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Axiomatic homology and duality revisited

Tammo tom Dieck

(Communicated by Wolfgang Lück)

Abstract. We associate to each homology theory in an elementary and canonical manner
a tautological cohomology theory on Cartesian spaces such that the classical Alexander
duality holds. The duality isomorphisms obtained from cap-products yield an isomorphism
of cohomology theories. Guided by our methods we also introduce the new category of
dualizible maps.

1. Introduction

Alexander duality asserts an isomorphism of the type

hk(X,A) ∼= hn−k(R
n \A,Rn \X)

between homology and cohomology groups for (suitable) pairs of spaces A ⊂
X ⊂ R

n. A statement of this type is only sensible if the cohomology h∗ and
the homology h∗ are related in a specific way. If the spaces X and A are
closed subsets of the Euclidean space, then their complements are relatively
harmless, being open subsets of a Euclidean space. But closed subsets can
be quite complicated and this requires certain continuity properties for the
cohomology theory, in order that Alexander duality holds in that generality.

Starting with a homology theory we construct a cohomology theory such
that Alexander duality holds by definition (see Theorem 4.1). Our approach is
elementary, natural and canonical. No advanced techniques like stable homo-
topy or the notion of spectra are needed. Our method also adds insight to the
classical theory: The duality isomorphisms obtained from cap-products turn
out to be an isomorphism of cohomology theories (see Theorem 5.1).

Dually, we could start with a cohomology theory and obtain a dual version
of Alexander duality hk(X,A) ∼= hn−k(Rn \A,Rn \X).

The presentation of our theory has text book style and can be used in a
topology course. Standard results are not included in this paper, and I refer the
reader to the text books [3] and [2]. The book [3] contains a definite treatment
of duality for manifolds based on singular homology and cohomology.
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2. Tautological cohomology

The cohomology theories we are going to construct are defined on a some-
what nonstandard category: The category of embedded Cartesian spaces and
proper maps with an associated notion of proper homotopy. We begin by
explaining these terms.

The category EC of embedded Cartesian spaces has as objects the pairs
(Rn, X) with X a closed subset of Rn. A morphism f from (Rn, X) to (Rm, Y )
is a proper map f : X → Y . Composition is the composition of continuous
maps. In a similar manner we have the category EC(2) of triples (Rn, X,A)
with closed sets A ⊂ X ⊂ R

n and proper maps of pairs (X,A) → (Y,B). Note
that if X → Y is proper, then so is the restriction A→ B. In both categories
we use the notion of proper homotopy as explained below. In some cases we
use the subcategory with objects (Rn, X) for compact X .

A proper homotopy is a proper map h : X × I → Y (as usual I = [0, 1]).
The constant homotopy of a proper map is a proper homotopy. The inverse of
a proper homotopy is a proper homotopy. The usual concatenation of proper
homotopies is a proper homotopy. If f1, f2 : X → Y and g1, g2 : Y → Z are
properly homotopic, then g1f1 and g2f2 are properly homotopic. The embed-
ding jt : X → X × I, x 7→ (x, t) is proper; hence, if h is a proper homotopy,
then the partial maps ht = h ◦ jt are proper. Being properly homotopic is
compatible with products. All this holds for maps between arbitrary spaces
if one uses the notion of [1] for proper maps. In the case of EC we view
X × I ⊂ R

n × R if X ⊂ R
n.

The homotopy h : R × I → R, (x, t) 7→ tx2 + x is not proper, since the
preimage of 0 is not compact. The partial maps ht are proper because a
nonconstant polynomial is a proper map.

LetX , Y be locally compact Hausdorff spaces, and denote byX+ = X∪{∞}
the one-point compactification ofX . The canonical map q : X+×I → (X×I)+

is a quotient map. A proper homotopy h : X × I → Y induces a continuous
pointed map h+ : (X × I)+ → Y + and therefore a pointed homotopy h+ ◦ q :
X+ × I → Y +.

Let h : R
n × I → R

n be a homotopy such that each partial map ht is
a homeomorphism. Then h is a proper homotopy. For the proof consider
(x, t) 7→ (h(x, t), t) and apply the open mapping theorem [2, 10.3.7].

Definition 2.1 (Cohomology). A cohomology theory on EC consists, as usual,
of the data:

(1) A family of contravariant functors hk : EC(2) → R-MOD, k ∈ Z.
(2) A family of natural transformations (coboundary operators) δ : hk−1 ◦ ι→

hk with ι the usual transformation, ι(X,A) = (A,∅) on objects.

Here R-MOD is the category of modules over a commutative ring R. These
data are assumed to satisfy the following version of the axioms of Eilenberg
and Steenrod. The value of hk on (Rn, X,A) will be denoted hk(X,A;n), and
hk(A;n) = hk(A,∅;n) as usual.
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Exactness. For each pair of closed subsets (X,A) in R
n the cohomology

sequence . . .→ hk−1(A;n)
δ
→ hk(X,A;n) → hk(X ;n) → . . . is exact.

Excision. Let A and B be closed subsets of Rn. Then the inclusion induces
an isomorphism hk(A ∪B,A;n) ∼= hk(B,A ∩B;n).
Homotopy invariance. Let ϕ : (X,A) × I → (Y,B) be a proper homotopy.
Then the induced morphisms hk(ϕt) do not depend on t. ♦

The use of embedded spaces is a convenient technical device for our con-
structions. A cohomology theory on EC induces in a canonical formal way a
cohomology theory on the category C of Cartesian spaces and proper maps.
We explain this in Section 6.

Note that the excision axiom does not use a condition “excisive”. We work
with proper maps and proper homotopies. In other settings these cohomology
groups are said to have compact support, see [3, VIII.6.22], [6], [7].

In the next definition we start with the same data hk and δ as in Definition
2.1, but we require different properties for them. We will show in 2.3 that the
axioms of Eilenberg and Steenrod are implied by the axioms (1)–(3) in 2.2.
This then justifies the term “cohomology”. The term “tautological” refers to
the fact that Alexander duality holds by definition.

Definition 2.2 (Tautological cohomology). Let h∗ be a homology theory. A
tautological cohomology theory associated to h∗ consists of a family of con-
travariant functors hk : EC(2) → R-MOD, k ∈ Z and a family of natural
transformations δ : hk−1 ◦ ι→ hk as in 2.1 with the properties:

(1) hk assigns to (Rn, X,A) the module

hk(X,A;n) = hn−k(R
n \A,Rn \X).

(2) hk assigns to an inclusion (X,A)
⊂
−→ (Y,B) of closed subspaces of Rn the

morphism hn−k(R
n \B,Rn \ Y ) → hn−k(R

n \ A,Rn \X) induced by the
dual inclusion.

(3) The coboundary operator δ : hk−1(A,∅;n) → hk(X,A;n) is defined as
(−1)n∂ : hn−k+1(R

n,Rn \A) → hn−k(R
n \A,Rn \X) in terms of the given

boundary operator ∂ of the theory h∗. ♦

Note that the functors hk and the coboundary transformations δ in 2.2 are
already given on objects. Moreover, the values of the functors are determined
on the subcategory of inclusions. By naturality of ∂, the axioms (2) and (3) are
compatible on this subcategory. For the sign in the definition of δ see the proof
of 4.1. In the construction of a tautological theory we thus have to extend the
functors hk to EC(2) and to verify the naturality of δ on this larger category.

Proposition 2.3. A contravariant functor hk on EC(2) with the properties
(1) and (2) of Definition 2.2 is homotopy invariant and satisfies excision. A
tautological cohomology theory is a cohomology theory in the sense of Definition
2.1.
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Proof. Excision. The corresponding map in homology

hn−k(R
n \A,Rn \ (A ∪B)) → hn−k(R

n \ (A ∩B),Rn \B)

is an excision isomorphism, since we are working with open subsets of Euclidean
spaces (compare [2, 10.7.5,10.7.6]).

Homotopy invariance. The map jt is the composition of the homeomorphism
a : X → X × {t} and the inclusion b : X × {t} ⊂ X × I. Therefore hk(a) is
an isomorphism (functoriality) and hk(b) is induced by the inclusion of the
complements. For each space X the inclusion R

n+1 \X × I → R
n+1 \X × {t}

induces an isomorphism in homology (a proof can be based on 3.9). Therefore
hk(b) is an isomorphism. Hence hk(jt) is an isomorphism. The projection
pr : X×I → X is proper and hk(pr) is an inverse of hk(jt) which is independent
of t. The general case follows by functoriality. Similarly for pairs of spaces.

Exactness. The exactness axiom for the cohomology theory is a direct con-
sequence of the exact homology sequences of triples. �

The first main topic of this paper is the construction of a tautological coho-
mology theory on EC from a given homology theory (Theorem 4.1). The next
section is devoted to the main technical results used in this construction.

3. Dualizible maps

Guided by our methods we generalize the category EC to the category ED

of dualizible maps and construct (tautological) cohomology functors on ED.
The first main result of this paper is Theorem 3.2.

We use the notations: (X,A) × (Y,B) = (X × Y,X × B ∪ A × Y ) and
(Z,Z \ C) = Z|C. The latter makes diagrams smaller. With this notation we
also have the convenient rule (Z1|C1)× (Z2|C2) = (Z1×Z2)|(C1×C2). A map
f : X → Y induces a map of pairs f : X |A → Y |B if and only if f(x) ∈ B
implies x ∈ A. The reader should use the last remark in subsequent proofs.

Let X ⊂ R
n, Y ⊂ R

m be arbitrary subsets and f : X → Y a continuous
map. A Tietze extension of f is a continuous map f• : Rn → R

m which extends
f . A Tietze extension exists if and only if f has an extension f : X → Y to
the respective closures.

A Tietze extension yields a homeomorphism

R
n × R

m → R
n × R

m, (x, y) 7→ (x, y − f•(x))

with inverse (x, y) 7→ (x, y+ f•(x)). It induces a homeomorphism of the graph
G(f) = {(x, f(x) | x ∈ X} with X×0. If α0 and α1 are Tietze extensions, then
(x, t) 7→ (1 − t)α0(x) + tα1(x) is a one-parameter family of Tietze extensions,
and this family induces a homotopy between the homeomorphism within the
set of homeomorphisms. We call f extendible, if f has a Tietze extension.
Composition and product of two extendible maps are again extendible. We
denote the homeomorphism of pairs of spaces constructed above by

f2
♭ : (Rn × R

m)|G(f) → (Rn × R
m)|(X × 0)

although it depends on the choice of f•.
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A scaling function for f is a map ϕ : Rm → ]0,∞[ such that ‖x‖ ≤ ϕ(f(x))
holds for each x ∈ X . A scaling function induces a homeomorphism

R
n × R

m → R
n × R

m, (x, y) 7→ (ϕ(y) · x, y)

with inverse (x, y) 7→ (ϕ(y)−1 · x, y). It induces a homeomorphism of Dn × Y ,
Dn = {x ∈ R

n | 1 ≥ ‖x‖} with Nϕ = {(x, y) ∈ R
n × Y | ‖x‖ ≤ ϕ(y)}. The

graph G(f) is contained in Nϕ. Therefore we obtain a map between pairs of
spaces

f1
♭ : (Rn × R

m)|(Dn × Y ) → (Rn × R
m)|G(f).

Its homotopy class does not depend on the choice of ϕ, since scaling functions
ϕ0, ϕ1 induce a homotopy (x, t) 7→ (1 − t)ϕ0 + tϕ1 of scaling functions.

We call f bounded, if the counter-image f−1(C) of each bounded set C ⊂ Y
is bounded in X . Composition and product of two bounded maps are again
bounded.

Lemma 3.1. f has a scaling function if and only if f is bounded.

Proof. Let ϕ be a scaling function. Then the image of D(t) = {y ∈ R
m |

‖y‖ ≤ t} is bounded, say ϕ(y) ≤ s for ‖y‖ ≤ t. Let x ∈ f−1(Y ∩D(t)). Then
‖x‖ ≤ ϕ(f(x)) ≤ s. Hence this counter-image is bounded.

Conversely, assume that f is bounded. Let ψ̃(t) be the sup-norm of

f−1(Y ∩D(t)) = {x ∈ X | ‖f(x)‖ ≤ t}.

Then

ψ̃(‖f(x)‖) = sup{‖a‖ | a ∈ X, ‖f(a)‖ ≤ ‖f(x)‖} ≥ ‖x‖.

The function ψ̃ is increasing. There exists a continuous increasing function
ψ : [0,∞[ → ]0,∞[ such that ψ ≥ ψ̃. The map y 7→ ψ(‖y‖) is a scaling
function for f . �

We call f dualizible, if f is extendible and has a scaling function. A map f
is dualizible if and only if it has an extension f : X → Y which is proper. A
dualizible map yields a geometric duality map

f♭ = f2
♭ ◦ f1

♭ : (Rn × R
m)|(Dn × Y ) → (Rn × R

m)|(X × 0)

which is unique up to homotopy. The category ED of dualizible maps has as
objects the pairs (Rn, X), X ⊂ R

n and as morphisms f : (Rn, X) → (Rm, Y )
the dualizible maps f : X → Y . An inclusion (Rn, A) → (Rn, B), A ⊂ B
is dualizible. A dualizible homotopy is a dualizible map (Rn × R, X × I) →
(Rm, Y ). It is the restriction of a proper homotopy X × I → Y . The category
EC is contained in ED.

The definitions

hk(X,A;n) = hn−k(R
n \A,Rn \X), hk(X,∅;n) = hk(X ;n)
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can be used for arbitrary triples A ⊂ X ⊂ R
n. From a geometric duality map

f♭ we obtain an induced morphism hk(f) via the commutative diagram

hk(Y ;m) = hm−k(R
m|Y )

hk(f)

��

Σn

// hm−k+n(R
m|Y × R

n|Dn)

(−1)nmh∗(f♭◦τmn)

��
hk(X ;n) = hn−k(R

n|X)
Σm

// hn−k+m(Rn|X × R
m|0)

in which Σm and Σn are iterated suspension isomorphisms and tmn inter-
changes the factors of Rm × R

n. For some technical details about suspension
isomorphisms see 3.9 and 3.10. In the following proofs we need the relations
ΣaΣb = Σa+b and the naturality of the suspension. Since the homotopy class
of f♭ is unique, h

k(f) is well-defined.
The main result of this section is 3.2. We divide its proof into several

propositions.

Theorem 3.2. Let h∗ be a homology theory. The previously defined data hk

are a contravariant functor ED → R-MOD (see 3.3 and 3.4). This functor is
compatible with inclusions 3.3, homeomorphisms 3.5 and suspensions 3.6.

Proposition 3.3. Let i : A ⊂ X ⊂ R
n be an inclusion. Then hk(i) is the mor-

phism hn−k(R
n|X) → hn−k(R

n|A) induced by the dual inclusion. In particular
hk(id) = id.

Proof. We take the scaling function y 7→ ‖y‖+ 1 and extend i by the identity.
Then i♭ is the map (x, y) 7→ ((‖y‖ + 1) · x, y − (‖y‖ + 1) · x). The map i1♭ is
(x, y) 7→ ((‖y‖+ 1) · x, y) and ((1− t)(‖y‖+ 1) · x+ t(x+ y), y) is a homotopy
to (x, y) 7→ (x + y, y). Hence i♭ is homotopic to (x, y) 7→ (x + y,−x) and the
homotopy ((1 − t)x + y,−x) shows it to be homotopic to (x, y) 7→ (y,−x).
Now interchange the factors and observe that x 7→ −x has degree (−1)n =
(−1)n·n. �

Proposition 3.4. Let Z ⊂ R
p and g : Y → Z. Then hk(f) ◦ hk(g) = hk(gf).

Proof. We verify that the following diagram is homotopy commutative.

R
n|D × R

m|D × R
p|Z

τnm×1 //

1×g♭

��

R
m|D × R

n|D × R
p|Z

1×(gf)♭

��
R

n|D × R
m|Y × R

p|0

f♭×1

��

R
m|D × R

n|X × R
p|0

∩

��
R

n|X × R
m|0× R

p|0
τnm×1 // Rm|0× R

n|X × R
p|0

The morphisms τnm are the appropriate interchange maps. The proof is based
on the next diagram. We write V = R

n × R
m × R

p, W = R
m × R

n × R
p

and use the intermediate map h : X → G(g), x 7→ (f(x), gf(x)). We have the
factorization h2♭ = h22♭ h

21
♭ with h21♭ (x, y, z) = (x, y − f•(x), z), h

22
♭ (x, y, z) =
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(x, y, z − g•f•(x)), where h• = (f•, g•f•). We write G′(gf) = {(x, 0, gf(x)) |
x ∈ X}; and D denotes any of the appropriate disks. The index of a scaling
function indicates the map it belongs to.

V |D ×D × Z

1×g1
♭

��

τnm×1 // W |D ×D × Z

1×(gf)1♭
��

V |D ×G(g)

1×g2
♭

��

h1
♭ // V |G(h)

h21
♭ // V |G′(gf)

τnm×1 //

h22
♭

��

W |0×G(gf)

1×(gf)2♭
��

V |D × Y × 0
f♭×1

// V |X × 0× 0
τnm×1

// W |0×X × 0

The lower right rectangle commutes. For the upper rectangle we use the ho-
motopy (ϕgf (z) · x, s(ϕg(z) · y − f•(ϕgf (z) · x) + (1 − s)y, z); here we use the
scaling function ϕh : (y, z) 7→ ϕgf (z). For the lower left rectangle we use the
homotopy z− g•((1− t)y+ tf•(ϕf (y) ·x)) in the third component; here we use
the scaling function ϕh : (y, z) 7→ ϕf (y). One has to verify that the subspaces
are respected.

Finally one has to rewrite the commutativity of the diagram above into the
equality to be proved. This is done as follows. Let us write D(f) = f♭ ◦ τmn

and similarly for D(g) and D(gf). Then one translates the diagram in the
beginning of the proof into the homotopy commutative diagram

•

D(g)×1
��

1×τmn // •
D(gf)×1 // •

1×τpm
��

•
1×τnp

// •
D(f)×1

// •

in which the τmn on top also uses the inclusion R
m|D ⊂ R

m|0. One applies
homology to this diagram, uses the naturality of the suspension and verifies
that the signs involved in the definition of the hk(f) etc. and produced by the
interchange maps altogether cancel. �

Proposition 3.5. Let α be a homeomorphism of Rn. Then the morphism

hk(α) : hk(αX ;n) → hk(X ;n)

coincides with the morphism

h∗(α
−1) : hn−k(R

n|αX) → hn−k(R
n|X)

times the degree of α.

Proof. We first show that α1
♭ is homotopic to (x, y) 7→ (x+α−1(y), y). We use

the linear homotopy ((1− t)(x+α−1(y))+ tϕ(‖y‖) ·x, y) where ϕ(r) = 1+ψ(r)
and ψ : [0,∞[→ ]0,∞[ is a function such that ψ(‖α(x)‖) ≥ ‖x‖ for x ∈ X .
Hence α♭ is homotopic to (x, y) 7→ (x+α−1(y), y−α(x+α−1(y))). The latter
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is the restriction of a map R
n|0 × R

n|αX → R
n|X × R

n|0. To this map we
first apply the homotopy

(x, y, t) 7→ ((1 − t)x+ α−1(y), y − α(x+ α−1(y)))

and then the homotopy

(x, y, t) 7→ (α−1(y), (1− t)y − α(x+ α−1((1 − t)y))).

Then the final map is (x, y) 7→ (α−1(y),−α(x + α(0))). Now use the defi-
nition of hk(α) and the fact that a homeomorphism β of Rn|0 induces the
multiplication by the degree of β on h∗((P,Q)× R

n|0). �

Proposition 3.6. Let f : Z × 0 → Z, (z, 0) 7→ z be the standard morphism
for Z ⊂ R

k and 0 ⊂ R
l. Then the induced morphism ha(f) coincides with the

suspension Σl : hk−a(R
k|Z) → hk−a+l(R

k|Z × R
l|0).

Proof. We use the scaling function ϕ : R
k → ]0,∞[ , z 7→ ‖z‖ + 1 and the

Tietze extension f•(z, u) = z. Then f1
♭ is homotopic, via a linear homotopy,

to (z′, u, z) 7→ (z′ + z, u, z) and f♭ therefore homotopic to (z′, u, z) 7→ (z′ +
z, u,−z′), and this is homotopic to (z, u,−z′). Now use the definition of ha(f).

�

Proposition 3.7. A contravariant functor ED → R-MOD is determined by
its effect on four special types of morphisms:

(1) Inclusions j : (Rn, X) → (Rn, Y ).
(2) Homeomorphisms j : (Rn, X) → (Rn × R

m, X × 0), x 7→ (x, 0).
(3) Homeomorphisms β : (Rl, X) → (Rl, Y ) obtained by restriction from a

homeomorphism β : Rl → R
l.

(4) Projections q : (Rn × R
m, D × Y ) → (Rm, Y ), (x, y) 7→ y where D ⊂ R

n

is a closed disk.

(If the functor is homotopy invariant one can dispense with morphisms of type
(4), because then the projection induces an isomorphism which is inverse to a
morphism induced by an embedding.)

Proof. We write an arbitrary morphism f : (Rn, X) → (Rm, Y ) of ED as a
composition of the four special types of morphisms:

(Rn, X)
(i) // (Rn × R

m, X × 0)
(ii) // (Rn × R

m, G(f))

(iii) // (Rn × R
m, Nϕ)

(iv) // (Rn × R
m, Dn × Y )

(v) // (Rm, Y ).

(i) is x 7→ (x, 0); (ii) is (x, 0) 7→ (x, f(x)); (iii) is an inclusion; (iv) is (x, y) 7→
(ϕ(y)−1 · x, y); (v) is the projection (x, y) 7→ y. For (i) we use (2), for (ii) we
use (3), for (iii) we use (1), for (iv) we use (3), for (v) we use (4). �

Proposition 3.7 also holds for functors EC → R-MOD.
From the proof of 2.3 we see that hk is homotopy invariant. We then use

3.7 and obtain:
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Corollary 3.8. The functor hk : ED → R-MOD is uniquely determined by
the properties 3.3, 3.5 and 3.6. �

As a final ingredient we have to explain the special form of the suspension
isomorphisms which are needed in the construction.

Definition 3.9 (Suspension). Let V = ]a, b[ , D = [c, d], with −∞ ≤ a < c ≤
d < b ≤ ∞, W = V \D =W+ ∪W−, W+ = ]d, b[ , W− = ]a, c[ . For each pair
(X,A) of topological spaces we have a suspension isomorphism Σ defined by
the commutative diagram

h∗(X,A)
∼=

(1)
//

Σ

��

h∗(X ×W+, A×W+)

∼=(2)

��
h∗(X × V,X ×W ∪ A× V )

∂

∼= // h∗(X ×W ∪ A× V,X ×W− ∪ A× V )

with (1) induced by the embedding x 7→ (x, d) and (2) induced by the inclusion.
The morphism ∂ is the boundary operator of the triple

(X × V,X ×W ∪ A× V,X ×W+ ∪A× V ).

Σ is natural in the variable (X,A) with respect to maps between pairs and
natural with respect to inclusions obtained by increasing V and decreasing D.

We now apply this suspension to the pair (U \A,U \X) where A ⊂ X ⊂ R
n

are closed and U is an open neighborhood of X in R
n. Then we compose this

suspension with the excision

(U \A,U \X)× (V,W ) → (U × V \A×D,U × V \X ×D)

(for which we now use that X and A are closed in order to have an excision
isomorphism in homology). The resulting map

Σ : hs(U \A,U \X) → hs+1(U × V \A×D,U × V \X ×D)

is also a natural suspension isomorphism. ♦

Proposition 3.10. Both types of isomorphisms Σ anticommute with ∂.
The diagram

h∗(X,A)
∂ //

Σ
��

h∗(A)

−Σ
��

h∗((X,A)× (V,W ))
∂ // h∗(A× (V,W ))

is commutative. This is analogous to [2, 10.9.2].
Let C ⊂ B ⊂ A ⊂ R

n be closed subsets and U an open neighborhood of A.
Let V and D be as before. Then the diagram

hs+1(U \ C,U \B)
Σ //

∂
��

hs+2(U × V \ C ×D,U × V \B ×D)

−∂
��

hs(U \B,U \A)
Σ // hs+1(U × V \B ×D,U × V \A×D)
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is commutative. �

Remark 3.11. Suppose f : (Rn, X) → (Rm, Y ) is an extendible map with
bounded X contained in some disk D. Then one can construct hk(f) with the
morphism

R
n|D × R

m|Y ⊂ R
n+m|G(f) → R

n|X × R
m|0, (x, y) 7→ (x, y − f•(x)).

The size of the disk plays no role and it is not necessary to reparametrize by a
scaling function. Some of the previous proofs simplify by using these geometric
duality maps. ♦

Homeomorphic subsets of Rn may not be isomorphic in ED. If a home-
omorphism extends to the closures, then the extension may not be a home-
omorphism even if it is bijective. One can extend some classical results to
the category ED, for instance the component theorem [2, 10.3.3]. See also [2,
7.3.1].

Theorem 3.12. If A and B are subsets of Rn which are isomorphic in ED,
then R

n \A and R
n \B have the same number of path components. �

4. Construction of cohomology theories

This section is devoted to the construction of a tautological cohomology the-
ory associated to a given homology theory (see Definition 2.2 and Proposition
2.3).

The basic technical work has already been done in the previous section. The
contravariant functors hk (restricted to EC) will be part of our cohomology
theory. What remains is to extend these functors to the category EC(2) and
to show that the coboundary maps are a natural transformation (see 2.3).
Since we now work with closed subspaces of Euclidean spaces, proper maps
are dualizible.

Let f : (Rn, X,A) → (Rm, Y, B) be a morphism in EC(2). A scaling func-
tion for f : X → Y is also a scaling function for the restriction f |A : A → B,
and similarly for Tietze extensions. We therefore have geometric duality maps
with P = R

n, Q = R
m, R = R

n × R
m

(R,R \Dn ×B,R \Dn × Y )

f1
♭��

(R,R \G(f |A), R \G(f))

f2
♭��

(R,R \A× 0, R \X × 0).
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The induced cohomology morphism hk(f) is defined by the diagram

hk(Y,B;m) = hm−k(Q \B,Q \ Y )
Σn

//

hk(f)

��

hm−k+n(R \B ×Dn, R \ Y ×Dn)

(−1)nmh∗(f♭◦τ)

��
hk(X,A;n) = hn−k(P \A,P \X)

Σm

// hn−k+m(R \A× 0, R \X × 0).

In this diagram we use the second form of the suspension isomorphism 3.9 in
the case that U is a Euclidean space, V = R D = Dz = ] − z, z[ . When
we iterate this l times we have to use the disk Dl = Dl

z in order to obtain
the rule Σk ◦ Σl = Σk+l; but other disks also do the job up to some natural
isomorphism.

The induced morphisms still satisfy 3.3 and 3.4; the homotopies involved in
the proofs respect the subspaces, since they are defined by linear connection.
Also 3.5 and 3.6 hold for pairs of subspaces.

Theorem 4.1. The functors hk : EC(2) → R-MOD just defined and the
coboundary operators δ : hk−1(A;n) → hk(X,A;n), defined as

(−1)n∂ : hn−1+k(R
n,Rn \A) → hn−k(R

n \A,Rn \X),

where ∂ is the boundary operator of the given homology theory applied to the
appropriate triple, form a tautological cohomology theory.

Proof. It only remains to verify that the coboundary maps constitute a natural
transformation. One unravels the definition and sees that the naturality of δ
is a direct consequence of the anticommutation rules 3.10 and the naturality
of ∂. �

From the definitions it is clear that a natural transformation of homology
theories induces a natural transformation of the associated tautological coho-
mology theories.

For further properties of tautological cohomology see Sections 7 and 8.

5. Duality and cap-product

A classical proof of duality uses cap-products. For a proof in an axiomatic
context see [2, Chap. 18]. We follow this exposition and compare it with with
our present approach. For this purpose we have to recall some definitions
and notations. We assume given a homology theory h∗, a cohomology theory
h∗ and a duality pairing (cap-product) in the sense of [2, 18.2]. From the

theory h∗ one constructs Čech cohomology groups ȟk(X,A) via colimits over
neighborhoods, e.g. by the method of [3, VIII.6]. If A ⊂ X is a compact pair in
R

n, then ȟk(X,A) depends, by the definition via colimits, on the embedding
into R

n, and in accordance with our approach we should, for the time being,
denote this group ȟk(X,A;n). The independence of the embedding will be
shown in Section 6.

The cap-product is used to define duality morphisms DX,A for compact

(X,A) in R
n. The tautological groups will now be denoted as ĥ∗. The duality
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morphisms are then isomorphisms DX,A : ȟk(X,A;n) → ĥk(X,A;n), see [2,
18.3.3] (the manifold M in that reference is now R

n with its canonical ori-
entation). We will investigate naturality and stability properties of duality
morphisms and show:

Theorem 5.1. The homomorphisms

dX,A = (−1)knDX,A : ȟk(X,A;n) → ĥk(X,A;n)

constitute a morphism of cohomology theories, i.e., they commute with induced
morphisms and with coboundary operators. (The sign in the definition of dX,A

takes care of the sign in 5.2).

Proof. In the proof we use the two special properties 5.2 and 5.3 of the duality
morphism DX,A which have not been proved in [2]. In order to cut down the
size of a diagram we write out the proof of the naturality for morphisms f :
(Rn, X) → (Rm, Y ) for compact X and Y . We also use the simpler description
3.11 of the geometric duality morphisms to simplify the next diagram.

Consider the following diagram with P = R
n, Q = R

m, R = R
n+m. We

use ȟ for cohomology and h for homology. The indices are determined by the
context and will not be displayed.

ȟ(Y ) //

ȟ(pr)
��

h(Q|Y )

Σ
��

ȟ(Y × 0) // h(R|Y × 0)

ȟ(Y ×D)

(i) ∼=

OO

//

ȟ(τ)
��

h(R|Y ×D)

(ii) ∼=

OO

(−1)nmh(τ)
��

ȟ(D × Y ) //

��

h(R|D × Y )

��
ȟ(G(f))

��

// h(R|G(f))

h(f2
♭ )��

ȟ(X × 0) // h(R|X × 0)

ȟ(X)

OO

// h(P |X)

Σ

OO

The horizontal maps are morphisms of the type dK for the appropriateK. The
isomorphisms (i) and (ii) are induced by the inclusion Y × 0 ⊂ Y ×D, and (i)
is inverse to the morphism induced by the projection. The disk D contains X ,
and τ interchanges the factors Rn and R

m. The composition of Σ with (ii) is
again a Σ, by naturality of Σ.

The rectangles (1)–(6), from top to bottom, commute for the following
reasons:
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(1) 5.2;
(2) d is compatible with inclusions [2, 18.5.1];
(3) 5.3, since τ has degree (−1)nm;
(4) d is compatible with inclusions;
(5) 5.3, since f2

♭ has degree one;
(6) 5.2.

The left downward composition is ȟ(f), the right downward composition is
h(f). This finishes the proof of the naturality of d.

The compatibility with the coboundary operators is a consequence of [2,
18.5.5]. �

In the proof of 5.1 we do not use the fact that the DX,A are isomorphisms.
But as the reader certainly knows: A natural transformation which yields
an isomorphism for points induces formally an isomorphism for finite CW-
complexes (these are compact Cartesian spaces).

Proposition 5.2. For each compact pair (K,L) in R
n the diagram

ȟk(K,L;n)
DK,L //

ȟk(pr)

��

hn−k(R
n \ L,R \K)

Σ

��
ȟk(K × 0, L× 0;n+ 1)

DK×0,L×0 // hn−k+1(R
n+1 \ L× 0,Rn+1 \K × 0)

is (−1)k-commutative. By 3.6 the right hand morphism Σ is ĥk(pr).

Proof. The duality morphismDK,L is obtained via a colimit process over neigh-
borhoods (U, V ) of (K,L) from morphisms

DUV
KL : hk(U, V ) // hk(U \ L, V \ L)

azUV
KL // hn−k(U \ L,U \K) ,

see [2, p. 445]. One now verifies the relation Σ(zUV
KL) = zU×W,V×W

K×0,L×0 for the
orientation elements. Then one uses the next diagram which is analogous to
the first one in [2, 18.2.1]; for its statement we take the freedom to use notations
like U \ L = UL and U × V = UV in order to cut down its size. The diagram

hk(UL, VL)⊗ h∗(UL, UK ∪ VL)
a //

hk(pr)⊗Σ

��

h∗(UL, UK)

Σ

��
hk(UWL0, V WL0)⊗ h∗(UWL0, UWK0 ∪ VWL0)

a // h∗(UWL0, UWK0)

is (−1)k-commutative. From the resulting relation

Σ ◦DUV
KL = (−1)kDU×W,V ×W

K×0,L×0 ◦ hk(pr),

where U, V,W are appropriate neighborhoods of K,L, 0, one obtains the claim
of the proposition by passage to colimits. The somewhat lengthy verification
of these statements from the axioms will not be carried out in this paper. �
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Proposition 5.3. Let α be a homeomorphism of Rn with degree d and K ⊂
R

n. Then the diagram

ȟk(α(K);n)
Dα(K) //

ȟk(α)

��

hn−k(R
n|α(K))

d·hn−k(α
−1)

��
ȟk(K;n)

DK // hn−k(R
n|K)

commutes.

Proof. The canonical orientation of Rn is a family of elements oK ∈ hn(R
n|K)

for compact K as explained in Problem 4 of [2, p. 446]. One verifies that
α∗(oK) = d · αα(K). Then one uses the naturality of the cap-product [2,
p. 441]. �

Note that 5.3 is analogous to 3.5.

Remark 5.4. The duality morphisms for locally compact subsets are defined
via a colimit process from compact pairs, see [3, VIII.7.12]. The naturality is
a consequence of 5.1. ♦

Remark 5.5. 5.2 can be generalized to the product of an oriented manifold
M with R and a suitable product orientation. ♦

6. Cartesian spaces

We call X a Cartesian space if it admits an embedding i : X → R
n into

some Euclidean space as a closed subset. Cartesian spaces have an abstract
characterization: Locally compact Hausdorff spaces with countable basis and
finite covering dimension. We do not use this characterization.

We use 3.3 and 3.4 to define an invariant object hk(X) by a universal prop-
erty which does not depend on the choice of an embedding i : X → R

n. For
let j : X → R

m be another embedding. The homeomorphism ji−1 : iX → jX
induces an isomorphism hk(ji−1) : hk(jX ;m) → hk(iX ;n). We define hk(X)
to be a group together with a family of isomorphisms α(i) : hk(X) → hk(iX ;n)
such that the diagrams

hk(X)

α(j)

yysss
ss
ss
ss
s

α(i)

%%❑
❑❑

❑❑
❑❑

❑❑

hk(jX ;m)
hk(ji−1) // hk(iX ;n)

are commutative. It suffices of course to fix a single isomorphism α(i), the
remaining ones are then uniquely determined, and 3.3 and 3.4 show that this
definition makes sense, after all. (Formally the family is a categorical limit.
Thus hk(X) is determined up to a unique isomorphism by the universal prop-
erty.) Given now f : X → Y between Cartesian spaces choose embeddings
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i : X → R
n and j : Y → R

m. Then there exists a unique homomorphism
f∗ : hk(Y ) → hk(X) such that all diagrams

hk(Y )

α(j)
��

f∗

// hk(X)

α(i)
��

hk(jY ;m)
hk(jfi−1) // hk(iX ;n)

are commutative.1 In this manner hk becomes a contravariant functor on the
category of Cartesian spaces and proper maps.

A similar argument can be applied to the Čech-cohomology groups and the
duality morphisms.

7. Continuity

Traditionally the proof of the Alexander duality for arbitrary compact Carte-
sian spaces uses continuity properties of the cohomology theory. They hold ei-
ther for a Čech type cohomology or by construction via colimits (for the latter
see e.g. [3, VIII.6] [2, 18]).

We assume in addition to the axioms of Eilenberg and Steenrod that the
homology theory is additive (compatible with disjoint union), see [2, p. 245],
and verify that tautological cohomology has appropriate continuity properties.

Let A ⊂ X be a compact pair in R
n. Suppose a system of compact sets

(V1,W1) ⊃ (V2,W2) ⊃ · · · ⊃ (X,A) is given such that
⋂

j Vj = X ,
⋂

j Wj = A.
A continuity property of tautological cohomology is:

Proposition 7.1. The inclusions hk(Vj ,Wj) → hk(X,A) induce an isomor-
phism colimj h

k(Vj ,Wj) ∼= hk(X,A).

Proof. According to the definitions the statement amounts to

colimhn−k(R
n \Wj ,R

n \ Vj) ∼= hn−k(R
n \A,Rn \X).

By assumption,
⋃

j(R
n \Wj) = R

n \A and similarly for X . We can now apply

the Milnor telescope construction to obtain the desired result [2, 10.8.1,10.8.3].
�

8. Further properties

We collect a few further properties of tautological cohomology.

Proposition 8.1. Let V ⊂ R
n be open and B ⊂ Z be closed in V . Then there

exists an isomorphism hk(Z,B) ∼= hn−k(V \B, V \ Z).

Proof. In view of the duality theory for manifolds in general, there should exist
a duality isomorphism for the manifold V as stated. In our setting we first
have to consider V as a Cartesian space. This is done by a closed embedding

j : V → R
n × R, v 7→ (v, d(v,Rn \ V )−1)

1The reader should note that the situation is exactly analogous to the definition of a
tangent space and a differential. See [2, p. 361].
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where d(x,C) denotes the Euclidean distance from x to C. The image j(V ) is
contained in V × R. This yields the homological excision isomorphism

hk(Z,B) = hn−k+1(R
n+1 \ jB,Rn+1 \ jZ) ∼= hn−k+1(V ×R \ jB, V ×R \ jZ).

We now apply the homeomorphism

ϕ : V × R → V × R, (v, λ) 7→ (v, λ− d(v,Rn \ V )−1)

which sends j(V ) onto V × 0. Altogether we obtain (s = n− k + 1)

hs(V × R \ jB, V × R \ jZ)
ϕ∗

−→ hs(V × R \B × 0, V × R \ Z × 0)
∼= hs−1(V \B, V \ Z),

the latter isomorphism by suspension. �

Proposition 8.2. Let Y ⊂ X ⊂ R
n be closed subsets. Then there exists an

isomorphism hk(X,Y ) ∼= hk(X \ Y ).

Proof. Since Y ⊂ R
n is closed, there exists a continuous function f : Rn →

[0,∞[ with f−1(0) = Y , e.g. f(x) = d(x, Y ) with the Euclidean distance d.
Let V = f−1 ]0,∞[. Then X ∩V = X \ Y and X \ Y is closed in V , since X is
closed. Note that V = R

n \ Y and R
n \X = V \ (X \ Y ). We therefore have

the (homological) equality

hk(X,Y ) = hn−k(R
n \ Y,Rn \X) = hn−k(V, V \ (X \ Y ).

We abbreviate Z = X \ Y . Then V is open in R
n and Z closed in V . Now we

apply 8.1. �

Proposition 8.3. Let X be a closed subset of R
n and A a compact subset

of X. Then the quotient map q : X → X/A induces an isomorphism q∗ :
hk(X/A, {A}) → hk(X,A).

Proof. One can imitate the proof of [3, VIII.6.20]. �

Remark 8.4. Let A ⊂ X ⊂ R
n be closed and assume that X \ A is con-

tained in a compact set C. Then the excision hk(X,A) ∼= hk(X ∩ C,A ∩ C)
holds. Working through the definitions one verifies that this is an application
of ordinary homology excision. ♦

9. Product structures

The construction of the tautological cohomology theory did not use product
structures. We now start with a multiplicative homology theory and describe
a consequence of this additional structure for our setting. A product structure
of a homology theory consists of morphisms

hk(X,A)⊗ hl(Y,B) → hk+l((X,A)× (Y,B)), x⊗ y 7→ x× y

which satisfy some standard axioms (naturality, compatibility with the bound-
ary operator) which we do not recall at this point. From this product structure
one can construct slant-, cap-, and cup-products involving tautological coho-
mology.
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A slant-product is defined to be the following composition. In the diagram
we use the difference map d : (x, y) 7→ x − y and Σl denotes a left-handed
suspension. The indices are denoted by an unspecified symbol •.

h•(X,A)⊗ h•((X,A)× (Y,B))

=
��

h•(R
n \A,Rn \X)⊗ h•((X,A)× (Y,B))

product
��

h•((R
n \A,Rn \X)× (X,A)× (Y,B))

(d×1)∗
��

h•((R
n,Rn \ 0)× (Y,B))

Σ−n
l��

h•(Y,B)

From the slant-product we obtain the cap-product by composition with a
diagonal ∆ : (X,A ∪B) → (X,A)× (X,B)

h•(X,A)⊗ h•(X,A ∪B)

1⊗∆∗

��

∋ u⊗ v
❴

��

h•(X,A)⊗ h•((X,A) × (X,B))

slant
��

h•(X,B) ∋ u a v.

With this cap-product we arrive at a tautological situation: The natural
transformation 5.1 now consists of morphisms

hs(R
n \A,Rn \X) → hs(R

n \A,Rn \X).

If everything is arranged correctly it turns out to be the identity.
The definition of exterior cohomology products, associated cup-products

and dual slant-products follows the same pattern and is left to the reader. The
verification of all details for the product structures in an axiomatic context is
a long story.

10. Concluding remarks

Our approach can be generalized in many ways: Equivariant setting for
compact Lie groups; parametrized spaces. One only needs a situation in which
a Tietze extension theorem holds.

If one starts with a cohomology theory, one obtains a dual homology theory
with continuity properties known from Steenrod homology (Milnor lim− lim1

sequence). One can apply this to (equivariant) K-theory in order to obtain
K-homology. Another input theory could be equivariant Borel cohomology.
Since the input uses only the values of the theory on open subsets of Euclidean
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spaces, one could try de Rham cohomology. Another interesting theory is
geometric cobordism [4].

In the context of oriented manifolds one can reduce Poincaré–Lefschetz dual-
ity via tubular neighborhoods and a Thom isomorphism for the normal bundle
to Alexander duality.

Since the basic setting of dualizible maps is independent of the homology
theory one could start with a setting in (semi-)stable homotopy theory. The
result is then a fundamental structure in homotopy theory and related to [5].

Final question: Can the setting be extended to infinite dimensional spaces
(in analogy to degree theory and fixed point theory, say)?

References
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