell-Jones conjec-
tures. In order to do so, we will explain a general way of constructing homology
theories on pairs of spaces over a category.

1.2.1 Spaces over a Category

Definition 1.8 (Space over a category). Let C be a small category. A covari-
ant (or contravariant) C-space is a covariant (or contravariant) functor X: C —
Spaces from C to the category of compactly generated spaces. A map X — Y
of C-spaces is a natural transformation of functors. The space hom(X,Y) of
such maps is equipped with the subspace topology of the obvious inclusion into

Hceob(c) map (X(c)7 Y(c)).

One can take coproducts, colimits, etc. in the category of C-spaces by applying
the usual constructions for spaces objectwise. Furthermore, it becomes clear what a
homotopy of maps of C-spaces should mean once we have said that from a C-space
X we obtain the C-space X x [0, 1] by sending ¢ € ob(C) to X (c) x [0, 1].

Example 1.9 (Orbit category). Let G be a group and ¥ a family of subgroups.
The orbit category Or(G, F) with respect to F is the category with homogeneous
G-spaces G/H for H € ¥ as objects and G-maps as morphisms. Note that a map
G/H — G/K is a G-map if and only if it is of the form ry,: gH — ggokK, where
go € G is such that gy 'Hgy C K. We abbreviate Or(G) := Or(G, 4l ).

Every left G-space X yields a contravariant Or(G, ¥ )-space mapg(—, X) = X~
by assigning the space map(G/H, X) = X! of fixed-points to an object G/H of
Or(G, ¥).



1.2 Equivariant Homology Theories

Definition 1.10 (Balanced product of C-spaces). Let X be a contravariant
and Y a covariant C-space. The balanced product of X and Y over C is defined to
be the space

XxcYVi= ][] X()xY(e)/~,
c€ob(C)

where ~ denotes the equivalence relation generated by (X (f)(z),y) ~ (z,Y(f)(y))
for all z € X(d), y € Y(c) and morphisms f: ¢ — din C.

In the following note that mor-(—, —) can be considered as a covariant C°P x C-
space by equipping morc(c,¢’) with the discrete topology. Then, for a D-space
X and a covariant functor F: C — D, the restriction of X by F is the C-space
resp X = F*X given by ¢ — X(F(c)) If X is a co- or contravariant C-space, the
mduction of X by F' is the co- or contravariant D-space indp X given by

d — morgp(F,d) xc X or d— X xcmorp(d, F)
respectively.

Lemma 1.11 (Adjointness of induction and restriction). Suppose that Y is
a covariant D-space and X a C-space of the required variance to make the following
statements meaningful, and that F': C — D is a covariant functor. Then:

(1) There are homeomorphisms

o

homy (morp(F, —),Y) S respY = morp(—, F) xp Y
of covariant C-spaces.
(2) There are natural homeomorphisms

indp X xpY — X xorespY,

homg(indr X,Y) = hom(X,respY).

Analogous results hold for a contravariant D-space Y .

Proof. The second homeomorphism of comes from the mutually inverse maps
which are given by

Y (F(c) 3y [idp), Y
Y (f)(y) < (f,y) € morp(d, F(c)) x Y(d)

and the first is the Yoneda lemma.

Now follows from using the associativity of the balanced product of spaces
over a category (see [Mac98|, section IX.8]) and the adjointness of the balanced
product of C-spaces and homy (cf. [DLI8, Lemma 1.5]). O



1 Classifying Spaces

Lemma 1.12. Let a: H — G be an injective group homomorphism and X an
H-space. Then « defines a functor a: Or(H) — Or(G) in the obvious way, and

(=23

indy(X7) = (G xo X))~
are homeomorphic Or(G)-spaces.

Proof. A homeomorphism v: X~~ X g,y mapg(—, G/a(—=)) — (G xo X)™ is
defined by setting
V(G/K)[x77ag] = [g,.%']

To put it differently, v corresponds under the natural homeomorphism
homo, (@) (inda X, (G xq X)_) = homo, () (X_, resqe (G X X)_)
of Lemma to v: X~ — rese (G xq X))~ given by v(H/K)(z) = [1,z]. O

Definition 1.13 (C-CW-complex). A (contravariant) C-CW -complex is a con-
travariant C-space X together with a filtration ) = X ; € Xo € X; C ... C
Un>0 Xn = X by contravariant C-spaces such that X = colim, .o X, and X, is
obtained from X,,_; by attaching free C-n-cells for any n > 0, i.e. there is a pushout
of C-spaces

H morp(—,¢) x ST —— X4

= |

H morc(—,¢;) x D" —— X,

i€l
the ¢; being objects in C for every element ¢ of an index set I,,, and the vertical
maps being inclusions of C-spaces.

Example 1.14. If X is a G-CW-complex, then the Or(G)-space X~ is an Or(G)-
CW-complex. This is because a pushout telling how X, is obtained from X,,_; by
attaching equivariant n-cells remains a pushout after taking fixed-points. Thus, we
get a pushout of C-spaces telling how X is obtained from X, an Or(G)-cell of

n—17

the form mapg(—,G/H) x D" corresponding to a G-cell G/H x D" of X.

The next lemma indicates that standard results for CW-complexes have straight-
forward analogues for C-C'W-complexes. We remark that a C-CW -approzimation of
a C-space X consists of a C-CW-complex Y and amap f: Y — X of C-spaces which
is a weak homotopy equivalence, meaning that f(c) is a weak homotopy equivalence
of spaces for all ¢ € ob(C).

Lemma 1.15.

(1) Any C-space X possesses a C-CW -approzimation (Y, f). Moreover, if (Y', f')
1s another C-CW -approzimation of X, then there is a homotopy equivalence
g: Y — Y’ which is uniquely determined up to homotopy by the property that
f' o g is homotopic to f.
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(2) A weak homotopy equivalence of C-CW -complezes is already a homotopy equiv-
alence.

(8) Let Z be a C-CW-complex and f: X — Y a weak homotopy equivalence of
covariant C-spaces. Then idz Xof: Z xc X — Z XY is a weak homotopy
equivalence.

Proof. This is taken from [DL98 Thm. 3.7, Cor. 3.5 and Thm. 3.11]. O

1.2.2 Construction of Equivariant Homology Theories

Analogously to the notion of a space over a category, one can speak of pointed
spaces, spectra, etc. over a category. For instance, the balanced product X Ao Y
of two pointed C-spaces is given as in Definition [[.10] merely replacing the disjoint
union by a one-point union and the cross product by a smash product. Of course,
results like Lemma [I.11] carry over.

We fix notation and emphasize that a spectrum E is a collection of pointed spaces
{E,}necz together with pointed maps o,: E, A S' — E,1, the structure maps,
while a map of spectra f: E — F is given by pointed maps f,: E, — F, that
are compatible with these structure maps, i.e. o o (f, Aidg1) = fni1 0¥, The
homotopy groups of a spectrum are given by

7 (E) = colim 74, (Er)
n—oo

for k € Z. Here the required maps mgipn(En) — Tgint1(Fni1) come from the
composition of the suspension homomorphism and the homomorphism induced by
the structure map.

A covariant C-spectrum E can also be viewed as a collection {E(—),}nez of
pointed (C-spaces, the structure maps being maps of pointed C-spaces. Thus it is
clear that for any pointed C-space X we get a spectrum X Ar E. Now, setting

HE(X, A E) == m, (Y4 Up, cone(B;) Ac E)

defines an unreduced homology theory on pairs of C-spaces satisfying the disjoint
union axiom such that weak homotopy equivalences of such pairs induce isomor-
phisms on homology, see [DLI8, Lemma 4.4]. Here (Y, B) is a C-CW-approximation
of (X,A), and Y} =Y Il pt is the pointed C-space obtained from Y by adjoining
the trivial C-space as a base point.

Example 1.16 (Borel homology). The set of morphisms of Or(G,7r) can be
identified with G by sending r,: G/1 — G/1 to g~' € G. Then, a contravariant
Or(G, Tr)-space is the same as a right G-space (analogously for Or(G, Ir)-spectra),
whereas an Or(G, 7r)-CW-complex is the same as a free G-space, and

HOGT) (X, B) = 1, (X x EG)y Aq E) = HS(X;E)

can be identified with Borel homology.
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Let S be a G-set. The corresponding transport groupoid QG(S) is the groupoid
having as its set of objects the set S, while the morphisms from sg to s; are the
elements g € G that satisfy gsg = s1. This yields a functor G%: Or(G) — Groupoids
in the obvious way.

In the case of a G-CW-pair (X, A) and a covariant functor E: Groupoids — Spectra
which sends equivalences of groupoids to maps of spectra inducing an isomorphism
on homotopy groups, we define

HE(X, ALE) = HO"D (X~ A7 Eo gY). (1.17)
It is shown in [Sau02]:

Proposition 1.18. The various functors H(—:E) for all groups G, which are
defined in (L.17)), match up to form an equivariant homology theory.

This means in particular that there is an induction structure, i.e. if a: H — G is
a group homomorphism and (X, A) an H-CW-pair such that ker(a) acts freely on
X, there are natural isomorphisms

ind,: H7(X, A;E) = HCE (G x, (X, A); E)

for n € Z which have certain properties like being functorial in « and being com-
patible with the boundary homomorphisms.

Notation 1.19. For a cellular map f: X — Y of G-CW-complexes, we set

HE(f: X — Vi E) = HT (cyl(f), X; E),

where X is considered as a G-subcomplex of the mapping cylinder of f.

1.2.3 Formulation of the Isomorphism Conjectures

We will adopt the point of view of [DLIS| to formulate the isomorphism conjectures
[BCH94, Conj. 3.15] of Baum-Connes and [F.J93| Conj. 1.6] of Farrell-Jones.

Let R be an associative ring with unit and involution. One can construct covariant
Groupoids-spectra K*P, Kp and Lgo@ which send equivalences of groupoids to
maps of spectra inducing an isomorphism on homotopy groups, such that

7 (KM (GE(G/H))) = K, (L),
7 (Kr(G(G/H))) = Ka(RH),
mn (Ly *H(G(G/H))) = L) (RH),
see [DLI8| section 2| and [Joa03|. These groups denote the topological K-theory of

the reduced group C*-algebra of H and the algebraic K- and L-theory of the group
ring RH, respectively.



1.3 Homotopy Colimits

Conjecture 1.20. The Baum-Connes isomorphism conjecture for a group G states
that the assembly map

HE (Ern(G); K'P) — #E (pt; K'P) = K, (C}C), (1.21)

which is the map induced by the projection Ey,(G) — pt, is an isomorphism for
n € 7Z.

The Farrell-Jones isomorphism conjecture for the group ring RG states that the
assembly maps

HE (Bypye(G): Kg) — HE (pt: Kp) = Ko (RG), (1.22)
HE (Bypye(G); LYy ) — #HC (pt; Ly, ™)) = L) (RG) (1.23)

coming from the projection E’VCyc(G) — pt are isomorphisms for n € Z.

While the Baum-Connes conjecture is known to be true for quite a large class
of groups, not that much is known in the Farrell-Jones case, reflecting the fact
that there the family ¥Cyc of virtually cyclic subgroups of G has to be taken into
account, which usually is harder to handle than the family %in. The point behind
these conjectures is to compute the target of the assembly map (the group which is
of interest) by looking at the source which might be more accessible to calculations.
For a survey on this matter, we encourage the reader to consult [LR05].

Note that, because of the universal property of Egyp,(G), there is a G-map
Ein(G) — Eqp,(G) which is unique up to G-homotopy. We mention the following
result taken from [Bar03]:

Proposition 1.24 (The relative homology groups split off). The canonical
G-map Egin(G) — Eypy(G) induces a split injection on HE(—;KRg). Hence there
18 an isomorphism

’H;IG (Eﬁn(G); KR) @ %G (Eﬁfl(G) - E‘VCyc(G); KR) i 'H;LG (E'VCyc(G)§ KR)-

The same holds for %G(f;Lgod), provided that for any virtually cyclic subgroup
V C G one has K_;(RV') = 0 for sufficiently large i.

1.3 Homotopy Colimits

In section we will establish a concrete model for E¢(G) in case that G is a
colimit of subgroups {G;}ics of which models for E¢ng,(G;) are given. Below, we
will compile the necessary facts on homotopy colimits that will be needed there.

Definition 1.25 (Classifying space of a category). A model for the classifying
space EC of the category C is a C-CW-approximation of the trivial contravariant
C-space pt. EC is uniquely determined up to homotopy equivalence of C-spaces

(see Lemma ().
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There is a functorial construction for £ which will be explained now. Recall that
the geometric realization B C of (C is the geometric realization |N.C| of its nerve.
In particular, BP®'C has a canonical CW-structure, the n-cells corresponding to
sequences ¢y — ¢; — ... — ¢, of morphisms in C none of which is the identity. Any
functor F': ¢ — D induces a cellular map B*»F: B*»' ¢ — BP D and a natural
transformation of two functors F and G induces a homotopy between BP*'F and
B G One says that C is contractible if B2 is.

For fixed c¢1, ¢y € ob(C), the objects of the category ¢; | C | co are all diagrams

in C of the form ¢y EN ¢ cs. A morphism from ¢ EN e co t0 ¢ f—/> c L co 18
given by a morphism h: ¢ — ¢ in C such that ho f = f/ and g’ o h = g.

If F: C — D is a functor and d € ob(D), the objects of the category d | F
of objects F-under d are all morphisms in D of the form f:d — F(c), and the
morphisms from f:d — F(c) to f': d — F(c) are all morphisms h: ¢ — ¢ in C
such that F(h) o f = f’. Similarly, one can define the category F | d of objects
F-over d. If F is the identity functor on D, these categories are denoted by d | D
and D | d, respectively.

Moreover, in the obvious way we obtain covariant C°P x C-, D°P- and D- categories
—1C|l—,—] Fand F | —, respectively. Now we set

EbarC = pt XCBbar(_ 1Ccl _) — Bbar(_ ! C)
This gives a model for EC by [DL98, Lemma 3.19(3)].

Example 1.26 (Functorial construction for E#(G)). A model for Es(G)
yields a model E#(G)~ for EOr(G, F). On the other hand, consider the covari-
ant Or(G, F)-space I which is given by sending G/H to itself. Then a model for
EOr(G, ¥) defines the G-CW-complex E Or(G, F) X oy(a,#) I, which is a model for
Es(G), see [DLIS, Lemma 7.6].

Definition 1.27 (Colimit and homotopy colimit). Let X be a covariant C-
space. Its colimit and homotopy colimit are defined by

colng =pt XX and hocglimX =FECxc X

respectively, where pt is the trivial C-space. Note that hocolim, X is only defined
up to homotopy equivalence.

The following theorem lists the main properties the notion of homotopy colimit
should have. They are well-known, cf. [HV92], but we will give a proof in our context
below. As for assertion of the theorem, recall that a non-empty category C is
filtered if for any two objects ¢y and ¢; in C there is an object ¢ in C together with
morphisms ¢y — ¢ and ¢; — ¢, and if for any two morphisms f,g: ¢cg — ¢ in C
there is a morphism h: ¢; — co in C such that ho f = hog.

Theorem 1.28 (Properties of hocolim). Let X and Y be covariant D-spaces
and F: C — D a covariant functor. Then:

10



1.3 Homotopy Colimits

(1) (Homotopy invariance)
Every weak homotopy equivalence X — Y of D-spaces induces a weak homo-
topy equivalence
hocolim X — hocolim Y.
D D

(2) (Cofinality)
If for all d € ob(D) the category d | F is contractible, e.g. if C is filtered and
F cofinal, then there is a weak homotopy equivalence

hocglim F*X — hocglim X.

(8) (Reduction)

There is a homotopy equivalence

hocolim F*X = BY(— | F) xp X.

Proof. The proof of can be found in Thm. 3.11].
As for , there are homeomorphisms

o

EP Cx F*X = BP (= | €)xcmorp(—, F)xpX — B (= | F)xpX, (1.29)
the first due to Lemma and the second coming from the homeomorphism
B (— | ) x ¢ morp(—, F) = B"(~ | F) (1.30)

of contravariant D-spaces defined as follows. Let us denote by morgy(—, F') the
DP x C-category given by sending an object (d, ¢) of D°P x C to the category with set
of objects equal to mor@(d, F(c)) and set of morphisms equal to the identities. Then
B moryp(—, F) = morp(—, F). We have that B*® = |—|oN., where |—| has a right
adjoint and therefore (cf. [Mac98, section V.5|) preserves arbitrary colimits such as
the balanced product of two C-spaces (cf. [Mac98| Prop. IX.5.1]). This means that
we only need to construct a natural equivalence N.(— | C) x¢ N.(morp(—, F)) —
N.(— | F) of simplicial D°P-spaces, and one such is induced by the mutually inverse
maps

No(— 1 C) x¢ Nn<mor@

—

dvF(_))> = Nn(d | F)

c=c¢ =---=c d d = d == d
" i1, + |- 1 + 1
cp—C1—---—cn F(c) | F(co) = F(e1) =+ = F(cp)
Cp =C =---= Cp d ] d = d == d
[n l 1, ¢ — 4 A +
cg—c1— - —cp Fleo) | Fle)—F(e1) == Flen)

11



1 Classifying Spaces

Concerning , we first remark that if C is filtered and F' cofinal, then the
category d | F' is filtered for every d € ob(D), and any filtered category is con-
tractible, see e.g. [Qui73, Cor. 2 in § 1 on p. 93]. Now let us prove the assertion.
It is not difficult to check that, for any ¢ € ob(C), the natural transformation
mor@(—,F(c)) — — | D | F(c) of contravariant D-categories which is given on
objects by sending f: d — F(c) to f oidg induces a weak homotopy equivalence
mor@(—,F(c)) — Bbar(— 1Dl F(c)) of D-CW-complexes. By Lemma ,
this is even a homotopy equivalence. Using Lemma , it follows that there is
weak homotopy equivalence F*X — BP¥(— | D | F) x5 X of covariant C-spaces
and thus, by Lemma , a weak homotopy equivalence

EPC % F*X — EP™(C x B (— | D | F) xp X.

Furthermore, because of Lemma and EPC = B (— | () together with
(1.30)), there is a homeomorphism

EP(CxBY(— | D | F) xp X = B (— | F) xp B®(— | D] ) xqp X.

The contravariant D-space B (— | F) is, by assumption, weakly homotopy equiv-
alent to the trivial contravariant D-space pt. As B®*(d | D | —) is a DP-CW-
complex for d € ob(9D), we obtain, by the analogue of Lemma , a weak ho-
motopy equivalence 17: BP*(— | F) xp B* (= | D | =) = pt xoB" (= | D | —)
of contravariant PD-spaces. Oune can actually show that the source and target of n
carry the structure of D-C'W-complexes. Hence Lemma implies that n is
even a homotopy equivalence. Thus we finally obtain a homotopy equivalence

BP(— | F) xp BP (= | D | =) xp X = pt xpB™(— | D | —) xp X,
the latter being equal to EP*D x4 X by definition. O

Corollary 1.31. Let C be a filtered category and X a covariant C-space. Then
there is a homotopy equivalence

hocolim X = colim E*(C | ¢) x ¢ I} X,
C ceC

where I.: C | ¢ — C denotes the functor given on objects by sending ¢ — ¢ to ¢.

Proof. The statement follows from the following homeomorphisms, which will be
explained below:

EbaerCX :Bbar(_ l C) XCX

= Bbar(colién— I Cle)yxeX (1.32)
ce
= coéign(Bbar(— L Cle)xcX) (1.33)
= colim EP™(C | ¢) x¢pe IEX. (1.34)
ce

12



1.3 Homotopy Colimits

The natural equivalence 7n;: colimeec— | C | ¢ — — | C of C-categories which is
given by n1(c)[¢ — ¢’ — ] == (¢ — ") yields the homeomorphism of (1.32). The
one of comes from and the natural equivalence no: — | I. — — | C | ¢
of contravariant C-categories given by na(c) (¢ — I.(¢” — ¢)) = (¢ — " — ¢).
Finally, the homeomorphism of holds because — x, X has a right ad-
joint (cf. [DL98, Lemma 1.5]) and hence preserves arbitrary colimits (cf. [Mac98,
section V.5]), and because B® commutes with colim,. The latter is true since
B —= || o N., where |—| has a right adjoint, and N. preserves filtered colimits,
too, by the following argument. Let s,¢: mor(?) — ob(D) be the maps that assign
to a morphism in D its source and target respectively. Then N, (D) is the n-fold

pullback of the diagram mor(D) 2 ob(D) & mor (D). The claim follows since
ob(—) and mor(—) obviously preserve colims and filtered colimits preserve finite
limits, see [Mac98, Thm. IX.2.1]. O

13



2 Models for Classitying Spaces

One reason why finding concrete models for the classifying spaces EG and E‘VCyc(G)
is of interest is that they appear in the formulation of the isomorphism conjec-
tures [[.20] of Baum-Connes and Farrell-Jones. In this chapter, after reviewing
well-known constructions for EG in case G acts on a tree or is word-hyperbolic,
we address the general question whether there are finite-dimensional models for
Eyeye(G) or models of finite type.

Moreover, we will present a model for E¢ (G) in the last section which leads to a
model for Eyp,(G) if G is locally virtually cyclic.

2.1 The Case of the Family of Finite Subgroups

In a number of situations it is possible to construct nice models for EG. We will
explain three of them to be able to refer to them later. A survey on models for EG
for various groups G is given in [Liic05], where also type questions are discussed.

2.1.1 Groups acting on Trees

In this section, we first want to explain the notion of a graph of groups and its
associated Bass-Serre tree.

Given two sets V and E, the vertices and edges, and a map r: E x {—1,1} = V|
assigning to an edge its initial and terminal vertices, let X be the one-dimensional
CW-complex given by the pushout

Ex{-1,1} ‘v

| l (2.1)

Ex[-1,1]— X

A graph of groups G on X consists of collections of groups {Gy}yev and {Ge}ecr,
together with injective group homomorphisms fe.: Ge — G, () for e € E and
e € {£1}. The fundamental group m = m1(G, X, Xo) of G with respect to a mazimal
subtree Xg C X (i.e. Xp is a contractible subcomplex, and if Xo C Y C X such
that Y is contractible, then Xy =Y') is the following group. Let {t.}.cr be a set of
abstract symbols indexed by £. Then 7 is generated by the set | J,cy Go U {te}eck,
and the relations in 7 are the relations in G, for all v € V, the relation t, = 1
whenever e € F is an edge of X, and the relation t;1f. _1(g)te = fe1(g) for every
e€ F and g € G..

14



2.1 The Case of the Family of Finite Subgroups

It is shown in [Ser80, Cor. I.5.2.1] that the obvious maps G, — m are injective.
Thus we can identify G, with its image in 7. Now we define the one-dimensional
m-C'W-complex T by the m-pushout

H ﬂ-/fe,fl(Ge) X {_1’ 1} L H 7T/Gv

eckE J{ veV J

I/ fe-1(Ge) x [-1,1] ———T
eclE

where the restriction of ¢ to 7/ fe,_1(Ge) x {—1} is the projection 7/ fc _1(Ge) —
7/Gy(e,—1), and the restriction to 7/ fe —1(Ge) x {1} is the m-map 7/ fe —1(Ge) —
7/Gpe1) sending gfe —1(Ge) to gteGr(c1)- Then T is contractible after forgetting
the m-action (see [Ser80, Thm. 1.5.12]) and is called the Bass-Serre tree of G with
respect to Xjy.

Conversely, suppose T is a one-dimensional G-C'W-complex that is non-equivari-
antly contractible. We choose a G-pushout

[Tc/Gex{-1.13——]] ¢/c.

eckE l veV J (2.2)

[1¢/Gex[-1,1]———T

eck
Then X := G\T is given by a pushout as in if we define r: Ex{-1,1} — V to
be the map which sends (e, €) to the unique element v € V for which ¢(G/Gex{e}) is
equal to G/G,. Keep in mind that there is a g. . € G satisfying gggGeg% C Griee)
such that ¢ is determined on G/Ge x{e} by q(1G¢, €) = ge Gy (). Now consider the
graph of groups G on X defined by the collections of groups {Gy }vev and {Ge}ecr,
together with the injective homomorphisms fec: Ge — G, ) given by conjugation
with gee. It follows from [Ser80, Thm. I.5.13] that, after a choice of a maximal
subtree Xy C X, one obtains an isomorphism G = (G, X, Xo). Moreover, up to
isomorphism, this construction is inverse to the one above.

Remark 2.3 (Model for EG). By “inflating the equivariant cells” of T" in ([2.2)),
one gets a model for EG. More precisely, consider the G-pushout

[16 % EG. x {-1,1} —2= ] & xc. EG,

ecE J vev J 2.4)

I G xe. EGe x [-1,1] X

ecE

in which the restriction of @ to G x¢g, EGe x {¢} is the G-map sending [g, z, €] to
9,Efe:(x)] € G XGpeey EGr(ee), where Efe.: EGe — EGy() denotes an fe .-
equivariant map. Then, by Lemma , X has the same G-homotopy type as
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2 Models for Classifying Spaces

the diagonal G-space T' x EG. Hence X is a model for EG. This is due to the
fact that, in the situation of a finite group acting on a tree, the fixed-point set is
contractible, see e.g. [Liic05, Thm. 4.7].

Suppose, for instance, G = G *y G2 is an amalgamated product of groups G;
and G2 over a common subgroup H. Endow [0, 1] with the obvious CW-structure
consisting of two 0-cells vy, v9 and one 1l-cell e. Then G is the fundamental group
71(G,[0,1],{0,1]) of the graph of groups G given by G,, = G; for i = 1,2 and
G := H, together with the inclusions of H into G; and G2 respectively. Inflating
the equivariant cells of the associated Bass-Serre tree yields a model for EG which
is built of models for FH, EG1 and EGs, and the pushout can be written

GXHEH%GXGHEGH

J |

G X Go EGQ —)EG

Similarly, suppose G = H X, Z is a semidirect product with respect to an auto-
morphism «: H — H. Consider S' with the CW-structure consisting of a single
0-cell v and a single 1-cell e. Obviously, G is the fundamental group (G, S*, {v})
of the graph of groups G given by G, := H and G, := H, together with the homo-
morphisms idg and «. The model for EG of is then just a mapping telescope
of the a-equivariant map Fa: EH — EH that is infinite to both sides.

2.1.2 Word-hyperbolic Groups

Let G be a finitely generated group. We choose a finite symmetric subset S C G
that generates G, where symmetric means S = S~!. We can impose a metric dg on
G by setting

ds(g1,92) =min{n € N|g; gy =s1--s, for s; € S},

which is obviously invariant under left translation by elements of G’ and called word
metric.
To a pair (G, S) as above one can then associate its Rips complex:

Definition 2.5 (Rips complex). For r € N, the Rips complex P.(G,S) is the
geometric realization of the simplicial complex whose n-simplices are given by (n +
1)-tuples (go, . .., gn) of pairwise distinct elements of G such that ds(g;, g;) < r for
1<4,5 <n.

Remark 2.6. One can make the following easy observations concerning the Rips
complex:

e Because of the left invariance of the word metric, we have a simplicial G-action
on P (G, S) by setting g (9o, - - -+ 9n) = (990s - -, 9gn)-

e The 0-skeleton of P.(G,S) coincides with G.
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2.1 The Case of the Family of Finite Subgroups

e P(G,S)=T(G,S) is the Cayley graph of G with respect to S. It is the graph
with vertex set G in which there is exactly one edge from ¢; to gs if and only
if ds(g1,92) = 1. By requiring that any edge be isometric to the unit interval
[0, 1], the Cayley graph becomes a metric space in which any two points can
be joined by a geodesic.

In general, the 1-skeleton of P.(G,S) is just the Cayley graph I'(G,S’) for
S'={ge€G|0<ds(g,1) <r}.

The class of word-hyperbolic groups consists of those groups whose Cayley graphs
“resemble a tree”. More precisely:

Definition 2.7 (Word-hyperbolic group). Let G be a finitely generated group
and S C G a finite symmetric set generating G. Then (G,95) is said to be d-
hyperbolic if there is a real number § > 0 with the property that any triangle in
I'(G, S) whose sides are geodesics is d-slim, i.e. the é-neighbourhood of the union of
any two of the sides contains the third.

A finitely generated group G is word-hyperbolic if there is a finite symmetric set
S C G generating G and a § > 0 such that (G, S) is d-hyperbolic.

If S and S’ are two finite symmetric sets generating G, then it is not very difficult
to show that I'(G,S) is quasi-isometric to I'(G,S’). This implies that T'(G,S)
satisfies the slim triangle condition if and only if I'(G, S”) does, see [BH99, Thm. 1.9]
(of course, the required 0 varies in general).

Example 2.8. There are two classes of groups for which it is immediate that they
are word-hyperbolic.

e One can see directly from Definition 2.7]that finite groups are word-hyperbolic.
This is because all geodesic triangles in I'(G, S) are d-slim for ¢ the diameter
of I'(G, 5).

e Free groups are word-hyperbolic since, for the canonical choice of S, the graph
I'(G, S) is a tree and thus 0-hyperbolic.

The following result is proved in [MS02]:

Theorem 2.9. Let G be a group and S C G a finite symmetric set generating
G such that (G,S) is d-hyperbolic for some 6 > 0. Then the second barycentric
subdivision of the Rips complex P,(G,S) is a finite model for EG, provided that
r > 166 + 8.

2.1.3 Crystallographic Groups

The symmetry group of R™ is among the most studied groups, at least for n < 3.
We will now consider certain subgroups:

Definition 2.10 (Crystallographic group). An n-dimensional crystallographic
group is a discrete cocompact subgroup of the Lie group of all isometries of R™.
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2 Models for Classifying Spaces

A concise treatment on this matter is given in [Far81]. It follows from [Abe78|
Cor. 4.14] (see also [Liic05, Thm. 4.4]):

Theorem 2.11. Let G be an n-dimensional crystallographic group. Then R™ can
be endowed with the structure of a G-CW -complez in such a way that one gets a

finite model for EG.

2.2 The Case of the Family of Virtually Cyclic Subgroups

We will now turn to the investigation of questions about the type of the classifying
spaces gy, (G). Firstly, it is shown in general how statements about the type of
Eg(G) lead to statements about E¢(G) if F C G are two families of subgroups of
G.

Proposition 2.12. Let F C G be families of subgroups of G. Suppose that for any
H € G there is an n-dimensional model for Exnp(H). Then the existence of an
m-dimensional model for Eg(G) implies the existence of an (n + m)-dimensional
model for Eg(G).

The same is true if one replaces “k-dimensional” everywhere by “finite” or “finite
type”.

Proof. Let Z be an m-dimensional G-C'W-complex with isotropy groups in G. We
will show that then Z x E(G) is G-homotopy equivalent to an (n-+m)-dimensional
G-CW-complex, which implies the claim of the proposition as Eg(G) x E¢(G) is a
model for Ey(G).

We utilize induction over the dimension d of Z. If Z = (), then there is nothing
to show, so let d > 0. Crossing the G-pushout telling how Z; arises from Z;_; with
E#(G) yields a G-pushout

[1 G/H: x Eg(G) x $47' —= Z41 x E5(G)

i€ly
J ‘ (2.13)

[1 G/H:i x Ex(G) x D ——— Zy x Ex(G)

i€ly

Due to Lemma and the fact that resgi E¢(G) is a model for Eynp,(H;),
there is a G-homotopy equivalence f;: G Xy, Egnu,(H;) — G/H; x E¢(G). We set
fo =11, fi x idga-1. Furthermore, by induction hypothesis, there is a G-homotopy
equivalence f1: Z' — Z;_ 1 X E¢(QG), where Z’ is an (n+d — 1)-dimensional G-CW-
complex. We denote the G-homotopy inverse of f; by g;.

For i: |1, G xm, Egam,(H;) x S4™1 — cyl(g1 0 go fy) and p: cyl(giogo fo) — 2’
the obvious inclusion and projection, f1 opoi ~g q o fy holds. Since i is a G-
cofibration, f; o p can be altered within its G-homotopy class to yield a G-map
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2.2 The Case of the Family of Virtually Cyclic Subgroups

f1: eyl(gr o go fo) = Zi—1 x E¢(G) such that f] oi = go fo. Now consider the
(n + d)-dimensional G-CW-complex Z” which is defined by the G-pushout

H G X1, B, (Hi) x 8971 —= cyl(g1 0 g o fo)

icly
J l (2.14)

TG *n. Ero,(Hi) x DI ——— 70
i€ly

The G-homotopy equivalences fy and f{ induce a map of G-pushouts from ([2.14))
to (2.13), and, as the left vertical arrows in these diagrams are G-cofibrations,
Zy x E¢(G) is G-homotopy equivalent to Z” by [Liic89, Lemma 2.13]. O

As an application, recall that every virtually cyclic group V has a finite one-
dimensional model for EV. In fact, if V is infinite virtually cyclic, then V admits
a surjection with finite kernel either to Z or to Z/2 % Z/2, see [F.J95, Lemma 2.5].
Hence a model for EZ, or for E(Z/2 * Z/2) respectively, yields a model for EV by
restriction.

However, a model for EZ is the real line on which Z acts by translation, the
Z-CW -structure consisting of one free equivariant 0- and 1-cell. On the other hand,
note that Z/2 * Z/2 is isomorphic to Z x Z/2 = (a,b | bab = a~!,b> = 1). The
subgroups generated by b and ab represent the two conjugacy classes of finite sub-
groups. One can define a model for E(Z x Z/2) with two equivariant 0-cells and
one free equivariant 1-cell by the equivariant pushout

r_, I pry

ZHZ)2x {~1,1} 2 (Z % 7/2)/(b) 11 (Z x Z,/2)/{ab)

J |

ZXZL)2 x [—1,1] E(Zx17/2)

where pr_,: ZxZ/2x{—1} — (ZxZ/2)/{b) and pry: ZXZ/2x{1} — (ZXZ/2)/{ab)

are the canonical projections and the left vertical arrow is the inclusion. Explicitly,

this model for E(Z x Z/2) is the real line with the action a™b™ - x =n + (—1)"x.
It follows with the help of Proposition [2.12

Corollary 2.15. Let G be a group and n > 2. If no model for EG is of dimension
less than n (or finite, or of finite type), then no model for Eqyp, (G) is of dimension
less than n — 1 (or finite, or of finite-type).

This expresses in a way that finding models for ErVCyt(G) must be more demanding
than for EG. Furthermore, the question arises whether one can also derive an
upper bound for the minimal dimension of models for Ey,(G) from the minimal
dimension of models for EG. An answer to this problem will be given in section [3.1]
if G satisfies a certain condition.

The proof of the next result is along the lines of the proof of |[Liic00, Thm. 3.1
and Thm. 3.2].
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2 Models for Classifying Spaces

Theorem 2.16 (Behaviour under group extensions). Suppose we are given

an exact sequence 1 - K — G LN Q — 1 of groups.

(1) Assume that Q is a torsion group that possesses an upper bound b on the orders
of its finite subgroups, and that there is a k-dimensional model for E‘VCyc(K)
and a gq-dimensional model for EQ. Then there is a (kb + q)-dimensional
model for Eye,(G).

(2) Assume that for any virtually cyclic subgroup V- C Q there is a finite model
for Eyeye (p~1(V)), and that there is a finite model for Eyeye(Q). Then there
is also a finite model for Eqpy (G).

The same 1is true if one replaces “finite” everywhere by “finite type”.

We remark that, concerning the condition on @ in Theorem , there are
indeed infinite torsion groups which have an upper bound on the orders of their
finite subgroups. For instance, the so-called Tarski monster groups constructed in
[O1'82] have this property.

As for Theorem , it is not clear which groups (if any but the virtually
cyclic ones) possess a model for Fq, (G) of finite type, let alone a finite model.
This is illustrated by the following example, which shows in particular that models
for Eqp, (G) behave badly with respect to direct products of groups even in the
most basic situations (but also cf. Corollary .

Example 2.17. Let G be an extension 1 — Z — G — Z — 1. This sequence splits,
so G = Z % Z is a semidirect product, and either G = (a,b | ba = ab) = Z & Z or
G = {a,b| ba = a~'b).

Assume first that G = Z & Z. We get an explicit model for Ey,(G) as follows.
Note that the maximal cyclic subgroups of G are precisely those which are generated
by a"b™, where n, m € Z are coprime. Let {C;};cn be the collection of all the
maximal cyclic subgroups and p;: G — G/C; the projections. Since the quotients
G/C; are infinite cyclic, we can choose models X; for E(G/C;) whose underlying
space is the real line. Every X; carries a G-action coming from p;. As C;NC; = {1}
if i # j, the map p; x pj: G — G/C; x G/Cj is injective in this case. Via this
map, X; x Xj is a model for EG. Now the G-CW-complex X is defined to be the
G-pushout

I pr;
HXz X Xi+1 X {O,l}i)HX]

ieN J jENJ 218)

]_[)(Z X Xit1 X [O,l] — X
i€N
where pr;: X; X Xiy1 x{0,1} — [, X is the map which projects X; x X;11 x {0}
to X; and X; x X;y1 x {1} to X;41, while the left vertical arrow is the inclusion.
From it is easy to see that X is a three-dimensional model for Eqyp,.(G).
Since G\ (X; x X;y1) as well as G\ X; x G\ X,11 are models for BG, it is also clear
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2.2 The Case of the Family of Virtually Cyclic Subgroups

that dividing out the G-action in (2.18)) yields a pushout

I, pr;
[T1G\Xi x \Xis1 x {0, 1} ——= [ G\X;

€N l jEN l

[[6\Xi x G\Xi41 x [0,1] Y
ieN

such that Y is homotopy equivalent to G\ X. Applying the Mayer-Vietoris sequence
shows that H3(Y") is isomorphic to a free abelian group of infinite rank. In fact, one
can deduce from the above pushout that Y is built of a countable number of copies
of S, the join construction S* x S = §3 being applied to two consecutive copies.
In particular, any model for Eyp,(G) must at least be of dimension three (more
generally, it will be shown in Example that if G is finitely generated abelian of
rank n, the minimal dimension of models for Eqyp, (G) is n +1).

If G = (a,b | ba = a~'b), then note that a and b* generate a free abelian normal
subgroup of index two in G. Hence at any rate, by Theorem there is a six-
dimensional model for Ey, (G) in this case. In anticipation of section however,
we briefly want to indicate why the minimal dimension of a model for Eqp, (G) is
actually three. Of course, it cannot be smaller since Z @ Z C G, which means that
from every model for Eq,.(G) one obtains a model for Ey, (Z©Z) by restricting the
G-action. On the other hand, G certainly satisfies the assumptions of Theorem [3.7]
Using the fact that there is a two-dimensional model for EG due to [Liic05l Ex. 5.26],
this yields a three-dimensional model for Eqp, (G).

We remark that in neither of the above cases there can be a model for Er,/CyC(G)
of finite type, cf. the next lemma.

Lemma 2.19. Let G be a group and F a family of subgroups. Suppose that there
is a model for Ex(G) with a finite 0-skeleton. Then there is a finite subset F' C F
such that any H € F is subconjugated to an element of F .

In particular, if there is a model for EG with finite 0-skeleton, then G contains
only finitely many conjugacy classes of finite subgroups.

Proof. Let G/Hy,...,G/H, be the finitely many equivariant 0-cells of E(G). For
any H € ¥, the set of G-maps from G/H to E¢(G) must be non-empty. However,
every G-map G/H — E¢(G) is G-homotopic to a G-map G/H — G/H; for some
1 by the equivariant version of the cellular approximation theorem. Hence H must
be subconjugated to one of the H;. O

We want to conclude this section with an explanation of how L2-Betti numbers
are related to the minimal dimension of models for E¢(G) in case ¥ is a family
of amenable subgroups of G. First of all, let us recall some definitions (a good
reference for the matter in this section is [Liic02] ch. 6]).
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2 Models for Classifying Spaces

We denote by [2(G) the Hilbert space of square-summable formal sums over G
with complex coefficients, where the scalar product is given by

<Z)\g~g,z,ug-g> ::Z)‘g/Tg'

geG geG geG

Left multiplication with elements in G induces an isometric G-action on [*(G).
The group von Neumann algebra N(G) is, by definition, the algebra B(I*(G))% of
G-equivariant bounded operators I?(G) — I2(G).

To any module M over the ring A (G) one can assign its von Neumann dimension
dimay ) (M) € [0,00]. If, for instance, M is finitely generated projective, then
dimg () (M) = 37 (aii(1),1) for any (n x n)-matrix A = (a;;) with entries in
A(G) such that A2 = A and the image of the A(G)-homomorphism N (G) — A (G)
given by right multiplication with A is A (G)-isomorphic to M.

The homology groups HS (X; N(G)) of the G-C'W-complex X with coefficients in
AN (G) are the homology groups of the A (G)-chain complex A (G) ®zcCy(X), where
C.(X) denotes the cellular ZG-chain complex of X. The n-th L?-Betti number of
X then is

b (X5 N(@)) = dimgye) (HT (X; N(G))).-
For a group G, one sets bg)(G) = b2 (EG; N(G)).

Theorem 2.20 (L2-Betti numbers and minimal dimension of E¢(G)). Let
G be a group and n € N such that b,(f)(G) # 0. Let F be a family of subgroups of
G such that every H € F is amenable. Then any model for Eq(G) must be at least
n-dimensional.

Proof. Since EG x E¢(G) equipped with the diagonal G-action is a model for EG, it
suffices to show that b (X;N(G)) = b2 (EGx X; N(G)) for all G-CW-complexes
X with amenable isotropy groups and all n € N (see also [Liic02, Th. 6.54(2)]).
Moreover, since the dimension function satisfies dimg gy (V) = dimg gy (M) +
dimg()(Q) whenever there is a short exact sequence 0 — M — N — Q — 0
of A((G)-modules, one only needs to show that the map HS (EG x X;N(G)) —
HY(X; N(G)) which comes from the projection has a kernel and a cokernel of triv-
ial dimension. We can furthermore assume that X, being the directed colimit of its
finite G-C'W-subcomplexes, is itself finite, as directed colimits are compatible with
HS (—;7\((G)) and exact sequences and behave nicely with respect to dimg (). Fi-
nally, by induction over the number of equivariant cells, this reduces to X = G/H
for an amenable subgroup H.

Using Lemma together with the fact that both HS (—; A{(G)) and dimg ()
are compatible with induction, it remains to show that for an amenable group H
the projection induces a map l’-[};"(EH7 N(H)) — HI (pt;.‘)\[(H)) whose kernel
and cokernel have trivial dimension. Suppose first that H is finite. In this case
N (H) = CH and the claim is obvious. If H is infinite amenable, then it is known
that all its L?-Betti numbers vanish. On the other hand, it is not hard to show that
dimag gy (N(H) @z Z) = 0, which finishes the proof. O
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2.3 A Model for Colimits of Groups

Example 2.21. Let G be such that b§2)(G) # 0 but bZ@)(G) =0foralli#1,eg.
G = Z % Z. Then it follows from the Kiinneth formula for L2-Betti numbers that

b2 (ﬁ G) =@ 0.
=1

2.3 A Model for Colimits of Groups

In the following keep in mind that, for an inclusion H C K C G of groups and a fam-

ily # of subgroups of G, there is a canonical cellular G-map f: G xg Egnp(H) —

G x g Egni (K). Explicitly, one can simply put f = idg X i f’ for a cellular K-map

" K xg Egag(H) — Egni(K), which one obtains from the universal property

of Exnk(K) and the equivariant version of the cellular approximation theorem.
We will also consider directed sets as filtered categories in the obvious way.

Theorem 2.22. Assume that the group G = J;c; Gi is a directed union of sub-
groups. Let F be a family of subgroups of G with the property that any H € F is
contained in some Gy, e.g. F consists of finitely generated subgroups of G. If models
Xi for Egng,(G;) are chosen, then hocolim;c; G X, X; will be a model for E¢(G).

Proof. We define the I-space F by F (i) := G X, X; for i € I. Whenever Y is an I-
CW-complex, the map A\;: F' — F' of I-spaces which is given by left multiplication
with g € G induces a G-action on Y X I by requiring that g acts as idy x;Ags. It
will be shown below that for all subgroups H C G the natural inclusion F# — F
induces a homotopy equivalence

(hOC(I)lim F) = hOC(I)lim FH (2.23)

From this it follows that the isotropy groups of hocolim; F' are contained in F
because ¥ is closed with respect to taking subgroups.

Furthermore, if H € ¥, it suffices to prove the contractibility of hocolim; F*H.
Note that F(i) ~ (G/G;)H fori € I by Lemma (1), in fact naturally in . Thus,
according to Theorem (1), we only need to show that hocolim;e;(G/G;) ~ pt.
This is, however, equivalent to showing that

C 1= colim E™(I | 4) %113 (GG )™ ~ pt, (2.24)

where for ¢ € I the functor J;: I | ¢ — I is given on objects by sending j — ¢ to
j, see Corollary Certainly C' is connected due to the directedness of I. Next
we explain why for n > 1 any map f: S — C must be null-homotopic. Recall (cf.
page that for i/ < 4 an n-cell of EP*(I | i)(i’ — i) corresponds to a sequence
i’ <ip<ip <...<iy, <iin I. Hence, for each pair i < j € I, the structure map

[T E™ 1) — i) x (G/G) ) ~ = T] B> (I L j)(i’ — j) x (G/Gy)" ] ~

i'<i i'<j
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2 Models for Classifying Spaces

in the above colimit is an inclusion of C'W-complexes because it simply comes from
the collection of maps of the form

(i <idp <1 < ... <in <, gGy) = (" <idg <i1 < ... < <, gGir).

Since f(S™) is contained in a finite subcomplex of C, it is therefore already contained
in Ebar(T | 4) XTli (G/GJZ,(,))H for an appropriate 7 € I. However, since I | ¢ has a
terminal object, the trivial contravariant I | i-space pt is an I | --CW-complex and
hence homotopy equivalent to E**(I | i) by Lemma . This implies that
the projection induces a homotopy equivalence E** (I | i) x;; (G/G )" —
pt xju(G/GJi(,))H = (G/G;)M, the latter being a discrete space. This settles
(2.24)).

It remains to show the rather obvious claim of . If we choose a classifying
space EI for I, then, by definition, hocolim; F = EI x; F and hocolim; FH =
FEI x; FH both being well-defined up to homotopy equivalence. Suppose first that
FE1I is finite-dimensional, then the assertion will be proved using induction over the
skeleta of FI. Since EI_1 = (), the induction start is trivial. Assuming n > 0, there

is a pushout
y \
H mory(—,i;) x D" —— EI,

to which we can apply — x; F¥, or we can apply — x; F and then take H-fixed
points. In either case, the resulting squares

H morf(—,z'j) X7 FH o« gn=t —— FEI, 1 X; FH

J€Jn
J l (2.25)

H morl(—,z’j) X[FH X Dn—>EIn X[FH
Jj€Jn

and
[T (morr(—.ij) xr F)" x 8" —— (EL,—1 x; F)¥

j€n
J J (2.26)

H (morj(—,ij) X7T F)H x D" —— (EIn X7r F)H
jeJn

are again pushouts as the balanced product over a category by a fixed functor
possesses a right adjoint and thus preserves arbitrary colimits, cf. [DLI8], Lemma 1.5]
and [Mac98, section V.5]. Now the natural inclusion F¥ — F induces a map of
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2.3 A Model for Colimits of Groups

pushouts from (2.25)) to (2.26)), where

mor[(—,z’j) X7T FH X Sn_l — (mor[(—,ij) X1 F)H X Sn_l,

mory(—,i;) x; F x D" — (mory(—,i;) X1 F)H x D"
are homeomorphisms by Lemma , and El, 1 x; F — (EI,_y x; F)" is
a homeomorphism by the induction hypothesis. Hence F1,, X; FH (EL, X1 F)H
is also a homeomorphism.

In the general case we can write EI = colim,cn E1,, so that there are homeo-
morphisms ET x; F 2 colim,en(ET, x; F) 2 colim,en(EI, x; F)¥, the second
by what we have just shown. Now (2.23) follows from the fact that colim,cy and
(=) commute. O

Corollary 2.27. Assume, in the situation of Theorem[2.23, that there is an n € N
such that all the E¢ng,(G;) have models of dimension not exceeding n. If there is a
d-dimensional model for EI, then there is an (n+ d)-dimensional model for Eq(G).

Lemma 2.28. Let I be a directed set and d € NU {oco} the minimal dimension of
a model for EI. Then:

(1) I has got a mazimal element if and only if d = 0.
(2) If there is a countable cofinal subset of I, then d < 1.

Proof. If iy is the maximal element of I, then mor;(—,ig) is a zero-dimensional
model for EI. Conversely, the existence of a zero-dimensional model for EI means
that there is a family {ig}rex in I such that for every i € I one has i < iy for a
unique k € K. However, since I is directed, this implies K = {ko}, and i, is the
maximal element of I. This settles .

As for (2), if I does not have a maximal element, let J = {i; | k € N} C I be
cofinal. For n € N let J,, = {iy | k < n}, then J, is finite and J = (J,,cry Jn. We
set jo = 49 and choose j, € I for n > 1 such that j, is strictly greater than any
element in J, U {jn—1}. Obviously, {j, | » € N} C I is cofinal and isomorphic to N
as a directed set. Now a one-dimensional model for ET is given by the pushout

T[T mors(—, jn) x (—1,1) T morr(—,jim)

neN J meN J

I mori(—,4n) x [-1,1] EI
neN

where g, : mory(—, jn)x{—1,1} — [],,cy mor;(—, jin) is the natural transformation
which is given on mor;(—, j,) x {—1} by composition with id;, and on morz(—, j) x
{1} by composition with j, — jpi1- O
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2 Models for Classifying Spaces

Of course, one may ask oneself whether a generalized version of Lemma[2:28 holds,
saying that there is an (n + 1)-dimensional model for ET whenever I has a cofinal
subset of cardinality N,,. This could neither be proved nor disproved. We refer to
Theorem instead.

Example 2.29. Let GG be a countable group and ¥ the family of all finitely gen-
erated subgroups. It follows from Corollary 2.27] and Lemma [2.28] that there is a
one-dimensional model for E(G).

Furthermore, in this case we can write G = |J,cy Grn for an ascending chain
Gy C G1 C ... of finitely generated subgroups of G. The model hocolim,cy G/G,,
for E¢(G) of Theorem is then the Bass-Serre tree of the following graph of
groups (see section. Its underlying CW-complex is just the ray of non-negative
real numbers with the natural CW-structure. The vertex groups are the groups
{Gp }nen, at the edge from n to n + 1 is the group G, and the corresponding edge
homomorphisms are given by id¢g, and the inclusion of G, into G,,41, respectively.

Note that the assumption in Example 2.29] that G be countable is necessary.
In fact, suppose that G is a locally finite group of cardinality ®,,. Then [KT97,
Thm. A| implies cdg(G) = n + 1. However, it is known that for any group K there
is a one-dimensional model for EK if and only if cdg(K) < 1, see Thm 1.1].

Proposition 2.30 (Torsion-free locally virtually cyclic groups). The family
of countable locally virtually cyclic groups that are torsion-free consists precisely of
all subgroups of the additive rationals Q.

Proof. If G is a subgroup of QQ, then any finitely generated subgroup of G is infinite
cyclic. Conversely, let G be a countable locally virtually cyclic group that is torsion-
free. Then every finitely generated subgroup of G is trivial or infinite cyclic, from
which it follows that G is abelian. Moreover, by [Bie76, Thm. 4.7(b)], we have
cdz(G) < cdz(Z) + 1 = 2. Now the claim follows from the classification of solvable
groups of cohomological dimension two in [Gil79, Thm. 5]. O

Example 2.31. For a prime number p € N, consider the colimit of the sequence
72727 .. ., all maps being multiplication by p. It can be identified with the
subgroup Z[1/p] C Q consisting of all fractions whose denominators are powers of p.
By the results of this section, there is a one-dimensional model for Eqyyy (Z[1/p]).

There is something more we want to show:

Theorem 2.32 (Groups that are locally ¥). Let G be a group of cardinality X,
and F the family of all finitely generated subgroups of G. Then E¢(G) has a model
of dimension n + 1.

Proof. We use induction on n € N. The case n = 0 has already been settled in
Example so let n > 0. We can write G = Ua<wn G4 for subgroups G, of
cardinality ®,,_1 such that G, C Gg if o < 3. By induction hypothesis, for o < wy,
there are models X, for Egzng, (Go) of dimension n. The induction step now must
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2.3 A Model for Colimits of Groups

provide us with an (n + 1)-dimensional model for E¢(G). If we set G,, = G,
this will be accomplished by using transfinite induction for a < w, to construct
(n + 1)-dimensional models Y, for Egng,(Ga) such that G xg, Yo C Gy Xg, Y3
is a Gy-subcomplex if a < 3 < 1.

Let Yy := Xy. Now suppose that a has got a predecessor. Then the universal
property of Eyng,(Ga) vields a Go-map fo: Go Xag, , Xa—1 — Xa, which we
can assume to be cellular by the equivariant version of the cellular approximation
theorem. We define Y, by the G-pushout

Ga XGooy Xa—1 SLLEN cyl(fa)

J{id Xga—1 l
Ya

Ga XGa-1 Yafl E—

in which 4, is the obvious inclusion into the mapping cylinder of f, and g,—1 the up
to Go—_1-homotopy unique homotopy equivalence which comes from the universal
property of Egng, ,(Ga—1). It follows that Y, is G,-homotopy equivalent to X,
and hence a model for F¢ng, (G,). Moreover, Y, is clearly (n + 1)-dimensional.
Finally, if « is a limit ordinal, we define Y, to be the union of the G, X, Yp for
0 < a. O
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3 Constructing Models for Eq, (G)
from Eg,(G)

This chapter deals with the observation that for certain classes of groups G it is
possible to obtain a model for Eqp, (G) from a model for Eg;,(G) by attaching
equivariant cells.

This not only leads to a computation of the relative homology groups which
are direct summands of the source of the Farrell-Jones assembly map (and
sometimes , cf. Proposition , but also yields bounds on the dimension of
models for Eqyp, (G).

3.1 Constructing Models out of Given Ones

We start by fixing notation. Recall that, given an inclusion H C G of groups,
the normalizer of H in G is the subgroup NgH = {g €G|gtHg = H} of G.
Moreover, we point out that in our context the Weyl group is defined to be the
quotient WgH = NgH/H.

Notation 3.1. Let # C G be families of subgroups of a group G. We shall say
that G satisfies (M G, F) if every subgroup H € G \ ¥ is contained in a unique
M € G\ ¥ that is maximal with this property, i.e. M C M’ for an M’ € G\ F
implies M = M’.

We now state and prove an important result of this section.

Theorem 3.2. Let G be a group which satisfies (MG, F). We denote by M a
complete system of representatives of the conjugacy classes of mazimal subgroups
M e G\ F. Assume that F N NgM C Sub(M) for every such M. Then there is a
cellular G-pushout

H G XNem Erangm(NagM) — s Es (G)

MeM
J{HM id x far

I1 G xnem EWegM ——— EG(G)
MeM

in which the Wa M -spaces EWqaM are considered as NogM -spaces via the canonical
projections NoM — WgM, the NgM-maps far: Exangm(NaM) — EWeM are
unique up to NgM-homotopy, and i is an inclusion of G-CW -complexes.
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3.1 Constructing Models out of Given Ones

Proof. Let M € M. Since the NgM-space EWgM is a model for Eg, 40 (NaM),
the assumption yields an NgM-map fur: Exangm(NeM) — EWgM which is
unique up to NgM-homotopy. Similarly, since all the isotropy groups of the G-
CW-complex [[,; G Xnom Exnngm(NeM) belong to F, there is precisely one
G-map i: [[; G Xngm Eranem(NegM) — Eg(G) up to G-homotopy. By the
equivariant version of the cellular approximation theorem, we can assume f3; and ¢
to be cellular. Moreover, by replacing ¢ with the inclusion into its mapping cylinder,
it can be arranged for ¢ to be an inclusion of G-C'W-complexes.

Now let us define the G-CW-complex X to be the G-pushout

H G XNngM Eranem (NaM) — By (G)

MeM
JHM id ><f]u ‘ (33)
X

I G xnev EWGM ———
MeM

We claim that X is a model for E¢(G). In order to prove this, let sp7: G/NgM — G
be sections of the projections, and let a subgroup H C G be given. Then, taking

H-fixed points of (3.3)) and applying Lemma yields a pushout

I I By (NGM)™ (@)™ (@) — By ()
MeM a€G/NagM,
sm(a) " tHsp(a)CNeg M (3.4)
J/HM U, fa,a
H H EWGMSM(Q)_IHSM(Q) - L xH
MeM a€G/NgM,

SM(Oz)leSJ\/[(Oé)CNGM

in which ¢ is an inclusion of CW-complexes.

Assume that H ¢ G. Then the entries in the upper row of (3.4) are clearly
empty. However, so is the lower left entry because EW Mm@~ Hsr(a) — () ypless
sy(a) ' Hsy(a) € M. Hence in this case X7 = ().

If H € G\ ¥, the entries in the upper row of are again empty. Thus it
suffices to show that the lower left entry is contractible. By assumption, there is a
unique M € M to which H is subconjugated, say g "' Hg C M for an appropriate
g € G, whose projection to G/NgM we denote by v. Then g~ 'sy/(v) € NaM so
that sy () ' Hsp(y) C M. Moreover, if sy (o) P Hsy (o) € M, we have

M = ((sp(a) " Hsp(@)), = sn(a)  Hpaxsar (@) = sy(a) tgMgsu(a),

max

where we write Kpax for the unique maximal element in G \ ¥ containing a given
element K in G\ . This means that g~ 'sy/(a) € NoM, hence a = 7. It follows
that the lower left entry of is equal to EWgM, and this is non-equivariantly
contractible.
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3 Constructing Models for Eyp,(G) from Egiy(G)

Finally, if H € F, the upper right entry of is contractible. This implies that
the same will hold for X# if we can show that all the maps fM .« are homotopy
equivalences. But this is clear since the source and target spaces are contractible,
the latter because F N NgM C Sub(M). O

In order to derive the conclusion we are interested in from Theorem [3:2] we need
the following simple observation:

Lemma 3.5. Let G be a group and V C G a maximal virtually cyclic subgroup.
Then WqV is torsion-free. In particular, every finite subgroup of NgV is already
contained in V.

Proof. Let p: NgV — WgV be the projection. If H C WV is a finite subgroup,
then p~!(H) contains V as a subgroup of finite index. Thus, p~!(H) is virtually
cyclic and therefore equal to V' because V is maximal virtually cyclic. This implies
that H is trivial. O

Corollary 3.6. Let G be a group which satisfies (M Fin,Tr) or (M VCyc, Fin). We
denote by M a complete system of representatives of the conjugacy classes of mai-
mal finite subgroups F' C G or of infinite mazimal virtually cyclic subgroups V C G,
respectively. Then there are cellular G-pushouts

1 @ xnor ENM —— EG 1 & xngv ENV —— EG
FeMm Vem
J]_[Fid X fr l or J]_[Vid X fv J
11 G xner EWeF —— EG [T G xnov EWeV —— Evge(G)
FeM Vem

respectively, the maps being as in Theorem [5.3

Proof. In order to apply Theorem , we have to show that 7r N NgF C Sub(F)
for any maximal finite subgroup F' C G, and that Fin N NgV C Sub(V) for any
infinite maximal virtually cyclic subgroup V' C G. The former is trivial, and the
latter follows from Lemma O

For examples of groups satisfying one of the conditions of Corollary [3.6] we refer
to Remark [3.14] and Examples [3.10]and [3:22] The next goal is to show that one can
actually prove a version of the above result for groups that only virtually satisfy

(MYCyc, Fin).

Theorem 3.7. Suppose that 1 - K — G — Q — 1 is an ezact sequence of groups
such that K satisfies (M VCyc, Fin) and Q is finite. We identify K with its image in
G and denote by M a complete system of representatives of the conjugacy classes in
G of infinite subgroups V C K that are mazimal virtually cyclic in K. Then there
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3.1 Constructing Models out of Given Ones

1s a cellular G-pushout

Il(;mwvgmbvg—i—%ﬂa

Vem
HV id XET(V

H G XNgV EWGV — E‘VCyC(G)
vem

i which the WqV -spaces EWgV are regarded as NgV -spaces via the canonical
projections mwy: NgV — WqgV, the maps Eny: ENgV — EWgV are NgV-
equivariant, and i is an inclusion of G-C'W -complezes.

Proof. With the help of a functorial construction of classifying spaces, the projec-
tions 7y induce the desired NgV-maps Eny: ENgV — EWgV. Furthermore,
since all the isotropy groups of the G-CW-complex [[,, G xn,v ENgV are ob-
viously finite, there is precisely one G-map i: [[, G xny,v ENgV — EG up to
G-homotopy. By the equivariant version of the cellular approximation theorem, we
can assume that all the Emy and ¢ are cellular. After replacing ¢ with the inclu-
sion into its mapping cylinder, we can moreover assume that ¢ is an inclusion of
G-C'W-complexes.
Now, we define the G-CW-complex X to be the G-pushout

H G XNgV ENg‘/%EG

Ve
HV id XETI’V

[T & xnev EWeV —— X
vem

and want to show that X is a model for E‘VCyc(G)- To do so, we choose sections
sy: G/NgV — WgV of the projections and a subgroup H C G. Taking H-fixed
points of the above G-pushout then yields, in connection with Lemma , a
pushout

H H ENGVSV(Q)AHSV(&) _t EGH
Vem a€G/NgV,
sv(e) ' Hsy (a)CNgV (3.8)
|1y 1L, By
H H EWgVsv(@  Hsvle) w1
Ve a€G/NGY,

sy(a) 1 Hsy (a)CNgV

in which 7 is an inclusion of CW-complexes.

Let us first assume that H is not virtually cyclic. If V € M and o € G/NgV are
such that H, = sy (a) 'Hsy(a) C NgV, then my(H,) = Hy/H, NV must be an
infinite subgroup of WgV as H, NV is virtually cyclic. This means that the lower
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3 Constructing Models for Eyp,(G) from Egiy(G)

left entry of is empty. Clearly, the entries in the upper row are also empty,
hence X = () in this case.

If H is infinite virtually cyclic, we claim that there is precisely one infinite maximal
virtually cyclic subgroup V' C K such that H C NgV and |my(H)| < oo. As for
its existence, note that H N K is infinite virtually cyclic since G/K = @ is finite
by assumption. Hence, H N K is contained in an infinite maximal virtually cyclic
subgroup V' C K because K satisfies (M VCyc, Fin). For every h € H, however,
HNK = h 'HNKh is contained in h~'V'h as well. Thus, again because K satisfies
(MYCyc, Fin), we have that H C NgV. Moreover, |ny(H)| = |[H/HNV| < o0
since H NV is infinite virtually cyclic. To establish the uniqueness of such a V', let
V' € K be another infinite maximal virtually cyclic subgroup with the according
properties. In particular, H NV’ is also of finite index in H, which implies that
the same holds for H NV NV’ Thus, V NV’ is infinite virtually cyclic, and it
follows that V' = V' as K satisfies (M VCyc, Fin). From what we have just shown,
it can readily be deduced that there is precisely one possible choice of V € M and
a € WgV such that sy (a) 'Hsy(a) C NgV and !Wv(sv(a)*leV(a))‘ < 0. So
the lower left entry of is contractible, whereas the entries in the upper row are
empty, and it follows that X is contractible.

Finally, if H is finite, then the left vertical arrow in clearly is a homotopy
equivalence. Thus X ¥ is homotopy equivalent to EGH, which is contractible. [

Remark 3.9 (Dimension of the constructed models). In the situation of
Theorem suppose one takes a k-dimensional model for E¢(G) and, for M € M,
models for E¢nn,n(NgM) of dimension {(M) and models for EWg M of dimension
m(M). Then the model that is constructed for Eg(G) is of dimension n, where

n=sup{k, (M)+1, m(M)| M e M}.
The analogous statement holds in the situation of Theorem [3.7]

We are now prepared to dwell on the problem of finding models for Er,/cyt(G) in
the case of a finitely generated abelian group G (see also Example 2.17)).

Example 3.10 (Finitely generated abelian groups). Let G be a finitely gen-
erated abelian group of rank n > 2, i.e. G = Z" @ F, where F' is finite abelian.
Pick elements a1,...,a, € G that generate Z". Then the maximal virtually cyclic
subgroups of G are precisely those V(r1,...,r,) = (a]' - - -al") @ F for which there
is some choice of distinct i,j € {1,...,n} such that r; and r; are coprime inte-
gers. Furthermore, it is immediate that either V(ry,...,7r,) = V(s1,...,8,) or
V(r,...,rn) NV(s1,...,s,) = F for all such maximal virtually cyclic subgroups.
It follows that no model for Eqp, (G) can be of finite type, cf. Lemma . More-
over, G satisfies (M VCyc, Fin), and we deduce from Remark that there exists
an (n + 1)-dimensional model for Eq,(G) since there is an n-dimensional model
for EG.
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3.1 Constructing Models out of Given Ones

However, there cannot exist a model of lesser dimension. This is due to the fact
that dividing out the G-action in the pushout of Corollary [3.6] and keeping in mind
that the normalizer of any subgroup of G is G itself yields the pushout

id
1] ¢\Ec " a\ee
vVem
JHV G\ fv

I[ B(G/V) —— C\Euye(G)
vVem

While G\EG is homotopy equivalent to the n-dimensional CW-complex T" =
[T, S, the space B(G/V) is homotopy equivalent to the (n — 1)-dimensional
CW-complex T"~!. Thus the Mayer-Vietoris sequence belonging to this diagram
reads

= 0= Hyat (G\Eageyo(Q) — @D HA(G\EG) B B, (G\EG) — ...
vem

which implies that H,11 (G\Eq/CyC(G)) is free abelian of infinite rank, proving the
claim.

Provided that & = Tr or Fin, it is obvious that whenever one has models for
E#(G1) and Eg¢(G2), their product will be a model for E¢ (G x G2). As we have
already pointed out in section [2.2] the analogous statement fails drastically in the
case of F = V(Cyc. However, one can say a bit more under the assumption that
G1 x Go virtually satisfies (M VCyc, Fin) (note that the property (M VCyc, Fin) is
not stable under forming direct products).

Corollary 3.11. Let G = G1 x G2 be a group which fits into an exact sequence
1 - K — G — Q — 1 such that K satisfies (M VCyc, Fin) and Q is finite. We
identify K with its image in G and denote by M a complete system of representatives
of the conjugacy classes in G of infinite subgroups V' C K that are mazimal virtually
cyclic in K. Let

[ == sup {minimal dimension of ENGV},
vem

m = sup {minimal dimension of EWgV }.
vem

Suppose there are models for Eoyp(G1) and Eyp(Ga2) of dimension di and do
respectively. Thenl < di+ds+2, and there is an n-dimensional model for EfVCyC(G'),
where

n =max{d; +da + 2, + 1, m}.

Moreover, this estimate for n is best possible.
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3 Constructing Models for Eyp,(G) from Egiy(G)

Proof. Propositionshows that for i = 1,2 there are (d;+1)-dimensional models
for EG;. Their product then constitutes a model for EG of dimension dy + do + 2.
Thus, by Remark there is a model for Eyp,(G) of the dimension claimed.
Furthermore, since a model for EG yields by restriction a model for ENgV, the
inequality | < d; + ds + 2 holds.

Finally, the given estimate on the dimension of Eyp,(G) is sharp as can be seen
in the case when @ is the trivial group and G; = G2 = Z, in which dy = dy = 0,
[ =2 and m = 1, while there is no model for Eq, (G) of dimension less than three,
see Example 2.17 or Example [3.10] O

We end this section by explaining how the results in [CEH06| on the dimension
of models for Eqp, (G) for crystallographic groups G fit into our framework.

Example 3.12 (Crystallographic groups). For given n > 2, let G be a crystal-
lographic subgroup of the isometry group of R™. Let us denote by T' C G the group
consisting of all the translations in G. Then T is normal in G. Furthermore, the
Bieberbach theorem (see e.g. [Far81, Thm. 14]) states that 7T is finitely generated
free abelian of rank n and that G/T is finite. In particular, Example shows
that there cannot be a model for Eqp, (G) of dimension less than n + 1.

On the other hand, Theorem applied to the exact sequence 1 - T — G —
G/T — 1 can be utilized as follows to produce an (n + 1)-dimensional model for
Eyey(G). First note that in Theorem we have already seen that R", with an
appropriate G-C'W-structure, is a model for EG. For every subgroup C' C T which
is maximal cyclic in T, the restriction of R" to the NgC-operation can then be used
as a model for ENgC. As C is generated by a single non-trivial translation of R”,
there is a unique line in R™ which contains 0 € R™ and is invariant under the action
of C. Let Rg_l C R" be the hyperplane which is orthogonal to this line, and let
pc: R" — Rg_l be the orthogonal projection. It is immediate from the construction
that one can impose a WgC-action on R by setting mc(n) - po(z) = pc(na),
where ng: NgC — WgC is the canonical projection.

Now, in [CFHO6] it is shown that one can choose a CTW-structure for R, which
turns this space into a model for EWgC. Hence, Theorem [2.16] yields indeed a
model for Eyp,(G) of dimension n + 1.

3.2 Computation of the Relative Homology Groups

As a further application of Corollary [3.6] we will see in this section that the relative
homology groups which split off from the source of the Farrell-Jones assembly map
simplify considerably if the involved group satisfies (M VCyc, Fin).

First of all, suppose E: Groupoids — Spectra is a functor that sends equivalences
of groupoids to maps of spectra inducing an isomorphism on homotopy groups (the
main example to keep in mind here is when E is one of K'*P, K or L;—O@, cf.
section [1.2). If H C G is an inclusion of groups and 7 a family of subgroups of
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3.2 Computation of the Relative Homology Groups

NgH, let p[H, F] be the map

- Or
(vesH, i B (NGH)) . Aoxn vespnn iy B(GNH (NG H/-))
1l
_ Or(H
Pty Aor(m) reSOrgNivH) E(gNGH(NGH/_))
[
E(GN¢" (WeH))

of spectra which is induced by the projection on the first and the identity on the
second factor. We will now implement an action of WgH on the source and target
of p[H, F] with respect to which p[H, F] is equivariant. This follows ideas of Liick.

For a fixed element ng € NgH, we denote by c,,(n) = ngnng ' conjugation in
NgH by ng. Then ¢, induces a functor ¢,,: Or(NgH) — Or(NgH) by sending
an object NqH/K to NgH/cny(K) and a morphism ry, to r., (). Analogously, we
get a functor ¢p,: Or(H) — Or(H). Furthermore, there is a natural equivalence
Pt GNetl — ¢r GNeH of Or(NgH)-groupoids which for an object NgH/K of
Or(NgH) is given by the functor

nk nng eny (K)
n/l — n/l
n'nK n'nng tep, (K)

which is an isomorphism of categories. Lastly, we have an H-homeomorphism
Gno: H Xe,, res%GH Ef(NgH) — resﬁcH Ef(NgH) defined by [h, z] — hngz.
Now, let ng act on the source of p[H, ¥| as the composition

- Or(H
(res, i By (NGH)) T Aox(an respmn iy B(GNH (N H/-))

id/\resE(pnal)J
— Or(H *
(resf_ 1y Br (NaH)) Aosn) resonne ) B(chy G (NG H/-))

Il
- * Or(H
(resf iy Bx (NGH)) Aoxn) Cay eSorne i B(GYT (NG H/-))

adj | (cf. Lemma @)

. — Or(H
inde,, (resﬁcH Ey(NgH))+ Nor(H) reSOrEN;H) E(gNGH(N(;H/—))

vAid | (cf. Lemma [1.12))

— Or(H
(H cho resﬁcH Ef(NGH))—I— /\OT(H) 1neSOrENLH) E(gNGH(NGH/_))

by Aid

— Or(H
(reS%GH E?(NGH))Jr Nox(m) resOrEN)GH) E(gVe" (NgH/-)),
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3 Constructing Models for Eyp,(G) from Egiy(G)

and, similarly, on the target of p[H, F|, merely replacing E¢(NgH) by pt. Explic-
itly, we have ng- 2z Ae = ngz Ares E(png1)(e), and it is straightforward to show that

this action is trivial on H C NgH. Hence it descends to an action of WgH which
is surely compatible with p[H, F].

Notation 3.13. We write E[H, 7| for the homotopy cofibre of the W H-equivari-
ant map p[H, F]. In particular, E[H, F] is a WgH-spectrum.

Remark 3.14 (The p-chain spectral sequence). Let G be a group and assume
that either

(1) G satisfies (M Fin, Ir), and for every maximal finite subgroup F' C G we have
NgF =F, or

(2) G is torsion-free, satisfies (M Cyc,Ir), and for every maximal cyclic subgroup
C C G we have NgC = C.

Examples of are

e groups G that are an extension 1 — Z" — G — H — 1 where H is finite
and the conjugation action of H on Z" is free outside 0 € Z" (see [LS00,
Lemma 6.1 and Lemma 6.3]),

e Fuchsian groups (see [LS00, Lemma 4.5]), and
e one-relator groups (cf. [LS77, Prop. 5.17, Prop. 5.18 and Prop. 5.19]),

whereas holds, for instance, for torsion-free word-hyperbolic groups, see Exam-

ple [3.22}
We denote by M in the situation of a complete system of representatives of

the conjugacy classes of maximal finite subgroups, or of maximal cyclic subgroups
in the situation of . Then, Theorem will yield an exact sequence

= P T(BHT Ao E(G™(H/-))) — @D m(E(GT (H/H))

HeM HeM

— HC(EG — Eg(G);E) — @ mn1(EH, Aoy E(67(H/-))) — ...,
HeM

where ¥ = %in in the situation of , and F = Cyc in the situation of . This is
precisely what one gets from the p-chain spectral sequence, cf. [DL03, Cor. 3.13|.

Lemma 3.15. Let H C G be an inclusion of groups and w: NoH — WgH the
projection. For a free WoH-CW -complex X and a family F of subgroups of NoH
consider the projection q: X x Eg(NgH) — ©*X to the first factor. Then for
every n € Z there is an isomorphism

HNH (¢ E) = HYH (X E[H, 7))

which is natural in X.
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3.2 Computation of the Relative Homology Groups

Proof. We will show below that if Z is an NgH-CW-complex, then there are iso-
morphisms

(7*X % Z), Nornegn) E(GNT (NaH/-))
L X mwer (7" (WaH) x 2) | Noxvem) B(GN (NG H/-)))
XL A ((NGH X 11 eski 1 Z) . Mow(ng ) E(gNGH(NGH/—)))
Ly X4 Awn ((TGS%GH Z) . Nor(t) TSonnonm) E(GNGH(NGH/—)))

of spectra which are natural in Z and X. Thus, taking Z to be F¢(NgH) and pt
yields a map from the long exact homology sequence
o= HYH (77X x By (NH); B) =24, (1" X; E) — 4" (¢; E)
— HNeH (¥ X x By (NgH);E) — ...

to the sequence

i

HVel <X§ (TGS%GH ET(NGH))_T_ Nor(H) resgigﬁ)GH) E(QNGH(N(;H/—)))

G

!
HYYSH (X545 Aoy vesonws ) B(GH (NG H/ ) )
!

H,/" (X EH, 7))
1
HYS (X5 (vesH i By (NGH)) | Mo resnie i B(GV (NG H/-)) )

1

which is exact by construction of E[H, F|, and, according to the five lemma, the
maps H'¢H (q;E) — H)Y¢H (X; E[H, F]) must be isomorphisms.

It remains to show that there are maps fi, fo and f3 as above which are isomor-
phisms of spectra. Starting with f;, we first have to establish suitable W H-actions
on X and (7*(WgH) x Z)J_r Nox(ng ) E(GN¢H (NgH/—)). The former becomes
a right W H-space by setting x - w := w™ 'z, and the latter a left WgH-spectrum
as follows. For w € WgH, consider the homeomorphism n,: (7*(WgH) X Z); —
(m*(WeH) x Z)J_r of Or(Ng H )-spaces which comes from the NgH-homeomorphism
(w',z) — (w'w™t 2). Then w acts as the automorphism 7, A id of spectra. Now
we define f; as the map that is given by

(r,z) Ne—x A (1,2) Ae.
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3 Constructing Models for Eyp,(G) from Egiy(G)

Then f; is indeed an isomorphism, its inverse being given by z A (w,z) A e +—
(wz, z) Ne.
As for the definition of fy, let ¢: 7*(WgH) x Z — NgH xpg res%GHZ be the

N¢g H-homeomorphism

1

(m(n),2) — [n,n" 2]

of Lemma ([@). The induced map ¢ Aid: (7*(WeH) x Z)J_r Nor(NgH) B(- ) —
(NgH X H res%GH Z); Nor(NgH) E(...) is an isomorphism of spectra. Next, we
define a left W H-action on the target of ¢ A id by requiring that m(ng) € WgH
acts as the automorphism which makes the following diagram commute:

X - #Aid _
(7T (WgH) X Z)+ /\Or(NcH) E( . ) T (NgH XH IGS%GH Z)+ /\Or(NcH) E( . )
|

ﬂw(no)/\idJ% [

BAid v
(T*(WGH) x Z) Nowngr) E(--) === (NaH xmresy _pr Z) . Norngn) E(-- )

Explicitly, 7(ng) - [n, 2] A e = [nng ', noz] A e. We eventually obtain a well-defined
map fo :=id A¢ Aid, which is an isomorphism with inverse given by x A [n, z] Ae —
z A (m(n),nz) Ae.

Finally, in order to get fs, let W: (NgH X H res%GH Z)J_r Nor(NeH) B(--.) —

(resﬁg g4 )jr Nor(H) resgigﬁé ") E(...) be the isomorphism of spectra which comes

from the homeomorphism (NgH x g res%a uZ )4__ = indgigfm (resgigﬁé Je Z )J_r of
Or(NgH)-spaces (see Lemma [1.12)) and Lemma (). This means that ¥ is
given by

n, 2] Ae— 2z ANE(GNEH (1)) (e).

We introduce a left WgH-action on the target of U in the same way we did when
defining E[H, F], see page ﬁ That is, w(ng) - 2 A e == ngz A resE(pno_l)(e). It
is then immediate that ¥ is compatible with the WgH-actions on its source and
target, so fs := id AV is a well-defined isomorphism of spectra. The inverse of f3 is
given by x Az Ae— x A[l,z] Ae. O

Theorem 3.16. Let G be a group which satisfies (M Fin,Tr) or (M VCyc, Fin).
We denote by M a complete system of representatives of the conjugacy classes of
mazimal finite subgroups F C G or of infinite maximal virtually cyclic subgroups
V C G, respectively. Then for every n € Z there are natural isomorphisms

o

H (EG — Egin(G);E) — €D H)Y" (EWeF;E[F, Tr]) or
FeM
HE (Egin(G) — By (G); E) = @ HYeV (EWGV;E[V, Fin])  respectively.
Vem
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3.2 Computation of the Relative Homology Groups

Proof. We carry out the proof only when G satisfies (M VCyc, Fin) because the other
case works analogously. Using the model for Ey,(G) of Corollary , it follows

from the properties of an equivariant homology theory that

HE (Egin(G) — Eqpyo(G);E) = @@ #NY (fy: ENgV — EWGV;E)
vem

are naturally isomorphic. Since, by Lemma [3.5] the diagonal NgV-space EWgV x
ENgV is a model for ENgV, the projection p: EWgV x ENgV — ENgV is an
N¢gV-homotopy equivalence. Hence we get a natural isomorphism

HNV (fy o p; E) = HNV (fi1 B),

cf. [Liic89, Lemma 4.17]. Now fy o p, by the universal property of EWgV, must
be NgV-homotopic to the projection q: EWgV x ENgV — EWgV, so that an
application of Lemma finishes the proof. O

For the following, which has already been stated in [LJP05|, let R be an associative
ring with unit and recall that the n-th Whitehead group of RG is WhE(Q) =
HE(EG — pt;Kg). If R = Z, then Wh%(G) = Wh(G) is the classical Whitehead
group.

Corollary 3.17. Let G be a torsion-free group satisfying (M Cyc,Tr) such that
NqC = C holds for every mazimal cyclic subgroup C C G. If M is a complete
system of representatives of the conjugacy classes of maximal cyclic subgroups of G,
then for all n € N we have

HE(EG — Eyey(G); Kr) = @ Whl(0).
CeM

In particular, if G is a torsion-free word-hyperbolic group, then

Whi(G) = 5 Whi(0).
CeM

Proof. The first statement follows from Theorem m since H;{Ll} (pt; Kgr[C; ‘Tr]) =
7o (Kg[C; T7]), while the latter is equal to Whi(C) by definition, due to the as-
sumptions on G.

The addendum is true since, by recent work of Bartels-Liick-Reich (|[BLR]), word-
hyperbolic groups are known to satisfy the Farrell-Jones conjecture for algebraic K-
theory. It has already been proved in [BR035, Theorem 1.4] that this conjecture holds
for fundamental groups of Riemannian manifolds with strictly negative sectional
curvature. O
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3 Constructing Models for Eyp,(G) from Egiy(G)

3.3 A Class of Groups

Let G be a countable group all of whose non-virtually cyclic subgroups contain a
copy of the free group Z x Z on two generators. In [LJP05, Prop. 6] it is shown
that G then satisfies (M VCyc, Fin), while every infinite maximal virtually cyclic
subgroup of G is self-normalizing.

We want to enlarge the class of groups considered in [Liic05, Thm. 8.11] to incor-
porate groups with these properties.

Theorem 3.18. Suppose that the countable group G satisfies the following two
conditions:

e Fvery infinite cyclic subgroup C' C G has finite index [Cg(C’) : C’] n its
centralizer.

e Fwvery ascending chain Hy C Ho C ... of finite subgroups of G becomes sta-
tionary, i.e. there is an ng € N such that H,, = H,,, for all n > ng.

Then every infinite virtually cyclic subgroup V- C G is contained in a unique maximal
virtually cyclic subgroup Viax C G. Moreover, Viax s equal to its normalizer
Ne(Vinax), and
Vﬁm(: LJ AQ%CH,
ccv

where the union is over all infinite cyclic normal subgroups C' of V.

Proof. We fix an infinite virtually cyclic subgroup V' C G and denote by {C), }nen
the collection of its infinite cyclic normal subgroups. Note that since every index
[V : Cy] is finite, [V : C1 N...N C,] must also be finite for n € N. Thus, if we set
Zp =C1N...NCy, then Z, C C,, and Z7 D Z3 D ... is a descending chain of
infinite cyclic normal subgroups of V.

If C" C C are two infinite cyclic subgroups of G, then N¢(C) C Ng(C”) because
if C = (c), then C' = (c*) for some k € N, and for g € Ng(C) we have gcFg~! =
(geg™H)F = c** hence g € Ng(C'). Tt follows in our situation that Ng(C,) C
N¢(Z,), which implies

U Ne(Cn) = | Ne(2). (3.19)
n=1 n=1

Furthermore, Ng(Z1) C Ng(Z2) C ... is an ascending chain, which becomes sta-
tionary by the following argument. Namely, we can estimate

[Na(Zn) : Na(21)] < [Na(Zy) : Ca(Zy)]
= [Na(Zy) : Ca(Zy)] - [Ca(Zn) : Ca(Z1)],
and the first factor on the right is not greater than 2 since there is an injection
N¢(Z,)/Ca(Zy,) — aut(Z,), while the second does not exceed an appropriate con-

stant as we will show below. Summarizing, we see that for a sufficiently large ng € N
the right hand side of (3.19) is equal to Ng(Zn,) = Viax-
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3.3 A Class of Groups

With this definition, it is obvious that Vi,ax is virtually cyclic since the finite index
subgroup C¢(Zy,) has got the same property due to the assumption imposed on G.
In addition, V' C Vipax since Z,,, C V is normal. Now suppose W C G is an infinite
virtually cyclic subgroup such that V' C W. We claim that Vijax = Wiax. In order
to prove this, let Zyy C W be infinite cyclic normal such that Wyax = Ng(Zw).
Then Zy NV is a finite index subgroup of W and so must again be infinite cyclic
normal. Thus, there is a Zy C Zy NV such that Vi,ax = Ng(Zy), compare the
above construction. Since Wiax = Ng(Zy) as well, the claim follows. From this
we can deduce immediately that Vi,.x is indeed maximal among virtually cyclic
subgroups of G containing V' and that it is uniquely determined by this property.

Finally, we will show that Ng(Vinax) is virtually cyclic, so that it is equal to Vipax-
Let C' C Viax be infinite cyclic and note that Viax contains only finitely many
subgroups of index [Vinax : C]. This implies that the group D which we define as
the intersection of all conjugates of C' in Ng(Vinax) has finite index in Vipax and
is therefore infinite cyclic as well. Obviously, D is normal in Ng(Viax), so that
Ni(Vimax) € Ng(D) holds, the latter being virtually cyclic since Cg(D) is so by
assumption.

It remains to prove that {[Cq(Z,) : Ca(Z1)] | n € N} possesses an upper bound
in N. Let @, = C¢(Z,)/Z,. Then the Hochschild-Serre spectral sequence which
belongs to the group extension 1 — Z, — Cg(Z,) — @, — 1 yields an exact
sequence

HQ(QnQHO(Zn)) - HO(QnQHl(Zn)) — Hy (CG’(Zn)) - Hl(QnQHO(Zn)) —1

for every n € N, cf. [Bro82, Cor. VII.6.4|. Here, the action of Q, on H.(Z,) is
induced from conjugation, hence it is trivial as Z, is central in C(Z,,). For this rea-
son, Hy(Qn; Ho(Zy)) is just the abelianization of @, and thus finite. Furthermore,
H, (Qn; Hl(Zn)) ~ Hy(Z,) = Z, while Hy (Qn; Ho(Zn)) is a torsion group, whence
it follows that we get an injection Z,, — H; (Cg(Zn)) with finite cokernel. In partic-
ular, if we denote by 75, the torsion subgroup of Hy(Cq(Zy)), then Hy(Cq(Zy)) /T
is infinite cyclic. Let pp: Cq(Zn) — Ca(Zn)ap = H1(Ca(Zn)) — H1(Ca(Zn)) /T
be the canonical projection, and let ¢, € Cg(Z,,) be such that p(c,) is a generator.
Consider the commutative diagram

1 —— ker(p1) —— Ca(Z1) — Hy(Ca(Z1))/Ti —— 1

1 ——ker pg 4)06‘ Z2) ﬁ) Hl(Cg(Zg))/TQ —1

which has exact rows and in which all the vertical arrows are inclusions. Since all
the ker(p,,) are certainly finite, | Jo7 , ker(py,) is again finite, say of order a € N, by
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3 Constructing Models for Eyp,(G) from Egiy(G)

the assumption on G. Then in particular [ker(pn) : ker(pl)] < a for all n € N,
so {[Cc(Zn) : Ca(Z1)] | n € N} will be bounded if we can show that the index of
Hi(Cq(Z1)) /Ty in Hi(Ce(Zy)) /T, is less than a constant which does not depend
onn € N.

In order to construct such a constant, let r,, € Z be such that p;(c;) is mapped
to pp(cn)™ under the inclusions in the above diagram. Then, by exactness, there is
a ky, € ker(p,) such that ¢; = kycj». Since the order of ker(p,,) divides a, the group
aut(ker(pn)) contains at most a! elements, so that any ¢, € aut (ker(pn)) satisfies
¢ = id. Setting d := a - a!, we thus get for such a ¢, the identity

d—1 a jral—1 al—1 a
[Taw=11 II ¢utk= (H ¢>:;<k>> —1
=0 i=0

j=1 i=(j—1)-al

for all k € ker(p,,). Specializing to ¢, (k) :== cinke,™ yields
d—1 .
ef = (kncir)" = (H %(kn)) St = e,
=0

If 21 is a generator of Z7, then there exists an s € Z such that p;(21) = p1(c1)®. This
means z; '¢§ € ker(py), hence 2§ = ¢§?. Altogether this implies that if dZ; denotes
the cyclic group generated by z{, we have dZ; = (c/"%*) and thus ¢, € Cg(dZy).
We can finally define b := [Cg(le) : le], which is finite by assumption and
constitutes the required constant. This is due to the fact that cf’l € dZ, so there is a
t, € Z such that ¢, = ¢ Hence r, divides b, and the index of Hy (Ca(21))/Th
in Hy(Cq(Zy)) /T, equals |ry| by construction. O

Lemma 3.20. Let G be a group with the property that every non-virtually cyclic
subgroup of G contains a copy of Z x Z. Then G satisfies the conditions of Theo-
rem [F18.

Proof. 1t is obvious that any ascending chain H; C Ho C ... of finite subgroups
of G must become stationary since, otherwise, | J,, H, would be an infinite torsion
subgroup of GG, contradicting the assumptions on G. To prove the first condition of
Theorem let C' C G be infinite cyclic. Its centralizer Cg(C) is virtually cyclic,
provided it does not contain Z x Z. Assuming it does, then Z * Z N C = {1} as
Z x 7. does not commute with any of its infinite cyclic subgroups. Hence one of the
generators of Z x Z together with a generator of C generate a copy of Z @ Z inside
G, which contradicts the assumptions imposed on G. O

Remark 3.21. It follows from the Kurosh subgroup theorem (see e.g. [Ser80,
Thm. 1.5.14]) that the class of groups satisfying the conditions of Theorem
is closed under arbitrary free products, whereas this is not the case for the class of
groups considered in [Liic05, Thm. 8.11].
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Example 3.22 (Word-hyperbolic groups). Any word-hyperbolic group G sat-
isfies the conditions of Theorem The first is satisfied by [BH99, Cor. 3.10(2)].
Furthermore, G contains only finitely many conjugacy classes of finite subgroups.
This follows from Lemma [2.19]in conjunction with the fact that the second barycen-
tric subdivision of the Rips complex P,(G) for a sufficiently large r is a finite model
for EG, see Theorem [2.9]

In this situation, Corollary implies that a model for Fy,.(G) can be obtained
from a model for EG via the pushout

11 G xy BV —- EG

Vem
JHV pPry J (3.23)

I1 6/V—— Bu(G)
VeM

where pry, is induced from the projection £V — pt. Recall there are one-dimen-
sional models for EV (see page . Hence the existence of an n-dimensional model
for EG implies the existence of a model for Eqp, (G) of dimension max{n, 2}.

However, if G is not virtually cyclic, then it contains infinitely many conjugacy
classes of maximal infinite virtually cyclic subgroups, see [Gro87, Cor. 5.1.B|, and
thus no model for Eyy,(G) can be of finite type due to Lemma m

Example 3.24 (Free groups). As a special case of Example consider a free
group GG. We remind the reader that the Cayley graph I'(G,S) (see section
for the canonical choice of a generating set S of G is a tree on which G acts freely, so
it is a one-dimensional model for EG = EG. We have already seen in Example [3.22]
that then a two-dimensional model for Eqp, (G) exists.

This is, at the same time, a model of minimal dimension. To show this, we may
assume that G be finitely generated because for any subgroup H C G a model
for Eq,(G) yields a model for Eyp,(H) by restriction. Now we divide out the
G-action in and consider the Mayer-Vietoris sequence

.= 0 = Hy(G\Eyp,(G)) = @ Hi(C\EC) — H1(G\EG) — ...
CeM

which belongs to the resulting pushout. Note that all the spaces C\EC are ho-
motopy equivalent to S*, while G\EG is homotopy equivalent to \/I_; S*, where
r < oo denotes the rank of G. Thus, H1(G\EG) = @]_, H1(S'), and since the set
M of representatives of the conjugacy classes of infinite cyclic subgroups C C G
is infinite, we conclude that Hj (G\ErVCyC(G)) is free abelian of infinite rank. The
claim follows.
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4 Amenable Actions

The notion of an amenable group (which is a group carrying an invariant mean)
can be generalized to the notion of an amenable action of a group. There are two
different versions in the literature, one introduced by Greenleaf (see [Gre69]), the
other by Zimmer (see e.g. [Zim77]). For a comparison of the two as well as for a
thorough survey on the matter, we refer to [ADRO0].

In this chapter, we concentrate on the latter definition and explain in how far
there is a relation to the Baum-Connes and Farrell-Jones isomorphism conjectures.
Moreover, we prove some stability properties of amenable actions and show that
any G-CW-complex with amenable isotropy groups is amenable as a G-space.

We stress that, in this chapter, groups are supposed to be countable and discrete,
and spaces are Hausdorff.

4.1 Definition of Amenable Actions

Let us recall some notions from measure theory. Let X be a space equipped with
its Borel o-algebra B. A Radon measure on X is a measure pu: B — [0, 00] that
is locally finite, i.e. every point of X has an open neighbourhood of finite measure,
and inner regular, i.e. for every B € B we have

u(B) =sup{p(K) | K C B, K C X compact}.

Notation 4.1. We denote by prob(X) the set of all Radon probability measures
on X. If, moreover, X carries an action of a group G, we can define a G-action on
prob(X) by setting

(9-1)(A) = p(g~" A)

for A € B.

A signed measure on X is a o-additive map p: B — [—o00, 0o such that p(0) =0
and not both co and —oo are contained in the image of 1. One gets obvious examples
of signed measures by taking the difference p— A of two ordinary measures p and A,
one of which has to be finite for this to make sense. As it turns out, these are at the
same time the only examples, which is a consequence of the Hahn decomposition
theorem (cf. [Coh80, Thm. 4.14 and Cor. 4.15|): any signed measure y on X can be
expressed as p = u* — p~, where u™ and g~ are ordinary measures on X, at least
one of them being finite. Moreover, u* and p~ are uniquely determined by u. The
variation of p is defined to be the measure |u| == pu™ + p~.
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4.1 Definition of Amenable Actions

Now consider the space M (X) of all finite signed measures on X. We can impose
a norm on it by setting ||¢||; = |u|(X), which turns M (X) into a Banach space.
If X is locally compact, the Riesz representation theorem states that the Banach
subspace Mpg(X) of all u € M(X) such that u* and p~ are Radon measures is the
dual of Cy(X), cf. [Coh80, Thm. 7.2.8]. To be more precise, there is an isometric
isomorphism

Ma(X) 2 G5(X), s <fH /. fdu)-

If X is even countable and discrete, any pu € prob(X) € Mp(X) can and will be
regarded as a map X — [0,1] such that ) pu(z) = 1. In this case it is not hard
to show that the topologies of pointwise, weak-* and norm convergence on prob(X)
all coincide.

Definition 4.2 (Amenable action). Let X be a G-space. A sequence (fi)nen of
continuous maps X — prob(G) is called an approzimate invariant continuous mean
for the given action (a.i.c.m. in short) if

n—oo

Yge G VK C X compact: sup Hg e — uﬁle — 0,
zeX

where we write u: for the probability measure p,(z) on G.
An action G ~ X is called amenable if it admits an approximate invariant con-
tinuous mean.

This is the definition of [ADR0O0, Ex. 2.2.14(2)]. However, there only amenable
actions on locally compact, second countable spaces (e.g. manifolds) are considered,
and not all results carry over directly to amenable actions on arbitrary spaces. Con-
sider instead the following property a space X may or may not have:

There exist compact subsets K, C X for n € Nsuch that X = J, .y Kn
and every compact K C X is contained in some K.

(%)

For instance, any locally compact, second countable space has this property, as fol-
lows from [Sch69, Satz I.7.8.2]. Another example are CW-complexes with countably
many cells.

Lemma 4.3 (Characterization of amenability for spaces satisfying (x)).
Consider the following two statements about a G-space X :

(1) G ~ X is amenable.

(2) For every finite subset F' C G, compact subset K C X and ¢ > 0, there is a
map p: X — prob(G) such that

sup lg - " — p?]; < e
reK

holds for all g € F.
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4 Amenable Actions

Then implies [2). If X satisfies (x), the converse is also true.

In particular, the action G ~ pt is amenable if and only if G is an amenable
group.

Proof. This is straightforward. For the addendum, note that if X = pt, then is
nothing but Reiter’s condition (P;), which characterizes the amenability of a group,
see [Pat88, Thm. 4.4]. O

4.2 Relations to Assembly Maps

4.2.1 Baum-Connes Assembly Map

In this section, we want to explain how one can prove that for a word-hyperbolic
group G the Baum-Connes assembly map is injective, namely by constructing
a compact amenable G-space.

First of all, recall the definition of word-hyperbolicity of groups in Definition 2.7}
For doing concrete calculations, it is, however, often more convenient to consider an
equivalent notion. So let G be a finitely generated group and d the word metric on
G with respect to some finite symmetric subset that generates G. Then we denote
by

() = 5 (A1) + dly,1) — d(a)

the Gromov product of x,y € G. If, for instance, the Cayley graph I'(G, S) is a tree,
then (x - y) equals the distance from 1 € G C T'(G, S) to the geodesic joining x and
y in I'(G, 5). It follows from [BH99, Prop. 1.22]:

Lemma 4.4. A finitely generated group G is word-hyperbolic if and only if there is
a 6 >0 such that

(z-y) > min{(z-2),(y-2)} — 0
holds for all x,y,z € G.

In the following we fix a word-hyperbolic group G and a § > 0 as in Lemma [.4]
We say that a sequence (x;) in G converges at infinity if (z; - z;) — oo as i,j — o0,
and that two such sequences (z;) and (y;) are equivalent if (x;-y;) — oo as i, j — oc.
The Gromov boundary OG of G is then defined to be the set of equivalence classes
of sequences in G that converge at infinity. If an a € OG is represented by (z;),
then we write a = lim x;.

One can extend the Gromov product to a,b € G U OG by

(a-b):= sup{ljm inf(z; - y;) ‘ limz; = a,limy; = b},

17]_)

where it is understood that an element of G is represented by the constant sequence
at this element.
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4.2 Relations to Assembly Maps

Now, keeping in mind the invariance of the word metric d under left translation, it
is easy to see that for x,y, g € G we have the inequality |(:cy) - (gm~gy)| <d(g,1).
In particular, it makes sense to define a G-action on JG by setting

g - a = lim gz;

for any sequence (x;) in G such that limz; = a.

Let P.(G) be the Rips complex of G. Consider the space P.(G) = P,(G) U JG
equipped with the topology in which the neighbourhoods of an a € 0G are the sets
Ugr(a) for R > 0, where Ug(a) consists of all elements z € G U JG C P.(G) U 0G
such that (a - x) > R, together with the simplices of P.(G) that they span.

Proposition 4.5. With the topology defined above, P.(G) is a compact metrizable
space that contains P.(G) as a dense open subset.

Proof. This is intrinsic in [Gro87| (see also [BH99, IT1.H.3.18(4)]). O

Let a € 0G, k € N and denote by I(a, k) the set of all geodesics 7: [0, 00[— P.(G)
in the 1-skeleton of P,(G) such that d(v(0),1) < k and lim~(i) = a. Moreover, for
[ > 0let x(a, k,1) be the characteristic function on |, ¢/ (4 v([(,21]). Finally, we
define for n € N Borel maps p,: G — prob(G) by

1
i (g) = —= x(a, k,n)(g).
oy

Then it is carried out in [ADRO00, App. B| that the collection of these u, satisfies
H/‘%H1> 0 for a € 0G and

Vge G: sup Hg"uz_’u%aul ==

0,
acoG ||l

which implies by [ADR00, Cor. 3.3.8] that G ~ OG is an amenable action. This is
relevant because of the following result taken from [Hig00, Thm. 1.1]:

Theorem 4.6. If the group G acts amenably on some compact space, then the
Baum-Connes assembly map (1.21) for G is split injective.

More recently, it has been shown that the Baum-Connes assembly map is actually
an isomorphism for word-hyperbolic groups, see [MY02].

4.2.2 Assembly Maps in algebraic K- and L-Theory

Given a group G, the Baum-Connes assembly map can also be shown to be injective
provided that Eg;,(G) is a finite G-CW-complex and has a suitable metrizable
compactification Eg,(G) to which the G-action extends, cf. [Hig00, Thm. 1.2].
Here “compactification” means that F#,(G) is compact and contains Egy,(G) as a
dense open subset.

A similar statement can be made in the context of algebraic K- and L-theory:
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4 Amenable Actions

Theorem 4.7. Let G be a group having a finite model for Eg;,(G) which admits a
metrizable compactification Egy,(G) to which the G-action extends. Assume that

e Eg,(G) is contractible and Ey(G)HE C Eﬁn(G)H is dense for any finite
subgroup H C G, and

o cvery compact K C Eg;,(G) becomes small at infinity, i.e. for every neigh-

bourhood U C E,(G) of a € Egin(G) \ E5in(G) there exists a neighbourhood

V C Esn(GQ) of a such that gK NV # () implies gK C U for g € G.

Then, for any associative ring R with unit, the projection Ey,(G) — pt induces an
assembly map

HE (Egin(G); Kr) — HE (pt; Kg) = K, (RG)

i algebraic K-theory which is split injective. Moreover, the according assembly map
i algebraic L-theory is split injective provided that for every finite subgroup H C G
one has K_;(RH) = 0 for sufficiently large i.

Proof. This is proved in [Ros04] and [Ros06], generalizing a theorem of Carlsson-
Pederson in [CP95]. O

The purpose of [RS05| is to show that if G is word-hyperbolic and one takes the
Rips complex P,(G) as a model for Eg;;,(G) (see Theorem [2.9), together with its
compactification considered in Proposition[£.5] then the assumptions of Theorem [£.7]
will be satisfied. We mention also that, lately, the Farrell-Jones assembly map [T.22]
for algebraic K-theory has been shown to be an isomorphism for word-hyperbolic
groups, see [BLRI.

We finally refer to [BRO6], where the authors generalize results of [Ros04] and
are in that way able to prove the claim of Theorem [£.7] for discrete subgroups of
virtually connected Lie groups, too.

4.3 Properties of Amenable Actions

Some of the stability properties of amenable actions are collected in this section.
The more or less straightforward proofs of these results are included for the sake of
completeness.

Proposition 4.8. For G-spaces X and Y, the following holds:

(1) If G ~ X is amenable and A C X is G-invariant, then G ~ A is also
amenable.

(2) If f: X =Y is a G-equivariant map and G ~'Y is amenable, then G ~ X
18 also amenable.

In particular, if G is an amenable group, then G ~ X is always amenable.

(8) If G ~ X is amenable, then so is G ~ X XY, where G acts diagonally.
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4.3 Properties of Amenable Actions

Proof. For the addendum in , one takes Y = pt and uses Lemma Everything
else is completely obvious. O

Theorem 4.9 (Amenability under induction and restriction). Let H C G
be an inclusion of groups. Then the following holds:

(1) (Induction)
The H-space X is amenable if and only if the G-space G x g X is amenable.

(2) (Restriction)
If the G-space Y 1is amenable, then so is the H-space resG Y.

Proof. In order to prove , we first choose a section s: H\G — G of the projection.
Assume now that G ~ G xgy X is amenable, and that an a.i.c.m. is given by
(,un: GxgX — prob(G))neN. With the help of the H-equivariant embedding
i: X - Gxg X,z [1,z], we define for n € N maps

Up: X — prob(H), x> (h = Z Mff”(hs(a)))

acH\G

iz) ,u(y)H Since

which are indeed continuous due to the estimate Hl/ —Up, H 1 < < H
for h € H and a compact K C X we have

S (tlostan) = (1))

a€H\G

sup [|hvii =l = su D
h'eH

< sup ||h-pl — ],
y€i(K)

and the latter tends to 0 as n — oo, the H-space X is amenable.

To show the converse, let (p,: X — prob(H))nGN be an ai.c.m. for H ~ X.
Consider the space G/H x X with the G-action g - (o, z) = (ga, s(ga) 'gs(a)z).
We define for each n € N maps v,: G/H x X — prob(G) by

n

(o, ) — Jlaz) . s(a) - ur on s(a)H C G,
| 0 on G\ s(a)H

Now let g € G and L C G/H x X be compact. We can choose a finite F' C G/H
and a compact K C X such that L C F' x X. For any € > 0, there is an N € N
with the property

Yn>N VYaeF: sup H s(ga)Lgs(a)p® — psl90)” 198(0‘)”””1 <e,

zeK
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4 Amenable Actions

which implies that for n > N the following holds:
sup [|g - vy — vl
el

< sup sup Hg . Vﬁla,m) _ Vz(a,x)

acF zeK Hl

=supsup > [s(a)- ul(g7lg) — s(ga) - pse®) e (@ (g

acl zeK g'cgs(a)H
=s(ga)H
— —1
= sup sup [|s(ga) " gs(a) - iy — ) oD
acl zeK
<e.

The assertion follows as by Lemma the G-space G/H x X defined above is
G-homeomorphic to G x g X.

It remains to show . In this case, let G/H xY be the G-space with the diagonal
action, which according to Lemma is G-homoeomorphic to G X g resg Y. It
is amenable by Proposition since the same holds for Y. Hence resg Y is an
amenable H-space as follows from . O

Setting X = pt in Theorem yields:

Corollary 4.10 (Amenable G-sets). Let H C G be an inclusion of groups. Then
G ~ G/H is amenable if and only if H is an amenable group.

Recall that the class of amenable groups is closed with respect to forming directed
unions and group extensions. The following two propositions show that similar
statements hold when dealing with amenable actions.

Proposition 4.11 (Amenability and colimits). Let X be a G-space satisfying
(x). Assume that G = |J;c; G is a directed union of subgroups such that all G; ~ X
are amenable. Then G ~ X s also amenable.

Proof. We prove the proposition by verifying of Lemma So let a finite subset
F C G, a compact K C X and an € > 0 be given. We can choose an i € I such
that F' C G;, and a map v: X — prob(G;) such that

Vge F: sup Hg-yx—ynglgs.
zeK
Then p: X — prob(G) defined by

v v®  on Gy,
€T — =
7Y oma\ai

will certainly have the desired property. O
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4.3 Properties of Amenable Actions

Proposition 4.12 (Amenability and group extensions). Let X be a G-space.
We denote by A :={g € G | gr = x for all x € X} the kernel of the action and set
Q := G/A. Consider the following statements:

(1) G ~ X is amenable.
(2) A is an amenable group and QQ ~ X is amenable.
Then implies . If X satisfies (), the converse is also true.

Proof. Let p: G — @ be the projection and s: Q — G a set-theoretic map such
that po s = idg. We will first show . If G ~ X is amenable, then so
is A ~ {z} for any x € X according to Theorem - and Proposition E .
Thus A is amenable by Lemma [£.3]

As for the second assertion, we choose an a.i.c.m. (,un: X — prob(G))
G ~ X and define for n € N maps

neN for

v X = prob(Q), we (B S pilg).
gep~1(B)

Then, if K C X is compact and # € @, we choose a gp € G such that p(go) = 3,
and it follows that

supl|-vi — vl =sup 3| DS pklen'e) — ()
K peq gep1(s)
< sup ||go - iy — 180,
TeK
the latter tending to 0 as n — co. Hence Q ~ X is amenable.
In order to verify ([2) = (1)) when X satisfies (x), we will check (2)) of Lemma [4.3]

So let a finite subset F' C G, a compact K C X and an € > 0 be given. Since
Q) ~ X is amenable, there is a pug: X — prob(Q) such that

Vg e F: sup Hg 1o — u H1 < % (4.13)

We now want to construct a finite subset L C @) with the property that

&
Vge F VreK: g 18)>1— =. 4.14
g x BGZLMQ(Q 3) < (4.14)

To do so, we first fix € K. Then there is a finite L, C @ such that } 5., u6(8) >
1 —¢/8. Because of the continuity of ug, the set

. > ger, HH(B) — (1= §)
U= {v e X [y~ i, < ZoE=tO PR
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4 Amenable Actions

is an open neighbourhood of z, and

ey (B — (1< .
PTG ES <u25(ﬁ) _ Lot MQ,(]Z‘) ( 8)> =1

BELy BEL,

holds for all y € U,. As K is compact, that way we can choose z1,...,z, € K such
that K C U;Zy Uy,. Then L' := UL, Ly, C Q is finite and 3 "5c 1/ pg(8) > 1 —¢/8
for 2 € K. Now obviously L = (J . gL' satisfies [@.14).

Furthermore, we set E := {s(3) 'gs(¢~'8) | B € L, g€ F}, which is a finite
subset of A, and pick py € prob(A) such that

€
Vae E: |la-pa—pall; < (4.15)

1.
We can at last define ug: X — prob(G) by

1é(g) = pa(s(gA)~tg) pp(9A)
and compute for g € F' and = € K that

g1 — &, < [mal(sto™ g A) g ) — na(s(dA) ') - 1h(g g’ A)

g'eq
+ 2 nals(g' A7) (o g A) — 1 (g A)]
g'eG
=3 > |uals(g™B8) g s(B)a) — pala)| - ph(g™'B)
BEQ acA
£33 wala) - |uple™B) ~ uE5 (9]
BEQ acA

=) ||s(8) 'gslg™'B) - pa — pal|, - nE9T'B)
BeL
+ Y 158 gs(g7'B) - pa — pal|, - wB (97" B)
BeQ\L
g1 =1l
Combining (4.13)), (4.14) and (4.15) now yields the desired inequality

g we =&l < 3 D male7' B +2 5+ 5 < e
BeL

forge Fand z € K. O

The assumptions of the following theorem are, for instance, satisfied when X is
locally compact and second countable, see [Bre93l Prop. I11.7.2 and Thm. 1.12.12].
Under this hypothesis, an analogous result is proved in [ADRO00, Cor. 2.1.17]. An-
other situation in which the assumptions are satisfied is when X is a free G-CW-
complex. The result is then a special case of Theorem {.21]

92



4.3 Properties of Amenable Actions

Theorem 4.16 (Amenability of free proper actions). Let X be a G-space
such that G\ X is paracompact. If the action on X is free and proper, then it is also
amenable.

Proof. With G acting freely and properly on the Hausdorff space X, it is easy to see
that any € X possesses an open neighbourhood U such that gU NU = () whenever
g # 1. So by restricting the projection p: X — G\X, we get homeomorphisms
U — p(U) and in this way an open covering {V; }ier of G\ X together with continuous
sections s;: V; — X of p|,-1(y;). By refining {Vi}es if necessary, we may assume
that this covering is locally finite, so that we can choose a subordinate partition of
unity {h;: G\X — [0,1] }ier.
Now consider, for z € X and g € G, the subset

I(a,g)={iel|px) €Vi gsi(p(z)) =z}

of I. We have I(gz,q') = I(x,g'g’), and the finite set I(x) = {i € I | p(x) € V;}
is the disjoint union

I(z) =[] I(z.9).

geG

Therefore, setting

u'9) =Y hi(p(x))

i€l(z,g)

for z € X and g € G gives rise to a map p: X — prob(G) such that p9* = g - u*.
If the continuity of p can be shown, then the assertion of the theorem will follow.

In order to carry this out, let x € X and an € > 0 be given. We can choose an
open neighbourhood V' of p(x) which meets only finitely many V; non-trivially. Let
J={iel|VNV;#0}. Asforallie J\I(z)we have h;(p(z)) = 0, there exists
an open neighbourhood W7 of x with the property

Yy € Wy: p(y) €V and Z h; (p(y)) <
ie\I(x)

| ™

Furthermore, there is an open neighbourhood W5 of x such that

Yy e Wy Vi€ I(a): \hi(pm)—hi(p(y))‘ﬁm'

Finally, it follows from the construction of the s;: V; — X that for every i € I(x)
there is exactly one g; € G such that g;s; (p(a?)) = z. Then W3 = ﬂiel(x) 9isi(V3)

is an open neighbourhood of x and

VyeWs VYgeG: I(x,g) CI(y,g).
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4 Amenable Actions

All of these estimates can eventually be assembled so that for all y € m2:1 Wi we
get

I = wly = 30| 30 mile@) = X2 hile)|

9eG i€l(x,g) i€l(y,9)
<3 (@) - hlee) + Y Y hew)
9€G icl(z,g) 9€G i€l(y,g)\
I(z,g)
< e.
This finishes the proof. O

4.4 lsotropy Groups of Amenable Actions

Although all isotropy groups of an amenable action must be amenable groups, it
is, in general, not true that every action with amenable isotropy groups is already
amenable itself. Both will be explained in this section as well as the fact that the
latter statement does hold in the world of G-C'W-complexes.

Theorem 4.17 (Isotropy groups of amenable actions). If the G-space X is
amenable, then the isotropy groups G, are amenable for every x € X.

Proof. By Theorem , the action of G; C G on X is amenable, hence so is
Gz ~ {z} by Proposition 4.8 (1. Now the claim follows from Lemma O

If G is an amenable group, any action G ~ X is amenable (see Lemma ),
and it is easy to obtain a G-invariant measure in prob(X) from an invariant mean
on G. As we will see now, the reverse implication is also true. We remark that
results corresponding to the following are well-known, cf. e.g. [ADT9, Cor. 4.3] for
the case of a free ergodic G-action on X.

Theorem 4.18. Let X be an amenable G-space and assume that there is a sequence
(tin)nen in prob(X) such that

VgeG: g pin — pnly 0.
Then the group G must be amenable.

Proof. The proof is accomplished by showing that G satisfies Reiter’s condition (P ).
So let a finite F¥ C G and an € > 0 be given. By assumption, we can choose an
m € N such that ||g - ptrm, — pm||; < e/4forall g € F. Since pi, is a regular measure,
there is a compact K C X such that p,,(X \ K) <e/4.

Furthermore, the amenablity of G ~ X gives rise to maps v,: X — prob(G) for
n € N with the property

n—oo

Vge G VL C X compact: supHg-l/fi—l/ZmHl 0.
z€el

o4



4.4 Isotropy Groups of Amenable Actions

Let us choose an [ € N such that ||g- v —/"||, <e/4 on K for all g € F.
Now we define A € prob(G) by setting

A@:Aﬁwwmw

Then we get for all g € F' the inequality

lg- A=Al < >

qg'eG

[ 9@ dunt@) = [ ) den(o)

2

g'eG

/ wm>4#wmm*wmm.

The first sum on the right can be estimated by

.<Z/‘9 vi(g') = v{*(9)] dpm (@)

g'eG

= [ Nl vt = dion (o)
X

gz.um(X\K)JrZ-um(K)
3

<,
4

and the second by

gumm—A#@wwm

/w Vdlg - tim — pim] ()

\ m = iy
€
< —
4

This means that ||g- A — A||; < ¢ for all g € F, hence Reiter’s condition (P) is
indeed satisfied. O

In the following example, Theorem [£.1§]is applied to show that, in general, the
converse of Theorem does not hold: an action of a group on a space with
amenable isotropy groups need not be amenable.

Example 4.19 (A non-amenable free action). Suppose that G is a countably
infinite group. It acts on the space {0,1}¢ = [1,ec{0,1} via shifting, i.e.

g0 - (xg)gGG = (5Ugog)g€G-
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4 Amenable Actions

Note that {0, 1}G is a Polish space, as is any countable product of Polish spaces, cf.
[Coh8&0l, Prop. 8.1.3]. Consider the Borel subspace

X::{xE{O,l}G]gm#xforallg#l}

— m (X<g>)c7 (4.20)
g#1

where the X9 = {z €{0,1}¢ | gz = x} are closed in {0,1}“. The induced action
of G on X is free by definition of X, but we will show now that it is not amenable
except in the trivial case where G is an amenable group.

First of all, it follows from [Coh80, Prop. 8.1.10] that the measure p on {0,1}¢
which comes from the equiprobability on {0,1} is a Radon measure since {0, 1}¢
is Polish. Then this is also true for its restriction to X. Moreover, u is obviously
G-invariant. Finally, we will show that X has positive measure with respect to p,
in fact p(X) =1.

Let us prove that the complement of X is a null set. Regarding , it is enough
to show that ,u(X<9>) = 0 for any g # 1. For a subset S C G we denote by X (S)
the Borel set of all elements x € X for which either z; = 0 or 24 = 1 holds for all
g € S. Then, if {g; }icr is a system of representatives of (g)\G, we have

X =X ((9) - 91).

iel
and

2101 it [{g)] < o
(-0 - {0 it (g} = ox

for every ¢ € I. Thus, in the case of an infinite (g), it is immediate that u(X<9>) =0.
Otherwise, we can assume I = N and calculate

n

. . 1— n

(X0) = i (VX)) ) = Jim (29" =0
1=

Having shown that p is a G-invariant element of prob(X), Theorem im-

plies that G ~ X is an example of a non-amenable free action whenever G is not
amenable.

The above example should be compared to [Zim77, Thm. 2.4], where free ergodic
group actions are characterized as being amenable if and only if the associated
Murray-von Neumann construction yields a factor that is hyperfinite.

In contrast to this, if the space being acted upon by a group G has the structure
of a G-CW-complex, then it suffices to look at the isotropy groups in order to
determine whether the action is amenable or not:

Theorem 4.21. Let X be a G-CW -complex with amenable isotropy groups. Then
G ~ X 1is amenable.
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4.4 Isotropy Groups of Amenable Actions

Proof. In case X is finite-dimensional, we can use induction over the skeleta of X
to prove the statement. The induction start is trivial since X_; is empty. For n > 0
there is a pushout

[ G/ x 57 LN

i€l
JJ‘ J

[l ¢/t x D" ——— X,

i€ln,
and, by induction hypothesis, there are maps py: X,—1 — prob(G) for k € N such
that

k—o0

Vge G VK C Xn_1 compact: sup |lg-pf — MixH1 —=0.
zeK

Note that the maps py o ¢;: G/H; x S"~! — prob(G) for k € N have the corre-
sponding property.

Since all the groups H; are amenable by assumption, it follows from Corollary [£.10]
that the G-spaces G/H; are amenable. Hence we can choose for all k& € N maps
vii: G/H; — prob(G) such that

k—o0

Vg € G VF C G/H; finite: sup Hg Uik — ngHl —0.
ack ’

From now on, we will identify the cone on S™~!, which is by definition CS"~! =
S x [0,1]/S™7 x {1}, with the disk D" using the homeomorphism

Cs™ S D o] - (1 1)z

Under this identification, S*~1 x {0} € C'S"~! corresponds to S"~1 C D™. We fix
an i € I,, and consider for each £ € N the map

vik: G/H; x D" — prob(G)
(a, [2,8]) = (L= 1) - (pg 0 qi) (e, 2) + - v ()

It is well-defined since prob(G) is a convex space, and it agrees with ug o ¢; on
G/H; x S"~!' € G/H; x D". Furthermore, the following holds for every g € G and
every finite subset F' C G/H;:

sup Hg . Iji\,/k(a’[z’t]) _ %(ga,[z,t])Hl

(a,[2,t])
eFxD"

= sup [[(1—1) g (ukoq) ™ +t-g v — (1 —1t)- (e oa) 9 —t- v,
(a,[2,8])
cF'xD"™

< sup g (0 )™ = (i 0 i) 9|, + sup g - v — vl
FxSn—1

koo g
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4 Amenable Actions

Let v [l;c;, G/Hi x D™ — prob(G) be defined as the disjoint union of the maps
Vik- Then the universal property of pushouts provides us with maps px: X, —
prob(G) which make the following diagram commute:

[ G/H: x s TG

1€l
JJ’ ;

[Toix L2 5
i€ly, ~

Vi ~

S
prob(G)

Now we can show that X,, is an amenable G-space. Let g € GG and a compact
K C X, be given, and let us choose compact subsets K1 C [[, G/H; x D™ and
Ky C X,,—1 such that K C (]_L QZ)(Kl) U J(KQ) Then

LY || < (= N N9z
52}13\\9 1’ — i Hl_xseu};Hg (o [T, @) = (axo IT, @)l

+ sup |lg - (i 0 J)* — (s 0 J)*
z€Ko

= sup ||lg-2* — ||, + sup ||g - mk — 1]
zeKo

re Ky
while both of the latter terms tend to 0 as k — oc.

Finally, we will treat the general case, in which X = (J, cy X» is the colimit of
its skeleta. By what we have just shown, we obtain for all n € N maps uj: X, —
prob(G) indexed by k € N such that u?|x, , = pp~" and (4 )ken is an a.i.c.m. for
G ~ X,,. If we define iy, := colim,, uj for each k£ € N, then these maps will form
an a.i.c.m. for G ~ X. This is due to the fact that any compact K C X is already
contained in X, for any n that is sufficiently large. O
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