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Zweiter Gutachter: Prof. Dr. Herbert Kuchen

Tag der mündlichen Prüfung: 11. Juli 2014
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Face your life
Its pain, its pleasure,
Leave no path untaken

– Neil Gaiman





Abstract

The stated goal of digital steganography is to hide the mere existence of
a secret communication in digital media. In this thesis, we motivate the
research in digital steganography and give a brief comparison of the basic
building blocks of a cryptographic and a steganographic communication
system. The most common approach in steganography is to hide the secret
messages in empirical cover objects, such as digital images. We formally
define the key components of such a system and are the first to define
Steganographic Side Information (SSI). Side information in steganography
differs from side information as it is used in cryptography. Our definition of
SSI captures all relevant properties of such information in a steganographic
system.

Furthermore, we define uncertainty, as the lack of knowledge of an attacker
on a steganographic system, termed steganalyst. We give information-
theoretic intuitions for these definitions and explain the common usage of
SSI. Almost all recently proposed steganographic schemes use some kind of
SSI to identify supposedly better suitable areas within cover objects and
confine the embedding changes to these areas.

We develop a targeted attack on the strategy that uses only the best suitable
positions and call such a strategy näıvely adaptive. With our targeted attack
on four widely used variants of SSI, we show that such a scheme is almost
perfectly detectable by a steganalyst who can (partially) reconstruct the SSI
from the stego object.

Motivated by this result, we argue why the competition between a steganog-
rapher who uses SSI in her embedding function and a steganalyst who
tries to reconstruct the SSI must be framed with means of game theory,
a well established mathematical framework to model two or more rational
parties that act strategically. We then present a game-theoretical framework
that captures all relevant properties of a steganographic system with SSI
available.

We instantiate our framework with five different models and solve each of
these models for their game-theoretically optimal strategies. We compare
this strategies to their information-theoretically optimal counterparts and
observe that the strategies differ, with the exception of degenerate corner
cases. Inspired by our solutions, we give a new paradigm for secure adaptive
steganography, the so-called equalizer embedding strategies.

Keywords: Steganography, Side Information, Game Theory, Security



Zusammenfassung

Das erklärte Ziel von digitaler Steganographie ist es, den Umstand einer
geheimen Kommunikation in digitalen Medien zu verstecken. In dieser
Doktorarbeit wird die Forschung im Bereich der digitalen Steganographie
motiviert und ein Vergleich zur besser bekannten Disziplin der Kryptogra-
phie gezogen. Der übliche Ansatz im Bereich der Steganographie ist es, die
geheime Nachricht in einem empirischen Trägermedium zu verstecken. In
dieser Arbeit definieren wir den Begriff der Steganographischen Seiteninfor-
mation (SSI). Unsere Definition von SSI umfasst alle wichtigen Eigenschaften
von Seiteninformation auf dem Gebiet der Steganographie.

Zusätzlich geben wir eine formale Definition von Unsicherheit, dem fehlenden
Wissen auf der Seite eines Angreifers (Steganalysten). Wir begründen
beide Definitionen informationstheoretisch und erklären den Einsatz von
SSI in steganographischen Systemen. Fast alle neueren steganographischen
Algorithmen nutzen irgendeine Art von SSI um besser geeignete Stellen in
den Trägermedien zu identifizieren und die Änderungen beim Einbetten
einer geheimen Nachricht auf diese Bereiche zu beschränken.

Wir entwickeln einen gezielten Angriff auf naive adaptive Steganographie,
die alle Änderungen in den bestmöglichen Stellen konzentriert. Wir zeigen
anhand von vier weit verbreiteten SSI-Varianten, dass unser Angriff deren
Einsatz nahezu perfekt entdeckt.

Motiviert von diesen Ergebnissen argumentieren wir, dass kein rationaler
Steganograph naiv einbetten würde. Wir folgern daraus, dass der Wett-
bewerb zwischen Steganograph und Steganalysten am besten mit Spieltheorie
beschrieben werden kann, einem fest etablierten mathematischen Konzept um
die strategische Interaktion mehrerer rationaler Spieler zu modellieren. Wir
entwickeln ein spieltheoretisches Rahmenmodell um ein steganographisches
System mit SSI zu modellieren.

Wir instanziieren dieses Rahmenmodell mit fünf expliziten Modellen und
berechnen die spieltheoretisch optimalen Strategien. Wir vergleichen diese
Strategien mit den informationstheoretisch optimalen Strategien und stellen
fest, dass sie sich unterscheiden. Daraus schlussfolgern wir, dass ein Stegano-
graph der sich einem rationalen Steganalysten gegenüber sieht, den spieltheo-
retisch optimalen Strategien folgen sollte. Basierend auf unseren Ergebnissen
entwickeln wir eine neue Strategie zur Verteilung der Einbettungsänderungen
nach dem Vorbild der spieltheoretisch optimalen Strategien, die sogenannten
Ausgleichseinbettungsstrategien (equalizer embedding strategies).

Stichworte: Steganographie, Seiteninformation, Spieltheorie, Sicherheit
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Chapter 1

Introduction

1.1 Background, Motivation, and Scope

Steganography literally means “covered writing” and expresses any kind of concealed
communication. The scientific research on steganography belongs to the field of data
hiding and is closely related to, but distinct from, the areas of digital watermarking
and multimedia forensics. The research field on digital steganography itself is relatively
young. Its first formal security definition, a term called undetectability, dates back
to the year 1983 and was formulated by the cryptographer Gustavus Simmons [83].
It is not surprising that it was a cryptographer who formulated this definition, as
both cryptography and steganography try to achieve secure communication. The main
difference between the two disciplines is that cryptography aims to protect the content of
a communication, while steganography wants to hide the mere existence of a non-obvious
communication.

To achieve this in practice, steganography embeds the secret messages in incon-
spicuous cover objects which have to appear plausible on the communication channel
chosen. By this, we have an additional input parameter in comparison to a crypto-
graphic system, the empirical cover object. Although information-theoretic [11] and
complexity-theoretic [47] security definitions similar to such definitions in cryptography
exist, they only make sense in specific set-ups.

The common practice in the research field of steganography, similar to other domains
in the information hiding research, is to call a steganographic algorithm secure as long
as no successful attacking algorithm against it is known.

The use of steganography is meaningful in several aspects. First of all, as even the
circumstance of the communication is hidden, it can be used as a means for privacy
enhancing technologies (PETs). Although in the classical model, we still have two
communicating parties, we could think of a one-sided communication. For example,
one of the parties uploads the cover to a website and many people can download it but
only the person who knows that there is some hidden content and shares a secret key
with the uploader can extract the message. Thus, no connection between sender and
recipient can be attested.

Then, several countries restrict the use of cryptographic algorithms and here, using
steganography helps to circumvent these restrictions.1

But, as with every other technique available for enhancing privacy or security,
steganography can also be utilized by criminals. An employee of a company could

1See http://www.cryptolaw.org/cls-sum.htm for an overview on the different crypto regulations
around the world.

1
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1. Introduction

try to smuggle out company secrets in innocent cover media or criminals could hide
incriminating images within innocent looking ones, leaving the authorities helpless when
trying to accuse them of illegal possession.

Furthermore, the use of steganography does not necessarily require sophisticated
software. Ker [49, p. 99] proposed the probably shortest steganographic tool consisting
of a single line of PERL code:

perl -n0777e ’$_=unpack"b*",$_;split/(\s+)/,<STDIN>,5;

@_[8]=~s{.}{$&&v254|chop()&v1}ge;

print@_’ <input.pgm >output.pgm secrettextfile

This code embeds a message backwards in the least significant bits (LSBs) of the pixels
in an image in PGM format. Although it does not produce secure steganography, it
exemplifies that, for example, a disgruntled employee who wants to smuggle company
secrets with the help of steganography only needs basic knowledge in PERL or simply
can scribble these characters on a piece of paper. If the company has no restrictions
on sending innocent images from inside the company to the outside and no algorithms
aiming to detect the use of steganography check the traffic, this smuggling will most
likely pass unnoticed.

Very early in steganography research, the idea occurred that certain parts of a given
cover object are better suitable for embedding than others. This lead to the domain of
content-adaptive embedding schemes, i.e., embedding schemes which explicitly take the
content of a specific cover object into account. For example, one of the most common
assumptions is that in digital images areas with a high local variance are more suitable
than flat areas, as slight changes in color will most likely go unnoticed in highly textured
areas. Unfortunately, the development of content-adaptive embedding schemes is often
based on the respective author’s intuition rather than on theoretically well-founded
security principles. All content-adaptive embedding schemes have in common that the
steganographer uses some kind of side information to identify the supposedly better
suitable areas, termed adaptivity criterion.

The term side information in steganography is used inconsistently and only the
steganographer is assumed to have access to the side information. In modern steganog-
raphy it is agreed to follow Kerckhoffs’ principle [59] and thus the security of a stegano-
graphic system should only rely on the secrecy of the key. As the usage of side information
is defined in the embedding scheme, we have to assume a steganalyst to know if side
information is used for embedding. It seems only rational for her to make use of this
knowledge. Following from this, one of the research question we tackle is which strategy
is the best when facing such an informed steganalyst. Can we do better than using only
the best suitable positions for embedding or trying to minimize information-theoretic
measures of undetectability?

Motivated by the fact that a steganographer would change her strategy if she knew
a steganalyst assumes her to use only the best suitable positions for embedding, we
justify a presentation of the steganographic problem by means of game theory. We
develop a game-theoretic framework, which explicitly uses side information as one of
the input parameters.

2



1.2. Outline and Contribution

1.2 Outline and Contribution

This thesis consists of six chapters. After presenting the motivation, basic structure,
and notation of the thesis in this chapter, Chapter 2 introduces the preliminaries of the
research in the field of digital steganography. It aims at introducing the basic set-up of a
steganographic system and the security notions specific to such a system. Furthermore,
we compare a steganographic system to its counterpart from cryptography and pay
special attention to the different protection goals. Chapter 2 is constructed in a way to
familiarize the reader without prior knowledge about the field of steganography. We
introduce the common terms and practices which are relevant for the remainder of the
thesis. Thus, readers already familiar with research in steganography may skip this part
with a clear conscience.

Chapter 3 reveals how side information in a steganographic system can be exploited.
To the best of our knowledge we are the first to give a theoretically well-founded
definition of side information in steganography, termed steganographic side information
(SSI) and the term of uncertainty on the side of the steganalyst. We explicitly tie the
definition of uncertainty to the steganographic protection goal of undetectability. After
giving initial evidence that side information is already commonly used in steganography,
we formalize adaptive steganography and steganalysis. Then, we introduce a statistically
most powerful steganalysis method for the detection of LSB replacement and present
a popular approximation of this method, the so-called Weigthed-Stego Image (WS)
steganalysis. We pay special attention to an extension of WS steganalysis to detect
initial sequential embedding and show how this extension can be reformulated to a
targeted detector aiming to detect the use of näıve adaptive embedding. We say a
steganographer performs näıve adaptive embedding when she deterministically selects
those positions from a cover object to embed that seem most suitable, according to
some kind of SSI. We scrutinize the assumption that this embedding strategy always
improves steganographic security.

Finally, we show the performance of a targeted attack against several widely-used
adaptivity criteria, together with a formal analysis of affected adaptivity criteria. All
experiments are performed on a large image database and the results are compared to
the untargeted versions of WS steganalysis.

Motivated by the results in Chapter 3 we conclude that a rational steganalyst will use
the side information available to her. As a rational steganographer will use her knowledge
about the possibility that a steganalyst might exploit the side information and thus will
adapt her embedding strategy accordingly, we argue why side-informed steganography
is best studied using game theory in Chapter 4. Game theory is the mathematical
study of two or more rational opponents with different goals. We briefly introduce the
concepts of game theory needed in this thesis and give an overview of game-theoretical
approaches in the field of steganography. We continue to present our game-theoretical
framework which models a steganographic system with side information. As we assume
that both steganographer and steganalyst try to maximize their payoff, measured in
high and low detection rates, respectively, the classical information-theoretical analysis
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cannot cover this contest.

Chapter 5 instantiates the proposed framework for several possible modeling choices
for adaptive embedding and the detection thereof. We justify each instantiation and
show that game-theoretically optimal embedding and detection strategies coincide with
the commonly used strategies only in degenerate cases of unrealistic cover source models.
Furthermore, we show that the information-theoretically optimal strategies differ from
the game-theoretically optimal ones. In all instantiations we implicitly assume two kinds
of SSI present in the steganographic system, one determining the order of the positions
and one determining the suitability of single positions. We differentiate assumptions
about the power of the steganalyst. Initially, we grant the steganalyst exact knowledge
of the order of suitability, but relax this assumption later.

We argue that game-theoretical solutions should be considered for practical embed-
ding strategies. All findings are illustrated numerically. Furthermore, we identify a
very promising new paradigm for finding game-theoretical optimal embedding strategies.
We show that the concept of the so-called equalizer strategies results in more secure
embedding functions when the steganalyst anticipates adaptive embedding. We give
an outlook on how to utilize this paradigm for empirical cover sources, even when the
cover distribution is unknown, and point out the limitations of our approaches.

The final Chapter 6 summarizes the findings of this thesis, opens a discussion of the
results and identifies areas for further research.

Note that large parts of this thesis build upon our conference publications and journal
submissions. Sections 3.1.3, 3.2.2.2 and 3.3 reuse parts of [79], Sections 4.4, 5.2.2
and 5.2.3.2 are adapted from [78], Section 5.1.1 is a revised versions of [45], Section 5.1.2
of [46], Section 5.1.3 of [80], and Section 5.2.1 extends [77]. Then, Sections 5.2.1.5, 5.2.2,
and 5.2.3 were rewritten after the initial submission of this thesis, according to the
helpful comments of the anonymous reviewers of our journal submission [78]. The
discussion with these reviewers also pointed out the need and gave the basic idea for
Section 5.2.5, which was also added after the initial submission of this thesis.

With regard to the conference publications, we want to remark that several of them
originated from joint work with other researchers. So, [45] was written in cooperation
with Benjamin Johnson from University of California, Berkeley, USA and [46, 80] are
joint work with Aron Laszka from Budapest University of Technology and Economics,
Hungary, Benjamin Johnson from University of California, Berkeley, USA, and Jens
Grossklags from Pennsylvania State University, USA.

Finally, note that Section 5.3.2 was added after the evaluation of the initial submission
of this thesis according to the comments of the reviewers.

1.3 Notation

Random variables are denoted as upper-case letters, their realizations (and constants)
in lower case. Vectors and matrices, shorthand for one- and two-dimensional arrays,
respectively, are typeset boldface x = (x0, . . . , xn−1) or a = (x0, . . . , xnm) with n and
n×m implicit. Following the convention for real numbers R and natural numbers N,
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sets are written in double-line notation.
Following the notation in [8], superscript (0) in x

(0)
i denotes a symbol before embed-

ding and superscript (1) in x
(1)
i denotes a symbol after embedding, x

(1)
(i) the stego object

with position i changed, and x(0) denotes a cover object. By extension, superscript (ā)

in x
(ā)
i means that the symbol has been changed by embedding with probability ā and

x(p) denotes a stego object with payload p. P0 is the probability distribution of the
cover source X(0). P1 is the probability distribution of stego objects X(1). P(xi) is the
probability distribution after embedding only in the i-th element and P(ā) the stego
distribution when following the embedding strategy ā.

A function ζ : Zn × {0, . . . n − 1} → R calculates a local criterion for the i-th
element (position) of the n-dimensional input vector (cover). To simplify the notation,

we may skip the explicit argument of the entire vector and write ζ(x
(0)
i ) = ζ(x(0), i)

and ζ(x
(p)
i ) = ζ(x(p), i) to denote the criterion calculated for the i-th pixel of the cover

and stego object, respectively. We write ζ(x(0),θ) if ζ(·) is based on some kind of side
information θ. Usually, ζ(·) measures the suitability of locations for embedding and
establishes an order within a cover x(0). We write y(0) for a cover x(0) with elements
ordered by decreasing suitability for embedding, i. e., ζi−1(y(0),θ) ≥ ζi(y

(0),θ) for
1 ≤ i < n− 1. We use the hat notation to express the estimation of values or vectors.
So, x̂(0) is an estimation of the cover x(0), ζ̂ is the steganalyst’s estimation of the values
of ζ and ŷ(1) is the stego object ordered by recoverable suitability.

We use the standard notation for Binomial coefficients, i. e.,
(
n
k

)
= n!

k!(n−k)! .
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Chapter 2

Preliminaries

The purpose of a steganographic communication system is to hide the mere existence of a
secret communication. An attacker, termed warden or steganalyst in the steganographic
jargon, should not be able to detect the presence of a secret message, neither by visually
examining possible stego objects nor by applying statistical or machine learning-based
methods.

A minimal steganographic embedding function takes a key and a message as input.
But to communicate the message to the recipient, we would need a channel where such
messages seem plausible, i.e., where they do not cause suspicion. In [8, p. 104] it is
argued that if we had a channel where completely random looking cover objects were
plausible, the problem of secure steganography would be reduced to cryptography with
the protection goal of indistinguishability of ciphertexts from random sequences.

As these channels are uncommon in practice and their existence might be suspicious
by itself, a handy convention in steganography is to select a plausible communication
channel and tweak some of the objects sent through it so that they contain the secret
message. By this, we get an additional input parameter into a steganographic embedding
function, the cover object. This cover object, together with the message and the secret
key, is processed into a stego object, which is sent over the communication channel to
the intended recipient. To achieve undetectability of the communication, the stego
object has to look like a plausible cover object when inspected by a warden monitoring
the channel. Thus, from now on, we assume the cover object, or the cover source,
i.e., the source producing regular covers, to be an essential part of a steganographic
communication system.

In contrast to cryptography, where the protection goal is confidentiality, steganogra-
phy goes one step further. In cryptography everyone who is interested knows that there
is a communication between sender and recipient. The protection goal of undetectability
is to disguise the fact that a secret communication takes place.

For a better comparison of symmetric cryptography and steganography Figure 2.1
shows the basic set-ups as block diagrams. We use the common names Alice for the
sender, Bob for the recipient, and Eve for the passive attacker.

Both scenarios last on the assumption that a secret key k, from the key space K,
is shared between Alice and Bob beforehand and the purpose of both systems is to
communicate a message from the message space M, usually {0, 1}∗, from Alice to Bob.

Figure 2.1(a) shows the schematic building blocks of a symmetric crypto system,
namely the encryption function encrypt on the side of Alice, the decryption function
decrypt on the side of Bob and the attacking function attack utilized by Eve.

Figure 2.1(b) illustrates a steganographic communication system.
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k shared secret key

secret area

encrypt decrypt

attack

message

message messagecommunication channel

kAlice Bob

Eve

(a) Block diagram of a symmetric cryptographic communication system

embed

encrypt

encode

strategy

operation

extract

decode

decrypt

detect

message message

k

cover

communication channel

{cover, stego}

Alice
Bob

Eve

(b) Block diagram of a steganographic communication system

Figure 2.1: Comparsion of symmetric cryptography and steganography

Here, the fundamental building blocks are Alice’s embedding function embed, the
extraction function extract used by Bob, and Eve’s detector detect that has to decide if
the object under observation is a cover or a stego object.

In a steganographic communication system, embed combines four different functions,
namely encrypt, the function that encrypts a message, encode, the function that encodes
an encrypted message, strategy, the function that selects the embedding positions,
and operation, the function that changes the selected embedding positions so that
they contain the encoded message. The function extract combines two functions that
ensure the successful receipt of the original message, namely decode, which decodes
the encrypted message from the stego object, and decrypt, which decrypts the original
message.
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So, the cryptographic functions encrypt and decrypt belong to a steganographic
system and we assume them to be secure. The functions encode and decode ensure that
Bob can retrieve the original message from the stego object. Here, we assume perfect
encoding, as this problem is mainly solved with the with the recent introduction of
Syndrome-Trellis-Codes (STC) [22]. This encoding scheme allows message extraction
without the need to share the embedding positions with Bob and is asymptotically
perfect.2 Clearly, the encryption and encoding function depend on each other and so do
the embedding strategy and operation.

Assuming the availability of secure cryptography and perfect encoding schemes,
we restrict ourselves to the embedding strategy in combination with the embedding
operation in the remainder of this thesis.

In both block diagrams, the gray shaded area symbolizes the secret area of the
communication systems, i.e., the part that the attacker has no access to. Although Eve
may know the encryption or embedding function, she does not know the instantiation
of the function with the specific key.

A cryptographic scheme is considered broken if an attacker is able to read the
encrypted messages, a steganographic system is already considered broken if an attacker
can detect the mere circumstance of hidden communication, i.e., if the attacker can
distinguish cover objects from stego objects with more than 50% accuracy.

As indicated, the message is not part of the secret area in a steganographic system,
which seems counterintuitive at a first glance. But highlighting the protection goal of
undetectability, in secure steganography we may even give Eve knowledge about the
message, she still should not be able to distinguish if this specific message is hidden in
a potential stego object.

Similar to the evolution of cryptanalysis as the counterpart of cryptography, in
steganography, the field of steganalysis emerged. In accordance with the different
protection goals, steganalysis does not aim at reading the hidden messages, but simply
at detecting the use of steganography. If the steganalyst detects the use of steganography,
she may become an active attacker and simply block the communication channel to
prevent further communication.

Steganography borrows Kerckhoffs’ principle [59] from cryptography, which states
that the embedding function is known to the attacker and the security of a scheme should
be guaranteed solely relying on the secrecy of the shared key. The exact interpretation
of the principle for steganography is heavily discussed in the research community, as
it is not entirely clear which of the additional parameters in a steganographic system
should count as common knowledge. Can the steganalyst know the bit-length of the
hidden message? Is she allowed to know the cover source? The only thing that, by now,
is agreed upon is that she should not be able to get hold of the cover object itself, as
she could simply compare the cover object with a potential stego object and, although
she might not be able to read the hidden message, she still can see that the cover object
was altered and thus conclude that it must contain a message.

2STC are basically an extension of Wet Paper Codes, which will be introduced in Section 2.1.3.3.4.
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2.1 Principles of Steganography

We limit our explanations and examples to the area of digital images but still refer to
positions instead of pixels. Most of the theoretical findings can easily be transformed
to, for example, audio files, where positions would refer to samples or digital videos,
where positions could be frames or pixels within frames.

2.1.1 Set-Up of a Steganographic System

Steganography is often called the art and science of hidden communication. While the
first use of the term steganography (Steganographia, then) indeed dates back to the
year 1499 and other methods to enable hidden communication are known from ancient
Greece [27, p. 3], the art developed into the scientific discipline of digital steganography
with the upcoming and common usage of digital media. As, e.g., digital images are
sent everyday over the Internet they are by definition plausible. Furthermore, empirical
images are hard to model, thus slight changes might be assumed to go unnoticed.

Another perspective of the impact of the steganographic embedding function on a
cover object is to think of cover objects as points in a high-dimensional space. Then,
we can assume this space to be partitioned, often key-dependent, into disjoint regions
corresponding to the elements of the set of all hidden messages. A steganographic
embedding function outputs a point within the region associated with the given cover
object and message. The available coding schemes allow the steganographer to partition
the high-dimensional space over the message space such that embedding a given message
has many possible solutions [3, 21, 33].

This is exemplarily depicted in Figure 2.2, where we reduce the high-dimensional
space for the sake of clarity to two dimensions. In Figure 2.2(a) we see the cover
space partitioned into regions corresponding to different messages. The regions with
a highlighted m portray the regions that would correspond to the desired message m,
depending on the coding scheme.

In practice, the high-dimensional space is sparsely populated with empirical covers
and the message space is large. Thus, the idea to draw covers until one is found that
falls in the desired region, i.e., already contains the message to hide, a method called
“rejection sampling” [42], is unfeasible. Therefore, the standard approach in practical
steganography is to take a given cover and move it into the region corresponding to the
desired hidden message by slightly modifying its positions.

Figure 2.2(b) shows the location of all the possible stego objects that do contain m.
Now, Alice chooses, which of the possible stego objects she uses. This decision is often
influenced by her belief about which region is hardest to model by Eve.
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(a) Cover object and coding-dependent partitioning of the high-dimensional space
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(b) Different possibilities to embed m in x(0)

Figure 2.2: Cover and possible stego objects in a high-dimensional space

It is useful to introduce some formalism about the basic components of a stegano-
graphic communication system.

Definition 2.1 (Cover). A vector x(0) = (x
(0)
0 , . . . , xn−1

(0)) of n discrete symbols is
called cover, if it is a realization of the cover source X(0) drawn from P0. Specifically,
every symbol xi

(0) of the cover can take values in X := {0, . . . , 2` − 1}.
The embedding function is a key-dependent mapping of cover x(0) and message to
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a stego object x(1). To study steganography, we decompose the embedding function
into atomic operations that modify or select individual cover symbols.

Without loss of generality, we assume for simplicity a one-to-one mapping between
cover symbols and bits carrying steganographic semantic, typically the encrypted and
encoded representation of the message m.

In general, the steganographer has to decide how to change single cover positions
and which of the positions she changes. This leads to the partitioning of the embedding
function embed into the embedding strategy, i.e., the method on how the embedding
positions within the cover are chosen and the embedding operation, i.e., the method how
single positions within a cover are altered to embed the steganographic payload.

Definition 2.2 (Embedding Operation). A function emb(·) that takes a cover symbol

x
(0)
i as input and outputs the corresponding symbol x

(1)
i with the opposite steganographic

semantic is called embedding operation.

Definition 2.3 (Embedding Strategy). A function is called embedding strategy if it
takes as input an encrypted and encoded message m and a cover object x(0) and outputs
positions {i} of x(0) such that m can be hidden in these positions using the embedding
operation emb(·).

The output of the embedding function embed is called stego object.

Definition 2.4 (Stego Object). A vector x(1) = (x
(1)
0 , . . . , xn−1

(1)) of n discrete symbols
is called stego object, if it stems from a cover object x(0) that was processed by the
embedding function embed and contains a hidden message m. In particular, every symbol
xi

(1) of the stego object takes values in the same domain as the values of the cover object,
i.e., xi

(1) ∈ X.

We denote the probability distribution of stego objects by P1.

2.1.2 Embedding Operations

The first parameter of choice in a steganographic communication system is the way the
chosen embedding positions are altered such that the secret message can be communi-
cated. As we assume each possible embedding position to be represented with a fixed
number ` of bits, e.g., ` = 8 for grayscale images, changes in the least significant bit
(LSB) are supposed to introduce the least detectable artifacts. Also, the resemblance of
the LSB plane of empirical images to white noise is assumed to make changes within
this layer harder to recognize. Consequently, almost all of the early embedding functions
assumed the secret message to be a binary sequence and the embedding operation
ensured that the LSBs along a chosen path coincided with the message bits.

2.1.2.1 LSB Replacement

The simplest form of an embedding operation is to replace the LSBs with the respective
bit of the message. This embedding operation is called LSB replacement (LSBR) (or

12
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sometimes simply LSB embedding [27]). The simplicity of this embedding operation
turns out to be also its most severe weakness. LSBR simply swaps the values 2j by
2j + 1, and vice versa, for j ∈ {0, . . . , 2`−1}. This can be expressed by

LSBR(x) :=

{
x+ 1 : if x is even, and x < 2`−1

x− 1 : if x is odd, and x > 0.
(2.1)

It can be seen from Equation (2.1) that even values will never be decreased and odd
values will never be increased. Thus, if x is within the LSB pair {2j, 2j + 1} it will
stay in this pair after embedding. This leads to powerful, so-called structural detection
methods for LSBR, e.g., [16, 32].

2.1.2.2 LSB Matching

To overcome the creation of LSB pairs, in [82] the LSBs of the embedding positions were
randomly increased or decreased. This little modification of the embedding operation,
now known as LSB Matching (LSBM), was shown to be much harder to detect than
the original LSBR [48].

LSBM(x) :=

{
x+ 1 : with probability 1

2 , if x < 2`−1

x− 1 : with probability 1
2 , if x > 0.

(2.2)

Several other embedding operations use more than only the LSB, namely Mod-k Re-
placement and Mod-k Matching, but as they are not covered within this thesis, we omit
the description here and refer the interested reader for example to [8, pp. 39].

2.1.3 Embedding Strategies

The second parameter of choice of a steganographer is to decide in which positions of
the cover she will hide her message, the embedding strategy.

2.1.3.1 (Initial) Sequential Embedding

The simplest form of an embedding strategy is to place the secret message at the
beginning (usually starting with the top left corner) of a cover object, a method known
as initial sequential embedding. The recipient simply reads the same positions out and
can retrieve the secret message. But, a potential attacker also knows in which positions
to look for traces of an embedded message. Together with the embedding operation of
LSBR, one of the leading researchers in the field of steganography stated:

“Sequential replacement of LSBs was one of the first steganographic embed-
ding methods described, and is perhaps the worst.” [51, p. 456]

Sequential embedding which does not start in the top left corner does not improve the
security.

13
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2.1.3.2 Random Uniform Embedding

Inspired by the observation that the LSB plane of natural images roughly resembles
white noise, the idea emerged that randomly flipping a subset of bits from the LSB
plane will go undetected [27, p. 61]. Then, the idea of choosing a (pseudo-)random
path through the image and embed the secret message along this path emerged. This
embedding strategy is one of the most prevalent in steganography and is known as
random uniform embedding. To circumvent a shared secret key of the same length as
the message, the path could, for example, be created using a pseudorandom number
generator (PRNG) and the secret key would be the seed value for the PRNG.

2.1.3.3 Side-Informed Embedding

In steganography, we have one input parameter more than in cryptography, namely the
cover object. As it can be seen in Figure 2.1(b) this is contained in the secret area, and
thus, the attacker has no access to it. Side-informed embedding uses (side) information
from the cover object to gain an advantage over the attacker. Here, we present three of
the most commonly used embedding paradigms.

2.1.3.3.1 Content-Adaptive Embedding

Already in the earliest days of steganographic research the idea occurred that some
parts of a cover object might be more suitable for embedding than other parts [2].
More suitable in this case means that, specific to the embedding operation, changes
within certain areas are harder to detect, i.e., the modified values are more plausible to
stem from a cover object. This lead to content-adaptive embedding strategies. As the
name suggests, a strategy is called content-adaptive if it takes the content of the cover
realization into account explicitly. Almost all recently developed embedding schemes
are content-adaptive in some way.

All content-adaptive embedding schemes have in common that they define a so-
called adaptivity criterion ζ(·), which identifies more suitable embedding positions. The
adaptivity criteria can be roughly divided into locally calculated criteria and distortion
minimizing criteria. An example for the first category is the assumption that areas with
a high local variance are more suitable. The second category assumes that embedding
positions introducing less distortion are preferable. The claimed purpose of all adaptivity
criteria is to identify a (partial) ordering of all available embedding positions according
to their suitability for embedding.

2.1.3.3.2 Näıve Adaptive Embedding

The first idea that comes to mind after defining an adaptivity criterion and measuring
the suitability of all positions in a given cover is to use only the best suitable positions
for embedding. We call this embedding strategy näıve adaptive embedding. The formal
definition is:
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Definition 2.5 (Näıve Adaptive Embedding). A steganographer uses näıve adaptive
embedding when she defines an adaptivity criterion ζ that measures the suitability of
all embedding positions and solely embeds in the p · n ≤ n most suitable symbols, where
p ≤ 1 is the embedding rate.

Figure 2.3 visualizes the course of action for näıve adaptive embedding. The
suitability of the positions of the cover in Figure 2.3(a) are measured with the adaptivity
criterion ζ in Figure 2.3(b). Under the assumption that a higher value for ζ(xi)
expresses better suitability for embedding, the best suitable positions are highlighted
in Figure 2.3(c). Finally, Figure 2.3(d) shows the cover with highlighted embedding
positions, ordered by decreasing suitability. Of course, the stego object is transmitted
with its positions in the original order.
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Figure 2.3: Visualization of näıve adaptive embedding

Figure 2.4 compares random uniform embedding (dashed blue line) with näıve
adaptive embedding (dotted blue line) in a cover object with positions sorted according
to their suitability (red line), showing that random uniform embedding potentially uses
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all available embedding positions, whereas näıve adaptive embedding solely concentrates
on the most suitable embedding positions.

0 n− 1

1

0

p
n

(1− p) · n

suitability
probability of

embedding

symbols in cover medium (ordered by suitability)

Figure 2.4: Comparison of random uniform (solid blue line) and näıve adaptive embed-
ding (dashed blue line).

2.1.3.3.3 Perturbed Quantization Embedding

Perturbed Quantization (PQ) steganography [33], assumes that Alice obtains the
cover image through some preprocessing that ends with quantization (or any other
information-reducing process), for example lossy compression. The sender uses the
so-called pre-cover before processing to identify the elements in the cover that yield the
highest uncertainty to an attacker about their values prior to processing. The authors
state that the side information which is used by the steganographer is in principle
unavailable to the recipient and thus also to an attacker.

The basic concept is best shown in a case where Alice has a raw grayscale image z(0)

that has never been processed before of which she wants to send a downgraded version
over the communication channel. This setting is realistic, as it can be assumed that
Alice has the device to capture the cover image and thus has access to the raw image.
But sending raw images over a communication channel might be suspicious by itself, so
she downgrades it, for example by lossy compression (e.g., JPEG compression).

Alice then performs a transformation F of the following form:

F = Q ◦ T : ZN → Xn, (2.3)

where Xn is the range of the cover (and stego) object, ZN is the range of the elements
of the pre-cover and T : ZN → Rn is some form of processing. Q ◦ T (z(0)) stands for
Q(T (z(0))) and T (z(0)) is the intermediate image or the cover object in the basic sense.
The mapping Q is an integer scalar quantizer that quantizes the values of T (z(0)) to its
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nearest integer value x
(0)
i . So, it holds that x

(0)
i ≤ z

(0)
i < x

(0)
i +1. Now, Alice can identify

the positions i in T (z(0)) that have the largest quantization error εi = |z(0)
i − x

(0)
i | and

choose these positions for embedding. Consequently, she minimizes the errors introduced

while embedding the message. To give a small example: If z
(0)
i = 42.47, the quantized

value would be x
(0)
i = 42 and thus εi = 0.47. If the message bit mi at position i is 1,

Alice would flip the bit, thus getting x
(1)
i = 43. By this, she introduces an error of 0.53

that is only 0.06 larger than εi. If she chooses a position with an original value of, e.g.,

z
(0)
i = 42.04 before quantization and had to change it to x

(1)
i = 43 for embedding, she

would introduce an error of 0.96 which is 0.92 larger than the εi of 0.04 in that case.

The authors of [33] propose that Alice can choose a small ε (e.g. ε = 0.1) and use
only the positions i for which it holds that εi ∈ [0.5− ε, 0.5 + ε]. By this, the difference
between the average rounding distortion of the regular quantizer and the perturbed
version is ε2 instead of 0.25 which would be the average rounding distortion.

Furthermore, Alice could make additional use of her knowledge about the image
content and confine her changes to regions in the image she thinks are best suitable for
embedding, as described in the previous section.

2.1.3.3.4 Non-Shared Selection Channel

Both embedding strategies presented in the previous sections share a common
problem. The steganographer uses information in her embedding strategy that might
not be available to the recipient. With content-adaptive embedding, the changes in the

positions or those around it might alter the value ζ(x
(1)
i ) for some positions i, so that

the recipient is not able to establish the same order as the steganographer and thus will
not receive the original message. With PQ embedding, the information used by the
steganographer is even assumed to be completely removed from the stego object.

To ensure a successful extraction of the message on the side of the recipient, there
has to be a way to communicate the so-called selection channel [3] without revealing it
to the steganalyst.

A solution to this is presented (together with the PQ embedding approach) in [33]
with the so-called Wet Paper Codes (WPC). The name of WPC is a metaphor for a
cover image that was exposed to rain before embedding. The steganographer is only
able to use the (random) positions that were not hit by the rain, referred to as dry
positions, to embed her secret message. During transmission of the stego object the
wet positions dry out and thus the recipient is not able to identify which positions were
used for embedding. If the sender uses WPC to encode her message, the recipient is
nonetheless able to extract the message.

The idea for WPC originates from n-bit memory channels with up to n− k defective
cells. The capacity of such a channel is k bit, the bit-length of our message m.

First, it is assumed that the recipient knows the length of the message.3 The sender
wants to communicate the message m = {m0, . . . ,mk−1}T. The sender first uses the

3This assumption is removed later.
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shared secret key to generate a pseudorandom binary matrix D of dimension k × n.
To use the example of the PQ method from above, the sender will round zj , j ∈ C to
the column vector z, so that the modified binary column vector b with bi = yi mod 2
satisfies

Db = m. (2.4)

To achieve this, the sender has to solve a system of linear equations in Z2.

Then, the sender sends the stego object to the recipient, who forms the vector b
with bi = yi mod 2 and then multiplies it with the shared secret matrix D:

m = Db. (2.5)

It is shown in [33] that the expected number of bits that can be communicated is likely
close to k and that the message length does not have to be communicated beforehand,
as the matrix D can be generated row by row and the sender can reserve the first
| log2(n)| bits of the message for a header containing the overall message length and
thus the number of rows in D. So, the recipient first has to generate | log2(n)| rows4

to read the message length and then create the remaining rows of D needed for the
extraction of the message. Using this method, the expected number of bits that can be
communicated is reduced to k − log2(n) [33].

2.2 Security in Steganographic Systems

In Section 2.1 we used the protection goal of undetectability informally. In this section
we formalize security in a steganographic communication system. We start with the
original proposal of the protection goal of undetectability and then move on to a
theoretical and an empirical point of view.

2.2.1 The Prisoners’ Problem

In 1983 the cryptographer Gustavus Simmons [83] formulated the prisoners’ problem as
a scenario for secure steganographic communication. In this scenario, two prisoners,
Alice and Bob, who are held captive in different cells, want to scheme an escape plan but
are not allowed to communicate directly. The warden Eve allows them to communicate
but inspects every message they send to each other before delivering it. If Eve gets the
slightest hint that the two plan to escape, she will throw both of them into solitary
confinement and thereby cutting every possibility of further communication. The
solution for Alice and Bob is to use steganography.

It has to be noted that Eve is not allowed to falsely accuse the two of communicating
covertly. The consequences of this cannot really be framed in the set-up of the prisoners’
problem but one can think about it in such a way that a false accusation would create
costs on the side of Eve and thus should be avoided.

4Note that n is common knowledge, as it is the length of the stego object.
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2.2.2 Theoretical Security Notions

Similar to cryptography, several theoretical security notions exist in steganography. This
section is not meant to give an exhaustive overview, but to highlight the security notions
from different domains. We provide two theoretical security notions from information
theory and from complexity theory.

2.2.2.1 Information-Theoretic Approach

Cachin [11] studies steganography from an information-theoretic perspective and defines
the security of a steganographic communication system using the notions of entropy,
mutual information and Kullback-Leibler divergence.

Definition 2.6 (Entropy). The entropy H(X) of a probability distribution PX over an
alphabet X is defined as:

H(X) = −
∑
x∈X

PX(x) logPX(x). (2.6)

Definition 2.7 (Conditional Entropy). The conditional entropy of X given Y is given
by:

H(X|Y ) =
∑
y∈Y

PY (y)H(X|Y = y). (2.7)

Definition 2.8 (Mutual Information). The mutual information between X and Y is
defined as:

I(X;Y ) = H(X)−H(X|Y ). (2.8)

Definition 2.9 (Kullback-Leibler Divergence). The Kullback-Leibler divergence KLD
(also known as the relative entropy) between two probability distributions PX and PY is
defined as:

KLD(PX ||PY ) =
∑
x∈X

PX(x) log
PX(x)

PY (x)
. (2.9)

Cachin considers the steganalyst’s capability of detecting an embedded message
using statistical hypothesis testing.

Let P0,P1 be two probability distributions. H0 and H1 are two hypotheses for an
observed measurement Q. If Q was generated according to P0, H0 is true. If Q was
generated according to P1, H1 is true. Formally:

H0 : Q was generated by P0

H1 : Q was generated by P1 (2.10)

In steganography, P0 is the cover distribution and P1 the stego distribution. Cachin
assumes a computationally unbounded steganalyst who fully knows P0 and P1. He
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defines a steganographic system as consisting of the cover distribution P0, the message
space M and the algorithms 〈embed, extract〉. Additionally it must hold that the mutual
information between the embedded messages M and the messages after extraction M ′ is
greater than zero, I(M,M ′) > 0. This condition implies that the steganographic system
is useful in that the recipient learns at least some information about the original messages
m. Based on these notions he defines the security of a steganographic communication
system as follows.

Definition 2.10 (Perfect Steganographic Security). A steganographic communication
system is called perfectly secure if

KLD(P0||P1) = 0, (2.11)

or is called ε-secure if

KLD(P0||P1) ≤ ε. (2.12)

Hypothesis testing incorporates two error types. Type I error (false positive) is
denoted by α and means that hypothesis H1 is accepted although H0 is actually true.
Vice versa, a type II error (false negative) denoted by β means accepting H0 when H1

is true.

The binary relative entropy d(α, β) of two distributions with parameters (α, 1− α)
and (1− β, β) is given by:

d(α, β) = α log
α

1− β
+ (1− α) log

1− α
β

. (2.13)

Because one of the basic properties in hypothesis testing is that deterministic processing
cannot increase the relative entropy, it follows that d(α, β) ≤ KLD(P0||P1). This can
be used if an upper bound α∗ for type I errors is given, to show that there exists a lower
bound for type II errors.

Translated to the steganographic system, this means that if the warden fails to
detect a stego object, she makes a type II error (with probability β) and if she decides
that a stego object was sent although it was a cover she makes a type I error (with
probability α). It follows that in an ε-secure stegosystem α and β satisfy d(α, β) ≤ ε. In
particular, if α = 0 then β ≥ 2−ε. See Table 2.1 for an overview of all possible decisions
and the corresponding probabilities of occurrence.

2.2.2.2 Complexity-Theoretic Approach

Katzenbeisser and Petitcolas [47] model the steganographic system as a probabilistic
challenge-response protocol, called “game” by the conventions in cryptology, to formalize
the advantage of computationally bounded steganalysts. The steganographic system
is defined as the triple 〈gen, embed, extract〉, where gen is the key generation function,
embed is the embedding function and extract the extraction function.

The authors formally define the Steganographic Decision Problem (SDP) by:

20



2.2. Security in Steganographic Systems

Table 2.1: Error probabilities for different detector outputs

Reality

Steganalyst’s Decision cover object stego object

cover object
correct rejection false negative

1− α β

stego object
false positive correct detection

α 1− β

Definition 2.11 (Steganographic Decision Problem). Given s ∈ Xn, determine if there
exists a k ∈ K in the range of gen and a message m ∈M such that extract(s,k) = m.

Here, Xn is the set of possible covers, k is the shared secret key and M the set of all
possible messages.

The authors introduce an additional player, the Judge. The Judge generates a key
and provides an oracle to the steganalyst, who can perform polynomial (in |k|) many
queries to the oracle with chosen covers and messages and gets the corresponding stego
objects in return. Additionally, she can query the oracle for clean covers. All her queries
can be interwoven and depend on all the earlier queries. After finishing her queries,
the Judge randomly selects two cover objects and a message and produces a stego
object from one of the cover objects and the message. Then, he flips a coin and either
forwards the clean cover object or the stego object with equal probability of 1/2 to
the steganalyst. Now, the steganalyst has to solve the SDP for the given object. A
steganographic system is called secure if the success probability of the steganalyst is
only negligibly5 better than random guessing.

This is known as conditionally secure as the authors assume the steganalyst to be
computationally bounded, i.e., she can only perform polynomial many queries.6

2.2.3 Empirical Security Notions

For practical embedding schemes, neither the information-theoretic nor the complexity-
theoretic approach are feasible. Thus, to test implementations of different steganographic
implementations, several empirical measures have been introduced.

5The authors define the success probability to be negligible if it is a negligible sequence ni, i.e., if for
all polynomials p there exists an integer i0 such that ∀i ≥ i0 : ni < 1/p(i).

6This security notion is inspired and very similar to the notion of adaptive Chosen Plaintext Attack
(CPA) security in cryptography.
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2.2.3.1 Receiver Operating Characteristic

Almost all steganalysis methods base their binary output (cover or stego object) on
an internal state of higher precision [8], for example a continuous threshold τ . By
adjusting τ , the error rates α and β (as defined in Section 2.2.2.1) can be traded off.
When τ varies, receiver operating characteristic (ROC) curves, as commonly used in
signal detection theory, illustrate the performance of such a binary classifier. A ROC
curve plots the false positive rate against the correct detection rate (α vs. 1− β). As
steganalysis can be seen as a binary classification problem, the utilization of these curves
is commonly accepted in steganography. Although, it is argued that it might not be
possible to compare different steganalysis methods according to their respective ROC
curve. For example, if the performance of two steganalysis methods is plotted within
the same ROC curve and the lines intercept each other, there is no way to say which of
the two methods outperforms the other.

2.2.3.2 Single Number Measures

To circumvent the problem of comparing different performances as ROC curves, several
single figures of performance have been introduced. We only show the notions we use in
later parts of the thesis and refer the reader to [8, p. 19] for a more detailed list.

I The equal error rate (EER) can simply be read off from the above mentioned
ROC curve. It is the one point on the curve where false positive and false negative
rate coincide, e.g., α = β. A lower EER means that less classification errors occur
and thus indicates a superior performance of the detector, or conversely, a less
secure steganographic function.

I Another popular choice on how to present steganographic security within a single
figure is the average error rate (under equal priors7) (AER), which is simply
calculated from the false positive and the false negative rate divided by 2: α+β

2 .
I The false positive rate at 50% detection rate (FP50) gives the the value of α at

the fixed point where 1− β equals 1/2.
I So-called quantitative steganalysis methods do not only aim at differentiating

stego from cover objects but additionally want to estimate the hidden payload
p. The adequate measurement for the performance of such a method is the
difference between the actual embedding rate p and the estimation p̂, |p̂− p|. As
this figure can strongly vary between different images, the common approach in
steganography is to report the Mean Absolute Error (MAE) of the estimation
over many images. The MAE is the average of all absolute errors. To furthermore
give a statement about the robustness of the estimation, most often the MAE is
reported together with the Interquartile Range (IQR).

7The equal-prior-assumption states that cover and stego objects are equally likely on the communi-
cation channel. Although this will probably not hold for a real-world scenario, this assumption is tied
to the fairness of the Judge from Section 2.2.2.2.
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2.3 Summary

In this chapter we have

I introduced the basic components of a steganographic communication system and,
in particular, gave formal definitions of

. cover objects,

. embedding operation,

. embedding strategy, and

. stego objects;

I explained the most common embedding operations and strategies,
I outlined the different approaches to measure the security of a steganographic

system, with means of information theory, complexity theory, and empirical
methods.

This chapter is written mainly from the perspective of the steganographer. We now
turn to the side of the attacker.

23





Chapter 3

Exploiting Side Information
in Steganalysis

In this chapter we are mainly concerned with steganalysis, the research that aims at
detecting the usage of steganography. First, we formally introduce and define the
terms of steganographic side information and uncertainty. Then, we provide initial
evidence that side information can be utilized in steganalysis and formalize the area of
content-adaptive steganography from the viewpoint of a targeted attack.

Next, we present a method that is statistically almost optimal at detecting random
uniform LSB replacement and several enhancements of an approximated version of this
method. Finally, we show that generally näıve adaptive embedding is a bad choice when
faced with a steganalyst who anticipates it and makes use of her knowledge about the
adaptivity criterion.

3.1 Side Information in Steganalysis

In cryptography, the term side information is mainly connected with the existence of
side channels that can be used to attack a specific implementation of a cryptographic
scheme. Side channel attacks are based on (side) information which is gained from the
physical devices that run the cryptographic algorithms. Examples of such information
are power consumption [60] or latency [61] of the algorithm under observation. Thus,
these attacks do not fall in the classical field of cryptanalysis, as they do not search for
theoretical weaknesses or perform brute force attacks. In steganography, we have an
additional input parameter, the empirical cover object, that has no direct counterpart in
cryptography. As empirical media allow for different interpretations of side information,
the notion of side information in steganography is inconsistent.

3.1.1 Steganographic Side Information and Uncertainty

There are notions of side information in steganography that resemble the information
leakage similar to cryptography. For example, the attacker may get access to the device
used to capture the cover objects and thus the sensor noise pattern [35]. Then, sometimes
the term side information is used as something that is emitted from the (pre-)cover
object, as in the example of PQ steganography from Section 2.1.3.3.3. Sometimes,
authors utilize side information, but do not explicitly mention the term. For example,
in [24] the authors explicitly assume that Eve has access to (a version of) the cover object
and thus can compare the potential stego object with this cover, but this information

25



3. Exploiting Side Information in Steganalysis

flow is not called “side information” by the authors.
We set out to remove inconsistencies concerning side information and the term of

uncertainty. We provide a rigorous definition and differentiate between unconditionally
and conditionally perfect side information, a concept we borrow from cryptography,
where unconditional secure encryption is provably secure even against a computationally
unbounded attacker.

3.1.1.1 Steganographic Side Information

Definition 3.1 (Steganographic Side Information). A source of steganographic side
information (SSI) Θ is an information source that is fully available to the steganographer
and the use of which is defined in the embedding function. When the side information is
exclusively available to the steganographer and not to the steganalyst, we speak of perfect
steganographic side information; if the steganalyst is able to (partially) reconstruct it,
we speak of (partially) reconstructible steganographic side information.

We specify two concrete types of SSI. The SSI is called . . .

1. unconditionally perfect: if there exists no mutual information between the stego
objects and the source of side information, i.e., I(X(1),Θ) = 0, and

2. conditionally perfect: if the availability of the side information relies on an
assumption about the computational power or the model of the steganalyst.

This definition requires some reflection:

Remark 3.1. A similar approach to measure leakage about the shared secret key with
mutual information in a general data hiding framework is presented in [70].

Remark 3.2. Steganographic side information is no secret in the sense of a crypto-
graphic secret, e.g., stemming from a shared secret key. It is available to Alice, but not
(fully) under her control.

The connection of SSI and practical adaptivity criteria is straightforward.

Remark 3.3. All practical adaptivity criteria are instances of SSI.

Remark 3.4. The way steganographic side information is interpreted for a given cover
realization is part of the embedding function and has to be assumed to be known to
Eve. However, how much of the steganographic side information used for embedding is
reconstructible from the stego object also depends on the embedding function.

In Section 2.1.3.3 we have seen several examples of how Alice can utilize SSI in
her embedding function. While the SSI, together with the processing of it, in content-
adaptive embedding belongs mainly to the class of (partially) reconstructible SSI, PQ
steganography takes one step forward to perfect side information as the SSI is (mostly)
lost during the information-reducing process.

But, the authors of PQ steganography already suggest that the embedding positions
with the lowest distortion should additionally be confined to areas that are more suitable,
as defined by a content-adaptive criterion.

26



3.1. Side Information in Steganalysis

secret area

side information

k shared secret key

potential influence

embed

strategy operation extract

detect

message message

k

cover side
information

communication channel

{cover, stego}

Alice Bob

Eve

Figure 3.1: Block diagram of a steganographic system with side information

Remark 3.5. Steganographic side information which has no relation to the content of
a given cover object leads to embedding positions randomly spread across the cover.

To stay with the example of PQ steganography, if we assume that the quantization
levels are spread uniformly across the cover object, the selection of positions with values
close to 1/2 before embedding will be spread uniformly over the whole cover object,
similar to a pseudo-random path.

Remark 3.6. Until now, the common use of side information in steganography research
is as if it was perfect SSI, because it is assumed to be only utilized by Alice. Thereby the
fact that it might be, at least partially, reconstructible by Eve, as it often originates from
either the cover objects’ content or some publicly available parameters, is disregarded.

For example, the leading textbook on steganography states that “Often, the values
[. . . ] are computed from [. . . ] side-information that is not available to Bob.” [27,
p. 167] and thus not available to Eve, either. Even the most recent publication on the
topic of side information by the same author, entitled On the Role of Side Information
in Steganography in Empirical Covers, does not consider the possibility of the side
information being reconstructed by Eve. But the author acknowledges that: “The
failure of current steganalysis to reliably detect side-informed schemes should, however,
be taken with a grain of salt because it could simply mean that current steganalysis
lacks the right models (feature spaces).” [29, p. 86650I-1] The author of this statement
believes in machine learning-based steganalysis, where the model or feature space refers
to the collections of features that are used to characterize the data.

Figure 3.1 shows the basic steganographic communication system augmented with
side information. As indicated by the striped area, side information itself may not
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3. Exploiting Side Information in Steganalysis

fully belong to the secret area and the dashed arrows indicate that the cover object
potentially influences the side information, which in turn might influence the detection
decision of Eve. For perfect SSI, the striped area would completely belong to the trusted
area and the influence of the side information on the detection decision would disappear.
For the sake of clarity we do not include the possible impact of the secret key on the
usage of the side information, but stress that it may exist.

3.1.1.2 Uncertainty

Steganographic security is strongly tied to ensuring uncertainty on Eve’s side. Perfect
steganographic security, in the sense of Definition 2.10, can be described such that Eve
is completely uncertain if an analyzed object originates from the cover distribution P0 or
the stego distribution P1. Uncertainty also ensures the protection goal of undetectability,
as it can be seen as the absence of detectable artifacts in stego objects.

Definition 3.2 (Uncertainty). Uncertainty in a steganographic system quantifies the
steganalyst’s lack of knowledge about the type of object, cover or stego, she faces. With
perfect uncertainty, the steganalyst’s only option is to guess. With no uncertainty, i.e.,
perfect information, the steganalyst always knows the type of the object exactly.

Formally, for a given object x we have . . .

I perfect uncertainty, if

Pr(x|x ∼ X(0)) = Pr(x|x ∼ X(1)) > 0 (3.1)

I perfect information, if

Pr(x|x ∼ X(q)) = 0 ∧ Pr(x|x ∼ X(1−q)) > 0 for q ∈ {0, 1}. (3.2)

For a derivation of the above definition with means of information theory see
Appendix A.1. The general definition of uncertainty can be broken down to single
positions.

Definition 3.3 (Uncertainty with Regard to Positions). We denote the uncertainty
with regard to positions as the steganalyst’s lack of knowledge about the likelihood of
values at single positions xi in an object x.

The position xi is called . . .

I a perfectly uncertain position, if

Pr(xi = u|x ∼ X(0)) = Pr(xi = u|x ∼ X(1)) > 0, (3.3)

for at least two values u ∈ {0, . . . , 2` − 1}, and
I a perfectly informative position, if

Pr(xi = u|x ∼ X(q)) = 0 ∧ Pr(xi = u|x ∼ X(1−q)) > 0 for q ∈ {0, 1}, (3.4)

and ∀u ∈ {0, . . . , 2` − 1}.
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Remark 3.7. The condition in Equation (3.3) includes the realization of all positions
in x, not only the specific value of xi.

Remark 3.8. We need at least two values u1, u2 for which Equation (3.3) holds. With
only one value u1, the position would no longer be perfect for Alice if this value occurred
at position i in a given cover realization, as she would have to change this value to one
for which Equation (3.3) does not hold.

Definitions 3.2 and 3.3 are directly tied to information-theoretically secure steganog-
raphy.

Remark 3.9. Only if perfect uncertainty holds, the embedding is information-theoretically
secure, in the sense of Definition 2.10.

See Appendix A.2 for a proof of this remark. The result illustrates how hard it is
to achieve perfect steganographic security in the sense of Definition 2.10 for practical
embedding functions.

Remark 3.10. If the steganographer embeds only in perfectly uncertain positions with
an embedding operation for which Equation (3.3) holds, the embedding is information-
theoretically secure.

This follows because if Equation (3.3) holds for all positions, Equation (3.1) holds
for the whole object and thus, the embedding is information-theoretically secure.

Remark 3.11. Ideally, SSI should help Alice to find the most uncertain positions in a
given cover object.

The separation between perfectly uncertain and perfectly informative positions is
similar to the cover composition approach used in [8, p. 104], which argues that all cover
objects are composed of an indeterministic part, necessary for steganographic security,
and a deterministic part, necessary for the plausibility of the cover. Furthermore, this
decomposition of cover objects is one of the underlying building blocks of model-based
steganographic methods, as introduced for example in [76].

Remark 3.12. As adaptivity criteria are instances of SSI and uncertainty is tied to
the protection goal of undetectability, we can directly translate the notion of uncertainty
with regard to positions to the notion of suitability as defined by empirical adaptivity
criteria., i.e., more uncertain positions should induce more suitable positions.

3.1.1.3 Common Use of Side Information in Steganography

Most side-informed embedding functions use the side information to find the best
embedding strategy. It is also commonly accepted that granting Eve knowledge about
the embedding positions will result in less secure steganography, as she might be
able to compare statistical properties of the positions used for embedding with those
excluded [34].
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Occasionally, there are embedding functions that use side information to implement
an adaptive embedding operation. For example, in the HUGO algorithm [71] the
embedding operation measures the distortion induced by changing the LSB by either
+1 or −1 and chooses the direction which introduces less distortion.8 Or, in [91] the
embedding operation uses more than the LSB to hide payload per position if the position
is in a supposedly noisier area.

In the remaining part of the thesis we restrict ourself to side-informed embedding
strategies, but the extension to the embedding direction or depth is an interesting
avenue to pursue.

3.1.2 Initial Evidence

This section shows that side information and uncertainty are already present in stegano-
graphic literature and gives two examples that motivate further research on both
properties of a steganographic scheme. The first example is a steganographic scheme
with reconstructible steganographic side information and a targeted attack on it. The
second approach is closely related to our notion of uncertainty.

3.1.2.1 Targeted Attack on PSP Steganography

In 2002, Franz published a steganographic algorithm called “Preserving Statistical
Properties” (PSP) [23] which was designed to withstand the chi-square attack of [89].
For this, the PSP scheme introduces two modifications in comparison to LSB replacement.
First, the image to embed is divided in sets of pixels Sk with the same shade k, i.e.,
the same grayscale value. Then, sets that only differ in their LSB are summarized into
groups Gk := S2k ∪ S2k+1. These groups are further divided into good groups G+ and
bad groups G−, and only the good groups are used for embedding. To identify the good
groups, a within-group dependency test is run on the co-occurrence matrices9 C. It is
specified in the PSP algorithm that 4 co-occurrence matrices are tested and, if one of
the test fails, i.e., detects within-group dependencies, the whole group is classified as
bad. The second modification the PSP algorithm introduces is that it overwrites the
LSBs with exactly the same distribution that is found in the cover object. By this, the
first order statistics will be exactly preserved.

As Böhme and Westfeld state in [10] both methods reduce the capacity of the cover
image significantly, but make it indeed secure against chi-square attacks. To attack the
PSP algorithm nonetheless, the idea of the authors is to evaluate the between-group
dependencies instead of the preserved within-group dependencies. For this to be possible,
it is necessary that an attacker can exactly reconstruct which of the groups are good

8To the best of our knowledge this is the only attempt to use adaptive LSB matching, one reason
might be that already in [35] it is shown that the direction can be estimated better than random
guessing, another that the usage of ternary embedding yields a higher capacity and is impossible with
adaptive LSB matching.

9A co-occurrence matrix is a transition histogram between adjacent pixels for a defined relation in
the spatial domain and contains the frequency of a certain shade depending on the shade of a defined
neighbor.
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and which of them are bad. But, as the second modification introduced by the PSP
algorithm exactly preserves the relevant statistics, an attacker can recalculate the initial
classification of good and bad groups. We can see this as fully reconstructible SSI.
Based on the assumptions that adjacent pixels correlate strongly, the authors are able
to perform a between-group dependency test for all good groups and compare it to a
certain threshold.

Empirical tests show that this attack can perfectly detect the use of PSP steganog-
raphy. Even more, when LSB embedding is used with the reduced capacity of the PSP
algorithm (on average 77% of the original capacity), LSB embedding is more secure
against the chi-square attack the PSP was developed to withstand. As far as we know,
this was the first targeted attack that made use of side information not only available
to the steganographer.

3.1.2.2 The Detectability Profile

In [26], Fridrich sets out to study the trade-off between the number of embedding changes
and their amplitude for secure steganographic systems. By this, she creates a detectability
profile that is closely connected to our notion of (position-wise) uncertainty from above.
Fridrich argues that every practical embedding operation introduces distortion to the
cover object and examines strategies to minimize the overall distortion. She assigns
a scalar value, the detectability measure ρi to every position i. By sorting the values
from the smallest to the largest the non-decreasing detectability profile ρ = (ρ1, . . . , ρn)
is created. Furthermore, she assumes that the distortion introduced by changing several
positions of the cover object is additive, so the overall distortion introduced by changing
the set {j1, . . . , jq} is

∑q
j=1 ρij . An appropriate measure for ρi always depends on

the context, for the example in Section 2.1.3.3.3, ρi = 1 − 2εi would be good if the
steganographer wanted to minimize the additional embedding distortion.

Fridrich mentions that the intuitive approach for a steganographer who wants to
minimize the overall embedding impact is to use only the positions that will introduce
the least detectable artifacts when changed. She approaches the selection of embedding
positions from the viewpoint of the absolute number necessary to change versus the
introduced distortion. Her main argument against this näıve approach is that allowing the
embedding function to use more positions implies the possibility of syndrome encoding
and thus decreases the number of embedding changes. Furthermore, Fridrich states that
if the ρi are uniform in the cover object, the best strategy is to use all positions because
this would allow us to minimize the total number of necessary embedding changes.

Her numerical analysis under the assumption that optimal coding schemes exist
reveals that it is never optimal to choose the q positions with the smallest detectability
measure. Furthermore, for any detectability profile ρ it is optimal to use all positions
for embedding, given a message of a certain length.
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3.1.3 Formalizing Adaptive Steganography and Steganalysis

Remark 3.3 states that all practical adaptivity criteria are instances of steganographic
side information. An adaptivity criterion ranks embedding positions in the cover by the
risk of being detected. Thus, it tries to identify areas where embedding changes result in
small distortion or similarly, the most uncertain embedding positions compared to the
rest of the cover. However, most of the adaptivity criteria used in the literature lack a
sound justification that the embedding positions they select indeed reduce detectability.

Furthermore, the implicit assumption that steganalysts are unaware of the fact that
the embedding function is content-adaptive is overly optimistic and violates Kerckhoffs’
principle, as the usage of the SSI is described in the embedding function and thus must
be assumed to be known to the steganalyst.

With this knowledge, the steganalyst might try to recalculate the values of the
adaptivity criterion from the stego image (leading to a rough approximation), or even
find ways to estimate the values more precisely than mere recalculation using knowledge
about the impact of the embedding operation. Formally this means that the steganalyst
uses a function ζ ′(·) 6= ζ(·) which might give him a more accurate estimation of the
original values of the positions than ζ(·) itself. This leads to the following remark.

Remark 3.13. To err on the side of caution, one should consider to base security
analyses on the premise that the steganalyst has knowledge about the exact values of the
adaptivity criterion for all pixels.

It is useful to introduce some formalism to state such rationales more precisely. Let
x denote a cover or stego object in its natural order, then y denotes the same symbols
sorted by the adaptivity criterion ζ(·) with the convention that ζ(yj) ≥ ζ(yj+1)10

for j ∈ {0, . . . , n − 2}. So, in y the most suitable symbols are at the beginning and
the least suitable symbols at the end. Näıve adaptive embedding would use symbols

(y
(0)
0 , . . . , yp·n−1

(0)) to embed a payload of length p · n (0 ≤ p ≤ 1) into the cover object.
Note that this does not imply that the embedding path is fully deterministic. The
embedding function would still distribute the actual embedding changes according to a
key-dependent pseudo-random path through the leading symbols in y.

In content-adaptive embedding, we assume that the SSI is used to identify the
most suitable embedding positions, which can be tied to the notion of uncertainty via
Remark 3.12. With this assumption, we can specify the notion of reconstructible SSI
into a notion tailored to the area of content-adaptive embedding.

As the stated goal is to recover the embedding positions with the help of some kind
of reconstructible SSI, we call embedding positions recoverable instead of reconstructible.

Definition 3.4 (Perfect Recoverability). An adaptivity criterion ζ(·) is perfectly re-
coverable (for embedding rate p) if it is invariant to the embedding function, i. e., if it
holds that

ζ(x
(0)
i ) = ζ(x

(p)
i ),∀i ∈ {0, . . . , n− 1}. (3.5)

10Note, to simplify the notation, we skip the explicit argument of the entire vector and write
ζ(yj) = ζ(y, j).
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An adaptivity criterion that has perfect recoverability is fully reconstructible in the
sense of Definition 3.1.

Definition 3.5 (Order Recoverability). An adaptivity criterion has a recoverable order
(for embedding rate p), if ∀(i, j) ∈ {0, . . . , n− 1}2 it holds that:

ζ(x
(0)
i ) < ζ(x

(0)
j )⇒ ζ(x

(p)
i ) < ζ(x

(p)
j ). (3.6)

It is questionable if order recoverability falls into the category of fully or partially
reconstructible SSI. In the context of content-adaptive embedding, we argue that, the
order of the embedding positions is most important and thus, order recoverability also
belongs to fully recoverable SSI.

Obviously, perfect recoverability implies order recoverability. However, already the
weaker condition may be sufficient for the steganalyst to substantially gain detection
performance.

Proposition 3.1 (Reduction to sequential embedding). If the steganalyst can recover

the order of ζ(x
(0)
i ) from x(p), then the detection problem for näıve adaptive embedding

reduces to the problem of detecting initial sequential embedding.

The proposition follows readily from Definitions 2.5 and 3.5 and is supported by
Figure 2.3(d) (on page 15).

3.2 Powerful Steganalysis of LSB Replacement

The LSB replacement embedding operation, as introduced in Section 2.1.2.1, is probably
the oldest and best-understood embedding operation in digital steganography. Although
all modern embedding functions implement other embedding operations, insights drawn
from the study of LSBR are helpful to better understand the interplay between the
changing of symbols in the cover object and detectability. Thus, we restrict our following
analysis mainly to LSBR.

3.2.1 Asymptotically Uniformly Most Powerful Test

In 2012 Fillatre [18] presented an almost optimal statistical test to detect LSB re-
placement. Utilizing the hypotheses test of [11] (cf. Section 2.2.2.1) he designs an
Asymptotically Uniform Most Powerful (AUMP) test for the detection of random
uniform LSB replacement.

One of his motivations is to create a detection method that warrants a prescribed
probability of false alarm α.

To reformulate Equation (2.10) with x(p) being a potential stego object, the two
composite hypotheses H0 and H1 are:

H0 : x(p) ∼ P0

H1 : x(p) ∼ P1, ∀p ∈ (0; 1] (3.7)
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The goal is to find a test ϕ{0, . . . , 2` − 1}n → {H0, H1} such that hypothesis Hi is
accepted, if ϕ(x(p)) = Hi. Fillatre bases his test on the assumption that the image
under investigation can be modeled with the help of a zero-mean independent Gaussian
noise variable ξi. He assumes that for every pixel intensity xi it holds that:

xi = li + ξi, (3.8)

where li is the mathematical expectation of the pixel xi. By this, the random variable
xi follows a Gaussian distribution with probability density function (PDF)

fΞi(xi) =
1√
2πε2i

e
− (xi−li)

2

2ε2
i , (3.9)

and is entirely characterized by Ξi = (`i, εi)
T . To simplify notation, ω is defined as

the vector holding the parameters of all n pixels and Ωn denotes the set of all possible
parameters ω. Furthermore, ∆n denotes the quantization step, Φ(·) the Gaussian
cumulative distribution function (CDF) and Φ−1(·) its inverse.

Let
Kα = {ϕ : sup

ω∈Ωn

P0

(
ϕ(x(p)) = H1

)
≤ α} (3.10)

be the class of tests with an upper-bound false alarm probability α. Then, the corre-
sponding power function βϕ(ω, p) is defined by the probability for correct detection:

βϕ(ω, p) = P1

(
ϕ(x(p)) = H1

)
. (3.11)

The hypotheses H0 and H1 are composite. This means that one of the hypotheses
depends on an unknown parameter, the embedding rate p in our case. In general there
is no way to design an optimal test for composite hypotheses. The solution is to design
an Uniformly Most Powerful (UMP) test which uniformly maximizes the power function
with respect to ω and p.

This is a test ϕ∗ ∈ Kα whose power function βϕ∗ satisfies

βϕ∗(ω, p) = sup
ϕ∈Kα

βϕ(ω, p),∀ω ∈ Ωn, ∀p ∈ (0, 1]. (3.12)

Unfortunately, these tests rarely exist in practice. Fillatre follows the way to design
an asymptotically UMP test, as the quantization step ∆n vanishes, when n tends to
infinity. The AUMP test is defined as follows (Definition 1 in [18]):

Definition 3.6 (AUMP Test). Let 0 < α < 1. The test ϕ∗(x(p)) is AUMP in the class
Dα, given as

Dα = {ϕ : lim
n→∞

sup
ω∈Ωn

PrP0(ϕ(x(p)) = H1) ≤ α},

to decide between H0 and H1 if the following two requirements are satisfied:

1. ϕ∗ ∈ Dα;
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2. lim supn→∞(βϕ(ω, p)− βϕ∗(ω, p)) ≤ 0 for any ω ∈ Ωn and p ∈ (0, 1], for all other
tests ϕ ∈ Dα.

Theorem 1 in [18] shows that under some assumptions about the image model, the
following test is AUMP:

ϕ∗(x(p)) =

{
H0 if Λ∗(x(p)) ≤ λ∗

H1 else,
(3.13)

where

Λ∗(x(p)) =
n−1∑
i=0

wi(x
(p)
i − li)(x

(p)
i − x̄

(p)
i ) with wi =

σ̄n
ε2i
√
n
, (3.14)

and

λ∗ = Φ−1(1− α). (3.15)

Here, x̄
(p)
i denotes the position i with LSB flipped and σ̄n denotes the square root of

σ̄2
n, the mean variance of the image, defined by:

1

σ̄2
n

=
1

n

n∑
i=1

1

ε2i
. (3.16)

If the cover parameters, namely ω, are unknown, the parameters wi, li, εi and σ̄n
have to be estimated and will be replaced by their estimates ŵi, l̂i, ε̂i and ˆ̄σn in Equa-
tion (3.14). With these estimates, Fillatre proposes the following adaptive AUMP test
in Theorem 2 of [18]:

ϕ̂∗(x(p)) =

{
H0 if Λ̂∗(x(p)) ≤ λ̂∗

H1 else,
(3.17)

where

Λ̂∗(x(p)) =
n−1∑
i=0

ŵi(x̃
(p)
i − l̂i)(x

(p)
i − x̄

(p)
i ) with ŵi =

ˆ̄σn

σ̂2
k

√
Kn(m− q)

, (3.18)

and

λ̂∗ = Φ−1(1− α). (3.19)

σ2
k,Kn,m and q are parameters chosen per image, whose meaning is not relevant for

the overall result.

By this, Fillatre a posteriori justifies the good performance of a class of LSB
replacement detectors much older, namely the Weighted Stego-Image (WS) detectors,
introduced by Fridrich and Goljan in [31] and improved by Ker and Böhme in [56].

We present the original WS approach and some of its important modifications in
the following sections.
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3.2.2 Weighted Stego-Image Steganalysis

In 2004 Fridrich and Goljan presented the original form of WS, from now on called
standard WS, as a mathematically well-founded minimization problem [31]. WS is
a quantitative steganalysis method, i.e., aiming to estimate the length of the hidden
message. The authors generate a so-called weighted stego image x(p,λ), which then allows
for the estimation of the length of the hidden message. The basic idea is, similar to
Fillatre’s approach above, to generate an object with all LSBs flipped (thus simulating
an embedding in all locations) and then finding the nearest distance between this WS
image and the object under suspicion.

Following [56], we define x(p,λ) as:

x(p,λ) = λx(p) + (1− λ)x(p), (3.20)

where λ describes the weighting and x(p) denotes the stego image with every element’s
LSB flipped.

Theorem 1 in [31] states that the Euclidean distance between x(p,λ) and x(0) is
minimized for λ = q/(2n). As the cover is unknown to an attacker, she has to estimate
it from the stego image. This can be achieved by using a linear filter, i.e., a weighted
average of the local neighborhood. An example for such a filter is presented by Ker and
Böhme [56] using a filter of the form (3.21).

−1
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1
2 −1

4

1
2 0 1

2

−1
4

1
2 −1

4

(3.21)

By differentiating the Euclidean distance for λ, we can estimate p using Equation (3.22).

p̂ =
2

n

n∑
i=1

(
x

(p)
i − x̂

(0)
i

)(
x

(p)
i − x

(p)
i

)
(3.22)

Several improvements of this method have been proposed. Most notably is Weighted
WS steganalysis which adds element weights to the stego image. This second weighting
takes differences in local predictability into account. Elements which can be estimated
with high confidence contribute more to the estimation than elements where errors are
expected:

p̂ = 2
n∑
i=1

wi

(
x

(p)
i − x̂

(0)
i

)(
x

(p)
i − x

(p)
i

)
, (3.23)

using
∑n

i=1wi = 1.

Fridrich and Goljan [31] propose weights of the form w−1
i ∝ 1 + σ2

i ; experimental
results in [56] suggest that w−1

i ∝ 5 + σ2
i provide more accurate estimates for two large
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image databases. In both cases, σ2
i denotes the local variance in the neighborhood of

pixel i (but excluding the center pixel). Although some rationales for the choice of
weights are given in [8], it is fair to say that the optimal choice of WS weights for real
images is not sufficiently understood, even in the case of a uniform random distribution
of embedding positions. Both basic methods assume that changes in the cover are
spread uniformly [56].

For a WS variant tailored to JPEG covers see [6] and for the extension of it to
mod−k replacement instead of LSB replacement, we refer the reader to [93].

3.2.2.1 WS Steganalysis for Sequential Embedding

Ker [51] proposes a WS steganalysis variant tailored to initial sequential embedding.
He decomposes Equation (3.22) into two parts, reflecting that embedding changes only
occur in the first elements. The first elements are therefore weighted using λ = 1/2
while the remaining elements are weighted with λ = 0. Note that in this scenario any
change to the weighting, e.g., based on local predictability, will degrade the estimation.
This is the case because it is certain that the first elements contain the hidden message.
The resulting estimator (Eq. (3.24)) is minimized for the point where the embedding
ends, i.e., k = q [51].

E(k) =
k∑
i=1

(
1

2

(
x

(p)
i + x

(p)
i

)
− x̂(0)

i

)2

+
n∑

i=k+1

(
x

(p)
i − x̂

(0)
i

)2
(3.24)

This approach outperforms the previously introduced detectors when applied to initial
sequential embedding [51]. However, Equation (3.24) cannot simply be differentiated
because its derivative has no closed form and can have multiple local minima. To solve
this, Ker [51] proposes the following recurrence:

e0 = 0

ek = ek−1 +

(
1

2

(
x

(p)
k−1 + x

(p)
k−1

)
− x̂(0)

k−1

)2

−
(
x

(p)
k−1 − x̂

(0)
k−1

)2
, (3.25)

which generates ek = E(k)−
∑n−1

i=0

(
x

(1)
i − x̂

(0)
i

)2
. Because the last term is constant,

the minimum term of ek coincides with the minimum of E(k), and so, only linear time
is required to generate and examine the sequence ek.

3.2.2.2 WS Steganalysis for Näıve Adaptive Embedding

Two possible approaches come to mind for tailoring the WS method to detect adaptive
embedding. First, we could modify the local weights wi and insert the inverse suitability
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3. Exploiting Side Information in Steganalysis

for embedding, based on an estimate of the adaptivity criterion ζ̂(x
(0)
i ). If this estimation

is good enough, positions which are more likely to be changed during embedding will
get higher local weight and influence the overall decision more, and vice versa. As
mentioned above, the choice of optimal weights is still not perfectly understood and all
practical proposals are validated only experimentally. In addition, a good adaptivity
criterion is supposed to identify regions which are hard to predict, so the positions

preferred for embedding coincide with those where estimates x̂
(0)
i are poor. In fact,

the superiority of weighted WS over unweighted WS stems from assigning more weight
to better predictable positions. This advantage collapses as soon as the embedding
function hides exclusively in the less predictable positions. For these reasons, we do not
pursue this approach.

Our specialized WS variant leverages Proposition 3.1 (on page 33) and, as we shall
see, enables almost perfect detection of näıve adaptive embedding in cases where the
known WS methods fail.

Our approach is an elegant modification of the WS method to initial sequential
embedding from the last section. For näıve adaptive embedding, Proposition 3.1
suggests a clear procedure. Upon receiving or intercepting a potential stego object

x(p) = (x
(p)
0 , . . . , xn−1

(p)) the steganalyst tries to recover the order of ζ(x
(0)
i ) and obtains

y(p) = (y
(1)
0 , . . . , y

(1)
p·n−1, y

(0)
p·n, . . . , yn−1

(0)). Small errors in the recovery of the order can
be tolerated.

With this notation, Equation (3.24) translates to

E(k) =
k−1∑
i=0

(
1

2

(
y

(p)
i + ȳ

(p)
i

)
− ŷ(0)

i

)2

+
n−1∑
i=k

(
y

(p)
i − ŷ

(0)
i

)2
(3.26)

and is minimized at k = p · n.

3.3 A Targeted Attack on Näıve Adaptive Embedding

In this section we leverage Proposition 3.1 and the WS steganalysis tailored to näıve
adaptive embedding from Section 3.2.2.2 to attack several practical embedding algo-
rithms. First, we give an overview of widely used adaptivity criteria, then we outline
our set-up, before we define the evaluation strategy and finally the results of our attack.

3.3.1 Overview of Adaptivity Criteria

In this section we provide an overview of the adaptivity criteria most commonly used in
practice. As there is a real abundance of content-adaptive embedding schemes, we point
out that this overview is not exhaustive, but captures the most prevalent approaches.
Furthermore, we restrict our overview on algorithms designed for digital images, as
these are the main topic of this thesis.
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3.3. A Targeted Attack on Näıve Adaptive Embedding

Table 3.1: Overview of different adaptivity criteria for content-adaptive embedding and
their respective embedding operations.

Adaptivity Name Embedding Embedding Recovery Tested

Criterion (Source) Operation Strategy Intended‡ Attacks

Edges
Singh [84] LSBR random ad. Yes SP
Hempstalk [40] LSBR random ad. Yes ML
Hussain [43] LSBR näıve ad. Yes -

PVD
Wu [90] k-Bit näıve ad. Yes RS
Wang [88] k-Bit näıve ad. Yes RS
Yang [92] k-Bit näıve ad. Yes RS,SP

Variance
Fridrich [30] Block LSBR r-random Yes -
Luo [65] k-Bit r-random Yes RS

Texture
Fridrich [30] Block LSBR r-random Yes -
Franz [25] LSBR r-random Yes χ2,RS
Pramitha [73] 2-LSBR näıve ad. Yes χ2

Distortion-
Minimizing

HUGO [71] LSBM STC No ML
WoW [41] ternary STC No ML
S-Uniward [15] ternary STC No ML
UED [38] ternary STC No ML

Block LSBR: blockwise LSBR; näıve : r-random: restricted random embedding; STC: Syndrome
Trellis Codes; ML: machine learning-based; RS: regular/singular analysis; SP: sample pair analysis;
‡ Yes, if the recipient needs to recover the exact order

Table 3.1 is divided into five different types of adaptivity criteria, but we point out
that the schemes in the category titled PVD (Pixel Value Differencing) are strongly
related to the category of edge sensitive embedding algorithms. We list the original
publications and the respective embedding operations and strategies in the table, together
with the property if the recipient has to recover the exact order of the adaptivity criterion,
i.e., if the scheme has to ensure fully reconstructible SSI.

Finally, the rightmost column shows the attacks the authors considered before
publishing their scheme. As can be seen, most of the schemes are evaluated with
benchmark steganalysis methods that do not anticipate the adaptivity. Excluding the
machine-learning based case, none of the tested attacks utilizes knowledge about the
embedding strategy.11 Furthermore, RS analysis [32] proposed in 2001, SP analysis [16]
proposed in 2003, and the χ2 test [89] proposed in 2000 are explicitly developed to detect
the use of random uniform LSBR. This bears the risk of substantially overestimating
the security.

3.3.2 Data and Set-up

We use the BOSSBase [5] for the empirical evaluation of our specialized WS method.
This image collection consists of 10 000 grayscale images, each downscaled to 512× 512

11There is an ongoing discussion in the research community if machine learning-based steganalysis
captures features connected to the adaptivity criteria by definition or not.
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pixels. For robustness, we also performed all experiments on 700 raw images of the
Dresden Image Database (DIB) [36], cropped to 512×512 pixels. As the results are very
similar, qualitatively and quantitatively, our findings seem unlikely to be an artifact of
the homogeneous pre-processing (scaling) applied to all images in the BOSSBase.

As the WS method is designed to detect LSB replacement only, our approach is to
borrow four different adaptivity criteria from Table 3.1 and use them in combination
with LSB replacement. We apply näıve adaptive embedding, i. e., we use the first p · n
pixels to embed a payload of random bits. After calculating the values of ζ(·) for every
pixel, we order the pixels according to it, most suitable first, to obtain y(0) and simulate
embedding by flipping 50 % of the leading p · n positions in y. The permutation of y(p)

is inverted to obtain x(p). To eliminate boundary conditions, we exclude the image
borders from embedding and detection attempts.

If a perfect order cannot be established in the neighborhood of yp·n, which may
happen if ζ(·) is discretized to the same value for a sequence of elements in y(0), we
distribute the embedding positions uniformly over all elements sharing the same value.

Furthermore, we do not implement methods to preserve the exact order of the
adaptivity criterion in the stego object, although this might be specified in the original
algorithm. As all recently proposed embedding schemes utilize non-shared selection
channels the recovery of the order is not needed at the side of the recipient. By this, we
make our analysis more meaningful for modern steganographic schemes.

3.3.3 Evaluation Strategy

Although practical detectors may tolerate some errors, the recoverability of the order
(Definition 3.5) is a necessary and critical condition for our detection strategy. Therefore,
we need to quantify the degree of order recovery. For näıve adaptive embedding, the
cover consists of solely two distinct areas of interest: the actual embedding positions
and the unused positions. These areas are fixed by the payload size, which gives an
empirical threshold τ in the value range of ζ(·), until where the embedding can take
place. For a fixed payload size, the metric of interest with regard to recovery is related
to the transitions of pixels from suitable to unsuitable and vice versa, between the
steganographer’s and the steganalyst’s knowledge about the values of ζ(x(0)).

Definition 3.7 (Recovery Rate). For a fixed adaptivity criterion ζ(·), a fixed cover x(0)

of size n, and a fixed embedding rate p, let τ (0) = ζ(y
(0)
p·n) be the value of the adaptivity

criterion of the most suitable among the pixels not used for näıve adaptive embedding.

And τ (p) = ζ̂(ŷ
(0)
p·n) is the corresponding threshold if the adaptivity criterion is estimated

from the stego object. The recovery rate r is defined as

r =
1

p · n

∣∣∣{i | ζ(x
(0)
i ) > τ (0) ∧ ζ̂(x

(p)
i ) > τ (p)

}∣∣∣ . (3.27)

Note that both “>” operators change to “<” for adaptivity criteria where lower values
indicate better suitability.
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3.3. A Targeted Attack on Näıve Adaptive Embedding

In plain English, r measures the fraction of embedding positions correctly identified
by the steganalyst. Furthermore, we can see the recovery rate as an empirical measure
that shows us, what amount of the chosen embedding positions can be recovered.

Among the different ways to recover the order, we restrict our experiments to the
simple method of applying ζ(·) directly to the object under investigation. There might
be better ways, e. g., by carefully studying and inverting the effect of the embedding
operation on the adaptivity criterion. Since it is hard to tell how good the best possible
estimator can be, we produce benchmark measurements with the best conceivable
estimator, i. e., giving the steganalyst side information about the values of ζ(·) applied

to the cover, but not allowing her to simply compare ζ(x
(1)
i )

?
= ζ(x

(0)
i ) as detection

strategy.

For relatively high payloads, the expected security gain from choosing the embedding
positions adaptively is limited. Therefore, we hypothesize that our specialized WS
method to detect näıve adaptive embedding performs best for low (and thus relevant)
payload lengths. Note that the sequential WS method is pretty vulnerable to “gaps”
in the payload stream [56]. Our specialized WS method inherits this problem and
its severity is related to the (local) discreteness of adaptivity criteria, which makes it
difficult to establish an order of embedding positions if the last bin is incompletely used.

3.3.4 Attacked Adaptivity Criteria

We decided to include the following four criteria in our study because they cover the
space of proposed criteria pretty well. Each is from a different type, as seen in the first
column of Table 3.1. The criteria differ in how they identify the more suitable embedding
positions, i. e., the exact formulation of the adaptivity criterion ζ(·). Unless otherwise
mentioned, xi is more suitable for embedding than xj if it holds that: ζ(xi) > ζ(xj).

3.3.4.1 Local Variance

Local variance is the most popular criterion, possibly because it can be tied to the
detectability of embedding in a Gaussian cover, e g., in [30, 85]. It can be calculated
from the cover by,

ζ(x(0)) =
(
x(0) − x(0) ∗ a

)2
∗ a, (3.28)

where a is a 3 × 3 mean filter, ∗ is the 2-dimensional convolution operator, and the
square operation is element-wise in Equation (3.28). As pixels with higher local variance
are believed to be less predictable, content-adaptive embedding should concentrate
embedding changes in positions with relatively high local variance. Note that local
variance differs from the term σ2

i in the calculation of WS weights (see Section 3.2.2) in
that the center pixel may be included in the variance estimation, whereas it must not be
included for WS weights. Figure 3.2(a) shows an example of the embedding positions
chosen by this adaptivity criterion, when embedding with embedding rate p = 0.3.
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3. Exploiting Side Information in Steganalysis

3.3.4.2 Edges

Here, we use the Laplacian edge detector to identify edges in an image and select them
for embedding, as suggested, for instance, in [84]. This adaptivity criterion can be
calculated by a linear filter:

ζ(x(0)) = x(0) ∗

 −1 −1 −1
−1 8 −1
−1 −1 −1

 . (3.29)

Figure 3.2(b) shows an example of the embedding positions chosen by this adaptivity
criterion, when embedding with embedding rate p = 0.3.

3.3.4.3 Texture

In [30], the authors suggest to prefer more textured areas of a cover image to hide the
steganographic payload. To identify textured areas, they propose four steps:

1. Divide the image into blocks of size 3× 3.

2. Divide each of these blocks into four 2× 2 sub-blocks, with the center pixel being
contained in every block.

3. Each sub-block is ‘good’, if there are at least three different grayscale levels.

4. The entire block is ‘good’, if all sub-blocks are ‘good’.

We extend their measure by defining ζ(x
(0)
i ) as the sum of the different grayscale levels

in the four sub-blocks. Figure 3.2(c) shows an example of the embedding positions,
when embedding with embedding rate p = 0.3.

3.3.4.4 NUGO (Not so Undetectable steGO)

Pevný et al.’s HUGO (Highly Undetectable steGO) algorithm [71] is inspired by machine
learning-based steganalysis. The algorithm aims to minimize the distance between stego
and cover image in a very high-dimensional feature space composed of quantized
co-occurrence tables. This is done by measuring the distance in feature space for
hypothetical embedding operations applied to each position in the cover independently,
thereby obtaining an adaptivity criterion. The algorithm not only chooses the embedding
positions adaptively, but also the embedding direction for an LSB matching operation.
As the WS method is bound to LSB replacement, considering this additional level of
content-adaptivity is beyond the scope of our analysis12.

Therefore, we use a modified version of HUGO’s adaptivity criterion for LSB
replacement, stripping the change direction component. Our modification, called
‘NUGO’, is most likely much inferior than the original criterion combined with the

12But we deem it possible that the embedding direction is reconstructible itself and thus might present
another weakness of the real HUGO algorithm.
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3.3. A Targeted Attack on Näıve Adaptive Embedding

original embedding operation, but it adds some diversity compared to the other three
criteria. Because the criterion measures potential distortion in the feature space, lower

values of ζ(x
(0)
i ) indicate more suitable embedding positions. Figure 3.2(d) shows an

example of the embedding positions chosen by this adaptivity criterion, when embedding
with embedding rate p = 0.3.

Comparing Figures 3.2(a) and 3.2(d), we see a very similar selection of embedding
positions. This highlights again Remark 3.13 that another function ζ ′(·) 6= ζ(·) might
give a very accurate estimation of the embedding positions. Furthermore, a very complex
adaptivity criterion like NUGO might be estimated with means of an adaptivity criterion
with very low complexity like local variance.

(a) ζ : local variance (b) ζ : edges

(c) ζ : texture (d) ζ : NUGO

Figure 3.2: Examples of näıve adaptive embedding and payload p = 0.3

3.3.5 Recoverability of the Adaptivity Criteria

Table 3.2 shows the mean recovery rates for the four different adaptivity criteria
introduced in Section 3.3.4. Observe the differences in the recoverability between the
different adaptivity criteria. The most popular criterion, local variance, is almost
perfectly recoverable at all embedding rates. We can see a significant decrease in
recoverability for our only discretized adaptivity criterion, texture. This is expected, as
even with perfect recoverability, a steganalyst cannot reconstruct the order in the last
bin used. Interestingly, the least recoverable of the here examined adaptivity criteria is
NUGO. Overall, the mean recovery rate seems to be roughly constant and independent
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3. Exploiting Side Information in Steganalysis

of the payload. For a fixed embedding operation, recoverability can be seen as a property
of the adaptivity criterion. Different criteria can be ranked by recoverability.

Table 3.2: Recovery rate, calculated according to Definition 3.7.

Images p local variance edges textured NUGO

BOSSBase

0.01 0.995 0.971 0.718 0.411
0.05 0.992 0.956 0.732 0.318
0.10 0.990 0.943 0.749 0.395
0.20 0.985 0.925 0.787 0.415

DIB

0.01 0.991 0.934 0.690 0.252
0.05 0.987 0.917 0.697 0.435
0.10 0.982 0.906 0.714 0.378
0.20 0.973 0.898 0.756 0.531

3.3.6 Empirical Results – Detecting Näıve Adaptive Embedding

Tables 3.3 and 3.4 summarize the results of our tests. It shows that our specialized WS
with estimation from the stego object outperforms both standard WS methods for very
small payloads, independent of the adaptivity criterion among the ones tested. It is
on par for higher payloads, here with some variation between adaptivity criteria. The
third column shows the specialized WS method with perfect recovery of the adaptivity
criterion. This is not achievable in practice, but serves as a benchmark.

Figures 3.3 to 3.7 (on pages 48 to 52) display detection performance measured by the
mean absolute error (MAE), |p− p̂|, as a function of the embedding rate p. Lower values
indicate better performance. Figure 3.3 compares the performance of the weighted
and unweighted WS for the embedding methods random uniform embedding and näıve
adaptive embedding, with adaptivity criteria local variance and NUGO. Surprisingly,
both methods are similarly accurate at detecting NUGO as they are at detecting random
uniform embedding. For adaptive embedding into the areas with higher local variance,
the unweighted WS clearly outperforms the weighted version. This confirms that the
local weights, calculated as suggested in [56], are counter-productive in this case of
adaptive embedding.

Figures 3.4 to 3.7 show the performance of the different WS methods, including our
specialized one, for näıve adaptive embedding using the four selected adaptivity criteria,
for both image databases tested. In Figure 3.4 the adaptivity criterion is local variance,
in Figure 3.5 it is the edge criterion, in Figure 3.6 the more textured areas are preferred
and finally, Figure 3.7 shows the detection accuracy for the NUGO criterion.
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3.4. Summary

Here and from the Tables 3.2, 3.3 and 3.4 , it can be seen that, as the recovery rate
declines, the accuracy of the specialized WS with estimation from the stego object also
decreases.

Furthermore, Tables 3.3 and 3.4 show the superiority of adaptivity criteria which are
less recoverable. The recovery rates (Table 3.2) for NUGO are much lower than those for
the other adaptivity criteria and so is the performance of our specialized method (fourth
column). Observe that for all adaptivity criteria, our specialized WS still outperforms
the known WS methods for small payloads.

Another conclusion drawn from Tables 3.3 and 3.4 is that the estimation error of
our specialized WS increases with increasing payload, even if the recoverability rate
stays roughly constant. This is a consequence of the absolute length of the “gaps”
introduced by the estimation error, which increases for higher payloads. This confirms
our conjecture from Section 3.3.3 that our specialized version has best performance for
very small payloads.

3.4 Summary

In this chapter, we were mainly concerned with the side of steganalysis. From this
perspective, we

I introduced the formal concepts of steganographic side information and uncertainty,
and

I established a connection between the definitions of these two terms and information-
theoretic security.

Our goal is to remove the inconsistent usage of these terms with these definitions. With
the help of the definitions, we formalized content-adaptive embedding, and

I proposed that the problem of detecting näıve adaptive embedding can be reduced
to the problem of detecting initial sequential embedding, and

I presented an extension of WS steganalysis specifically tailored to detect näıve
adaptive embedding.

Finally, we developed a targeted attack on four widely used adaptivity criteria. This
attack detects the embedded message length very accurately, depending on the recovery
rate of the respective adaptivity criterion. So, we confirmed that any rational steganalyst
would gain from recalculating or estimating the most likely embedding positions.

Taking this result into account, we believe that no rational steganographer would
use näıve adaptive embedding. To frame the contest of an anticipating steganographer
and a counter-anticipating steganalyst, we turn to the area of game theory and give a
formal game-theoretical framework modeling this situation.
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3. Exploiting Side Information in Steganalysis
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Figure 3.3: Mean absolute error (MAE) of the standard WS variants as function of the
embedding rate p for different embedding schemes.
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Figure 3.4: Adaptivity criterion: local variance. Mean absolute error (MAE) of special-
ized and standard WS methods as function of the embedding rate p.
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Figure 3.5: Adaptivity criterion: edges. Mean absolute error (MAE) of specialized and
standard WS methods as function of the embedding rate p.
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Figure 3.6: Adaptivity criterion: texture. Mean absolute error (MAE) of specialized
and standard WS methods as function of the embedding rate p.
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Figure 3.7: Adaptivity criterion: NUGO. Mean absolute error (MAE) of specialized
and standard WS methods as function of the embedding rate p.
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Chapter 4

Game Theory and Steganography

Considering the empirical evidence that a steganalyst can utilize steganographic side
information used in content-adaptive embedding to increase her detection performance,
it seems plausible that any rational steganalyst will do so. Anticipating this, any rational
steganographer would adapt her embedding strategy to this assumption. Game theory
is the study of strategic choices and their consequences for two or more rational players
with conflicting goals [87]. In this chapter we are going to argue why steganography
utilizing steganographic side information must be studied with game theory. Then, we
will introduce the basic concepts of game theory necessary to lay the foundation for
the rest of the thesis. After briefly reviewing existing approaches to model the contest
between steganographer and steganalyst with game theory, we present our framework
that captures all relevant properties of a steganographic communication system with
side information.

4.1 Motivation

In Section 3.1 we introduced the term steganographic side information (SSI) and moti-
vated its use in steganography to gain an advantage in knowledge over the steganalyst.
Most often, the use of SSI to select more uncertain positions for embedding relies on the
authors’ judgment or heuristics inspired by known steganalysis methods (cf. Table 3.1),
as in the examples of the adaptivity criteria presented in Section 3.3. When reporting
security gains over random uniform embedding, the authors often disobey Kerckhoffs’
principle by not considering that the steganalyst knows how the SSI is used in the
embedding function and might be able to reconstruct the SSI from the stego object. As
a result, the security of many side-informed embedding schemes against a so-informed
attacker remains an open research question.

Before modeling the situation faced, we have to identify the different parties involved
within a steganographic system and make a realistic assumption about the different
levels of information each of them has.

It is reasonable to assume that the steganographer does not know the global cover dis-
tribution P0, because with that knowledge she could perform perfect steganography [88].
Granting the steganalyst access to both global distributions P0 and P1, as suggested
by the strictest interpretation of Kerckhoffs’ principle for steganography [20], would
enable her to attack with the best-possible detector. This is unrealistic for practical
settings and studied sufficiently. Instead, we follow Böhme and Ker, who argue that a
realistic set-up is characterized by incomplete information and bounded computational
resources for all actors [8, 53, 54]. This means that both actors, unaware of the global
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4. Game Theory and Steganography

distributions, must resort to local models based on public knowledge.

The steganographer chooses along which dimensions the cover should be moved
to the message region (as depicted in Figure 2.2 on page 11), possibly based on some
kind of SSI. The steganalyst chooses element weights to aggregate local evidence into a
global decision, being aware that the steganographer might have used SSI to identify
her embedding positions. Both choices are clearly interdependent and jointly affect
the security of the steganographic communication. Therefore, both choices have to
be strategic, i. e., anticipating the opponent’s choice. This suggests that adaptive
steganography and optimal adaptive steganalysis is best studied in the context of game
theory, which is mathematically well-established to model situations of two (or more)
parties who act strategically [87].

Game theory is the adequate option to evaluate situations with imperfect knowledge
and strategic behavior of the players. With perfect knowledge on both sides, the
problem would reduce to an optimization problem. Furthermore, game theory finds
stable situations, so-called equilibria, where no rational player would deviate from her
strategy.

4.2 Principles of Game Theory

First, we give the basic notations used in game theoretic set-ups and then list the
different solution concepts used in the following sections. This overview is by no means
exhaustive but provides all the necessary components for the following analyses. We
base most of the definitions on the textbook [64] by Leyton-Brown and Shoham, but
refer to the original sources where we deem it helpful.

4.2.1 Basic Definitions of Game Theory

A game consists of at least two rational players vi, i ∈ {1, . . . , k}, their respective set
of strategies si and a payoff (or utility) function ui for each player and each possible
outcome of the game [87]. It is a common and handy convention to denote the strategy
of all players except player i with s−i.

Our steganographic setting entails two players, the steganographer and the stegan-
alyst. We thus restrict all definitions to the case of two-player games. For a more
common definition, see the original textbook [pp. 3][64]. We keep the s−i notation even
in the two-player case, for consistency with the standard game theory jargon.

Definition 4.1 (Two-Player Game). A two-player game is a tuple (S, u) where

I S = S1 × S2, where Si is a finite set of strategies available to player i ∈ {1, 2}.
Each vector s = (s1, s2) ∈ S is called a strategy profile;

I u = (u1, u2), where ui : S → R is a real-valued utility (or payoff) function for
player i.

A strategy profile in any game can be expressed as s = (si, s−i).
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4.2. Principles of Game Theory

The most common representation of games is the one of a normal form, or matrix,
game. Here, every player’s utility for every state of the world is represented in the
special case, where the states of the world depend only on the player’s combined actions.

Definition 4.2 (Zero-Sum Game). A two-player game is called zero-sum game, if for
each strategy profile s ∈ S it holds that u1(s) + u2(s) = 0.

Zero-sum games are strictly competitive, as one player’s gain always is the other
player’s loss.

When identifying the players’ strategies, game theory allows to study randomized
strategies, so-called mixed strategies, in comparison to deterministic pure strategies.

Definition 4.3 (Pure Strategy). A pure strategy ai is a deterministic choice of player
i in every possible state of the world.

Definition 4.4 (Mixed Strategy). A mixed strategy si for player i is a probability
distribution over her pure strategies.

Definition 4.5 (Support). The support of a mixed strategy si for a player i is the set
of pure strategies {ai|si(ai) > 0}.

A pure strategy is a special case of a mixed strategy where the support consists of
only one strategy. A fully mixed strategy is a strategy that assigns positive probability
on every pure strategy, i.e., a strategy that has full support.

Game theory tries to identify strategies that are optimal in the sense that they
guarantee each player a certain payoff. As all players are assumed to act rationally, all
of them would use strategies that maximize their payoff or minimize their loss. This
leads to the notion of best response strategies.

Definition 4.6 (Best Response Strategy). Player i’s best response s∗i to the strategy
s−i is a mixed strategy such that ui(s

∗
i , s−i) ≥ ui(si, s−i) for all strategies si ∈ Si.

Generally, best response strategies are not unique and most often there are infinitely
many such strategies. Furthermore, a given best response strategy assumes knowledge
about the exact strategy of the opponent.

At first glance it might be difficult to identify single optimal strategies, but it might
be easier to identify strategies the players would never use.

Definition 4.7 (Dominant and Dominated Strategy). A strategy si dominates another
strategy s′i if for all s−i ∈ S−i it holds that ui(si, s−i) > ui(s

′
i, s−i). This implies that a

strategy s′i is dominated if some other strategy si dominates s′i.

Game theory differentiates not only several types of strategies but also assumptions
about the knowledge of the players. The basic model, where each player has full
information about the possible strategies of her opponent and her respective payoffs is
called a situation of complete information. There are two ways to loosen this assumption.
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4. Game Theory and Steganography

Definition 4.8 (Incomplete Information). When some, or all, players are uncertain
about the payoffs, the available strategies or the amount of information of their opponents,
the game is said to have incomplete information13. The players’ uncertainties are
represented as a probability distribution over all possibilities.

Definition 4.9 (Imperfect Information). In an imperfect information game, each
player’s choice situations are partitioned into so-called information sets. All situations
within an information set look the same to the player and she cannot distinguish between
them.

There exists a way to transform any game with incomplete information into a game
with imperfect information by introducing a probabilistic player called Nature [39].
Nature does not act strategically in the way that it has no payoff which it wants to
maximize. The actions of Nature are known to all players but the instantiations are not
predictable.

4.2.2 Solution Concepts

To identify optimal strategy profiles that each player will follow, we have to find stable
situations, such that no player has incentives to deviate from her strategy. Such stable
situations are called equilibria in game theory.

4.2.2.1 Dominant Strategy Equilibrium

If we have single dominant strategies for both players in a zero-sum game, we can assume
that both would follow them, leading to the notion of a dominant strategy equilibrium
(DSE).

Definition 4.10 (Dominant Strategy Equilibrium). A strategy profile s = (s1, s2) is
called a dominant strategy equilibrium in a two-player game, if for both players si is a
dominant strategy for player i.

Unfortunately, these equilibria seldomly exist in practice.

4.2.2.2 Nash Equilibrium

The most popular solution concept in game theory is the Nash equilibrium [67] and
makes use of the best response strategies.

Definition 4.11 (Nash Equilibrium). A strategy profile s∗ = (s∗1, s
∗
2) is called a Nash

equilibrium in a two-player game, if for both players s∗i is a best response to s∗−i.

This definition implies that no player would unilaterally change her strategy, as she
could do no better by doing so, assuming that the other player plays her equilibrium
strategy.

In comparison to DSE we can be sure that such an equilibrium exists, although it
might be hard to compute its exact strategies.

13Sometimes these game are called Bayesian games.
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Theorem 4.1 (Nash [67]). Every game with a finite number of players and strategy
profiles has at least one Nash equilibrium.

4.2.2.3 Maxmin and Minmax Strategy

Another solution concept that is especially well-motivated in two-player zero-sum games
are the maxmin and minmax strategies. The intuition behind these strategies is that a
player following her maxmin strategy wants to maximize her worst case payoff, i.e., in a
situation where the other player wants to minimize it. The minmax strategy is the dual
in that it minimizes the maximum payoff of the other player.

Definition 4.12 (Maxmin and Minmax Strategy). The maxmin strategy of player i is
argmaxsi mins−i ui(si, s−i) and the minmax strategy is argminsi maxs−i ui(si, s−i).

The minimum amount of payoff that is guaranteed to player i by playing her maxmin
strategy is called maxmin value and the minimum of the maximum value that player i
can ensure by playing a minmax strategy is the minmax value.

In our case of two-player zero-sum games, one of the fundamental proofs in game
theory states:

Theorem 4.2 (von Neumann [86]). In any two-player, zero-sum game with a finite
number of strategies, in any Nash equilibrium each player receives a payoff that is equal
to both her maxmin and her minmax value.

This theorem has three implications for two-player, zero-sum games:

1. Both players’ maxmin values equal their minmax value.

2. For both players, the maxmin strategies coincide with the minmax strategies.

3. Any maxmin strategy profile is a Nash equilibrium and the payoff in all Nash
equilibria is the same.

4.2.2.4 Equalizer Strategies

A more recent solution concept are the so-called equalizer strategies. These are strategies
that yield the same expected payoff for each player, regardless of the (pure or mixed)
strategy chosen by the other player [74].

Definition 4.13 (Equalizer Strategies). A strategy si is called an equalizer strategy
for player i, if, for some v ∈ R it holds that ui(si, s−i) = v for any s−i ∈ S−i.

This definition implies that playing an equalizer strategy makes the opponent
indifferent about which strategy to choose, as she cannot influence the payoff when her
opponent plays an equalizer strategy.

A necessary and sufficient condition for the existence of equalizer strategies is that
no pure or mixed strategy of any player is dominated by a convex combination of her
other strategies. Thus, the existence of equalizer strategies and dominant strategies are
mutually exclusive.
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Theorem 4.3 (Pruzhansky [74]). Let s∗ = (s∗1, s
∗
2) be a Nash equilibrium in completely

mixed strategies. If there exists an equalizer strategy for player i, then such an equalizer
strategy guarantees the equilibrium payoff for player i against any strategy of the opponent.

An equilibrium in equalizer strategies plays a special role. In such an equilibrium,
the payoff is mutually independent of the opponent’s choice.

4.3 Game-Theoretical Approaches in Steganography

Game theory gains more and more importance in practically all areas concerned with
security. Examples are real-world security like the patrols at airports [72], the modeling
of phishing strategies [12], network defense [66], and team building in the face of a
possible insider threat [63].

We restrict our presentation to the area of steganography here, but list three more
examples from areas connected to steganography in Appendix B.

We are aware of three other independent publications using game theory in the
context of steganography that precede our initial publication, none of which uses side
information, and one recent publication building on our set-up.

4.3.1 Game Theory and Capacity

Back in 1998, Ettinger [17] proposed a two-player, zero-sum game between a stegano-
grapher and an active steganalyst whose purpose it is to interrupt the steganographic
communication. Both players are subject to a distortion constraint. The steganographer
chooses a distribution of locations to hide her message, which is assumed to resemble
pseudorandom noise. The steganalyst also chooses a distribution over positions she
can overwrite automatically in every sequence. The distortion constraint d is the same
for both players. The payoff measures the amount of data that is communicated,
so the steganographer wants to maximize the payoff and the steganalyst wants to
minimize it. Ettinger uses the most simple distortion measure: changing the LSB of a
position introduces 1 unit of distortion, the next-to-LSB 2 units an so forth. Here, the
steganographer has an advantage over the steganalyst, as in half of the cases, the bit
she wants to change already has the right semantic, so she only needs to change q/2
bits to communicate q bits, while the steganalyst always flips a bit, should she choose
to distort that specific position. The payoff function is constructed using coding theory
and assuming that every bit is an own channel CI with a specific channel capacity. The
payoff function is:

P (x,y) =

l−1∑
i=0

xi

(
1−H

(yi
n

))
, (4.1)

where x = (x0, . . . , xl−1) and y = (y0, . . . , yl−1) are the steganographer’s, respectively
steganalyst’s strategy and H is the binary entropy. Ettinger derives analytically that
for the equilibrium strategy for the steganalyst it must hold that for 0 < j < k < l− 1:

2k−j
(

1−H
(yj
n

))
=
(yk
n

)
, (4.2)
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and for the steganographer:

xj
xk

=
2j−k log

p∗k
1−p∗k

log
p∗k

1−p∗k

, (4.3)

where p∗k = y∗i /n. The steganalyst’s equilibrium strategy is to equalize as many of the
lowest order channel capacities as allowed by the distortion constraint.

This set-up differs from the conventional steganographic model as the protection
goal is availability, not undetectability.

4.3.2 Game Theory and Batch Steganography

Ker [50] uses game theory to find strategies in the special case of batch steganography,
where the payload can be spread over many cover objects. The steganalyst anticipates
this and tries to detect the existence of any secret message (so-called pooled steganalysis).
For this Ker defines the so-called Threshold Game in which the warden chooses a
quantitative steganalysis method and a threshold t and then counts how many of the
objects have an estimate exceeding t. The steganographer on the other hand chooses
her strategy for distributing the secret message over the objects. For this, she can vary
the parameter p, which expresses the amount of hidden context per cover object. (p = 1
means to spread the secret message as thinly as possible, p = B (0 < B << 1) means to
spread it in as few covers as possible.) With various assumptions about the steganalysis
method Ker formulates a zero-sum game and finds minmax and maxmin solutions in
pure strategies for both parties (under the assumption that one of the parties has to
move first). Furthermore, when both parties move simultaneously (or do not know what
strategy the other party follows), there is a unique Nash equilibrium in mixed strategies.
Ker’s conclusion is that the steganographer either spreads the secret message as thinly
as possible over all covers or uses as few covers as possible with maximum embedding
capacity.

4.3.3 Game Theory and Detection Performance

Orsdemir et al. [69] frame the competition between steganographer and steganalyst with
the help of set theory. The steganographer has the possibility to use either a näıve or a
sophisticated strategy, where in the sophisticated strategy she incorporates statistical
indistinguishability constraints. The passive steganalyst can either assume a näıve
steganographer or a sophisticated one and train a machine-learning based classifier on
the respective assumption. This results in a matrix game with detection performance as
payoffs. Unsurprisingly, a sophisticated steganographer performs better against a näıve
steganalyst, but in their set-up, a sophisticated steganalyst performs worse against a
näıve steganographer than against a sophisticated one. Thus, there is no equilibrium in
pure strategies. The authors numerically calculate mixed strategy equilibria for specific
embedding rates but no generally valid strategies are presented. As the embedding
functions are black boxes, the resulting equilibria do not directly inform about the
design of secure embedding functions or optimal detectors.
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4.3.4 Game Theory and Adaptive LSB Matching

Following our first game-theoretic approach [77], recently other researchers picked up
the topic of game theory and steganography. In [14] the authors examine the embedding
operation of LSB matching with a content-adaptive embedding strategy. In their set-up,
the cover model follows a simple multivariate Gaussian model, the strategies of both
players consist of the probabilistic embedding strategy and the payoff is measured
as the steganalyst’s detection performance. The steganographer tries to minimize an
additive distortion function (as defined in Section 3.1.2.2) and the steganalyst knows
the payload p and the embedding costs ρi for all positions i ∈ {1, . . . , n} and performs
a likelihood-ratio (LR) test. For a comparison with information-theoretic optimal
embedding, the authors introduce two models for the steganalyst: first, the omnipotent
steganalyst who is granted exact knowledge about the steganographer’s actions (i.e., the
embedding probabilities) and secondly, the ignorant steganalyst who does not know the
actions. Faced with an omnipotent steganalyst, the steganographer tries to minimize
an information-theoretic measure, the KL divergence. The authors assume that the
steganographer prefers to embed in positions that have a higher variance and when
she chooses one of the positions, she either increases or decreases it by 1, with equal
probability. With this embedding operation and the assumption about the image model,
it is possible to express the stego distribution as a Gaussian mixture distribution. Then,
the steganalyst makes a conjecture about this distribution and performs a LR test for
each given object. Due to the fact that the steganalyst’s distribution over embedding
positions consists of a manyfold convulsion, the authors state that, in general, their
solution has no closed form. So, the authors show numerically that there exists a unique
Nash equilibrium and continue their analysis with a two-position cover. Here they
show, again numerically, that the information-theoretic optimal and the game-theoretic
optimal strategies differ and that the steganographer is better off with introducing
slightly more distortion. But, as the heterogeneity in the cover source increases, the
optimal strategies become more similar.

4.4 The Game-Theoretical Framework

We build on the protocol by Katzenbeisser and Petitcolas introduced in Section 2.2.2.2
which is already called a “game” by conventions in cryptography. We augment it with
both players’ strategies to make it a game in the sense of game theory and to obtain a
payoff metric under equal priors. As the following results all deal with SSI realized for
content-adaptive embedding, we formally define the key components in this settings that
exceed the definitions given in Section 2.1. The framework itself is easily transformable
to other settings where SSI is used in steganography, for example to a situation with an
adaptive choice of the embedding direction.
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4.4.1 Basic Definitions

For a given P0 and a uniform prior over encrypted messages, P1 depends on the em-
bedding operation. The Kullback–Leibler divergence (KLD) between P0 and P1 is an
information-theoretic measure of steganographic security with regard to undetectabil-
ity (cf. Definition 2.10). We leverage this to distinguish between homogeneous and
heterogeneous cover sources.

Definition 4.14 (Homogeneous vs Heterogeneous Cover Source). A cover source X(0)

is called homogeneous with regard to a fixed embedding operation, if for every i, j ∈
{0, . . . , n− 1}, i 6= j, and for any subset of the cover space and the corresponding subsets
of the stego spaces, it holds that KLD(P0,P(xi)) = KLD(P0,P(xj)). Otherwise the cover
source is called heterogeneous.

This definition implies that homogeneous cover sources offer the same security
regardless of where in any given cover the embedding changes are made. For typical
embedding operations, all i. i. d. and the common Markov cover models [19] are homoge-
neous cover sources. Because adaptive steganography exploits variation in uncertainty
between embedding positions, we need to model heterogeneous cover sources. In this
case, the security impact of changing individual embedding positions may depend on
the realization x(0). Therefore, we define a notion of suitability for embedding per
position and per cover that is closely related to the uncertainty with regards to positions
(cf. Definition 3.3) by decomposing the KLD measure into differences in the likelihood
of hypothetical stego objects.

Definition 4.15 (Suitability). Position i of cover x(0) is more suitable for embedding

than position j, if the stego object x
(1)
(i) is a more likely realization of the cover distribution

P0 than the stego object x
(1)
(j), i. e., if P0

(
x

(1)
(i)

)
> P0

(
x

(1)
(j)

)
.

Recall that x
(1)
(i) is the cover object x(0) with position i changed and P0(·) denotes the

probability of occurrence under the cover distribution P0 and note that this definition is
agnostic about multiple embedding changes appearing together, a common assumption
in the literature [26].

Remark 4.1. The definition of suitability extends the definition of uncertainty with
regards to positions in two ways. First, it allows to compare different positions, something
that is necessary to establish an order, and second, it is applicable for all positions that
are between perfectly uncertain and perfectly informative.

Since P0 is unknown for empirical cover sources, practical adaptive embedding func-
tions use an adaptivity criterion to approximate the suitability of individual embedding
positions, as shown in Section 3.3. For the use in our theoretical framework we define it
as follows:

Definition 4.16 (Adaptivity Criterion). A family of tractable functions, e. g., ζi :
{0, . . . , 2` − 1}n ×Θ→ R, is called adaptivity criterion if it establishes an order of all
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n embedding positions in a cover x(0) by their approximate suitability. More specifically,
ζi(x

(0),θ) > ζj(x
(0),θ) implies that, to the best of the steganographer’s knowledge,

position i appears more suitable for embedding than position j.

Definitions 4.15 and 4.16 require some reflection.

Remark 4.2. The adaptivity criterion may use steganographic side information θ ∈ Θ
to improve the quality of the approximation.

Remark 4.3. The mere order relation in Definition 4.16 ignores quantitative differences
in the likelihoods of Definition 4.15.

This is no drawback of the framework, as for example in [52] it is argued that most
leading steganalysis methods base their decision on small groups of positions as well
and view them as independent. So, we can assume that our framework captures most
of the relevant properties in this regard.

Remark 4.4. The assumption of a complete order is a simplification. Some practical
schemes establish partial orders and resolve them with random (key-dependent) tie-
breaking rules, as seen in Section 3.3.

The framework is sufficiently expressive to study canonical embedding and detection
strategies. Replacing the order with a quantitative detectability profile (cf. 3.1.2.2) or
more realistic non-linear distortion functions is formally straightforward, but depends
on detailed knowledge of the specific cover source.

Similar to Section 3.1.3, we write y(0) for a cover x(0) with elements ordered by
decreasing suitability for embedding, i. e., ζi−1(y(0),θ) ≥ ζi(y(0),θ) for 1 ≤ i < n− 1.
Of course, the stego object is always transmitted with its symbols in original order.
In practice, stego objects x(1) often leak information about the values of ζ to the
steganalyst (as shown in Section 3.3), who can thereby learn about likely embedding
positions and thus recover the order of y(0). We say that an adaptivity criterion is
perfectly recoverable if ŷ(1) = y(1), i.e., if it has a perfectly recoverable order, as in
Definition 3.5. The framework is agnostic about quantifying this information leakage.
Deviations from perfect recovery are best specified in the context of specific models.

4.4.2 Set-Up and Knowledge

Let Alice be the steganographer and Eve be the steganalyst. Eve knows the embedding
function including its adaptivity criterion. Alice does not know the global cover
distribution P0, to prevent her from performing perfect steganography. Similarly, we
require that Eve has no access to both global distributions P0 and P1. This means that
both actors, unaware of the global distributions, must resort to local models.

The different entities in our game are: Nature, Alice, the Judge, and Eve. Nature is
the heterogeneous cover source that emits a cover x(0) with n symbols, according to
P0. Upon receiving the cover from Nature, Alice changes exactly k bits. She changes
position i of the reordered cover y(0) with probability āi. The Judge is fair and forwards
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to Eve with constant probability µ = 1/2 either the cover or the stego object. In the
jargon of game theory, the Judge is part of Nature. When Eve gets either the cover or

the stego object, she recovers its order and examines symbol ŷ
(āi)
i with probability ēi.

Then she decides about the type of object. The accuracy of her decision materializes in
the error rates. These rates quantify steganographic security in our framework and thus
the payoff for both players.

4.4.3 Strategies

We want to study both pure and mixed strategies. Alice’s strategy space to change
k bits out of n positions leads to

(
n
k

)
pure strategies. We simplify this by assigning

probabilities in mixed strategies to single positions and only look at the projection of
the probabilities onto the positions. Note that we can identify pure strategies in this
setting when we see mixed strategies with support k. We define the random binary
vector A, of which Alice’s choice a = (a0, . . . , an−1) is a realization, and the random
binary vector E, of which Eve’s choice e = (e0, . . . , en−1) is a realization. A value of

ai = 1 means that Alice changes y
(0)
i for embedding, and ai = 0 means she does not.

Similarly, Eve examines ŷ
(ā)
i only if ei = 1.

Let āi = Pr(Ai = 1) and ēi = Pr(Ei = 1) be Alice’s, respectively Eve’s, parameters
in mixed strategies. This allows us to characterize six canonical strategies.

Definition 4.17 (Canonical Embedding Strategies).
The steganographer’s embedding strategy is called . . .

a) random uniform, if ∀i : āi = k/n,

b) näıve adaptive, if āi = 1 for i ∈ {0, . . . , k − 1} and āi = 0 otherwise, and

c) optimal adaptive, if ā = ā∗, a unique equilibrium of the adaptive steganography
game.

Definition 4.18 (Canonical Detection Strategies).
The steganalyst’s detection strategy is called . . .

d) unweighted, if ∀i : ēi = k/n,

e) weighted, if ēi = 0 for i ∈ {0, . . . , n− k − 1} and ēi = 1 otherwise, and

f) optimal adaptive, if ē = ē∗, a unique equilibrium of the adaptive steganography
game.

Most practical embedding functions implement random uniform or näıve adaptive
embedding (see Table 3.1 on page 39), as they are easy to implement and follow the
first intuition of undetectable embedding.

Most steganalysis methods implement unweighted or weighted detection, again
because they are easy to implement and yield good results against random uniform
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embedding. Observe that weighted detection is blind to näıve adaptive embedding if
k < n

2 , as it puts all the weight on those positions the steganographer will never use.
Our goal in this thesis is to investigate optimal adaptive embedding and detection,

as equilibrium strategies in our game-theoretical framework. For a better comparison
with information-theoretically optimal strategies, we formally define these as well. For
this definition, we grant that both Alice and Eve more knowledge than before. The only
thing we fix is the, possibly imperfect, embedding function.

Definition 4.19 (Information-Theoretic Optimal Strategies).
A strategy is called information-theoretically optimal . . .

g) embedding, if ā = ā+ = argminā KLD(P0,P(ā)), and

h) detection, if the steganalyst performs a Likelihood Ratio test (LRT) between P0

and P1.

Until now, information-theoretic optimal embedding was the “holy grail” in steganog-
raphy. The appropriate information-theoretic measure, most commonly the KLD, is
assumed to produce the most similar probability distribution P1 in comparison to P0

and thus the supposedly most secure steganography.
The implementation of either the information-theoretic optimal strategies (strate-

gies g) and h)) requires knowledge of the cover distribution P0 for the steganographer,
and additionally knowledge of the stego distribution P1 for the steganalyst. If the
steganographer has full knowledge about P0 and additionally can influence the embed-
ding function however she likes, minā KLD(P0,P(ā)) will always be 0 and thus she could
perform perfect steganography [88]. Forcing her to use an imperfect embedding function,
she still would have to know the cover distribution to perform information-theoretically
optimal embedding, which is assumed to be unfeasible for real-world cover sources [7].

The LRT P0(y(0))

P1(y(0))

?
> γ for a given realization y(0) and an optimal threshold γ is,

following the Neyman-Pearson lemma [68], the information-theoretically optimal test
to distinguish between objects from distributions P0 and P1. Giving the steganalyst
knowledge of both these distributions lets her always detect at the information-theoretic
bound. Although this situation follows the strictest interpretation of Kerckhoffs’ principle
for steganography [20], it is as much infeasible for real-world cover sources as information-
theoretic embedding and will result in an optimization problem, not necessarily in a
game-theoretic setting. Still, we will use the information-theoretically optimal strategies
for comparison with the optimal adaptive strategies.

4.5 Summary

In this chapter, we argued why side-informed steganography should be studied with
game theory and other approaches, e.g, information-theoretical ones, do not capture all
the relevant properties of this situation. Then, we introduced the basic game-theoretical
notation reduced to the case of two-player zero-sum games and the required solution
concepts established in the game theory literature.
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4.5. Summary

After giving an brief overview of the, admittedly sparsely, existing game-theoretic
approaches in steganography, we formally defined the key components of our game-
theoretical framework. We formally defined

I heterogeneous cover sources,
I suitability and adaptivity criteria,
I the players involved and their respective knowledge,
I six canonical embedding and detection strategies, and, for benchmarking
I the information-theoretically optimal counterparts.

In the next chapter we instantiate the framework with an embedding operation
and different cover generation models. We derive locally optimal detection rules and
characterize the equilibrium strategies. Then, we formulate the insights that can be
drawn from our artificial models for real-world scenarios.
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Chapter 5

Game-Theoretic Insights

The purpose of this chapter is to instantiate the framework introduced in the previous
chapter to gain game-theoretic insights from a thorough analysis of these instantia-
tions. We equip the framework with concrete cover sources, embedding operations and
adaptivity criteria.

Overall, we decided to include two different set-ups, namely binary cover objects of
length n and cover objects of length 2 over an integer alphabet. All set-ups resemble
different important properties of real-wold cover sources but are simple enough to find
analytical solutions.

Both basic set-ups are further divided into overall five concrete models, as follows:

I Binary Alphabet, Arbitrary Positions (Sec. 5.1): cover objects are binary se-
quences of length n. The suitability of all positions is measured by an abstract
function f that returns the probability of the positions to take their more likely
value. The order of the positions is fully known to both Alice and Eve, thus, we
have perfectly recoverable order.

. Restricted Steganalyst (Sec. 5.1.1) : In this instantiation, Eve is restricted
to base her decision on the value of only one position. Although she knows
the order of the positions perfectly, this second kind of SSI is thereby almost
perfect in that Eve cannot recover its values for n− 1 positions.
. Powerful Steganalyst: In this instantiations, Eve is allowed to perform

a likelihood-ratio test for each sequence she observes. By this, we ensure
that the optimal strategy for Alice holds even against the most powerful
steganalyst. In this scenario, we distinguish between different kinds of
embedding that influence the shape of the stego distribution P1.

• Fixed Net Embedding Rate (Sec. 5.1.2): In this instantiation, Alice has
to embed exactly k bits. This implies that she chooses probabilities for
subsets of length k to embed in.
• Independent Embedding (Sec. 5.1.3): In this instantiation, Alice has to
embed independently with an expectation of k bit. By this, she chooses
embedding probabilities for single positions and the positions in the stego
distribution remain independent.

I Integer Alphabet, Two Positions (Sec. 5.2): cover objects have two positions from
an integer alphabet. The suitability of both positions is described by a probability
mass function (PMF) which states the probability of occurrence for all values. We
first assume the order in both instantiations to be fully recoverable, but relax this
condition to an arbitrary recovery rate in Section 5.2.3. Both Alice and Eve know
the cover generating PMF, the embedding function and the recovery rate.
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. Linear Probability Mass Function (Sec. 5.2.1): In this instantiation, the
PMF of the cover source is linearly increasing. With this PMF we have a
strict order of occurrence of the different values and can model homogeneous
and heterogeneous cover sources by adjusting the slope of the PMF.
. Constant Ratio Probability Mass Function (Sec. 5.2.2): In this instantiation,

the PMF of the cover source increases with a constant ratio. This PMF
converges asymptotically to a discretized Laplace distribution which is known
to model the marginal distribution of real transform-coded covers reasonably
well. Furthermore, we can easily calculate the KLD in this model.

We justify every instantiation and show the game-theoretically optimal strategies
and illustrate them numerically.

Finally, we leverage the insights from all instantiations combined to give directions
for more secure adaptive embedding for real-world cover sources (Section 5.3.1) and
highlight the limitations of our approach (Section 5.3.2). We find that the concept of
the equalizer strategies (cf. Definition 4.13) can be extended to an embedding strategy,
thus creating an equalizer embedding strategy.

5.1 Cover Models with Binary Embedding Positions

In this section, we assume the cover source emits binary objects of length n.

To formalize the role of side information, here the adaptivity criterion, let the em-
bedding domain of a cover be a random sequence of n symbols with varying uncertainty,
derived from some kind of side information. This side information is fully available to
Alice and partly available to Eve. For a better readability, we sort the cover and stego
sequences according to their suitability, as in Definition 4.15. We assume that both
players can exactly reconstruct the order of the symbols by decreasing suitability.

Formally, we consider a vector Y = (Y0, . . . , Yn−1) of independent random variables
drawn from a binary alphabet X = {0, 1}, with realizations y = (y0, . . . , yn−1). Note
that real covers may have a larger alphabet, but we settle on bits for a clearer notion
of suitability. Moreover, practical embedding functions often work on a vector of
binary residuals, such as the sequence of all least significant bits, as already shown in
Section 2.1.2. Similarly, popular detectors leverage the concept of residuals as prediction
errors from a local image model [31].

The monotonically increasing function f(i) : {0, . . . , n − 1} → [1
2 , 1] defines the

probability of Yi taking its most likely value. Without loss of generality, let f(i) =
Pr(Yi = 1) for the analysis.

To anchor the two ends of the suitability range, we require f(0) = 1
2 + ε and

f(n− 1) = 1− ε. We need a strictly positive ε to ensure that we have neither perfect
uncertainty nor perfect information for any of the positions. If ε was zero, i.e., perfect
uncertainty, Alice could embed at least one bit into y0 without risk of detection. Similarly,
if P (Yn−1 = 1) = 1, i.e., perfect information, embedding into yn−1 would allow detection

with certainty. For ε→ 0, we can also write f(i) : {0, . . . , n− 1} →
(

1
2 , 1
)

.
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This model still holds if there are some positions that are either perfectly uncertain
or perfectly informative. As long as there are less than the k bits that are perfectly
uncertain, we can think of our set-up in such a way that we reduce the sequences to
positions in the open interval and have to embed less into these sequences.

To simplify the exposition of our results, we introduce the notation

f̃(i) = f(i)− 1

2
. (5.1)

The function f(i) was introduced as the probability of seeing 1 at position i, and it
measures the suitability of position i. The function f̃(i) can be interpreted as measuring
the bias of position i, that is the deviation from perfect uncertainty.

We assume throughout the whole section that the positions in the cover distribution
P0 are independently distributed so that:

P0[Y = y] =

n−1∏
i=0

P0[Yi = yi] (5.2)

=
∏
yi=1

f(i) ·
∏
yi=0

(1− f(i)) (5.3)

=
n−1∏
i=0

(
1− f(i) + 2yif̃(i)

)
. (5.4)

We will examine three different specifications with this set-up. First, we model a
restricted steganalyst who knows the order of the symbols but can query its exact value
only for one position. Then, we remove this restriction of the steganalyst and allow her
to base her decision on all n positions, first with a fixed net embedding rate of k bit on
the steganographer’s side, and then with a situation where the steganographer performs
independent embedding of an expected length of k.

5.1.1 Restricted Steganalyst Model

The set-up of our first model is depicted in Figure 5.1. It differs from the standard
model (cf. Figure 2.1(b) on page 8) by allowing Eve to query the side information for
one position in the cover directly. Recall from Section 3.3 that practical steganalysis
can often estimate such side information from the observed object. Therefore, we will
elaborate below why we require this explicit interaction in this game.

We begin by formulating Eve’s local decision rule. Eve observes the probability f(i)
that bit i is 1. Since f(i) is greater than 1

2 , the object is more likely to be a cover if the
observed bit is 1, and more likely to be stego if the observed bit is 0. This constrains
Eve’s decision rule based on her observation at position i.

DR(i) =

{
cover if xi = 1

stego if xi = 0
. (5.5)
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Alice Bob

Eve

Figure 5.1: Block diagram of steganographic communication system with side informa-
tion and the possibility for Eve to query one position.

5.1.1.1 Strategies

Alice’s action space is to flip k bits of a given cover realization y(0) to embed a hidden
message. Alice chooses a k-sized subset of {0, . . . , n − 1} indicating the embedding
positions. Her mixed strategy action space is a probability distribution ā over all k-sized
subsets of {0, . . . , n− 1}.

Eve tries to decide whether an observed bit vector is a cover or a stego object. We
model equal priors over cover and stego objects by assuming that the Judge flips an
unbiased coin to decide if Eve sees Alice’s stego object or a cover drawn from the cover
source P0. Eve’s optimal decision rule would be a likelihood ratio test using the joint
distributions over all cover and stego objects, P0 and P1. In practice, however, P0 and
P1 are unknown and Eve can only make local decisions for individual symbols using
a local predictor. We stipulate that Eve can use her knowledge about the marginal
distributions of P0 and P1 to make optimal local decisions, although this is not always
the case for practical steganalysis. While this game might be too optimistic for Eve
in this respect, we contrast this by requiring that Eve only looks at one position. To
justify this constraint in this model, we assume two different kinds of SSI. The SSI that
is responsible for the order of the suitability is fully reconstructible, and thus perfectly
known to Eve. The second kind of SSI, which measures the deviation from perfect
uncertainty, i.e., the bias, is almost perfect and can be queried for only one position. For
this, we assume an interactive query mechanism (see Fig. 5.1). As a result, Eve’s mixed
strategy space is a probability distribution ē over all n positions for which she can query
the most likely value. For all other positions, she cannot tell if P (Yi = 0) > P (Yi = 1)
or P (Yi = 0) < P (Yi = 1) in covers. Therefore, she does not gain any information from
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5.1. Cover Models with Binary Embedding Positions

Table 5.1: Payoff for (Eve, Alice)

Reality

Eve’s decision cover stego

cover ( 1,−1) (−1, 1)

stego (−1, 1) ( 1,−1)

including the values at these positions in her decision.

It is obvious that Eve’s task is very hard in this set-up, because if k = 1, her
advantage over random guessing is not better than ε even if Alice deterministically
embeds in the first symbol, i.e., if she performs näıve adaptive embedding. If Alice
randomizes her strategy, then Eve’s advantage shrinks. If Alice embeds more bits, Eve’s
advantage increases because Alice has to use less suitable positions. Our objective is to
quantify by how much, and if there is an equilibrium.

The following objective function defines a zero-sum game: Alice tries to increase her
security by maximizing Eve’s decision error, whereas Eve tries to minimize it. We map
this to the payoff structure given in Table 5.7. Note that this payoff matrix induces
an objective function based on the equal error rate (EER), as defined in Section 2.2.3.
For practical applications, the payoff matrix might need adjustment to account for the
harm caused by false positive and false negatives, respectively.

Figure 5.2 on page 74 summarizes the game for k = 1 in an extensive form graph.
From left to right, first, nature draws a cover from P0, then Alice chooses her single
(because k = 1) embedding position, creating a stego object (black nodes). A coin flip,
invisible to Eve, decides whether she sees the stego or cover object. Then Eve chooses
the position she wants to compare with a prediction to make her decision, and outputs
the decision result (c for cover or s for stego). Shaded nodes indicate the cases where
Eve wins, i. e., she receives positive payoff.

Recall that Alice’s mixed strategy space is a probability distribution over size-k
subsets of {0, . . . , n− 1}. For a subset S of k positions, āS is the probability that Alice
embeds her bits in these k positions; and we have

∑
S āS = 1. Overloading notation, we

define the projection of Alice’s mixed strategy onto positions to be the total probability
that Alice embeds in position i. Formally, we define āi for i ∈ {0, . . . , n− 1} as

āi =
∑
{S:i∈S}

āS . (5.6)

If Alice embeds in just one position, then āi = ā({i}) and
∑n−1

i=0 āi = 1. If Alice embeds
k bits, then

n−1∑
i=0

āi = k. (5.7)
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Eve’s mixed strategy action space is a distribution over positions. Eve queries the most
likely value of position i with probability ēi and decides stego or cover based only on
her observation at position i.

5.1.1.2 Payoff

We quantify the payoff of Eve and Alice as a function of the bias f̃(i) at each position,
Eve’s mixed strategy ēi, and Alice’s mixed strategy āi.

Theorem 5.1 (Game Outcome). If f̃ is the bias function, ē is Eve’s mixed strategy,
and ā is Alice’s mixed strategy, then the total expected payoff for (Eve, Alice) is(

2

n−1∑
i=0

ēiāif̃(i),−2
n−1∑
i=0

ēiāif̃(i)

)
. (5.8)

Proof. First assume that Eve looks only at position i. Under this assumption, we may
determine the probability she wins the game by enumerating all possible ways the world
could be, and adding up the respective probabilities. We may think of the process as an
orderly sequence of events. First, the Judge chooses whether Eve sees a cover object or
a stego object by flipping an unbiased coin. The cover object is then instantiated with a
realization xi of position i, with P (Xi = 1) = f(i). If the Judge chose stego, then Alice
flips bit i with probability āi. Finally, Eve decides whether the object is cover or stego
by looking at her observed bit. She decides cover if the bit is 1 and stego if the bit is 0.
Table 5.2 records the events, probabilities, and decision outcomes for each possible case.

Table 5.2: Game outcome in different states of the world

Value of x
(0)
i

Reality Cover Observed Probability Eve’s decision Winner

c 1 1 1
2 · f(i) c Eve

c 0 0 1
2 · (1− f(i)) s Alice

s 1 0 1
2 · f(i) · āi s Eve

s 1 1 1
2 · f(i) · (1− āi) c Alice

s 0 1 1
2 · (1− f(i)) · āi c Alice

s 0 0 1
2 · (1− f(i)) · (1− āi) s Eve

Legend: c = cover, s = stego

72



5.1. Cover Models with Binary Embedding Positions

Given that Eve looks only at position i, her probability of winning is

1

2
(f(i) + f(i)āi + (1− f(i))(1− āi)) (5.9)

=
1

2
(f(i) + f(i)āi + 1− āi − f(i) + f(i)āi) (5.10)

=
1

2
(1 + 2f(i)āi − āi) (5.11)

=
1

2
+ āi

(
f(i)− 1

2

)
(5.12)

=
1

2
+ āif̃(i). (5.13)

Hence Eve’s total probability of winning is

n−1∑
i=0

ēi

(
1

2
+ āif̃(i)

)
(5.14)

=
1

2
+
n−1∑
i=0

ēiāif̃(i). (5.15)

And thus Eve’s total expected game payoff is

Pr (Eve wins) · 1 + Pr (Eve loses) · (−1) (5.16)

=

(
1

2
+
n−1∑
i=0

ēiāif̃(i)

)
· 1 +

(
1

2
−
n−1∑
i=0

ēiāif̃(i)

)
· (−1) (5.17)

= 2

n−1∑
i=0

ēiāif̃(i). (5.18)

With the zero-sum property, the total expected payoff for (Eve, Alice) is thus(
2
n−1∑
i=0

ēiāif̃(i),−2
n−1∑
i=0

ēiāif̃(i)

)
. (5.19)

5.1.1.3 Solving the Game

We now turn our attention to the game’s Nash equilibria.

5.1.1.3.1 Hiding One Bit

We start with analyzing the case of k = 1. This simplifies Alice’s mixed strategy
action space to a probability distribution over the set {0, . . . , n− 1}.
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Figure 5.2: Extensive form of the game for k = 1. The dashed line indicates Eve’s
information set. The dark gray nodes represent Eve’s query strategy and the light gray
nodes are the situations in which Eve wins the game.
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Lemma 5.1 (Exclusion of pure strategies). There is no equilibrium in which either
Alice or Eve assigns zero probability to any i.

Proof. Assume Alice assigns zero probability to position i. Then Eve gains no advantage
from assigning positive probability to position i. Hence, Eve’s best response would
assign zero probability to position i. But then Alice can completely eliminate Eve’s
advantage by assigning probability 1 to position i. So Alice is not in equilibrium.

Assume Eve assigns zero probability to position i, then Alice can completely eliminate
Eve’s advantage by assigning probability 1 to position i. But then Eve’s best response
would be assign probability 1 to position i. So Eve is not in equilibrium.

It is useful to quantify Eve’s advantage from looking at one position and observing
the most likely value. The following two definitions facilitate such quantification.

Definition 5.1 (Eve’s Local Advantage). Eve’s local Advantage at position i is āi · f̃(i).

Definition 5.2 (Eve’s Total advantage). Eve’s total advantage is the weighted sum

over all her local advantages at positions 0, . . . , n− 1, i. e.,
∑n−1

i=0

(
ēiāif̃(i)

)
.

Observe that from Theorem 5.1, Eve’s expected game payoff is exactly twice her total
advantage. Hence we may consider total advantage as a quantity of primary interest.
Eve’s primary objective is to increase her total advantage, while Alice’s primary objective
is to reduce it. Our next lemma characterizes the structure of possible equilibria in
relation to Eve’s local and total advantages.

Lemma 5.2 (Uniform local advantage condition). A necessary condition for any
equilibrium is that Eve’s local advantage is uniform over i = 0, . . . , n− 1.

Proof. Suppose Eve’s local advantage is not uniform. Then there is at least one
position i where her local advantage is not as high as it is at some other position j.
I. e., āi · f̃(i) < āj · f̃(j). Eve can then strictly increase her total advantage by setting
ēj = ēj + ēi and then setting ēi = 0. The resulting difference in her total advantage will
be ēi(āj · f̃(j)− āi · f̃(i)), which is positive. So the situation is not an equilibrium.

This condition can actually be fulfilled.

Lemma 5.3 (Existence of Alice’s unique strategy). In any equilibrium, Alice’s strategy
to embed one bit is

āi =
1

f̃(i) ·
∑n−1

j=0
1

f̃(j)

. (5.20)

Proof. We start with the condition from Lemma 5.2,

āi · f̃(i) = āj · f̃(j) ∀ i 6= j. (5.21)

This implies that there is a constant τ with āi · f̃(i) = τ for each i, and hence āi = τ
f̃(i)

for some τ .
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Now by the probability axiom,

n−1∑
i=0

āi = 1, (5.22)

so that
n∑
i=0

τ

f̃(i)
= 1, (5.23)

and hence

τ =
1∑n

i=0 f̃(i)
. (5.24)

It follows that

āi =
1

f̃(i) ·
∑n−1

j=0
1

f̃(j)

. (5.25)

I. e. the two constraints (5.21) and (5.22) completely determine āi.

Lemma 5.4 (Game outcome in equilibrium). The game’s outcome for (Eve, Alice) in
equilibrium is  2∑n−1

j=0
1

f̃(j)

,
−2∑n−1
j=0

1
f̃(j)

 . (5.26)

Proof. Alice’s strategy fixes Eve’s total advantage, which in turn fixes Eve’s payoff. As
Alice has only one strategy in equilibrium, we know Eve’s total advantage in equilibrium
must be

n−1∑
i=0

(
ēiāif̃(i)

)
=

n−1∑
i=0

ēi f̃(i)

f̃(i)
∑n−1

j=0
1

f̃(j)

 =
1∑n−1

j=0
1

f̃(j)

, (5.27)

hence Eve’s payoff in equilibrium is 2∑n−1
j=0

1
f̃(j)

and the result follows.

Turning now to Eve’s strategy, we may construe her objective as preserving her
total advantage.

Lemma 5.5 (Uniform weighted bias condition). A necessary condition for any equilib-
rium is that ēi · f̃(i) is uniform over i = 0, . . . , n− 1.

Proof. Suppose Alice is playing her unique strategy in equilibrium from Lemma 5.3
and that, for the sake of contradiction, there exist i 6= j with ēi · f̃(i) < ēj · f̃(j). Then
Alice can decrease Eve’s total advantage by adopting a new strategy ā

′
with, ā

′
j = 0;

ā
′
i = āi + āj ; and ā

′
r = ār for r 6= i, j.
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The difference in Eve’s total advantage is

n−1∑
r=0

(
ērā

′
rf̃(r)

)
−
n−1∑
r=0

(
ērārf̃(r)

)
(5.28)

= ēiā
′
if̃(i) + wj ā

′
j f̃(i)− (ēiāif̃(i) + ēj āj f̃(i)) (5.29)

= ēi(āi + āj)f̃(i)− (ēiāif̃(i) + ēj āj f̃(j)) (5.30)

= ēiāj f̃(i)− ēj āj f̃(i) (5.31)

= āj(ēif̃(i)− ēj f̃(j)) (5.32)

< 0.

So Alice would prefer to change strategies, in violation of the equilibrium condition.

Lemma 5.6 (Existence of Eve’s unique strategy). In any equilibrium for the one-bit
case, Eve’s probability ēi of looking at position i must be the same as Alice’s probability
of embedding at position i:

ēi =
1

f̃(i) ·
∑n−1

j=0
1

f̃(j)

. (5.33)

Proof. The formula follows from the uniform weighted bias condition: ēi · f̃(i) = ēj · f̃(j)
for all i 6= j; and the probability constraint on Eve’s mixed strategy:

∑n−1
j=0 ēi = 1. The

argument that these conditions uniquely determine a function is given in Lemma 5.3.

Theorem 5.2 (Unique Nash equilibrium). There is a unique Nash equilibrium for the
one-bit game where Alice embeds in position i with probability

āi =
1

f̃(i) ·
∑n−1

j=0
1

f̃(j)

, (5.34)

and Eve observes position i with probability

ēi =
1

f̃(i) ·
∑n−1

j=0
1

f̃(j)

, (5.35)

and the expected payoff outcome for (Eve, Alice) is

(
2∑n−1

j=0
1
f̃(j)

,− 2∑n−1
j=0

1
f̃(j)

)
.

Proof. See Lemmas 5.3, 5.4, and 5.6.

5.1.1.3.2 Hiding k Bits

Lemma 5.7 (Alice’s k-bit strategy). In any equilibrium, Alice’s mixed strategy distri-
bution satisfies

āi =
k

f̃(i) ·
∑n−1

j=0
1

f̃(j)

. (5.36)
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Proof. First, any equilibrium must satisfy the uniform advantage condition, as the logic
from Lemma 5.2 applies also in the k-bit case. Thus we have

āi · f̃(i) = āj · f̃(j) ∀ i 6= j. (5.37)

Since we also have

n−1∑
i=0

āi = k, (5.38)

the ai are completely determined as āi = k
f̃(i)·

∑n−1
j=0

1
f̃(j)

.

Remark 5.1. Note that in the k-bit case, depending on f , single values for āi can
be larger than 1 when calculated with Equation (5.36).14 These are positions that Eve
would assign weight 0, as she would gain more from other positions j 6= i. We can
think of these positions as “gifts” for Alice, as Eve’s strategy to look at them is strictly
dominated by a strategy that assigns higher probability to other positions. The logic that
there exists no pure strategy equilibrium from Lemma 5.1 still applies.

Lemma 5.8 (Eve’s k-bit strategy). In any equilibrium, Eve’s mixed strategy distribution
is

ēi =
1

f̃(i) ·
∑n−1

j=0
1

f̃(j)

. (5.39)

Proof. Eve’s strategy must satisfy the uniform weighted bias condition: ēi · f̃(i) is
uniform in i; as the logic from Lemma 5.5 still applies in the k-bit case. Since we also
have

∑n−1
i=0 ēi = 1, these two conditions imply ēi = 1

f̃(i)·
∑n−1
j=0

1
f̃(j)

.

Theorem 5.3 (k-bit Nash equilibria). There is a Nash equilibrium for the k-bit game
where Alice’s strategy satisfies

āi =
k

f̃(i) ·
∑n−1

j=0
1

f̃(j)

, (5.40)

and Eve observes position i with probability

ēi =
1

f̃(i) ·
∑n−1

j=0
1

f̃(j)

, (5.41)

and the expected payoff outcome for (Eve, Alice) is

(
2k∑n−1

j=0
1
f̃(j)

,− 2k∑n−1
j=0

1
f̃(j)

)
.

The equilibrium is unique up to the projection of Alice’s mixed strategy.

14We would like to thank Aron Laszka from Budapest University of Technology and Economics,
Hungary, for pointing out this fact to us in private conversation and a working paper of his.
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Proof. See Lemmas 5.7 and 5.8 for the strategies. For the payoffs, note that Eve’s
advantage in equilibrium is

n−1∑
i=0

(
ēiāif̃(i)

)
=

n−1∑
i=0

ēi kf̃(i)

f̃(i)
∑n−1

j=0
1

f̃(j)

 =
k∑n−1

j=0
1

f̃(j)

, (5.42)

so that Eve’s payoff in equilibrium is 2k∑n−1
j=0

1
f̃(j)

.

The following two corollaries are easily observable.

Corollary 5.1. Eve’s mixed strategy in equilibrium is independent of the number of
embedded bits.

Corollary 5.2. Eve’s expected payoff in equilibrium increases linearly with the number
of embedded bits.

Corollary 5.1 stipulates that the steganalyst’s equilibrium strategy does not depend
on the number of embedded bits. This is a handy property for the construction
of detectors, where no knowledge of the hidden message length must be assumed.
Corollary 5.2 states that if the detector follows the equilibrium strategy, its success rate
increases linearly with the number of embedded bits. This deviates from the square
root law of steganographic capacity, which predicts asymptotically quadratic advantage
even for homogeneous covers [57]. The reason for this difference is that our detector is
constrained to a locally optimal decision rule.
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Figure 5.3: Equilibrium strategies for ε� 0 and a linear function f

5.1.1.4 Numerical Illustration

Figures 5.3 and 5.4 display numerical examples of the equilibrium in this instantiation
of our game-theoretical framework with parameters k = 1 and n = 100.
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Figure 5.4: Equilibrium strategies for ε ≈ 0 and a non-linear function f

The red line shows the suitability function f(i); note the right-hand scale. From
this it follows that on the left side there are the least predictable, i.e., most uncertain,
positions and on the right side the positions are almost perfectly informative. The
gray bars display Alice’s and Eve’s identical optimal strategies (left-hand scale). The
higher a bar, the higher is the probability for Alice and Eve to choose this position for
embedding and querying, respectively. Note the different scales of the left axis in both
figures.

In Figure 5.3, the parameter ε is set relatively high and the suitability function f
is linear. We see that the equilibrium strategies reflect the decrease in suitability by
decreasing monotonically. Figure 5.4 is more realistic. It shows a small ε and a non-linear
suitability function f with the majority of positions being relatively unsuitable, just
like large homogeneous areas in natural images. It follows the intuition that the value
of ā0 is even higher than in Figures 5.3, as this position is more suitable and the other
positions are mainly less suitable.

Both figures show that the value of ā0 is at its maximum. This illustrates the
claimed advantage of content-adaptive embedding over random uniform embedding if
the cover source produces heterogeneous covers. Nonetheless, the fact that āi > 0 for all
i suggests that the steganographer should potentially use every available position and
not only the least predictable ones, as it would be the case in näıve adaptive embedding.

5.1.2 Powerful Steganalyst and Fixed Net Embedding

In this instantiation of the game-theoretic framework we loosen the constraints on
Eve and allow her to obtain information from the whole object she examines. By
this, her strategy becomes a function of whole sequences y instead of probabilities to
examine single positions within the sequences. We even allow her to calculate possible
stego distribution functions P1 and then to perform a likelihood ratio test (LRT), the
information-theoretically optimal strategy.

This instantiation originates from joint work with Aron Laszka, Benjamin Johnson,
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and Jens Grossklags. To maintain consistency with the original publication, we use a
slightly different notation in this section. To describe this game-theoretic model, we
explicitly specify the set of states that the world can be in, the set of choices available
to the players, and the set of consequences as a result of these choices. Because the
game is a randomized extension of a deterministic game, we first present the structure
of the deterministic game, and follow up afterwards with details of the randomization.

The event space Ω is the set {0, 1}n × {c, s}. An event consists of two parts: a
binary sequence y ∈ {0, 1}n and a steganographic state z ∈ {c, s}, where c stands for
cover and s for stego. The binary sequence represents the object Eve observes on the
communication channel. The steganographic state tells whether or not a message is
embedded in the sequence. In the randomized game, neither of these two states is
known by the players until after they make their choices. To define payoffs for the finite
game, we simply assume that some event has been chosen by Nature (including the coin
flip of the Judge) so that the world is in some fixed state (y, z). Alice embeds a secret
message of length k into the binary sequence y; Nature determines whether the original
cover or the modified stego object appears on the communication channel; Eve observes
the sequence appearing on the channel and makes a decision as to whether or not it
contains a message.

5.1.2.1 Strategies

Alice’s (pure strategy) choice is to select a size-k subset I of {0, . . . , n − 1}, which
represents the positions into which she embeds her encoded message, by flipping the
value of the given sequence at each of the positions in I. By this, Alice would perform
random uniform embedding if she chooses every I with the same probability and näıve
adaptive embedding if she always chooses I = {0, . . . k − 1}.

Eve’s (pure strategy) choice is to select a subset Es of {0, 1}n, which represents the
set of sequences that she classifies as stego objects, i.e., sequences containing a secret
message. Objects in Ec := {0, 1}n \ Es are classified as cover objects, i.e., sequences
not containing a secret message. Eve’s strategy space in this model differs from the
canonical detection strategies (cf. Definition 4.18) in that she has to decide beforehand
which sequences are cover and which are stego objects. As we assume Eve to be able
to perform a LR test between sequences, i.e., she is a powerful steganalyst, this is the
information-theoretic optimal strategy, as defined in Definition 4.19.

5.1.2.1.1 Consequences

Suppose that Alice chooses a pure strategy I ⊆ {0, . . . , n− 1}, Eve chooses a pure
strategy Es ⊆ {0, 1}n, and Nature chooses a binary sequence y and a steganographic
state z. Then, Eve wins 1 if she classifies y correctly, i.e., either she says stego and
Nature chose stego, or she says cover and Nature chose cover, and she loses 1 if her
classification is wrong. The game is zero-sum so that Alice’s payoff is the negative of
Eve’s payoff. Table 5.7 (on p. 131 ) formalizes the possible outcomes as a zero-sum
payoff matrix.
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5.1.2.1.2 Randomization

In the fully randomized game, we have distributions on binary sequences and
steganographic states. We also have randomization in the players’ strategies. To
describe the nature of the randomness, we start by defining two random variables on
our event space Ω. Let Y : Ω→ {0, 1}n be the random variable which takes an event
to its binary sequence and let S : Ω → {c, s} be the random variable which takes an
event to its steganographic state. We proceed through the rest of this section by first
describing the structure of the distribution on Ω; next describing the two players’ mixed
strategies; and finally, by giving the players’ payoffs as a consequence of their mixed
strategies.

5.1.2.1.3 Steganographic States

Our results describing equilibria for this model carry through with arbitrary prior
probabilities; so we replace the equal prior assumption with the notations ps and pc in
several subsequent formulas. Note however, that with highly unequal priors, the game
may trivialize because the prior probabilities can dominate other incentives. For this
reason, we do require equal priors for some structural theorems; and we also use equal
priors in our numerical illustrations. The event S = s happens when Nature chooses
the steganographic state to be stego; and this event occurs with probability ps. We also
define PrΩ[S = c] := pc = 1 − ps. From Eve’s perspective, ps is the prior probability
that she observes a stego sequence on the communication channel.

5.1.2.1.4 Binary Sequences

The distribution on binary sequences depends on the value of the steganographic
state. If S = c, then the steganographic state is cover, and Y is distributed according
to the cover distribution P0; if S = s, then the steganographic state is stego, and Y is
distributed according to a stego distribution P1.

With this notation in hand, we may define, for any event (Y = y, S = z):

Pr
Ω

[(y, z)] = Pr
Ω

[S = z] · Pr
Ω

[Y = y|S = z]

=

{
pc · P0[Y = y] if z = c

ps · P1[Y = y] if z = s
. (5.43)

We will define the distribution P1 after describing the players’ mixed strategies.

5.1.2.1.5 Players’ Mixed Strategies

In a mixed strategy, Alice can probabilistically embed into any given subset of
positions, by choosing a probability distribution over size-k subsets of {0, . . . , n− 1}. To
describe a mixed strategy, for each I ⊆ {0, . . . , n− 1}, we let āI denote the probability
that Alice embeds into each of the positions in I.
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5.1. Cover Models with Binary Embedding Positions

A mixed strategy for Eve is a probability distribution over subsets of {0, 1}n. Suppose
that Eve’s mixed strategy assigns probability eT to each subset T ⊆ {0, 1}n. Overloading
notation slightly, we define e : {0, 1}n → [0, 1] via

e(y) =
∑

T⊆{0,1}n:y∈T

eT . (5.44)

Each e(y) gives the total probability for the binary sequence y that Eve classifies the
sequence as stego object. Note that this “projected” representation of Eve’s mixed
strategy given in Equation (5.44) requires specifying 2n real numbers, whereas the
canonical representation of her mixed strategy using the notation eT would require
specifying 22n real numbers. For this reason, we prefer to use the projection repre-
sentation. Fortunately, the projected representation contains enough information to
determine both players’ payoffs; and the mapping from the canonical representation
to the projected representation is surjective15 so that we may express results using the
simpler representation without loss of generality.

5.1.2.2 Embedding Impact

The stego distribution P1 depends on Alice’s embedding strategy. Let I ⊆ {0, . . . , n−1},
and for each y ∈ {0, 1}n let yI denote the binary sequence obtained from y by flipping
the bits at all the positions in I. The stego distribution is obtained from the cover
distribution by adjusting the likelihood that each y occurs, assuming that for each I,
with probability āI Alice flips the bits of y in all the positions in I.

More formally, suppose that Alice embeds into each subset I ⊆ {0, . . . , n− 1} with
probability āI . We then have

P1[Y = y] =
∑
I

āIP0[Y = yI ]

=
∑
I

āI ·
∏
i/∈I

P0[Yi = yi] ·
∏
i∈I

P0[Yi = 1− yi]

=
∑
I

āI ·
∏
i/∈I

(
1− f(i) + 2yi ˜f(i)

)
·
∏
i∈I

(
f(i)− 2yi ˜f(i)

)
. (5.45)

5.1.2.3 Payoff

In the full game, the expected payoff for Eve can be written as:

u(Eve) = Pr
Ω

[Y ∈ Es and S = s] (true positive)

+ Pr
Ω

[Y ∈ Ec and S = c] (true negative)

− Pr
Ω

[Y ∈ Es and S = c] (false positive)

− Pr
Ω

[Y ∈ Ec and S = s] (false negative) (5.46)

15The proof of surjectivity follows directly from using induction on n.
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5. Game-Theoretic Insights

and this can be further computed as:

u(Eve) = psP1[Y ∈ Es] + pcP0[Y ∈ Ec]− pcP0[Y ∈ Es]− psP1[Y ∈ Ec]

=
∑

y∈{0,1}n

[
e(y)psP

(ā)
1 [Y = y]

+ (1− e(y))pcP0[Y = y]

− (1− e(y))psP
(ā)
1 [Y = y]

− e(y)pcP0[Y = y]
]

=
∑

y∈{0,1}n
(2e(y)− 1)

· (psP(ā)
1 [Y = y]− pcP0[Y = y]). (5.47)

The terms P0[Y = y] and P
(ā)
1 [Y = y] are defined in Equations (5.4) (p. 69) and (5.45),

respectively. Note that we write P1 = P
(ā)
1 to clarify that the distribution P1 depends

on Alice’s mixed strategy. In summary, Eve’s payoff is the probability that her classifier
is correct minus the probability that it is incorrect; and the game is zero-sum so that
Alice’s payoff is exactly the negative of Eve’s payoff.

5.1.2.4 Solving the Game

In this section, we present our analytical results. We begin by describing best response
strategies for each player. Next, we describe in formal notation the minmax strategies
for each player. Finally, we present several theorems which give structural constraints
on the game’s Nash equilibria.

To compute best responses for Alice and Eve, we assume that the other player is
playing a fixed strategy, and determine the strategy for Alice (or Eve) which minimizes
(or maximizes) the payoff in Equation (5.47), as appropriate.

5.1.2.4.1 Alice’s Best Response

Given a fixed strategy e for Eve, Alice’s goal is to minimize the payoff in Equa-
tion (5.47). However, since she has no control over the cover distribution P0, this goal
can be simplified to that of minimizing∑

y∈{0,1}n
(2e(y)− 1) · psP(ā)

1 [Y = y]

=ps
∑

y∈{0,1}n
(2e(y)− 1)) ·

∑
I⊆{0,...,n−1}

āIP0[Y = yI ]

=ps
∑

I⊆{0,...,n−1}

āI
∑

y∈{0,1}n
(2e(y)− 1)) · P0[Y = yI ] .
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5.1. Cover Models with Binary Embedding Positions

This formula is linear in Alice’s choice variables, so she can minimize its value by putting
all her probability on the sum’s least element. A best response for Alice is thus to play
a pure strategy I that minimizes∑

y∈{0,1}n
(2e(y)− 1)) · P0[Y = yI ]. (5.48)

Of course, several different I might simultaneously minimize this sum. In this case,
Alice’s best response strategy space may also include a mixed strategy that distributes
her embedding probabilities randomly among such I.

5.1.2.4.2 Eve’s Best Response

Given a fixed strategy for Alice, Eve’s goal is to maximize her payoff as given in
Equation (5.47). So, for each y, she should choose e(y) to maximize the term of the

sum corresponding to y. Specifically, if psP
(ā)
1 [Y = y] − pcP0[Y = y] > 0, then the

best choice is e(y) = 1; and if the strict inequality is reversed, then the best choice is
e(y) = 0. If the inequality is an equality, then Eve may choose any value for e(y) ∈ [0, 1]
and still be playing a best response.

Formally, her optimal decision rule is the following LRT:

e(y) =


1 if PrΩ[S=s|Y=y]

PrΩ[S=c|Y=y] > 1 ,

0 if PrΩ[S=s|Y=y]
PrΩ[S=c|Y=y] < 1 ,

any p ∈ [0, 1] if PrΩ[S=s|Y=y]
PrΩ[S=c|Y=y] = 1 .

(5.49)

For a fixed sequence y, the condition for classifying y as stego can be rewritten as:

1 <
PrΩ[S = s|Y = y]

PrΩ[S = c|Y = y]

=
PrΩ[Y = y]

PrΩ[Y = y]
· PrΩ[S = s|Y = y]

PrΩ[S = c|Y = y]

=
PrΩ[S = s]

PrΩ[S = c]
· PrΩ[Y = y|S = s]

PrΩ[Y = y|S = c]

=
ps
pc

P1[Y = y]

P0[Y = y]

=
ps
pc

∑
I āI ·

∏
i 6∈I

(
1− f(i) + 2yif̃(i)

)
·
∏
i∈I

(
f(i)− 2yif̃(i)

)
∏n−1
i=0

(
1− f(i) + 2yif̃(i)

)
=
ps
pc

∑
I

āI
∏
i∈I

(
f(i)− 2yif̃(i)

1− f(i) + 2yif̃(i)

)

=
ps
pc

∑
I

āI
∏
i∈I

(
f(i)

1− f(i)
− yi

2f̃(i)

f(i)(1− f(i))

)
. (5.50)
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Note that Eve’s decision rule is written as a multilinear polynomial inequality of degree
at most k in the binary sequence y, and that the number of terms in the formula is

(
n
k

)
.

When k is a constant relative to n (as it typically is in practical applications), then(
n
k

)
is polynomial in n, and Eve’s optimal decision rule can be applied for each binary

sequence in time that is polynomial in the length of the sequence.

5.1.2.4.3 Maxmin and Minmax Strategies

As Eve wants to maximize her payoff and Alice wants to minimize, we describe her
maxmin and minmax strategy, respectively.

Eve’s maxmin strategy is given by

argmax
e

(
min
I

(∑
y∈{0,1}n

(2e(y)− 1)(psP0[Y = yI ]− pcP0[Y = y])
))

; (5.51)

while Alice’s minmax strategy is given by

argmin
ā

(
max
Es

(∑
y∈Es

(psP
(ā)
1 [Y = y]− pcP0[Y = y])

+
∑
y∈Ec

(pcP0[Y = y]− psP(ā)
1 [Y = y])

))
. (5.52)

Each maxmin or minmax strategy can be determined (recursively) as the solution
to a linear program involving the payoff matrix for Alice’s and Eve’s pure strategies.
Unfortunately, Eve’s pure strategy space has size 22n so it is computationally intractable
to find the maxmin strategies using this method even for n = 5.

5.1.2.4.4 Nash Equilibria

In this section, we present structural constraints for Nash equilibria. We begin with
a lemma showing that Eve’s classifier in a specific type of equilibrium must respect
the canonical partial ordering on binary sequences. We conclude the section with a
conjecture about Alice’s equilibrium strategy.

Lemma 5.9. Define a partial ordering on {0, 1}n by y < z iff yi ≤ zi for i = 0, . . . , n−1
and yi < zi for at least one i. Then whenever Alice’s embedding strategy satisfies the

constraint ps
pc

∑
I āI

∏
i∈I

(
f(i)

1−f(i) − yi
2f̃(i)

f(i)(1−f(i))

)
6= 1 for the sequence y, the following

condition holds:

I If Eve classifies y as stego and u < y, then Eve classifies u as stego too.
I If Eve classifies y as cover and y < z, then Eve classifies z as cover too.

Proof. Suppose Eve classifies y as stego. Then from the conditions on Eve’s best response

(Equations (5.49) and (5.50)), we have that ps
pc

∑
I āI

∏
i∈I

(
f(i)

1−f(i) − yi
2f̃(i)

f(i)(1−f(i))

)
≥ 1;
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5.1. Cover Models with Binary Embedding Positions

and by the hypothesis of the lemma, the inequality is strict. Suppose u < y. Then

the value of ps
pc

∑
I āI

∏
i∈I

(
f(i)

1−f(i) − zi
2f̃(i)

f(i)(1−f(i))

)
is at least the value of the same

expression with y replacing u. So, this value is also greater than 1, and Eve also
classifies u as stego. The proof of the reverse direction is analogous.

This lemma implies that in any Nash equilibrium, the set of all binary sequences can
be divided into three disjoint sets, low sequences which Eve’s likelihood test proscribes
a clear value of stego, high sequences which Eve’s test proscribes as clearly cover, and a
small set of boundary sequences on which Eve’s behavior is not obviously constrained.
Furthermore, changing 0s to 1s in a clearly-cover sequence keeps it cover, and changing
1s to 0s in a clearly-stego sequence keeps it stego.

Next, we state a conjecture about Alice’s strategy in an equilibrium.

Conjecture 5.1. Assume equal priors, so that ps = pc = 1
2 and a reasonable f(i). In

a Nash equilibrium, Alice uses every i ∈ {0, . . . , n− 1} with non-zero probability.

For homogeneous f(i) there are simple counter-examples to the conjecture; however,
it is important to note that for homogeneous f(i) the definition of adaptive embedding
itself is not sensible.

Here, we frame a proof outline for this conjecture. Assume a Nash equilibrium with
ā and ē as the strategies of Alice and Eve, respectively. To obtain a contradiction,
suppose that i ∈ {0, . . . , n − 1} is such that āI = 0 for every I containing i. If y is
any sequence that Eve’s optimal decision rule classifies as either clearly cover or clearly
stego, then Eve’s behavior does not depend on the value of y at position i. However,
if there are “indifferent” sequences z that Eve’s likelihood test proscribes as cover or
stego with equal probability, we cannot rule out that Eve may take the position i into
account for z. This remains true even though her likelihood test does not proscribe an
outcome based on i, and even though she is playing a best response to Alice who is not
using position i. Our avenue to proceed is to demonstrate a violation of the equilibrium
condition by showing how Alice can increase her payoff by using position i. Toward this
end, we can show that, by shifting her embedding probability to sets containing i from
sets not containing i, Alice will increase Eve’s misclassification probability for sequences
that are not on her “indifference boundary”. However, it is possible that Eve gains
enough advantage from conditioning on i when the special boundary sequences occur
to offset this disadvantage. It seems to us that this possibility hinges on structural
properties of the sequence f(i).

In the following section, we explicitly compute all equilibria in the case of length-two
sequences and a message length of k = 1. Note that in this case, Conjecture 5.1 holds.

5.1.2.5 Solution and Numerical Illustration for n = 2 and k = 1

In this section, we instantiate our model with the special case of flipping a single bit
(k = 1) in sequences of length two (n = 2). In this setting, Alice’s pure strategy space is
{{0}, {1}}; and since ā{1} = 1− ā{0}, her mixed strategy space can be represented by a
single value ā0 = ā{0} ∈ [0, 1]. Eve’s pure strategy space is represented by the set of
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all [0, 1]-valued functions on {00, 01, 10, 11}. Throughout this section we assume equal
priors, i.e., pc = ps = 1

2 .

5.1.2.5.1 Alice’s Minmax Strategy

To compute Alice’s minmax strategy, we first divide Alice’s strategy space into three
regions based on Eve’s best response:

Lemma 5.10. The following table gives Eve’s best response for each sequence y as a
function of ā0.

Alice’s strategy Eve’s best response
y =

00 01 10 11

ā0 < τ1 s c s c
τ1 < ā0 < τ2 s s s c

τ2 < ā0 s s c c

where τ1 = (1−f(0))2f̃(1)
f(0)+f(1)−1 and τ2 = f(0)2f̃(1)

f(0)+f(1)−1 .

Proof. We prove Eve’s optimal decision for the four realizations separately.

00: Eve always classifies 00 as stego.

P0 [Y = 00] =

(1− f(0))(1− f(1)) < ā0f(0)(1− f(1)) + (1− ā0)(1− f(0))f(1)

= P1(ā0) [Y = 00] ,

since (1−f(0))(1−f(1)) < f(0)(1−f(1)) and (1−f(0))(1−f(1)) < (1−f(0))f(1).

01: Eve classifies 01 as cover when ā0 <
(1−f(0))2f̃(1)
f(0)+f(1)−1 := τ1.

P0 [Y = 01] =

(1− f(0))f(1)
!
> ā0f(0)f(1) + (1− ā0)(1− f(0))(1− f(1))

= P1(ā0) [Y = 01] ⇔
(1− f(0))(f(1)− 1 + f(1)) > ā0(f(0)f(1)− 1 + f(0) + f(1)− f(0)f(1)) ⇔

(1− f(0))2f̃(1)

f(0) + f(1)− 1
> ā0
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10: Eve classifies 10 as cover when ā0 >
f(0)2f̃(1)

f(0)+f(1)−1 := τ2.

P0 [Y = 10] =

f(0)(1− f(1))
!
> ā0(1− f(0))(1− f(1)) + (1− ā0)f(0)f(1)

= P1(ā0) [Y = 10] ⇔
f(0)(1− f(1))− f(0)f(1) > ā0(1− f(0)− f(1) + f(0)f(1)− f(0)f(1)) ⇔

−f(0)2f̃(1)

1− f(0)− f(1)
< ā0

11: Eve always classifies 11 as cover.

P0 [Y = 00] =

f(0)f(1) > ā0(1− f(0))f(1) + (1− ā0)f(0)(1− f(1))

= P1(ā0) [Y = 00] ,

since f(0)f(1) > (1− f(0))f(1) and f(0)f(1) > f(0)(1− f(1)).

Finally, τ1 < τ2 always holds, since (1− f(0)) < f(0).

Theorem 5.4. The strategy (τ2, 1− τ2) is a minmax strategy for Alice.

Proof. First, for each region, we compute the derivative of Alice’s payoff as a function
of ā0 given that Eve always uses her best response. Then, we have that Alice’s payoff is

I strictly increasing when ā0 < τ1,
I strictly decreasing when ā0 > τ2,
I and, when τ1 ≤ ā0 ≤ τ2, it is strictly increasing if f(0) 6= f(1), and it is constant

if f(0) = f(1).

Thus, we have that ā0 = τ2 always attains the maximum.

Note that embedding uniformly into both positions (ā0 = 1
2) is optimal only if the

biases are uniform (f̃(0) = f̃(1)); and embedding only in the first position would be
optimal only if the bias of the first position were zero (f̃(0) = 0) or if the bias of the
second position were one half (f̃(1) = 1/2).

Figure 5.5 depicts Eve’s error rates and the resulting overall misclassification rate as
a function of Alice’s strategy (ā0, 1− ā0). Figure 5.5(a) shows a homogeneous f , while
Figure 5.5(b) shows a heterogeneous f . It can be seen that neither the false positive
rate (dashed line) nor the false negative rate (dotted line) is continuous and that the
discontinuities occur at the points τ1 and τ2, the points where Eve changes her optimal
decision rule. Nonetheless, the overall misclassification rate (solid line) is continuous,
which leads to the conclusion that this rate leverages out the discontinuities and thus is
a good measure of the overall accuracy of Eve’s detector.
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Figure 5.5: Eve’s false positive rate (dashed line), false negative rate (dotted line) and
her overall misclassification rate (solid line) as a function of a0, assuming that Eve plays
a best response to Alice.

5.1.2.5.2 Eve’s Maxmin Strategy

Theorem 5.5. Eve’s maxmin strategy emaxmin is emaxmin(00) = emaxmin(01) = 1,
emaxmin(11) = 0, and

emaxmin(10) = p =
2f̃(0)

f(0) + f(1)− 1
. (5.53)

Proof. Since the game is zero sum, Eve’s strategy is a maxmin strategy if Alice’s minmax
strategy is a best response to it [87]. Therefore, it suffices to show that Alice has no
incentives for deviating from her own minmax strategy when Eve uses emaxmin. Alice’s
best response to emaxmin is

argmax
ā0∈[0,1]

{
− P1(ā0) [Y = 00]− P1(ā0) [Y = 01]

+ (1− 2p)P1(ā0) [Y = 10] + P1(ā0) [Y = 11]

}
= argmax

ā0∈[0,1]

{
− ā0f(0)(1− f(1))− (1− ā0)(1− f(0))f(1)

− ā0f(0)f(1)− (1− ā0)(1− f(0))(1− f(1))

+ (1− 2p)
[
ā0(1− f(0))(1− f(1)) + (1− ā0)f(0)f(1)

]
+ ā0(1− f(0))f(1) + (1− ā0)f(0)(1− f(1))

}
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= argmax
ā0∈[0,1]

{
ā0 [2− 4f(0)− 2p (1− f(0)− f(1))] + const(f, p)

}
.

If p = 2f̃(0)
f(0)+f(1)−1 , then the value of the above optimization problem does not depend on

ā0. Consequently, Alice has no incentives for deviating from her minmax strategy.

5.1.3 Powerful Steganalyst and Independent Embedding

This instantiation originates from joint work with Aron Laszka, Benjamin Johnson, and
Jens Grossklags. To maintain consistency with the original publication, we use a similar
notation as in the previous section.

In this section we replace the embedding rate of exactly k bit for Alice by a message
of expected length of k and thus independent embedding. We derive analytical results
on the minmax strategies and the existence of pure-strategy Nash equilibria.

Let S denote the random variable taking values in {c, s} that represents whether
the sequence was drawn from the cover or stego distribution, respectively.

5.1.3.1 Strategies

Alice wants to hide messages of expected length k into a cover object of length-n; so she
may choose any set of n probabilities that sum to k. Each āi represents the probability
that Alice changes the value of the sequence at position i.

As above, Eve wants to optimally classify sequences as either stego cover object by
performing a LRT; so she may choose a probability for each length-n binary sequence.
Each e(y) represents the probability that Eve classifies the sequence y as stego.

5.1.3.2 Embedding Impact

In the stego distribution, Alice flips the value of the sequence in each position i with
probability āi, so that Yi = 1 with probability f(i)(1− āi) + (1− f(i))āi. Since positions
in the stego distribution are also independent,

P1 = Pr[Y = y|S = s] =
∏
i:yi=1

(f(i)− 2āif̃(i)) ·
∏
i:yi=0

(1− f(i) + 2āif̃(i)). (5.54)

5.1.3.3 Payoff

To formalize the game payoff, we assume equal priors over cover and stego objects.
The game payoff is then determined by the probability over all binary sequences,
embedding probabilities, and classifier probabilities, that Eve correctly determines from
which distribution the sequence was drawn. Alice’s payoff is the probability that Eve’s
classifier is incorrect, so that the sum of the two players’ payoffs is 1.16

16Note that this is not a zero-sum game, but a constant-sum game. In game theory the strategies are
insensitive to any positive affine transformation of the payoffs [64], so all the definitions for zero-sum
games also hold for constant-sum games.
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5.1.3.4 Solving the Game

5.1.3.4.1 Eve’s Best Response

Given a fixed embedding strategy for Alice, Eve must classify each sequence as cover
or stego object. Since she knows both of these distributions, she can perform a likelihood
ratio test to determine her optimal decision [27]. This test gives a deterministic decision
rule whenever the two likelihoods are unequal. When they are equal for a given sequence
y, Eve’s decision at that y does not affect the probability that her classifier is correct;
so in this case, any randomized function over cover and stego objects is a best response.

Theorem 5.6. A best response strategy of Eve is given by the decision rule

DR(y) =


c if

∑
iwiyi > Υ

s if
∑

iwiyi < Υ

c or s if
∑

iwiyi = Υ

(5.55)

where for each i,

wi = log
f(i)(1− f(i) + 2āif̃(i))

(f(i)− 2āif̃(i))(1− f(i))
and (5.56)

Υ =
∑
i

log
1− f(i) + 2āif̃(i)

1− f(i)
. (5.57)

Proof. Given a sequence y, Eve’s best response selects the most likely distribution from
which y was drawn. Her optimal choice can thus be expressed as

DR(y) =


c if Pr[S=c|Y=y]

Pr[S=s|Y=y] > 1

s if Pr[S=c|Y=y]
Pr[S=s|Y=y] < 1

c or s if Pr[S=c|Y=y]
Pr[S=s|Y=y] = 1.

The condition for cover can be expressed using f and ā as follows:

1 <
Pr[S = c|Y = y]

Pr[S = s|Y = y]

=
Pr[S = c] Pr[Y = y|S = c]

Pr[S = s] Pr[Y = y|S = s]

=
1
2 ·
∏
i Pr[Yi = yi|S = c]

1
2 ·
∏
i Pr[Yi = yi|S = s]

=
∏
i:yi=1

f(i)

f(i)− 2āif̃(i)
·
∏
i:yi=0

1− f(i)

1− f(i) + 2āif̃(i)

0 <
∑
i:yi=1

log
f(i)

f(i)− 2āif̃(i)
+
∑
i:yi=0

log
1− f(i)

1− f(i) + 2āif̃(i)
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=
∑
i

(
yi log

f(i)

f(i)− 2āif̃(i)
+ (1− yi) log

1− f(i)

1− f(i) + 2āif̃(i)

)

=
∑
i

yi log
f(i)(1− f(i) + 2āif̃(i))

(f(i)− 2āif̃(i))(1− f(i))
+
∑
i

log
1− f(i)

1− f(i) + 2āif̃(i)

⇔
∑
i

yi log
f(i)(1− f(i) + 2āif̃(i))

(f(i)− 2āif̃(i))(1− f(i))
≥
∑
i

log
1− f(i) + 2āif̃(i)

1− f(i)
.

5.1.3.4.2 Alice’s Best Response

Given a fixed, potentially randomized classifier for Eve, Alice wants to choose an
embedding strategy that maximizes the error probability of this classifier; but since
her strategy cannot affect the classifier’s false positive rate on cover inputs, she may
concentrate her efforts on maximizing the classifier’s false negative rate. Formally, if
e(y) is Eve’s probability for classifying y as stego, then Alice’s best response strategy is
to choose an ā satisfying

∑
i āi = k and maximizing∑

y∈{0,1}n
(1− e(y)) Pr[Y = y|S = s] =

∑
y∈{0,1}n

(1− e(y))
∏
i:yi=1

(f(i)− 2āif̃(i))
∏
i:yi=0

(1− f(i) + 2āif̃(i)). (5.58)

To get some leverage from this formula, consider Alice’s best response strategy and any
pair āi, āj that are interior values of (0, 1). Alice’s payoff cannot increase if she adjusts
her strategy by simultaneously increasing āi and decreasing āj (or vice versa) by the
same small amount ε. If we consider the payoff as a function of ε in this manner, then
for a payoff-maximizing ā, the partial derivative with respect to ε must be zero at ε = 0.
This condition can be expressed as a formula, which constrains Alice’s best response
strategy for each pair (āi, āj) taking interior values in (0, 1) in terms of the remaining
ām.

āi − āj =

∑
y

(1− e(y))
∏
m 6=i,j

Pr[Ym = ym|S = s]

·
(

(1− 2yi)2f̃(i)(2yj f̃(j) + 1− f(j))

−(1− 2yj)2f̃(j)(2yif̃(i) + 1− f(i))
)

∑
y

(1− e(y))
∏
m 6=i,j

Pr[Ym = ym|S = s]

·
(

4f̃(0)f̃(1)(1− 2yi)(1− 2yj)
)

(5.59)

This set of constraints can be solved for at least some small n. We illustrate the
structure of the solution in the following subsection by considering the special case of
two positions.
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5.1.3.5 Solution and Numerical Illustration for n = 2 and k = 1

For this subsection, we restrict our analysis to the case of changing a single bit (k = 1) in
covers of length two (n = 2). Again, Alice’s strategy if fully specified by the probability
ā0. Eve’s strategy is specified as a vector (e(00), e(01), e(10), e(11)).

5.1.3.5.1 Alice’s Minmax Strategy

Alice’s minmax strategy minimizes Eve’s payoff assuming Eve is playing a best
response strategy. To find this strategy, we divide Alice’s strategy space into equivalence
classes such that Eve’s best response is the same for each element in a class. We begin
by giving some lemmas that show the structure of these classes. The proofs use algebra
based on the definitions, and can be found in Appendix C.

Lemma 5.11. Eve always classifies sequence 00 as stego and sequence 11 as cover.

Lemma 5.12. Eve classifies the sequence 01 as cover when ā0 ≤ τ1, and she classifies
the sequence 10 as cover when ā0 ≥ τ2, where

τ1 =
(f(0)− 1)f̃(1) + f̃(0)(f(1)− 1)

4f̃(0)f̃(1)

+

√[
(1− f(0))f̃(1) + f̃(0)(1− f(1))

]2
− 8f̃(0)f̃(1)2(f(0)− 1)

4f̃(0)f̃(1)

and

τ2 =
f(0)f̃(1) + f̃(0)f(1)−

√[
f(0)f̃(1) + f̃(0)f(1)

]2
− 8f(0)f̃(0)f̃(1)2

4f̃(0)f̃(1)
.

Lemma 5.13. It always holds that τ1 < τ2.

The following theorem summarizes Eve’s best response for the three equivalence
classes on Alice’s strategy space.

Theorem 5.7. Given a fixed strategy for Alice, Eve’s optimal decision for each binary
sequence y is given by:

Alice’s strategy Eve’s best response
y =

00 01 10 11

ā0 ≤ τ1 s c s c
τ1 ≤ ā0 ≤ τ2 s s s c

τ2 ≤ ā0 s s c c
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Proof. It follows immediately from Lemmas 5.11, 5.12, and 5.13.

Next, for each equivalence class, we consider Alice’s payoff, assuming Eve is making
an optimal decision.

Lemma 5.14. Alice’s payoff is increasing for ā0 ∈ [0, τ1] and decreasing for ā0 ∈ [τ2, 1].

Lemma 5.15. The first derivative of Alice’s payoff for ā0 ∈ [τ1, τ2] is

∂u(Alice)

∂ā0

∣∣∣
τ1≤ā0≤τ2

= −16ā0f̃(0)f̃(1) + 4
(
f(0)f̃(1) + f̃(0)(f(1)− 1)

)
and the second derivative is −16f̃(0)f̃(1).

Theorem 5.8. Alice’s minimax strategy is

ā0 =

{
amax when amax ≤ τ2

τ2 when τ2 < amax ,
(5.60)

where amax denotes f(0)f̃(1)+f̃(0)(f(1)−1)

4f̃(0)f̃(1)
.

Proof. From Lemma 5.14, we have that Alice’s minimax strategy satisfies τ1 ≤ a1 ≤ τ2.
This strategy must be a local maximum for her payoff over [τ1, τ2]. Since the second
derivative of the payoff is always below zero in this region, we can find the local maximum
by letting the first derivative be equal to zero and solving the equation for ā0, which
gives us amax.

I It can be shown that amax ≥ τ1.
I If amax ≤ τ2, the local maximum is attained at amax. Thus, Alice’s minimax

strategy is (amax, 1− amax).
I If τ2 < amax, the local maximum is attained at the endpoint τ2. Thus, Alice’s

minimax strategy is (τ2, 1− τ2).

5.1.3.5.2 Nash equilibria

We next characterize the equilibria of the game. We start by giving conditions for
situations where there is an equilibrium in which Eve uses a deterministic classifier.

Theorem 5.9. A Nash equilibrium with a deterministic strategy for Eve exists if and
only if amax ≤ τ2.

Proof. First, it is easy to see that the strategy pair (s, s, s, c) and (amax, 1− amax) is an
equilibrium when amax ≤ τ2 as both strategies are best responses. Second, we have to
show that no equilibrium with a deterministic strategy for Eve can exist if τ2 < amax:

I Alice’s best response to the strategy (s, c, s, c) is ā0 = 1; however, Eve’s best
response strategy to (1, 0) is not (s, c, s, c), but (s, s, c, c).
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I Alice’s response to (s, s, s, c) is ā0 = amax; however, since amax 6∈ [τ1, τ2], Eve’s
response is not (s, s, s, c), but either (s, c, s, c) or (s, s, c, c).

I Alice’s best response to (s, s, c, c) is ā0 = 0; but, Eve’ response to (0, 1) is
(s, c, s, c).

Next we show that an equilibrium always exists if Eve can use probabilistic strategies.

In the case of amax ≤ τ2, the strategy pair (s, s, s, c), (amax, 1−amax) is an equilibrium.
Thus, in this case, Eve can use the probabilistic strategy that chooses the deterministic
strategy (s, s, s, c) with probability 1. Consequently, we only have to a find a mixed
strategy for Eve in the case of amax > τ2.

Theorem 5.10. Eve’s maxmin strategy is

e(00) = 1

e(01) = 1

e(10) =

 1 if amax ≤ τ2

f̃(0)√
(f(0)−f(1))2−4f(0)f̃(0)f̃(1)(f(1)−1)

otherwise.

e(11) = 0

Proof. Eve is playing a maxmin strategy when she forces Alice to play her minmax
strategy as a best response. We obtain the probability for 10 by using brute force and
single-variable calculus to compute Alice’s best response as a function of this probability
and equating it with her minmax strategy.

Figure 5.6 depicts the probability that Eve classifies the sequence 10 as stego in her
minimax strategy, as a function of the cover predictability descriptor f . The dotted
black line gives the border between the regions e(10) = 1 (white area) and e(10) < 1,
where darker areas indicate lower values.

Figure 5.7 shows Eve’s classification error rates as a function of ā0 for two different
examples of f . The example f in Figure 5.7(a) yields a deterministic strategy equilibrium,
while the f in Figure 5.7(b) yields a randomized strategy equilibrium. Both figures
reveal that neither the false positive rate nor the false negative rate is continuous,
although Alice’s payoff (which is half the sum of these rates) is continuous. The
discontinuities occur at the two values τ1 and τ2 where Eve switches her optimal strategy
(see Lemma 5.12).

For the practical steganalyst, these results give direction to the optimal detection of
strategic embedding. In particular, Eve’s optimal classifier should be monotone in the
cover’s predictability metric; and a deterministic classifier can be sub-optimal for covers
with heterogeneous predictability.
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Figure 5.6: The value of e(10) in Eve’s minimax strategy as function of f .
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Figure 5.7: Eve’s false positive rate (dashed line), Eve’s false negative rate (dotted line),
and Alice’s payoff (solid line) as a function of ā0.
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5.1.4 Summary

In this section we have examined three different models which all share cover objects of
arbitrary length. In all models, steganographer and steganalyst were able to know the
order established by the suitability exactly.

Summarizing the different models:

I first, we restricted the steganalyst to base her decision rule on one position only,
I this restriction was removed, but we differentiated between a steganographer

. who has to embed exactly k bits, and

. who has to embed independently with an expectation of k bits.

We have shown that in all three set-ups, the steganographer randomizes her strategy
over all possible embedding positions, unless there are either perfectly uncertain (f(i) =
1/2) or perfectly informative (f(i) = 1) positions {i}.

One exceptionality of the first instantiation in this section was the existence of
positions the steganalyst would never query, as they are dominated by querying other
positions. These positions are “gifts” for the steganographer, as she will always embed
in them, even if they are not perfectly uncertain.

A uniqueness of the third instantiation was that the optimal strategy of the stegana-
lyst is to randomize her decision for the cover objects where her likelihood-ratio test
does not yield a definite decision.

5.2 Cover Models with Two Embedding Positions

Instead of using an abstract function f we can also characterize P0 by a probability
mass function (PMF) that measures the probability of the different symbol values to
occur in a cover object.

The simplest model to study adaptive embedding consists of a source of heterogeneous

covers of exactly two symbols (n = 2), x(0) =
(
x

(0)
0 , x

(0)
1

)
, in which Alice makes one

embedding change (k = 1). To reduce the number of case distinctions, it is convenient

to model covers ordered by decreasing suitability y(0) =
(
y

(0)
0 , y

(0)
1

)
. By symmetry,

this is w. l. o. g. if we assume perfect recovery. Imperfect recovery can be modeled by
flipping the two symbols with probability 1− r, where r ∈ [0, 1] is the recovery rate.

The restriction to n = 2 symbols permits an interpretation of larger heterogenous
covers with independent symbols if they can be partitioned into two parts of equal size
and suitability. The game is then repeated for each pair of heterogeneous symbols.

Alice embeds with probability ā into y
(0)
0 and with probability 1− ā into y

(0)
1 . With

perfect recoverability, a value of ē = 1 means Eve examines y
(ā)
0 , the more suitable

symbol, and ē = 0 means she examines y
(1−ā)
1 . More generally, we model Eve’s choice

such that she can either examine ŷ
(ā)
0 or ŷ

(1−ā)
1 , but not both at the same time. We

justify this by the observation that Eve has no knowledge of the global distribution and
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thus has to use imperfect local rules, thereby discarding some evidence. This is similar
to the set-up in Section 5.1.1, where Eve is only allowed to query one position.

With this restrictions on the players, we rule out the possibility of information-
theoretic optimal embedding and detection, as stated in Definition 4.19.

This set-up has several advantages. First, the simplifications allow us to draw this
instantiation of the adaptive steganography game in extensive form (Figure 5.8).

Second, the assumption that the ordered symbols y(0) are independent is a common
(and possibly realistic) simplification because reordering the cover by the adaptivity
criterion likely removes Markov-properties [20]. Of course, this does not prevent Eve
from exploiting Markov-properties stemming from the cover in the unordered stego
object x(1). One way to interpret this is that she exhausts this information source when
recovering the adaptivity criterion.

For both models with two embedding positions we choose LSB replacement as the
embedding operation. LSBR(x) can be expressed by

LSBR(x) := x+ (−1)x ⇒ LSBR−1(x) = LSBR(x). (5.61)

Here we see that LSBR is a special case for the biased bits used in the abstract f in the
previous sections.

Lemma 5.16. Under the assumption that P0 6= P1 for LSB replacement, i. e., LSB
replacement does not preserve the cover distribution perfectly, there is no equilibrium in
pure strategies.

Proof. The proof is the same as in Lemma 5.1 (on page 75), reduced to 2 positions.

5.2.1 Linear Increasing PMF

In this model we assume that the cover generation follows from a linearly increasing
PMF. Although the PMF holds for arbitrary bit lengths, we consider the special case
of positions with two bits (` = 2), when we need to enumerate all possibilities. The
extension to higher bit lengths is straightforward.

5.2.1.1 Cover Generation

We need a model to represent some (simplified) conditions of heterogeneous cover
sources. For this, we want to have one parameter mi to adjust the level of heterogeneity.

Now, the distribution P0 according to which the two ordered symbols y
(0)
0 and y

(0)
1 are

realised, is a discrete bivariate distribution of f
(0)
m0 (the PMF of y

(0)
0 ) and f

(0)
m1 (the PMF

of y
(0)
1 ) with m0 6= m1 (if m0 = m1, we model a homogeneous cover). Here, mi measures

the suitability for embedding. A value of mi = 0 indicates a uniform distribution (i. e.,
maximal entropy) and allows perfect steganography. With increasing mi, the entropy

and the suitability for embedding decrease. As we assume that y
(0)
0 is more suitable for

embedding, we define m0 ≤ m1.
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1
2

(
ŷ
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1
2

ā
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1
2

(
ŷ
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Figure 5.8: Extensive form of the instantiated adaptive steganography game. The
dashed lines visualize Eve’s information sets: she does not know which of the connected
nodes has been reached. α (β) is the false positive (false negative) rate of Eve’s detection
decision.

So the joint PMF of the cover generation f (0)(y0, y1) is given by

f (0)(y0, y1) = f (0)
m0

(y0) · f (0)
m1

(y1). (5.62)

To fulfill the requirements from above, we model the family of probability mass
functions depending on mi as

f (0)
mi (u) = (2` − u)mi +

1−
(∑2`

j=1 j
)
mi

2`
, u ∈ {0, . . . , 2` − 1}, with (5.63)

mi ∈

0;

2`−1∑
j=1

j

−1 , and therefore: mi ∈
[
0;

1

6

)
for ` = 2. (5.64)

Equation (5.63) ensures that the sum of masses equals 1 and the masses for the
different symbol values are strictly decreasing. The constraints in Equation (5.64) ensure
that the PMF is never negative. Note that the interval has to be open. Otherwise
the value u = 2` − 1 would have zero mass. This would allow detection with certainty
whenever this value occurs in a stego object after LSB flipping.

Figure 5.9 visualizes our cover generation model. For two fixed values of m0, it shows
the corresponding PMFs depending on m1. A lower value of m0 in the homogeneous
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case means a higher entropy. A bigger difference between m0 and m1 indicates a higher
level of heterogeneity within the cover. As can be seen, by changing m0 and m1, the
entropy and the level of heterogeneity change simultaneously.

m1 −m00 0.02 0.04 0.06 0.08 0.10 0.12

0 1 2 3 0 1 2 3

H = 3.926 H = 3.446

lower entropy

m1 −m00 0.02 0.04 0.06 0.08 0.10 0.12 0.14

0 1 2 3 0 1 2 3

H = 3.997 H = 3.608

higher entropy

Figure 5.9: Cover generation model with increasing levels of heterogeneity from left to

right. f
(0)
m0 is light gray, f

(0)
m1 is dark gray. Left: m0 = 0.05,m1 ∈ {0.05, 0.165}. Right:

m0 = 0.01,m1 ∈ {0.01, 0.15}

5.2.1.2 Embedding Impact

Let f
(1)
mi be the PMF resulting from always embedding in y

(0)
i . Then, for single symbol

values u it holds that:

f (0)
mi (u) = Pr(u|Cover) and f (1)

mi (u) = Pr(u|Stego). (5.65)

As we are interested in the distribution after embedding P1, we now proceed by examining

the distribution after embedding in y
(0)
0 with probability ā and embedding in y

(0)
1 with

probability 1− ā.

Now, in our model, where we always embed, it holds that

f (1)
mi (u) = f (0)

mi (emb
−1(u)), u ∈ {0, . . . , 2` − 1}. (5.66)

This yields the following lemma about f
(1)
mi (u).

Lemma 5.17. In our model, the PMF f
(1)
mi (u) is

f (1)
mi (u) =

{
f

(0)
mi (u+ 1), : u ≡ 0 (mod 2)

f
(0)
mi (u− 1), : u ≡ 1 (mod 2)

(5.67)

=

{
f

(0)
mi (u)−mi, : u ≡ 0 (mod 2)

f
(0)
mi (u) +mi, : u ≡ 1 (mod 2).

(5.68)
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Proof. From Equation (5.66) we know that:

f (1)
mi (u) = f (0)

mi (emb
−1(u))

= f (0)
mi (u+ (−1)u)

=

{
f

(0)
mi (u+ 1), : u ≡ 0 (mod 2)

f
(0)
mi (u− 1), : u ≡ 1 (mod 2).

(5.69)

And with Equation (5.63):

f (1)
mi (u) =


(2` − (u+ 1))mi +

1−
(∑2`

j=1 j

)
mi

2`
, : u ≡ 0 (mod 2)

(2` − (u− 1))mi +
1−
(∑2`

j=1 j

)
mi

2`
, : u ≡ 1 (mod 2)

=

{
f

(0)
mi (u)−mi, : u ≡ 0 (mod 2)

f
(0)
mi (u) +mi, : u ≡ 1 (mod 2).

(5.70)

As Lemma 5.16 excludes both pure strategies, we get a mixed strategy and thus a
mixture distribution of the kind,

P1 = f (1)(y0, y1) = ā
(
f (1)
m0

(y0) · f (0)
m1

(y1)
)

+ (1− ā)
(
f (0)
m0

(y0) · f (1)
m1

(y1)
)
. (5.71)

To quantify the overall information Eve can potentially gain from the embedding
function, we can numerically calculate the KLD between f (0) and f (1) as a benchmark
with the information-theoretic optimal strategies from Definition 4.19.

5.2.1.3 Eve’s Decision: Optimal Local Detector

The parameter on which Eve’s choice relies is ē. Conveniently, as will be shown in this
paragraph, the false positive rate equals the false negative rate in our model. So we
have only one variable of interest, the equal error rate (EER).

Recall that we have a strictly decreasing PMF and thus for P0 it holds that,

f (0)
mi (0) > f (0)

mi (1) > f (0)
mi (2) > f (0)

mi (3). (5.72)

Therefore, we know from Lemma 5.17 that in pure strategies it holds that,

f (1)
mi (1) > f (1)

mi (0) > f (1)
mi (3) > f (1)

mi (2). (5.73)

So, Eve’s decision rule DR(u) between C (for cover) and S (for stego) follows.

Lemma 5.18. Eve’s optimal decision rule for individual symbol values u is:

DR(u) =

{
C, : u ≡ 0 (mod 2)

S, : u ≡ 1 (mod 2).
(5.74)
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Proof. The decision rule implements the maximum a posteriori (MAP) estimation,
which can be found, for example, in [27]. With Pr(C) = Pr(S) = µ = 1/2, the MAP
estimation minimizes the decision errors by calculating:

q̂ = arg max
q

Pr(q|x) = arg max
q

Pr(x|q) · Pr(q). (5.75)

With q ∈ {C, S} and x = u, this results in

q̂ = arg max
q

Pr(u|q) · µ

Eq. (5.65)
= max

{
f (0)
mi (u), f (1)

mi (u)
}

=

{
C, : u ≡ 0 (mod 2)

S, : u ≡ 1 (mod 2),
(5.76)

because of Equations (5.72) and (5.73).

Thus, in our case with n = ` = 2, Eve’s decides for “C” whenever she sees a symbol
with value 0 or 2, and “S” for values 1 and 3.

5.2.1.4 Error Rates and Payoff

5.2.1.4.1 Error Rates

Let αi and βi be Eve’s false positive and false negative rate, respectively, for f
(0)
mi

and f
(1)
mi . By Lemma 5.18, her true positive rate (1− αi), and consequently the false

positive rate, is aggregated between the cases where her decision yields “C” and the
same holds for the true negative rate (1− βi) in all other cases.

Lemma 5.19. In our model, Eve’s false positive rate αi equals her false negative rate
βi and thus is called equal error rate EERi.

EERi = αi = βi =
1

2
−mi, (5.77)

for i ∈ {0, 1}.

Proof. As mentioned above, Eve’s true positive and true negative rate can be calculated
as follows:

True Positives TP(xj):

xj = 0 : TP(0) =
f

(0)
mi (0)

f
(0)
mi (0) + f

(1)
mi (0)

=
f

(0)
mi (0)

f
(0)
mi (0) + f

(0)
mi (1)

(5.78)

xj = 2 : TP (2) =
f

(0)
mi (2)

f
(0)
mi (2) + f

(1)
mi (2)

=
f

(0)
mi (2)

f
(0)
mi (2) + f

(0)
mi (3)

(5.79)

⇒ (1− αi) = (f (0)
mi (0) + f (0)

mi (1)) · TP (0) + (f (0)
mi (2) + f (0)

mi (3)) · TP (2) (5.80)

= f (0)
mi (0) + f (0)

mi (2) (5.81)
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True Negatives TN(xj):

xj = 1 : TN(1) =
f

(1)
mi (1)

f
(0)
mi (1) + f

(1)
mi (1)

=
f

(0)
mi (0)

f
(0)
mi (0) + f

(0)
mi (1)

= TP (0) (5.82)

xj = 3 : TN(3) =
f

(1)
mi (3)

f
(0)
mi (3) + f

(1)
mi (3)

=
f

(0)
mi (2)

f
(0)
mi (2) + f

(0)
mi (3)

= TP (2) (5.83)

⇒ (1− βi) = (f (0)
mi (0) + f (0)

mi (1)) · TN(1) + (f (0)
mi (2) + f (0)

mi (3)) · TN(3) (5.84)

= f (1)
mi (1) + f (1)

mi (3) = f (0)
mi (0) + f (0)

mi (2) = (1− αi) (5.85)

Eq.(5.63)⇔ (1− αi) = (1− βi) = 4 ·mi +
1− 10mi

4
+ 2 ·mi +

1− 10mi

4
(5.86)

= 6 ·mi + 2 · 1− 10mi

4
=

2 ·mi + 1

2
= mi +

1

2
(5.87)

⇒ EERi = αi = βi =
1

2
−mi. (5.88)

for i ∈ {0, 1}.

Equation (5.77) is intuitive, as values of mi = 0 indicate a uniform distribution. In
this case P1 would equal P0, i. e., the same distribution before and after embedding.
Therefore the false positive and false negative rate would be 1/2, i. e., random guessing.
Furthermore, it follows our initial thoughts that a higher value of mi implies a better
detectability, which materializes in a lower EER.

Corollary 5.3. The worst case for Eve would be Alice choosing a ∈ {0, 1} and she
herself choosing e = 1− a because by this, her decision would be merely guessing, i. e.,
EER = 1/2.

Proof. If Eve chooses e = 1− a and a ∈ {0, 1}, it holds that Alice always embeds in p
(0)
a

and by this never into p
(0)
e . From Eq. (5.66) it follows that f

(1)
ma(u) = f

(0)
ma(emb

−1(u)),

but f
(1)
me (u) = f

(0)
me (u), as there is no embedding in p

(0)
e . Therefore, it holds that:

xj ∈ {0, 2} : TP(xj)

xj ∈ {1, 3} : TN(xj)

}
=

f
(0)
me (xj)

f
(0)
me (xj) + f

(1)
me (xj)

=
f

(0)
me (xj)

f
(0)
me (xj) + f

(0)
me (xj)

=
f

(0)
me (xj)

2 · f (0)
me (xj)

=
1

2
. (5.89)

This confirms Lemma 5.16 that there is no equilibrium in pure strategies, as with
every pure strategy, one of the players would benefit from changing her strategy to the
opposite. Now we are in the position to solve the game and to identify equilibria in
mixed strategies.
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Table 5.3: Game outcome with correct recovery in different states of the world

Perfect/Correct recovery

Alice’s choice Eve’s choice Probability EER Reason

y
(0)
0 ŷ

(1)
0 ā · ē 1

2 −m0 Lemma 5.19, i = 0

y
(0)
0 ŷ

(0)
1 ā · (1− ē) 1

2 Corollary 5.3

y
(0)
1 ŷ

(0)
0 (1− ā) · ē 1

2 Corollary 5.3

y
(0)
1 ŷ

(1)
1 (1− ā) · (1− ē) 1

2 −m1 Lemma 5.19, i = 1

5.2.1.4.2 Payoff Function

The EER can be seen as the payoff function in our zero-sum game. As it is Alice’s
intention to perform least detectable steganography, her goal is to maximize the EER.
It is Eve’s goal to maximize her detection rate and thus, to minimize the EER.

From Figure 5.8, the occurrence probabilities in Table 5.3 and the EER the payoff
function χ(ā, ē) for mixed strategies can be derived and equals the overall EER. It is
stated in the following corollary.

Lemma 5.20. In our model, the payoff function in mixed strategies is

χ(ā, ē) =
1

2
− (ā · ē ·m0 + (1− ā) · (1− ē) ·m1) (5.90)

Proof. Figure 5.8 shows that the (colored) nodes of Eve’s decision can be classified into
three different types.

(1) Alice changes y
(0)
0 and Eve anticipates it (blue nodes in Figure 5.8). This situation

occurs with probability ā · ē. When faced with a situation like this, we know from
Equation (5.77) that Eve’s EER equals α0 (= β0).

(2) Alice changes y
(0)
1 and Eve, again, anticipates it (orange nodes in Figure 5.8). The

occurrence probability of this situation is (1− ā) · (1− ē). Again, we know the
payoff from Equation (5.77), which is α1 (= β1).

(3) Alice changes y
(0)
i , but Eve examines the wrong embedding position (black nodes in

Figure 5.8). This situation occurs with probability (1− ā) · ē (for Alice embedding

in y
(0)
0 , but Eve examining ŷ

(1)
1 ) and ā · (1− ē) (for Alice embedding in y

(0)
1 , but

Eve examining ŷ
(1)
0 ). Here, we know from Corollary 5.3 that Eve’s decision rule is

no better than random guessing and thus has an EER of 1/2.
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Table 5.3 summarizes the respective probabilities of occurrence, payoffs, and justifications.
In combination, this leads to the following expression for χ(ā, ē):

χ(ā, ē) = (ā · ē) · α0 + ((1− ā) · ē+ ā · (1− ē)) · 1

2
+ (1− ā) · (1− ē) · α1

= (ā · ē) · α0 +
ā+ ē− 2āē

2
+ (1− ā) · (1− ē) · α1. (5.91)

From Lemma 5.19 we know that αi = 1/2−mi and thus:

χ(ā, ē) = (ā · ē) · (1

2
−m0) +

ā+ ē− 2āē

2
+ (1− ā) · (1− ē) · (1

2
−m1)

=
ā · ē

2
− ā · ē ·m0 +

ā+ ē− 2ā · ē
2

+
1

2
− ā

2
− ē

2
+
ā · ē

2
− (1− ā) · (1− ē) ·m1 (5.92)

=
1

2
− (ā · ē ·m0 + (1− ā) · (1− ē) ·m1) (5.93)

Remark 5.2. Note that in the pathological case of m0 = m1 = 0, i. e., a homogeneous
cover source with perfect steganography possible in both symbols, it holds that χ(ā, ē) =
1/2. Particularly, χ(ā, ē) is independent of ā and ē. Such situations do not require
game theory and thus are out of this thesis’ scope and excluded in the following analysis.

5.2.1.5 Solving the Game

5.2.1.5.1 Equilibrium Strategies

Nash equilibria in two-player games are tuples of mixed strategies (ā∗, ē∗) such
that no player can (strictly) increase her pay-off by unilaterally deviating from her
equilibrium strategy [67]. To find a Nash equilibrium we look for a strategy that makes
the opponent indifferent, i. e., a strategy where she cannot influence the pay-off by
changing her strategy. We find such strategies by taking partial derivatives of the pay-off
function, χ(ā, ē) with regard to the opponent’s strategy and setting them to zero. Then
we show that theses strategies indeed constitute a unique equilibrium, which happens
to be symmetric.

Theorem 5.11. In this model, there exists a unique symmetric Nash equilibrium in
mixed strategies. In this equilibrium it holds that:

ā∗ = ē∗ =
m1

m0 +m1
(5.94)
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Proof. The partial derivatives of the payoff function are,

∂χ(ā, ē)

∂ā
=− (m0 +m1) · ē+m1 (5.95)

∂χ(ā, ē)

∂ē
=− (m0 +m1) · ā+m1. (5.96)

Setting both derivatives to zero yields Equation (5.94):

−(m0 +m1) · ē+m1
!

= 0⇔ ē∗ =
m1

m0 +m1
(5.97)

−(m0 +m1) · ā+m1
!

= 0⇔ ā∗ =
m1

m0 +m1
. (5.98)

To see that ā∗ is an equilibrium strategy, we combine Equations (5.90) and (5.94):

χ(ā∗, ē) =
1

2
− (ē · m1

m0 +m1
·m1) + (1− ē− m1

m0 +m1
+

m1

m0 +m1
· e)

Focusing only on the terms containing ē, yields:

ē ·

[
m1 ·m0

m0 +m1
+

m2
1

m0 +m1
−m1

]

= ē ·

[
m1 ·m0

m0 +m1
+

m2
1

m0 +m1
− m1 ·m0 +m2

1

m0 +m1

]
(5.99)

= ē · 0. (5.100)

As the same holds for χ(ā, ē∗), both χ(ā∗, ē) and χ(ā, ē∗) are independent of the
opponent’s strategy. Thus, ∀ā, ē ∈ [0, 1] : χ(ā∗, ē∗) = χ(ā∗, ē) = χ(ā, ē∗), and thus
(ā∗, ē∗) is a Nash equilibrium.

A quick check that no combination of pure strategies is a Nash equilibrium (for
m0 > 0) establishes the uniqueness of (ā∗, ē∗). The symmetry is obvious as ā∗ = ē∗.

Corollary 5.4. Only if the given cover source is homogeneous, i. e., m0 = m1, Alice’s
best strategy is random uniform embedding (strategy a) from Definition 4.17).

Proof. The ‘if’ condition follows from the fact that for m0 = m1, it holds that:

ā∗ =
m1

m0 +m1
=

1

2
. (5.101)

Alice changes each of the two symbols with probability ā = 1/2. With k = 1 and n = 2,
this fulfills the definition of random uniform embedding.

If m0 < m1 < 1, it holds that:

ā∗ =
m1

m0 +m1
>

m1

2m1
=

1

2
. (5.102)

This proves the ‘only-if’ condition.
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Corollary 5.5. Only if one of the symbols in the cover allows for perfect steganography,
then Alice’s best strategy is näıve adaptive embedding (strategy b) from Definition 4.17).

Proof. Perfect steganography is only possible if the PMF of at least k symbols is
invariant to embedding. Inserting the formal condition m0 = 0 into the equilibrium
condition:

ā∗ =
m1

m0 +m1
= 1. (5.103)

Alice always changes the better suitable symbol. This fulfills the definition of näıve
adaptive embedding. Whenever m0 > 0 it follows that

ā∗ =
m1

m0 +m1
< 1. (5.104)

This proves the ‘only-if’ condition.

From the uniqueness of the equilibrium and the preceding corollaries follows another
property of our model.

Corollary 5.6. If m0 > 0, there are no dominated strategies and thus no dominant
strategy equilibria (DSE) in our model.

Proof. From Corollary 5.5 it follows that, unless m0 = 0, the equilibrium given in
Theorem 5.11 defines strategies that put positive probability on every pure strategy.
Such an equilibrium is called completely mixed equilibrium and only exists if there is no
pure or mixed strategy of any player that is strictly or weakly dominated by a convex
combination of her other strategies [74]. Therefore, there are no dominant strategies
and thus no dominant strategy equilibria.

It is easy to see that in the corner case m0 = 0, the pure strategies ā∗ = ē∗ = 1 are
dominant pure strategies and form a dominant strategy equilibrium.

5.2.1.5.2 Payoff in Equilibrium

Inserting the optimal strategies into χ(ā∗, ē∗) yields the equilibrium EER .

Corollary 5.7. In the equilibrium it holds that the EER is,

EER∗ = χ

(
m1

m0 +m1
,

m1

m0 +m1

)
=

1

2
− m0 ·m1

m0 +m1
. (5.105)

Proof. Equation (5.93) can be rearranged to

χ(ā, ē) =
1

2
− ((m0 +m1) · (ā · ē)−m1 · ā− ē ·m1 +m1) , (5.106)
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and using ē = ā = ā∗ = m1
m0+m1

from Theorem 5.11 we obtain,

χ(ā∗, ā∗) =
1

2
−
(
(m0 +m1) · (ā∗)2 − 2 ·m1 · ā∗ +m1

)
(5.107)

=
1

2
−

(
(m0 +m1) ·

(
m1

m0 +m1

)2

− 2 ·m1
2

m0 +m1
+m1

)
(5.108)

=
1

2
−
(
m1 −

m1
2

m0 +m1

)
=

1

2
− m0 ·m1

m0 +m1
. (5.109)

With this unique value for ā∗, we say a steganographer performs optimal adaptive
steganography in the model with a linear increasing PMF. It is always less detectable
than a steganographer who performs näıve adaptive steganography.

A closer look at the equilibrium strategies in our model reveals that they are equalizer
strategies.

Corollary 5.8. The equilibrium strategies ā∗, respectively ē∗ are equalizer strategies.

Proof. From the proof of Theorem 5.11 we know that χ(ā∗, ē∗) = χ(ā∗, ē) = χ(ā, ē∗).
Thus, if Alice plays her equilibrium strategy ā∗, Eve’s strategy ē does not influence
the pay-off and vice versa. From this property it follows that ā∗ and ē∗ are equalizer
strategies.

5.2.2 Constant Ratio PMF

In this section we assume a model where the PMF of the cover generation has a constant
ration between the different values.

The specific cover model is more realistic as the cover generalization can be tied to
a (discretized) Laplace distribution and its analytical solution is more general, as we
can explicitly calculate the KLD for given ratio parameters.

5.2.2.1 Cover Generation and Justification

As natural covers’ entropy may be below its maximum, symbol values differ in their

probability of occurrence. To reflect this, let f
(0)
ti

: X→ [0, 1] be a family of probability
mass functions (PMFs),

f
(0)
ti

(u) = Pr(y
(0)
i = u) :=

(ti)
u

di
, (5.110)

with parameter ti ≥ 1 and normalizing constant di = 1−ti2
`

1−ti . Observe that the proba-

bilities of values 0, . . . , 2` − 1 ∈ X are increasing by a constant ratio. In the limit case,
ti = 1 creates a uniform distribution (i. e., maximum entropy). The entropy decreases
with increasing ti.
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Now extending to n = 2 independent cover symbols, we restrict the parameter ranges
of t0 and t1 to 1 ≤ t0 ≤ t1. This allows us to generate homogenous (for t0 = t1) and
heterogenous (for t0 < t1) covers with ordered suitability. (Corollary 5.9 in Sect. 5.2.2.3
will prove the very last assertion.)

Although our cover generation model is very simple and in fact artificial [7], several
reasons justify its specific choice.

First, note that the PMF for individual symbols asymptotically converges to (the
left half of) a discretized Laplace distribution, which is known to model the marginal
distribution of real transform-coded covers reasonably well [62]. The PMF of a mean-free
discretized Laplacian distribution with scale parameter p is given by [44]:

gp(u) =
p− 1

p+ 1
· p|u|, p ∈ (0, 1), u ∈ Z. (5.111)

Looking at the left half only, u ≤ 0, simplifies it to:

gp(u) =
p− 1

p+ 1
· p−u. (5.112)

As p < 1, we substitute ti := 1
p in Equation (5.110) to obtain

f 1
p
(u) =

(
1
p

)u
di

=
1

di
· p−u. (5.113)

For ti = 1
p fixed, O(gp) and O(f 1

p
) give the asymptotic equivalence in tails as u (and `)

go to infinity:

gp(u) ∈ O(p−u),

f 1
p
(u) ∈ O(p−u). (5.114)

Second, independent cover symbols imply that the entropy of the cover source is the
sum of the entropy of its symbols. This way, we can vary the heterogeneity of the cover
source by adjusting ti while (numerically) enforcing constant entropy.

5.2.2.2 Embedding Impact

Let f
(1)
ti

be the family of PMFs resulting from always embedding in y
(0)
i . Then, for

individual values u it holds:

f
(0)
ti

(u) = Pr(u | Cover) and f
(1)
ti

(u) = Pr(u | Stego). (5.115)

In the cover model, we can find an analytical expression for P1 by examining the

distribution after embedding in y
(0)
0 with probability ā and embedding in y

(0)
1 with

probability 1− ā.
As we always change one symbol, it holds that

f
(1)
ti

(u) = f
(0)
ti

(emb−1(u)). (5.116)

This yields the following lemma about f
(1)
ti

(u), the marginal distributions of P1.
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Lemma 5.21. The PMF of stego symbols f
(1)
ti

(u) is

f
(1)
ti

(u) = f
(0)
ti

(u) · t(−1)u

i . (5.117)

Proof. After inserting Eq. (5.61) into Eq. (5.116),

f
(1)
ti

(u) = f
(0)
ti

(emb−1(u)) = f
(0)
ti

(u+ (−1)u), (5.118)

we use the definition of Eq. (5.110) and rearrange,

=
ti
u+(−1)u

di
= f

(0)
ti

(u) · t(−1)u

i . (5.119)

If Alice plays a mixed strategy with parameter ā, the joint distribution P1 after
embedding is a mixture of the kind:

P1(y) = Pr(y0 = u, y1 = v)

= ā
(
f

(1)
t0

(u) · f (0)
t1

(v)
)

+ (1− ā)
(
f

(0)
t0

(u) · f (1)
t1

(v)
)
. (5.120)

Remark 5.3. With this cover model and embedding operation, perfect steganography is
only possible if t0 = 1.

Whenever t0 > 1, some simple algebra shows that P0 and P1 differ. Note that this
is necessary but not sufficient to rule out the possibility of perfect steganography. Even
if P0 and P1 are not the same, the marginal distributions for one symbol (the more
suitable) may be equal.

5.2.2.3 Heterogeneity

The definition of heterogeneity (Definition 4.14) is indirectly based on the KLD. There
is an easy way to calculate it for our model.

Lemma 5.22. The Kullback–Leibler divergence between P0 and P(yi) can be calculated
as follows:

KLD(P0,P(yi)) = log ti ·
ti − 1

ti + 1
. (5.121)

Proof. We carry out the proof for P(y0). So, we insert ā = 1 into Eq. (5.120), simplify,
and then expand using Eq. (5.119):

P(y0)(u, v) =
t0
u+(−1)u · t1v

d0 · d1
. (5.122)
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We will use shorthand X0 ⊂ X for the set of all even elements in X, and X1 =
X \X0. (The subscript indicates the LSB.) Now starting from the definition of KLD (cf.
Definition 2.9):

KLD(P0,P(y0)) =

=
∑
u∈X

∑
v∈X

P0(u, v) · log
P0(u, v)

P(y0)(u, v)
(5.123)

=
∑
v∈X

( ∑
u∈X0

t0
u · t1v

d0 · d1
log

(
t0
u · t1v

d0 · d1
· d0 · d1

t0u+1 · t1v

)

+
∑
u∈X1

t0
u · t1v

d0 · d1
log

(
t0
u · t1v

d0 · d1
· d0 · d1

t0u−1 · t1v

))
(5.124)

=
∑
v∈X

∑
u∈X0

t0
u · t1v

d0 · d1
log

1

t0
+
∑
v∈X1

t0
u · t1v

d0 · d1
log t0

 (5.125)

=
∑
v∈X

∑
u∈X

(−1)u+1 · t0
u · t1v

d0 · d1
log t0 (5.126)

= log t0 ·
1

d0 · d1
·
∑
u∈X

(−1)u+1 · t0u ·
∑
v∈X

t1
v

︸ ︷︷ ︸
=d1

(5.127)

= log t0 ·
1

d0
· (−1) ·

2`−1∑
u=0

(−t0)u. (5.128)

Now using a closed form for the sum of the geometric series:

= log t0 ·
1− t0

1− t02`
· (−1) · 1− (−t0)2`

1− (−t0)
(5.129)

= log t0 ·
t0 − 1

t0 + 1
. (5.130)

The proof for KLD(P0,P(y1)) is analogous

As the symbols are independent, the amount of distortion introduced by embedding,
as measured by the KLD, only depends on the PMF of the symbol used for embedding.

Corollary 5.9. If t0 < t1, then y
(0)
0 is more suitable for embedding than y

(0)
1 .

Proof. If t0 < t1, then log t0 · t0−1
t0+1 < log t1 · t1−1

t1+1 , hence by Lemma 5.22:
KLD(P0,P(y0)) < KLD(P0,P(y1)).

Remark 5.4. The difference in the KLD between (1) changing only the least suitable
and (2) changing only the best suitable symbol is a metric to quantify the heterogeneity
of a cover source: ∆ KLD = KLD(P0,P(y1))−KLD(P0,P(y0)).
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Note that this metric depends on the embedding operation, like our notions of
heterogeneity and suitability.

The histograms in Figure 5.10 show examples of two different parameterizations of
the cover source with a fixed alphabet of four values (` = 2). The smaller parameter
ti, the closer is the distribution to a uniform distribution and the less detectable is
the embedding operation LSBR (as indicated by the arrows). Figure 5.10(a) shows a
homogeneous cover source. Only for heterogeneous cover sources (Figure 5.10(b)), Alice
can take advantage of adaptively choosing more suitable positions. This advantage
increases with the level of heterogeneity.

0 1 2 3

∆ KLD = 0

u =

y
(0)
0

y
(0)
1

f
(0)
ti (u)

0

0.5

(a)

0 1 2 3

∆ KLD = 0.227
f
(0)
ti (u)

0

0.5

(b)

Figure 5.10: Example histograms of the cover source for n = ` = 2. Compare the more
suitable (brighter bars) to the less suitable (darker bars) position for a: (a) homogeneous
(t0 = t1 = 1.3); (b) heterogeneous (t0 = 1.1, t1 = 2) cover source. The arrows indicate
which values are exchanged by the LSBR embedding operation.

5.2.2.4 Eve’s Decision: Optimal Local Detector

For this analysis, we equip Eve with the locally optimal decision rule, specific to the
embedding operation LSBR and the cover generation model.

Eve’s decision rule DR(u) between C (for cover) and S (for stego) follows from the
maximum a posteriori (MAP) estimation [27, for example], and the fairness of the Judge
(µ = 1/2).

Lemma 5.23. Eve’s locally optimal decision rule when examining an individual symbol
and finding value u is:

DR(u) =

{
S : u ≡ 0 (mod 2)

C : u ≡ 1 (mod 2).
(5.131)

Proof. MAP estimation minimizes the decision errors by using Bayes’ theorem:

q̂ = arg max
q

Pr(q | u) = arg max
q

Pr(u | q) · Pr(q). (5.132)
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With q ∈ {C, S}, we obtain

q̂ = arg max
q

Pr(u | q) · µ (5.133)

Eq. (5.115)
= arg max

{
C : f

(0)
ti

(u), S : f
(1)
ti

(u)
}
, (5.134)

now using Lemma 5.21 and dividing element-wise by f
(0)
ti

(u),

= arg max
{

C : 1,S : t
(−1)u

i

}
, (5.135)

=

{
S : u ≡ 0 (mod 2)

C : u ≡ 1 (mod 2).
(5.136)

The last identity follows from the fact that ti ≥ 1. If ti = 1, Eve is indifferent, but the
rule is still optimal in the sense that she cannot do better than random guessing.

Remember that fixing the embedding operation (in Sect. 5.2.2.2) and this detector
generally precludes both Alice and Eve from using the information-theoretical optimal
strategies (cf. Definition 4.19) (unless ti = 1). This is intentional to reflect the hardness
of reaching these goals in practice. It allows us to analyze the players’ strategies under
knowledge and computational constraints.

5.2.2.5 Error Rates and Payoff

5.2.2.5.1 Error Rates

As mentioned in Section 4.4.2, Eve’s error rates quantify steganographic security.
In our model, the error rates depend on the parameters ti. Let αi (βi) be Eve’s false

positive (false negative) probability when applying DR on f
(0)
ti

(f
(1)
ti

). We use Eve’s
average error rate (under equal priors) AER = (αi + βi)/2 to measure steganographic
security in this analysis.

Lemma 5.24. If Eve investigates the same position i ∈ {0, 1} that Alice has changed
for embedding, then

AER =
1

ti + 1
. (5.137)

Proof. False positives occur if DR classifies a symbol drawn from f
(0)
ti

as “S”.

αi =

2(`−1)−1∑
u=0

f
(0)
ti

(2u)
Eq. (5.110)

=
2(`−1)−1∑
u=0

(ti)
2u

di
(5.138)

=

t2
`

i −1

t2i−1

t2
`
i −1
ti−1

=
ti − 1

t2i − 1
=

1

ti + 1
. (5.139)
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5.2. Cover Models with Two Embedding Positions

False negatives occur if DR classifies a symbol drawn from f
(1)
ti

as “C”.

βi =

2(`−1)−1∑
u=0

f
(1)
ti

(2u+ 1) (5.140)

Rewriting in terms of f
(0)
ti

(with the help of Lemma 5.21):

=
2(`−1)−1∑
u=0

f
(0)
ti

(2u+ 1)

ti

Eq. (5.110)
=

2(`−1)−1∑
u=0

(ti)
2u+1

di · ti
. (5.141)

After reducing ti from the right hand side of Eq. (5.141), the term equals the right hand
side of Eq. (5.138) and it follows that

AER :=
αi + βi

2
=

1

ti + 1
. (5.142)

Equation (5.137) is intuitive, as the error probability is 1/2 (random guessing) for
the boundary case ti = 1; uniform i. i. d. where LSBR is undetectable. It also illustrates
Corollary 5.9 because higher values of ti imply less suitability for embedding, which
leads to a lower AER, and vice versa.

Corollary 5.10. The worst case for Eve is Alice choosing a ∈ {0, 1} and she herself
choosing e = 1− a. In this case, her decision is no better than random guessing, i. e.,
AER = 1/2.

Proof. If e = 1 − a, Eve’s decision rule is always applied to symbols drawn from the
(marginal) cover distribution. For every symbol u ∈ X, let bias f̃u ∈ [0, 1] be the
probability that any probabilistic decision rule (including DR from Lemma 5.23) returns
S for (stego) upon finding value u. Then,

AER |u =
α|u + β|u

2
=
f̃u + (1− f̃u)

2
=

1

2
. (5.143)

AER |u is independent of u, hence AER = 1/2.

In this section, we have instantiated and explained a concrete cover model, embedding
operation, and detector within the general framework of Section 4.4. Now we are in the
position to solve this instantiation of our game and find its equilibrium.

With all components of the framework instantiated, we first derive the payoff function
and then solve the game for Nash equilibria. Throughout this section we assume that Eve
can perfectly recover the order of the suitability of the embedding positions; formally:
ŷ(ā) = y(0).
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5.2.2.5.2 Payoff Function

Being agnostic about detailed cost assumptions, we devise a zero-sum game with the
AER determining the payoffs. Alice wants to perform least detectable steganography,
hence she tries to maximize the AER. Eve’s goal is to maximize her detection rate,
hence she tries to minimize the AER. Consequently, Alice’s utility is her expected AER,
and Eve’s utility is her expected −AER. Expectations are taken over realizations of
random variables governed by Nature as well as the realizations of the players’ strategies
A and E.

Table 5.4 lists all possible states (in rows), the associated AER for two different
scenarios (column blocks), and how we obtain it. Note that each row aggregates both
possible outcomes of the Judge’s coin flip and the AER combines both error rates.

Lemma 5.25. The expected AER in mixed strategies is

χ(ā, ē) = 1− ā+ ē

2
+

(
1

t0 + 1
− t1
t1 + 1

)
· āē

− (1− ā− ē) ·
(

t1
t1 + 1

)
. (5.144)

Proof. Figure 5.8 shows that the (colored) nodes of Eve’s decision can be classified into
three different types.

(1) Alice changes y
(0)
0 and Eve anticipates it (blue nodes in Figure 5.8). This situation

occurs with probability ā · ē. When faced with a situation like this, we know from
Equation (5.137) that Eve’s AER equals 1

t0
.

(2) Alice changes y
(0)
1 and Eve, again, anticipates it (orange nodes in Figure 5.8). The

occurrence probability of this situation is (1− ā) · (1− ē). Again, we know the
payoff from Equation (5.137), which is 1

t1+1 .

(3) Alice changes y
(0)
i , but Eve examines the wrong embedding position (black nodes in

Figure 5.8). This situation occurs with probability (1− ā) · ē (for Alice embedding

in y
(0)
0 , but Eve examining ŷ

(1)
1 ) and ā · (1− ē) (for Alice embedding in y

(0)
1 , but

Eve examining ŷ
(1)
0 ). Here, we know from Corollary 5.10 that Eve’s decision rule

is no better than random guessing and thus has an AER of 1/2.

Table 5.4 summarizes the respective probabilities of occurrence, payoffs, and justifications.
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5.2. Cover Models with Two Embedding Positions

Table 5.4: Game outcome with correct recovery in different states of the world

Perfect/Correct recovery

Alice’s choice Eve’s choice Probability AER Reason

y
(0)
0 ŷ

(1)
0 ā · ē 1

t0+1 Lemma 5.24, i = 0

y
(0)
0 ŷ

(0)
1 ā · (1− ē) 1

2 Corollary 5.10

y
(0)
1 ŷ

(0)
0 (1− ā) · ē 1

2 Corollary 5.10

y
(0)
1 ŷ

(1)
1 (1− ā) · (1− ē) 1

t1+1 Lemma 5.24, i = 1

In combination, this leads to the following expression for χ(ā, ē):

χ(ā, ē) = (āē) ·
(

1

t0 + 1

)
+
ā · (1− ē)

2
+

(1− ā) · ē
2

+ (1− ā)(1− ē) ·
(

1

t1 + 1

)
. (5.145)

Equation (5.144) follows from rearranging Equation (5.145).

Remark 5.5. Note that in the pathological case of t0 = t1 = 1, i. e., a homogeneous cover
source with perfect steganography possible in both symbols, it holds that χ(ā, ē) = 1/2.
Particularly, χ(ā, ē) is independent of ā and ē. Such situations do not require game
theory and thus are out of this thesis’ scope and excluded in the following analysis.

5.2.2.6 Solving the Game

5.2.2.6.1 Equilibrium Strategies

With the same method as in Section 5.2.1.5, we find a unique equilibrium that is
symmetric.

Theorem 5.12. There exists a unique symmetric Nash equilibrium in mixed strategies.
In this equilibrium it holds that:

ā∗ = ē∗ =
(1− t1)(1 + t0)

2(1− t0t1)
. (5.146)
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Proof. The partial derivatives of the expected AER function are:

∂χ(ā, ē)

∂ā
=− 1

2
+

(
1− t0

t0 + 1
− t1
t1 + 1

)
· ē+

t1
t1 + 1

, (5.147)

∂χ(ā, ē)

∂ē
=− 1

2
+

(
1− t0

t0 + 1
− t1
t1 + 1

)
· ā+

t1
t1 + 1

. (5.148)

Setting both derivatives to zero yields Equation (5.146):(
1− t0

t0 + 1
− t1
t1 + 1

)
· ē∗ !

=
1

2
− t1
t1 + 1

(5.149)

⇔ ē∗ =
(1− t1)(1 + t0)

2 · (1− t0t1)
, and(

1− t0
t0 + 1

− t1
t1 + 1

)
· ā∗ !

=
1

2
− t1
t1 + 1

(5.150)

⇔ ā∗ =
(1− t1)(1 + t0)

2 · (1− t0t1)
.

To see that ā∗ is an equilibrium strategy, we combine Equations (5.144) and (5.146):

χ(ā∗, ē) =
1

t1 + 1
+
( t1 − 1

2(t1 + 1)

)
·
((1− t1)(t0 + 1)

2(1− t0t1)

)
+
( t1 − 1

2(t1 + 1)

)
ē

+
( 1− t0t1

(t0 + 1)(t1 + 1)

)
·
((1− t1)(t0 + 1)

2(1− t0t1)

)
ē. (5.151)

Considering only the terms containing ē:

ē ·
( t1 − 1

2(t1 + 1)
+

1− t1
2(t1 + 1)

)
= ē · 0. (5.152)

As the same holds for χ(ā, ē∗), both χ(ā∗, ē) and χ(ā, ē∗) are independent of the
opponent’s strategy. Thus, ∀ā, ē ∈ [0, 1] : χ(ā∗, ē∗) = χ(ā∗, ē) = χ(ā, ē∗), and thus
(ā∗, ē∗) is a Nash equilibrium.

A quick check that no combination of pure strategies is a Nash equilibrium (for
t0 > 1) establishes the uniqueness of (ā∗, ē∗). The symmetry is obvious as ā∗ = ē∗.

The following corollaries state two direct implications for the design of more secure
embedding functions.

Corollary 5.11. Only if the given cover source is homogeneous, i. e., t0 = t1, Alice’s
best strategy is random uniform embedding (strategy a) from Definition 4.17).

Proof. The ‘if’ direction follows from the fact that for t0 = t1, it holds that:

ā∗ =
(1− t1)(1 + t0)

2 · (1− t0t1)
=

(1− t0)(1 + t0)

2 · (1− t02)
=

1

2
. (5.153)
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5.2. Cover Models with Two Embedding Positions

Alice changes each of the two symbols with probability ā = 1/2. With k = 1 and n = 2,
this fulfills the definition of random uniform embedding.

If t0 < t1, it holds that:

ā∗ =
(1− t1)(1 + t0)

2 · (1− t0t1)
=

1

2
·


<0︷ ︸︸ ︷

t0 − t1 +(1− t0t1)

1− t0t1


︸ ︷︷ ︸

>1

>
1

2
. (5.154)

This proves the ‘only-if’ direction.

Corollary 5.12. Only if one of the symbols in the cover allows for perfect steganography,
then Alice’s best strategy is näıve adaptive embedding (strategy b) from Definition 4.17).

Proof. Perfect steganography is only possible if the PMF of at least k symbols is
invariant to embedding. Inserting the formal condition, t0 = 1 (from Remark 5.3), into
the equilibrium condition:

ā∗ =
(1− t1)(1 + t0)

2 · (1− t0t1)
=

(1− t1) · 2
2 · (1− t1)

= 1. (5.155)

Alice always changes the better suitable symbol. This fulfills the definition of näıve
adaptive embedding. Whenever t0 > 1 it follows that

t0(t1 + 1) > t1 + 1 ⇔ t0t1 − 1 > t1 − t0. (5.156)

Rewriting Equation (5.146) yields:

ā∗ =
1

2
+

1

2
·
(
t1 − t0
t0t1 − 1

)
︸ ︷︷ ︸

<1

< 1. (5.157)

This proves the ‘only-if’ condition.

From the uniqueness of the equilibrium and the preceding corollaries follows another
property of our model.

Corollary 5.13. If t0 > 1, there are no dominated strategies and thus no dominant
strategy equilibria (DSE) in our model.

Proof. From Corollary 5.12 it follows that, unless t0 = 1, the equilibrium given in
Theorem 5.12 defines strategies that put positive probability on every pure strategy.
Such an equilibrium is called completely mixed equilibrium and only exists if there is no
pure or mixed strategy of any player that is strictly or weakly dominated by a convex
combination of her other strategies [74]. Therefore, there are no dominant strategies
and thus no dominant strategy equilibria.

It is easy to see that in the corner case t0 = 1, the pure strategies ā∗ = ē∗ = 1 are
dominant pure strategies and form a dominant strategy equilibrium.
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5.2.2.6.2 Payoff in Equilibrium

Now, that we determined the equilibrium strategies for Alice, respectively Eve, we
can calculate the payoff in equilibrium.

Corollary 5.14. The expected AER in equilibrium is

χ(ā∗, ē∗) =
(t0 + 1)(t1 + 1)− 4

4(t0t1 − 1)
. (5.158)

This corollary follows directly from inserting the equilibrium conditions (Theo-
rem 5.12) into Lemma 5.25.

A closer look at the equilibrium strategies in our model reveals that they are equalizer
strategies.

Corollary 5.15. The equilibrium strategies ā∗, respectively ē∗ are equalizer strategies.

Proof. From the proof of Theorem 5.12 we know that χ(ā∗, ē∗) = χ(ā∗, ē) = χ(ā, ē∗).
Thus, if Alice plays her equilibrium strategy ā∗, Eve’s strategy ē does not influence
the pay-off and vice versa. From this property it follows that ā∗ and ē∗ are equalizer
strategies.

This yields the following corollary.

Corollary 5.16. If Alice (Eve) plays her equilibrium strategy, she balances Eve’s (Al-
ice’s) advantage over choosing a specific position and creates a uniform local advantage.

Proof. The corollary follows directly from the fact that equalizer strategies make the
other player indifferent between the strategies of the opponent [74]. In our model, this
means that the local advantage is the same for every position, i. e., a uniform local
advantage.

5.2.3 Imperfect Recoverability

In this section we build upon the set-up and the results of the previous sections.
Especially the assumption of Eve being able to perfectly recover the order of possible
embedding positions is unrealistic. We have seen in Table 3.2 from Section 3.3.5 that
the adaptivity criteria used in practice differ in their recoverability from the stego object.
As the recovery rate is approximately constant for a given adaptivity criterion, it is
sensible to grant both players full information about the (average) recovery rate r.

In our models with two positions, the correct definition for the recovery rate r,
corresponding to Definition 3.7 from Section 3.3.3, is as follows:

Definition 5.3 (Recovery Rate for Two Embedding Positions).
The recovery rate r is the probability that Eve can correctly recover the order of the
symbols, i. e., ŷ(1) = y(1). With two embedding positions, this implies that with

probability (1− r) she assumes the wrong order, i. e., ŷi
(ā) = y

(0)
(1−i) for i ∈ {0, 1}.
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Table 5.5: Game outcome with incorrect recovery in different states of the world

Incorrect recovery

Alice’s choice Eve’s choice Probability Reality EER Reason

y
(0)
0 ŷ

(1)
0 ā · ē y

(0)
1

1
2 Corollary 5.3

y
(0)
0 ŷ

(0)
1 ā · (1− ē) y

(1)
0

1
2 −m0 Lemma 5.19, i = 0

y
(0)
1 ŷ

(0)
0 (1− ā) · ē y

(1)
1

1
2 −m1 Lemma 5.19, i = 1

y
(0)
1 ŷ

(1)
1 (1− ā) · (1− ē) y

(0)
0

1
2 Corollary 5.3

It is easy to see that with this definition of the recovery rate, the payoff function
χr(ā, ē) is symmetric around r = 1

2 for both models with two embedding positions. If it
holds that r < 1/2, Eve flips the output of Equation (5.74) for the model with linear
PMF or Equation (5.131) for the constant ratio PMF and thus gets r′ = 1− r.

The experimental results in Section 3.3.6 suggest that when Alice uses näıve adaptive
embedding in heterogeneous covers, Eve’s performance is positively associated with
the recoverability of the adaptivity criterion. In this section we want to ascertain if
imperfect recovery also influences both players’ game-theoretic optimal strategies.

Note that a recovery rate of r = 1
2 indicates (conditionally) perfect SSI, as Eve is

not able to recover the order better than random guessing. For such a situation, the
payoff is probably not influenced by Eve’s strategy.

5.2.3.1 Imperfect Recovery with Linear Increasing PMF

With the introduction of imperfect recoverability, i. e., 1/2 < r < 1, we need to adjust
the payoff function from Equation (5.90).

Lemma 5.26. The payoff function in this model with recovery rate r is:

χr(ā, ē) = r·

(
1

2
− (ā · ē ·m0 + (1− ā) · (1− ē) ·m1)

)

+ (1− r)·

(
1

2
− ā · (1− ē) ·m0 − (1− ā) · ē ·m1

)
. (5.159)

Proof. Imperfect recovery is modeled by a mixture of correct and incorrect recovery.
The payoff function from Lemma 5.20 holds with probability r for the case of correct
recovery. And with probability (1 − r), the payoff function is given by the terms in
columns 4–6 of Table 5.5 for the case of incorrect recovery.
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Theorem 5.13. There exists a unique (asymmetric) Nash equilibrium in mixed strategies
for r 6= 1/2. In this equilibrium it holds that:

ā∗r =
m1

m0 +m1
(5.160)

ē∗r =
m0 − r(m0 +m1)

(1− 2r)(m0 +m1)
. (5.161)

Proof. The partial derivatives of the payoff function are:

∂χr(ā, ē)

∂ē
= (1− 2r)(m0 +m1)ā− (1− 2r)m1, (5.162)

∂χr(ā, ē)

∂ā
= (1− 2r)(m0 +m1)ē−m0r(m0 +m1). (5.163)

Setting both derivatives to zero yields the strategies.

Inserting ā∗r in the partial derivative of the second term of Eq. (5.159) (factor (1−r)),
which describes the case when Eve is not able to recover the order of the positions,
eliminates all factors containing ē in this term. The same was already shown for the
first term of Eq. (5.159) (factor r) in the proof of Theorem 5.11. Some algebra shows
that χr(ā, ē

∗
r) is independent of ā as well and thus, with the same arguments as in the

proof of Theorem 5.11, (ā∗r , ē
∗
r) is a Nash equilibrium.

Notably, Alice follows the same strategy as with perfect recoverability, whereas Eve
deviates from her strategy.

As can be seen from the new equilibrium strategies, Eve’s strategy is not well-defined
for r = 1/2. Thus, we handle this case separately.

Corollary 5.17. In the case of r = 1/2 the payoff function χ 1
2

is linear in ā and

independent of ē. By this, Eve cannot influence the payoff. Alice’s best strategy is ā = 1,
i. e. näıve adaptive embedding. The payoff in equilibrium is always between 5

12 and 1
2 ,

and depends only on m0.

Proof. Inserting r = 1/2 into Equation (5.159), yields:

χ 1
2
(ā, ē) =

1

2
(1−m1) +

m1 −m0

2
ā, (5.164)

which is linear in ā and independent of ē. Obviously, the slope m1−m0
2 is positive

whenever m0 < m1. Thus, the maximum is reached at ā = 1 and the payoff is:

5

12
<

1−m0

2
≤ 1

2
, (5.165)

as 1
6 > m0 ≥ 0 (cf. Equation (5.64)).
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Table 5.6: Game outcome with incorrect recovery in different states of the world

Incorrect recovery

Alice’s choice Eve’s choice Probability Reality AER Reason

y
(0)
0 ŷ

(1)
0 ā · ē y

(0)
1

1
2 Corollary 5.10

y
(0)
0 ŷ

(0)
1 ā · (1− ē) y

(1)
0

1
t0+1 Lemma 5.24, i = 0

y
(0)
1 ŷ

(0)
0 (1− ā) · ē y

(1)
1

1
t1+1 Lemma 5.24, i = 1

y
(0)
1 ŷ

(1)
1 (1− ā) · (1− ē) y

(0)
0

1
2 Corollary 5.10

Interpreted for realistic cover sources, this special case echos the obvious that if
there is no leakage of information through the recoverability of the adaptivity criterion,
there is no advantage for Eve if she tries to recover it.

For r 6= 1/2, we find that the equilibrium strategies are still equalizer strategies, and
the game outcome is the same as in the case of perfect recovery.

Lemma 5.27. With recovery rate r, the equilibrium strategies are equalizer strategies
and the payoff in equilibrium is:

χr(ā
∗
r , ē
∗
r) =

1

2
− m0 ·m1

m0 +m1
. (5.166)

Proof. From the proof of Theorem 5.13 follows that the players cannot influence the
pay-off when the other player uses her equilibrium strategy. Thus, ā∗r and ē∗r are
equalizer strategies. The payoff follows from combining Equations (5.159), (5.162) and
(5.163).

5.2.3.2 Imperfect Recovery with Constant Ratio PMF

With imperfect recoverability, i. e., 1/2 < r < 1, we need to adjust the payoff function
in Equation (5.144) in a similar way as above.

Lemma 5.28. The payoff function in the model with recovery rate r is:

χr(ā, ē) = r ·

(
1− ā+ ē

2
+

(
1− t0

t0 + 1
− t1
t1 + 1

)
· āē

− (1− ā− ē) ·
(

t1
t1 + 1

))

+ (1− r) ·

(
1

2
− ā+ ē

2
−
(

1− t0
t0 + 1

− t1
t1 + 1

)
· āē
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+

(
1− t0

t0 + 1

)
· ē+

(
1− t1

t1 + 1

)
· ā

)
. (5.167)

Proof. Imperfect recovery is modeled by a mixture of correct and incorrect recovery.
The payoff function from Corollary 5.25 holds with probability r for the case of correct
recovery. And with probability (1 − r), the payoff function is given by the terms in
columns 4–6 of Table 5.6 for the case of incorrect recovery.

Theorem 5.14. There exists a unique (asymmetric) Nash equilibrium in mixed strategies
for r 6= 1/2. In this equilibrium it holds that:

ā∗r =
(1− t1)(1 + t0)

2(1− t0t1)
, (5.168)

ē∗r =
1

2
− t0 − t1

2(2r − 1)(t0t1 − 1)
. (5.169)

Proof. The partial derivatives of the payoff function are:

∂χr(ā, ē)

∂ē
=

1

2
+ r ·

(
t0

t0 + 1
+

t1
t1 + 1

− 1

)
− t0
t0 + 1

+ (2r − 1) ·
(

1− t0
t0 + 1

− t1
t1 + 1

)
· ā, (5.170)

∂χr(ā, ē)

∂ā
=

1

2
− r + (2r − 1) · t1

t1 + 1

+ (2r − 1) ·
(

1− t0
t0 + 1

− t1
t1 + 1

)
· ē. (5.171)

Setting both derivatives to zero yields the strategies.

Inserting ā∗r in the partial derivative of the second term of Eq. (5.167) (factor (1−r)),
which describes the case when Eve is not able to recover the order of the positions,
eliminates all factors containing ē in this term. The same was already shown for the
first term of Eq. (5.167) (factor r) in the proof of Theorem 5.12. Some algebra shows
that χr(ā, ē

∗
r) is independent of ā as well and thus, with the same arguments as in the

proof of Theorem 5.12, (ā∗r , ē
∗
r) is a Nash equilibrium.

Just as in Theorem 5.13, Alice follows the same strategy as with perfect recoverability,
whereas Eve deviates from her strategy. This could indicate that the game-theoretical
optimal strategy of the steganographer is invariant to the recovery rate. This highlights
again the importance of such a strategy and the superiority of it in comparison to
random uniform and näıve adaptive embedding.

As can be seen from the new equilibrium strategies, Eve’s strategy is not well-defined
for r = 1/2. Thus, we handle this case separately.
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Corollary 5.18. In the case of r = 1/2 the payoff function χ 1
2

is linear in ā and

independent of ē. By this, Eve cannot influence the payoff. Alice’s best strategy is ā = 1,
i. e. näıve adaptive embedding. The payoff in equilibrium is always between 1

4 and 1
2 ,

and depends only on t0.

Proof. Inserting r = 1/2 into Equation (5.167), yields:

χ 1
2
(ā, ē) =

t1 + 3

4(t1 + 1)
+

(
1

2(t0 + 1)
− 1

2(t1 + 1)

)
ā, (5.172)

which is linear in ā and independent of ē. Obviously, the slope 1
2(t0+1) −

1
2(t1+1) is

positive whenever t0 < t1. Thus, the maximum is reached at ā = 1 and the payoff is:

1

4
<

1

4
+

1

2(t0 + 1)
≤ 1

2
, (5.173)

as t0 ≥ 1.

Again, the same as for Corollary 5.17, interpreted for realistic cover sources, the case
of r = 1

2 , echoes that if there is no leakage of information through the recoverability of
the adaptivity criterion, there is no advantage for Eve if she tries to recover it. So, a
cover source with that property would be the best for Alice.

For r 6= 1/2, we find that the equilibrium strategies are still equalizer strategies, and
the game outcome is the same as in the case of perfect recovery.

Lemma 5.29. With recovery rate r, the equilibrium strategies are equalizer strategies
and the payoff in equilibrium is:

χr(ā
∗
r , ē
∗
r) =

(t0 + 1)(t1 + 1)− 4

4(t0t1 − 1)
. (5.174)

Proof. From the proof of Theorem 5.14 follows that the players cannot influence the
pay-off when the other player uses her equilibrium strategy. Thus, ā∗r and ē∗r are
equalizer strategies. The payoff follows from combining Equations (5.167), (5.168) and
(5.169).

5.2.4 Numerical Illustrations

In this section we numerically illustrate all the relevant parameters from the previous
sections. We exclude the case of imperfect recovery from the illustrations, as we have
seen that the payoff is independent of the recovery rate.

5.2.4.1 Numerical Illustration for Linear Increasing PMF

Our analysis of the instantiation where the cover source is modeled with a linear
increasing PMF shows that the optimal distribution of embedding changes depends
on the level of heterogeneity of the cover source. So, steganographer and steganalyst
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both have to adjust their strategy to the cover source. The discussion of our results is
facilitated by looking at numerical examples in Figures 5.11 to 5.13. As one requirement
for our model was simplicity, we are able to calculate numerically the KLD as benchmark,
which is infeasible for real-world cover sources. Furthermore, we show all plots for a
cover source with low entropy (Figures 5.11(a), 5.12(a), and 5.13(a)) and with high
entropy (Figures 5.11(b), 5.12(b), and 5.13(b)).

Figure 5.11 shows the optimal value of ā∗, once by numerically minimizing KLD
(dashed line) and once the value found in the equilibrium (solid line). Figure 5.12
shows the KLD created by the values for ā∗ from the figure above and Figure 5.13
shows the resulting EER. To recall how the corresponding PMFs look like, please refer
to Figure 5.9 (on page 101). Figure 5.13 reveals that if Alice’s goal was to minimize
KLD, she would choose higher values for ā∗, i. e., embed with higher probability in
the better suitable location. Furthermore, it can be seen in Figure 5.12 that the KLD
generated by Alice’s strategy in the equilibrium increases rapidly with an increasing level
of heterogeneity. Nonetheless, Figure 5.13 shows that Alice’s strategy in the equilibrium
implicates a higher EER than in the situation with minimal KLD, and thus more secure
steganography against the specific detector defined in our model. By this, both players
could perform better, if the other would not follow the strategy in the equilibrium. So,
it follows that if Alice tries to minimize the KLD and Eve anticipates this (still being
bound to her specific detector), Eve’s detection rate would increase and thus Alice
would perform less secure steganography.
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(a) m0 = 0.01,m1 ∈ [0.01, 0.165]
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(b) m0 = 0.05,m1 ∈ [0.05, 0.165]

Figure 5.11: Optimal ā∗ once with regard to minimal KLD (dashed line) and once with
regard to the equilibrium of our game (solid line).

5.2.4.2 Numerical Illustration for Constant Ratio PMF

Here, we show plots of all important parameters of the instantiation with a cover
source that is modeled with a constant ratio PMF, with the restrictions t0, t1 ∈ [1, 4]
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Figure 5.12: Optimal KLD once minimal achievable using LSB replacement (dashed
line) and once with regard to ā∗ in the equilibrium of our game (solid line). Note the
different scales.

EER

0.450

0.455

0.460

0.465

0.470

0.475

0.480

0.485

0.490

0.495

m1 −m00 0.02 0.04 0.06 0.08 0.10 0.12

(a) m0 = 0.01,m1 ∈ [0.01, 0.165]

EER

0.450

0.455

0.460

0.465

0.470

0.475

0.480

0.485

0.490

0.495

m1 −m00 0.02 0.04 0.06 0.08 0.10 0.12 0.14

(b) m0 = 0.05,m1 ∈ [0.05, 0.165]

Figure 5.13: Optimal EER with optimal KLD and fixed detector (dashed line) and
once in the equilibrium of our game (solid line).
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Figure 5.14: Entropy of cover generation as a function of the ratio parameters (left) and
the level of heterogeneity, measured by the difference of the Kullback–Leibler divergence,
∆ KLD = KLD(P0,P(y1))−KLD(P0,P(y0)) (right).

and t0 ≤ t1. Figure 5.14(a) shows the entropy of the cover source as a function
of the ratio parameters t0 and t1. As intended with our model, there are several
parameter combinations that yield the same entropy. Figure 5.14(b) depicts the level
of heterogeneity ∆ KLD = KLD(P0,P(y1))−KLD(P0,P(y0)), i. e., the difference of the
KLD. Conforming with our expectations, ∆ KLD is zero for a homogeneous cover
source and rises for fixed t0 with increasing t1. The black lines in Figure 5.14 indicate
the entropy levels used in Figure 5.16. Figure 5.15(a) shows Alice’s optimal strategy
ā∗ as a function of t0 and t1. Whenever t0 = t1, i. e., a homogeneous cover source,
the optimal strategy is to use random uniform embedding, illustrating Corollary 5.11.
When t0 = 1, i. e., the possibility for perfect steganography, embedding should solely

take place in y
(0)
0 (with the exception if t0 = t1 = 1, the uniform, homogeneous case),

confirming Corollary 5.12. In all other cases, the values for ā∗ are in the interval
(1/2, 1). Figure 5.15(b) shows the AER in the equilibrium, derived in Corollary 5.14.
It can be seen that if one of the two symbols allows perfect steganography, the AER
is always exactly 1/2. It reaches its minimum for an homogeneous cover with a low
entropy. As we fixed LSB replacement as embedding function, which is not the optimal
embedding function, we do see different payoffs for cover sources with the same entropy.
In Figure 5.16 we fixed the level of the entropy at two levels: high (solid lines) and
low (dashed lines). Figure 5.16(a) shows Alice’s equilibrium strategy as a function of
the level of heterogeneity and Figure 5.16(b) the equilibrium payoff. We see that for
cover sources with low entropy both equilibrium strategy and payoff rise very slowly in
comparison to a cover source with high entropy.
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ā
∗

0.5

0.6

0.7

0.8

0.9

1
ā∗
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Figure 5.15: Optimal adaptive embedding strategy ā∗ (left) and average error rate
(AER) in equilibrium (right).
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Figure 5.16: Equilibrium strategy ā∗ (left) and equilibrium payoff in the χ(ā∗, ē∗) (right)
as a function of the level of heterogeneity with constant entropy once low (H = 2.2 bit,
dashed line) and once high (H = 3.6 bit, solid line).

5.2.4.3 Comparison

When we compare the numerical illustrations of both instantiations with two cover
positions, we see several similarities. First, in both models the optimal adaptive
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embedding strategy depends on the level of heterogeneity emitted by the cover source.
Independent of the entropy of the cover source, for both models random uniform
embedding is only optimal for a homogenous cover source, as can be seen in Figures 5.11
and 5.15(a). Furthermore, with increasing heterogeneity, the preference of the more
suitable embedding position increases. Nonetheless, we also see that näıve adaptive
embedding is never optimal.

Comparing Figures 5.11 and 5.16(a) reveals that for cover sources with a higher
entropy the optimal adaptive embedding strategy rises faster than for a cover source
with a low entropy. Finally, regarding the payoff, Figures 5.13 and 5.16(b) confirm that
Alice profits most from a very heterogeneous cover source.

5.2.5 Type of Game

The purpose of this section is to facilitate the classification of the games introduced so
far into the game-theoretical literature. A large part of this section originates from the
correspondence with the anonymous reviewers of [78].

As introduced in Definition 4.2.1, a game with incomplete information, also called a
Bayesian game, is characterized by the uncertainty of some, or all of the players about
either payoffs or strategies of the other players. As we explicitly deal with uncertainty,
although in a different context, it might suggest itself that we should model our game as
a Bayesian game. In this section we explain how we circumvent the analysis of Bayesian
Nash equilibria and why we are able to concentrate on (ordinary) Nash equilibria in our
set-up.

According to the definition by Harsanyi [39], a Bayesian game is characterized as a

“. . . game with incomplete information where the players are uncertain
about some important parameters of the game situation, such as payoff
functions, the strategies available to various players, the information other
players have about the game, etc. However, each player has a subjective
probability distribution over the alternative possibilities.”

In principle, the games in this section can be formulated as Bayesian games and
thus solved for Bayesian Nash Equilibria. Our cover generation process, Nature, draws
covers according to the probability distribution P0. For game-theoretic tractability, this
distribution is assumed to be common knowledge. Together with the knowledge that
the Judge forwards cover and stego objects with probability 1/2, we obtain the set of
all possible types as the cross product of all possibilities. However, as we do not restrict
the alphabet size of the cover symbols (0, . . . , 2` − 1) in the general framework, the
number of different values drawn by Nature can be very large.

We use a different approach and incorporate the common knowledge about P0, the
embedding operation (hence, P1) and the Judge’s equal priors in Eve’s local decision
rule. In Lemmas 5.74 and 5.23, we allow Eve to make locally (information-theoretically)
optimal decisions. We obtain this optimality by the maximum a posteriori (MAP)
estimation [27]. MAP estimation is the method of choice, not only in steganography, to
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5.2. Cover Models with Two Embedding Positions

estimate the generating distribution of a new observation, if we have prior knowledge
about the distributions (P0,P1, and the Judge in our case). As we assume the cover
symbols to be a priori independent, the problem of finding the best statistical test
for our simple models can be isolated from the problem of choosing embedding and
detection positions.17

Technically, we aggregate the two non-strategic sources of randomness (Nature
and Judge) and replace them with the first moment when calculating the EER in
Lemmas 5.20 and 5.26, and the AER in Lemmas 5.25 and 5.28. EER and AER are
common and valid metrics for steganographic security (Sec. 2.2.3). Averaging success
rates over the realizations of Nature and Judge does not affect the payoff of risk-neutral
players.

After having taken care of non-strategic randomness, we are left with the strategic
choices of Alice and Eve, i. e., which position to embed and examine, respectively. In our
model with the two positions y0 and y1, this leaves 4 possible combinations, for which
we calculate the error rates explicitly by using Eve’s decision function DR. Another
source of strategic randomness is introduced by allowing mixed strategies in the resulting
zero-sum matrix game with payoffs (“rates”) as given in Table 5.7.

For a fixed instance of the cover generation source, the parameters m0 and m1, or
t0 and t1, respectively, are fixed as well. Thus, we have fixed rates (1

2 −mi or 1
ti+1) in

the cases where ā = ē ∈ {0, 1}.

Table 5.7: Payoff matrices of the bi-matrix games

(a) EER of linear increasing PMF

Eve
y0 y1

Alice
y0

1
2 −m0 1/2

y1 1/2
1
2 −m1

(b) AER of constant ratio PMF

Eve
y0 y1

Alice
y0

1
t0+1

1/2

y1 1/2
1

t1+1

These games can be solved for Nash equilibria in mixed strategies, as a quick glance
at the payoff matrices shows that there is no equilibrium in pure strategies in the general
case of 0 < m0 < m1, or 1 < t0 < t1 (i. e., with strict inequalities).

To summarize the above: our set-up starts as a game with incomplete information,
i. e., a Bayesian game: the players are uncertain about the cover realization. By
introducing Nature and the Judge, we use the Harsanyi transformation [39] to rewrite
the game as a game with imperfect information. Finally, aggregating the probability
distributions of Nature and the Judge to a (frequentist) rate, the EER, or AER,
transforms the set-up to a simultaneous move game with perfect information.

17Finding these tests for more practical scenarios is the subject of another stream of research, e. g. [18].
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The games we introduce are characterized by Alice’s objective to minimize the
information flow to Eve. As the amount of available information is endogenous in our
set-up, we do not have discrete information sets like in classical game theory. Our games
might constitute a new class of games that could be called information hiding games.

5.2.6 Discussion and Summary

Summarizing this section, we have proven that

I both adaptive steganography games with two positions have a unique symmetric
Nash equilibrium in equalizer strategies (Theorem 5.11 and Corollary 5.8 from
Section 5.2.1; and Theorem 5.12 and Corollary 5.15 from Section 5.2.2)

I random uniform embedding is only optimal for homogeneous covers (Corollary 5.4
and Corollary 5.11); and

I näıve adaptive embedding is only optimal when perfect steganography is possible
(Corollary 5.5 and Corollary 5.12).

The optimal embedding parameter for heterogeneous covers depends on the level of
heterogeneity, albeit in a non-linear manner. Although the dependence is not linear,
it is monotone in the amount of heterogeneity, i.e., the more heterogeneous the cover
source is, the higher is Alice’s preference for the better suitable position.

Remark 5.6. In our model, the probability distribution of the cover source determines
the location of the game-theoretic equilibrium and thus the equalizer strategy. As this
distribution is unknowable in practice, Alice and Eve may not be able to find the exact
equilibrium strategy.

Furthermore, we have shown that the concept of equalizer strategies extends to the
model with imperfect recovery. We show that both players’ payoff does not depend on
the recovery rate. It is solely determined by the heterogeneity emitted by the cover
source. However, the recovery rate may matter if Alice deviates from (or does not know)
her optimal strategy.

It is interesting to note that, excluding the corner case r = 1
2 , the equilibrium

payoff of the game is independent of r. As the concept of equalizer strategies makes
the players indifferent to the opponents’ action, we conjecture that the equilibrium
strategies completely balance the local advantage.

Furthermore, concerning steganographic security, we state the following corollary
about the recovery rate r.

Corollary 5.19. If Alice is able to find an equalizer strategy, the recovery rate is of no
interest to her.

Proof. With Alice playing an equalizer strategy, Eve cannot gain from a better or worse
recoverability. Thus, it is of no interest to Alice.

This result is remarkable, as there might be realistic scenarios where an equalizer
strategy is feasible and, for the reasons stated here, very desirable. This solution concept
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has, to the best of our knowledge, not found much attention in the field of steganography
research. Interesting open questions for further research are, if the equalizer strategies
are always optimal for Alice and under which conditions do they exist.

5.3 Lessons Learned and Limitations

In this section we summarize the findings from all instantiations of our game-theoretical
framework and show what we can learn from all of them regarding the construction of
more secure adaptive steganography. Then, we present the limitations of our approaches
in order to highlight what should not yet be concluded from our results and what are
the most prominent research gaps that have to be closed to leverage our results.

5.3.1 Lessons Learned – Secure Adaptive Steganography

In this section we tie the findings from all instantiations of our game-theoretical
framework to the definitions of steganographic side information and uncertainty from
Section 3.1. From this we can deduce optimal strategies in different scenarios and,
finally, outline directions towards a new embedding paradigm. We differentiate optimal
strategies depending on the availability of perfect SSI and perfect uncertainty. Especially,
the concept of equalizer strategies and the balancing of the opponent’s advantage induces
interesting properties even for realistic cover sources where the generating distribution
is unknown. Making the opponent indifferent to the own actions would automatically
lead to an optimal embedding strategy.

Definition 5.4 (Optimal Embedding Strategies).
The steganographer’s embedding strategy is called optimal for . . .

1. perfect uncertainty, if she spreads the embedding changes uniformly across the
perfectly uncertain positions,

2. perfect steganographic side information, if she chooses deterministically the most
uncertain positions resulting from this perfect SSI, and

3. neither perfect uncertainty nor perfect steganographic side information, if she
equalizes the steganalyst’s advantage over positions.

Each of these definitions requires some reflection.

Remark 5.7 (Presence of Perfect Uncertainty). If we have perfect uncertainty for at
least k positions, we spread our embedding changes uniformly across these positions.
If we have exactly k perfectly uncertain positions, we deterministically use them. In
this case it does not matter whether the SSI we used to identify the embedding positions
is reconstructible or not, as Eve might perfectly know in which positions we embed but
cannot gain from that knowledge.
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This remark is supported by the game-theoretical findings in Section 5.1 when
f(i) = 1/2 in binary sequences of length n and the corner cases m0 = 0 and t0 = 1
in Sections 5.2.1 and 5.2.2, respectively. Additionally, this remark can be tied to the
cover composition model from [8], where the indeterministic part resembles our notion
of perfectly uncertain positions (cf. Section 3.1.1.2), and where it is argued that the
embedding changes should be confined solely to this indeterministic part.

Remark 5.8 (Presence of Perfect SSI). If we have (unconditionally) perfect stegano-
graphic side information, Eve will get no information about the rule according to which
we select the embedding positions. Thus, we choose deterministically the most uncertain
positions resulting from this perfect SSI, i.e., we perform näıve adaptive embedding.

This remark is backed up by the cases of r = 1/2 in Section 5.2.3, where the payoff
was independent of Eve’s choice and was linear increasing in Alice’s choice. This states
the obvious, if Eve cannot recover the order, she will not gain from trying so.

Remark 5.9 (Absence of Perfect Uncertainty and Perfect SSI). If we can ensure
neither perfect SSI nor enough18 perfectly uncertain positions, we have to randomize
the selection of embedding positions over all positions, excluding only the perfectly
informative positions. We deduce the embedding probability for single positions by taking
the uncertainty, or suitability, into account. The goal in this situation is to create a
uniform advantage for Eve by assigning a higher probability to more suitable embedding
positions and a lower change probability to less suitable positions. This is the translation
of the solution concept of equalizer strategies to empirical embedding functions.

It is questionable if there exists either perfect SSI or perfect uncertainty for empirical
cover sources. If they exist, game theory is not necessary to find the optimal strategies,
as there would be no competition between Alice and Eve. Alice would always win.
But, similar to the argument that P0 and P1 are unknowable in practice [7], it seems
reasonable that they do not exist or at least that they are not tractable for real-world
cover sources.

If we accept this, we should follow the solutions in our game-theoretical instantiations
and equalize Eve’s advantage over all positions. Although our equilibrium strategies
do depend on the knowledge of the cover distribution or the KLD between P0 and
P1, we can construct a new embedding paradigm called equalizer embedding strategy
for empirical cover sources, given (partially) reconstructible SSI Θ and an adaptivity
criterion ζ(·,θ) whose values are tied to uncertainty. We believe that these strategies,
although they might not be perfectly optimal, help a steganographer to perform more
secure adaptive steganography.

Definition 5.5 (Equalizer Embedding Strategy).
A steganographer uses an equalizing embedding strategy, depending on an adaptivity

criterion ζ(·,θ), when she calculates the change probability λi of each position x
(0)
i from

18In this context “enough” means that we have less than the k perfectly uncertain embedding positions.
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a given cover realization x(0) by:

∀i ∈ {0, . . . , n− 1} : λi = ζ(x
(0)
i , θi)

−1/d, (5.175)

where d is a normalizing constant to ensure that
∑n−1

i=0 λi = k, the bit-length of the
(encoded) message.

Such a strategy ensures a uniform advantage for Eve, as it holds that:

∀i, j ∈ {0, . . . , n− 1} : λi · ζ(x
(0)
i , θi) = λj · ζ(x

(0)
i , θj). (5.176)

This strategy should always be followed when we cannot guarantee either enough
perfectly uncertain embedding positions or unconditionally perfect SSI for every realiza-
tion of the cover source. Furthermore, if all positions are equally uncertain, it ensures
random uniform embedding. This is in line with our game-theoretical results, where the
optimal strategy for homogeneous cover sources is random uniform embedding.

Figures 5.17 and 5.18 visualize the change probability and Eve’s advantage for
different embedding strategies, respectively. The solid blue line depicts an equalizing
embedding strategy, the dashed blue line näıve adaptive embedding and the dotted
blue line shows random uniform embedding. The red line shows exemplary values of an
adaptivity criterion ζ(·,θ) where lower values indicate better suitability.

Finally, we like to note that the concept of equalizer embedding strategies has
occurred in earlier game-theoretical models of steganography, although it was not
recognized as such by the respective authors. In the example from Section 4.3.1, the
author states that Eve’s equilibrium strategy “consists of equalizing as many of the
lowest order effective channel capacities as allowed by the distortion limit.” [17, p. 9]
Then, for the batch steganography example from Section 4.3.2, the optimal strategy
to spread the secret message as thinly as possible over all cover objects is nothing else
than an equalizer embedding strategy.

5.3.2 Limitations

One of the most obvious limitations of our game-theoretical models is that all of them
rely on a number of assumptions. The models in Section 5.1 rely on the assumptions
that covers consist of binary objects of arbitrary length and that the steganographer
has full access to the side information that determines the suitability. Furthermore,
the steganalyst can either query the side information or is able to perform a maximum
likelihood test between the cover and the stego distribution. The models in Section 5.2
assume that covers consist of only two a priori independent positions and both players
know the marginal cover distribution. Additionally, we assume that the steganographer
replaces only one bit, while the steganalyst only inspects one position. So, many
limitations apply when transferring our results to practical systems. We nevertheless
think that a solid theory might help to guide the design of future embedding and
detection functions with qualitative insights. One of the biggest research challenges
towards this end seems to be the incorporation of non-trivial dependence structures in
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Figure 5.17: Comparison of change probabilities for the embedding strategies: equalizer
embedding strategy (solid blue line), näıve adaptive embedding (dashed blue line), and
random uniform embedding (dotted blue line). The red line shows the values of an
adaptivity criterion ζ(·) (lower values indicate better suitability).

the cover model. First observations in this directions show that such a game is more
complex and the location of the game theoretical equilibrium might be hard to identify.

Then, in all the models we examined, the location of the game theoretical equilibrium,
and thus the equalizer embedding strategy, depends on the parameters of the cover
source P0. Although, we believe that these equilibria exist in realistic settings, i.e.,
without the limiting assumptions mentioned in the last paragraph, it still might be
computationally hard to find their exact location. We believe that even if the exact
location of the equalizer strategies is not tractable, already an approximation might
lead to more secure embedding functions. The same holds for steganalysis: even when
the game theoretical optimal detection strategy is not known, the incorporation of
the knowledge about likely embedding positions should always increase the detection
performance, as suggested by recent results [81].

Another assumption we used in most of our models is that not only the cover
distribution but also the exact values of the suitability are known. As already mentioned
in Definition 4.16, all practical embedding algorithms use adaptivity criteria as an
approximation of the authors’ knowledge about how suitable embedding positions are.
The incorporation and consequences of imperfect adaptivity criteria has to be taken
into account to furthermore bring our game theoretical models one step closer to reality.

Finally, most of nowadays steganalysis methods rely on machine learning and high-
dimensional feature sets. The adaption and validation of our framework for these
detectors remains an open issue. It might be possible that these detectors consider
adaptivity by default, or even intuitively adapt to a steganographer who plays an
equalizer strategy. But, we cannot be sure about that before we find a way to incorporate
them into the framework or find a way to implement such an equalizer strategy for
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Figure 5.18: Comparison of Eve’s advantage for the embedding strategies: equalizer
embedding strategy (solid blue line), näıve adaptive embedding (dashed blue line), and
random uniform embedding (dotted blue line). The red line shows the values of an
adaptivity criterion ζ(·) (lower values indicate better suitability).

realistic settings and benchmark it against machine-learning based detectors.
In general, we regard this stream of work as a step towards adding more theoretical

rigor to practical steganography and steganalysis.
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Chapter 6

Conclusion

6.1 Summary of Results

The contribution of this thesis is twofold. We establish the formalization of side-informed
steganography and a game-theoretical analysis of this situation. The following sections
summarize our main results.

6.1.1 Formalizing Side Information in Steganography

To the best of our knowledge, we are the first to formally define steganographic side
information (SSI) (cf. Definition 3.1) as a source of information fully available to
the steganographer to enhance her embedding strategy. This definition captures all
possibilities in a steganographic communication system to utilize side information during
the embedding. We hope to remove the inconsistent use of the term side information
in the research community with our definition. Furthermore, we differentiate between
unconditionally and conditionally perfect SSI, which is exclusively available to the
steganographer, and (partially) reconstructible SSI, to explicitly state if, and under
what conditions, the SSI is also available to the steganalyst.

We relate the definition of SSI to the definition of uncertainty (cf. Definition 3.2)
on the side of the steganalyst, that quantifies the lack of knowledge about which type
of object, cover or stego, the steganalyst faces. This definition is strongly tied to
steganographic security. We give information-theoretic intuitions of both definitions and
extend them to practical content-adaptive embedding schemes with the introduction
of the recovery rate (cf. Definition 3.7). The recovery rate measures the amount
of embedding positions, which the steganalyst can recover from a stego object (cf.
Section 3.1) with the SSI available to her.

We argue that the common usage of SSI in the development of side-informed
embedding is as if it was perfect SSI. To show that this rarely (or never) is the case, we
develop a targeted attack against several widely used adaptivity criteria. We modify a
powerful variant of WS steganalysis for the detection of initial sequential embedding to
construct a version that reliably detects näıve adaptive embedding, i.e., the strategy
that places all the embedding changes in the best suitable positions (cf. Section 3.2.2.2).
Our experiments suggest a superior performance of our WS variant. This variant detects
all four tested adaptivity criteria with very high accuracy (cf. Section 3.3.6).

In general, we conclude that steganographers should avoid näıve adaptive embedding
and take the recovery rate of their adaptivity criteria into account. New proposals of
embedding schemes should thus include a detailed examination of the recovery rate to
preclude trivial targeted attacks. Our experiments furthermore suggest that, at least for
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our four examined adaptivity criteria, the recovery rate is approximately constant for
each criterion tested. Thus, the recovery rate can be seen as a property of the adaptivity
criterion.

6.1.2 Game-Theoretical Modeling of Steganography

Inspired by the results of our targeted attack against näıve adaptive embedding and
the obvious assumption that any rational steganographer would change her strategy
against an informed steganalyst, we conclude that this contest is best framed with the
help of game theory. Although there are occasional attempts to frame steganography
with game theory, they are mostly tailored to very specific scenarios [17, 50, 69].

We present a game-theoretic framework that captures all relevant properties of a
steganographic set-up with the availability of side information (cf. Section 4.4). We give
rigorous definitions of heterogeneous cover sources (cf. Definition 4.14), suitability (cf.
Definition 4.15) and an adaptivity criterion (cf. Definition 4.16) in our framework. We
then identify the canonical embedding and detection strategies and their information-
theoretic optimal counterparts.

We then continue to instantiate our framework with specific heterogenous cover
sources and determine the game-theoretical solutions in each instantiation (cf. Sec-
tions 5.1 and 5.2). In total five different instantiations resemble different models about
the knowledge and power of the steganographer and steganalyst, respectively. The
results of all instantiations share that the steganalyst will take all possible embedding
positions into account. The classical embedding strategies of näıve adaptive and random
uniform embedding are only viable in degenerate corner cases, i.e., perfectly uncertain
embedding positions or homogeneous cover sources.

Furthermore, based on instantiations with only two available embedding positions, we
show that our game-theoretic optimal embedding strategies differ from the information-
theoretic optimal ones. Information-theoretic optimal embedding has traditionally
been the “holy grail” in steganographic research, due to the information-theoretic
security definition. Our results indicate that a steganographer who follows a game-
theoretic optimal embedding strategy may rather think of information-theoretic optimal
embedding as an ordinary wine glass.

Also, other researchers that followed us in studying game-theoretical models in
steganography agree with us, in that “[. . . ] the KL divergence is no longer an appropriate
measure of security and Alice’s optimal embedding strategy should be determined from
a framework based on the game theory.” [14, p. 902804-12]

Finally, we argue why the concept of the so-called equalizer strategies can induce
important aspects for practical embedding schemes and highlight what has to be
considered in the design of new side-informed embedding functions. If perfect SSI
or perfect uncertainty can be guaranteed, we do not need a game-theoretic model
and the classical embedding strategies are sufficient. If we can guarantee neither, we
propose a new paradigm for secure steganography, called equalizer embedding strategy
(cf. Definition 5.5). This way, we translate our game-theoretical optimal embedding
strategies to a practical embedding function. With an equalizer embedding strategy,

140



6.2. Outlook and Future Research

the level of uncertainty per position, measured by an imperfect adaptivity criterion,
and the probability to change this position for embedding leverage each other out and
create a uniform local advantage on the side of the steganalyst.

6.2 Outlook and Future Research

There are several ways in how to foster the results of this thesis in future research.
Considering the targeted attack on näıve adaptive embedding, one could elaborate

the knowledge on how the embedding operation changes single positions to come up
with a more accurate estimation. We restricted our attacks to the simplest form of
recalculating the value of the adaptivity criterion for the positions in the stego object.

Another direction would be to take imperfect recovery into account and develop a
version of our initial attack strategy that does tolerate some “gaps” in the order of the
recoverability. If we can achieve this, slightly randomized versions of näıve adaptive
embedding could be detected with a higher accuracy.

Our game-theoretical framework has established a new direction in steganography
research that is now widely accepted as one of “today’s most interesting research
challenges” [55, p. 8] and “[game theory is] an alternative and appealing possibility to
formally capture the sender’s and Warden’s ignorance” [28, p. 361].

But, there is still a lot of space for advances in the game-theoretic analysis of
steganography in the future. For all instantiations, we were only able to solve the
equilibrium strategies for reduced versions of the cover source that emit cover objects of
length 2. So, one of the main aspects of future work here is, as stated in a position paper
by the leading researchers in steganography in last year’s most important conference on
information hiding and multimedia security (IH &MMSec 2013):

“Find equilibria for practical covers, and transfer insights of game-theoretic
solutions from current toy models to the real world.” [58, p. 54]

For real-world embedding strategies, first and foremost, the utilization of an equal-
izer embedding strategy would be of great interest. It will be interesting to see how
such embedding strategies perform against machine learning-based steganalysis. It is
commonly assumed, although it has never been proven, that this blind steganalysis
implicitly recognizes adaptive embedding and anticipates it, given the right features.
The exact functionality of machine learning-based steganalysis is not well understood
and often treated as some kind of black box in the steganography literature.

We finally mention that game theory research discusses plenty of extensions to the
basic games which could be of great interest to the steganography community. Most
prevalent are repeated games, as it would be very interesting to see if the “square-root
law of steganographic capacity” [57] could be confirmed with means of game theory.
Further approaches of interest are, amongst others, blocking games [37] and search
games [75].
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(2013). Managing the weakest link: A game-theoretic approach for the mitigation
of insider threats. In Proceedings of the 18th European Symposium on Research in
Computer Security (ESORICS), 273–290.

[64] Leyton-Brown, K. & Shoham, Y. (2008). Essentials of Game Theory: A
Concise, Multidisciplinary Introduction. No. 3 in Synthesis Lectures on Artificial
Intelligence and Machine Learning, Morgan & Claypool.

[65] Lou, D.C., Wu, N.I., Wang, C.M., Lin, Z.H. & Tsai, C.S. (2010). A novel
adaptive steganography based on local complexity and human vision sensitivity.
Journal of Systems and Software, 83, 1236 – 1248, {SPLC} 2008.
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[71] Pevný, T., Filler, T. & Bas, P. (2010). Using high-dimensional image models
to perform highly undetectable steganography. In R. Böhme, P. Fong & R. Safavi-
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Appendix A

Information-Theoretic Derivations

A.1 Derivation of Definition 3.2

The definition of perfect uncertainty follows from notions of the entropy as follows:
Let x ∼ X(q) for q ∈ {0, 1} and q ∼ Q. Then, perfect uncertainty about Q given x

can be described with the entropy of the conditional distribution H(Q|x) = H(Q).
It follows:

H(Q|X = x) = H(Q)⇔ Pr(Q = 0|X = x) = Pr(Q = 1|X = x), (A.1)

and with j ∈ {0, 1}

Pr(Q = j|x) =
Pr(x|Q = j) Pr(Q = j)

Pr(x)
, (A.2)

and

Pr(Q = 0) = Pr(Q = 1) =
1

2
(equal priors), (A.3)

that
Pr(x|Q = 0) = Pr(x|Q = 1)⇔ P0(x) = P1(x). (A.4)

A.2 Derivation of Remark 3.9

Proof. If Equation (3.1) holds for all cover realizations, it holds that

∀x : P0(x) = P1(x)⇔ log
P0(x)

P1(x)
= log 1 = 0, (A.5)

and thus:
DKL(P0||P1) = 0. (A.6)

If Equation (3.1) does not hold for one realization of the cover source x and w. l. o. g.
P0(x) > P1(x), it follows that DKL(P0||P1) > 0.
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Appendix B

Game Theory in Related Fields

We are not the first to consider game theory for modeling situations with rational
defenders and rational attackers. In this section we present game-theoretic approaches
in two fields closely connected to steganography, namely multimedia forensics and
watermarking. Although there is no direct counterpart to the analysis of adaptive
steganography, we also decided to include a game-theoretic approach from the area of
adversarial classification, as interesting parallels exist and the applicability of results in
adversarial classification for universal steganalysis in practice seems worth exploring.

B.1 Multimedia Forensics

In 2013 Barni and Tondi [4] present a meta-game, modeling the source identification
problem in multimedia forensics. They build on the hypothesis testing framework
presented in [9] to cast the problem of a forensic analyst (FA) who has to decide if a
given sequence (image), possibly altered by an adversary (AD), was generated by the
source X or by the source Y . The set-up is similar to the one in steganography, as
the early works in this area did not consider the presence of an adversary, aiming to
impede the forensic analysis. The authors set out “to derive the ultimate achievable
performance of the forensic analysis in the presence of an adversary” [4, p. 450].

The set-up is as follows: There are two sources, X and Y , distributed according to
PX and PY , respectively. Both FA and AD know both distributions and the goal of
the FA is to distinguish sequences generated by X from sequences generated by other
sources. The aim of the AD is, given a sequence yn = (y1, . . . , yn) generated by Y , to
transform this sequence into another sequence zn = (z1, . . . , zn) in such a way that the
FA believes it was drawn from X. The situation is modeled as a strategic two-player
zero-sum game. The strategy space of the FA is to choose the acceptance region Λ0

for sequences generated by X, subject to a prescribed false positive rate Pfp. The
strategies of the AD are all functions f(·) that map a sequence yn to another sequence
zn, subject to a maximum allowed average per-letter distortion D. The payoff function
(for the FA) is defined as the false negative error probability:

u(Λ0, f) = −Pfn = −
∑

yn:f(yn)∈Λ0

PY (yn), (B.1)

where Λ0 is the acceptance region. As this general game proves intractable, the
authors switch to the asymptotic case, where the length of the sequence n tends to
infinity. In this situation they identify an asymptotic Nash equilibrium, in which the
optimal strategy of the FA does neither depend on the strategy chosen by the AD
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nor the probability density function PY . The optimal strategy of the AD is a simple
minimization problem, as the optimal strategy of the FA is universally optimal and
thus Λ0 is fixed. When computing the payoff in equilibrium, the authors show that,
asymptotically, two sources PX and PY are either perfectly indistinguishable or not. In
the first case, Pfn tends to 1, in the second case, Pfn tends to 0 exponentially fast.

B.2 Digital Watermarking

In digital watermarking, together with steganography, the most popular field in infor-
mation hiding, game theory is directly used to construct the so-called Tardos-Codes [1].
Tardos-Codes are fingerprinting codes that are used in digital watermarking to mark
each copy Xv of a digital medium X = (X1, . . . , Xn) in order to detect collusion attacks.
A collusion attack is an attack, where several malicious users (pirates) perform an attack
by comparing their respective copies of the watermarked medium Xv, thus detecting
some of the positions where the watermark was embedded, by simply comparing the
values at all the positions Xv

j for j ∈ {1, . . . , n}. A fingerprinting code is called ε-secure
against t pirates if for any set T of pirates with |T | ≤ t, the probability that either
none of the pirates is caught or some user is falsely accused is at most ε. For this, a
fingerprinting code consists of an accusation algorithm and a randomized procedure
that generates codewords Xv over an finite alphabet Σn for users v ∈ U .

The Tardos-Codes are then generated using the notions of a t-channel and a bias-
based code generation. A t-channel is a randomized procedure that produces an output
bit f from an input x ∈ {0, 1}t. It is determined by the function S : x ∈ {0, 1}t → [0, 1],
defined as S(z) = Pr[f = 1|x = z]. The pirates are said to use the channel S to produce
their forged codeword F .

A bias-based code generation is a process consisting of two phases, determined
by a probability distribution D on the interval [0, 1] (the bias distribution). First,
the bias vector P = (P1, . . . , Pn) is selected, by selecting individual biases Pj ∈ [0, 1]
independently and according to the distribution D. In the second phase the bits of each
codeword Xv are selected, where it holds for each it that Pr[Xv

j = 1] = Pj .

For p ∈ [0, 1] and a channel S, the distribution Bp,S on the binary vector x ∈ {0, 1}t
and the binary variable f ∈ {0, 1} is defined by choosing individual digits xi of x
independently for i ∈ {1, . . . , t} with an identical distribution of expectation p and
finally obtaining f from x through the cannel S. Ip,S is defined as the mutual information
(c.f. Definition 2.8 on p. 19) in this distribution. The game that the authors choose to
proof that these codes are optimal consists of the pirates choosing the channel S and
the distributor of the fingerprinting codes who chooses the probability p ∈ [0, 1]. Then,
the pirates have to pay the distributor the amount of Ip,S as payoff. The authors show
that the pirates are always better off using a pure strategy and the equilibrium that is
based on (continuous) minmax strategies gives the optimal bias distribution. In the
equilibrium it hods that:

min
S

max
p
Ip,S = max

D
min
S
Ep∈D[Ip,S ], (B.2)
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where Ep∈D[·] represents the expectation as p is distributed according to D.
Finally, the authors show that with the help of these values a fingerprinting code

can be contracted that has optimal capacity and is ε-secure.

B.3 Adversarial Classification

A recent theme at the intersection of machine learning and security is adversarial
classification [13], a subfield of knowledge discovery and data mining (KDD). Dalvi et
al. propose a game theoretic framework for the following situation: data is actively
manipulated by an adversary seeking to increase the false negative rate of a binary
classifier. Here, the classifier is assumed to be a data mining algorithm and possible
domains of interest are spam classification, surveillance, counter-terrorism and intrusion
detection. The authors exemplify their game in the spam detection domain, where
a classifier (CL) has to classify a given instance (email) x = (x1, . . . , xn) as either
malicious (i.e. spam) or innocent (i.e. regular email). They assume that innocent
instances are generated i.i.d. from a distribution P(X|−) and malicious ones likewise
from a distribution P(X|+). Each instance x consists of n features or attributes xi.
Furthermore, the authors assume that there are two sets, the training set S and the
test set T. The CL wants to learn a function yC = C(x) from S to correctly predict
the type of instances in T and the adversary (AD) wants to modify sequences x to
x′ so that CL misclassifies them. Then, the authors define costs Vi for measuring
the different features xi and a utility for correctly (UC(+|−), UC(−|+)) and falsely
(UC(−|−), UC(+|+)) classifying an instance x, defining the strategy space of the CL.
The AD has a cost Wi(xi, x

′
i) for changing the i-th feature and similar utilities UA(±|∓).

As this is a non-zero-sum game and the number of actions is doubly exponential in
the number of features n, the authors conclude that computing a Nash equilibrium will
be intractable, although they proof that it exists.

The authors continue in deriving an optimal näıve Bayes classifier, which performs
an LR test on S to optimally classify instances from T. Then, the AD assumes this kind
of classifier on the side of the CL and optimizes his strategy. The optimal strategy of
the AD is formulated as a constrained optimization problem and the solution is given
as a binary linear program. Now, the CL is allowed to adapt its strategy to the optimal
strategy by the AD. Under the assumption that the AD has not tampered the training
set S an optimal respond to the AD’s optimal strategy is derived. The authors present
efficient ways of implementing both strategies and then test the classifier against a naive
Bayes classifier on two spam datasets, incurring different costs for false positives, i.e.,
classifying a non-spam email as spam. Their new classifier clearly outperforms the naive
Bayes classifier. In the end, the authors try to cast their game as a repeated game and
allow the AD to adapt his strategy to the new optimal strategy by the CL. By this,
unsurprisingly, the payoff alternates, depending which of the player is allowed to adapt
its strategy. As a result from this, the authors conclude that in a repeated game, AD
and CL will never reach an equilibrium.
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Appendix C

Omitted Proofs

C.1 Proof of Lemma 5.11

Proof. For the sequence 00 it holds:

Pr[00|s] = (1− f(0))(1− f(1))(1− ā0)ā0 + f(0)(1− f(1))ā2
0 (C.1)

+ (1− f(0))f(1)(1− ā0)2 + f(0)f(1)ā0(1− ā0)

> (1− f(0))(1− f(1))
[
ā2

0 + 2(1− ā0)ā0 + (1− ā0)2
]

(C.2)

= (1− f(0))(1− f(1))(ā0 + 1− ā0)2 (C.3)

= (1− f(0))(1− f(1)) = Pr[00|c] (C.4)

since f(0) > 1− f(0) and f(1) > 1− f(1).
For the sequence 11 it holds:

Pr[11|s] = f(0)f(1)(1− ā0)ā0 + (1− f(0))f(1)ā2
0 (C.5)

+ f(0)(1− f(1))(1− ā0)2 + (1− f(0))(1− f(1))ā0(1− ā0)

< f(0)f(1)
[
ā2

0 + 2(1− ā0)ā0 + (1− ā0)2
]

(C.6)

= f(0)f(1)(ā0 + 1− ā0)2 (C.7)

= f(0)f(1) = Pr[11|c] (C.8)

since 1− f(0) < f(0) and 1− f(1) < f(1).

C.2 Proof of Lemma 5.12

Proof. For the sequence 01 it holds:

Pr[01|c] >Pr[01|s] (C.9)

0 > 4ā2
0f̃(0)f̃(1) + 2ā0

[
(1− f(0))f̃(1) + f̃(0)(1− f(1))

]
(C.10)

+ 2(f(0)− 1)f̃(1)

The above inequality holds when (ā0)1 < ā0 < (ā0)2, where

(ā0)1,2 =
(f(0)− 1)f̃(1) + f̃(0)(f(1)− 1)

4f̃(0)f̃(1)

∓

√[
(1− f(0))f̃(1) + f̃(0)(1− f(1))

]2
− 8f̃(0)f̃(1)(f(0)− 1)f̃(1)

4f̃(0)f̃(1)
. (C.11)

157



C. Omitted Proofs

since (f(0) − 1)f̃(1) + f̃(0)(f(1) − 1) < 0, we have that (ā0)1 < 0. Therefore, Eve
classifies realization 01 as cover when

ā0 < (ā0)2 =
(f(0)− 1)f̃(1) + f̃(0)(f(1)− 1)

4f̃(0)f̃(1)

+

√[
(1− f(0))f̃(1) + f̃(0)(1− f(1))

]2
− 8f̃(0)f̃(1)2(f(0)− 1)

4f̃(0)f̃(1)
. (C.12)

For the sequence 10 it holds:

Pr[10|c] >Pr[10|s] (C.13)

0 > 4ā2
0f̃(0)f̃(1) + 2ā0

(
−f(0)f̃(1)− f̃(0)f(1)

)
+ 2f(0)f̃(1) (C.14)

The above inequality holds when (ā0)1 < ā0 < (ā0)2, where

(ā0)1,2 =
f(0)f̃(1) + f̃(0)f(1)

4f̃(0)f̃(1)
∓

√[
f(0)f̃(1) + f̃(0)f(1)

]2
− 8f̃(0)f̃(1)f(0)f̃(1)

4f̃(0)f̃(1)
.

(C.15)

f(0)f̃(1) + f̃(0)f(1)

4f̃(0)f̃(1)
=

f(0)

4f̃(0)
+

f(1)

4f̃(1)
(C.16)

=
f(0)

4f(0)− 2
+

f(1)

4f(1)− 2
(C.17)

=
1

4

4f(0)− 2 + 2

4f1− 2
+

1

4

4f(1)− 2 + 2

4f2− 2
(C.18)

=
1

4

(
1 +

2

4f1− 2
+ 1 +

2

4f2− 2

)
(C.19)

>
1

4

(
1 +

2

4− 2
+ 1 +

2

4− 2

)
(C.20)

=
1

4
(1 + 1 + 1 + 1) (C.21)

= 1 (C.22)

since f(0)f̃(1)+f̃(0)f(1)

4f̃(0)f̃(1)
> 1, we have that (ā0)2 > 1. Therefore, Eve classifies realiza-

tion 01 as cover when

ā0 > (ā0)1 =
f(0)f̃(1) + f̃(0)f(1)−

√[
f(0)f̃(1) + f̃(0)f(1)

]2
− 8f(0)f̃(0)f̃(1)2

4f̃(0)f̃(1)
.

(C.23)
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C.3 Proof of Lemma 5.13

Proof. The lemma can be expressed as: Eve never classifies both realization 01 and 10
as cover.

We have that Eve’s optimal decision rule is

w1 = log
f(0)(1− f(0) + ā0f̃(0))

(1− f(0))(f(0)− ā0f̃(0))
(C.24)

w2 = log
f(1)(1− f(1) + f̃(1)− ā0f̃(1))

(1− f(1))(f(1)− f̃(1) + ā0f̃(1))
(C.25)

τ = log

[
1− f(0) + ā0f̃(0)

1− f(0)

1− f(1) + f̃(1)− ā0f̃(1)

1− f(1)

]
. (C.26)

Now, assume that, for some ā0, the claim of the lemma does not hold. Then,

w1 > τ (C.27)

f(0)(1− f(1)) > (f(0)− ā0f̃(0))(1− f(1) + f̃(1)− ā0f̃(1)) (C.28)

0 > f(0)f̃(1)− ā0f(0)f̃(1)− ā0f̃(0) + ā0f̃(0)f(1) (C.29)

− ā0f̃(0)f̃(1) + ā2
0f̃(0)f̃(1)

and

w2 > τ (C.30)

f(1)(1− f(0)) > (1− f(0) + ā0f̃(0))(f(1)− f̃(1) + ā0f̃(1)) (C.31)

0 > ā0f̃(1)− f̃(1) + f(0)f̃(1)− ā0f(0)f̃(1) + ā0f̃(0)f(1) (C.32)

− ā0f̃(0)f̃(1) + ā2
0f̃(0)f̃(1).

By adding Equation C.29 and C.32 together, we have that

0 > 2ā2
0f̃(0)f̃(1) + ā0(−2f(0)f̃(1) + 2f̃(0)f(1)− 2f̃(0)f̃(1) + f̃(1) (C.33)

− f̃(0)) + f̃(0)f̃(1)

= 2ā2
0f̃(0)f̃(1)− 2ā0f̃(0)f̃(1) + f̃(0)f̃(1) (C.34)

= (2ā2
0 − 2ā0 + 1)f̃(0)f̃(1) (C.35)

=
(
ā2

0 + (ā0 − 1)2
)
f̃(0)f̃(1) > 0 , (C.36)

which is a contradiction. Therefore, the claim of the lemma has to hold.

C.4 Proof of Lemma 5.14

Proof. For ā0 ∈ [0, τ1] it holds:
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Taking the derivative of the specific pay-off function from Theorem 5.7 with respect
to ā0 yields:

payoff |e=[scsc] = − Pr[00|s](ā0) + Pr[01|s](ā0)− Pr[10|s](ā0) + Pr[11|s](ā0) (C.37)

= ā2
0

[
− f(0)(1− f(1)) + (1− f(0))(1− f(1))− (1− f(0))f(1) + f(0)f(1)

+ f(0)f(1)− (1− f(0))f(1) + (1− f(0))(1− f(1))− f(0)(1− f(1))

− (1− f(0))(1− f(1)) + f(0)(1− f(1))− f(0)f(1) + (1− f(0))f(1)

+ (1− f(0))f(1)− f(0)f(1) + f(0)(1− f(1))− (1− f(0))(1− f(1))
]

+ ā0

[
− (1− f(0))(1− f(1)) + 2(1− f(0))f(1)− f(0)f(1)

+ (1− f(0))f(1)− 2(1− f(0))(1− f(1)) + f(0)(1− f(1))

− f(0)(1− f(1)) + 2f(0)f(1)− (1− f(0))f(1)

+ f(0)f(1)− 2f(0)(1− f(1)) + (1− f(0))(1− f(1))
]

−f(0)f(1) + f(0)(1− f(1)) + (1− f(0))(1− f(1))− (1− f(0))f(1)

= 2ā0

[
(1− f(0))f̃(1) + f(0)f̃(1)

]
− f̃(1) (C.38)

= 2ā0 f̃(1)− f̃(1) . (C.39)

∂ payoff

∂ā0
|e=[scsc] =2f̃(1) > 0 (C.40)

For ā0 ∈ [τ1, 1] it holds:
Taking the derivative of the specific pay-off function from Theorem 5.7 with respect

to ā0 yields:

pay-off |e=[sscc] = Pr[10|s](ā0) + Pr[11|s](ā0)− Pr[01|s](ā0)− Pr[00|s](ā0) (C.41)

= ā2
0

[
(1− f(0))(1− f(1))− f(0)(1− f(1)) + f(0)f(1)− (1− f(0))f(1)

+ (1− f(0))f(1)− f(0)f(1) + f(0)(1− f(1))− (1− f(0))(1− f(1))

− f(0)f(1) + (1− f(0))f(1)− (1− f(0))(1− f(1)) + f(0)(1− f(1))

− f(0)(1− f(1)) + (1− f(0))(1− f(1))− (1− f(0))f(1) + f(0)f(1)
]

+ ā0

[
f(0)(1− f(1))− 2f(0)f(1) + (1− f(0))f(1)

+ f(0)f(1)− 2f(0)(1− f(1)) + (1− f(0))(1− f(1))

− (1− f(0))f(1) + 2(1− f(0))(1− f(1))− f(0)(1− f(1))

− (1− f(0))(1− f(1)) + 2(1− f(0))f(1)− f(0)f(1)
]

+f(0)f(1) + f(0)(1− f(1))− (1− f(0))(1− f(1))− (1− f(0))f(1)

= ā0[2− 4f(0)] + f̃(0) . (C.42)
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∂ pay-off

∂ā0
|e=[sscc] =− 2f̃(0) < 0 (C.43)

C.5 Proof of Lemma 5.15

Proof. Taking the derivative of the specific pay-off function from Theorem 5.7 with
respect to ā0 yields:

payoff |e=[sssc] = − Pr[00|s](ā0)− Pr[01|s](ā0)− Pr[10|s](ā0) + Pr[11|s](ā0) (C.44)

= ā2
0

[
− f(0)(1− f(1)) + (1− f(0))(1− f(1))− (1− f(0))f(1) + f(0)f(1)

− f(0)f(1) + (1− f(0))f(1)− (1− f(0))(1− f(1)) + f(0)(1− f(1))

− (1− f(0))(1− f(1)) + f(0)(1− f(1))− f(0)f(1) + (1− f(0))f(1)

+ (1− f(0))f(1)− f(0)f(1) + f(0)(1− f(1))− (1− f(0))(1− f(1))
]

+ ā0

[
− (1− f(0))(1− f(1)) + 2(1− f(0))f(1)− f(0)f(1)

− (1− f(0))f(1) + 2(1− f(0))(1− f(1))− f(0)(1− f(1))

− f(0)(1− f(1)) + 2f(0)f(1)− (1− f(0))f(1)

+ f(0)f(1)− 2f(0)(1− f(1)) + (1− f(0))(1− f(1))
]

−f(0)f(1) + f(0)(1− f(1))− (1− f(0))(1− f(1))− (1− f(0))f(1)

= 2ā2
0

[
f(0)(1− f(1)) + (1− f(0))f(1)− f(0)f(1)− (1− f(0))(1− f(1))

]
+ 2ā0

[
(1− f(0))(1− f(1)) + f(0)f(1)− 2f(0)(1− f(1))

]
− f(0)f̃(1)− 1 + f(0)

= 8ā2
0

[
− f̃(0)f̃(1)

]
+ 4ā0

[
f(0)f̃(1)− f̃(0)(1− f(1))

]
(C.45)

− f(0)f̃(1)− 1 + f(0).

∂ payoff

∂ā0
|e=[sssc] = −16ā0f̃(0)f̃(1) + 4

(
f(0)f̃(1)− f̃(0)(1− f(1))

)
(C.46)

The second derivative follows immediately.
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