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On the reduction of the Siegel moduli space
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Abstract. We study the moduli space of abelian threefolds with Iwahori level structure
in positive characteristic. We explicitly determine the fibers of the canonical projection to
the moduli space of principally polarized abelian varieties and draw conclusions about the
relationship between the Ekedahl-Oort, the Kottwitz-Rapoport and the Newton stratification
on these spaces.

1. Introduction

Fix a prime p, an integer g ≥ 1 and an algebraic closure F of Fp. Denote
by Ag the moduli space of principally polarized abelian varieties of dimension
g over F and by AI the moduli space of abelian varieties of dimension g over
F with Iwahori level structure (see Section 2 for details).

In this paper we determine an explicit description of the fibers of the canon-
ical projection π : AI → Ag in the case g = 3 and use this description to study
the relationship between the natural stratifications on AI and Ag.

On Ag we have the p-rank stratification which has the property that two
abelian varieties lie in the same stratum if and only if their p-ranks coincide.
We have the Ekedahl-Oort stratification, originally defined in [14], which is
given by the isomorphism type of the kernel of multiplication by p on the
abelian variety. There is an explicit bijection from the set of EO strata to the
set of final sequences of length g, that is, to the set of maps ψ : {0, . . . , 2g} → N
with ψ(0) = 0, ψ(2g) = g, such that

ψ(i) ≤ ψ(i + 1) ≤ ψ(i) + 1

and
ψ(i) < ψ(i+ 1) ⇔ ψ(2g − i) = ψ(2g − i− 1)

for 0 ≤ i < 2g. If ψ is a final sequence, we denote the corresponding EO
stratum by EOψ.
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Trivially the EO stratification is a refinement of the p-rank stratification.
Furthermore we have the Newton stratification, given by the isogeny type of

the Barsotti-Tate group of the abelian variety. We are primarily concerned with
one special Newton stratum, namely the supersingular locus Sg. In general
neither of the Newton or the EO stratification is a refinement of the other.
In fact the supersingular locus is not a union of EO strata for g ≥ 3. In
[11] Harashita determines those EO strata that are entirely contained in the
supersingular locus.

For g = 3 there are four EO strata of p-rank 0, totally ordered by their
dimensions. By Harashita’s result, the 0- and the 1-dimensional stratum are
contained in the supersingular locus. Using a normal form for the Dieudonné
module of the Barsotti-Tate group of a supersingular abelian variety, due to
Harashita, we prove that the 2-dimensional EO stratum is contained in the
complement of S3. It then follows for dimension reasons that the 3-dimensional
EO stratum intersects the supersingular locus in an open dense subset of S3.

On AI we have the Kottwitz-Rapoport stratification, given by the relative
position of the chain of de Rham cohomology groups and the chain of Hodge
filtrations associated with an element of AI . There is an explicit bijection
from the set of KR strata to the set of admissible elements Adm(µ), where the
latter is a subset of the extended affine Weyl group of the group of symplectic
similitudes GSp2g. There is a unique element τ of length 0 such that Adm(µ) ⊂
Waτ , where Wa is the affine Weyl group of G, a Coxeter group generated by
simple reflection s0, . . . , sg (described explicitly in Section 2.4).

We denote by SI the preimage of Sg under π, which we also call the super-
singular locus. In [8] and [7] Görtz and Yu study the dimension of SI and they
determine those KR strata that are entirely contained in the supersingular lo-
cus. But again it is not true in general that SI is a union of KR strata and it
is natural to ask which other KR strata have a nonempty intersection with the
supersingular locus and what the dimension of this intersection is. Another
question concerning the KR stratification deals with its relationship to the EO
stratification. It is known that the image of a KR stratum under π is always
a union of EO strata but it is not known which EO strata occur in the image
of a given arbitrary KR stratum. This question has been studied by Ekedahl
and van der Geer in [3] (cp. [7, Sec. 9]) and also by Görtz and Hoeve in [6].

To answer these questions for g = 3 we need to investigate the fibers of
π. Classical Dieudonné theory provides us with an injective map from a fiber
of π into a suitable flag variety over F and it can be shown that this map is
actually a universally injective, finite morphism of algebraic varieties over F. In
particular it induces a universal homeomorphism onto its image and in order to
study topological properties of the fibers it is therefore sufficient to study their
images under these respective maps. Up to isomorphism these images only
depend on the EO stratum of the basepoint and hence there are only finitely
many cases that have to be considered. If ψ is a final sequence we denote this

image of the fiber over a point of EOψ(F) by Flag⊥,F,Vψ = Flag⊥,F,Vψ,2g . While
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the conditions that determine Flag⊥,F,Vψ as a closed subvariety of a full flag
variety over F are easy to describe, the geometry of the resulting variety is
rather complicated.

To give the reader an impression of what has to be expected let us sketch

the geometry of the variety Flag⊥,F,Vψ0
, where EOψ0 is the 0-dimensional EO

stratum, see Section 9.1.

Theorem 1.1. Let g = 3 and let A ∈ A3(F) be a superspecial abelian va-
riety. Then there is a universal homeomorphism from the fiber π−1(A) onto

Flag⊥,F,Vψ0
. The variety Flag⊥,F,Vψ0

is decomposed into irreducible components

Y ∪ Z ∪
∐

ζ∈Ĩ

Tζ,

where Ĩ can be chosen as {(x : y : z) ∈ P2(Fp2) | xpz + yp+1 + xzp = 0} and
such that

• Y is isomorphic to the variety of full flags in F3,
• Z can be considered as a P1

F
-bundle over a variety Z0, where Z0 is itself

a P1
F
-bundle over the irreducible curve V+(X

p
1X3+X

p+1
2 +X1X

p
3 ) ⊂ P2

F

(for homogeneous coordinates X1, X2 and X3 on P2
F
),

• each Tζ is isomorphic to the blowing-up of P2
F
in a closed point.

Sticking to the notation of the Theorem, we see that dimY = dimZ = 3
and dimTζ = 2. Furthermore the Tζ are pairwise disjoint. The intersection
Y ∩ Z is isomorphic to the variety Z0. Z intersects each Tζ in its exceptional
curve, while Y ∩ Tζ is a different subvariety of Tζ isomorphic to P1

F
. Finally

the triple intersection Y ∩ Z ∩ Tζ only consists of one point.
Concerning the fiber over abelian varieties of positive p-rank we prove the

following general result (modelled on the “shuffle construction” explained in
[16, 5.2]) that provides a method for reducing the case of positive p-rank to
the case of p-rank 0 in lower dimensions, see Section 11.

Proposition 1.2. Let g ≥ 1, k ≥ 0 and let A ∈ Ag(F) be of p-rank k. Let ψ
be the final sequence with A ∈ EOψ.

(1) Let A be ordinary. Then the fiber over A is discrete and

#
(
π−1(A)

)
= ONg := 2g#Flagg(Fp) = 2g

∏g
l=1(p

l − 1)

(p− 1)g
.

Here we denote by Flagg(Fp) the set of flags (Fj)gj=0 in (Fp)g with
dimFj = j for all 0 ≤ j ≤ g.

(2) Let 1 ≤ k ≤ g−1. Then Flag⊥,F,Vψ is isomorphic to

(
g
k

)
ONk disjoint

copies of Flag⊥,F,V
ψ̃,2(g−k)

, where ψ̃ is the final sequence of length g − k

determined by ψ̃(i) = ψ(k + i)− k for 0 ≤ i ≤ g − k.

This result will allow us determine the number of connected components of
the fibers of π:
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Proposition 1.3. Let g ≥ 1 and k ≥ 0. If A ∈ Ag(F) is of p-rank k, the

fiber π−1(A) consists of

(
g

k

)
ONk connected components. In particular it is

connected if and only if k = 0.

From the calculations of the varieties Flag⊥,F,Vψ for g = 3 it is rather easy
to determine which KR strata intersect the fiber of π over a given element
of A3(F) and what the dimension of this intersection is. From this we can
determine the EO strata which occur in the image of a given KR stratum:

Theorem 1.4 (Section 17). For an element x ∈ Adm(µ) of p-rank 0 denote
by ES(x) the set of final sequences such that π(AI,x) =

∐
ψ∈ES(x)EOψ. Then

Table 1.1 contains a complete list of the sets ES(x) in the case g = 3. Here
ψi denotes the final sequence corresponding to the i-dimensional EO stratum
of p-rank 0 for 0 ≤ i ≤ 3.

x ES(x)

τ, s1τ, s2τ, s21τ, s12τ, s121τ ψ0

s3τ, s0τ ψ1

s30τ ψ0 ψ1

s10τ, s23τ, s20τ, s31τ, s01τ, s32τ ψ2

s310τ, s320τ ψ0 ψ2

s3120τ ψ0 ψ1 ψ2

s120τ, s312τ, s201τ, s231τ ψ1 ψ2

s010τ, s323τ, s301τ, s230τ ψ3

s2301τ ψ0 ψ1 ψ3

s3010τ, s3230τ ψ2 ψ3

Table 1.1. The sets ES(x) for g = 3.

The upper block of Table 1.1 contains the supersingular elements.
With Table 1.1 we can show that the inclusion

(1.1)
∐

x∈Adm(µ)(0)

AI,x⊂SI

AI,x ⊆ π−1




∐

w∈Wfinal
EOw⊂Sg

EOw


 ,

which is valid for every g ≥ 1, is a proper inclusion for g = 3, negatively
answering a question posed in a preliminary version of [8].

Finally we show that for g = 3 we have dim(AI,x ∩ SI) = dimAI,x − 1 for
every KR stratum AI,x with ∅ ( AI,x ∩ SI ( AI,x.

2. Notation

2.1. Basic notation and moduli spaces. We fix a prime p, an integer g ≥ 1,
an integerN ≥ 3 coprime to p, an algebraic closure F of Fp and a primitiveN -th
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root of unity ζN in F. Let σ : F → F, x 7→ xp denote the Frobenius morphism.
We consider the moduli space Ag = Ag,N of principally polarized abelian
varieties of dimension g over F with a symplectic level-N -structure with respect
to ζN . It is a quasi-projective scheme over F, irreducible of dimension g(g +
1)/2. We will usually omit the principal polarization and the level structure
from our notation. We denote by Sg the supersingular locus inside Ag. It is a
closed subset, equidimensional of dimension

[
g
4

]
by [12].

On the other hand, we consider the moduli space AI of tuples

(A0
α→ A1

α→ · · · α→ Ag, λ0, λg, η),

where

• each Ai is a g-dimensional abelian variety over F,
• α is an isogeny of degree p,
• λ0 and λg are principal polarizations on A0 and Ag, respectively, such
that (αg)∗λg = pλ0,

• η is a symplectic level-N -structure on A0 with respect to ζN .

AI has pure dimension g(g + 1)/2. We will often omit η and even λ0, λg from
the notation.

We denote by π : AI → Ag the morphism sending a point

(A0
α→ A1

α→ · · · α→ Ag, λ0, λg, η)

to the point (A0, λ0, η). It is proper and surjective.
Inside AI we have the supersingular locus SI , given by π−1(Sg) as a closed

subset. It is shown in [7] that for g even we have dimSI = g2/2 and that
(g2 − g)/2 ≤ dimSI ≤ (g2 − 1)/2 if g is odd. However the supersingular locus
SI is not equidimensional as soon as g ≥ 2.

2.2. The p-rank stratification. Let X be a topological space. We call a
set-theoretical decomposition X =

∐
i∈I Xi of X a stratification on X if for

all i ∈ I the set Xi is nonempty, locally closed and satisfies Xi =
⋃
j∈Ji

Xj for
some subset Ji ⊂ I.

Let A be an abelian variety of dimension g over F. For n ∈ N we denote
by A[n] the kernel of multiplication by n on A. It is a finite group scheme of
rank n2g over F. There is an integer 0 ≤ i ≤ g with A[p](F) ≃ (Z/pZ)i, called
the p-rank of A. We denote by A(i)

g the subset of Ag where the p-rank of the

underlying abelian variety is i. Then Ag =
⋃
i∈N

A(i)
g is a stratification on Ag

with A(i)
g =

⋃
j≤iA

(j)
g . Similarly we write A(i)

I = π−1(A(i)
g ), but these sets do

not give rise to a stratification on AI .

2.3. The a-number. Let αp be the F-group scheme representing the functor
S 7→ {s ∈ OS(S) | sp = 0} on the category of F-schemes. For an abelian
variety A over F we write a(A) = dimF Hom(αp, A). This integer is called the
a-number of A.
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2.4. Group theoretic notation. We denote by G = GSp2g the group of
symplectic similitudes. We consider it as a subgroup of GL2g with respect to
the embedding induced by the alternating form given on the standard basis
vectors e1 . . . , e2g by (ei, ej) 7→ 0, (e2g+1−i, e2g+1−j) 7→ 0 and (ei, e2g+1−j) 7→
δij for 1 ≤ i, j ≤ g. We use the Borel subgroup of upper triangular matrices
and the maximal torus T of diagonal matrices. We denote by W the finite
Weyl group of G which we consider as a subgroup of the finite Weyl group
of GL2g. If we identify the latter with S2g in the usual way, an element w of
S2g lies in W if and only if w(i) + w(2g + 1 − i) = 2g + 1 for all 1 ≤ i ≤ 2g.
Similarly we identify X∗(T ) with the group {(a1, . . . , a2g) ∈ Z2g | a1 + a2g =
a2 + a2g−1 = · · · = ag + ag+1}. For an element x = (x1, . . . , x2g) of X∗(T ) we
also write x(i) instead of xi. W is generated by the elements s1, . . . , sg given
by sg = (g, g+1) and si = (i, i+1)(2g+1− i, 2g− i) for 1 ≤ i ≤ g− 1. Inside
W we have the subset Wfinal,g of elements w with w(1) < w(2) < · · · < w(g).

We denote by W̃ = W ⋉X∗(T ) the extended affine Weyl group of G. For

an element λ ∈ X∗(T ) we denote by tλ the corresponding element of W̃ . We

denote by s0 and τ the elements of W̃ given by s0 = (1, 2g)t(1,0,...,0,−1) and

τ =

(
1 · · · g g + 1 · · · 2g

g + 1 · · · 2g 1 · · · g

)
t(1,...,1,0,...,0).

The affine Weyl group Wa of G is the subgroup of W̃ generated by s0, . . . , sg.
It is an infinite Coxeter group. Our choice of generators s0, . . . , sg gives rise to
a length function ℓ and the Bruhat order ≤ on Wa. We write si1...in instead
of si1 · · · sin .

2.5. Convention. Let K be an algebraically closed field. A variety (over K)
is a reduced scheme of finite type over SpecK. A subvariety of a variety is a
reduced subscheme. If we identify a variety X with its set X(K) of K-valued
points we refer to the latter object as a classical variety.

3. Dieudonné modules

This section introduces our notation for the Dieudonné modules associated
with the p-torsion of a principally polarized abelian variety. The principal
polarization induces an isomorphism from the Dieudonné module onto its dual
and hence an isomorphism between co- and contravariant Dieudonné theory.
For most of our statements it will therefore not matter which theory we use.
For the few statements where it is of importance, we will use the contravariant
theory. We refer to [2] and [13] for proofs of the statements below.

Given a ring R, an endomorphism α : R → R and an R-module M , an
additive map φ : M → M is called α-linear if φ(r ·m) = α(r) · φ(m) for all
r ∈ R, m ∈M .

Let g ≥ 1.
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3.1. The Dieudonné module of A[p]. Let A ∈ Ag(F) and denote by D =
D(A[p]) the Dieudonné module of A[p]. It is a 2g-dimensional vector space
over F, equipped with linear maps F : D(p) → D and V : D → D(p), called
Frobenius and Verschiebung respectively, where D(p) denotes the base change
D ⊗F,σ F. As σ is an isomorphism we can identify D(p) with D and we will
henceforth consider F as a σ-linear and V as a σ−1-linear map D → D. The
principal polarization A → A∨ induces a nondegenerate, alternating pairing
〈·, ·〉 = 〈·, ·〉A on D. F , V and this pairing have the following properties:

Proposition 3.2.

(1) imV = kerF and imF = kerV .
(2) 〈Fx, y〉 = 〈x, V y〉p for all x, y ∈ D.

�

For future reference we include the following

Corollary 3.3.

(1) For any subspace W ⊂ D we have V (W⊥) = F−1(W )⊥.
(2) (imV )⊥ = imV .

Proof. (1) Using Proposition 3.2(2) we have

x ∈ F−1(W ) ⇔ ∀y ∈W⊥ 〈Fx, y〉 = 0

⇔ ∀y ∈W⊥ 〈x, V y〉 = 0 ⇔ x ∈ V (W⊥)⊥,

and the statement follows.

(2) By (1) and Proposition 3.2(1) we have

(imV )⊥ = V (D)⊥ = V (0⊥)⊥ = F−1(0) = kerF = imV.

�

3.4. The Dieudonné module of A[p∞]. Let A ∈ Ag(F). We denote by
A[p∞] =

⋃
nA[p

n] the Barsotti-Tate group of A. It has height 2g. Associated
to A[p∞] is the Dieudonné module D∞ = D(A[p∞]). It is a free module of rank

2g over the Witt ring W (F) of F, equipped with linear maps F∞ : D(p)
∞ → D∞

and V∞ : D∞ → D(p)
∞ , called Frobenius and Verschiebung respectively, where

D(p)
∞ denotes the base change D∞ ⊗W (F),σW

W (F). Here we denote by σW
the Frobenius morphism on W (F). As σW is an isomorphism we can identify

D(p)
∞ with D∞ and we will henceforth consider F∞ as a σW -linear and V∞ as

a σ−1
W -linear map D∞ → D∞. The principal polarization A → A∨ induces a

perfect, alternating pairing 〈·, ·〉∞ = 〈·, ·〉∞,A on D∞. F∞, V∞ and this pairing
have the following properties:

Proposition 3.5.

• F∞V∞ = V∞F∞ = p · id.
• 〈F∞x, y〉 = 〈x, V∞y〉σW for all x, y ∈ D.

The reduction of (D∞, F∞, V∞, 〈·, ·〉∞) modulo p is isomorphic to
(D, F, V, 〈·, ·〉).
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3.6. Supersingular Dieudonné modules. We recall a result by Harashita,
see [11, Sec. 3]. Let A ∈ Ag(F) be supersingular. Then there exists a basis
(X1, . . . , Xg, Y1, . . . , Yg) of D∞ over W (F) such that

• 〈Xi, Yj〉∞ = δij , 〈Xi, Xj〉∞ = 0, 〈Yi, Yj〉∞ = 0 for 1 ≤ i, j ≤ g.
• Let w = (δi,g+1−j)i,j ∈ Mg×g(W (F)). There is an ε ∈ W (Fp2)× with
ε = −εσW and a strictly lower triangular matrix T ∈ Mg×g(W (F))
satisfying Tw = (Tw)t, such that F∞ and V∞ admit the following
descriptions with respect to this basis:

F∞ =

(
T −pε−1w
εw 0

)
, V∞ =

(
0 −pε−1w

εw wT σ
−1
W w

)
.

Reducing modulo p, we get a basis (X1, . . . , Xg, Y 1, . . . , Y g) of D(A[p]) over F
such that

•
〈
X i, Y j

〉
= δij ,

〈
Xi, Xj

〉
= 0,

〈
Y i, Y j

〉
= 0 for 1 ≤ i, j ≤ g.

• Let w = (δi,g+1−j)i,j ∈ Mg×g(F). There is an ε ∈ F×
p2 with ε = −εσ

and a strictly lower triangular matrix T ∈ Mg×g(F) satisfying Tw =
(Tw)t, such that F and V admit the following descriptions with respect
to this basis:

F =

(
T 0
εw 0

)
, V =

(
0 0

εw wT
σ−1

w

)
.

We have a(A) = g − rank(T ).

4. The EO stratification

This section contains the results about the EO stratification on Ag that we
are going to use.

4.1. Final sequences. We recall a notion defined in [14]. Let g ∈ N. A final
sequence (of length g) is a map ψ : {0, . . . , 2g} → N with ψ(0) = 0, ψ(2g) = g,
such that

ψ(i) ≤ ψ(i + 1) ≤ ψ(i) + 1

and

ψ(i) < ψ(i + 1) ⇔ ψ(2g − i) = ψ(2g − i− 1)

for 0 ≤ i < 2g. Let ES = ESg be the set of final sequences of length g. We
will identify ES with Wfinal = Wfinal,g via the bijection Wfinal → ES given by
w 7→ ψw with

ψw(i) = i−#{a ∈ {1, . . . , g} | w(a) ≤ i}
and ψw(2g − i) = ψw(i) + g − i for 0 ≤ i ≤ g. Instead of ψ we will also write
(ψ(1), ψ(2), . . . , ψ(g)) to denote a final sequence.
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4.2. The canonical filtration. Let A ∈ Ag(F). Consider the set e of all finite
words in the symbols F and⊥. In [14, Sec. 5], Oort shows that {W (D) |W ∈ e}
is a filtration by linear subspaces

0 =W0 ⊂ · · · ⊂Wi ⊂ · · · ⊂Wr ⊂ · · · ⊂W2r = D

such that

(1) For every 0 ≤ j ≤ 2r we have ⊥ (Wj) =W2r−j .
(2) There is a surjective function v : {0, . . . , 2r} → {0, . . . , r} such that

F (Wj) =Wv(j) for every 0 ≤ j ≤ 2r.

It is called the canonical filtration of A. Let ρ : {0, . . . , 2r} → N be given
by rank(Wi) = ρ(i). We associate with A a final sequence ψ = ψ(A) using
these data. Suppose {ψ(0), ψ(1), . . . , ψ(ρ(i))} has been defined for some 0 ≤ i.
Define {ψ(0), . . . , ψ(ρ(i + 1))} by ψ(ρ(i)) = ψ(ρ(i) + 1) = · · · = ψ(ρ(i + 1)) if
v(i+1) = v(i) and by ψ(ρ(i)) < ψ(ρ(i)+1) < · · · < ψ(ρ(i+1)) if v(i+1) > v(i).
We denote by wA the element of Wfinal corresponding to ψ(A).

The main result in this context is

Theorem 4.3. [14, Sec. 9] Let A1, A2 ∈ Ag(F). Then ψ(A1) = ψ(A2) if and
only if A1[p] ≃ A2[p] as finite group schemes over F.

We will need the following.

Lemma 4.4. For A ∈ Ag(F) we have dim im(V 2) = ψ(g).

Proof. It follows from [14, Rem., p. 18] that dim im(F 2) = ψ(g). Using Propo-
sition 3.2(1) and Corollary 3.3 we see that

imV 2 = V (imV ) = V ((im V )⊥) = (F−1(im V ))⊥

= (F−1(kerF ))⊥ = (kerF 2)⊥.

Hence dim im(V 2) = 2g − (2g − dim im(F 2)) = dim im(F 2). �

4.5. The EO stratification. On Ag we have the Ekedahl-Oort stratification
(a stratification in the sense of Section 2.2)

Ag =
∐

w∈Wfinal

EOw,

given by A ∈ EOw(F) if and only if w = wA. Using the bijection from
Section 4.1 we will also index the strata by elements of ES.

We list some properties of the EO stratification.

Proposition 4.6. Let w ∈ Wfinal.

(1) The stratum EOw is contained in Sg if and only if w(i) = i for 1 ≤
i ≤ g −

[
g
2

]
.

(2) If EOw is not contained in Sg, then EOw is irreducible.
(3) The p-rank on EOw is given by

#{i ∈ {1, . . . , g} | w(i) = g + i}.
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(4) The stratum EOψ is equidimensional of dimension

dimEOw = ℓ(w) =

g∑

i=1

ψw(i).

Let ψ, ψ̃ ∈ ES.

(5) The a-number on EOψ is given by g − ψ(g).

(6) If ψ(i) ≤ ψ̃(i) for 1 ≤ i ≤ g then EOψ ⊂ EOψ̃.

Proof. (5) can be found in [11, p. 5], (6) is shown in [14, 14.3]. See [7, Prop. 2.3–
2.5] for the other points. �

In view of property (3) we denote byW
(i)
final the set of final elements of p-rank

i and by ES(i) the set of final sequences of p-rank i, 0 ≤ i ≤ g.

4.7. EO strata for g = 2. Table 4.1 contains all final sequences ψ ∈ ES and
the corresponding elements of Wfinal for g = 2. We also make explicit some of
the information on EOψ contained in Proposition 4.6.

ES Wfinal dim p-rank a-number ⊂ S2?
(0, 0) id 0 0 2

√

(0, 1) s2 =
(

1 2 3 4
1 3 2 4

)
1 0 1

√

(1, 1) s12 =
(

1 2 3 4
2 4 1 3

)
2 1 1 −

(1, 2) s212 =
(
1 2 3 4
3 4 1 2

)
3 2 0 −

Table 4.1. EO strata for g = 2.

In particular we see that for g = 2 the relationship between the EO strat-
ification and the supersingular locus is very easy to describe: We have S2 =
EOid ∪ EOs2 and S2 ∩ EOs12 = S2 ∩ EOs212 = ∅.

4.8. EO strata for g = 3. Table 4.2 contains all final sequences ψ ∈ ES and
the corresponding elements of Wfinal for g = 3. We also make explicit some of
the information on EOψ contained in Proposition 4.6.

ES Wfinal dim p-rank a-number ⊂ S3?
(0, 0, 0) id 0 0 3

√

(0, 0, 1) s3 =
(

1 2 3 4 5 6
1 2 4 3 5 6

)
1 0 2

√

(0, 1, 1) s23 =
(
1 2 3 4 5 6
1 3 5 2 4 6

)
2 0 2 −

(0, 1, 2) s323 =
(

1 2 3 4 5 6
1 4 5 2 3 6

)
3 0 1 −

(1, 1, 1) s123 =
(

1 2 3 4 5 6
2 3 6 1 4 5

)
3 1 2 −

continued on next page

Münster Journal of Mathematics Vol. 4 (2011), 185–226



Moduli spaces of abelian varieties of dimension 3 195

continued from previous page

ES Wfinal dim p-rank a-number ⊂ S3?

(1, 1, 2) s3123 =
(
1 2 3 4 5 6
2 4 6 1 3 5

)
4 1 1 −

(1, 2, 2) s23123 =
(

1 2 3 4 5 6
3 5 6 1 2 4

)
5 2 1 −

(1, 2, 3) s323123 =
(
1 2 3 4 5 6
4 5 6 1 2 3

)
6 3 0 −

Table 4.2. EO strata for g = 3.

4.9. The isomorphisms ΨA. For n ∈ N we endow F2n with the nondegen-
erate alternating pairing 〈·, ·〉 = 〈·, ·〉def defined on the standard basis (ei)

2n
i=1

by 〈ei, ej〉 = 0 = 〈en+i, en+j〉 and 〈ei, en+j〉 = δi,j for i, j ∈ {1, . . . , n} (note
that this pairing is different from the one used in Section 2.4).

Let A ∈ Ag(F) and w = wA. In [14, Sec. 9], Oort constructs an isomorphism
ΨA : F2g → D(A) such that the endomorphisms Fw = Ψ∗

AF and Vw = Ψ∗
AV

of F2g map standard basis vectors to standard basis vectors up to sign and
such that Ψ∗

A 〈·, ·〉A = 〈·, ·〉def . As the notation indicates these pullbacks only
depend on w. They are given as follows.

Let w ∈ Wfinal,g with corresponding final sequence ψ ∈ ES. Denote by
1 ≤ m1 < m2 < · · · < mg ≤ 2g the set of all m ∈ {1, . . . , 2g} with ψ(m− 1) <
ψ(m). Denote by 1 ≤ ng < ng−1 < · · · < n1 ≤ 2g the complementary set. In
particular mi + ni = 2g + 1 for all 1 ≤ i ≤ g. Now for 1 ≤ i, j ≤ g we have
Fw(e2g+1−i) = 0 and

Fw(ei) =

{
ej if i = mj ,
eg+j if i = nj.

Furthermore

Vw(ei) =

{
−eg+ni

if ni ≤ g,
0 if mi ≤ g,

and

Vw(eg+i) =

{
eg+mi

if mi ≤ g,
0 if ni ≤ g.

As we are going to make extensive use of these pullbacks in the cases g = 2
and g = 3 we make this description explicit in the next subsections.

4.10. g = 2. Table 4.3 contains the description of the pullbacks Fw and Vw de-

pending on w ∈W
(0)
final for g = 2 with respect to the standard basis (e1, . . . , e4).
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Wfinal Fw Vw

id

(
0 0 0 0
0 0 0 0
0 1 0 0
1 0 0 0

) (
0 0 0 0
0 0 0 0
0 −1 0 0
−1 0 0 0

)

s2

(
0 1 0 0
0 0 0 0
0 0 0 0
1 0 0 0

) (
0 0 0 0
0 0 0 0
0 −1 0 0
0 0 1 0

)

Table 4.3. F and V for g = 2.

4.11. g = 3. Table 4.4 contains the description of the pullbacks Fw and Vw de-

pending on w ∈W
(0)
final for g = 3 with respect to the standard basis (e1, . . . , e6).

Wfinal Fw Vw

id




0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 1 0 0 0
0 1 0 0 0 0
1 0 0 0 0 0







0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 −1 0 0 0
0 −1 0 0 0 0
−1 0 0 0 0 0




s3




0 0 1 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 1 0 0 0 0
1 0 0 0 0 0







0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 −1 0 0 0
0 −1 0 0 0 0
0 0 0 1 0 0




s23




0 1 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 1 0 0 0
1 0 0 0 0 0







0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 −1 0 0 0
0 0 0 1 0 0
0 −1 0 0 0 0




s323




0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
1 0 0 0 0 0







0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 −1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0




Table 4.4. F and V for g = 3.

5. The EO stratification and Sg for g = 3

We determine the relationship between the EO stratification and the super-
singular locus Sg for g = 3. As Sg ⊂ A(0) we only have to look at the EO
strata of p-rank 0.

Theorem 5.1. Let g = 3.

(1) EOid, EOs3 ⊂ S3.
(2) EOs23 ∩ S3 = ∅.
(3) EOs323 ∩ S3 is a dense open subset of S3 of pure dimension 2.

Proof. (1) See Proposition 4.6 or Section 4.8.
(2) By Section 4.8 the a-number on EOs23 is equal to 2. Let A ∈ S3(F) be

a supersingular abelian variety with a(A) = 2 and choose a basis (X1, X2, X3,

Münster Journal of Mathematics Vol. 4 (2011), 185–226



Moduli spaces of abelian varieties of dimension 3 197

Y 1, Y 2, Y 3) of D(A[p]), a matrix T and an element ε with the properties of
Section 3.6. We have rank(T ) = g− a(A) = 1 and the symmetry condition for

T then implies that there is a t ∈ F× with T =

(
0 0 0
0 0 0
t 0 0

)
. We deduce that

the canonical filtration of A is given by

0 ⊂
〈
Y 1

〉
⊂
〈
Y 1, Y 2

〉
⊂
〈
tX3 + εY 3, Y 1, Y 2

〉
⊂
〈
Y 1, Y 2, Y 3, X3

〉

⊂
〈
Y 1, Y 2, Y 3, X2, X3

〉
⊂ D(A)

with r = g = 3, ρ(i) = i for 0 ≤ i ≤ 6 and v(0) = v(1) = v(2) = 0, v(3) =
v(4) = 1, v(5) = 2, v(6) = 3. Hence A lies in EOs3 and our claim is shown.

(3) Set U = EOs323 ∩ S3. By Proposition 4.6 we know that EOs323 = A(0)
3 .

As EOs323 is locally closed, this implies that EOs323 is open in A(0)
3 , hence U is

open in S3. Now S3 is equidimensional of dimension 2, hence the same is true
for every nonempty open subset of S3. But S3−U = EOid∪EOs3 = EOs3 has
dimension 1 and this implies that U intersects every irreducible component of
S3, hence it is even dense in S3. �

Remark 5.2. According to [11, Rem. 1, p. 8] it is true for any g ≥ 3 that
EO(0,1,...,g−1) ∩ Sg is open and dense in Sg.

6. Flag varieties and corresponding notation

We want to study the fibers of π : AI → Ag. Instead of investigating them
directly we will look at their image under an injective, finite morphism with
values in a suitable flag variety. This is sufficient if we are only interested
in their topological properties. Before introducing this morphism in the next
section we have to fix some notation concerning flag varieties.

6.1. Flag varieties. Let n ∈ N. For 0 ≤ i ≤ n we denote by Flagi,n the

variety of partial flags (Wj)
i
j=0 in Fn satisfying dimWj = j for all 0 ≤ j ≤ i.

We write Flagn = Flagn,n. We denote by Flag⊥2n the variety of full symplectic

flags in F2n with respect to the pairing 〈·, ·〉 = 〈·, ·〉def defined in Section 4.9.
If we have an element (Wi)

n
i=0 of Flagn,2n(F) with Wn totally isotropic we will

occasionally consider it as an element of Flag⊥2n(F) by implicitly extending it
to the flag (Wi)

2n
i=0 with W2n−i =W⊥

i for 0 ≤ i ≤ n.

Let g ≥ 1 and w ∈ Wfinal. We denote by FlagF,Vw = FlagF,Vw,2g the closed

subvariety of Flag2g whose F-valued points are given by those flags (Wi)
2g
i=0

satisfying

(∗) Fw(Wi), Vw(Wi) ⊂Wi

for all 0 ≤ i ≤ 2g. We write Flag⊥,F,Vw = Flag⊥,F,Vw,2g = FlagF,Vw,2g ∩ Flag⊥w,2g.

It follows from Proposition 3.2(2) that an element (Wi)
2g
i=0 ∈ Flag⊥2g(F) lies in

Flag⊥,F,Vw (F) if and only if it satisfies condition (∗) for 0 ≤ i ≤ g.
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6.2. Standard charts. For a field K and k, l ∈ N we denote by FMk×l(K)
the set of k × l-matrices with entries in K of full rank. Let n, i be as above.
There is a canonical surjection Φ : FMn×i(F) → Flagi,n(F) sending a matrix

B to the flag (Wj)
i
j=0 with Wj spanned by the first j columns of B.

Given pairwise distinct j1, j2, . . . , ji ∈ {1, 2, . . . , n} we denote by Uj1,...,ji
the open subset of Flagi,n whose F-valued points are given by the image under

Φ of the set of matrices C = (ckl) ∈ FMn×i(F) satisfying
(1) cjll = 1 for all l ∈ {1, . . . , i},
(2) cjll′ = 0 for all l ∈ {1, . . . , i} and every l′ ∈ {l+ 1, . . . , i}.

An open subset of this form will be called a standard chart for Flagi,n. Con-
sidered as open subschemes of Flagi,n we identify them with an affine space of
an appropriate dimension in the usual way. Obviously we have

Flagi,n =
⋃

j1,j2,...,ji∈{1,2,...,n}
pairwise distinct

Uj1,...,ji .

Hence in order to prove that some subset of Flagi,n is closed we will show that
its intersection with all standard charts is closed. Furthermore morphisms
into and out of Flagi,n will be obtained by glueing morphisms into and out of
standard charts respectively.

6.3. Subvarieties of Flag⊥. Consider the set

FM2n,⊥(F) =
{
B ∈ FM2n×n(F)

∣∣∣∣ Bt
(

0 −1n
1n 0

)
B = 0

}
.

Then Φ restricts to a surjection Φ : FM2n,⊥(F) → Flag⊥2n(F).
We need an economic notation for defining subvarieties of Flag⊥2n. We think

that such a notation is most easily explained via an example. Consider a table
such as Table 6.1.

Z1 Z2 Z3(
0 x

1 0
0 y

0 0

) (
0 0
0 x

1 0
0 y

) (
0

GL2(F)

)
∨
(

0 a

1 0
0 b

0 0

)

(x, y)t ∈ (Fp)2 − {0} (a, b)t ∈ F2 − {0}∐
p+1 SpecF P1

F

∐
P1
F

0 1

Table 6.1

The upper block of Table 6.1 defines subvarieties Z1, Z2 and Z3 of Flag⊥4
whose F-valued points are given by

Z1(F) = Φ

({

B ∈ FM4×2,⊥(F)

∣

∣

∣

∣

∣

∃(x, y)t ∈ (Fp)
2 − {0} s.t. B =

(

0 x

1 0
0 y

0 0

)})

,
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Z2(F) = Φ

({

B ∈ FM4×2,⊥(F)

∣

∣

∣

∣

∣

∃(x, y)t ∈ (Fp)
2 − {0} s.t. B =

(

0 0
0 x

1 0
0 y

)})

,

and

Z3(F) = Φ























B ∈ FM4×2,⊥(F)

∣

∣

∣

∣

∣

∣

∣

∣

∃A ∈ GL2(F) s.t. B =
(

0
A

)

∨

∃(a, b)t ∈ F2 − {0} s.t. B =

(

0 a

1 0
0 b

0 0

)























.

Furthermore the lower block of the Table 6.1 claims that there are isomor-
phisms Z1 ≃ ∐

p+1 SpecF, Z2 ≃ ∐
p+1 SpecF and Z3 ≃ P1

F

∐
P1
F
and that

dimZ1 = 0, dimZ2 = 0 and dimZ3 = 1. Note our convention for rows span-
ning multiple columns where the contained information is to be applied to
every column separately. The notation is not meant to imply any connection
between the individual subvarieties.

Note that this notation is highly ambiguous. For instance we could have
written Z1 ineptly as in Table 6.2.

Z1(
0 a

1 α

0 b

0 0

)

(a, b)t ∈ F2 − {0}, α ∈ F
apb− abp = 0

Table 6.2

7. The maps ιA

7.1. de Rham cohomology. Let g ≥ 1. Let f : A → S be an abelian
scheme of relative dimension g. We denote by Ω•

A/S the de Rham complex of

OA-modules. The first de Rham cohomology sheaf H1
DR(A/S) is defined by

H1
DR(A/S) = R1f∗(Ω

•).

It is a locally free OS-module of rank 2g, functorial in A, and its formation
commutes with base-change by [1, Prop. 2.5.2].

Inside H1
DR(A/S) we have the Hodge filtration ωA, a locally free OS-sub-

module of rank g, given by the image of the injection

R0f∗(Ω
1
A/S) → H1

DR(A/S)

coming from the Hodge-de Rham spectral sequence, cp. [1, Prop. 2.5.3].
Let A/F be an abelian variety. In [13], Oda constructs a natural isomor-

phism D(A) ∼→ H1
DR(A/F) taking imV to ωA. See in particular [13, Cor. 5.11].

7.2. The map ι. We recall a construction from [7, Sec. 4]. Let f : Auniv → Ag

be the universal abelian scheme and consider its de Rham cohomology H =
H1
DR(A

univ/Ag). Denote by Flag(H) → Ag the variety of full flags in H. We
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define a morphism AI
ι−→ Flag(H) over Ag on S-valued points as follows: Let

(Ai)
g
i=0 ∈ AI(S). We extend it to a chain (Ai)

2g
i=0 by setting A2g−i = A∨

i

for 0 ≤ i < g. The map A2g−i → A2g−i+1 is given by the dual isogeny of
Ag−i−1 → Ag−i for 0 ≤ i < g, while the map Ag → Ag+1 is given by the

composition Ag
λg→ A∨

g
α∨

→ A∨
g−1 = Ag+1.

Then the image of (Ai)i in Flag(H)(S) is given by

0 = α(H1
DR(A2g)) ⊂ α(H1

DR(A2g−1)) ⊂ · · · ⊂ α(H1
DR(A1)) ⊂ H1

DR(A0),

where for each i, α denotes the map induced by A0 → Ai. The morphism ι is
universally injective and finite, see [7, Lemma 4.3].

Definition 7.3. Let A ∈ Ag(F) and consider the final element wA ∈ Wfinal.
We denote by ιA the composition

π−1(A) → Flag(H1
DR(A/F))

∼→ Flag(D(A)) ∼→ Flag2g

where the first map is obtained from ι by base-change, the second map is
induced by Oda’s isomorphism mentioned in the previous subsection and the
third map is induced by the isomorphism ΨA from Section 4.9.

Let A ∈ Ag(F) and w = wA. It follows from classical Dieudonné theory

that the image of ιA is given by Flag⊥,F,Vw,2g . Hence ιA induces a universal

homeomorphism π−1(A) → Flag⊥,F,Vw,2g . If we are only interested in topological

properties of the fiber π−1(A), it is therefore sufficient to study the spaces

Flag⊥,F,Vw,2g . The following sections contain a list of the varieties Flag⊥,F,Vw,2g for
g = 2 and g = 3.

8. The varieties Flag⊥,F,Vw,4 over the p-rank 0 locus

Let g = 2. Depending on w ∈ W
(0)
final we determine the variety Flag⊥,F,Vw ⊂

Flag⊥4 by writing down its irreducible components. We use the notation ex-
plained in Section 6.3.

8.1. w = id. Let J = {x ∈ F | xp = −x}. The irreducible components of

Flag⊥,F,Vid are given by Y , (Zx)x∈J and Z∞ as defined in Table 8.1.

Z Zx Z∞

(
0

GL2(F)

) (
0 a

0 −xa

x b

1 0

) (
0 0
0 a

1 0
0 b

)

(a, b)t ∈ F2 − {0}

P1
F

1

Table 8.1. The irreducible components of Flag⊥,F,Vid,4 .
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The Zζ are pairwise disjoint and each Zζ intersects Z in precisely one point,
as ζ runs through J ∪ {∞}. Hence there are p+2 irreducible components and

Flag⊥,F,Vid is connected.

8.2. w = s2. Flag⊥,F,Vs2 is given by the variety defined in Table 8.2.

(
0 a

0 0
0 b

1 0

)

(a, b)t ∈ F2 − {0}

P1
F

1

Table 8.2. The variety Flag⊥,F,Vs3,4
.

9. The varieties Flag⊥,F,Vw,6 over the p-rank 0 locus

Let g = 3. Depending on w ∈W
(0)
final we determine the varieties Flag⊥,F,Vw ⊂

Flag⊥6 . We use the notation introduced in Section 6.3. For a matrix B ∈
M3×2(F) we denote by Bi the matrix obtained from B by deleting the i-th
row, i = 1, 2, 3. Furthermore we denote by B∗(P2

F
) the blowing-up of P2

F
in a

closed point.

9.1. w = id. Let I = {(x, y)t ∈ (Fp2)2 | xp + x + yp+1 = 0}. The irreducible

components of Flag⊥,F,Vid are given by Y , Z, T∞ and (Tx,y)(x,y)t∈I as defined
in Table 9.1.

Y Z
(

0
GL3(F)

) (
0 detB1
0 − detB2
0 detB3

B F
3

)
∨
(

0
B v

)

B ∈ FM3×2(F), v ∈ F3

(

B v
)

∈ GL3(F)
detBp

1 detB3 + detBp+1
2 + detB1 detB

p
3 = 0

Flag3(F)
3

continued on next page
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continued from previous page

T∞ Tx,y


0 0 0
0 0 0
0 a 0
1 0 0
0 b 1
0 c 0


 ∨




0 0 0
0 0 0
0 0 α

1 0 0
0 1 0
0 0 β







0 a 0
0 ya 0
0 xa 0
xp b −y

yp c 1
1 0 0


 ∨




0 0 α

0 0 yα

0 0 xα

xp
−y β

yp 1 0
1 0 0




(a, b, c)t ∈ F3 − F · (0, 1, 0)t

(α, β)t ∈ F2 − {0}
(a, b, c)t ∈ F3 − F · (0,−y, 1)t

(α, β)t ∈ F2 − {0}

B∗(P2
F
) B∗(P2

F
)

2 2

Table 9.1. The irreducible components of Flag⊥,F,Vid,6 .

In order to get a better understanding of Z we look at the closed subvariety
Z0 of Flag2,3 whose F-valued points are the image under Φ of the set {B ∈
FM3×2(F) | detBp1 detB3+detBp+1

2 +detB1 detB
p
3 = 0}. There is an obvious

surjective morphism γ : Z → Z0 and Z becomes a P1
F
-bundle over Z0 via γ. It

is trivial over the intersection of Z0 with any of the standard charts of Flag2,3.

Now Flag2,3 is itself a P1
F
-bundle over Grass2,3, the variety of 2-dimensional

subspaces of F3, and if we identify Grass2,3 with P2
F
in the usual way, the map

δ : Flag2,3(F) → P2
F
(F) of this bundle is given by δ(Φ(B)) = (detB1 : detB2 :

detB3), where B ∈ FM3×2. Choosing homogenous coordinates X1, X2 and

X3 on P2
F
, δ restricts to a map ε : Z0 → V+(X

p
1X3 +Xp+1

2 +X1X
p
3 ) making

Z0 a P1
F
-bundle over the curve V+(X

p
1X3 +Xp+1

2 +X1X
p
3 ) ⊂ P2

F
.

Z
P
1
F
-bundle−−−−−−→ Z0

P
1
F
-bundle−−−−−−→ V+(X

p
1X3 +Xp+1

2 +X1X
p
3 )

As it is not immediately obvious from Table 9.1 what the intersection be-
tween the individual irreducible components are, we list them separately in
Table 9.2. The Tζ are pairwise disjoint, as ζ runs through I ∪ {∞}.

Y ∩ Z Y ∩ T∞ Y ∩ Tx,y
(

0
B v

) (
0

1 0
0 GL2(F)

) (
0

xp

yp GL2(F)

1 0

)

B ∈ FM3×2(F), v ∈ F3

(

B v
)

∈ GL3(F)
detBp

1 detB3 + detBp+1
2 +

detB1 detB
p
3 = 0

Z0 P1
F

continued on next page
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continued from previous page

Z ∩ T∞ Z ∩ Tx,y Y ∩ Z ∩ T∞ Y ∩ Z ∩ Tx,y


0 0 0
0 0 0
0 0 α

1 0 0
0 1 0
0 0 β







0 0 α

0 0 yα

0 0 xα

xp
−y β

yp 1 0
1 0 0




(
0

1 0 0
0 1 0
0 0 1

) (
0

xp
−y 1

yp 1 0
1 0 0

)

(α, β)t ∈ F2 − {0}

P1
F

SpecF
1 0

Table 9.2. The intersections of the irreducible components

of Flag⊥,F,Vid,6 .
Remark 9.2. In [15, Sec. 2] Richartz studies a similar situation in order
to investigate the geometry of the supersingular locus S3. Let us briefly
explain how her situation is related to ours. Denote by (F6, F, V, 〈·, ·〉) =
(F6, Fid, Vid, 〈·, ·〉def) the superspecial Dieudonné module in dimension 3. We

look at the variety X of flags (W2 ⊂ W3 ⊂ W4) in F6 with W⊥
3 = W3

and dimWi = i, F (Wi), V (Wi) ⊂ Wi for all i ∈ {2, 3, 4}. Inside X we

have the subvariety X̃ given by those (W2 ⊂ W3 ⊂ W4) ∈ X(F) satisfying
F (W4), V (W4) ⊂W2 and imF ⊂M4, compare [15, 2.8].

Richartz shows that the image of X̃ under the canonical projection X →
Grass2,6 is isomorphic to the curve C = V+(X

p+1
1 +Xp+1

2 +Xp+1
3 ) ⊂ P2

F
and

that the restriction X̃ → C has fibers isomorphic to P1
F
. Furthermore she

shows that the restriction of the canonical projection X → Grass3,6 to X̃ is
birational onto its image. This image is denoted by L0(N) in loc.cit. It is the
key tool used in [15] to describe the structure of S3.

To relate these objects to our situation, look at the morphism ζ : Flag⊥,F,Vid,6

→ X given by (Wi)
6
i=0 → (Wi)

4
i=2 for (Wi)

6
i=0 ∈ Flag⊥,F,Vid,6 (F). Consider a

point (Wi)
4
i=2 ∈ X(F) and the corresponding endomorphisms F|W2

and V|W2

of W2 induced by F and V , respectively and write U = kerF|W2
∩ kerV|W2

.
Then we see as in the proof of Proposition 12.1 below that the fiber of ζ over
(Wi)

4
i=2 is nonempty and isomorphic to P(U). It is isomorphic to P1

F
if and

only if U =W2 and consists of one point else. The first case occurs if and only
if W2 ⊂ kerF ∩ kerV , which is equivalent to imF ⊂W4.

It is easily checked that ζ−1(X̃) = Z and that the fibers of the restriction

ζ̃ : Z → X̃ of ζ are isomorphic to P1
F
. Hence we get the following picture:

Flag⊥,F,Vid,6

��

⊇ Z

P
1
F

��

X ⊇ X̃

P
1
F

��

bir.
// L0(N)

C
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9.3. w = s3. The irreducible components of Flag⊥,F,Vs3 are given by the vari-
eties defined in Table 9.3.

X Y


0 0 α

0 0 0
0 0 0
0 0 β

a b 0
c d 0







0 a 0
0 0 0
0 0 0
0 b 0
0 c 1
1 0 0


 ∨




0 0 α

0 0 0
0 0 0
0 0 β

0 1 0
1 0 0




(

a b

c d

)

∈ GL2(F) (a, b, c)t ∈ F3 − F · (0, 0, 1)t

(α, β)t ∈ F2 − {0} (α, β)t ∈ F2 − {0}

P1
F
× P1

F
B∗(P2

F
)

2 2

Table 9.3. The irreducible components of Flag⊥,F,Vs3,6
.

Hence Flag⊥,F,Vs3 consists of two planes intersecting in the exceptional curve
of Y .

9.4. w = s23. The irreducible components of Flag⊥,F,Vs23 are given by the va-
rieties defined in Table 9.4.

X Y1 Y2 Z1 Z2


0 0 α

0 0 0
0 0 0
0 0 β

a b 0
c d 0







0 0 0
0 0 0
0 0 0
0 a b

1 0 0
0 c d







0 a b

0 0 0
0 0 0
0 0 0
0 c d

1 0 0







0 1 0
0 0 α

0 0 0
0 0 0
0 0 β

1 0 0







0 0 0
0 0 0
0 0 α

0 1 0
1 0 0
0 0 β




(
a b

c d

)
∈ GL2(F)

(α, β)t ∈ F2 − {0}

(
a b

c d

)
∈ GL2(F) (α, β)t ∈ F2 − {0}

P1
F
× P1

F
P1
F

2 1

Table 9.4. The irreducible components of Flag⊥,F,Vs23,6
.

We have Y1 ∩ Y2 = Z1 ∩ Z2 = X ∩ Z1 = X ∩ Z2 = ∅. The curves Y1 and
Y2 each intersect the plane X in precisely one point. The intersections Y1 ∩Z1

and Y2 ∩ Z2 also consist of precisely one point each.

9.5. w = s323. The irreducible components of Flag⊥,F,Vs323 are given by the va-
rieties defined in Table 9.5.
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X Y Z


0 1 0
0 0 α

0 0 0
0 0 0
0 0 β

1 0 0







0 0 α

0 0 0
0 0 0
0 0 β

0 1 0
1 0 0







0 a b

0 0 0
0 0 0
0 0 0
0 c d

1 0 0




(α, β)t ∈ F2 − {0}
(

a b

c d

)

∈ GL2(F)

P1
F

1

Table 9.5. The irreducible components of Flag⊥,F,Vs323,6
.

We have X ∩ Y = ∅ while the intersections X ∩ Z and Y ∩ Z consist of
precisely one point each.

10. Proof of the results of Sections 8 and 9

The case w = id for g = 3 is obviously the most complicated one and we
use it to illustrate the method. Assume that

C = (c1c2c3) =




c11 c12 c13
c21 c22 c23
c31 c32 c33
c41 c42 c43
c51 c52 c53
c61 c62 c63




∈ FM6×3,⊥(F)

is such that (Wi)i = Φ(C) ∈ Flag⊥,F,Vid (F). We evaluate the condition that
every step of the flag Φ(C) is stable under Fid and Vid, where we use the explicit
description of Fid and Vid given in Section 4.9. As we are only interested in
the image of C under Φ we may without loss of generality multiply columns
of C by elements of F∗ and add F∗-multiples of ci to cj for 1 ≤ i < j ≤ 3. We
will do so below without further mentioning.
W1 is stable under F and V if and only if




0
0
0
c
p
31

c
p
21

c
p
11



,




0
0
0

−c
p−1

31

−c
p−1

21

−c
p−1

11




∈ F ·




c11
c21
c31
c41
c51
c61



.

This is satisfied if and only if c11 = c21 = c31 = 0.
For W2 the conditions are trivially satisfied if (c12, c22, c32) = 0. If this

vector is not zero, we consider several cases.
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(1) c61 6= 0: We may assume that (c1c2) is of the form



0 c12
0 c22
0 c32
c41 c42
c51 c52
1 0



.

W2 is stable under F and V if and only if

(
c
p
32

c
p
22

c
p
12

)
,



−c

p−1

32

−c
p−1

22

−c
p−1

12


 ∈ F ·

(
c41
c51
1

)
.

This is the case if and only if c41, c51 ∈ Fp2 and c32 = c12c
p
41, c22 =

c12c
p
51. Hence we see that we may assume that (c1c2) is of the form




0 1
0 y

0 x

xp b

yp c

1 0




for some x, y ∈ Fp2 and some b, c ∈ F. The fact that C is supposed to

be an element of FM⊥(F) implies that we have xp + yp+1 + x = 0.
(2) c61 = 0, c51 6= 0: We may assume that (c1c2) is of the form




0 c12
0 c22
0 c32
c41 c42
1 0
0 c62



.

The stability of W2 under F implies that
(
c
p
32

c
p
22

c
p
12

)
∈ F ·

(
c41
1
0

)
.

From this we get that c12 = 0 and c22 6= 0, which is impossible as
C ∈ FM⊥(F) implies that c22 + c12c41 = 0.

(3) c61 = c51 = 0: We may assume that (c1c2) is of the form



0 c12
0 c22
0 c32
1 0
0 c52
0 c62



.
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C ∈ FM⊥(F) implies c12 = 0. W2 is stable under F and V if and only
if

(
c
p
32

c
p
22

0

)
,



−c

p−1

32

−c
p−1

22

0


 ∈ F

(
1
0
0

)
.

This implies that c22 = 0 and we see that (c1c2) can be chosen of the
form 



0 0
0 0
0 1
1 0
0 b

0 c




for some b, c ∈ F.

For W3 we first assume that (c12, c22, c32) = 0. We write

B = (b1b2) =

(
c41 c42
c51 c52
c61 c62

)
.

If (c13, c23, c33) = 0 the conditions are trivially satisfied. The flags of this

form are contained in the set Y . If this vector is not zero, C ∈ FM⊥(F)
implies (c13, c23, c33)

t ∈ (F · b1 ⊕F · b2)⊥can , where ⊥can refers to the canonical
pairing (x, y) 7→ xty on F3. But (F · b1 ⊕ F · b2)⊥can is spanned by the vector
(detB1,− detB2, detB3)

t and hence we may assume that

(c13, c23, c33) = (detB1,− detB2, detB3).

The stability of W3 under F and V is equivalent to

(
detBp

1

−detBp
2

detBp
3

)
,




detBp−1

1

− detBp−1

2

detBp−1

3


 ∈ F · b1 + F · b2.

This can also be expressed as the vanishing of the determinants of the matrices

M1 =

(
B

detBp
1

−detBp
2

detBp
3

)
and M2 =


B

detBp−1

1

− detBp−1

2

detBp−1

3


 .

But we have detM1 = detMp
2 and hence we are left with the equation detM1 =

0, which is equal to the equation detBp1 detB3+detBp+1
2 +detB1 detB

p
3 = 0.

Hence we see that the flags of this form are contained in the set Z.
Finally we have to consider the case where (c12, c22, c32) 6= 0. We do this

accordingly to the cases introduced in the discussion of W2 above.
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(1) We may assume that C is of the form




0 1 0
0 y c23
0 x c33
xp b c43
yp c c53
1 0 0




for some x, y ∈ Fp2 with xp + yp+1 + x = 0 and some b, c ∈ F. We
see that the stability of W3 under F and V implies that (c23, c33) = 0.

C ∈ FM⊥(F) then implies that c43 = −yc53 and we see that c53 6= 0.
Hence we may assume that C is of the form




0 1 0
0 y 0
0 x 0
xp b −y

yp c 1
1 0 0



,

and we see that flags of this form are contained in the set Tx,y.
(3) We may assume that C is of the form




0 0 c13
0 0 c23
0 1 0
1 0 0
0 b c53
0 c c63




for some b, c ∈ F. The stability of W3 under F and V implies c13 =
c23 = 0. c3 ⊥ c2 implies c63 = 0. Hence C is of the form




0 0 0
0 0 0
0 1 0
1 0 0
0 b 1
0 c 0




and flags of this type are contained in the set T∞.

Conversely it is easily checked that the sets Y , Z, T∞ and (Tx,y)(x,y)t∈I
defined in Table 9.1 are indeed subsets of Flag⊥,F,V (F). In order to show that
they are closed and to construct the isomorphisms claimed in Table 9.1 one
has to calculate their intersection with the standard charts.

For instance the intersections Z ∩ U453 and Z ∩ U456 are described in Ta-
ble 10.1.
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Z ∩ U453 Z ∩ U456


0 0 b21b32 − b31
0 0 −b32
0 0 1
1 0 0

b21 1 0
b31 b32 α







0 0 α(b21b32 − b31)
0 0 −αb32
0 0 α

1 0 0
b21 1 0
b31 b32 1




b21, b31, b32, α ∈ F
(b21b32 − b31)

p + b
p+1
32 + (b21b32 − b31) = 0

Table 10.1

They are closed subsets of the respective affine spaces.
To see that γ : Z → Z0 is a P1

F
-bundle, trivial over the intersections of Z0

with the standard charts of Flag2,3, we note exemplarily that the preimage of
V45 = Z0 ∩ U45 under γ : Z → Z0 is given by (Z ∩ U453) ∪ (Z ∩ U456). It
is now easy to define an isomorphism γ−1(V45) → V45 × P1

F
fitting into the

commutative diagram

γ−1(V45)

γ|
γ−1(V45) $$I

II
II

II
II

≃
// V45 × P1

F

pr
zzvv
vv
vv
vv
v

V45

.

Here V45 is the hypersurface in A3
F
given by the image under Φ of the set of

matrices B ∈ FM3×2(F) of the form B =

(
1 0

b21 1
b31 b32

)
for b21, b31, b32 ∈ F with

(b21b32 − b31)
p + bp+1

32 + (b21b32 − b31) = 0.
To prove that Z is irreducible of dimension 3 it suffices to show that V+(X

p
1

X3 + Xp+1
2 + X1X

p
3 ) is irreducible (see Lemma 18.4 below). If we consider

Xp
1X3 +Xp+1

2 +X1X
p
3 as an element of K[X1, X3][X2], we can apply Eisen-

stein’s criterion (using the prime element X1 of K[X1, X3]) to see that Xp
1X3+

Xp+1
2 +X1X

p
3 is irreducible.

Concerning the intersections only the statement about Z ∩Tx,y in Table 9.2
is not quite obvious, namely that it is contained in the exceptional curve of
Tx,y. Let (a, b, c)

t ∈ F3 − F · (0,−y, 1)t and assume that

Φ




0 a 0
0 ya 0
0 xa 0
xp b −y

yp c 1
1 0 0




∈ Z.

First this implies a = 0. If c = 0 the condition on the determinants for elements
in Z would imply b = 0, but (a, b, c) 6= 0 by assumption. Hence c 6= 0 and we
may assume c = 1. Then the determinant condition becomes

−(xp − byp) + (−b)p+1 − (xp − byp)p = 0.
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Using xp+x+yp+1 = 0 we get yp(p+1)+ byp+ bp+1+ bpyp
2

= 0. Using y ∈ Fp2
this becomes yp+1 + byp + bp+1 + bpy = 0 which is equivalent to

(y + b)p+1 = 0.

As b 6= −y by assumption this does not have a solution.

11. The case of positive p-rank

In order to investigate the fiber of π over abelian varieties of positive p-
rank we need to recall some additional material concerning finite commutative
group schemes over F and their Dieudonné theory. Our main reference is again
[2].

Let g ≥ 1 and A ∈ Ag(F). Then A[p] is in a unique way a product of three
subgroups A[p] = Ge,u × Gi,m × Gi,u with Ge,u étale unipotent, Gi,m infini-
tesimal multiplicative and Gi,u infinitesimal unipotent. One has isomorphisms
Ge,u ≃ (Z/pZ)k and Gi,m ≃ µkp, where k is equal to the p-rank of A. Here µp
denotes the F-group scheme representing the functor S 7→ {s ∈ OS(S) | sp = 1}
on the category of F-schemes. In terms of Dieudonné modules this corresponds
to a decomposition D = W e,u ⊕W i,m ⊕W i,u into subspaces stable under F
and V and such that

• F|W e,u is an isomorphism and V|W e,u is nilpotent,
• F|W i,m is nilpotent and V|W i,m is an isomorphism,
• F|W i,u and V|W i,u are nilpotent.

Here we write F|W e,u for the morphism W e,u → W e,u induced by F etc. We

have dimFW
e,u = dimFW

i,m = k and dimFW
i,u = 2(g − k).

This decomposition is natural: If Ã ∈ Ag(F) with decomposition D(Ã[p]) =
W̃ e,u ⊕ W̃ i,m ⊕ W̃ i,u and if α : A[p] → Ã[p] is a group homomorphism, the

induced morphism D(α) : D(Ã[p]) → D(A[p]) splits into the direct sum of three

morphisms W̃ e,u →W e,u, W̃ i,m → W i,m and W̃ i,u →W i,u. In particular

imD(α) = imD(α) ∩ (W e,u ⊕W i,m)⊕ imD(α) ∩W i,u

= imD(α) ∩W e,u ⊕ imD(α) ∩W i,m ⊕ imD(α) ∩W i,u.
(11.1)

Lemma 11.1. Let k ≥ 0 and A ∈ A(k)
g (F) with decomposition D = W e,u ⊕

W i,m ⊕W i,u as above. Let F2g = Ue,u ⊕ U i,m ⊕ U i,u be the decomposition
induced via ΨA. Let w = wA and consider the associated data ψ and (mi)

g
i=1

introduced in Section 4.9. Write I = {i ∈ {1, . . . , g} | i = mi} and Ic =
{1, . . . , g} − I.
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(1) We have

Ue,u =
⊕

i∈I

F · ei

U i,m =
⊕

i∈I

F · eg+i

U i,u =
⊕

i∈Ic

(F · ei ⊕ F · eg+i).

(2) Let w̃ ∈ Wfinal,g−k be the final element corresponding to the final se-

quence [ψ(k+1)− k, ψ(k+2)− k, . . . , ψ(g)− k]. Denote by (ẽi)
2(g−k)
i=1

the standard basis and by 〈̃·, ·〉 = 〈̃·, ·〉def the pairing introduced in Sec-

tion 4.9 on F2(g−k). Consider the morphism β̃ : F2(g−k) → U i,u given

by ẽi 7→ ek+i and ẽg−k+i 7→ eg+k+i for 1 ≤ i ≤ g − k. Then β̃ induces
an isomorphism of quadruples

(F2(g−k), Fw̃, Vw̃, 〈̃·, ·〉) → (U i,u, Fw|Ui,u , Uw|Ui,u , 〈·, ·〉|Ui,u).

(3) Let U = Ue,u ⊕ U i,m. Let ŵ ∈ Wfinal,g−k be the final element cor-
responding to the final sequence [1, 2, . . . , k]. Denote by (êi)

2k
i=1 the

standard basis and by 〈̂·, ·〉 = 〈̂·, ·〉def the pairing introduced in Sec-

tion 4.9 on F2k. Consider the morphism β̂ : F2k → U given by êi 7→ ei
and êk+i 7→ eg+i for 1 ≤ i ≤ k. Then β̂ induces an isomorphism of
quadruples

(F2k, Fŵ, Vŵ , 〈̂·, ·〉) → (U, Fw|U , Uw|U , 〈·, ·〉|U ).

Proof. This is an easy consequence of the explicit descriptions of Fw and Vw
given in Section 4.9. �

Corollary 11.2. Let g ≥ 1 and w ∈ Wfinal,g. Then the p-rank on EOw is
given by w(1)− 1.

Proof. As above, let ψw and (mi)
g
i=1 be the data associated with w. We see

from Lemma 11.1 that the p-rank on EOw is given by #{i ∈ {1, . . . , g} | i =
mi} = #{i ∈ {1, . . . , g} | ψw(i) = i}. It follows from Section 4.1 that for all
i ∈ {1, . . . , g} we have ψw(i) = i ⇔ (∀a ∈ {1, . . . , g} w(a) > i). As w is final,
this is equivalent to w(1) > i and there are w(1) − 1 elements of {1, . . . , g}
satisfying this inequality. �

Remark 11.3. In this way we have obtained a formula for the p-rank on an
EO stratum which is considerably simpler than the one cited in Proposition
4.6(3). Given both formulas it is of course easy to show by combinatorial
means that they are equivalent.

Proposition 11.4. Let K be an algebraically closed field and V a vector space
of finite dimension g over K. Let V1 and V2 be subspaces of V with V =
V1 ⊕ V2 and dimK V1 = k, dimK V2 = g − k. Fix integers 0 ≤ i ≤ g,
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max(0, i+k−g) ≤ l ≤ min(i, k) and a subset J ⊂ {1, . . . , i} =: I of cardinality
l.

(1) Consider the set

Zg,i,k,J =

{
(Fj)ij=0 ∈ Flagi,g(V)

∣∣∣∣ ∀j ∈ I

(
Fj = Fj ∩ V1 ⊕ Fj ∩ V2 ∧

(Fj ∩ V1 6= Fj−1 ∩ V1 ⇔ j ∈ J)

)}
,

where Flagi,g(V) denotes the (classical) variety of flags (Fj)ij=0 in V
with dimFj = j for 0 ≤ j ≤ i. Then Zg,i,k,J is a closed subvariety of
Flagi,g(V).
Consider the maps ϕ : {0, 1, . . . , i} → {0, 1, . . . , l} and ϕ′ : {0, 1, . . . , i}
→ {0, 1, . . . , g − l} with ϕ(0) = 0 = ϕ′(0),

ϕ(j) =

{
ϕ(j − 1), j /∈ J

ϕ(j − 1) + 1, j ∈ J

and

ϕ′(j) =

{
ϕ′(j − 1), j ∈ J

ϕ′(j − 1) + 1, j /∈ J
.

Then the map αJ : Flagl,k(V1)× Flagi−l,g−k(V2) → Zg,i,k,J given by

((Fj)lj=0, (Gj)i−lj=0) 7→ (Fϕ(j) ⊕ Gϕ′(j))
i
j=0

is an isomorphism of (classical) varieties.
(2) Consider the set

Zg,i,k,l =

{
(Fj)ij=0 ∈ Flagi,g(V)

∣∣∣∣
dimK(Fi ∩ V1) = l ∧

(∀j ∈ I Fj = Fj ∩ V1 ⊕ Fj ∩ V2)

}
.

Then Zg,i,k,l is a closed subvariety of Flagi,g(V) and

Zg,i,k,l =
∐

J⊂I
#J=l

Zg,i,k,J ≃
∐
(
i

l

)
Flagl,k(V1)× Flagi−l,g−k(V2).

(3) Consider the set

Zg,i,k =
{
(Fj)ij=0 ∈ Flagi,g(V) | ∀j ∈ I Fj = Fj ∩ V1 ⊕Fj ∩ V2

}
.

Then Zg,i,k is a closed subvariety of Flagi,g(V) and

Zg,i,k =

min(i,k)∐

l=max(0,i+k−g)

Zg,i,k,l

≃
min(i,k)∐

l=max(0,i+k−g)

∐
(

i

l

)
Flagl,k(V1)× Flagi−l,g−k(V2).

Consider integers 0 ≤ i ≤ n. The Frobenius σ : F → F induces an auto-
morphism Σ : Flagi,n(F) → Flagi,n(F). It is given as follows: Denote by ρ :

Fn → Fn the componentwise application of σ. Then for (Fj)ij=0 ∈ Flagi,n(F)
we have Σ((Fj)ij=0) = (ρ(Fj))ij=0. We denote by Flagi,n(Fp) the fixed point
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set of Σ. It is a finite subset of Flagi,n(F) and it can be identified canonically

with the set of flags (Fj)ij=0 in (Fp)n with dimFj = j for all 0 ≤ j ≤ i.

Proposition 11.5. Let g ≥ 1, k ≥ 0 and A ∈ A(k)
g (F) with w = wA.

(1) Assume that k = g (i.e. A is ordinary). Then the fiber of π over A is
discrete and

#
(
π−1(A)

)
= ONg := 2g#Flagg(Fp) = 2g

g−1∏

l=0

l∑

i=0

pi = 2g
∏g
l=1(p

l − 1)

(p− 1)g
.

(2) Assume that 1 ≤ k ≤ g−1. Then Flag⊥,F,Vw is isomorphic to

(
g

k

)
ONk

disjoint copies of Flag⊥,F,Vw̃,2(g−k), where w̃ is as in point (2) of Lemma

11.1. Note that the p-rank on EOw̃ is equal to 0.

Proof. We use the notation of Lemma 11.1.
(1) If k = g we have U i,u = 0, Ue,u = ⊕gi=1F · ei and U i,m = ⊕2g

i=g+1F · ei.
Let w = wA. We use the notation of Proposition 11.4 for V = F2g, V1 = Ue,u

and V2 = U i,m. By equation (11.1) we see that

Flag⊥,F,Vw,2g ⊂ Z2g,g,g =

g∐

l=0

∐

J⊂I
#J=l

αJ
(
Flagl,g(V1)× Flagg−l,g(V2)

)
.

Let 0 ≤ l ≤ g and J ⊂ I of cardinality l.
First note that F|V1

is equal to the componentwise application of σ (with
respect to the basis (e1, . . . , eg)) and that V|V1

= 0. On the other hand V|V2

is equal to the componentwise application of σ−1 (with respect to the basis

(eg+1, . . . , e2g)) and F|V2
= 0. From this it follows immediately that FlagF,Vw ∩

αJ
(
Flagl,g(V1)× Flagg−l,g(V2)

)
≃ Flagl,g(Fp)× Flagg−l,g(Fp).

Let
(
(Fj)lj=0, (Gj)g−lj=0

)
∈ Flagl,g(V1) × Flagg−l,g(V2). Then the image

αJ

(
(Fj)lj=0, (Gj)g−lj=0

)
is symplectic if and only if (G)g−lj=0 is actually a flag

in the g− l dimensional space V2 ∩F⊥
l , where we consider Fl as a subspace of

V .
Combining these two statements it follows that

Flag⊥,F,Vw ∩ αJ
(
Flagl,g(V1)× Flagg−l,g(V2)

)
≃ Flagl,g(Fp)× Flagg−l(Fp).

The claim now follows from a short calculation.
(2) We use the notation of Proposition 11.4 with V = F2g, V1 = Ue,u⊕U i,m

and V2 = U i,u. It follows from V1 = V⊥
2 and equation (11.1) that

Flag⊥,F,Vw ⊂ Z2g,g,2k,k =
∐

J⊂I
#J=k

αJ

(
Flagk,2k(V1)× Flagg−k,2(g−k)(V2)

)
.
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Let J ⊂ I of cardinality k. Using the notation and the isomorphisms β̃ and β̂
of Lemma 11.1 we see that

Flag⊥,F,Vw ∩ αJ
(
Flagk,2k(V1)× Flagg−k,2(g−k)(V2)

)

≃ Flag⊥,F,Vŵ,2k × Flag⊥,F,Vw̃,2(g−k).

By the first point Flag⊥,F,Vŵ,2k is discrete of cardinalityONk and the claim follows.
�

12. The number of connected components of the fibers of π

Proposition 12.1. Let g ≥ 1. For all A ∈ A(0)
g (F), the fiber π−1(A) is

connected.

Remark 12.2. In [17, Prop. 5.2] Yu proves a more general statement. We
rephrase his proof in our language.

Proof of Proposition 12.1. Let w = wA. We have to show that Flag⊥,F,Vw is

connected. Let 0 ≤ i ≤ g, I = {0, . . . , i} and denote by Flag⊥,F,Vw,i the variety
whose F-valued points are given by

Flag⊥,F,Vw,i (F) =
{
(Wj)

i
j=0 ∈ Flagi,2g(F)

∣∣∣∣
∀j ∈ I Vw(Wj), Fw(Wj) ⊂Wj

and Wi is isotropic

}
.

Then Flag⊥,F,Vw,g = Flag⊥,F,Vw and we will show by induction on i that Flag⊥,F,Vw,i

is connected for all 0 ≤ i ≤ g. For each 1 ≤ i ≤ g consider the morphism

ζi : Flag
⊥,F,V
w,i → Flag⊥,F,Vw,i−1 given by ζi

(
(Wj)

i
j=0

)
= (Wj)

i−1
j=0 for (Wj)

i
j=0 ∈

Flag⊥,F,Vw,i (F). This is, in particular, a closed map of topological spaces and
it will be sufficient to show that it is surjective with connected fibers. Fix

a point (Wj)
i−1
j=0 ∈ Flag⊥,F,Vw,i−1 (F) and write W = W⊥

i−1/Wi−1 with canonical

projection pr : W⊥
i−1 → W . Fw and Vw induce endomorphisms F and V of

W . Our assumption on the p-rank of A implies that F and V are nilpotent.
This means that a 1-dimensional subspace of W is stable under F or V if and
only if it is contained in kerF or kerV , respectively. Therefore consider the
subspace U = kerF ∩ker V and denote by P(U) the (classical) projective space
over U . Consider the map P(U) → Flagi,2g(F), sending a subspace U ⊂ U to
the flag

W0 ⊂W1 ⊂ · · · ⊂Wi−1 ⊂ pr−1(U).

With the considerations above this map is easily seen to induce an isomorphism
of (classical) varieties P(U) → ζ−1

i

(
(Wj)

i−1
j=0

)
(F). Hence the fibers of ζi are

connected. To see that they are nonempty we have to check that dimU ≥ 1.
This is automatic if F and V are the zero morphism. By Proposition 3.2(1)
we know that imV ⊂ kerF and imF ⊂ kerV . Now the nilpotency of F
implies that imF ∩ kerF 6= 0 if F 6= 0 and the nilpotency of V implies that
imV ∩ kerV 6= 0 if V 6= 0, whence the claim. �

Münster Journal of Mathematics Vol. 4 (2011), 185–226



Moduli spaces of abelian varieties of dimension 3 215

Proposition 12.3. Let g ≥ 1 and k ≥ 0. If A ∈ A(k)
g (F), the fiber π−1(A)

consists of

(
g
k

)
ONk connected components. In particular it is connected if

and only if k = 0.

Proof. Combine Proposition 11.5 and Proposition 12.1. �

13. Dimension of the fibers of π

Let g = 2 or g = 3 and let A ∈ Ag(F). Depending on wA ∈Wfinal we list the
dimension of π−1(A) ⊂ AI in Table 13.2. It can be read off the calculations in
Sections 8 and 9 and the results of Section 11.

g = 2

Wfinal dim
id 1
s2 1
s12 0
s212 0

g = 3

Wfinal dim Wfinal dim
id 3 s123 1
s3 2 s3123 1
s23 2 s23123 0
s323 1 s323123 0

Table 13.2. The dimension of the fibers of π depending on
the EO stratum.

14. The KR stratification

This section contains the results about the KR stratification on AI that we
are going to use. We will use an ad hoc definition on F-valued points and we
refer to [8, Sec. 2.4] for a more comprehensive treatment of the subject.

Let g ≥ 1.

14.1. Relative positions.

Proposition 14.2. [7, Sec. 3] Let w ∈ Wfinal and (Wi)
2g
i=0 ∈ Flag⊥,F,Vw,2g (F).

There is a unique element x = tλω ∈ Waτ (ω ∈ W, λ ∈ X∗(T )) such that

there is a basis (εi)
2g
i=0 of F2g with the following properties:

(1) λ(i) ∈ {0, 1} for all i.
(2) For every i, Wi is spanned by ε1, . . . , εi.
(3) If Vw(Wi−1) $ Vw(Wi) for any i ≥ 1, we have Vw(Wi) = Vw(Wi−1)⊕

F · εω(i).
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(4)

imVw =
⊕

i=1,...,2g
λ(i)=0

F · εi.

We call any such basis a KR basis for (Wi)
2g
i=0 and x is called the KR type

of (Wi)
2g
i=0.

The set of possible KR types (as w runs through Wfinal,g) is denoted by
Adm(µ). It is a subset of Waτ . Given w ∈ Wfinal and x ∈ Adm(µ) we denote

by L(x,w) the set of flags in Flag⊥,F,Vw (F) with KR type equal to x.

14.3. The KR stratification. On AI we have the Kottwitz-Rapoport strat-
ification (a stratification in the sense of Section 2.2)

AI =
∐

x∈Adm(µ)

AI,x,

given by (Ai)i ∈ AI,x(F) if and only if ιA0((Ai)i) ∈ L(x,wA0).
The following Proposition lists some properties of the KR stratification.

Proposition 14.4. [7, Sec. 2.5] Let x, y ∈ Adm(µ) and ω ∈ W, λ ∈ X∗(T )
such that x = tλω.

(1) AI,x is equidimensional of dimension ℓ(x).
(2) The p-rank is constant on AI,x with value #Fix(ω)/2 (where Fix(ω) =

{i ∈ {1, . . . , 2g} | ω(i) = i}).
(3) We have AI,x ⊂ AI,y if and only if x ≤ y.
(4) If AI,x is not contained in the supersingular locus SI , then AI,x is

irreducible.

In view of property (2) we denote by Adm(µ)(i) the set of admissible ele-
ments of p-rank i, 0 ≤ i ≤ g.

Lemma 14.5. [7, Lemma 8.1] The projection W̃ → W induces a bijection
ξ : Adm(µ)(0) → {ω ∈ W | Fix(ω) = ∅}. Its inverse is given by ω 7→ tλ(ω)ω
with

λ(ω)(i) =

{
0, ω−1(i) > i
1, ω−1(i) < i

, i = 1, . . . , 2g.

14.6. The set Adm(µ)(0). In [16] Yu gives a list of all the 29 elements of
Adm(µ)(0) for g = 3. We reproduce this list in Table 14.1 as we will use it
extensively.

KR (λ,w) ∈ X∗(T )⋊W KR (λ,w) ∈ X∗(T )⋊W
τ (0, 0, 0, 1, 1, 1), (14)(25)(36) s310τ (0, 0, 1, 0, 1, 1), (132645)
s0τ (0, 0, 0, 1, 1, 1), (1463)(25) s120τ (0, 0, 0, 1, 1, 1), (16)(2453)
s1τ (0, 0, 0, 1, 1, 1), (142635) s320τ (0, 0, 1, 0, 1, 1), (154623)
s2τ (0, 0, 0, 1, 1, 1), (153624) s230τ (0, 1, 0, 1, 0, 1), (124653)
s3τ (0, 0, 1, 0, 1, 1), (1364)(25) s201τ (0, 0, 0, 1, 1, 1), (1562)(34)

continued on next page
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s10τ (0, 0, 0, 1, 1, 1), (145)(263) s301τ (0, 0, 1, 0, 1, 1), (135642)
s20τ (0, 0, 0, 1, 1, 1), (153)(246) s121τ (0, 0, 0, 1, 1, 1), (16)(25)(34)
s30τ (0, 0, 1, 0, 1, 1), (13)(25)(46) s231τ (0, 1, 0, 1, 0, 1), (1265)(34)
s01τ (0, 0, 0, 1, 1, 1), (142)(356) s312τ (0, 0, 1, 0, 1, 1), (16)(2354)
s21τ (0, 0, 0, 1, 1, 1), (15)(26)(34) s323τ (0, 1, 1, 0, 0, 1), (123654)
s31τ (0, 0, 1, 0, 1, 1), (135)(264) s3010τ (0, 0, 1, 0, 1, 1), (132)(456)
s12τ (0, 0, 0, 1, 1, 1), (16)(24)(35) s3120τ (0, 0, 1, 0, 1, 1), (16)(23)(45)
s32τ (0, 0, 1, 0, 1, 1), (154)(236) s3230τ (0, 1, 1, 0, 0, 1), (123)(465)
s23τ (0, 1, 0, 1, 0, 1), (124)(365) s2301τ (0, 1, 0, 1, 0, 1), (12)(34)(56)
s010τ (0, 0, 0, 1, 1, 1), (145632)

Table 14.1. The set Adm(µ)(0) for g = 3.

15. KR strata and the fibers of π

Let g ≥ 1 and x ∈ Adm(µ). We write

ES(x) = {w ∈Wfinal | π−1(EOw) ∩ AI,x 6= ∅}.
Then [7, Cor. 3.3] states that

(15.1) π(AI,x) =
∐

w∈ES(x)

EOw.

Hence in order to understand the relationship between the EO and the KR
stratification we need to understand the sets ES(x).

Now for all w ∈ Wfinal we have w ∈ ES(x) ⇔ L(x,w) 6= ∅ and it is
therefore sufficient to study the sets L(x,w). We will do this for g = 3, using

our calculations of the sets Flag⊥,F,Vw,6 . The sets L(x, id) are rather complicated
and we content ourselves with determining whether they are nonempty. For
the other final elements w of p-rank 0 we are able to determine the sets L(x,w)
completely.

First we have the following general result:

Lemma 15.1. Let g ≥ 1.

(1) For ω ∈ Sg = 〈s1, . . . , sg−1〉 ⊂ W we have ωτ ∈ Adm(µ)(0) and
ES(ωτ) = id.

(2) For x = tλω ∈ Adm(µ)(0) (λ ∈ X∗(T ), ω ∈ W ) we write Nx = {i ∈
{1, . . . , 2g} | ω2(i) < ω(i) < i}. Then for (Ai)i ∈ AI,x(F) we have
g − a(A0) ≥ #Nx.

Proof. (1) Let ω ∈ Sg, then ωτ is admissible by Lemma 14.5 above. Con-
sider (Ai)i ∈ AI,ωτ (F) with image (Wi)i under ιA0 . ωτ satisfies ξ(ωτ)({g +
1, . . . , 2g}) = {1, . . . , g}, which means that imVwA0

= kerVwA0
= Wg. By

Proposition 3.21 this implies that imFwA0
= kerFwA0

, hence the canonical fil-

tration on D(A0) is given by 0 ⊂ F (D) ⊂ D which has associated final element
id.
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(2) By Lemma 4.4 and Proposition 4.6 our claim is equivalent to the fol-

lowing statement: Let w ∈ W
(0)
final and (Wi)

2g
i=0 ∈ Flag⊥,F,Vw,2g (F) of KR type x.

Then dim imV 2
w ≥ #Nx.

But if (ε)2gi=0 is a KR basis for (Wi)i, the set {V (εω(i)) | i ∈ Nx} is a linearly

independent subset of imV 2
w of cardinality #Nx. �

For the rest of this section g is equal to 3.

15.2. w = id. Let x ∈ Adm(µ)(0). By Lemma 15.1(2) we know that L(x, id) 6=
∅ implies that Nx = ∅. Inspecting Table 14.1 we see that this condition is only
satisfied for x ∈ {τ, s1τ, s2τ, s21τ, s12τ, s121τ, s30τ, s310τ, s320τ, s3120τ, s2301τ}.
We claim that id ∈ ES(x) for all x in this set. For x ∈ S3τ = {τ, s1τ, s2τ, s21τ,
s12τ, s121τ} this is true by Lemma 15.1(1). For the remaining elements we
write down an explicit nonempty subset K(x) ⊂ L(x, id) in Table 15.1.

K(s30τ) K(s3120τ) K(s2301τ)


0 0 1
0 0 0
0 0 0
0 0 0
0 1 0
1 0 0







0 0 1
0 0 0
0 0 0
0 0 0
1 0 0
0 1 0







0 1 0
0 0 0
0 0 0
0 0 0
0 0 1
1 0 0




K(s310τ) K(s320τ)


0 0 −1
0 0 b2

0 0 b
p+1
2 + b1

b1 b2 α

−b
p
2 1 0

1 0 0







0 0 −1
0 0 b2

0 0 b
p−1

2 b2 + b1
b1 b2 α

−b
p−1

2 1 0
1 0 0




b2 ∈ F− Fp2 , α ∈ F b2 ∈ F− Fp2 , α ∈ F
b1 ∈ F a root of b1 ∈ F a root of

T p + T + b
p(p+1)
2 ∈ F[T ] T p2 + T p + b

p+1
2 ∈ F[T ]

2

Table 15.1. Nonempty subsets of L(x, id).

15.3. w = s3. In Table 15.2 list those L(x, s3) which are nonempty.

L(s120τ, s3) L(s3120τ, s3) L(s312τ, s3)








0 0 0
0 0 0
0 0 0
0 0 1
1 0 0
c 1 0

















0 0 α

0 0 0
0 0 0
0 0 1
1 0 0
c 1 0

















0 0 1
0 0 0
0 0 0
0 0 0
1 0 0
c 1 0









c ∈ F c ∈ F, α ∈ F× c ∈ F
1 2 1

continued on next page

Münster Journal of Mathematics Vol. 4 (2011), 185–226



Moduli spaces of abelian varieties of dimension 3 219

continued from previous page

L(s201τ, s3) L(s2301τ, s3) L(s231τ, s3)








0 0 0
0 0 0
0 0 0
0 1 0
0 c 1
1 0 0

















0 a 0
0 0 0
0 0 0
0 1 0
0 c 1
1 0 0

















0 1 0
0 0 0
0 0 0
0 0 0
0 c 1
1 0 0









c ∈ F c ∈ F, a ∈ F× c ∈ F
1 2 1

L(s30τ, s3) L(s0τ, s3) L(s3τ, s3)








0 0 α

0 0 0
0 0 0
0 0 1
0 1 0
1 0 0

















0 0 0
0 0 0
0 0 0
0 0 1
0 1 0
1 0 0

















0 0 1
0 0 0
0 0 0
0 0 0
0 1 0
1 0 0









α ∈ F×

1 0 0

Table 15.2. The sets L(x, s3).

15.4. w = s23. In Table 15.3 list those L(x, s23) which are nonempty.

L(s20τ, s23) L(s320τ, s23) L(s120τ, s23) L(s3120τ, s23) L(s312τ, s23)








0 0 0
0 0 0
0 0 0
0 0 1
1 0 0
0 1 0

















0 0 α

0 0 0
0 0 0
0 0 1
1 0 0
0 1 0

















0 0 0
0 0 0
0 0 0
0 0 1
1 0 0
c 1 0

















0 0 α

0 0 0
0 0 0
0 0 1
1 0 0
c 1 0

















0 0 1
0 0 0
0 0 0
0 0 0
1 0 0
c 1 0









α ∈ F× c ∈ F× c, α ∈ F× c ∈ F×

0 1 1 2 1

L(s32τ, s23) L(s310τ, s23) L(s10τ, s23) L(s31τ, s23) L(s01τ, s23)








0 0 1
0 0 0
0 0 0
0 0 0
1 0 0
0 1 0

















0 0 α

0 0 0
0 0 0
0 0 1
0 1 0
1 0 0

















0 0 0
0 0 0
0 0 0
0 0 1
0 1 0
1 0 0

















0 0 1
0 0 0
0 0 0
0 0 0
0 1 0
1 0 0

















0 0 0
0 0 0
0 0 0
0 1 0
1 0 0
0 0 1









α ∈ F×

0 1 0 0 0

L(s201τ, s23) L(s23τ, s23) L(s231τ, s23) L(s3230τ, s23) L(s3010τ, s23)








0 0 0
0 0 0
0 0 0
0 1 0
1 0 0
0 c 1

















0 1 0
0 0 0
0 0 0
0 0 0
0 0 1
1 0 0

















0 1 0
0 0 0
0 0 0
0 0 0
0 c 1
1 0 0

















0 1 0
0 0 1
0 0 0
0 0 0
0 0 β

1 0 0

















0 0 0
0 0 0
0 0 1
0 1 0
1 0 0
0 0 β









c ∈ F× c ∈ F× β ∈ F β ∈ F
1 0 1 1 1

Table 15.3. The sets L(x, s23).
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15.5. w = s323. In Table 15.4 list those L(x, s323) which are nonempty.

L(s3230τ, s323) L(s323τ, s323) L(s230τ, s323) L(s3010τ, s323)


0 1 0
0 0 1
0 0 0
0 0 0
0 0 β

1 0 0







0 1 0
0 0 1
0 0 0
0 0 0
0 0 0
1 0 0







0 1 0
0 0 0
0 0 0
0 0 0
0 0 1
1 0 0







0 0 α

0 0 0
0 0 0
0 0 1
0 1 0
1 0 0




β ∈ F× α ∈ F×

1 0 0 1

L(s010τ, s323) L(s301τ, s323) L(s2301τ, s323)


0 0 0
0 0 0
0 0 0
0 0 1
0 1 0
1 0 0







0 0 1
0 0 0
0 0 0
0 0 0
0 1 0
1 0 0







0 a 1
0 0 0
0 0 0
0 0 0
0 1 0
1 0 0




a ∈ F×

0 0 1

Table 15.4. The sets L(x, s323).

16. Proof of the results of Section 15

In order to illustrate the method we show that K(s310τ) ⊂ L(s310τ, id). Let
V = Vid. For an element (Wi)

6
i=0 of K(s310τ)(F) choose elements b2 ∈ F−Fp2 ,

α ∈ F and b1 ∈ F with bp1 + b1 + b
p(p+1)
2 = 0 such that

(∗) (Wi)
6
i=0 = Φ




0 0 −1
0 0 b2

0 0 b
p+1
2 + b1

b1 b2 α

−b
p
2 1 0

1 0 0



.

First we write down a matrix C = (c1c2c3c4c5c6) ∈ GL6(F) such that Wi =
⊕ij=1F · cj for all 0 ≤ i ≤ 6. For the first three columns of C we can use the

columns of the matrix of equation (∗) above. We find the other columns using
the condition that (Wi)

6
i=0 is a symplectic flag, meaning that c4 ⊥ c1, c2 and

c5 ⊥ c1. Hence

C =




0 0 −1 0 0 0
0 0 b2 0 1 0

0 0 b
p+1
2 + b1 0 b

p
2 1

b1 b2 α 1 0 0
−b

p
2 1 0 0 0 0

1 0 0 0 0 0




satisfies our requirements.
From this matrix we can read off the images (V (Wi))

6
i=0 using the explicit

description of Section 4.9 and we need to find a basis (εi)
6
i=1 of F6 such that

Wi = ⊕ij=1F · εj and such that V (Wi) is spanned by a subset of {ε1, . . . , εi}
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for each 0 ≤ i ≤ 6. First we have V (W2) = 0. Now b2 /∈ Fp2 implies that
V (W3) * W1 and hence we can take ε2 = V (c3). The equation for b1 implies
that V (W5) ⊂W2 which means that we can use ε1 = c1 and ε4 = c4.

This means that a KR basis (εi)
6
i=1 of (Wi) is given by the columns of the

following matrix

ε =




0 0 −1 0 0 0
0 0 b2 0 1 0

0 0 b
p+1
2 + b1 0 b

p
2 1

b1 b
p−2

1 α 1 0 0

−b
p
2 −b

p−1

2 0 0 0 0
1 1 0 0 0 0



.

Here the equation for b1 is needed to see that V (ε3) = ε2. We have observed
that V (W1) = V (W2) = 0, V (W3) = V (W4) = 〈ε2〉, V (W5) = 〈ε1, ε2〉 and
V (W6) = 〈ε1, ε2, ε4〉. Hence if λ ∈ X∗(T ) and ω ∈ W are such that (Wi)i ∈
L(tλω, id), we see that λ = (0, 0, 1, 0, 1, 1) and that ω(3) = 2, ω(5) = 1 and
ω(6) = 4. The ω ∈ W satisfying these conditions is given by

ω =

(
1 2 3 4 5 6
3 6 2 5 1 4

)

and from Table 14.1 we see that tλω = s310τ .
The proof of K(s320τ) ⊂ L(s320τ, id) is similar and in all the other cases it

is very easy to write down a suitable KR basis.

17. The sets ES(x) for x ∈ Adm(µ)(0) in dimensions 2 and 3

Let g = 2. In this case the sets ES(x) for x ∈ Adm(µ)(0) have already been
known, see for instance [7, Ex. 3.4]. We list them in Table 17.1.

x ES(x)

τ, s1τ id
s2τ , s0τ s2
s20τ id s2

Table 17.1. The sets ES(x) for g = 2.

Let g = 3. Table 17.2 contains the sets ES(x) for x ∈ Adm(µ)(0). They
can be read off the calculations in Section 15. The upper block contains the
supersingular elements.

x ES(x)

τ, s1τ, s2τ, s21τ, s12τ, s121τ id
s3τ, s0τ s3
s30τ id s3

continued on next page
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continued from previous page

s10τ, s23τ, s20τ, s31τ, s01τ, s32τ s23
s310τ, s320τ id s23
s3120τ id s3 s23
s120τ, s312τ, s201τ, s231τ s3 s23
s010τ, s323τ, s301τ, s230τ s323
s2301τ id s3 s323
s3010τ, s3230τ s23 s323

Table 17.2. The sets ES(x) for g = 3.

Remark 17.1. We can use Table 17.2 to answer a question posed in a pre-
liminary version of [8]: For every g ≥ 1 one has the following inclusion:

(17.1)
∐

x∈Adm(µ)(0)

AI,x⊂SI

AI,x ⊆ π−1




∐

w∈Wfinal
EOw⊂Sg

EOw


 .

In loc.cit. it was asked whether this inclusion is an equality. The answer is
negative in the case g = 3: Let A ∈ EOid(F). By Table 17.2 there is preimage
(Ai)i ∈ (π−1(A) ∩ AI,s310τ )(F) of A, so that (Ai)i is contained in the right
hand side of the above inclusion, but as AI,s310τ * SI it is not contained in
the left hand side.

17.2. Some informal observations. Let 1 ≤ g ≤ 3. It is interesting to note
that ES

(
ξ−1(ξ(x)−1)

)
= ES(x) for every x ∈ Adm(µ)(0). We do not know if

this is true for arbitrary g.
Compare the line

x ES(x)

s2τ , s0τ s2

of Table 17.1 with the lines

x ES(x)

s3τ, s0τ s3
s10τ, s23τ, s20τ, s31τ, s01τ, s32τ s23

of Table 17.2. We can prove the following result, generalizing these lines: Let
2 ≤ g, i ∈ {0, 1} and consider the sets Sj = {sj, sg−j} ⊂ W for 0 ≤ j ≤ i.

Then for every element x ∈ Adm(µ)(0) of the form
(
tυ(0) · tυ(1) · · · tυ(i)

)
τ ,

where υ ∈ S({0, . . . , i}) and tj ∈ Sj for all 0 ≤ j ≤ i, we have ES(x) =
{sg−i · sg−i+1 · · · sg}.
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18. The KR stratification and the supersingular locus

Let g = 3. For x ∈ Adm(µ)(0) we want to understand the intersection
AI,x ∩ SI .

Proposition 18.1. Let g = 3 and x ∈ Adm(µ)(0). Then AI,x ∩ SI = ∅ ⇔
ES(x) = {s23}.
Proof. This follows from the results of Section 5, using equation (15.1). �

Remark 18.2. The relationship between the KR stratification and the super-
singular locus is closely related to the theory of affine Deligne-Lusztig varieties.
In [10, Prop. 12.6], Haines shows that for x ∈ Adm(µ)(0) the nonemptiness
of the intersection AI,x ∩ SI is equivalent to the nonemptiness of a certain
affine Deligne-Lusztig variety. In loc.cit. this result is stated using p-adic
Deligne-Lusztig varieties, but by [4, Cor. 11.3.5] the nonemptiness of an affine
Deligne-Lusztig variety is equivalent in the function field and the p-adic case.

We want to get a more precise statement about the intersection AI,x ∩ SI
in those cases where it is nonempty and not equal to AI,x. For this we need
the following

Proposition 18.3. Let f : X → Y be a proper morphism of algebraic varieties
over an algebraically closed field K. Let B ⊂ Y be a locally closed subset
equidimensional of dimension d ∈ N. Let A ⊂ X be a locally closed subset
with the property that there is a natural number e ∈ N such that f−1(b) ∩A is
irreducible of dimension e and dense in f−1(b)∩A for every b ∈ B(K), where
we denote by A the closure of A in X. Then f−1(B) ∩ A is equidimensional
of dimension d + e. Furthermore the number of irreducible components of
f−1(B) ∩ A is equal to the number of irreducible components of B.

Proof. We immediately reduce to the case B = Y and A = X . We may also
assume Y to be irreducible. Hence we are reduced to the statement of the
following Lemma whose proof we include for lack of reference. �

Lemma 18.4. Let f : X → Y be proper morphism of algebraic varieties over
an algebraically closed field K. Assume that Y is irreducible of dimension
d ∈ N and that the fiber f−1(y) is irreducible of dimension e ∈ N for every
y ∈ Y (K). Then X is irreducible of dimension d+ e.

Proof. Let X = C1∪C2 with closed subsets C1, C2 ⊂ X . Let f1 and f2 denote
the restrictions of f to C1 and C2 respectively. By a Corollary to Chevalley’s
Theorem, see [9, 13.1.5], the sets Fi = {y ∈ Y | dim f−1

i (y) ≥ e} are closed
subsets of Y , i = 1, 2. For y ∈ Y (K) the e-dimensional fiber f−1(y) is the
union of the closed subsets f−1

1 (y) and f−1
2 (y) and hence y ∈ F1 ∪ F2. As the

set Y (K) is dense in Y this implies that Y = F1 ∪F2 and by the irreducibility
of Y we may assume that F1 = Y . Let x ∈ X(K) be a closed point with image
y = f(x) ∈ Y (K). Then dim f−1

1 (y) = dim f−1(y)∩C1 = e and as f−1(y)∩C1

is a closed subset of f−1(y) and the latter is irreducible of dimension e, we
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get f−1(y) ∩ C1 = f−1(y) and hence C1 ⊃ f−1(y) ∋ x. This implies that
C1 = X and we see that X is irreducible. Furthermore the closed subset
{y ∈ Y | dim f−1(y) ≥ e+ 1} of Y does not contain a point of Y (K), hence it
is empty. This means that dim f−1(y) = e for all y ∈ Y . We can now apply
[9, 10.6.1(iii)] to get the result. �

We are now ready to determine the dimension of the intersection AI,x ∩ SI
for those x ∈ Adm(µ)(0) with AI,x * SI . It is clear a priori that for any such x
we have dimAI,x∩SI ≤ dimAI,x−1 = ℓ(x)−1 as this intersection is a proper
closed subset of the irreducible space AI,x, see Proposition 14.4(4). Table 18.1
shows that this inequality is in fact an equality for g = 3.

x dimAI,x ∩ SI equidimensional?
s310τ, s320τ 2 ?
s3120τ 3 ?
s2301τ 3 ?
s120τ, s312τ, s201τ, s231τ 2

√

s010τ, s323τ, s301τ, s230τ 2
√

s3010τ, s3230τ 3
√

Table 18.1. The intersections of KR strata with the super-
singular locus for g = 3.

18.5. Proof. For x ∈ {s120τ, s312τ, s201τ, s231τ} we apply Proposition 18.3 for
π with B = EOs3 and A = AI,x. It is clear from the results of Section 15.3
that the conditions on the fibers (appearing in Proposition 18.3) are indeed
satisfied. For example we have

AI,s120τ = AI,s120τ ∪AI,s12τ ∪AI,s20τ ∪AI,s10τ ∪AI,s1τ ∪AI,s2τ ∪AI,s0τ ∪AI,τ ,

hence we see from Section 15.3 that for b ∈ EOs3(F) we have

AI,s120τ ∩ π−1(b) = AI,s120τ ∩ π−1(b) ∪AI,s0τ ∩ π−1(b).

From the results of Section 15.3 we can deduce the content of Table 18.2.

ιb(π
−1(b) ∩ AI,s120τ ) ιb(π

−1(b) ∩ AI,s120τ )


0 0 0
0 0 0
0 0 0
0 0 1
1 0 0
c 1 0







0 0 0
0 0 0
0 0 0
0 0 1
1 0 0
c 1 0


 ∨




0 0 0
0 0 0
0 0 0
0 0 1
0 1 0
1 0 0




c ∈ F

Table 18.2
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Hence π−1(b) ∩AI,s120τ is irreducible of dimension 1 and dense in π−1(b) ∩
AI,s120τ . As π−1(EOs3) ∩ AI,x = SI ∩ AI,x by the results of Section 5 and
Table 17.2, our claim follows.

For x ∈ {s010τ, s323τ, s301τ, s230τ, s3010τ, s3230τ} we apply Proposition 18.3
for π with B = S3∩EOs323 and A = AI,x. It follows from Section 15.5 that the
conditions on the fibers are indeed satisfied and we have π−1(EOs323 ∩ S3) ∩
AI,x = SI ∩ AI,x by the results of Section 5 and Table 17.2.

Furthermore we have π−1(EOs3)∩AI,s3120τ ⊂ SI∩AI,s3120τ and π
−1(EOs323

∩S3) ∩ AI,s2301τ ⊂ SI ∩ AI,s2301τ and we use Proposition 18.3 and the results
of Section 15.3 and 15.5, respectively, to see that these subsets have dimension
3.

Finally let A ∈ EOid(F). Then π−1(A) ∩ AI,s310τ ⊂ SI ∩ AI,s310τ and
π−1(A) ∩ AI,s320τ ⊂ SI ∩ AI,s320τ . But these subsets have dimension at least
2 because dimK(s310τ ) = dimK(s320τ ) = 2 (see Section 15.2).

Remark 18.6. If g is even it is shown in [7, Prop. 8.12] that every top-
dimensional irreducible component of SI is an irreducible component of the
left hand side of equation (17.1). Looking at Table 18.1 we see that the corre-
sponding statement is not true for g = 3, as dimSI = 3 in this case.

Remark 18.7. It is strongly expected that the relationship mentioned in
Remark 18.2 extends to other properties of the intersection AI,x ∩ SI , x ∈
Adm(µ)(0). In particular strong evidence suggests that AI,x∩SI is equidimen-
sional of dimension n if and only if the corresponding affine Deligne-Lusztig
variety (in the function field case) is equidimensional of dimension n, n ∈ N.
In [5], Görtz and He explain a reduction method for affine Deligne-Lusztig
varieties over function fields which is completely analogous to the classical re-
duction method by Deligne and Lusztig. Using this reduction method one
sees that the affine Deligne-Lusztig varieties corresponding to the intersections
AI,x ∩ SI for g = 3 and x ∈ {s310τ, s320τ, s3120τ, s2301τ} are equidimensional.
Hence we expect that the same is true for the intersections themselves.
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