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Abstract. We interpret several constructions with C∗-algebras as colimits in the bicategory
of correspondences. This includes crossed products for actions of groups and crossed modules,
Cuntz–Pimsner algebras of proper product systems, direct sums and inductive limits, and
certain amalgamated free products.

1. Introduction

A basic idea of noncommutative geometry is to replace ordinary quotient
spaces by noncommutative generalizations. For instance, let a group G act on
a space X . The orbit space X/G is often badly behaved as a topological space.
In noncommutative geometry, it is replaced by the crossed product C∗-algebra
C0(X) ⋊ G. We may view the action of G on X as a diagram of topological
spaces. The quotient space is the colimit of this diagram. We will exhibit
the crossed product for a group action as a colimit as well, in an appropriate
bicategory of C∗-algebras. As this motivating example shows, our bicategorical
colimit construction leads to noncommutative C∗-algebras even when we start
with a diagram of locally compact spaces.

The most concrete description of bicategories involves objects, arrows, and
2-arrows, the composition of arrows and the horizontal and vertical compo-
sition of 2-arrows. We shall emphasize a more conceptual definition: in a
bicategory, sets of arrows between objects are replaced by categories of ar-
rows, and the composition becomes a bifunctor. Associativity and unitality
may hold exactly (strict 2-categories or just 2-categories) or only up to natu-
ral equivalences of categories that satisfy suitable coherence conditions (weak
2-categories or bicategories, see [3, 14]). We shall mostly work in the bicat-
egory Corr of C∗-algebra correspondences. This is introduced by Landsman
in [12] and studied in some depth in [7].

For simplicity, we also consider the bicategory C
∗(2), which is introduced in

[7, §2.1.1]. Its objects are C∗-algebras, its arrows A → B are nondegenerate
∗-homomorphisms A → M(B), where M(B) denotes the multiplier algebra,
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and its 2-arrows f1 ⇒ f2 for nondegenerate ∗-homomorphisms f1, f2 : A ⇒

M(B) are unitary multipliers u ∈ U(B) with uf1(a)u
∗ = f2(a) for all a ∈ A.

Since unitaries are invertible, the arrows A → B and 2-arrows between them
in C

∗(2) form a groupoid, not just a category.
By the way, we may also restrict to nondegenerate ∗-homomorphisms

A → B; this is like restricting to proper correspondences. Since a nonuni-
tal C∗-algebra contains no unitary elements, our bicategory depends on using
unitary multipliers. We need nondegeneracy for our arrows so that they act
on unitary multipliers.

What are diagrams in categories and their colimits? Let C and D be cate-
gories. A diagram in D of shape C is a functor C → D. Such diagrams are again
the objects of a category DC , with natural transformations between functors as
arrows. Any object x of D gives rise to a “constant” diagram constx : C → D
of shape C. The colimit colimF of a diagram F : C → D is an object of D with
the following universal property: there is a natural bijection between arrows
colimF → x in D and natural transformations F ⇒ constx for all objects x
of D. In brief,

(1) D(colimF, x) ∼= DC(F, constx).

Now let C and D be bicategories. As before, a diagram in D of shape C
is a functor (or morphism) C → D, as defined in, say, [3, 14]. The functors
C → D are the objects of a bicategory DC ; its arrows and 2-arrows are the
transformations between functors and the modifications between transforma-
tions, see [3, 14]. These definitions are repeated in our main reference [7] in
Definition 4.1 and Sections 4.2 and 4.3.

Thus DC(F1, F2) for two diagrams F1 and F2 is now a category, not just
a set, with transformations F1 ⇒ F2 as objects and modifications between
them as arrows. Similarly, for two objects x1 and x2 of D, there is a category
D(x1, x2) of arrows x1 → x2 and 2-arrows between them. Once again, there is
a constant diagram constx of shape C for any object x of D. The bicategorical
colimit is defined by the same condition (1), now interpreting ∼= as a natural
equivalence of categories. An object colimF of D with this property is unique
up to equivalence if it exists.

What do these definitions mean if C = G is a group and D is the bicategory
C
∗(2) described above? First, diagrams in C

∗(2) are the twisted group actions
in the sense of Busby and Smith; this is observed in [7]. Transformations be-
tween such diagrams are also described there. In particular, a transformation
F ⇒ constD is a covariant representation of the twisted G-action correspond-
ing to F in the multiplier algebra of D. A modification is a unitary intertwiner
between two covariant representations. Hence the colimit and the crossed
product for the twisted action are characterized by the same universal prop-
erty, forcing them to be isomorphic. As a result, if we replace the category of
spaces and maps by the bicategory C

∗(2), we are led to enlarge the class of
group actions to twisted actions, and the crossed product construction appears
as the natural analog of a “quotient” in our bicategory.
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Here we interpret many interesting constructions with C∗-algebras as co-
limits. Thus our new point of view unifies several known constructions with
C∗-algebras. Most proofs are as trivial as above: we merely make the universal
property that defines the bicategorical colimit explicit in a particular case and
recognize the result as the definition of a familiar C∗-algebraic construction.

Instead of C∗(2), we mainly work in the correspondence bicategory Corr,
which is defined in [7, §2.2]. Let A and B be C∗-algebras. A correspondence

from A to B is a Hilbert B-module E with a nondegenerate ∗-homomorphism
from A to the C∗-algebra of adjointable operators on E . An isomorphism
between two such correspondences is a unitary operator intertwining the left
A-actions. We let Corr(A,B) be the groupoid of correspondences from A to B
and their isomorphisms. The composition is given by the bifunctors

(2) Corr(B,C)× Corr(A,B)→ Corr(A,C), (E ,F) 7→ F ⊗B E .

This is associative and monoidal up to canonical isomorphisms, which are part
of the bicategory structure (see [7]). A correspondence E from A to B is proper
if the left A-module structure is through a map A→ K(E) to the C∗-algebra of
compact operators. Thus proper correspondences with isomorphisms between
them form a subbicategory Corrprop of Corr. Our main results will only hold
for diagrams of proper correspondences, that is, functors to Corrprop.

Groups are categories with only one object. At the other extreme are dis-
crete categories. These are categories where all arrows are identities, that is,
sets viewed as categories. Colimits in this case are also called coproducts.
Whereas coproducts need not exist in C

∗(2), they are given by the C0-direct
sum in the correspondence bicategory Corr; this statement is a standard addi-
tivity result about representations of C0-direct sums on Hilbert modules. The
nonexistence of coproducts in C

∗(2) is one reason to prefer the correspondence
bicategory Corr. Moreover, since C∗(2) is a subbicategory of Corr, we get more
diagrams in Corr than in C

∗(2).
A functor G→ Corr for a group G is equivalent to a saturated Fell bundle

over G (see [7]). The colimit for such a functor is the full C∗-algebra of sections
of the corresponding Fell bundle.

Crossed modules are a 2-categorical generalization of groups. Their actions
on C∗-algebras by automorphisms or correspondences have been introduced in
[5, 7]. Once again, the universal property of the colimit is the same as that for
the appropriate analog of the crossed product in this context.

What happens for non-reversible dynamical systems? Let P be a monoid,
that is, a category with a single object. A functor P → Corr is the same as an
essential product system over the opposite monoid P op. The change of direc-
tion comes from (2), where we tensor in reverse order to conform to the usual
conventions of composing maps. Colimits for product systems are remarkable
because the universal property we get is not always but often equivalent to a
standard one. More precisely, if the product system is proper, that is, all left
actions in the product system are through compact operators, then the colimit
of the corresponding diagram exists and is isomorphic to the Cuntz–Pimsner
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algebra of the product system. We get the “absolute” Cuntz–Pimsner alge-
bra, not the popular modification by Katsura, and we get there directly and
never see the Cuntz–Toeplitz algebra along the way. This result on Cuntz–
Pimsner algebras is the main idea of [1]. We had originally planned [1] as
an applications section inside this article. We were, however, convinced by
C∗-algebra colleagues to write down those results separately, to make them
accessible without category theory background.

Readers familiar with free products of C∗-algebras may have been sur-
prised that the bicategory C

∗(2) is not closed under coproducts: already in
the usual category of C∗-algebras with ∗-homomorphisms, there is a coprod-
uct, namely the free product. This does not cooperate with unitary multipliers,
however, and fails to satisfy the universal property for a coproduct in C

∗(2)
or Corr. This situation clears up when we consider pushouts. Given two non-

degenerate ∗-homomorphisms B1 ← A→ B2, their colimit in Corr or C∗(2) is
the amalgamated free product B1 ⋆AB2. Free products without amalgamation
occur in the highly degenerate case A = 0.

Even more fundamental than pushouts are coequalizers. These are colimits
of diagrams of the shape E1, E2 : A ⇒ B. For instance, if A = B = C and
Ei = Cni for i = 1, 2, then the coequalizer is the universal C∗-algebra generated
by elements ujk for 1 ≤ j ≤ n1, 1 ≤ k ≤ n2, subject to the relations

∑

j

uiju
∗
kj = δi,k,

∑

i

u∗
ijuik = δj,k

for all 1 ≤ i, k ≤ n1 or all 1 ≤ j, k ≤ n2, respectively. If n1 = n2, then this is
the C∗-algebra Unc

n introduced by Brown and studied further by McClanahan
[4, 15, 16]. This example shows that coequalizers, even of very small diagrams,
need not be particularly well-behaved C∗-algebras.

Another situation we treat are inductive limits: the inductive limit of a
chain of ∗-homomorphisms is also a colimit in Corr, even if some of these
∗-homomorphisms are degenerate.

We also prove one general result here: any diagram of proper correspon-
dences, indexed by any bicategory, has a colimit. We describe this colimit
by generators and relations, with the known construction of Cuntz–Pimsner
algebras of product systems as a model case. This model case also shows that
something may go wrong for diagrams involving non-proper correspondences.

2. Colimits in bicategories

Let C and D be bicategories. An object of DC is a functor (or morphism)
C → D; it consists of several objects, arrows and 2-arrows in D. In the constant
diagram, constx : C → D, all these objects are the same object x of D, all the
arrows are the identity on x, and all 2-arrows are the identity 2-arrow on idx.

For instance, functors G→ C
∗(2) for a group G are identified with Busby–

Smith twisted actions of G on C∗-algebras in [7, §3.1.1]. The constant diagram
constA for a C∗-algebra A is the trivial G-action on A, with trivial twists.
Functors G→ Corr are identified with saturated Fell bundles in [7, §3.1.1]. A
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constant diagram constA in Corr corresponds to the constant Fell bundle with
all fibers equal to A and the constant multiplication and involution.

Definition 2.1. Let C and D be bicategories and let F : C → D be a functor.
A cone over F is an object x of D with a transformation ϑx : F → constx;
a colimit of F is a universal cone over F , that is, an object x of D with
a transformation ϑx : F → constx, such that composition with ϑx induces
equivalences of categories

D(x, y)
∼=
−→ DC(F, consty) for all objects y of D.

If we are given natural equivalences D(x, y) ∼= DC(F, consty), then the
identity map in D(x, x) gives a transformation ϑx : F → constx, which is
determined uniquely up to isomorphism; naturality forces the equivalences
D(x, y) → DC(F, consty) to be composition with ϑx. Hence a colimit may
also be defined as an object x of D with natural equivalences of categories
D(x, y) ∼= DC(F, consty).

Proposition 2.2. The colimit is functorial: a transformation Φ: F1 → F2

induces an arrow colimΦ: colimF1 → colimF2, and a modification Φ1 → Φ2

induces a 2-arrow colimΦ1 → colimΦ2, and these constructions are compatible

with the composition bifunctor for transformations.

Proof. Let (x1, ϑ1) and (x2, ϑ2) be colimits of F1 and F2, respectively. Trans-
formations may be composed, so ϑ2 ◦Φ is an object of DC(F, constx2

). By the
definition of the colimit, there is an arrow colimΦ: x1 → x2 with

ϑ2 ◦ Φ ∼= (colimΦ) ◦ ϑ1,

and this arrow is unique up to equivalence. Similarly, a modification Φ1 → Φ2

induces a modification ϑ2 ◦ Φ1 → ϑ2 ◦ Φ2, which gives a 2-arrow colimΦ1 →
colimΦ2. Thus we get a functor DC(F1, F2) → D(colimF1, colimF2). It is
routine to check that this functor, up to equivalence, does not depend on
choices and that the construction is compatible with the composition bifunctors
in DC and D. �

Corollary 2.3. Any two colimits of the same diagram are canonically equiv-

alent. �

Equivalences in C
∗(2) are ∗-isomorphisms, those in Corr are imprimitivity

bimodules. Hence colimits in C
∗(2) are unique up to isomorphism if they exist,

whereas colimits in Corr are only unique up to Morita–Rieffel equivalence.

3. Coproducts and products

Coproducts are colimits of diagrams indexed by a category with only identity
morphisms. Such a diagram is simply a map from some index set I to the
objects of the category. The following proposition shows that the usual C0-
direct sum of C∗-algebras is both a coproduct and a product of the set of
objects (Ai)i∈I in Corr. (We do not consider limits in this article because it
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seems rare that they exist in Corr. We only mention the result on products
because its proof and statement are so similar to the description of coproducts.)

Proposition 3.1. Let Ai for i ∈ I and B be C∗-algebras. Then

Corr

(

⊕

i∈I

Ai, B

)

∼=
∏

i∈I

Corr(Ai, B),

Corr

(

B,
⊕

i∈I

Ai

)

∼=
∏

i∈I

Corr(B,Ai).

Proof. Given correspondences Ei : Ai → B, we may form the Hilbert B-module
⊕

i∈I Ei and equip it with a nondegenerate left action of
⊕

i∈I Ai to get a cor-
respondence from

⊕

i∈I Ai to B. Isomorphisms of correspondences Ei → E
′
i

may be put together to an isomorphism of correspondences
⊕

i∈I Ei →
⊕

i∈I E
′
i.

Thus we get a functor

(3)
∏

i∈I

Corr(Ai, B)→ Corr

(

⊕

i∈I

Ai, B

)

.

To show that (3) is an equivalence, consider a correspondence E from
⊕

i∈I Ai to B. Since the left action is nondegenerate, it extends to an ac-
tion of the multiplier algebra of

⊕

i∈I Ai. The latter is
∏

i∈IM(Ai). (The
product is taken in the category of C∗-algebras, so it contains only bounded
families.) In particular, M(

⊕

i∈I Ai) contains an orthogonal projection pi
onto the ith summand for each i ∈ I. We have strict convergence

∑

i∈I pi = 1.
The projections pi act by orthogonal projections on E . Let Ei := piE be their
images; these are Hilbert submodules on which Ai acts nondegenerately, re-
spectively. Thus Ei is a correspondence from Ai to B. Since

∑

i∈I pi = 1,
we have

⊕

i∈I Ei = E . Thus E belongs to the essential range of the functor
(3). Furthermore, since any intertwining operator between two correspon-
dences commutes with the left action of the multiplier algebra and hence with
the projections pi, it comes from a family of intertwining operators on the
summands Ei; this shows that the functor (3) is fully faithful. Hence (3) is
an equivalence of groupoids. This yields the first isomorphism, showing that
⊕

i∈I Ai is a coproduct of (Ai)i∈I in Corr.
Now consider a family of correspondences Ei from B to Ai. Let

⊕

i∈I Ei be
the set of all families (ξi)i∈I with ξi ∈ Ei and (i 7→ ‖ξi‖) ∈ C0(I). This is a
Hilbert module over

⊕

i∈I Ai by the pointwise operations. The left actions ofB
on the Hilbert modules Ei give a nondegenerate left action of B on

⊕

i∈I Ei.
Thus we get a correspondence from B to

⊕

i∈I Ai. This construction is natural
with respect to isomorphisms of correspondences and hence gives a functor

(4)
∏

Corr(B,Ai)→ Corr
(

B,
⊕

Ai

)

.

Take a correspondence E from B to
⊕

i∈I Ai. For each i ∈ I, Ei := E ·Ai ⊆ E
is a correspondence from B to the ideal Ai in

⊕

j∈I Aj . Since these ideals
are orthogonal, we have E ∼=

⊕

i∈I Ei. Thus E belongs to the essential range
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of (4). Since the decomposition E ∼=
⊕

i∈I Ei is natural, the functor (4) is fully
faithful. �

Proposition 3.1 works because we may take direct sums of correspondences
to make things orthogonal. In the category of C∗-algebras with ∗-homo-
morphisms as morphisms, coproducts are free products, which are highly non-
commutative. Since the coproduct in Corr is unique up to isomorphism in Corr,
that is, Morita–Rieffel equivalence, the free product is not a coproduct in Corr

any more. The reason is that it is not compatible with isomorphisms of corre-
spondences: for a coproduct, we allow different unitaries Ei ∼= E

′
i for all i ∈ I.

Orthogonality of the Ei allows us to put two unrelated unitaries together. In
the 2-category C

∗(2), coproducts do not exist in general for this reason: there
are no orthogonal direct sums in C

∗(2), and free products do not behave well
with respect to 2-arrows.

Example 3.2. We prove formally that the coproduct of two copies of C

in C
∗(2) does not exist. LetB be a C∗-algebra. There is a unique arrowC→ B,

namely the unit map of M(B). Thus there is a unique transformation from
our coproduct diagram to constB , given by the unit map on both copies
of C. A modification on this unique transformation is given by two unitaries
u1, u2 ∈ M(B), one for each copy of C, subject to no conditions. If we also
take B = C, then our groupoid of transformations is the two-torus group T2.

Now assume that the C∗-algebra A were a coproduct of C and C in C
∗(2).

Then the groupoid of arrows A → C would be equivalent to T2. Its objects
are nonzero characters A → C and its arrows are unitaries in C acting on
characters by conjugation, that is, trivially. So we get a disjoint union of some
copies of the group T, one for each character of A. But this is never equivalent
to T2 because the groups T and T2 are not isomorphic. To see the latter,
observe that T has exactly one element of order 2, namely −1, while T2 has
exactly three of them, namely (−1,+1), (−1,−1), (+1,−1).

The category Corr has more diagrams than C
∗(2). Proposition 3.1 and

Example 3.2 show that some very simple diagrams have a colimit in Corr, but
not in C

∗(2). In the following, we therefore mostly study colimits in Corr.
Next we clarify the role of free products in our theory. We show that amalga-

mated free products are pushouts in Corr under a nondegeneracy assumption;
this rules out, in particular, free products without any amalgamation. Indeed,
in the most degenerate case where we amalgamate over 0, Proposition 3.1
shows that the coproduct is the C0-direct sum and not the free product.

3.3. Pushouts. A pushout in Corrprop is a colimit of a diagram of the form

A
E1

//

E2

��

B1

B2,
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where A, B1 and B2 are C
∗-algebras and E1 and E2 are proper correspondences,

without further data or conditions.
One extreme case is A = 0, where the pushout degenerates to a coprod-

uct; this gives the direct sum B1 ⊕ B2 by Proposition 3.1. Here we consider
the opposite extreme case, where E1 and E2 are associated to nondegenerate
∗-homomorphisms A → B1, A → B2; that is, Ei = Bi with A acting by
a · b := ϕi(a) · b for i = 1, 2.

Proposition 3.4. Let A, B1 and B2 be C∗-algebras and let ϕ1 : A → B1

and ϕ2 : A→ B2 be nondegenerate ∗-homomorphisms. The amalgamated free

product B1 ⋆A B2 is also a pushout in Corr.

Proof. When we turn the ∗-homomorphism ϕi for i = 1, 2 into a correspon-
dence Ei, we take the right ideal ϕi(A) ·Bi, viewed as a Hilbert Bi-module, and
equipped with the left action of A through ϕi. Our nondegeneracy assumption
means that Ei = Bi as a right Hilbert Bi-module. Furthermore, we remark
that ϕi(A) ⊆ K(Ei) = Bi by assumption, so the Ei are proper correspondences.
We will see later that properness is crucial to get colimits.

Let D be a C∗-algebra. A transformation in Corr from our pushout dia-
gram to the constant diagram on D is given by correspondences F1 : B1 → D,
F2 : B2 → D and an isomorphism

U : F1
∼= B1 ⊗B1

F1 → B2 ⊗B2
F2
∼= F2

of correspondences from A to D. That is, U is a unitary operator F1 → F2

that intertwines the left actions of A given by composing the actions of Bi

with the ∗-homomorphisms ϕi. Here we have used the nondegeneracy of ϕi to
identify Ei = Bi as Hilbert Bi-modules.

A modification from (Fi, U) to (F ′
i , U

′) is given by isomorphisms of corre-
spondences Vi : Fi → F

′
i for i = 1, 2 that intertwine U and U ′.

Every such transformation is isomorphic to one where F1 = F2 as right
Hilbert D-modules and U is the identity operator: the identity on F1 and
U : F1 → F2 is an invertible modification. Hence restricting to transformations
with F1 = F2 and U = id gives an equivalent groupoid. So it does not change
the colimit. The intertwining condition for modifications now simply says that
the unitaries Fi → F

′
i for i = 1, 2 are the same unitary, so we only have a

single unitary that intertwines the actions of B1 and B2, and hence the actions
of A.

If F1 = F2 and U = id, then B1 and B2 act on the same Hilbert module, and
the actions composed with ϕi coincide on A; this gives an action of the amal-
gamated free product B1 ⋆A B2 on Fi. Since B1 and B2 act nondegenerately,
so does B1 ⋆A B2. Hence we get a correspondence B1 ⋆A B2 → D.

Conversely, a correspondence B1 ⋆AB2 → D gives a Hilbert module F with
a nondegenerate left action of B1 ⋆A B2. Since A · Bi = Bi, the embedding
A → B1 ⋆A B2 is nondegenerate, so the action of A on F is nondegenerate,
and then so are the actions of Bi. Thus we get a transformation from the
pushout diagram to the constant diagram on D with F = F1 = F2 and U the
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identity. Thus we have found an equivalence between the groupoid of natural
transformations and modifications and the groupoid of correspondences from
B1 ⋆A B2 to D. This proves that B1 ⋆A B2 is a colimit. �

Corollary 3.5. Let Ei be proper, full correspondences from A to Bi for i = 1, 2.
The pushout in Corr of E1 and E2 is the amalgamated free product K(E1) ⋆A
K(E2).

Proof. Since Ei is full, it gives a Morita–Rieffel equivalence between K(Ei)
and Bi. Hence the diagrams in Corr given by E1 and E2 and by the ∗-homo-
morphisms A→ K(Ei) for i = 1, 2 from the left A-module structures on Ei are
isomorphic. The latter diagram has K(E1) ⋆A K(E2) as a colimit by Proposi-
tion 3.4. Since the construction of colimits is functorial by Proposition 2.2,
this is also a colimit of the original diagram. �

3.6. An example of a coequalizer. A coequalizer is a colimit of a diagram
consisting of two parallel arrows α1, α2 : A1 ⇒ A2. These particular colimits
quickly become very complicated, as the following example shows.

Example 3.7. Consider the coequalizer of the following diagram:

(5) C
C

m

//

C
n

// C.

The groupoid of transformations from the above diagram to the constant di-
agram on a C∗-algebra D is equivalent to the groupoid that has pairs (F , U)
for a Hilbert D-module F and a unitary operator

U : Fn ∼= C
n ⊗C F

∼=
−→ C

m ⊗C F ∼= F
m

as objects. We may write U as a matrix U = (ui,j) with ui,j ∈ B(F) for
1 ≤ i ≤ n, 1 ≤ j ≤ m. The operator U is unitary if and only if

(6)

m
∑

k=1

ui1ku
∗
i2k

= δi1,i2 ,

n
∑

k=1

u∗
kj1

ukj2 = δj1,j2

for all 1 ≤ i1, i2 ≤ n, 1 ≤ j1, j2 ≤ m. Hence the universal C∗-algebra Unc
m×n

generated by the elements uij for i = 1, . . . , n, j = 1, . . . ,m that satisfy (6) is
a coequalizer of (5). For m = n, this C∗-algebra is introduced by Lawrence
Brown [4] and studied further by Kevin McClanahan, who showed that it has
no projections (see [15, Cor. 2.7]) and is KK-equivalent to C∗(Z) ∼= C(T) (see
[16, Prop. 5.5]). The C∗-algebras Unc

m×n are C∗-algebra analogs of the algebras
introduced by Leavitt [13], and they are prototypical examples of separated
graph C∗-algebras (see [2]).
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4. Colimits for group and crossed module actions

We now consider colimits where C is a group G or a crossed module. We
consider both target bicategories C∗(2) and Corr. In all these cases, the iden-
tification of the colimit with an appropriate “crossed product” is a mere refor-
mulation of results in [5, 7]. Hence we will be rather brief. These results are
trivial, but they are important motivation to look at colimits in bicategories.

To make the results below look more surprising, we briefly consider the
colimit for a group action in the usual category of C∗-algebras and ∗-homomor-
phisms, without any 2-arrows. A group action by automorphisms is, indeed,
the same as a functor from G to the category of C∗-algebras, given by a C∗-
algebra A and αg ∈ Aut(A) satisfying αgαh = αgh. A cone over this diagram
is a C∗-algebra B with a ∗-homomorphism f : A → B such that f ◦ αg = f
for all g ∈ G. Thus f vanishes on the ideal Iα generated by αg(a) − a for all
g ∈ G, a ∈ A. Indeed, the quotient map A → A/Iα is the universal cone.
Hence the colimit is A/Iα. This is very often zero, and certainly not an object
worth studying.

When working in a bicategory, we replace the condition f ◦αg = f by extra

data, say, by a unitary ug with ugf(a)u
∗
g = f(αg(a)) for all a ∈ A. Thus the

bicategorical colimit is larger than A, very much unlike A/Iα above.
The objects of C∗(2)G are described concretely in [7, §3.1.1] as Busby–Smith

twisted actions of G; those of CorrG are equivalent to saturated Fell bundles
over G. The transformations in C

∗(2)G and Corr
G are described concretely

in [7, §3.2]; modifications in C
∗(2)G and Corr

G are described concretely in [7,
§3.3]. Results in [7] immediately give the following proposition.

Proposition 4.1. Let G be a group. Let α : G → Aut(A) and ω : G × G →
U(A) be a Busby–Smith twisted action of G on a C∗-algebra A. The crossed

product A ⋊α,ω G is a colimit of the functor F : G → C
∗(2) associated to

(A,α, ω).

Proof. Let D be a C∗-algebra. The functor constD : G→ C
∗(2) corresponds to

the trivial action of G on D. A transformation from F to constD is equivalent
to a covariant representation of (A,G, α, ω) inM(D), that is, a nondegenerate
representation ̺ : A→M(D) and a map π : G→ U(D) satisfying πg̺(a)π

∗
g =

̺(αg(a)) for all g ∈ G, a ∈ A and πg1πg2 = ̺(ω(g1, g2))πg1g2 for all g1, g2 ∈ G
(see [7, Ex. 3.8]). Modifications between such transformations are the same as
unitary equivalences of covariant representations by [7, Ex. 3.13].

The crossed product is defined to be universal for covariant representations.
That is, there is a bijection between transformations from F to constD and mor-
phisms from A⋊α,ωG to D; the modifications between the transformations cor-
responding to covariant representations (̺, π) and (̺′, π′) are unitary multipli-
ers u of D with u̺(a)u∗ = ̺′(a) for all a ∈ A and uπ(g)u∗ = π′(g) for all g ∈ G.
These are exactly the unitaries that intertwine the induced representations of
A⋊α,ω G. Thus the groupoids C∗(2)G(F, constD) and C

∗(2)(A⋊α,ω G,D) are
naturally isomorphic. �
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For group actions by correspondences, that is, saturated Fell bundles, the
section C∗-algebra plays the role of the crossed product:

Proposition 4.2. Let G be a group and let (Ag)g∈G be a saturated Fell bundle

over G, viewed as a functor F : G→ Corr. The section C∗-algebra of (Ag)g∈G

is a colimit of F .

Proof. Let D be a C∗-algebra. Then constD corresponds to the constant Fell
bundle with fibers D, which describes the trivial action of G on D. Trans-
formations to constD in Corr

G are in bijection with pairs (E , π), where E is
a Hilbert D-module and π :

⊔

g∈G Ag → B(E) is a nondegenerate Fell bundle

representation (see the discussion before [7, Def. 3.12]). Modifications between
such transformations are equivalent to unitary intertwiners between Fell bundle
representations.

The section C∗-algebra C := C∗(Ag)g∈G is defined as the C∗-completion of
the convolution algebra of sections of the Fell bundle. By definition, represen-
tations of a Fell bundle integrate to ∗-representations of this section C∗-algebra,
and all representations of C come from Fell bundle representations. Further-
more, a Fell bundle representation is nondegenerate if and only if the resulting
representation of C is nondegenerate. A nondegenerate representation of C on
a Hilbert D-module is the same as a correspondence from C to D. Further-
more, an operator intertwines the Fell bundle representations if and only if
it intertwines the resulting representations of C, that is, is an isomorphism
of correspondences. Hence the groupoids Corr(F, constD) and Corr(C,D) are
naturally isomorphic. �

Summing up, we merely have to inspect the description of transformations
and modifications between functors G→ C

∗(2) or G→ Corr in [7] to see that
the colimit in either case is the crossed product or Fell bundle section algebra,
respectively.

Now let CM be a crossed module; that is, CM consists of two groups G
and H with homomorphisms ∂ : H → G and c : G → Aut(H), such that
∂(cg(h)) = g∂(h)g−1 and c∂h(k) = hkh−1 for all g ∈ G, h, k ∈ H .

Strict actions of crossed modules on C∗-algebras and crossed products for
such actions are defined in [6]. These are more special than functors CM →
C
∗(2), which are discussed in [7, §4.1.1]. Functors CM→ Corr are described in

[5, Thm. 2.11], generalizing the notion of a saturated Fell bundle from groups
to crossed modules. The crossed product for a functor F : CM → Corr is
defined in [5, Def. 2.8] by a universal property and identified more concretely
in [5, Prop. 2.17].

Proposition 4.3. The crossed product for a crossed module action by corre-

spondences is a colimit in Corr.

Proof. Let F : CM → Corr be a functor. As in the group case, the proof is by
making explicit what transformations F → constD and modifications between
them are and observing that the resulting universal property for the colimit is
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the same one as the defining universal property of the crossed product. Since
this is routine checking, we omit further details. �

5. A single endomorphism

Before we study colimits of arbitrary shape, we look at an important special
case: let C be the monoid (N,+), viewed as a category with a single object.

A functor C → Corr is given by a C∗-algebra A, correspondences En : A→ A
for n ∈ N and isomorphisms of correspondences µn,m : En ⊗A Em ∼= En+m for
all n,m ∈ N, such that E0 is the identity correspondence, µ0,m and µn,0 are the
canonical transformations, and the multiplication maps µn,m are associative
in a suitable sense. This is a special case of Proposition 6.2 below.

A transformation between such diagrams (A, En, µn,m) and (B,Fn, vn,m) is
given by a correspondence G : A→ B and isomorphisms

(7) En ⊗A G
wn−−→
∼=
G ⊗B Fn

for all n ∈ N, subject to compatibility conditions with the µn,m and vn,m for
n,m ∈ N and the condition that w0 should be the canonical isomorphism (see
Proposition 6.3). A modification between two such transformations, (G, wn)
and (G′, w′

n), is given by an isomorphism of correspondences G → G′ intertwin-
ing the wn and w′

n in the obvious sense (see also Proposition 6.4).
This data can be simplified because the monoid (N,+) is freely generated

by 1 ∈ N. For a functor N → Corr, it is enough to give A and a single
correspondence E = E1, with no further data or conditions. We may extend
this to a functor in the above sense by letting En := E⊗An for n ∈ N (understood
to be the identity correspondence if n = 0), and letting µn,m be the canonical
map (this is the identity map up to the associators, which we have dropped
from our notation). The conditions on the µn,m ensure that any functor is
isomorphic to one of this form.

Next, a transformation is specified by a correspondence G and an isomor-
phism

w = w1 : E ⊗A G ∼= G ⊗B F ,

with no condition on w: iteration of w1 provides the isomorphisms wn for
n ∈ N as in (7), and the compatibility conditions for the wn say that any
transformation is generated from w1 in this way. Finally, for a modification,
it is enough to require the intertwining condition for w1, then the condition
follows for wn for all n ∈ N. In brief, the bicategory of functors N → Corr is
equivalent to the following simpler bicategory:

(i) objects are given by a C∗-algebra A and a correspondence E → E ;
(ii) arrows (A, E)→ (B,F) are given by a correspondence G : A→ B and an

isomorphism of correspondences w : G ⊗B F ∼= E ⊗A G;
(iii) 2-arrows (G, w)→ (G′, w′) are isomorphisms x : G → G′ such that

(idE ⊗A x) ◦ w = w ◦ (x ⊗B idF ).
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We may use the simplified data to describe colimits as well, which only require
equivalences of categories.

We now analyze transformations from (A, E) to a constant diagram constD.
First, constD = (D,D), where the secondD means the identity correspondence
on D. Hence the isomorphism w in a transformation may also be viewed as an
isomorphism G ∼= E ⊗A G; here we use the canonical isomorphism G⊗DD ∼= G.

Roughly speaking, we want to turn an isomorphism w : G
∼
−→ E ⊗A G into

a representation of a C∗-algebra on G. The necessary work is carried out
in [1]. First, the isomorphism w : G

∼
−→ E ⊗A G is turned into a “representation”

E → B(G) by sending ξ ∈ E to the operator

G ∋ η 7→ w∗(ξ ⊗ η) ∈ G.

This is a representation of the Hilbert module E in the standard sense, satisfy-
ing an extra nondegeneracy condition corresponding to the surjectivity of w∗.
This extra nondegeneracy condition is equivalent to the Cuntz–Pimsner covari-
ance condition provided E is a proper correspondence by [1, Prop. 2.5]. This
leads to the following theorem.

Theorem 5.1. Let E : A → A be a proper correspondence. The Cuntz–

Pimsner algebra of E is a colimit of the corresponding diagrams (N,+) →
Corrprop and (N,+)→ Corr.

Proof. The Cuntz–Pimsner algebra OE is characterized by the universal prop-
erty that ∗-homomorphisms OE → D for a C∗-algebra D are in bijection with
pairs (ϕ, ϑ), where ϕ : A → D is a ∗-homomorphism and ϑ : E → D is a
Cuntz–Pimsner covariant representation of E (see [18, Thm. 3.12]). In particu-
lar, A ⊆ OE , and inspection shows that this embedding is nondegenerate, that
is, A · OE is dense in OE . It follows that the ∗-homomorphism OE → B(F)
associated to ϕ : A → B(F) and ϑ : E → B(F) is nondegenerate if and only if
ϕ is nondegenerate. Thus a correspondence from OE to D is the same as a
correspondence (F , ϕ) from A to D with a map ϑ : E → B(F) which, together
with ϕ, is a Cuntz–Pimsner covariant representation.

Since E is proper, the Cuntz–Pimsner covariance condition for ϑ holds if
and only if ϑ is “nondegenerate” in the sense that the closed linear span of
ϑ(E) · (F) is F (see [1, Prop. 2.5]). Such nondegenerate correspondences are in
bijection with isomorphisms of correspondences E ⊗ F ∼= F by [1, Prop. 2.3].
So a correspondence from OE to D is the same as a correspondence F from A
to D with an isomorphism of correspondences E ⊗A F ∼= F . These are exactly
the simplified transformations of functors (N,+) → Corr, by the discussion
above the theorem.

Isomorphisms of correspondencesOE → D are the same as unitaries F → F ′

that intertwine the left actions of A and E . Intertwining the left actions of A
means that they are isomorphisms of correspondences from A to D, and inter-
twining the representations of E means that they are modifications between the
corresponding transformations of functors (N,+)→ Corr. Hence the groupoid
of correspondences OE → D and their isomorphisms is naturally isomorphic
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to the groupoid of simplified transformations (A, E)→ constD and their mod-
ifications. This says that OE has the universal property of a colimit in Corr.

A correspondence F : OE → D is proper if and only if the corresponding
representation ϕ of A has image in the compact operators, ϕ(A) ⊆ K(F); this
is because A · OE = OE . Hence OE has the universal property of a colimit
in Corrprop as well. �

Note that the colimit is the Cuntz–Pimsner algebra right away, the Cuntz–
Toeplitz algebra plays no role; this is because of the built-in nondegeneracy
properties of Corr.

Following Muhly and Solel [17] and Katsura [11], many authors have mod-
ified the definition of the Cuntz–Pimsner algebra by requiring the Cuntz–
Pimsner covariance condition only on a suitable ideal in ϕ−1

E
(K(E)). Such

modifications are particularly popular if the left action of A on E is not faith-
ful because in that case, the unmodified Cuntz–Pimsner algebra may well be
zero. The colimit construction, however, singles out the unmodified Cuntz–
Pimsner algebra.

Unlike the Cuntz–Pimsner condition, “nondegeneracy” is not a relation that
we may impose on a bunch of generators. This is why there need not be a
universal C∗-algebra for nondegenerate representations, but there is always
one for Cuntz–Pimsner covariant representations. The two properties are only
equivalent if E is proper. This is the reason why we only understand colimits
for diagrams of proper correspondences.

It seems likely that the colimit of the diagram (N,+) → Corr given by the
endomorphism ℓ2(N) of C does not exist (see [1, Ex. 2.7]). In the following, we
therefore restrict attention to colimits of diagrams of proper correspondences.

6. Category-shaped diagrams and product systems

We have examined enough examples that it makes sense to spell out what
functors, transformations, and modifications C → Corr mean for an arbitrary
category C. We are particularly interested in transformations to a constant
functor, which lead to the description of the colimit of a diagram.

6.1. Functors, transformations and modifications. The objects of CorrC

are functors (or morphisms) C → Corr; arrows are transformations between
such functors, and 2-arrows are modifications. We describe these things more
concretely and then explain briefly how to compose transformations. These
definitions are summarized succinctly in [14]. They are worked out for C∗(2)C

in [7, §4], even for an arbitrary bicategory C. The definitions simplify if C is
a category because part of the data does not occur any more. The following
propositions already contain these simplifications. We omit the (rather trivial)
proofs. Readers that do not care much about bicategory theory could take the
following propositions as definitions.
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Proposition 6.2. A functor C → Corr consists of

• C∗-algebras Ax for all objects x of C;
• correspondences Eg : Ax → Ay for all arrows g : x→ y in C;
• isomorphisms of correspondences µg,h : Eh ⊗Ay

Eg → Egh for all pairs of

composable arrows g : y → z, h : x→ y in C;

such that

(i) E1x is the identity correspondence on Ax for all objects x of C;
(ii) µ1y,g : Eg ⊗Ay

Ay → Eg and µg,1x : Ax ⊗Ax
Eg → Eg are the canonical

isomorphisms for all arrows g : x→ y in C;
(iii) for all composable arrows g01 : x0 → x1, g12 : x1 → x2, g23 : x2 → x3, the

following diagram commutes:

(Eg01 ⊗Ax1
Eg12)⊗Ax2

Eg23
µg12,g01

⊗Ax2
idEg23 +3

can.

��

Eg02 ⊗Ax2
Eg23

µg23,g02

��
Eg03

Eg01 ⊗Ax1
(Eg12 ⊗Ax2

Eg23)
idEg01

⊗Ax1
µg23,g12 +3 Eg01 ⊗Ax1

Eg13 .

µg13,g01

KS

Here g02 := g12 ◦ g01, g13 := g23 ◦ g12, and g03 := g23 ◦ g12 ◦ g01.

The diagram in (iii) commutes automatically if one of the arrows g01, g12 or g23
is an identity arrow.

Proposition 6.3. Let (A0
x, E

0
g , µ

0
g,h) and (A1

x, E
1
g , µ

1
g,h) be two functors from C

to Corr. A transformation between them consists of

• correspondences γx from A0
x to A1

x for all objects x of C;
• isomorphisms of correspondences Vg : γx ⊗A1

x
E1g → E0g ⊗A0

y
γy for all

arrows g : x→ y in C;

such that

(i) V1x : γx ⊗A1
x
A1

x → A0
x ⊗A0

x
γx is the canonical isomorphism through γx

for each object x in C;
(ii) for each pair of composable arrows g : y → z, h : x→ y in C, the following

diagram commutes:

γx ⊗A1
x
E1h ⊗A1

y
E1g

Vh⊗A1
y
id

E1
g +3

idγx⊗A1
x
u1
g,h

��

E0h ⊗A0
y
γy ⊗A1

y
E1g

id
E0
h
⊗A0

y
Vg

��
E0h ⊗A0

y
E0g ⊗A0

z
γz

u0
g,h⊗A0

z
idγz

��
γx ⊗A1

x
E1gh

Vgh +3 E0gh ⊗A0
z
γz .

The diagram in (ii) commutes automatically if g or h is an identity arrow.
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Proposition 6.4. Let (A0
x, E

0
g , µ

0
g,h) and (A1

x, E
1
g , µ

1
g,h) be functors from C

to Corr and let (γ1
x, V

1
g ) and (γ2

x, V
2
g ) be transformations between them. A mod-

ification from (γ1
x, V

1
g ) to (γ2

x, V
2
g ) consists of isomorphisms of correspondences

Wx : γ
1
x → γ2

x for all objects x in C such that the diagrams

γ1
x ⊗A1

x
E1g

Wx⊗A1
x
id

E1
g +3

V 1
g

��

γ2
x ⊗A1

x
E1g

V 2
g

��
E0g ⊗A0

y
γ1
y

id
E0
g
⊗A0

y
Wy

+3 E0g ⊗A0
y
γ2
y

commute for all arrows g : x→ y in C. This diagram commutes automatically

if g is an identity arrow.

The composition of transformations is defined as follows. Describe functors
C → Corr by (A0

x, E
0
g , µ

0
g,h), (A

1
x, E

1
g , µ

1
g,h) and (A2

x, E
2
g , µ

2
g,h), and transforma-

tions between them by (γ01
x , V 01

g ) and (γ12
x , V 12

g ) as above. The product is

given by the correspondences γ02
x := γ01

x ⊗A1
x
γ12
x from A0

x to A2
x for objects x

of C and by the isomorphisms of correspondences

V 02
g : γ02

x ⊗A2
x
E2g = γ01

x ⊗A1
x
γ12
x ⊗A2

x
E2g

idγ01
x

⊗A1
x
V 12
g

−−−−−−−−−→ γ01
x ⊗A1

x
E1g ⊗A2

y
γ12
y

V 01
g ⊗A2

y
idγ12

y
−−−−−−−−−→ E0g ⊗A0

y
γ01
y ⊗A1

y
γ12
y = E0g ⊗A0

y
γ02
y

for arrows g : x → y in C. These (γ02
x , V 02

g ) indeed form a transformation.
General bicategory theory predicts that this composition turns Corr

C into a
bicategory again, and this is routine to check by hand.

To understand the above definitions, consider the special case where C has
only one object, that is, C is a monoid. Then we may drop all indices x above:
a functor provides a single C∗-algebra A, a transformation a single correspon-
dence γ, and a modification a single isomorphism W . Furthermore, all arrows
in C are composable, and there is only one identity morphism. Simplifying the
data in Proposition 6.2 accordingly, the result is very close to a product system

in the notation of Fowler [10].
There are only two differences. First, we require all left actions on Hilbert

modules to be nondegenerate (or “essential”), whereas Fowler is careful to
avoid this assumption. Secondly, we multiply in the opposite order, Eh⊗AEg →
Egh, which corresponds to the composition of ∗-homomorphisms. As a result,
functors M → Corr for a monoid M are the same as essential product systems
over the opposite monoid Mop.

When we pass from monoids to categories, the only change is that we get
more than one C∗-algebra: one for each object of the category.

Nondegeneracy of the left actions on correspondences is necessary for unit
arrows in Corr to work as expected: otherwise we would not get a bicategory.
The order reversal comes in because when we pass from ∗-homomorphisms to
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correspondences, the composition of ∗-homomorphisms becomes the reverse-
order tensor product. With our convention, monoid actions by ∗-endomor-
phisms become actions by correspondences of the same monoid. The same
order-reversal also appears when translating between actions of a group by
correspondences and saturated Fell bundles over the group. It is the reason
why g−1 appears in the correspondence between functors G→ Corr and satu-
rated Fell bundles over G in the proof of [7, Thm. 3.3].

6.5. Colimits. Let C be a category, let (Ax, Eg, µg,h) describe a functor
F : C → Corr as in Proposition 6.2, and let D be a C∗-algebra. We first
describe the constant functor constD : C → Corr. Then we specialize the de-
scription of transformations and modifications to the case of a constant target.
We use this to describe the colimit of a proper product system by generators
and relations.

Definition 6.6. Let D be a C∗-algebra. The constant functor constD : C →
Corr maps all objects x of C to D, all arrows g in C to the identity correspon-
dence on D, and all pairs g, h to the canonical isomorphism D ⊗D D → D.

A transformation from the functor given by (Ax, Eg, µg,h) to constD is given
by correspondences γx from Ax to D for all objects x of C and isomorphisms
of correspondences

Vg : γx → Eg ⊗Ay
γy for all arrows g : x→ y in C,

such that V1x for an object x is the canonical isomorphism and the diagrams

γx
Vh +3

idγx

��

Eh ⊗Ay
γy

idEh
⊗AyVg

��
Eh ⊗Ay

Eg ⊗Az
γz

µg,h⊗Az idγz

��
γx

Vgh +3 Egh ⊗Az
γz

for composable arrows g : y → z, h : x → y in C commute. Here we simplified
the data in Proposition 6.3 using the canonical isomorphisms γx ⊗D D ∼= γx
for all x; we may, of course, drop the identity arrow on γx and redraw this
diagram as a commuting square:

(8) γx
Vh +3

Vgh

��

Eh ⊗Ay
γy

idEh
⊗AyVg

��
Egh ⊗Az

γz Eh ⊗Ay
Eg ⊗Az

γz.
µg,h⊗Az idγzks

This diagram commutes automatically if g or h is an identity arrow.
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If (γ1
x, V

1
g ) and (γ2

x, V
2
g ) are two such transformations, then a modification

between them is given by isomorphisms of correspondences

Wx : γ
1
x → γ2

x for all objects x of C,

such that the diagrams

(9) γ1
x

Wx +3

V 1
g

��

γ2
x

V 2
g

��
Eg ⊗Ay

γ1
y

idEg⊗AyWy
+3 Eg ⊗Ay

γ2
y

commute for all arrows g : x→ y in C. This diagram commutes automatically
if g is an identity arrow.

The colimit for a functor F : C → Corr is, by definition, a C∗-algebra B
such that, for each C∗-algebra D, the groupoid of correspondences B → D
and isomorphisms of correspondences between them is naturally equivalent to
the groupoid of transformations F → constD and modifications between them.

Proposition 6.7. There is a bijection between transformations F → constD
and the following set of data:

• Hilbert D-modules γx for objects x of C;
• nondegenerate ∗-homomorphisms ϕx : Ax → B(γx) for objects x of C;
• linear maps Sg : Eg → B(γy , γx) for arrows g : x→ y in C;

such that

(i) for each arrow g : x→ y, Sg is Ax-Ay-linear, compatible with inner prod-

ucts, and nondegenerate:

(a) Sg(a1ξa2) = ϕx(a1)Sg(ξ)ϕy(a2) for a1 ∈ Ax, a2 ∈ Ay;

(b) Sg(ξ1)
∗Sg(ξ2) = ϕy(〈ξ1, ξ2〉Ay

) for all ξ1, ξ2 ∈ Eg;
(c) the closed linear span of Sg(Eg) · γy is γx;

(ii) S1x = ϕx : Ax → B(γx) for all objects x;
(iii) for each pair of composable arrows g : y → z, h : x → y in C, ξ ∈ Eg,

η ∈ Eh, we have Sh(η)Sg(ξ) = Sgh(µg,h(η ⊗ ξ)).

Let (γ1
x, ϕ

1
x, S

1
g) and (γ2

x, ϕ
2
x, S

2
g) be two such collections. Modifications between

the corresponding transformations are in natural bijection with families of uni-

taries Wx : γ
1
x → γ2

x such that Wxϕ
1
x(a) = ϕ2

x(a)Wx for all objects x and all

a ∈ Ax and WxS
1
g(ξ) = S2

g(ξ)Wy for all arrows g : x→ y in C and all ξ ∈ Eg.

Proof. Let (γx, Vg) as in Proposition 6.3 describe a transformation from F
to constD. The left Ax-module structure on γx is through a nondegenerate
∗-homomorphism ϕx : Ax → B(γx), and when we record this as extra data, we
may forget the left module structure on γx and view it simply as a Hilbert
D-module. We also replace the unitary V ∗

g : Eg⊗Ay
γy → γx by the linear map

Sg : Eg → B(γy , γx) defined by Sg(ξ)(η) := V ∗
g (ξ ⊗ η). The map Sg satisfies

(a)–(c) in (i) and, conversely, maps Sg with these three properties are in bijec-
tion with isomorphisms of correspondences V ∗

g ; this is proved in [1, Prop. 2.3].
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To give a transformation, the unitaries Vg for arrows g in C must also satisfy
the two conditions in Proposition 6.3. The first one describes V1x , and it gives
our condition (ii) when we translate it into S1x . The second condition in
Proposition 6.3 is the commuting diagram (8) that relates Vg and Vh to Vhg.
This is equivalent to

V ∗
h (η ⊗ V ∗

g (ξ ⊗ ζ)) = V ∗
gh(µg,h(η ⊗ ξ)⊗ ζ)

for all ξ ∈ Eg, η ∈ Eh, ζ ∈ γz. This is, in turn, equivalent to

Sh(η)Sg(ξ)(ζ) = Sgh(µg,h(η ⊗ ξ))(ζ),

which is condition (iii). All these steps may be reversed. So a family (γx, ϕx, Sg)
with the properties (i)–(iii) always comes from a unique transformation.

The last statement holds because (9) commutes for given (Wx) if and only
if WxS

1
g(ξ)(ζ) = S2

g(ξ)Wy(ζ) for all ζ ∈ γ1
y . �

The nondegeneracy condition (i) (c) in Proposition 6.7 is the only one with
an unusual form, which we cannot impose as a relation on generators of a
universal C∗-algebra. If each Eg is proper, then this condition is equivalent to
a Cuntz–Pimsner covariance condition for each Eg; this is slightly more general
than Theorem 5.1 because we are dealing with a correspondence between two
different C∗-algebras. All proofs carry over to this case, however, and we can
now write down a candidate for the colimit using generators and relations:

Definition 6.8. Let O(Ax, Eg, µg,h) be the universal C∗-algebra generated by
the C∗-algebra

⊕

xAx and symbols Sg(ξ) for arrows g : x→ y in C and ξ ∈ Eg,
subject to the following relations:

(i) the relations in the C∗-algebra
⊕

xAx hold, Eg ∋ ξ 7→ Sg(ξ) is linear for
each arrow g, and S1x(a) = a for all a ∈ Ax and all x;

(ii) if g : x→ y, ξ ∈ Eg, a ∈ Az , then

Sg(ξ)a =

{

Sg(ξa) z = y,

0 z 6= y,
aSg(ξ) =

{

Sg(aξ) z = x,

0 z 6= x;

(iii) if g : x→ y, ξ1, ξ2 ∈ Eg, then Sg(ξ1)
∗Sg(ξ2) = 〈ξ1, ξ2〉Ay

∈ Ay;
(iv) for g : x → y and a ∈ Ax with ϕEg

(a) ∈ K(Eg) and for ξj , ηj ∈ Eg, the
norm of a−

∑

Sg(ξj)Sg(ηj)
∗ is at most the norm of ϕEg

(a) −
∑

|ξj〉〈ηj |
in K(Eg); here ϕEg

: Ax → B(Eg) denotes the left action;
(v) Sh(η)Sg(ξ) = Sgh(µg,h(η ⊗ ξ)) for all ξ ∈ Eg, η ∈ Eh.

It is clear that there is a universal C∗-algebra satisfying these relations.
First, take the universal ∗-algebra U1 on the set of generators. Secondly, let U2

be the quotient of U1 by the ideal generated by the conditions (i)–(iii) and (v).
Thirdly, take the supremum of all C∗-semi-norms on U2 that satisfy (iv). This
is the maximal C∗-semi-norm on U1 that satisfies (iv). The maximum exists
because there is a maximal C∗-semi-norm on the C∗-subalgebra

⊕

Ax ⊆ U2

and ‖Sg(ξ)‖ = ‖ξ‖ for any C∗-semi-norm on U2 by condition (iii). Finally,
O(Ax, Eg, µg,h) is the (Hausdorff) completion of U2 in this C∗-semi-norm.
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Theorem 6.9. Let C be a category. Let (Ax, Eg, µg,h) give a functor F : C →
Corr. Assume that Eg is a proper correspondence for each arrow g : x → y.
Then the C∗-algebra O(Ax, Eg, µg,h) is a colimit of F in Corr and in Corrprop.

Proof. We abbreviate O := O(Ax, Eg, µg,h). Condition (i) in Definition 6.8
gives a ∗-homomorphism f :

⊕

Ax → O and linear maps Sg : Eg → O. Con-
dition (ii) implies AxSg(Eg)Ay = Sg(Eg) and hence AySg(Eg)

∗Ax = Sg(Eg)
∗.

Since all elements in O may be approximated by noncommutative polynomials
in elements of Sg(Eg), Sg(Eg)

∗ for arrows g and Ax for objects x, this implies
that the ∗-homomorphism f :

⊕

Ax → O is nondegenerate.
Let px ∈ M(

⊕

Ay) be the projection onto Ax and let γO
x := f(px)O;

we view this right ideal as a Hilbert module over O. Let Ax act on γO
x

on the left via multiplication through f . This is nondegenerate, so γO
x be-

comes a correspondence from Ax to O. We may identify f(px) · O · f(py) with
K(γO

y , γO
x ) ⊆ B(γO

y , γO
x ).

Condition (ii) in Definition 6.8 implies Sg(Eg) ⊆ f(px)·O·f(py) for g : x→ y.
Conditions (ii) and (iii) say that Sg : Eg → K(γO

y , γO
x ) is a representation of the

correspondence Eg. They provide an isometric embedding of correspondences
V O
g : Eg ⊗Ay

γO
y → γO

x by the proof of [1, Prop. 2.3].
Our next goal is to show that this isometry is unitary or, equivalently,

Sg(Eg) · γ
O
Y spans a dense subspace of γO

y . This argument is essentially the
same as for one direction in [1, Prop. 2.5]. It is the place where we need the
correspondences Eg to be proper, that is, ϕEg

(Ax) ⊆ K(Eg). Let (ui)i∈I be
an approximate unit in Ax. For each i ∈ I and ǫ > 0 there is a finite-rank

operator T =
∑k

n=1 |ξn〉〈ηn| on Eg with ‖ϕEg
(ui) − T ‖ < ǫ. Condition (iv)

ensures that
∥

∥

∥

∥

k
∑

n=1

Sg(ξn)Sg(ηn)
∗ − ui

∥

∥

∥

∥

< ǫ.

Thus we may approximate uix by elements of Sg(Eg)Sg(Eg)
∗x ⊆ Sg(Eg)γ

O
y for

any x ∈ O. Since the left action of Ax on γO
x is nondegenerate, this shows that

Sg(Eg)γ
O
y spans a dense subspace of γO

x , as desired.
We have verified the critical condition (i) (c) in Proposition 6.7 for the cor-

respondences γO
x for x ∈ C0 and the maps Sg : Eg → B(γO

y , γO
x ). The remaining

conditions are built into our relations very directly. So this data comes from a
transformation (γO

x , Vg) from our diagram F to constO.
Now let F be a correspondence from O to a C∗-algebra D. Then the cor-

respondences Fx := γO
x ⊗O F from Ax to D and the isomorphisms of corre-

spondences Vg ⊗O idF : Eg ⊗Ay
Fy → Fx form a transformation F → constD.

We claim that this construction gives an equivalence between the groupoid of
correspondences O → D and the groupoid of transformations F → constD.

Let (γx, Sg) be the data of a transformation to constD for some C∗-algebra
D. Let γ :=

⊕

x γx with the canonical representation of
⊕

Ax, as in Proposi-
tion 3.1. Also map Sg(ξ) ∈ B(γy , γx) to an operator on γ that vanishes on γz
for z 6= y. We claim that this defines a ∗-homomorphism α : O → B(γ), which
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is nondegenerate because already its restriction to
⊕

Ax is nondegenerate. We
want to use the universal property of O, of course. All conditions except the
fourth one are evident. To check that one, we copy the other half of the proof
of [1, Prop. 2.5].

Let g : x→ y be an arrow, let a ∈ Ax, ξi, ηi ∈ Eg, and let C > 0 be strictly
bigger than the norm of ϕEg

(a) −
∑

|ξi〉〈ηi|. It is convenient to use that the
map |ξ〉〈η| 7→ Sg(ξ)Sg(η)

∗ induces a ∗-homomorphism ϑg : K(Eg) → B(γx).
This is nondegenerate because Proposition 6.7 gives

K(Eg)γx = Sg(Eg)Sg(Eg)
∗γx ⊇ Sg(Eg)γy ⊇ γx.

Since aSg(ζ) = Sg(ϕEg
(a)ζ) for all a ∈ Ax, we get aζ = ϑg(ϕEg

(a))ζ for
all a ∈ Ax and ζ ∈ K(Eg)D = D. Thus the direct action of Ax is equal
to ϑg ◦ ϕEg

(a). This easily implies the norm estimate (iv) in Definition 6.8.
Hence we get the desired nondegenerate ∗-homomorphism O → B(γ), so γ
becomes a correspondence from O to D. By construction, the transformation
(γO

x ⊗O γ, V O
g ⊗O γ) associated to this correspondence γ is the transformation

given by the original data (γx, Sg).
Let (γ1

x, S
1
g) and (γ2

x, S
2
g) be transformations F → constD. Form the as-

sociated correspondences γ1 and γ2 from O to D. A family of isomorphisms
of correspondences Wx : γ

1
x → γ2

x gives a unitary operator
⊕

Wx : γ
1 → γ2

that intertwines the left actions of
⊕

Ax ⊆ O. Conversely, any such operator
γ1 → γ2 commutes with the projections f(px) and therefore decomposes as
⊕

Wx for isomorphisms of correspondences Wx : γ
1
x → γ2

x. The operators Wx

form a modification if and only if they also intertwine the actions of S1
g(ξ)

and S2
g(ξ) for all ξ ∈ Eg and all arrows g in C. Since these elements together

with
⊕

Ax generate O, this is equivalent to intertwining the representations
of O. Thus modifications between functors F → constD are in bijection with
isomorphisms of the associated correspondences O → D. Hence we have an
equivalence of groupoids CorrC(F, constD) ∼= Corr(O, D).

If the correspondences γx are proper, then
⊕

Ax → K(γ) and hence O →
K(γ) because

⊕

Ax → O is nondegenerate. Thus we get a proper correspon-
dence from O to D. The converse also holds because the correspondences γO

x

are proper. Hence Corr
C
prop(F, constD) ∼= Corrprop(O, D) as well, that is, O is

also a colimit in the subcategory Corrprop. �

Let us return to the notationally easier case where C has only one object,
that is, C is a monoid P . By Proposition 6.2, a functor P → Corr is the same
as an essential product system over the opposite monoid P op.

Theorem 6.10. Let P be a monoid. View a proper, essential product system

over P op as a functor P → Corrprop. The Cuntz–Pimsner algebra of the prod-

uct system is the colimit of this functor P → Corrprop both in Corrprop and

in Corr.

Proof. The colimit is given by Theorem 6.9 and Definition 6.8. By construc-
tion, it is also universal for Cuntz–Pimsner covariant representations of the
product system. �
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6.11. Colimits over bicategories. If C is a category, then diagrams C →
Corrprop have a colimit by Theorem 6.9. We are going to extend this to the
case where C is only a bicategory. The bicategory Corr

C for a general bicate-
gory C is described, among others, in [3, 7, 14]. For the target bicategory Corr,
there are no serious simplifications compared to the case of an arbitrary tar-
get bicategory; we will, however, often disregard associators in the following
arguments because they are fairly trivial in Corr. For simplicity, we first as-
sume that C is a strict 2-category. Any bicategory is equivalent to a strict one
(see [14]), so this is no serious restriction.

If C is a strict 2-category, its arrows and objects form a category C1, and
a functor F : C → Corr contains a functor C1 → Corr; the latter is given by
C∗-algebras Ax for objects x of C, correspondences Eg from Ax to Ay for arrows
g : x → y in C, isomorphisms of correspondences µg,h : Eh ⊗Ay

Eg → Egh for
composable arrows g : y → z and h : x→ y, subject to the conditions in Propo-
sition 6.2. In addition, a functor F : C → Corr also provides isomorphisms of
correspondences va : Eg → Eh for 2-arrows a : g ⇒ h, which are compatible
with horizontal and vertical composition. We refer to [7, §4.1] for the details,
which play no role in the following.

Describe two functors Fi : C → Corr for i = 0, 1 by the data (Ai
x, E

i
g, µ

i
g,h, va)

as above. A transformation Φ: F0 → F1 between them restricts to a trans-
formation between their restrictions to C1 and thus provides correspondences
γx : A

0
x → A1

x and isomorphisms of correspondences Vg : γx⊗A1
x
E1g → E

0
g⊗A0

y
γy

for arrows g : x→ y in C, subject to the conditions in Proposition 6.3. To be a
transformation on the level of C, we need no extra data, but extra conditions:
the diagrams

(10) γx ⊗A1
x
E1g

idγx⊗A1
x
v1
a

+3

Vg

��

γx ⊗A1
x
E1h

Vh

��
E0g ⊗A0

y
γy

v0
a⊗A0

y
idγy

+3 E0h ⊗A0
y
γy

must commute for all 2-arrows a : g ⇒ h in C, for parallel arrows g, h : x ⇒ y.
This diagram commutes automatically if a is an identity 2-arrow.

A modification between two transformations Φ1,Φ2 : F0 → F1 is defined
exactly as in Proposition 6.4; there is no extra data and no extra condition to
be a modification on the level of C.

Definition 6.12. Let (Ax, Eg, µg,h, va) describe a functor from the 2-category C
to Corr. The Cuntz–Pimsner algebra O(Ax, Eg, µg,h, va) is defined as the quo-
tient of O(Ax, Eg, µg,h) (see Definition 6.8) by the relations Sh(va(ξ)) = Sg(ξ)
for all 2-arrows a : g ⇒ h and all ξ ∈ Eg.

Theorem 6.13. Let C be a (strict) 2-category and let (Ax, Eg, µg,h, va) give a

functor F : C → Corrprop. The C∗-algebra O(Ax, Eg, µg,h, va) is a colimit of F
both in Corr and in Corrprop.

Münster Journal of Mathematics Vol. 9 (2016), 51–76



Colimits in the correspondence bicategory 73

Proof. Let F1 : C1 → Corrprop denote the restriction of a diagram to the arrows
and objects in C. A transformation F → constD is also a transformation
F1 → constD, and the modifications are the same in both cases. Hence the
universal C∗-algebra for transformations F → constD is a quotient of the one
for transformations F1 → constD. The extra relations that we need to divide
out are exactly the relations Sh(va(ξ)) = Sg(ξ) for all 2-arrows a : g ⇒ h and all
ξ ∈ Eg: this is exactly what is needed to make the diagrams (10) commute. �

If C is only a bicategory, then functors C → Corr look the same as above,
except that now the “category” C1 is only associative and unital up to certain
2-arrows, which form part of the data. The definitions of transformations and
modifications, however, do not contain the associators and unit transforma-
tions. So the proof of Theorem 6.9 extends to non-associative “categories,”
and Theorem 6.13 extends literally to bicategories.

7. Inductive limits

Let C be the partially ordered set (N,≤) viewed as a category, that is, with
a unique arrow m → n if m ≤ n and no arrow otherwise. Diagrams indexed
by C are called inductive systems, and their colimits inductive limits. Such a
diagram in Corr is given by C∗-algebrasAn, correspondences E

n
m : Am → An for

m ≤ n, and isomorphisms of correspondences µm,n,k : E
n
m ⊗An

Ekn
∼= Ekm for all

m ≤ n ≤ k, subject to the following conditions. First, Enn
∼= An and µm,n,k has

to be the canonical isomorphism if m = n or n = k. Secondly, the maps µm,n,k

are “associative” (view them as multiplication maps).
We may simplify this data, up to isomorphism of diagrams: It is enough

to specify C∗-algebras An and correspondences En+1
n for n ∈ N, with no con-

straints on the En+1
n . We may extend this to a diagram as above by taking

Enm
∼= Em+1

m ⊗Am+1
Em+2
m+1 ⊗Am+2

· · · ⊗An−1
Enn−1

for m ≤ n (the empty tensor product is interpreted as An for m = n) and
letting µm,n,k be the canonical isomorphisms. Conversely, any diagram is iso-
morphic to one of this form.

Let (An, E
m
n , µn,m,k) and (Bn,F

m
n , vn,m,k) be such diagrams. We may also

simplify transformations between them. By definition, a transformation is
given by correspondences Gn : An → Bn and isomorphisms of correspondences

wm,n : E
n
m ⊗An

Gn ∼= Gm ⊗Bm
Fn

m for all m ≤ n,

subject to compatibility conditions with µm,n,k and vm,n,k for all m ≤ n ≤ k,
and the condition that wn,n be the canonical isomorphism. It suffices to specify
the isomorphisms wn,n+1 for n ∈ N, without any conditions.

Finally, a modification between two such transformations, (Gn, wn,n+1) and
(G′n, w

′
n,n+1), is given by isomorphisms of correspondences xn : Gn → G

′
n such

that wm,n ◦ (idEn
m
⊗An

xn) = (xn ⊗Bm
idFn

m
) ◦ wm,n for all m ≤ n; but these

conditions hold for all m ≤ n once they hold for all m ∈ N and n = m+ 1.
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The simplifications above say that the bicategory of functors C → Corr

is equivalent to the bicategory of simplified functors with simplified transfor-
mations and modifications. In particular, for colimits it makes no difference
whether we work with full or simplified diagrams.

Our general existence theorem shows that any inductive system of proper
correspondences has a colimit in Corr. We claim that for an inductive system
of ∗-homomorphisms in the usual sense, this colimit is the same as the usual
inductive limit in the category of C∗-algebras. Thus we consider a diagram

(11) A0
ϕ0
−→ A1

ϕ1
−→ A2

ϕ2
−→ · · ·

ϕn−1

−−−→ An
ϕn
−−→ · · · ,

where the An are C∗-algebras and the ϕn are ∗-homomorphisms. Let A∞

be the inductive limit C∗-algebra of this diagram in the usual sense, and let
ϕ∞
n : An → A∞ be the canonical ∗-homomorphisms.

Proposition 7.1. The C∗-algebra A∞ with the maps ϕ∞
n is also a colimit

of (11) in Corrprop and Corr.

Proof. Let D be a C∗-algebra and let F∞ : A∞ → D be a correspondence.
For n ∈ N, we define a correspondence Fn := An ⊗ϕ∞

n
F∞ : An → D. These

correspondences together with the canonical isomorphisms

An ⊗ϕn
Fn+1

∼= An ⊗ϕn
An+1 ⊗ϕ∞

n+1
F∞
∼= An ⊗ϕ∞

n+1
◦ϕn
F∞
∼= Fn

give a transformation from (11) to constD. An isomorphism of correspondences
F∞ → F

′
∞ induces a modification between these associated transformations,

so we get a functor from the groupoid of correspondences A∞ → D to the
groupoid of transformations in Corr from the diagram (11) to the constant
diagram on D. We claim that this functor is an equivalence of groupoids.

Let the correspondences Fn : An → D and the isomorphisms of correspon-
dences µn : An⊗ϕn

Fn+1 → Fn form a transformation from (11) to the constant
diagram on D. We are going to construct a correspondence F∞ : A∞ → D.

If a ∈ kerϕn ⊆ An, then a⊗ϕn
ξ = 0 for all ξ ∈ Fn+1 and hence ab⊗ϕn

ξ =
a ⊗ϕn

bξ = 0 for all b ∈ An, ξ ∈ Fn+1. Since An ⊗ϕn
Fn+1

∼= Fn, kerϕn acts
trivially on Fn. Similarly, the kernel of ϕn+m

n : An → An+m acts trivially on Fn

because Fn
∼= An⊗ϕn

An+1⊗ϕn+1
· · ·⊗ϕn+m−1

Fn+m. The union of these kernels
is dense in the kernel of ϕ∞

n , which therefore also acts trivially on Fn. Thus
we may turn Fn into a correspondence F ′

n from A′
n := An/ kerϕ

∞
n to D. The

maps ϕn become embeddings A′
n → A′

n+1 → · · · → A∞, and the isomorphisms
µn : An ⊗ϕn

Fn+1 → Fn induce isomorphisms F ′
n
∼= A′

n ⊗ϕn
F ′

n+1. We use
these isomorphisms and the embeddings A′

n →֒ A′
n+1 to view F ′

n as a subspace
of F ′

n+1 for each n.
Let F∞ := lim

−→
F ′

n. Then F∞ is a Hilbert D-module and the C∗-algebras A′
n

act on F∞ because A′
n · F∞ = F ′

n ⊆ F∞. The left action of A∞ is nonde-
generate because A∞ · F∞ contains A′

n · F∞ = F ′
n for each n ∈ N, and these

subspaces are dense in F∞. Thus F∞ is a correspondence from A∞ to D.
This construction is inverse to the one above because Fn

∼= An ⊗ϕ∞
n
F∞.

Hence A∞ has the universal property of the colimit. �
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Example 7.2. Let B ⊆ A be a nondegenerate C∗-subalgebra and E : A→ B
a conditional expectation. Then 〈a1, a2〉 = E(a∗1a2) and the obvious right
multiplication action of B turn A into a pre-Hilbert B-module. The action
of A on itself by left multiplication extends to the completion, giving a C∗-
correspondence AE from A to B. If C ⊆ B and F : B → C is a conditional
expectation as well, then F ◦ E : A → C is a conditional expectation and
the map a ⊗ b 7→ E(a) · b extends to an isomorphism of C∗-correspondences
AE⊗B BF

∼= AF◦E . Thus a decreasing chain of nondegenerate C∗-subalgebras
Rn ⊆ A with conditional expectations Rn →Rn+1 defines a functor (N,≤)→
Corr. This situation is studied in [8, 9]. To apply our theory, we need proper
C∗-correspondences. Equivalently, the conditional expectations are of finite-
index type as in [19]. In the proper case, the above diagram has a colimit by
Theorem 6.9; in fact, this is isomorphic to the C∗-algebra constructed in [8]. It
is an appropriate analog of the inductive limit of a chain of ∗-homomorphisms
by Proposition 7.1.
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