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Abstract

N=1 SU(2) supersymmetric Yang-Mills theory has several interesting non-perturbative
features that can be examined on a spacetime lattice by Monte Carlo simulations. This
approach requires the introduction of sophisticated mathematical tools and novel tech-
niques. One mathematical problem that needs particular attention is the emergence of
a Pfaffian by the evaluation of the path integral over the Majorana field. This Pfaffian
can have negative values, therefore it cannot be used as a measure for the importance
sampling of the path integral over the gauge field. The solution is to use its magnitude
as the measure and to reweight the obtained observable with its sign. Its sign can be
determined by counting the two-fold degenerate pairs of negative real eigenvalues of the
Dirac-Wilson operator. It is possible to obtain these eigenvalues by transforming the
Dirac-Wilson operator by a polynomial before calculating a portion of its eigenspec-
trum using an iterative eigensolver. Power and Faber polynomials were studied in this
context.
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1. Introduction

Several problems in the Standard Model are solved by supersymmetry (SUSY) and
several theories beyond the Standard Model have it as an indispensable ingredient.
Therefore it is essential to study its properties. Even the simplest strongly coupled
supersymmetric theory, namely the supersymmetric Yang-Mills theory with one super-
charge (N=1 SYM), has several important non-perturbative features, which are not
completely understood. Among these are SUSY anomalies, confinement, spontaneous
breaking of chiral symmetry and low-energy bound states. It is possible to study these
by reformulating the theory on a spacetime lattice and calculating discretized functional
integrals using numerical Monte Carlo techniques [1].

N=1 SYM has only the gluon and the gluino as fields. Gauge invariance dictates that
the gluino is a Majorana fermion in the adjoint representation of the gauge group. Its
Majorana nature induces a Pfaffian instead of a determinant, as in the case of Dirac
fermions, when the fermionic functional integral corresponding to the Green’s function
in consideration is evaluated. Since there are not any properties that prevent the Pfaffian
to be negative, only its magnitude may be used as a factor in the weight function in the
Monte Carlo technique that we are using. Its sign is used afterwards as a reweighting
factor.
However a direct calculation of the Pfaffian is not possible with current computer

technology on lattices large enough to provide realistic results. Its magnitude is approx-
imated using pseudofermions. Its sign is obtained by counting the degenerate pairs of
negative real eigenvalues of the Dirac-Wilson operator D of the lattice Lagrangian. This
means that it is enough to calculate only the negative real eigenvalues. The standard
method for this is the spectral flow method [2].
A much more efficient method for calculating negative real eigenvalues is to transform

D by a polynomial and then using an iterative eigensolver to calculate only a part of
the eigenspectrum of the new operator, which contains the transformed negative real
eigenvalues. Power polynomials were already investigated in this context. Another class
of polynomials, namely Faber polynomials, are introduced in this thesis. They were
extensively studied in the context of iterative solvers of linear systems of equations due
to their acceleration effect and in the context of numerical conformal mapping as a basis
for approximating conformal mappings.
The outline of the thesis is the following. In chapter 2, the concept of supersym-

metry is introduced in terms of its algebra and the constructions of the Lagrangian of
N=1 SYM and of the effective Lagrangians that predict the low-energy bound states are
shortly explained. In chapter 3, the Curci-Veneziano action is derived and the solution
to the consequent Pfaffian sign problem is shown. In chapter 4, the symmetries of the
eigenspectrum of the Dirac-Wilson operator in the adjoint representation are summa-
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1. Introduction

rized. In chapter 5, the definition of Faber polynomials, the meaning of their optimality,
their construction from two different exterior conformal maps and finally numerical ex-
periments are presented. In chapter 6, latest published simulation results concerning
the mass spectra of the bound state supermultiplets predicted by the effective theories
and the effect of the finite volume of the lattice are summarized.
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2. N=1 SYM

Supersymmetry was developed in two different contexts, namely supergroups [3, 4] and
string theory [5]. It mixes bosonic and fermionic fields and converts a boson state into
a fermion and vice versa by supersymmetry generators Qi. Qi transform like spinors
under the Lorentz group, therefore in 4 spacetime dimensions, Qi must have at least 4
real components. N=1 is the case where this minimal value is chosen, that is, where
there is only one spinor operator Q with 4 components.

2.1. Supersymmetry Algebra

The supersymmetry algebra is Z2-graded. The group of integers under addition is a
very simple example with a Z2-graded structure, which enables a simple explanation of
the concept [6]. With e for even integer and o for odd integer, we have the following
structure:

e + e = e , e + o = o , o + o = e , (2.1)

with addition being the group product. The even numbers, with deg e = 0, belong to
the even subspace V0 and the odd numbers, with deg o = 0, belong to the odd subspace
V1, forming the group of integers by V = V0 ⊕ V1.
Similarly, the supersymmetry generator Q belongs to the odd subspace and the Lorentz

generators Mµν and the translation generators Pµ to the even space, which is the Poincaré
algebra [7]. The direct product of these two spaces is the Poincaré superalgebra with
the commutation relations [4, 8]

[P µ, P ν ] = 0 (2.2)

[Mµν , P ρ] = i(ηνρP µ − ηµρP ν) (2.3)

[Mµν , Mρσ] = i(ηνρMµσ + ηµσM νρ − ηµρM νσ − ηνσMµσ) (2.4)

[P µ, Qi] = 0 (2.5)

[Mµν , Qi] = i(σµν)iQij (2.6)

{Qi, Qj} = (Cγµ)ijPµ . (2.7)

The corresponding Casimir operators are P 2 = PµP µ and C2 = CµνCµν , with

Cµν = YµPν − YνPµ , (2.8)

where

Y µ = W µ − 1

4
QσµQ̄ , (2.9)
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2. N =1 SYM

with Q the left-handed Weyl spinor, Q̄ the right-handed Weyl spinor and W µ the Pauli-
Lubanski operator,

Wµ =
1

2
ǫµνρσP νMρσ . (2.10)

Their eigenvalues m2 of P 2 and 2m4y(y + 1) of C2, which are used for classifying the
representation, reveal that SUSY multiplets, or supermultiplets, are degenerate in mass
and contain an equal number of bosonic and fermionic degrees of freedom.
Two multiplets are relevant for N=1 SYM, namely the massive chiral multiplet and

the massless vector multiplet. The massive chiral multiplet is corresponds to the repre-
sentation with the eigenvalues m and y = 0 and consists of a scalar field, a pseudoscalar
field and a spinor. The massless vector multiplet is composed of a massless spin-1 boson
with two helicity states and a massless spin-1/2 Weyl fermion again with two helicity
states, like any other representation with m = 0 of the Poincaré superalgebra [4].

2.2. Lagrangian

The Lagrangian of N=1 SYM is constructed from the massless vector multiplet, which
consists of the gauge boson Aµ, that is, the gluon, and the two-component Weyl fermion
ψ, that is, the gluino. Aµ is an element of the Lie algebra, so Aµ = Aa

µT a where
T a ∈ su(3) and transforms in the adjoint representation of the group. This must hold
also for ψ, therefore ψ = ψaT a.

Aµ and ψ have the same number of on-shell degrees of freedom, two helicity states
each. However, the number of their off-shell degrees of freedom differ. Aa

µ has 3 real
bosonic degrees of freedom, whereas ψa has two comples, or 4 real, fermionic degrees of
freedom. Therefore, one real bosonic auxiliary field, typically denoted Da, is inserted.
It is also an element of su(3). The Lagrangian for this vector multiplet is [9]

L = −1

4
F a

µνF a,µν + iψ† aσ̄µDµψa +
1

2
DaDa , (2.11)

where ψ† a stands for a right-handed Weyl spinor, σ̄0 = σ0 and σ̄1,2,3 = −σ1,2,3,

F a
µν = ∂µAa

ν − ∂νAa
µ + gfabcAb

µAc
ν (2.12)

is the Yang-Mills field strength tensor and

Dµψa = ∂µψa + gfabcAb
µψc (2.13)

is the covariant derivative in the adjoint representation.
The auxiliary field Da has no kinetic term and is of dimension [mass]2, so it can be

eliminated by its equation of motion, which is algebraic. In terms of a Majorana spinor

λ =

(

ψ
ψ†

)

(2.14)
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2. N =1 SYM

the Lagrangian takes the form

L = −1

4
F a

µνF a,µν + i λ̄
a

γµDab
µ λb . (2.15)

The Lagrangian must be represented in Euclidean spacetime for numerical simulation
on the lattice. By making the substitution

t = −iτ , τ ∈ R , (2.16)

so that time is imaginary and the metric is Euclidean, we get the Lagrangian in Euclidean
spacetime [10]

L =
1

4
F a

µνF a
µν +

1

2
λ̄aγµ(Dµλ)a +

mg

2
λ̄aλa , (2.17)

where in our case a soft symmetry breaking gluino mass mg is inserted for technical
reasons. The infinitesimal supersymmetry transformations of the fields with a Grass-
mannian parameter ǫ are

δAa
µ = 2iǭγµλa , δλa = −σµνF a

µνǫ . (2.18)

The change in the Lagrangian is
δL = ǭ∂µjµ , (2.19)

where jµ = −1
2
Sµ with Sµ the supercurrent defined as

Sµ ≡ −F a
ρτ σρτ γµλa . (2.20)

2.3. Effective Lagrangians

Two effective Lagrangian were proposed for N=1 SYM to study its low energy behavior.
They are written in terms of composite operators, which correspond to physical particles.
The analysis of the first Lagrangian [11] predicts the formation of a massive chiral
multiplet consisting of a Majorana fermion, a scalar boson and a pseudoscalar boson.
The Majorana fermion is a bound state of a gluino and a gluon, hence called gluino-
glue. The bosons are formed of two gluinos. The scalar one is named adjoint f0 and the
pseudoscalar one adjoint η′.
However, based on the Poincaré superalgebra, one expects also purely gluonic bound

states, called glueballs [7]. In the first effective Lagrangian, they appear as auxiliary
fields, therefore eliminated by their equation of motion. To include glueballs in the theory
as dynamical fields, another effective Lagrangian [12] was constructed by embedding the
chiral multiplet of the bound states with gluinos into a three-form multiplet [13]. The
second chiral multiplet is consequently predicted. It consists of a scalar glueball, a
pseudoscalar glueball and a gluino-glue.
Mixing between these two multiplets is also predicted, but it is unclear how significant

that mixing might be and it is not clear which of them is lighter [14].
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3. N=1 SYM on the lattice

Calculations related to important properties such as confinement, mass spectrum of
bound states, spontaneous symmetry breaking, in an asymptotically free theory like
N=1 SYM are of non-perturbative nature. One suitable method is to reformulate the
theory on a spacetime lattice, the distance between neighboring points of which is a, and
calculate numerically functional integrals corresponding to Green functions of interest
of this new theory.

3.1. Euclidean Functional Integral

The vacuum expectation value of an observable O for a gauge theory in Minkowski
spacetime is in terms of a functional integral given by

〈0|Ô|0〉 = 1

ZM

∫

(DAµ)(D Ψ̄)(DΨ)O[Aµ, Ψ̄,Ψ]eiSM [Aµ,Ψ̄,Ψ] , (3.1)

with
ZM =

∫

(DAµ)(D Ψ̄)(DΨ)eiSM [Aµ,Ψ̄,Ψ] , (3.2)

where SM [A, Ψ̄,Ψ] the action of the theory, Ô is the operator representing the observable,
O[A, Ψ̄,Ψ] the functional representing the observable in terms of classical fields, namely
A the gauge field, Ψ̄ and Ψ the Grassmann-valued fermion fields.
In Euclidean spacetime, we have after applying (2.16)

〈0|Ô|0〉 = 1

Z

∫

(DAµ)(D Ψ̄)(DΨ)O[Aµ, Ψ̄,Ψ]e−S[Aµ,Ψ̄,Ψ] , (3.3)

where
Z =

∫

(DAµ)(D Ψ̄)(DΨ)e−S[Aµ,Ψ̄,Ψ] , (3.4)

with S = −iSM being the Euclidean action. Since e−S is a real number (with S in
units of ~), the functional integral can be evaluated by reducing it to an ordinary multi-
dimensional integral defined on a 4-dimensional spacetime lattice, which approximates
Euclidean spacetime.

3.2. Wilson Action

The Lagrangian for a free quark of N colors in Euclidean spacetime is

L = Ψ̄(x)(γµ∂µ + m)Ψ(x) , (3.5)

6



3. N =1 SYM on the lattice

where γµ are the Euclidean Dirac matrices. A Lagrangian for interacting fermions is
obtained by modifying (3.5) such that the new Lagrangian is invariant under the local
gauge transformation

Ψ(x)′ = Λ(x)Ψ(x), Λ(x) ∈ SU(N) , (3.6)

where
Λ(x) = exp(iαa(x)T

a), T a ∈ su(N) , (3.7)

with su(N) being the Lie algebra of SU(N). This is achieved by making use of parallel
transporters

U(y, x) = P exp

(

i
∫

Cyx

Aµdxµ

)

, (3.8)

where Cyx is some curve from x to y and Aµ = Aa
µT a is the gauge field. Under (3.6),

U(y, x) transforms as
U ′(y, x) = Λ(y)U(y, x)Λ(x)† . (3.9)

Defining a covariant differential for an infinitesimal curve Cx+dx,x by

DΨ(x) = U(x+ dx, x)†Ψ(x+ dx)−Ψ(x) , (3.10)

where
U(x+ dx, x) = 1 + iAµ(x)dxµ , (3.11)

we obtain the covariant derivative

DµΨ(x) = (∂µ + iAµ(x))Ψ(x) . (3.12)

Replacing ∂µ in (3.5) with (3.12), we obtain the locally gauge invariant Lagrangian for
interacting fermions,

L = Ψ̄(x)(γµDµ +m)Ψ(x) . (3.13)

The corresponding action is

S[Ψ̄,Ψ, A] =
∫

dτ
∫

d3x Ψ̄(x)(γµDµ +m)Ψ(x) . (3.14)

On a spacetime lattice, Ψx is defined at discrete points x = an, where a is distance
between lattice points and n ≡ (n1, n2, n3, n4) labels lattice points. Partial derivatives
are replaced by the forward difference operator,

∂µ → ∆f
µ ≡ 1

a
(Ψx+µ̂ −Ψx) , (3.15)

and integrals by sums,
∫

d4 →
∑

n

a4 . (3.16)

7



3. N =1 SYM on the lattice

Local gauge invariance of the action in this new setup is ensured the same way as in
the continuum, that is, by replacing the lattice derivative (3.15) by the forward lattice
covariant derivative

Df
µΨx =

1

a
(U †

xµΨx+µ̂ −Ψx) , (3.17)

with Uxµ ≡ U(x + µ̂, x). The curve connecting two neighbouring lattice points can be
approximated by a straight line for small a, therefore

Uxµ = exp (iaAxµ) , (3.18)

which is an element of SU(N) and which we call a link from now on. The fermionic
lattice action thus reads

SF [Ψ̄,Ψ, U ] =
a4

2

∑

x

Ψ̄x γµ(D
f
µ +D

b
µ)Ψx − m Ψ̄xΨx , (3.19)

where the backward lattice covariant derivative

Db
µΨx =

1

a
(Ψx − U †

x−µ̂,µΨx−µ̂) (3.20)

is introduced to decrease discretization errors. Explicitely

SF [Ψ̄,Ψ, U ] = a4
∑

x

Ψ̄x

4
∑

µ=1

γµ

2a
[UxµΨx+µ̂ − U †

x−µ̂,µΨx−µ̂]− m Ψ̄xΨx . (3.21)

The gluonic action is constructed out of link variables, which represent gauge fields on
the lattice. (3.9) implies that there are two gauge invariant objects possible. We present
them in continuum notation to avoid clutter of indices. The first one is

Ψ̄(xi)P [U ]Ψ(xf ) , (3.22)

where, with xf − µ̂k−1 = xi + µ̂0 + µ̂1 + · · · + µ̂k−2,

P [U ] = Uµ0(xi)Uµ1(xi + µ̂0)Uµ2(xi + µ̂0 + µ̂1) . . . Uµk−1
(xf − µ̂k−1) , (3.23)

which, due to (3.9), transform as

P ′[U ] = Λ(xi)P [U ]Λ(xf )
† . (3.24)

The second one is
L[U ] = tr[PC[U ]] , (3.25)

where PC[U ] is obtained by setting x = xi = xf in (3.23). Under (3.9), PC[U ] transforms
as

P ′
C[U ] = Λ(x)PC[U ]Λ(x)†, (3.26)

which is a similarity transformation leaving the trace of PC[U ] invariant.
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3. N =1 SYM on the lattice

The smallest possible closed loop,

Px,µν = UxµUx+µ̂,νU †
x+ν̂,µU †

xν , (3.27)

is called plaquette and it is the building block of the lattice gauge action. Its expansion

Px,µν = exp (ia
2(∂µAν(x)− ∂νAµ(x) + i[Aµ(x), Aν(x)] +O(a3))

= exp (ia2Fµν(x) +O(a3))
(3.28)

reveals that a lattice gauge action of the form

SG[U ] = β
∑

x

∑

µ<ν

1− Re trPx,µν , (3.29)

with β = 2N/g2 and where the trace runs over the group indices, converges as a → 0 to
the continuum gauge action in the Euclidean space

SG[A] =
1

2g2
tr

∫

d4xFµν(x)Fµν(x) (3.30)

or, since Fµν = F a
µνT a and 2 tr(T aT b) = δab,

SG[A] =
1

4g2

∫

d4xF a
µν(x)F

a
µν(x) . (3.31)

The lattice fermion propagator in momentum space obtained for free fermions (Uxµ =
1),

[−ia−1γµ sin(pµa) +m]αβ

a−2 sin2(pµa) +m2
(3.32)

has 16 poles when m = 0, which implies the existence of 15 additional fermions, which
are pure lattice artifacts. One way to resolve this problem is to modify the action (3.21)
such that the masses of the additional fermions diverge in the continuum limit. To this
aim, chiral symmetry, which is a symmetry of (3.13), is abandoned by adding a term to
the action (3.21):

SF → SF − ar

2

∑

x

Ψ̄x ∆
f
µ∆

b
µΨx (3.33)

and thus rendering (3.32) dependent on p as

m(p) = m +
2r

a

∑

µ

sin2(pµa/2). (3.34)

This modification solves the doubling problem, but breaks the chiral symmetry, which
would protect the mass against additive renormalization. Therefore the bare fermion
mass m must be tuned appropriately.
The final form of the action is after reintroducing the gauge field,

S = a4
∑

x

(

m +
4

a

)

Ψ̄x Ψx − 1

2a

4
∑

µ=1

(

Ψ̄x+µ̂ Uxµ(1 + γµ)Ψx − Ψ̄x−µ̂ U †
x−µ̂,µ(1 − γµ)Ψx

)

,

(3.35)

9



3. N =1 SYM on the lattice

where conventionally r = 1. Choosing for the fermion fields the normalization

a3/2(am+ 4r)1/2Ψx → Ψx , (3.36)

we get

S =
∑

x

Ψ̄xΨx − κ
4

∑

µ=1

(

Ψ̄x+µ̂ Uxµ(1 + γµ)Ψx − Ψ̄x−µ̂ U †
x−µ̂,µ(1− γµ)Ψx

)

, (3.37)

where

κ =
1

2am+ 8
. (3.38)

3.3. Curci-Veneziano Action

One way to derive an action for Majorana fermions is to rewrite the action (3.37) in
the adjoint representation and to express the adjoint Dirac fermions in terms of two
adjoint Majorana fermions [10]. One could construct the theory without referring to
Dirac fermions at all, but the approach described here enables us to use our existing
numerical tools. The relation between the Pfaffian and the determinant of a matrix is
also automatically proven.
The action for an adjoint Dirac fermion Ψ is

Sf [Ψ̄,Ψ, V ] =
∑

x



Ψ̄xΨx − κ
4

∑

µ=1

Ψ̄x+µ̂ Vxµ(1 + γµ)Ψx + Ψ̄x V T
xµ(1− γµ)Ψx+µ̂



 , (3.39)

where now Ψ = ΨaT a and

V ab
µ (x) = 2 tr[U

†
xµT aUxµT b] . (3.40)

The fermion must be massive in order that D is invertible, which is required in numerical
calculations.
The adjoint Majorana fermions are

λ1 ≡ 1√
2
(Ψ + C Ψ̄

T
) , λ2 ≡ i√

2
(−Ψ+ C Ψ̄

T
) , (3.41)

and they fulfill the Majorana condition

λc ≡ C λ̄
T
= λ (3.42)

with C the charge conjugation matrix. Then the Dirac fermion and its charge conjugate
are

Ψ =
1√
2
(λ1 + iλ2), Ψc ≡ CΨ̄T =

1√
2
(λ1 − iλ2) . (3.43)

10



3. N =1 SYM on the lattice

When these are inserted into (3.39), we get in terms of 2 Majorana fields

Sf =
∑

x,y

Ψ̄
i

x DΨi
y =

1

2

2
∑

i=1

∑

x,y

λ̄
i

x Dλi
y =

1

2

2
∑

i=1

∑

x,y

λi
xMλi

y (3.44)

where M ≡ C D is an antisymmetric matrix and D is the Wilson-Dirac operator in the
adjoint representation:

Dab
xy ≡ δxyδab − κ

4
∑

µ=1

(

δx,y+µ̂V ab
yµ (1 + γµ) + δx+µ̂,y(V

T
xµ)

ab(1 − γµ)
)

. (3.45)

Dropping one of the two Majorana fermions, one finally gets the Curci-Veneziano action,
which consists of the usual gauge field action for the gluon and the fermionic action for
the gluino in the adjoint representation of the gauge group SU(2):

S = β
∑

x

∑

µ<ν

(1 − Re trPx,µν) +
1

2

∑

x,y

λxMλy . (3.46)

3.4. Discrete Functional Integral

The discrete functional integral is of the form

〈O〉 = 1

Z

∫

[dλdV ]O[V, λ̄, λ]e−Sg [V ]− 1

2
λMλ (3.47)

where
Z =

∫

[dλdV ]e−Sg [V ]− 1

2
λMλ (3.48)

with the measure
[dλdV ] ≡

∏

x

dλx

∏

µ

dVxµ , (3.49)

where dV is the Haar measure. Note that this is an ordinary integral over Grassmann
numbers and group elements.
We have the relation

∫

[dλ] exp
(

−1

2
λMλ

)

= Pf(M) , (3.50)

because the evaluation of the Gaussian integral yields the definition of the Pfaffian,
which is

Pf(A) ≡ 1

n! 2n
ǫi1j1···injn

Ai1j1 · · · Ainjn
, (3.51)

where A is a 2n × 2n antisymmetic matrix and ǫ the permutation tensor. Similarly, we
have the relation ∫

[d Ψ̄ dΨ] exp
(

− Ψ̄DΨ
)

= det(D) . (3.52)

11



3. N =1 SYM on the lattice

Due to (3.44) we obtain the following relation between the Pfaffian and the determinant:

∫

[dλi] exp

(

−1
2

2
∑

i=1

λiMλi

)

=
2

∏

i=1

∫

[dλi] exp
(

−1
2

λiMλi
)

= Pf2(M)

= det(D) .

(3.53)

The relation
det(γ5D) = det(γ5) det(D) = det(D) (3.54)

implies that det(D) is always real, because det(γ5D), where γ5D is the HermitianWilson-
Dirac operator, is always real. Moreover det(D) is always positive due to the two-fold
degeneracy of its eigenvalues, as proven in the next chapter. Therefore due to (3.53)
Pf(M) does not have to be positive.
Evaluating (3.47) we get

〈O〉 =
∫

[dV ] Õ[V,D−1[V ]] e−Sg Pf(M [V ])
∫

[dV ] e−Sg Pf(M [V ])
, (3.55)

where Õ[V,D−1[V ]] is obtained from O[V, λ̄, λ] by replacing each λ λ̄ pair by D−1[V ]
after Wick’s contraction. This last expression can be rewritten with an effective action
Seff = Sg − ln(Pf(M [V ])) as

〈O〉 =
∫

[dV ] Õ[V,D−1[V ]] e−Seff

∫

[dV ] e−Seff
. (3.56)

Since M is always invertible, ln(Pf(M)) is always finite, but it can be complex, because
Pf(M) can be negative. Since a complex Seff cannot be used as a measure for importance
sampling of (3.47), |Pf(M)| is replaced by (det(M))1/2 and so

SReff = Sg − 1

2
ln(det(D[V ])) (3.57)

is used and the omitted sign is taken into account in the following way:

〈O〉 =
∫

[dV ] e− SR
eff [sgn(Pf(M [V ])) Õ]
∫

[dV ] e− SR
eff

∫

[dV ] e− SR
eff

∫

[dV ] e− SR
eff [sgn(Pf(M [V ]))]

=
〈sgn(Pf(M [V ])) Õ〉R
〈sgn(Pf(M [V ]))〉R

.

(3.58)

An exact calculation of Pf(M) is unfeasible with current computing power, therefore its
magnitude |Pf(M)| is expressed as a functional integral over complex bosonic fields φ
called pseudofermions as

|Pf(M)| = det(D)1/2 = (det(D† D))1/4 =
∫

[dφ† dφ] exp (φ† (D† D)−1/4 φ) (3.59)

12



3. N =1 SYM on the lattice

and (D†D)−1/4 is approximated by a polynomial P (D†D) if importance sampling is done
using Polynomial Hybrid Monte Carlo or by a rational function if Rational Hybrid Monte
Carlo is used.
Defining O s ≡ sgn(Pf(M)) Õ and S ≡ sgn(Pf(M)), the vacuum expectation value is

then approximated by

〈O〉 ≃
∑

i O s
i

∑

i Si

, (3.60)

where O s
i and Si are the values of the observables calculated with the ith element Ci

of the configuration set generated by the importance sampling algorithm in use. Ci is
itself also a set of links Uxµ defining the configuration of the system.

3.5. Continuum Limit

The action (3.46) is based on abandoning the idea of maintaining supersymmetry on
the lattice. Supersymmetry is recovered simultaneously with chiral symmetry in the
continuum limit by tuning the bare gluino mass m, hence κ, to a critical value such that
the renormalized gluino mass vanishes. The chiral symmetry, or the axial symmetry
U(1)A, is not explicitly broken to any order in perturbation theory. However it is at
the non-perturbative level anomalously broken to the discrete subgroup Z2N , which is
further spontaneously broken to Z2.
It is explicitly shown by chiral perturbation theory in a partially quenched scheme

that
m2

a−π ∝ mg , (3.61)

where ma−π is the mass of the (unphysical) adjoint pion mass and mg the renormalized
gluino mass. Critical κ, noted by κc, which corresponds to chiral limit, is then obtained
by extrapolating the linear fit of different values of 1/κ versus m2

a−π to the point where
ma−π vanishes.
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4. Eigenspectrum of the Dirac-Wilson
Operator

The continuous Dirac operator Dc in the massless limit is anti-hermitian, that is, it
has only imaginary and zero eigenvalues. It is therefore a normal operator, that is
[Dc,D

†
c] = 0. Moreover it has γ5-hermiticity, that is, γ5Dc γ5 = D

†
c. The mass shifts the

origin to its value. This property is absent for the discrete Dirac-Wilson operator. And
it looses its normality, so its eigenvectors not need be orthogonal. But the γ5-hermiticity
and therefore the complex pairing of eigenvalues mentioned below are maintained.
D is diagonalizable, that is, V −1DV = Λ. V is of the dimensions of D and its columns

are linearly independent. Λ is a diagonal matrix of the dimensions of D and its diagonal
elements are the eigenvalues of D. When a right eigenvector vi is defined as

D vi = λivi (4.1)

and a left eigenvector u†
i as

u†
i D = λiu

†
i , (4.2)

then each column of V corresponds to a vi and each row of V −1 to a u†
i . Since V −1V = I

by definition,
u†

ivj = δij . (4.3)

There are three useful similarity transformations for the the adjoint representation of
D. The first one is

D⊤ = C DC−1 . (4.4)

We then have
D⊤ w = λw ⇔ D† w∗ = λ∗w∗ , w ≡ Cv . (4.5)

which means
u†

i = (Cvi)
⊤ . (4.6)

But (Cvi)
⊤vi = 0 as opposed to (4.3) since

(Cvi)
⊤vi = v⊤

i C⊤vi = (v⊤
i C⊤vi)

⊤ = v⊤
i Cvi = −v⊤

i C⊤vi . (4.7)

Therefore there exist another left eigenvector for λi, which means D is at least doubly
degenerate.
The second similarity transformation

D† = γ5D γ5 (4.8)
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4. Eigenspectrum of the Dirac-Wilson Operator

results in
D† w = λw , w ≡ γ5 v , (4.9)

which means
u†

j = (γ5 vi)
† , (4.10)

with λj = λ∗
i .

By establishing a relation between the right eigenvector of λ and the left eigenvector of
λ∗, we conclude that each eigenvalue has a complex partner, that is, the eigenspectrum
of D is symmetric with respect to the real axis of its complex plane.
Using these two relations we get the third similarity transformation

D* = BDB−1 (4.11)

and
D* w = λw ⇔ Dw∗ = λ∗w∗ , w ≡ Bv , (4.12)

with B = C γ5. Therefore
vj = C γ5 v∗

i , (4.13)

with λj = λ∗
i .

These relations allow us to introduce the Hermitian matrix D̃ ≡ γ5D and the anti-
symmetric matrix M ≡ C D.
The definition (3.45) of D can be rewritten by representing the summation in the

second term by a matrix, denoted H, as

D = 1 − κH . (4.14)

H is called the hopping matrix. It has the similarity transformation

OHO = −H , (4.15)

where Oxy = (−1)(x1+x2+x3+x4)δxy, implies [15] that the eigenspectrum of H is invariant
under sign change, therefore the eigenspectrum of D is symmetric with respect to the
line z = 1.
Eigenspectra at a fixed lattice spacing, but at two different volumes are shown in

figure 4.1. One can see the holes in the spectrum due to fermion doubling. One also sees
that the eigenspectrum covers the same region in the complex plane at larger volume,
but it is denser. This is related to the fact that a differential operator, which has a
continuous spectrum in the whole space, has in finite space a discrete spectrum with a
fixed boundary, whose density increases with the extent of the space.
Figure 4.2 shows how the value of κ effects the size of the region the eigenspectrum

of D covers. It is a factor before H, so increasing it enlarges the eigenspectrum of D,
which causes eigenvalues enter left half-plane.
For numerical purposes, D can be brought to the form

D̂ = 1 − κ2
(

0 0
0 Doe Deo

)

, (4.16)
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4. Eigenspectrum of the Dirac-Wilson Operator

where Deo is the matrix formed of elements of D, the sum of the indices of which is
even, and Doe is the odd counterpart. Then, the eigenvalues λp of D̂ is related to the
eigenvalues λ of D by [15]

λp = λ(2 − λ) . (4.17)

This rearrangement of the element of D is called even-odd preconditioning. Precondi-
tioning means in this context means changing the condition number of a matrix, which
is the ratio of the largest to smallest singular value of that matrix. Its effect on the
eigenspectrum is illustrated in figure 4.3. The eigenspectrum of D̂ covers a smaller re-
gion on the complex plane and the smaller eigenvalues of D are mapped away to the
imaginary axis. Tis implies that D̂ has a smaller condition number than D. It has also
half as many eigenvalues. All these effects result in a faster numerical calculation of
eigenvalues.
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4. Eigenspectrum of the Dirac-Wilson Operator
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Figure 4.1.: Eigenspectra at two different volumes at β = 1.60 and κ = 0.1570. The
eigenspectrum corresponding to the larger lattice (red dots) is denser than
the other.
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Figure 4.3.: Eigenspectra of D (blue dots) and of D̂ on a lattice of volume 43 × 8 at
β = 1.60 and κ = 0.1570
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5. Polynomial Filtering of Eigenvalues

A direct calculation of Pf(M) is unfeasible due to technical limitations. Storage of D
needs too much memory, around 10PB in double precision for a lattice of volume 323×64
with SU(2). Even if it could be stored, its computation time would be prohibitively
long, even though D is sparse, that is, most of its elements are 0. Therefore |Pf(M)|
is approximated as mentioned in chapter 3 and sgn(Pf(M)) is obtained separately by
counting the degenerate real negative eigenvalue pairs of D [16].
The direct method to calculate the negative real eigenvalues is to diagonalize D.

However this is not possible because of the same limitations that prevent us to directly
calculate Pf(M). Therefore we use an iterative eigensolver for non-normal matrices,
namely ARPACK [17], which is a Fortran implementation of the Arnoldi algorithm [18].
Although this eigensolver allows us to obtain an arbitrary number of eigenvalues, time
that it needs to calculate all the negative real eigenvalues is very long because of the
other complex eigenvalues with a negative imaginary part.
The standard method to calculate real eigenvalues is to use the spectral flow method

[2,19]. In this method the real eigenvalues of D are obtained, noting that γ5
2 = 1, by

γ5(D−σ)v = 0 ⇒ (D−σ)v = 0 ⇔ D v = σv , σ ∈ R , (5.1)

where γ5D is the Hermitian Dirac-Wilson operator, σ some shift and v is the eigenvector
corresponding to the eigenvalue 0.
The fact that iterative eigensolvers calculate an arbitrary number of eigenvalues allows

us to introduce another much more efficient method. It is to precondition D by a
polynomial, that is, apply a polynomial on D so that real negative eigenvalues are
calculated before the other ones in the iteration (see [20] for an extensive review on
iterative solvers). The eigenvectors of D remains unchanged by the preconditioning
because for a polynomial P of order n and with coefficients αk, we have

P (D)vi =
n

∑

k=0

αk(D)
kvi =

n
∑

k=0

αkλk
i vi = P (λi)vi , (5.2)

where vi are the eigenvectors of D and λi the corresponding eigenvalues. Iterative eigen-
solvers calculate eigenvectors along with eigenvalues. Since D and P (D) share the same
eigenvectors, eigenvalues of D can be easily obtained from them.
Figures 5.1-5.4 illustrate the idea. In figure 5.1, the eigenspectrum of a random matrix,

generated by our Monte Carlo program, representing the eigenspectrum of D is shown.
The red dots, with a negative real part and a small imaginary part (Im(z)<|0.05| is
a convenient choice for the illustration), represent the wanted eigenvalues. In figure
5.2 the eigenspectrum of the even-odd preconditioned matrix is shown. The red dots
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5. Polynomial Filtering of Eigenvalues

correspond to the red dots in figure 5.1. Figures 5.3 and 5.4 show the eigenspectrum of
the even-odd preconditioned matrix transformed by a power polynomial and by a Faber
polynomial, respectively, which are the two polynomials presented in this thesis. The
wanted eigenvalues (red dots) have now a larger real part in case of power polynomial
and a larger magnitude in case of Faber polynomial. Therefore, if an iterative eigensolver
is used on the even-odd preconditioned matrix, the eigenvectors corresponding to these
eigenvalues are obtained first. The eigenvalues of the original matrix are then recovered
using (4.17).

5.1. Power Polynomials

The implicit restart mechanism of ARPACK [17] allows one to calculate eigenvalues in
an order with respect to one of the following criteria: largest magnitude (LM), smallest
magnitude (SM), largest real part (LR), smallest real part (SR). The possibility to first
calculate eigenvalues with largest real part was already exploited to obtain negative real
eigenvalues of D in an efficient way [21]. The method is to shift D by some σ ∈ R and
to exponentiate the results by n ∈ N, that is,

P (D) = (D−σ)n (5.3)

so that the angle of each (not yet calculated) eigenvalue of D̂ with respect to σ, that
is, θσ = tan−1(y/xσ), is multiplied by n and the distance with respect to σ, that is,
rσ = (y2 + x2σ)

1/2 is raised to the nth power, with xσ = x − σ. In other words, each
eigenvalue is rotated from θσ onto nθσ on an circle of radius nrσ centered at σ. The
coefficients of such a polynomial can be obtained by the binomial theorem

(z − σ)n =
n

∑

k=0

Bk (−σ)n−k zk , Bk ≡
(

n
k

)

≡ n!

k!(n − k)!
. (5.4)

An improved version of this method is to successively apply such polynomials on D. An
iteration of, for instance, 4 steps would yield a polynomial of the form

P (D) = ((((D−σ1)
n1 − σ2)

n2 − σ3)
n3 − σ4)

n4 . (5.5)
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Figure 5.1.: Eigenspectrum of a random matrix representing the eigenspectrum of D.
Red dots represent the wanted eigenvalues with Re(z)<0 and Im(z)<|0.05|.
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Figure 5.2.: Eigenspectrum of the even-odd preconditioned matrix, with the red dots
representing the wanted eigenvalues
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Figure 5.3.: Eigenspectrum of the even-odd preconditioned matrix transformed by a
power polynomial, with the red dots representing the wanted eigenvalues,
whose real part is amplified
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Figure 5.4.: Eigenspectrum of the even-odd preconditioned matrix transformed by a
Faber polynomial, with the red dots representing the wanted eigenvalues,
whose magnitude is amplified
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5. Polynomial Filtering of Eigenvalues

5.1.1. Numerical Experiments

We tested 4 power polynomials of order 8, 16, 48 and 80, on the even-odd preconditioned
Dirac-Wilson operator D̂ corresponding to configurations on the lattice of volume 323×64
with β = 1.75 and κ = 0.1495, which we used in numerical simulations of N=1 SYM.
The value of κ is large enough to observe negative real eigenvalues.
This method works if D̂ is flipped around the imaginary axis and the origin is shifted

to -2 (or a smaller number), in other words, if −D̂ + 2 is used as the matrix whose
eigenvalues are to be calculated. In this way, it is ensured the smallest eigenvalues
remain smallest when a power polynomial of even order is applied (figure 5.5).
This method has been extensively studied and technical details of choosing the correct

parameters are discussed in [22] and [23]. Therefore we only present here the tests results,
which are tabulated in table 5.1. The behavior of the real part of the power polynomial
of order 8 is shown in figure 5.6. The peak means, keeping in mind that D̂ is flipped and
shifted, that the eigenvalues near the origin are calculated first, because the eigenvectors
corresponding to them have the largest real part after the transformation of D̂.
10 eigenvalues were calculated using these polynomials. The result obtained by using

the power polynomial of order 8 is shown in figure 5.7. The grey points are the first 20
eigenvalues with the smallest real part, extracted by ARPACK in LR mode.
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Figure 5.5.: Even-odd preconditioning of real eigenvalues
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Figure 5.6.: Real part of a power polynomial of order 8
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Figure 5.7.: Lowest 10 eigenvalues of D on the lattice of volume 323 × 64 with β = 1.75
and κ = 0.1495 calculated using the polynomial in the figure. Grey points
are 20 eigenvalues calculated by ARPACK in LR mode.
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5.2. Faber Polynomials

Faber polynomials [24] provide a basis for a convergent expansion of any function f(z)
continuous at every point and analytic at every interior point of G, which is a region
in the complex plane bounded by a closed curve Γ and whose complement Ḡ is simply
connected in the extended complex plane, that is, in Ĉ ≡ C ∪ {∞}. Simply connected
means any path connecting two points in the region can be deformed into another path
without leaving the region. f(z) can then be expressed as

f(z) =
∞

∑

n=0

anFn(z) , (5.6)

where Fn is the nth Faber polynomial corresponding to G. If f(z) is also analytic on Γ,
then the coefficients an are defined by

an =
1

2πi

∫

|w|=R

f(Ψ(w))

wn+1
dw , (5.7)

where Ψ(w) is the conformal (analytic, one-to-one and with a non-zero derivative ev-
erywhere) mapping which maps the complement of a closed disk E of radius ρ, denoted
by Ē, onto Ḡ. R is the radius of the circle in Ē whose image under Ψ defines the level
curve ΓR, which is a Jordan curve, that is, a closed curve not self-crossing. ΓR bounds
the region IR, to which f can be analytically extended. If Γ is already a Jordan curve,
then R can be set to ρ. If f is not analytic on Γ, then the definition of an has R = ρ if
the integral exists [25].
The existence of Ψ(w) and its inverse Φ(z), that is, the conformal mapping from Ḡ

onto Ē, is ensured by the Riemann’s mapping theorem, which states that any simply
connected region in the complex plane can be mapped conformally and one-to-one to
any other such region except the entire plane.

FHzL

YHwL

z w

Figure 5.8.: Illustration of the exterior comformal mappings Φ and Ψ
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One way to obtain Fn corresponding to G is to use the Laurent expansion of Φ in the
neighborhood of its pole, which is ∞ :

Φ(z) =
z

t
+ d0 +

d1
z
+

d2
z2
+ . . . (5.8)

Fn is the polynomial part of [Φ(z)]n, that is, if

[Φ(z)]n =
n

∑

k=−∞

dnk zk (5.9)

then

[Φ(z)]n ≡
−1
∑

k=−∞

dnk zk + Fn(z) . (5.10)

If Ψ is known, Faber polynomials can also be computed recursively using the Laurent
expansion coefficients of its inverse map

Ψ(w) = t
[

w + c0 +
c1
w
+

c2
w2

+ . . .
]

, t > 0 (5.11)

as

F0 = 1 , F1 = z/t − c0 ,

Fn+1 = F1Fn −
n

∑

k=1

ckFn−k − ncn .
(5.12)

These polynomials were studied in the framework of polynomial iterative methods
used for solving linear systems of equations Ax = b [26–28]. The system is solved by
iterating an initial vector x0 by xn = x0 + qn−1(A)r0 to minimize the residual rn =
b − Axn = (1− Aqn−1(a))r0 = pn(A)r0 . Since

rn = pn(A)r0 = pn(A)
N

∑

i=1

aivi =
N

∑

i=1

pn(λi) aivi , (5.13)

where vi are the eigenvectors of A and, for any norm,

||rn|| ≤ ||pn(A)|| ||r0|| , (5.14)

one should use a pn such that

||pn|| ≤ ||p|| , for all p ∈ Pn , (5.15)

where
||p|| ≡ max

z∈G
|p(z)| (5.16)

denotes the uniform norm in G, the region containing the eigenvalues of A. P (0) = 1 by
definition and the convergence of the iteration requires 0 /∈ G. This latter is a convenient
condition for us because we are interested in negative real eigenvalues.
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It was proven that under certain assumptions concerning G, normalized Faber poly-
nomials

F̃n(z) ≡ Fn(z)

Fn(0)
, n ≥ 0 (5.17)

are nearly exact solutions to (5.15) as n → ∞ if G is convex and optimal enough for
practical purposes if G is non-convex [27].
Exterior conformal maps Φ and Ψ, from which corresponding Faber polynomials are

constructed, are only known explicitly for certain types of regions, such as square, rectan-
gle, semi-disk [29], circular arc [30], circular disks [31], elliptic disks, annular regions [32],
arbitrary circular disk and bratwurst-shaped regions [28]. For other types of regions, such
as polygons, numerical conformal mapping should be used [33,34].
We consider only non-convex polygons and bratwurst-shaped regions, since these are

the ones that can contain uninteresting eigenvalues of D.

5.2.1. Schwarz-Christoffel Mapping

Schwarz-Christoffel mapping f is a conformal mapping from some region D to G, where
G is bounded by a polygon with vertices vn = f(un) and interior angles αnπ in counter-
clockwise order. If D is the unit disk E and Ḡ the exterior polygon with angles (1−αn)π,
then

f(u) = A+ C
∫ u

ζ−2
n

∏

k=1

(

1− ζ

uk

)1−αk

dζ , (5.18)

for some complex constants A and C [33]. An exterior mapping Φ(z) from Ḡ to Ē and
its inverse Ψ(w) exist because both regions are simply connected. Then Ψ(w) = f(1/w).
Figure 5.9 illustrates all three mappings f , Φ and Ψ and their relations. The coefficients
of its Laurent expansion, which are used to recursively construct corresponding Faber
polynomials, have a non-trivial form and listed in [27].

5.2.2. Conformal Bratwurst Mapping

For G with an analytic and non-convex boundary, there is a conformal mapping from Ē
to Ḡ of the form

Ψ = ψ2 ◦ J ◦ ψ1 (5.19)

where ψ2 and ψ1 are certain Möbius transformations and J certain Joukowsky transfor-
mation. The first Möbius transformation is (figure 5.10b)

ψ1 = (1 + ǫ)
iP∞z + λm(1 + ǫ)

i(1 + ǫ)z + λmP ∗
∞

, ǫ ∈ [0, ǫmax) , (5.20)

where

ǫmax := tan
φ

4

(

1 + tan
φ

8

)
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Φ

Ψ
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f

Figure 5.9.: Illustration of the mappings f , Φ and Ψ

and

P∞ = i



tan
φ

4
+

(

cos
φ

4

)−1


 , φ ∈ (0, 2π). (5.21)

It maps the exterior of the unit circle onto the exterior of a bigger circle with its center
on the origin and with a diameter of 1 + ǫ (figure 5.10b). The exterior of this circle is
then mapped onto the exterior of an ellipse by the Joukowsky transformation (figure
5.10c)

J(z) =
1

2

(

z +
1

z

)

. (5.22)

Finally, the real axis is mapped onto the unit circle by another Möbius transformation
(figure 5.10d),

ψ2 = λm

z + i tan φ
4

z − i tan φ
4

. (5.23)

The complete conformal mapping then is

Ψ(z) = λm

ψ2
1(z) + 2i tan φ

4
ψ1(z) + 1

ψ2
1(z) − 2i tan φ

4
ψ1(z) + 1

, (5.24)

which can be rewritten as

Ψ(z) =
(z − λmNǫ)(z − λmMǫ)

(Nǫ − Mǫ)z + λm(NǫMǫ − 1)
(5.25)

with

Nǫ =
1

2

(

|P∞|
1 + ǫ

+
1 + ǫ

|P∞|

)

, Mǫ =
(1 + ǫ)2 − 1

2 tan φ
4
(1 + ǫ)

. (5.26)
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5. Polynomial Filtering of Eigenvalues

The map depends on three parameters only, namely ǫ, φ und λm. λm is the orientation
of the inclusion set, ǫ changes its thickness along the real axis and φ is the angle of the
opening of the non-convex curve of the boundary of the inclusion set with respect to
origin.
The coefficients of its Laurent expansion are

c0 = −λm(Nǫ +Mǫ + Sǫ), (5.27)

cn = (λmSǫ)
n−1λ2m(Sǫ − Nǫ)(Sǫ − Mǫ), n ≥ 1 (5.28)

where

Sǫ :=
NǫMǫ − 1
Nǫ − Mǫ

, t =
s

Nǫ − Mǫ

, (5.29)

with s is a positive real number which scales the elements of the inclusion set.

5.2.3. Numerical Experiments

The Faber polynomials corresponding to regions defined by Schwarz-Christoffel (SC) and
Bratwurst (BW) mappings were tested on the even-odd preconditioned Dirac-Wilson
operator D̂ corresponding to configurations on the lattice of volume 323 × 64 with β =
1.75 and κ = 0.1495, which we used in numerical simulations of N=1 SYM. The value
of κ is large enough to observe negative real eigenvalues.
For illustration purposes, the lattice of volume 63 × 8 with β = 1.6 and κ = 0.1599

was used. It is the largest volumes, which we could diagonalize completely, and its κ is
large enough for observing eigenvalues in the left half-plane.
We used a package for numerical conformal mapping named the Schwarz-Christoffel

Toolbox [35,36] written in MATLAB for SC mappings and a script that we have written
in Mathematica for BW mappings.
First, the extremal eigenvalues of D̂ for one configuration were obtained using ARPACK.

Then curves to enclose uninteresting eigenvalues were designed. The procedure is illus-
trated in figures 5.10, 5.12 and 5.20. The purple ellipse in figures 5.10 and 5.12 rep-
resent the eigenspectrum of D̂ and the blue curve the boundary of the region for the
BW mapping used for generating the corresponding Faber polynomials. In figure 5.20,
the eigenspectrum of D̂ on the smaller lattice is shown with the polygon enclosing the
uninteresting eigenvalues. The curves outside the polygon are preimages of circles of
radius R outside the unit disk, that is, they visualize Ψ.
Faber polynomials of different orders were tested in order to examine the effect of the

order of the polynomial on the optimality, in the sense of (5.15), and on the duration
of the eigenvalue extraction. The results concerning the optimality are shown in figures
5.14-5.17 and 5.22-5.25. The magnitude of the Faber polynomials of different order in
the region where the eigenspectrum of D̂ is located are plotted against the complex
plain as a mesh. The polyonomials in the first four pictures were generated using the
MW mapping, and the second four using the SC mapping. The peak seen near the
origin is the transformation that we want, as illustrated in figures 5.1 and 5.4. It implies
that the eigenvectors corresponding to the eigenvalues near the origin will have larger
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(b) Boundary of the inclusion set after the
first Möbius transformation with ǫ =

0.2, φ = π/2, λm = −1
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(c) Boundary of the inclusion set after the
Joukowsky transformation
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(d) Boundary of the inclusion set after the
second Möbius transformation
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5. Polynomial Filtering of Eigenvalues

eigenvalues after a Faber polynomial is applied on D̂. The eigenvalues in the left half-
plane are amplified more drastically.
The boundary of the curve is approximated more and more by increasing the order,

as expected from its definition (5.9). But, there is a limit to the order due to numerical
instabilities, as seen in figures 5.16 and 5.25. As the order increases, numerical instabili-
ties emerges, limiting the order to around 30 for SC mappings and 40 for BW mappings.
This limitation lead us to test Faber polynomials shifted by some real σ, F (z − σ), since
the derivative of the polynomial is much higher outside the boundary. The mesh plot
of a 40th Faber polynomial shifted by σ = 0.2 is shown in figure 5.17. There is also a
lower limit to the order, in the sense that the expected behavior is not observed, as seen
in figure 5.22.
The figures 5.11, 5.13 and 5.21 are only meant to illustrate how the application of a

polynomial determines which eigenvalues are calculated. The complete eigenspectrum
of D̂ on the smaller lattice is shown in gray points. The red points are the first 500
eigenvalues calculated first after a Faber polynomial is applied on D̂.
The tests on the configurations with negative real eigenvalues on the larger lattice

were done for 10 eigenvalues. Testing on a higher number of eigenvalues would mean
to enter the region bounded by the curve, where eigenvalue density becomes very high
after the mapping. The polynomials illustrated by the mesh plots and their shifted forms
were tested. The results are shown in figures 5.18, 5.19 and 5.26 and tabulated in table
5.1. The results concerning the power polynomials tested are also listed in the table for
comparison.
In the table are listed the tested polynomials, the total number of matrix-vector

multiplications executed by ARPACK, the time spent for matrix-vector multiplications
needed by ARPACK for applying P (D̂) on the iterated vector and the total executation
time for calculating 10 eigenvalues. The polynomials are symbolized in the following
way. P means power polynomial, except P = 1, which means no polynomials were
used. F stand for Faber polynomial. Its superscript is either a number, which is the
ǫ of the corresponding BW mapping, or SC, which implies the polygon in figure 5.20.
The subscript is the order of the polynomial for both P and F . φ = π/2 for the BW
mappings.
The grey points in the figures are the first 20 eigenvalues with the smallest real part,

which are extracted by ARPACK in LR mode. They are included in the figure for
comparison. The red and blue points in the first two figures are 10 eigenvalues of
D̂ obtained using the 40th Faber polynomial corresponding to the BW mapping with
ǫ = 0.3 and ǫ = 0.22, respectively and their shifted form with σ = 0.2. We can see
that in case of ǫ = 0.3 the shifted polynomial magnifies eigenvalues closer to the real
axis better, and as seen in the table 5.1, its yields much faster eigenvalue extraction.
In case of ǫ = 0.22, the non-shifted polynomial yielded only 0’s. In third figure, we see
a comparison of the results obtained using the 20th, 30th and 40th Faber polynomials
corresponding to the SC mapping in figure 5.20. The second polynomial magnifies
eigenvalues closer to the real axis better, but as seen in the table, the first one yields a
faster eigenvalue extraction, therefore it may be preferable over the second one if there
are only a few negative real eigenvalues, as is the case here.
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5. Polynomial Filtering of Eigenvalues

The tabulated results shows that power polynomials, combined with the LR mode
of ARPACK yields the highest acceleration, provided that the correct set of shift and
power parameters are discovered. A power polynomial of order as high as 80 can yield
a fast eigenvalue extraction in spite of the long duration needed for the matrix-vector
calculation done in one Arnoldi iteration. On the other hand, a power polynomial with
of a lower order like 16 can show a relatively low performance.
Faber polynomials in their original form do not provide an acceleration comparable

to that of power polynomials, mainly due to numerical instabilities arising at higher
orders, preventing us from increasing the optimality of Faber polynomials beyond some
level. However, their shifted forms result in acceleration comparable to that of power
polynomials. They are also not bound by the LR mode of ARPACK and further tests
can be done by integrating them into restarting schemes of iterative eigensolvers.

Polynomial #P (D̂)v Time for P (D̂)v (s) Time (s)

P8(z) 1513 0.48 350.96

P80(z) 281 2.03 505.73

F 0.3
40 (z-0.2) 640 0.82 540.87

F 0.3
40 (z-0.15) 733 0.82 622.35

P48(z) 575 1.05 629.15

P16(z) 1777 0.39 778.77

F 0.3
40 (z-0.1) 974 0.93 821.47

F 0.22
40 (z-0.2) 1012 0.9 852.02

F SC
20 (z) 1998 0.44 962.41

F 0.22
40 (z-0.15) 1483 0.81 1241.6

F SC
30 (z) 2042 0.64 1403.2

F 0.22
40 (z-0.1) 1708 0.82 1432.4

F 0.3
40 (z) 1752 0.82 1526.4

P = 1 60120 0.07 7053.7

Table 5.1.: Results of the polynomial preconditioning tests. P means power polynomial,
except P = 1, which means no polynomials were used. F stand for Faber
polynomial. Its superscript is either a number, which is the ǫ of the corre-
sponding BW mapping, or SC, which implies the polygon in figure 5.20. The
subscript is the order of the polynomial for both P and F .φ = π/2 for the
BW mappings.
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Figure 5.10.: Boundary of the BW mapping with ǫ = 0.3 and φ = π/2, scaled in accor-
dance with the eigenspectrum represented by the purple ellipse
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Figure 5.11.: Eigenvalues of D on a lattice of volume 63 × 8 (β = 1.6, κ = 0.1599) calcu-
lated using the 40th Faber polynomial corresponding to the BW mapping
in the previous figure
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Figure 5.12.: Boundary of the BW mapping with ǫ = 0.22 and φ = π/2, scaled in
accordance with the eigenspectrum represented by the purple ellipse
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Figure 5.13.: Eigenvalues of D on a lattice of volume 63 × 8 (β = 1.6, κ = 0.1599) calcu-
lated using the 40th Faber polynomial corresponding to the BW mapping
in the previous figure
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5. Polynomial Filtering of Eigenvalues

Figure 5.14.: Magnitude of the 20th Faber polynomial corresponding to the BWmapping
illustrated in figure 5.12

Figure 5.15.: Magnitude of the 30th Faber polynomial corresponding to the BWmapping
illustrated in figure 5.12
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5. Polynomial Filtering of Eigenvalues

Figure 5.16.: Magnitude of the 40th Faber polynomial corresponding to the BWmapping
illustrated in figure 5.12

Figure 5.17.: Magnitude of the 40th Faber polynomial corresponding to the BWmapping
illustrated in figure 5.12 shifted by 0.2
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Figure 5.18.: Lowest 10 eigenvalues of D on the lattice of volume 323 × 64 with β = 1.75
and κ = 0.1495 calculated using F 0.3

40 (z) and F 0.3
40 (z − 0.2). Grey points are

20 eigenvalues calculated by ARPACK in LR mode
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Figure 5.19.: Lowest 10 eigenvalues of D on the lattice of volume 323 × 64 with β = 1.75
and κ = 0.1495 calculated using F 0.22

40 (z) and F 0.22
40 (z − 0.2). Grey points

are 20 eigenvalues calculated by ARPACK in LR mode. The red cross
means that no eigenvalues could be calculated using F40 due to numerical
instabilities seen in Fig. 5.16.
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Figure 5.20.: A polygon enclosing the eigenspectrum of the mass-preconditioned D cre-
ated using the SC Toolbox. The curves outside the polygon are preimages
of circles of radius R outside the unit disk
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Figure 5.21.: Eigenvalues of D on a lattice of volume 63x8 (β = 1.6, κ = 0.1599) calcu-
lated using the 30th Faber polynomial corresponding to the SC mapping
in the previous figure
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5. Polynomial Filtering of Eigenvalues

Figure 5.22.: Magnitude of the 10th Faber polynomial corresponding to the SC mapping
illustrated in figure 5.20

Figure 5.23.: Magnitude of the 20th Faber polynomial corresponding to the SC mapping
illustrated in figure 5.20
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Figure 5.24.: Magnitude of the 30th Faber polynomial corresponding to the SC mapping
illustrated in figure 5.20

Figure 5.25.: Magnitude of the 40th Faber polynomial corresponding to the SC mapping
illustrated in figure 5.20
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Figure 5.26.: Lowest 10 eigenvalues of D on the lattice of volume 323 × 64 with β = 1.75
and κ = 0.1495 calculated using F SC

20 (z) and F SC
30 (z). Grey points are 20

eigenvalues calculated by ARPACK in LR mode. The red cross means that
no eigenvalues could be calculated using F40 due to numerical instabilities
seen in figure 5.25.
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6. Lattice simulations and results

The two low-energy mass supermultiplets of the bound states predicted by the effective
theories in chapter 2 were confronted with numerical simulations on the lattice. We
used data from lattices of dimension 243 × 48, 243 × 64 and 323 × 64 at β=1.75 and
different κ values. We have chosen the spatial volume such that the effect of finite
volume on supersymmetry breaking already induced by spacetime discretization and
nonzero gluino mass were minimized. The masses were extracted from the two-point
correlation functions of the lattice versions of the operators corresponding to the bound
states, whose values decay exponentially with mass.

6.1. Correlators

6.1.1. Spin-1/2 Bound States

The gluino-glue particle is represented by the operator

Ogg̃ = σµνF a
µνλa , (6.1)

where the Dirac indices are dropped as before. On the lattice, F a
µν is represented by the

anti-Hermitian part of the clover plaquette P c
µν ,

Ux,µν =
1

8ig0
(P c

x,µν − P c †
x,µν) , (6.2)

to ensure that its properties under parity and time reversal transformations are preserved
[37]. The clover plaquette P c

µν is formed of links in the fundamental representation:

P c
x,µν =UxµUx+µ̂,νU †

x+ν̂,µU †
xν + U †

x−ν̂,νUx−ν̂,µUx−ν̂+µ̂,νU †
xµ

+ U †
x−µ̂,µU †

x−µ̂−ν̂,µUx−ν̂−µ̂,µUx−ν,ν + UxνU †
x−µ̂+ν̂,µU †

x−µ̂,νUx−µ̂,µ .
(6.3)

The corresponding lattice operator then is after dropping the spacetime index x,

Ogg̃ =
∑

i<j

σij trUijλ (6.4)

where trace is over color indices and i and j are only the spatial directions.
The corresponding correlator is

Cgg̃(x0 − y0) = −1
4

〈σαβ
ij tr [Ux,ijT

a](D−1)ab,βρ
xy , tr [Uy,klT

b]σαρ
kl 〉 (6.5)
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where repeated indices imply summation. At large distances the correlator takes the
form

Cgg̃ ≃ C sinh(m (t − T/2)) , (6.6)

where T is the temporal extent of the lattice. The mass m of the gluino-glue then is
obtained by fitting this function to the correlator (6.5).

6.1.2. Adjoint Mesons

The two mesons belonging to the same multiplet, namely the scalar adjoint meson a−f0
and the pseudoscalar adjoint meson a − η′ are represented in respective order by

Oa−f0 = λ̄λ , Oa−η′ = λ̄γ5λ (6.7)

The corresponding correlators consisting of connected and disconnected pieces are, with
Γ = 1 for a − f0 and Γ = γ5 for a − η′,

C(x0 − y0) = Cc(x0 − y0) + Cd(x0 − y0)

=
1

L3
〈tr [ΓD−1

xy ΓD
−1

yx ]〉 − 1

2L3
〈tr [ΓD−1

xx ] tr [ΓD
−1

yy ]〉 ,
(6.8)

where terms are summed over repeated indices. Cd was calculated using the stochastic
estimator method [38].

6.1.3. 0+ and 0− Glueballs

The scalar and pseudoscalar glueballs belonging to the other multiplet are given by a
linear combination of several closed linked loops. The loops representing the scalar glue-
ball can be rotated into their mirror image while the ones representing the pseudoscalar
glueball cannot as their names suggest.

6.2. Finite-Size Effects

We investigated [39] the effect of the finite volume of the lattice on the masses by
extrapolating the masses of the fermionic gluino-glue and the bosonic a-η′ to the infinite
volume limit and then to the chiral limit. The extrapolation to the infinite volume was
done by fitting the shift ∆m(L) in the infinite volume mass m0 due to the finite lattice
extend L,

∆m(L) ≃ CL−1 exp (αm0L) , (6.9)

with parameters C and 1 ≤ α ≤
√
3/2. This relation applies to the masses of the stable

bound states in a confining theory, therefore also to N=1 SYM, and is independent of
the specific form of the interactions. The constants for the glueballs in lattice gauge
theory are

C = − 3

16π

λ2

m2
0

, α =

√
3

2
, (6.10)

44



6. Lattice simulations and results

where λ is the three-glueball coupling constant [40].
The validity of (6.9) was confirmed by fitting it to the masses of the gluino-glue and

the η′ at different lattice volumes at κ = 0.1490 as seen in figure 6.1. The dimensionless
scale 0.5L/r0 is the length in femtometers if the Sommer parameter r0 is set to the
experimental value 0.5 fm in QCD. Since (6.9) is valid only for large L, we did a second
fit (red. fit) that excludes the smallest volume. The enhancement of the supersym-
metry breaking by finite spatial volume decreases quickly and above L = 1.2r0/0.5 the
statistical and systematic errors are of the same orders.
The finite-size effect is enhanced near the chiral limit, therefore the behavior of the

mass of the gluino-glue particle extrapolated to the infinite volume limit was observed
at different values of (r0ma−π)

2 away from the chiral limit. We chose the gluino-glue
because the most accurate mass was obtained for it. The results are shown in figure
6.2. The results from the largest lattice of volume 323 × 64 at different values of κ are
consistent with the extrapolated values at different values of (r0ma−π)

2. In Table 6.1,
one can see that the results from the second largest lattices of volume 243 × 48 is also
consistent with the extrapolated values.

0
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0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

r 0
M

0.5L/r0

a-η′

red. fit a-η′

fit a-η′

gluino-glue
red. fit gluino-glue

fit gluino-glue

Figure 6.1.: The masses of the gluino-glue and the a − η′ at different lattice volumes at
κ = 0.1490 and the corresponding fits done using (6.9)

6.3. Mass Spectra

Guided by the results of the analysis on finite-size effects, we used configurations gen-
erated on the lattices of volume 243 × 48 and 243 × 64 at β = 1.75 for calculating the
masses of the bound states [41]. The configurations were obtained by using a two-step
PHMC [42, 43]. We did not include the data from the lattice of size 323 × 64 because
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Figure 6.2.: The gluino-glue mass extrapolated to the infinite volume limit as a function
of the squared mass of the adjoint pion in units of the Sommer scale and
the mass at the largest lattice volume at different values of κ

of low statistics. We applied stout smearing on the links. We have obtained the masses
of the gluino-glue, the adjoint mesons and the scalar glueball. We could not get a clear
signal for the pseudoscalar glueball. We chosen the values of κ such that Pf(M) was
always positive. Some configurations on the lattice of size 323 × 64 at κ = 0.1495 had
negative Pfaffian and the methods presented in this thesis were successfully applied on
them [44]. But because of low statistics relative to the two other lattices, we did not
include data from it in mass extrapolations.
The masses extrapolated to the chiral limit (yellow line) are shown in figures 6.3, 6.4,

6.5 and 6.6. Assuming a linear dependence of the masses on (r0mπ)
2, extrapolation to

the chiral limit was done by a linear fit. The best accuracy is obtained for the gluino-
glue, as seen in figure 6.3. The masses are almost compatible, suggesting the validity of
the prediction of the two degenerate supermultiplets and the existence of a continuum
limit with unbroken supersymmetry.

83 × 16 123 × 24 163 × 36 203 × 40 243 × 48 323 × 64 fit red. fit
9.65(46) 4.51(20) 3.72(34) 2.82(47) 2.48(42) 2.69(23) 2.644(91) 2.47(12)

Table 6.1.: The gluino-glue masses extrapolated to the chiral limit (lower row) at differ-
ent lattice volumes (upper row). The masses in the last rows were obtained
by extrapolating to the chiral limit the masses already extrapolated to the
infinite volume limit
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Figure 6.3.: The gluino-glue mass as a function of the squared mass of the adjoint pion
in units of the Sommer scale, and the corresponding linear fit
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Figure 6.4.: The a − η′ mass as a function of the squared mass of the adjoint pion in
units of the Sommer scale, the corresponding linear fit and the fit for the
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Figure 6.5.: The a − f0 mass as a function of the squared mass of the adjoint pion in
units of the Sommer scale, the corresponding linear fit and the fit for the
gluino-glue
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Figure 6.6.: The glueball mass as a function of the squared mass of the adjoint pion in
units of the Sommer scale, the corresponding linear fit and the fit for the
gluino-glue
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7. Conclusion

The sign of the Pfaffian of M needed as a reweighting factor in Monte Carlo simulations
of N=1 SYM can be obtained by counting the two-fold degenerate pairs of negative real
eigenvalues of D. Preconditioning of D by power polynomials to enable faster and prior
access to these eigenvalues were already investigated as an alternative to the spectral
flow method. We introduced in this thesis Faber polynomials as a viable alternative to
power polynomials. These polynomials were extensively studied in two separate con-
texts, namely linear systems of equations and numerical conformal mapping. We tried
to use this knowledge for lattice simulations. We tested Faber polynomials generated by
two types of conformal mappings, the Schwarz-Christoffel mapping and the bratwurst
mapping. Use of Schwarz-Christoffel mapping brings much more flexibility in designing
a boundary enclosing the region in the complex plane where the uninteresting eigenval-
ues are predicted to lie. Although this method is prone to numerical instabilities, at
least with the tools that we used, it yields considerably high acceleration in eigenvalue
extraction. Bratwurst-shaped boundaries are not very flexible and in our tests the Faber
polynomials corresponding to the enclosed region in the complex plane containing the
uninteresting eigenvalues did not provide acceptable acceleration in eigenvalue extrac-
tion. However, their shifted forms resulted in significant acceleration, comparable to that
of the most optimal power polynomial that we have. These tests were done at κ values
which do not cause too many eigenvalues with a negative imaginary part. Therefore
acceleration effects may differ at higher values of κ.
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A. Gamma Matrices

In the Weyl representation in Euclidean spacetime, the γ-matrices are

γ0 =

(

0 I
I 0

)

, γ1,2,3 =

(

0 −iσ1,2,3

iσ1,2,3 0

)

, (A.1)

with the Pauli matrices

σ1 =

(

0 1
1 0

)

, σ2 =

(

0 −i
i 0

)

, σ3 =

(

1 0
0 −1

)

. (A.2)

Then we have

γ5 = γ0γ1γ2γ3 =

(

I 0
0 −I

)

. (A.3)

We define

σµν =
1

2
[γµ, γν ] . (A.4)

The charge conjugation matrix C is

C = −γ2γ0 =

(

iσ2 0
0 −iσ2

)

, (A.5)

and it satisfies
C−1 = C⊤ = −C . (A.6)

B. Adjoint Representation of SU(N)

Let G a Lie group and g its Lie algebra. Let A ∈ G and X ∈ g, then ei tX ∈ G. g is a
k-dimensional real vector space, that is, the coefficients Xa are real in

X =
k

∑

i=1

XaTa . (B.1)

The adjoint map
Ad : G → GL(g) (B.2)
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such that
AdA(X) = AXA−1 (B.3)

is the adjoint representation of G. Note that

ei tAXA−1

= Aei tXA−1 ∈ G, (B.4)

therefore AXA−1 ∈ g.
The fundamental representation of an element A of the matrix Lie group SU(N) is

simply a unitary, invertible N × N matrix with detA = 1. Its adjoint representation
is a (N2 − 1) × (N2 − 1) matrix Γ(A) with real elements, since it is acting on the Lie
algebra of the group, which is an N2 − 1 dimensional real vector space spanned by the
generators Ta. Through the adjoint map, Γ is defined by

AXaTaA−1 = X ′
bTb = XaΓabTb, (B.5)

where X ′
b ∈ R, therefore Γab has real elements. (B.5) implies

ATaA−1 = ΓabTb . (B.6)

Using

tr(TaTb) =
1

2
δab , (B.7)

we get

tr(ATaA−1Td) = tr(ΓabTbTd) =
1

2
Γad . (B.8)

Therefore
Γad(A) = 2 tr(ATaA−1Td) . (B.9)

C. Majorana Fermions

A Dirac spinor and its adjoint are of the form

ψ =











ψ1

ψ2

ψ3

ψ4











, ψ̄ = ψ†γ0 =
(

ψ∗
3, ψ∗

4, ψ∗
1, ψ∗

2

)

. (C.1)

It charge conjugate is

ψc ≡ Cψ̄T =











ψ∗
4

−ψ∗
3

−ψ∗
2

ψ∗
1











. (C.2)
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C. Majorana Fermions

Majorana spinors λ obey the reality condition λc = λ. Therefore they are of the form

λ =











λ∗
4

−λ∗
3

λ3
λ4











. (C.3)

with half as many degrees of freedom as Dirac spinors.
Moreover, in terms of Weyl spinors, they are of the form

λ =

(

φ
χ

)

=

(

iσ2χ∗

χ

)

=

(

φ
−iσ2φ∗

)

, (C.4)

with

φ =

(

λ1
λ2

)

= −iσ2χ∗ (C.5)

and

χ =

(

λ3
λ4

)

= −iσ2φ∗ . (C.6)
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