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Abstract. Let p be a prime ideal of Fq[T ]. Let J0(p) be the Jacobian variety of the Drinfeld
modular curve X0(p). Let Φ be the component group of J0(p) at the place 1/T . We use
graph Laplacians to estimate the order of Φ as deg(p) goes to infinity. This estimate implies
that Φ is not annihilated by the Eisenstein ideal of the Hecke algebra T(p) acting on J0(p)
once the degree of p is large enough. We also obtain an asymptotic formula for the size of
the discriminant of T(p) by relating this discriminant to the order of Φ; in this problem the
order of Φ plays a role similar to the Faltings height of classical modular Jacobians. Finally,
we bound the spectrum of the adjacency operator of a finite subgraph of an infinite diagram
in terms of the spectrum of the adjacency operator of the diagram itself; this result has
applications to the gonality of Drinfeld modular curves.

1. Introduction

Let Fq be a finite field with q elements, where q is a power of a prime
number p. Let A = Fq[T ] be the ring of polynomials in indeterminate T with
coefficients in Fq, and F = Fq(T ) be the rational function field. The degree
map deg : F → Z∪{−∞}, which assigns to a nonzero polynomial its degree in
T and deg(0) = −∞, defines a norm on F by |a| := qdeg(a). The corresponding
place of F is usually called the place at infinity, and is denoted by ∞. Note
that 1/T is a uniformizer at ∞. The order of a finite set S will be denoted
by |S|. We define norm and degree for a nonzero ideal n of A by |n| := |A/n|
and deg(n) := logq |n|. The prime ideals p ✁ A always will be assumed to be
nonzero.

Let F∞ be the completion of F at ∞, and C∞ be the completion of an
algebraic closure of F∞. The Drinfeld upper half-plane Ω := C∞ − F∞ has a
natural structure of a rigid-analytic space over F∞; cp. [6, 13]. Let n✁A be a
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nonzero ideal. The level-n Hecke congruence subgroup of GL2(A) is

Γ0(n) :=

{(
a b
c d

)
∈ GL2(A) | c ≡ 0 mod n

}
.

The group Γ0(n) acts on Ω via linear fractional transformations. Drinfeld
proved that the quotient Γ0(n) \Ω is the space of C∞-points of an affine curve
Y0(n) defined over F , which is a coarse moduli scheme for rank-2 Drinfeld
A-modules with Γ0(n)-level structures; cp. [6, 13]. Let X0(n) be the unique
smooth projective curve over F containing Y0(n). The curve X0(n) is geomet-
rically irreducible. Let J0(n) be the Jacobian variety of X0(n).

The analogy between X0(n) and the classical modular curves X0(N) over
Q classifying elliptic curves with Γ0(N)-structures is well known and has been
extensively studied over the last 40 years.

From this perspective ∞ plays a role similar to the archimedean place of Q,
and Ω plays the role of the Poincaré upper half-plane. In this paper we study a
certain group associated to J0(n), the component group at ∞, for which there
is no direct classical analog.

For a place v of F , let ΦJ0(n),v denote the group of connected components of
the Néron model of J0(n) at v. Apart from ∞, the places of F are in bijection
with the nonzero prime ideals of A. It is known that J0(n) has bad reduction
only at v dividing n and at ∞, so ΦJ0(n),v is nontrivial only if v|n or v = ∞.
By a theorem of Raynaud, the group structure of ΦJ0(n),v can be deduced from
the structure of the special fiber of the minimal regular model of X0(n) over v.
If v 6= ∞, the structure of the minimal regular model itself can be deduced
from the moduli interpretation of X0(n). For example, if v ‖ n (i.e., v divides n
but n/v is coprime to v), the structure of ΦJ0(n),v as an abelian group is given
in [27, Thm. 5.3]; see also [10]. One consequence of this description is that
for v ‖ n the order of ΦJ0(n),v grows linearly with |n|. For example, if p ✁ A is
prime, then ΦJ0(p),p is a cyclic group of order

N(p) =

{ |p|−1
q−1 , if deg(p) is odd,

|p|−1
q2−1 , if deg(p) is even.

In contrast, the group ΦJ0(n),∞ seems to be a much more complicated object,
and no general formulas for its order are known (even for prime n). The central
result of this paper is an estimate on the order of ΦJ0(n),∞.

Notation 1.1. Let f(x) and g(x) be positive real-valued functions defined on
Z>0, or ideals of A, or prime ideals of A. We write f(x) = O(g(x)) when there
is a constant C such that f(x) ≤ Cg(x) for all values of x under consideration.
We write f(x) ∼ g(x) when lim|x|→∞ f(x)/g(x) = 1, and f(x) = o(g(x)) when
lim|x|→∞ f(x)/g(x) = 0.

Theorem 1.2. Let p✁A be a prime ideal. We have

ln|ΦJ0(p),∞| ∼ c(q)|p|,
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where c(q) is an explicit positive constant depending only on q. This constant
can be estimated as

c(q) =
2 ln(q + 1

2 )

(q − 1)2(q + 1)
+O(q−5 ln q).

The restriction on p being prime is made only for expository reasons. In
fact, the methods that we develop for proving this theorem apply to any con-
gruence subgroup Γ of GL2(A), and show that the order of the component
group at ∞ of the corresponding Drinfeld modular Jacobian can be estimated
in a similar manner with |p| replaced by [GL2(A) : Γ]. In particular, the orders
of component groups grow exponentially with [GL2(A) : Γ].

Theorem 1.2 has two interesting applications to the Hecke algebra acting
on J0(p). Let T(n) ⊂ End(J0(n)) be the Z-subalgebra of the endomorphisms of
J0(n) generated by the Hecke operators Tm, m✁A, acting as correspondences
on X0(n). The Eisentein ideal E(n) of T(n) is the ideal generated by the
elements {

Tl − |l| − 1 | l is prime, l ∤ n
}
.

It is well known that the component groups of classical modular Jacobians
J0(N) are Eisenstein, i.e., are annihilated by Tℓ − ℓ − 1 for all prime ℓ not
dividing N . This was proved by Ribet in the semi-stable reduction case [32],
and by Edixhoven in general [7]. It is more-or-less clear that the arguments in
[32] and [7] can be transferred to the function fields setting (although this is
not in published literature), so it is very likely that the component groups of
Drinfeld modular Jacobians J0(n) at v |n are Eisenstein. In any case, the fact
that ΦJ0(p),p is Eisenstein follows from the results in [10]. In [28, Thm. 8.9], it is
shown that the T(p)-submodule of ΦJ0(p),∞ annihilated by E(p) is isomorphic
to T(p)/E(p) ∼= Z/N(p)Z. Comparing this with the estimate in Theorem 1.2,
we can state the following result.

Theorem 1.3. The component group ΦJ0(p),∞ is not Eisenstein if deg(p) is
large enough.

Remark 1.4. Interestingly, even the groups of connected components of the
real points J0(N)(R) of classical modular Jacobians are Eisenstein, as was
shown by Merel [20].

Let N be a squarefree integer. The discriminant DT(N) of the Hecke algebra
T(N) acting on the classical modular Jacobian J0(N) measures congruences
between weight-2 cusp forms on Γ0(N). In [37], Ullmo obtained the following
bounds:

(1) g(N) lnN + o(g(N) lnN) ≤ lnDT(N) ≤ 2g(N) lnN + o(g(N) lnN),

where g(N) is the genus of X0(N). To prove this he first showed that DT(N)

is related to the Faltings height of J0(N). The lower bound in (1) then follows
from a general lower bound on the heights of abelian varieties over number
fields due to Bost. In the reverse direction, the upper bound on DT(N) gives
an upper bound on the height of J0(N).
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Now let p ✁ A be a prime ideal. Denote by g(p) the genus of X0(p). It is
known that g(p) ∼ |p|/(q2 − 1); see Section 4.16 for an explicit formula. Let
H(J0(p)) be the height of J0(p); see Section 2.13 for the definition. Let DT(p)

be the discriminant of the Hecke algebra T(p); see (8) for the definition. Using
the results of Szpiro [36], it is not particularly hard to prove the following
bounds on the height (Theorem 4.18):

g(p) deg(p)

12
+ o(g(p) deg(p)) ≤ H(J0(p)) ≤

g(p)2 deg(p)

3
+ o(g(p)2 deg(p)).

On the other hand, the discriminant DT(p) does not seem to be directly related
to H(J0(p)); the height is defined in terms of differential forms on J0(p), which
correspond to C∞-valued Drinfeld modular forms, whereas DT(p) measures
congruences between C-valued automorphic forms on Γ0(p). Nevertheless, we
show that a crucial part of Ullmo’s argument does go through with |ΦJ0(p),∞|
playing the role of the height. This gives a formula relating |ΦJ0(p),∞| and
DT(p); see Theorem 2.11. Using this formula and Theorem 1.2, we obtain in
Section 4.16 the following:

Theorem 1.5. Let p✁A be prime. Then

2g(p) deg(p) + o(g(p) deg(p)) ≤ logq(DT(p)).

If a certain natural pairing (7) between T(p) and the space of Z-valued Γ0(p)-
invariant harmonic cochains is perfect, then

logq(DT(p)) ∼ 2g(p) deg(p).

To prove Theorem 1.2 we relate the order of ΦJ0(p),∞ to the eigenvalues of
a certain Hecke operator, and then use some deep facts about these eigenval-
ues, such as the Ramanujan–Petersson estimate on their absolute values and
their equidistribution with respect to a certain Sato–Tate measure. To relate
ΦJ0(p),∞ to a Hecke operator, in Section 3, we prove two general combinatorial
results of independent interest.

The first combinatorial result (Theorem 3.2) relates the discriminant of the
weighted cycle pairing on the first homology group of a graph to the eigen-
values of the weighted Laplacian on the graph. We allow both the vertices
and the edges of the graph to have weights. When all the weights are equal
to 1, our theorem specializes to a result of Lorenzini [19]. The reason that
we need to work with weighted graphs is that the graph that arises in our
context is the quotient of the Bruhat–Tits tree T of PGL2(F∞) under the
action of Γ0(p). The graph Γ0(p) \T is naturally weighted, with the weighted
adjacency operator corresponding to a Hecke operator. The arithmetic appli-
cation of Theorem 3.2 is that it relates the order of the component group of
the Jacobian of a semi-stable, but not necessarily regular, curve over a local
domain to the eigenvalues of a weighted Laplacian acting on its dual graph.

The second result (Theorem 3.9) concerns certain infinite graphs, called reg-
ular diagrams. We bound the spectrum of the adjacency operator of a finite
subgraph of a diagram in terms of the spectrum of the adjacency operator of
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the diagram itself. The arithmetic application of Theorem 3.9 is that, when
combined with the Ramanujan–Petersson conjecture, it implies that the mini-
mal nonzero eigenvalue λ2 of the Laplacian of the dual graph of X0(n) over ∞
is bounded from below by q − 2

√
q; see Section 4.11. This bound on λ2 plays

an important role in [4].

Remark 1.6. A proof of the bound λ2 ≥ q − 2
√
q already appears in [4,

pp. 245–246]. Unfortunately, that proof is not correct. The problem is that
the spectrum of a finite subgraph of a diagram is not necessarily contained
in the discrete spectrum of the diagram itself. In particular, the function f̃
constructed on [4, p. 245] is not necessarily square-integrable, hence is not an
automorphic form. For a more detailed discussion of this see Section 3.13.

2. Preliminaries

2.1. Graphs and Laplacians. A graph consists of a set of vertices V (G),
a set of (oriented) edges E(G) and two maps

E(G) → V (G) × V (G), e 7→ (o(e), t(e))

and
E(G) → E(G), e 7→ ē

such that ¯̄e = e, ē 6= e, and t(ē) = o(e); cp. [34, p. 13].
For e ∈ E(G), the edge ē is called the inverse of e, the vertex o(e) (resp. t(e))

is called the origin (resp. terminus) of e. The vertices o(e), t(e) are called the
extremities (or end-vertices) of e. We say that two vertices are adjacent if they
are the extremities of some edge. An orientation of G is a subset E(G)+ of

E(G) such that E(G) is the disjoint union of E(G)+ and E(G)+.
A path in G is a sequence of edges {ei}i∈I indexed by a set I where I = Z,

I = Z≥0 or I = {1, . . . ,m} for some m ≥ 1 such that t(ei) = o(ei+1) for every
i, i+1 ∈ I. We say that the path is without backtracking if ei 6= ēi+1 for every
i, i+1 ∈ I. We say that the path without backtracking {ei}i∈Z≥0

is a half-line
if o(ei) is adjacent in G only to o(ei−1) and t(ei), i ≥ 1.

We will assume that for any v ∈ V (G) the number of edges with t(e) = v
is finite, and that G is connected, i.e., any two vertices of G are connected by
a path. In addition, we assume that G has no loops (i.e., t(e) 6= o(e) for any
e ∈ E(G)), but we allow two vertices to be joined by multiple edges (i.e., there
can be e 6= e′ with o(e) = o(e′) and t(e) = t(e′)). We say that G is finite if it
has finitely many vertices.

Since G has no loops, we can consider G as a simplicial complex. Choose
an orientation E(G)+ on G, and define the group Ci(G,Z) of i-dimensional
chains of G (i = 0, 1) by

C0(G,Z) = free abelian group with basis V (G),

C1(G,Z) = free abelian group with basis E(G)+.

(One can also define C1(G,Z) as the quotient of the free abelian group with
basis E(G) modulo the relations ē = −e.) Since G is not assumed to be finite,
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it might be worth spelling out that a general element of C0(G,Z) has the form∑
v∈V (G) nvv, nv ∈ Z, where all but finitely many of nv are zero (and similarly

for C1(G,Z)). We have the homomorphisms

∂ : C1(G,Z) → C0(G,Z), ∂(e) := t(e)− o(e),

ε : C0(G,Z) → Z, ε(v) := 1.

Let H1(G,Z) := ker(∂) be the first homology group of G. Then there is an
exact sequence

0 → H1(G,Z) → C1(G,Z)
∂−→ C0(G,Z)

ε−→ Z → 0.

A weight function on edges is a map w : E(G) → Z>0 such that w(e) = w(ē).
Define a pairing E(G) × E(G) → Z by

(2) (e, e′) =





w(e) if e′ = e,

−w(e) if e′ = ē,

0 otherwise,

and extend it linearly to a symmetric, bilinear, positive-definite pairing on
C1(G,Z). The restriction of this pairing to H1(G,Z) is a weighted version of
the usual cycle pairing.

A weight function on vertices is a map w : V (G) → Z>0. Define a pairing
V (G) × V (G) → Z by

(3) 〈v, v′〉 =
{
w(v) if v = v′,

0 otherwise,

and extend it linearly to a symmetric, bilinear, positive-define pairing on
C0(G,Z). Given a Z-module R, the previous two pairings naturally extend
to

Ci(G,R) := Ci(G,Z)⊗Z R,

and so does the boundary operator ∂ : C1(G,R) → C0(G,R).
Let

∂∗ : C0(G,Q) → C1(G,Q)

be the adjoint of ∂ with respect to the pairings (2) and (3), i.e.,

〈∂f, g〉 = (f, ∂∗g) for all f ∈ C1(G,Q) and g ∈ C0(G,Q).

It is easy to check that, for a given vertex v ∈ V (G),

∂∗(v) =
∑

t(e)=v

w(v)

w(e)
e.

Definition 2.2. The (weighted) Laplacian is the composition

∆ = ∂∂∗ : C0(G,Q) → C0(G,Q).
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Explicitly, this map is given by

∆(v) =
∑

t(e)=v

w(v)

w(e)
(v − o(e)).

For any f, g ∈ C0(G,R) we have

〈∆f, g〉 = 〈∂∂∗f, g〉 = (∂∗f, ∂∗g) = 〈f, ∂∂∗g〉 = 〈f,∆g〉
and

〈∆f, f〉 = (∂∗f, ∂∗f) ≥ 0.

Thus, the linear operator ∆ on C0(G,R) is selfadjoint and positive. For finite
G, this implies that C0(G,R) has an orthonormal basis consisting of eigenvec-
tors of ∆, and the eigenvalues of ∆ are nonnegative. In that case, it is also
easy to show that the kernel of ∆ is spanned by f0 =

∑
v∈V (G) v/w(v), so 0 is

an eigenvalue of ∆ with multiplicity one.

Definition 2.3. Assume h = rankZH1(G,Z) is finite. Choose a Z-basis
ϕ1, . . . , ϕh of H1(G,Z), and let

DG,w := |det((ϕi, ϕj))1≤i,j≤h|.
We call DG,w the discriminant of G with respect to the weight function w
in (2); cp. [33, p. 49].

Lemma 2.4. DG,w is the order of the cokernel of the map

H1(G,Z) → Hom(H1(G,Z),Z), ϕ 7→ (ϕ, ∗).
In particular, DG,w does not depend on the choice of a basis of H1(G,Z).

Proof. This follows from [33, §III.2, Prop. 4]. �

2.5. Harmonic cochains. Fix a commutative ring R with identity. An
R-valued harmonic cochain on a graph G is a function f : E(G) → R that
satisfies

f(e) + f(ē) = 0 for all e ∈ E(G)

and ∑

e∈E(G)
t(e)=v

f(e) = 0 for all v ∈ V (G).

Denote by H(G,R) the group of R-valued harmonic cochains on G.
The most important graphs in this paper are the Bruhat–Tits tree T of

PGL2(F∞), and the quotients of T . We recall the definition and introduce
some notation for later use; see [34] for more details. Fix a uniformizer ̟∞ of
F∞, and let O∞ be its ring of integers. The sets of vertices V (T ) and edges
E(T ) are the cosets GL2(F∞)/Z(F∞)GL2(O∞) and GL2(F∞)/Z(F∞)I∞, re-
spectively, where Z denotes the center of GL2 and I∞ is the Iwahori group:

I∞ =

{(
a b
c d

)
∈ GL2(O∞) | c ∈ ̟∞O∞

}
.
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The matrix
(

0 1
̟∞ 0

)
normalizes I∞, so the multiplication from the right by this

matrix on GL2(F∞) induces an involution on E(T ); this involution is e 7→ ē.
The matrices

E(T )+ =

{(
̟k

∞ u
0 1

)
| k ∈ Z, u ∈ F∞, u mod ̟k

∞O∞

}

are in distinct left cosets of I∞Z(F∞), and there is a disjoint decomposition

E(T ) = E(T )+ ⊔ E(T )+
(

0 1
̟∞ 0

)
.

We call the edges in E(T )+ positively oriented.
The group GL2(F∞) naturally acts on E(T ) by left multiplication. This

induces an action on the group of R-valued functions on E(T ): for a function f
on E(T ) and γ ∈ GL2(F∞) we define the function f |γ on E(T ) by (f |γ)(e) =
f(γe). It is clear from the definition that f |γ is harmonic if f is harmonic, and
for any γ, σ ∈ GL2(F∞) we have (f |γ)|σ = f |(γσ).

A congruence subgroup is a subgroup Γ ≤ GL2(A) containing

Γ(n) :=

{
γ ∈ GL2(A) | γ ≡

(
1 0
0 1

)
mod n

}

for some nonzero n ✁ A. A congruence subgroup Γ, being a subgroup of
GL2(F∞), acts on T . This action is without inversions, i.e., γe 6= ē for all
γ ∈ Γ and e ∈ E(T ); see [34, p. 75]. We have a natural quotient graph Γ \ T

such that V (Γ \ T ) = Γ \ V (T ) and E(Γ \ T ) = Γ \ E(T ), cp. [34, p. 25].
Given v ∈ V (T ) and e ∈ E(T ), let

Γv = {γ ∈ Γ | γv = v} and Γe = {γ ∈ Γ | γe = e}.
Since Γ is a discrete subgroup of GL2(F∞), the groups Γv and Γe are finite. It
is immediate from the definitions that Z(Fq) ∩ Γ is a normal subgroup of any
Γv and Γe. We assign weights to vertices and edges of Γ \ T by

(4) w(ṽ) = [Γv : Z(Fq) ∩ Γ] and w(ẽ) = [Γe : Z(Fq) ∩ Γ],

where v (resp. e) is a preimage of ṽ (resp. ẽ). It is clear that this is well-defined,
and w(ẽ) divides both w(t(ẽ)) and w(o(ẽ)).

Denote by H(T , R)Γ the subgroup of Γ-invariant harmonic cochains, i.e.,
f |γ = f for all γ ∈ Γ. It is clear that f ∈ H(T , R)Γ defines a function f ′

on the quotient graph Γ \ T , and f itself can be uniquely recovered from this
function: If e ∈ E(T ) maps to ẽ ∈ E(Γ \ T ) under the quotient map, then
f(e) = f ′(ẽ). The group ofR-valued cuspidal harmonic cochains for Γ, denoted
H0(T , R)Γ, is the subgroup of H(T , R)Γ consisting of functions which have
compact support as functions on Γ\T , i.e., functions which assume value 0 on
all but finitely many edges of Γ\T . The orientation on T does not necessarily
descent to an orientation on Γ \ T , but we fix some orientation E(Γ \ T )+

and define a pairing on H0(T ,Z)Γ by

(5) (f, g) =
∑

e∈E(Γ\T )+

f(e)g(e)w(e)−1.
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Since f and g are cuspidal, all but finitely many terms of this sum are zero,
so the pairing is well-defined. It is clear that (· , ·) is symmetric and positive-
definite. It is also Z-valued, as follows from [13, (5.7.1)].

We will primarily work with Γ = Γ0(n). To simplify the notation, we put

H0(n, R) := H0(T , R)Γ0(n).

It is known that H0(n,Z) is a free Z-module of rank equal to the genus of
X0(n); cp. [13, p. 49]. A 1-cycle ϕ ∈ H1(Γ0(n) \ T ,Z) can be thought of as
a Γ0(n)-invariant function ϕ : E(T ) → Z. Then ϕ∗ : e 7→ w(e)ϕ(e) is in
H0(n,Z) and

(6) j : H1(Γ0(n) \ T ,Z)
∼−→ H0(n,Z), ϕ 7→ ϕ∗

is an isomorphism by [12]. The following is straight-forward:

Lemma 2.6. For the weighted pairing (2) on H1(Γ0(n) \ T ,Z) and (5) on
H0(n,Z) we have (ϕ, ψ) = (ϕ∗, ψ∗).

Remark 2.7. The Haar measure on GL2(F∞) induces a push-forward measure
on E(Γ \T ), which, up to a scalar multiple, is equal to w(e)−1; cp. [13, (4.8)].
One can show that (5) agrees with the restriction toH0(T ,Z)Γ of the Petersson
inner-product if one interprets H0(T ,C)Γ as a space of automorphic forms;
see [13, 5.7].

2.8. Hecke operators. Fix a nonzero ideal n ✁ A. Given a nonzero ideal
m✁A, define an R-linear transformation of the space of R-valued functions on
E(T ), the m-th Hecke operator, by

f |Tm =
∑

f |
(
a b
0 d

)
,

where the sum is over a, b, d ∈ A such that a, d are monic, (ad) = m, (a)+n = A,
and deg(b) < deg(d). The Hecke operators preserve H0(n, R) and have the
usual properties: They commute, satisfy Tm·m′ = Tm·Tm′ for m andm′ coprime,
for a prime p, Tpi is a polynomial with integral coefficients in Tp, and Tm is
selfadjoint with respect to the pairing (5) if m is coprime to n. Let T(n)
be the commutative Z-subalgebra of EndZ(H0(n,Z)) generated by all Hecke
operators.

The harmonic cuspidal cochains H0(n,Z) have Fourier expansions, where
the Fourier coefficients cm(f) of f ∈ H0(n,Z) are indexed by the nonzero
ideals m✁A; cp. [11, pp. 42–43]. In [11], Gekeler shows that

c1(f) = −f
((

̟2
∞ ̟∞
0 1

))

and the bilinear pairing

(7) T(n)×H0(n,Z) → Z, t, f 7→ c1(f |t).
is T(n)-equivariant, non-degenerate, and becomes a perfect pairing after ten-
soring with Z[p−1].
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Remark 2.9. It is not known if in general the pairing (7) is perfect, without
inverting p. This is in contrast to the situation over Q where the analogous
pairing between the Hecke algebra and the space of weight-2 cusp forms on
Γ0(N) with integral Fourier expansions is perfect (cp. [31, Thm. 2.2]). In [28],
it is shown that (7) is perfect if deg(n) = 3.

Let h = rankZ H0(n,Z). Because (7) is non-degenerate, T(n) is a commu-
tative Z-algebra which as a Z-module is free of rank h. Let t1, . . . , th be a
Z-basis of T(n). After fixing a Z-basis of H0(n,Z), every Hecke operator can
be represented by a matrix. For M ∈ Math×h(Z), let Tr(M) denote its trace.
The discriminant of T(n) is

(8) DT(n) = |det(Tr(titj))1≤i,j≤h|.
The discriminant DT(n) does not depend on the choice of a basis of T(n) or
H0(n,Z); see [33, p. 49] or [30, p. 66].

Let G(n) denote the graph Γ0(n) \ T with weights (4). This graph is not
finite, but H1(G(n),Z) has finite rank, so the discriminant Dn := DG(n),w is
defined. Let φ1, . . . , φh be a Z-basis of H0(n,Z). From Definition 2.3, (6) and
Lemma 2.6, we get

Dn = |det((φi, φj))1≤i,j≤h|,
where (φi, φj) is the Petersson inner-product (5).

Definition 2.10. We say that f ∈ H0(n,R) is a normalized eigenform if f is
an eigenvector for all t ∈ T(n) and c1(f) = 1.

Assume n = p is prime. The function field analog of the theory of Atkin
and Lehner [1] implies that H0(p,R) has a basis consisting of normalized eigen-
forms. We extend the pairing (5) to H0(n,R).

Theorem 2.11. Assume the pairing (7) is perfect for n = p. Then

DpDT(p) =
h∏

i=1

(fi, fi)
2,

where {f1, . . . , fh} is a basis of H0(p,R) consisting of normalized eigenforms.

Proof. The argument that we present is similar to the proof of [37, Thm. 4.1].
The map

(9) T(p)⊗ R → Rh, t 7→ (a1(f1|t), . . . , a1(fh|t))
is an isomorphism of R-algebras. The trace form on T(p) corresponds to the
standard scalar product on Rh. Let Vol be the standard volume form on Rh.
Then Vol(T(p))2 = DT(p), where by abuse of notation we denote by T(p) the
image of the lattice T(p) ⊂ T(p)⊗ R under (9).

Now consider the isomorphism Rh → H0(p,R) mapping the standard basis
of Rh to {f1, . . . , fh}. It is known that the eigenforms {f1, . . . , fh} are ortho-
gonal to each other with respect to (5), i.e., (fi, fj) = 0 if i 6= j. Let Vol′
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denote the volume form on H0(p,R) corresponding to the scalar product (5).
Then

Vol(T(p)) = Vol′(T(p))
h∏

i=1

(fi, fi).

On the other hand, Vol′(H0(p,Z))
2 = Dp, and since (7) is assumed to be

perfect, we have

Vol′(T(p)) · Vol′(H0(p,Z)) = 1.

Combining these volume calculations, we get the formula of the theorem. �

Theorem 2.12. There are positive constants c1 and c2, depending only on q,
such that for any normalized eigenform f ∈ H0(p,R),

c1
|p|

deg(p)
≤ (f, f) ≤ c2|p|(deg(p))3.

Proof. Using the Rankin–Selberg method, the Petersson norm (f, f) can be
related to a special value of the L-function of the symmetric square of f ,
which can be estimated using analytic methods. For the details we refer to
[23, Eqn. (18) and Prop. 5.5] and [26, Thm. 4.6]. �

2.13. Jacobians of relative curves. Let C be a smooth, projective, geomet-
rically connected curve of genus gC defined over Fq. Let F be the function field
of C. Let π : X → C be a semi-stable curve of genus g ≥ 2 over C. Recall
that this means that π is a proper and flat morphism whose fibers Xs̄ over
the geometric points s̄ of C are reduced, connected curves of arithmetic genus
g, and have only ordinary double points as singularities; cp. [2, p. 245]. We
assume that the generic fiber X := XF , as a projective curve over F , is smooth
and non-isotrivial. Let J := Pic0X/F be the Jacobian of X ; cp. [2, p. 243]. Let

J → C be the Néron model of J , and J 0 be the connected component of the
identity of J . The assumption that X → C is semi-stable is equivalent to
(J 0)s̄ being a semi-abelian variety for all s̄; see [2, p. 246] and [5, Prop. 5.7].

Let eJ : C → J be the unit section of J → C, and Ω1
J /C be the sheaf of

relative differential forms. The sheaf e∗J (Ω1
J /C) on C is locally free of rank g.

The Parshin height of J is

H(J) := deg

g∧
e∗J (Ω1

J /C).

Theorem 2.14. If π : X → C is the minimal regular model of X over C, and
ωX/C is the relative dualizing sheaf, then

H(J) = deg(π∗(ωX/C)) =
1

12

(
ωX/C · ωX/C +

∑

s∈C

̺s deg(s)
)
,

where the sum is over the closed points of C and ̺s denotes the number of
singular points in the fiber Xs := π−1(s).

Proof. See [36, p. 48]. �
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Theorem 2.15. Assume π : X → C is semi-stable and non-isotrivial. Let
ωX/C be the relative dualizing sheaf. Then

0 ≤ ωX/C · ωX/C ≤ 8peg(g − 1)(gC − 1 + θ/2),

where θ is the number of geometric points of C where the fibers of π are not
smooth, and e is the modular inseparable exponent of π as defined in [36, p. 46].

Proof. See [36, Prop. 1 and Thm. 3]. �

Let s ∈ C be a closed point, and x ∈ Xs be a singular point. There exists a
scheme S′, étale over S := Spec(OC,s), such that any point x′ ∈ X ′ := X×S S

′

lying above x, belonging to a fiber X ′
s′ , is a split ordinary double point, and

ÔX′,x′ ∼= ÔS′,s′ [[u, v]]/(uv − c)

for some c ∈ OS′,s′ . Moreover, the valuation wx of c for the normalized valua-
tion of OS′,s′ is independent of the choice of S′, s′, and of x′. For the proof of
these facts we refer to [18, Cor. 10.3.22].

One can associate a graph GXs
to Xs, the so-called dual graph (cp. [18,

p. 511]): Let ks be the residue field at s. The vertices of GXs
are the irreducible

components ofXs×ks
ks, and each ordinary double point x ∈ Xs defines an edge

ex whose end-vertices correspond to the irreducible components containing x
(the two orientations of ex correspond to a choice of one of the two branches
passing through x as the origin of ex). We assign the weight w(ex) = wx.

Theorem 2.16. Let ΦJ,s := Js/J 0
s be the group of connected components of

J at s ∈ C. Then |ΦJ,s| = DGXs ,w.

Proof. This follows from [14, 11.5 and 12.10]. �

Remark 2.17. Let X̃ → X be the minimal desingularization. The dual graph
GX̃s

is obtained from GXs
by replacing each ex ∈ E(GXs

) by a path without
backtracking of length wx and assigning weight 1 to all edges of the resulting
graph; cp. [18, Cor. 10.3.25].

3. Eigenvalues of Laplacians

The notation and assumptions in this section are those of Section 2.1. In
particular, G is a weighted connected graph.

3.1. Discriminant and eigenvalues. Let V be a finite-dimensional vector
space over Q. A lattice of V is a Z-submodule Λ of V that is finitely generated
and spans V . Following [33, §III.1], for an arbitrary pair of lattices Λ1 and Λ2

in V define a function χ(Λ1,Λ2) as follows: Pick a sublattice Λ ⊂ Λ1∩Λ2, and
put

χ(Λ1,Λ2) :=
|Λ1/Λ|
|Λ2/Λ|

.

By [33, p. 47, Lem. 1], χ(Λ1,Λ2) does not depend on the choice of Λ. Moreover,
by [33, p. 48, Prop. 1], the following formula is valid:

χ(Λ1,Λ2) · χ(Λ2,Λ3) = χ(Λ1,Λ3).

Münster Journal of Mathematics Vol. 9 (2016), 221–251



Graph Laplacians and Drinfeld modular curves 233

Theorem 3.2. Assume G is finite with n vertices. Let

0 < λ1 ≤ λ2 ≤ · · · ≤ λn−1

be the nonzero eigenvalues of ∆. Then

DG,w

∑

v∈V (G)

∏

v′ 6=v

w(v′) =
n−1∏

i=1

λi
∏

e∈E(G)+

w(e).

Proof. To simplify the notation, let Ci := Ci(G,Z), C
∨
i := Hom(Ci,Z), H1 :=

H1(G,Z), and H
∨
1 := Hom(H1,Z). Let

C̃1 :=
{
y ∈ C1(G,Q) | (x, y) ∈ Z for all x ∈ C1

}

be the codifferent of C1; this is a lattice in C1(G,Q). Let C′
0 := ker(ε).

Consider the diagram

C̃1

0 // H1
// C1

?�

OO

∂
//

φ

��

C0
ε

// Z // 0

0 // Z // C∨
0

∂∨

// C∨
1

φ−1

WW

✏
✕
✚

✤
✩
✮
✳

// H∨
1

// 0

C0

π

OO

where

φ(e) = (e, ∗) and π(v) = 〈v, ∗〉.
In the diagram the horizontal lines are exact sequences, and φ−1 denotes the
inverse of φ as an isomorphism C1 ⊗ Q → C∨

1 ⊗ Q. Note that φ−1 maps C∨
1

isomorphically onto C̃1, and ∂∗ = φ−1∂∨π. Let ∂∗(C0) denote the image of

C0 under ∂∗, which we consider as a Z-submodule of C̃1. It is easy to see that
H1 ∩ ∂∗(C0) = 0, and H1 ⊕ ∂∗(C0) is a lattice of C1 ⊗Q.

The formula in the theorem will follow by computing χ(C̃1, H1⊕∂∗(C0)) in
two different ways. On one hand, by applying φ, we get

χ(C̃1, H1 ⊕ ∂∗(C0))

= χ(C∨
1 , φ(H1)⊕ ∂∨π(C0))

= χ(C∨
1 , φ(H1)⊕ ∂∨(C∨

0 )) · χ(φ(H1)⊕ ∂∨(C∨
0 ), φ(H1)⊕ ∂∨π(C0))

= χ(H∨
1 , φ(H1)) · χ(∂∨(C∨

0 ), ∂
∨π(C0)),

so Lemma 2.4 implies

(10) χ(C̃1, H1 ⊕ ∂∗(C0)) = DG,w · χ(∂∨(C∨
0 ), ∂

∨π(C0)).
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On the other hand,

χ(C̃1, H1 ⊕ ∂∗(C0)) = χ(C̃1, C1) · χ(C1, H1 ⊕ ∂∗(C0))

= χ(C̃1, C1) · χ(C′
0,∆(C0))

= χ(C̃1, C1) · χ(C′
0,∆(C′

0)) · χ(∆(C′
0),∆(C0)).

Note that the restriction of ∆ to C′
0 ⊗ Q is an invertible operator, so by [33,

§III.1, Prop. 2],

χ(C′
0,∆(C′

0)) = det(∆|C′
0⊗Q) =

n−1∏

i=1

λi.

It is clear that

χ(C̃1, C1) = |C̃1/C1| =
∏

e∈E(G)+

w(e),

since {e/w(e) | e ∈ E(G)+} is a basis of C̃1. Hence

(11) χ(C̃1, H1 ⊕ ∂∗(C0)) =

n−1∏

i=1

λi

( ∏

e∈E(G)+

w(e)
)
χ(∆(C′

0),∆(C0)).

It remains to compute χ(∆(C′
0),∆(C0)) and χ(∂

∨(C∨
0 ), ∂

∨π(C0)). We have

χ(∆(C′
0),∆(C0))

−1 = χ(∆(C0),∆(C′
0)) = |∆(C0)/∆(C′

0)|.
Since C0 = C′

0 ⊕Zv0 for a fixed vertex v0, we see that ∆(C0)/∆(C′
0)

∼= Z/NZ
is cyclic generated by ∆v0. Let

f =
∑

v∈V (G)

∏

v′ 6=v

w(v′)v.

It is easy to check that ∆f = 0. Let

d = gcd
v∈V (G)

( ∏

v′ 6=v

w(v′)
)
.

Then f0 := f/d is a primitive element in C0 which generates ker∆. Let

r =
1

d

∑

v∈V (G)

∏

v′ 6=v

w(v′).

Since rv0 − f0 ∈ C′
0, we have

r∆(v0) = r∆(v0)−∆(f0) = ∆(rv0 − f0) ∈ ∆(C′
0).

This implies that N divides r. On the other hand, N∆v0 ∈ ∆(C′
0) implies that

there exists some f ′ ∈ C′
0 such that ∆(Nv0) = ∆(f ′). Thus, Nv0−f ′ ∈ ker(∆).

But the kernel of ∆ in C0 is generated by f0. Hence Nv0 − f ′ = sf0 for some
s ∈ Z. Applying ε to both sides, we get N = sr, so r |N . Combining this with
N | r, we get N = r. Therefore,

(12) χ(∆(C′
0),∆(C0)) = 1/r.

Münster Journal of Mathematics Vol. 9 (2016), 221–251



Graph Laplacians and Drinfeld modular curves 235

Letm = |E(G)+|. Since G is connected, m ≥ n−1. By fixing an ordering of
V (G) and |E(G)+|, we can think of ∂∨(C∨

0 ) as the submodule of Zm generated
by the rows of an n×m matrix M with entries in Z, whose rows are labelled
by the vertices and columns by the edges. Since ker(∂∨) has Z-rank 1, the
rank of M is n − 1. Note that C∨

1 /∂
∨(C0) ∼= H∨

1 is a free Z-module. Hence
by a well-known fact from linear algebra (cp. [29, p. 88]) the greatest common
divisor of minors of order n − 1 of M is equal to 1. Let D be the n × n
diagonal matrix whose (i, i)th entry with respect to our ordering of vertices
is w(vi). Now ∂∨π(C0) is the submodule of Zm generated by the rows of
DM . Hence χ(∂∨(C∨

0 ), ∂
∨π(C0)) is equal to the order of the torsion subgroup

of C∨
1 /∂

∨π(C0). In matrix terminology, this latter number is equal to the
greatest common divisor of the minors of order n − 1 of DM . It is easy to
see that this greatest common divisor is equal to d times the greatest common
divisor of the minors of order n− 1 of M . Thus,

(13) χ(∂∨(C∨
0 ), ∂

∨π(C0)) = d.

Now the claim of the theorem easily follows by combining equations (10)–
(13). �

Corollary 3.3. If w(v) = 1 for all v ∈ V (G), then

DG,w =
1

n

n−1∏

i=1

λi
∏

e∈E(G)+

w(e).

Example 3.4. Let G be a graph consisting of two vertices joined by m edges;
see Figure 1. Let wi = w(ei), and assume w(v1) = w(v2) = 1. Then

∆(v1 − v2) = 2
( m∑

i=1

w−1
i

)
(v1 − v2).

Hence the nonzero eigenvalue is 2
∑m

i=1 w
−1
i and

DG,w =

m∑

i=1

∏

j 6=i

wj .

Combining this calculation with Theorem 2.16 gives an alternative proof of
[2, Cor. 9.6/10].

v1 ...
v2

em

e1

Figure 1
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3.5. Diagrams. In this subsection we investigate the relationship between the
spectra of certain infinite graphs and their finite subgraphs.

Definition 3.6. Let G be a weighted (possibly infinite) graph as in Section 2.1.
We make the following assumptions:

(i) G is bipartite, i.e., V (G) is a disjoint union V (G) = O ⊔ I such that any
edge e ∈ E(G) has one of its end-vertices in O and the other in I;

(ii) w(e) divides w(t(e)) for any e ∈ E(G) (hence also w(e) |w(o(e)));
(iii) there is a positive integer q such that for any v ∈ V (G),

∑

e∈E(G)
t(e)=v

w(v)

w(e)
= q + 1;

(iv)
∑

v∈V (G)w(v)
−1 <∞.

In [21], a graph with these properties is called a (q + 1)-regular diagram.

Lemma 3.7.
∑

v∈I

w(v)−1 =
∑

v∈O

w(v)−1.

Proof. Since G is bipartite and w(e) = w(ē), using property (iii), we get
∑

v∈I

q + 1

w(v)
=

∑

v∈I

∑

e∈E(G)
t(e)=v

1

w(e)

=
∑

e∈E(G)
t(e)∈I

1

w(e)
=

∑

e∈E(G)
t(e)∈O

1

w(e)

=
∑

v∈O

q + 1

w(v)
. �

Let L2(G) be the Hilbert space of complex-valued functions on V (G) with
inner product

〈f, g〉 =
∑

v∈V (G)

f(v)g(v)w(v)−1.

The adjacency operator δ : L2(G) → L2(G) is defined by

δ(f)(v) =
∑

e∈E(G)
t(e)=v

w(v)

w(e)
f(o(e)).

This operator is Hermitian, since by expanding we have

〈δf, g〉 =
∑

e∈E(G)

f(o(e))g(t(e))w(e)−1 = 〈f, δg〉.

By the Schur test [3, p. 30], δ is bounded by

(14) ‖δ‖ ≤ q + 1.

(It is clear that δ is not compact if G is infinite.)
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If f is a constant function, i.e., f(v) = f(v′) for all v, v′ ∈ V (G), then
δf = (q + 1)f . If f is an alternating function, i.e., f(v) = −f(v′) for all
v ∈ I, v′ ∈ O, then δ(f) = −(q + 1)f . The orthogonal complement in L2(G)
of the subspace spanned by the constant and alternating functions is

(15) L0
2(G) =

{
f ∈ L2(G) |

∑

v∈I

f(v)w(v)−1 =
∑

v∈O

f(v)w(v)−1 = 0
}
.

Let

m = inf
f∈L0

2(G)
‖f‖=1

〈δf, f〉, M = sup
f∈L0

2(G)
‖f‖=1

〈δf, f〉.

Since δ is Hermitian and bounded, the spectrum of δ on L0
2(G) lies in the

closed interval [m,M ] on the real axes; cp. [16, Thm. 9.2-1]. Moreover, m and
M are spectral values of δ, and

‖δ|L0
2(G)‖ = max(|m|, |M |);

cp. [16, Thms. 9.2-2 and 9.2-3]. From (14), we clearly have

max(|m|, |M |) ≤ q + 1.

Lemma 3.8. The spectrum of δ on L0
2(G) is symmetric with respect to zero.

In particular, m = −M .

Proof. Let λ be in the spectrum of δ|L0
2(G). By definition, this means that the

linear operator δ − λI is not bijective; cp. [16, pp. 371–373]. This can happen
in two ways, either δ − λI is not injective, or δ − λI is not surjective.

First, assume δ − λI is not injective. Then λ is an eigenvalue of δ. Let
δf = λf be an eigenfunction. We write f = f0 + f1, where f0 is supported on
O and f1 is supported on I; note that such decomposition is unique. Since δf0
(resp. δf1) is supported on I (resp. O), we must have δf0 = λf1 and δf1 = λf0.
Now

δ(f0 − f1) = λf1 − λf0 = −λ(f0 − f1).

It is clear from (15) that if f ∈ L0
2(G), then f0 − f1 is also in this subspace.

Thus, −λ is an eigenvalue of the restriction of δ to L0
2(G).

Next, assume δ − λI is not surjective on L0
2(G). Suppose g is not in the

image of δ − λI. Write g = g0 + g1 as earlier. We claim that g1 − g0 ∈ L0
2(G)

is not in the image of δ + λI, and so −λ is also in the spectrum of δ. Assume
the contrary: there exists h = h0 + h1 such that δh+ λh = g1 − g0. Then

δh0 + λh1 = g1 and δh1 + λh0 = −g0.

These can be rewritten as

δh0 − λ(−h1) = g1 and δ(−h1)− λh0 = g0.

These imply (δ − λI)(h0 − h1) = g, which is a contradiction. �
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Let G′ be a finite connected subgraph of G with the property that if v, v′ ∈
V (G) are in V (G′), then any edge of G connecting v and v′ is also an edge of G′.
The weights of vertices and edges of G′ are the same as in G. Let

δ′(f)(v) =
∑

e∈E(G′)
t(e)=v

w(v)

w(e)
f(o(e))

be the adjacency operator of G′. Any function f on V (G′) can be extended to

a function f̃ ∈ L2(G) by setting

f̃(v) =

{
f(v) if v ∈ V (G′),

0 if v 6∈ V (G′).

Define an inner product on the C-vector space of functions on V (G′) by

〈f, g〉 := 〈f̃ , g̃〉. We denote this inner product space by L2(G
′). It is easy

to see that

〈δ′f, g〉 = 〈δf̃ , g̃〉 = 〈f̃ , δg̃〉 = 〈f, δ′g〉.
Hence the linear operator δ′ on L2(G

′) is Hermitian. This implies that the
eigenvalues

λ1 ≤ λ2 ≤ · · · ≤ λn

of δ′ are real; here n = |V (G′)|.
Theorem 3.9. We have

−(q + 1) ≤ λ1, m ≤ λ2, λn−1 ≤M, λn ≤ q + 1.

Proof. Since G′ is bipartite, the argument in the proof of Lemma 3.8 shows that
the spectrum of δ′ is symmetric with respect to zero. In particular, λ1 = −λn
and λ2 = −λn−1. Since we also have m = −M , the first two inequalities imply
the other two.

Let δ′f = λ1f with ‖f‖ = 1. Then ‖f̃‖ = 1 and

−(q + 1) = inf
x∈L2(G)
‖x‖=1

〈δx, x〉 ≤ 〈δf̃ , f̃〉 = 〈δ′f, f〉 = λ1.

Let H = L0
2(G) ⊕ C1 be the orthogonal complement of alternating func-

tions; the second factor in H is spanned by the constant functions. (The
orthogonality of constant and alternating functions follows from Lemma 3.7.)
We claim that for any 0 6= h ∈ H , we have 〈δh, h〉/〈h, h〉 ≥ m. Indeed, write
h = h1 + h2 ∈ H , where h1 ∈ L0

2(G) and h2 ∈ C1. If h1 = 0, then

〈δh, h〉
〈h, h〉 = (q + 1) > m.

If h1 6= 0, then we have

〈δh, h〉
〈h, h〉 =

〈δh1, h1〉+ (q + 1)〈h2, h2〉
〈h1, h1〉+ 〈h2, h2〉

≥ 〈δh1, h1〉
〈h1, h1〉

≥ m,

where the first inequality follows from the fact that 〈δh1, h1〉/〈h1, h1〉 < (q+1).
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Now let δ′g = λ2g with ‖g‖ = 1. Let H ′ be the subspace of L2(G) spanned

by f̃ and g̃. We claim that for any 0 6= x ∈ H ′, we have 〈δx, x〉/〈x, x〉 ≤ λ2.

Write x = y + z where y = af̃ and z = bg̃. Since δ′ is Hermitian, we have
y ⊥ z, and

〈δx, x〉
〈x, x〉 =

λ1〈y, y〉+ λ2〈z, z〉
〈y, y〉+ 〈z, z〉 ≤ λ2.

Consider the orthogonal projection P : L2(G) → C onto the 1-dimensional
space spanned by the alternating functions. The null-space of P is H . On the
other hand, since H ′ is 2-dimensional, there is a nonzero vector x ∈ H ∩H ′.
From the previous two paragraphs, we get m ≤ 〈δx, x〉/〈x, x〉 ≤ λ2, as was
required to show. �

Theorem 3.10 (Weyl’s inequalities). Let A and B be n×n Hermitian matri-
ces, and C = A+B. Let the eigenvalues of A,B,C form increasing sequences:

α1 ≤ · · · ≤ αn, β1 ≤ · · · ≤ βn, γ1 ≤ · · · ≤ γn.

Then

(i) γi ≥ αj + βi−j+1 for i ≥ j;
(ii) γi ≤ αj + βi−j+n for i ≤ j.

Proof. See [29, Thm. 34.2.1]. �

Definition 3.11. A vertex v ∈ V (G′) is a boundary vertex if not all vertices
adjacent to v in G are in G′. The degree v ∈ V (G′) is

degG′(v) =
∑

e∈E(G′)
t(e)=v

w(v)

w(e)
.

The degree of any v ∈ V (G′) is nonzero since G′ is connected. If v is not a
boundary vertex, then by an earlier assumption degG′(v) = q + 1.

Enumerate the vertices {v1, . . . , vn} of G′, and consider the set of these
vertices as a basis for C0(G

′,C). Denote

di = degG′(vi), 1 ≤ i ≤ n.

We assume that the enumeration is done so that d1 ≤ d2 ≤ · · · ≤ dn. Let ∆
be the Laplacian of G′ defined in Definition 2.2. Let

0 = γ1 ≤ γ2 ≤ · · · ≤ γn

be the eigenvalues of ∆.

Theorem 3.12. We have

γ2 ≥ d1 −M, γn−1 ≤ (q + 1) +M, γn ≤ 2(q + 1).
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Proof. We have ∆ = D−δ′, whereD is the diagonal matrix diag(di)1≤i≤n. The
operators δ′ and D are Hermitian on L2(G

′), so Weyl’s inequalities, combined
with the bounds of Theorem 3.9, yield

γ2 ≥ d1 − λn−1 ≥ d1 −M,

γn−1 ≤ dn − λ2 ≤ dn −m ≤ (q + 1) +M,

γn ≤ dn − λ1 ≤ dn + (q + 1) ≤ 2(q + 1). �

3.13. Ramanujan diagrams. We say that G is a Ramanujan diagram, if it
is a (q + 1)-regular diagram in the sense of Definition 3.6, and the following
extra conditions hold:

(v) G is a union of a finite connected graph G′ and a finite number of half-
lines C1, . . . , Cs, called cusps, so that

E(G) = E(G′) ∪ E(C1) ∪ · · · ∪ E(Cs).

(vi) Cj ∩ Ck = ∅ for any j 6= k.
(vii) If {vjn}n≥0 are the vertices of Cj (1 ≤ j ≤ s),

vj0 vj1 vj2 vj3

ej0 ej1 ej2

then V (G′) ∩ V (Cj) = {vj0}.
(viii) For 1 ≤ j ≤ s and n ≥ 0, let ejn be the edge with origin vjn and terminus

vjn+1. Then

w(vjn)/w(e
j
n) = 1, w(vjn+1)/w(e

j
n) = q.

(ix) M ≤ 2
√
q.

Lemma 3.14. Let G be a Ramanujan diagram as above. If f ∈ L0
2(G) is an

eigenfunction for δ, then f vanishes on all Cj , i.e., f(v
j
n) = 0 for 1 ≤ j ≤ s and

n ≥ 0. This implies that f is an eigenfunction for δ′ with the same eigenvalue,
and the discrete spectrum of δ is contained in the spectrum of δ′.

Proof. This observation appears in [8, p. 178] (see also [9, §3]). Let f ∈ L0
2(G).

Fix some cusp, and, to simplify the notation, denote its vertices by vn, and
f(n) := f(vn). Condition (viii) implies that w(vn+1)/w(vn) = q, so for f to
be in L2(G) we must have f(n) = o(qn/2) as n→ ∞. Assume δf = λf . Then
for n ≥ 1,

λf(n) = (δf)(n) = qf(n− 1) + f(n+ 1).

Let x1, x2 be the roots of x2 − λx + q. The above linear recurrence can be
solved as f(n) = axn1 + bxn2 if x1 6= x2, or f(n) = (a + nb)xn1 if x1 = x2 (here
a and b are determined by f(0) and f(1)). By condition (ix), the eigenvalue
λ satisfies |λ| ≤ 2

√
q, so the roots are either x1 = x2 = ±√

q, or x1 = x2 are
complex conjugate of absolute value

√
q. Unless f(n) ≡ 0, this implies that

f(n)/qn/2 does not tend to 0 as n→ ∞, a contradiction. �

Münster Journal of Mathematics Vol. 9 (2016), 221–251



Graph Laplacians and Drinfeld modular curves 241

a

b

v′1 v′2

v∞,0 v∞,1 v∞,2

Figure 2

Example 3.15. Consider the diagram in Figure 2. The dashed edge between
the vertices a and b indicates that they are connected by q edges, and the
arrows indicate the cusps. The weights of a and b are 1, so all edges having a
or b as an end-vertex have weight 1. The weights of v′1 and v′2 are q − 1; the
edge connecting v′1 and v′2 also has weight q− 1. As we will explain later, G is
Ramanujan (see Remark 4.10).

The graph G′ is the graph formed by the vertices v′1, v
′
2, a, b. The charac-

teristic polynomial of δ′ is

x4 − ((q + 1)2 − 2)x2 + 1.

Two of its roots have absolute value < 2
√
q, and the other two have absolute

value lying in the interval (2
√
q, q+1). Hence the spectrum of G′ is not in the

spectrum of G. Moreover, it is easy to see that a function which vanishes on
the cusps and is an eigenfunction of δ must be identically 0. Thus, the discrete
spectrum of G is empty.

Remark 3.16. Given a diagram G, an eigenfunction f ∈ L2(G) of δ with
finite support, i.e., f(v) = 0 for all but finitely many v ∈ V (G), is called a cusp
form; cp. [8, p. 177]. The point of Lemma 3.14 is that in case of a Ramanujan
diagram G the only eigenfunctions of δ in L0

2(G) are the cusp forms. In [8],
Efrat constructs examples of infinite diagrams which satisfy properties
(i)–(viii), have no nontrivial cusp forms, but have lots of δ-eigenfunctions
in L0

2(G).

4. Drinfeld diagrams

4.1. Ramanujan property. Let T be the Bruhat–Tits tree of PGL2(F∞) as
in Section 2.5. Let Γ := GL2(A). Let Γ′ be a congruence subgroup of Γ. We
consider Γ′ \ T as a weighted infinite graph, with weights defined by (4).

Theorem 4.2. The quotient graph Γ′ \ T is a (q + 1)-regular Ramanujan
diagram.

Proof. For i ∈ Z, let vi ∈ V (T ) be the vertex represented by the matrix(
̟−i

∞ 0
0 1

)
; it is easy to see that vi is adjacent to vi+1. Let ei be the edge with

o(ei) = vi, t(ei) = vi+1. The subgraph formed by the vi and ei with i ≥ 0
maps isomorphically onto the quotient graph Γ \ T ; cp. [34, p. 111]. Each
orbit of the action of Γ on V (T ) splits into a disjoint union of orbits of Γ′,
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and similarly for E(T ). This gives a natural covering

π : Γ′ \ T → Γ \ T .

Since Γ \ T is bipartite, so is Γ′ \ T , with the partition of vertices of Γ′ \ T

induced by π−1. Since Γ′
ẽ is a subgroup of Γ′

t(ẽ), we see that w(e) divides
w(t(e)). Let v be a fixed vertex of Γ′ \T , and ṽ be some vertex in T mapping
to v. The group Γ′

ṽ acts on the set {ẽ | t(ẽ) = ṽ}, which has cardinality (q+1).
The orbit of a given edge ẽ under the action of Γ′

ṽ has length w(v)/w(e), where
e is the image of ẽ in Γ′ \ T . This implies

∑
t(e)=v w(v)/w(e) = q + 1. Next,

according to [34, p. 110],

(16)
∑

v∈V (Γ′\T )

w(v)−1 =
2[Γ : Γ′] · |Z(F∞) ∩ Γ′|

(q2 − 1)(q − 1)2
.

Note that Z(F∞) ∩ Γ′ is a subgroup of Z(Fq) ∼= F×
q . In particular, the series

on the left converges. Overall, what we proved so far implies that Γ′ \ T is a
(q + 1)-regular diagram.

We say that e ∈ E(Γ′ \ T ) (resp. v ∈ V (Γ′ \ T )) is of type i if π(e) = ei
(resp. π(v) = vi). Denote

Vi = {v ∈ V (Γ′ \ T ) | type(v) = i},
Ei = {e ∈ V (Γ′ \ T ) | type(e) = i}.

Let

G0 := GL2(Fq) →֒ Γ,

Gi :=

{(
a b
0 d

)
∈ Γ | deg b ≤ i

}
(i ≥ 1).

For i ≥ 0, Gi is the stabilizer of vi in Γ, and Gi ∩ Gi+1 is the stabilizer of ei;
cp. [12]. The groups Gi act on the set of cosets Γ/Γ′ from the left, and the
orbits of various Gi or Gi ∩Gi+1 correspond to the vertices or edges of Γ′ \T

of type i:
Gi \ Γ/Γ′ ∼= Vi, (Gi ∩Gi+1) \ Γ/Γ′ ∼= Ei.

It is easy to see that o : Ei → Vi is bijective for i ≥ 1 (cp. [12, p. 692]) and,
because Gi ∩Gi+1 = Gi for i ≥ 1,

(17) w(e) = w(o(e)) for e ∈ Ei, i ≥ 1.

Let n✁A be of minimal degree d such that Γ(n) is contained in Γ′. Since Gi

acts on Γ/Γ′ via pn : Gi → Γ/Γ(n) and pn(Gd−1) = pn(Gd) = · · · , the subgraph
of Γ′ \ T consisting of edges of type ≥ d − 1 is a disjoint union of half-lines.
Since |Gi+1/Gi| = q for i ≥ 1, it is also clear that w(t(e)) = q · w(o(e)) for
edges of type ≥ d− 1.

To prove that Γ′ \ T is Ramanujan it remains to show that this graph has
property (ix) in the definition of Ramanujan diagram. This is a rather deep
fact, closely related to the theory of Eisenstein series and the Ramanujan–
Petersson conjecture for automorphic representations of GL(2) over function
fields proved by Drinfeld. The details can be found in [21, Thm. 2.1]. (Although
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in [21] it is assumed that Γ′ = Γ(n) is the principal congruence subgroup, the
proof works also for other congruence subgroups.) �

Remark 4.3. Sum (16) can be interpreted as the volume of GL2(F∞)/Γ′ with
respect to an appropriately normalized Haar measure on GL2(F∞); cp. [34,
p. 110].

Remark 4.4. The automorphic representations that arise at the end of the
proof of Theorem 4.2 are spherical at ∞, so these are not the automorphic
representations that arise from Drinfeld modular curves which are special at∞.

4.5. Number of vertices. Let n ✁ A be a nonzero ideal of degree d. By
Theorem 4.2, Γ0(n) \ T is a Ramanujan diagram. In particular, Γ0(n) \ T is
a union of a finite graph G, and a finite number of cusps. As follows from the
proof of Theorem 4.2, one can take G to be the subgraph formed by vertices
of type ≤ d − 1. On the other hand, this is not the most natural choice of G.
Assume deg(n) ≥ 3, so that H1(Γ0(n) \ T ,Z) 6= 0. We choose G to be the
smallest subgraph of Γ0(n)\T such that each cusp is attached to G at a vertex
which is adjacent in Γ0(n) \ T to at least three vertices. It is easy to see that
this finite graph G is uniquely determined, and we denote it by G0(n).

We want to apply Theorem 3.2 to G0(n). To do this, we need to compute
the number of vertices and edges in G0(n), along with their weights. A large
portion of this calculation is already contained in [12], where one finds the
number of vertices and edges of type 0 and d− 1.

It is easy to see that

Γ/Γ0(n)
∼−→ P := P1(A/n),

(
a b
c d

)
7→ (a : c)

as Γ-sets, where the action of Γ on P is
(
a b
c d

)
(u : v) = (au + bv : cu + dv).

Computing the number of vertices of type i and their weights amounts to com-
puting the orbits and stabilizers of the action of Gi on P. Similarly, computing
the number of edges of type i and their weights amounts to computing the
orbits and stabilizers of the action of Gi∩Gi+1 on P. Since Gi∩Gi+1 = Gi for
i ≥ 1, these two problems are the same for type ≥ 1. For type 0 one needs to
consider the action on P of both G0 and the group of upper-triangular matrices
B = G0 ∩ G1 in GL2(Fq). The formulas become more and more complicated
as the number of divisors of n increases, so, for simplicity, from now on we
assume n = p is prime. Let

κ(p) =

{
1 if deg(p) is even,

0 otherwise.

Lemma 4.6. There is one vertex v∞,0 ∈ V0 of weight q(q − 1). There is one
vertex v′0 ∈ V0 of weight q + 1 if κ(p) = 1. The number of remaining vertices
of type 0 is

|V0| − 1− κ(p) =
(qd−1 − 1)− κ(p) · (q − 1)

q2 − 1
,

and they all have weight 1.
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Proof. This follows from [12, Lem. 2.7]. �

Lemma 4.7. There are two edges e∞, e′∞ ∈ E0 with origin v∞,0. Their weights
are q(q−1) and q−1, respectively. When κ(p) = 1, there is a unique edge with
origin v′0, and its weight is 1. Any other vertex in V0 is the origin of exactly
q + 1 edges, all of weight 1.

Proof. This follows from [12, Lem. 2.8]. �

Lemma 4.8. Assume 1 ≤ i ≤ d− 1. There is one vertex v∞,i ∈ Vi of weight
(q−1)qi+1, and one vertex v′i of weight q−1. The number of remaining vertices
of type i is

|Vi| − 2 =
qd−1−i − 1

q − 1
,

and they all have weight 1.

Proof. Let γ =
(
a b
0 d

)
∈ Gi. Then γ(1 : 0) = (1 : 0), hence (1 : 0) is fixed by

Gi. This gives the vertex v∞,i with weight |Gi|/(q − 1) = (q − 1)qi+1. Next,
suppose

γ(u : 1) =
(ua+ b

d
: 1

)
= (u : 1).

Then b = (d− a)u. Note that u is the residue class of a unique polynomial of
degree ≤ d− 1.

If deg(u) > i, then a = d and b = 0 (as deg(b) ≤ i). In that case, the
stabilizer of (u : 1) in Gi is Z(Fq) ∼= F×

q , and the orbit of (u : 1) has length
|Gi|/(q − 1). Note that all elements in Gi(u : 1) are of the form (u′ : 1) with
deg(u′) = deg(u). Hence the qd − qi+1 points (u : 1) ∈ P with deg(u) > i give
(qd − qi+1)/qi+1(q − 1) vertices of type i and weight 1.

If deg(u) ≤ i, then a, d ∈ F×
q can be arbitrary, so the stabilizer of (u : 1) in

Gi is isomorphic to F×
q ×F×

q . The length of the orbits of (u : 1) is |Gi|/(q−1)2 =

qi+1. But there are exactly qi+1 points (u : 1) ∈ P with deg(u) ≤ i, so they
are all in one orbit. This gives one vertex of type i and weight q − 1. �

As follows from the previous proof, the vertices v∞,i (i ≥ 0) all come from
(1 : 0) ∈ P, so v∞,i is adjacent to v∞,i+1. Moreover, it is easy to see that each
v∞,i is adjacent to exactly two vertices in Γ0(p)\T , so {v∞,i}i≥0 form a cusp.
The weight of any other vertex v ∈ Vi(Γ0(p) \ T ), 1 ≤ i ≤ d− 1, is 1 or q − 1.
This implies that v is adjacent to at least three other vertices.

Definition 4.9. Let G0(p) be the subgraph of Γ0(p)\T formed by all vertices
of type ≤ d− 1, excluding v∞,0, v∞,1, . . . , v∞,d−1. Note that e

′
∞ connects v∞,0

to G0(p). (It is easy to see from previous discussions that G0(p) is the graph
from the first paragraph of Section 4.5.)
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One easily computes from previous lemmas that

|V (G0(p))| =
2q(qd−1 − 1)

(q − 1)2(q + 1)
+

(q − 2)(d− 1)

q − 1
+
κ(p)q

q + 1

= c1q
d + c2d+ c3,

∑

v∈V (G0(p))

w(v)−1 = |V (G0(p))| −
κ(p)q

q + 1
− 1 +

(d− 1)(3− 2q)

q − 1
(18)

= c1q
d + c′2d+ c′3,

∏

v∈V (G0(p))

w(v)
( ∏

v∈E+(G0(p))

w(e)
)−1

= (q − 1)(q + 1)κ(p) = c′′3 ,(19)

where c1, c2, c
′
2, c

′
3 depend only on q, and c3, c

′′
3 depend on q and the parity

of d.

Remark 4.10. The diagram in Example 3.15 is Γ0(p) \ T for d = 3.

4.11. Equidistribution of eigenvalues. Let p ✁ A be a prime ideal, and
G0(p) be the finite part of the graph Γ0(p) \ T as in Definition 4.9. With the
degree of a vertex of G0(p) defined as in Definition 3.11, all vertices of G0(p),
except the two boundary vertices, have degree q + 1. The boundary vertices
have degree q. (This is true for the boundary vertices of any G0(n) and follows
from property (viii) of Ramanujan diagram.) In the notation of Lemma 4.8
the boundary vertices of G0(p) are v

′
1 and v′d−1.

Let n(p) = |V (G0(p))|. Let
0 = γ1(p) < γ2(p) ≤ · · · ≤ γn(p)(p)

be the eigenvalues of ∆ acting on G0(p). By Theorem 3.12 and Theorem 4.2,
we have

γ2(p) ≥ q − 2
√
q, γn(p)(p) ≤ 2(q + 1).

In this subsection we estimate the sum

S(p) :=

n(p)∑

i=2

ln(γi(p))

as deg(p) → ∞.
To simplify the notation we will sometimes omit p from notation, so, for

example, n in this paragraph is n(p). Let δ be the adjacency operator on
Γ0(p) \ T , and δ′ be the adjacency operator on G0(p). Let λ1, . . . , λn be the
eigenvalues of δ′. We have

(20) ∆ = D − δ′ = ((q + 1)I − δ′) + (D − (q + 1)I),

where D is the diagonal matrix with the degrees of vertices of G0(p) on the
diagonal (cp. the proof of Theorem 3.12). Denote αi := (q+1)−λi, 1 ≤ i ≤ n,
the eigenvalues of the Hermitian matrix (q+1)I−δ′. Without loss of generality,
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after reindexing, we assume α1 ≤ · · · ≤ αn. By Theorem 3.9 and Theorem 4.2,
we have

(21) (
√
q − 1)2 ≤ αi ≤ 2(q + 1) for 2 ≤ i ≤ n.

Let β1 ≤ · · · ≤ βn be the eigenvalues of the Hermitian matrix D − (q + 1)I.
Note that β1 = β2 = −1 and β3 = · · · = βn = 0. By the Weyl’s inequalities
(Theorem 3.10), we have

αi − 1 ≤ γi ≤ αi for 1 ≤ i ≤ n.

Hence we can write αi = γi + εi, where 0 ≤ εi ≤ 1. Taking the trace of both
sides in (20), we get

n∑

i=1

γi =

n∑

i=1

αi +

n∑

i=1

βi =

n∑

i=1

αi − 2.

Thus,
∑n

i=1 εi = 2. This implies

(22)

n∑

i=2

ln(αi) =

n∑

i=2

ln(γi + εi) = S(p) + c,

where c is a constant which depends on p, but whose absolute value can
be universally bounded independently of p. Thus, it is enough to estimate∑n

i=2 ln(αi).
Let {ν1, . . . , νm(p)} be the discrete spectrum of δ. By Lemma 3.14,

{ν1, . . . , νm} ⊂ {λ1, . . . , λn}
and the eigenfunctions corresponding to νi are cusp forms. A formula for the
dimension of the space spanned by cusp forms in L2(Γ0(p)\T ) is given in [15,
Thm. 5.1]. It follows from that formula that

n(p)−m(p) ∼ 2 deg(p).

Since

n(p) ∼ 2|p|
(q − 1)2(q + 1)

,

most of the eigenvalues of δ′ come from cusp forms, although, as Example 3.15
demonstrates, the spectrum of δ′ contains also values which are not in the
spectrum of δ. Combined with the bounds (21), this implies

(23)

n∑

i=2

ln(αi) =

m∑

j=1

ln((q + 1)− νj) + c′ deg(p),

where c′ is a constant which depends on p, but whose absolute value can be
universally bounded independently of p. Now we concentrate on estimating

Scusp(p) :=
m∑

j=1

ln((q + 1)− νj).

The key fact that we will use is the following theorem.
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Theorem 4.12. Let q be fixed. As deg(p) → ∞, the nontrivial discrete spectra
Xp := {ν1, . . . , νm(p)} of δ are equidistributed on Ω = [−2

√
q, 2

√
q] with respect

to the measure

µq(x) =
q + 1

2π

√
4q − x2

(q + 1)2 − x2
dx.

That is, for any continuous function f on Ω the following holds:

lim
deg(p)→∞

1

|Xp|
∑

ν∈Xp

f(ν) =

∫

Ω

f(x)µq(x).

Proof. This is proven in [22, Thm. 5.1], following the method of Serre [35] for
cusp forms on the congruence subgroups of SL2(Z). �

It follows from this theorem that the sets

X ′
p := {(q + 1)− ν1, . . . , (q + 1)− νm(p)}

are equidistributed on [(
√
q − 1)2, (

√
q + 1)2] with respect to the measure

µ′
q(x) =

q + 1

2π

√
4q − ((q + 1)− x)2

(q + 1)2 − ((q + 1)− x)2
dx.

Corollary 4.13. As deg(p) → ∞, we have

Scusp(p) ∼ m(p)Cq,

where

Cq =
q + 1

2π

∫ (
√
q+1)2

(
√
q−1)2

√
4q − ((q + 1)− x)2

(q + 1)2 − ((q + 1)− x)2
ln(x)dx.

The constant Cq obviously depends only on q. Some of its approximate
values, obtained with the help of computer program SageMath, are as follows:

q 2 3 4 5 7 8 9 11 13 16
Cq 0.837 1.216 1.483 1.691 2.008 2.135 2.247 2.439 2.601 2.802

Lemma 4.14. Cq = ln
(
q +

1

2

)
+O(q−2 ln q).

Proof. Make the substitution x = q + 1 − 2θ
√
q and use the symmetry of θ

about 0 to write

Cq =
2(q + 1)q

π

∫ 1

0

√
1− θ2

(q + 1)2 − 4θ2q
ln((q + 1)2 − 4θ2q)dθ.

If we substitute the expansions

((q + 1)2 − 4θ2q)−1 =
1

(q + 1)2
+

4θ2q

(q + 1)4
+O(q−4)

and

ln((q + 1)2 − 4θ2q) = 2 ln(q + 1)− 4θ2q

(q + 1)2
+O(q−2)
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into the integral, and apply the formulas
∫ 1

0

√
1− θ2dθ =

π

4
,

∫ 1

0

θ2
√
1− θ2dθ =

π

16
,

we obtain

Cq =
q

q + 1
ln(q + 1) +

q2

(q + 1)3

(
ln(q + 1)− 1

2

)
+O(q−2 ln(q + 1)).

The main terms here contribute

q3 + 3q2 + q

(q + 1)3

(
ln
(
q +

1

2

)
+ ln

(
1 +

1

2q + 1

))
− q2

2(q + 1)3
.

Expanding in powers of q−2 gives the desired estimate. �

Theorem 4.15. ln(DG0(p),w) ∼
2Cq

(q − 1)2(q + 1)
|p|.

Proof. Since

n(p) ∼ m(p) ∼ 2|p|
(q − 1)2(q + 1)

,

combining Corollary 4.13 with equations (22) and (23), we get

S(p) ∼ 2Cq

(q − 1)2(q + 1)
|p|.

Next, we rewrite the formula in Theorem 3.2 as

DG0(p),w

∏

v∈V (G0(p))

w(v)
( ∏

v∈E+(G0(p))

w(e)
)−1 ∑

v∈V (G0(p))

w(v)−1 =

n(p)∏

i=2

γi(p).

Taking the logarithm of both sides and using (18) and (19), we get

ln(DG0(p),w) ∼ S(p). �

4.16. Drinfeld modular curves: Proofs of main results. Let p✁A be a
prime ideal. Denote Fp := A/p ∼= Fqdeg(p) . Let F∞ ∼= Fq be the residue field
at ∞.

Theorem 4.17. There is a semi-stable curve X0(p) → P1
Fq

such that:

(i) The generic fiber X0(p)F is isomorphic to X0(p).
(ii) X0(p) is smooth over Spec(A[p−1]).
(iii) The dual graph of the special fiber X0(p)Fp

at p consists of two vertices
joined by s(p) edges, where

s(p) =

{ |p|−1
q2−1 if deg(p) is even,

|p|−q
q2−1 + 1 if deg(p) is odd.

(This graph looks like the graph in Example 3.4.) If deg(p) is even, then
all edges have weight 1. If deg(p) is odd, then one edge has weight q + 1
and all other edges have weight 1.

(iv) The genus g(p) of X0(p) is s(p)− 1.
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(v) The dual graph of the special fiber X0(p)F∞
at ∞ is the weighted graph

G0(p).

Proof. Statements (i) and (ii) follow from the results in [6] (see also [17,
Prop. V.3.5]); (iii) and (iv) follow from [10, §5]; (v) follows from [24, §4.2]. �

Proof of Theorem 1.2. By Theorem 2.16 and Theorem 4.17 (v),

|ΦJ0(p),∞| = DG0(p),w.

The estimate of Theorem 1.2 then follows from Theorem 4.15. �

Proof of Theorem 1.5. Let Dp be the discriminant of Γ0(p) \ T defined in
Section 2.5. It is easy to see that Dp = DG0(p),w since H1(Γ0(p) \ T ,Z) =
H1(G0(p),Z) and the discriminants in question depend only on the cycles span-
ning the homology groups. The rank ofH0(p,Z) is equal to g(p); cp. [13, p. 49].

If the pairing (7) is perfect, then the bounds in Theorem 1.5 follow from
Theorem 2.11, Theorem 2.12, and Theorem 4.15. On the other hand, it is
easy to see from the proof of Theorem 2.11 that the discriminant DT(p) only
increases if the pairing is not perfect. �

Finally, we explain how to deduce the bounds on the height of the Jacobian
J0(p) of X0(p) mentioned in the introduction.

Let X̃0(p) → X0(p) be the minimal desingularization. As follows from The-
orem 4.17 and Remark 2.17, the number of singular points ̺p in the fiber of

X̃0(p) over p is s(p) if deg(p) is even, and s(p) + q if deg(p) is odd. Similarly,

the number of singular points in the fiber of X̃0(p) over ∞ is

̺∞ =
∑

e∈E(G0(p))+

w(e).

By (17), Lemma 4.7 and Lemma 4.8, this last sum is equal to

κ(p) + (q + 1)(|V0| − 1− κ(p)) +

d−2∑

i=1

(q − 1 + |Vi| − 2).

Hence

̺p = g(p) + c, ̺∞ =
|p|

(q − 1)2
+ c′ deg(p) + c′′,

where c, c′, c′′ are constants depending only on q and the parity of deg(p).

Theorem 4.18.

g(p) deg(p)

12
+ o(g(p) deg(p)) ≤ H(J0(p)) ≤

g(p)2 deg(p)

3
+ o(g(p)2 deg(p)).

Proof. The bounds on the height H(J0(p)) follow from Theorems 2.14, 2.15,
and the previous estimates on ̺p and ̺∞. We only need to show that the
inseparable exponent of X0(p) is 0. If this is not the case, then J0(p) contains an
abelian subvariety which is the Frobenius conjugate of another variety over F .
This contradicts [25, Thm. 1.1]. �
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[7] B. Edixhoven, L’action de l’algèbre de Hecke sur les groupes de composantes des jaco-

biennes des courbes modulaires est “Eisenstein”, Astérisque No. 196–197 (1991), 7–8,
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