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Chapter 1

Introduction

Asset prices often exhibit phases of explosive price behavior followed by a crash.

In financial economics, a prominent explanation of these stylized empirical facts is

the presence of speculative bubbles. These bubbles can occur in different markets

like commodity, real-estate and stock markets. Historically, speculative bubbles

were considered to be the trigger of substantial economic and financial crises, as

shown by the most recent example of the subprime mortgage and financial crisis

in 2007-2008. The bursting of the housing bubble in the U.S. and the speculation

with risky housing-related securities entailed sharp declines in international financial

markets, leading to one of the most severe global recessions since the Great Depres-

sion. Therefore, the topic of speculative bubbles is still an ongoing and important

field of research.

There is a variety of theoretical work trying to explain the emergence of specula-

tive bubbles, their evolution and economic consequences. In addition, there is a wide

range of empirical literature providing econometric methods for the identification of

bubbles in the data. There is, however, one fact that renders research on specula-

tive bubbles practically difficult. Bubbles are a theoretical construct to explain a

price behavior that cannot be explained by standard economic and/or finance the-
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ory. In empirical work it is not possible to directly measure and/or observe data

of speculative bubbles. Therefore, the basis of empirical work often is a theoretical

asset-pricing model that provides a testable relationship that can then be analyzed

directly or indirectly by statistical and econometric methods. The existence of sev-

eral theoretical bubble models and the continuous development of statistical and

econometric techniques lead to a further growing empirical literature.

This thesis extends the existing empirical as well as theoretical literature on

speculative bubbles. Based on the common theoretical concept of rational behavior,

the thesis provides a clear economic model for estimating directly the specification

of rational bubbles from the data. The estimation is executed by the use of a

sequential Bayesian Monte Carlo methodology that has become increasingly popular

in economics in recent years. This approach is then used for further economic and

econometric analysis. In doing so, the focus will be on bubbles in stock markets

because in the previous bubble literature stock markets are the most intensively

studied markets and offer a good database.

The contributions of this thesis are threefold. First, an alternative approach to

estimating rational bubbles is presented providing a particular time series of the

bubble that can be interpreted unambiguously. Second, the approach is used to

obtain further insights into the volatility dynamics of stock prices that are driven

by rational bubbles. Third, based on the estimation results, the thesis suggests an

alternative econometric specification for rational bubbles that is closely related to

economic theory and to financial data.

This thesis is organized as follows. Chapter 2 presents an overview of the existing

relevant literature on speculative bubbles and summarizes three theoretical economic

concepts trying to explain speculative bubbles in asset prices. Thereby the chapter
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focuses on the concept of rational bubbles since it is the basis for the economic

model used in this thesis. The second part of this chapter gives an overview of the

empirical literature on bubbles and describes concisely the different empirical work

trying to find evidence on speculative bubbles in the data.

Chapter 3 provides the econometric procedure in order to estimate periodically

collapsing rational bubbles from the data. Based on the present-value model, a non-

linear state-space model is presented consisting of the stock price, its fundamental

value and a latent bubble component, where the latent bubble component is de-

scribed by one of the best-known econometric bubble specifications, namely that

proposed by Evans (1991). In order to identify the nonlinear state-space model and

to estimate the latent Evans-bubble process, so-called particle-filter methods are

used. A simulation study shows the reliability of the econometric procedure and the

model is applied to data consisting of four major stock-price indices. For all indices,

the estimation results indicate the presence of a rational bubble component in the

data.

In Chapter 4 the possibility of estimating the latent bubble process is used to

analyze the conditional volatility of stock-prices that are driven by Evans bubbles.

Therefore, a closed-form volatility formula is derived establishing a link between the

bubble component and stock-price volatility. In a simulation study, the estimation

procedure presented in Chapter 3 is used to extract the bubble from the data and

to compute the specific volatility path. The major finding is that the volatility path

is broadly consistent with empirically observed volatility structures during bubbly

periods.

Chapter 5 improves some specific features of the general economic framework

used in this thesis. A new specification for rational bubbles is proposed that is
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empirically more plausible. This new bubble model produces bubbles that burst

periodically and deflate stochastically over several periods. The model is applied to

artificial and real-world data. Finally, the chapter analyzes theoretical stock-price

volatility dynamics under the new bubble specification.

Chapter 6 summarizes the main results of this thesis and offers potential lines

of future research. For the implementation of the econometric methods and the

empirical applications the software MATLAB is used. The programming codes are

compiled in the appendix.
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Chapter 2

Literature overview

Although a large part of economic literature deals with the phenomenon of specula-

tive bubbles, there is no consistent definition of the word bubble and therefore this

expression is widely used to denote different things (see Cochrane, 2005, p. 404). In

this thesis we follow a common definition similar to Brunnermeier (2008). We define

a speculative bubble as a persistent and explosive increasing divergence between the

price of an asset and its fundamental value that is followed by a crash. According

to this definition, a temporary explosive price path with a subsequent collapse can

be attributed to a speculative bubble.

Regardless of the definition, bubbles are an important field of economic research

because they typically indicate temporary and large mispricings of assets. More-

over, bubbles affect the real allocation in the economy through asset prices and a

collapse of a bubble impairs the balance sheets of market participants and affects

real activity (see Brunnermeier, 2008 and Brunnermeier and Oehmke, 2013). There-

fore, speculative bubbles in asset prices are often considered to be a trigger of huge

financial and economic crises.
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In history, there were several time periods of extreme price behavior that are

attributed to bubbles. Garber (1990) refers to the Dutch tulip mania between

1634 and 1637, the Mississippi Bubble between 1719 and 1720, and the South Sea

Bubble in 1720 as the first and most famous speculative bubbles in modern literature.

Kindleberger and Aliber (2005) extend the list and determine further speculative

bubbles, like the late 1920s stock-price bubble, the bubble in real estate and stocks

in Thailand, Malaysia, Indonesia and several other Asian countries between 1992

and 1997 or the Dot-com bubble in stock prices in the US between 1995 and 2000.

Additional literature on the history of financial crises can be found in Shiller (2000),

Reinhart and Rogoff (2009), Brunnermeier and Oehmke (2013) and Hsu (2013),

inter alia. According to these studies, speculative bubbles and their collapse can be

interpreted as a periodic phenomenon.

Following Kindleberger and Aliber (2005), the production on bubble literature

is counter-cyclical and as long as economic and financial crises occur, this literature

will never lose its relevance. This huge strand of bubble literature can be roughly

divided into theoretical and empirical strands of research. The theoretical literature

focuses on economic models explaining the emergence and presence of speculative

bubbles. The empirical literature deals with evidence on bubbles in the data.

2.1 Theoretical bubble models

There is a considerable amount of theoretical models explaining speculative bubbles

in asset prices, see Camerer (1989), Brunnermeier (2008) and Brunnermeier and

Oehmke (2013) for an overview. This literature can be divided into three major

concepts, based either on rational behavior, irrational behavior or heterogenous

beliefs.
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In case of heterogenous beliefs, speculative bubbles can occur if agents agree

to disagree and if short sales are forbidden. One of the first works concerning

heterogenous-beliefs bubbles is the paper of Harrison and Kreps (1978). They

present a model in which the investor’s disagreement about the fundamental value

of a stock can lead to such a speculative phenomenon. Investors are willing to pay

a price which contains a bubble component because they expect to sell it later to a

more optimistic investor at a higher price and realize capital gains. Heterogenous

beliefs can be caused by many reasons. For example, in the model of Scheinkman

and Xiong (2003), they arise from overconfident investors who differ in the inter-

pretation of public signals. An overview of further literature can be found in Xiong

(2013).

In the second class of models speculative bubbles can occur because of irrational

behavior of some market participants. For example, the unpredictability of the

behavior of irrational noise traders creates a risk in asset prices that deters ratio-

nal arbitrageurs with short horizon from trading against an emerging bubble (see

De Long et al., 1990 or Shleifer and Vishny, 1997). In the model of Abreu and

Brunnermeier (2002) and Abreu and Brunnermeier (2003), a bubble emerges and

persists over a substantial period due to a synchronization problem among rational

arbitrageurs. Exuberant irrational traders believe in a permanently growing econ-

omy and the stock price exceeds its fundamental value and a bubble occurs. In this

situation rational arbitrageurs become sequentially aware of this bubble but they

do not know whether this information is available to other arbitrageurs. Owing to

this synchronization problem the rational arbitrageurs are not able to immediately

attack the bubble and in the model equilibrium they ride the bubble for some time

after they become aware of the mispricing (see Abreu and Brunnermeier, 2003).
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Although speculative bubbles in asset prices can be explained by irrational be-

havior and heterogenous beliefs, there is recent literature attributing bubbles only

to rational behavior. In this general model setup all investors are homogeneous with

rational expectations and bubbles can be explained in the context of the standard

present-value model. Since the concept of rational behavior is crucial for this thesis,

we describe the model of strictly rational bubbles in more detail.

2.2 Present-value model and rational bubbles

In the linear present-value model with rational expectations the price of a stock at

date t, Pt, is given by the Euler equation

Pt =
1

1 + r
[Et(Pt+1) + Et(Dt+1)] , (2.1)

where Dt+1 is the stock dividend payment between t and t + 1. Et(·) denotes the

conditional expectation operator based on all information available to market par-

ticipant as of the date t. r is the required rate of return that is just sufficient to

compensate investors for the inherent riskiness of the stock (see Campbell et al.,

1997; Cuthbertson and Nitzsche, 2004). To solve the expectational difference equa-

tion (2.1) we substitute future prices forward repeatedly and obtain

Pt =
∞∑
i=1

(
1

1 + r

)i
· Et(Dt+i) + lim

n→∞

(
1

1 + r

)n
· Et(Pt+n). (2.2)

Ruling out speculative bubbles by assuming validity of the transversality condition

lim
n→∞

(
1

1 + r

)n
· Et(Pt+n) = 0, (2.3)
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we obtain the unique fundamental stock price

Pt = P f
t =

∞∑
i=1

(
1

1 + r

)i
· Et(Dt+i). (2.4)

The basic idea behind a rational bubble is that there are mathematical expres-

sions Bt that are (1) consistent with the limit-term appearing on the right-hand side

of Eq. (2.2), and (2) that the stock-price process in Eq. (2.2) satisfies the Euler Eq.

(2.1):

Pt = P f
t +Bt =

∞∑
i=1

(
1

1 + r

)i
· Et(Dt+i) +Bt. (2.5)

In view of Eq. (2.5), we interpret the rational bubble Bt as the deviation of the

current stock price Pt from its current fundamental value P f
t . The entire class of

solutions to the Euler Eq. (2.1) is given by Eq. (2.5) in which Bt is any random

variable satisfying the (discounted) martingale property

Et(Bt+1) = (1 + r) ·Bt or, equivalently, Bt =
1

1 + r
· Et(Bt+1). (2.6)

It becomes obvious that the bubble Bt contains a self-fulfilling character because the

bubble is defined by its own expectations. Because of the (discounted) martingale

property the bubble implies rationality. A rational investor is willing to buy a stock

which contains a bubble, because the bubble incurs an interest at the required rate

of return r (see Cuthbertson and Nitzsche (2004), p. 400).

The condition in Eq. (2.6) implicates some restrictions regarding the existence

of rational bubbles. First, negative bubbles can be excluded within this framework

because negative bubbles would lead to negative prices at some indefinite future date.

Rational bubbles imply explosive conditional expectations and an investor cannot

rationally expect a stock price to become negative (see Diba and Grossman, 1988b).
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Therefore, by the argument of backward induction the bubble cannot exist at any

point in time. Similarly, a bubble can only occur if each investor’s horizon is shorter

than the time period when the bubble is expected to burst (see Cuthbertson and

Nitzsche, 2004, p. 401). If investors expect the bursting of the bubble at a certain

point, by backward induction, the bubble must burst immediately. However, if the

bubble does not exist from the beginning (that is B0 = 0), it follows from Eq. (2.6)

that it is not possible that the bubble starts within the model. Consequently, an

infinitesimal small positive bubble must already be part of the stock price. Finally,

positive bubbles can only occur in assets where no upper limit on prices exists. For

instance, the presence of substitutes limits the price of a certain commodity. At

some point in time the bubble would strongly increase the price of the commodity

so that it would be substituted by alternative goods so that the bubble vanishes (see

Brunnermeier, 2008).

A further theoretical argument that rules out rational bubbles can be found in

Tirole (1982). Using a rational expectation equilibrium argument he shows that

bubbles do not exist in an economy with a finite number of agents. In such an

economy, no trader is willing to buy an asset that incorporates a bubble because he

does not expect any gain from it (see Tirole, 1982). This argument does not hold

in an overlapping generations model. Tirole (1985) shows that bubbles can exist in

this framework as long as the required rate of return is lower than or equal to the

growth rate of the economy.

Despite these restrictions, the rational bubble model can explain two important

stylized empirical facts of speculative bubbles. First, the model may explain an

explosive increasing price path since the bubble component Bt in Eq. (2.6) has to

grow in expectation at a rate (1 + r) > 1. Second, as long as the bubble component
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satisfies the martingale property a collapse of the bubble is not excluded by this

model. However, to be consistent with theory, this collapse must be unpredictable

for rational market participants. This can be achieved by a stochastic modeling of

the bubble component Bt in Eq. (2.6), where the bubble is exogenous to funda-

mentals and depends only on the bubble component at date t− 1. The best-known

rational bubble models are the bursting bubble in Blanchard and Watson (1982)

and the periodically collapsing bubble in Evans (1991). Both bubble specifications

are consistent with the martingale property and produce an explosive price path but

with the possibility of an unpredictable collapse.1 As a result, Eq. (2.5) and Eq.

(2.6) highlight a particularly useful characteristic of the concept of rational behav-

ior. This model provides a well-defined framework in which the bubble represents a

specific mathematical solution that has to satisfy specific mathematical properties.

Therefore, the model is a good theoretical basis for empirical application since it

offers various testable relationships for identifying speculative bubbles in the data.

In this thesis the focus will be on the exogenous bubble type. However, to com-

plete the literature overview on rational bubbles, we will also briefly look at an

alternative type of rational bubbles. Froot and Obstfeld (1991) proposed a spe-

cific type of rational bubbles that, in contrast to exogenously defined bubbles, de-

pends exclusively on fundamentals. These so-called intrinsic bubbles are defined as a

strictly positive, nonlinear function of dividend payments satisfying the (discounted)

martingale property and hence the Euler equation. This bubble is called intrinsic

because its dynamics are caused entirely by the fundamentals (see Froot and Ob-

stfeld, 1991). Ikeda and Shibata (1992) and Ikeda and Shibata (1995) suggest a

similar type of fundamentals-dependent bubbles. Their rational bubble is defined

1We will describe these models in more detail in Chapter 3 and 5.
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in a continuous-time framework in which the stock price is specified as a function

of dividend payments as well as of time. In an extension, Ikeda and Shibata (1992)

also incorporate crash risks to allow for a partially crashing bubble. Within this

framework, the authors analyze the influence of the fundamentals on the bubble

dynamics and the volatility of stock prices.

2.3 Empirical evidence on bubbles

Based on the theoretical literature on speculative bubbles there exists a continuously

growing number of empirical tests and experiments to find evidence on speculative

bubbles in the data and to confirm theoretical models on bubbles. Here, we will

only focus on the most important works in the field.

We start with empirical literature trying to confirm theoretical models as evi-

dence on speculative bubbles. The survey of Vissing-Jorgensen (2004) uses historical

data, statistical tests and regressions to find evidence on investor beliefs and actions

and determines whether assumptions made in behavioral asset-pricing models are

valid. The authors find empirical support on the assumption that noise trader risks

contribute to limit arbitrage supporting the explanations on bubbles by De Long

et al. (1990) or Shleifer and Vishny (1997). Similar results are found in Baker and

Wurgler (2007). Beside this survey, there also exists some experimental evidence on

bubbles. Smith et al. (1988) study the trading of risky assets whereby all investors

know the distribution of the dividends that are paid at the end of each period. In

the majority of their experimental settings they observe the phenomenon of bubbles

that can be interpreted in the context of Tirole (1982), that is bubbles emerge be-

cause each trader believes to be able to sell the asset and to realize profits in the

final periods. Brunnermeier and Morgan (2010) present a model of clock games to
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analyze experimentally the individual’s trade-off between gains from waiting ver-

sus the risk of being preempted. Their results are consistent with the predictions

of the irrational bubble model proposed by Abreu and Brunnermeier (2003) (see

Brunnermeier and Morgan, 2010).

In addition to the above-mentioned studies that find empirical and experimental

evidence in favor of certain theoretical bubble models or at least in favor of certain

behavioral assumptions within these frameworks, a second strand of empirical work

exists on bubble tests trying to identify rational bubbles in the data.2 As mentioned

above, the rational bubble model offers some testable relationships that can then be

analyzed directly or indirectly by various statistical and econometric methods.

A crucial problem when testing for rational bubbles is that the asset’s fundamen-

tal value is unknown and that the bubble component is not observable. In general,

we can distinguish between (a) tests that explicitly use the theoretical properties

and the structure of rational bubbles for their detection and (b) tests that attribute

the rejection of the present-value model to rational bubbles. A famous example of

the latter type of tests are the variance-bound tests proposed by Shiller (1981) and

LeRoy and Porter (1981). Based on Eq. (2.4), Shiller argues that the observed

volatility of a stock price has to be less or equal to the volatility of a perfect fore-

cast of prices obtained by the standard present-value model. An application of the

variance-bound test to the data rejects the inequality so that stock-price volatility is

higher than attributed to fundamentals. Similar testing procedures are described in

Campbell and Shiller (1987), Campbell and Shiller (1988) andWest (1988). All these

tests find evidence in favor of excess stock-price volatility without making bubbles

responsible for these results. However, although these tests were not developed as

2An overview of some classical tests for rational bubbles can be found in Gürkaynak (2008) and
Flood and Hodrick (1990).
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bubble tests, there is literature attributing excess volatility to the presence of spec-

ulative bubbles (see Blanchard and Watson, 1982; Tirole, 1985; Flood and Hodrick,

1986). Moreover, the articles by Campbell and Shiller (1987) and Campbell and

Shiller (1988) are important for further empirical work on rational bubbles. Based

on a log-linear approximation of the standard present-value model these authors use

a vector autoregressive methodology and thus provide a procedure for estimating

the fundamental value of a stock. This approach is part of a variety of more re-

cent empirical works (see, among others, Wu, 1997; Al-Anaswah and Wilfling, 2011;

Phillips et al., 2011; Brooks and Katsaris, 2005).

For a bubble test to be useful it is important that the bubble is at least in

the set of the alternative hypothesis when the test rejects the standard model (see

Gürkaynak, 2008). A testing procedure in this sense is the two-step bubble test by

West (1987). The test consists of direct and indirect parameter estimates needed to

calculate the closed-form solution of the Euler equation. The key idea is that under

the null hypothesis of no bubble, both estimates should not differ significantly from

each other. Using data of the S&P 500 and the Dow Jones, the author rejects the

null hypothesis indicating the presence of speculative bubbles.

The empirical literature using the theoretical properties of rational bubbles is

more extensive. One of the first and best known procedure stems from Diba and

Grossman (1988a). Based on the present-value model, the authors derive the fol-

lowing results. If the dividend generating process is nonstationary in levels, but

first differences of dividends and other unobservable fundamentals are stationary,

then stock prices are nonstationary in levels, but stationary in first differences. If

the bubble is described by a simple nonstationary first-order autoregressive process

satisfying Eq. (2.6), this relationship no longer holds and differencing stock prices



15

a finite number of times does not yield a stationary process. Furthermore, this also

implies that if bubbles do not exist stock prices and dividends should be cointe-

grated (see Diba and Grossman, 1988a). Applying unit root and cointegration tests

to stock prices and dividends, Diba and Grossman (1988a) do not find any evidence

of a stock-price bubble in the data. A similar application of the testing procedure

can be found in Hamilton and Whiteman (1985). Despite these results, there is

one major problem concerning the correct interpretation when the null hypothesis

is rejected. In this case, the correct interpretation should be that the test indicates

the presence of anything nonstationary which may stem, for example, from other

unobservable fundamentals and need not necessarily indicate a speculative bubble

(see Gürkaynak, 2008).

An alternative bubble test, that does not only use the theoretical properties but

also a parametric specification of the bubble process, is due to Wu (1995) and Wu

(1997). Wu (1997) treats the bubble as a latent variable and formulates the log-linear

approximation of the standard present-value model as a linear state-space model.

Using the Kalman filter, he estimates the unobserved bubble process as the deviation

of the logarithm of the present value.3 Similar to Diba and Grossman (1988a),

this test also assumes a first-order autoregressive process. However, the advantage

of this test is that the existence of a speculative bubble is directly formulated in

the alternative hypothesis. Furthermore, the incorporation of the complete bubble

specification enables to check the assumed bubble properties.4 Using US stock data

from 1871 to 1992, Wu (1997) finds that the estimated bubble component accounts

for a substantial proportion of stock prices.

3For an application of this procedure to exchange rates see Wu (1995).
4One important drawback of this procedure is that the bubble component absorbs any misspec-

ification of the model.
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The article that mostly influenced the empirical literature on rational bubbles

is due to Evans (1991). In this paper, Evans criticizes that the theoretical specifi-

cations of rational bubbles used in the tests so far do not appear to be empirically

plausible since these bubble processes cannot collapse. Evans establishes a nonlinear

bubble specification consistent with the theory of rational bubbles that exhibits a

periodically collapsing behavior. Using simulated data, Evans demonstrates that

the bubble test of Diba and Grossman (1988a) fails to detect rational bubbles if

the stock price is driven by such a periodically collapsing bubble. This critique lead

to a more recent strand of bubble tests being able to detect periodically collaps-

ing bubbles. Hall et al. (1999) extends the Diba and Grossman’s (1988a) testing

methodology using a Markov-switching unit root test to account for periodically

collapsing bubbles. Bohl (2003) applies a momentum threshold autoregessive model

proposed by Enders and Siklos (2001) to account for periodically collapsing bubbles

in the cointegration framework.

Al-Anaswah and Wilfling (2011) enrich the approach of Wu (1997) with Markov-

switching elements. In their work the unobserved bubble component is represented

by a first-order autoregressive bubble process whose autoregressive coefficients are

allowed to switch between a surviving period and a collapsing state.

An alternative method of taking periodically collapsing rational bubbles into

account consists in using sequential unit root tests. These tests, principally based

on Diba and Grossman (1988a), use a recursive implementation of right-sided unit

root tests. The procedures are able to estimate the origination and collapsing dates

of the bubble process. Applications can be found in Phillips et al. (2011), Phillips

and Yu (2011) and Homm and Breitung (2012).
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Using simulated data and Evans’ (1991) nonlinear bubble specification the more

recent testing procedures appear to perform well in detecting periodically collapsing

bubbles. When applied to real-world data, these tests provide evidence of bubbly

periods in the following financial markets: in currency markets (see Hall et al., 1999),

stock markets (see Al-Anaswah and Wilfling, 2011; Phillips et al., 2011; Homm and

Breitung, 2012), and house, oil and commodity markets (see Phillips and Yu, 2011).

Finally, it remains to mention the empirical literature on intrinsic rational bub-

bles. Based on their theoretical model, Froot and Obstfeld (1991) derive a nonlinear

relationship between the dividend-price ratio and dividends. They conclude that, in

the absence of a bubble, stock prices and dividends should be cointegrated with a cer-

tain cointegration parameter. Applying a cointegration test on prices and dividends

and performing direct estimation of the relationship between the dividend-price ra-

tio and dividends for US stock-market data, Froot and Obstfeld reject the no bubble

hypothesis and conclude that intrinsic bubbles are empirically relevant. For addi-

tional empirical work on intrinsic bubbles see Ma and Kanas (2004) and Driffill and

Sola (1998).
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Chapter 3

Estimation of periodically collapsing

bubbles

3.1 Introduction

In the literature the most famous econometric specification for rational bubbles is

the periodically collapsing bubble model proposed by Evans (1991). This stochastic

and nonlinear model takes many theoretical properties of speculative bubbles into

account and has decisively influenced the empirical bubble literature. In line with

the literature on identification tests, the Evans bubble is used as the data generat-

ing process in simulation studies when examining the power of the test procedure

(see, among others, Van Norden and Vigfusson, 1998; Hall et al., 1999; Bohl, 2003;

Al-Anaswah and Wilfling, 2011; Phillips et al., 2011; Homm and Breitung, 2012).

Although used in simulation studies, the Evans bubble is not part of the economic

model. A first attempt to incorporate the Evans bubble into an economic framework

is the paper of Brooks and Katsaris (2005). The authors propose a three-regime spec-

ulative behavior model in order to describe the dynamics of stock-market returns.

The authors reproduce the general dynamics of the Evans bubble specification via

a three regime-switching model and derive a linear switching regression model of
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gross returns. However, in order to estimate this regression they construct bubble

values by the difference between the current stock price and the fundamental value

calculated by the model of Campbell and Shiller (1987).

Even though this work implies a periodically collapsing bubble specification close

to the Evans model, the bubble component is simply estimated by the deviation of

the current stock price and its fundamental value. The aim of this chapter is (a)

to establish an economic model of the stock price that explicitly implies the struc-

ture of a periodically collapsing Evans bubble, and (b) to estimate the econometric

structure of the Evans bubble from the data. To this end we treat the speculative

bubble as a latent variable as in Wu (1997). Our innovation is that this latent

variable is described by the nonlinear bubble model proposed by Evans (1991). For

this purpose, we present a nonlinear state-space model that consists of a standard

fundamental model of the stock price and the periodically collapsing Evans bubble.

Based on this model we estimate the latent Evans bubble process from stock prices

and dividends. This direct application of the nonlinear state-space model is a fur-

ther innovation of this work. In contrast to the vast empirical literature on rational

bubbles, we do not log-linearize the model so that the filtered bubble process can

be interpreted unambiguously.

In order to estimate this nonlinear latent bubble process we use sequential Monte

Carlo methods, namely the so-called particle filters. The first well functioning par-

ticle filter is due to Gordon et al. (1993) and has been mainly used in engineering.

An overview can be found in Doucet et al. (2001) and in the survey of Creal (2012).

The particle filter was introduced into economics by the paper of Kim et al. (1998)

and has become increasingly popular in recent years (e.g. Fernández-Villaverde and

Rubio-Ramírez, 2007; Kim and Stoffer, 2008; Duan and Fulop, 2009; Pitt et al.,
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2014). A preliminary condition for applying the particle filter is that the model

parameters are known. Especially for economic models and their empirical verifi-

cation, however, the parameters are unknown and have to be estimated from the

observed data. In this work we use a particle based approach of the Expectation

Maximization (EM) algorithm developed by Schön et al. (2011) to identify the non-

linear state-space model.

The remainder of this chapter is organized as follows. Section 3.2 describes

the economic specification of the nonlinear state-space model. Sections 3.3 and 3.4

review the estimation techniques used for the identification of the nonlinear state-

space model. In Section 3.5 the econometric method is applied to artificial data and

to a real-world data set consisting of prices and dividends of four major stock-price

indices. Section 3.6 offers some concluding comments.

3.2 Model specification

In what follows we consider that the stock price is explained by the linear present-

value model as described in Chapter 2.2 so that from Eq. (2.2) and Eq. (2.5) the

stock price at date t is given by

Pt =
∞∑
i=1

(
1

1 + r

)i
· Et(Dt+i) +Bt.

To obtain a closed-form solution for the price at date t we need an assumption

about the evolution of the future dividend payments. In the classical Gordon growth

model (see Gordon, 1959) the dividends are expected to grow at a constant rate. Two

alternative dividend models are the simple random walk and the random walk with

drift which are standard assumptions in classical consumption-based asset pricing
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models like the Lucas Tree model (see Lucas, 1978) and the model of Barro (2006).

A common feature of these models is that the fundamental stock price can ultimately

be written as any constant multiplied by the current level of dividend payments.1

In this paper, we assume that the price is simply given by

Pt = φ ·Dt +Bt + εt, (3.1)

where Pt is the real stock price at date t, Dt the real dividend payment between

t − 1 and t and Bt the latent bubble component. The error term εt is assumed to

be Gaussian white-noise with variance σ2
ε reflecting all fundamentals that are not

captured by dividends. Consequently, the fundamental value of the stock price is

defined by φ ·Dt + εt.

Since the rational bubble component Bt in Eq. (3.1) is not observable, we have to

specify it more precisely. Wu (1997) assumes this bubble component to be a simple

linear process like in Eq. (2.6). Following Evans’ (1991) critique, such bubbles

do not appear to be empirically plausible as they cannot collapse. Al-Anaswah and

Wilfling (2011) consider a two-regime Markov-switching version of the bubble in Eq.

(2.6) in order to account for a collapsing behavior. However, in this econometric

specification negative bubbles cannot be excluded, whereas negative bubbles cannot

occur in the economic rational-expectation model.

One innovation of this paper is that we explicitly consider the nonlinear bubble

specification proposed by Evans (1991). Up to now, this model has been widely used

in the literature since it takes into account many theoretical and empirical charac-

1The resulting fundamental stock price primarily differs in the structure of the constant. In the
Gordon growth model the constant consists of the (real) rate of return and the dividend growth
rate, whereas in the Lucas Tree model the constant equals a term including the mean and the
variance of the dividend process, the time preference rate and relative risk aversion.
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teristics of a speculative bubble. Furthermore, it satisfies the discounted martingale

property so it is a solution to the Euler equation.

Defining the discount factor ψ = (1 + r)−1, we write the Evans bubble in the

form

Bt =


1
ψ
Bt−1ut , if Bt−1 ≤ τ

[κ+ 1
πψ

(
Bt−1 − κψ

)
νt]ut , if Bt−1 > τ

, (3.2)

where κ and τ are real constants such that 0 < κ < (1+r)τ . {ut}∞t=1 is an exogenous

process of i.i.d. random variables with ut > 0 and Et−1(ut) = 1 for all t. As in Evans

(1991), we explicitly assume the variables {ut} to be lognormally (LN) distributed

and scaled to have unit mean, i.e. we assume ut = exp(yt− ι2/2) with {yt}∞t=1 being

i.i.d.N(0, ι2).2 {νt}∞t=1 is an exogenous i.i.d. Bernoulli process independent of {ut}∞t=1

with Pr(νt = 1) = π and Pr(νt = 0) = 1 − π for 0 < π ≤ 1. The event {νt = 1}

means that the bubble will continue to grow, whereas the bubble bursts in case of

{νt = 0}.

It is instructive to note that the Evans bubble (3.2) has two different rates of

growth. For Bt−1 ≤ τ the bubble grows at the mean rate 1
ψ
. In case of Bt−1 > τ

the bubble grows at the faster rate 1
πψ

, but collapses with probability 1 − π per

period. When the bubble collapses, it falls back to the mean value κ and the process

recommences.

The economic model consists of two components, namely the price equation

(3.1) and the bubble equation (3.2). Owing to Eq. (3.1) the stock price depends

on observable dividend payments and an unobservable bubble component that is

described by the nonlinear process from Eq. (3.2). As a result, we can interpret this

two-equation system as a nonlinear state-space model.

2In other words, {ut} represents an i.i.d. distributed lognormal process with ut ∼ LN(−ι
2

2 , ι2).
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The direct application of the nonlinear state-space model is a further innovation

of this paper. We use a clear-cut relationship between the stock price, its funda-

mental value and the bubble component that follows directly from the standard

present-value model. Previous empirical literature on rational bubbles (inter alia

Diba and Grossman, 1988a; Wu, 1997; Phillips et al., 2011; Al-Anaswah and Wil-

fling, 2011) uses the log-linear approximation of the standard present-value model

as proposed by Campbell and Shiller (1988). However, the log-linearization of the

model dissolves the relationship between the economic variables in Eq. (2.5) and

the bubble component Bt is no longer defined as the deviation of the stock price

from its fundamental value, but rather as a fundamental value-to-price ratio. In our

paper, we circumvent these problems and can thus interpret the estimated bubble

process unambiguously. To estimate our nonlinear state-space representation we use

particle-filter methods which we describe below.

3.3 State-space estimation

In this section we introduce the particle-filter and particle-smoother approach. These

sequential Bayesian Monte Carlo methods enable us to estimate the unobserved

state variable, the bubble component, from a given nonlinear and non-Gaussian

state-space model. Furthermore, we need these methods for parameter estimation.

This section closely follows Schön et al. (2011) and Creal (2012).

3.3.1 Particle filter

We consider the general nonlinear state-space model characterized by the observation

equation

yt = mt(xt, ot, ζt) (3.3)
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and the state equation

xt = ht(xt−1, ot, ηt). (3.4)

In Eq. (3.3) yt represents the observable variable and in Eq. (3.4) xt represents

the state variable for t = 1, ..., T .3 The variable ot denotes an observable input

variable. {ζt}Tt=1 and {ηt}Tt=1 are mutually independent and i.i.d. noise processes

with known densities while mt and ht are nonlinear functions of a given form. Thus,

the distributions of the observation equation (3.3) and the distribution of the state

equation (3.4) are given by p(yt | xt;θ) and p(xt | xt−1;θ), respectively.4 These

distributions depend on the parameter vector θ which has to be estimated from all

observations y1:T .5

Since the states x0:T = (x0, x1, ..., xT ) are unknown they have to be estimated by

means of all available data y1:T = (y1, y2, ..., yT ) and the structure of the underlying

state-space model. To this end, it is appropriate to consider the joint conditional

probability distribution p(x0:T | y1:T ;θ), i.e. the density of the unknown states given

the observed data. Once this distribution is determined, it is possible to estimate

the sequence of the state variable (see Simon, 2006, pp. 462-466).

Following Creal (2012) and determining the expectation by E(·), we have

E(x0:T ) =

∫
x0:Tp(x0:T | y1:T ;θ)dx0:T ≈

1

N

N∑
i=1

x
(i)
0:T . (3.5)

By the law of large numbers a standard Monte Carlo estimator of the unknown

states simply consists of the average of the N paths {x(i)0:T}Ni=1 drawn from the target

3These random variables may be continuous, discrete or a combination of both. Furthermore,
xt and yt may be vectors of more than one state and observable variable (see Creal, 2012). Here
we consider a nonlinear state-space model consisting of one state and one observable variable.

4For the sake of simplicity we neglect the input variable ot.
5We present the estimation procedure in Section 3.4. At the moment, we assume the parameter

vector θ to be known.
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distribution p(x0:T | y1:T ;θ), which justifies the approximation in Eq. (3.5). How-

ever, we generally do not know the target distribution rendering sampling from it

impossible. To circumvent this problem, we use importance sampling. In doing so,

we choose a proposal or importance distribution g0:T (x0:T | y1:T ;ϕ) depending on

the parameter vector ϕ from which it is possible to sample.6 Thus, we can rewrite

Eq. (3.5) as

E(x0:T ) =

∫
x0:T

p(x0:T | y1:T ;θ)

g0:T (x0:T | y1:T ;ϕ)
g0:T (x0:T | y1:T ;ϕ)dx0:T . (3.6)

Now, we can simply compute the expectation value by a weighted average of the

N paths {x(i)0:T}Ni=1 drawn from our proposal distribution:

E(x0:T ) ≈
N∑
i=1

x
(i)
0:T

w(i)∑N
j=1w

(j)
, (3.7)

with

w(i) ∝ p(x
(i)
0:T | y1:T ;θ)

g0:T (x
(i)
0:T | y1:T ;ϕ)

, (3.8)

where the weights {w(i)}Ni=1 define the relationship between the target and the pro-

posal distribution and function as a correction for consciously drawing from the

wrong distribution.

In our setting it is more appropriate to modify the above-described procedure

in order to draw sequentially from a sequence of conditional distributions. To this

end, the proposal distribution is factored into two parts and we obtain for any t

g0:t(x0:t | y1:t;ϕ) ≡ gt(xt | x0:t−1, y1:t;ϕ)g0:t−1(x0:t−1 | y1:t−1;ϕ). (3.9)

6From a technical point of view, it is important that the support of proposal distribution covers
the support of the target distribution.
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Thus, at any point in time t, we only draw a new set of N values {x(i)t }Ni=1 from

the first part of the proposal distribution in Eq. (3.9), gt(xt | x0:t−1, y1:t;ϕ), and

attach this set to the realized paths up to date t − 1, so that the new paths in

t equal {x(i)0:t}Ni=1 = {x(i)0:t−1, x
(i)
t }Ni=1.7 If we write the joint conditional probability

distribution recursively, we obtain the weight for path i at time t as

w
(i)
t =

p(yt | x(i)t ;θ)p(x
(i)
t | x

(i)
t−1;θ)p(x

(i)
0:t−1 | y1:t−1;θ)

p(yt | y1:t−1;θ)gt(x
(i)
t | x

(i)
0:t−1, y1:t;ϕ)g0:t−1(x

(i)
0:t−1 | y1:t−1;ϕ)

∝ w
(i)
t−1

p(yt | x(i)t ;θ)p(x
(i)
t | x

(i)
t−1;θ)

gt(x
(i)
t | x

(i)
0:t−1, y1:t;ϕ)

∝ w
(i)
t−1ŵ

(i)
t , (3.10)

where

ŵ
(i)
t =

p(yt | x(i)t ;θ)p(x
(i)
t | x

(i)
t−1;θ)

gt(x
(i)
t | x

(i)
0:t−1, y1:t;ϕ)

. (3.11)

The advantage of this method is that at each date t we only have to calculate

the ratio in Eq. (3.11) while the previous weights can be updated by Eq. (3.10).

Instead of recomputing the entire expressions from Eqs. (3.7) and (3.8) we can

simply update our estimation when a new observation yt+1 becomes available. Thus,

at the time step t, we obtain N paths of the state variable of length t and N

corresponding weights {x(i)0:t−1, x
(i)
t , w

(i)
t }Ni=1. This method is known as sequential

importance sampling and the draws are called particles.

One potential problem occurring in sequential importance sampling is that after a

certain time period one particle’s normalized weight converges to 1 while the rest are

converging to 0. As a result, the estimate of the unobserved state consists of a single

draw. This phenomenon is known as weight degeneracy and can be circumvented by

an additional resampling step at each date t. Following Gordon et al. (1993), at each

7Note that the function gt can change over time.
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time step t we draw a new set of values {x̃(i)t }Ni=1 from the existing sample {x(i)t }Ni=1

in proportion to their normalized weights {w(i)
t /
∑N

j=1w
(j)
t }Ni=1. After resampling,

all weights are set to w(i)
t = 1/N for i = 1, ..., N . In the literature on particle-filter

methods, various resampling algorithms are available (see Douc and Cappé, 2005 for

a comparison of these approaches). In this paper we use the systematic resampling

algorithm. The combination of sequential importance sampling and resampling is

the basic particle-filtering approach.8

As a result, the particle-filtering algorithm establishes an approximation of the

filtered density p(xt | y1:t;θ)

p(xt | y1:t;θ) ≈
N∑
i=1

w̃
(i)
t δ(xt − x

(i)
t ), (3.12)

where δ denotes the Dirac measure and w̃(i)
t = w

(i)
t /
∑N

j=1w
(j)
t . Furthermore, on the

analogy of Eqs. (3.5) and (3.7), we can calculate the Monte Carlo estimator of the

expected value of the unobserved state variable at time t by

E(xt) =

∫
xtp(xt | y1:t;θ)dxt ≈

N∑
i=1

x
(i)
t w̃

(i)
t . (3.13)

Alternatively, after the resampling step, the estimator can be written as

E(xt) ≈
1

N

N∑
i=1

x̃
(i)
t . (3.14)

Finally, we need a suitable proposal distribution for the implementation of the

particle filter. A simple and useful way is to choose the density of the state equation,

i.e. gt(xt | x0:t−1, y1:t;ϕ) = p(xt | xt−1;θ). Since this density is known, we can easily

sample from it. The advantage is that the weights in Eq. (3.11) are then only

8There are several types of particle filters which only differ in their choice of the proposal
distribution gt(xt | x0:t−1, y1:t;ϕ) and the resampling algorithm. For an overview see Creal (2012).
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defined by the density of the observation equation p(yt | xt;θ) which is also known.

This type of the particle filter corresponds to the original particle filter developed

by Gordon et al. (1993). It is also called bootstrap filter and will also be used below.

3.3.2 Particle smoother

Based on all available observations up to time T , it is possible to improve all

state estimates by smoothing. For this purpose we determine the smoothed density

p(xt | y1:T ;θ) an approximation of which can be obtained by a particle smoother.

Our smoothing method described below closely follows Schön et al. (2011) and is

equivalent to the reweighting particle smoother proposed by Hürzeler and Künsch

(1998) and Doucet et al. (2000). This method uses all available observations to im-

prove the particle weights and results in a more exact state estimation. We use this

smoothing method since it is also part of the parameter estimation method proposed

by Schön et al. (2011) in Section 3.4. However, several alternative particle-smoother

methods are available in literature (see Godsill et al., 2004 and Briers et al., 2010).

Using the law of total probability, we can write the required smoothed density

as

p(xt | y1:T ;θ) =

∫
p(xt | xt+1, y1:t;θ)p(xt+1 | y1:T ;θ)dxt+1. (3.15)

Invoking the definition of conditional probability and Bayes’ rule, we can express

Eq. (3.15) as

p(xt | y1:T ;θ) = p(xt | y1:t;θ)

∫
p(xt+1 | xt;θ)p(xt+1 | y1:T ;θ)

p(xt+1 | y1:t;θ)
dxt+1, (3.16)
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and, via the law of total probability, the denominator of the integral may be repre-

sented as

p(xt+1 | y1:t;θ) =

∫
p(xt+1 | xt;θ)p(xt | y1:t;θ)dxt. (3.17)

Now, we can express the smoothed density in terms of the filtered density, Eq.

(3.12), the density of the state equation and the smoothed density at date t+ 1:

p(xt | y1:T ;θ) = p(xt | y1:t;θ)

∫
p(xt+1 | xt;θ)p(xt+1 | y1:T ;θ)∫
p(xt+1 | xt;θ)p(xt | y1:t;θ)dxt

dxt+1. (3.18)

Finally, using the Dirac delta approximation, we rewrite this equation as

p(xt | y1:T ;θ) ≈
N∑
i=1

w̃
(i)
t|1:T δ(xt − x

(i)
t ), (3.19)

where

w̃
(i)
t|1:T = w̃

(i)
t

N∑
k=1

w̃
(k)
t+1|1:Tp(x

(k)
t+1 | x

(i)
t ;θ)∑N

j=1 w̃
(j)
t p(x

(k)
t+1 | x

(j)
t ;θ)

. (3.20)

To apply this smoothing algorithm, we need the particles and the corresponding

weights {x(i)t , w
(i)
t }Ni=1 at each date t from the sequential importance sampling. At

t = T we have w̃(i)
T |1:T = w̃

(i)
T and, based on the results of the particle filter and

the dynamics of the model in Eq. (3.4), the smoothed density can be calculated

recursively.9

Based on the particles {x(i)t }Ni=1 from the sequential importance sampling and the

new smoothed weights {w̃(i)
t|1:T}Ni=1, we can now estimate the smoothed states at each

date t, given all observations up to time T , {x(i)t|1:T}Ni=1. In analogy to Eq. (3.13), we

compute the expectation value of the unobserved state variable at time t as

E(xt|1:T ) ≈
N∑
i=1

x
(i)
t w̃

(i)
t|1:T . (3.21)

9For a detailed derivation see Schön et al. (2011), pp. 43-44.
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3.4 Parameter estimation

3.4.1 Parameter estimation by maximum likelihood

In most empirical applications the parameter vector θ is unknown and has to be

estimated from the data which is typically executed by maximum likelihood tech-

niques. However, for nonlinear state-space models parameter maximum likelihood

estimation is not straightforward. If we use particle-filter methods for approximat-

ing the likelihood function, the resulting function is not continuous in the parameter

vector (see Hürzeler and Künsch, 2001 and Creal, 2012). This problem is caused by

the additional resampling step at each iteration. In the resampling step we use a

discrete cumulative distribution function defined by the particle weights to gener-

ate a set of resampled particles. Even if we use common random numbers a small

change in the parameter vector will change the particle weights and, thus, poten-

tially generate different resampled particles (see Pitt, 2002 and Kantas et al., 2009).

Consequently, the surface of the likelihood function is rough and the maximization

of the likelihood function using gradient-based optimizer becomes difficult or even

impossible (see Pitt, 2002).

To overcome this problem alternative approaches to maximize the likelihood

function like stochastic gradient-based methods (see Poyiadjis et al., 2005), recur-

sive maximum likelihood methods (see Doucet and Tadic, 2003) and smooth particle-

filter methods may be used (see Pitt, 2002 and Malik and Pitt, 2011).10 A frequently

applied method to overcome the discontinuity of the likelihood function is the Expec-

tation Maximization algorithm for which several variants are available in nonlinear

and non-Gaussian state-space frameworks (see Kim and Stoffer, 2008; Olsson et al.,

10Alternatively, Markov chain Monte Carlo methods can also be used for parameter estimation
(see Andrieu et al., 2010).
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2008 and Schön et al., 2011, inter alia). In this paper we use the EM algorithm

established by Schön et al. (2011) for parameter estimation which we now briefly

review.

3.4.2 Maximum likelihood estimation via the EM algorithm

The Expectation Maximization (EM) algorithm constitutes an iterative procedure

for computing the maximum likelihood estimator in which each iteration consists

of an expectation plus a maximization step. This algorithm goes back to Dempster

et al. (1977) and has been applied to a variety of incomplete-data problems (see

McLachlan and Krishnan, 2007). The following review is close to the description in

Schön et al. (2011).

Let y1:T denote the observable data and logLθ(y1:T ) = log p(y1:T ;θ) the log-

likelihood function of all observations given the parameter vector θ. The EM al-

gorithm computes the parameter vector θ at iteration k such that the observed-

data log-likelihood function exceeds the one-step-before log-likelihood function, i.e.

logLθk(y1:T ) > logLθk−1
(y1:T ), where it is assumed that the data set is incomplete

(see Dempster et al., 1977). Following Schön et al. (2011), we denote these missing

data by x1:T and consider the complete-data log-likelihood function

logLθ(y1:T , x1:T ) = log p(y1:T , x1:T ;θ).11 (3.22)

In general, this joint log-likelihood function has a nicer shape and maximization

becomes more tractable (see McLachlan and Krishnan, 2007). Since we can in-

terpret our nonlinear and non-Gaussian state-space model as an incomplete-data

11In subsequent sections, the missing data set will be replaced with the state vector.
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problem and due to the problems resulting from discontinuous likelihood functions,

this method seems to be the method of choice in our context.

Owing to the fact that missing data are not observable, the joint log-likelihood

function is approximated by its expectation value conditional on the observed values

plus an assumption on the true parameter vector θk:

Q(θ,θk) , Eθk(logLθ(y1:T , x1:T ) | y1:T )

=

∫
logLθ(y1:T , x1:T )p(x1:T | y1:T ;θk)dx1:T . (3.23)

Next, rewriting Eq. (3.22) (by using the definition of conditional probability) as

log p(y1:T , x1:T ;θ) = log p(x1:T | y1:T ;θ) + log p(y1:T ;θ), (3.24)

and taking the conditional expectation Eθk(· | y1:T ) of this equation, we obtain

Q(θ,θk) = logLθ(y1:T ) +

∫
log p(x1:T | y1:T ;θ)p(x1:T | y1:T ;θk)dx1:T . (3.25)

Now, in view of Eq. (3.25), the following relationship obtains:

logLθ(y1:T )− logLθk(y1:T ) = Q(θ,θk)−Q(θk,θk) (3.26)

+

∫
log

p(x1:T | y1:T ;θk)

p(x1:T | y1:T ;θ)
p(x1:T | y1:T ;θk)dx1:T .

The integral on the right hand side equals the Kullback-Leibler divergence which is

always non-negative.12 Thus,

logLθ(y1:T )− logLθk(y1:T ) ≥ Q(θ,θk)−Q(θk,θk), (3.27)

12For details see Schön et al. (2011), p. 41.
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which emphasizes the basic idea behind the EM algorithm. At each iteration k,

the parameter vector θ is chosen such that Q(θ,θk) > Q(θk,θk) and by Eq. (3.27)

implying logLθ(y1:T ) > logLθk(y1:T ). Thus, the EM algorithm becomes a two-step

procedure after starting with k = 0 and initiating the algorithm with a starting

vector θk=0: In the expectation step, we calculate the Q-function given the vector

θk, i.e. Q(θ,θk). In the following maximization step, we maximize this Q-function

subject to θ. As long as this procedure does not converge, k is updated to k + 1

and a new iteration is conducted.

For the application to nonlinear state-space models it is necessary to compute

the approximated joint log-likelihood function Q(θ,θk) from Eq. (3.23). In gen-

eral nonlinear state-space models, as defined in Eqs. (3.3) and (3.4), we may use

Bayes’ rule and the Markov nature of the state equation (3.4) to write the joint

log-likelihood function as

logLθ(y1:T , x1:T ) = log p(y1:T | x1:T ;θ) + log p(x1:T ;θ)

= log p(x1;θ) +
T−1∑
t=1

log p(xt+1 | xt;θ)

+
T∑
t=1

log p(yt | xt;θ). (3.28)

In analogy to Eq. (3.23), we may take the conditional expectation Eθk(· | y1:T ) to

obtain

Q(θ,θk) =

∫
log p(x1;θ)p(x1 | y1:T ;θk)dx1

+
T−1∑
t=1

∫ ∫
log p(xt+1 | xt;θ)p(xt+1, xt | y1:T ;θk)dxtdxt+1

+
T∑
t=1

∫
log p(yt | xt;θ)p(xt | y1:T ;θk)dxt. (3.29)
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Finally, for computing of Q(θ,θk) we need the densities of the observation and state

equation plus the densities p(xt | y1:T ;θk) and p(xt+1, xt | y1:T ;θk), which are a

by-product of the particle-smoother method.

3.4.3 EM algorithm

Based on the results above, we may approximate the Q-function, Q(θ,θk), by using

the particle-filtering methods from Section 3.3.1 and 3.3.2. We finally implement

the EM algorithm as follows. In the expectation step at iteration k, we use the

results from Eqs. (3.19) and (3.20) in conjunction with Eq. (3.12) to approximate

the Q-function by13

Q̂(θ,θk) =
N∑
i=1

w̃
(i)
1|1:T log p(x

(i)
1 ;θ)

+
T−1∑
t=1

N∑
i=1

N∑
j=1

w̃
(ij)
t|1:T log p(x

(j)
t+1 | x

(i)
t ;θ)

+
T∑
t=1

N∑
i=1

w̃
(i)
t|1:T log p(yt | x(i)t ;θ), (3.30)

where

w̃
(ij)
t|1:T =

w̃
(i)
t w̃

(j)
t+1|1:Tp(x

(j)
t+1 | x

(i)
t ;θk)∑N

l=1 w̃
(l)
t p(x

(j)
t+1 | x

(l)
t ;θk)

, (3.31)

and {x(i)t }Ni=1 are the particles from the sequential importance sampling.

In the following maximization step we optimize this function subject to θ and

obtain θk+1. If the non-convergence criterion Q̂(θk+1,θk)− Q̂(θk,θk) > c is reached

for any c > 0, k is updated to k + 1 and a new iteration is conducted.14 Otherwise,

the algorithm terminates and θk is the desired maximum likelihood estimator θ̂.

13For a detailed derivation see Schön et al. (2011).
14The convergence properties of the EM algorithm via particle-filtering methods are the same

as those of general EM methods. It can be shown that Q̂(θ,θk) is an arbitrarily accurate approx-
imation to Q(θ,θk) (see Hu et al., 2008 and Schön et al., 2011).
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3.4.4 Standard errors

One drawback in the parameter estimation via the EM algorithm is that it does not

automatically provide estimates of the covariance matrix of the maximum likelihood

estimators. There are, however, several methods to be executed after estimation pro-

viding estimates of the information matrix under the EM algorithm (see McLachlan

and Krishnan, 2007). In what follows we use a stable estimator of the information

matrix proposed by Duan and Fulop (2011) to calculate the standard errors of the

maximum likelihood estimates. We briefly outline this approach and adapt it to our

empirical problem.

Under the well-known regularity conditions, an important property of the max-

imum likelihood estimator θ̂ is its asymptotic normality, i.e.

θ̂
a∼ N

(
θ∗, I(θ∗)−1

)
, (3.32)

where θ∗ denotes the true parameter vector. I(θ∗) represents the information matrix

which can be expressed by the negative expected value of the Hessian of the log-

likelihood function:

I(θ∗) = −E[H(θ∗)]. (3.33)

The covariance matrix is therefore given by the inverse of the negative expected

value of the Hessian (see Greene, 2012, p. 554). In context with the EM algorithm,

the most widely used approach to calculate the covariance matrix is based on Eq.

(3.33) and was proposed by Louis (1982). Following Louis (1982), the observed-

data Hessian can be calculated using the joint log-likelihood function within the

EM framework. However, one shortcoming of the method is that this empirical
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Hessian may be unstable and negative definiteness cannot be guaranteed entailing

a frequently encountered problem in practice.

Duan and Fulop (2011) present a more stable alternative based on the

information-matrix inequality

V ar(S(θ∗)) = E[S(θ∗)S(θ∗)′] = −E[H(θ∗)]. (3.34)

Here, the variance of the score vector of the observed-data log-likelihood function is

equal to the negative expected value of the Hessian (see Greene, 2012, p. 557). Using

the prediction-error decomposition of the observed-data log-likelihood function, we

find

logLθ∗(y1:T ) = log p(y1, ..., yT ;θ∗) =
T∑
t=1

log p(yt | y1:t−1;θ∗), (3.35)

and the score S(θ∗) of this log-likelihood is given by

S(θ∗) =
∂ logLθ∗(y1:T )

∂θ
=

T∑
t=1

∂ log p(yt | y1:t−1;θ∗)

∂θ
. (3.36)

Following Duan and Fulop (2011), we can then establish Eq. (3.34) as

V ar(S(θ∗)) = E[S(θ∗)S(θ∗)′]

=
T∑
t=1

T∑
j=1

E

[
E

(
∂ log p(yt | y1:t−1;θ∗)

∂θ

× ∂ log p(yj | y1:j−1;θ∗)

∂θ

′)∣∣∣∣ y1:t−1]
=

T∑
t=1

E

[
E

(
∂ log p(yt | y1:t−1;θ∗)

∂θ

× ∂ log p(yt | y1:t−1;θ∗)

∂θ

′)∣∣∣∣ y1:t−1]
=

T∑
t=1

E

[
−E

(
∂2 log p(yt | y1:t−1;θ∗)

∂θ2

)∣∣∣∣ y1:t−1]
= −E[H(θ∗)]. (3.37)
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The idea pursued by Duan and Fulop (2011) now is to approximate the

V ar(S(θ∗)) by the smoothed individual scores of the joint log-likelihood function

instead of using the scores of the observed-data log-likelihood from Eq. (3.36).

Louis (1982) shows that, for any θ, the score of the observed-data log-likelihood

can be written as

S(θ) = E

(
∂ logLθ(y1:T , x1:T )

∂θ

∣∣∣∣ y1:T ;θ

)
, (3.38)

and by definition of the joint log-likelihood function from Eq. (3.28) this score of the

observed-data log-likelihood can be decomposed into the sum of smoothed individual

scores:

S(θ) = E

(
∂ logLθ(y1:T , x1:T )

∂θ

∣∣∣∣ y1:T ;θ

)
= E

(
∂ log p(x1;θ)

∂θ

∣∣∣∣ y1:T ;θ

)
+

T−1∑
t=1

E

(
∂ log p(xt+1 | xt;θ)

∂θ

∣∣∣∣ y1:T ;θ

)

+
T∑
t=1

E

(
∂ log p(yt | xt;θ)

∂θ

∣∣∣∣ y1:T ;θ

)
. (3.39)

Kim and Stoffer (2008) calculate this score function directly by the use of samples

from the smoothed density, that is x(i)1:t|1:T (i = 1, ..., N). In what follows we use the

definition of the approximated Q-function, that is the expected value of the joint

log-likelihood function conditional on all observations and the parameter vector θ

(see Section 3.4.3). In this case we may estimate the score of the observed-data

log-likelihood function by

Ŝ(θ) =
N∑
i=1

w̃
(i)
1|1:T

(
∂ log p(x

(i)
1 ;θ)

∂θ

)

+
T−1∑
t=1

N∑
i=1

N∑
j=1

w̃
(ij)
t|1:T

(
∂ log p(x

(j)
t+1 | x

(i)
t ;θ)

∂θ

)



38

+
T∑
t=1

N∑
i=1

w̃
(i)
t|1:T

(
∂ log p(yt | x(i)t ;θ)

∂θ

)
. (3.40)

However, since the smoothed individual scores do not constitute martingale dif-

ferences, Duan and Fulop (2011) emphasize taking into account the dependence

among lagged terms to approximate V ar(S(θ∗)). If dependence becomes negligible

beyond some lags, l, we can approximate V ar(S(θ∗)) by the approach of Newey and

West (1987):

V ar(S(θ∗)) ≈ A0 +
l∑

j=1

λ(l)(Aj + A′j), (3.41)

where

Aj =

T−j∑
t=1

at(θ̂)at+j(θ̂)′, (3.42)

with

at(θ̂) =
N∑
i=1

N∑
j=1

w̃
(ij)
t|1:T

(
∂ log p(x

(j)
t | x

(i)
t−1; θ̂)

∂θ

)

+
N∑
i=1

w̃
(i)
t|1:T

(
∂ log p(yt | x(i)t ; θ̂)

∂θ

)
(3.43)

and

λ(l) = 1− j

l + 1
. (3.44)

Finally, a positively semi-definite estimate of the covariance matrix can be calculated

by the inverse of the approximation of V ar(S(θ∗)) given in Eqs. (3.41) - (3.44).

3.5 Empirical application

In this section, we apply our economic model and the econometric methods to the

data. To check the overall reliability of the technique, we first apply it to an artificial

data set. In a second step, we use the nonlinear state-space representation and the
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particle-filter methods to estimate the unobservable Evans-bubble process in a real-

world data set covering stock prices and dividends.

3.5.1 Nonlinear state-space representation

In a preliminary step, it is necessary to combine the economic model with the

particle-filtering approach described above. According to the economic specification

from Section 3.2, we represent the stock price by Eq. (3.1) and the latent bubble

process by Eq. (3.2). Furthermore, we need the distributions of the observation and

the state equation, respectively.

The Gaussian distribution of the error term εt from Eq. (3.1) implies that the

observation equation is also Gaussian:

p(Pt | Bt, Dt;θ) ∼ N
(

(φDt +Bt), σ
2
ε

)
. (3.45)

The stock price Pt corresponds to the observable variable and the dividend pay-

ment Dt represents a further observable input variable. The bubble component Bt

constitutes the state variable.

The conditional distribution of the state equation is given by the distribution of

the Evans bubble. For Bt−1 ≤ τ the distribution is lognormal while for Bt−1 > τ the

distribution is a mixture of two lognormal distributions with mixing weights given
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by the Bernoulli process. Overall, we write the distribution of the state equation in

the form

p(Bt | Bt−1;θ) ∼



LN
(
−ι2
2

+ log
(

1
ψ
Bt−1

)
, ι2
)

, if Bt−1 ≤ τ

π · LN
(
−ι2
2

+ log
(
κ+ 1

πψ

(
Bt−1 − κψ

))
, ι2
)

+(1− π) · LN
(
−ι2
2

+ log(κ), ι2
)

, if Bt−1 > τ

, (3.46)

where the vector θ = (φ, σ2
ε , ψ, ι

2, κ, π, τ) contains all model parameters.

Figure 3.1 about here

3.5.2 Artificial data

In order to generate an artificial data set of (real) stock prices and (real) dividends,

we need realisations from the Evans-bubble process and a stochastic process govern-

ing the dividend payments. Our dividends are generated by a simple random walk

while the values of the Evans bubble are generated by Eq. (3.2). Finally, the stock

price is calculated by the price equation given in Eq. (3.1). The parameter vector

is set to be θ = (φ = 50, σ2
ε = 1.2, ψ = 0.9804, ι2 = 0.001, κ = 1.1, π = 0.98, τ = 2).

In line with the rational-expectation model an at least infinitesimal small positive

bubble must already be part of the stock price (see Section 2.1.1), so that we ini-

tiate the bubble process with the value B0 = 0.5. Our data set consists of 250

observations, which equals an observation period of approximately 21 years based
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on monthly data and contains two bubbles.15 Figure 3.1 displays the simulated data

of the economic model.

3.5.3 Estimation results

Table 3.1 displays the parameter estimates based on the maximum likelihood pro-

cedure via the particle based approach of the EM algorithm. Owing to the com-

putational effort of this estimation method, we only used N = 300 particles in the

estimation. For the convergence criterion we defined c = 1/N ≈ 0.0033. However,

if the algorithm did not converge, we terminated estimation after 500 iterations to

save computation time.16 We initiated the EM algorithm with the parameter vector

θ0 = (φ = 20, σ2
ε = 0.5, ψ = 0.8, ι2 = 0.005, κ = 0.5, π = 0.8, τ = 2) and numerically

maximized the Q-function from Eqs. (3.30) and (3.31) by the FMINCON module

of the software package MATLAB.17 The standard errors were computed by the

stable estimator of the information matrix established by Duan and Fulop (2011) as

described in Section 3.4.4.18

Table 3.1 about here

Owing to an identification problem, we refrained from estimating the parameter

τ and used the true value τ = 2 instead. Due to our convergence criterion the

15The parameter values of the Evans process are different from those given in the original paper
by Evans (1991). We choose this parameterization in order to generate only a few big bubbles in
the data. In line with the history of financial markets this appears to be a realistic assumption for
the length of our data (monthly observations).

16The convergence of the EM algorithm depends on the quality of the approximation of Q(θ,θk).
Following Schön et al. (2011), Q̂(θ,θk) is an arbitrarily accurate approximation if N → ∞. We
defined c depending on N to account for a less accurate approximation because of a small number
of particles. However, even if a small number of particles is used, this procedure is appropriate to
generate reasonable estimates (see Schön et al., 2011).

17The choice of the initial parameter vector is crucial to the convergence speed of the EM
algorithm. We set the starting values arbitrarily, but sufficiently far away from the true values.

18We used 500 particles for the computation of the standard errors and considered l = 15 lags.
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algorithm stopped after k = 125 iterations. All parameter estimates are significant

at conventional levels. The parameters φ, σ2
ε , ψ and π are rather precisely estimated,

while the parameter estimates of ι2 and κ do not appear to be very close. From an

economic point of view the most interesting parameters are the discount factor ψ, the

bubble survival probability π and the dividend parameter φ. All these parameters

are well estimated.

Figure 3.2 about here

To illustrate the above-described discontinuity problem of the likelihood function

and to show the advantage of the EM algorithm, we compare the several dimensions

of the true observed-data log-likelihood function, logLθk(y1:T ), with the correspond-

ing dimensions of the approximated Q-function, Q̂(θ,θk), after k = 125 iterations.19

Figure 3.2 displays that for some parameters the likelihood function (dashed lines) is

quite erratic with a plethora of local maxima. This behavior is evident for the param-

eters φ, ψ, π and τ . Obviously, these characteristics entail problems in maximizing

the likelihood function using gradient-based optimizers. Looking at the correspond-

ing dimensions of Q̂(θ,θk) (solid lines), we note that the EM algorithm produces

smooth and convex functions with maxima close to the true values which are easier

found in the optimization process. It is also interesting that the true observed-data

log-likelihood function subject to σ2
ε seems to be a continuously growing function

whereas the corresponding Q-function is convex and contains a global maximum

near the true value. The log-likelihood functions subject to ι2 and κ are rather flat

even when using the EM algorithm so that exact estimation of these parameters

remains difficult, explaining the poor estimates.

19Using the prediction error decomposition, the particle-filtering approximation of the
observed-data log-likelihood function is given by logLθk

(y1:T ) =
∑T
t=1 log p(yt | y1:t−1;θ) ≈∑T

t=1 log(
∑N
i=1 ŵ

(i)
t /N), where ŵ(i)

t is defined as in Eq. (3.11) (see Creal, 2012, p. 274).
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A matter of major concern are the log-likelihood functions subject to the pa-

rameter τ . Besides a rough surface the observed-data log-likelihood function also

contains a step shape. This unfavorably shaped graph may explain our identification

problem. Even the EM algorithm does not seem to be able to overcome these func-

tional problems and the approximated Q-function remains a step function. Owing

to this curvature we are not able to identify τ globally. This identification issue can

lead to difficulties when estimating bubbles in real-world data. However, the illus-

trated approximated Q-function subject to τ is characterized by two large plateaus

indicating that we have no significant change in the likelihood of the data for a wide

range of τ -values (i.e. for τ ranging between 0 and 16 and 20 and 32). In this case,

the likelihood and the other parameter estimates are not sensitive to changes in τ .

This fact can be exploited practically by determining a grid of τ -values and running

estimation with each fixed τ . Using a goodness-of-fit test, we may then indirectly

identify a suitable parameter value for τ .20

Figure 3.3 about here

A further objective of this paper consists in estimating the periodically collaps-

ing bubble time series by filtering the unobservable bubble process from stock prices

and dividends. Consequently, we are interested in the most precise filtering of the

bubble component. Based on the estimated parameter values, Figure 3.3 displays

(a) the filtered bubble path using the particle filter (upper panel, solid line), (b)

the estimated bubble path using the particle smoother (lower panel, solid line) and

(c) the true (simulated) bubble process (both panels, dashed lines). For both es-

timations we used N = 500 particles. Despite the poor parameter estimates of ι2

20We tackle this problem in Section 3.5.4.
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and κ, it is obviously possible to estimate the periodically collapsing bubble process

accurately. Comparing both methods, we find that the particle smoother maps the

true bubble process almost exactly. Evidently, this procedure enables us to estimate

the latent bubble process from the data nearly exactly. Based on this estimated

bubble time series, we may identify the emergent phase, the bubble’s peak values as

well as its bursting dates.

3.5.4 Goodness-of-fit and model diagnostics

A major concern in the estimation of the model from Eqs. (3.1) and (3.2) is the

non-identifiability of the parameter τ . However, the likelihood function of the model

and the estimation results do not appear to be very sensitive to variations in τ . In

order to evaluate this impact in more detail, we apply a goodness-of-fit test. Our

approach is twofold. First, we use a goodness-of-fit test to indirectly identify a

suitable parameter value for τ . Second, we check how well the economic model fits

the data in general.

A powerful test to evaluate the goodness-of-fit of a model is provided by Diebold

et al. (1998). The test is based on the well-known probability integral transform due

to Rosenblatt (1952) and assesses the model fit by evaluating a sequence of one-step-

ahead density forecasts. The basic idea may be described as follows. Let {yt}Tt=1 be a

series of realizations from a sequence of the densities {ft(yt | Ωt−1)}Tt=1, conditioned

on an information set Ωt−1. If the sequence of forecast densities of an assumed model

{pt(yt | Ωt−1)}Tt=1 coincides with the true densities of the data generating process,
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that is if {pt(yt | Ωt−1)}Tt=1 = {ft(yt | Ωt−1)}Tt=1, then the sequence of probability

integral transforms (PITs)

zt =

∫ yt

−∞
pt(u | Ωt−1)du (3.47)

should be i.i.d. U(0, 1) distributed (see Diebold et al., 1998).

Although originally established for out-of sample evaluations, we use this test

in-sample to test for specification adequacy. The advantage of this procedure is

that we do not compare our model with any reference model, but directly check

how well our model fits a given data set. Any deviation from the i.i.d. U(0, 1)

distribution may indicate wrong distributional assumptions on the underlying data

generating process, poorly captured conditional dynamics or both, whereas a mere

rejection of the i.i.d. condition indicates a poorly specified conditional dynamics

(see Tay and Wallis, 2000, p. 250). Overall, the method provides information

about the deficiencies of distributional assumptions and thus may provide hints for

improvement (see Elliott et al., 2006, p. 208).

There are several approaches to checking whether the sequence {zt}Tt=1 is i.i.d.

U(0, 1) scattered in the literature. A visual approach consists in inspecting the

cumulative distribution function (cdf) of the PITs which should coincide with the

45-degree line on the interval [0,1]. Additionally, we may use the Kolmogorov-

Smirnov (KS) test to measure the deviations from the 45-degree line. However,

it is important to note that the null hypothesis underlying the KS test is a joint

hypothesis of i.i.d. uniformity and little is known about the impact of departures

from the independence assumption (see Tay and Wallis, 2000, p. 250). Hence,

a rejection of the KS test may be caused by (a) a violation of uniformity, (b) a

violation of the i.i.d. assumption, or (c) both violations (see Diebold et al., 1998,
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p. 869).21 In view of this, we separately check the i.i.d. condition by the use of

a Ljung-Box (LB) test with 20 lags. The corresponding critical values at the 1%,

5% and 10% significance levels are 37.57, 31.41 and 28.41, respectively. Overall, we

use three different testing methods, one visual and two formal tests, to evaluate the

goodness-of-fit.22

To implement our goodness-of-fit test we need the one-step-ahead forecast den-

sities of our model. In our nonlinear state-space framework, the forecast densities

p(yt | y1:t−1;θ) correspond to the contributions of the observed-data log-likelihood

given by the prediction error decomposition (see Creal, 2012). It can be shown that

an estimate of the forecast density at time t is a byproduct of the particle filter given

by

p(yt | y1:t−1;θ) ≈
N∑
i=1

w̃
(i)
t−1ŵ

(i)
t . (3.48)

In the case of the particle filter using a resampling step in each period, we obtain

p(yt | y1:t−1;θ) ≈ 1

N

N∑
i=1

ŵ
(i)
t , (3.49)

where ŵ(i)
t is defined as in Eq. (3.11) which coincides with the density of the obser-

vation equation from Eq. (3.45). Using the observations of Pt and Dt, the particles

{x(i)t }Ni=1 from the sequential importance sampling (as estimate of Bt) and the pa-

rameter estimates, we can then evaluate the forecast density at each time t.

Table 3.2 about here

21We will use a two-sample Kolmogorov-Smirnov test implemented in the software package MAT-
LAB. For the distribution under the null hypothesis we use a sample of one million i.i.d. uniforms.
The critical value at a 5% level is given by 1.36

√
(1000000 + T )/(1000000 · T ).

22Diebold et al. (1998) suggest additional graphical methods to identify potential deficiencies of
a model so that they are able to calibrate it. For example, they examine the correlograms of higher
moments of the PITs to detect particular conditional dependencies.
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Next, we apply the test to examine the relevance of the parameter τ for parameter

estimation and model fit. Using the simulated data set, we estimate the nonlinear

state-space model with different τ -values and evaluate the results with the goodness-

of-fit test.23 Table 3.2 shows the results of the parameter estimation with τ =

1, 5, 15, 25, 35.24 In line with the analysis of the log-likelihood functions (see Section

3.5.3) we expect similar results of the parameter estimates when τ = 1, 5, 15. The

corresponding parameter estimates of φ, ψ and π range within a band width of 2%

around the true values. By contrast, the estimates of σ2
ε , κ and ι2 deviate more from

the true values. Nevertheless, all parameter estimates are significant at conventional

levels.25 For τ = 25 and τ = 35 some parameter estimates deviate much more from

the true values, especially the estimates of φ, σ2
ε and κ. Furthermore, for τ = 35 the

standard error of the parameter κ appears to be rather high.

Figure 3.4 about here

Next, we use each estimated parameter set with τ = 1, 5, 15, 25, 35 and apply the

particle-filter approach to estimating the latent bubble process from the simulated

stock prices and dividends. Figure 3.4 shows the filtered bubble processes using the

particle smoother withN = 500 particles (black lines), as well as the true (simulated)

bubble process (blue line). For τ = 1, 5, 15 we obtain good filtering results and the

true bubble process is almost perfectly mapped. Using the estimated parameter

set with τ = 25, 35, we find that the filtered bubble process is upward shifted.

Although the general structure of the true bubble is matched, these two estimated

bubble processes are overestimated.

23We use 500 particles for each evaluation.
24The number of particles, the convergence criterion and the initial parameter vector were chosen

as described in Section 3.5.3.
25Some of the differences can be ascribed to the use of a Monte Carlo approach (see Schön et al.,

2011, p. 47).
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Figure 3.5 about here

Table 3.3 about here

Finally, we use the goodness-of-fit test to analyze the impact of τ on the model

fit. Figure 3.5 displays the corresponding cdfs of the PITs for the parameter and

state estimates for τ = 1, 2, 5, 15, 25, 35. The confidence intervals are computed by

the critical value at a 5% significance level of the KS test which equals 0.08589. The

estimates for τ = 1, 2, 5, 15 do not exhibit a significant difference between the cdfs

of the PITs and the true cdf of a U(0, 1) distribution. The values of the LB test

statistics are similar and we cannot reject the null hypothesis of no correlation in

the sequence of PITs (see Table 3.3). These results are confirmed by the KS test

given in Table 3.3.

For τ = 25 we cannot reject the U(0, 1) condition, but the KS test statistic has

increased and the LB test rejects the i.i.d. condition at the 10% level (see Table

3.3). For τ = 35, the cdf of the PITs exhibits large deviations from 45-degree

line and the KS test statistic has increased sharply. Thus, we can now reject the

i.i.d. U(0, 1) distribution at the 1% level. Furthermore, the LB test rejects the

i.i.d. condition at the 1% level. As a result, we find similarly good model fits for

τ = 1, 2, 5, 15, which are in line with the results from the log-likelihood analysis.

The results for τ = 25 and τ = 35 reveal deficiencies of the estimated model, in

particular for τ = 35. For these values of τ we obtain poor parameter and state

estimates indicating misspecifications and the model is no longer able to capture the

true distribution and dynamics of the underlying data generating process.

Based on these results, we conclude that our parameter and state estimates as

well as the goodness-of-fit evaluations are not very sensitive to variations in the
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parameter τ . If we choose τ far away from the true parameter, we obtain parameter

estimates leading to an overestimated latent bubble process. However, the use of the

goodness-of-fit test theoretically enables us to identify these bad choices of τ . This

may be an advantage when analyzing real-world data sets, as it is not necessary to

have exact knowledge of τ . In practice, we define a very rough grid for τ and use the

goodness-of-fit test to identify an appropriate set of parameters providing accurate

estimates of the latent bubble process.

3.5.5 Real-world data

In this section we apply the estimation procedure to a real-world data set consisting

of real prices and dividends of four major stock-price indices: the German stock

index (DAX), the Standard and Poor’s index (S&P 500), the National Association

of Securities Dealers Automated Quotations index (NASDAQ composite) and the

Hang Seng index (HSI). All time series cover the period from January 1981 to

February 2014 (398 observations).26

Figure 3.6 about here

Following Homm and Breitung (2012) we calculate the dividend time series by

multiplying the respective stock-price index by the corresponding dividend yield.

The nominal data are transferred to real data by the corresponding consumer-price

index. The data for the DAX, NASDAQ composite and HSI are taken from Datas-

tream. The data sets of the S&P 500 were compiled from Robert Shiller’s website.27

26In line with our simulation study we assume for our estimation procedure that there is either
a very small or even no bubble at the beginning of our observation period. All time series start in
1981 since this phase is characterized by low or moderate price movements.

27See http://www.econ.yale.edu/∼shiller/data.htm.
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All data sets are provided on a monthly basis. To achieve numerical stabilization of

the EM algorithm we divided the time series of the DAX, NASDAQ and HSI by 10

and the time series of the S&P 500 by 20. The data are displayed in Figure 3.6.

Table 3.4 about here

Table 3.5 about here

Table 3.6 about here

Table 3.7 about here

3.5.6 Estimation results of the real-world data set

We begin with the identification of the nonlinear state-space model. We follow our

estimation strategy described in the preceding sections and use the goodness-of-fit

test provided by Diebold et al. (1998) to indirectly identify an appropriate value

of the non-identifiable parameter τ . The Tables 3.4 to 3.7 display the parameter

estimates of the four stock-price indices for τ = 2, 5, 10, 20. We initiated the EM

algorithm with θ0 = (φ = 20, σ2
ε = 0.5, ψ = 0.85, ι2 = 0.005, κ = 0.5, π = 0.8, τ = 2)

and computed the standard errors by the stable estimator of the information matrix

established by Duan and Fulop (2011).28

Tables 3.4 to Table 3.7 show that the parameter τ has a moderate impact on the

respective parameter estimates. Overall, we obtain similar index-specific estimates

(a) for the DAX when τ = 10 and τ = 20 (Table 3.4), (b) for the NASDAQ when

τ = 2, 5 and τ = 10, 20 (Table 3.5), (c) for the S&P 500 for each τ considered (Table

28For some estimations the starting value for ψ was chosen as 0.80. Furthermore we used 500
particles for the computation of the standard errors and considered l = 15 lags.
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3.6) and (d) for the HSI when τ = 2, 5 and τ = 10, 20 (Table 3.7). Irrespective of

the τ -value we find significant estimates of the constant fundamental parameter φ

ranging between approximately 9.9 and 27.1 for all indices. The variances of the

fundamental error term σ2
ε appear to be low in some cases and range between 0.15

and 2.3. For each index we obtain fairly stable estimates of the parameter ψ. Only

for the DAX with τ = 2 and the HSI with τ = 2, 5 the estimates of the parameter

π are strictly smaller than 1. Furthermore, only for the HSI with τ = 5 we obtain

significant estimates of the parameter κ.

Figure 3.7 about here

Table 3.8 about here

Next, we visually inspect the cdfs of the PITs and use the LB and KS test to

indirectly identify appropriate parameter sets. Figure 3.7 displays the particular

cdfs of the PITs. The confidence intervals are computed by the critical value at the

5% level using the KS test which equals 0.06808. Obviously, the cdfs deviate from a

U(0, 1) distribution for all indices and each value of τ . The results of the KS and LB

test are shown in Table 3.8. The KS test rejects the i.i.d. U(0, 1) hypothesis for all

indices and all values of τ at a 1% or 5% significance level. The LB test rejects the

i.i.d. hypothesis in almost all cases at the 1% or 5% levels. Only for the NASDAQ

with τ = 5 the i.i.d. hypothesis cannot be rejected.

The overall results indicate that our suggested economic model does not fit the

real-world data very well. Obviously, there are some types of misspecification in

the distributional assumptions and model dynamics that cannot only be attributed

to the parameter τ .29 Despite of this poor model fit, we may use the results to

29We discuss these misspecifications in Section 3.5.7.
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choose an appropriate parameter set for each index to estimate the latent bubble

component. For the DAX we use the parameter estimates associated with τ = 10.

Based on the visual inspection of the cdfs and the KS test statistics we are not able

to identify a superior parameter set. However, for τ = 10 the LB test rejects the i.i.d.

hypothesis only at the 5% level. Similarly, for the NASDAQ we choose the estimates

associated with τ = 5 since the LB test does not reject the i.i.d. hypothesis at any

conventional level. For the S&P 500 we obtain similar cdfs and test statistics for

each τ . We choose the parameter set associated with τ = 20 since these parameter

values entail the smallest value of the KS test statistics. For the HSI the KS tests

indicate slightly favorable results for τ = 5, 10, 20. However, visual inspection on the

cdfs suggests a relatively good model fit using the parameter estimates associated

with τ = 5.

All chosen sets of parameter estimates appear to indicate the presence of a spec-

ulative bubble component since the estimates of the bubble-specific discount factors

ψ and the variance parameters ι2 are significantly different from zero. However, only

for the HSI we may conclude that the estimated bubble process follows the Evans

model because the parameter π is estimated as 0.99 < 1. For the DAX, NASDAQ

and S&P 500, the probability of a bubble collapse is estimated as zero (since π̂ = 1).

Consequently, the first and second phase of the Evans bubble are identical and the

bubble’s econometric structure reduces to the simpler model30

Bt =
1

ψ
Bt−1ut. (3.50)

The fact that the reduced bubble process (3.50) does not include any periodically

collapsing structure does not necessarily imply that the bubble never collapses. The

30In this case the parameter κ is no longer relevant for the model because both states are equal.
This is emphasized by our estimation results, since in these cases κ is not significantly estimated.
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bubble process (3.50) can adjust stochastically due to the lognormal error term ut,

but never collapses periodically (almost) completely within one month. Large values

of the variance parameter ι2 may lead to large fluctuations in the bubble process.

Furthermore, the bubble satisfies the (discounted) martingale property and is thus

consistent with a rational bubble.

Figure 3.8 about here

Based on the parameter estimates we now disentangle the latent bubble pro-

cess from the stock-price indices and dividends by using the particle-filter and the

particle-smoother approach. Figure 3.8 displays the respective bubble processes es-

timated via the particle smoother with N = 500 (solid lines) and the corresponding

fundamental processes (dashed lines).31 First, we note that the filtered bubble pro-

cesses closely follow the dynamics of the stock-price indices. Since variance estimates

of the fundamental error term (σ2
ε) are small (Table 3.4 to 3.7), the fundamental

values themselves are slightly more volatile than the dividend processes. Obviously,

the largest portion on index fluctuation may be ascribed to the presence of the bub-

ble. For the DAX, NASDAQ and S&P 500 we conclude that at the beginning of

the observation period only a small part of the stock prices are affected by rational

bubbles. Then, the bubble components turn to become the dominating share of the

price indices, especially during the new-economy period (1995-2000) and around the

subprime mortgage and credit crisis (2007-2008). Furthermore, several adjustments

took place during the observation period, but the bubble components never collapses

(almost) completely within one month. This result appear to be realistic in view

of historical data on stock prices and the financial-crises literature which indicate

31The fundamental series are competed as the difference between the stock prices and the esti-
mated bubble values.



54

that stock-price adjustments in the aftermath of a crash typically are longer lasting

processes (see Allen and Gale, 2000).

Analyzing the HSI we find several more or less pronounced speculative phases

within the observation period. In contrast to the other indices, the bubble process

collapses periodically (almost) completely which corresponds to the dynamics of the

estimated Evans specification (Table 3.7). These collapses are particularly obvious

during the periods of the Asian crisis (1997-1998) and the subprime mortgage crisis

(2007-2008).

Figure 3.9 about here

Following the lines of Wu (1997) and Brooks and Katsaris (2005), we calculate

the ratios of the filtered bubble components and the stock-price indices. Since we

estimated our bubble process by means of the the standard present-value model, we

interpret this ratio as the speculation share in the stock markets considered. Figure

3.9 displays the ratios for our four stock-price indices. Obviously, the stock-price

bubbles persistently account for substantial parts of the DAX, NASDAQ and S&P

500. Even at the beginning of the observation period approximately 40% of the DAX

and NASDAQ and 14% of the S&P 500 may be attributed to a speculative bubble.

The DAX ratio peaked in February 2002 (88%) and the S&P 500 in August 2000

(84%). For the NASDAQ the ratio attains its maximum in September 2000 with a

value of 97% indicating that the speculative component dominated the stock index

almost completely. The highest decreases in the speculation share occur during the

last major crisis in 2007-2008 with −28% for DAX, −15% for the NASDAQ and

−19% for the S&P 500. Irrespective of the adjustments, these ratios have persisted

on a high level (on average 74% to over 82% since the late 1990s). At the end of
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the observation period in February 2014 the bubble still accounted for 71% to 76%

of the indices.

By contrast, the HSI proportion of the speculative bubble appears comparably

low with a peak at 64% in September 2000. However, the HSI ratio shows several

major adjustments during the observation period. Evidently, a bubble burst seem

to trigger almost complete market corrections, but there still remains a speculative

portion between 6% to 21%. Since the beginning of 2013 the bubble has accounted

for 34% of the HSI on average.

3.5.7 Model critique

The diagnostic tests based on the goodness-of-fit techniques presented in the preced-

ing section reveal a rather unsatisfactory fit of our nonlinear state-space model to

real-world stock-price indices. Typically, the tests lead to the rejection of the i.i.d.

assumption and also appear to indicate misspecified distributional assumptions. The

crucial question now is why we obtain these results.

A simple explanation may be that real-world stock-price indices cannot be repre-

sented by a simply structured fundamental value consisting of a constant multiplied

by the current level of dividends. Although further model assumptions might be

questioned, we now address an alternative explanation, namely that of a potentially

misspecified bubble component.

Our empirical analysis of the real-world stock-price indices from above clearly

indicates that real-world bubbles typically deflate rather slowly during several pe-

riods and not as abruptly as predicted by the Evans specification. Although the

Evans bubble constitutes a realistic and valuable model for describing periodically
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collapsing bubbles, it does not provide any room for moderately or strongly delayed

bubble deflation.

Finally, we summarize that our nonlinear state-space framework fails to capture

several features of the underlying data-generating process (see Tay and Wallis, 2000,

p. 250). This, however, does not mean that our framework (a) is misspecified, (b)

lacks explanatory power, or (c) is better or worse than other existing models (see

Wu, 1997; Brooks and Katsaris, 2005; Al-Anaswah and Wilfling, 2011). In fact, our

model is consistent with asset-pricing theory and also with the theory on rational

bubbles. It is precisely this latter aspect which makes our framework benefit from an

explicit economic model structure that enables us to interpret the estimated bubble

process as well as the bubble parameters unambiguously.

3.6 Conclusion

In this chapter we estimate the econometric structure of periodically collapsing

stock-price bubbles and filter the latent bubble component from stock-prices and

dividends. To this end, we incorporate the Evans’ (1991) bubble specification into

the standard present-value model. We transform this framework into a nonlinear

state-space model which is a valid solution to the Euler equation.

To estimate this nonlinear state-space model we use particle-filter methods. Since

we avoid the usual log-linearization of the model, our estimates provide a clear-cut

relationship between the stock price, its fundamental value and the bubble compo-

nent that follows directly from the standard present-value model. As a result, the

estimated bubble process with all its parameters can be interpreted unambiguously

in line with economic theory.
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Using artificial data, we demonstrate that our estimation framework is capable

of (econometrically) identifying the underlying nonlinear state-space specification.

If the stock price is driven by a periodically collapsing bubble, this unobservable

bubble process is precisely estimated from the simulated data. Due to the economic

structure of the underlying present-value model, we are able to identify the emergent

phase, the peak values of bubble as well as the dates of bursting.

Finally, we apply our econometric procedure to a real-world data set consisting

of real stock-prices and dividends for the DAX, the S&P 500, the NASDAQ and

the HIS. For all indices our parameter estimates indicate the presence of rational

speculative bubbles. However, we only find evidence in favor of an explicit Evans

(1991) bubble for the HSI.

The diagnostic tests of our estimated model for the real-world data set appear

to reveal some misspecifications of our framework. We argue that these problems

are due to the specification of the Evans bubble which does not provide any room

for slowly or moderately deflating bubbles. As a result, we suggest improving the

goodness-of-fit by using an alternative rational bubble specification which is able

to capture slowly deflating bubble processes. In Chapter 5 we propose an explicit

bubble specification that is capable of overcoming these deficiencies.
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Figures
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Figure 3.1: Stock-price process and included Evans bubble.
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Figure 3.2: True log-likelihood (dashed lines) and approximated Q-function (solid

lines) as functions of the parameters.
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Figure 3.3: Estimated Evans-bubble process (solid lines) versus true Evans-bubble

process (dashed lines).
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Figure 3.4: Estimated Evans-bubble processes for τ = 1, 5, 15, 25, 35 (black lines)

versus true Evans-bubble process (blue line).
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Figure 3.5: Cdfs of the PITs for the estimated parameters for τ = 1, 2, 5, 15, 25, 35.

True cdfs and 5% confidence intervals are represented by dashed lines.
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Figure 3.6: Price indices (solid lines) and dividends (dashed lines) of the DAX,

NASDAQ, S&P 500 and HSI.
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Figure 3.7: Cdfs of the PITs for the DAX, NASDAQ, S&P 500 and HSI (τ =

2, 5, 10, 20). True cdfs and 5% confidence intervals are represented by dashed lines.
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Figure 3.8: Estimated Evans-bubble processes (solid lines) and the fundamental

processes (dashed lines) for the DAX, NASDAQ, S&P 500 and HSI.
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Figure 3.9: Ratios of the Evans-bubble processes and the stock-price series for the

DAX, NASDAQ, S&P 500 and HSI.
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Tables

Parameter True value Estimate Standard error

φ 50.0000 50.6970 0.0146

σ2
ε 1.2000 1.3008 0.0249

ψ 0.9804 0.9762 7.4661 × 10−5

ι2 0.0010 0.0018 3.2522 × 10−5

κ 1.1000 0.7139 0.0048

π 0.9800 0.9769 8.9772 × 10−5

Table 3.1: Parameter estimates (for τ = 2) using the EM algorithm.
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Paramter τ = 1 τ = 5 τ = 15 τ = 25 τ = 35

φ 50.9803 50.4976 50.9018 43.0652 33.7826

(0.0143) (0.0157) (0.0162) (0.0448) (0.2375)

σ2
ε 1.3144 1.2923 1.2887 1.3404 4.4719

(0.0240) (0.0253) (0.0223) (0.0213) (0.1248)

ψ 0.9724 0.9720 0.9643 0.9837 0.9867

(9.4995 × 10−5) (3.4945 × 10−5) (1.9920 × 10−5) (6.6439 × 10−6) (3.4647 × 10−5)

ι2 0.0021 0.0016 0.0027 0.0013 0.0027

(1.6467 × 10−4) (1.2424 × 10−5) (4.3988 × 10−6) (4.4010 × 10−7) (5.6556 × 10−7)

κ 0.4661 0.7152 0.4106 8.1593 18.1024

(0.0075) (0.0421) (0.0023) (0.1093) (21.9380)

π 0.9812 0.9773 0.9663 0.9555 0.9630

(1.1812 × 10−4) (6.2191 × 10−5) (8.4454 × 10−4) (0.0014) (0.0032)

Iterations (k) 67 282 500 286 464

Table 3.2: Parameter estimates using the EM algorithm after k iterations for τ =

1, 5, 15, 25, 35. Standard errors are in parentheses.
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Test statistic τ = 1 τ = 2 τ = 5 τ = 15 τ = 25 τ = 35

KS test 0.0487 0.0348 0.0417 0.0374 0.0541 0.1422***

LB test 24.5677 24.9075 24.6885 23.6554 29.7712* 169.3196***

Table 3.3: KS tests and LB tests on the PITs using the parameter estimates for

τ = 1, 2, 5, 10, 15. ***, **, * denote statistical significance at 1%, 5% and 10%

levels, respectively.
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Parameter τ = 2 τ = 5 τ = 10 τ = 20

φ 19.3068 13.4400 9.9914 9.8929

(0.0142) (0.0422) (0.0173) (0.0259)

σ2
ε 0.4693 0.2291 0.1815 0.2832

(0.0011) (0.0012) (5.9057 × 10−4) (0.0013)

ψ 0.9862 0.9914 0.9918 0.9921

(9.9975 × 10−5) (1.8229 × 10−4) (6.3935 × 10−5) (2.4375 × 10−5)

ι2 0.0115 0.0075 0.0063 0.0056

(8.7392 × 10−7) (3.1709 × 10−7) (2.1498 × 10−7) (2.7116 × 10−7)

κ 1.5173 0.4982 0.5829 0.7995

(12.9632) (1.2119 × 10+10) (3.9155 × 10+10) (3.0148 × 10+11)

π 0.9981 1.0000 1.0000 1.0000

(1.1593 × 10−4) (1.2726 × 10−4) (8.4917 × 10−5) (3.3025 × 10−4)

Iterations (k) 500 176 360 263

Table 3.4: Parameter estimation results after k iterations for the DAX (τ =

2, 5, 10, 20). Standard errors are in parentheses.
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Parameter τ = 2 τ = 5 τ = 10 τ = 20

φ 17.3582 17.6351 27.0851 26.8630

(0.2688) (0.0315) (0.0529) (0.0453)

σ2
ε 0.4595 0.1508 0.4095 0.2743

(0.0011) (1.5869 × 10−4) (0.0020) (0.0013)

ψ 0.9888 0.9888 0.9854 0.9855

(2.5314 × 10−4) (4.4781 × 10−5) (2.8326 × 10−5) (2.4927 × 10−5)

ι2 0.0054 0.0060 0.0072 0.0077

(8.5121 × 10−8) (1.2074 × 10−7) (1.6427 × 10−7) (1.3044 × 10−7)

κ 0.6361 0.6428 0.3878 0.6231

(1.2613 × 10+9) (8.6702 × 10+9) (4.2222 × 10+10) (2.0991 × 10+11)

π 1.0000 1.0000 1.0000 1.0000

(2.0679 × 10−4) (5.6630 × 10−5) (6.5553 × 10−5) (1.0641 × 10−4)

Iterations (k) 166 111 192 320

Table 3.5: Parameter estimation results after k iterations for the NASDAQ (τ =

2, 5, 10, 20). Standard errors are in parentheses.



72

Parameter τ = 2 τ = 5 τ = 10 τ = 20

φ 14.6754 13.7861 13.4792 14.6202

(0.0075) (0.0046) (0.0061) (0.0055)

σ2
ε 1.3323 1.7365 1.6102 1.5623

(0.0045) (0.0058) (0.0050) (0.0047)

ψ 0.9900 0.9901 0.9900 0.9901

(2.8120 × 10−4) (6.9530 × 10−5) (2.2329 × 10−5) (1.0070 × 10−5)

ι2 0.0028 0.0025 0.0025 0.0027

(5.1199 × 10−8) (4.2373 × 10−8) (3.7732 × 10−8) (3.0705 × 10−8)

κ 0.5499 0.5988 0.6047 0.6244

(1.4800 × 10+9) (5.3745 × 10+9) (1.2043 × 10+10) (7.7096 × 10+10)

π 1.0000 1.0000 1.0000 1.0000

(2.3889 × 10−4) (5.3357 × 10−5) (2.7304 × 10−5) (4.2908 × 10−5)

Iterations (k) 218 358 372 181

Table 3.6: Parameter estimation results after k iterations for the S&P 500 (τ =

2, 5, 10, 20). Standard errors are in parentheses.
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Parameter τ = 2 τ = 5 τ = 10 τ = 20

φ 21.7688 20.0985 18.5438 18.0396

(0.0130) (0.0159) (0.0190) (0.0176)

σ2
ε 2.3405 1.5149 1.0550 1.0005

(0.0080) (0.0077) (0.0059) (0.0042)

ψ 0.9690 0.9755 0.9792 0.9801

(9.4410 × 10−5) (5.7720 × 10−5) (7.8915 × 10−5) (7.6289 × 10−5)

ι2 0.0436 0.0309 0.0329 0.0310

(2.0208 × 10−5) (1.0121 × 10−5) (9.0992 × 10−6) (6.8028 × 10−6)

κ 0.5435 2.9932 0.5321 0.6460

(0.5141) (0.3897) (2.5554 × 10+11) (8.8493 × 10+12)

π 0.9958 0.9900 1.0000 1.0000

(3.9260 × 10−5) (6.4080 × 10−5) (5.0347 × 10−4) (0.0075)

Iterations (k) 500 500 90 84

Table 3.7: Parameter estimation results after k iterations for the HSI (τ =

2, 5, 10, 20). Standard errors are in parentheses.
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τ = 2 τ = 5 τ = 10 τ = 20

DAX

KS test 0.0962*** 0.0845*** 0.0938*** 0.0871***

LB test 89.9752*** 44.0453*** 37.1545** 48.4496***

NASDAQ

KS test 0.0838*** 0.0717** 0.0773** 0.0757**

LB test 40.6307*** 26.8094 57.4513*** 49.2113***

S&P 500

KS test 0.0944*** 0.1009*** 0.0983*** 0.0942***

LB test 232.4670*** 216.8022*** 207.6334*** 220.2103***

HSI

KS test 0.0997*** 0.0790** 0.0781** 0.0743**

LB test 305.0413*** 185.3675*** 130.8157*** 123.5147***

Table 3.8: KS tests and LB tests on the PITs of the DAX, NASDAQ, S&P 500 and

HSI using the parameter estimates (τ = 2, 5, 10, 20). ***, **, * denote statistical

significance at 1%, 5% and 10% levels, respectively.
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Chapter 4

Periodically collapsing Evans bubbles

and stock-price volatility1

4.1 Introduction

Several authors argue that the frequently observed excessive volatility in stock prices

may be attributed to the presence of speculative bubbles. Blanchard and Watson

(1982) and Flood and Hodrick (1986), inter alia, demonstrate in a theoretical frame-

work that bubble components potentially generate excessive volatility. Besides the

many articles discussing theoretical aspects of speculative bubbles and econometric

techniques for their detection, there is a second strand of literature linking finan-

cial crises and/or bubbly periods to stock-price volatility. Two important pieces of

research are Brunnermeier and Oehmke (2013) and the so-called Minsky model (as

described in Kindleberger and Aliber, 2005, pp. 24-37) according to which finan-

cial crises and/or bubbly periods are characterized by different phases of stock-price

volatility. During the early stages of a bubbly period stock-price volatility appears

1This Chapter is an extended pre-print version of an article published in the Journal Economics
Letters, 123(3), 383-386 (see Rotermann and Wilfling, 2014).
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to be low whereas toward the end of the bubble and its burst stock-price volatility

is typically high.

In this chapter we consider the existence of periodically collapsing bubbles as

proposed by Evans (1991) in the well-known present-value model and theoretically

analyze conditional stock-price volatility within this framework. Using the sequential

Bayesian Monte Carlo methods, we fit our theoretical model equations to an artificial

dataset to gain further insights into stock-price volatility dynamics during bubbly

periods. Our analysis has two major findings. First, we show that our rational

bubble specification entails excess stock-price volatility. Second, we find that the

dynamic structure of this volatility dynamics accords with the phases of low and

high volatility as proposed by Brunnermeier and Oehmke (2013) and the Minsky

model.

4.2 Conditional stock-price volatility

We consider the linear present-value model as described in Chapter 2.1. From Eq.

(2.2) and Eq. (2.5) the stock price at date t is given by

Pt =
∞∑
i=1

(
1

1 + r

)i
· Et(Dt+i) +Bt. (4.1)

To analyze the impact of rational bubbles on stock-price volatility, we follow

Evans (1991) who suggests an empirically plausible class of bubbles that are non-

linear, positive, periodically collapsing and satisfy the martingale property (2.6).

Recalling the econometric specification of the Evans bubble from Section 3.2, we

therefore set
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Bt =


1
ψ
Bt−1ut , if Bt−1 ≤ τ

[κ+ 1
πψ

(
Bt−1 − κψ

)
νt]ut , if Bt−1 > τ

. (4.2)

In order to compute the conditional volatility associated with the stock-price

dynamics given in Eqs. (4.1) and (4.2), it remains to specify a stochastic process

{Dt} governing the dividend payments. In line with recent literature we assume

that dividends follow a driftless random walk of the form

Dt = Dt−1 + εt, (4.3)

where εt is an i.i.d. Gaussian white-noise process with mean zero and variance σ2

(see Al-Anaswah and Wilfling, 2011). Inserting this into Eq. (4.1), we obtain

Pt = βDt +Bt = βDt−1 +Bt + βεt, (4.4)

where β = 1/r.

We now compute the variance of the stock price Pt given in Eq. (4.4) conditional

on all information available to market participants as of date t−1, which we denote

by Vart−1(Pt). The associated information set Ωt−1 contains, inter alia, all past

dividends and stock prices. Additionally, we assume that we can observe (or at least

estimate) past values of the bubble component.2 From Eq. (4.4) we have

Vart−1(Pt) = Vart−1(βDt−1 +Bt + βεt) = Vart−1(Bt + βεt). (4.5)

2We will tackle this issue more concretely in Section 4.3.
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Since the dividend error process {εt} is by definition uncorrelated with the bubble

process {Bt}, Eq. (4.5) reduces to

Vart−1(Pt) = Vart−1(Bt) + β2σ2. (4.6)

Obviously, when dividends follow a random walk, conditional stock-price volatil-

ity is (up to a constant) completely characterized in terms of the conditional variance

of the bubble term. The conditional variance Vart−1(Bt) itself can be derived from

the distributional assumptions of the Evans-bubble specification, see Eq. (3.46).

More precisely, the lognormal distribution of ut from Eq. (4.2) implies that for

Bt−1 ≤ τ the conditional variance of the bubble is given by

Vart−1(Bt) =

(
1

ψ
Bt−1

)2

·
[
exp(ι2)− 1

]
. (4.7)

The case Bt−1 > τ is slightly more laborious because it involves the two random

variables ut and νt. In a first step, Eq. (4.2) allows us to write

Vart−1(Bt) = Vart−1
(
κut +

[
Bt−1 − κψ

πψ

]
νtut

)
. (4.8)

Next, we have to take account of the covariance of the variables ut and νtut in

Eq. (4.8), which is given by π · (exp {ι2} − 1). In similar vein, it is straightforward

to find Vart−1(ut) and Vart−1(νtut). Overall, we obtain for Bt−1 > τ

Vart−1(Bt) = κ2 · Vart−1(ut) +

(
Bt−1 − κψ

πψ

)2

· Vart−1(νtut)

+ 2κ

(
Bt−1 − κψ

πψ

)
·
[
π ·
(
exp

{
ι2
}
− 1
)]

= κ2
(
exp{ι2} − 1

)
+

(
Bt−1 − κψ

πψ

)2

·
(
exp{ι2} · π − π2

)
+ 2κ

(
Bt−1 − κψ

πψ

)
·
[
π ·
(
exp

{
ι2
}
− 1
)]
. (4.9)
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Now, inserting Eq. (4.9) into Eq. (4.6), the conditional stock-price variance is given

by

Vart−1(Pt) =



(
1
ψ
Bt−1

)2
(exp{ι2} − 1) + β2σ2, if Bt−1 ≤ τ[

κ2 + 2κ
(
Bt−1 − κψ

ψ

)]
· (exp{ι2} − 1)

+
(
Bt−1 − κψ

πψ

)2
[exp{ι2}π − π2] + β2σ2, if Bt−1 > τ

. (4.10)

4.3 Bubble and stock-price volatility

4.3.1 Theoretical results

To state a first theoretical result we note from Eq. (4.10) that the bubble term Bt−1

has an increasing effect on conditional stock-price volatility. This implies that the

mere existence of a speculative bubble necessarily increases stock-price volatility.

We may analyze this impact further by considering the derivative

∂Vart−1(Pt)
∂Bt−1

=


2
ψ2Bt−1 · (exp{ι2} − 1) , if Bt−1 ≤ τ

2
ψ2

[
(Bt−1 − κψ) ·

(
exp{ι2}

π − 1

)
+ κψ(exp{ι2} − 1)

]
, if Bt−1 > τ

.

(4.11)

Eq. (4.11) establishes a strictly positive relationship between the infinitesimal

change in stock-price volatility and Bt−1, the bubble level from the previous period.

Consequently, an explosive bubble path necessarily entails an explosive path of stock-

price volatility.

Next, we address the impact of a bubble burst on stock-price volatility. Since

the conditional stock-price variance given in Eq. (4.10) is a function of Bt−1, stock-

price volatility collapses one period after the bubble burst. Furthermore, owing to

Eqs. (4.10) and (4.11) the stock-price volatility process attains its maximum when
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Bt−1 takes on its largest value which typically occurs on the eve of the bubble

crash. This theoretical result is consistent with the volatility dynamics described by

Brunnermeier and Oehmke (2013) and the Minsky model.

Figure 4.1 about here

4.3.2 Empirical application

Figure 4.1 gives an example of an Evans-bubble process and the stock-price process

from Eqs. (4.2) and (4.4) with one large and one moderate bubble. The dividends

from Eq. (4.3) follow a random walk with standard deviation σ2 = 0.0009. We set

the parameter value r = 0.02 so that β = 1/r = 50 while the parameters relevant

to the simulation of the Evans bubble are chosen as ψ = 1/(1 + r) = 0.9804,

ι2 = 0.001, κ = 1.1, π = 0.98 and τ = 2.3 We initiate the bubble process with the

value B0 = 0.5. Our artificial dataset consists of 250 observations corresponding to

a time span of approximately 21 years on the basis of monthly data.

An important stipulation inherent in our theoretical framework concerns the

structure of the information set Ωt−1. We explicitly assume that Ωt−1 contains the

bubble time series, which is crucial to analyzing stock-price volatility. However, in

practice bubble values are unobservable so that we are forced to estimate the bubble

process from the data.

To this end, we use the sequential Monte Carlo methods as introduced in Chapter

3.3. This Bayesian approach enables us to estimate a latent variable (our bubble

process) from nonlinear and non-Gaussian state-space models. In a first step, similar

3The parameter values of the Evans process are different from those given in the original paper
by Evans (1991). We choose this parameterization in order to generate only a few big bubbles in
the data. In line with the history of financial markets this appears to be a realistic assumption for
the length of our data (monthly observations).
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to Section 3.5.1, we transform Eqs. (4.2) and (4.4) into a nonlinear state-space form,

where Eq. (4.4) describes the observation equation and Eq. (4.2) equals the state

equation. The corresponding distribution of the observation equation is Gaussian,

with expectation βDt−1 +Bt and variance β2 · σ2
ε , and the distribution of the state

equation is equal to Eq. (3.46) (see Section 3.5.1). Since ψ = 1/(1 + r) and β = 1/r

the parameter vector of this model is given by θ = (r, σ2
ε , ι

2, κ, π, τ).

From the nonlinear state-space representation we estimate—besides all other

model parameters—the unobservable bubble process. For parameter estimation we

apply the EM algorithm as proposed by Schön et al. (2011) (see Section 3.4). We

initiated the EM algorithm with a parameter vector θ0 = (r = 0.03, σ2
ε = 0.5, ι2 =

0.005, κ = 0.5, π = 0.8, τ = 2) and we numerically maximized the Q-function from

Eqs. (3.30) and (3.31) by the use of the FMINCON module of the software package

MATLAB. For the convergence criterion we used c = 0.0033. Additionally, we used

the stable estimator of the information matrix established by Duan and Fulop (2011)

to compute standard errors as described in Section 3.4.4.4

Table 4.1 about here

Table 4.1 displays the estimates of the parameters from Eqs. (4.2) and (4.4) after

k = 208 iterations of the EM algorithm. Owing to an identification problem, we set

the parameter τ = 2.

Figure 4.2 about here

Besides parameter estimation the particle-filtering approach allows us to estimate

the bubble process from the data. Figure 4.2 displays the estimated bubble process

4We used 500 particles and considered l = 15 lags.
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(solid line) as well as the true (simulated) bubble process (taken from Figure 4.1).

Obviously, the estimated bubble process almost perfectly fits the true bubble values.

These econometrically reliable estimates of the bubble process can now be included

in the information set Ω. This procedure ultimately enables us to analyze the

conditional stock-price variance according to Eq. (4.10).

Figure 4.3 about here

Figure 4.3 displays the conditional stock-price variance (solid line) along with

the estimated bubble process (dashed line). Two features are worth mentioning. (1)

In line with our theoretical results from above, stock-price volatility collapses one

period after the bubble burst. (2) The increase in the stock-price variance process in

response to increases in the bubble process occurs with a considerable time delay. In

Figure 4.3, for example, the bubble process begins to take on substantially increasing

values around the date t = 50. By contrast, stock-price volatility remains (roughly)

constant and begins to increase steadily no earlier than around the date t = 110.

To explain this latter phenomenon we again refer to the derivative in Eq. (4.11).

For Bt−1 > τ the slope of the stock-price variance essentially consists of the two

summands within the squared brackets. For small and moderate values of Bt−1

the first term is negligible and the slope of the stock-price variance is primarily

determined by the constant value 2κ
ψ

(exp {ι2} − 1). During this period the stock-

price variance remains largely unaffected by the Bt−1-levels. It is not until the

bubble values get sufficiently large that the first summand (containing Bt−1) begins

to dominate the slope of the stock-price variance triggering strongly increasing stock-

price volatility.
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The stock-price volatility dynamics displayed in Figure 4.3 is strongly consistent

with the observations by Brunnermeier and Oehmke (2013) on the distinct volatility

phases in the run-up to a financial crisis. If we interpret the start of the crisis as

the first period after the burst of the stock-market bubble, their observation can be

stated as follows. In an early stage when the bubble begins to emerge, stock-market

volatility is comparably low. Then, volatility increases due to trading frenzy in a

phase of euphoria which finally ends in the burst of the bubble. At the beginning

of the financial crisis, that is at the moment of the crash, stock-market volatility is

maximal.

4.4 Conclusion

This chapter analyzes (conditional) stock-price volatility dynamics in a present-value

framework with periodically collapsing bubbles as proposed by Evans (1991). We

derive closed-form expressions for the volatility paths and explore their properties

theoretically. In an empirical part we describe a sequential Monte Carlo approach

for extracting the unobservable bubble process from the data.

Our major finding is that the present-value framework produces stock-price

volatility paths that are broadly consistent with empirically observed volatility struc-

tures in the run-up to financial crises and/or the burst of a stock-market bubble.

Evans bubbles contribute to excessive stock-price volatility and volatility reaches

its maximum when the bubble bursts. Our volatility results should be of interest

to traders in international stock and derivative markets, for example for valuing

stock-price sensitive claims.
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Figures
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Figure 4.1: Stock-price process and included Evans bubble.
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Figure 4.2: Estimated Evans-bubble process (solid line) versus true Evans-bubble

process (dashed line).
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Figure 4.3: Conditional stock-price variance (solid line) and estimated Evans-bubble

process (dashed line).
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Tables

Parameter True value Estimate Standard error

r 0.0200 0.0198 1.5783 × 10−8

σ2 0.0009 0.0010 9.3802 × 10−9

ι2 0.0010 0.0012 1.3541 × 10−6

κ 1.1000 0.8776 0.0226

π 0.9800 0.9793 2.3847 × 10−5

Table 4.1: Parameter estimates using the EM algorithm.
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Chapter 5

Periodic and stochastically deflating

rational bubbles

5.1 Introduction

The economic literature on stock-price bubbles provides a variety of econometric

bubble specifications which more or less incorporate the theoretical characteristics

of rational bubbles. As previously mentioned, the most influential model for rational

bubbles is the periodically collapsing bubble proposed by Evans (1991). However,

Evans’ specification has two shortcomings. First, the Evans bubble always collapses

entirely within one period. Second, the bubble always crashes to the same non-zero

mean value. In view of the empirical results from Chapter 3, these theoretical fea-

tures do not appear realistic when confronted with real-world stock-market data.

Even though events of utmost importance to market participants might trigger sub-

stantial crashes, it is common sense that after a crash the adjustment of the stock

price to its fundamental level follows a longer lasting process (see Allen and Gale,

2000). Furthermore, it is plausible that in the case of reoccurring bubbles the re-

spective adjustment processes do not take the same amount of time. This appears

obvious due to the differing characteristics of the associated phenomena that caused
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the bubbles (see, Kindleberger and Aliber, 2005). Overall, these empirical and

theoretical arguments suggest modeling the burst of a bubble with its subsequent

adjustment process as a stochastically deflating process.

The purpose of this chapter is threefold. First, we present a new bubble model

that is closely related to theory and to financial data. We establish a nonlinear

model that is a combination of the periodically collapsing Evans bubble and the

incompletely bursting bubble model proposed by Fukuta (1998). We show that our

resulting bubble specification (a) is consistent with rational behavior, and (b) is

periodically reoccurring with stochastically deflating adjustment processes. Second,

we estimate our new (parametric) bubble specification using artificial and real-world

stock-price data. As in Chapter 3, we perform estimation via a nonlinear state-space

model using sequential Bayesian Monte Carlo methods. Third, we use the estimated

latent bubble process to theoretically analyze conditional stock-price volatility. To

this end, we establish a closed-form volatility formula that enables us to analyze the

associated volatility dynamics analytically.

The structure of this chapter is as follows. Section 5.2 presents an overview of

previous rational bubble specifications and introduces our new periodic, stochasti-

cally deflating bubble model. Section 5.3 contains the empirical application using

artificial and real-world data. In Section 5.4 we establish the analytic stock-price

volatility formula and analyze its dynamics. Section 5.5 concludes.

5.2 Alternative specifications of rational bubbles

Alternative specifications of rational bubbles within the present-value framework are

scattered in the literature. These models are either deterministic or stochastic, but
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have in common that they all satisfy the (discounted) martingale condition. Before

introducing our new bubble model, we review some existing bubble specifications

from the literature.

5.2.1 Previous rational bubble models

Invoking the martingale property Eq. (2.6), we may specify the simplest rational

bubble as

Bt =
1

ψ
Bt−1 + ωt, (5.1)

where 0 < ψ < 1 and ωt is an i.i.d. error term with zero mean. This specification

implies a continuous (stochastic) growth of the bubble. However, in view of Eq.

(2.4) this process leads to infinitely large stock prices at some future time, a pattern

inconsistent with real-world stock prices.

A more realistic bubble model is proposed by Blanchard (1979) and Blanchard

and Watson (1982). The authors describe a bubble with two different states, namely

Bt =


1
πψ
Bt−1 +$t , with probability π

$t , with probability 1− π
, (5.2)

where$t is an i.i.d. error term with zero mean ensuring rationality. With probability

π, the bubble grows at a higher than the required rate of return r, whereas the

bubble can collapse with probability 1− π. In case of a collapse the bubble equals

any realization of the stochastic error term $t. Although the bubble is rational

and exhibits a periodically collapsing behavior, there are two drawbacks to mention.

(1) According to the (discounted) martingale property from Eq. (2.6), Diba and

Grossman (1988b) argued that, in general, a bubble cannot start from zero and

negative bubbles are not possible if t tends to infinity (see Section 2.2). However,
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owing to the error term $t, these two features are not excluded from the Blanchard

bubble (5.2). (2) If the bubble collapses, it collapses more or less completely within

one period and a slower or moderate deflation cannot occur.1

Figure 5.1 about here

The Evans (1991) bubble overcomes the fundamental critique by Diba and Gross-

man (1988b). Its econometric structure is described in Section 3.2. Up to date, the

Evans bubble is considered to be the most realistic model and is therefore exten-

sively referred to the literature. However, the Evans bubble has two shortcomings.

Like the Blanchard bubble (5.2), the Evans bubble collapses completely within one

period and furthermore always drops back to the same non-zero mean constant (κ).

This behavior is far from reality, since the crises of the last century showed that

adjustments typically take more time than one time unit. To state an example,

the Dot-com bubble deflated in the period between March 2000 and October 2001

during which the NASDAQ lost over 70% of its peak value (see Figure 5.1). In sim-

ilar vein, caused by the subprime mortgage crisis in 2007 the Dow Jones Industrial

Average lost more than 50% of its value between October 2007 and March 2009.

These bubble deflations always started with bad news to investors under market

uncertainty and panic lead to an acceleration of the adjustment process. However,

such downturns may sometimes be interrupted, for example, by the intervention of

central banks providing room for a short-term recovery of prices. Furthermore, it is

obvious that the distinct adjustment processes are likely to differ from each other.

For example, Figure 5.1 reveals that the adjustment of the NASDAQ between March

2000 and October 2001 differs from the deflating process between October 2007 and

March 2009.

1The exact value of the bubble reduction is driven by the error term $t and the probability π.
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An alternative model that is able to account for a more flexible deflating behav-

ior is proposed by Fukuta (1998). The author establishes a so-called incompletely

bursting bubble that generalizes the Blanchard and the Evans bubble. The formal

specification consists of three possible states:

Bt =



1
ψ
α1

π1
Bt−1 , with probability π1

1
ψ
α2

π2
Bt−1 , with probability π2

1
ψ

1−α1−α2

1−π1−π2Bt−1 , with probability 1− π1 − π2

, (5.3)

where (0 < α1 < 1), (0 < α2 < 1) and (0 < 1− α1 − α2 < 1). The strictly positive

probabilities of each state are given by π1, π2 and 1 − π1 − π2. In addition, it is

assumed that (1−α1−α2)/(1−π1−π2) < α2/π2 < α1/π1. It can be shown that in

state 1 and 2, we have Bt > Bt−1, while in state 3 we have Bt < Bt−1. As a result,

this specification consists of a large bubble state (state 1), a small bubble state (state

2) and an incompletely bursting state (state 3). However, an important drawback

of this model is that within each state the bubble is subject to deterministic growth.

5.2.2 A new model for rational bubbles

In this section we introduce a new rational bubble specification which is strictly posi-

tive, periodic and stochastically deflating. Technically, we achieve this by combining

features of the Evans bubble with those of the Fukuta model. Our specification con-

sists of two different states, namely

Bt =


α
ψπ
Bt−1ut , with probability π

1−α
ψ(1−π)Bt−1ut , with probability 1− π

, (5.4)
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which can more compactly be written in one equation as

Bt =
[(( α

ψπ
− 1− α
ψ(1− π)

)
νt +

1− α
ψ(1− π)

)
Bt−1

]
ut. (5.5)

As in Fukuta (1998), the parameter α is arbitrary with 0 < α < 1. This constraint

ensures that the bubble never collapses to zero and thus can rebuild. As in Evans

(1991) νt is an i.i.d. Bernoulli distributed process with Pr(νt = 1) = π and Pr(νt =

0) = 1− π for 0 < π ≤ 1. The error term ut is assumed to be an i.i.d. lognormally

distributed random process, satisfying ut > 0 and Et−1(ut) = 1 for all t, that is

ut = exp(yt− ι2/2) with yt ∼ N(0, ι2). In addition, the covariance between νt and ut

is assumed to be zero. The lognormal random variable ut ensures a stochastic bubble

growth and a strictly positive bubble process. Moreover, this random variable also

lead to huge upward and downward movements of the bubble process depending on

the variance parameter ι2.

Two further assumptions of the model are α
π
> 1 and 1−α

1−π < ψ which guarantee

two certain states. In state 1 the bubble grows at a mean rate α
ψπ

, that is at a higher

rate than the required rate of return, but the bubble is subject to a possible burst.

State 2 models the burst of the bubble. In this state the bubble deflates because

it evolves at a mean rate 1−α
ψ(1−π) < 1. The probability of this deflating burst is

1− π. Depending on the explicit parameter constellation, these bursts can be more

or less extensive ranging from small corrections to big crashes within one or several

periods. Our specification bears some similarity to the Fukuta model with only two

states, but the additional error term ut in Eq. (5.5) allows for a stochastic and

more realistic growth/decay within each state. The formal structure of our model

is more parsimonious than the Fukuta and Evans specifications, but more flexible

in describing real-world bubble processes.
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It remains to prove that our bubble specification (5.5) is consistent with rational

behavior. To verify the martingale property, we need the conditional expectation

Et−1 (Bt|Bt−1) = Et−1

([(( α

ψπ
− 1− α
ψ(1− π)

)
νt +

1− α
ψ(1− π)

)
Bt−1

]
ut|Bt−1

)
. (5.6)

Owing to the independence of νt and ut and the definition of ut, we have

Et−1 (Bt|Bt−1) =Et−1

((( α

ψπ
− 1− α
ψ(1− π)

)
νt +

1− α
ψ(1− π)

)
Bt−1|Bt−1

)
Et−1 (ut|Bt−1)

=Et−1

((( α

ψπ
− 1− α
ψ(1− π)

)
νt +

1− α
ψ(1− π)

)
Bt−1|Bt−1

)
.

The Bernoulli distributed random variable νt equals 1 with probability π and 0 with

probability 1− π, so that

Et−1 (Bt|Bt−1) =Et−1

(( α

ψπ
− 1− α
ψ(1− π)

+
1− α

ψ(1− π)

)
Bt−1|Bt−1, νt = 1

)
+ Et−1

(( 1− α
ψ(1− π)

)
Bt−1|Bt−1, νt = 0

)
,

implying

Et−1 (Bt|Bt−1) =π
( α

ψπ
− 1− α
ψ(1− π)

+
1− α

ψ(1− π)

)
Bt−1 + (1− π)

( 1− α
ψ(1− π)

)
Bt−1

=
α

ψ
Bt−1 +

1− α
ψ

Bt−1

=
1

ψ
Bt−1, (5.7)

which verifies the martingale property (2.6).

Figure 5.2 about here

Figure 5.2 displays four trajectories of our stochastically deflating bubble process

(5.5). For all simulations we set ψ = 0.9804, but choose different values for ι2, α and

π. We initiate the bubble processes with B0 = 0.5. The trajectories consist of 250
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observations representing a timespan of approximately 21 years based on monthly

data.

All four trajectories in Figure 5.2 exhibit two or three major bubbles. All bubbles

differ in their deflating structures with respect to the quantitative degree and the

speed of deflating. The emergent phases of these bubbles are generally accompanied

by explosive growing behavior. After reaching the peak value, the bubble processes

may deflate either quickly or moderately/slowly over longer lasting periods. An

apparent feature of the trajectories are the stochastic fluctuations both during the

emergent phase (stochastic bubble growth) as well as during the adjustment process

(stochastic deflating).

5.3 Estimating periodic, stochastically deflating

bubbles via particle-filter methods

In this section we use the particle-filter methods, presented in Sections 3.3 and 3.4

to estimate our new bubble specification from the data. In a first step, we use an

artificial data set to check for the reliability of the estimation methodology, while in

a second step, we apply the technique to real-world stock-price and dividend data.

5.3.1 Nonlinear state-space representation

As in Section 3.2 we invoke the linear present-value model according to which the

real stock price at time t, Pt, is given by

Pt = φ ·Dt +Bt + εt. (5.8)
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As before, Dt denotes the real dividend payment and εt is a Gaussian white-noise

error term with variance σ2
ε . Thus, the fundamental value of the stock price is given

by φ ·Dt+εt where εt reflects all other fundamentals not captured by the dividends.

Bt is the latent bubble component and now specified according to our new bubble

model as

Bt =
[(( α

ψπ
− 1− α
ψ(1− π)

)
νt +

1− α
ψ(1− π)

)
Bt−1

]
ut. (5.9)

Again, Eq. (5.8) is the observation equation and Eq. (5.9) the state equation of the

nonlinear state-space model.

Next, we need the conditional distributions of the equations in order to apply

the particle-filter methods. First, the distribution of the observation equation is

Gaussian:

p(Pt | Bt, Dt;θ) ∼ N
(

(φDt +Bt), σ
2
ε

)
. (5.10)

Second, the conditional distribution of the state equation is given by the distri-

bution of our new bubble model. Owing to the Bernoulli process, the distribution

is a mixture of two lognormal distributions and given by

p(Bt | Bt−1;θ) ∼ π · LN
(−ι2

2
+ log

( α

πψ
Bt−1

)
, ι2
)

+(1− π) · LN
(−ι2

2
+ log

( 1− α
(1− π)ψ

Bt−1

)
, ι2
)
. (5.11)

We collect all model parameter in the vector θ = (φ, σ2
ε , ψ, ι

2, π, α).

Figure 5.3 about here
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5.3.2 Artificial data

Figure 5.3 displays the trajectories of the economic framework. The stock price is

calculated by using the price equation (5.8) whereas the dividends are generated

by a simple random walk. The bubble is generated by Eq. (5.9) and we use the

realization of the deflating bubble process given in the upper left graphic of Figure

5.2. The parameter vector of the entire nonlinear state-space model is set to be

θ = (φ = 50, σ2
ε = 1.5, ψ = 0.9804, ι2 = 0.02, π = 0.87, α = 0.91). As before, the

artificial dataset consists of 250 observations.

Table 5.1 about here

5.3.3 Estimation results

Prior to estimating the latent bubble process, we have to identify our nonlinear

state-space model using the particle based EM algorithm. Table 5.1 displays the

estimates of the parameter vector θ from the Eqs. (5.8) and (5.9). We used a

similar estimation procedure as in Section 3.5.3 with N = 300 particles and for

the convergence criterion we used c = 1/300. The EM algorithm was initiated by

the vector θ0 = (φ = 30, σ2
ε = 0.5, ψ = 0.85, ι2 = 0.01, π = 0.7, α = 0.75). We

numerically maximized the Q-function from Eqs. (3.30) and (3.31) by the use of

the FMINCON module of the software package MATLAB. Due to the convergence

criterion the algorithm stopped after k = 285 iterations. The standard errors were

computed from the Duan and Fulop (2011) stable estimator of the information

matrix.2

2We used 500 particles and we considered l = 15 lags.
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All parameters are identified and significant at all conventional levels.3 Except

for the variance parameters σ2
ε and ι2, all other parameters are accurately estimated.

Moreover, the unrestricted estimates α̂, ψ̂ and π̂ satisfy the model constraints α
π
> 1

and 1−α
1−π < ψ.

Figure 5.4 about here

Figure 5.4 displays the true bubble process (dashed lines) and the filtered bubble

process obtained on the basis of parameter estimates from Table 5.1 and by using

the particle filter and the particle smoother (solid lines). In both cases we used

N = 500 particles. Obviously, the true bubble process is almost perfectly estimated

enabling us to perfectly identify all highly speculative periods, bursts and deflating

periods. It is remarkable that we are able to detect almost all movements of the

bubble component, although our new bubble specification is much more volatile

than the Evans bubble.

5.3.4 Real-world data

We use the same data set as described in Section 3.5.5. To recall, we consider real

prices and real dividends of four stock-price indices, namely the DAX, the S&P

500, the NASDAQ and the HSI for the period between January 1981 and February

2014. Each time series consists of 398 observations. The trajectories of the data are

displayed in Figure 3.6.

Table 5.2 about here

3In contrast to the estimation of the Evans model (cf. Section 3.5.3), all parameters are iden-
tified. This econometric improvement is due to our more parsimonious bubble specification.
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5.3.5 Estimation results

Table 5.2 contains the parameter estimates for the four stock-price indices. The

estimations were run with N = 300 particles and we used c = 1/300 for our conver-

gence criterion. In case of no convergence, the estimation was terminated after 500

iterations. An appropriate initial parameter vector θ0 for the EM algorithm was

chosen using the results of Chapter 3. In particular, for each stock index the initial-

ized value of the parameters φ, σ2
ε , ψ and ι2 were chosen close to the corresponding

estimates from Section 3.5.6. The starting values for π and α were chosen as 0.7 and

0.75. The EM algorithm stopped after k = 256 iterations for the DAX and after

k = 219 iterations for the HSI. For the NASDAQ and S&P 500 we terminated the

algorithm after k = 500 iterations.4

All parameters are identifiable and significant. The estimates satisfy the theo-

retical bubble constraints α
π
> 1 and 1−α

1−π < ψ implying two certain states. In state

1, the bubble grows at a higher mean rate than the required rate of return, while

the bubble deflates in state 2. The estimated discount factors are smaller than one

and imply a required rate of return of 0.89% on the DAX, 1.63% on the NASDAQ,

1.54% on the S&P 500 and 4.29% on the HSI. It follows from Eq. (2.6) and Eq.

(5.7) that all estimated bubbles are rational.

The bursting (deflating) probabilities (given by Pr(νt = 0) = 1 − π) are higher

for the DAX and the NASDAQ than for the S&P 500 and HSI implying that the

deflating state is more likely to realize for the first two indices than for the latter

two. The factor 1−α
(1−π)ψ , representing the mean rate of adjustment in case of a bubble

burst, is 0.1159 for the HSI indicating much more pronounced bursts for the HSI

4Although the parameters stopped changing substantially after a few hundred iterations, the
EM algorithm did not converge.
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than for the other indices. This result is further supported by the relatively high

estimated variance parameter ι̂2 of the lognormal error term. For the DAX and

NASDAQ the mean rates are equal to 0.7782 and 0.8155, respectively, indicating

more moderate adjustments. The mean rate of 0.5626 for the S&P 500 points to an

intermediate bubble adjustment. We conclude that a bubble burst or deflating is

likely to occur more frequently for the DAX and NASDAQ. However, if the bubble

bursts, the adjustments tend to be extreme for the HSI, whereas for the DAX,

NASDAQ and S&P 500 the bubbles deflate with a moderate mean rate.

Figure 5.5 about here

Figure 5.5 displays the estimated bubble components of the four price indices

extracted by the particle smoother (with N = 500 particles) and the corresponding

fundamental processes of the four indices. As in Chapter 3, our bubble paths still

evolve in accordance with the corresponding stock-price paths. However, the dy-

namic relationship between bubble and stock-price values appears to have decreased

considerably since the fundamental processes have become more important than

under the Evans bubble. This increased importance of the fundamental process is

reflected by the estimates φ̂ which are larger now than under the Evans bubble.

The bubble processes for the DAX, NASDAQ and S&P 500 in Figure 5.5 all

exhibit two extensively deflating periods, namely (a) during the new-economy crisis

(2000-2003), and (b) during the subprime mortgage and credit crisis (2007-2008).

We further find moderate adjustment phases (lasting one or two months) for the

DAX in the aftermath of the Black Monday (October 1987). Although our bubble

trajectories exhibit several bursts, they never deflate completely and restart from

different values. The HSI bubble process exhibits several pronounced peaks. How-
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ever, the adjustment phases of the HSI bubble are typically more pronounced and

shortly lived. Apart from the deflating period between the end of 2000 and mid-

2003, the bubble always deflate within a few months. Moreover, the HSI bubble

peaks often deflate almost completely and the bubble restart to emerge from values

near zero.

Figure 5.6 about here

Figure 5.6 displays the ratios of the filtered bubble components and correspond-

ing the stock-price series. In January 1981 40% of the DAX value could be attributed

to a bubble component, whereas for the NASDAQ and S&P 500 the ratio was near

zero but growing to approximately 70% for the NASDAQ and 44% for the S&P 500

in the run-up to the Black Monday (October 1987). For these three indices, the

ratios peaked at the beginning of the new-economy crisis. In particular the DAX

ratio peaked in February 2000 (84%), the NASDAQ ratio in September 2000 (94%)

and the S&P 500 ratio in August 2000 (74%). Compared to these three indices,

the HSI ratio remains relatively small and ranges between 0% and 60%, but shows

several pronounced adjustments during the observation period.

Figure 5.7 about here

Table 5.3 about here

5.3.6 Model diagnostics

We now use the goodness-of-fit tests from Section 3.5.4 to check how well our new

bubble specification fits the real-world data. Figure 5.7 displays the respective cdfs
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of the PITs for the four stock indices considered. The corresponding confidence

intervals were computed using the critical value at the 5% level of the KS test

(0.6808). Obviously, the cdfs of the PITs are all close to the 45-degree line. For the

DAX and the NASDAQ the KS test indicates no significant differences of the PITs

from the U(0,1) distribution at the 10% level (see Table 5.3). However, for the S&P

500 and HSI indices there are significant deviations from the U(0,1) distribution at

the 5% and 1% levels, respectively. Evidently, the i.i.d. assumption is violated for

all four indices as indicated by the LB tests displayed in Table 5.3. The diagnostic

tests seem to indicate some kind of misspecification of our new bubble process when

fitted to real-world data.

5.4 Volatility analysis

Finally, we analyze the theoretical (conditional) stock-price volatility within the

present-value framework when including our new periodic, stochastically deflating

bubble. The aim of this section is to compare the theoretical stock-price volatility

induced by our new bubble specification with the volatility structure induced by the

Evans bubble as described in Chapter 4.

5.4.1 Conditional stock-price volatility

Following the lines of Chapter 4, it is straightforward to find the variance of the

stock price Pt conditional on all information available to market participants as of

date t − 1. In the present-value model with rational expectations, this conditional

stock-price variance is generally given by

Vart−1(Pt) = Vart−1(Bt) + β2σ2, (5.12)
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where εt is an i.i.d. Gaussian white-noise process with mean zero and variance σ2

and β = 1/r.5 In contrast to Chapter 4, we now specify the bubble term Bt in Eq.

(5.12) as our new bubble model given in Eq. (5.5).

To obtain a closed-form volatility formula of the stock price, we have to find an

analytic expression for Vart−1(Bt) in Eq. (5.12). Using the distribution result from

Eq. (5.11), we have

Vart−1(Bt) = Vart−1
(( α

ψπ
− 1− α
ψ(1− π)

)
Bt−1νtut +

( 1− α
ψ(1− π)

)
Bt−1ut

)
=

(
αBt−1

ψπ
− (1− α)Bt−1

ψ(1− π)

)2

· Vart−1(νtut) (5.13)

+

(
(1− α)Bt−1

ψ(1− π)

)2

· Vart−1(ut)

+2

(
α

ψπ
− 1− α
ψ(1− π)

)
·
(

1− α
ψ(1− π)

)
·B2

t−1 · Covt−1(ut, νtut).

The conditional covariance Covt−1(ut, νtut) and the conditional variances

Vart−1(ut) and Vart−1(νtut) can be computed from the distributional assumptions

on the error terms ut and νt. Overall, we obtain

Vart−1(Bt) =

(
αBt−1

ψπ
− (1− α)Bt−1

ψ(1− π)

)2

·
(
exp{ι2}π − π2

)
+

(
(1− α)Bt−1

ψ(1− π)

)2

·
(
exp{ι2} − 1

)
+2

(
(α− π)(1− a)

ψ2π(1− π)2

)
B2
t−1 ·

[
π
(
exp

{
ι2
}
− 1
)]
. (5.14)

Finally, inserting Eq. (5.14) into Eq. (5.12), the conditional stock-price variance

is given by

Vart−1(Pt) =

(
(α− π)2

ψπ(1− π)2

)
·
(
exp{ι2} − π

)
B2
t−1

5For a detailed derivation see Section 4.2.



104

+

(
(1− α)2 + 2(α− π)(1− α)

ψ2(1− π)2

)
·
(
exp{ι2} − 1

)
B2
t−1

+β2σ2. (5.15)

5.4.2 Volatility dynamics

Similar to the results from Chapter 4, we conclude from Eq. (5.15) that the presence

of the new bubble type necessarily increases stock-price volatility as long as the

parameter constraints 0 < α, π < 1 and α
π
> 1 are satisfied. This may be confirmed

analytically by considering the derivative

∂Vart−1(Pt)
∂Bt−1

= Bt−1 ·
[(

2(α− π)2

ψπ(1− π)2

)
·
(
exp{ι2} − π

)
+

(
2(1− α)2 + 4(α− π)(1− α)

ψ2(1− π)2

)
·
(
exp{ι2} − 1

)]
. (5.16)

Since α, π < 1 and α > π, this derivative indicates a strictly positive relationship

between the infinitesimal change in stock-price volatility and Bt−1. Furthermore,

the conditional stock-price variance given in Eq. (5.15) is a function of Bt−1 so

that stock-price volatility collapses one period after the burst of the bubble. As

a result, we find that our new periodic, stochastically deflating bubble entails the

same relationship between the bubble component and stock-price volatility as the

Evans bubble.

To get further insights into the volatility dynamics, we compute a concrete

volatility path generated by Eq. (5.15). As in Chapter 4, we consider the stock-

price equation (4.4) with β = 1/r = 50, and assume that dividends follow a driftless

random walk with variance σ2 = 0.0009. As the bubble component we use the

stochastically deflating bubble displayed in Figure 5.3 with parameters ψ = 0.9804,

ι2 = 0.02, π = 0.87 and α = 0.91. Furthermore, we assume this latent bubble
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process to be known, so that it is directly included in the associated information set

Ω of Vart−1(Pt).6

Figure 5.8 about here

Figure 5.8 displays the conditional stock-price variance (solid line) along with

the new bubble process (dashed line). First, we note that the more realistic deflating

behavior directly transfers to the volatility process. Second, in line with the results

from above, the stock-price volatility process attains its maximal values when Bt−1

takes on its largest values which typically occurs on the eve of the bubble crash.

Third, stock-price volatility starts to deflate one period after the bubble, which is

visible for the three bubble peaks (thin lines). Finally, there is a time delay between

an increase in the variance process and an increase in the bubble process. However,

this delay is not as substantial as in the Evans-bubble process.

Overall, stock-price volatility dynamics under a periodic, stochastically deflating

bubble is in line with the volatility results established in Chapter 4 under the Evans

bubble. We find the same theoretical characteristics of the conditional stock-price

variance implying that the volatility dynamics is still consistent with that described

by Brunnermeier and Oehmke (2013) and the Minsky model.

5.5 Conclusion

In this chapter we establish a new parametric specification for rational bubbles, the

so-called periodic, stochastically deflating bubble. This model is a combination of

6We show in Sections 4.3.2 and 5.3.3 that the particle-filter methods enable us to estimate the
latent bubble process from the data. However, in this section we use the simulated bubble process
directly and refrain from any further estimation.
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the well-known Evans (1991) bubble and the incompletely bursting bubble model

proposed by Fukuta (1998). Our new model incorporates all properties of the famous

Evans bubble, but is empirically more plausible. In contrast to the Evans bubble,

our specification allows the bubble to deflate over more than one period and to

restart from different stock-price values at the end of the adjustment process.

In the empirical part of this chapter we estimate our new bubble specification

by particle-filter techniques within a state-space framework using artificial as well

as real-word stock-price and dividend data. In contrast to Evans’ model, all pa-

rameters of our bubble specification are empirically identifiable by our estimation

methodology. The estimation results for the real-world stock-price indices explicitly

indicate the presence of a periodic and stochastically deflating bubble in the data.

Diagnostic specifications based on the PIT approach proposed by Diebold et al.

affirm a good distributional fit of the bubble specification to the data. However,

there are still some specification shortcomings (like existing autocorrelation among

the PITs) that have to be overcome in future research.
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Figure 5.1: NASDAQ stock-market index, January 1990 - October 2013.
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Figure 5.2: Simulated stochastically growing and deflating bubble trajectories ac-

cording to Eq. (5.5).
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Simulated stock-price process
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Figure 5.3: Stock-price process and included periodic, stochastically deflating bub-

ble.
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Particle-filter estimation
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Figure 5.4: Estimated bubble process (solid lines) vs. true bubble process (dashed

lines).
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Figure 5.5: Estimated periodic, stochastically deflating bubble processes (solid lines)

and the fundamental processes (dashed lines) for the DAX, NASDAQ, S&P 500 and

HSI.
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Figure 5.6: Ratios of the periodic, stochastically deflating bubble components and

the stock-price series for the DAX, NASDAQ, S&P 500 and HSI.
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Figure 5.7: Cdfs of the PITs for the DAX, NASDAQ, S&P 500 and HSI. True cdfs

and 5% confidence intervals are represented by dashed lines.



114

0

40

80

120

160

200

240

280

320

25 50 75 100 125 150 175 200 225 250

Figure 5.8: Conditional stock-price variance (solid line) and periodic, stochastically

deflating bubble process (dashed line).
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Tables

Parameter True Estimate Standard error

φ 50.0000 49.8220 0.5112

σ2
ε 1.5000 1.6839 0.2072

ψ 0.9804 0.9698 1.6239 × 10−4

ι2 0.0200 0.0231 6.2637 × 10−5

π 0.8700 0.8917 0.0073

α 0.9100 0.9255 0.0044

Table 5.1: Parameter estimates using the EM algorithm.
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Parameter DAX NASDAQ S&P 500 HSI

φ 13.3782 29.9531 20.2057 23.0731

(0.0308) (0.0324) (0.0037) (0.0101)

σ2
ε 0.1277 0.4476 1.3530 3.1976

(3.3094 × 10−4) (0.0014) (0.0033) (0.0109)

ψ 0.9912 0.9840 0.9848 0.9589

(2.0210 × 10−5) (1.7480 × 10−5) (9.8682 × 10−6) (1.8464 × 10−4)

ι2 0.0047 0.0061 0.0036 0.0414

(2.2588 × 10−7) (7.6905 × 10−7) (6.7574 × 10−8) (5.5004 × 10−5)

π 0.9484 0.9595 0.9926 0.9865

(2.2129 × 10−4) (0.0011) (3.7926 × 10−5) (6.2247 × 10−5)

α 0.9602 0.9675 0.9959 0.9985

(1.4712 × 10−4) (8.6242× 10−4) (1.3766 × 10−5) (9.0434 × 10−7)

α
π

1.0124 1.0083 1.0033 1.0122

1−α
1−π 0.7713 0.8024 0.5540 0.1111

Table 5.2: Results of the parameter estimation for the DAX, NASDAQ, S&P 500

and HSI. Standard errors are in parentheses.
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Test statistic DAX NASDAQ S&P 500 HSI

KS test 0.0394 0.0560 0.0708** 0.0998***

LB test 31.6201** 86.6006*** 385.4446*** 335.5379***

Table 5.3: KS tests and LB tests on the PITs of the DAX, NASDAQ, S&P 500 and

HSI. ***, **, * denote statistical significance at 1%, 5% and 10% levels, respectively.
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Chapter 6

Summary and outlook

This thesis extends the existing theoretical and empirical literature on speculative

stock-price bubbles as follows. First, based on the concept on rational expectations,

an economic model is provided enabling the econometrician to directly estimate the

specifications of nonlinear rational bubbles from stock-price data. The framework

is established in a nonlinear state-space form where the bubble component is inter-

preted as the latent variable. For parameter estimation and estimation of the latent

bubble component particle-filter methods are used. Second, this thesis analyzes

stock-price volatility within the present-value framework when including rational

bubbles. Third, this thesis establishes an alternative parametric specification for

rational bubbles that is closely related to economic theory and to financial data.

Chapter 3 presents the economic nonlinear state-space model consisting of a

stock’s fundamental value and a latent bubble component described by the well-

known periodically collapsing bubble specification proposed by Evans (1991). The

model is not log-linearized and provides a clear-cut relationship between the stock-

price, its fundamental value and the bubble that follows directly from the standard

present-value model. A simulation study reveals a parameter identification problem,

but demonstrates that the proposed estimation procedure is capable of identifying



119

the nonlinear state-space specification and the latent bubble process. The econo-

metric procedure is applied to a real-world data set consisting of real stock-prices

and dividends for the DAX, the S&P 500, the NASDAQ and the HIS. For all indices

the estimation results indicate the presence of rational bubbles, but there is only

evidence in favor of an explicit Evans bubble for the HSI. However, a goodness-of-fit

test reveals some misspecifications of the economic model. Although the model is

consistent with asset-pricing theory, one reason may be the use of the Evans-bubble

specification as this model fails in modeling a realistic collapsing behavior.

Chapter 4 analyzes stock-price volatility in the presence of periodically collapsing

Evans bubbles. Based on a present-value stock-price model a closed-form volatility

formula is derived establishing a link between the Evans bubble and stock-price

volatility. In a simulation study the econometric procedure presented in Chapter 3

is used to demonstrate how to fit the volatility formula to stock-market data. The

major findings are that (a) Evans bubbles entail excess stock-price volatility, and

(b) the model produces stock-price volatility paths that are broadly consistent with

empirically observed volatility structures in the run-up to financial crises and the

burst of a bubble.

Chapter 5 establishes a periodic and stochastically deflating bubble model. This

new specification of rational bubbles is more parsimonious than the Evans bubble,

empirically more plausible and allows the bubble to deflate stochastically over more

than one period. The new bubble specification is estimated by particle-filter meth-

ods within a state-space framework (as presented in Chapter 3) using artificial as

well as real-word data. A simulation study demonstrates the empirical identifiabil-

ity of all model parameters. The estimation results for the real-world stock-price

indices explicitly indicate the presence of a periodic, stochastically deflating bubble
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in the data. A goodness-of-fit test affirms a good distributional fit of the bubble

specification to the data, but also reveals some specification shortcomings. Finally,

the theoretical stock-price volatility in the presence of the new periodic, stochasti-

cally deflating bubble is analyzed and the results are found to be in line with the

volatility results established in Chapter 4 under the Evans bubble.

Based on these results, there are some interesting directions for future research.

Irrespective of the explicit nonlinear rational bubble specification, the empirical

applications of the economic framework may be interpreted to indicate some mis-

specifications. An explanation might be the simply structured fundamental value.

In order to gain a further improved model fit, it could be useful to modify this

fundamental value. To accomplish this, the challenge will be a realistic modeling of

the fundamental value that is (a) based on observable variables, and (b) consistent

with the rational-expectation model.

A further line of future research is the application of the economic nonlinear

state-space model with periodic, stochastically deflating bubbles to other markets,

like currency and commodity markets. As long as there exists an economic model

describing a theoretical link between the asset price, its fundamental value and the

latent bubble component, the model can be represented in a nonlinear state-space

form and the latent bubble process can be estimated by particle-filter methods.

Finally, the results obtained in this thesis can be used to extend some previous

empirical work on rational bubbles. For instance the work by Brooks and Katsaris

(2005), describing the dynamics of stock-market returns, can be extended by incor-

porating an estimated latent Evans-bubble process. It could also be interesting to

evaluate the power of frequently used bubble tests, like the sequential unit root tests
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in Phillips et al. (2011) and Homm and Breitung (2012), in view of the empirically

more plausible new periodic and stochastically deflating bubble process.
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Appendix

Programming codes for Chapter 3

In the following we provide the MATLAB-Code for the identification and estimation

of our economic nonlinear state-space model as introduced in Chapter 3. The main

file main_chapter3.m starts with the programming code for the simulation study of

the economic model with periodically collapsing Evans bubbles. After this, the file

gives the general programming code for the particle based EM algorithm to identify

the nonlinear state-space model. At the end, the main file includes the general

programming codes for evaluating the estimation results, that is the estimation of

the latent Evans-bubble process, the computation of the standard errors and the

goodness-of-fit tests.

At first we give the programming code of the main file. After that, the other

m-files needed are given in the order of their occurrence in the main file. The codes

for the EM algorithm via particle-filter methods are based on the descriptions in

Schön et al. (2011).

main_chapter3.m

%%%%% Main script - Chapter 3

%%%%% Simulate data for the nonlinear state-space model

% Number of data.

T = 250;

% Parameter setting for the nonlinear state-space model.

% Set the required rate of return.

r = 0.02;
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% Set the parameter of the observation equation.

m.phi = 50;

m.sig2 = 1.2;

% Set the parameter of the Evans model (state equation).

m.psi = 1/(1+r);

m.iota2 = 0.001;

m.kappa = 1.1;

m.p = 0.98;

m.tau = 2;

% Dividend process (driftless random walk with sd 0.03).

D = zeros(1,T); noise = randn(1,T);

% Set the starting value.

D(1)=0.3;

% Simulate data of the dividend process.

for t=1:(T-1)

D(t+1) = D(t) + 0.03*noise(t);

end;

% Evans-bubble process.

Bt = zeros(1,T); y = randn(1,T); nu = binornd(1,m.p,1,T);

% Set the starting value.

Bt(1) = 0.5;

% Simulate data of the Evans bubble.

for t=1:T-1

if Bt(t) <= m.tau

Bt(t+1) = (1/m.psi)*Bt(t)*exp(sqrt(m.iota2)*y(t)-(0.5*m.iota2));

else

Bt(t+1) = (m.kappa +(1/(m.p*m.psi))*(Bt(t)-(m.kappa*m.psi)).*...

nu(t)).*exp(sqrt(m.iota2)*y(t)-(0.5*m.iota2));

end;

end;
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% Calculate the stock-price process.

varepsilon = randn(1,T);

P = m.phi*D + Bt + sqrt(m.sig2)*varepsilon;

% Save the data in the structure array z.

z.P = P;

z.D = D;

z.BTrue = Bt(1:T);

%%%%% Parameter estimation

%%%%% EM algorithm using the particle filter and particle smoother

% We need the data set given in the structure array z. For the

% artificial and real-world data sets, read the (real) prices and

% (real) dividends from the corresponding Excel file and save the

% prices as z.P and dividends as z.D in the structure array z.

% Set max. number of iterations, if no convergence criterion is used!

% opt.maximumiter = 500;

% Set the number of particles for the EM algorithm.

N = 300;

% Set the parameter vector theta_0 to initiate the EM algorithm.

phi0 = 20;

sig20 = 0.5;

psi0 = 0.8;

iota20 = 0.005;

kappa0 = 0.5;

p0 = 0.8;

theta0 = [phi0 sqrt(sig20) psi0 sqrt(iota20) kappa0 p0];

% Define the vector for the parameter estimates.

mEst = m;

mEst.phi = theta0(1);

mEst.sig2 = theta0(2)^2;

mEst.psi = theta0(3);
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mEst.iota2 = theta0(4)^2;

mEst.kappa = theta0(5);

mEst.p = theta0(6);

% Owing to an identification problem, we refrained from estimating

% the parameter tau, so we set tau fixed.

mEst.tau = 2; % !Change tau here!

% Store the iterates.

theta = theta0;

theta_k(1,1:6) = theta0;

mEst_k(1)= mEst;

crit_value(1) = 1;

% Set constraints on the parameter vector.

lb = [0.000001,0.000001,0.5,0.000001,0.000001,0.000001];

ub = [250,8,0.999999,5,mEst.tau,0.999999];

% Define some optimization conditions.

options = optimset(’Algorithm’,’active-set’,’Display’,’off’,...

’TolFun’,1e-6,’TolX’,1e-5);

% Fix the random generator to start each iteration with the same

% random numbers. This helps to minimize some random effects of

% the Monte Carlo approach.

stream = RandStream.getGlobalStream;

% General Setting: savedState = stream.State;

% To reproduce the results use this random number stream.

savedState = uint32(xlsread(’savedState’));

% Use loop if no termination condition is used!

% for k = 1:opt.maximumiter

% Or define the convergence criterion.

c = 1/(N);
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%%% Start of the EM algorithm.

k = 2;

while (crit_value(k-1) > c)

% Set the random stream in each iteration k.

stream.State = savedState;

% Run the particle filter and particle smoother to obtain

% particles from the sequential importance sampling and the

% corresponding smoothed weights.

%%% Expectation step at iteration k.

% Run the particle filter.

PF = particle_filter3(mEst,N,z);

% Run the particle smoother.

PS = particle_smoother3(mEst,N,PF);

% Calculate the Q-function subject to theta_k.

Q_value_k_k = -(Q3_theta_k(theta,mEst,PF.xPWeighted,PS.wij,...

PS.wT,z.P,z.D));

%%% Maximization step at iteration k.

% Maximize the Q-function subject to theta and obtain theta_k+1.

[theta,Qval] = fmincon(’Q3_theta_k’,theta,[],[],[],[],lb,ub,[],...

options,m.Est,PF.xPWeighted,PS.wij,PS.wT,z.P,z.D);

% Calculate the Q-function subject to theta_k+1.

Q_value_k_k1 = -Qval;

% Store the parameter estimates in iteration k.

mEst.phi = theta(1);

mEst.sig2 = theta(2)^2;

mEst.psi = theta(3);

mEst.iota2 = theta(4)^2;

mEst.kappa = theta(5);

mEst.p = theta(6);

% Store the iterates.

theta_k(k,1:6)= theta;

mEst_k(k) = mEst;

% Compute critical value to check the convergence criterion.
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crit_value(k) = Q_value_k_k1-Q_value_k_k;

% Print the parameter estimates.

disp([’Iteration nr: ’ num2str((k-1))...

’ Estimates, phi: ’ num2str(mEst.phi),...

’ sig2: ’,num2str(mEst.sig2),’ psi: ’,num2str(mEst.psi),...

’ iota2: ’,num2str(mEst.iota2),...

’ kappa: ’,num2str(mEst.kappa),...

’ p: ’,num2str(mEst.p),’ tau: ’,num2str(mEst.tau)])

% If crit_value(k) > c: k is updated to k+1 and a new iteration

% is conducted.

k = k+1;

end

%%%%% Evaluating the estimation results

% Fix the random generator to reproduce the results.

stream = RandStream.getGlobalStream;

savedState = uint32(xlsread(’savedState’));

stream.State = savedState;

%%% Estimation of the latent Evans-bubble process

% Set number of particles.

N=500;

% Use the estimated parameter set.

mEst = mEst_k(k-1);

% Compute the particles and smoothed weights.

% Run the particle filter.

PF = particle_filter3(mEst,N,z);

% Run the particle smoother.

PS = particle_smoother3(mEst,N,PF);

% Compute the smoothed states.

for t=1:T

xs(t) = sum(PS.wT(t,:).*PF.xPWeighted(t,:));

end;
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%%% Standard errors

% Compute the standard errors of the parameter estimates by the use

% of the stable estimator of the information matrix established by

% Duan and Fulop (2011).

standard_error3(PF.xPWeighted,PS.wT,PS.wij,z.P,z.D,mEst,N)

%%% Goodness-of-fit test

% Compute the PITs and the corresponding empirical cdf.

pit = forecast_density(PF,mEst,z);

[cdf_pit]=ecdf(pit);

% KS-test.

% Simulate 1 million uniforms.

r_unif = unifrnd(0,1,1000000,1);

% Compare these uniforms with the PITs by using a KS-Test.

[h,pValue,ks_stat] = kstest2(r_unif,pit)

% LB-test.

[h,pValue,lb_stat,cValue] = lbqtest(pit)
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particle_filter3.m

%%% Particle filter

function pf = particle_filter3(m,N,z)

P = z.P;

D = z.D;

T = size(P,2);

xf = zeros(1,size(P,2));

xPWeighted = zeros(T,N);

xPResampled = zeros(T,N);

wt = zeros(T,N);

% 1. Initialize particles.

% Initial state unknown, assumed to be a positive random variable.

B = exp(sqrt(0.2)*randn(1,N)-(2*0.2));

% 2. Run the particle filter.

for t=1:T

% Compute the weights.

w = exp((-0.5/m.sig2)*((repmat(P(t),1,N) -...

m.phi.*(repmat(D(t),1,N)) - B).^2));

w(w==0) = exp(-745);

w = w/sum(w);

% Save the particles and corresponding weights.

xPWeighted(t,:) = B;

wt(t,:) = w;

% Compute state estimate, see Eq. (3.13).

xf(t) = sum(w.*B);

% Resample the particles.

index = sysresample(w);

B = B(index);

xPResampled(t,:) = B;

% Sequential importance sampling, which produces

% new particles for t+1.

idx1 = find(B <= m.tau);
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idx2 = find(B > m.tau);

B(idx1) = (1/m.psi)*B(idx1).*exp(sqrt(m.iota2)*...

randn(1,length(idx1))-(0.5*m.iota2));

B(idx2) = (m.kappa+(1/((m.p)*m.psi))*(B(idx2)-(m.kappa*...

m.psi)).*binornd(1,(m.p),1,length(idx2))).*...

exp(sqrt(m.iota2)*randn(1,length(idx2))-...

(0.5*m.iota2));

end;

pf.Xf = xf;

pf.xPWeighted = xPWeighted;

pf.xPResampled = xPResampled;

pf.w = wt;

end

sysresample.m

% Systematic Resampling of the particles.

function i=sysresample(q)

qc = cumsum(q);

M = length(q);

u = ([0:M-1]+rand(1))/M;

i = zeros(1,M);

k = 1;

for j = 1:M

while (qc(k)<u(j))

k = k+1;

end

i(j) = k;

end

end
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particle_smoother3.m

%%% Particle smoother

function ps = particle_smoother3(m,N,PF)

T = size(PF.xPWeighted,1);

wT = zeros(T,N);

kk = ones(1,N);

% 1. Set the smoothed weights in T.

wT(T,:) = PF.w(T,:);

% 2. Run the particle smoother.

for t = T-1:-1:1

p_xt1_xt = zeros(N,N);

% Use the computed particles in t and t+1 form

% sequential importance sampling.

xt = PF.xPWeighted(t,:);

xt1 = PF.xPWeighted(t+1,:);

idx1 = find(xt <= m.tau);

idx2 = find(xt > m.tau);

xti1 = repmat(xt(idx1),N,1)’;

xti2 = repmat(xt(idx2),N,1)’;

% Compute the density of all possible particle combinations.

p_xt1_xt(idx2,:) = (m.p)*lognpdf(repmat(xt1,length(idx2),1),...

(-(m.iota2/2) + log(m.kappa+(1/(m.p*m.psi))*...

(xti2-m.kappa*m.psi))),sqrt(m.iota2))+...

(1-(m.p))*lognpdf(repmat(xt1,length(idx2),1),...

(-(m.iota2/2) + log(m.kappa)),sqrt(m.iota2));

p_xt1_xt(idx1,:) = lognpdf(repmat(xt1,length(idx1),1),...

(-(m.iota2/2)+log((1/m.psi)*xti1)),sqrt(m.iota2));

% Compute the (normalized) smoothed weights in Eq.(3.20).

% 1. Compute the denominator of the summand in Eq. (3.20).

vk = PF.w(t,:)*p_xt1_xt;

% Set all weighted densities which are approx. zero on minimal
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% positive value to ensure numerical stability in the next step.

vk(vk==0) = exp(-745);

% 2. Compute the complete sum in Eq. (3.20).

wij(:,:,t) = (repmat(PF.w(t,:),N,1)’.*repmat(wT(t+1,:),N,1).*...

p_xt1_xt)./repmat(vk,N,1);

k = (repmat(wT(t+1,:),N,1).*p_xt1_xt)./repmat(vk,N,1);

sk = k*kk’;

% 3. Compute Eq.(3.20).

wT(t,:) = PF.w(t,:).*sk’;

end;

ps.wT = wT;

ps.wij = wij;

end

Q3_theta_k.m

function Qfun = Q3_theta_k(theta,mEst,xPWeighted,wij,wT,P,D)

% Parameter for maximizing.

phi = theta(1);

sig2 = theta(2);

psi = theta(3);

iota2 = theta(4);

kappa = theta(5);

p = theta(6);

% Sample size.

T = size(xPWeighted,1);

% Number of particles.

N = size(xPWeighted,2);

Qfun3 = 0;

Qfun2 = 0;

kk = ones(1,N);
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% Compute the second term of the approximated Q-function given in

% Eq.(3.30).

for t=1:T-1

p_xt1_xt_k = zeros(N,N);

xt = xPWeighted(t,:);

xt1 = xPWeighted(t+1,:);

idx1 = find(xt <= mEst.tau);

idx2 = find(xt > mEst.tau);

xti1 = repmat(xt(idx1),N,1)’;

xti2 = repmat(xt(idx2),N,1)’;

p_xt1_xt_k(idx2,:) = (p)*lognpdf(repmat(xt1,length(idx2),1),...

(-(iota2^2/2)+log(kappa+(1/(p*psi))*...

(xti2-kappa*psi))),sqrt(iota2^2))+...

(1-(p))*lognpdf(repmat(xt1,length(idx2),1),...

(-(iota2^2/2) + log(kappa)),sqrt(iota2^2));

p_xt1_xt_k(idx1,:) = lognpdf(repmat(xt1,length(idx1),1),...

(-(iota2^2/2)+log((1/psi)*xti1)),sqrt(iota2^2));

log_p_xt1_xt_k = log(p_xt1_xt_k);

% To ensure numerical stability (20 times the computer tolerance).

log_p_xt1_xt_k(log_p_xt1_xt_k == -Inf)= -15000;

wij_p = sum((wij(:,:,t).*(log_p_xt1_xt_k))*kk’);

Qfun2 = Qfun2 + wij_p;

end;

% Compute the third term of the approximated Q-function given in

% Eq.(3.30).

for t=1:T

p_yt_xt = -(1/2)*log(sig2^2)-(1/(2*sig2^2))*(P(t)-phi*D(t)-...

xPWeighted(t,:)).^2 ;

Qfun3 = Qfun3 + wT(t,:)*p_yt_xt’;

end;

Qfun = Qfun3 + Qfun2 ;% Qfun1 is neglected.

Qfun = -Qfun;

end
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standard_error3.m

function SE = standard_error3(xPWeighted,wT,wij,P,D,m,N)

T = size(xPWeighted,1);

kk = ones(1,N);

f11 = zeros(6,T);

% Compute the second term of the score of the observed-data

% log-likelihood function given in Eq. (3.40).

for t = 2:T

xt = xPWeighted(t-1,:);

xt1 = xPWeighted(t,:);

idx1 = find(xt <= m.tau);

idx2 = find(xt > m.tau);

xti1 = repmat(xt(idx1),N,1)’;

xti2 = repmat(xt(idx2),N,1)’;

f3a = zeros(N,N);

f4a = zeros(N,N);

f5a = zeros(N,N);

f6a = zeros(N,N);

f1 = zeros(6,1);

% Compute the first derivatives of the joint log-likelihood

% function with respect to theta for all N paths. We compute these

% first derivatives with the mathematical software "Maple".

% First derivatives with respect to phi and sig2 do not dependent

% on the latent bubble (particles).

% First derivative with respect to phi.

f1a = (P(t)-m.phi.*D(t)-xt1).*D(t)./m.sig2 ;

% First derivative with respect to sig2.

f2a = -0.5.*(-m.phi.^2.*D(t).^2+2.*D(t).*((-xt1)+P(t)).*m.phi-...

P(t).^2-(xt1).^2+2.*P(t).*(xt1)+m.sig2)./(sqrt(m.sig2).*...

sqrt(m.sig2.^3));

% Case 1: particles are smaller than tau.
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% First derivative with respect to psi.

f3a(idx1,:) = -(log(repmat(xt1,length(idx1),1))+(1./2).*m.iota2-...

log(xti1./m.psi))./(m.iota2.*m.psi);

% First derivative with respect to iota2

f4a(idx1,:) = (((0.5).*(-(0.5).*(log(repmat(xt1,length(idx1),1))+...

(1./2).*m.iota2-log(xti1./m.psi))./m.iota2+(1./2).*...

(log(repmat(xt1,length(idx1),1))+(1./2).*m.iota2-...

log(xti1./m.psi)).^2./m.iota2.^2).*exp(-(1./2).*...

(log(repmat(xt1,length(idx1),1))+(1./2).*m.iota2-...

log(xti1./m.psi)).^2./m.iota2).*sqrt(2)./sqrt(pi.*...

m.iota2.*repmat(xt1,length(idx1),1).^2)-(1./4).*...

exp(-(1./2).*(log(repmat(xt1,length(idx1),1))+(1./2).*...

m.iota2-log(xti1./m.psi)).^2./m.iota2).*sqrt(2).*pi.*...

repmat(xt1,length(idx1),1).^2./(pi.*m.iota2.*...

repmat(xt1,length(idx1),1).^2).^(3./2)).*sqrt(2).*...

sqrt(pi.*m.iota2.*repmat(xt1,length(idx1),1).^2))./...

(exp(-(1./2).*(log(repmat(xt1,length(idx1),1))+...

(1./2).*m.iota2-log(xti1./m.psi)).^2./m.iota2));

% First derivative with respect to kappa.

f5a(idx1,:) = 0;

% First derivative with respect to p.

f6a(idx1,:) = 0;

% Case 2: particles are bigger than tau.

% First derivative with respect to psi.

f3a(idx2,:) = (1./(m.p.*exp(-(log(repmat(xt1,length(idx2),1))+......

(1./2).*m.iota2-log(m.kappa+(xti2-m.kappa.*m.psi)./...

(m.psi.*m.p))).^2./(2.*m.iota2))./sqrt(2.*pi.*...

m.iota2.*repmat(xt1,length(idx2),1).^2)+(1-m.p).*...

exp(-(log(repmat(xt1,length(idx2),1))+(1./2).*m.iota2-...

log(m.kappa)).^2./(2.*m.iota2))./sqrt(2.*pi.*m.iota2.*...

repmat(xt1,length(idx2),1).^2))).*(0.5.*(m.p.*...

(log(repmat(xt1,length(idx2),1))+(1./2).*m.iota2-...

log(m.kappa+(xti2-m.kappa.*m.psi)./(m.psi.*m.p))).*...
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(-(xti2-m.kappa.*m.psi)./(m.psi.^2.*m.p)-m.kappa./...

(m.psi.*m.p)).*exp(-(1./2).*...

(log(repmat(xt1,length(idx2),1))+(1./2).*m.iota2-...

log(m.kappa+(xti2-m.kappa.*m.psi)./(m.psi.*m.p))).^2./...

m.iota2).*sqrt(2))./(m.iota2.*(m.kappa+(xti2-m.kappa.*...

m.psi)./(m.psi.*m.p)).*sqrt(pi.*m.iota2.*...

repmat(xt1,length(idx2),1).^2)));

% First derivative with respect to iota2.

f4a(idx2,:) = (1./(m.p.*exp(-(log(repmat(xt1,length(idx2),1))+...

(1./2).*m.iota2-log(m.kappa+(xti2-m.kappa.*m.psi)./...

(m.psi.*m.p))).^2./(2.*m.iota2))./sqrt(2.*pi.*...

m.iota2.*repmat(xt1,length(idx2),1).^2)+(1-m.p).*...

exp(-(log(repmat(xt1,length(idx2),1))+(0.5).*...

m.iota2-log(m.kappa)).^2./(2.*m.iota2))./sqrt(2.*...

pi.*m.iota2.*repmat(xt1,length(idx2),1).^2))).*...

(0.5.*(m.p.*(-(0.5).*(log(repmat(xt1,length(idx2)...

,1))+(1./2).*m.iota2-log(m.kappa+(xti2-m.kappa.*...

m.psi)./(m.psi.*m.p)))./m.iota2+(1./2).*...

(log(repmat(xt1,length(idx2),1))+(1./...

2).*m.iota2-log(m.kappa+(xti2-m.kappa.*m.psi)./...

(m.psi.*m.p))).^2./m.iota2.^2).*exp(-(1./2).*...

(log(repmat(xt1,length(idx2),1))+(1./2).*m.iota2-...

log(m.kappa+(xti2-m.kappa.*m.psi)./(m.psi.*...

m.p))).^2./m.iota2).*sqrt(2))./(sqrt(pi.*m.iota2.*...

repmat(xt1,length(idx2),1).^2))-0.25.*(m.p.*...

exp(-(1./2).*(log(repmat(xt1,length(idx2),1))+...

(1./2).*m.iota2-log(m.kappa+(xti2-m.kappa.*m.psi)./...

(m.psi.*m.p))).^2./m.iota2).*sqrt(2).*pi.*...

repmat(xt1,length(idx2),1).^2)./((pi.*m.iota2.*...

repmat(xt1,length(idx2),1).^2).^(3./2))+0.5.*((1-...

m.p).*(-(1./2).*(log(repmat(xt1,length(idx2),1))+...

(1./2).*m.iota2-log(m.kappa))./m.iota2+(1./2).*...

(log(repmat(xt1,length(idx2),1))+(1./2).*m.iota2-...
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log(m.kappa)).^2./m.iota2.^2).*exp(-(1./2).*...

(log(repmat(xt1,length(idx2),1))+(1./2).*m.iota2-...

log(m.kappa)).^2./m.iota2).*sqrt(2))./(sqrt(pi.*...

m.iota2.*repmat(xt1,length(idx2),1).^2))-0.25.*...

((1-m.p).*exp(-(1./2).*...

(log(repmat(xt1,length(idx2),1))+(1./2).*...

m.iota2-log(m.kappa)).^2./m.iota2).*sqrt(2).*pi.*...

repmat(xt1,length(idx2),1).^2)./((pi.*m.iota2.*...

repmat(xt1,length(idx2),1).^2).^(3./2)));

% First derivative with respect to kappa.

f5a(idx2,:) = (1./(m.p.*exp(-(log(repmat(xt1,length(idx2),1))+...

(1./2).*m.iota2-log(m.kappa+(xti2-m.kappa.*m.psi)./...

(m.psi.*m.p))).^2./(2.*m.iota2))./sqrt(2.*pi.*...

m.iota2.*repmat(xt1,length(idx2),1).^2)+(1-m.p).*exp(-...

(log(repmat(xt1,length(idx2),1))+(1./2).*m.iota2-...

log(m.kappa)).^2./(2.*m.iota2))./sqrt(2.*pi.*m.iota2.*...

repmat(xt1,length(idx2),1).^2))).*(0.5.*(m.p.*...

(log(repmat(xt1,length(idx2),1))+(1./2).*m.iota2-...

log(m.kappa+(xti2-m.kappa.*m.psi)./(m.psi.*m.p))).*...

(1-1./m.p).*exp(-(1./2).*...

(log(repmat(xt1,length(idx2),1))+(1./2).*m.iota2-...

log(m.kappa+(xti2-m.kappa.*m.psi)./(m.psi.*m.p))).^2./...

m.iota2).*sqrt(2))./(m.iota2.*(m.kappa+(xti2-m.kappa.*...

m.psi)./(m.psi.*m.p)).*sqrt(pi.*m.iota2.*...

repmat(xt1,length(idx2),1).^2))+0.5.*((1-m.p).*...

(log(repmat(xt1,length(idx2),1))+(1./2).*m.iota2-...

log(m.kappa)).*exp(-(1./2).*...

(log(repmat(xt1,length(idx2),1))+(1./2).*m.iota2-...

log(m.kappa)).^2./m.iota2).*sqrt(2))./(m.iota2.*...

m.kappa.*sqrt(pi.*m.iota2.*...

repmat(xt1,length(idx2),1).^2)));

% First derivative with respect to p.

f6a(idx2,:) = (1./(m.p.*exp(-(log(repmat(xt1,length(idx2),1))+...
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(1./2).*m.iota2-log(m.kappa+(xti2-m.kappa.*m.psi)./...

(m.psi.*m.p))).^2./(2.*m.iota2))./sqrt(2.*pi.*...

m.iota2.*repmat(xt1,length(idx2),1).^2)+(1-m.p).*...

exp(-(log(repmat(xt1,length(idx2),1))+(0.5).*m.iota2-...

log(m.kappa)).^2./(2.*m.iota2))./sqrt(2.*pi.*m.iota2.*...

repmat(xt1,length(idx2),1).^2))).*(0.5.*(exp(-(1./2).*...

(log(repmat(xt1,length(idx2),1))+(1./2).*m.iota2-...

log(m.kappa+(xti2-m.kappa.*m.psi)./(m.psi.*m.p))).^2./...

m.iota2).*sqrt(2))./(sqrt(pi.*m.iota2.*...

repmat(xt1,length(idx2),1).^2))-0.5.*...

((log(repmat(xt1,length(idx2),1))+(1./2).*m.iota2-...

log(m.kappa+(xti2-m.kappa.*m.psi)./(m.psi.*m.p))).*...

(xti2-m.kappa.*m.psi).*exp(-(1./2).*...

(log(repmat(xt1,length(idx2),1))+(1./2).*m.iota2-...

log(m.kappa+(xti2-m.kappa.*m.psi)./(m.psi.*m.p))).^2./...

m.iota2).*sqrt(2))./(m.p.*m.iota2.*m.psi.*(m.kappa+...

(xti2-m.kappa.*m.psi)./(m.psi.*m.p)).*sqrt(pi.*...

m.iota2.*repmat(xt1,length(idx2),1).^2))-0.5.*...

(exp(-(1./2).*(log(repmat(xt1,length(idx2),1))+(1./...

2).*m.iota2-log(m.kappa)).^2./m.iota2).*sqrt(2))./...

(sqrt(pi.*m.iota2.*repmat(xt1,length(idx2),1).^2)));

% Compute the weighted sum of the derivatives (expectated value).

f1(1) = wT(t,:)*f1a’;

f1(2) = wT(t,:)*f2a’;

f1(3) = sum((wij(:,:,t-1).*(f3a))*kk’) ;

f1(4) = sum((wij(:,:,t-1).*(f4a))*kk’) ;

f1(5) = sum((wij(:,:,t-1).*(f5a))*kk’) ;

f1(6) = sum((wij(:,:,t-1).*(f6a))*kk’) ;

f1(isnan(f1))=0; % To ensure numerical stability.

% Sum over t = 2, ..., T.

f11(:,t)=f11(:,t)+(f1);

end
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% First derivatives of the joint log-likelihood function at t=1.

xt = xPWeighted(1,:);

f1 = zeros(6,1);

% First derivative with respect to phi.

f1a = (P(1)-m.phi.*D(1)-xt).*D(1)./m.sig2 ;

% First derivative with respect to sig2.

f2a = -0.5.*(-m.phi.^2.*D(1).^2+2.*D(1).*(-xt+P(1)).*m.phi-P(1).^2-...

xt.^2+2.*P(1).*xt+m.sig2)./(sqrt(m.sig2).*sqrt(m.sig2.^3));

% First derivative with respect to psi.

%f3a = 0;

% First derivative with respect to iota2.

%f4a = 0);

% First derivative with respect to kappa.

%f5a = 0;

% First derivative with respect to p.

%f6a = 0;

% Compute the weighted sum of the first derivatives.

f1(1) = wT(1,:)*f1a’;

f1(2) = wT(1,:)*f2a’;

f1(3) = 0;

f1(4) = 0;

f1(5) = 0;

f1(6) = 0;

f11(:,1) = (f1);

% Expected value of the derivative of the joint log-likelihood.

score = f11;

% Take into account the dependence among the lagged terms by the

% procedure of Newey and West (1987).

A = 0;

TT = size(score,2);
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% Compute the several covariance terms Aj given Eq. (3.42).

for j = 0:(TT-1)

A = 0;

for t = 1:(TT-(j))

A1 = score(:,t)*score(:,t+j)’;

A = A+A1;

end

Aj(:,:,(j+1)) = A;

end

format long

% Compute the negative expected value of the Hessian, see Eq. (3.41).

hessian = Aj(:,:,1);

lag = 15;

for j = 1:lag

hessian = hessian+(1-j./(lag+1)).*(Aj(:,:,(j+1))+Aj(:,:,(j+1))’);

end

% Compute the covariance matrix of the parameter estimates by taking

% the inverse of the hessian.

Cov = inv(hessian);

% Standard errors are given by the diagonal of the covariance matrix.

Cov_d = diag(Cov);

% Results.

SE.phi = Cov_d(1);

SE.sig2 = Cov_d(2);

SE.psi = Cov_d(3);

SE.iota2 = Cov_d(4);

SE.kappa = Cov_d(5);

SE.p = Cov_d(6);

end
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forecast_density.m

function PIT = forecast_density(PF,mEst,z)

N = size(PF.xPWeighted,2);

T = size(PF.xPWeighted,1);

PIT = zeros(T,1);

P = z.P;

D = z.D;

% Compute the PIT’s by Eq. (3.47) and Eq. (3.49).

for t=1:T

density = normcdf(repmat(P(t),1,N),mEst.phi.*(repmat(D(t),1,N))+...

PF.xPWeighted(t,:),sqrt(mEst.sig2));

PIT(t)=sum(density)/N;

end;

end
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Programming codes for Chapter 4

In the following we provide the MATLAB-Code for the identification of our economic

nonlinear state-space model and the estimation of the latent Evans bubble using the

particle-filter methods. The main file main_chapter4.m contains the programming

code for the simulation study as well as the general programming code for the particle

based EM algorithm to identify the nonlinear state-space model. At the end, this

file includes the general programming codes for the the estimation of the latent

Evans-bubble process, the computation of the standard errors and the computation

of the conditional stock-price volatility path.

At first we give the programming code of the main file. After that, the other

m-files needed are given in the order of their occurrence in the main file. The codes

for the EM algorithm via particle-filter methods are based on the descriptions in

Schön et al. (2011).

main_chapter4.m

%%%%% Main script - Chapter 4

%%%%% Simulate data for the nonlinear state-space model

% Number of data.

T = 250;

% Parameter setting for the nonlinear state-space model.

% Set the model parameters.

m.r = 0.02;

m.sig2 = 0.03^2;

m.iota2 = 0.001;

m.kappa = 1.1;

m.p = 0.98;

m.tau = 2;
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% Dividend process (driftless random walk).

D = zeros(1,T+1); epsilon = randn(1,T+1);

% Set the starting value.

D(1)=0.3;

% Simulate dividend process form t-1,t, ...,N-1 => 250 observations

for t=2:(T+1)

D(t) = D(t-1) + sqrt(m.sig2)*epsilon(t);

end;

% Evans-bubble process.

Bt = zeros(1,T); y = randn(1,T); nu = binornd(1,m.p,1,T);

% Set the starting value.

Bt(1) = 0.5;

% Simulate data of the Evans bubble.

for t=1:T-1

if Bt(t) <= m.tau

Bt(t+1) = (1/(1/(1+m.r)))*Bt(t)*exp(sqrt(m.iota2)*y(t)-...

(0.5*m.iota2));

else

Bt(t+1) = (m.kappa +(1/(m.p*(1/(1+m.r))))*(Bt(t)-(m.kappa*(1/(1+...

m.r)))).*nu(t)).*exp(sqrt(m.iota2)*y(t)-(0.5*m.iota2));

end;

end;

% Calculate the stock-price process, given by Eq.(4.3) and Eq.(4.4).

P =(1/m.r)*D(2:(T+1)) + Bt;

% Save the data in the structure array z.

z.P = P;

z.D = D(1:(T));

z.BTrue = Bt;
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%%%%% Parameter estimation

%%%%% EM algorithm using the particle filter and particle smoother

% We need the data set given in the structure array z.

% Set the number of particles for the EM algorithm.

N = 300; % Number of particles

% Set the parameter vector theta_0 to initiate the EM algorithm.

r0 = 0.03;

sig20 = 0.5;

iota20 = 0.005;

kappa0 = 0.5;

p0 = 0.8;

theta0 = [r0 sqrt(sig20) sqrt(iota20) kappa0 p0];

% Define the vector for the parameter estimates.

mEst = m;

mEst.r = theta0(1);

mEst.sig2 = theta0(2)^2;

mEst.iota2 = theta0(3)^2;

mEst.kappa = theta0(4);

mEst.p = theta0(5);

% Owing to an identification problem, we refrained from estimating

% the parameter tau and use tau=2 instead.

mEst.tau = 2;

% Store the iterates.

theta = theta0;

theta_k(1,1:5) = theta0;

mEst_k(1)= mEst;

crit_value(1) = 1;

% Set constraints on the parameter vector.

lb = [0.000001,0.000001,0.000001,0.000001,0.000001];

ub = [1,8,5,mEst.tau,0.999999];

% Define some optimization conditions.
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options = optimset(’Algorithm’,’active-set’,’Display’,’off’,...

’TolFun’,1e-6,’TolX’,1e-5);

% Fix the random generator to start each iteration with the same

% random numbers. This helps to minimize some random effects of this

% Monte Carlo approach.

stream = RandStream.getGlobalStream;

savedState = stream.State;

% Define the convergence criterion.

c = 1/(N);

%%% Start of the EM algorithm.

k = 2;

while (crit_value(k-1) > c)

% Set the random stream in each iteration k.

stream.State = savedState;

% Run the particle filter and particle smoother to obtain particles

% from the sequential importance sampling and the corresponding

% smoothed weights.

%%% Expectation step at iteration k.

% Run the particle filter.

PF = particle_filter4(mEst,N,z);

% Run the particle smoother.

PS = particle_smoother4(mEst,N,PF);

% Calculate the Q-function subject to theta_k.

Q_value_k_k = -(Q4_theta_k(theta,mEst,PF.xPWeighted,PS.wij,...

PS.wT,z.P,z.D));

%%% Maximization step at iteration k.

% Maximize the Q-function subject to theta and obtain theta_k+1.

[theta,Qval] = fmincon(’Q4_theta_k’,theta,[],[],[],[],lb,ub,[],...

options,mEst,PF.xPWeighted,PS.wij,PS.wT,z.P,z.D);

% Calculate the Q-function subject to theta_k+1.

Q_value_k_k1 = -Qval;
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% Store the parameter estimates in iteration k.

mEst.r = theta(1);

mEst.sig2 = theta(2)^2;

mEst.iota2 = theta(3)^2;

mEst.kappa = theta(4);

mEst.p = theta(5);

% Store the iterates.

theta_k(k,1:5) = theta;

mEst_k(k) = mEst;

% Compute critical value to check the convergence criterion.

crit_value(k) = Q_value_k_k1-Q_value_k_k;

% Print the parameter estimates.

disp([’Iteration nr: ’ num2str((k-1))...

’ Estimates, r: ’ num2str(mEst.r),...

’ sig2: ’,num2str(mEst.sig2),’ iota2: ’,num2str(mEst.iota2),...

’ kappa: ’,num2str(mEst.kappa),’ p: ’,num2str(mEst.p),...

’ tau: ’,num2str(mEst.tau)])

% If crit_value(k) > c: k is updated to k+1 and a new iteration is

% conducted.

k = k+1;

end

%%%%% Evaluating the estimation results

% Fix the random generator to reproduce the results.

stream = RandStream.getGlobalStream;

savedState = uint32(xlsread(’savedState’));

stream.State = savedState;

%%% Estimation of the latent Evans-bubble Process

% Set number of particles.

N=500;

% Use the estimated parameter set.

mEst = mEst_k(k-1);
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% Compute the particles and smoothed weights

% Run the particle filter.

PF = particle_filter4(mEst,N,z);

% Run the particle smoother.

PS = particle_smoother4(mEst,N,PF);

% Compute the smoothed states.

for t=1:T

xs(t) = sum(PS.wT(t,:).*PF.xPWeighted(t,:));

end;

%%% Standard errors

% Compute the standard errors of the parameter estimates by the use

% of the stable estimator of the information matrix established by

% Duan and Fulop (2011).

standard_error4(PF.xPWeighted,PS.wT,PS.wij,z.P,z.D,mEst,N)

%%% Conditional stock-price variance with Evans bubble

% Compute the conditional variance given in Eq. (4.10).

beta = 1/mEst.r; psi = (1/(1+mEst.r));

Var_t1 = zeros(1,T);

for t=2:T

if xs(t-1) <= mEst.tau

Var_t1(t) = (((1/psi)*xs(t-1))^2*(exp(mEst.iota2)-1)+...

beta^2*mEst.sig2);

else

Var_t1(t) = ((mEst.kappa^2+2*mEst.kappa*((xs(t-1)-mEst.kappa*...

psi)/psi))*(exp(mEst.iota2)-1)+((xs(t-1)-mEst.kappa*...

psi)/(mEst.p*psi))^2*(exp(mEst.iota2)*mEst.p-...

mEst.p^2)+beta^2*mEst.sig2);

end;

end;



157

particle_filter4.m

%%% Particle filter

function pf = particle_filter4(m,N,z)

P = z.P;

D = z.D;

T = size(P,2);

xf = zeros(1,size(P,2));

xPWeighted = zeros(T,N);

xPResampled = zeros(T,N);

wt = zeros(T,N);

% 1. Initialize particles.

% Initial state unknown, assumed to be a positive random variable.

B = exp(sqrt(0.2)*randn(1,N)-(2*0.2));

% 2. Run the particle filter.

for t=1:T

% Compute the weights.

w = exp((-0.5/(m.sig2/(m.r^2)))*((repmat(P(t),1,N) - ...

(1/m.r).*(repmat(D(t),1,N)) - B).^2));

w(w==0)=exp(-745);

w = w/sum(w);

% Save the particles and corresponding weights.

xPWeighted(t,:) = B;

wt(t,:) = w;

% Compute state estimate, see Eq. (3.13).

xf(t) = sum(w.*B);

% Resample the particles, see sysresample.m

% in Programming codes for Chapter 3.

index = sysresample(w);

B = B(index);

xPResampled(t,:) = B;

% Sequential importance sampling => new particles for t+1.



158

idx1 = find(B <= m.tau);

idx2 = find(B > m.tau);

B(idx1) = (1+m.r)*B(idx1).*exp(sqrt(m.iota2)*...

randn(1,length(idx1))-(0.5*m.iota2));

B(idx2) = (m.kappa+((1+m.r)/((m.p)))*(B(idx2)-(m.kappa*(1/(1+...

m.r)))).* binornd(1,(m.p),1,length(idx2))).*...

exp(sqrt(m.iota2)*randn(1,length(idx2))-(0.5*m.iota2));

end;

pf.Xf = xf;

pf.xPWeighted = xPWeighted;

pf.xPResampled = xPResampled;

pf.w = wt;

end

particle_smoother4.m

%%% Particle smoother

function ps = particle_smoother4(m,N,PF)

T = size(PF.xPWeighted,1);

wT = zeros(T,N);

kk = ones(1,N);

% 1. Set the smoothed weights in T.

wT(T,:) = PF.w(T,:);

% 2. Run the particle smoother.

for t = T-1:-1:1

p_xt1_xt= zeros(N,N);

% Use the computed particles in t and t+1

% form sequential importance sampling.

xt = PF.xPWeighted(t,:);

xt1 = PF.xPWeighted(t+1,:);

idx1 = find(xt <= m.tau);
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idx2 = find(xt > m.tau);

xti1 = repmat(xt(idx1),N,1)’;

xti2 = repmat(xt(idx2),N,1)’;

% Compute the density of all possible particle combinations.

p_xt1_xt(idx2,:) = (m.p)*lognpdf(repmat(xt1,length(idx2),1),...

(-(m.iota2/2) + log(m.kappa+((1+m.r)/(m.p))*...

(xti2-m.kappa*(1/(1+m.r))))),sqrt(m.iota2))+...

(1-(m.p))*lognpdf(repmat(xt1,length(idx2),1),...

(-(m.iota2/2) + log(m.kappa)),sqrt(m.iota2));

p_xt1_xt(idx1,:) = lognpdf(repmat(xt1,length(idx1),1),...

(-(m.iota2/2)+log((1+m.r)*xti1)),sqrt(m.iota2));

% Compute the (normalized) smoothed weights in Eq.(3.20).

% 1. Compute the denominator of the summand in Eq. (3.20).

vk = PF.w(t,:)*p_xt1_xt;

% Set all weighted densities on minimal positive value to ensure

% numerical stability in the next step.

vk(vk==0) = exp(-745);

% 2. Compute the complete sum in Eq. (3.20).

wij(:,:,t) = (repmat(PF.w(t,:),N,1)’.*repmat(wT(t+1,:),N,1).*...

p_xt1_xt)./repmat(vk,N,1);

k = (repmat(wT(t+1,:),N,1).*p_xt1_xt)./repmat(vk,N,1);

sk = k*kk’;

% 3. Compute Eq.(3.20).

wT(t,:) = PF.w(t,:).*sk’;

end;

ps.wT = wT;

ps.wij = wij;

end
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Q4_theta_k.m

function Qfun = Q4_theta_k(theta,mEst,xPWeighted,wij,wT,P,D)

% Parameter for maximizing.

r = theta(1);

sig2 = theta(2);

iota2 = theta(3);

kappa = theta(4);

p = theta(5);

% Sample size.

T = size(xPWeighted,1);

% Number of particles.

N = size(xPWeighted,2);

Qfun3 = 0;

Qfun2 = 0;

kk = ones(1,N);

% Compute the second term of the approximated Q-function

% given in Eq.(3.30).

for t=1:T-1

p_xt1_xt_k= zeros(N,N);

xt = xPWeighted(t,:);

xt1 = xPWeighted(t+1,:);

idx1 = find( xt <= mEst.tau);

idx2 = find( xt > mEst.tau);

xti1 = repmat(xt(idx1),N,1)’;

xti2 = repmat(xt(idx2),N,1)’;

p_xt1_xt_k(idx2,:) = (p)*lognpdf(repmat(xt1,length(idx2),1),...

(-(iota2^2/2)+log(kappa+((1+r)/(p))*...

(xti2-kappa*(1/(1+r))))),sqrt(iota2^2))+...

(1-(p))*lognpdf(repmat(xt1,length(idx2),1),...

(-(iota2^2/2) + log(kappa)),sqrt(iota2^2));

p_xt1_xt_k(idx1,:) = lognpdf(repmat(xt1,length(idx1),1),...

(-(iota2^2/2)+log((1+r)*xti1)),sqrt(iota2^2));
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log_p_xt1_xt_k=log(p_xt1_xt_k);

% To ensure numerical stability (20 times the computer tolerance).

log_p_xt1_xt_k(log_p_xt1_xt_k == -Inf)= -15000;

wijp = sum((wij(:,:,t).*(log_p_xt1_xt_k))*kk’) ;

Qfun2 = Qfun2 + wijp;

end;

% Compute the third term of the approximated Q-function given in

% Eq.(3.30).

for t=1:T

p_yt_xt = -(1/2)*log((sig2/r)^2)-(1/(2*(sig2/r)^2))*(P(t)-...

(1/r)*D(t)-xPWeighted(t,:)).^2 ;

Qfun3 = Qfun3 + wT(t,:)*p_yt_xt’;

end;

Qfun = Qfun3 + Qfun2 ;% Qfun1 is neglected;

Qfun = -Qfun;

end

standard_error4.m

function SE = standard_error4(xPWeighted,wT,wij,P,D,m,N)

T = size(xPWeighted,1);

kk = ones(1,N);

f11 = zeros(5,T);

% Compute the second term of the score of the observed-data

% log-likelihood function given in Eq. (3.40).

for t = 2:T

xt = xPWeighted(t-1,:);

xt1 = xPWeighted(t,:);

idx1 = find(xt <= m.tau);

idx2 = find(xt > m.tau);

xti1 = repmat(xt(idx1),N,1)’;

xti2 = repmat(xt(idx2),N,1)’;
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f1a = zeros(N,N);

f3a = zeros(N,N);

f4a = zeros(N,N);

f5a = zeros(N,N);

f1 = zeros(5,1);

% Compute the first derivatives of the joint log-likelihood

% functionwith respect to theta for all N paths. We compute

% these first derivatives with the mathematical software

% "Maple". First derivatives with respect to sig2 do not

% dependent on the latent bubble (particles).

% First derivative with respect to sig2.

f2a = 0.5*(-m.sig2+(P(t).^2-2.*P(t).*xt1+xt1.^2).*m.r.^2+(2.*...

D(t).*xt1-2.*D(t).*P(t)).*m.r+D(t).^2)./(m.sig2.^2);

% Case 1: smoothed particle is smaller then tau.

% First derivative with respect to r.

f1a(idx1,:) = (log((repmat(xt1,length(idx1),1)))+(1./2).*m.iota2-...

log((1+m.r).*xti1))./(m.iota2.*(1+m.r)) ;

% First derivative with respect to iota2.

f3a(idx1,:) = -(1./8).*(-4.*log((repmat(xt1,length(idx1),...

1))).^2+8.*log((repmat(xt1,length(idx1),1))).*...

log((1+m.r).*xti1)+m.iota2.^2-4.*log((1+m.r).*...

xti1).^2+4.*m.iota2)./m.iota2.^2;

% First derivative with respect to kappa.

f4a(idx1,:) = 0;

% First derivative with respect to p.

f5a(idx1,:) = 0;

% Case 2: smoothed particle is bigger than tau.

% First derivative with respect to r: state density.

f1a(idx2,:) = ((1./2).*(2.*log((repmat(xt1,length(idx2),1)))+...

m.iota2-2.*log((m.kappa.*m.p+xti2+xti2.*m.r-...

m.kappa)./m.p)).*xti2.*exp(-(1./8).*(2.*...

log((repmat(xt1,length(idx2),1)))+m.iota2-2.*...

log((m.kappa.*m.p+xti2+xti2.*m.r-m.kappa)./...
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m.p)).^2./m.iota2).*m.p./(m.iota2.*(m.kappa.*m.p+...

xti2+xti2.*m.r-m.kappa).*(m.p.*exp(-(1./8).*(2.*...

log((repmat(xt1,length(idx2),1)))+m.iota2-2.*...

log((m.kappa.*m.p+xti2+xti2.*m.r-m.kappa)./...

m.p)).^2./m.iota2)-exp(-(1./8).*(2.*...

log((repmat(xt1,length(idx2),1)))+m.iota2-2.*...

log(m.kappa)).^2./m.iota2).*m.p+exp(-(1./8).*...

(2.*log((repmat(xt1,length(idx2),1)))+m.iota2-2.*...

log(m.kappa)).^2./m.iota2))));

% First derivative with respect to iota2.

f3a(idx2,:) = -(1./8).*(-m.p.*(-4.*...

log((repmat(xt1,length(idx2),1))).^2+8.*...

log((repmat(xt1,length(idx2),1))).*log(((-1+m.p).*...

m.kappa+xti2.*(1+m.r))./m.p)+m.iota2.^2-4.*...

log(((-1+m.p).*m.kappa+xti2.*(1+m.r))./m.p).^2+...

4.*m.iota2).*exp(-(1./8).*...

(2.*log((repmat(xt1,length(idx2),1)))+m.iota2-2.*...

log(((-1+m.p).*m.kappa+xti2.*(1+m.r))./m.p)).^2./...

m.iota2)+exp(-(1./8).*(2.*log((repmat(xt1,...

length(idx2),1)))+m.iota2-2.*log(m.kappa)).^2./...

m.iota2).*(8.*log((repmat(xt1,length(idx2),1))).*...

log(m.kappa)+m.iota2.^2-4.*log(m.kappa).^2-4.*...

log((repmat(xt1,length(idx2),1))).^2+4.*m.iota2).*...

(-1+m.p))./(m.iota2.^2.*(-m.p.*exp(-(1./8).*(2.*...

log((repmat(xt1,length(idx2),1)))+m.iota2-2.*...

log(((-1+m.p).*m.kappa+xti2.*(1+m.r))./m.p)).^2./...

m.iota2)+exp(-(1./8).*(2.*log((repmat(xt1,...

length(idx2),1)))+m.iota2-2.*log(m.kappa)).^2./...

m.iota2).*(-1+m.p)));

% First derivative with respect to kappa.

f4a(idx2,:) = (1./2).*(-1+m.p).*(-m.kappa.*m.p.*(2.*...

log((repmat(xt1,length(idx2),1)))+m.iota2-2.*...

log(((-1+m.p).*m.kappa+xti2.*(1+m.r))./m.p)).*...
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exp(-(1./8).*(2.*log((repmat(xt1,length(idx2),1)))+...

m.iota2-2.*log(((-1+m.p).*m.kappa+xti2.*(1+m.r))./...

m.p)).^2./m.iota2)+((-1+m.p).*m.kappa+xti2.*(1+...

m.r)).*exp(-(1./8).*(2.*log((repmat(xt1,...

length(idx2),1)))+m.iota2-2.*log(m.kappa)).^2./...

m.iota2).*(2.*log((repmat(xt1,length(idx2),1)))+...

m.iota2-2.*log(m.kappa)))./(m.kappa.*((-1+m.p).*...

m.kappa+xti2.*(1+m.r)).*(-m.p.*exp(-(1./8).*(2.*...

log((repmat(xt1,length(idx2),1)))+m.iota2-2.*...

log(((-1+m.p).*m.kappa+xti2.*(1+m.r))./m.p)).^2./...

m.iota2)+exp(-(1./8).*(2.*log((repmat(xt1,...

length(idx2),1)))+m.iota2-2.*log(m.kappa)).^2./...

m.iota2).*(-1+m.p)).*m.iota2);

% First derivative with respect to p.

f5a(idx2,:) = (1./2).*((((-2-2.*m.r).*xti2+2.*m.kappa).*...

log(((-1+m.p).*m.kappa+xti2.*(1+m.r))./m.p)+((2+...

2.*m.r).*xti2-2.*m.kappa).*log((repmat(xt1,...

length(idx2),1)))-(2.*((1./2+(1./2).*m.r).*xti2+...

m.kappa.*(m.p-1./2))).*m.iota2).*exp(-(1./8).*(2.*...

log((repmat(xt1,length(idx2),1)))+m.iota2-2.*...

log(((-1+m.p).*m.kappa+xti2.*(1+m.r))./m.p)).^2./...

m.iota2)+(2.*((-1+m.p).*m.kappa+xti2.*(1+m.r))).*...

exp(-(1./8).*(2.*log((repmat(xt1,length(idx2),1)))+...

m.iota2-2.*log(m.kappa)).^2./m.iota2).*m.iota2)./...

(((-1+m.p).*m.kappa+xti2.*(1+m.r)).*(-m.p.*exp(-...

(1./8).*(2.*log((repmat(xt1,length(idx2),1)))+...

m.iota2-2.*log(((-1+m.p).*m.kappa+xti2.*(1+m.r))./...

m.p)).^2./m.iota2)+exp(-(1./8).*(2.*...

log((repmat(xt1,length(idx2),1)))+m.iota2-2.*...

log(m.kappa)).^2./m.iota2).*(-1+m.p)).*m.iota2);

% First derivative with respect to r: observation density.

f11a = (-(-m.sig2+(P(t).^2-2.*P(t).*xt1+xt1.^2).*m.r.^2+(-D(t)*...

P(t)+D(t).*xt1).*m.r)./(m.sig2*m.r));
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% Compute the weighted sum of the derivatives (expectation value).

f1(1) = sum((wij(:,:,t-1).*(f1a))*kk’) + wT(t,:)*f11a’;

f1(2) = wT(t,:)*f2a’;

f1(3) = sum((wij(:,:,t-1).*(f3a))*kk’) ;

f1(4) = sum((wij(:,:,t-1).*(f4a))*kk’) ;

f1(5) = sum((wij(:,:,t-1).*(f5a))*kk’) ;

f1(isnan(f1))=0; % To ensure numerical stability.

% Sum over t = 2, ..., T.

f11(:,t)=f11(:,t)+(f1);

end

% First derivatives of the joint log-likelihood function at t=1.

xt = xPWeighted(1,:);

f1 = zeros(5,1);

% First derivative with respect to r.

f1a = -(-m.sig2+(P(1).^2-2.*P(1).*xt+xt.^2).*m.r.^2+(-D(1).*P(1)+...

D(1).*xt).*m.r)./(m.sig2*m.r);

% First derivative with respect to sig2.

f2a = 0.5*(-m.sig2+(P(1).^2-2.*P(1).*xt+xt.^2).*m.r.^2+(2.*D(1).*...

xt-2.*D(1).*P(1)).*m.r+D(1).^2)./(m.sig2.^2);

% First derivative with respect to iota2.

%f3a = 0;

% First derivative with respect to kappa.

%f4a = 0);

% First derivative with respect to p.

%f5a = 0;

% Compute the weighted sum of the first derivatives.

f1(1) = wT(1,:)*f1a’;

f1(2) = wT(1,:)*f2a’;

f1(3) = 0;

f1(4) = 0;

f1(5) = 0;

f11(:,1) = (f1);

% Expected value of the derivative of the joint log-likelihood.
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score = f11;

% Take into account the dependence among the lagged terms by the

% procedure of Newey and West (1987).

A = 0;

TT = size(score,2);

% Compute the several covariance terms Aj given Eq. (3.42).

for j = 0:(TT-1)

A = 0;

for t = 1:(TT-(j))

A1 = score(:,t)*score(:,t+j)’;

A = A+A1;

end

Aj(:,:,(j+1)) = A;

end

format long

% Compute the negative expected value of the Hessian, see Eq. (3.41).

hessian = Aj(:,:,1);

lag = 15;

for j = 1:lag

hessian = hessian+(1-j./(lag+1)).*(Aj(:,:,(j+1))+Aj(:,:,(j+1))’);

end

% Compute the covariance matrix of the parameter estimates by taking

% the inverse of the hessian.

Cov = inv(hessian);

% Standard errors are given by the diagonal of the covariance matrix.

Cov_d = diag(Cov);

% Results.

SE.r = Cov_d(1);

SE.sig2 = Cov_d(2);

SE.iota2 = Cov_d(3);

SE.kappa = Cov_d(4);

SE.p = Cov_d(5);

end
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Programming codes for Chapter 5

In the following we provide the MATLAB-Code for the identification and estimation

of our economic nonlinear state-space model with periodic, stochastically deflating

bubbles as introduced in Chapter 5. The main file main_chapter5.m gives the

programming code for the simulation study of the economic model with our new

bubble specification as well as the general programming code for the particle based

EM algorithm to identify the nonlinear state-space model. After this, the file gives

the general programming codes for evaluating the estimation results, that is the

estimation of the latent bubble process, the computation of the standard errors

and the goodness-of-fit test. At the end, the main file includes the code for the

computation of the conditional stock-price volatility path.

At first we give the programming code of the main script. After that, the other

m-files needed are given in the order of their occurrence in the main file. The codes

for the EM algorithm via particle-filter methods are based on the descriptions in

Schön et al. (2011).

main_chapter5.m

%%%%% Main script - Chapter 5

%%%%% Simulate data for the nonlinear state-space model

% Number of data.

T = 250;

% Parameter setting for the nonlinear state-space model.

% Set the required rate of return.

r = 0.02;

% Set the parameter of the observation equation.

m.phi = 50;

m.sig2 = 1.5;

% Set the parameter of the new periodic, stochastically deflating

% bubble mode (state equation).
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m.psi = 1/(1+r);

m.iota2 = 0.02;

m.p = 0.87;

m.alpha = 0.91;

% Dividend process (driftless random walk with sd 0.03).

D = zeros(1,T); noise = randn(1,T);

% Set the starting value.

D(1)=0.3;

% Simulate data of the dividend process.

for t=1:(T-1)

D(t+1) = D(t) + 0.03*noise(t);

end;

% Periodic, stochastically deflating bubble process.

Bt = zeros(1,T); y = randn(1,T); nu = binornd(1,m.p,1,T);

% Set the starting value.

Bt(1) = 0.5;

% Simulate data of the new bubble.

for t=1:T-1

Bt(t+1) = (((m.alpha/(m.psi*m.p)-(1-m.alpha)/(m.psi*(1-m.p)))*...

nu(t)+(1-m.alpha)/(m.psi*(1-m.p)))*Bt(t)).*...

exp(sqrt(m.iota2)*y(t)-(0.5*m.iota2));

end;

% Calculate the stock-price process.

varepsilon = randn(1,T);

P = m.phi*D + Bt + sqrt(m.sig2)*varepsilon;

% Save the data in the structure array z.

z.P = P;

z.D = D;

z.BTrue = Bt(1:T);
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%%%%% Parameter estimation

%%%%% EM algorithm using the particle filter and particle smoother

% We need the data set given in the structure array z. For the

% artificial and real-world data sets, read the (real) prices and

% (real) dividends from the corresponding Excel file and save the

% prices as z.P and dividends as z.D in the structure array z.

% Set max. number of iterations, if no convergence criterion is used!

% opt.maximumiter = 500;

% Set the number of particles for the EM algorithm.

N = 300;

% Set the parameter vector theta_0 to initiate the EM algorithm.

phi0 = 30;

sig20 = 0.5 ;

psi0 = 0.85;

iota20 = 0.01;

p0 = 0.7;

alpha0 = 0.75;

theta0 = [phi0 sqrt(sig20) psi0 sqrt(iota20) p0 alpha0];

% Define the vector for the parameter estimates.

mEst = m;

mEst.phi = theta0(1);

mEst.sig2 = theta0(2)^2;

mEst.psi = theta0(3);

mEst.iota2 = theta0(4)^2;

mEst.p = theta0(5);

mEst.alpha = theta0(6);

% Store the iterates.

theta = theta0;

theta_k(1,1:6) = theta0;

mEst_k(1) = mEst;

crit_value(1) = 1;
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% Set constraints on the parameter vector.

% The lower bound of alpha and p is set to 0.5 to define the

% 1 phase as the state of growth and state 2 as the

% incomplete bursting state.

lb = [0.000001,0.000001,0.000001,0.000001,0.5,0.5];

ub = [250,8,0.999999,5,0.999999,1];

% Define some optimization conditions.

options = optimset(’Algorithm’,’active-set’,’Display’,’off’,...

’TolFun’,1e-5,’TolX’,1e-5);

% Fix the random generator to start each iteration with the same

% random numbers. This helps to minimize some random effects of the

% Monte Carlo approach.

stream = RandStream.getGlobalStream;

% General Setting: savedState = stream.State;

% To reproduce the results use this random number stream.

savedState = uint32(xlsread(’savedState’));

% Use loop if no termination condition is used!

% for k = 1:opt.maximumiter

% Or define the convergence criterion.

c = 1/(N);

%%% Start of the EM algorithm.

k = 2;

while (crit_value(k-1) > c)

% Set the random stream in each iteration k.

stream.State = savedState;

% Run the particle filter and particle smoother to obtain

% particles from the sequential importance sampling and

% the corresponding smoothed weights.

%%% Expectation step at iteration k.

% Run the particle filter.

PF = particle_filter5(mEst,N,z);

% Run the particle smoother.
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PS = particle_smoother5(mEst,N,PF);

% Calculate the Q-function subject to theta_k.

Q_value_k_k = -(Q5_theta_k(theta,PF.xPWeighted,PS.wij,PS.wT,z.P,z.D));

%%% Maximization step at iteration k.

% Maximize the Q-function subject to theta and obtain theta_k+1.

[theta,Qval] = fmincon(’Q5_theta_k’,theta,[],[],[],[],lb,ub,[],...

options,PF.xPWeighted,PS.wij,PS.wT,z.P,z.D);

% Calculate the Q-function subject to theta_k+1.

Q_value_k_k1 = -Qval;

% Store the parameter estimates in iteration k.

mEst.phi = theta(1);

mEst.sig2 = theta(2)^2;

mEst.psi = theta(3);

mEst.iota2 = theta(4)^2;

mEst.p = theta(5);

mEst.alpha = theta(6);

% Store the iterates.

theta_k(k,1:6)= theta;

mEst_k(k) = mEst;

% Compute critical value to check the convergence criterion.

crit_value(k) = Q_value_k_k1-Q_value_k_k;

% Print the parameter estimates.

disp([’Iteration nr: ’ num2str((k-1))...

’ Estimates, phi: ’ num2str(mEst.phi),...

’ sig2: ’,num2str(mEst.sig2),’ psi: ’,num2str(mEst.psi),...

’ iota2: ’,num2str(mEst.iota2),’ p: ’,num2str(mEst.p),...

’ alpha: ’,num2str(mEst.alpha)])

% If crit_value(k) > c: k is updated to k+1 and a new iteration

% is conducted.

k = k+1;

end
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%%%%% Evaluating the estimation results

% Fix the random generator to reproduce the results.

stream = RandStream.getGlobalStream;

savedState = uint32(xlsread(’savedState’));

stream.State = savedState;

%%% Estimation of the latent Evans-bubble Process

% Set number of particles.

N=500;

% Use the estimated parameter set.

mEst = mEst_k(k-1);

% Compute the particles and smoothed weights.

% Run the particle filter.

PF = particle_filter5(mEst,N,z);

% Run the particle smoother.

PS = particle_smoother5(mEst,N,PF);

% Compute the smoothed states.

for t=1:T

xs(t) = sum(PS.wT(t,:).*PF.xPWeighted(t,:));

end;

%%% Standard errors

% Compute the standard errors of the parameter estimates by the use

% of the stable estimator of the information matrix established by

% Duan and Fulop (2011).

standard_error5(PF.xPWeighted,PS.wT,PS.wij,z.P,z.D,mEst,N)

%%% Goodness-of-fit test

% Compute the PITs and the corresponding empirical cdf,

% see forecast_denstiy.m in Programming codes for Chapter 3.

pit = forecast_density(PF,mEst,z);

[cdf_pit]=ecdf(pit);
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% KS-test.

% Simulate 1 million uniforms.

r_unif = unifrnd(0,1,1000000,1);

% Compare these uniforms with the PITs by using a KS-Test.

[h,pValue,ks_stat] = kstest2(r_unif,pit)

% LB-test.

[h,pValue,lb_stat,cValue] = lbqtest(pit)

%%% Conditional stock-price variance with the periodic,

%%% stochastically deflating bubble

% Compute the conditional variance given in Eq. (5.15).

Var_t = zeros(1,T);

beta=1/r;

% We assume that dividends follow a driftless random walk with

% variance = 0.0009.

var_div = 0.0009;

% As bubble component we use the simulated process of the new

% bubble displayed in Figure 5.3 with the parameters psi = 0.9804,

% iota2 = 0.02, p = 0.87 and alpha = 0.91.

Bt = xlsread(’b6n’)’;

for t=2:T

Var_t(t) = (m.alpha-m.p)^2/(m.psi*m.p*((1-m.p)^2))*...

(exp(m.iota2)-m.p)*(Bt(t-1)^2)+ (((1-m.alpha)^2+2*...

(m.alpha-m.p)*(1-m.alpha))/((m.psi^2)*(1-m.p)^2))*...

(exp(m.iota2)-1)*(Bt(t-1)^2)+(beta^2*var_div);

end;
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particle_filter5.m

%%% Particle filter

function pf = particle_filter5(m,N,z)

P = z.P;

D = z.D;

T = size(P,2);

xf = zeros(1,size(P,2));

xPWeighted = zeros(T,N);

xPResampled = zeros(T,N);

wt = zeros(T,N);

% 1. Initialize particles.

% Initial state unknown, assumed to be a positive random variable.

B = exp(sqrt(0.2)*randn(1,N)-(2*0.2));

% 2. Run the particle filter.

for t=1:T

% Compute the weights.

w = exp((-0.5/m.sig2)*((repmat(P(t),1,N) -...

m.phi.*(repmat(D(t),1,N)) - B).^2));

w(w==0) = exp(-745);

w = w/sum(w);

% Save the particles and corresponding weights.

xPWeighted(t,:) = B;

wt(t,:) = w;

% Compute state estimate, see Eq. (3.13).

xf(t) = sum(w.*B);

% Resample the particles, see sysresample.m in Programming

% codes for Chapter 3.

index = sysresample(w);

B = B(index);

xPResampled(t,:) = B;

% Sequential importance sampling => new particles for t+1.
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B = (((m.alpha/(m.psi*m.p)-(1-m.alpha)/(m.psi*(1-m.p))).*...

binornd(1,(m.p),1,N)+(1-m.alpha)/(m.psi*(1-m.p))).*B).*...

exp(sqrt(m.iota2)*randn(1,N)-(0.5*m.iota2));

end;

pf.Xf = xf;

pf.xPWeighted = xPWeighted;

pf.xPResampled = xPResampled;

pf.w = wt;

end

particle_smoother5.m

%%% Particle smoother

function ps = particle_smoother5(m,N,PF)

T = size(PF.xPWeighted,1);

wT = zeros(T,N);

kk = ones(1,N);

% 1. Set the smoothed weights in T.

wT(T,:) = PF.w(T,:);

% 2. Run the particle smoother.

for t = T-1:-1:1

p_xt1_xt = zeros(N,N);

% Use the computed particles in t and t+1

xt = PF.xPWeighted(t,:);

xt1 = PF.xPWeighted(t+1,:);

xti = repmat(xt,N,1)’;

% Compute the density of all possible particle combinations.

p_xt1_xt = (m.p)*lognpdf(repmat(xt1,N,1),(-(m.iota2/2)+...

log((m.alpha/(m.p*m.psi))*(xti))),sqrt(m.iota2))+...

(1-(m.p))*lognpdf(repmat(xt1,N,1),(-(m.iota2/2)+...

log(((1-m.alpha)/((1-m.p)*m.psi))*(xti))),sqrt(m.iota2));
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% Compute the (normalized) smoothed weights in Eq.(3.20).

% 1. Compute the denominator of the summand in Eq. (3.20).

vk = PF.w(t,:)*p_xt1_xt;

% Set all weighted densities which are approx. zero on minimal

% positive value to ensure numerical stability in the next step.

vk(vk==0) = exp(-745);

% 2. Compute the complete sum in Eq. (3.20)

wij(:,:,t) = (repmat(PF.w(t,:),N,1)’.*repmat(wT(t+1,:),N,1).*...

p_xt1_xt)./repmat(vk,N,1);

k = (repmat(wT(t+1,:),N,1).*p_xt1_xt)./repmat(vk,N,1);

sk = k*kk’;

% 3. Compute Eq.(3.20)

wT(t,:) = PF.w(t,:).*sk’;

end;

ps.wT = wT;

ps.wij = wij;

end

Q5_theta_k.m

function Qfun = Q5_theta_k(theta,xPWeighted,wij,wT,P,D)

% Parameter for maximizing.

phi = theta(1);

sig2 = theta(2);

psi = theta(3);

iota2 = theta(4);

p = theta(5);

alpha = theta(6);

% Sample size.

T = size(xPWeighted,1);

% Number of particles.

N = size(xPWeighted,2);
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Qfun3 = 0;

Qfun2 = 0;

kk = ones(1,N);

% Compute the second term of the approximated Q-function given in

% Eq.(3.30).

for t=1:T-1

p_xt1_xt_k = zeros(N,N);

xt = xPWeighted(t,:);

xt1 = xPWeighted(t+1,:);

xti = repmat(xt,N,1)’;

p_xt1_xt_k = (p)*lognpdf(repmat(xt1,N,1),(-(iota2^2/2)+...

log(((alpha)/((p)*(psi)))*(xti))),sqrt(iota2^2))+...

(1-(p))*lognpdf(repmat(xt1,N,1),(-(iota2^2/2)+...

log(((1-(alpha))/((1-(p))*((psi))))*...

(xti))),sqrt(iota2^2));

log_p_xt1_xt_k=log(p_xt1_xt_k);

% To ensure numerical stability (20 times the computer tolerance).

log_p_xt1_xt_k(log_p_xt1_xt_k == -Inf) = -15000;

wijp = sum((wij(:,:,t).*(log_p_xt1_xt_k))*kk’) ;

Qfun2 = Qfun2 + wijp;

end;

% Compute the third term of the approximated Q-function given in

% Eq.(3.30).

for t=1:T

p_yt_xt = -(1/2)*log(sig2^2)-(1/(2*sig2^2))*(P(t)-phi*D(t)-...

xPWeighted(t,:)).^2 ;

Qfun3 = Qfun3 + wT(t,:)*p_yt_xt’;

end;

Qfun = Qfun3 + Qfun2 ;% Qfun1 is neglected.

Qfun = -Qfun;

end
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standard_error5.m

function SE = standard_error5(xPWeighted,wT,wij,P,D,m,N)

T = size(xPWeighted,1);

kk = ones(1,N);

f11 = zeros(6,T);

% Compute the second term of the score of the observed-data

% log-likelihood function given in Eq. (3.40).

for t = 2:T

xt = xPWeighted(t-1,:);

xt1 = xPWeighted(t,:);

xti = repmat(xt,N,1)’;

xtj = repmat(xt1,N,1);

f1 = zeros(6,1);

% Compute the first derivatives of the joint log-likelihood

% function with respect to theta for all N paths. We compute

% these derivatives with the mathematical software "Maple".

% First derivative with respect to phi.

f1a = (P(t)-m.phi.*D(t)-xt1).*D(t)./m.sig2 ;

% First derivative with respect to sig2.

f2a = -0.5.*(-m.phi.^2.*D(t).^2+2.*D(t).*((-xt1)+P(t)).*...

m.phi-P(t).^2-(xt1).^2+2.*P(t).*(xt1)+m.sig2)./...

(sqrt(m.sig2).*sqrt(m.sig2.^3));

% First derivative with respect to psi.

f3a = 0.5.*((-1+m.p).*(2.*log(xtj)+m.iota2-2.*log((-1+m.alpha).*...

xti./(m.psi.*(-1+m.p)))).*exp(-(1./8).*(2.*log(xtj)+...

m.iota2-2.*log((-1+m.alpha).*xti./(m.psi.*(-1+m.p)))).^2./...

m.iota2)-exp(-(1./8).*(2.*log(xtj)+m.iota2-2.*log(m.alpha.*...

xti./(m.psi.*m.p))).^2./m.iota2).*m.p.*(2.*log(xtj)+...

m.iota2-2.*log(m.alpha.*xti./(m.psi.*m.p))))./...

(((1-m.p).*exp(-(1./8).*(2.*log(xtj)+m.iota2-2.*log((-1+...

m.alpha).*xti./(m.psi.*(-1+m.p)))).^2./m.iota2)+m.p.*...
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exp(-(1./8).*(2.*log(xtj)+m.iota2-2.*log(m.alpha.*xti./...

(m.psi.*m.p))).^2./m.iota2)).*m.psi.*m.iota2);

% First derivative with respect to iota2.

f4a = 0.5.*( -(-1+m.p).*(log(xtj).^2-2.*log(xtj).*log((-1+...

m.alpha).*xti./(m.psi.*(-1+m.p)))-(1./4).*m.iota2.^2+...

log((-1+m.alpha).*xti./(m.psi.*(-1+m.p))).^2-m.iota2).*...

exp(-(1./8).*(2.*log(xtj)+m.iota2-2.*log((-1+m.alpha).*...

xti./(m.psi.*(-1+m.p)))).^2./m.iota2)+m.p.*exp(-(1./8).*...

(2.*log(xtj)+m.iota2-2.*log(m.alpha.*xti./(m.psi.*...

m.p))).^2./m.iota2).*(log(xtj).^2-2.*log(xtj).*...

log(m.alpha.*xti./(m.psi.*m.p))-(1./4).*m.iota2.^2+...

log(m.alpha.*xti./(m.psi.*m.p)).^2-m.iota2))./(m.iota2.^2.*...

((1-m.p).*exp(-(1./8).*(2.*log(xtj)+m.iota2-2.*log((-1+...

m.alpha).*xti./(m.psi.*(-1+m.p)))).^2./m.iota2)+m.p.*...

exp(-(1./8).*(2.*log(xtj)+m.iota2-2.*log(m.alpha.*xti./...

(m.psi.*m.p))).^2./m.iota2)));

% First derivative with respect to p.

f5a = 0.5.*((-m.iota2+2.*log(xtj)-2.*log((-1+m.alpha).*xti./...

(m.psi.*(-1+m.p)))).*exp(-(1./8).*(2.*log(xtj)+m.iota2-2.*...

log((-1+m.alpha).*xti./(m.psi.*(-1+m.p)))).^2./m.iota2)+2.*...

exp(-(1./8).*(2.*log(xtj)+m.iota2-2.*log(m.alpha.*xti./...

(m.psi.*m.p))).^2./m.iota2).*((1./2).*m.iota2-log(xtj)+...

log(m.alpha.*xti./(m.psi.*m.p))))./(m.iota2.*((1-m.p).*...

exp(-(1./8).*(2.*log(xtj)+m.iota2-2.*log((-1+m.alpha).*...

xti./(m.psi.*(-1+m.p)))).^2./m.iota2)+m.p.*exp(-(1./8).*...

(2.*log(xtj)+m.iota2-2.*log(m.alpha.*xti./...

(m.psi.*m.p))).^2./m.iota2)));

% First derivative with respect to alpha.

f6a = 0.5.*((2.*(-log(xtj)-(1./2).*m.iota2+log((-1+m.alpha).*...

xti./(m.psi.*(-1+m.p))))).*(-1+m.p).*m.alpha.*exp(-(1./8).*...

(2.*log(xtj)+m.iota2-2.*log((-1+m.alpha).*xti./(m.psi.*...

(-1+m.p)))).^2./m.iota2)-2.*exp(-(1./8).*(2.*log(xtj)+...

m.iota2-2.*log(m.alpha.*xti./(m.psi.*m.p))).^2./m.iota2).*...
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m.p.*(-1+m.alpha).*(-log(xtj)-(1./2).*m.iota2+log(m.alpha.*...

xti./(m.psi.*m.p))))./(m.iota2.*(-1+m.alpha).*m.alpha.*...

((1-m.p).*exp(-(1./8).*(2.*log(xtj)+m.iota2-2.*log((-1+...

m.alpha).*xti./(m.psi.*(-1+m.p)))).^2./m.iota2)+m.p.*...

exp(-(1./8).*(2.*log(xtj)+m.iota2-2.*log(m.alpha.*xti./...

(m.psi.*m.p))).^2./m.iota2)));

% Compute the weighted sum of the derivatives (expected value).

f1(1) = wT(t,:)*f1a’;

f1(2) = wT(t,:)*f2a’;

f1(3) = sum((wij(:,:,t-1).*(f3a))*kk’) ;

f1(4) = sum((wij(:,:,t-1).*(f4a))*kk’) ;

f1(5) = sum((wij(:,:,t-1).*(f5a))*kk’) ;

f1(6) = sum((wij(:,:,t-1).*(f6a))*kk’) ;

f1(isnan(f1))=0; % To ensure numerical stability.

% Sum over t = 2, ..., T.

f11(:,t)=f11(:,t)+(f1);

end

% First derivatives of the joint log-likelihood function at t=1.

xt = xPWeighted(1,:);

f1 = zeros(6,1);

% First derivative with respect to phi.

f1a = (P(1)-m.phi.*D(1)-xt).*D(1)./m.sig2 ;

% First derivative with respect to sig2.

f2a = -0.5.*(-m.phi.^2.*D(1).^2+2.*D(1).*(-xt+P(1)).*m.phi-...

P(1).^2-xt.^2+2.*P(1).*xt+m.sig2)./(sqrt(m.sig2).*...

sqrt(m.sig2.^3));

% First derivative with respect to psi.

%f3a = 0;

% First derivative with respect to iota2.

%f4a = 0);

% First derivative with respect to kappa.

%f5a = 0;
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% First derivative with respect to p.

%f6a = 0;

% Compute the weighted sum of the first derivatives.

f1(1) = wT(1,:)*f1a’;

f1(2) = wT(1,:)*f2a’;

f1(3) = 0;

f1(4) = 0;

f1(5) = 0;

f1(6) = 0;

f11(:,1) = (f1);

% Expected value of the derivative of the joint log-likelihood.

score = f11;

% Take into account the dependence among the lagged terms by the

% procedure of Newey and West (1987).

A = 0;

TT = size(score,2);

% Compute the several covariance terms Aj given Eq. (3.42).

for j = 0:(TT-1)

A = 0;

for t = 1:(TT-(j))

A1 = score(:,t)*score(:,t+j)’;

A = A+A1;

end

Aj(:,:,(j+1)) = A;

end

format long

% Compute the negative expected value of the Hessian, see Eq. (3.41).

hessian = Aj(:,:,1);

lag = 15;

for j = 1:lag

hessian = hessian+(1-j./(lag+1)).*(Aj(:,:,(j+1))+Aj(:,:,(j+1))’);

end
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% Compute the covariance matrix of the parameter estimates by taking

% the inverse of the hessian.

Cov = inv(hessian);

% Standard errors are given by the diagonal of the covariance matrix.

Cov_d = diag(Cov);

% Results.

SE.phi = Cov_d(1);

SE.sig2 = Cov_d(2);

SE.psi = Cov_d(3);

SE.iota2 = Cov_d(4);

SE.p = Cov_d(5);

SE.alpha = Cov_d(6);

end
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