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Abstract

For a proper singular algebraic variety X0 over a finite field of characte-
ristic p, we study the intersection Zeta function IZ(X0, t). We prove the
rationality of IZ(X0, t). For each singular closed point x ∈ X0, we define
and study the multiplicities with which the point x has to be counted to
get the intersection Zeta function IZ(X0, t) from its generating series: the
r-multiplicities of x in X0. We prove that these numbers are integers and
independent of l 6= p. We also calculate them explicitly in low-dimensional
cases and relate them to well-known geometric objects such as the nearby
and vanishing cycles functors.

Zusammenfassung

Wir untersuchen die Schnitt-Zetafunktion IZ(X0, t) einer eigentlichen alge-
braischen Varietät X0 über einem endlichen Körper der Charakteristik p.
Wir beweisen, dass IZ(X0, t) rational ist. Für jeden abgeschlossenen sin-
gulären Punkt x ∈ X0 definieren und untersuchen wir die Multiplizität, mit
der der Punkt x gezählt werden muss, um die Schnitt-Zetafunktion IZ(X0, t)
aus ihrer Erzeugendenfolge zu erhalten: die r-Multiplizität von x in X0. Es
wird bewiesen, dass diese Multiplizitäten ganze Zahlen und unabhängig von
l 6= p sind. Wir berechnen diese explizit in den Fällen, in denen die Dimen-
sion von X0 klein ist, und stellen eine Beziehung zu bekannten geometrischen
Objekten wie den benachbarten und verschwindenden Zykeln her.
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Introduction

In 1949 André Weil proposed the highly influential Weil conjectures. They
led to the development of modern algebraic geometry and number theory.
The conjectures consist of four different statements about properties of the
Zeta function of a smooth and projective variety Y0 over a finite field Fq.

Let d be the dimension of Y0. We denote by Y the base change of Y0 to the
algebraic closure of Fq and by Y0(Fq) the set of points with coordinates in
Fq. For a set A, we write |A| for the number of elements in A. The integers
|Y0(Fqn)| are numbers of solutions of equations over finite fields and are very
interesting and important from an arithmetic point of view.

Definition 0.0.1. The Zeta function of Y0 is the following formal power
series:

Z(Y0, t) := exp

( ∞∑
n=1

|Y0(Fqn)|
n

tn

)
∈ Q[[t]].

The relation

t
d

dt
logZ(Y0, t) =

∑
n≥1

|Y0(Fqn)|tn,

shows that t ddtlogZ(Y0, t) is the generating function of the sequence {|Y0(Fqn)|}n≥1.

The Weil conjectures are the following statements ([39]):

(I) (Rationality): The Zeta function Z(Y0, t) is a rational function of t.
Moreover, we have

Z(Y0, t) =
P1(Y0, t)P3(Y0, t) . . . P2d−1(Y0, t)

P0(Y0, t)P2(Y0, t) . . . P2d(Y0, t)
,
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where P0(Y0, t) = 1− t, P2d(Y0, t) = 1−qdt and each Pi(Y0, t) is a polynomial
with coefficients in Z.

(II) (Functional equation): The Zeta function Z(Y0, t) satisfies the following
functional equation:

Z(Y0, q
−dt−1) = ±qdχ/2tχZ(Y0, t),

where χ =
∑

i(−1)iβi for βi = degPi(Y0, t).

(III) (Betti numbers) If Y lifts to a variety Y1 in characteristic 0, then the
numbers βi are the Betti numbers of the complex manifold Y1(C).

(IV) (Riemann hypothesis) For 0 ≤ i ≤ 2d we have that,

Pi(Y0, t) =

βi∏
j=1

(1− αi,jt),

where αi,j are algebraic integers of absolute value qi/2 with respect to every
embedding of Q into C.

The development of the Weil conjectures dates back to the work of Carl
Friedrich Gauss Disquititiones Arithmeticae. His study in section VII on
roots of unity and Gaussian periods allowed an interpretation of the coeffi-
cients of certain product of periods as the number of points on elliptic curves
defined over a finite field. In 1924 Emil Artin proposed in his PhD thesis
([1]) a definition of the Zeta function for an algebraic curve over a finite field
and proposed a Riemann hypothesis for this kind of Zeta functions. These
propositions amount to the Weil conjectures in the special case of algebraic
curves. Weil then proved these propositions, finishing the project started by
Hasse’s theorem on elliptic curves over finite fields ([39]). His results gave
the insight for the correct approach to generalizations. Weil proposed to
look for a cohomology theory for algebraic varieties Y over a finite field with
an analogue of the Lefschetz fixed-point formula for Frobenius. In particu-
lar, statement (I) suggests the Lefschetz fixed-point formula and statement
(II) Poincaré duality. Statement (III) suggests that the numbers βi are Betti
numbers (dimensions of finite-dimensional cohomology groups of Y in this
new theory).



Statement (I) was first proved by Dwork in 1960 ([9]) using p-adic methods.
Later, Artin, Verdier and Grothendieck developed a well-suited cohomology
theory for algebraic varieties over finite fields: l-adic cohomology. This co-
homology theory has an analogue of Poincaré duality and of the Lefschetz
fixed-point formula. In particular, we have that

|Y0(Fqn)| =
2d∑
i=0

(−1)iTr(Frn|H i(Y,Ql)), (1)

where Fr is the Frobenius Endomorphism of Y0 and H i(Y,Ql) are finite-
dimensional Ql-vector spaces with an action of Fr. The development of the
étale cohomology led to proofs of statements (I), (II) and (III) of the Weil
conjectures. Finally, in 1974 Deligne proved (IV) ([7]).

If the variety Y0 is allowed to have singularities, then the étale cohomology
does not satisfy Poincaré duality in general ([22, §1.1]). In 1980 Goresky and
MacPherson introduced intersection homology on topological spaces ([13])
and later Beilinson, Bernstein, Deligne and Gabber developed an algebraic
analogue: étale intersection cohomology ([3])

IH•(Y,Ql) := H•(Y, π∗ICY0[−d]),

where the complex ICY0 is the intersection complex of Y0 and π : Y → Y0 is
the canonical projection. This cohomology theory fulfills Poincaré duality
and it is in many ways well-suited for dealing with singular varieties.
Based on the definition of the Zeta function of Y0 and equation (1) we make
the following definition.

Definition 0.0.2. Let X0 be a proper variety over a finite field Fq of dimen-
sion d. Let X be the base change of X0 to the algebraic closure of Fq with
projection π : X → X0. The intersection Zeta function of X0 is defined as
follows:

IZ(X0, t) := exp

( ∞∑
n=1

an
n
tn

)
,

where an :=
∑2d

i=0(−1)iTr(Frn|IH i(X,Ql)).
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By Grothendieck’s trace formula (Theorem 1.2.1), we have that

an =
∑

x∈X0(Fqn)

∑
i

(−1)i+dTr(F n|Hi(ICX0
)x),

where F is the geometric Frobenius. Note that for Y0 a smooth projective
variety over Fq,

Z(Y0, t) = IZ(Y0, t).

Some of the assertions of the Weil conjectures remain true for IZ(X0, t).
Statement (II) follows from Poincaré duality for intersection cohomology and
statement (IV) is a consequence of the purity of ICX0

([3, Corollaire 5.3.4.]).
As for (I) a standard argument shows that IZ(X0, t) lies in Ql(t) ∩ Ql[[t]].
It is the alternating product of characteristic polynomials of Fr acting on
Hi(X, π∗ICX0

[d]). We show that IZ(X0, t) actually lies in Q(t) ∩ Q[[t]]. In
particular, we prove statement (I) of the Weil conjectures for the intersection
Zeta function IZ(X0, t) of an integral proper algebraic variety X0 over Fq.

Theorem. (1.5.20) Let X0 be a proper algebraic variety over Fq of dimen-
sion d. The intersection Zeta function IZ(X0, t) is a rational function of t.
Moreover, we have

IZ(X0, t) =
P1(X0, t)P3(X0, t) . . . P2d−1(X0, t)

P0(X0, t)P2(X0, t) . . . P2d(X0, t)
,

where P0(X0, t) = 1− t, P2d(X0, t) = 1− qdt and each Pi(X0, t) is polynomial
with coefficients in Z.

The focus of this thesis will be the study of the r-multiplicities

mr
X0,x

:=
∑
i

(−1)i+dTr(F η|Hi(ICX0
)x),

for singular closed points x ∈ X0. Here r ≥ 1 and η = deg(x)r. By equation
(1), each of these numbers may be viewed as the multiplicity with which the
point x has to be counted to get the intersection Zeta function IZ(X0, t)
from its generating series. Fitting with this intuition, the numbers mr

X0,x

will be shown to be integers.



In Chapter 1 we establish a general framework for calculating the numbers∑
i

(−1)iTr(F r|Hi(K0)x)

for any K0 ∈ Dbc(X0,Ql) and any closed point x using the Grothendieck
group of constructible Ql-sheaves. In particular, we will reduce the calcula-
tion of mr

X0,x
to the case where X0 is integral affine and normal (Lemma 1.4.3

and Lemma 1.4.2).
In section 1.5 we prove that the r-multiplicity of a closed singular point
mr
X0,x

is an integer independent of l (Proposition 1.5.7 and Corollary 1.5.15)
using previous results of Deligne (SGA 7, XXI) and the concept of (E, I)-
compatibility due to Gabber ([12]).

We then try to understand mr
X0,x

either through explicit calculations or by
relating it to well known geometric objects. Our approach for calculating
mr
X0,x

can be summarized as follows: Substitute X0 by a ”better” scheme

X̃0 through modifications or alterations and try to establish a relation be-
tween ICX0

and ICX̃0
. The best possible modification that we could expect

would be a desingularization of X0 in the strong sense. Unfortunately, such
desingularizations of algebraic varieties over finite fields are only known in
low dimensions.

In Chapter 2 we calculate mr
X0,x

for dim(X0) = 1, 2, 3. For these cases,
resolution of singularities of X0 in the strong sense is known ([25] and [5]).
We conclude general results in dimension 1 and 2. We give also a general
result in dimension 3 assuming that X0 has only isolated singularities.
Let X0 be an algebraic variety over Fq of dimension 2 or 3 and x ∈ X0 a
closed isolated singular point. Let π : X̃0 → X0 be a desingularization of
X0 in the strong sense such that the exceptional divisor D0 := π−1({x}) is
a divisor with strict normal crossings. Let D be the base change of D0 to
the algebraic closure of Fq and {Es}s be the set of irreducible components
of D. Denote by FD0

the q-Frobenius morphism of D0.

Theorem. (2.2.3) Let X0 be a normal algebraic variety over Fq of dimension
2. Let x ∈ X0 be a closed singular point. Then for D0 as above and for each
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r ≥ 1,
mr
X0,x

= |D0(Fqη)| − |{Es : (F η
D0
× Id)(Es) = Es}| qη,

where η = deg(x)r.

In his work [40], J. Wildeshaus studied the intersection cohomology groups
of a singular normal surface X over C. He concluded that the intersection
cohomology groups of X, different from the second one, agree with the in-
tersection cohomology groups of a desingularization X̃ of X. On the other
hand, the second intersection cohomology group of X̃ is a direct sum of
the second intersection cohomology group of X and the second cohomology
group of the exceptional divisor D over the singular locus of X ([40, Theorem
1.1]). The theorem above was thus inspired by this result of J. Wildeshaus
and it is in a way a ”local” version of it, since it deals with the cohomology
groups of the intersection complex localized at a point instead of dealing
with the whole cohomology groups of the intersection complex.

Theorem. (2.4.2) Let X0 be a normal algebraic variety over Fq of dimension
3 and x ∈ |X0| an isolated singularity. Then for D0 as above and r ≥ 1,

mr
X0,x

= |D0(Fqη)|−Tr(Frη|H3(D,Ql))+|{Es : (F η
D0
×Id)(Es) = Es}| (qη+q2η),

where η = deg(x)r.

In [36, §2], E. Tasso calculated the intersection cohomology of a projec-
tive singular three-dimensional variety X over C with an isolated singular
point. She concluded that for π : X̃ → X a desingularization of X and
δ 6= 2, 3, 4, the intersection cohomology groups IHδ(X̃,Q) = IHδ(X,Q)
and IHρ(X̃,Q) = IHρ(X,Q) ⊕ Hρ(D,Q), where ρ = 2, 3, 4 and D is the
exceptional divisor over the singular locus of X ([36, Theorem 2.1.4]). The
theorem above is again a ”local” version of this result of E. Tasso and was
inspired by it.

We also give some examples that illustrate the behavior of mr
X0,x

. In par-
ticular, we show that for a closed singular point x, the r-multiplicity mr

X0,x

can be a negative integer (Example 2.2.4) or 1 (Example 2.5.1). We also
give results on mr

X0,x
when X0 has dimension 2 and x is a pseudo-rational

singularity of X0 (Definition 2.5.5 and Corollary 2.5.6).



In Chapter 3 we recall the definition of the (unipotent) nearby and (unipo-
tent) vanishing cycles functors made by Beilinson ([2]) and Deligne (SGA 7,
I and XIII). We express the r-multiplicity mr

X0,x
using the unipotent nearby

and unipotent vanishing cycles functors (Equation (3.3)). Thus, we achieve
a geometric interpretation of mr

X0,x
. Using then the unipotent vanishing cy-

cles functor, we relate the r-multiplicity mr
X0,x

to another important geome-
tric object, namely, to the Milnor fiber of a morphism g : X0 → A1

Fq (Equa-
tion (3.5) and Theorem 3.1.8).
We then associate the r-multiplicity mr

X0,x
to the unipotent nearby and van-

ishing cycles functors of an alteration φ1 : X̃0 → X0 (a weaker modification
than a desingularization of X0 in the strong sense). This association allows
an explicit calculation of mr

X0,x
in terms of the unipotent vanishing cycles

functor of X̃0.
An alteration φ1 : X̃0 → X0 comes with a center Z0 (a closed subscheme of
X0) and with an inclusion j1 : X̃0 → X0 to a projective scheme X0 such that
Y0 := j1(φ

−1
1 (Z0)) ∪ X0 \ j1(X̃0) is a divisor with strict normal crossings of

X0. Let ((Y0)s)s∈I be the set of irreducible components of Y0. For E ⊂ I,
let

(Y0)E :=
⋂
s∈E

(Y0)s

and

Y
(m)

0 :=
∐
|E|=m

(Y0)E.

Further let am : Y
(m)

0 → Y0 be the projection and a0 = Id. Omit the
zero subscript on the objects just defined to denote the base change to the
algebraic closure of Fq and set am : Y (m) → Y to be the projection.

Theorem. (3.2.5) Let X0 be a normal algebraic variety over Fq of dimension
d. Let x ∈ |X0| be a singular point. Consider an alteration φ1 : X̃0 → X0

of X0 and y ∈ X̃0 such that φ1(y) = x. Let g : X0 → A1
Fq be a morphism

such that (X0)sing ⊆ g−1({0}). Define h := g ◦ φ1 : X̃0 → A1
Fq. Then for any

r ≥ 1 and η = deg(y)r,

(1− qη)mr+ν
X0,x

=
∑
i≥0

(−1)iqir|a−1
i (y)| − (1− qη)trφuh(φ∗1ICX0

)(y),
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where ν = [κ(y) : κ(x)].

Here trφuh(φ∗1ICX0
)(y) are Frobenius traces of the complex φuh(φ

∗
1ICX0

) at the
point y.
We end Chapter 3 by expressing mr

X0,x
through Frobenius traces of inter-

mediate extensions of smooth sheaves coming from local systems on Gm,Fq
(Theorem 3.3.6).

We then finish by giving a general method for calculating the r-multiplicity
mr
X0,x

in a normal algebraic variety X0 through an alteration X̃0 of an irre-

ducible component containing x. Given an alteration φ1 : X̃0 → X0 there
exists an open subscheme j : U0 ↪→ X0 such that φ1|φ−11 (U0) is étale, finite
and flat. There exists a Galois cover of U0 with finite Galois group W such
that the push-forward of ICX̃0

under φ1|φ−11 (U0) is a W -equivariant sheaf. It
decomposes into perverse sheaves Fχ[d] given by a χ-isotypic decomposition
of characters. Denote by χ0 the trivial character.

Theorem. (4.0.2) Let X0 be a normal and proper algebraic variety over Fq of
dimension d with a singular closed point x. Let φ : X̃0 → X0 be an alteration
of an irreducible component containing x and define D0 := φ−1({x}). Then
for r ≥ 1,

mr
X0,x

=|D(Fqη)| −
r(φ)∑
j=0

(−1)jTr(Frη|Hd+j(D,Ql))

−
−1∑

j=−r(φ)

(−1)jTr(Frη|Hd+j(D,Ql)) q
jη −

∑
χ∈Ŵ
χ 6=χ0

trj!∗Fχ[d](x),

where η = deg(x)r and r(φ) is the defect of semi-smallness of φ.
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Chapter 1

General Results

1.1 Notations and Conventions

1. Let p be a prime number and denote by q a power of p. Let Fq be the
finite field of order q. Fix an algebraic closure of Fq and denote it by Fq.
Further, let l be a prime number different from p. Fix an algebraic closure
of Ql and denote it by Ql.

2. Let X0 be a separated scheme of finite type over Fq. For a closed point x
in X0, let κ(x) be the residue field of x. We write deg(x) for the degree of
κ(x) over Fq.

3. For x ∈ X0 (not necessarily closed), we will write x for a geometric
point with image x ([7, (0.3)]). If x ∈ X0(Fq), then we choose x to be the

composition Spec(Fq)→ Spec(Fq)
x−→ X0.

4. Let X0 be a separated scheme of finite type over a field k such that l is
invertible on X0. We denote by Dbc(X0,Ql) the derived category of bounded
constructible l-adic sheaves defined by Deligne ([7, (1.1.2) and (1.1.3)]).

5. Let Z0 ⊆ X0 be a closed subset. The reduced induced scheme structure
on Z0 is denoted by ((Z0)red,OZ0

). The category Dbc(Z0,Ql) only depends
on (Z0)red, i.e, Dbc(Z0,Ql) = Dbc((Z0)red,Ql). Thus, we assume all schemes
X0 to be reduced.

6. Let S be a scheme of dimension less than or equal to 1. For two separated
schemes of finite type over Fq, X0 and Y0, and an S-morphism f : X0 → Y0,
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there are two internal operations ⊗L and RHom in Dbc(X0,Ql) and four
functors

Rf!, Rf∗ :Dbc(X0,Ql)→ Dbc(Y0,Ql) and

f ∗, f ! :Dbc(Y0,Ql)→ Dbc(X0,Ql).

We will denote the functors Rf! and Rf∗ by f! and f∗, respectively. Let

DX0/S : Dbc(X0,Ql)
opp → Dbc(X0,Ql)

be the Verdier dual functor D(−)X0/S := RHom(−, a!Ql), where a : X0 → S

is the structure morphism.

7. A t-structure in a triangulated category D consists of two strictly full
subcategories D≤0 and D≥0, such that with the definitions D≤n := D≤0[−n]
and D≥n := D≥0[−n] we have

(i) Hom(D≤0, D≥1) = 0.

(ii) D≤0 ⊂ D≤1 and D≥1 ⊂ D≥0.

(iii) For every object E in D there exists an exact triangle (A,E,B) with
A ∈ D≤0 and B ∈ D≥1.

D is said to be bounded with respect to the t-structure, if every object D is
contained in some D≥a and some D≤b for certain integers a, b.

8. Given a t-structure (D≤0, D≥0) in a triangulated category D we get a
functor

τ≤0 : D → D≤0,

which is right adjoint to the inclusion functor of D≤0 into D. We also get a
functor

τ≥0 : D → D≥0,

which is left adjoint to the inclusion functor of D≥0 into D. The functors
τ≤0, τ≥0 are the truncation functors for the given t-structure.
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9. The core Core(D) = D≤0∩D≥0 attached to a t-structure of a triangulated
category D is an abelian category. A sequence in Core(D)

0→ X
u−→ Y

v−→ Z → 0

is exact if and only if there exists an exact triangle (X, Y, Z, u, v, w) in D

([3, §1.3]).

10. Let D be a triangulated category with a t-structure in it. One defines

H0(X) := τ≤0τ≥0X ∈ Core(D).

More generally one defines for n ∈ Z the n-th cohomology functors

Hn : D → Core(D)

by Hn(X) = H0(X[n]); and similar Hn(u) = τ≤0τ≥0(u[n]) for morphisms u.
Note that

Hn(X)[−n] = τ≤nτ≥nX.

11. Let T be an additive, translation preserving functor between triangu-
lated categories A and B with t-structures, which transforms exact triangles
in exact triangles. Such a functor is called

t-right exact if and only if T (D≤0(A)) ⊂ D≤0(B)

and

t-left exact if and only if T (D≥0(A)) ⊂ D≥0(B).

Finally T is called t-exact, if T is t-left and t-right exact.

12. The standard t-structure in Dbc(X0,Ql) is given by

D≤0(Dbc(X0,Ql)) := {K0 ∈ Dbc(X0,Ql) : HiK0 = 0 ∀i > 0}
D≥0(Dbc(X0,Ql)) := {K0 ∈ Dbc(X0,Ql) : HiK0 = 0 ∀i < 0},

where HiK0 denote the i-th cohomology sheaf of K0.
The core of this t-structure is

Core(standard) = {K0 ∈ Dbc(X0,Ql) : HiK0 = 0 i 6= 0}.

We denote by τ≤0, τ≥0 the truncation functors for the standard t-structure.
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13. The perverse t-structure in Dbc(X0,Ql) ([3, Théorème 1.4.10.] or [21,
§III]) is given by

pD≤0(Dbc(X0,Ql)) := {K0 ∈ Dbc(X0,Ql) : dimsupp(H−iK0) ≤ i ∀i ∈ Z},
pD≥0(Dbc(X0,Ql)) := {K0 ∈ Dbc(X0,Ql) : dimsupp(H−iDK0) ≤ i ∀i ∈ Z}.

Here D is the Verdier dual functor DX0/Spec(Fq). The core of this t-structure
is the abelian category of perverse sheaves on X0:

Core(perverse) = Perv(X0).

It is artinian and noetherian ([21, Corollary 5.7]). We denote by pτ≤0,
pτ≥0

the truncation functors for the perverse t-structure. One defines the perverse
cohomology functor as follows:

Hp 0 := pτ≤0 ◦ pτ≥0.

14. Let X0 be a separated scheme finitely generated over a finite or alge-
braically closed field. Let j : U0 → X0 be an open embedding with closed
complement i : Y0 → X0. Then the functors

j!, i
∗ are t-right exact,
i∗, j

∗ are t-exact,
j∗, i

! are t-left exact

for the perverse t-structures on Dbc(X0,Ql) respectively Dbc(U0,Ql) and
Dbc(Y0,Ql).

15. Let X0 be a noetherian scheme. An l-adic sheaf F on X is an inverse
system {Fn}n≥1 where

(a) each sheaf Fn is a constructible Z/lnZ-module on the étale site of X0,
and

(b) the transition maps Fn+1 → Fn induce isomorphisms
Fn+1 ⊗Z/ln+1Z Z/lnZ ∼= Fn.

We say that F is smooth if each Fn is locally constant. A complex K0 ∈
Dbc(X0,Ql) is smooth if each Hi(K0) is smooth.
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16. Let X0 be a scheme over some arbitrary base field. Let X denote the
scheme obtained from X0 by base change to the algebraic closure of the base
field. The scheme X0 is called essentially smooth, if the reduced scheme Xred

is smooth. Let X0 be an essentially smooth separated scheme of finite type
over a field k such that l is invertible onX0. LetK0 ∈ Dbc(X0,Ql) be a smooth
complex on X0. We get in this case ([21, Remark 2.2]): K0 ∈ Perv(X0) if
and only if

K0 = L[dimX0]

for a smooth sheaf L. In particular, the cohomology sheaves of K0 are trivial
in degrees different from − dimX0.

17. Let X0 be a separated scheme of finite type over a finite or algebraically
closed field. Let j : U0 ↪→ X0 be an embedding of an open subscheme. Let
i : Y0 ↪→ X0 denote the (reduced) closed complement of U0. Let K0 be a
perverse sheaf on U0. A perverse sheaf K0 on X0 is called an extension of
K0, if

j∗K0 = K0.

There is (up to quasi-isomorphism) a unique extension K0 ∈ Perv(X0) of
a perverse sheaf K0 ∈ Perv(U0), such that K0 has neither quotients nor
subobjects of type i∗A0 for A0 ∈ Perv(Y0). This unique extension will be
called the intermediate extension

j!∗K0

of K0 and defines a functor

j!∗ : Perv(U0)→ Perv(X0).

The intermediate extension of a perverse sheaf K0 ∈ Perv(U0) is character-
ized, up to isomorphism, as the unique perverse sheaf K0 ∈ Perv(X0) with
the following properties:

j∗K0 = K0 and Hp (i∗K0) = Hp (i!K0) = 0.

18. Let X0 be a separated equidimensional scheme of finite type over a fi-
nite or algebraically closed field of dimension d. Let j : U0 ↪→ X0 be an
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embedding of an open smooth dense subscheme with (reduced) closed com-
plement i : Y0 ↪→ X0. The intersection complex ICX0

of X0 is defined as the
intermediate extension

j!∗Ql[d]

of the perverse sheaf Ql[d] ∈ Perv(U0). It does not depend on the choice of
U0 and it is characterized (up to quasi-isomorphism) as the unique perverse
sheaf K0 ∈ Perv(X0) such that

j∗K0 = Ql[d] and Hp 0(i∗K0) = Hp 0(i!K0) = 0.

1.2 r-Multiplicity of a Closed Point

In this section we define the main object of study of this thesis; that is, the
r-multiplicity of a closed singular point.

Let X0 be a separated scheme of finite type over Fq of dimension d, and let
FX0

be its q-Frobenius; defined by the identity on X0 and f 7→ f q on OX0
.

For any étale sheaf F0 on X0, there is a canonical isomorphism

FF0
: F ∗X0

F0
∼→ F0

given by the Frobenius correspondence ([SGA 5 XIV]). Consider now the
pullback to the algebraic closure of Fq, i.e., X := X0 ×Fq Spec(Fq) and let F
denote the pullback of F0 to X. Since FX0

being finite is a proper morphism,
there exists an induced endomorphism

Fr : H i
c(X,F)

(FX0
×Id)∗

→ H i
c(X, (FX0

× Id)∗F)
FF0→ H i

c(X,F)

called the Frobenius Endomorphism. Let K0 ∈ Db
c(X0,Ql) and let K denote

the pullback of K0 to X. The Frobenius Endomorphism then extends to
Dbc(X0,Ql):

Fr : Hi
c(X,K)→ Hi

c(X,K).

The Frobenius substitution ϕ ∈ Gal(Fq/Fq) is the automorphism x 7→ xq on
Fq. The geometric Frobenius F ∈ Gal(Fq/Fq) is the inverse of ϕ. Let F be a
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constructible Ql-sheaf over X0. For every closed point x ∈ X0, the stalk Fx
is a finite dimensional Ql-vector space ([19, §7 Théorème 1.1]) with an action
of Gal(κ(x)/κ(x)). The field κ(x) is a finite field with qdeg(x) elements, hence
Fx := F deg(x) can be considered as an element of Gal(κ(x)/κ(x)). Thus, the
element Fx ∈ Gal(κ(x)/κ(x)) acts Ql-linearly on the stalk Fx of the sheaf
F at the point x

Fx : Fx → Fx.

Up to isomorphism this action only depends on the closed point x and not
on the choice of the geometric point x over x ([7, (1.1.8)]). It follows that
Tr(Fx|Fx) ∈ Ql is independent of the choice of x.
Grothendieck’s trace formula is the following result.

Theorem 1.2.1. (Grothendieck [SGA5 XIV]) Let X0 be a separated scheme
of finite type over Fq and let K0 ∈ Db

c(X0,Ql). Then for all ν ≥ 1,∑
n

(−1)nTr(Frν|Hn
c (X,K)) =

∑
x∈X0(Fqν )

∑
i

(−1)iTr(F ν|Hi(K0)x).

Consequently, for X0 equidimensional and K0 = ICX0
we get the following

equation:

ar : =
∑
n

(−1)nTr(Frr|Hn
c (X, π

∗ICX0
[−d]))

=
∑

x∈X0(Fqr )

∑
i

(−1)i+dTr(F r|Hi(ICX0
)x),

where π : X → X0 is the projection.

Definition 1.2.2. Let X0 be a separated equidimensional scheme of finite
type over Fq of dimension d. Let x ∈ X0 be a closed point. For r ≥ 1, we
define the r-multiplicity of x in X0 as follows:

mr
X0,x

:=
∑
i

(−1)i+dTr(F r
x |Hi(ICX0

)x).

Remark 1.2.3. (i) If x ∈ X0 is a non-singular closed point of X0, then
mr
X0,x

= 1 for all r ≥ 1. Indeed, in this case we have Hi(ICX0
)x = 0 for

i 6= −d and Hi(ICX0
)x = Ql for i = −d since (ICX0

)x = Ql[d].
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(ii) By Corollary 1.5.17 below, each r-multiplicity of a closed singular point
x in X is an integer. We assume this fact for the remainder of this chapter.
They can be positive and negative; see Example 2.2.4.

(iii) We will prove later (Example 2.5.1) that the r-multiplicity of a singular
closed point x in X0 can also be equal to 1.

(iv) Since the normalization of X0 is finite over X0 and the direct image func-
tor under finite morphisms is exact for the perverse t-structure ([3, Corollaire
2.2.6 (i)]), the intersection cohomology of X0 is invariant under passage to
the normalization. It follows that one may assume X0 to be normal while
calculating its intersection cohomology groups. Nontheless, the calculation
of the r-multiplicities of a singular point is not invariant under normaliza-
tion (see the next section). This is due to the fact that the r-multiplicity of
a singular point is defined locally and not globally.

1.3 r-Frobenius Trace

We introduce the framework for calculating the r-multiplicity of a closed
singular point x in a separated scheme X0 of finite type over Fq. Let k be a
perfect field.

Convention 1.3.1. Let X0 be a scheme over a field k. We call X0 an
algebraic variety over k if X0 is separated, reduced, equidimensional and of
finite type as a scheme over k. We do not assume that X0 is irreducible.

By the convention above, the intersection complex ICX0
is well-defined for

every algebraic variety X0.

Let X0 be an algebraic variety over Fq of dimension d. Let K(X0,Ql) be the
Grothendieck group of constructible Ql-sheaves. It is also the Grothendieck
group of the abelian category of perverse Ql-sheaves over X0 ([23, (0.8)]).
For a Ql-sheaf F0 over X0, let [F0] be its class in K(X0,Ql). The map
F0 7→ [F0] extends to a surjective map

Ob(Dbc(X0,Ql))→ K(X0,Ql)

K0 7→ [K0] =
∑
i

(−1)i[Hq(K0)] =
∑
j

(−1)j[ Hp j(K0)].
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For every K0 ∈ Ob(Dbc(X0,Ql)), let KK0
(X0,Ql) be the subgroup of

K(X0,Ql) generated by [K0].

Definition 1.3.2. Let X0 be an algebraic variety over Fq of dimension d.
Let |X0| denote the set of closed points of X and let C(|X0|,Ql) be the Ql-
algebra of maps t : |X0| → Ql. One associates to every K0 ∈ Ob(Dbc(X0,Ql))
and every r ≥ 1 its r-Frobenius trace trK0

∈ C(|X0|,Ql) defined by:

trK0
(x) : =

∑
i

(−1)iTr(F r
x |Hi(K0[−d])x), for all x ∈ |X0|.

We now mention some of the properties of the r-Frobenius trace ([23, §1]).
For every K ′0, K

′′
0 ∈ Dbc(X0,Ql), we have

trK ′0⊗K ′′0 (x) = trK ′0(x)trK ′′0 (x).

Let f : X0 → Y0 be a morphism of algebraic varieties over Fq. For any
L0 ∈ Dbc(Y0,Ql) and every r ≥ 1, we have the following equation:

trf∗L0
(x) = tr+νL0

(f(x)),

where ν = [κ(x) : κ(f(x))].
For an exact triangle

K ′0 → K0 → K ′′0
[1]−→

in Dbc(X0,Ql), we have that

trK0
(x) = trK ′0(x) + trK ′′0 (x).

It follows that for every K ∈ Dbc(X,Ql) and every r ≥ 1:

trK0
(x) =

∑
i

(−1)itrHi(K0)(x) =
∑
j

(−1)jtrHp j(K0)(x).

Thus, mr
X0,x

= trICX0
(x) for any x ∈ |X0|.

Remark 1.3.3. For a fixed r ≥ 1, the r-Frobenius trace of a com-
plex K0 ∈ Dbc(X0,Ql) does not determine the complex K0; the set X0(Fqr)
could be, for example, empty. On the other hand, the tuple (trK0

)r≥1

in
∏
C(X0(Fqr),Ql)) of all Frobenius traces allow us to retrieve [K0] in
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K(X0,Ql). To be more precise, the map K0 7→ (trK0
)r≥1 induces an injective

([23, Théorème 1.1.2]) group homomorphism

t• : K(X0,Ql)→
∏
r≥1

C(X0(Fqr),Ql).

The following proposition then follows.

Proposition 1.3.4. Let K ′0, K
′′
0 be two perverse semi-simple Ql-sheaves on

X0. If t•[K
′
0] = t•[K

′′
0 ], then K ′0 and K ′′0 are isomorphic.

Proof. [23, Proposition 1.1.2.1]

Thus, the intersection complex ICX0
is characterized in K(X0,Ql) by the

tuples (mr
X0,x

)r≥1 for all x ∈ |X0|.

We finish this section by giving a description of the r-multiplicity of a closed
singular point x in an algebraic variety X0 with zero-dimensional singular
locus in terms of the strict henselization of X0 at x. Let R be a local ring.
We denote by Rsh the strict henselization of R.

Lemma 1.3.5. Let X0 be an algebraic variety over Fq of dimension d. If
the singular locus of X0 is zero-dimensional, then for any x ∈ |(X0)sing| and
r ≥ 1,

mr
X0,x

=
−1∑
i=−d

(−1)i+dTr(Frη|H i+d(Spec(Osh
X0,x0

)× U,Ql)),

where η = deg(x)r and U is an open dense smooth subscheme of X0.

Proof. By [3, Proposition 2.1.11], the intersection complex of X0 has the
following form:

ICX0
∼= τ≤−1j∗Ql[d],

where j : U ↪→ X0 is an open immersion of a dense smooth subscheme of X0.
Thus, it is enough to calculate tr

j∗Ql[d]
(x0) in order to calculate trICX0

(x0) =

mr
X0,x

. Now consider the isomorphism

(j∗Ql[d])x ∼= RΓ(Spec(Osh
X0,x

)× U,Ql[d]),
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which implies that

mr
X0,x

= tr
τ≤−1j∗Ql[d]

(x) =
−1∑
i=−d

(−1)i+dTr(Frη|H i+d(Spec(Osh
X0,x

)× U,Ql)),

where η = deg(x)r.

1.4 Reduction Steps

We discuss reduction steps for the calculation of the r-multiplicity of a closed
singular point in an algebraic variety X0.

Let (X0)sing be the singular locus of X0. Consider the canonical immersion
i : (X0)sing → X0 and let x ∈ |(X0)sing|. Then we have the following equality:

mr
X0,x

= tri∗ICX0
(x).

Consider now the normalization π : X̃0 → X0 of X0. It is the disjoint union
of the normalizations of the irreducible components of X0, i.e., X̃0 = tiZ̃i,
where Z̃i → Zi is the normalization of the i-th irreducible component of X0.

In what follows, we will consider fibers of closed points of algebraic varieties
under their normalization. We show that points lying over closed points are
again closed.

Lemma 1.4.1. Let X0 be an algebraic variety over k and let π : X̃0 → X0

be its normalization. For every x ∈ |X0|, let y ∈ X̃0 be such that π(y) = x.
Then y ∈ |X̃0|.

Proof. Let U := Spec(A) be an affine neighborhood of x. Then x represents
a prime ideal p of A and X̃0×X0

U ∼= Spec(A′). Since X0 is equidimensional,
one may assume X0 to be integral and A′ to be the integral closure of A in
Frac(A). Consider the injective canonical morphism π# : A ↪→ A′, which
is integral. We need to show that every prime ideal q of (A)′ such that
(π#)−1(q) = p is a maximal ideal of (A)′. This is true by [33, Lemma
10.35.20].
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According to Grothendieck’s trace formula (Theorem 1.2.1), for K0 ∈ Dbc(X̃0,Ql)
and x ∈ |X0| one gets the following equality:

trπ!K0
(x) =

∑
y∈X̃0(Fqη )
π(y)=x

∑
i

(−1)iTr(F η|Hi(K0)y), (1.1)

where η = deg(x)r. Since the normalization π : X̃0 → X0 over Fq is finite,
the sum above is finite.

Lemma 1.4.2. Let X0 be an algebraic variety over Fq of dimension d. For
any open subscheme U ′ of X0 with canonical immersion j′ : U ′ → X0,

mr
X0,x

= mr
U ′,x, for all x ∈ U ′.

Proof. Let U be a dense smooth open subscheme of X0. Consider the fol-
lowing cartesian diagram:

Y ∩ U ′ U ′ U ∩ U ′

Y X0 U

i′′

j′ j′

j′′

j′

i j

with Y = X0 \ U .

We have the following isomorphisms:

j′′∗j′∗ICX0 = j′∗j∗ICX0 = Ql[d].

Hp 0(i′∗j′∗ICX0) = Hp 0(j′∗i∗ICX0) = j′∗ Hp 0(i∗ICX0) = 0, since Hp 0(i∗ICX0) = 0.

Hp 0(i′!j′!ICX0) = Hp 0(j′!i!ICX0) = j′! Hp 0(i!ICX0) = 0, since Hp 0(i!ICX0) = 0.

Since U ∩U ′ 6= ∅, we have that U ∩U ′ is a dense smooth open subscheme of
U ′. This means that j′∗ICX0

= ICU ′ and the lemma is proved.

Lemma 1.4.3. Let X0 be an algebraic variety over Fq of dimension d and
let π : X̃0 → X0 be the normalization of X0. For any x ∈ |X0| and r ≥ 1,
we have that

mr
X0,x

=
∑

y∈X̃0(Fqη )
π(y)=x

mν
X̃0,y

,

where η = deg(x)r and ν = [Fqη : κ(y)]. For any y ∈ |X̃0|, let Z̃i be an
irreducible component of X̃0 containing y. Then for r ≥ 1

mr
X̃0,y

= mr
Z̃i,y

.
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Proof. 1. By [3, Corollaire 2.2.6 (i)], we have π∗ICX̃0
= ICX0

. Thus, letting
K0 = ICX̃0

in equation (1.1) yields the first assertion of the lemma.

2. This is a direct consequence of Lemma 1.4.2.

Corollary 1.4.4. Let X0 be an algebraic variety over Fq of dimension d

and let π : X̃0 → X0 be the normalization of X0. Let X̃0 = tiZ̃i be its
decomposition into irreducible components. Then

1. The canonical map:

KICX̃0
(X̃0,Ql)→ KICX0

(X0,Ql)

[K0] 7→ [π∗K0]

is surjective.

2. The canonical map:⊕
i

KICZ̃i
(Z̃i,Ql)→ KICX̃0

(X̃0,Ql)⊕
i

[(K0)i] 7→
⊕
i

[αi∗(K0)i]

is surjective.

It follows that we may reduce the calculation of the r-multiplicity of x in X0

to an irreducible component of X̃0; any irreducible component containing
y ∈ |X̃0|, such that π(y) = x, will suffice. Thus, we may always assume
that X0 is an integral normal algebraic variety over Fq of dimension d while
calculating mr

X0,x
.

Let x ∈ |X0| be a singular point and let W be an affine open neighborhood
of x. By Lemma 1.4.2, it is enough to calculate the r-multiplicity of x in W .
Thus, we may assume that X0 is in addition affine.

Lemma 1.4.5. Let W be an affine integral algebraic variety over Fq of di-
mension d. There exists g ∈ OW (W ) such that g 6= 0, Z := V (g) ⊇ Wsing

and U := W \ Z is an open dense smooth subscheme of W .
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Proof. Since W is an affine algebraic variety over k, there exists n ∈ N such
that W = V (I) as a closed subvariety of An

k . The singular locus Wsing has
then a canonical scheme structure given by the d-th Fitting ideal Id of Ω1

W/k,
which is the ideal in OW generated by the (n − d) × (n − d) minors of the
Jacobi matrix. Choose any element g 6= 0 of Γ(W, Id). Then 〈g〉 ⊆ Id(W ).
This shows the relation

Z = V (g) ⊇ V (Id(W )) = Wsing. (1.2)

Since W is integral, the subscheme U is dense in W . By the relation (1.2),
the scheme U does not contain any singular points. It follows that U is
smooth and dense.

1.5 Integrality and Independence of l

In this section we show that the r-multiplicity of a singular closed point x
of an algebraic variety X0 is an integer independent of l. We thank T. Saito
for suggesting Prof. Deninger some of the literature relevant to this section.

Definition 1.5.1. Let X0 be an algebraic variety over Fq and consider
K0 ∈ Dbc(X0,Ql). The complex K0 is called integral if for each closed point
x ∈ |X0| and each i ∈ Z, the eigenvalues of the geometric Frobenius Fx
acting on Hi(K0)x are algebraic integers.

Remark 1.5.2. The integral property of a complex K0 ∈ Dbc(X0,Ql) is
stable under ⊗L and f ∗ ([SGA 7, XXIa, 5.2.2]).

Example 1.5.3. For any m ∈ Z, consider the complex Ql[m] ∈ Dbc(X0,Ql).
For any x ∈ |X0|, we have

Hi(Ql[m])x =0 if i 6= −m
Hi(Ql[m])x =Ql if i = −m.

Thus, the geometric Frobenius Fx operates on H−m(Ql[m])x as the identity.
It follows that the complex Ql[m] ∈ Dbc(X0,Ql) is integral.

We prove that the intersection complex ICX0
is integral using the following

result by Deligne ([SGA 7, XXI, Appendice]).
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Theorem 1.5.4. Let f : X0 → Y0 be a morphism between separated of finite
type Fq-schemes, and let K0 ∈ Dbc(X0,Ql) be an integral complex. Then f!K0

and f∗K0 are integral as well.

Remark 1.5.5. The theorem can be found stated in this form in [17, The-
orem 4.2].

Theorem 1.5.6. Let X0 be an algebraic variety over Fq of dimension d.
The intersection complex ICX0

of X0 is integral.

Proof. The intersection complex ICX0
is isomorphic in Dbc(X0,Ql) to a com-

position of pushforwards and truncations for a given stratification of X0 ([3,
Proposition 2.1.11]), i.e.,

ICX0
∼= τ≤−1(j−1)∗ . . . τ≤−d(jd)∗Ql[d].

For all m ∈ Z and any K0 ∈ Dbc(X0,Ql) we have that

Hi(τ≤mK0) =

{
Hi(K0) for i ≤ m,

0 for i > m,

for all i ∈ Z. We apply now iteratively Theorem 1.5.4 and conclude that the
intersection complex ICX0

is integral.

Proposition 1.5.7. Let X0 be an algebraic variety over Fq and let x ∈ |X0|
be a singular point. For every integral K0 ∈ Dbc(X0,Ql), the number∑

i

(−1)iTr(F r
x |Hi(K0)x)

is an algebraic integer for all r ≥ 1.

Proof. Since the complex K0 is integral, the characteristic polynomial of the
geometric Frobenius acting on Hi(K0)x has integer coefficients for all i ∈ Z.
This implies that Tr(Fx|Hi(K0)x) is an integer for all i ∈ Z. It follows that
tK0

(x) is an algebraic integer.
Set ν ≥ 1. Let (X0)ν be the base change of X0 from Spec(Fq) to Spec(Fqdeg(x)ν)
and let πν : (X0)ν → X0 be the projection. For all x ∈ |X0| and all i ∈ Z,
we have that

Hi(π∗νK0)y = Hi(K0)x,
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where πν(y) = x. Since the complex π∗νK0 is integral, the characteristic
polynomial of the geometric Frobenius Fy = F ν

x acting on Hi(K0)x has
integer coefficients for all i ∈ Z. It follows that

∑
i(−1)iTr(F η|Hi(K0)x) is

an algebriac integer and the proposition is proved.

Corollary 1.5.8. Let X0 be an algebraic variety over Fq of dimension d and
let x ∈ |X0| be a singular point. Then for all r ≥ 1,

mr
X0,x

=
∑
i

(−1)i+dTr(F r
x |Hi(ICX0

)x)

is an algebraic integer.

Proof. Apply Proposition 1.5.7 to the intersection complex ICX0
.

We now show that the r-multiplicity of a singular point x of an algebraic
variety X0 over Fq is independent of l. We therefore introduce the concept
of (E, I)-compatibility. For this part we follow [34].

Let E be a number field, and let I be a set of pairs (l, ι); where l is a
rational prime number different from the prime number p := char(Fq), and
ι : E ↪→ Ql is an embedding of fields. Note that, to give an embedding
E → Ql is the same as giving a finite place λ of E over l.

Definition 1.5.9. Let X0 be an Fq-scheme. For each (l, ι) ∈ I, consider
(K0)(l,ι) ∈ Dbc(X0,Ql).

(i) The system {(K0)(l,ι)}I is called an (E, I)-compatible system, if for every
integer r ≥ 1 and for every point x ∈ X0(Fqr), there exists a number
ex ∈ E such that

ι(ex) = t(K0)(l,ι)(x),

for all (l, ι) ∈ I.

(ii) Assume (K0)(l,ι) = P(l,ι) are perverse sheaves. The system {P(l,ι)}I is
called perverse (E, I)-compatible, if there exist a finite number of essen-
tially smooth irreducible locally closed subschemes Xα ↪→ X0, and for
each α a (E, I)-compatible system {L(l,ι)

α }I of semisimple local systems
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on Xα, such that each irreducible factor of L
(l,ι)
α has Xα as its maximal

support (inside Xα), and that

P ss
(l,ι)
∼=
⊕
α

ICXα
(L(l,ι)

α )

for all (l, ι) ∈ I. Here P ss
(l,ι) denotes the semi-simplification of P(l,ι) in

the abelian category of perverse sheaves.

Example 1.5.10. The system {Ql(l,ι)}I is a (Q, I)-compatible system. Gen-
erally, for every b ∈ Q× such that ι(b) is an l-adic unit for all (l, ι) ∈ I, the

system {Ql
(ι(b))
(l,ι) }I is a (Q, I)-compatible system, since the local traces are

ι(b). Here Ql
(ι(b))

denotes the sheaf Ql twisted by ι(b) ([7, (1.2.7)]).

Theorem 1.5.11. Let {(K0)(l,ι)}I be an (E, I)-compatible system. Then
for a morphism f : Y0 → X0 of separated schemes of finite type over Fq,
{f!(K0)(l,ι)}I, {f∗(K0)(l,ι)}I are also (E, I)-compatible systems. Similar re-
sults hold for f ∗, f !,⊗L, Hom,D.

Proof. [12, Theorem 2].

Definition 1.5.12. Let X0 be a separated scheme of finite type over Fq and
let F be a Ql-sheaf over X0. The Ql-sheaf F is called pointwise pure of
weight w (w ∈ Z) if for every n ≥ 1 and every x ∈ X0(Fqn), the eigenvalues
of the geometric Frobenius Fx acting on Fx are algebraic numbers where
all of the complex conjugates have absolute value (qn)w/2. The Ql-sheaf F
is called mixed if it admits a finite filtration with pointwise pure quotients.
The non-zero weights of the quotients are called the pointwise weights of F .

A complex K0 ∈ Dbc(X0,Ql) is called of weight ≤ w if for each i, the pointwise
weights of HiK0 are ≤ w + i. Further, a complex K0 ∈ Dbc(X0,Ql) is of
weight ≥ w if its Verdier dual DK0 is of weight ≤ −w. Finally, a complex
K0 ∈ Dbc(X0,Ql) is called pure of weight w if it is of weight ≤ w and ≥ w.

Example 1.5.13. Let X0 be a smooth algebraic variety over Fq. Then
the Ql-sheaf Ql over X0 is pointwise pure of weight 0. This implies that
Ql[z] ∈ Dbc(X0,Ql), z ∈ Z, is pure of weight z.
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Theorem 1.5.14. Let j : U0 → X0 be an open immersion of separated
schemes of finite type over Fq and let {(K0)(l,ι)}I be an (E, I)-compatible
system on U0. Assume that each (K0)(l,ι) is pure and perverse. Then the
system of intermediate extensions {j!∗(K0)(l,ι)}I is also an (E, I)-compatible
system.

Proof. [12, Theorem 3].

Corollary 1.5.15. Let X0 be an algebraic variety over Fq of dimension d

and let x ∈ |X0| be a singular point. Moreover, let ι : Q → Ql be the
canonical embedding. Then for all r ≥ 1 and every l, there exists a number
ex ∈ Q such that

mr
X0,x

= ι(ex).

Proof. By Example 1.5.13, the complex Ql[d] is pure for every l. The-
orem 1.5.14 shows that the system {(ICX0

)(l,ι)}I = {j!∗Ql(l,ι)[d]}I , for
j : U0 → X0 an open immersion of a dense and smooth subscheme of X0, is
a (Q, I)-compatible system. Set ν ≥ 1. Let (X0)ν denote the base change of
X0 from Spec(Fq) to Spec(Fqdeg(x)ν) and let πν : (X0)ν → X0 be the projec-
tion. By Theorem 1.5.11, the system {π∗ν(ICX0

)(l,ι)}I is a (Q, I)-compatible
system for all ν ≥ 1. The corollary now follows.

This proves the independence of l of the r-multiplicity of x in X0. We
actually proved that the system {(ICX0

)(l,ι)}I is a system of mixed perverse
sheaves on X0 that is (Q, I)-compatible.
The following result implies that the system {(ICX0

)(l,ι)}I is also a perverse
(Q, I)-compatible system.

Proposition 1.5.16. Let {P(l,ι)}I be a system of mixed perverse sheaves
on an Fq-scheme X0. If they are (E, I)-compatible, then they are perverse
(E, I)-compatible.

Proof. [34, Proposition 2.7]

Corollary 1.5.17. Let X0 be an algebraic variety over Fq of dimension d

and let x ∈ |X0| be a singular point. Then for all r ≥ 1,

mr
X0,x

=
∑
i

(−1)i+dTr(F r
x |Hi(ICX0

)x)

is an integer.
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Proof. Apply Proposition 1.5.7 to the intersection complex ICX0
. By Corol-

lary 1.5.15, the algebraic integers mr
X0,x

are rationals. The corollary now
follows.

We recall the definition of the intersection Zeta function

Definition 1.5.18. Let X0 be a proper variety over a finite field Fq of
dimension d. Let X be the base change of X0 to the algebraic closure of Fq
with projection π : X → X0. The intersection Zeta function of X0 is defined
as follows:

IZ(X0, t) := exp

( ∞∑
n=1

an
n
tn

)
,

where an :=
∑2d

i=0(−1)iTr(Frn|IH i(X,Ql)).

For X0 a proper integral algebraic variety over Fq of dimension d, the results
above (Proposition 1.5.7 and Corollary 1.5.15) prove that the intersection
Zeta function of X0 is a power series with rational coefficients. As with
the regular Zeta function of X0 we then conclude that the intersection Zeta
function IZ(X0, t) is a rational function. Moreover, our definition of the
intersection Zeta function of X0 shows immediately that IZ(X0, t) is a quo-
tient of polynomials with Ql coefficients after applying the following lemma.

Lemma 1.5.19. Let φ be an endomorphism of a finite-dimensional vector
space V over a field K. Then we have an identity of formal power series in
t, with coefficients in K,

exp

( ∞∑
n=1

Tr(φn|V )
tn

n

)
= det(1− φt|V )−1.

Proof. [15, Appendix C Lemma 4.1].

Theorem 1.5.20. Let X0 be a proper algebraic variety over Fq of dimen-
sion d. The intersection Zeta function IZ(X0, t) is a rational function of t.
Moreover, we have

IZ(X0, t) =
P1(X0, t)P3(X0, t) . . . P2d−1(X0, t)

P0(X0, t)P2(X0, t) . . . P2d(X0, t)
,
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where

Pi(X0, t) = det(1− t Fr|IH i(X,Ql))

such that P0(X0, t) = 1 − t, P2d(X0, t) = 1 − qdt and each Pi(X0, t) is a
polynomial with coefficients in Z.

Proof. The definition of each polynomial shows that P0(X0, t) = 1− t. The
Frobenius morphism Fr is a finite morphism of degree qd. Hence it acts as
multiplication by qd on a generator of IH2d(X,Ql). So P2d(X0, t) = 1− qdt.
The only thing left to prove is that each Pi(X0, t) has coefficients in Z.
The intersection complex ICX0

is pure of weight d (Example 1.5.13 and [3,
Corollaire 5.3.2]). This means that for each i ∈ Z the eigenvalues of the
Frobenius Endomorphism Fr acting on IH i(X,Ql) are algebraic numbers
where all of the complex conjugates have absolute value qi/2. We then use
the same argument given by Deligne for the Zeta function in the case where
X0 is smooth and projective ([6, preuve de (1.7) ⇒ (1.6)]).

Remark 1.5.21. In [12] Gabber proves that each polynomial Pi(X0, t) is
independent of l. If we do not assume X0 to be equidimesional, then the
independence of l of each polynomial Pi(X0, t) is not known in general.

1.6 Estimate

We finish this chapter by giving a general estimate of the r-multiplicity of a
singular closed point in an algebraic variety using the theory of weights on
Dbc(X0,Ql).

Proposition 1.6.1. Let f : X0 → Y0 be a quasi-finite morphism of algebraic
varieties over Fq. Then the intermediate extension functor f!∗ transforms
perverse sheaves of weight ≤ w (resp. ≥ w) over X into perverse sheaves of
weight ≤ w (resp. ≥ w) over Y0. In particular it transforms pure perverse
sheaves over X into pure perverse sheaves over Y0.

Proof. This is a consequence of [3, Corollaire 5.4.3].

Corollary 1.6.2. Let X0 be an algebraic variety over Fq of dimension d.
The intersection complex ICX0

is pure of weight d.
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Proof. The intersection complex ICX0
is per definition the intermediate ex-

tension of Ql[d] under an open immersion, which is then a quasi-finite mor-
phism between algebraic varieties over Fq. Since Ql[d] is pure of weight d, it
follows that the intersection complex ICX0

is pure of weight d.

Theorem 1.6.3. Let X0 be an algebraic variety over Fq of dimension d and
let x ∈ |X0| be a singular point. Then for any r ≥ 1 and η = deg(x)r,

|mr
X0,x
| ≤

−1∑
i=−d

dim(Hi(ICX0
)x) (qη)

i+d
2 .

Proof. The intersection complex ICX0
is isomorphic in Dbc(X0,Ql) to a com-

position of pushforwards and truncations for a given stratification of X0 ([3,
Proposition 2.1.11]), i.e.,

ICX0
∼= τ≤−1(j−1)∗ . . . τ≤−d(jd)∗Ql[d].

This shows that ICX0
∈ D[−d,−1]

c (X0,Ql). Since ICX0
is pure of weight d, the

cohomology sheaves Hi(ICX0
) are of weight i + d for every −d ≤ i ≤ −1.

Let αih,r be the h-th eigenvalue of the geometric Frobenius Fx composed r

times acting on Hi(ICX0
)x. Thus,

|mr
X0,x
| =
∣∣∣ −1∑
i=−d

(−1)i+dtrHi(ICX0
)(x)

∣∣∣
≤

−1∑
i=−d

∣∣∣ dim(Hi(ICX0
)x)∑

h=1

αih,r

∣∣∣
≤

−1∑
i=−d

dim(Hi(ICX0
)x)) (qη)

i+d
2 ,

where η = deg(x)r.

The theorem implies that knowing the dimension of the Ql-vector spaces
given by Hi(ICX0

)x for each −d ≤ i ≤ −1, leads to estimates of the r-
multiplicity of x in X0.
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Chapter 2

Low-dimensional Computations

Let X0 be an algebraic variety over Fq. In this chapter we calculate the
r-multiplicity of a closed singular point x in X0 for the three cases where
resolution of singularities is known; that is, when X0 has dimension 1,2 or
3.

Definition 2.0.1. Let X0 be a reduced (locally) Noetherian scheme. A
proper birational morphism π : X̃0 → X0 with X̃0 regular is called a desin-
gularization of X0 (or a resolution of singularities of X0). If the morphism
π is an isomorphism above every regular point of X0, we say it is a desingu-
larization in the strong sense.

A strict normal crossings divisor on X0 is an effective Cartier divisor
D0 ⊂ X0 such that for every p ∈ D0 the local ring OX0,p is regular and
there exists a regular system of parameters x1, . . . , xd ∈ mp and 1 ≤ r ≤ d

such that D0 is cut out by x1 . . . xr in OX0,p.

For any strict normal crossings divisor on X0 we have that

1. for any s ∈ D0 the local ring OX0,s is regular,

2. the scheme D0 is reduced, i.e., D0 =
⋃

(E0)i∈I (scheme-theoretically),
where (E0)i are the reduced irreducible components of D0, and

3. for any non-empty subset J ⊂ I, the closed subscheme DJ =
⋂
j∈J(E0)j

is a regular scheme of codimension |J | in X0.
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2.1 Dimension 1

In this section we calculate the r-multiplicity of a closed singular point x in
an algebraic variety X0 of dimension 1.

Let X0 be an algebraic variety over Fq of dimension 1. Let π : X̃0 → X0

be the normalization of X0, i.e., a desingularization in the strong sense of
X0. Moreover, for a separated scheme Y0 of finite type over Fq let FY0 be its
q-Frobenius.

Lemma 2.1.1. Let X0 be an algebraic variety over Fq of dimension 1. Let
x ∈ |X0|. Then for any r ≥ 1,

mr
X0,x

= |{y ∈ π−1
Fq

(x) : (F η
π−1(x) × Id)(y) = y}|,

where π−1
Fq

(x) denotes the base change of π−1(x) to the algebraic closure of

Fq and η = deg(x)r.

Proof. By Lemma 1.4.3 and Theorem 1.2.1, we have that

mr
X0,x

= Tr(Frη|H0(π−1
Fq

(x),Ql)),

where η = deg(x)r. The cohomology group H0(π−1
Fq

(x),Ql) is the direct sum

of copies of Ql indexed by the connected components of π−1
Fq

(x), i.e.,

H0(π−1
Fq

(x),Ql) =
⊕
(E)i

Ql,

where Ei is a connected component of π−1
Fq

(x). The q-Frobenius Fπ−1(x) is a

universal homeomorphism ([33, Lemma 32.35.3]). It follows that the mor-
phism

Fπ−1(x) × Id : π−1
Fq

(x)→ π−1
Fq

(x),

which defines the geometric Frobenius correspondence ([SGA 5, XIII]), per-
mutes the connected components of π−1

Fq
(x). The fixed connected compo-

nents of π−1
Fq

(x) under (F η
π−1(x) × Id) correspond to points y ∈ π−1

Fq
(x)(Fqη).

Thus,

Tr(Frη|H0(π−1
Fq

(x),Ql)) = |{y ∈ π−1
Fq

(x) : (F η
π−1(x) × Id)(y) = y}|.
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Remark 2.1.2. The lemma shows that in dimension 1 the r-multiplicity of
a closed singular point x ∈ |X0| is a positive integer independent of l.

In the following example, we show that for r big enough, the r-multiplicity
of a singularity can be arbitrarily big.

Example 2.1.3. Consider the scheme

X0 := Spec

Fqn[x, y]/
∏
α∈Fqn

〈x− αy〉

 ,

where n ∈ N. By the Jacobian criterion [26, Theorem 4.2.19], the scheme
X0 has a singularity at x0 := V (I) with I = 〈x, y〉. Let π : X̃0 → X0 be the
normalization of X0. Then, X̃0 = tZ̃i, where Z̃i → Zi is the normalization
of the i-th irreducible component Zi of X0; these are given by the factors
(x− αy), α ∈ Fqn. Thus, the cardinality of the inverse image of x0 under π
is qn, i.e., |π−1(x0)| = qn. By Lemma 2.1.1, for any r ≥ 1,

mr
X0,x0

= qn.

We conclude that the dimension 1 case is rather easy. Nevertheless, it is
very helpful for constructing examples in order to determine the behavior of
the r-multiplicities.

2.2 Dimension 2

We calculate the r-multiplicity of a closed singular point x in a normal sur-
face.

Let X0 be a normal algebraic variety over Fq of dimension 2. Let x ∈ X0 be
a closed singular point. Denote by X the base change of X0 with respect to
Spec(Fq). Choose a desingularization of X0 in the strong sense ([24]), which
will be denoted by X̃0. We obtain the following cartesian diagram:

X̃0 \D0 X̃0 D0

X0 \ Z0 X0 Z0,

j′

Id π

i′

π

j i



26 2. Low-dimensional Computations

where Z0 := {x}. The omission of the zero subscript on the objects of
the diagram represents, as for X0 and X, the base change with respect to
Spec(Fq). Let {Es}s be the set of the irreducible components of D. We
begin with the following Lemma where X0 is assumed to be proper in order
to have

Hi(X0, K0) = Hi
c(X0, K0),

for each K0 ∈ Dbc(X0,Ql) and every i ∈ Z.

Lemma 2.2.1. Let X0 be a proper and normal algebraic variety over Fq of
dimension 2 with one isolated closed singular point x ∈ X0. Let π : X̃0 → X0

be a desingularization of X0 in the strong sense such that D0 := π−1({x})
is a strict normal crossings divisor over x and let {Es}s be the set of the
irreducible components of D as above. For each r ≥ 1,

mr
X0,x

= |D0(Fqη)| − |{Es : (F η
D0
× Id)(Es) = Es}| qη,

where η = deg(x)r.

Remark 2.2.2. The condition of D0 being a strict normal crossings divisor
is a mild one, since we can always achieve this after appropriate blow-ups
([40, Remark 1.4]).

Proof. Consider the intersection cohomology groups of X0 and X̃0: Hi(X0, ICX0
)

and Hi(X̃, ICX̃0
). For all i 6= 2, we have that

Hi(X0, ICX0
) = Hi(X̃0, ICX̃0

),

and for i = 2,

Hi(X0, ICX0
)⊕H2(D0,Ql) ∼= Hi(X̃0, ICX̃0

);

see [40, Theorem 1.1]. It follows that for ν ≥ 1

aν :=
4∑
i=0

(−1)iTr(Frν|Hi
c(X̃, π

∗
1ICX̃0

))

=
4∑
i=0

(−1)iTr(Frν|Hi
c(X, π

∗
2ICX0

)) + Tr(Frν|H2(D,Ql)),
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where π1 : X̃ → X̃0 and π2 : X → X0 are the projections. By Theorem 1.2.1,
we get the following equations:

4∑
i=0

(−1)iTr(Frν|Hi
c(X, π

∗
2ICX0

)) =
∑

x′∈X0(Fqν )

∑
j

(−1)j+2Tr(F ν|Hj(ICX0
)x′)

4∑
i=0

(−1)iTr(Frν|Hi
c(X̃, π

∗
1ICX̃0

)) =
∑

x′∈X̃0(Fqν )

∑
j

(−1)j+2Tr(F ν|Hj(ICX̃0
)x′).

It follows that

aν =
4∑
i=0

(−1)iTr(Frν|Hi
c(X̃, π

∗
1ICX̃0

))

=
∑

x′∈D0(Fqν )

∑
j

(−1)j+2Tr(F ν|Hj(ICX̃0
)x′)

+
∑

x′∈X̃0\D0(Fqν )

∑
j

(−1)j+2Tr(F ν|Hj(ICX̃0
)x′)

=
4∑
i=0

(−1)iTr(Frν|Hi
c(X, π

∗
2ICX0

)) + Tr(Frν|H2(D,Ql))

=
∑

x′∈(X0)reg(Fqν )

∑
j

(−1)j+2Tr(F ν|Hj(ICX0
)x′)

+
∑

x′∈(X0)sing(Fqν )

∑
j

(−1)j+2Tr(F ν|Hj(ICX0
)x′) + Tr(Frν|H2(D,Ql)).

Since (X0)reg ∼= X̃0 \ D0, we get after comparing the second and fourth
equality above that∑
x′∈D0(Fqν )

1 =
∑

x′∈(X0)sing(Fqν )

∑
j

(−1)j+2Tr(F ν|Hj(ICX0
)x′) + Tr(Frν|H2(D,Ql)).

If deg(x) = ν, then we have∑
x′∈D0(Fqν )

1 =
∑

x′∈(X0)sing(Fqν )

mX0,x′ + Tr(Frν|H2(D,Ql)).
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Since the surface has only one isolated singularity, we have that for r ≥ 1

mr
X0,x

=
∑

x′∈(X0)sing(Fqνr )

mr
X0,x′

=
∑

x′∈D0(Fqνr )

1− Tr(Frνr|H2(D,Ql))

= |D0(Fqνr)| − Tr(Frνr|H2(D,Ql)).

The exceptional divisor D0 is the union of its irreducible components, i.e.,
D0 =

⋃
(E0)s′ such that each (E0)s′ is smooth. We define S := ∪i,jSi,j with

Si,j := (E0)i ∩ (E0)j and U := D0 \ S. Consider the long exact sequence of
cohomology

· · · → H1
c (U,Ql)→ H1(D0,Ql)→ H1(S,Ql)→ H2

c (U,Ql)→ . . .

Let π : D̃0 → D0 be the normalization of D0. Then D̃0 = ⊕s′(E0)s′

with D̃0 ×Fq U
∼= U and S̃ := D̃0 ×Fq S. Since dim(S) = dim(S̃) = 0,

we have that H1(S,Ql) = H1(S̃,Ql) = H2(S,Ql) = H2(S,Ql) = 0 and
H2(D̃0,Ql) ∼= H2

c (U,Ql) ∼= H2(D0,Ql). SinceH2(D̃0,Ql) = ⊕s′H2((E0)s′,Ql),
we conclude that

H2(D,Ql) ∼=
⊕
s

H2(Es,Ql).

This isomorphism is compatible with the action of Fr on cohomology groups
by the functoriality of the Frobenius correspondence ([19, §2.1.3]), since it
holds over Spec(Fq). The q-Frobenius FD0

is a universal homeomorphism
([33, Lemma 32.35.3]). It follows that the morphism

FD0
× Id : D → D,

which defines the geometric Frobenius correspondence ([SGA 5, XIII]), per-
mutes the irreducible components of D. We conclude that

Tr

(
Frνr|

⊕
s

H2(Es,Ql)

)
= |{Es : (F νr

D0
× Id)(Es) = Es}| Tr(Frνr|H2(Es,Ql)).

For each smooth proper curve Es, one knows that

Tr(Frνr|H2(Es,Ql)) = qνr.

Let η = deg(x)r. Considering all the calculations above, we have

mr
X0,x

= |D0(Fqη)| − Tr(Frη : H2(D,Ql))

= |D0(Fqη)| − |{Es : (F η
D0
× Id)(Es) = Es}| Tr(Frη : H2(Es,Ql))

= |D0(Fqη)| − |{Es : (F η
D0
× Id)(Es) = Es}| qη.
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We now present the main result of this section.

Theorem 2.2.3. Let X0 be a normal algebraic variety over Fq of dimension
2. Let x ∈ X0 be a closed singular point. Then for D0 as above and for each
r ≥ 1,

mr
X0,x

= |D0(Fqη)| − |{Es : (F η
D0
× Id)(Es) = Es}| qη,

where η = deg(x)r.

Proof. By Lemma 1.4.3 and Lemma 1.4.2, we may assume X0 to be an
integral affine normal algebraic variety over Fq of dimension 2. Since X0 is
normal, every singular point is an isolated singular point. Thus, there exists
an affine open subscheme Ux of X0 such that x is the only isolated closed
singular point of Ux. By Lemma 1.4.2, we have that for each r ≥ 1

mr
X0,x

= mr
Ux,x

.

Thus, we may assume further that x is the only singular point of X0. Con-
sider the projective closure Y0 of X0 in PnFq , i.e., the closed subscheme of PnFq
defined by the homogenization of the ideal I defining X0 as a closed sub-
scheme of An

Fq ([15, §I Exercise 2.9]). Since X0 is integral, we may assume Y0

to be integral as well. Thus, Y0 is an integral projective scheme such that X0

is an affine open subscheme of Y0 containing x. As normalization commutes
with smooth morphisms ([33, Tag 03GV]), we have the following cartesian
diagram:

X ′0 Y ′0

X0 Y0,

where X ′0 and Y ′ are the normalizations of X0 and Y , respectively. Since
X0 is normal, we have that X ′0 = X0. It follows that we may assume X0 to
be an open affine subscheme of an integral (Lemma 1.4.3) normal projective
variety, call it again Y0. According to [26, Theorem 8.3.44], the resolution
of singularities of a two dimensional algebraic variety is given by a finite
sequence

· · · → Xn+1 → Xn → · · · → X1 → X,
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where each step is the composition of the blow-up X ′i → Xi of the singular
locus of Xi endowed with the reduced scheme structure, and of the nor-
malization Xi+1 → X ′i. The sequence above is dominated by a sequence of
normalized blow-ups ([33, Tag OBBS and Tag OBBT]); that is a sequence

· · · → Xn+1 → Xn → · · · → X1 → X,

where each step is the composition of the blow-up X ′i → Xi of a closed
point of Xi, and of the normalization Xi+1 → X ′i. This implies that we
can desingularize Y0 one closed singular point at a time through blow-ups
along the point and normalization of the resulting scheme. Apply then this
new sequence to the closed points of Y0 \X0 and we get an integral normal
projective scheme Ỹ0 with an isomorphic copy of X0 as an open subscheme,
such that the only singularity of Ỹ0 is the singularity of X0, i.e., the point
x. By Lemma 1.4.2, we have that for each r ≥ 1

mr
X0,x

= mr
Y0,x

.

Thus, we may assume X0 to be a proper algebraic variety over Fq of dimen-
sion 2 with one isolated singularity. We now apply Lemma 2.2.1 to X0 and
the theorem follows.

This shows that for a normal algebraic variety X0 over Fq of dimension 2,
the r-multiplicity of a closed singular point x in X0 is an integer independent
of l. It also shows that it would be possible to have negative numbers for
the r-multiplicities. In the following example we show that this is indeed
the case.

Example 2.2.4. Consider the following algebraic variety:

X0 := Spec(Fq[x, y, z]/〈x3y + xy3 − z2xy − z5〉),

where char(Fq) 6= 2, 3, 5. By the Jacobian criterion [26, Theorem 4.2.19],
the scheme X0 has a singularity at x0 := V (I) with I = 〈x, y, z〉. Consider
the blow-up of X0 along V (I), which will be denoted by X̃0. The scheme
X̃0 is the union of the affine open subschemes (X̃0)1, (X̃0)2, (X̃0)3 given as
follows:

(X̃0)1 := Spec

(
Fq
[
z,
x

z
,
y

z

]/〈((x
z

)2

+
(y
z

)2

− 1

)
x

z

y

z
− z
〉)
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(X̃0)2 := Spec

(
Fq
[
x,
y

x
,
z

x

]/〈y
x

+
(y
x

)3

−
(z
x

)2 y

x
−
(z
x

)5

x

〉)
(X̃0)3 := Spec

(
Fq
[
y,
x

y
,
z

y

]/〈x
y

+

(
x

y

)3

−
(
z

y

)2
x

y
−
(
z

y

)5

y

〉)
.

In order to prove that X̃0 is a resolution of singularities of X0 we use the
Jacobian criterion on each of the (X̃0)i, i = 1, 2, 3, and conclude that each
(X̃0)i, i = 1, 2, 3 is regular. By [26, Proposition 8.1.12], the morphism
π : X̃0 → X0 induces an isomorphism π−1(X0 \V (I))→ X0 \V (I). Since X̃0

is regular, the scheme π−1(X0 \ V (I)), as an open subscheme of X̃0, is also
regular. It follows that X0 \ V (I) is regular as well. Thus, the morphism
π : X̃0 → X0 is a desingularization of X0 in the strong sense and the point
x0 is the only singularity of X0.
Consider the exceptional divisor D0 := π−1(x0) in X̃0, which is given by the
union of the following affine schemes:

(X̃0)1 ∩D0 = V (z) = Spec

(
Fq
[x
z
,
y

z

]/〈((x
z

)2

+
(y
z

)2

− 1

)
x

z

y

z

〉)
(X̃0)2 ∩D0 = V (x) = Spec

(
Fq
[y
x
,
z

x

]/〈y
x

(
1 +

(y
x

)2

−
(z
x

)2
)〉)

(X̃0)3 ∩D0 = V (y) = Spec

(
Fq
[
x

y
,
z

y

]/〈x
y

(
1 +

(
x

y

)2

−
(
z

y

)2
)〉)

.

The scheme (X̃0)1 ∩D0 = V (z) has three irreducible components that meet
at the points [0 : 0 : 1], [1 : 0 : 1], [−1 : 0 : 1], [0 : 1 : 1], [0 : −1 : 1].
The irreducible components of (X̃0)2 ∩ D0 = V (x) meet at [1 : 0 : 1] and
[1 : 0 : −1] = [−1 : 0 : 1]. Accordingly, the irreducible components of
(X̃0)3 ∩ D0 = V (y) meet at [0 : 1 : 1] and [0 : 1 : −1] = [0 : −1 : 1].
It follows that the exceptional divisor D0 has three irreducible components
that intersect in at least 5 points.

In order to apply Theorem 2.2.3, we prove that X0 is normal. For this we
use Serre’s criterion for normality. Consider the projective closure Y0 of X0

in P3
Fq with canonical morphism given as follows:

Y0 := Proj
(
Fq[x, y, z, w]/

〈
(x3yw + xy3w − z2xyw − z5)

〉)
↪→ P3

Fq ,
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compare [15, §I Proposition2.2]. Since Y0 as a closed subscheme of P3
Fp is

defined by one homogeneous polynomial, the scheme Y0 is a complete in-
tersection ([26, Ex. 5.3.3]). As Y0 is a complete intersection over Spec(Fq),
the scheme Y0 is Cohen-Macaulay ([26, Corollary 8.2.18]). Thus, the lo-
cal ring OY0,x0 is Cohen-Macaulay. It follows that OX0,x0

∼= OY0,x0 is also
Cohen-Macaulay. Since the point x0 is the only singularity of X0, we have
that for x 6= x0, the local ring OX0,x is regular. By [26, Example 8.2.14],
every regular noetherian local ring is Cohen-Macaulay. It follows that X0 is
Cohen-Macaulay and therefore satisfies (S2) ([26, Example 8.2.20]).
To prove that X0 fulfills (R1) notice that codim(x0) = 2, since dimX = 2
and x0 is closed point of X0. As seen above, for x 6= x0 the local ring OX0,x

is regular. In particular, if codim(x) = 1, then OX0,x is regular. This means
that OX0,x has dimension 1 and is normal. Hence the scheme X0 fulfills (R1).
By Serre’s criterion for normality, we have that X0 is normal.

Let X and X̃ be the base change of X0 and X̃0 with respect to Spec(Fq),
respectively. Accordingly, let D be the corresponding divisor in X̃ associated
to D0 := π−1(x0) in X̃0 after base change with respect to Spec(Fq). Define

X1 :=
(

(X̃0)1 ∩D0

)
×Fq Spec(Fq). In order to study the behavior of D under

the morphism FD0
× Id it is enough to consider its restriction to X1:

F(X̃0)1∩D0
× Id : X1 → X1.

In this case the projection Pr1 : X1 → (X̃0)1 ∩ D0 is given by the ring
homomorphism

φ :

(
Fq
[x
z
,
y

z

]/〈((x
z

)2
+
(y
z

)2
− 1

)
x

z

y

z

〉)
→
(
Fq
[x
z
,
y

z

]/〈((x
z

)2
+
(y
z

)2
− 1

)
x

z

y

z

〉)
.

The morphism

(FX1 × Id)# :

(
Fq
[x
z
,
y

z

]/〈((x
z

)2
+
(y
z

)2
− 1

)
x

z

y

z

〉)
→
(
Fq
[x
z
,
y

z

]/〈((x
z

)2
+
(y
z

)2
− 1

)
x

z

y

z

〉)

is defined by ∑
aibj

(x
z

)i (y
z

)j
7→
∑

aibj

((x
z

)i (y
z

)j)q
.

It follows that the irreducible components Z1 := V
((

y
z

))
and Z2 := V

((
x
z

))
of (X̃0)1∩D0 are still irreducible in X1 and are fixed under FX1

× Id. Notice
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that Z3 := V
(((

x
z

)2
+
(
y
z

)2 − 1
))

is irreducible in X1 and therefore D has

three irreducible components that are fixed under F(X̃0)1∩D0
× Id.

We have that the irreducible components Z1, Z2 and Z3 in D0 are projective
lines over Fq, i.e., Z1 = Z2 = Z3 = P1

Fq . By Theorem 2.2.3, we have for r ≥ 1

mr
X0,x0

= |D0(Fqr)| − 3qr = 3(qr + 1)− 5− 3qr = −2.

2.3 Local Ring

Theorem 2.2.3 lets us calculate the r-multiplicity of a closed point x ∈ X0

by knowing the Fqη-rational points of the exceptional divisor D0 and the ir-
reducible components that are fixed under F η

D0
× Id on D. In this section we

establish a correspondence between these irreducible components and ideals
of the local ring of X0 at x.

Let X0 be a normal algebraic variety over Fq of dimension 2 with a closed
singular point x. By Lemma 1.4.3, we may assume X0 to be a normal integral
algebraic variety over Fq of dimension 2 with a closed singular point x. Let
R be a two-dimensional normal integral ring (the localization of X0 at x)
with maximal ideal m and residue field k. Moreover, let f : X̃0 → Spec(R)
be a desingularization of Spec(R) as in [26, Theorem 8.3.44] given by a finite
sequence

X̃0 = Xn → Xn−1 → · · · → Spec(R), (2.1)

where Xi+1 → Xi is the composition of the blow-up X ′i → Xi of the singular
locus (Xi)sing endowed with the reduced scheme structure, and the norma-
lization Xi+1 → X ′i.
Following the construction of a blow-up along m of an affine integral scheme,
we conclude that X ′1 is integral and projective with respect to Spec(R). It
follows that the morphism X2 → X ′1 given by the normalization is a bira-
tional morphism with X2 an integral scheme and X ′1 integral and projective.
Thus, the morphism X1 → X ′1 is a blow-up along a quasi-coherent sheaf of
ideals I1 ([26, Exercise 8.1.8]). This implies that the morphism X2 → X ′1 is
projective with respect to X ′1 and the sheaf I1OX1

is very ample relative to



34 2. Low-dimensional Computations

this morphism ([26, Proposition 8.1.22]).
Applying this reasoning to the whole sequence 2.1 we get that f : X → Spec(R)
is a blow-up along a quasi-coherent sheaf of ideals I. Thus, the mor-
phism f is projective and the sheaf IOX̃0

is very ample relative to f . Let
(E0)1, . . . , (E0)n be the irreducible components of the exceptional divisor
D0 := f−1({m}).

The exceptional divisor D0 is defined as follows:

D0 := Proj
⊕
d≥0

Id/Id+1.

By Theorem 2.2.3, the sheaf I has all the information needed to calculate

mr
X0,x0

= |D(Fqη)| − |{Es : (F η
D0
× Id)(Es) = Es}| qη,

where η = deg(x)r.
We now give a similar formula for calculating mr

X0,x
where the part corres-

ponding to the irreducible components of D will be replaced by a similar
expression depending on ideals of R.

Theorem 2.3.1. Let X0 be an integral normal algebraic variety over Fq of
dimension 2 and x ∈ |X0| be a closed singular point. Let R be the localization
of X0 at x with maximal ideal m and I be a quasi-coherent sheaf of ideals
of Spec(R) such that the blow-up along I is a desingularization of Spec(R).
Then for all r ≥ 1 we have

mr
X0,x

= |Proj
⊕
d≥0

Id/Id+1(Fqη)| − |{V (Ii)Fq : (F η
Spec(R) × Id)(V (Ii)Fq) = V (Ii)Fq}|,

where η = deg(x)r and each V (Ii)Fq is a closed subscheme of

Spec(R⊗Fq Fq) defined by a complete m-primary ideal Ii of R (i.e. Ii is
primary and

√
Ii = m).

Proof. Let E be the group of divisors of X̃0 of the form
∑n

i=1 zi(E0)i with
zi ∈ Z and let E# be the set of divisors G ∈ E, G 6= 0, such that O(−G) is
generated by global sections over X̃0. There is a one-to-one correspondence
between members of E# and complete m-primary ideals in R which generate
invertible OX̃0

-ideals ([24, §18]). For a description of complete ideals see [24,
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II §5]. Since the sheaf IOX̃0
is very ample relative to f , there exists an

m ∈ N such that

mD0 + (E0)i ∈ E#

for all i = 1, . . . , n. Indeed, let m := max{mi ∈ N : i = 1, . . . , n}, such that
O(−(E0)i) ⊗ (IOX̃0

)mi is generated by global sections over X̃0. One then
establishes a one-to-one correspondence between the irreducible components
of the exceptional divisor D0 and some complete m-primary ideals Ii in R,
the ones corresponding to mD0 + (E0)i for every i = 1, . . . , n. Let Ei be the
irreducible components of D. We then have

|{Ei : (F η
D0
× Id)(Ei) = Ei}| = |{V (Ii)Fq : (F η

Spec(R) × Id)(V (Ii)Fq) = V (Ii)Fq}|,

where η = deg(x)r and each V (Ii)Fq is the closed subscheme of Spec(R⊗FqFq)
defined by base change of V (Ii) to Fq.

Remark 2.3.2. Alternatively, we could also find the complete m-primary
ideals Ii by tensoring O(−D0) with (IOX̃0

)m
′

for some m′ ∈ N such that

O(−D0)⊗(IOX̃0
)m
′
is generated by global sections over X̃0 and then looking

at the factorization of Γ(X̃0,O(−D0) ⊗ (IOX)m
′
) into complete ideals; see

[24, p. 239].

2.4 Dimension 3

In this section we calculate the r-multiplicity of an isolated closed singular
point in an algebraic variety of dimension 3. We also give an alternative
proof of Theorem 2.2.3.

Let X0 be an algebraic variety over Fq of dimension 3. If X0 is quasi-
projective, there exists a projective morphism π : X̃0 → X0 such that

i) X̃0 is regular.

ii) π induces an isomorphism X̃0 \ π−1((X0)sing) ∼= X0 \ (X0)sing.

iii) π−1((X0)sing) ⊂ X̃0 is a divisor with strict normal crossings, call it D0.
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See [5, Theorem]. Thus, we have a desingularization of X0 in the strong
sense. Let D be the base change of D0 to the algebraic closure of Fq and let
{Es}s be the set of its irreducible components.
Before we state the main theorem of this section, we recall the following
important result.

Theorem 2.4.1. (Hard Lefschetz Formula) Let f : X0 → Y0 be a projective
morphism of separated schemes of finite type over Fq. Let K0 be a pure
(Definition 1.5.12) perverse sheaf over X0. For δ ≥ 0, we have that

Hp −δf∗K0 = Hp δf∗K0(δ).

Proof. [3, Théorème 5.4.10].

Theorem 2.4.2. Let X0 be a normal algebraic variety over Fq of dimension
3 and x ∈ |X0| an isolated singularity. Then for D0 as above and r ≥ 1,

mr
X0,x

= |D0(Fqη)|−Tr(Frη|H3(D,Ql))+|{Es : (F η
D0
×Id)(Es) = Es}| (qη+q2η),

where η = deg(x)r.

Proof. By Lemma 1.4.3 and Lemma 1.4.2, we may assume X0 to be an
integral affine normal algebraic variety over Fq. By [EGA II, 5.3.4 (i)], the
scheme X0 is quasi-projective and there exists a desingularization of X0 in
the strong sense as above. Since x ∈ |X0| is an isolated singular point, there
exists an affine open subscheme Ux of X0 such that x is the only isolated
closed singular point of Ux. By Lemma 1.4.2, we have that for each r ≥ 1

mr
X0,x

= mr
Ux,x

.

Thus, we may assume further that x is the only singular point of X0. Since
π : X̃0 → X0 is a projective morphism, we may apply Theorem 2.4.1 in this
case. Consider the following cartesian diagram:

X̃0 \D0 X̃0 D0

U0 := X0 \ Z0 X0 Z0,

j′

Id π

i′

π

j i
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where Z0 represents the singular locus of X0, i.e., Z0 := {x} = (X0)sing. The
omission of the zero subscript on the objects of the diagram represents as
before the base change to the algebraic closure of Fq. We have that

tr
π∗Ql[3]

(x) =
∑
δ

(−1)δtr
Hp δ(π∗Ql[3])

(x).

Since restricting to U0 is a t-exact functor, it commutes with perverse coho-
mology. It follows that

j∗ Hp δ(π∗Ql[3]) = Ql[3] for δ = 0 and

j∗ Hp δ(π∗Ql[3]) = 0 for δ 6= 0.

This implies that the support of Hp δ(π∗Ql[3]) with δ 6= 0 is only the singular
point x. By [3, Remarque 5.4.9], the complex π∗Ql[3] is pure, which implies
that every Hp δ(π∗Ql[3]) is pure ([3, Corollaire 5.4.4]). By [3, Corollaire
5.3.11], every Hp δ(π∗Ql[3]) admits a unique decomposition

Hp δ(π∗Ql[3]) = j!∗K0 ⊕ i∗Lδ,

where δ ∈ Z and K0 ∈ Perv(U0),Lδ ∈ Perv({x}). Thus

Hp δ(π∗Ql[3]) = i∗Lδ,

for δ 6= 0 and each Lδ is a local system on {x}. We define the defect of
semi-smallness of π as follows:

r(π) := max
{a∈N:Xa

0 6=∅}
{2a+ dimXa

0 − dimX0},

where Xa
0 = {x ∈ X0 : dim π−1(x) = a}. It follows that r(π) = 1.

This implies that Hp δ(π∗Ql[3]) = 0 for δ 6= 0, 1,−1 ([4, §4.1]) and
Hp −1(π∗Ql[3]) ∼= Hp 1(π∗Ql[3])(1) (Hard Lefschetz Formula). For δ = −1, 0, 1,

we have exact triangles

pτ<δπ∗Ql[3]→ pτ≤δπ∗Ql[3]→ Hp δ(π∗Ql[3])[−δ] [1]−→ .

For δ ≥ 0, we have that

Hp δ(i∗ pτ≤δπ∗Ql[3]) = Hp δ(i∗ Hp δ(π∗Ql[3])[−δ]) and

Hp δ(i∗ pτ≤δπ∗Ql[3]) = Hp δ(i∗ pτ≤δ+1π∗Ql[3]).
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The first equality is a direct consequence of the exact triangles above and
the t-right exactness of the functor i∗. The second equality is due to the fact
that

Hp δ(ι∗i∗ Hp δ+1(π∗Ql[3])[−(δ + 1)]) = Hp δ(Lδ+1[−(δ + 1)]) = 0 and

Hp δ−1(ι∗i∗ Hp δ+1(π∗Ql[3])[−(δ + 1)]) = Hp δ−1(Lδ+1[−(δ + 1)]) = 0

for δ ≥ 0. Since π∗Ql[3] = pτ≤1π∗Ql[3], the two equalities above imply that
for δ = 0 and δ = 1,

Lδ = Hp δ(ι∗i∗ Hp δ(φ∗Ql[d])[−δ])
= Hp δ(ι∗i∗ pτ≤1φ∗Ql[d]) (2.2)

= Hp δ(ι∗i∗φ∗Ql[d]).

By the Hard Lefschetz Formula, we have for δ ≥ 1 the equality

L−δ = Lδ(δ). (2.3)

It follows that

tr
π∗Ql[3]

(x) =
∑
δ

(−1)δtr
Hp δ(π∗Ql[3])

(x)

=

(
1∑

δ=−1

(−1)δtrLδ(x)

)
+mr

X0,x
.

By equation (1.1), the left hand side is equal to |D0(Fqη)| for η = deg(x)r.
By equations (2.2) and (2.3), we have that

trL1
(x) = Tr(Frη|H4(D,Ql))

trL−1(x) = Tr(Frη|H4(D,Ql)) q
−η (2.4)

trL0
(x) = Tr(Frη|H3(D,Ql)).

Here η = deg(x)r. Since D0 is a divisor with strict normal crossings, it is
the union of its irreducible components, i.e., D0 = ∪(E0)s′ where each (E0)s′

is smooth. Using the same argument as in the proof of Lemma 2.2.1, we
conclude that

H4(D,Ql) ∼=
⊕
s

H4(Es,Ql).
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This isomorphism is compatible with the action of Fr on cohomology groups
as before. We conclude that

Tr(Frη|H4(D,Ql)) = |{Es : (F η
D0
× Id)(Es) = Es}| Tr(Frη|H4(Es,Ql)).

For each smooth proper surface Es, one knows that

Tr(Frη|H4(Es,Ql)) = q2η.

The theorem now follows.

Remark 2.4.3. In [36, §2], E. Tasso calculates the intersection cohomology
of a projective singular three-dimensional variety X0 over C with an isolated
singular point. In particular, she describes Hp δ(π∗Q[3]) for δ = 0, 1,−1
where π : X̃0 → X0 is a desingularization of X0 ([36, §2 (2.2)]). The coho-
mology groups on which we consider our traces in equation (2.4) are the
characteristic p analogues of the cohomology groups calculated in [36, §2
(2.2)].

We now refine the theorem above by giving a more precise description of
Tr(Frη|H3(D,Ql)). In the following calculations we write the subscript Fq
under a scheme to denote the base change to the algebraic closure of Fq.
Define S := ∪i<jSi,j with Si,j := (E0)i ∩ (E0)j and U := D0 \ S. Let
{(Z0)m′}m′ be the set of irreducible components of S and {Zm}m be the set
of irreducible components of SFq .

Theorem 2.4.4. Let X0 be a normal algebraic variety over Fq of dimension
3 and x ∈ |X0| an isolated singularity. Then for D0 as above and r ≥ 1,

Tr(Frη|H3(D,Ql))

=|{Es : (F η
D0
× Id)(Es) = Es}| Tr(Frη|H3(Es,Ql))

+ Tr(Frη|Im (⊕mH2(Zm,Ql)→ H3
c (UFq ,Ql))) (2.5)

Proof. Consider the following long exact sequence of cohomology:

· · · → H2(S,Ql)
φ−→ H3

c (U,Ql)
α−→ H3(D0,Ql)→ H3(S,Ql)→ . . .

Since dim(S) = 1, we have that H3(S,Ql) = 0. It follows that

Tr(Frη|H3(D,Ql)) = Tr(Frη|H3
c (UFq ,Ql))− Tr(Frη| ker(α)) and

Tr(Frη| ker(α)) = Tr(Frη|Im (φ))

= Tr(Frη|Im (⊕mH2(Zm,Ql)→ H3
c (UFq ,Ql))).
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Let π : D̃0 → D0 be the normalization of D0. Then D̃0 = ti(E0)i with
D̃0 × U ∼= U and S̃ := D̃0 × S = S t S. Notice that each irreducible
component (Z0)m′ appears twice as an irreducible component of S̃. We have
the following long exact sequence of cohomology:

· · · → H2(S̃,Ql)
φ̃−→ H3

c (U,Ql)
α̃−→ H3(D̃0,Ql)→ H3(S̃,Ql)→ . . .

It follows that

Tr(Frη|H3
c (UFq ,Ql)) = Tr(Frη|H3(D̃,Ql)) + Tr(Frη| ker(α̃)) and

Tr(Frη| ker(α̃)) = Tr(Frη|Im (φ̃))

= 2 Tr(Frη|Im (⊕mH2(Zm,Ql)→ H3
c (UFq ,Ql))).

Bringing everything together we get the following equation:

Tr(Frη|H3(D,Ql))

=|{Es : (F η
D0
× Id)(Es) = Es}| Tr(Frη|H3(Es,Ql))

+ Tr(Frη|Im (⊕mH2(Zm,Ql)→ H3
c (UFq ,Ql)))

Since each Es is a smooth integral proper surface over an algebraically closed
field, we have Poincaré-Verdier duality:

H3(Es,Ql) ∼= H1(Es,Ql)(2)∨ ∼= H1(Es,Ql)
∨ ⊗Zl Zl(2)∨.

Thus,

Tr(Frη|H3(Es,Ql)) = q2ηTr((Fr−1)η|H1(Es,Ql)).

We could classify the possible calculations of Tr((Fr−1)η|H1(Es,Ql)) that
could occur following the classification for proper and integral surfaces made
by Bombieri and Mumford in [10]. One could then try to obtain a classi-
fication of the r-multiplicities in the setting of Theorem 2.4.2 by replacing
equation (2.5) in Theorem 2.4.2. Under the classification of Bombieri and
Mumford, one can look into some simple cases.
Consider the case where the Kodaira dimension of Es equals zero. By [10,
p. 25], there are three different possibilities for the first Betti number, namely



2.4. Dimension 3 41

b1 = 0, 4, 2.
In the first case we have that H3(Es,Ql) = 0 and there is nothing to calcu-
late. If b1 = 4, then Es is an abelian surface and the characteristic polyno-
mial of the Frobenius Endomorphism action over H1(Es,Ql) is completely
determined by [27, Theorem 2.9]. The last case, where b1 = 2, gives that
the Albanese variety Alb(Es) is an elliptic curve. Thus, the calculation of
Tr(Frη|H3(Es,Ql)) depends on the genus of Alb(Es).

We now present an alternative proof of Theorem 2.2.3 following the proof of
Theorem 2.4.2.

Lemma 2.4.5. Let X0 be an algebraic variety over Fq of dimension 2 with
one isolated singularity x ∈ |X0|. Then for each r ≥ 1,

mr
X0,x

= |D0(Fqη)| − |{Es : (F η
D0
× Id)(Es) = Es}| qη,

where η = deg(x)r.

Proof. Let π : X̃0 → X0 be a resolution of singularities of X0 in the strong
sense such that π−1((X0)sing) ⊂ X̃0 is a divisor with strict normal crossings,
call it D0 ([24] and [40, Remark 1.4]). Let {(E0)s′}s′ be the set of irreducible
components of D0. Let D be the base change of D0 to the algebraic closure of
Fq and {Es}s be the set of its irreducible components. Consider the following
cartesian diagram:

X̃0 \D0 X̃0 D0

U0 := X0 \ Z0 X0 Z0,

j′

Id π

i′

π

j i

where Z0 represents the singular locus of X0, i.e., Z0 := {x} = (X0)sing. The
omission of the zero subscript on the objects of the diagram represents as
before the base change to the algebraic closure of Fq. The defect of semi-
smallness in this case is equal to 0, i.e., the morphism π is semi-small ([21,
Definition §III 7.3]). Thus, Hp δ(π∗Ql[2]) = 0 for δ 6= 0. By [3, Corollaire
5.3.11], the complex π∗Ql[2] has a unique decomposition

π∗Ql[2] = j!∗Ql[2]⊕ i∗L0,
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where L0 ∈ Perv({x}). It follows that

tr
π∗Ql[2]

(x) = trL0
(x) +mr

X0,x

= tr
Hp 0(i∗π∗Ql[2])

(x) +mr
X0,x

.

By equation (1.1), the left hand side is equal to |D(Fqη)| for η = deg(x)r.
Since tr

Hp 0(i∗π∗Ql[2])
(x) = Tr(Frη|H2(D,Ql)) for η = deg(x)r, we have that

mr
X0,x

= |D0(Fqη)| − |{Es : (F η
D0
× Id)(Es) = Es}| qη.

This lemma relaxes the normality condition on X0 made in Theorem 2.2.3.
If we assume X0 to be normal, we may apply the lemma to prove Theo-
rem 2.2.3.

Theorem 2.4.6. Let X0 be a normal algebraic variety over Fq of dimension
2. Let x ∈ X0 be a closed singular point. Then for D0 as above and for each
r ≥ 1,

mr
X0,x

= |D(Fqη)| − |{Es : (F η
D0
× Id)(Es) = Es}| qη,

where η = deg(x)r.

Proof. By Lemma 1.4.3 and Lemma 1.4.2, we may assume X0 to be an
integral affine normal algebraic variety over Fq of dimension 2. Since X0 is
normal, every singular point is an isolated singular point. Thus, there exists
an affine open subscheme Ux of X0 such that x is the only isolated closed
singular point of Ux. By Lemma 1.4.2, we have that for each r ≥ 1

mr
X0,x

= mr
Ux,x

.

Thus, we may assume further that x is the only singular point of X0. Apply
Lemma 2.4.5 to X0 and the theorem follows.

2.5 Examples

We give an example of a singular algebraic variety X0 over Fq with a singular
point x ∈ |X0| such that for all r ≥ 1, we have mr

X0,x
= 1.
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Example 2.5.1. Consider the following algebraic variety:

W := Spec(Fq[x, y, z]/〈xy − z2〉),

with char(Fq) 6= 2. Let x0 denote the maximal ideal m = 〈x, y, z〉. Let
π : W̃ → W be the blow-up with center x0. Then W̃ = ∪3

i=1Spec(Ai) with

A1 = Fq
[
x,
z

x

]
A2 = Fq

[
y,
z

y

]
A3 = Fq

[
z,
y

z
,
x

z

]
with

(x
z

)(y
z

)
= 1.

Since W̃ is a union of open subschemes that are isomorphic to open sub-
schemes of A2

Fq , we have that W̃ is regular over Fq.
Now, the fiber E0 := π−1(x0) is given by the following affine schemes:

E0 ∩ A1 = Spec
(
Fq
[z
x

])
E0 ∩ A2 = Spec

(
Fq
[
z

y

])
E0 ∩ A3 = Spec

(
Fq
[x
z
,
y

z

]/(x
z

y

z
− 1
))

.

Thus, the exceptional divisor E0 = P1
Fq . We apply Lemma 2.4.5 to W . It

follows that for r ≥ 1,

mr
W,x0

= qr + 1− qr = 1.

Another example of this phenomenon are rationally smooth varieties.

Definition 2.5.2. Let X0 be a scheme over Fq of dimension d. The scheme
X0 is said to be rationally smooth if

ICX0
= Ql[d].

Example 2.5.3. For G = GL2 or G = PGL2, the affine Schubert varieties
Gr≤µ

G
are rationally smooth ([14, Theorem 1.1]).

Lemma 2.5.4. Let X0 be a rationally smooth variety over Fq of dimension
d. Let x ∈ |X0| be a singular point. Then for any r ≥ 1,

mr
X0,x

= 1.
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Proof. Same argument as in Remark 1.2.3(i).

Definition 2.5.5. Let R be a two-dimensional normal local domain. The
ring R is said to have a pseudo-rational singularity if the following condition
holds:

For any projective birational map g : W → Spec(R) there exists a normal
surface Z, proper and birational over Spec(R), such that Z dominates W
and H1(Z,OZ) = 0.

Contrary to a rational singularity, one does not assume Z → Spec(R) to be
a desingularization of Spec(R) ([24, Definition 1.1]).

In [24, §24] Lipman characterizes all normal local domains R of dimension 2
and multiplicity 2 having a pseudo-rational singularity by classifying the pos-
sible configuration diagrams on the minimal desingularization of Spec(R).
These diagrams describe the types of exceptional divisors that could occur
by desingularazing Spec(R) through successive monoidal transformations.

A symbol of either of the following types

a b
or

a

b

where a, b are positive integers will stand for a pair of integral excep-
tional curves E,F on a desingularization of Spec(R), such that h0(E) :=
length(H0(E,OE)) = a, h0(F ) := length(H0(F,OF )) = b, and E ∩ F is
non-empty. Thus, we have as intersection number (E.F ) = max{a, b} ([24,
Lemma (22.2)]). We combine these symbols into diagrams such as

g

a b c e f h,

d k
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which stands for a configuration of nine exceptional curves E1, E2 . . . , E9

such that h0(E1) = a, h0(E1) = b, . . . , h0(E9) = k, and such that the non-
empty intersections of pairs of Ei’s, with 1 ≤ i ≤ 9, are those (and only
those) indicated by the short straight lines.

For a normal local domain R of dimension 2 and multiplicity 2 having a
pseudo-rational singularity the following types (and no others) of exceptional
curves can occur:

An :
1 1 1 · · · 1

( n ≥ 2 components).

Bn : 1 2 2 · · · 2 (n ≥ 1 components, including the first one).

Cn : 1 1 · · · 1 2 (n ≥ 3 components, including the last one).

Dn :

1

1 1 1 · · · 1

1

(n ≥ 4 components, including the last two).

G2 :
1 3

F4 :
1 1 2 2

E6 :
1

1 1 1 1 1

E7 :
1

1 1 1 1 1 1

E8 :
1

1 1 1 1 1 1 1
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Accordingly, we then may classify the possible r-multiplicities in an inte-
gral normal algebraic variety X0 over Fq of dimension 2 having one pseudo-
rational doble-point depending on the possible configuration diagrams of the
exceptional divisor of the minimal desingularization of X0.

Corollary 2.5.6. Let X0 be a normal algebraic variety over Fq of dimension
2 and x ∈ |X0| be a pseudo-rational doble-point. Let π : X̃0 → X0 be the
minimal desingularization of X0 with exceptional divisor D0. Then for r big
enough we have the following:

1. If D0 is of a type different from Cn, then

mr
X0,x

= 1.

2. If D0 is of type Cn, then

mr
X0,x

= 0.

Proof. This is a direct consequence of Theorem 2.2.3. By [24, pp. 259–268],
each configuration diagram is of type An, Dn, E6, E7, E8 or Cn after base
changing D0 to the algebraic closure of Fq, i.e., each configuration diagram
of D is of this type. The corollary now follows.

Example 2.5.7. Consider the following algebraic variety:

X0 := Spec(Fp[x, y, z]/〈z2 + y3 + x5〉),

where p is a prime number different from 2, 3 and 5. Let x0 be the maximal
ideal m = 〈x, y, z〉. Let π : X̃0 → X0 be the minimal desingularization of
X0 given by successive monoidal transformations with exceptional divisor
D0. Let D be the base change of D0 to the algebraic closure of Fq. By [24,
Theorem 25.1] and [24, Remark 25.3], the exceptional divisors D0 and D are
of type E8. It follows that for r big enough

mr
X0,x0

= 1.

We now give a more generic example than in Example 2.2.4 of a situation
where the r-multiplicity of a singular closed point in an algebraic variety X0

is negative.
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Example 2.5.8. For n ≥ 1, consider the following scheme:

X0 := Spec

Fqn [x, y, z]/

〈 ∏
α∈Fqn\{±

√
−1,0}

(y − αx)(x2 + y2 − z2)

+ z3qn−8

〉 ,

where char(Fqn) 6= 2.
By the Jacobian criterion, the scheme X0 has only one singularity at
{x0} = V (I) with I = 〈x, y, z〉. Let X̃0 be the blow-up ofX0 along V (I). The
projective scheme X̃0 is the union of the affine open subschemes X̃1

0 , X̃
2
0 , X̃

3
0

given as follows:

X̃1
0 := Spec

Fqn
[
z,
x

z
,
y

z

]
/

〈 ∏
α∈Fqn\{±

√
−1,0}

(y
z
− αx

z

)((x
z

)2
+
(y
z

)2
− 1

)+ z

〉 ,

X̃2
0 := Spec

Fqn
[
x,
z

x
,
y

x

]
/

〈 ∏
α∈Fqn\{±

√
−1,0}

(y
x
− α

)((y
x

)2
−
( z
x

)2
+ 1

)+
( z
x

)3qn−8
x

〉 ,

X̃3
0 := Spec

Fqn
[
y,
z

y
,
x

y

]
/

〈 ∏
α∈Fqn\{±

√
−1,0}

(
1− αx

y

)((
x

y

)2

−
(
z

y

)2

+ 1

)+

(
z

y

)3qn−8

y

〉 .

The exceptional divisor D0 := π−1(x0) in X̃0, where π : X̃0 → X denotes
the blow-up along x0, is then given by the following affine schemes:

X̃1
0 ∩D0 = V (z) = Spec

Fqn
[x
z
,
y

z

]
/

〈 ∏
α∈Fqn\{±

√
−1,0}

(y
z
− αx

z

)((x
z

)2
+
(y
z

)2
− 1

)〉 ,

X̃2
0 ∩D0 = V (x) = Spec

Fqn
[ z
x
,
y

x

]
/

〈 ∏
α∈Fqn\{±

√
−1,0}

(y
x
− α

)((y
x

)2
−
( z
x

)2
+ 1

)〉 ,

X̃3
0 ∩D0 = V (y) = Spec

Fqn
[
z

y
,
x

y

]
/

〈 ∏
α∈Fqn\{±

√
−1,0}

(
1− αx

y

)((
x

y

)2

−
(
z

y

)2

+ 1

)〉 .

By the Jacobian criterion again, the schemes X̃1
0 , X̃

2
0 , X̃

3
0 are regular schemes.

Thus, the scheme X̃0 is a desingularization of X0 in the strong sense with
exceptional strict normal crossings divisor D0. It is enough to consider the
scheme X̃1

0 ∩D0 for analyzing the behavior of D, the base change of D0 to
the algebraic closure of Fqn.
Each irreducible component of D0 is geometrically irreducible. The divisor
D has qn− 2 irreducible components with at least 2(qn − 2)− 2 intersection
points between them (for each α ∈ Fqn \ {±

√
−1, 0} we consider the points

[±β : ±αβ : 1], where β2 = (α2 + 1)−1). For any r ≥ 1, each irreducible
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component of D has at least as many Fqnr-valued points as a projective line.
We then may consider each irreducible component of D0 as a projective line
over Fqn. By Lemma 2.4.5, for every r big enough,

mr
X0,x0

≤ (qn − 2)(qnr + 1)− (2(qn − 2)− 2)− (qn − 2) qnr = −qn + 4.

This shows that for every z ∈ Z there exists n0 ∈ N such that for r ≥ n0,

mr
X0,x0

≤ z.

For X0 an algebraic variety over Fq with closed point x, Example 2.1.3
together with Example 2.5.8 showed that the r-multiplicity mr

X0,x
may be

any number z ∈ Z for r big enough. Given any number n ∈ N, a slight
variation in Example 2.1.3 shows that mr

X0,x
= n for r ≥ 1.

Example 2.5.9. Let n ∈ N. Consider the scheme

X0 := Spec

Fq[x, y]/
∏
αi∈Fq

〈x− αiy〉

 ,

where q ≥ n and 1 ≤ i ≤ n. The scheme X0 has a singularity at {x0} = V (I)
with I = 〈x, y〉. Then for r ≥ 1,

mr
X0,x0

= n.

Given any number z ∈ Z, it is still not clear if we can construct an algebraic
variety X0 over Fq with a singular closed point x such that for r big enough
mr
X0,x

= z.
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Chapter 3

Nearby and Vanishing Cycles

In this chapter we relate the r-multiplicity of a closed singular point x in
an algebraic variety X0 to the theory of nearby and vanishing cycles functors.

Let X0 be an algebraic variety over Fq of dimension d. By Lemma 1.4.3
and Lemma 1.4.2, we may assume X0 to be an integral affine normal alge-
braic variety. By Lemma 1.4.5, there exists an element g ∈ OX0

(X0) such
that g 6= 0, a closed subscheme Z0 := V (g) ⊇ (X0)sing and an open dense
smooth subscheme U0 := X0 \ Z0. Thus, the element g defines a morphism
g : X0 → A1

Fq . Under this morphism the nearby cycles functor and the van-
ishing cycles functor are defined in [SGA 7 I and XIII and SGA 4 1/2 (Th.
finitude)].
Specifically, let i : Z0 ↪→ X0 and j : U0 ↪→ X0 be the canonical embeddings.
Fix a topological generator T of the prime-to-p quotient of πgeom

1 (Gm,Fq , 1)
(where p = char(Fq)). Deligne constructs the nearby cycles functor

ψg : Dbc(U0,Ql)→ Dbc(Z,Ql),

with a functorial action of π1(Gm,Fq , 1) on ψg, compatible with the action of
Gal(Fq/Fq) on Z, and a functorial exact triangle in Dbc(X0,Ql) given by

i∗ → ψgj
∗ → φg

[1]−→,

where the first term is base changed to Fq and the last is the vanishing cycles
functor. Here Z denotes the base change of Z0 to the algebraic closure of
Fq.
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It is worth mentioning that some authors shift the nearby cycles functor
defined in SGA 7 XIII by [−1] and call it the same. The reason for this is that
the functor ψf [−1] is t-exact and so preserves perverse sheaves. However,
we will only work with the definition of the vanishing cycles functor made
in SGA 7.

3.1 Unipotent Cycles

We define the unipotent versions of the nearby and vanishing cycles functors.

Proposition 3.1.1. There exists a functorial T -equivariant direct sum de-
composition ψg = ψug ⊕ψnug such that, for every K0 ∈ Dbc(U0,Ql), T − 1 acts
nilpotently on ψug (K0) and invertibly on ψnug (K0).

Proof. [28, Proposition 1.1] or [30, Lemma 1.1].

Definition 3.1.2. The functor ψug is called the unipotent nearby cycles func-
tor.

One can prove that the functor ψug [−1] is t-exact looking at the exact triangle

i∗j∗ → ψug
T−1−−→ ψug

[1]−→;

see [28, Proposition 1.3]. Moreover, one can also prove that ψug is actually

defined as a functor from Dbc(U0,Ql) to Dbc(Z0,Ql) using the logarithm of the
unipotent part of the monodromy ; see [28, Corollary 4.3].
It is then possible to define the unipotent vanishing cycles functor φug . This
functor shifted by [−1] is again t-exact and is part of a functorial exact
triangle

i∗ → ψug j
∗ can−−→ φug

[1]−→ . (3.1)

We now relate the nearby and vanishing cycles functors (and its unipotent
versions) to the r-multiplicity of a closed singular point in X0.

Consider the following cartesian diagram:
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Z0 X0 U0

0 A1
Fq Gm,Fq .

i

g

j

i′ j′

Since j′ : Gm,Fq → A1
Fq is affine, the embedding j : U0 → X0 is an affine

open morphism and the functors j∗, j! are t-exact by Artin’s Theorem ([21,
Corollary 6.2]). Thus, we have the following short exact sequence:

0→ i∗ H
p −1(i∗ICX0

)→ j!Ql[d]→ ICX0
→ 0.

It follows that for any x ∈ |Z0|,

mr
X0,x

= −trHp −1(i∗ICX0
)(x). (3.2)

Proposition 3.1.3. There are canonical isomorphisms ker(can) ∼=
Hp −1(i∗ICX0

) and coker(can) ∼= Hp 0(i∗ICX0
).

Proof. [28, Proposition 6.2].

Thus, coker(can)= 0 and we have

mr
X0,x

= tr
ψug (Ql[d])

(x)− trφug (ICX0
)(x). (3.3)

If the field of coefficients is algebraically closed, then Beilinson observed that
the full nearby cycles functor ψg can be recovered from ψug as applied to vari-

ations of Ql[d]. In [30] this is proved for C ([30, Lemma 4.2]). We will prove
this fact for Ql.

For any K0 ∈ Dbc(U0,Ql) we may decompose ψg(K0) into its generalized
eigenspaces. This decomposition generalizes to the whole functor ψg.

Lemma 3.1.4. There exists a unique isomorphism of functors Dbc(U0,Ql)→
Dbc(Z,Ql)

ψg ∼=
⊕
λ∈Ql

×

ψλg ,

where for any complex K0 ∈ Dbc(U0,Ql), λ− T is nilpotent on ψλg (K0).
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Proof. This is a consequence of [30, Lemma 4.2].

We now want some information about the possible λ’s that can appear in
the Lemma 3.1.4. For this we recall some theory.
Let R be a henselian discrete valuation ring with fraction field K and residue
field k. Let p be the characteristic of k. We choose an algebraic closure K
of K and k of k. We denote by I the inertia group given by the short exact
sequence

1→ I → Gal(K/K)→ Gal(k/k)→ 1.

An l-adic representation of Gal(K/K) (or a profinite group G) is a homo-
morphism ρ : G→ GL(V ), where V is a finite dimensional Ql-vector space
such that there exists a finite extion E of Ql contained in Ql and an E-
structure on VE such that ρ factorizes through a continuous homomorphism
G → GL(VE) (where GL(VE) is given its natural topology as an l-adic Lie
group).
Let G = Gal(K/K). An l-adic representation ρ of G is quasi-unipotent if
there exists an open subgroup I1 of I such that the restriction of ρ to I1 is
unipotent (i.e. such that ρ(g) is unipotent of all g ∈ I1). A fundamental
result due to Grothendieck asserts that this property is fulfilled if k is not
too big:

Proposition 3.1.5. (Grothendieck) Assume that no finite extension of the
field k contains all roots of unity of order a power of l. Then every l-adic
representation of G is quasi-unipotent.

Proof. [32, Appendice].

Proposition 3.1.6. The λ’s appearing in Lemma 3.1.4 are all roots of unity.

Proof. Consider the localization of A1
Fq at zero, i.e., Fq[x](x). The henseliza-

tion of this local ring is a discrete valuation henselian ring R with frac-
tion field K and residue field Fq. For any K0 ∈ Dbc(U0,Ql) the ac-
tion of π1(Gm,Fq , 1) on the finite dimensional Ql-vector space ψg(K0) is
an l-adic representation of π1(Gm,Fq , 1). Thus, it is an l-adic represen-
tation of G = Gal(K/K) given through the canonical homomorphism
φ : G → Gal(K/Fq(x)) → π1(Gm,Fq , 1). By Proposition 3.1.5, this l-adic
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representation is quasi-unipotent. Let P be the wild inertia group, which
sits in a short exact sequence

1→ P → I → It → 1.

Let Ẑ(1) := lim←−n µn(Fq). Since πgeom1 (Gm,Fq , 1) = Ẑ(1) ([31, §6.5 Proposition

8], compare with [SGA 1 XI, Théorème 2.1]) and I/P ∼= Ẑ(1) ([SGA 7 I,
(0.3)]), we have a canonical isomorphism

πgeom1 (Gm,Fq , 1) ∼= I/P,

such that the action of I on ψg(K0) given through this isomorphism agrees
with the action of I on ψg(K0) given by φ. It follows that T = φ(g) for some
g ∈ I and its action on ψg(K0) is quasi-unipotent for any K0 ∈ Dbc(U0,Ql).
Thus, the only possible eigenvalues of the action of T on ψg(K0) are roots
of unity, which implies that the λ’s appearing in Lemma 3.1.4 are all roots
of unity.

We now describe the functors ψλg of Lemma 3.1.4.
Consider the short exact sequence

1→ πgeom1 (Gm,Fq)→ π1(Gm,Fq)→ Gal(Fq/Fq)→ 1.

Any Fq-rational point of Gm,Fq gives a section of the last map. Using
the section given by the point 1, we get an isomorphism π1(Gm,Fq , 1) ∼=
πgeom1 (Gm,Fq , 1)oGal(Fq/Fq), where Gal(Fq/Fq) acts on the prime-to-p quo-
tients of πgeom1 (Gm,Fq , 1) by multiplication by the cyclotomic character. Thus,

any l-adic character χ : π1(Gm,Fq , 1)→ Ql
×

is a product of l-adic characters

χ1 : πgeom1 (Gm,Fq , 1)→ Ql
×

and χ2 : Gal(Fq/Fq)→ Ql
×

. Each of these char-
acters is uniquely determined by the image of T and F , where χ1(T ) = λ is
a root of unity and χ2(F ) = b is any unit in Ql ([21, Theorem I.3.1] and [7,
(1.1.7)]). Define Lλ as the local system corresponding to the l-adic character
given by χ1(T ) = λ and χ2(F ) = 1.

Lemma 3.1.7. For any λ a root of unity in Ql and any K0 ∈ Perv(U0) we
have

ψλg (K0) = ψug (K0 ⊗ g∗Lλ−1)⊗Ql
(λ)
,
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where Lλ−1 is a local system of rank 1 of π1(Gm,Fq) with monodromy λ−1,
i.e., on the l-adic representation corresponding to Lλ−1 the element T acts as

multiplication by λ−1, and Ql
(λ)

is the underlying associated one-dimensional
Ql-vector space of Lλ.

Proof. Tensoring K0 with g∗Lλ−1 just replaces the action of T by T ′ := λ−1T .
Applying then the unipotent vanishing cycles functor gives the generalized
eigenspace of 1, i.e.,

ψug (K0 ⊗ g∗Lλ−1) = ker((Id− T ′)n|ψg(K0 ⊗ g∗Lλ−1))

for n >> 0. Thus,

ψλg (K0) = ker((λ− T )n|ψg(K0 ⊗ g∗Lλ−1 ⊗ g∗Lλ))

= ker(λn(Id− T ′)n|ψg(K0 ⊗ g∗Lλ−1))⊗Ql
(λ)

= ker((Id− T ′)n|ψg(K0 ⊗ g∗Lλ−1))⊗Ql
(λ)

= ψug (K0 ⊗ g∗Lλ−1)⊗Ql
(λ)

for n >> 0. The second equality is due to the fact that the canonical
morphism

ψg(K0)⊗ g∗ψId(Lλ)→ ψg(K0)⊗ ψg(g∗Lλ)→ ψg(K0 ⊗ g∗Lλ)

is an isomorphism. Compare with [28, Lemma 3.3].

It follows that the full nearby cycles functor ψg may be defined as a functor
from Dbc(U0,Ql) to Dbc(Z0,Ql). For any x ∈ |Z0|, the stalk ψg(Ql[d]))x gets
an action of Gal(Fq/Fq) through the isomorphism of Lemma 3.1.4. The

exact triangle 3.1 implies that, for any λ ∈ Ql
×

a root of unity, the following
triangle is also exact:

i∗(ICX0
⊗ j∗g∗Lλ−1)→ ψug (Ql[d]⊗ g∗Lλ−1)

can−−→ φug(ICX0
⊗ j∗g∗Lλ−1)

[1]−→ .

It follows that

i∗(ICX0 ⊗ j∗g∗Lλ−1)⊗Ql
(λ) → ψug (Ql[d]⊗ g∗Lλ−1)⊗Ql

(λ) can−−→ φug (ICX0 ⊗ j∗g∗Lλ−1)⊗Ql
(λ) [1]−→

is an exact triangle, since tensoring with Ql
(λ)

is an exact functor. Taking
then direct sums yields an exact triangle⊕
λ∈Ql

×

i∗(ICX0 ⊗ j∗g∗Lλ−1)⊗Ql
(λ) → ψg(Ql[d])

⊕can−−−→
⊕
λ∈Ql

×

φug (ICX0 ⊗ j∗g∗Lλ−1)⊗Ql
(λ) [1]−→ .
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Since i∗(ICX0
⊗ j∗g∗Lλ−1) ∼= i∗(ICX0

) ⊗ i∗(j∗g∗Lλ−1), we have the following
equation:∑
λ∈Ql

×

mr
X0,x

tr
i∗(j∗g∗Lλ−1)⊗Ql

(λ)(x) = tr
ψg(Ql[d])

(x)−
∑
λ∈Ql

×

tr
φug (ICX0

⊗Lλ−1)⊗Ql
(λ)(x).

(3.4)

Note that the vanishing cycles functor preserves constructability. This im-
plies that the sums on both sides of the equation are finite sums.

Now the henselization of the localization of A1
Fq at zero yields a henselian

trait S = (S, s, η). In [SGA 7 XIII, Proposition 2.1.4] it is proved that for
any geometric point x over s ∈ S,

ψg(Ql[d])x ∼= RΓ(((X0)(x))η,Ql[d]), (3.5)

where the scheme ((X0)(x))η, the geometric generic fiber of the strict local-
ization of X0 at x, plays the role of a Milnor fiber of g at x. We then get
the following result.

Theorem 3.1.8. Let X0 be a normal algebraic variety over Fq of dimension
d. Let x ∈ |X0| be a singular point. Then for any r ≥ 1,∑

λ∈Ql
×

mr
X0,x t

r

i∗(j∗g∗Lλ−1 )⊗Ql
(λ)(x) = tr

RΓ(((X0)(x))η ,Ql[d])
(x)−

∑
λ∈Ql

×

tr
φug (ICX0

⊗Lλ−1 )⊗Ql
(λ)(x).

Proof. By Lemma 1.4.3 and Lemma 1.4.2 we may assume X0 to be integral
and affine. The theorem now follows by equation (3.4).

Remark 3.1.9. In this lemma, the action of F over RΓ(((X0)(x))η,Ql[d]) is
given through the isomorphism (3.5).

The theorem above allow us to relate the r-multiplicity of x in X0 to a well
known object in geometry, namely, the Milnor fiber of g at x. Hence it
facilitates a more geometric interpretation of the r-multiplicity of a closed
singular point in an algebraic variety over Fq.

We finish this section by making some general observations. Consider the
exact functorial triangle

i∗j∗ → ψug
N−→ ψug (−1)

[1]−→, (3.6)
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where N is the logarithm of the unipotent part of the monodromy; see [28,
§1] for the existence of such a triangle. Since ψug (Ql[d]) is defined over Z0 as
mentioned above and is perverse of degree −1, we have for any x ∈ |Z0|,

−tr
Hp −1(i∗j∗Ql[d])

(x) = tr
ψug (Ql[d])

(x)− trIm (N)(x). (3.7)

According to [21, Lemma 5.12], Hp −1(i∗j∗Ql[d]) ∼= Hp −1(i∗ICX0
). This

shows that

mr
X0,x

= −trHp −1(i∗ICX0
)(x) = −tr

Hp −1(i∗j∗Ql[d])
(x).

These observations imply the following result.

Proposition 3.1.10. Let X0 be a normal variety over Fq of dimension d.
Let x ∈ |X0| be a singular point. Then for any r ≥ 1,

trφug (ICX0
)(x) = trIm (N)(x),

mr
X0,x

= tr
i∗j∗Ql[d]

(x)− tr
Hp 0(i∗j∗Ql[d])

.

Proof. By Lemma 1.4.3 and Lemma 1.4.2 we may assume X0 to be integral
and affine. The first equation follows from equation (3.3) and equation (3.7).
The second follows from the following equality

tr
i∗j∗Ql[d]

(x) = tr
Hp 0(i∗j∗Ql[d])

− tr
Hp −1(i∗j∗Ql[d])

(x).

3.2 Alterations

We recall the definition of an alteration made in [20]:

Definition 3.2.1. [20, 2.20] Let S be a noetherian integral scheme. An alter-
ation S ′ of S is an integral scheme S ′, together with a morphism φ : S ′ → S,
which is dominant, proper and such that for some non-empty open U ⊂ S,
the morphism φ−1(U)→ U is finite. (This last condition is equivalent to the
condition dimS = dimS ′, at least if these are finite.)

We apply [20, Theorem 4.1] to X0 and Z0 to obtain an alteration

φ1 : X̃0 → X0

and an open immersion j1 : X̃0 → X0 such that
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(i) X0 is a projective integral variety and is a regular scheme, and

(ii) the closed subset Y0 := j1(φ
−1(Z0)) ∪ X0 \ j1(X̃0) is a strict normal

crossings divisor in X0.

Consider the following cartesian diagram:

Z̃0 X̃0 Ũ0

Z0 X0 U0.

ĩ

φ1

j̃

i j

Then for every y ∈ |Z̃0| such that φ1(y) = x, with x ∈ |Z0|, we have

mr+ν
X0,x

= tr+νICX0
(x) = trφ∗1ICX0

(y),

where ν = [κ(y) : κ(x)]. One can always find such a point y, since any proper
and dominant morphism is surjective. The exact triangle (3.1) implies that

mr+ν
X0,x

= trφ∗1ICX0
(y) = tr

ψuh(Ql[d])
(y)− trφuh(φ∗1ICX0

)(y), (3.8)

where h = g◦φ1 : X̃0 → A1
Fq . Since the closed subset j1(φ

−1
1 (Z0))∪X0\j1(X̃0)

is a strict normal crossings divisor in X0, we have that a local description
of X0 at y ∈ Z̃0 is given by an equation of the form t1 · · · tγ = 0, where
t1, . . . , tγ are part of a system of regular local parameters at y.

In what follows we calculate tr
ψuh(Ql[d])

(y) explicitly using the fact that X̃0

is an alteration of X0. Before we do this we recall Grothendieck’s purity
conjecture:

Conjecture 3.2.2. (SGA 5, I 3.1.4) Let X be a noetherian regular scheme
and i : Y → X a closed immersion. Suppose that Y is regular, and that
Y ⊆ X has codimension d at each point. Let l be a prime number invertible
on X. Then the local cohomology sheaves are given by:

H i
Y (X,Z/ln) =

{
0, i 6= 2d

i∗Z/ln(−d), i = 2d.
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The conjecture was known to be true if X was smooth over a perfect field
([SGA 4, XVI 3.9]), or if X was an excellent noetherian scheme of equichar-
acteristic 0 ([SGA 4, XIX 3.2]). The conjecture was later proved by Gabber
([11, Theorem 2.1.1]).

Remark 3.2.3. The conjecture is also valid for Ql or Ql in place of Z/ln
([37, Corollary 3.9]).

Let Y0 := j1(φ
−1
1 (Z0)) ∪X0 \ j1(X̃0) and ((Y0)s)s∈I be the set of irreducible

components of Y0. For E ⊂ I, let

(Y0)E :=
⋂
s∈E

(Y0)s

and

Y
(m)

0 :=
∐
|E|=m

(Y0)E.

Further let am : Y
(m)

0 → Y0 be the projection and a0 = Id. We will omit the
zero subscript on the objects just defined to denote the base change to the
algebraic closure of Fq. Finally, let am : Y (m) → Y be the projection.

Lemma 3.2.4. For every r ≥ 1 and η = deg(y)r,

(1− qη)tr
ψuh(Ql[d])

(y) =
∑
i≥0

(−1)iqiη|a−1
i (y)|.

Proof. By the exact triangle (3.6), we have for every r ≥ 1 and η = deg(y)r
that

(1− qη) tr
ψuh(Ql[d])

(y) = tr
ĩ∗j̃∗Ql[d]

(y).

Consider the following cartesian diagram:

Z̃0 X̃0 Ũ0

Y0 X0 Ũ0.

ĩ

j1

j̃

Id

i j
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Since the diagram is commutative and j1 ◦ j̃ = j, we have that

j∗1i
∗
j∗(Ql[d]) = ĩ∗j∗1j∗(Ql[d])

= ĩ∗j∗1(j1)∗j̃∗(Ql[d])

= ĩ∗j̃∗(Ql[d]).

The point y is an element of Z̃0 which is an open subscheme of Y0 under j1.
It follows that

tr
ĩ∗j̃∗Ql[d]

(y) = tr
i
∗
j∗Ql[d]

(y).

It follows that for i ≥ 1,

Hi−dj∗Ql[d] = (ai)∗Ql[d](−i);

see [29, 2.8 Satz]. Thus,

tr
i
∗
j∗Ql[d]

(y) =
∑
i≥0

(−1)iqiη|a−1
i (y)|,

where a0 = Id. The lemma now follows.

Theorem 3.2.5. Let X0 be a normal algebraic variety over Fq of dimension
d. Let x ∈ |X0| be a singular point. Consider an alteration φ1 : X̃0 → X0 of
an irreducible component of X0 containing x and y ∈ X̃0 such that φ1(y) = x.
Let g : X0 → A1

Fq be a morphism such that (X0)sing ⊆ g−1({0}). Define

h := g ◦ φ1 : X̃0 → A1
Fq. Then for any r ≥ 1 and η = deg(y)r,

(1− qη)mr+ν
X0,x

=
∑
i≥0

(−1)iqiη|a−1
i (y)| − (1− qη)trφuh(φ∗1ICX0

)(y),

where ν = [κ(y) : κ(x)].

Proof. By Lemma 1.4.3 and Lemma 1.4.2 we may assume X0 to be integral
and affine. The theorem now follows by equation (3.8).

Remark 3.2.6. The theorem also shows that for r ≥ 1 and η = deg(y)r,
the number (1− qη)trφuh(φ∗1ICX0

)(y) is an integer independent of l.

The strategy used in chapter 2 for studying the r-multiplicity mr
X0,x

was to
consider the behavior of the intersection complex of a desingularization of
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X0 under push-forward (the complex π∗Ql[d]). Theorem 3.2.5 is the dual
approach, namely, it explains the relation of the r-multiplicity mr

X0,x
to the

intersection complex of an alteration of X0 under pull-back (the complex
φ∗1(ICX0

)).

Example 3.2.7. Let h : X̃0 → A1
Fq be strictly semi-stable ([20, 2.16]). Then

the scheme Z̃0 is a divisor with strict normal crossings in X̃0; call it Y0 and
use the notations defined above for its irreducible components. In this case
we have that

1. The topological generator T ∈ πgeom1 (Gm,Fq , 1) acts trivially on each
Hiψh(Ql[d]), i ∈ Z.

2. H−dψh(Ql[d]) = Ql[d].

3. If C• denotes the augmented (acyclic) Čech complex in the étale site of
Y with abelian presheaves defined by a1 : Y (1) → Y ,

C• = (0→ Ql[d]→ (a1)∗Ql[d]→ (a2)∗Ql[d]→ . . . ),

(where Ql[d] sits in degree −1), then we have (for i ≥ 1)

Hi−dψh(Ql[d])(i) = Coker(C i−2 → C i−1) = Ker(C i → C i+1).

see [16, Théorème 3.2]. Since T ∈ πgeom1 (Gm,Fq , 1) acts trivially on each
Hiψh(Ql[d]), we have that

tr
ψh(Ql[d])

(y) = tr
ψuh(Ql[d])

(y).

The following equation now follows by 2. and 3.

tr
ψuh(Ql[d])

(y) =
∑
i≥0

(−1)iqiηtrKer(Ci→Ci+1)(y),

where η = deg(y)r. We then verify Lemma 3.2.4. Indeed, one has in this
case the following equation for every r ≥ 1 and η = deg(y)r,

(1− qη)
∑
i≥0

(−1)iqiηtrKer(Ci→Ci+1)(y) =
∑
i≥0

(−1)iqiη|{a−1
i (y)}|.
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Since the map φ1 : X̃0 → X0 is proper, the canonical map

φ1∗ψh(Ql[d])→ ψg(φ1∗Ql[d])

is an isomorphism ([18, (1.2.2)]). In particular, if φ1 is an isomorphism over
U0 (as in a desingularization of X0) we get the following result.

Corollary 3.2.8. Let X0 be an integral and affine algebraic variety over Fq
of dimension d. Let x ∈ |X0| be a singular point. Assume that X0 admits an
alteration φ1 : X̃0 → X0 that is an isomorphism over U0. Consider a point
y ∈ X̃0 such that φ1(y) = x. Then for every r ≥ 1,

(1− qdeg(y)ν)mr
X0,x

=
∑

y∈X̃0(Fqη )
φ1(y)=x

∑
i≥0

(−1)iqi deg(y)ν|a−1
i (y)|

− (1− qdeg(y)ν)trφug (ICX0
)(x),

where η = deg(x)r and ν = [Fqη : κ(y)].

Proof. Since φ1∗ψh(Ql[d])→ ψg(Ql[d]) is an isomorphism, we have for r ≥ 1
and η = deg(x)r that

tr
ψug (Ql[d])

(x) =
∑

y∈X̃0(Fqη )
φ1(y)=x

tν
ψh(Ql[d])

(y),

where ν = [Fqη : κ(y)]. The result now follows by Lemma 3.2.4 and equation
(3.3).

Remark 3.2.9. In the corollary above, if X0 is of dimension 1, 2, or 3, we
may apply the results of the previous chapter and calculate (1 − qdeg(y)ν)trφug (ICX0

)(x).

Indeed, any desingularization π : X̃0 → X0 of X0 such that π−1(x) is a strict
normal crossings divisor is also an alteration of X0 as in the corollary.

3.3 Local Systems on Gm,Fq

By Proposition 3.1.10, we have for every r ≥ 1 the following equation

mr
X0,x

= tr
ψug (Ql[d])

(x)− trIm(N)(x). (3.9)
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We can not expect such a good description for tr
ψug (Ql[d])

(x) as in Lemma 3.2.4.

Nevertheless, we will give an alternative calculation of tr
ψug (Ql[d])

(x).

We begin by giving a characterization of ψug (Ql[d]) through some local sys-
tems defined on Gm,Fq . For this next part we follow [28, §2 and §3].

Fix a ∈ N. Let Ql,a := Ql ⊕ Ql(−1) ⊕ · · · ⊕ Ql(−a), and let N : Ql,a →
Ql,a(−1) be the (nilpotent) morphism given by

N =


0 1 0

. . . . . .
. . . 1

0 0

 .

We define an action of the group π1(Gm,Fq , 1) = πgeom1 (Gm,Fq , 1)oGal(Fq/Fq)
on Ql,a in the following way: an element uo σ acts by the matrix

exp(t(u)N)


1
χ(σ)−1

. . .

χ(σ)−a

 ,

where χ : Gal(Fq/Fq)→ Ẑ(1) is the cyclotomic character and t is the usual
surjective map from πgeom1 (Gm,Fq , 1) to Zl(1). We denote by Ga the local
system on Gm,Fq associated to Ql,a.

For a ≤ b, one has an injection αa,b : Ql,a → Ql,b and a surjec-
tion βb,a : Ql,b → Ql,a(a− b), and these maps are π1(Gm,Fq , 1)-equivariant,
hence they define morphism of local systems αa,b : Ga ↪→ Gb and

βb,a : Gb � Ga(a− b). Note that the composition Ql,a

αa,a+1−−−→ Ql,a+1

βa+1,a−−−→
Ql,a(−1) is equal to N .

For every perverse sheaf K0 on U0 or Ũ0, the sheaves K0 ⊗ g∗Ga on U0 or
K0 ⊗ h∗Ga on Ũ0 are also perverse; we will denote both of these perverse
sheaves by K0 ⊗ Ga.
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Proposition 3.3.1. For any K0 ∈ Perv(U0) and every a ∈ N such that
Na+1(ψug (K0)) = 0 (in particular, for a big enough), there is a natural iso-
morphism

ψug (K0)[−1] ∼= Hp −1i∗j∗(K0 ⊗ Ga) = i∗j!∗(K0 ⊗ Ga)[−1],

where N : ψug (K0)→ ψug (K0)(−1) is given by the logarithm of the unipotent
part of the monodromy.

Proof. This is a consequence of [28, Corollary 3.2].

Remark 3.3.2. The Proposition also holds for any K0 ∈ Perv(Ũ0) and any
a ∈ N such that Na+1(ψuh(K0)) = 0 replacing i, j and ψug (K0) by ĩ, j̃ and
ψuh(K0) respectively.

Until now we have been denoting the logarithm of the unipotent part of the
monodromy and the nilpotent morphism βa+1,a ◦ αa,a+1 for a fix a ∈ N by
the same symbol N . The next result shows that they are indeed equal.

Proposition 3.3.3. Let K0 ∈ Perv(U0). Let a ∈ N such that Na+1(ψug (Ql[d])) =
0. Then the following diagram is commutative:

ψug (Ql[d])[−1] i∗j!∗(Ql[d]⊗ Ga)[−1]

ψug (Ql[d])[−1] i∗j!∗(Ql[d]⊗ Ga+1)[−1]

ψuh(Ql[d])[−1](−1) (i∗j!∗(Ql[d]⊗ Ga)[−1])(−1)

∼=

αa,a+1

∼=

N βa+1,a

∼=

Proof. This is a consequence of [28, Proposition 3.4].

Remark 3.3.4. The Proposition also holds for any K0 ∈ Perv(Ũ0) and any
a ∈ N such that Na+1(ψuh(K0)) = 0 replacing i, j and ψug (K0) by ĩ, j̃ and
ψuh(K0) respectively.

The next result follows.

Lemma 3.3.5. For any a ∈ N such that Na+1ψug (Ql[d]) = 0 and r ≥ 1,

tr
ψug (Ql[d])

(x) = tri∗j!∗Ga[d](x).
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Theorem 3.3.6. Let X0 be a normal algebraic variety over Fq of dimen-
sion d. Let x ∈ |X0| be a singular point. Then for any a ∈ N such that
Na+1ψug (Ql[d]) = 0 and any r ≥ 1,

mr
X0,x

= tri∗j!∗Ga[d](x)− trIm(βa+1,a)(x).

Proof. By Lemma 1.4.3 and Lemma 1.4.2 we may assume X0 to be integral
and affine. The theorem now follows by equation (3.9) and Proposition 3.3.3.

Let us assume that Ga is a semi-simple smooth Ql-sheaf on U0. This is equiv-
alent to the assumption that T acts trivially on ψg(Ql[d]). By Example 3.2.7,
this would be the case if h : X̃0 → A1

Fq is strictly semi-stable. In those cases
we get the following result.

Proposition 3.3.7. Let X0 be a normal algebraic variety over Fq of dimen-
sion d. Let x ∈ |X0| be a singular point. Assume that Nψug (Ql[d]) = 0 (or

assume that T acts trivially on ψg(Ql[d])). Then for any r ≥ 1,

1.

mr
X0,x

= tr
ψug (Ql[d])

(x) = tr
RΓ(((X0)(x))η,Ql[d])

(x).

2.

0 = trIm(βa+1,a)(x) = trIm(N)(x) = trφug (ICX0
)(x)

Proof. The first part of the proposition follows by equation (3.6), Proposi-
tion 3.1.10 and equation (3.5).
The second part is a consequence of Theorem 3.3.6 and Proposition 3.1.10.

3.4 q-Divisibility

In [17] L. Illusie mentions that another interesting question to ask is the
q-divisibility of ∑

(−1)iTr(g|H i
c(X,Ql)),
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for g ∈ Gal(Fq/Fq). Here X0 is an algebraic variety of dimension d over Fq
and X denotes the base of X0 to the algebraic closure of Fq.

Accordingly, we ask ourselves about the q-divisibility of the r-multiplicity
of a singular closed point x ∈ X0. The results of the last two sections yield
partial answers to this question.

Corollary 3.4.1. Let X0 be a normal algebraic variety over Fq of dimen-
sion d. Let x ∈ |X0| be a singular point. Then for any a ∈ N such that
Na+1ψug (Ql[d]) = 0 and any r ≥ 1,

mr+ν
X0,x
≡ 1− trφuh(φ∗1ICX0

)(y) mod q

mr
X0,x
≡ tri∗j!∗Ga[d](x)− trIm(βa+1,a)(x). mod q,

where ν = [κ(y) : κ(x)].

Proof. This is a consequence of Theorem 3.2.5 and Theorem 3.3.6.

Corollary 3.4.2. Let X0 be a normal algebraic variety over Fq of dimension
d. Let x ∈ |X0| be a singular point. Assume that Nψug (Ql[d]) = 0 (or assume

that T acts trivially on ψg(Ql[d])). Then for any r ≥ 1,

mr
X0,x
≡ tr

ψug (Ql[d])
(x) ≡ tr

RΓ(((X0)(x))η,Ql[d])
(x) mod q.

Proof. This is a consequence of Proposition 3.3.7.
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Chapter 4

General Method

The description of mr
X0,x

given in chapter 2 through complete m-primary
ideals of OX0,x may be true for higher dimensions. But already in di-
mension 3 this is hard to prove. On the other hand, an internal char-
acterization through the cohomology groups H•(Spec(Osh

X0,x0
) × U,Ql[d])

as in Lemma 1.3.5 would be general. Unfortunately, schemes such as
Spec(Osh

X0,x0
) × U are not even algebraic varieties in general and little is

known about their cohomology groups.

A general characterization through geometric methods seems more plausible
as shown by the relations of mr

X0,x
to the unipotent vanishing/nearby cycles

functors (equation (3.3)) and the unipotent vanishing/nearby cycles func-
tors of an alteration of X0 (Theorem 3.2.5). We finish this thesis by giving
a general method for calculating the r-multiplicity of a closed singular point
in a normal algebraic variety.

Let X0 be a normal algebraic variety over Fq of dimension d with a singular
closed point x. By Lemma 1.4.3 we may assume X0 to be integral. Given
an alteration φ : X̃0 → X0 of X0, there exists a non-empty open subscheme
V0 ⊂ X0 such that φ−1(V0) → V0 is a finite, étale and flat morphism ([20,
Definition 2.20]). Let U0 := V0 ∩ (X0)reg and Z0 := X0 \ U0 such that
j : U0 ↪→ X0 and i : Z0 ↪→ X0 are the canonical morphisms. Consider then
the morphism φ|φ−1(U0) : φ−1(U0) → U0 which is finite, étale and flat. We
would like to know how many points are in the geometric fiber of any closed
point u ∈ U0. For this we define the following.
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Let f : X → Y be a morphism of schemes. Let

nX/Y : Y → {0, 1, . . . ,∞}

be the function which associates to y ∈ Y the number of irreducible compo-
nents of (Xy)K where K is a separably closed extension of κ(y). This is well
defined ([33, Lemma 36.25.3]).
Thus, the number nφ−1(U0)/U0

counts the points in the geometric fiber of any
closed point u ∈ U0. We may assume that this number is constant due to
the following result.

Proposition 4.0.1. Let f : X → Y be a morphism of schemes. Assume f
is of finite type. Let y ∈ Y be a point. Then there exists a non-empty open
V ⊂ {y} such that nX/Y |V is constant.

Proof. [33, Lemma 36.25.6].

Consider the generic point η of U0 in the Proposition above. Then there
exists a non-empty open V ⊂ U0 such that nφ−1(U0)/U0

|V is constant. By
shrinking U0 to the intersection of U0 with V , we may assume that nφ−1(U0)/U0

is constant.
The morphism φ|φ−1(U0) : φ−1(U0)→ U0 is then a connected étale cover of U0.
The group Aut(φ−1(U0)/U0) is finite of order less or equal than nφ−1(U0)/U0

.
By [35, Proposition 5.3.9], there exists a Galois cover ψ : C0 → φ−1(U0) such
that π := φ|φ−1(U0)◦ψ : C0 → U0 is also a Galois cover with finite Galois group
W . There exists an equivalence between W -equivariant sheaves over C0 and
sheaves over U0 ([38, Theorem 4.46]). Thus, the complex (φ|φ−1(U0))∗Ql[d] is
a W -equivariant sheaf. By [21, Theorem III.15.4], there is a representation
of W on (φ|φ−1(U0))∗Ql[d], i.e., there exists a group homomorphism

W → Aut((φ|φ−1(U0))∗Ql[d]).

It follows that (φ|φ−1(U0))∗Ql[d] can be decomposed into χ-isotypic compo-
nents, where χ runs over the irreducible characters of W ([8, (1.3.4)])

(φ|φ−1(U0))∗Ql[d] =
⊕
χ∈Ŵ

Fχ[d].

Here Fχ are smooth Ql-sheaves on U0. Since Ql[d] is contained in
(φ|φ−1(U0))∗Ql[d] and is W -equivariant, it is also a direct summand of the
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χ-isotypic decomposition of (φ|φ−1(U0))∗Ql[d] (it corresponds to the trivial
character). It follows that

(φ|φ−1(U0))∗Ql[d] = Ql[d]⊕
⊕
χ∈Ŵ
χ 6=χ0

Fχ[d], (4.1)

where χ0 denotes the trivial character.

Theorem 4.0.2. Let X0 be a normal and proper algebraic variety over Fq of
dimension d with a singular closed point x. Let φ : X̃0 → X0 be an alteration
of an irreducible component containing x and define D0 := φ−1({x}). Then
for r ≥ 1,

mr
X0,x

=|D(Fqη)| −
r(φ)∑
j=0

(−1)jTr(Frη|Hd+j(D,Ql))

−
−1∑

j=−r(φ)

(−1)jTr(Frη|Hd+j(D,Ql)) q
jη −

∑
χ∈Ŵ
χ 6=χ0

trj!∗Fχ[d](x),

where η = deg(x)r and r(φ) is the defect of semi-smallness of φ.

Proof. Let V0 ⊂ X0 be a largest non-empty open subscheme such that
φ−1(V0)→ V0 is a finite, étale and flat morphism. Define U0 := V0 ∩ (X0)reg
and Z0 := X0 \ U0. Consider the following cartesian diagram:

D0 Z̃0 X̃0 Ũ0

{x} Z0 X0 U0.

ι̃ ĩ

φ

j̃

ι i j

The omission of the zero subscript on the objects of the diagram represents
as before the base change to the algebraic closure of Fq. We have that

tr
φ∗Ql[d]

(x) =
∑
δ

(−1)δtr
Hp δ(φ∗Ql[d])

(x).

Since restricting to U0 is a t-exact functor, it commutes with perverse coho-
mology. It follows that

j∗ Hp δ(φ∗Ql[d]) = Hp δ((φ|Ũ0
)∗Ql[d]) for δ ∈ Z.
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The defect of semi-smallness of φ|Ũ0
is zero, i.e., r(φ|Ũ0

) = 0. It follows

that φ|Ũ0
is semi-small and hence (φ|Ũ0

)∗Ql[d] is a perverse sheaf on U0 ([21,
Lemma III.7.5]). Thus,

j∗ Hp δ(φ∗Ql[d]) = Ql[d] for δ = 0 and

j∗ Hp δ(φ∗Ql[d]) = 0 for δ 6= 0.

By [3, Remarque 5.4.9], the complex φ∗Ql[d] is pure, which implies that
every Hp δ(φ∗Ql[d]) is pure ([3, Corollaire 5.4.4]). By [3, Corollaire 5.3.11],
every Hp δ(φ∗Ql[d]) admits a unique decomposition

Hp δ(φ∗Ql[d]) = j!∗K0 ⊕ i∗Bδ,

where δ ∈ Z and K0 ∈ Perv(U0), Bδ ∈ Perv(Z0). Thus,

Hp δ(φ∗Ql[d]) = i∗Lδ,
for δ 6= 0 and each Bδ ∈ Perv(Z0). By [3, Corollaire 5.3.11] again, we have
for δ 6= 0 that

ι∗Bδ = Lδ,
where Lδ are local systems on {x}. For |δ| ≤ r(φ), we have exact triangles

pτ<δφ∗Ql[d]→ pτ≤δφ∗Ql[d]→ Hp δ(φ∗Ql[d])[−δ] [1]−→ .

For δ ≥ 0, we have that

Hp δ(ι∗i∗ pτ≤δφ∗Ql[d]) = Hp δ(ι∗i∗ Hp δ(φ∗Ql[d])[−δ]) and

Hp δ(ι∗i∗ pτ≤δφ∗Ql[d]) = Hp δ(ι∗i∗ pτ≤δ+1φ∗Ql[d]).

The first equality is a direct consequence of the exact triangles above and
the t-right-exactness of the functors ι∗ and i∗. The second equality is due to
the fact that

Hp δ(ι∗i∗ Hp δ+1(φ∗Ql[d])[−(δ + 1)]) = Hp δ(Lδ+1[−(δ + 1)]) = 0 and

Hp δ−1(ι∗i∗ Hp δ+1(φ∗Ql[d])[−(δ + 1)]) = Hp δ−1(Lδ+1[−(δ + 1)]) = 0

for δ ≥ 0. Since φ∗Ql[d] = pτ≤r(φ)π∗Ql[d], the two equalities above imply
that for 0 ≤ δ ≤ r(φ),

Lδ = Hp δ(ι∗i∗ Hp δ(φ∗Ql[d])[−δ])
= Hp δ(ι∗i∗ pτ≤r(φ)φ∗Ql[d]) (4.2)

= Hp δ(ι∗i∗φ∗Ql[d]).
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Since X0 is proper, the variety X̃0 is also proper and the open immersion
j1 : X̃0 → X0 is an isomorphism. Thus X̃0 is projective. It follows that the
morphism φ : X̃0 → X0 is projective. By the Hard Lefschetz Formula, we
have for δ ≥ 1 the equality

L−δ = Lδ(δ). (4.3)

It follows that

tr
π∗Ql[d]

(x) =
∑
δ

(−1)δtr
Hp δ(π∗Ql[d])

(x)

=

 ∑
|δ|≤r(φ)

(−1)δtrLδ(x)

+ tr
j!∗(φ|Ũ0)∗Ql[d]

(x).

By equation (1.1), the left hand side is equal to |D0(Fqη)| for η = deg(x)r.
By equations (4.2) and (4.3), we have that

trLδ(x) =

{
Tr(Frη|Hd+δ(D,Ql)), if δ ≥ 0

Tr(Frη|Hd+δ(D,Ql)) q
δη, if δ < 0.

Equation (4.1) says that

(φ|φ−1(U0))∗Ql[d] = Ql[d]⊕
⊕
χ∈Ŵ
χ 6=χ0

Fχ[d],

where χ0 denotes the trivial character. It follows that,

tr
j!∗(φ|Ũ0)∗Ql[d]

(x) = mr
X0,x

+
∑
χ∈Ŵ
χ 6=χ0

trj!∗Fχ[d](x).

The theorem now follows.

Remark 4.0.3. If the order of Aut(φ−1(U0)/U0) is equal to nφ−1(U0)/U0
, then

the morphism φ|φ−1(U0) : φ−1(U0)→ U0 is a Galois cover and we may replace
W by Aut(φ−1(U0)/U0) in the theorem.
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Corollary 4.0.4. Let X0 be a normal and proper algebraic variety over Fq
of dimension d with a singular closed point x. Assume φ : X̃0 → X0 to be a
desingularization of X0 in the strong sense. Let D0 := φ−1({x}). Then for
r ≥ 1,

mr
X0,x

=|D(Fqη)| −
r(φ)∑
j=0

(−1)jTr(Frη|Hd+j(D,Ql))

−
−1∑

j=−r(φ)

(−1)jTr(Frη|Hd+j(D,Ql)) q
jη,

where η = deg(x)r and r(φ) is the defect of semi-smallness of φ.

Proof. Since φ : X̃0 → X0 is a desingularization of X0 in the strong sense,
the morphism φ|φ−1(U0) : φ−1(U0) → U0 is an isomorphism. The corollary
now follows.
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pp. 9–57.

[17] L. Illusie. “Miscellany on traces in l-adic cohomology: a survey”. In: Jpn. J. Math.
1(1) (2006), pp. 107–136.

[18] L. Illusie. “Grothendieck and vanishing cycles”. In: AMS 223 (). doi: 01A65.

[19] P. Deligne, J. F. Boutot, A. Grothendieck, L. Illusie and J. L. Verdier. Séminaire de
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