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Abstract

Gliomas are rarely curable brain tumors arising from abnormal glial cells in the human
brain which usually have a poor prognosis with a median survival rate that is less than
one year. Complex therapy approaches including surgical resection of cancerous tissue,
radio- and chemotherapy can still not ensure a complete healing of the patient and are
part of ongoing research.

Modern methods as diffusion tensor imaging (DTI) are the preferred radiological diag-
nostic instruments and allow also to reveal the specific architecture of a human brain in
a noninvasive way. Particulary for surgical treatment this is valuable information. The
physical basis of modern imaging methods is the diffusion behaviour of water molecules
within structured tissue. Water molecules diffuse faster along fibre tracts than perpen-
dicular to them. The anisotropy of water diffusion is hence related to the anisotropy
of neural tissue, especially brain white matter. Technically, DTI measures the spa-
tial diffusion of water molecules by MRI per volume element (voxel). This leads to a
symmetric diffusion tensor for each voxel, containing the full (apparent) diffusion in-
formation along six directions. Detailed knowledge of the tissue structure can be used
for mesoscopic modelling of cellular movement. This leads to kinetic partial differential
equations, which provide an appropriate framework for a motion description directly on
the cell scale. Hence, it is possible to include patient specific DTI data into a class of
multiscale models for glioma growth.

This thesis focuses on multiscale modelling of glioma growth in the human brain as
well as on usage of DTI data for patient specific simulations. Starting point on the
microscale is a differential equation for the binding dynamics of cell surface receptors to
the underlying tissue network, which is coupled to a kinetic transport equation for the
cell density on the mesoscale. Scaling techniques for the kinetic equation lead to approx-
imating macroscopic partial differential equations of advection-diffusion type, where the
coefficients contain the information from the mesoscale. The binding dynamics on the
microscale leads to a haptotactic transport term on the macroscale. Numerical simu-
lations show that haptotactic transport is responsible for the emergence of anisotropic,
fingerlike spread patterns of the tumor. The modelling of proliferative effects on the
mesoscale is based on transport equations with resting phases, which corresponds to
the go-or-grow hypothesis, which states that cells can either move or proliferate. The
corresponding macroscopic approximating equations are of advection-diffusion-reaction
type, and again the coefficients contain the tissue information from the mesoscale.
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1. Introduction

T& mavTa pei. (Everything flows.)

(Heraclitus of Ephesus)
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1.1. Introduction

Mathematical modelling can help to understand our complex environment and may give
insight into processes which are not accessible to our human sensorium. During the last
decades particularly the emerging field of mathematical biology enhanced our perception
of biological processes and systems with the aid of sophisticated mathematical models.
Especially on the molecular level modelling and simulation tools can help to understand
the complex reality and to test explanatory hypotheses, despite all difficulties in classical
experiments. The interdisciplinary field of mathematical biology aims to combine meth-
ods from different sciences as mathematics, biology, medicine, physics and informatics
to push forward human knowledge.

The term cancer summarizes a large group of diseases, which have in common that
they are complex phenomenona involving endless biochemical and biophysical processes
and subsystems. Even nowadays, our understanding of these diseases is still very lim-
ited. Mathematical cancer modelling aims to use the above mentioned interdisciplinary
approach and tries to bring together equations from mathematics, experiments from
biology and insights from clinical practice in medicine to shed light on cancer diseases.

In this thesis I will focus on a specific type of cancer, namely neoplasms within the
brain called gliomas. Gliomas are primary tumors within the brain and originate typi-
cally from the mutation of glia cells (Ware et al., 2003) and usually have a poor prognosis
(more than 97% of glioblastoma multiforme patiens die within 5 years after diagnosis
(Ohgaki and Kleihues, 2005)). Despite a long history of research these tumors are still
not certainly curable. At present the three major treatment approaches are surgery,
radiotherapy and chemotherapy, which are usually combined in a long-term treatment



1. Introduction

Figure 1.1.: Painting by Hieronymus Bosch depicting trepanation (c¢.1488-1516)

(Wang and Jiang, 2013).

One of the first documented and successfully performed surgical resections of a brain
tumor goes back to William Macewen, who performed a brain tumor removal in 1879 in
a young woman (Preul, 2005) by craniotomy. While the history of brain surgery goes
back up to the late middle ages (see the painting by the dutch artist Hieronymos Bosch,
figure 1.1') or even to neolithic, only nowadays modern imaging techniques enable reli-
able diagnosis. In this thesis I will focus on a magnetic resonance imaging based method
calledDiffusion Tensor Imaging (DTI) (Hagman et al., 2006; Descoteaux, 2008), which
gives information about the diffusion behavior of water molecules in biological tissue.
T1 pictures, obtained from DTI which provides information about the tissue density
but also allows to detect malignant tissue alterations by the ’eye-norm’. Figure 1.2(a)
shows such a T1 weighted picture for a horizontal slice of a male student’s brain. The
bright areas correspond to white matter, surrounding grey areas to grey matter (indeed,
the terms grey and white matter are due to their intensities on such medical images).

'source: http://upload.wikimedia.org/wikipedia/commons/5/55/Hieronymus_Bosch 053 _ detail.jpg



1.1. Introduction

(a) T1 weighted picture showing a horizontal slice (b) CT scan showing a neoplasm within human
of a human male’s brain. brain.

Figure 1.2.: T1 weighted pictures in medical diagnosis.

The dark domains inside the scull are mostly cerebrospinal fluid, which acts as a buffer
for the brain and provides mechanical protection. Figure 1.2(b)? shows a CT scan of
a brain tumor which altered the tissue structure and is hence detectable by its high
intensity. Moreover, diffusion tensor imaging can provide detailed information about
the local tissue structure. This will be a key point in the subsequent modelling. T will
come back to this point in chapter 3.

Besides an early detection, reliable treatment strategies for brain tumors are of high
importance for the patient. As already mentioned, surgical removal plays a key role.
Despite the usage of both medical imaging and chemical markers allowing a visual iden-
tification of cancerous tissue during surgery, the exact borderline between cancerous and
healthy tissue is hard to detect due to the invasive character of cancer cells. However,
detailed knowledge of the exact shape, extension and position of a tumor and its bound-
ary would be a great benefit in surgery planning. Personalized mathematical models can
provide complementary information about the spatiotemporal evolution of the tumor,
but embedding patient specific information into such models is not a trivial task and
still part of intensive research.

Recently, multiscale approaches for the modelling of cancer attracted more and more
interest (Deisboeck and Stamatakos, 2010; Lowengrub., 2010). Since tumor progression
is highly complex and involves processes on multiple temporal and spatial scales it is
desirable to reflect this complexity also in modelling. From a philosophical point of view
a bottom up approach is desirable, where, starting from simple biophysical principles,
mathematical linkage of the scales carries information from one level of description to

Zsource: http://upload.wikimedia.org/wikipedia/commons/5/5f/Hirnmetastase_ MRT-T1_KM.jpg



1. Introduction

the next. Typically, three levels called micro-, meso- and macroscale are involved, but
the terminology is not uniform in the literature and differs from model to model. In this
thesis, we will assign processes happening on the subcellular spatial scale as microscopic,
processes on the scale of single cells as mesoscopic and processes on the population level
as Mmacroscopic.

Starting point on the microscale will be a simple model for the binding of cell surface
receptors. Moving cells have to attach to fibres or other cells to generate mechanical
forces. Transmembrane adhesion molecules as, for instance, integrins and cadherins,
connect the cellular actin cytoskeleton to components in the extracellular matrix and
to other cells to generate these forces. For more information see section 2.4, wich is
concerned with the molecular mechanisms of glioma invasion.

An appropriate tool for the description of cellular motion on the mesoscale are kinetic
transport equations. Starting with a seminal work by Wolfgang Alt in 1980 (Alt, 1980),
kinetic models have been studied for now more than three decades. A basic assump-
tions for this description is, that small particles move on straight lines, then stop their
movement, reorientate and choose a new direction, then continue their movement. Ve-
locity changes are modelled by a turning operator describing how cells with velocity v’
switch to another velocity v. However, these results apply to the special case of bacterial
chemotaxis, and there is noattachment to a fibrous structure or to other particles. In
chapter 4 we will present some basic modelling aspects of kinetic equations.

An interesting point in multiscale modelling in general is the question, how processes
happening on the microscale affect the system’s behaviour on the macroscale. As a
first step, classical kinetic models have been extended by an additional drift term with
respect to variables on the microscale. Under appropriate mathematical conditions one
can derive approximating macroscopic equations. In the case of the cell surface receptor
dynamics we will use a parabolic scaling technique which leads to an additional hapto-
tactic?® drift term for the whole population on the macroscale.

Multiscale approaches using kinetic theory provide an explanatory advantage com-
pared to direct macroscopic modelling by partial differential equations. Typically, for-
mer models used reaction-diffusion equations and relied on an educated guess for the
diffusion coefficient, which has often been assumed to be isotropic and hence indepen-
dent from the direction, or even spatially constant (see section 2.6 for a review of the
corresponding models). These models encompass some significant shortcomings, which
can be faced by more complex multiscale models. Diffusion limits of kinetic equations
are typically partial differential equations of the diffusion-advection-reaction type, and
provide explicit forms for the diffusion tensor and drift velocity which conserve the in-
formation of the underlying modelling levels (micro- and meso-level). However, the
derivation of macroscopic limits of kinetic equations, particulary with additional drift

3Haptotaxis refers to the directed movement towards the gradient of a non soluble substance.



1.2. Organization of this thesis

terms and non-constant turning rates, is not trivial.

The major goal of this thesis is hence to bring together

e biological relevant information about both cellular movement in oriented tissue
structures as well as biophyscial and molecular aspects of glioma spread,

e patient specific data about the brain architecture obtained by DTI measurements,

e mathematical multiscale modelling starting from kinetic partial differential equa-
tions

as building blocks of personalized glioma spread models.

I will propose two models for the spread of glioma cells. The first one neglects pro-
liferative effects and focuses on the impact of receptor occupancy on the macroscopic
cell density. For this model I will show that a momentum expansion combined with a
parabolic scaling yields an advection-diffusion equation with an additional haptotactic
drift term on the macroscale. Numerical simulations will indicate that haptotaxis is
responsible for the emergence of anisotropic spread patterns.

A more complex model based on a go-or-grow assumption for glioma cells will lead to
an advection-diffusion-reaction equation on the macroscale. Again, a haptotactic term
resulting from cell receptor dynamics on the microscale will cause anisotropic spread.
Numerical simulations will show qualitatively similar behaviour to the former model, but
proliferation conserves steepness of the gradients and hence produces patterns which are
more ’localized’. Also, proliferation obviously increases the propagation speed of gliomas
significantly.

However, these models lead to a bundle of unsolved questions rendering a lot of future
work necessary which will be adressed in the discussion.

1.2. Organization of this thesis

Figure 1.3 visualizes the organization of this thesis. Part II starts with some background
information about brain anatomy as well as brain tumors and the underlying molecular
mechanisms in chapter 2, basic concepts of diffusion tensor imaging in chapter 3 and a
brief overview on kinetic models for cellular movement in chapter 4.

Chapters 2 and 4 serve as basis for the subsequent modelling chapters 5 and 6, which
provide multiscale models for glioma spread with and without proliferation in part III.
Numerical aspects will be treated in part IV. Starting with a short chapter on the dis-
cretization of the the macroscopic evolution equations obtained analytically in chapters
5 and 6, the extraction of model parameters from DTI data will be explained in chapter
8, which uses some facts from the background chapter 3. Chapter 9 presents the simu-
lation results for the evolution equations.

Concluding, chapter 10 discusses the results and particulary draws conclusions about
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modelling aspects and the biological background. Some ideas for future work will also

be discussed.
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Figure 1.3.: Organization of this thesis.
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2. Glioma growth in the human brain

If only we could pull out our brain and use only our eyes.

(Pablo Picasso)

Contents
2.1. Grey and white matter in the human brain . . . . . ... .. 11
2.2, Braintumors . . . .. . ... i e e 12
2.3. Therapy and treatment . . . . . . ... ... ... ....... 14
2.4. Molecular mechanisms of glioma invasion . . . ... ... .. 14
2.5. What mathematicscando ... ... .............. 16
2.6. Review of mathematical models for glioma . ... ... ... 17

2.1. Grey and white matter in the human brain

The human brain is a complex and highly dynamic biological system. Billions of neurons
control the central nervous system and the peripheral nervous system, and thus all of
our activities. It can be estimated that a typical human brain consists of approximately
10" neurons. Each neuron itself has a central part (soma), cellular extensions with
many branches (dendrites), a structure called axon and an axon terminal (see fig (2.2)).
Axons are often called nerve fibres, and bundles of myelinated axons are called fibre
tracts (Descoteaux, 2008).

Main components of the human brain are white matter, grey matter, blood and cere-
brospinal fluid (CSF) (see figure (2.1(a)) and (2.1(b))). White matter is the main com-
ponent of the central nervous system and is composed of glia cells and axonal nerve
fibres. Since these are often myelinated, we see the distinctive color. Bundles of myeli-
nated axons connect different grey matter areas of the brain and are hence important for
all brain functions. It has been found that humans have a total myelinated fiber length
of more than 150,000km at the age of 20 (Marner et al., 2003).

In contrast to white matter, grey matter mostly consists of neural cell bodies and can
be found at the surface of both cerebral hemispheres. Grey matter is involved in nearly
all higher brain functions and usually an injury of this tissue leads to severe functional
damage (Blumenfeld, 2010). Besides neurons, glia cells are the second major component
of human nervous tissue. Glia cells are responsible for the electrical isolation of nerve

11



2. Glioma growth in the human brain

(a) T1 picture of a human brain slice. (b) Segmentation of the slice.

Figure 2.1.: Visualization of a horizontal brain slice.

cells and stabilize them mechanically. We can distinguish several types of glia cells
like astrocytes, the most abundant type of glial cells, oligodendrocytes, radial glia oder
Schwann cells. At least half of all brain tumors arise from glia cells. These tumors are
called gliomas. For more information see (Blumenfeld, 2010; Abrey, 2011).

4.

Figure 2.2.: Schematic of a neuron. 1. dendrites. 2. nucleus. 3. axon terminal. 4.
soma. 5. Schwann cell. 6. myelin sheat.

2.2. Brain tumors

Brain tumors are neoplasms within the brain. Many different types of tumors can be
distinguished, each of them with its own characteristics (DeAngelis, 2001), but originate
in many cases from the mutation of glia cells (Ware et al., 2003). These tumors can
be devasting for the patient, since they are difficult to treat and usually have a poor
prognosis (for instance, more than 97% of glioblastoma multiforme patients die within

12



2.2. Brain tumors

Contrast

Figure 2.3.: CT scan of a WHO grade II glioma. Picture from wikimedia.org

5 years after diagnosis (Ohgaki and Kleihues, 2005)). Brain tumors can be primary or
secondary tumors. In the first case, the tumor originates from a primary finding site
in the brain itself. In the second case, the tumor is secondary because of metastasis.
Cancer cells have the capability of invading blood or lymph vessels and circulate trough
the whole lymphatic or blood vessel system. After extravasation they continue to grow,
proliferate and build up secondary tumors (Geho et al., 2005). The most frequent
types of brain tumors are gliomas (65% incidence (Ohgaki and Kleihues, 2005)) and
meningiomas (20% incidence (Park et al., 2009)).

Most brain tumors are symptomatic, hence in most cases alterations in the patient’s
behaviour and perception give a hint to a brain tumor. Frequent symptoms are headache,
caused by a higher intracranial pressure, vomiting and altered state of consciousness.
As part of the diagnosis modern imaging methods play a central role in the detection of
brain tumors.

Common high-resolution methods like computed tomography (CT) or especially mag-
netic resonance imaging (MRI) based methods like diffusion tensor imaging (DTI) pro-
vide powerful noninvasive tools in the detection of brain tumors (Sundgren et al., 2004).
Despite the progression of those methods, the definitive diagnosis of a tumor can only
be confirmed by histological tissue examination. This can be obtained by brain biopsy,
for instance, and is necessary for an optimal treatment strategy. Epidemiological studies
help to understand the worldwide occurrence and spread of brain tumors. It has been
shown that in the western world (including North America, Europe and Australia) the
overall mortality rates from nervous system tumors are approximately 4-7 deaths per
100.000 per year for men and 3-5 per 100.000 per year for women (Ohgaki and Kleihues,
2005).

13



2. Glioma growth in the human brain

The causes and risk factors for primary brain tumors are still part of ongoing research,
and there is little agreement about their nature and magnitude (Wrensch et al., 2002).
Many factors have been studied in relation to the risk of primary brain tumors, start-
ing with environmental factors as tobacco smoke exposure, drugs and medications, the
ionizing radiation of cell phones up to family history of brain tumors and genetic factors.

2.3. Therapy and treatment

Once a high grade glioma has been diagnosed, an efficient therapy is crucial. At present
there are three major treatment approaches: surgery, radiotherapy and chemotherapy,
which are usually combined in a long-term treatment (Wang and Jiang, 2013).

Surgery refers to the full or partial resection of cancerous tissue, where detailed knowl-
edge of position, shape and extent of a tumor is essential for a successful resection.
Despite enormous advances in neurosurgery during the last decades, this method encom-
passes some significant shortcomings. Destruction of healthy tissue or the recurrence of
tumor growth at the resection boundary are, for instance, problems which are still.

In radiotherapy (Laperriere et al., 2002) the tumor is irradiated by beta oder gamma
rays leading to the full or partial destruction of the DNA of cancer cells. This typically
suppresses mitosis (cell division), and often leads to apoptosis (programmed cell death)
of tumor cells. The impact on normal tissue is not as grave as on cancerous tissue.
Hence, with an optimal dose it is possible to destroy more than 90% of cancer cells with
minimal side effects.

Chemotherapy refers to cancer treatment by special drugs which destroy cancer cells but
do not damage healthy cells (Kaufmann and Earnshaw, 2000). It has been shown that
additional chemotherapy significantly improves the median survival rates of patients
compared to patients which are treated by radiotherapy alone (Stupp et al., 2005).
However, virtually all high grade gliomas recur sooner or later (Wang and Jiang, 2013).
Nevertheless, modern treatment strategies improve the median lifespan of patients and
make an almost normal life possible.

2.4. Molecular mechanisms of glioma invasion

Cancer is a complex phenomenon involving many intra-, inter- and extracellular pro-
cesses. Most of them are still not completely understood yet and are part of ongoing
research (Geho et al., 2005; Ware et al., 2003; Visted et al., 2003; Hatzikirou et al., 2012;
Hanahan and Weinberg, 2011). Since this work is concerned with glioma growth in the
human brain, we will focus on the interactions of cancer cells with the underlying fibre
network and on the binding dynamics of transmembrane receptors on the cell surface,
which have both been shown to be key factors in glioma invasion (Visted et al., 2003).
Proliferative effects will also be taken into account. Subsequently, we will briefly sum-

14



2.4. Molecular mechanisms of glioma invasion

marize some important molecular mechanisms which are important for modelling.

Cellular movement is a complex process involving modification of the cell’s shape by
reorganization of its actin cytoskeleton, attachment to the surrounding fibre structure
in the extracellular matrix in order to generate forces, as well as binding processes on
the cell surface which trigger different signal cascades leading, inter alia, to polarization
of the cell (Demuth and Berens, 2004; Friedl and Broecker, 2000). The extracellular
matrix (ECM) is a part of animal tissue which provides mechanical stability to the cells.
The ECM is composed of fibrous proteins, proteoglycans and adhesive glycoproteins
as soluble matter. Moving cells bind to protein fibres in the ECM in order to gener-
ate traction forces to pull themselves forward (Demuth and Berens, 2004; Goldbrunner
et al., 1999). This happens via focal adhesions, which connect the ECM proteins to the
actin cytoskeleton in the cell interior. Furthermore, it has been shown in experiments,
that glioma cells follow myelinated white matter fibre tracts for the invasion (Giese and
Westphal, 1996).

The cytoskeletal model for cellular movement states that in the front of the cell rapid
actin polymerization is responsible for the generation of a motile force. In this process
soluble globular actin (G-actin) is transported to the front end of the cell where it is
polymerized to the filamentous actin (F-actin) which builds up the rigid structure called
cytoskeleton. Transmembrane glykoproteins called integrins attach to the surface on
which the cell is crawling, hence besides internal processes like actin cytoskeleton dy-
namics and signaling, the dynamics of cell surface receptors is of high relevance (Geho
et al., 2005; Ware et al., 2003). We focus on the integrin superfamily which is closely
related to cancer invasion (Moschos et al., 2007) and is responsible for cell-matrix inter-
actions as well as cell-cell interactions (Desgrosellier and Cheresh, 2010).

Integrins are heterodimeric proteins, consisting of two subunit chains (called « and

Actin filament

Membrane

Collagen fibre

Integrin

Figure 2.4.: Integrins (green) binding to collagen fibres (blue) in the extracellular matrix.
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2. Glioma growth in the human brain

S chain). Currently, 18 different « and eight § subunits are known, which can build
up 24 different integrins (Hynes, 2002). The interaction of these molecules with several
ECM molecules enable cells to adhere, to spread and to migrate since they connect all
interior components of the cell to their extracellular environment. Since integrins are
also responsible for the transduction of extracellular information into the cell interior
they also influence cell proliferation. Uncontrolled proliferation is one of the main char-
acteristics of tumor growth, hence mathematical modelling has to take this process into
account. In experiments with cultures of glioma cells it has been shown that cells either
move or proliferate, which means that movement and proliferation are mutally exclusive
processes (Giese et al., 2003). This is known as the migration/proliferation dichotomy
or go or grow mechanism (Hatzikirou et al., 2012). We will take this paradigm into
account in our modelling.

Of course there are many other processes which are assumed to be important for
glioma invasion, which have been neglected in this work but have been investigated in
other studies. The following processes will not be taken into account in this work, but
would be interesting for future investigations:

e a class of enzymes called proteases which degrade the ECM in a proteolytic process
have been shown to play a crucial role in glioma invasion (Rao, 2003; Binder and
Berger, 2002).

e Intracranial tumors lead to a mechanical deformation of adjacent tissue.
e Metastasis leads to the formation of secondary tumors.

e Angiogenesis and vascular growth should be taken into account if one observes a
tumor over a long period of time.

This list is, of course, not complete but only reflects just some interesting further is-
sues. However, since mathematical modelling is limited and cannot represent the whole
complexity of the biological real world one has to focus on some key aspects.

2.5. What mathematics can do

Commonly, modern imaging methods are used for both diagnosis of brain tumors as well
as for treatment planning. So, is there a need for complex mathematical models at all?
There is. A significant shortcoming of imaging methods is that they cannot reveal the
highly invasive borderline of the tumor. This often leads to an incomplete removal of
the cancerous tissue, and the tumor will start growing again after surgical treatment.
Detailed knowledge about position, shape and extent of the invasive borderlines of the
tumor could solve this problem. Resection of the tumor according to that exact informa-
tion would avoid regrowth and would help to destroy just a minimal amount of healthy
tissue at the same time. Mathematical multiscale modelling in combination with the use
of modern imaging data can help to provide such detailed information. Patient specific
models including personalized information about the neuronal tissue structure could be
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used as a supplementary tool besides imaging methods to plan surgical removal of the
tumor as well as radiotherapy.

Sometimes the question arises, what we would call a 'good” model for gliomas. This
question is hard to answer and is also a question of viewpoint (that means, for instance,
if one is interested in a deeper understanding of the involved biochemical and biome-
chanical processes or just in the visual reproduction of patters which look similar to
'real’” brain tumors). Nevertheless, we can collect some characteristics which a useful
model should achieve.

e Physical principles
Good biomathematical modelling relies on appropriate physical principles. Most
phenomenologically motivated macroscopic models rely on an educated guess for
some important expressions as, for instance, the choice of coefficients in advection-
diffusion-reaction equations although these terms could be derived from more basic
biophysical principles.

e Multiscale approach
Cancer is a complex phenomenon. Mathematical models should take this cir-
cumstance into account and need to be capable to represent a sufficient level of
complexity. Multiscale approaches are promising, since they can address multiple
biologically relevant processes on different spatial and temporal scales.

e Personalized modelling
It is important to take the patient’s tissue structure into account. If mathematical
modelling aims at providing models and methods which should be able to find
their way to clinical applications it is necessary to find ways to use patient specific
data efficiently.

e Model validation
The impossibility of validation is often a weak point of mathematical models. It
is usually hard to get access to suitable data, and it is often harder to compare
simulation results of the model to those data. Nevertheless, a good model should
offer (at least in principle) the possibility of validation.

However, this list is not complete, but shows that modelling has to be more than writing
down an equation and perform some numerical simulations. Instead, one has to focus
back on the biological problem if mathematics really wants to be useful for applications.
In the following section we review some existing models for glioma growth.

2.6. Review of mathematical models for glioma

During the last years a large variety of models for various aspects of cancer has been
proposed and analyzed. We will not review the full spectrum here but focus on work
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2. Glioma growth in the human brain

concerned with brain tumors and survey the most popular model classes including dif-
ferential equation models as well as descriptions based on cellular automata.

Early works concerned with glioma spread proposed macroscopic models which employ
reaction-diffusion equations for a tumor cell density p(¢,x) of the form

Op =V - (DrVp) + g(p), (2.1)

where the diffusion coefficient D7 can be a constant, a space-dependent scalar function
or a tensor and ¢ is a function describing the proliferation behaviour'. Models of this
type focusing on diffusion and proliferation have been studied extensively during the
last years (Cruywagen et al., 1995; Tracqui, 1995; Tracqui et al., 1995; Swanson et al.,
2003).

A significant shortcoming of these approaches is that they do not fit tumor growth
patterns observed in biology. There are two key points. The first one is that diffusion
is assumed to be constant, which is quite unrealistic with respect to the high spatial
inhomogeneity within the brain. The second one is that it is questionable if the transport
of cells is purely diffusive, and active transport processes like advection can be neglected.
However, these models appear not sufficiently realistic with a view on the complex neural
fibre structure in human brains which lead to anisotropic, finger-like spread patterns.
The usage of more complicated reaction-diffusion-advection equations of the form

0ip =V - (Dr(x)Vp + ur(x)p) + g(p), (2.2)

with nonconstant diffusion coefficient Dy and drift velocity ur was the next step in
modelling brain tumors.

Obviously, the architecture of the underlying tissue structure cannot be neglected.
This leads to the idea of personalizing tumor growth models by using patient specific
DTI data. As shown in section 3.5, DTI data can provide information about the orien-
tation of neuronal fibre tracts for each voxel, and it seems adequate to use this fact in
mathematical modelling.

Among the first, Swanson et al. studied the impact of imaging data on glioma modelling
(Swanson, 1999; Swanson et al., 2000). There, the authors used two different diffusion
coefficients D (X)white and D(X)grey in equation (2.1) for brain white, respectively brain
grey matter, but assumed diffusion to be constant within each regime. Since it has been
observed that cells diffuse faster in white matter, they related D(xX)wnite and D(X)grey
by D(X)white = 5D(X)grey. They used horizontal slices of T1 weighted images in order to
obtain patient specific domains for the numerical treatment. However, numerical sim-
ulations showed slightly anisotropic growth patterns, but obviously the anisotropy was
predominantly caused by the geometry of the simulation domain. Similar results have
been obtained by Suarez et al. from a more clinical point of view (Suarez et al., 2012).

'typically, logistic growth is employed.
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2.6. Review of mathematical models for glioma

As a next step, one could introduce diffusion constants which do not just depend
on the spatial position, but are tensor valued functions which are capable to represent
directional dependence of diffusivity. Jbabdi et al. introduced tensor-valued diffusion
coefficients for the modelling of glioma spread (Jbabdi et al., 2005). Starting with
a reaction diffusion equation of the form (2.1) multiples of the water diffusion tensor
obtained from DTI measurements have been used as tumor diffusion tensor in their cal-
culations to address the anisotropy. The resulting numerical simulations showed slightly
anisotropic behaviour in comparison with the former mentioned simpler models. How-
ever, this choice of the diffusion constant corresponds, more or less, to an educated
guess, and deeper insight into derivation of appropriate forms for the coefficient would
be favourable. Similar macroscopic models have been also proposed by (Clatz et al.,
2005; Bondiau et al., 2008; Konukoglu et al., 2010).

Kinetic models (see chapter 4) are powerful tools for the derivation of advection-
diffusion equations from simple biophysical principles. Hillen proposed in (Hillen, 2006)
a kinetic model which is capable to include local tissue information on the mesoscale and
yields an approximating advection-diffusion equation for the tumor cell density on the
macroscale. The diffusion and advection constants depend on the local tissue structure,
and can be computed explicitly. In (Painter and Hillen, 2013), the authors combine
this mesoscale approach with the usage of DTI data for a personalized simulation of
glioma growth. It becomes apparent, that the anisotropy of neural tissue influences
the anisotropic spread of tumor cells, which is visible in their numerical simulations.
Though, the anisotropy did not show the characteristics which were known from clinical
practice.

In the previous models it has been assumed that cellular movement can be described
as predominantly diffusive process, despite the fact that cells move biased towards pre-
ferred directions. More complex multiscale models extended existing kinetic models, and
introduced another scale into the modelling. In (Kelkel and Surulescu, 2011, 2012) the
authors start on the level of cellular receptor binding, and describe the movement of can-
cer cells in tissue networks. A macroscopic limit of a simplified model has been derived
in (Engwer et al., 2013), and numerical simulations indeed showed highly anisotropic
growth patterns, which occured due to an additional drift term resulting from the cell
surface receptor dynamics.

Another modelling point of view focuses on cellular automata based descriptions,
which are widely used for the modelling of biological pattern formation (Deutsch and
Dormann, 2005). Basically, a cellular automaton is characterized by four elements: a
lattice of cells or nodes, a set of states for each element of the lattice, a characterization
of the neighborhood of each lattice element as well as a transformation rule which reg-
ulates the transitions in the state space for each time step. In this discrete approach,
cancerous cells can invade their neighbours with a certain probability in each time step,
leading to the spatial spread, where the emerging patterns are determined by the tran-
sition rules. A typical cellular automata model for glioma growth has been proposed in
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2. Glioma growth in the human brain

(Aubert et al., 2006), where the authors presented simulation results for a 2d automa-
ton on a hexagonal lattice. However, although this individual based approach can be
accessed relatively easy and enables the implementation of cellular behaviour via simply
transition rules, it is not clear how to use personalized data in this context.

Glioma models still face a lot of open problems, and modelling will become more
and more complex. Although multiscale approaches are promising, recent models still
neglect plenty of biologically relevant processes. A good review of glioma models can
also be found in (Hatzikirou et al., 2005). Some ideas for future work in this field will
be discussed in chapter 10.
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3. Diflfusion tensor imaging

If your pictures aren’t good enough, you aren’t close enough.

(Robert Capa)

Contents
3.1. Medical imaging . . ... ... ... ... .00 0000, 21
3.2. Diffusion tensor imaging . .. ... ... ... . 0000, 21
3.3. Data used in thisthesis . . . . .. .. .. ... ... 0.0, 23
3.4. Representation of DTI Data . . . . . . ... ... ....... 24
3.5. Diffusion tensor imaging and neuronal tissue structure . . . 26

3.1. Medical imaging

Medical imaging helps to provide images of the human body in a noninvasive way.
These techniques play a crucial role in diagnosis and treatment of many human diseases
and provide detailed information about anatomical and physiological characteristics of
a patient. A large spectrum of methods is available, from radiography over tomography
and ultrasound up to magnetic resonance imaging, each with its own specialization. In
this work we will focus on diffusion tensor imaging (DTT) which we will outline below.The
following sections are partially adapted from (Engwer et al., 2013).

3.2. Diffusion tensor imaging

A diffusion constant does not contain any directional information, and is hence not fully
appropriate for the description of diffusion in directed biological tissues. This led to the
development of diffusion weighted imaging (DWI). Around 1985, Wesbey et al. (Wes-
bey et al., 1984a,b) made the first DWI acquisitions, but these were not appropriate
for clinical practice. LeBihan et al. (LeBihan et al., 1986) were the first performing a
brain DWI acquisition in vivo. Moseley later improved DWI by taking multiple gradient
directions into account (Moseley et al., 1990).

This led to Diffusion tensor imaging (DTT), which is nowadays the preferred radiologi-
cal method to get information about the cerebral tissue structure of the human brain in
a noninvasive way and has several applications in clinical practice (Sundgren et al., 2004).
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3. Diffusion tensor imaging

Figure 3.1.: MRI device. Picture by courtesy of Carsten Wolters, Institute for Biomag-
netism and Biosignalanalysis, University of Miinster.

DTI is a variant of diffusion weighted magnetic resonance imaging (DW-MRI). Mose-
ley observed that the apparent diffusion of water molecules within brain white matter is
highly anisotropic and assumed that the diffusion behaviour of water molecules within
structured tissue also contains information about the tissue architecture itself. Hence,
these methods relate the anisotropy of water diffusion to the anisotropy of neural tissue,
particulary of brain white matter (Jellison et al., 2004).

In the early 1990ies, Basser et al. proposed a tensor model that is capable to repre-
sent anisotropic aspects of diffusion (Basser et al., 1992, 1993; Matiello and LeBihan,
1994a,b). Here, the diffusion pdf of water is approximated by a tensor model, where the
tensor is assumed to be symmetric and positive definite. The model is still Gaussian but
it has six degrees of freedom instead of one. The diffusion of water molecules is assumed
to be Brownian in an isotropic medium, that means there is no directional dependence
of diffusion. In contrast, in a fibrous or structured environment water molecules dif-
fuse faster along the structure. This directional preference causes the anisotropy, and
is hence the physical basis for DTI. These ideas led to diffusion tensor imaging in its
contemporary form which is capable to measure the anisotropic diffusion properties of
biological tissues.

For more details about the physical and historical background background of diffusion
see chapter 4.2 of (Descoteaux, 2008; Hagman et al., 2006), for a review of mathematical
aspects see (Lenglet et al., 2009)

Technically, DTI measures the spatial diffusion of water molecules by magnetic res-
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3.3. Data used in this thesis

(a) Diffusion behaviour per volume element (b) Representation of diffusion tensor data by an
(voxel). ellipsoid.

Figure 3.2.: Diffusion tensor imaging measures the spatial diffusion of water molecules
by MRI per volume element. This yields a symmetric apparent water diffu-
sion tensor which represents the directional dependent diffusivity of water
molecules (a). Since there is no direct intuitive access to data in tensor
form, ellipsoids can be used to visualize data in tensor form. Fig. (b) shows
the representation of the tensor by an ellipsoid whose axes are scaled with
the tensor eigenvalues \1(x), A\2(x) and A3(x).

onance imaging per volume element (volumetric pixel). This leads to a symmetric
diffusion tensor
dpo (%) dyy(x)  dyz(x)
D(x) = [ dya(x) dyy(x) dys(x)
A(%) doy(x) dea(x)

for each voxel (see figure 3.2(a)), containing the full (apparent) diffusion information
along six directions (Hagman et al., 2006). For each voxel, the orientation of neural fibre
tracts is of great interest. In this discrete and Cartesian view of the brain each voxel
has a volume of less than one mm?, hence a typical size of a DTI data set is of order 10°
- meaning we need millions of tensors to represent the tissue architecture of a human
brain. Since we assumed that the diffusion is Gaussian this approach is not capable
to resolve multiple fibre crossings in a voxel and is hence still not optimal. Recently,
improved high angular resolution imaging techniques tried to solve this problem. We
will come back to this issue later.

3.3. Data used in this thesis

DTI data used in this thesis has been provided by courtesy of Carsten Wolters!. The data
comprises apparent diffusion tensor values for a Cartesian head grid of size 117x124 x 142
voxels as well as a segmentation distinguishing white and grey matter regions from bones,
cords and cerebrospinal fluid. The computational domain €2 used in the numerical sim-
ulations is given by the union of grey and white matter regions.

Institute for Biomagnetism and Biosignalanalysis, University of Miinster
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3. Diffusion tensor imaging

In several preprocessing steps the data has already been cleaned up, including, for in-
stance, removal of singular voxels. The data was provided in the proprietary Matlab
format. The tensor glyph visualizations in this section have been produced with the
visualization tool SciRun. I thank Felix Lucka? for the introduction into this software
system.

3.4. Representation of DTI Data

DTI measurements lead to tensor data for each voxel of the observed human brain. Since
we have no direct intuitive access to data in tensor form, it is necessary to visualize the
contained information in some way. Several methods have been developed to uncover
the anisotropy of a diffusion tensor. In general, there are two main approaches: either
one uses scalar indices as a measure of anisotropy or geometric objects called tensor
glyphs which encode the anisotropic structure of a tensor by, for instance, ellipsoids or
peanuts. We will discuss these two major approaches in more detail in the following.

3.4.1. Scalar indices: fractional anisotropy

Fractional anisotropy (Pierpaoli and Basser, 1996; Beppu et al., 2003) is a scalar value
between zero and one, calculated by the eigenvalues of the apparent diffusion tensor. A
value close to one corresponds to a high anisotropy (that means, a strong preference of
a specific direction), whereas a value close to zero corrensponds to the nearly isotropic
case.

Since the diffusion tensor is assumed to be symmetric, it can be diagonalized. After
the process of diagonalization we obtain a diagonal matrix containing the eigenvalues
A (), A2(z), A3(x) on its main diagonal. Since the diffusion tensor depends on the posi-
tion x, the fractional anisotropy index (FA) is then defined per voxel by

VBV = X2 Qe = X2+ (g — A2
V2 VAN

with \ = W A typical fractional anisotropy map of a human brain can be seen in
fig.(3.3(c)), where the FA-index has been plotted for a horizontal slice of a human male
brain.

However, the fractional anisotropy index contains no directional information about the
fibre tracts.

FA(x) (3.1)

3.4.2. Tensor glyphs: ellipsoids and peanuts

Another visualization technique is the representation of a tensor by geometric objects
called tensor glyphs (Kindlmann and Westin, 2006). These glyphs encode the information

2Institute for Biomagnetism and Biosignalanalysis, University of Miinster
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3.4. Representation of D'TI Data

(a) Representation of diffusion (b) The directional distribution (c¢) Fractional anisotropy index
anisotropy by ellipsoids. function 6 — 6D(x)6. plotted for a horizontal slice of
a human brain.

Figure 3.3.: Visualization of tensor imaging data.

of a tensor in more detail than a scalar index does. Common glyphs are ellipsoids and
peanuts.

Let vq, vy and vz be eigenvectors and i, Ay and A3 the corresponding eigenvalues. We
can then write

dpz(X)  dyy(x) dys(x) Do A 000 1
D(x) = | dya(x) dyy(x) dy(x) | = V1 v2 V3 0 X O cee Vo
dzx (X) dzy (X) dzz (X) O 0 )\3 ... V3

Let now D denote the diagonal matrix on the right side. The diffusion ellipsoid is given
by the 1-level sets of 8/D~1f, that means as the surface defined by

Hence, the 1/)\; indicates the diffusivity in direction v;. In the case of isotropic tis-
sue, for instance, where no direction is preferred by the diffusing water molecules, the
corresponding ellipsoid is just a ball, since in this case approximately A\; = Ay = A3
holds. If the tissue is strictly aligned, there is one mean direction of diffusion, and this
information is also contained in the diffusion tensor. In this case, the corresponding
ellipsoid is cigar-shaped. See also figures (3.4(a))-(3.4(i)) for the connection between
tissue architecture and diffusion ellipsoids.

Instead of ellipsoids one can also use objects called peanuts for the visualization (see
fig. 3.3(b)). These arise, when we look at the directional distribution function given by
S" ! 3 0+ 0'D(x)0 € R. The corresponding object contains not the same information
as the ellipsoid. For each direction 6, given by a point on the unit-sphere S"~!, a peanut
represents the diffusivity along this direction.
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3. Diffusion tensor imaging

3.5. Diffusion tensor imaging and neuronal tissue
structure

The orientation of neural fibre bundles within brain white matter is of great interest in
the prognosis of glioma spread in the human brain. Tractography (Descoteaux, 2008;
Descoteaux et al., 2009; Fernandez-Miranda et al., 2012) is concerned with the identi-
fication of crossing fibre bundles in a noninvasive way, using MRI based imaging data.
Currently, most methods use a Gaussian tensor model to characterize the probability
density function of water molecules in order to obtain the orientation distribution func-
tion of neural fibres. From the mathematical point of view one is interested in the ratio
of fibres which have orientation 6, where 6 can be any point on the unit sphere S"~!.
The tensor model relates the principle diffusion direction of water molecules to the main
orientation of fibres. Although this approach gives some rough information about the
local tissue structure within a brain, the tensor model assumption encompasses some
significant shortcomings. Particularly the fact that only one single fibre main direction
per voxel can be represented is very limiting, since there can be crossing or splitting fibre
bundles in each voxel as well. To examine the relation between water diffusion data and
the actual fibre orientation distribution function is still challenging.

Personalized multiscale modelling of glioma growth requires information about the
patients’ local tissue structure. In this work I make the simplifying assumption that
the relationship between water diffusion tensor data and the fibre orientation function
can be represented by a simple mathematical expression, although this assumption has
not been verified yet (otherwise the field of tractography would be obsolete). In section
5.4 possible choices for the relation of the water diffusion tensor Dy, and the local fibre
distribution ¢ will be discussed. The most intuitive approach is, to use a directional
distribution function of the form

q(x,0) =

n
S 1] tr Dy (x)

0' Dy (x)0, (3.2)

which gives for each position x the ratio of fibres which have orientation 6. This ex-
pression involves for each space point the according values Dy, (x) of the apparent water
diffusion tensor. I will come back to this point later.

However, the tensor model has often been criticized for being too simple because of the
small directional resolution. Recently developed methods in tractography provide more
powerful methods for the evaluation of neural fibre tracts, and it could be promising
for the future to investigate the impact of those methods to the multiscale models used
in this work. So called high angular resolution diffusion imaging- techniques as, for in-
stance, Q-ball imaging (Tuch, 2004, 1996; Tuch et al., 2003) or analytical Q-ball imaging
(Descoteaux, 2008) make it possible to resolve multiple fibre crossings within one single
voxel. Recently, probabilistic methods have also been investigated (Descoteaux et al.,
2009).
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(b) One directional alignment (c) Two crossing fibre tracts.
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Figure 3.4.: Relation of local tissue orientation and water diffusion.
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4. Cellular movement and kinetic
transport equations

Inequality is the cause of all local movements.

(Leonardo Da Vinci)

Contents
4.1. Biomathematical modelling on multiple scales . . . ... .. 29
4.2. Mesoscopic and macroscopic descriptions of movement . . . 30
4.3. Existence of asolution . ... ... ... ..., 32
4.4. Cellular movement in tissue networks . . ... ... ... .. 33
4.5. Previous work in the field .. ... ... ............ 35

4.1. Biomathematical modelling on multiple scales

Biology can be characterized as a natural science which is concerned with the study of
life and living organisms. This involves a large variety of phenomena and systems, each
of them with important features on multiple spatial and temporal scales. Biochemical
processes inside a single cell happen within milliseconds in a spatial range of microme-
ters, whereas some organisms reach lifespans of more than one hundred years! or even
thousands? of years or grow to a size of several square kilometers®. Mathematical mod-
elling of those systems faces the challenge to address all involved scales at the same time.
If we focus, for instance, on mathematical modelling of tumor growth, a large variety of
processes is relevant from the biological point of view as shown in section 2.4. Naturally
the question arises how to link these scales mathematically in order to obtain consistent
models (see figure 4.1).

In the following sections we will describe some multiscale modellings aspects which are
based on kinetic transport equations and focus on cellular movement.

!Like the Galapagos giant tortoise Chelonoidis nigra, see (Caccone et al., 2002).

2The oldest tree in the world is a specimen of the species Great Basin Bristlecone Pine Pinus longaeva,
which is located in the White Mountains of California and has an age of more than 5000 years (Moore
et al., 2008).

3Colonies of the fungus Armillaria ostoyae have a size of several square kilometers (Berube and
Dessureault, 1988).
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Figure 4.1.: Multiple scales in the modelling of cancer. Starting with molecular dynamics
of cell surface receptors one also has to consider the behaviour of single cells
up to properties of a tumor on the population scale. The aim is to link the
different scales.

4.2. Mesoscopic and macroscopic descriptions of
movement

If we observe systems of interacting biological entities, there are at least two possible
major modelling approaches: one can either think on the macroscopic population level,
or on the mesoscopic individual level. The first option gives a mean field view on a
whole population, where we lose information about the single entity on the one hand
but yield as a trade off a good overall description of the whole system on the other hand.

The second option offers the possibility to take individual behaviour of single entities
into account. The corresponding (mesoscopic) models are in general more complex than
(macroscopic) mean field models, but enable modelling in a more detailed fashion. In
many cases it is possible to find a connection between the mesoscopic (individual based)
view and the macroscopic (population based) view. If we know the behaviour of all
single particles in our system, we can make some prediction about the whole popula-
tions’ behaviour. In the following, we will model cellular behaviour by kinetic transport
equations. The idea to use these equations for the modelling of biological systems arose
in the 1980s, where it started with two seminal works by Wolfgang Alt (Alt, 1980, 1981).
Further works during the next decades enlarged the theory and its applications (Othmer
et al., 1988; Hillen and Othmer, 2000; Othmer and Hillen, 2002).

One main assumption in the kinetic framework is, that cells perform a velocity jump
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process while moving. This means that cells move straightforward on a line for a certain
time, then stop and change their direction, possibly due to environmental cues, turn and
move forward again (see fig. 4.2). The rate A which describes the frequency of velocity

Figure 4.2.: Sketch of a cell performing a velocity jump process. The cell follows a
straight line in the direction of its velocity vy, then chooses a new direction
of movement and continues its movement in direction vs and so on.

changes is called turning rate and is closely related to the mean run time, which is given
1

by the inverse ;. Biological experiments have shown that turning rates of cells differ
from cell type to cell type. It is also assumed that the time for the reorientation of the
cell is short compared to the mean run time.

We hence assume that cellular movement can be described by a velocity jump process
(Poisson process) and observe the density p(t,x,v,y) of cells with velocity v € V' C R”
and microscopic state y € Y C R! at position x € R and time ¢. Typically, V is assumed
to be symmetric of the form V = [sy, s3] x S"~1. In the following we will assume without
loss of generality that cell speed is constant and that hence V is of the form V = sS"~1.

This leads to kinetic models with additional internal variables of the form

Op+ Vs - (vp) + Vy - (Gp) = —A(y)p + /V A K@y, V)pv)dv'.  (41)

Here, Lp := —\(y)p + [, My)K(x,v,v')p(v')dv' is the turning operator which models
the velocity changes of the cells due to contact guidance, environmental cues etc. A(y)
is the turning rate which we assume to be dependent on the microscopic state y of a cell.
Furthermore, K(x,v,Vv’) is called turning kernel which should satisfy the distribution

property
/ K(x,v,v)dv =1.
1%

The kernel K can be seen as the likelihood of a cell moving with velocity v’ to switch
to the new velocity v after its reorientation. The variable for microscale dynamics y
(modelling, for instance, protein concentrations within the cell or receptor dynamics on
the surface) is given by a system of ordinary differential equations

d

-y =Gly, Q). (4.2)
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These processes depend usually on some macroscopic concentration of some substance
()(x). This mesoscopic description of cellular movement is quite complex and in partic-
ular the high dimension (n dimensions for each space and velocity as well as p for the
internal variables, hence 2n + [) of the state space complicates the numerical treatment
of these models significantly. Thus, it is desirable to reduce the dimension of the state
space, and to find approximating equations for the macroscopic cell density

n(x,t) = /Y /V plt, %, v, y)dvdy. (4.3)

It has been shown that typically partial differential equations of the advection-diffusion
type of the form

Om(x,t) =V - (D(z)Vn(x,t)) + V- (u(z)n(x,t)), (4.4)

arise as macroscopic approximations of kinetic models. The coefficients D(x) and u(x)
are derived from the mesoscopic level contrary to most macroscopic models where they
are estimated by an educated guess.

The question of how complex a process is depends on how we look at it. A mesoscopic
viewpoint leads to high dimensional problems, because in this case we are 'closer’ to our
biological model system. If we change our perspective and observe the same system from
a distance, details disappear and one obtains a simplified mean field description of the
process. From a mathematical point of view one has to change the scale of observation
by rescaling the time and space variables of the system. Depending on this rescaling
one obtains different macroscopic approximations each with its specific characteristics.
Typical scalings used in kinetic modelling of cellular movement are parabolic scaling and
hyperbolic scaling, which lead to diffusion dominated respectively advection dominated
macroscopic equations.

4.3. Existence of a solution

To address the question of existence of a solution for kinetic equations with additional
microscale dynamics of the form (4.1) we will use a result developed by Surulescu and
Lorenz in (Lorenz and Surulescu, 2014) where the authors studied a class of related
models. This article generalizes former works on cancer migration models which have
been investigated by Surulescu and Kelkel in (Kelkel and Surulescu, 2011, 2012). Their
framework is more complex and includes both interactions with an underlying fibre
network as well as chemotactic response of the cells, and hence employs turning operators
for both haptotaxis and chemotaxis. A kinetic transport equation for the cell density
has been nonlinearly coupled both to an ordinary differential equation for a nonsoluble
substance responsible for haptotaxis as well as to a reaction-diffusion equation for a
soluble chemoattractant.

This result covers also the equations studied in the present work, which arise as a
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simplified special case. Contrary to the modelling in (Lorenz and Surulescu, 2014),
we neglect chemotactical aspects and hence our turning operator is made up just of just
one term instead of two. Furthermore, the operator does not depend on any external
fields and thus there is no nonlinear coupling to other evolution equations. Particulary,
we do not use an evolution equation for (), but assume that it is a prescribed function.
This leads to the following

Theorem 1 (Existence and uniqueness (Lorenz and Surulescu, 2014)). Fory € Y C R!
and v € V C R" consider the equation

O+ Vs (V1) £ V- (Go) = Ao+ [ AWKV (35)

with the coefficient function
G:L*(R") — {g € L*(R") N L*d,g € L™}.

Then every initial value problem for the above equation has a unique solution p : [0,T] —
L*(R" x V x Y) for all T < oo. Moreover, p is bounded with respect to the L* norm.

4.4. Cellular movement in tissue networks

Since cells choose new directions by contact guidance, their migratory behaviour is in-
fluenced by the underlying tissue network (Hillen, 2006). Especially the extracellular
matrix provides adhesion points for cells (Friedl and Broecker, 2000), and so the fibre
distribution influences also the distribution of newly chosen velocities. Kinetic transport
equations provide an appropriate tool to describe those velocity changes in a general way.
In the following we assume that the distribution of fibres with direction § € S"!
at position x is known from measurements and is denoted by ¢(x,6) and satisfies
Jsn-1q(x,0)df = 1. Note that since ¢ is a distribution over S"~' one can choose @
to obtain a distribution over V for w = s" !, where v = H:"_II We futhermore assume
that ¢(x,0) = g(x, —0), which means that fibres are undirected (which means that front
and rear end can not be distinguished) and that cells are more likely to align to parallel
tissue fibres, as shown in figure 4.4 (this behaviour has also been observed in experi-
ments, where it has been shown that invasive glioma cells migrate along white matter
fibre tracts, see (Giese and Westphal, 1996)). Under the additional assumption that cells
choose their new directions independently on their previous velocity, one can simplify
the general turning operator

Lp := —)\(y)p—i-/‘/)\(y)K(X,V,V/)p(V/)dV/.

K is a distribution over V" as well as @, hence one can identify both distributions, and

set K(x,v,v') = @, which corresponds to the model assumption that cells choose
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4. Cellular movement and kinetic transport equations

Figure 4.3.: A cell switches its velocity v’ to its new velocity v due to contact guidance.
The orientation of the underlying tissue structure influences the movement
direction of single cells.

their new directions of movement corresponding to the underlying fibre structure.
As a consequence, the operator £ simplifies to

£y =Myl 2O [ iy (1.6
= —Ay)p +Aly) Q(}Z Dy (4.7)

This turning operator has been investigated for constant turning rates by Hillen. For
more details, see (Hillen, 2006). We will now collect some properties of this operator
which will be used in chapters 5 and 6.

Definition 1 (Turning operator). For each point (X,y) the turnig operator

q(x,V)_

Lp=—=\Ny)p+ Ay) p (4.8)

is a linear, compact Hilbert-Schmidt operator on L;(V). Thereby, LZ(V') denotes a
weighted L? space with weight function q=1. V = sS"™1 is the set of admissible velocities,
s the speed of the cells.

Lemma 1 (Kernel of the turning operator). For each point (t,x,y) the kernel of the
operator (4.8) can directly be computed via

£ =0 e Ay + 2 g — o (4.9)
and is hence given by A
b= Q(jv)% (4.10)

where 1) = fv Ydv.
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Since L is a compact Hilbert-Schmidt operator one can split the space Lg(V) acording
to
LAV) = (q(x,¥)) @ (q(x,¥)) ", (4.11)

where (g) denotes the span of g. On the subspace (g)" the operator £ is invertible, as
the next lemma shows.

Lemma 2 (Inverse of the turning operator). The operator (4.8) is invertible on (q)"

~1
and the inverse F = <£’<q>L> 18 given by multiplication with factor —%.

More details about cellular movement can be found in the text (Hillen and Painter,
2013).

4.5. Previous work in the field

In the following we will give a brief overview on some previous important works in the
field of kinetic equations. For the sake of clarity we will concentrate on the most relevant
papers and will not review the full spectrum of available literature.

Kinetic models have been introduced into the field of theoretical biology around 30 years
ago during the 1980s. In (Alt, 1980) Alt considered stochastic models for biased ran-
dom walks of chemosensitive particles like e.g. bacteria in chemical gradient fields. He
could show that under certain conditions the underlying kinetic integro-differential equa-
tion can be related to the well known Patlak-Keller-Segel model coupling an advection-
diffusion-reaction equation for the density of moving cells with a parabolic reaction-
diffusion equation for a chemoattractant and has originally been proposed by Patlak in
1953 (Patlak, 1953). In (Othmer et al., 1988), Othmer, Dunbar and Alt used kinetic
equations of Boltzmann type for the general modelling of moving biological entities,
and also random walks with resting phases have been studied in this work. It has been
shown that diffusive limits of those mesoscopic kinetic models lead to advection-diffusion
equations on the macroscale. Rigorous results for the drift-diffusion limit of this kinetic
model have later been found by Chalub, Markowich, Perthame and Schmeiser (Chalub
et al., 2004b).

Othmer and Hillen (Hillen and Othmer, 2000; Othmer and Hillen, 2002) presented
some rigorous limits for kinetic equations of the form

op(t,x,v)+v-Vp(t,x,v) = =p(t,x,v) + )\/ T(v,v)p(t,x,v")dv' (4.12)
v
for symmetric turning kernels. The symmetry requirement
/T(V,V')dv' = / T(v,v)dv =1
1% v

is obviously restrictive from the viewpoint of biological modelling, and it is still an open
problem to derive rigorous scaling limits without this condition.
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4. Cellular movement and kinetic transport equations

In (Hillen, 2003) the concept of transport equations with resting phases is picked up
again. The idea leads to a possibility to derive proliferative reaction terms from the
mesoscopic point of view.

Kinetic models with additional internal variables of the form (4.1) have been explored
by (Chalub et al., 2004a) and (Dolak and Schmeiser, 2005) for the case of bacterial
chemotaxis. In both cases the authors started with a kinetic equation with an addi-
tional drift term describing processes on the microscale, and derive corresponding drift-
diffusion limits. However, the turning rates do not depend on the internal variable.

Othmer and Erban developed methods to derive macroscopic limits for kinetic equa-
tions with additional drift terms which are capable to deal with turning rates depending
on the internal dynamics (Erban and Othmer, 2005b,a). In this approach the first step
is to look at the moments with respect to the microscopic variable in order to use then
scaling arguments for the passage to a macroscopic limit equation. We will adapt these
methods later and will show how to use them in a cell biological background. These
results apply to concentration fields which do not vary in time and have been extended
to bacteria moving in time dependent fields in (Xue and Othmer, 2009).

Bellomo (Bellomo and Bianca, 2011; Bellomo, 2008) developed generalized kinetic
models including both internal variables as well as the effects of external forces. He
aims to provide a general mathematical theory of complex living systems using a kinetic
equation approach. The corresponding kinetic theory of active particles (KTAP) provides
a unified modelling framework based on particle interactions.
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5. A multiscale model for glioma
growth

Inequality is the cause of all local movements.

(Leonardo Da Vinci)
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Section 5.1 - 5.3 of this chapter are mostly an extended version of the publication
(Engwer et al., 2013) and provides a multiscale model for glioma growth. I start in sec-
tion 5.1 on the microscale with an ordinary differential equation modelling the surface
receptor dynamics of a cell and introduce then in section 5.3 a mesoscopic transport
equation which describes cellular movement as velocity jump process (c.f. 4.2 and 4.4).
Subsequently, we perform a parabolic scaling to yield an approximating macroscopic
partial differential equation of advection diffusion type as an approximation for the cell
density. Section 5.4 provides a possibility to include DTI data in the model by an ap-
propriate choice of the directional distribution ¢, which uses the local values of the water
diffusion tensor. Additionally, we present in section 5.5 a more general scaling result for
symmetric turning kernels which works without the correlation of K and ¢, but is as a
tradeoff not capable to include DTT data.

5.1. Dynamics on the microscale: cell surface receptor
dynamics

As reviewed in section 2.4, cell surface adhesion molecules as integrins play a crucial
role in cellular movement. They generate traction forces and are involved in a lot of
signaling and communication processes between cells and their environment.

The following model for the integrin dynamics is built on the framework proposed in
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5. A multiscale model for glioma growth

(Kelkel and Surulescu, 2011, 2012), in which additionally the fibre residuals resulting by
the action of matrix degrading enzymes were playing the role of a chemoattractant for
the moving cells. Hence, the present model is a simplified version of the more general
setting in (Kelkel and Surulescu, 2011, 2012).

For the internal dynamics we make the following assumptions:

1. The free receptors (integrins) on the cell surface bind to the underlying ECM fibre
network. This process is described on the microscale by an ordinary differential
equation for the density of bound receptors y(t), leading to an additional transport
term in our model on the mesoscopic level.

2. The turning rate of the cells depends on the receptor state on the cell surface. It
is expected to increase if many receptors are occupied, since in that case the cell
will need to change more often its direction in order to ’free’ itself from the too
densely packed fibres surrounding it.

3. The turning behaviour of the cells can be described by a turning kernel dictating
the choice of the new moving direction upon conditioning on the previous velocity
regime and/or the integrin dynamics.

Let Q(x) denote the volume fraction of aligned tissue, including ECM fibres. Starting
from simple mass action kinetics, the integrin dynamics on the cell surface is described
by the ordinary differential equation

y=k"(Ry—y)Q—ky,

where Ry denotes the total number of receptors on the cell (we assume it is conserved),
whereas y(t) gives the density of integrins bound to ECM fibres. The constants kT and
k= denote the reaction rates for the reversible binding of integrins to the tissue fibres.
The subsequent analysis follows the idea in (Erban and Othmer, 2005a).

The steady state of this equation is y* = k’fQQﬁo_. Further, let us introduce a new
microscale variable z := y* —y measuring deviations from the steady state. Next consider
the path of a single cell starting in xo and moving with velocity v through a time-

invariant density field Q(x). Then with the notations x = x¢ + vt and

B l{+Q(X)R0
f(Q(x)) = FOX) £k (5.1)
it follows that for any ¢
% (Qxo + V1)) = f'(Q(x0 + V1)) v - VQ(x0 + Vi)
and hence z satisfies the equation
¢o= —(kTQx)+ kT )z + f(QX)v - VQ(x)
n _ kTk™ Ry
= —(k"Qx)+ k7 )z+ v - VQ(x). (5.2)

(F*Q(x) + k)
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5.2. Mesoscale dynamics: cellular movement

This equation can be solved explicitly for z to yield

kTk™ Ro

— (a _ —(kTQ+k)t (kTR
Z(t) - (y yO)e + (1 € )<k+Q + k_>3

V'VQ7

where yo = y(0). Hence, z is bounded as long as V(@ it is and its sign depends on the
current orientation of the cell w.r.t. the gradient of the fibre volume fraction.

For the turning rate we choose A(z) = A\g — A\;z > 0, where )y and \; are some
positive constants with Ay > A\ Ro(1 — m) and K, := k*/k~. Note that this is
equivalent to considering A(y) = Ao — A\iy* + A1y, which becomes indeed larger when
many receptors are bound to fibres. This choice corresponds to the one proposed in
(Erban and Othmer, 2005a) for the turning rate of bacteria and -after a linearization-
also to that chosen in (Griinbaum, 2000). Further, observe that z involves the spatial

position x of the cell as a parameter and there exists z,.,c = maxyern 2 > 0. Choosing

A1 < min {ZA\L, sup, %} ensures that \(z) > 0.

5.2. Mesoscale dynamics: cellular movement

As in equation (4.1), one can introduce the dynamics on the microscale to the mesoscopic
level. With the above model for the internal dynamics equation (4.1) reads

O+ Vs - (vp) + 0 ((=(K"Q+ k7)z + [(Q(x)) v- VQ) p) =
—Az)p+ A(z) /v K(x,v,v)p(v')dv'.

In order to simplify the following analysis, we have to make some assumptions about
the cell velocity, the cellular turning rate A and the turning kernel K.

We now focus on the case where the cell speed is constant s, hence we have V' = sSPL
Furthermore, we choose K (x,v,v') = @ with w = [}, ¢(V)dv = s"! ascaling constant,
as proposed in (Hillen, 2005; Painter and Hillen, 2013) according to our assumption that
cells choose new directions of movement due to contact guidance (compare also with
section 4.4). Recall that ¢ denotes the directional distribution of tissue fibres, thus we
also assume the tissue to be undirected. Additionally, we choose a linear turning rate
A(z) = Ao — A1z, and have hence the transport equation

Oip+ V- (vp) = 0 (K7 Q + k7)z — f(Q(x)) v - VQ) p)

= —Aop + A12p + /\0g / p(v)dv' — L / zp(v')dv'.
w Jy w fy

(5.3)

In the following it is our goal to derive an approximating macroscopic partial differential
equation for the glioma cell density. It will be shown that the resulting equation has the
form of an advection diffusion equation as equation (4.4).
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5. A multiscale model for glioma growth

We first handle the z variable by calculating momentum equations with respect to z,
and then perform a parabolic scaling. First of all, introduce the following moments:

m(t,x,Vv) :/p(t,x,v,z)dz, M(t,x) ://p(t,x,v,z)dzdv
z vJz

mz(t,x,v):/zp(t,x,v,z)dz, Mz(t,x)://zp(t,x,v, z)dzdv,
Z vJz

where our new domain for the internal dynamics is Z C [y* — Ry, y*]. In the following
we assume the data to be compactly supported in the (x,v,z)-space, which allows to
perform the subsequent calculations.

Integration of equation (5.3) with respect to z yields
om+v-Vm= —)\om+)\1mz—|—)\02M—)\12Mz. (5.4)
w w

Multiply (5.3) by z and integrate again to obtain

e v [ < [0, ([04Q + )2 - Q60 v - ¥Q] )]
7
= —Agm® + A\ym** + )\OEMZ - AlgMzz’
w w
with

mzz(t,x,v):/zQp(t,x,v,z)dz and MZZ(X,t)://z2p(t,x,v,z)dzdv.
Z vJ/z

Assume the internal dynamics equilibrates rapidly, so that the system is always close
to the steady state. Hence, we neglect the second-order moments in z, so that the last
equation becomes

Om* +v - Vm® = —(kTQ + k)m* + f(Q(x)) v - VQ m — Agm® + AL M*. (5.5
w
We will now work with equations (5.4) and (5.5) and perform a parabolic scaling of

space and time.

5.3. From mesoscale to macroscale: formal diffusion
approximation
In order to perform a parabolic scaling, we rescale the time and space variables by a

dimensionless scaling parameter . We scale the time quatratically, { = %, and x
linearly x = ex, then drop the hats on x, t. As explained in section 4.2, this allows to
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5.3. From mesoscale to macroscale: formal diffusion approximation

change the viewpoint of observation of our system and makes a simplified description
possible. After scaling equations (5.4) and (5.5) we obtain

20m +ev-Vm = —dgm + \ym* + )\OEM — )\IEMZ (5.6)
w w

20m* +ev-Vm® = —(kTQ + k7 )m* + e f(Q(x)) v-VQ m — \gm” + )\ogMz.
w
(5.7)
As in (Hillen, 2006), we use Hilbert expansions for m, M, m* and M?* of the form

m:m0+5m1+52m2—|—...
M = My +eM; +*Msy + ...
m® =mg 4+ emi +e*mi+ ...
M?* = M +eMi +e*M; + ...
After plugging these expansions into equations (5.6) and (5.7) one can compare terms
of equal order in € of each side and collect terms of equal order:

0

[
0= —Agmo + Mmi + )\OgMO - AlgMg (5.8)
0= —(k*Q + k™ )mg — Aomi + )\OgMg. (5.9)

el
A\ Vmo = —)\Oml + /\1mf -+ )\0ng — )\1ng (510)
v.Vmi = —(kYQ + k7 )mi + £ (Q(X)) v - VQ mo — Agmi + )\ong. (5.11)

e

8tm0 +vVv- le = —)\Omg + /\1m§ + )\OgMg - )\12]\4é2 (512)
w W

We are now interested to derive an evolution equation for the macroscopic quantity M.
Hence, we have to find explicite forms of the other moments which depend just on this
quantity. This is possible by the following 'backward solving’ strategy which will be
performed below.

By integrating with respect to v it follows from (5.8)-(5.12):
el
From eq.(5.9) : M =0, m{=0.

From eq.(5.8) :  mo = —M,.
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5. A multiscale model for glioma growth

el (recall the assumption of undirected tissue):
From eq.(5.11): M7 =0, mi=(kTQ+k + X)) ' mo f(Q(x)) v VQ(x)

1
From eq.(5.10): M; =0, my = W (v-Vmo—Aimj).
0

We used here the properties of the operator L[{Ao](m1) := —Agmy + Ao LM, defined on
L2(V') which have been collected in lemma 1 and lemma 2 in section 4.4. For the kernel
of L[\g] we have
(v
ﬁ[)\o](ml) =0 <~ my = %Ml

The mapping L[)o] is a compact Hilbert-Schmidt operator (see also (Hillen and Othmer,
2000)) whose kernel is given by the linear space (¢), denoting the subspace of L2(V')
spanned by q.

Then (see again (Hillen and Othmer, 2000)) on (¢)* we can find the pseudo-inverse
of L[X\o]. Consider for this a given function 1 € (g)* and solve

L[Ao](my1) = .

Since my € {g)* we have M; = 0 and the rest follows immediately.
Now, we can collect known expressions and write them w.r.t. M, and find

mo = 2Mo7
w

mi = (k"Q+ k™ + ) F(Q(x) v VQ%MO,

my = —Aio VeV (Las) = A Q4K+ 20)”

1

q
Q) v-VQI M| .
In order to obtain an evolution equation we integrate equation (5.12) w.r.t. v and obtain
v\ w

We have already found an explicit expression for my in terms of the observation quantity
My, and plug this term now into equation (5.13), which gives imediately

c‘)tM0+/Vv.V [—Ai (v v (%M(]) 2 (BPQ+E 4+ X) QX)) v VQ%M())] dv

0

what is equivalent to

OtMO—)\iO/VV-V<V-V(%MO>>dV

+ ;\\—[1) /VV -V ((k‘"‘Q + k7 + AO)_lf,(Q(X)) v - VQ gM()) dv = 0.
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5.4. Determination of the coefficients

Now, we rearrange the expressions to bring this equation into a classical advection-
diffusion form and end up with an evolution equation for M, given by

1 1
O My — —V - /v®vv2dv My) — —V- /v®v2dv v M,
Ao v w Ao v w

A
+ >\—(1) VV -V <(/€+Q +km + )\0)*1]0/(@@()) v - VQ % M()) dv = 0.

This leads to the evolution equation
O My =V - (Dr(x)VMo) + V- ([9(Q(x))Dr(x) VQ(x) — u(x)] Mo) =0 (5.14)

with the tumor diffusion tensor

1

Dr(x) = /\O—w/vv ®vqdv, (5.15)

a function ¢g(Q) representing the influence of the receptor dynamics given by

9(Q(x)) = M (AT Q(x) + k™ + )~ f(Q(x)), (5.16)
and a tumor drift velocity which can be written as

u(x) = L/ v®vVgdv. (5.17)
>\0w v
Obviously, the receptor dynamics on the microscale leads to an additional advective term
on the macroscale, which has the direction of the aligned tissue gradient V(). This makes
sense from the biological point of view, since cellular movement has usually a haptotactic
component. Notice, that the distribution function ¢ still has to be determined. We will
consider this point in the next section.

5.4. Determination of the coeflficients

5.4.1. Choice of the fibre distribution function

In order to determine an explicit form for the coefficients Dy(x) and u(x) we need to
characterize the fibre distribution ¢(x,#). As already mentioned, the aim is to embed
DTI data into our model equations. Thereby, a possible choice can be

q(x,0) = ST ID)W(X)O Dy (x)6. (5.18)

The water diffusion tensor Dy (x) can be obtained for each voxel x by measurements,
hence the above formula allows for computing the fibre distribution function for each
voxel. The tumor diffusion tensor can be calculated explicitly, as we show below. In
(Painter and Hillen, 2013) it has been argued that this choice for the relationship between
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5. A multiscale model for glioma growth

fibre orientation and water diffusion data encompasses some significant shortcomings.
Hence, instead of (5.18), a bimodal von Mises-Fisher distribution of the form

q(x,0) = Ex)

= Srsmh(kGo) ) (519)

has been chosen, with k(x) = x - FA(x), where FA(x) denotes the fractional anisotropy
and ¢ represents the leading eigenvector of the diffusion tensor for each voxel. In this
approach, the concentration parameter x has to be determined! and it can be interpreted
as the sensitivity of the cells to the orientation of the underlying fibre structure.

In order to avoid introducing more parameters for which the identification is still
unclear in practice, we will keep the form (5.18) for q. However, in chapter 9.1.3 we will
also consider the alternative fibre distribution (5.19) and compare the results obtained
for both choices.

5.4.2. The peanut distribution

In this section we will show how to calculate the explicit form of ¢ for the peanut
distribution (5.18). The following lemma is used a number of times to calculate specific
integral moments of 6:

Lemma 3 (Hillen (2005) (Hillen, 2005)). 1. If k € N is odd, then

/ o - 0% df = 0.
Sn—1

2. If k € N s even, then
G- 0% di = ¢ St §likatin
/n_l ' P(i;..,ik) 7
where the set
Pliv, . vin) = {0 05) s (g yig)) - Loen et = {1, b3}
is the set of all pairs of indices. The constant ¢y is given by

S

andck:%—_2f0rk24.

o=IS"", = F—2+n

'the larger the value of &, the higher the concentration of distribution around the mean direction
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5.4. Determination of the coefficients

With this tool its is now possible to determine the tumor diffusion tensor (see also
(Painter and Hillen, 2013)).

ns"tt
AowD e 06'0'D 0do
owDr (x) wptr Dy (x) /Sn 1 w(x)
ns"t1 /
_ e 016] dkl ekel
wtr Dy (x) \ Jgn-1 < klzl (1<i,j,n)
nSnJrl n ( .
=" d (x / H’HJHkQZdG)
wptr Dy (x) MZI x) sn—1 (1<i )
_ ns"tt zn: dkl(x)< W, (5ij5kl+5ik5jl+5il5jk))
wytr Dy (x) ki1 ’ n(n +2) (1<ign)
(by using Lemma 3
8n+1 (i
- d¥! (x) 57 8H + Z d¥ (x) o™ 67! + Z di! (x Mcsﬂ’“)
(n + 2)tr Dy (x) k=1 k=1 kl=1 (1<i,j,n)
Sn+1

" (n+2)ir Dy (x) (tr Dw (x) - I, + D (x) + D (x))

B <§1:12> (H" ! 2thmE)((>)<)>

with constants w,, = |S""!|. Hence we obtain for the tumor diffusion tensor the expres-
sion

Dp(x) = m (Hn + 2%) . (5.20)

Analogously, we can calculate the drift velocity (5.17) using the expression (5.18) for ¢
again. Plugging the expression (5.18) in equation (5.17) yields

n t 1 t
— —60'D .
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First, we have

Vi <m9TDW(X)9)
1

1 T3 x T3 <
=V, (W) 0Dy (x)0 + —trDMX)v,{ (6" Dy (x)0)

= —V,(tr Dy (x)) - (tr Dy (x)) 20" Dy (x)0 + (tr Dy (%)) - Vi <Z dg(x)9k91>

k=1

> 0,,d8l(x)646"

. O, (tr Dy (x)) k=1
- TDw () [ : (tr Dy (x)) 10" Dy (x)6 — : ]
I Dy (X n
Ox, (tr Dy (x)) S 8, d(x)6k0!
k=1
So this is a vector y(x) = (71(x), ..., va(x))" with
-1
; =~ 0 (trD b kl kpl
%) = ey (1 Dw () 6D () UDW g;aw% x)6+9".
From this observe that
/ 00'v [ —L 0Dy (x)0 ) db
is a vector a(x) = (a1(x),...,a (x)) with components
cpd D apnb ab
V;aa (trDW Oy (tr Dy ( abzleed

A% (x)0°6° ) db
tl" DW bz 0 aw >

- ‘W( > on (D)o [ o)

d,a,b=1 v

0y, d (x) /969d9a9bd9>
trDW <dzbl ' 4

= al(x) + a2(x).

Now we evaluate the two terms above. For this recall that

/ ecedgaebde — Wn (é‘cddab + 5ca5db + 5cb5da)’
v n(n + 2)
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hence
1 x) = — 1 Wn - r x ab x cd sab ca sdb cb sda
. (x) CIRCIEICES) (dglard(t Dy (x))d2? (x) (6167 + §°°6% + 56 ))
_ 1 Wn - . ) d (x) 54
- (trn)w(x))2n(n+z)( 2 Ony(1rDyw () dyy ()35

d,a,b=1

+ Y Ouy (tr Dy (%)) dyy ()06 + Y a:cd(ter(X))de(X)écbéda)

d,a,b=1 d,a,b=1

1

=— (tr Dy (%))2 n(nw:_ 5 (Z Or, (tr Dw(x))(gcdtrDW(X)

+ > 0y, (tr Dy (%)) df(x) + ) Oy, (tr Dw<x))dgf<x)> :

d=1 d=1
Hence, we obtain for the vector a!(x):

1 Wn,
~ (tr Dy (x))2 n(n + 2)

Analogously, we obtain for a?(x):

(tr Dyy (%)L, + 2DW(X)) . Vtr Dy (x).

1
2 — E : N dab 5cd6ab 5ca6db 6cb6da
a:(x) tr Dy (x) n—|—2 (d pal lad v + + )>
1 ( b d cab b db b b d)
- § 0, A2 (x)5°5 + § 0, d(x)5° 6% + § " 0,,d (x)505%
tr Dy (x) n+2 da,b=1 da,b=1 da,b=1

1 aa . cd dc
= Do ) 1 £ D) (Zaxcdw (%) + ;&cdd x) + Zax ds )
and this means
a’(x) =

Altogether, this yields

1 Wr,
tr Dy (x) n(n + 2)

(Vtr]D)W( )+2V-JD>W(X)).

u(x) = (Ti 5 [ - D; o7 (tr Dy (X)L, + 2DW(X>> VtrDw(x)  (5.21)
4 m (Vtr Dy (x) + 2V - DW(X)N

(5.22)

_ 25> (V-]D)W(X) ~ Dw(x) -Vter(X))
Xo(n+2) \ tr Dy (x) (tr Dy (x))? '

With these explicit forms for the tumor diffusion tensor and its drift velocity, numerical
simulations for equation (5.14) can be performed, what will be done in part IV.
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5. A multiscale model for glioma growth

5.4.3. Von Mises-Fisher distribution

In (Painter and Hillen, 2013) the authors argued that the peanut distribution encom-
passes some significant shortcomings and proposed a bimodal von Mises-Fisher distri-
bution of the form

k(x)

q(x79):i+(1—5)m(

ko-0 —ko-0
= F 0 4 emho) (5.23)

instead, where the parameter ¢ € [0,1] is related to inherent random turning (uniform
turning kernel).
In three spatial dimensions, this leads to the tumor tensor

Dy (x) = 35—;0 Ka + (1 —90) (COtkh@]:)(X) B k(i)2>> !

r-0 (1255 )+

where k and ¢ have been defined above. The corresponding drift correction term reads

w0 =107 (55 g )= (Vg o))
(1 o) 8 Vo] .24

Recall, that in (Painter and Hillen, 2013) & has been proposed to be k(x) = x FA(x),
where the constant x > 0 is a measure for the sensitiveity of the cells to environmental
clues. It is interesting to look at two limits for the tumor diffusion tensor: first, what
happens in highly anisotrope regions with FA £ 0 for really large sensitivity values
k — oo and hence k — oo, and second, what happens in isotrope areas, where we have
FA — 0 and hence k£ — 0. For the first case observe that

and

h
lim <1—3C°t k+3) —1.

k—o0
This leads to the diffusion tensor

S

Dr(x) = 3 (

1+ (1 — 8)¢ot) .

Since the parameter ¢ is typically very small, the influence of the isotrope part is ne-
glegible and the influence of the ¢¢' term is maximal. For the second case consider the

limtis
. coth k Ly 1
oo\ k 2) 3
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5.5. A more general scaling result for symmetric turning kernels

and

r ] 3cothk . 3
im (1— gy
k k?
to obtain the tensor
Drx) = = (14 25) 1
X)=—|=-4+= .
g 30 \3 3
In this case the anisotropic part vanishes and the tumor diffusion tensor becomes isotrope
and even constant since there is no spatial dependency.

5.5. A more general scaling result for symmetric
turning kernels

The analysis in the previous sections was based on a relationship between the turning
behaviour of the cells and the directional distribution of the underlying fibre network.
This led to the choice K(x,v,v’) = @ for the turning kernel, which was independent
of the incoming velocity v’. In this section, I will present a more general result for sym-
metric turning kernels which works without this assumption. Though, this approach is
not capable to involve D'TT data and hence more theoretically interesting. Furthermore,
it is in general not possible to compute explicit expressions for the inverse of the turning
operator, and so one has to employ some arguments from functional analysis, respec-
tively operator theory.

We start again with an evolution equation for the cell density p(¢, x, v, z) of the form

Op+ Vi (vp)+ V.- (Gp) = =\2z)p+ /V A2)K(x, v,V )p(v')dv'. (5.25)

Employing the same model and analysis for the dynamics on the microscale as in section
5.1, we obtain the kinetic equation

Op+V - (vp) + 8. (~(K*Q + k)2 = F(Q))VQ-v) p) = LA, (5.26)

For a positive turning rate \ we defined the turning operator L by
LINp=—-Xp+ )\/ K(v,v)p(v")dv' = N(—=Z + T)p. (5.27)
v

Choosing again a linear turning rate of the form A(z) = Ag — A1z, one obtains the
equation

Oip +V - (vp) + 0. ((—(k*Q + k7)z — f(Q(x))v - VQ) p)
= —Xop + Ao /V K(v,vp(v")dv' + \izp — \ / K(v,Vv)zp(v')av'

= L[Xo]p — L[\1]zp (5.28)
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5. A multiscale model for glioma growth

We follow now the strategy presented in section 5.3, and compute as a first step the z
moments in order to prepare our system for a parabolic scaling as a next step. Introduce
the following moments:

m(t,x, V) :/p(t,x,v, 2)dz, M(t,x):/ /p(t,x,v,z)dzdv
z vJz
m*(t,x, V) :/zp(t,x,v,z)dz, M~*(t,x) ://zp(t,x,v,z)dzdv
Z vJz
m*(t,x,v) :/ZQP(t,X,V,Z)dZ.
z

Integration of (5.28) with respect to z yields
om + V- (vin) = L{Ag|m — L[A\]m*. (5.30)

Multiply (5.28) with z and integrate again to obtain

om* + V- (vin®) + / 20, [(—(k*Q + k7 )z — f(Q(x))v - VQ) p| dz (5.31)

Z
= LDo]m® — LD]m™.

Assume, that we are close to the steady state and neglect second order moments in z.
Then, (5.31) becomes

om* + V- (vin®) = —(k*Q + k7)m” + f(Q(x)) (VQ - v)m + L[Xo]m”. (5.32)

Now, use a parabolic scaling £ = £2t, X = ex, then drop the hats for notational simplifi-
cation. This yields two equations:

e20m + eV - (vin) = L[\Jm — L[\]m?, (5.33)
e20m* +eV(vim®) = —(kTQ + k7 )m* + ef(Q(x)) (VQ - v)m + L[XoJm*.  (5.34)

Use Hilbert expansions for m and m?* of the form

m=mg+emy +e*mg + ... (5.35)

m® =mg +emi +e*mi+ ... 5.36)

After plugging these expressions into equations (5.33) and (5.34), one can collect terms
of equal order in .

eV

= E[)\()]mo — E[)\l]mf), (537)
0= L[N]m{ — (ETQ + k™ )m}. (5.38)
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5.5. A more general scaling result for symmetric turning kernels

V- (Vmo) = ,C[/\()]ml — E[)\l]mf, (539)
V- (vm) = —(kTQ + k7 )mi + f(Q(x)) (VQ - v)mg + L[Xo]m]. (5.40)
Omg + V- (vimy) = L]{Ao]ma — L[\|m5. (5.41)

To solve this system of equations, we need some results for the behaviour of the turning
operator £, which are collected in the following lemma. For more details see (Hillen and
Othmer, 2000).

Lemma 4 (Properties of the turning operator (Othmer and Hillen (2000))). Make the
following assumptions about the turning kernel K and the operators T from above:

(T1) K(v,v')>0, [, K(v,v)dv=1, [, [, K*(v,v)dv'dv < oo
(T2) There are functions ug, ¢ and 1 such that ug # 0 which fulfill
up(V)Y(v') < K(v,v') < uo(v)i(v').

(T3) [Ty < 1.
(T4) [, K(v,v)dv' = 1.
Then, the operator L has the following properties:

1. 0 is a simple eigenvalue of L with eigenfunction ¢y = 1.

2. There are no positive eigenvalues.

3. L restricted to (1) has a linear inverse.

Now, come back to the equation system above. Since the operator £ has no positive
eigenvalues, it follows from (5.38) that m{ = 0.
Then, we have from (5.37) (0 = L[\g]mg) that mg = my(x,t) is independent of v.
Equation (5.40) then gives

= —(k*Q + k7 )mi + f(Q(x) (v - VQ)mqg + L[AoJm, (5.42)
which means

Q) 1 .

L v vQ)m (W—kmo] +z) . (5.43)

From this, we now obtain that mj has the form

mi = <k+Q_ﬁ£[/\g] +I)_ (/{J;SQ%/?— (v- VQ)m0> : (5.44)

93



5. A multiscale model for glioma growth

Equation (5.39) is the same as v-Vmg = L[\g|m1 — L[A\1]m], so we obtain as an explicit
expression for m;q

my = (L)) ((v - Vimg + L[\i]m7)) (5.45)
~ (2lx)) ((v Vo -+ £ ((mﬁw = (,jl(g%,?_(v - vcz)mo>>)> ,
(5.46)

which only depends on the quantity mg. Integration of (5.41) with respect to v gives
/ 8tm0 +v- ledv =0. (547)
1%
Since the inverse (L£[\g])~! is linear, we have

|\V|oymo + V - / v(L[No]) ' vdvVimg
1%

+V- (li(g%;)_ /V VL[] ! (E[/\l] (ﬁﬁ[/\o] +I) 1v> dv VQmO> = 0.

We can write this macroscopic evolution equation as
Omo =V - (D(x)Vmg + xVQmy), (5.48)

with diffusion tensor

D(x) = % /Vv ® (L[Xo]) " vdv (5.49)

and drift velocity

x(x) = %kﬁ(g%? (/Vv ® (('C[)‘OD_IE[)\I] (W%QAO] +I) v) dv) .

(5.50)
Comparing with equation (5.14), we notice that the dynamics on the microscale leads
to an additional haptotactic drift term for the movement.
The concrete choice of the turning kernel K influences singnificantly the behaviour of
equation (5.48). Since K has to fullfill the assumptions of lemma 4, the choice is strongly
limited because of the symmetry requirement. One possible choice is the trivial kernel
K(x,v,Vv') = ﬁ, where |V| denotes the volume of the set of admissible velocities. This
corresponds to a pure random motion of the cells, and leads hence to constant diffusion,
what is less interesting from the biological viewpoint. The main issue in the choice of K
is the assumption (7")4, which demands that K has to be a distribution with respect to

the incoming velocity. However, this is not justified from the biological point of view.
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6. Movement with resting phases:
including proliferation

Strength and growth come only through continuous effort and

struggle.
(Napoleon Hill)
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6.1. Transport equations with resting phases

In the following sections a multiscale model for glioma spread will be proposed which
includes proliferation and interactions of cells with the underlying tissue network. It has
been shown, that the go or grow hypothesis (Hatzikirou et al., 2012) is a good starting
point in modeling proliferative effects on the cell scale. The basic assumption there is,
that cells can either move or stop and proliferate but not both at once. We use the
approach in (Hillen, 2003) as our starting point and propose a similar model which is
expanded by a model for the cell receptor dynamics on the microscale as in (Engwer
et al.; 2013). The go or grow assumption leads to a system of two coupled equations
including a kinetic transport equation for the moving cells as well as an ordinary differ-
ential equation for the resting and hence proliferating cells.

We hence want to observe the density functions p(t,x,v,y) of moving cells which
are at time t at position x € R"™ with velocity v € V C R"™ and microscopic state
y € Y C R! and of resting (and hence proliferating) cells 7(¢,x,y). This leads to a
system of equations of the form

O+ Vi (v9) + Vy - (G(y)p) = LNp — allp + 2Ly~ 1(N ), (6.1)
Or = a(x) /Vpdv — pr+g(N)r —I(N)r. (6.2)
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6. Movement with resting phases: including proliferation

Here L[A]p := —A(y)p + /\(y)@ J, p(v")dv' is the turning operator modeling the cell
velocity innovations due to contact guidance, environmental cues etc, and A(y) denotes
the turning rate of cells. The vector y stands for the microscopic state of a cell. Its
components can be, for instance, concentrations of proteins involved in some intracellular
signaling network or -as will be the case throughout this work- concentrations of integrins
bound to soluble and/or insoluble components of the cell environment. Its dynamics is
characterized by a system of ordinary differential equations

S¥(0) = Gy(1),Q) (6:3)

where the right hand side is involving an insoluble environmental component as input.
We will specify the function GG in the next section.
The N in equations (6.1) and (6.2) denotes the total cell density and is here given by

N(t,x):/v/yp(t,x,v,y)dy dv—l—/yr(t,x,y)dy, (6.4)

and g(N) and [(N) are functions representing gain and loss due to cell death and pro-
liferation. « and [ are the rates in which cells stop and proliferate, respectively start
moving again after a resting phase.

6.2. Cell surface receptor dynamics

As in chapter 5, we focus on the cell surface receptor dynamics of the cells. Transmem-
brane adhesion proteins bind to collagen fibres and other proteins in the extracellular
matrix (ECM). In this work we focus on the class called integrins of those proteins and
want to study the impact of this microscopic process on the macroscopic movement be-
haviour on the tissue scale. Let Q)(x) denote the volume fraction of ECM fibres which the
integrins can bind to. Starting from simple mass action kinetics, the integrin dynamics
on the cell surface is described by the following ordinary differential equation:

y=k"(Ro—y)Q -k, (6.5)

where Ry denotes the total number of receptors on the cell (we assume it is conserved),
whereas y(t) gives the density of integrins bound to ECM fibres. The constants &% and
k= denote the reaction rates for the reversible binding of integrins to the tissue fibres.
The steady state of equation (6.5) is given byy* = kﬁgﬂf_.

We follow the ideas from section 5.1 and hence the ideas from (Erban and Othmer,
2005a) and introduce a new internal variable z := y* — y measuring deviations from
the steady state. Looking again at a path of a single cell starting in xy, and moving
with velocity v through a time-invariant density field Q(x) we obtain with the notations

X = Xg + vt and

F(Qx) = QI

NXTES o0
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6.3. The mesoscopic transport equation and its scaling

that for any ¢

QU0+ 1)) = F(QUxo+vH) v+ TQ(xo + vi).

For more details see also chapter 5. We choose again a turning rate of the form A(z) =

Ao — A1z > 0, where )y and \; are some positive constants with \g > A\ Ry(1

1

T K.Q(x)+1

and K, := k' /k~. In the next section we formulate our mesoscopic model for the cells.

6.3. The mesoscopic transport equation and its scaling

With the above analysis for the dynamics on the microscale, we obtain now a system of
evolution equations for the density p(t,x, v, z) of moving cells and the density r(¢,x, z)

of resting cells. The system reads

Op+v-Vp+0. (- Q+E)z+ f(Q)v-VQ)p) =

L[No|p + L[A1]zp — a(x)p + %7’ —I(N)p
or = a(x) /Vpdv — Br+ (g(N) = I(N))r.
Introduce the notation
m(t,x,v,) = /Zp(t,x,v,z)dz, w(t,x) = /Zr(t,x,z)dz
m*(t,x,v) = /Zzp(t,x,v, 2)dz, w(t,x)= /er(t,x, 2)dz
M(t,x) = | mdv, M?*(t,x)= / m*dv.
v v

Integration of the equations (6.7) and (6.8) with respect to z gives

om +v - Vm = L[\o|Jm + L[A\]m* — am + %w —I(N)m,

ow = a(x)M — fw + (g(N) — I(N)) w.

Multiply equations (6.7) and (6.8) by z and integrate again with resp. to z.

(Engwer et al., 2013) we neglect moments of higher order in z and obtain

om® +v-Vm* = —(kTQ + k7)m* + f(Q)v - VQm + L[ \o]m”

—am”® + @wz —l(N)m?,
w

ow® = aM?® — pw* + g(N)w* — I[(N)w?.

(6.7)

(6.8)

(6.9)
(6.10)

(6.11)

(6.14)
6.15)

—~
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6. Movement with resting phases: including proliferation

Now, we use a parabolic scaling ¢ — €%t, X — ex, then drop the hats for notational
simplification. In addition, scale the birth-death dynamics as in (Hillen, 2003) by

g(N) — £25(N) (6.16)

I(N) — €%l(N), (6.17)

then drop hats again. From equations (6.12), (6.13), (6.14) and (6.15) we obtain the
equations

e20im +ev - Vm = L[\Jm + L[\]m* — am + %w —&%l(N)m, (6.18)

20w = a(x)M — pw + & (g(N) — I(N)) w, (6.19)
20m* +ev-Vm® = —(kTQ + k7)m* + £ (Q)v - VQm

+ L[AoJm* — am® + %wz —2l(N)m?, (6.20)

e20w* = aM*® — Bw® + &* (g(N) — I[(N)) w”. (6.21)

Now, we use Hilbert expansions for m, m?*, w,w?*, M, M* of the form

m:m0+6m1—|—52m2+..., M:M0+8M1+62M2+...
m® =m§+emi+e*mi+..., M*=DM;+eM;+e*Mj+...
w=wo+ew; +wy+ ..., w=wi+ewi+wi+...

N:N0+€N1+€2N2+...

and compare terms of equal order in e.

0

el
0 = L[XoJmo + LIM]m§ — amg + %wo, (6.22)
0 = aMy — Pwy, (6.23)
0=—(k"Q+ k™ )mi —am + %wé + L[Xo]m§, (6.24)
0= oM — Bui. (6.25)
el
v - Vmg = L[Xg]mq + L]IM]m] — amy + %wl, (6.26)
0 = aM; — Bwy, (6.27)
vV = (K Q + k) 4 Q) - VQmo + £fmi — am + 2, (6.25)
0 = aM; — puwy. (6.29)
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6.3. The mesoscopic transport equation and its scaling

8tm0 +v- le = ,C[)\()]mg + E[)\l]mg — ameo + %UJQ — Z(No)mo, (630)
8tw0 = OCMQ — ﬁUJQ + (g(No) — l(No)) wo- (631)

It is our goal now to derive an evolution equation for the macroscopic cell density

N()(t,X) = wo + MO = <1 + %) MO. (632)
We start with the e’-equations. First of all, we obtain from (6.25) that wj = .

Integration of (6.24) with respect to v yields
0=—(k*Q + k™) M{ — aM§ + puwg, (6.33)

which implies M§ = 0, m§ = 0 and w§ = 0. Equation (6.23) gives

—Y (6.34)
B
Finally, we obtain from (6.22)
N g - g
0 = L[\g|mo — amy + — My, what implies my = — M. (6.35)
w w

Analyzing the ! equations yields the following. Starting with eq. (6.29) we obtain

o
wi = = M7. (6.36)
B
From equation (6.28) we obtain after integration w.r.t. v that M7 = 0 and hence also
wj = 0. Here, we used the assumption fv vq dv = 0 for undirected tissue. Then, again
from (6.28) we obtain the following expression for mj

z 1 / .
mi = e - af (Q)v - VQmy. (6.37)

Equation (6.26) leads to the expression

1 z
my = “Nia (v-Vmg+ A\ymj), (6.38)
where we used that the inverse L[Ag + oz]|_<1q>l of the operator L[\ + ] is just the
multiplication by the factor —/\Oﬁ.

Using equations (6.30) and (6.31) we can derive an evolution equation for the macro-
scopic cell density (6.32). From (6.31) we have

By = 5 (@M + (g(No) — U(No)) wo — Bytwg) | (6.39)

w
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6. Movement with resting phases: including proliferation

and plugging this term into equation (6.30) we obtain
a
Oymo +v - Vimy = L[Ao]ma + L{\]m3 — am, + Uqu

q « q., [«
+ = (9(No) = U(INo)) Mo~ 0 (EM0> = I(No)mo.

After integrating again with respect to v this yields

8, M, +/ v Vi dv = (g(No) — I(No)) S My — S0,My — 1(No) M.
v B B

Rearranging gives

o, (1 + 9) My+ V- /val dv = %g(NU)MO - <1 + %) Mol(N).

s
With the defined macroscopic quantity

Noz(l—i-%)Mo

we obtain

(9tN0 +V- / vy dv = (No)Ng — N()l(N())
1%

o
a+ 59
Now, we evaluate fv vmydv. Recall

mlz—Aoi_a(v-V(g]\/[g)—l—)\lmf).

and hence mf = g(x)f'(Q)v - VQmy we have

_ 1 q ' a
my = N a (V \% <wM0> + Mg(x)f(Q)v vaM()) .
It follows
_ 1 o (4
V~/vm1dv—V ( )\O+a/‘/vvv<wMo>dv)
)\1 tq /
9 (o [ L avar@von )
=V-|(- L \Y% 1/ tq dv M,
- Ao + @ w Vvvq vato
27 (P00 @1 [ waav-vQu
/\O+agx - Vvvq v o] -
Finally, we obtain with
s

M, =

1
Ny and Dp(x) = —/ vvig dv
w Jv

a+ B
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6.4. Determination of the coefficients

the evolution equation

o=V (27 (50r00m) ) - 7 (2@ - TN

Ao+ A +aa+p
Q
= No)Ng — Nol(Np). 6.49
g (N No = Nol () (6.49)
Note, that the diffusion tensor compared to the tensor (5.20) is scaled by the factor ozLiﬁ’

which gives the ratio of moving cells. This makes sense from the viewpoint of biology,
since proliferating cells should not move at all and hence not diffuse. Analogously, the
factor aaTﬁ corresponds to a ratio of resting cells, since only these are able to proliferate.
Recall, that we still have to determine the form of ¢ in order to obtain explicit expressions
for the tumor diffusion tensor Dr(x).

6.4. Determination of the coefficients

The determination of explicit forms for the coefficients works analogously to section
5.4. For the relation of the distribution function ¢ and DTI data we choose again the

normalized peanut
n

ISP tr Dy (x)
This leads to the tumor diffusion tensor

Dy (x) = ﬁ (Hn + 2%) . (6.51)

q(x,0) = 0" Dy (x)6. (6.50)

The values for the rates a and 8 have to be estimated from biological considerations
and expereiments, see also chapter 8 for a more detailed discussion.
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Numerical stimulation

63






7. Discretization

The purpose of computing is insight, not numbers.

(Richard Hamming)

Contents
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7.1. General remarks

In chapter 9 some numerical simulation results for the tumor growth models derivedin
chapters 5 and 6 will be presented. The simulations have been performed in cooperation
with Christian Engwer!, and without his expertize in numerical treatment of complex
systems these simulations would not have been possible.

All simulations have been performed DTI data based on 2D brain slices, where the pre-
processed data has been provided by courtesy of Carsten Wolters 2.

Recall that we obtained an advection-diffusion equation respectively an advection-diffusion-
reaction equation as macroscopic limits with coefficients depending pointwise on the
data. The tumor diffusion tensor and the tumor drift velocity are precalculated in the
MATLAB? numerics software. The simulations of the macroscopic evolution equation
are implemented using the DUNE framework (Bastian et al., 2008).

In this chapter we will start with the description of our discretization method, and
subsequently in chapter 8 I will collect the arguments for the extraction of the model
parameters from the data. The following section is based on the publication (Engwer
et al., 2013).

7.2. Numerical method

Both the diffusion coefficient as well as the drift coefficient in the model equations
are sptially dependent, and we expect regions in space where the system is diffusion
dominated and regions where it is drift dominated. This can be expressed by the spatially

dependent Péclet number PE = ||||];’)>(TX()XI;|||| where the norm in the denomerator is the L?

!Prof.Dr. Christian Engwer, Institut fiir Numerische und Angewandthe Mathematik
2PD Dr. Carsten Wolters, Institut fiir Biomagentismus und Biosignalanalys, Universitit Miinster
3SMATLAB Release 2012b, The MathWorks, Inc., Natick, Massachusetts, United States.
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7. Discretization

norm, while we take in the denominator the Frobenius norm of D. L is a macroscopic
characteristic length scale (2 mm, in our present setting and simulations). For PE <«
1 we have a diffusion dominated case, and classical methods for parabolic equations
will apply, while for PE > 1 the equation behaves like a hyperbolic equation, and
hyperbolic methods need to be used. In Figure 8.2(d) we illustrate the behavior of the
Frobenius norm of Dy (x) and of the Péclet number in 4(b) and 4(d), respectively. A large
Peclet number along the white matter tracks is clearly observed. The numerical scheme
needs to be able to handle degenerated anisotropic parabolic equations and full tensors.
Furthermore it should be locally mass conservative. For these reasons we decided to
employ a first order discontinuous Galerkin (dG) scheme in space and an implicit Euler
scheme in time. This method is overall first order accurate. For the simulation we use
a structured mesh M(Q) = {E;}, which is a subset of the voxel mesh of the DTT data.
Since our mesh is Cartesian with mesh-width h, the sets E; are simply the grid cells that
belong to the brain tissue. We define the skeleton of M as the boundary between those
grid cells,

I' = {’Ye,f = 8Eeﬂ8Ef ’ Ee,Ef € M, E. # Ef, and h/e,f| > 0}

We first discuss the spatial discretization. We use a symmetric interior penalty discon-
tinuous Galerkin method (SIPG) (Wheeler, 1978) as implemented in DUNE (Bastian
et al., 2008). We denote with V}, the discontinuous Galerkin Ansatz-space, which is in
our case the space of piecewise bilinear polynomials

Vh = {Vh c LQ(Q) : Vh|E < Q1(E),E c M(Q) },

where 1(E) denotes the set of affine linear functions on E. We test the above equation
with these ansatz functions, use a weak formulation, and express coupling conditions
along the skeleton through jumps [-] and averages {-} in a similar notation as in
(Arnold et al., 2002). We use weighted averages, as proposed in (Ern et al., 2009).
Omitting the computational details, which can be found for example in (Arnold et al.,
2002), the resulting semi-discrete problem reads:

Find My, (t) € V}, such that

Mo (t) + an(Mon(t), vi) + Jn(Mon(t), 1) =0 Vi €V, (7.1)
with the bilinear form a; and a penalty term J;, given by

adh@MQJm):1/EbVA%Aﬂ-VWNM——/ﬁA%“ﬂﬂ~{DTVWJ

Q

+m%m{mVMm@}@—/vM%@v%m 72)

+ /[[Vh]] v My} (t)ds.
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7.2. Numerical method

and
In(Mon®)) =™ [ [ M Jon D s, (73)
r
where 77 > 0 denotes the penalty factor. For a good choice of 1 we refer to (Ern et al.,
2009).
Note that we require the normal velocity to be continuous, i.e. V|pg, n, = —V|sg,, N,

where n,, denotes the outer normal vector of grid cell E,. To ensure this, we use a
Raviart-Thomas RT0 approximation of the velocity field. On an internal edge with two
adjacent cells E,, and E,, we define

[[I]] - CU|8Ennn + x|8Emnm and {I} - wnx|8En + wmm|8Em,

with weights w,,, w,, and the unit outer normal vectors n,,, n,,. To be robust with respect
to heterogeneous diffusion coefficients, we use the weights

n! Dr,,n,,
nin (DTn + DTm)nm

n! Dz, n,
nf@ (]D)Tn + ]D)Tm)nn

and w,, =

Wy =

respectively, where D7,, denotes the tumour diffusion tensor computed in F,. Note that
due to n,, = —n,, the relation w,, + w,, = 1 holds.

The advective term is stabilized using an upwind formulation with the upwind recon-
struction MO,TZ of the cell density. For the time discretization of Mgy, we used an implicit
Euler scheme and time steps 7 such that we fulfill a CFL condition of 1.
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8. Extraction of the model parameters

If you have a procedure with 10 parameters, you probably
missed some.

(Alan Perlis)

Contents
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8.1. Parameter extraction from DTI data

The coefficients in the macroscopic model equations (5.14) and (6.49) as well as the
computational domain €2 are obtained from 3d DTI data. In this section I will describe
how to obtain these values from given data and will also give some background informa-
tion about sources of biological model parameters. To get a first impression of the data
consider the T1 image in figure 8.1(a) which shows on a horizontal slice grey and white
matter regions of a human brain. Figure 8.1(b) shows the according image segmenta-
tion and also yields the actual computational domain 2 as the union of these tissues,
depicted in yellow and light red color. Figure 8.1(c¢) shows a fractional anisotropy map
computed from the eigenvalues of the water diffusion tensor for each voxel and finally
figure 8.1(d) visualizes the largest eigenvector, i.e., the main direction of diffusion.

Coefficients of the macroscopic equations have been calculated for each voxel of the
brain with the known values of the water diffusion tensor Dy,. As shown in section 5.4,
the form of the coefficients depends on the chosen relationship between values of the
measured apparent water diffusion tensor and the fibre distribution function ¢. Two
possible choices have been considered, the peanut distribution and a von Mises-Fisher
distribution, both leading to different tumor diffusion tensors.

For the peanut distribution

q(x,0) = 1t Dy () 0" Dy (x)0. (8.1)
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8. Extraction of the model parameters

(a) T1 weighted picture of a brain  (b) Segmentation of the brain slice.
slice.

(c) Overlay of fractional anisotropy (d) Visualization of the main direction

and T1 picture. of diffusion by a vector pointing in the
direction of the tensor’s leading eigen-
value.

Figure 8.1.: Scanned and processed MRI brain data of a healthy young male subject.

it has been shown that the tumor diffusion tensor is explicitly given by

Dr(x) = m (]In + 2%) , (8.2)

and depends on the values of the apparent water diffusion tensor. The tumor diffusion
tensor has been calculated in Matlab, where derivatives involved in the corresponding
drift correction term u(x) = V - Dy(x) have been evaluated with a finite difference
scheme. For the simulations these quantities were then projected onto the 2D simula-
tion slice.

Because the peanut distribution did not sufficiently reflect the anisotropy of the process
in the mesoscale framework (Painter and Hillen, 2013), a von Mises-Fisher distribution
of the form

k(x)
47 sinh(k(x))
has been alternatively been proposed in (Painter and Hillen, 2013). Recall that k(x) =
k- FA(x) and that FA(x) denotes the fractional anisotropy index for each voxel. ¢

q(x,0) = 8% +(1-9) ("0 4 e F9) (8.3)
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8.2. Parameters obtained from biological experiments

represents the leading eigenvector of the diffusion tensor for each voxel and k can be
interpreted as the sensitivity of the cells to the orientation of the underlying fibre struc-
ture. 0 reflects the influence of stochastic effects. For a ¢ close to 0 stochasticity will
also tend to zero. This leads to the alternative tumor diffusion tensor

Dy (x) = ;—jo {<5+(1—5) (COtkh’“ - %)) T+ (1) (1 - @+%) gbqst] |
(8.4)

Given the eigenvalues of Dy, the fractional anisotropy index has been computed for each
voxel in Matlab. Additionally, the leading eigenvector was known, hence one obtains D
by direct computations.

Both choices have their inherent advantages and disadvantages and the actual relation
between Dy, and ¢ is still unclear. I will come back to this point in the discussion. Sadly,
DTT is not capable to directly provide information about the local tissue structure on the
scale of proteins within the ECM. The size of a voxel lies within a range of a millimeter
whereas proteins to which cell surface receptors can bind have just a size of several
microns. We hence assumed, that the quantity ) is the volume fraction of aligned
tissue fibres and correlated it to the fractional anisotropy index to estimate the volume
fraction () of aligned ECM tissue. Hence, we computed @Q(x) = FA(x) for each point in
the simulation domain. The computational domain {2 has been chosen as the union of
white and grey matter regions.

8.2. Parameters obtained from biological experiments

Several other parameters can directly be related to biologically observable quantities.
As far as this was possible, experimental sources for those parameters have been cited
in table 8.1. The following list summarizes our model parameters and their biological
meaning.

e The number of receptors per cell, R, is crucial for the binding dynamics. It
denotes the average number of transmembrane adhesion molecules per cell which
bind to surrounding proteins as well as to other cells. Although this number varies
from cell type to cell type, it can be estimated from biological experiments that an
average value of several ten thousand up to hundred thousand receptors per cell is
realistic.

e The cell turning rate )\, is a measure for how often cells choose new directions
of movement and is defined as the inverse of the mean run time. Especially for
kinetic models this quantity is crucial for the modelling. However, estimations for
average turnig rates can be obtained from biological experiments and have unit

[1/s]-

e The cell speed s gives the absolute speed of a moving cell measured in [m/s]. Of
course, these values differ between cell types, but since we observed that the choice
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8. Extraction of the model parameters

of s results only in time scaling of the simulation this parameter is not crucial. We
chose an average value which reflects the rough biophysical dimension.

e The receptor binding rates k* and k= measure the binding and dissociation of
cell surface receptors to surrounding proteins. Note, that since the rate k™ is not
a classical second order reaction rate but a measure for how many receptors per
cell bind to ligands per unit time, it has the same unit as k= (which is ). Since
no appropriate data were available, we assumed that k™ =~ k= because the surface

dynamics should always be close to its steady state.

e The cell stopping rate a denotes the rate in which cells stop their movement
to pass into a resting phase. Accordingly, the cell moving rate is a measure for
how cells start moving again after resting. Both rates have unit %

e The proliferation rate r, is a measure for how often cells devide and grow. In
this work it has been related to the duration of a cell cycle. Accordingly, the
apoptosis rate r; is related to the mean life span of a cell and a measure for the
frequency of cell death.

We tested variations of these parameters by +50% and found very similar simulation
behavior for the parameters.

Parameter | Interpretation Dimension Source
Ry Receptors 10* —10° (Belkin et al., 2005)
s Cell speed 10-6x (Sidani et al., 2007)
Ao Turning rate 10712 (Sidani et al., 2007)
A1 Deviation turning rate 10722 estimated
kt Binding constant 10*1% estimated
k™ Dissociation parameter 10_1% (Lauffenburger and Lindermann, 1993)
« Stopping rate 10_% estimated
B Moving rate 10721 estimated
T Proliferation rate 1077 source
7 Cell death rate 10774 source

Table 8.1.: Choice of parameters which cannot be obtained from MRI data.

8.3. Visualization of the coefficients

Since the coefficients depend on DTI data, the understanding of their spatial variation
is interesting. Figure 8.2 shows a visualization of the coefficients for a part of the sim-
ulation domain (see figure 8.2(a)). In figure 8.2(b) the Frobenius norm of the tumor
diffusion tensor has been plotted for each voxel. Obviously, its behavior varies signifi-
cantly between grey and white matter regions. This makes sense from the viewpoint of
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8.3. Visualization of the coefficients

biology, since diffusion along highly aligned tissue structure (as in white matter) is faster
than in an isotropic structure, where barrieres in all directions occur (as in grey matter).
The diffusive transport of cells is hence faster in white matter regions. Figure 8.2(c)

(a) For the visualization we focus on the selected right upper part of
the brain slice.

(b) Local Frobenius norm (c) Quiver plot of the drift (d) Local Péclet num-
of the tumor diffusion ten- term resulting from internal  ber
SOr. dynamics.

Figure 8.2.: Visualization of the local invasive behavior.

shows a quiver plot for the drift term as well as the magnitude of the velocity. Again,
a significant difference between regions of grey and white matter is visible. Enlarged
velocities occur within the highly aligned regions, since it is easier for cells to move along
fibre tracts than through an isotropic network, hence white matter regions with a high
anisotropy lead to higher velocities.

Figure 8.2(d) shows the Péclet number PE = HH;(TX()J)[II"
ator is the L? norm and the norm in the denominator the Frobenius norm of . L is a
macroscopic characteristic length scale (2 mm, in our present setting and simulations).
The Péclet number indicates where the migration is dominated by diffusion and where
by advection. It can be seen, that white matter regions are drift dominated, which
corresponds to an active movement of cells along the tissue structure, while grey matter
regions are diffusion dominated since cells have no preferred directon of movement in
this case.

where the norm in the denumer-
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9. Simulation results

The purpose of computing is insight, not numbers.

(Richard Hamming)

Contents
9.1. Simulation Results for the advection-diffusion model . ... 75
9.2. Simulation Results for the model including proliferation . . 82

9.1. Simulation Results for the advection-diffusion
model

In this section some numerical simulations for the macroscopic evolution equation from
chapter 5 will be presented. Recall that we obtained the equation

DMy =V - (Dp(x)VMo) + V - ([9(Q())Dr(x)VQ(x) — u(x)] My) =0 (9.1)

As shown in section 5.4, the coefficients depend of the explicit form of the distribution
function g. Simulation results will be shown for both the peanut distribution function
in section 9.1.1 and for the von Mises-Fisher form in section 9.1.2. Section 9.1.3 is then
concerned with a numerical comparison of both cases. Table 9.1 shows how the model
parameters have been chosen for the simulation.

Parameter | Interpretation Value Source
Ry Number of receptors 10° (Belkin et al., 2005)
s Cell speed 10-6m (Sidani et al., 2007)
Ao Turning rate 0.11 (Sidani et al., 2007)
A1 Deviation turning rate 0.01% estimated
k* Binding rate 0.11 estimated
k~ Unbinding rate 0.11 | (Lauffenburger and Lindermann, 1993)

Table 9.1.: Choice of parameters for the simulations.
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9. Simulation results

M0 MO MO
0 0002 0,004 . 0006 00010002, 0,003 0 0.001 0,002
908, 02, '

-5.580-7 0.0072 -1.468-9 0.00365 -8.50-12 0.00248

t=20-10%s t=40-10%s t =60-10%s

P,

t =80-10°%s t=120-10%s =160 - 10°s t =200-10%s

Figure 9.1.: Spread of cancer cells in the brain: case not involving subcellular dynamics.

9.1.1. Peanut distribution
The coefficients have been explicitly computed for the peanut distribution yield the

expression
82 DW (X)
Dr(x) =D (“n * 2m> (9:2)

for the tumor diffusion tensor as well as

25? (V-]DW(X) _ Dw(x) -Vtr]D)W(x)>
Xo(n+2) \ trDy(x) (tr Dy (x))2

u(x) = (9.3)

for the tumor drift velocity. The function g(Q) represents the influence of the receptor
dynamics and is given by

9(Q(x)) = M (kT Q(x) + £~ + Xo) T f(Q(x)). (9.4)

In the following, simulations with and without the additional advection term resulting
from the receptor dynamics will be compared. Figure 9.1 illustrates the numerical sim-
ulation of the evolution equation for cancer cells for the pure diffusive case, which have
been performed on a horizontal brain slice and have been started with a binary distribu-
tion where a small initial tumor is located in the left hemisphere of the brain. Although
we expected highly anisotropic diffusion there is no significant dependence on the di-
rection visible. Obviously, the isotropic part of the tumor diffusion tensor dominates
the anisotropic one and disables the emergence of anisotropic patterns. From viewpoint
of biology it is thus questionable if diffusion is the dominating transport process in the
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9.1. Simulation Results for the advection-diffusion model

MO MO
0 0002, 0004 0 . 0001 0002 0003 0004

0 0.1 -5.480-6 0.01021 3.2208 0.00592 -6.660-9 0.00429

t=20-10%s t =40-10%s t =60-10%s

0.00] M’g.noz 0,003 o.m’r’u 0,002 0.6001 0.002 0,000 u.u":’l&au 0.001, 0002
b 1 = "w“” — "“‘ ! % "W”””%
t =80-10s t=120-10s t =160 -10°s t =200-10s

Figure 9.2.: Spread of cancer cells in the brain: advection dominated case (subcellular
dynamics involved). For parameters see Table 8.1.

evolution of tumors. However, figure 9.1 shows some slight anisotropies, but these seem
to be caused by the geometry of the simulation domain.

Figure 9.2 illustrates the simulation of the full system 9.1 including haptotactic drift.
The emerging patterns show a high anisotropy caused by the haptotaxis term resulting
from cell receptor dynamics. The sign of this additional drift term is converse to diffu-
sion. While diffusion leads to a simple spread of the cells, haptotaxis pushes them into
the white matter structure via a cellular binding process and generates the anisotropic
pattern. The results differ significantly from diffusion dominated spread and the under-
lying tissue structure is visible. This observation supports the conjecture that directed
cellular movement plays a crucial role in the cancer invasion processes, while diffusion
seems to be of secondary interest. This makes sense from the biological point of view,
since haptotactic and chemotactic movement of cells are assumed to be the major trans-
port mechanisms on the cellular scale. As a consequence the question arises whether
simple, classical diffusion-reaction models for cellular movement are justified in this con-
text. We will return to this point later in the discussions.

9.1.2. Von Mises-Fisher distribution

Choosing a von Mises-Fisher distribution instead of the peanut for the distribution
function ¢ leads to different forms for the coefficients. The corresponding tumor diffusion

7



9. Simulation results

2.77e-005 0.00946 -2.826-007 0.00475 7.616-009 0.0032
t=20-10%s t=40-10%s t=60-10%s
¥

0 o001 oo
e a—— | | | | | ‘
-7.75e-011 0.00241 0 0.00161 0 0.00121 0 0.00098

t =380-10%s t=120-105s t =160 - 10%s t =200 -10°s

Figure 9.3.: Simulation of the evolution equation: case not involving subcellular dynam-
ics with von Mises distribution with x = 10 and 6 = 0.05.

tensor reads (Painter and Hillen, 2013)

(9.5)
with k(x) = k- FA(x) and FA(x) denoting the fractional anisotropy index for each voxel.
¢ represents the leading eigenvector of the diffusion tensor for each voxel. x can be in-
terpreted as the sensitivity of the cells (Painter and Hillen, 2013) to the orientation of
the underlying fibre structure and ¢ reflects the influence of stochastic effects. Figures
9.3-9.6 below show the evolution of the macroscopic equation (9.1) for the case x = 10
and k = 20 for both the pure diffusion case and the full system. Simulations have again
been performed on a horizontal brain slice and have been started with a binary distribu-
tion where a small initial tumor is located in the left hemisphere of the brain as in the
previous simulations. Figure 9.3 shows the results for the pure diffusion case for x = 10,
figure 9.4 shows the simulation for the corresponding full system including the advective
terms. Additionally, simulations have been performed for x = 20 in figures 9.5 and 9.6.
As expected, the pure diffusive cases show higher anisotropies than the corresponding
simulations based on the peanut distribution. This effect ist due to the artifical prefer-
ence of the main direction of water diffusion within the von Mises-Fisher distribution.
The larger k ist chosen, the higher is the effect on the anisotropy.

However, simulation results for the corresponding full systems (figures 9.4 and 9.6) in-
cluding the haptotactic drift term show the same qualitative behaviour as the simulations
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9.1. Simulation Results for the advection-diffusion model

0 0.1 -5.48e-005 0.0132 -2.08-006 0.00739

t=20-10%s t =40-10s

-4.976-009 0.00418 0 0.00299 0 0.00237 0 0.00198

t =80-10%s t =120-105s t =160 -10°s t =200 -105s

Figure 9.4.: Simulation of the evolution equation: case involving subcellular dynamics
with von Mises distribution with x = 10 and § = 0.05.

for the peanut distribution in figure 9.2. A detailed comparison of the form of the fibre
distribution function will be presented in the next section.

9.1.3. Influence of the fibre distribution function

The choice of the fibre distribution function ¢ involves diffusion tensor imaging data
and determines the structure of the tumor diffusion tensor. As argued in section 5.4 the
choice is not unique and the question arises how to mathematically relate Dy, and q. As
a first choice the peanut distribution

n

Q(X’ 9) = |Sn71| tr Dy (X) 0tDW<X)6 (96)

has been proposed. In (Painter and Hillen, 2013) this choice has been criticised, and
alternatively usage of a von Mises-Fisher distribution of the form

q(x,0) = Fx)

_ 0 | kb _
Srsnb(b) ¢ ) (9.7)

has been proposed with k(x) = k-FA(x). Here, FA(x) denotes the fractional anisotropy
index and the parameter x can be interpreted as the sensitivity of the cells to the orien-
tation of the underlying fibre structure.
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0 0.0037

t=60-10%s

0 0.00277

t =380-10%s t=120-105s t =160 - 10%s t =200 -10°s

Figure 9.5.: Simulation of the evolution equation: case not involving subcellular dynam-
ics with von Mises distribution with x = 20 and 6 = 0.05.

t=40-10%s t =60-10%s

0 oo oom  oms  oma

— e | ‘ | e
0 0.00477 0 0.00338 0 0.00265 |
t=80-10%s t =120 -10%s t =160 - 1055 t =200 -10%s

Figure 9.6.: Simulation of the evolution equation: case involving subcellular dynamics
with von Mises distribution with £ = 20 and § = 0.05.
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9.1. Simulation Results for the advection-diffusion model

MO
0.0002  0.0004 ‘Q.‘QF‘% 0.0008

0 0.000966

MO
0 0002 0.004 0.006 0.008

-0.00035 0.009069

Figure 9.7.: Extreme cases of the von Mises-Fisher distribution for k — oo (left) and
k — 0 (right).

Figure 9.8 shows simulation results of the tumor evolution at the endstep ¢ = 200-10%s

for the two suggested choices (5.18) and (5.19) for the fibre distribution function g. The
upper row shows the results for the pure diffusive cases, the lower row the corresponding
simulations including the haptotactic drift term.
As expected, an increased k leads to a higher degree of anisotropy in the spread. Nev-
ertheless, the results for the tumor evolution look quite similar when compared to each
other. This suggests that the additional drift term resulting from the integrin dynamics
predominantly causes the patterning effect, and the particular type of diffusion plays a
minor role in generating anisotropic growth patterns.

In section 5.4 it has been shown that two limit tensors exist which reflect the minimal
and maximal degree of anisotropy contained in the proposed distribution. This lead to
the tensors

2 /1 2
Dr(x) =~ (= +25)1
(%)= 3% (3+3)
and
2

DT(X) = 3—)\0 (

I+ (1 - 8)¢gt) .

Figure 9.7 shows the simulation end steps for both cases.

While the peanut distribution is parameter free and involves only values of the water
diffusion tensor, the von Mises-Fisher distribution relies on an additional biological model
parameter k. Although its interpretation as cellular sensitivity seems intuitive, there is
no biological data available and one has to rely on an educated guess for the choice.
Furthermore, several other distributions are potential candidates, and there is little
agreement which is the best choice at all. From this point of view it seems reasonable
to keep the peanut distribution as a first choice for further calculations, as long as the
relation between values of the water diffusion tensor and the choice of the distribution
function has been investigated in detail. We will come back to these aspects in section
10.2, where we will discuss some ideas for future work.
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von Mises-Fisher von Mises-Fisher
Peanut k=10
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0.00098

Full model, with
subcellular effects
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0 0.001984

0.002199

Figure 9.8.: Comparison of the spread of cancer cells in the brain for the peanut dis-
tribution and the bimodal von Mises-Fisher distribution at the endstep
t =200 - 10%s. For the parameters see Table 8.1.

9.2. Simulation Results for the model including
proliferation
In this section simulation results for the macroscopic evolution equation obtained in

chapter 6.3 will be presented. Recall that the equation for the macroscopic cell density
reads

1
)\Q—i—Oé

O Ny =V - ( V- (]D)T(X)NO))

-V (/\o)i ~h(x) [(Q)Dr(x) VQNO) = ﬁgQ\fo)No — Nol(No), ~ (98)

where the diffusion tensor is given by

b i DW—(X)) . (9.9)

Dr(x) = a+ B A(n+2) (]In i 2tr]D)W(x)

It is still open to find appropriate terms for the gain and loss functions g and [. We
assume that cellular proliferation behaves like logistic growth, and choose hence g(Ny) =
ry to be constant for the proliferation rate r, € R* and I(Ny) = m Ny for 1, € RT.
Altogether this leads to the reaction term

8}
T

«

+ 0

Tg — TIN()) No.
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9.2. Simulation Results for the model including proliferation

Parameter | Interpretation Value Source
Ry Number of receptors 10° (Belkin et al., 2005)
; rCI?‘ell :?‘peed 18_161% Eglgam et a}., ;gg;g
0 urning rate Ag 1dani et al.,
A1 Deviation turning rate 0.01% estimated
kt Binding rate 0.11 estimated
k™ Unbinding rate 0.1% (Lauffenburger and Lindermann, 1993)
« Stopping rate 10_% estimated
I6; 'Run again’ rate 10722 estimated
Ty Proliferation rate 10752 estimated
T Cell death rate 10772 estimated

Table 9.2.: Choice of parameters for the simulations.

Simulations of this model have been perfomed on a horizontal brain slice with a inital
tumor placed in the left hemisphere. Figures 9.9 and 9.10 show simulations for the pure
diffusion case and for the full system including haptotactic drift. Table 9.2 shows the
paramter values chosen in the simulations.

As expected, proliferation causes sharper gradients compared to the advection-diffusion
model without proliferative effects. The corresponding tumor growth patterns evolve
faster than the patterns without proliferation because an increased amount of cells as
cellular growth speeds up the diffusive spread. However, for the pure diffusion case the
patterns do not differ significantly from the models without proliferation and again one
cannot observe significant anisotropies caused by diffusion. Adding the haptotactic drift
terms leads to branched structures, as figure 9.10 shows. Obviously, the tumor spreads
predominatly in brain white matter and from the viewpoint of biology these finger-like
patterns are quite more realistic than an isotropic spread. As in the previous section this
is the expected result since the drift term acts contrary to diffusion and pushes the cells
back into the anisotropic structure. Responsibe for this behaviour is, from the biological
point of view, the increased gradients of () near the interface regions between grey and
white matter. In this regions the gradients are steep because of the transition, what is
reflected by the fractional anisotropy index which is close to zero in grey matter and
rapidly increases if it reaches anisotropic white matter zones.
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Figure 9.9.: Simulation of the evolution equation including prolferation: pure diffusive
case.
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Figure 9.10.: Simulation of the evolution equation including prolferation: full system
including haptotactic drift.
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10. Conclusion

I beat a brain tumor.

(Arlen Specter)
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10.1. Discussion

10.1.1. General remarks

Brain tumors in general and particularly gliomas are not completely understood yet
and offer a wide range of open questions. Interdisciplinary research has given a lot
of meaningful insight during the last decades and especially mathematical multiscale
modelling makes it possible to understand tumor growth and spread in greater detail.
In this work a bottom up multiscale modelling approach has been proposed which starts
with a model for binding processes of receptors on the cell surface on the microscale.
Two models based on kinetic transport equations on the cell scale (mesoscale) describe
the movement of cells in tissue networks. The first model in chapter 5 focuses on cellular
movement itself while the second approach based on a go or grow mechanism in chapter
6 focusses on proliferative effects. Formal diffusion limits, obtained by parabolic scaling,
lead to approximating macroscopic evolution equations for the macroscopic cell density.
A special choice of the function ¢, as described in section 5.4, allows to take DTT data into
account what makes patient specific modelling possible. For each voxel the coefficients
can be evaluated depending on the values of the water diffusion tensor Dy,. Hence,
one obtains personalized coefficients for the macroscopic evolution equations which take
the patients’ neural tissue structure into account. This is a great benefit compared
to common models which do not use any specific data but provide tumor evolution
equations on much simplified 'mathematical’ domains.

10.1.2. Scaling limits

Macroscopic limit equations have been obtained in chapters 5 and 6. A challenging ques-
tion was how to deal with the microscale variable which affects the system in two ways:
first, via an additional drift term in the mesoscale description of the system and second
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with respect to the dependence of the turning rate on this quantity. A momentum ex-
pansion with respect to the microscale variable made it possible to reduce the degrees of
freedom and to focus on the v dependence to perform a formal parabolic scaling of the
space and time variable. Sadly, this two-step approach makes rigorous results including
error estimates for the approximation difficult to obtain.

The model in chapter 5 focusses on the influence of the cell receptor dynamics on the pop-
ulation behaviour and shows that it leads to haptotactic movement on the macroscale.
The resulting evolution equations are of advection-diffusion type, where the coefficients
contain the information from the micro- and mesoscale. The receptor binding model
on the microscale leads to an additional drift term on the population level. Since we
assumed that the cells’ surface receptors bind to nonsoluble fibre stucture this corre-
sponds to a haptotactic drift term causing directed movement of cells in direction of the
gradient of binding substance.

The effect of cell growth and division has been studied in chapter 6. The model was
based on a go or grow hypothesis allowing cells to either move or proliferate. The corre-
sponding macroscopic model was of advection-diffusion-reaction type including a similar
haptotaxis term as obtained in chapter 5 as well as a reaction term representing cell
growth and death.

Both macroscopic evolution equations are of parabolic type. The existence of a solution
for such equations is covered by theorem 4.1 in (Showalter, 1997), where existence has
been shown for general nonlinear parabolic equations.

10.1.3. Simulation results

In chapter 9 simulations for the macroscopic equations illustrate their behaviour and
their dependence on the data. Section 9.1 shows the behaviour of the advection-diffusion
equation obtained in chapter 5.3. It comes out, that the additional transport term is
crucial for the emergence of anisotropic patterns. Without this advective term the
evolution is diffusion dominated and does not show any significant anisotropies, against
first expectations. Obviously, diffusion and the haptotaxis term have different signs and
can hence act in contrary directions. While diffusion seems to be responsible for the
spread of the cells (for instance due to interspecific stress), the haptotactic terms lead
to an active movement of the cells towards the gradient of aligned tissue. With respect
to biological aspects because of two reasons. First, cells move easier through aligned
networks because there is no need for frequent reorientation. This saves a lot of energy
and leads to a faster movement. Second, the surface binding process is also easier in
aligned tissue because of an enlarged directional persistence which leads also to a faster
cellular movement.

Section 9.1.3 compares simulation results for two different choices of ¢q. Obviously, the
grade of anisotropy varies for different choices of ¢ and is by trend larger in the case
of a von Mises-Fisher distribution. This is not really remarkable, since the parameter
k artificially amplifies the grade of anisotropy. However, this effect is predominantly
observable for the pure diffusive case and seems negligible if we add the haptotactic drift
term. For the full system the anisotropies are mainly caused by the transport term and
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not by anisotropic diffusion.

Chapter 9.2 contains simulation results for the equation including proliferation derived in
section 6.3. Compared to the simulations without these effects, the growth speed of the
tumor is increased significantly. A possible cause is the circumstance that proliferation
sharpens the gradients which leads to an increased spread speed. The corresponding
spread patterns have a finger like structure, show the expected anisotropic behaviour
and can be related to the underlying fibre network. Glioma cells spread predominantly
in anisotropic tissue areas with aligned fibre tracts which corresponds to the white
matter areas in the brain. This biological hypothesis could also be observed in the
simulations. Though, this is not surprising. The assumption that cells choose new
directions corresponding to the underlying fibre network is the mathematical basis for
this behaviour and is hence, in some sense, already contained in the modelling. However,
from this point of view the anisotropy should have been caused by the diffusive part of
the model equation, what was not the case at all. A key point for the emergence of
patterns was the relation of ) to the fractional anisotropy index, which produced a
haptotactic drift term becoming large in the interface regions of grey and white matter.

10.1.4. Model relevance and possibility of validation

Comparison of simulation results presented in this thesis with clinical data is desirable
but not trivial because of several factors. First of all, medical imaging time series of
glioma growth are usually not available. Diagnosis of a glioma happens usually due to
symptoms as headache, vomiting and seizures emerging in a relatively late state. Once
a glioma has been diagnosed, treatment strategies are initiated within relatively short
time, including typically surgical resection. Models describing glioma growth in early
stages can therefore not rely an appropriate clinical data. Second, imaging methods do
not show the whole tumor with its infiltrative boundary but just core regions with a high
progression in the destruction of healthy tissue. The proposed modelling is interested in
the infiltrative boundary itself, which ist not directly visible. T will present some ideas
for future work concerned with model validation in the next section.

10.2. Future work

In this section I present some ideas for future work. For the sake of clarity, I divided
these issues in four categories. The first one is concerned with modelling aspects, the
second one with the used data and their structure, the third one with mathematical
analysis and the last one with validation.

10.2.1. Modelling

e Tissue interaction
Neoplasms in the brain cause heavy mechanical deformations. The models studied
in this thesis neglect this effect, but for future work it seems necessary to take
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this effect into account. From the modelling perspective one should focus both on
cell-cell interactions of glioma cells among themselves as well as the displacement
of the neuronal structure by glioma cells. In the first case these effects have
already been studied in (Chauviere et al., 2007), which can be seen as an extension
of the M5 paper (Hillen, 2006), where the authors derived a mechanical model
including a physical stress tensor. In order to take also interactions with the
underlying neuronal fibre network into account it seems interesting to couple the
kinetic transport equation of moving glioma cells to an elasticity equation for the
evolution of the neuronal fibre distribution ¢, describing the deformative evolution.

Turning rates

The turning rates in this work depend on a microscopic variable representing cell
receptor occupancy. From the modelling viewpoint it could also be interesting to
investigate the case for turning rates which depend on the local tissue density,
since cells vary their reorientation rate depending on the surrounding tissue.

Proteases

It has been shown that several proteases play a crucial role in glioma invasion
(Rao, 2003) since they work as chemoattractant for the tumor cells. Although
this effect has been neglected in this work it has already been studied in more
complex models in (Kelkel and Surulescu, 2011) and (Kelkel and Surulescu, 2012).
Cell surface receptors can also be occupied by proteolytic rests which come from
degredation of extracellular matrix components by glioma cells. An additional
variable on the microscale can be used to model this binding process and probably
this leads to another transport term on the macroscale which corresponds to a
classic Keller-Segel chemotaxis term.

Therapy

As summarized in section 2.3, the three major treatment approaches for brain
tumors are surgery, radiotherapy and chemotherapy. The effects of these therapy
approaches could be studied within this modelling approach from a numerical
perspective. For instance, setting the tumor cell concentration to zero within
a specific part of the simulation domain and continuing the simulations would
correspond to a surgical removal, reducing the concentration by a specific fraction
could model the effects of radiotherapy.

10.2.2. Data
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e Relation of ¢ and DTI data

The derivation of coefficients in the macroscopic evolution equations in sections
5.4 and 6.4 was based on the assumption that the apparent diffusion tensor and
the neural fibre distribution function ¢ can be related by a simple mathematical
expression. This hypothesis is not validated at all, and as already explained in
section 3.5 the field of tractography is concerned with this question. However, it
is unclear which grade of exactness for this correlation is necessary for the class of
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models used in this thesis. It would be interesting to find a minimal approximating
expression in form of a mathematical distribution for the relation of DTI data
and the orientation distribution function. While the peanut distribution (5.18)
proposed in section 5.4 is the easiest educated guess and probably to simple, more
specific distributions as the von Mises-Fisher class need additional parameters
which are in many cases hard to derive from biological experiments.

e High angular resolution diffusion imaging

A second point concerning the exactness of ¢ is the fact that DTI data is based
on a tensor model of diffusion, which has just six degrees of freedom. Neuronal
fibre tracts can, however, have a complex structure within each voxel with multiple
orientations. High angular resolution diffusion imaging methods make it possible
to resolve fibre crossings within a single voxel in a greater detail since they mea-
sure the diffusion behaviour of water molecules for up to several hundred gradient
directions. It would be interesing to study the influence of this more complex
information on the model class used in this thesis.

10.2.3. Analysis

¢ Rigorous limits
All scalings in this thesis have been performed formally without rigorous estimates.
It is desirable to obtain rigorous error estimates in order to gain information on
the goodness of the approximation.

e Turning kernel
The turning behaviour of the cells is assumed to be independent of the local cell
density, which leads to linear turning operators which have intensively been stud-
ied. In fact, the turning behaviour of cells is influenced by the numbers, respec-
tively the density of sourrunding cells. This could be introduced into the models by
turning kernels which depend on the cell density. This leads to nonlinear turning
operators which need new mathematical instruments.

10.2.4. Validation

e Biological experiments for cellular movement
In this thesis it has been shown that cellular binding processes on the microscale
lead to drift dominated movement of cell populations on the macroscale. It would
be a great benefit for this class of multiscale models if this behaviour could be
validated in biological experiments. For this purpose a cooperation project has
been initiated, where cellular movement on directed collagen substrate will be
studied. One of the main goals of the project is to validate if receptor binding
processes are responsible for drift dominated movement. Knock-down experiments,
which disable most of a cells’ surface receptors, will hopefully clarify this question.
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e Comparison with clinical studies

Although I already argued that comparison with clinical data seems to be hard,
there are some possible approaches for a validation from my point of view. Usually,
there is no early stage data of gliomas, but with appropriate initial conditions it
would be possible to perform simulations from any stadium of the tumor. These
appropriate initial conditions could possibly be found in T1 pictures, where the
intensity indicates the type of tissue within the brain. As a first step one could
correlate the intensity of such a T1 picture to a corresponding initial tumor con-
centration for each voxel, and then perform the simulations.

Furthermore, it is clear that the simulation results do not correspond one-to-one to
the real tumors, because most of the invasive boundary shown in the simulations
is not visible on T1 pictures.
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