
WESTFÄLISCHE
WILHELMS-UNIVERSITÄT
MÜNSTER

> UnfitteddiscontinuousGalerkin schemes
for applicationswith PDEson complex-
shaped surfaces

Dissertation

wissen leben
WWU Münster MÜNSTER

MATHEMATIK
ANGEWANDTE

Sebastian Westerheide
– 2018 –





Mathematik

Unfitted discontinuous Galerkin
schemes for applications with
PDEs on complex-shaped

surfaces

Inauguraldissertation
zur Erlangung des Doktorgrades

der Naturwissenschaften im Fachbereich
Mathematik und Informatik

der Mathematisch-Naturwissenschaftlichen Fakultät
der Westfälischen Wilhelms-Universität Münster

vorgelegt von
Sebastian Westerheide

aus Münster

Münster, 2018



Dekan: Prof. Dr. Xiaoyi Jiang
Erstgutachter: Prof. Dr. Christian Engwer (WWU Münster)
Zweitgutachter: Prof. Dr. Axel Voigt (TU Dresden)

Tag der mündlichen Prüfung: 19.06.2018
Tag der Promotion: 19.06.2018

ii



Abstract
English version

The unfitted discontinuous Galerkin (UDG) method is a computational ap-
proach to solving partial differential equations (PDEs) that are posed on flat
spatial geometries known as bulk domains. It allows for conservative discontin-
uous Galerkin discretizations based on cut cell meshes and hence is particularly
suitable for continuity equations on complex-shaped bulk domains, especially
on those arising from imaging data. It has been successfully applied in various
applications, ranging from computational fluid dynamics to source analysis in
neuroscience.
In this thesis, we show how the method can be transferred to PDEs on

curved spaces that are known as hypersurfaces or surfaces. We introduce
UDG schemes for a class of model problems which is biologically motivated and
comprises continuity equations on a bulk domain and its surface. Our schemes
are concerned with the model problems’ formulation for static geometries, and
also with its generalization for evolving geometries.
The underlying approaches combine ideas of methods that extend surface

PDEs to higher-dimensional bulk domains with concepts of trace finite ele-
ment methods, which employ extended solution spaces, but still focus on the
sharp representation of the hypersurface only. The hybrid character of our
approaches results in schemes with favorable properties, such as the recovery
of discrete analogues to conservation laws that are embedded in the PDEs,
and the reusability of existing implementations of the UDG method for bulk
PDEs. At the same time, a high degree of flexibility with respect to the shape
of the geometrical setup and its evolution is achieved by using a level set
representation of the geometry.
We present theoretical investigations and numerical results which demon-

strate that our computational approaches to surface PDEs yield promising
schemes for the considered class of model problems.

German version

Die UDG-Methode ist ein numerischer Ansatz zur Lösung von partiellen Dif-
ferentialgleichungen (PDEs) auf Geometrien, die im mathematischen Sinne als
Gebiete in euklidischen Räumen dargestellt werden können. Dieser Ansatz er-
möglicht konservative Discontinuous-Galerkin-Diskretisierungen auf Basis von
Cut-Cell-Gittern und eignet sich daher besonders im Rahmen von Kontinui-
tätsgleichungen auf Gebieten mit komplizierten Rändern, vor allem wenn sich

iii



diese aus Bilddaten ergeben. Die Methode wurde bereits in verschiedenen An-
wendungen erfolgreich eingesetzt, etwa zur numerischen Strömungssimulation
oder zur Quellenanalyse in der neurowissenschaftlichen Forschung.
In dieser Arbeit zeigen wir, wie sich die Methode auf PDEs übertragen lässt,

welche auf gekrümmten, als Hyperflächen oder Oberflächen bekannten Räu-
men formuliert sind. Wir stellen UDG-Verfahren für eine biologisch motivierte
Klasse von Modellproblemen vor, die Kontinuitätsgleichungen in einem Gebiet
und auf dessen Oberfläche umfasst. Unsere Verfahren zielen sowohl auf jene
Formulierung dieser Klasse ab, welche sich für statische Geometrien ergibt,
als auch auf die entsprechende Verallgemeinerung für zeitlich veränderliche
Geometrien.
Die dem zugrundeliegenden Ansätze kombinieren Ideen von Methoden, die

auf der Erweiterung von PDEs auf Oberflächen auf höherdimensionale Ge-
biete basieren, mit Konzepten von Spur-Finite-Elemente-Methoden, die zwar
Lösungsräume auf höherdimensionalen Gebieten einsetzen, sich aber trotzdem
nur auf die eigentliche Oberfläche konzentrieren. Der daraus hervorgehende
hybride Charakter unserer Ansätze resultiert in Verfahren mit vorteilhaften
Eigenschaften. Unsere Verfahren bilden etwa in die PDEs verankerte Erhal-
tungseigenschaften im diskreten Sinne ab und sie ermöglichen es, bestehende
Implementierungen der ursprünglichen UDG-Methode für PDEs auf Gebieten
wiederzuverwenden. Ein hohes Maß an Flexibilität hinsichtlich der Gestalt
des geometrischen Aufbaus und ihrer zeitlichen Entwicklung wird dabei durch
den Einsatz der Level-Set-Methode erreicht.
Mit Hilfe theoretischer Untersuchungen und numerischer Studien zeigen wir,

dass unsere Ansätze zur numerischen Behandlung von PDEs auf Oberflächen
vielversprechende Verfahren für die betrachtete Klasse von Modellproblemen
liefern.

iv



Acknowledgements
I would like to thank my supervisor Christian Engwer for introducing me to
his interesting research areas and for offering me to work on this fascinating
topic. I am especially thankful for his patience throughout the years and for
giving me the right amount of guidance in the first part of my research and
the right amount of free development afterwards.
Furthermore, I am grateful to my colleagues and former colleagues at the

Institute for Analysis and Numerics at WWU Münster for creating a pleasant
working atmosphere, but also for those fun times which we had during breaks.
This particularly applies to members of the workgroup “Anwendungen von
partiellen Differentialgleichungen”. You guys helped me a lot in discussing
scientific ideas and their implementational difficulties in DUNE.
I extend my thanks to Marten Bornmann, Nils-Arne Dreier, Stephan Förster,

Tobias Komurka, Andreas Nüßing, Stefan Ruhkamp, Sophie Schrader, and
Johannes Vorwerk who kindly proofread different parts of this thesis.
Most importantly, I would like to express my gratitude to my friends and

my family, especially Katryn Chamot and Stephan Förster, for their valuable
support in putting me back on the right track whenever I needed to fight self-
doubts and negative feelings about my work. Besides being grateful for all her
moral and emotional support, I sincerely thank Katryn for her understanding
and for covering my back while I was finally writing up the thesis.

This thesis was supported by the Deutsche Forschungsgemeinschaft (DFG),
grant no. EN 1042/4-1: “Massenerhaltende Kopplung von Oberflächen- und
Volumenprozessen auf impliziten, zeitabhängigen Gebieten”.

v





Contents

List of Figures xi

List of Tables xv

1. Introduction 1
1.1. Bulk PDEs and surface PDEs . . . . . . . . . . . . . . . . . . . 5

1.1.1. Continuity equations on static geometries . . . . . . . . 6
1.1.2. Continuity equations on evolving geometries . . . . . . . 8
1.1.3. Non-conservative equations . . . . . . . . . . . . . . . . 9

1.2. A class of bulk–surface models . . . . . . . . . . . . . . . . . . 10
1.3. Numerical methods for bulk PDEs and surface PDEs . . . . . . 12

1.3.1. Classical mesh-based methods . . . . . . . . . . . . . . . 14
1.3.2. Geometrically unfitted mesh-based methods . . . . . . . 17

1.4. Studying spatial features in basic cell polarization models using
a classical mesh-based finite element scheme . . . . . . . . . . . 25
1.4.1. Basic cell polarization models . . . . . . . . . . . . . . . 26
1.4.2. A classical mesh-based finite element scheme . . . . . . 26
1.4.3. Results of the study . . . . . . . . . . . . . . . . . . . . 30

1.5. Challenges in applications with PDEs on complex-shaped surfaces 30
1.6. Contributions and outline of this thesis . . . . . . . . . . . . . . 36

2. Essential concepts from elementary differential geometry 39
2.1. Surface differential operators . . . . . . . . . . . . . . . . . . . 39
2.2. A closer look at surface divergence . . . . . . . . . . . . . . . . 41

2.2.1. Surface divergence of the tangential/normal component
of a surface vector field and the notion of curvature . . 43

2.2.2. Splitted representation of surface divergence . . . . . . . 46
2.2.3. Additional remarks . . . . . . . . . . . . . . . . . . . . . 48

2.3. Surface divergence in the level set framework . . . . . . . . . . 48
2.4. Integral calculus on hypersurfaces . . . . . . . . . . . . . . . . . 51
2.5. Integration of those concepts into the time-dependent case . . . 53

2.5.1. Time-dependent fields on static hypersurfaces . . . . . . 53
2.5.2. Evolving hypersurfaces . . . . . . . . . . . . . . . . . . . 54

2.6. Additional calculus on evolving hypersurfaces . . . . . . . . . . 55
2.6.1. Conservative material transport in the level set framework 57

vii



Contents

3. Further mathematical background 59
3.1. Conservation laws and continuity equations . . . . . . . . . . . 59

3.1.1. Conserved quantities on hypersurfaces . . . . . . . . . . 60
3.1.2. Conserved quantities in bulk domains . . . . . . . . . . 62
3.1.3. Additional remarks . . . . . . . . . . . . . . . . . . . . . 63

3.2. Fitted DG methods for elliptic and parabolic bulk PDEs . . . . 64
3.2.1. Obtaining DG methods by choosing numerical fluxes . . 64
3.2.2. The classical SIPG formulation and related approaches . 72
3.2.3. The SWIPG formulation . . . . . . . . . . . . . . . . . . 75
3.2.4. Spatial discretization of parabolic equations . . . . . . . 78
3.2.5. Semidiscrete conservation properties . . . . . . . . . . . 80

3.3. Implicit geometry description using the level set framework . . 82
3.3.1. The level set framework . . . . . . . . . . . . . . . . . . 82
3.3.2. Individual assumptions and definitions in this thesis . . 88

4. Unfitted DG schemes for coupled bulk–surface PDEs on complex
static geometries 91
4.1. Classes of static geometry model problems . . . . . . . . . . . . 92

4.1.1. A class of parabolic model problems . . . . . . . . . . . 92
4.1.2. A class of elliptic model problems . . . . . . . . . . . . . 94

4.2. The approaches and corresponding schemes . . . . . . . . . . . 94
4.2.1. An extension process for surface equations . . . . . . . . 94
4.2.2. Unfitted discontinuous Galerkin . . . . . . . . . . . . . . 104
4.2.3. Recovering discrete analogues to original conservation

properties . . . . . . . . . . . . . . . . . . . . . . . . . . 113
4.2.4. Stabilization strategies with respect to the surface part

of the solution . . . . . . . . . . . . . . . . . . . . . . . 120
4.2.5. Fully discrete schemes . . . . . . . . . . . . . . . . . . . 124

4.3. Numerical results . . . . . . . . . . . . . . . . . . . . . . . . . . 127
4.3.1. Linear elliptic model problems . . . . . . . . . . . . . . 127
4.3.2. Linear parabolic model problems . . . . . . . . . . . . . 154
4.3.3. Application: Nonlinear parabolic models for cell polar-

ization . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163
4.4. Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172

4.4.1. Future perspectives . . . . . . . . . . . . . . . . . . . . . 173

5. Toward unfitted DG schemes for coupled bulk–surface PDEs on
evolving geometries 177
5.1. A class of evolving geometry model problems . . . . . . . . . . 178

5.1.1. Reminder and derivation . . . . . . . . . . . . . . . . . . 178
5.2. Simplifying the problem using operator splitting . . . . . . . . 180

5.2.1. Operator splitting for PDEs on evolving geometries . . 180
5.2.2. Specific operator splitting methods for PDEs on evolving

geometries . . . . . . . . . . . . . . . . . . . . . . . . . . 182
5.2.3. Related splitting approaches . . . . . . . . . . . . . . . 186

viii



Contents

5.2.4. Treating the resulting subproblems . . . . . . . . . . . . 187
5.3. An unfitted DG scheme for an essential type of continuity equa-

tions on evolving hypersurfaces . . . . . . . . . . . . . . . . . . 189
5.3.1. Approximate reformulation of surface equations . . . . . 189
5.3.2. Unfitted discontinuous Galerkin . . . . . . . . . . . . . . 192
5.3.3. Remarks on choosing extended data functions . . . . . . 197
5.3.4. Global conservation properties . . . . . . . . . . . . . . 197
5.3.5. Understanding the scheme in one dimension . . . . . . . 198
5.3.6. Numerical results . . . . . . . . . . . . . . . . . . . . . . 202

5.4. Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 208
5.4.1. Future perspectives . . . . . . . . . . . . . . . . . . . . . 209

6. Conclusion 213

A. Software 215
A.1. DUNE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 215
A.2. The dune-udg-bulksurface module . . . . . . . . . . . . . . . 218
A.3. The dune-udg-evolving module . . . . . . . . . . . . . . . . . 220

B. The condition number of a matrix 223
B.1. Basic definitions and facts . . . . . . . . . . . . . . . . . . . . . 224
B.2. Theory from linear algebra . . . . . . . . . . . . . . . . . . . . 227

B.2.1. Eigenvalues of Hermitian matrices . . . . . . . . . . . . 227
B.2.2. Singular values . . . . . . . . . . . . . . . . . . . . . . . 229

B.3. The spectral condition number of a matrix . . . . . . . . . . . . 231
B.4. Numerical computation of eigenvalues . . . . . . . . . . . . . . 232

B.4.1. Power iteration . . . . . . . . . . . . . . . . . . . . . . . 233
B.4.2. Inverse iteration with shift . . . . . . . . . . . . . . . . . 235
B.4.3. Rayleigh quotient iteration . . . . . . . . . . . . . . . . 237
B.4.4. The TLIME algorithm . . . . . . . . . . . . . . . . . . . 238
B.4.5. Application to computing the spectral condition number 241

B.5. Implementation in the dune-istl module . . . . . . . . . . . . 242

C. Basic terminology and facts from elementary differential geometry 249
C.1. Hypersurfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . 249
C.2. Smoothness assumptions . . . . . . . . . . . . . . . . . . . . . . 250

List of Symbols 251

List of Acronyms 259

Bibliography 261

ix





List of Figures

1.1. Structures embedded in some higher-dimensional Euclidean space
that are usually represented as hypersurfaces. . . . . . . . . . . 3

1.2. Neutrophil chasing a Staphylococcus aureus bacterium. . . . . . 4
1.3. Microscopy images of the yeast species Saccharomyces cerevisiae. 5
1.4. Evolving geometries and typical features that can be observed

in applications. . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.5. Types of computational meshes that are employed in mesh-

based numerical methods for PDEs. . . . . . . . . . . . . . . . 13
1.6. Microscopy images of developing neurons. . . . . . . . . . . . . 32

2.1. An example hypersurface and its regions of negative/positive
total curvature. . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

2.2. Intrinsic outward-pointing unit normal vectors to the boundary
of an open hypersurface. . . . . . . . . . . . . . . . . . . . . . . 51

3.1. Geometrical entities that appear in the discussion of conserva-
tion laws for quantities on hypersurfaces (see Section 3.1.1) and
for quantities in bulk domains (see Section 3.1.2). . . . . . . . . 61

3.2. Level set description of some circular example geometry. . . . . 84
3.3. Different types of level sets, together with sets characterizing

these types. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

4.1. Hypersurfaces that are employed in the extension process from
Section 4.2.1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

4.2. Narrow band which we use as surface extension domain in our
schemes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

4.3. Discrete geometry reconstruction in the UDG approach using
the level set framework. . . . . . . . . . . . . . . . . . . . . . . 107

4.4. Some fundamental mesh, the corresponding active mesh for an
example bulk domain, and the corresponding cut cell mesh of
this domain. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

4.5. The geometrical setting of spatial discretization of the surface
part of the problem using UDG and narrow band driven Eule-
rian SDG. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

4.6. Graph of the solution pairs (ub, us) of elliptic 2d test problem
“2” and elliptic 2d test problem “3”. . . . . . . . . . . . . . . . 131

xi



List of Figures

4.7. Errors in numerical solutions of elliptic 2d test problem “2” and
spectral condition number associated with the corresponding
system of linear equations, obtained using Scheme 4.2.9, k = 1,
hosts := sipg, and no separate geometry meshes. . . . . . . . . 136

4.8. Errors in numerical solutions of elliptic 2d test problem “3” and
spectral condition number associated with the corresponding
system of linear equations, obtained using Scheme 4.2.9, k = 1,
hosts := sipg, and no separate geometry meshes. . . . . . . . . 138

4.9. Errors in numerical solutions of elliptic 2d test problem “2”
and spectral condition number, obtained using Scheme 4.2.15
together with the two considered stabilization terms, k = 1,
hosts := sipg, and no separate geometry meshes. . . . . . . . . 139

4.10. Errors in numerical solutions of elliptic 2d test problem “3”
and spectral condition number, obtained using Scheme 4.2.15
together with the two considered stabilization terms, k = 1,
hosts := sipg, and no separate geometry meshes. . . . . . . . . 141

4.11. Errors in numerical solutions of elliptic 2d test problem “3”
and spectral condition number associated with the correspond-
ing system of linear equations, obtained using Scheme 4.2.9 or
Scheme 4.2.15 together with the two considered stabilization
terms, k = 1, hosts := sipg, and separate geometry meshes
with h = h/4. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143

4.12. Errors in numerical solutions of elliptic 2d test problem “3”
and spectral condition number associated with the correspond-
ing system of linear equations, obtained using Scheme 4.2.9 or
Scheme 4.2.15 together with the two considered stabilization
terms, k = 1, hosts := swipg, and separate geometry meshes
with h = h/4. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144

4.13. Errors in numerical solutions of elliptic 2d test problem “3” and
spectral condition number associated with the corresponding
system of linear equations, obtained using Scheme 4.2.9, k = 2,
hosts := sipg, and no separate geometry meshes. . . . . . . . . 146

4.14. Errors in numerical solutions of elliptic 2d test problem “3” and
spectral condition number associated with the corresponding
system of linear equations, obtained using Scheme 4.2.9, k = 2,
hosts := sipg, and separate geometry meshes with h = h/32. . . 147

4.15. Errors in numerical solutions of elliptic 2d test problem “3”
and spectral condition number, obtained using Scheme 4.2.15
together with the two considered stabilization terms, k = 2,
hosts := sipg, and no separate geometry meshes. . . . . . . . . 148

4.16. Errors in numerical solutions of elliptic 2d test problem “3”
and spectral condition number, obtained using Scheme 4.2.15
together with the two considered stabilization terms, k = 2,
hosts := sipg, and separate geometry meshes with h = h/32. . . 150

xii



List of Figures

4.17. Errors in numerical solutions of elliptic 2d test problem “3”
and spectral condition number, obtained using α-refinement,
Scheme 4.2.9 or Scheme 4.2.15 with the two considered stabi-
lization terms, k = 1, hosts := swipg, r = 4 (h ≈ 3.54 · 10−1),
and a separate geometry mesh with h = h/4. . . . . . . . . . . 152

4.18. Errors in numerical solutions of elliptic 2d test problem “3”
and spectral condition number, obtained using α-refinement,
Scheme 4.2.9 or Scheme 4.2.15 with the two considered stabi-
lization terms, k = 2, hosts := swipg, r = 4 (h ≈ 3.54 · 10−1),
and a separate geometry mesh with h = h/32. . . . . . . . . . . 153

4.19. Graph of the solution pairs (ub, us) of parabolic 2d test problem
“3” and parabolic 2d test problem “4” at different times t. . . . 157

4.20. Errors in numerical solutions of parabolic 2d test problem “3”,
obtained using Scheme 4.2.18 or Scheme 4.2.19 with the two
considered stabilization terms, time step size τ n := 0.01h, k = 1,
hosts := swipg, and no separate geometry meshes. . . . . . . . 159

4.21. Errors in numerical solutions of parabolic 2d test problem “4”,
obtained using Scheme 4.2.18 or Scheme 4.2.19 with the two
considered stabilization terms, time step size τ n := 0.01h2,
k = 1, hosts := swipg, and no separate geometry meshes. . . . . 160

4.22. Errors in numerical solutions of parabolic 2d test problem “4”,
obtained using Scheme 4.2.19 with the two considered stabiliza-
tion terms, time step size τ n := 0.01h2, k = 2, hosts := sipg,
and separate geometry meshes with h = h/32. . . . . . . . . . . 161

4.23. Errors in numerical solutions of parabolic 2d test problem “3”,
obtained using Scheme 4.2.19 with the two considered stabiliza-
tion terms, time step size τ n := 0.01h2, k = 2, hosts := sipg,
and separate geometry meshes with h = h/32. . . . . . . . . . . 162

4.24. Numerical solution
(
un
b,h, u

n
s,h

)
of the WP model on a circular

cell at different discrete times tn , obtained using Scheme 4.2.19
with full gradient stabilization, time step size τ n := 0.25, k = 1,
hosts := sipg, r = 5 (h ≈ 4.86·10−1), α := 0.05, and no separate
geometry meshes. . . . . . . . . . . . . . . . . . . . . . . . . . . 165

4.25. Transmission electron microscopy image of a two-dimensional
slice of a yeast cell, the extracted geometry which we use in our
computations, and the associated level set function. . . . . . . . 167

4.26. Discrete reconstruction of the geometry in Figure 4.25b and of
the associated narrow band which we use in our computations,
and the corresponding local triangulations. . . . . . . . . . . . 168

4.27. Numerical solution
(
un
b,h, u

n
s,h

)
of the simplified GOR model on

the geometry that is shown in Figure 4.25b, obtained using
Scheme 4.2.18, time step size τ n := 2.5, k = 1, hosts := swipg,
r = 5 (h ≈ 1.77 · 10−1), α := 0.50, and a separate geometry
mesh with h = h/8. . . . . . . . . . . . . . . . . . . . . . . . . . 169

xiii



List of Figures

4.28. Comparison of the evolutions of masses that are obtained us-
ing different values of α and either Scheme 4.2.17, which con-
serves mass only approximately, or the globally conservative
Scheme 4.2.18. . . . . . . . . . . . . . . . . . . . . . . . . . . . 170

4.29. Comparison of the evolutions of the relative error in total mass
mn
h that are obtained using different values of α and either

Scheme 4.2.17, which conserves mass only approximately, or
the globally conservative Scheme 4.2.18. . . . . . . . . . . . . . 171

5.1. Illustrations of the two operator splitting methods for PDE on
evolving geometries which are proposed in Section 5.2.2. . . . . 182

5.2. A circle which is translated with a horizontal velocity. . . . . . 190
5.3. A circle which is shrinking with a velocity that points in normal

direction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 191
5.4. Discrete geometry reconstruction and meshes that are employed

by the considered UDG method, illustrated for a circle which is
shrinking with a velocity that points in normal direction. . . . 194

5.5. Meshes which appear in the 1d example from Section 5.3.5. . . 199
5.6. Numerical solutions of the shrinking circle test problem, ob-

tained using Scheme 5.3.3 with k = 0, and no separate geometry
meshes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 205

5.7. Errors in numerical solutions of the shrinking circle test prob-
lem, obtained using Scheme 5.3.3 with k = 0, and no separate
geometry meshes. . . . . . . . . . . . . . . . . . . . . . . . . . . 205

5.8. Numerical solutions of problem (5.9) with binary initial values
on a shrinking circle, obtained using Scheme 5.3.3 with k = 0,
and no separate geometry meshes. . . . . . . . . . . . . . . . . 207

5.9. Numerical solutions of problem (5.9) with binary initial values
on a rotating and shrinking circle, obtained using Scheme 5.3.3
with k = 0, and no separate geometry meshes. . . . . . . . . . . 208

xiv



List of Tables

1.1. Data functions that characterize the simplified GOR model and
the WP model, when being employed in the static geometry
special case of equations (1.8). . . . . . . . . . . . . . . . . . . 27

3.1. Values of the parameters of Scheme 3.2.4 that correspond to
DG formulations known in the literature. . . . . . . . . . . . . 74

4.1. Level set functions that are employed in Figure 4.2. . . . . . . . 101
4.2. Linear elliptic test problems: data functions fb(ub) and f̃s, and

the associated solution (ub, us). . . . . . . . . . . . . . . . . . . 129
4.3. Errors in numerical solutions of elliptic 2d test problem “2”,

obtained using Scheme 4.2.9, k = 1, hosts := sipg, and no
separate geometry meshes. . . . . . . . . . . . . . . . . . . . . . 135

4.4. Errors in numerical solutions of elliptic 2d test problem “3”,
obtained using Scheme 4.2.9, k = 1, hosts := sipg, and no
separate geometry meshes. . . . . . . . . . . . . . . . . . . . . . 137

4.5. Errors in numerical solutions of elliptic 2d test problem “2”,
obtained using Scheme 4.2.15 with the two considered stabi-
lization terms, k = 1, hosts := sipg, and no separate geometry
meshes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139

4.6. Errors in numerical solutions of elliptic 2d test problem “3”,
obtained using Scheme 4.2.15 with the two considered stabi-
lization terms, k = 1, hosts := sipg, and no separate geometry
meshes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140

4.7. Linear parabolic test problems: data functions fb(ub) and fs(us),
and the associated solution (ub, us). . . . . . . . . . . . . . . . 156

4.8. Values of the parameters of the simplified GOR model and val-
ues of the parameters of the WP model, which we employ in this
thesis complementary to the data functions that are specified
in Table 1.1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163

5.1. Errors and amount of the considered quantity in numerical
solutions of the shrinking circle test problem, obtained using
Scheme 5.3.3 with k = 0, and no separate geometry meshes. . . 205

xv



List of Tables

A.1. The dune-udg-bulksurface module version which has been
used to produce the results in this thesis, and compatible ver-
sions of the DUNE modules it builds upon. . . . . . . . . . . . . 222

A.2. The dune-udg-evolving module version which has been used
to produce the results in this thesis, and compatible versions of
the DUNE modules it builds upon. . . . . . . . . . . . . . . . . . 222

B.1. Overview of class template Dune::PowerIteration_Algorithms.243
B.2. Overview of class template Dune::ArPackPlusPlus_Algorithms.245
B.3. Overview of class template MatrixInfo. . . . . . . . . . . . . . 245

xvi



1. Introduction
Since the widespread availability of computers at research laboratories and
universities, computer simulations have taken their place alongside theory and
practical experiments as the third pillar of scientific research. They allow
for gaining new insights, even if properties or structures are experimentally
too difficult to access, or if experiments are so expensive that only a small
amount of them can be performed. In addition, scientific theories can be tested
and refined systematically by comparing predictions derived from simulation
results with results that are obtained in tailor-made experiments which focus
on these predictions.

Mathematical modeling, bulk domains and embedded structures

Simulation science typically relies on mathematical modeling of processes that
are observed in practical experiments performed in science and engineering.
Its applications frequently involve processes in flat spatial geometries which
mathematical models can represent as connected, open subsets of Euclidean
space of a certain dimension. Such mathematical objects can be referred to
as bulk domains. Being open subsets, they inherit their dimension from the
Euclidean space in which they are contained.
Applications with processes in flat spatial geometries, or with processes

in geometries which can be considered as being flat by reasonable modeling
assumptions, can be found in many textbooks on mathematical modeling.
Chorin and Marsden (2000) consider applications from fluid dynamics, e.g.
flows in pipes and flows around obstacles. Various applications from different
fields like acoustics or atmospheric dispersion are treated in Tayler (1986), e.g.
submarine detection and smoke dispersion from a high chimney. In Friedman
and Littman (1994), real-world applications from chemistry, electrophotogra-
phy and other fields are considered, particularly oxidation reactions in catalytic
converters in the exhaust system of cars and the capturing process of electric
images in photocopy machines.
In many of those applications, structures of a certain dimension that are

embedded in some higher-dimensional Euclidean space, such as curved sur-
faces, membranes or interfaces, also play an important role. Moreover, it can
be necessary to consider processes on those embedded structures instead of
processes in flat spatial geometries to obtain a reliable mathematical model.
This is the case, for instance, for applications from biology (e.g. transport of

liquids and surface active agents (surfactants) through the lung airways and
along their walls (Halpern et al., 1998), cell migration and chemotaxis (Neilson

1



1. Introduction

et al., 2011b,a; Elliott et al., 2012), pattern formation on developing plant tips
(Nagata et al., 2013) or on the skin of developing fishes (Venkataraman et al.,
2011), as well as pattern formation on other biological surfaces and tumor
growth (Barreira et al., 2011)). Other applications can be found in materials
science (e.g. spreading of thin fluid films or coatings on curved substrates (Roy
et al., 2002), ice formation on surfaces (Myers et al., 2002; Myers and Charpin,
2004), and phase separation of polymers on a surface (Tang et al., 2005)).
Further applications are considered in image processing (e.g. processing of
brain image data (Toga, 1998; Mémoli et al., 2004)), or appear in computer
graphics (e.g. vector field visualization on surfaces (Diewald et al., 2000), vir-
tual weathering (Dorsey and Hanrahan, 2000), and texture generation on sur-
faces (Turk, 1991; Witkin and Kass, 1991)). Some applications also arise from
applied mathematics itself (e.g. pattern formation on the sphere and on other
curved mathematical objects (Varea et al., 1999; Chaplain et al., 2001; Plaza
et al., 2004; Rozada et al., 2014)).
Due to recent technological progress, processes on embedded structures in-

creasingly gain attention, especially in combination with processes in flat spa-
tial geometries. On the one hand, in practical experiments, modern imaging
techniques allow for in-depth observations which underline the importance
of processes on embedded structures. On the other hand, current computer
hardware provides enough computational power to perform detailed simula-
tions which include the influence of processes associated with either type of
geometry at the same time. As a consequence, modelers have started to deal
with coupled processes in flat spatial geometries and on embedded structures,
rendering simulations for applications that entail both types of processes more
and more realistic.
Applications of this kind include crystal growth in materials science (Kwon

and Derby, 2001) and proton diffusion along biological membranes in physics
(Medvedev and Stuchebrukhov, 2011, 2013), for example. Furthermore, many
applications arise in mathematical biology and cell biology, e.g. pattern for-
mation on biological membranes (Levine and Rappel, 2005), cell migration
and chemotaxis (Marth and Voigt, 2014; MacDonald et al., 2016), lipid raft
formation in cell membranes (Garcke et al., 2015), fluorescence loss in photo-
bleaching which is used for examining the movement of molecules inside cells
and their membranes (Novak et al., 2007), and cell polarization (Goryachev
and Pokhilko, 2008; Rätz and Röger, 2012, 2014; Giese, Eigel, Westerheide,
Engwer and Klipp, 2015a; Emken, 2016). Other important applications can be
found in fluid dynamics, e.g. two-phase flows with soluble or insoluble surface
active agents (surfactants) on the fluid–fluid interface (James and Lowengrub,
2004; Booty and Siegel, 2010; Teigen et al., 2011; Ganesan and Tobiska, 2012;
Ganesan et al., 2012; Hahn et al., 2013), and surfactants in general (Hahn
et al., 2014). A purely mathematical investigation of bulk-mediated surface
diffusion is presented in Chechkin et al. (2012). The influence of bulk domain
processes on pattern formation on surfaces is investigated mathematically in
Madzvamuse et al. (2015) and Madzvamuse and Chung (2016).

2



Ω1

Ω2

Γ

(a) A fluid–fluid interface.

Ω

Γ

(b) A cell membrane.

Figure 1.1.: Structures embedded in some higher-dimensional Euclidean space
that are usually represented as hypersurfaces. The hypersurfaces
representing those structures are depicted in red and denoted by Γ.
Related bulk domains are depicted in shades of green and denoted
by Ω1, Ω2 and Ω. The observation window in the ambient space
is visualized by a black frame.

Hypersurfaces

From a mathematical point of view, embedded structures often can be rep-
resented as hypersurfaces, i.e. geometric objects that have codimension 1 in
the higher-dimensional Euclidean space which is considered. This applies to
a large number of the applications mentioned above. In the applications from
fluid dynamics, for example, a special focus lies on interfaces between dif-
ferent immiscible fluids, and in the applications from cell biology, biological
membranes play a prominent role. See Figure 1.1 for illustrations.
Depending on the application and its geometric entities, different types of

hypersurfaces may be required. In particular, given a representation of distinct
fluids by a set of different bulk domains, a fluidic interface corresponds to that
part of the boundaries of two neighboring bulk domains which separates both
bulk domains from each other. This part is a proper subset of both bound-
aries in many situations. On the contrary, a biological membrane usually is
represented by the entire boundary of a bulk domain since it covers biological
entities like cells or organelles. Hypersurfaces of the first kind, i.e. those de-
picted in Figure 1.1a, are referred to as open hypersurfaces. The second kind
of hypersurfaces is known as closed hypersurfaces, see Figure 1.1b. In any
case, hypersurfaces are mathematical models for embedded spatial structures
of codimension 1 that are generally curved.
Instead of using the notion of hypersurfaces, it is also common practice to

simply speak of surfaces. Although the latter term is mathematically correct
for two-dimensional structures only, this abuse of terms is very convenient
wherever mathematically precise terminology is not crucial. It accounts for
the fact that the ambient space in real-world applications is three-dimensional.

3



1. Introduction

Figure 1.2.: Neutrophil (a type of white blood cell) chasing a bacterium of the
species Staphylococcus aureus through a field of red blood cells on
a blood film. Image sequence (top left to bottom right in reading
order) extracted from a video clip1 that is an excerpt from a 16 mm
movie made by David E. Rogers at Vanderbilt University in the
1950s. Video clip courtesy of Thomas P. Stossel (Harvard Medical
School; Brigham and Women’s Hospital, Boston), and Philip G.
Allen (Boston University) who digitized it from the analog footage
and uploaded it on the internet. Color added in this thesis.

1http://biochemweb.net/neutrophil.shtml

Evolving geometries

In real-world applications, nature not only dictates the dimensionality of the
spatial geometry that is mapped by bulk domains and hypersurfaces. It also
often calls for models which take into account the evolution of this spatial
geometry by employing bulk domains and hypersurfaces which evolve in time.
For instance, the applications mentioned above include a biological process
known as chemotaxis. Chemotaxis is a cellular crawling mechanism that is
characterized by motion guided toward chemical cues which cells sense in
their environment. Figure 1.2 shows an example of a particular cell type.
Another well-known biological mechanism where geometrical evolution has a
non-negligible impact is the division of cells. It is observable, for example, in
the case of yeast cells, see Figure 1.3.

4

http://biochemweb.net/neutrophil.shtml


1.1. Bulk PDEs and surface PDEs

(a) Yeast cells, differential inter-
ference contrast microscopy
image (color added).

(b) A fresh culture of yeast cells, scanning electron
microscopy image.

Figure 1.3.: Microscopy images of the yeast species Saccharomyces cerevisiae.
In image (a), a single cell and its membrane have been marked
green and red, respectively. The unmodified original image2
has been released into the public domain. Image (b) was
taken by Mogana Das Murtey (University of Science, Malaysia)
and Patchamuthu Ramasamy (Quest International University
Perak)3, and is distributed under the CC-BY-SA-3.0 license4.

2https://commons.wikimedia.org/wiki/File:S_cerevisiae_under_DIC_microscopy.jpg
3https://commons.wikimedia.org/wiki/File:Saccharomyces_cerevisiae_SEM.jpg
4https://creativecommons.org/licenses/by-sa/3.0/legalcode

Both cellular mechanisms exhibit geometric properties that can be seen as
role models for typical features of evolving geometries. In particular, chemo-
tactic movement can be accompanied by strong, anisotropic deformations of
the cell body. Moreover, cell division naturally leads to geometries with topo-
logical changes. These two typical features of evolving geometries are illus-
trated in Figure 1.4. A mathematical model which employs a static geometry
representation in these cases can be expected to be realistic only for time scales
that are very small, compared to time scales for which changes in geometry
are observable. Such a model could, for example, focus on effects which trigger
geometrical evolution that occurs on a larger time scale which is not captured
by the model.

1.1. Bulk PDEs and surface PDEs

Mathematical models that are employed in applications like those mentioned
above typically comprise partial differential equations (PDEs) formulated on
bulk domains and hypersurfaces. A PDE is a mathematical equation which
describes the relation of an unknown function of multiple continuous variables
and its partial derivatives. Since such relations are extremely common, PDEs

5

https://commons.wikimedia.org/wiki/File:S_cerevisiae_under_DIC_microscopy.jpg
https://commons.wikimedia.org/wiki/File:Saccharomyces_cerevisiae_SEM.jpg
https://creativecommons.org/licenses/by-sa/3.0/legalcode


1. Introduction

Ω(t)
Γ(t)

Ω(t)

Γ(t)

Ω(t)

Γ(t)

−→ −→

(a) Evolving geometries with strong, anisotropic deformations, as observable in cell motility.

Ω(t)

Γ(t)

Ω(t)

Γ(t)

Ω1(t)

Γ1(t)

Ω2(t)
Γ2(t)

−→ −→

(b) Evolving geometries with topological changes, as observable in cell division.

Figure 1.4.: Evolving geometries and two typical features that can be observed
in applications. Evolving bulk domains are depicted in green and
denoted by Ω(t), Ω1(t) and Ω2(t). Evolving hypersurfaces are
depicted in red and denoted by Γ(t), Γ1(t) and Γ2(t).

are a standard tool in mathematical modeling of systems whose unknowns are
distributions observed in some continuum of multiple dimensions, such as, in
the majority of cases, a multidimensional spatial continuum or a space–time
continuum. They can be used to model various processes from physics, biology
and chemical science, and also processes from economics.
To distinguish between a PDE formulated on some bulk domain and a PDE

that is formulated on a hypersurface, it is convenient to use the terms bulk
PDE and surface PDE. Despite this classification, generally every PDE can
be formulated for both types of geometry, which results in equations with a
very similar structure.

1.1.1. Continuity equations on static geometries

One prominent example is Poisson’s equation. Its formulations for a static
bulk domain Ω and a static hypersurface Γ take the form

−∆ub = gb in Ω, (1.1a)
−∆Γus = gs on Γ, (1.1b)

6



1.1. Bulk PDEs and surface PDEs

with functions ub and us that are the unknown solution, and functions gb
and gs which represent given data. Both formulations are identical to each
other except for the differential operator which they employ. The operator
∆ in equation (1.1a) is the Laplacian which is given by the divergence of the
gradient of a twice-differentiable function defined in Euclidean space. Applied
to a suitable function ub, it is frequently denoted as ∆ub = ∇·∇ub, where ∇·
and ∇ denote the divergence operator and the transposed gradient operator
in Euclidean space, respectively. In Cartesian space, i.e. Euclidean space with
Cartesian coordinates, which is the standard representation of Euclidean space
that will be considered from now on, these two operators take derivatives along
the coordinate axes. The operator ∆Γ in equation (1.1b) is known as the
Laplace–Beltrami operator. Its concept is similar to that of the Laplacian ∆
but it additionally takes into account the fact that the hypersurface Γ is a
curved space. Analogous to ∆, its action on a function us on Γ can be defined
as ∆Γus = ∇Γ · ∇Γus, where ∇Γ · and ∇Γ are a divergence operator and a
transposed gradient operator for fields on Γ. Being defined using a suitable
notion of partial derivatives in curved spaces, these two operators both respect
the fact that Γ is curved. Instead of taking derivatives along the coordinate
axes of the ambient Cartesian space, derivatives are taken with respect to local
coordinate systems. Details will be given later on in this thesis.
Generalizing Poisson’s equation by allowing for non-constant diffusion yields

steady-state diffusion equations

−∇ · (Db∇ub) = gb in Ω, (1.2a)
−∇Γ · (Ds∇Γus) = gs on Γ, (1.2b)

where Db and Ds are parameters known as bulk and surface diffusivity tensors
which determine the diffusive flux in Ω and on Γ, respectively. Being a surface
diffusivity tensor, Ds maps the tangent space of Γ into itself at every point.
With this requirement, equation (1.2b) is a model for a diffusion process which
solely happens inside of Γ, even though Γ is a curved space in general.
Analogous diffusion equations which model dynamical systems in a static

bulk domain Ω and on a static hypersurface Γ during an observation period
[0, T ] are given by

∂tub −∇ · (Db∇ub) = gb in Ω× (0, T ], (1.3a)
∂tus −∇Γ · (Ds∇Γus) = gs on Γ× (0, T ]. (1.3b)

In comparison with their steady-state analogues (1.2) considered above, both
equations are still formulated on the same kind of static geometries, but each
solution is time-dependent now. The additional terms on the left-hand side
are partial derivatives with respect to time, which describe the temporal rate
of change of the solution function and therefore vanish once the latter reaches
a steady state, if any. In contrast to spatial differential operators, the same
notion of time derivative is used for both formulations since their time domains

7



1. Introduction

are subsets of the same flat space.
Generalizing the functions gb and gs on the right-hand side by permitting

terms which depend on the unknown solution results in reaction–diffusion
equations

∂tub −∇ · (Db∇ub) = fb(ub) in Ω× (0, T ],
∂tus −∇Γ · (Ds∇Γus) = fs(us) on Γ× (0, T ].

Moreover, incorporating transport in terms of an advective flux that is intrinsic
to Ω and Γ yields reaction–advection–diffusion equations

∂tub +∇ · (−Db∇ub + ubwb) = fb(ub) in Ω× (0, T ], (1.4a)
∂tus +∇Γ · (−Ds∇Γus + usws) = fs(us) on Γ× (0, T ]. (1.4b)

Here, the advective flux is driven by velocity fields wb and ws, respectively,
where ws points tangential to the hypersurface Γ in each point, such that the
requirements of fluxes which are intrinsic to curved spaces are met.
All equations which we have considered so far for static geometries are mem-

bers of classes of PDEs known as bulk/surface continuity equations. Continuity
equations represent models for quantities that undergo various conservative
processes. Since most of the processes observed in nature are conservative,
continuity equations are a powerful tool in mathematical modeling. Details
on their systematic derivation and their relationship with the conservation of
some quantity will be given later on in this thesis. Next, we will focus on their
formulation for evolving geometries.

1.1.2. Continuity equations on evolving geometries

For evolving geometries, the plainest possible continuity equations are advec-
tion equations accounting for conservative material transport which is solely
driven by the geometrical evolution. In particular, for an evolving bulk domain
Ω(t) and an evolving hypersurface Γ(t), they are given by

∂tub + vb · ∇ub + ub(∇ · vb) = 0 in
⋃

t∈(0,T ]
Ω(t)× {t}, (1.5a)

∂•us + us(∇Γ · vs) = 0 on
⋃

t∈(0,T ]
Γ(t)× {t}, (1.5b)

where vb and vs are fields which describe the velocity of material points in
Ω(t) and the velocity of material points on Γ(t) from an Eulerian point of view,
respectively. More precisely, along the trajectory of each individual point that
moves with Ω(t) or Γ(t), the relevant field specifies the temporal evolution of
the velocity of this point. This information is known as the material velocity
of Ω(t) and Γ(t), respectively.
In comparison with time-dependent continuity equations for static geome-

tries, such as (1.3), equations (1.5) use a different notion of time derivative

8



1.1. Bulk PDEs and surface PDEs

since the time domain and the space domain are no longer orthogonal to each
other. More specifically, both formulations employ a Lagrangian derivative
which is known as the material derivative. Applied to the solution function, it
describes the temporal rate of change of the solution function while following
the trajectory of material points in Ω(t) and on Γ(t), respectively. Each for-
mulation comes with its own version of this derivative. In equation (1.5a), the
material derivative of ub (with respect to the material velocity vb) is repre-
sented by the term ∂tub+vb ·∇ub. The material derivative of us (with respect
to the material velocity vs) in equation (1.5b) is denoted by ∂•us. It does not
have a similar representation since the required partial derivatives in Cartesian
spaces that contain the space–time representation of an evolving hypersurface
are not defined for fields which live on this hypersurface, unless an extension of
those fields to a space–time neighborhood of the hypersurface is given. More
details on ∂•us will be given later on in this thesis. The right-most terms on
the left-hand side of equations (1.5) render the material transport conservative.
To shorten notation in PDEs for evolving geometries, it is customary to write

Ω(t) and Γ(t) instead of the full space–time geometries
⋃
t∈(0,T ] Ω(t)×{t} and⋃

t∈(0,T ] Γ(t)× {t}. By abusing notation this way and by combining terms in
equation (1.5a), equations (1.5) can be equivalently formulated as

∂tub +∇ · (ubvb) = 0 in Ω(t), (1.5ã)
∂•us + us(∇Γ · vs) = 0 on Γ(t). (1.5b̃)

Apart from conservation of a bulk/surface quantity on an evolving geome-
try, equations (1.5) model no other physical effects. Taking into account all
physical effects which we have considered above for static geometries results
in reaction–advection–diffusion equations for evolving geometries:

∂tub +∇ · (ubvb) +∇ · (−Db∇ub + ubwb) = fb(ub) in Ω(t), (1.6a)
∂•us + us(∇Γ · vs) +∇Γ · (−Ds∇Γus + usws) = fs(us) on Γ(t). (1.6b)

These equations are similar to the static geometry reaction–advection–diffusion
equations (1.4), but the time derivatives have been replaced by terms that are
known from equations (1.5). In fact, equations (1.6) can be considered as a
generalization of the static geometry reaction–advection–diffusion equations.
This is revealed by taking vb ≡ 0 and vs ≡ 0 in equations (1.6). This special
case corresponds to having a static bulk domain Ω(t) ≡ Ω and a static hyper-
surface Γ(t) ≡ Γ. Furthermore, all terms vanish which contain the material
velocity, and the material derivative ∂•us degenerates to the partial derivative
∂tus.

1.1.3. Non-conservative equations

In addition to continuity equations, which model conservative processes, PDEs
can also be important that represent models for processes which do not con-

9



1. Introduction

serve their associated quantities. A notable example is the non-conservative
advection equation. For a static bulk domain Ω, it is given by the bulk PDE

∂tub + wb · ∇ub = 0 in Ω× (0, T ], (1.7)

where wb is a time-dependent vector field living in Ω, as with equation (1.4a).
Interpreting Ω as an observation window, and wb as a field which describes
the velocity of moving particles as long as they reside in Ω, the equation can
be seen as a model for a quantity whose concentration ub is constant along
the trajectory of each particle. Of course, this kind of equation can be also
formulated as a surface PDE by using the appropriate differential operator and
a suitable velocity field. However, in this thesis, we will restrict our attention
to surface PDEs that are continuity equations. Except for equation (1.7),
non-conservative bulk PDEs will neither be of particular importance.

1.2. A class of bulk–surface models

Mathematical models not necessarily consist of a solitary PDE which is posed
on one single bulk domain or hypersurface. In most of the applications which
have been mentioned at the beginning of this introduction, they usually rather
comprise multiple PDEs that are coupled with each other in some way.
Especially in the last decade, models have become popular which include

PDEs on a bulk domain and the hypersurface that is formed by the boundary
of this bulk domain. Examples from the set of applications which has been
mentioned at the beginning of this introduction include models for intracellular
dynamics (Novak et al., 2007; Goryachev and Pokhilko, 2008; Medvedev and
Stuchebrukhov, 2011; Rätz and Röger, 2012; Medvedev and Stuchebrukhov,
2013; Rätz and Röger, 2014), (Giese, Eigel, Westerheide, Engwer and Klipp,
2015a), (MacDonald et al., 2016; Emken, 2016), models for pattern formation
on surfaces (Madzvamuse et al., 2015; Madzvamuse and Chung, 2016), and
models for two-phase flows with surfactants respectively models dealing with
surfactants in general (Booty and Siegel, 2010; Teigen et al., 2011; Ganesan
and Tobiska, 2012; Ganesan et al., 2012; Hahn et al., 2013, 2014).
In this thesis, such systems of equations are referred to as models comprising

bulk–surface PDEs, or in short, bulk–surface models. A class of bulk–surface
models which will serve as a particular example will be introduced next. It is
biologically motivated and encompasses many of the models for intracellular
dynamics mentioned above. Models in the latter set, that do not fit in with the
class of bulk–surface models which we are about to introduce, can be described
by adding similar bulk PDEs or similar surface PDEs. To deal with the most
general setting, we will consider a formulation for evolving geometries.
Let Ω(t) be an evolving bulk domain of some dimension d ∈ N, bounded

by an evolving hypersurface Γ(t) and observed during a specified time period
[0, T ]. Assume that there exists a field of outward-pointing unit normal vectors
to Γ(t) denoted by ν(·, t) : Γ(t) → Rd, where Rd denotes the real coordinate

10



1.2. A class of bulk–surface models

space which models the d-dimensional Cartesian space containing Ω(t) and
Γ(t). Furthermore, let v(·, t) : Ω(t)∪ Γ(t)→ Rd be a field which describes the
material velocity of Ω(t) ∪ Γ(t).
On the evolving geometry, we consider two conserved scalar quantities,

namely a bulk quantity in Ω(t) and a surface-bound quantity on Γ(t) that
are represented by concentrations ub(·, t) : Ω(t) → R and us(·, t) : Γ(t) → R,
respectively, whose evolution is driven by bulk/surface reactions, bulk/surface
diffusion, and reactive interactions of both quantities on Γ(t). Given some
initial values ub(·, 0) and us(·, 0), the considered class of model problems reads

∂tub +∇ · (ubv)−∇ · (Db∇ub) = fb(ub) in Ω(t), (1.8a)
−Db∇ub · ν = −fb,s(ub, us) on Γ(t), (1.8b)

∂•us + us(∇Γ · v)−∇Γ · (Ds∇Γus) = fs,b(ub, us) + fs(us) on Γ(t). (1.8c)

First, we note its relationship with reaction–advection–diffusion equations
for evolving geometries, which have been presented in equations (1.6). Equa-
tion (1.8a) is a bulk reaction–diffusion equation for the evolving domain Ω(t).
It is equal to equation (1.6a) in the case wb ≡ 0, i.e. there is no advective flux
that is intrinsic to Ω(t). Analogously, equation (1.8c) is a surface reaction–
diffusion equation posed on the evolving hypersurface Γ(t), which is similar
to equation (1.6b) in the case ws ≡ 0. As with equations (1.6), Db and Ds
are the bulk diffusivity tensor and the surface diffusivity tensor, respectively,
with Dsν⊥ ·ν = 0 on Γ(t) for every tangential vector ν⊥. The latter property
is the requirement which has been discussed for equation (1.2b). Further-
more, reactions are described by two functions fb(ub)(·, t) : Ω(t) → R and
fs(us)(·, t) : Γ(t)→ R, that are potentially nonlinear terms in ub and us.
Apart from that, the above class of bulk–surface models takes into account

two functions fb,s(ub, us)(·, t) : Γ(t)→ R and fs,b(ub, us)(·, t) : Γ(t)→ R which
have the same property as fb(ub) and fs(us) regarding ub and us. They
could, for example, describe transitions between ub and us that are caused by
additional reactions at the boundary. In general, they couple the processes
in Ω(t) and Γ(t). The coupling in equation (1.8a) is due to its Robin-like
boundary condition (1.8b), whereas fs,b(ub, us) appears as a standard surface
reaction term in equation (1.8c). Those terms in (1.8a) and (1.8c) which
account for material transport driven by the evolution of the bulk domain and
its surface can provide an additional coupling between both equations. This
applies if the material velocity v depends on the solution variables ub and us.
Furthermore, since the class of bulk–surface models given by equations (1.8)

comprises continuity equations and a suitable boundary condition, the solution
(ub, us) of each specific model satisfies certain conservation properties. As we
will see later on in this thesis, those conservation properties entail that the
total amount m(t) :=

∫
Ω(t) ub dx+

∫
Γ(t) us dσ of the system’s quantities is an

invariant with respect to time if the model parameters are chosen accordingly.
This holds true, e.g., for models with fb ≡ 0, fs ≡ 0 and fb,s = −fs,b.

11



1. Introduction

The considered class of evolving geometry model problems encompasses a
similar class of bulk–surface models for static geometries. The latter corre-
sponds to the family of evolving geometry model problems with v ≡ 0. In
this special case, the evolving geometry degenerates to a static bulk domain
Ω(t) ≡ Ω and a static hypersurface Γ(t) ≡ Γ, and terms related to conservative
material transport driven by v either vanish or simplify. Details have been
discussed for equations (1.6).

1.3. Numerical methods for bulk PDEs and surface PDEs

Once a mathematical model has been established, simulations are performed
by solving its model equations. Exact solutions to PDE-based models can
be obtained using analytical methods to solve PDEs, such as the concept of
fundamental solutions. While such analytical tools have been successively
applied to basic linear bulk PDEs like Poisson’s equation (1.1a) or diffusion
equation (1.3a) with a constant, scalar diffusivity tensor Db and constant gb,
exact analytical solutions are usually unavailable for more complicated PDEs
and systems of PDEs which arise in many interesting problems in science and
engineering. Therefore, methods have been developed that determine numer-
ical approximations to the solution. These methods are known as numerical
methods for PDEs. Besides being required in many cases to obtain at least an
approximate solution, they are perfectly suitable for performing simulations
using computers.
Numerical approaches to solving PDEs can be classified into methods which

build upon a computational mesh, i.e. a subdivision of some geometric object
into a set of smaller geometric objects, and meshfree methods. In this thesis,
the focus lies on the first-mentioned class of numerical methods. Members
of this class use meshes to construct finite-dimensional function spaces that
are capable of approximating the solution of a PDE with a certain degree of
accuracy. Such discrete approximation spaces typically consist of functions
that are piecewise polynomials with respect to the mesh elements. The ap-
proximation error then depends on the size of the mesh elements and on the
degree of the polynomial function space on each element. Depending on the
specific method, either the element size or both can vary locally.
Among numerical approaches which employ a computational mesh, two dif-

ferent families of methods can be identified. We describe their general features
now, and discuss specific members of each family later on in Section 1.3.1 and
in Section 1.3.2, respectively.
On the one hand, there are classical mesh-based methods. Here, the mesh

that is used is a decomposition of some geometric object which can be seen as
an approximation of the geometrical setup associated with the PDE, i.e. the
bulk domain or hypersurface of interest. For a bulk domain, such a mesh has
the property that its outer vertices lie on the domain boundary. The mesh is
said to be an approximation of the bulk domain. If also its outer facets lie on

12



1.3. Numerical methods for bulk PDEs and surface PDEs

(a) Classical meshes.

(b) Geometrically unfitted meshes.

Figure 1.5.: Types of computational meshes that are employed in mesh-based
numerical methods for PDEs. An unstructured triangular mesh
which approximates the bulk domain Ω from Figure 1.1b is shown
on the left-hand side of (a), depicted in black. Its outer entities
make up a surface mesh for Γ = ∂Ω, which is shown on the right.
Geometrically unfitted meshes for the same bulk domain Ω and
hypersurface Γ are shown in (b). In particular, the left-most image
of (b) depicts a structured Cartesian mesh that is suitable for Ω
and for Γ. The other two images depict subsets of this mesh that
are appropriate geometrically unfitted meshes as well, either for
Ω or for Γ.

the boundary, we say that the mesh resolves the domain boundary exactly. In
the latter case, the bulk domain is exactly represented by the mesh. Similarly,
given some hypersurface, all vertices of a valid mesh need to be contained in
the set of points on the hypersurface. Meshes of this kind are known by the
name surface mesh and are said to approximate the given hypersurface. See
Figure 1.5a for illustrations and Section 1.3.1 for specific methods.
On the other hand, there is the family of geometrically unfitted mesh-based

methods, whose members are often just called unfitted methods. Its members
use a mesh which can be nearly unrelated to the geometrical setup that is asso-
ciated with the PDE. The only requirement regarding the relationship between
this mesh and the geometrical setup is that bulk domains or hypersurfaces
of interest need to be covered by the mesh. This property is necessary for

13



1. Introduction

constructing a suitable discrete approximation space. In this context, a space
is considered as being suitable if it comprises functions that can be restricted
to the original geometry, with restrictions that make up a set of functions ca-
pable of approximating the solution. Since PDEs determine features of their
solution and its approximations solely on the geometry on which they are
posed, unfitted methods usually require some extra effort to gain control over
that part of a discrete function which exceeds the original geometry. This
is particularly crucial for surface PDEs, where the geometry of interest has
codimension 1, compared to the geometrical dimension of the mesh and the
associated approximation space. Examples for geometrically unfitted meshes
are depicted in Figure 1.5b. For an overview of specific geometrically unfitted
mesh-based methods, we refer to Section 1.3.2.

1.3.1. Classical mesh-based methods

Methods for bulk PDEs

Classical mesh-based numerical methods for bulk PDEs are a well-established
tool in numerical mathematics and scientific computing. They can be classified
into four categories.

Finite difference methods
First, there is the broadly-known category of finite difference (FD) methods
(see e.g. LeVeque, 2007), which replace the partial derivatives in the PDE
in a straightforward way by suitable discrete analogues on Cartesian meshes
or, more generally, on rectilinear meshes. These analogues, known as finite
differences, are difference quotients that approximate the corresponding partial
derivatives, provided that the unknown solution has sufficient regularity. Since
FD methods are quite restrictive regarding the geometry of the computational
mesh, they are not considered as being the natural choice for PDE on bulk
domains of complex shape.

Finite element methods
The second category comprises finite element methods (FEMs) for bulk PDEs,
whose ideas are discussed in detail in many introductory courses on numerical
methods for PDEs and in many textbooks, see e.g. Zienkiewicz et al. (2013).
FEMs are more flexible with respect to the mesh which is used to approximate
the bulk domain of interest. The PDEs are formulated in a weak sense us-
ing integral calculus and distribution theory. Subsequently, the corresponding
weak solution to this reformulation is approximated in discrete function spaces
that are constructed using the mesh. Those function spaces classically com-
prise continuous, piecewise polynomial functions living on the mesh elements.
Central to FEMs is the concept of using basis functions whose support spreads
over a small amount of adjacent mesh elements only.
More advanced FEMs extend the idea of FEMs for PDEs on static bulk

domains to PDEs on evolving bulk domains Ω(t) by employing moving meshes,

14



1.3. Numerical methods for bulk PDEs and surface PDEs

particularly meshes whose vertices move with the material velocity vb that
has been introduced in Section 1.1.2. To ensure a better quality of the moving
mesh, this idea is further extended in a family of methods known as arbitrary
Lagrangian–Eulerian finite element methods (ALE FEMs), which offer the
possibility of using a non-physical, arbitrary velocity for the mesh vertices.
See Donea et al. (2004), for instance.

Discontinuous Galerkin methods
The third catergory, which can alternatively be seen as a subcategory of FEMs,
is the class of discontinuous Galerkin (DG) methods. As with FEMs, DGmeth-
ods are based on the weak formulation of the PDE, and discrete approximation
spaces are constructed using the mesh which approximates the bulk domain of
interest. Those spaces, however, allow for discontinuities across the boundaries
of mesh elements, building upon piecewise continuous basis functions that are
supported on single mesh elements only. Where desirable, continuity across
element boundaries is enforced in a weak sense using penalty terms that are
added to the discrete analogue of the weak formulation.
The additional freedom which stems from considering discontinuities of the

above kind is beneficial regarding conservation properties and it allows for
naturally handling advection terms like those which arise from evolving ge-
ometries. Moreover, it allows for constructing higher order approximation
spaces in a straightforward way and facilitates parallelization of DG schemes.
Introductions to DG methods for bulk PDEs can be found, e.g., in Rivière

(2008) and in Di Pietro and Ern (2012). Further details will also be given in
this thesis.

Finite volume methods
The fourth category is the class of finite volume (FV) methods, see LeVeque
(2002), for instance. Those methods have been developed for numerically ap-
proximating solutions to continuity equations. Being directly based on the idea
of reproducing physical fluxes over the boundary of control volumes in some
discrete sense, they recover discrete analogues to the equation’s underlying
conservation properties in a natural way. While this concept generally allows
for using higher order approximation spaces by employing a primal mesh for
constructing the approximation space and an implicitly defined dual mesh that
specifies the control volumes, basic FV methods typically are based on approx-
imation spaces which comprise piecewise constant functions, i.e. functions that
are piecewise polynomials of degree 0. These methods can be interpreted as
DG methods of order 0.
Conversely, many DG methods can be seen as higher order generalizations

of basic FV methods of order 0. Those DG methods approximate physical
fluxes over the boundary of control volumes numerically, as with FV methods,
and they can be derived from what is known as the flux formulation. Details
on this aspect of DG methods will be given later on in this thesis.

15



1. Introduction

Methods for surface PDEs

Surface FEMs
The development of classical mesh-based numerical methods for surface PDEs
was initiated by the work of Dziuk (1988). In this seminal paper, the funda-
mental idea of FEMs for PDEs on static bulk domains is transferred to PDEs
on static hypersurfaces, taking Poisson’s equation (1.1b) as an example. After
formulating the equation in some weak sense and generating a surface mesh
which approximates the given hypersurface, the corresponding weak solution
is approximated in discrete function spaces that are constructed using the
surface mesh. Those function spaces comprise continuous, piecewise linear5
functions living on the mesh elements.
Nowadays, methods of this kind are commonly known as surface finite ele-

ment methods (SFEMs) and the original approach was developed further. For
instance, SFEMs for parabolic equations like equation (1.3b) were investigated
in Dziuk and Elliott (2007b), and SFEMs for higher order approximations in
space have been introduced in Demlow (2009) in the context of elliptic prob-
lems.
As with FEMs for bulk PDEs, the concept of SFEMs has been generalized

using moving surface meshes to deal with PDEs on evolving hypersurfaces
Γ(t). Such evolving surface finite element methods (ESFEMs) are introduced
and applied, e.g., in Dziuk and Elliott (2007a) and in Barreira et al. (2011).
By employing meshes whose vertices move with the material velocity vs that
has been introduced in Section 1.1.2, special features of continuity equations
can be exploited which simplify the approach. In corresponding arbitrary
Lagrangian–Eulerian evolving surface finite element methods (ALE ESFEMs)
a non-physical, arbitrary velocity for the mesh vertices can be used to obtain
moving surface meshes that maintain a better quality throughout the entire
simulation (see e.g. Elliott and Styles, 2012; Elliott and Venkataraman, 2015).
A fairly recent overview of classical mesh-based FEMs for surface PDEs can

be found in Dziuk and Elliott (2013).

Surface DG methods and surface FV methods
In addition to FEMs, also the ideas of DG methods and FV methods for
bulk PDEs have been transferred to surface PDEs. Surface discontinuous
Galerkin (SDG) methods for PDEs on static hypersurfaces are introduced and
investigated in Dedner et al. (2013); Madhavan (2014); Antonietti et al. (2015);
Dedner and Madhavan (2015, 2016).
FV methods for PDEs on static hypersurfaces are considered in Tang et al.

(2005); Ju and Du (2009). Moreover, Lenz et al. (2011); Nemadjieu (2012);
Giesselmann and Müller (2014) consider FV methods for PDEs on evolving
hypersurfaces.

5Note that the notion of linear functions shall include affine functions here and in the
following when talking about polynomial approximation spaces.

16



1.3. Numerical methods for bulk PDEs and surface PDEs

Methods for coupled bulk–surface PDEs

By combining the ideas of methods for bulk PDEs and of methods for sur-
face PDEs, approaches have been obtained that are suitable for dealing with
coupled bulk–surface PDEs. A classical mesh-based method for an elliptic
bulk–surface model on static geometries, which combines the ideas of classical
FEMs and SFEMs is investigated in Elliott and Ranner (2013). Similar ap-
proaches are utilized in Giese, Eigel, Westerheide, Engwer and Klipp (2015b)
and in Emken (2016) for spatial discretization of parabolic bulk–surface mod-
els on static geometries, respectively. See Section 1.4.2 for more information.
MacDonald et al. (2016) investigate a combined ALE FEM – ALE ESFEM for
bulk–surface models on evolving geometries. A FV-based method for parabolic
bulk–surface models on static geometries is introduced and investigated nu-
merically in Novak et al. (2007).

1.3.2. Geometrically unfitted mesh-based methods

Methods for bulk PDEs

One central motivation for developing geometrically unfitted mesh-based ap-
proaches is to obtain methods for solving PDEs which are posed on complex-
shaped bulk domains. By employing a mesh which can be nearly unrelated
to the bulk domain that is associated with the PDE, it is possible to vary the
size of the discrete approximation space independently of geometric properties
and geometrical changes can be incorporated more easily.

Fictitious domain methods and immersed boundary methods
The history of geometrically unfitted mesh-based methods for bulk PDEs dates
back to the development of embedding domain methods (see e.g. Buzbee et al.,
1971). Those methods, that are more commonly known as fictitious domain
methods (see e.g. Glowinski et al., 1994), are based on the idea of embedding
the given bulk domain in some larger bulk domain of simple shape and ex-
tending the given bulk PDE to this larger bulk domain in such a way that a
solution is obtained which matches the solution of the original PDE on the
original bulk domain. More specifically, the original bulk domain boundaries
are neglected and discretization is performed using concepts of classical FEMs
on a mesh of the larger bulk domain. Meanwhile, the original boundary condi-
tions are imposed as constraints on the extended PDE. This procedure yields
a problem which is solved using the technique of Lagrange multipliers. The
latter results in a saddle point problem with additional degrees of freedom
that are associated with the constraints.
Immersed boundary methods (see e.g. Peskin, 1977, 2002) or immersed in-

terface methods (see e.g. LeVeque and Li, 1994; Lee and LeVeque, 2003) are
based on a similar idea. However, solving an expensive saddle point problem
is avoided by implementing constraints as virtual forces that are based on reg-
ularized Dirac delta functions and incorporated into the right-hand side gb of

17



1. Introduction

the bulk PDE, cf. equation (1.1a).
The concepts of fictitious domain methods and immersed interface meth-

ods are frequently combined with an implicit description of the bulk domain
boundaries by means of the level set framework (Osher and Sethian, 1988).
See the works of Sussman et al. (1994); Calzada et al. (2011), for instance.
In the level set framework, bulk domains and their boundaries are described
using the level sets of functions which live on some larger, static bulk domain,
such as a fictitious domain. Those functions are known by the name level set
functions. Since they capture all information on the geometry and its motion
in an implicit way by means of their level sets, the framework is particularly
suitable for problems with evolving geometries. Details will be given later on
in this thesis.

Diffuse domain methods
A different kind of implicit geometry description is used in methods that are
known as phase field methods for bulk PDEs or diffuse domain methods, as
introduced in Li et al. (2009). See also Reuter et al. (2012); Lervåg and
Lowengrub (2015); Burger et al. (2017). While also being based on the idea
of embedding bulk domains into a larger, static bulk domain of simple shape,
diffuse domain methods replace domains with a sharp boundary by domains
with a diffuse boundary, unlike methods which employ the level set frame-
work. A bulk domain of interest is represented as a diffuse domain by means
of a function which lives on the larger domain and is known as a phase field
function. This function varies smoothly between the value 1 in the original
bulk domain and 0 in its complement and has a rapid transition within a nar-
row diffuse boundary layer between them. Using this smeared-out version of
the characteristic function of the original bulk domain, bulk PDEs are refor-
mulated and extended to the larger embedding domain. Boundary conditions
are approximated by incorporating additional source terms. The resulting
extended equations can be dealt with numerically by applying classical mesh-
based discretization methods for bulk PDEs, such as FD methods or classical
FEMs. They converge to the original bulk PDEs and to the original boundary
conditions as the width of the diffuse boundary layer tends to zero.
Diffuse domain methods are powerful approaches to solving PDEs on com-

plex-shaped, potentially time-dependent bulk domains. They can be imple-
mented using tools that are typically provided by standard PDE software
frameworks and have been successfully applied in various applications (see
e.g. Kockelkoren et al., 2003; Fenton et al., 2005; Levine and Rappel, 2005;
Teigen et al., 2009; Aland et al., 2010; Teigen et al., 2011; Garcke et al., 2014;
Marth and Voigt, 2014).
However, in this thesis, we are particularly interested in recovering discrete

analogues to conservation properties that are embedded in models comprising
continuity equations. Since diffuse domain approaches consider bulk domains
with a diffuse boundary, conserved quantities, such as masses, spread over the
corresponding diffuse boundary layer. Accordingly, conservation properties

18



1.3. Numerical methods for bulk PDEs and surface PDEs

that actually hold in the sharp domain which is associated with the model
equations are replaced by conservation properties holding in the diffuse domain
that is used for discretization. Even if a reconstruction of the sharp domain
is extracted from the diffuse domain representation by identifying a selected
level set of the phase field function with the bulk domain boundary, it is
not clear how to obtain discrete conservation properties which hold in this
reconstruction. Such discrete conservation properties are recovered only if
the width of the diffuse boundary layer tends to zero and they only hold
approximatively in this case.
The methods which we will discuss next, typically recover discrete conser-

vation properties that hold in a sharp domain sense. Instead of modifying the
problem at the PDE level and applying classical discretization methods on
top, they build upon modifying the basis functions of standard approximation
spaces according to the geometry.

Unfitted FEMs
Unfitted FEMs, as proposed in Barrett and Elliott (1987), consider standard
FEM basis functions that are associated with some geometrically unfitted mesh
and modify those basis functions according to the original bulk domain of
interest. Employing that the unfitted mesh covers the latter bulk domain, say
Ω, the basis functions are altered by defining them to take the value 0 outside
Ω. As a result, evaluation of integrals in the weak formulation requires special
quadrature rules which respect the modified support of each basis function near
the boundary ∂Ω. Essential boundary conditions on ∂Ω are imposed in a weak
sense using a technique that is known as Nitsche’s method (cf. Nitsche, 1971).
Alternatively to thinking of unfitted FEM basis functions as standard basis
functions with a modified support, they can be seen as standard basis functions
that are solely integrated and evaluated over that subset of each mesh element
which intersects the bulk domain Ω. The latter subset is often called a cut cell.
Correspondingly, methods that are based on the concepts of unfitted FEMs
are also known by the name cut cell methods.
An improved unfitted FEM is presented, e.g., in Hansbo and Hansbo (2002)

and particularly recently, people have shown rising interest in methods of this
kind. The concepts have been developed further under the name cutFEMs
(Burman et al., 2015), most importantly by investigating suitable stabilization
mechanisms known as ghost penalties, which target gaining control over the
condition of the resulting systems of algebraic equations.

The UDG method
By combining the ideas of unfitted FEMs with DG discretizations, Bastian and
Engwer (2009) developed the unfitted discontinuous Galerkin (UDG) method,
see also Engwer (2009); Bastian et al. (2011); Heimann et al. (2013). Numerical
analysis in the context of elliptic interface problems is presented in Massjung
(2012). The UDG method offers the advantages that unfitted FEMs have
when it comes down to solving PDEs on complex-shaped bulk domains. It

19



1. Introduction

furthermore provides all benefits of DG approaches which have been mentioned
in Section 1.3.1. Classical DG methods that are adapted to the specific needs
of a given bulk PDE serve as host DG formulations. Accordingly, essential
boundary conditions are imposed in a weak sense as part of these host DG
formulations.
Due to the local nature of basis functions in DG approaches, the method al-

lows for easily implementing stabilization mechanisms which built upon mod-
ification of basis functions, such as rescaling or cell merging techniques (cf.
Johansson and Larson, 2013; Heimann et al., 2013). See also the cell agglom-
eration techniques in Müller et al. (2017); Kummer (2017); Kummer et al.
(2018). Those stabilization mechanisms ensure that the resulting systems of
algebraic equations are well-posed and well-conditioned by counteracting the
effects of very small cut cells. This is specifically done by associating very
small cut cells to a neighboring mesh element or to a cut cell that has a
sufficiently large intersection with the bulk domain, and by rescaling basis
functions according to cut cell bounding boxes, respectively. Stabilizing UDG
discretizations similar to unfitted FEMs using ghost penalties has only just
been investigated in Massing and Gürkan (2018).
Further details on the UDG method will be given later on in this thesis. We

will investigate how the method can be applied to PDEs on complex-shaped
hypersurfaces and to coupled bulk–surface PDEs on related geometries.

Extended FEMs
Geometrically unfitted mesh-based discretization methods for bulk PDEs can
also be constructed using the concepts of extended FEMs (XFEMs). Subse-
quent to starting as with classical FEMs, those methods incorporate disconti-
nuities and other effects, e.g. at the boundary of some bulk domain of interest,
by enriching the discrete approximation space by additional basis functions (cf.
Moës et al., 1999; Dolbow, 1999; Belytschko et al., 2001). In the course of this,
a mesh can be used that is independent of the geometry. On the downside,
the enrichment process introduces additional degrees of freedom that need to
be dealt with. In addition, the evaluation of integrals in the weak formulation
requires special quadrature rules due to intra-element discontinuities that are
introduced together with the additional basis functions.

Composite FEMs
Methods known as composite FEMs are based on a hierarchy of meshes com-
prising one fine mesh, which approximates the bulk domain of interest, and
geometrically unfitted coarser meshes. Basis functions of discrete approxima-
tion spaces that are associated with the coarse meshes are constructed as linear
combinations of standard FEM basis functions which live on the fine mesh.
Such methods are introduced and studied in Hackbusch and Sauter (1997b,a);

Sauter (1997); Westerheide (2011). Employing their concepts solely in order
to obtain coarse mesh solutions is theoretically possible. However, due to the
necessity of having a fine mesh which approximates the bulk domain of in-

20



1.3. Numerical methods for bulk PDEs and surface PDEs

terest and the overhead that arises from constructing the latter, the concepts
of composite FEMs are reasonable mainly in the context of geometric multi-
grid methods for PDE on complex-shaped bulk domains. Here, coarse mesh
approximation spaces are not the main objective but need to be constructed
as part of a fast iterative solver for fine mesh solutions. More recent variants
of the approach which address the above shortcoming can be found in Rech
et al. (2006); Liehr et al. (2009).

Methods for surface PDEs

As with classical mesh-based FEMs, a fairly recent overview of geometrically
unfitted mesh-based methods for surface PDEs can be found in Dziuk and
Elliott (2013). We extend this overview in the following.

Level set extension and FD based methods
The development of geometrically unfitted mesh-based methods for surface
PDEs started with the work of Bertalmío et al. (2001); Bertalmío et al. (2003),
the first authors who proposed to describe the geometry implicitly by means of
a level set function and to subsequently employ this framework in a suitable
manner to extend each surface PDE to some bulk domain which contains
the hypersurface of interest. In particular, they showed how PDEs on static
hypersurfaces that arise from the gradient descent of some energy can be
extended by embedding techniques that are based on the level set framework.
For each surface PDE, this process results in an associated bulk PDE which
can be solved using the concepts of classical mesh-based discretization methods
for bulk PDEs, provided that it is supplemented with an artificial boundary
condition. Making use of the Cartesian structure of the differential operators
which appear in those bulk PDEs, Bertalmío et al. discretize using FDs on
Cartesian meshes in their work.
This level set extension and FD based approach for PDEs on static hyper-

surfaces is developed and analyzed further regarding different types of equa-
tions, improved embedding techniques and the effect of boundary conditions
for the extended PDEs, e.g., in Cheng et al. (2002); Greer (2006); Greer et al.
(2006). Moreover, extensions of the approach that deal with PDEs on evolv-
ing hypersurfaces are considered in Adalsteinsson and Sethian (2003); Xu and
Zhao (2003), for example. In those extensions, another important advantage
of using the level set framework for geometry description is that it is suffi-
cient to employ a static mesh, even though dealing with PDEs on evolving
hypersurfaces.

Level set extension and FEM based methods
In an article from the year 2005, which was published only later on, Burger
(2009) started to investigate similar ideas in the context of FEMs. Subse-
quently, comparable level set extension and FEM based methods were devel-
oped in Dziuk and Elliott (2008), for PDEs on static hypersurfaces, and in
Dziuk and Elliott (2010) for PDEs on evolving hypersurfaces. In this thesis,

21



1. Introduction

the latter methods will be referred to as Eulerian surface finite element method
(Eulerian SFEM) and Eulerian evolving surface finite element method (Eule-
rian ESFEM), respectively. In view of evolving hypersurfaces, those names
account for the fact that the implicit representation of the hypersurfaces by
means of the level set framework follows an Eulerian point of view, whereas
a Lagrangian point of view is taken by explicit representations using moving
meshes. However, Eulerian methods of this kind are also commonly known by
names such as implicit SFEMs and implicit ESFEMs.
While the above level set extension and FEM based methods mainly aim at

employing structured Cartesian meshes, such as the one which is depicted in
the left-most image in Figure 1.5b, Nemitz et al. (2009) investigate reducing
the computational cost that results from this choice by employing meshes
which correspond to some bulk domain representing a narrow band around the
given hypersurface, i.e., meshes such as the one that is depicted in the right-
most image in Figure 1.5b. Using narrow bands with staircase-type boundaries,
that is, boundaries which are aligned with the coordinate axes of the ambient
Cartesian space, the approach of Nemitz et al. (2009) required developing
special boundary conditions for the extended PDEs. These special boundary
conditions are designed to have minimal influence on the restriction of the
discrete solution to the hypersurface of interest.
In the context of PDEs on static hypersurfaces, a more promising alternative

is suggested by Deckelnick et al. (2010), who consider bulk domains that rep-
resent narrow bands comprising a family of closed level sets instead. To deal
with the potential geometrical complexity that arises from dealing with those
narrow bands, discretization is performed using the concepts of unfitted FEMs
for bulk PDEs. This way of proceeding removes the need for special boundary
conditions. Furthermore, by scaling the narrow band width in a suitable man-
ner, an approach is obtained that allows for analyzing the discretization error
not only in norms that are associated with the bulk approximation space, but
also in norms that are intrinsic to the hypersurface. This approach and its
error analysis is further improved in Deckelnick et al. (2014), where also an
extension for PDEs on evolving hypersurfaces is proposed.

Level set extension and UDG based methods
In a proceedings article from the year 2012, which was published in 2014,
Engwer and Westerheide (2014) made first efforts to combine an extension
process based on the level set framework with UDG discretizations in order
to deal with surface PDEs. These efforts have been continued in Engwer,
Ranner and Westerheide (2016), aiming at difficulties that arise from material
transport which is driven by the motion of evolving hypersurfaces, specifically
in the context of continuity equations on such hypersurfaces.
This thesis will provide missing links and details. It particularly deals with

questions related to the recovery of conservation properties that are embedded
in many PDEs of practical relevance and it contributes to analyzing UDG-
based approaches to surface PDEs.

22



1.3. Numerical methods for bulk PDEs and surface PDEs

Diffuse interface methods
A different kind of extension process is used in methods that are known as
phase field methods for surface PDEs or diffuse interface methods, as con-
sidered in Rätz and Voigt (2006); Burger (2009); Elliott and Stinner (2009);
Elliott et al. (2011). As with diffuse domain methods for bulk PDEs, diffuse
interface methods employ implicit geometry description by means of a phase
field function which lives on some larger, static bulk domain of simple shape.
In the course of this, the sharp representation of a hypersurface of interest
is replaced by a diffuse interface region containing the hypersurface. In this
diffuse interface region, the phase field function rapidly transits from 0 on one
side of the hypersurface to 1 on the other side in a smooth way. By employing
the phase field function, say φ, indirectly by means of the function φ2(1−φ)2,
which vanishes outside the diffuse interface, surface PDEs are reformulated and
extended to the embedding bulk domain. The resulting extended equations
can be dealt with numerically by applying classical mesh-based discretization
methods for bulk PDEs, such as FD methods or classical FEMs. They con-
verge to the original surface PDEs as the width of the diffuse interface region
tends to zero.
Diffuse interface methods are powerful approaches to solving PDEs on com-

plex-shaped, potentially time-dependent hypersurfaces. They can be imple-
mented using tools that are typically provided by standard PDE software
frameworks and have been successfully applied in various applications (see
e.g. Rätz et al., 2006; Lowengrub et al., 2009; Torabi et al., 2009; Teigen et al.,
2009, 2011; Garcke et al., 2014; Marth and Voigt, 2014).
However, due to the diffuse interface representation, similar considerations

regarding conservation properties hold as with diffuse domain methods for bulk
PDEs, i.e. discrete analogues to conservation properties that are embedded
in models comprising continuity equations only hold in the diffuse interface
region. On a sharp reconstruction of the original hypersurface in terms of
some level set of the phase field function, they only hold approximatively.
The latter is typically also an issue of the level set extension based methods

which we discussed above. However, in this thesis, we will show how the issue
can be cured in the construction of such methods.

Closest point methods
Another interesting extension process is employed in closest point methods.
Those methods compute an extension of the solution to a surface PDE using a
function known as closest point projection. This function maps each point in a
bulk neighborhood of the hypersurface onto the closest point which lies on the
hypersurface. By replacing all evaluations of the solution and of data functions
in the surface PDE by analogous evaluations which apply the closest point
projection first, an associated bulk PDE is obtained that can be expressed via
classical differential operators in the ambient Cartesian space. This PDE can
be solved using the concepts of classical mesh-based discretization methods
for bulk PDEs. Its solution is a normally constant extension of the solution

23



1. Introduction

to the original surface PDE.
However, a sufficiently accurate representation of the closest point projection

has to be computed first and evaluations using the closest point projection need
to be performed afterwards. Both can be expensive due to the non-local nature
of both processes in general: given a point in some mesh element, its associated
closest point on the hypersurface may lie in a different mesh element.
Closest point methods that apply the closest point extension together with a

FD discretizations are investigated in Ruuth and Merriman (2008); Macdonald
and Ruuth (2009) for PDEs on static hypersurfaces, and in Petras and Ruuth
(2016) for PDEs on evolving hypersurfaces.

Extension-free methods (sharp interface methods)
Considering a surface PDE and a bulk domain that is represented by some
geometrically unfitted mesh for the corresponding hypersurface, the surface
PDE not necessarily needs to be extended to the bulk domain at all to obtain
some geometrically unfitted mesh-based method. The solution to a surface
PDE may be searched in some FEM approximation space that is constructed
using a given bulk mesh, even if the weak formulation of the surface PDE
solely considers function values on the hypersurface of interest. As a matter
of course, the weak formulation needs to be stabilized in a suitable manner
in this case to obtain a well-posed problem with a solution that has a unique
representation in the considered approximation space. Alternatively, the ill-
posedness of the discrete problem which is obtained without any stabilization
can also be dealt with at the algebraic level.
Such extension-free methods based on bulk meshes and associated FEM

approximation spaces are known by the name trace FEMs or sharp interface
FEMs and they are also called cutFEMs for surface PDEs by some authors.
They were first proposed and investigated in Olshanskii et al. (2009); Deck-
elnick et al. (2014) for PDEs on static hypersurfaces that are represented
implicitly using a level set function. Subsequently, Burman et al. (2016a);
Grande et al. (2016) analyzed various stabilization mechanisms that can be
applied on top, where Grande et al. particularly investigate a generalization
of the approach which allows for higher order approximations in space.

Methods for coupled bulk–surface PDEs

Also by combining the ideas of geometrically unfitted mesh-based methods
for bulk PDEs and of geometrically unfitted mesh-based methods for surface
PDEs approaches have been obtained that are suitable for dealing with cou-
pled bulk–surface PDEs. Phase field extension (diffuse domain and interface)
and FD or finite element based methods for bulk–surface models on evolving
geometries are considered in Teigen et al. (2009, 2011); Garcke et al. (2014);
Marth and Voigt (2014). An analysis of similar methods for bulk–surface
models on static geometries is presented in Abels et al. (2015). Recently, a
method which combines ideas of cutFEMs for bulk PDEs and of trace FEMs

24



1.4. Studying spatial features in basic cell polarization models

for surface PDEs to deal with a system of linear elliptic bulk–surface PDEs on
static geometries has been considered in Burman et al. (2016b). In this thesis,
we develop methods for coupled bulk–surface PDEs that build upon the UDG
method for bulk PDEs which is mentioned above.

1.4. Studying spatial features in basic cell polarization models
using a classical mesh-based finite element scheme

Cell polarization is a process happening in cells, the most basic structural
units of all known living organisms. More precisely, it is the asymmetric redis-
tribution of proteins and lipids in the plasma membrane of a cell (cf. Orlando
and Guo, 2009), where asymmetric means that proteins and lipids localize
to specific areas of the cell membrane. Usually, this localization occurs at
the cytoplasmic side of the cell membrane and requires the recruitment of
cytoplasmic proteins and lipids to the cell membrane. Cell polarization and
particularly the spatial reorganization of membrane proteins are fundamental
for cell division, cell migration and chemotaxis, as well as for signal transmis-
sion in neurons. For more information, see e.g. Orlando and Guo (2009) and
the references given therein.
The yeast Saccharomyces cerevisiae, which can be seen in Figure 1.3, is often

chosen as a model organism for studying cell polarization. In this organism,
the redistribution process is caused by the shuttling of proteins known as small
Rho GTPases, such as Cdc42 and Rho, between an active membrane-bound
form and an inactive cytosolic form. This process results in the formation of
a molecule cluster on the membrane. Cell polarization subsequently triggers
a cell division mechanism known as budding, which happens on a larger time
scale. During formation of the molecule cluster, the shape of a yeast cell
remains virtually static.
In Giese, Eigel, Westerheide, Engwer and Klipp (2015a), the author of this

thesis and co-authors use a classical mesh-based method to investigate the
influence of spatial features in mathematical models for cell polarization in
yeast cells. Representing the cytosol of a single cell as a static bulk domain
Ω, and the enveloping cell membrane as the static hypersurface Γ that is
formed by the boundary of Ω, the membrane–cytosol shuttling of proteins
is described using members of the class of bulk–surface models which has
been introduced in Section 1.2. In particular, two bulk–surface models are
investigated that can be formulated by the static geometry special case v ≡ 0
of equations (1.8) and specific choices of the data functions Db, Ds, fb(ub),
fs(us), fb,s(ub, us) and fs,b(ub, us). In the study, the two models are enriched
by cavities in the bulk domain Ω and by an associated, additional boundary
condition for equation (1.8a) on the boundaries ∂Ω \Γ of those cavities. Both
the cavities and the corresponding boundary condition model intracellular
structures which proteins that are taken into account by the model can not
enter or leave.

25



1. Introduction

1.4.1. Basic cell polarization models

Each model which is investigated in our study considers one of two well-known
polarization mechanisms. The first mechanism shows classical Turing-insta-
bility patterns and is employed in a model known as the Goryachev model
(GOR model). The latter was introduced in Goryachev and Pokhilko (2008)
as a reduced model which captures the essential features of a more complex
model that has been introduced in the supplementary material of the same
work. Our study deals with a variant of the GOR model which we refer to
as the simplified GOR model in this thesis. Without incorporating the bulk
domain cavities and the associated boundary condition which have been dis-
cussed above, the simplified GOR model is characterized by equations (1.8)
with v ≡ 0, together with the data functions specified in Table 1.1. Unlike the
standard GOR model, where the term Ec in the data function fmain

s,b (ub, us) is
a time-dependent field that is implicitly defined via the concentration us on
the whole membrane, the simplified GOR model uses a constant parameter
Ec. This allows for clusters on the membrane which recruit the entire pool
of the cytosolic molecule with concentration ub. Although the latter can not
be observed in practical experiments (Goryachev and Pokhilko, 2008, Section
“Model reduction” in supplementary material), this simplication is quite com-
mon, given that the resulting model is easier to handle from a mathematical
point of view.
The other polarization mechanism exhibits wave-pinning dynamics. It is

implemented by a model known as the wave-pinning model (WP model), which
was originally introduced in Mori et al. (2008) as a system of reaction–diffusion
equations on some one-dimensional geometry representation. In Giese, Eigel,
Westerheide, Engwer and Klipp (2015a), we introduce a consistent, higher-
dimensional extension of this model, since one-dimensional models provide
only limited capabilities in representing spatial features and usually do not
account for a suitable surface to volume ratio. Our extension represents cells
and their membrane as d-dimensional bulk domains and associated (d − 1)-
dimensional hypersurfaces. As with the simplified GOR model, this bulk–
surface formulation of the WP model is characterized by equations (1.8) with
v ≡ 0, together with the data functions specified in Table 1.1. To incorporate
the bulk domain cavities and the associated boundary condition which have
been discussed above, the model equations need to be changed slightly. See
Giese, Eigel, Westerheide, Engwer and Klipp (2015a) for details.

1.4.2. A classical mesh-based finite element scheme

Without incorporating bulk domain cavities and the associated boundary con-
dition, the classical mesh-based method which we employed in Giese, Eigel,
Westerheide, Engwer and Klipp (2015a) to solve the model equations numer-
ically can be described in the following way.

26



1.4. Studying spatial features in basic cell polarization models

Model Data function Definition/property
GOR & WP Db some scalar constant in R

Ds some scalar constant in R

fb(ub) 0
fs(us) 0
fb,s(ub, us) −fs,b(ub, us)
fs,b(ub, us) fmain

s,b (ub, us) + kstimulus ub

kstimulus some scalar field Γ× (0, T ]→ R

GOR fmain
s,b (ub, us) αEcu

2
sub + βEcusub − γus with α, β, γ, Ec ∈ R

WP fmain
s,b (ub, us) ub

(
k0 + γu2

s

K2+u2
s

)
− δus with k0, γ,K, δ ∈ R

Table 1.1.: Data functions that characterize the simplified GOR model and
the WP model, when being employed in the static geometry special
case v ≡ 0 of equations (1.8). Suitable values of the parameters
of fmain

s,b (ub, us) will be given later on in this thesis, together with
specific choices of Db, Ds and kstimulus.

Weak formulation

Our numerical method combines ideas of classical FEMs and SFEMs and is
similar to the approach which is investigated in Elliott and Ranner (2013) in
the context of an elliptic bulk–surface model. First, we derive a suitable weak
formulation of the static geometry special case v ≡ 0 of model equations (1.8).
Formally, we obtain

d
dt

(∫

Ω
ub ϕb dx

)
+
∫

Ω
Db∇ub · ∇ϕb dx = cb(ub, us, ϕb,Ω), (1.9a)

d
dt

(∫

Γ
us ϕs dσ

)
+
∫

Γ
Ds∇Γus · ∇Γϕs dσ = cs(ub, us, ϕs,Γ), (1.9b)

by multiplying equations (1.8a) and (1.8c) by some bulk test function ϕb and
by some surface test function ϕs of suitable regularity, respectively, and by
subsequent application of integration by parts formulas for bulk domains and
hypersurfaces. On the right-hand side, we have terms that are defined by

cb(ub, us, ϕb,Ω) :=
∫

∂Ω

(
Db∇ub · ν

)
ϕb dσ +

∫

Ω
fb(ub)ϕb dx,

cs(ub, us, ϕs,Γ) :=
∫

Γ

(
fs,b(ub, us) + fs(us)

)
ϕs dσ.

27



1. Introduction

Due to boundary condition (1.8b), the first of these terms takes the form

cb(ub, us, ϕb,Ω) =
∫

∂Ω
fb,s(ub, us)ϕb dσ +

∫

Ω
fb(ub)ϕb dx.

Given initial values ub(·, 0) ∈ H1(Ω) and us(·, 0) ∈ H1(Γ), the resulting weak
formulation is to look for functions ub : Ω× [0, T ]→ R and us : Γ× [0, T ]→ R

with ub(·, t) ∈ H1(Ω) and us(·, t) ∈ H1(Γ), such that equations (1.9) hold
for all test function pairs (ϕb, ϕs) ∈ H1(Ω) ×H1(Γ), and for each t ∈ (0, T ].
Here, H1(Ω) denotes the traditional Sobolev space which is used to seek weak
solutions to elliptic bulk PDEs in Ω, and H1(Γ) is its natural counterpart for
weak solutions to elliptic surface PDEs on Γ.

Meshes and discrete approximation spaces

We separate discretization in space and time by applying the well-known
method of lines, see e.g. Schiesser (1991). To construct finite-dimensional
function spaces Vb,h(Ωh) ⊂ H1(Ωh) and Vs,h(Γh) ⊂ H1(Γh) that are capable
of approximating the solution at each time t on some discrete reconstruction
(Ωh,Γh := ∂Ωh) of the geometry (Ω,Γ), we use a triangular mesh Th(Ωh)
which approximates the bulk domain Ω, and the surface mesh Th(Γh) which
is made up by the outer entities of Th(Ωh). See Figure 1.5a for illustrations.
In particular, we construct standard finite element spaces of continuous,

piecewise linear functions over Ωh and Γh. These are given by

Vb,h(Ωh) :=
{
vb,h ∈ C0(Ωh)

∣∣∣ vb,h
∣∣
K
∈ P1(K) ∀K ∈ Th(Ωh)

}
,

Vs,h(Γh) :=
{
vs,h ∈ C0(Γh)

∣∣∣ vs,h
∣∣
K
∈ P1(K) ∀K ∈ Th(Γh)

}
,

where P1(K) denotes the space of polynomial functions of total degree less
than or equal to 1 over a mesh element K.
Employing Lagrange elements of order 1 on each mesh, we obtain classical

Lagrange basis functions of polynomial degree 1 for each space. For Vb,h(Ωh),
these are characterized by ϕb,h,i

(
xj) = δij , where ϕb,h,i denotes the i-th basis

function, xj denotes the j-th element of the corresponding set of Lagrange
nodes, and δij ∈ {0, 1} is the well-known Kronecker delta. Analogously, the
basis functions for Vs,h(Γh) are characterized by ϕs,h,i

(
xj) = δij , where xj

now denotes the j-th element of the set of Lagrange nodes associated with
the surface mesh Th(Γh). Given that we choose Lagrange elements of order
1, each set of Lagrange nodes equals the set of vertices of the corresponding
mesh.

Discretization in space

Starting from the weak formulation of the model equations, we discretize in
space by replacing the geometry (Ω,Γ) by its discrete reconstruction (Ωh,Γh),

28



1.4. Studying spatial features in basic cell polarization models

and by restricting the set of admissible functions, considering only functions
that are representable using the discrete function spaces Vb,h(Ωh) and Vs,h(Γh).
This yields the following semidiscretization.

Semidiscretization 1.4.1. Let ub,h(·, 0) ∈ Vb,h(Ωh) and us,h(·, 0) ∈ Vs,h(Γh)
be suitable discrete approximations of the given initial values. We seek a pair
of semidiscrete functions ub,h : Ωh× [0, T ]→ R and us,h : Γh× [0, T ]→ R with
ub,h(·, t) ∈ Vb,h(Ωh) and us,h(·, t) ∈ Vs,h(Γh), such that for all test function
pairs (ϕb,h, ϕs,h) ∈ Vb,h(Ωh)× Vs,h(Γh) and for each t ∈ (0, T ]:

d
dt

(∫

Ωh
ub,h ϕb,h dx

)
+
∫

Ωh
Db∇ub,h · ∇ϕb,h dx = cb(ub,h, us,h, ϕb,h,Ωh),

d
dt

(∫

Γh
us,h ϕs,h dσ

)
+
∫

Γh
Ds∇Γus,h · ∇Γϕs,h dσ = cs(ub,h, us,h, ϕs,h,Γh).

Since all functions in Vb,h(Ωh) and Vs,h(Γh) can be represented by means of
the fixed Lagrange basis functions of the corresponding discrete function space,
Semidiscretization 1.4.1 results in a system of partial differential equations in
one single continuous variable, namely in the time variable t. Equations of
this type are known as ordinary differential equations.

Discretization in time and the resulting fully discrete scheme

For discretization in time, various numerical methods for ordinary differen-
tial equations can be used. Information about the method which has been
employed to perform simulations in our study can be found in the study’s
supplementary material Giese, Eigel, Westerheide, Engwer and Klipp (2015b,
Section 2). With the data functions that are specified in Table 1.1, discretiza-
tion in time results in a system of nonlinear algebraic equations that can be
solved, for instance, using Newton’s method.
The resulting fully discrete scheme can be implemented using tools pro-

vided by standard PDE software frameworks, even if they do not support
surface meshes and finite element spaces based on surface meshes. In imple-
mentations, the space Vs,h(Γh) can optionally be replaced by the bulk space
Vb,h(Ωh) and additional constraints which disable those degrees of freedom
that are associated with interior Lagrange nodes given by the mesh Th(Ωh).
Conceptually, these constraints are similar to constraints that are frequently
used to implement Dirichlet boundary conditions. Exploiting the bulk space
Vb,h(Ωh) in this way is possible since its basis functions have suitable proper-
ties when being restricted to Γh. Performing this restriction for the subset of
basis functions that are associated with Lagrange nodes on Γh exactly yields
the corresponding Lagrange basis for Vs,h(Γh). For more details on this aspect
and more details on the fully discrete numerical scheme in general, we again
refer to the study’s supplementary material Giese, Eigel, Westerheide, Engwer
and Klipp (2015b, Section 2).

29



1. Introduction

1.4.3. Results of the study

In our study, we targeted different spatial features by means of four different
sets of experiments which will be summarized in the following. See Giese,
Eigel, Westerheide, Engwer and Klipp (2015a) for a detailed description.
In a first setup, we introduced a protrusion to an otherwise fully circular

cell in order to understand the influence of a cell’s shape on the polarization
behavior of the models. Exciting both models with different kinds of external
signals (i.e. by means of particular choices of the data function kstimulus which
has been introduced in Table 1.1), we compared simulation results obtained
for the cell with a protrusion with simulation results obtained for the corre-
sponding fully circular cell which we started from. With our simulations, we
could show that protrusions locally limit molecule aggregations. In both mod-
els, they locally act as negative feedback and lower the sensitivity to external
signals in the same region.
In a second set of experiments, we performed simulations for circular cells

with cell diameters between 1.5µm and 15µm. These experiments demon-
strated that, given fixed kinetic parameters, there exists an optimal cell size
with regard to cell polarization. For both models, we observed that polariza-
tion is not possible for small cells on the one hand, and takes very long for
large cells on the other hand.
In a third setup, we placed various diffusion barriers on the membrane of a

cell with a protrusion. With our simulations, we were able to show that those
barriers have the potential to amplify formation of clusters on the membrane
and are therefore able to accelerate, stabilize and steer cell polarization.
By means of a fourth set of experiments, we examined the effects of diffu-

sion barriers in the cytosolic part of a cell, such as organelles. We introduced
organelles of different size and shape into the cytosol and performed a vast
number of simulations with different noisy signals on the cell membrane for
each geometrical setup. Our simulations showed that, despite fast cytosolic
diffusion, reduced transport due to organelles leads to a change in the polar-
ization behavior. In particular, molecule clustering very close to organelles
turned out to be unlikely. At the same time, molecule clustering tends to
be intensified in a large-scale neighborhood of the organelles and in regions
without organelles.
In conclusion, our computer simulations illustrated that the influence of

spatial features like cell shape, cell size and inhomogeneities on the membrane
or in the cytosol can be quite dramatic. Therefore, they should be considered
in modeling and simulation of intracellular processes of spatial nature.

1.5. Challenges in applications with PDEs on complex-shaped
surfaces

The application presented in Section 1.4 demonstrated the need for numerical
tools which allow for comprehensive simulation studies. However, carrying

30



1.5. Challenges in applications with PDEs on complex-shaped surfaces

out our specific study also revealed drawbacks of the simulation framework
which we employed. Each new geometrical setup which has been investigated
required generating a new mesh. Generating these meshes was a tedious and
time-consuming task for the person performing the simulations. Moreover, we
studied cell polarization only in cells of simple geometry, which do not change
their shape within the time period under consideration.
The framework would not be suitable when investigating similar processes in

other cell types. Developing neurons, for instance, show complex geometrical
shapes that change rapidly during the redistribution process which leads to
polarized cells. Example geometries can be seen in Figure 1.6. It should
be noted that the intracellular actin filaments depicted in Figure 1.6b and
Figure 1.6c push against the outer cell membrane. They thus determine the
shape of a neuron. This connection is clearly visible in Figure 1.6b.
When it comes down to designing a more advanced simulation framework

that is suitable for investigating processes like cell polarization in objects which
exhibit complex geometrical setups, challenges have to be met which we name
as follows:
1. Complex static geometries
2. Evolving geometries
3. Geometry description
4. Conservation properties
5. Higher order schemes
6. Mixed dimensionality
7. Condition of the resulting systems of algebraic equations
8. Implementation

Details on these challenges are given below.

Complex static geometries:
Regarding spatial geometries, the numerical methods should offer efficient
means of dealing with PDEs on bulk domains with complex-shaped bound-
aries and PDEs on complex-shaped hypersurfaces. As seen in Figure 1.6,
especially geometrical setups that are given by high-resolution imaging
data often comprise bulk domain boundaries (hypersurfaces in general)
which resolve microscopic geometrical structures. Incorporating the full
level of available geometric detail can be necessary for obtaining correct
simulation results. For instance, the more accurate the geometry descrip-
tion is, the more accurate boundary conditions like equation (1.8b) can be
imposed.
In general, classical mesh-based methods can be used for dealing with PDEs
on complex static geometries. However, for each individual geometrical
setup, an associated mesh needs to be generated at the beginning of the
simulation. Meshes that have a sufficient quality to be suitable for classical
mesh-based methods generally can not be generated in a fully automated

31



1. Introduction

(a) A normal neuron (left) and a mutated neuron (right),
cultured for 20 hours.

(b) A neuron grown in culture
for 44 hours (top) and its
actin filaments (bottom).

(c) Actin filaments in mouse cortical neurons grown in vitro for 2.5 days.

Figure 1.6.: Microscopy images of developing neurons. Image sequence (a)
shows phase-contrast microscopy images from a time-lapse series6
courtesy of Erik W. Dent (University of Wisconsin) and Frank B.
Gertler (MIT). Part (b) shows a differential interference contrast
microscopy image (top) and a fluorescence microscopy image (bot-
tom) of a neuron which has been stained for F-actin. Adapted by
permission from Macmillan Publishers Ltd: Nature Cell Biology
(Dent et al., 2007), © 2007. Image (c) was taken by Howard Vin-
din7 using summed slices z-projection on a confocal laser scanning
microscope. It is distributed under the CC-BY-SA-4.0 license8.

6http://techtv.mit.edu/videos/915
7https://commons.wikimedia.org/wiki/File:SUM_110913_Cort_Neurons_2.5d_in_

vitro_488_Phalloidin_no_perm_4_cmle-2.png
8https://creativecommons.org/licenses/by-sa/4.0/legalcode

32

http://techtv.mit.edu/videos/915
https://commons.wikimedia.org/wiki/File:SUM_110913_Cort_Neurons_2.5d_in_vitro_488_Phalloidin_no_perm_4_cmle-2.png
https://commons.wikimedia.org/wiki/File:SUM_110913_Cort_Neurons_2.5d_in_vitro_488_Phalloidin_no_perm_4_cmle-2.png
https://creativecommons.org/licenses/by-sa/4.0/legalcode


1.5. Challenges in applications with PDEs on complex-shaped surfaces

manner. Especially for complex-shaped three-dimensional structures, the
process may require lots of user interaction. With classical mesh-based
methods, the discrete solution spaces and the geometrical setup further-
more are directly linked via the computational mesh. It is hence not pos-
sible to avoid spaces with a number of degrees of freedom which is unnec-
essarily high, given a certain targeted precision of the solution, while still
having the possibility of incorporating the full level of geometric detail.
Geometrically unfitted methods do not suffer from both issues. Meshes
covering complex spatial geometries may have a very comfortable structure
for which automated mesh generation is possible. By employing meshes
of this kind, unfitted methods decouple discrete solution spaces from the
geometrical setup. However, for taking into account the actual geometry,
precise information on this geometry is nevertheless required. Given that
the computational mesh does not contain such information, the latter has
to be supplied by other means. Those means need to be able to provide
detailed representations of complex static geometries in an efficient manner.

Evolving geometries:
Additional complexity arises from time-dependent geometrical setups.
On the one hand, regarding the model equations, the geometrical evolu-
tion is possily driven by the state of the system which is modeled and is
coupling back to this state. This leads to additional couplings in the model
equations, that have to be taken into account by the numerical methods
which deal with those equations. Furthermore, as seen in equations (1.5)
and in equations (1.8), the geometrical evolution drives advection terms
which can be challenging to deal with.
On the other hand, moving bulk domains and hypersurfaces might exhibit
large deformations with strong anisotropies or even topology changes, as
depicted in Figure 1.4 and Figure 1.6a. In classical mesh-based methods,
this entails the necessity of frequent remeshing to maintain a mesh of suf-
ficient quality, if at all possible without user interaction. For geometrically
unfitted methods, this is not an issue since it is possible to employ a com-
putational mesh which covers the evolving geometry for every point in
time. Instead, data management can be more difficult. Depending on the
precise definition of the discrete approximation spaces that are constructed
using the mesh, different sets of mesh elements might contribute to spaces
associated with different points in time. Furthermore, the geometry needs
to be represented in a way that is suitable for describing the geometrical
effects listed above.

Geometry description:
A geometry description needs to be chosen that is suitable for developing
numerical schemes which successfully address the geometry-related chal-
lenges discussed above. In the course of this, descriptions are preferable
that are capable of representing potentially time-dependent, complicated

33



1. Introduction

geometries or sufficiently accurate discrete reconstructions of these geome-
tries in a comfortable and efficient manner, without requiring much user
interaction.
The freedom to choose an appropriate geometry description exists only
for geometrically unfitted methods since they do not employ the computa-
tional mesh for this purpose. Classical mesh-based methods are inherently
bound to the computational mesh. For them, another type of geometry
description can nevertheless be used during mesh generation at the begin-
ning of the simulation. Furthermore, in the case of evolving geometries, it
could serve as supplementary information for improving the mesh quality
by performing remeshing.

Conservation properties:
As discussed for the continuity equations in Section 1.1, Section 1.2 and
Section 1.4.1, conservation properties are embedded in many PDEs that
are practically relevant. These conservation properties represent physical
principles that often are a fundamental hypothesis in mathematical models
comprising equations of this type.
For simulating those models, numerical methods should be developed which
recover discrete analogues to the underlying conservation properties. They
should be designed in such a way that approximations of the solution are
obtained which reflect the considered physical principles in the best pos-
sible way. In particular, end users of simulation software usually expect
discrete conservation properties that reflect properties of the original con-
tinuous quantities, not of some artificial quantities that are introduced in
the course of the discretization process.
Developing such a numerical method can be challenging if techniques are
used that are suitable for dealing with the geometrical challenges listed
above. Particularly for geometrically unfitted methods, the decoupling of
discrete solution spaces from the geometrical setup implies that special
attention needs to be payed to the preservation of conservation properties.

Higher order schemes:
Sometimes solutions of high accuracy are required. For being able to in-
crease the accuracy of numerical approximations significantly, it is benefi-
cial to employ techniques which allow for obtaining higher order schemes,
i.e., schemes that are at least second order accurate. However, it can be
difficult to maintain higher order spatial accuracy, especially for complex
spatial geometries. One particular difficulty lies in the representation of
bulk domain boundaries and hypersurfaces. If discrete reconstructions of
those structures are not sufficiently precise, they can have negative influ-
ence on the order of convergence of a scheme.

Mixed dimensionality:
Numerical approaches to solving PDEs need to account for the dimension-

34



1.5. Challenges in applications with PDEs on complex-shaped surfaces

ality of the geometric objects on which the considered PDEs are posed.
On the one hand, this dimensionality itself can be mixed, as with the sys-
tems of equations which make up the bulk–surface models in Section 1.2
and Section 1.4.1. On the other hand, mixed dimensionality needs to be
taken care of, if the discrete solution of a surface PDE is represented by
means of an approximation space that is constructed using a mesh of some
bulk neighborhood of the hypersurface. In this case, the dimension of the
geometry of interest differs from the geometrical dimension of the mesh,
respectively its associated approximation space. As a result, the discrete
solution of the surface PDE does not have a unique representation in the
approximation space. More precisely, special measures need to be taken to
gain control in normal direction to the hypersurface. This is particularly
the case with geometrically unfitted methods for surface PDEs.
Furthermore, the design of numerical methods can involve discretizing dif-
ferent parts of a PDE using different approaches. For surface PDEs, this
can implicate that terms of different dimensions are mixed, e.g. terms re-
sulting from extension-based unfitted methods and terms which arise in
extension-free unfitted methods. In this case, a proper scaling of those
terms is required.

Condition of the resulting systems of algebraic equations:
Numerical schemes for PDEs result in associated discrete problems. These
discrete problems can be described by systems of algebraic equations whose
solutions can be obtained using computers. The limited precision of the
floating point arithmetic which is employed by computers inherently leads
to errors that already enter the description of the discrete problems. So-
lutions obtained using computers will hence contain an unavoidable error.
For this reason, numerical schemes should result in discrete problems that
are posed in such a way that this unavoidable error can be controlled.
In particular, it should stay within manageable limits which assure that
solutions are practically usable.
It is well-known that special attention needs to be payed to this issue when
designing geometrically unfitted methods.

Implementation:
In order to be practically applicable, numerical methods should allow for
an easy implementation using efficient data structures and algorithms.
Ideally, the methods should enable implementers to utilize tools that are
freely available in frameworks for numerical software development or other
software libraries.

Numerical schemes can be considered as being appropriately designed for
the type of applications which we have in mind, if they enable to cope with
the challenges listed above. They should particularly overcome the difficulties
that arise from the combination of those challenges.

35



1. Introduction

1.6. Contributions and outline of this thesis

In this thesis, we show how the unfitted discontinuous Galerkin (UDG) method
(Bastian and Engwer, 2009; Engwer, 2009), which we sketched in Section 1.3.2,
can be employed to obtain a simulation framework which successfully deals
with the eight challenges that have been discussed in Section 1.5.
We construct numerical schemes which take advantage of the fact that the

UDG method is tailor-made for continuity equations in complex-shaped bulk
domains. Being based on classical DG formulations for bulk equations, the
method recovers discrete analogues to underlying conservation properties of
those equations, naturally handles advection terms like those which arise from
evolving geometries, and allows for higher order schemes in a straightforward
way (cf. Section 1.3.1). Moreover, it supports various mechanisms which en-
sure that well-conditioned discrete problems are obtained (cf. Section 1.3.2).
By combining the method with a level set description of the geometry, complex
static geometries and time-dependent geometrical setups can be treated in a
comfortable and efficient manner. Furthermore, a free implementation is avail-
able, which is ready to use (Engwer and Heimann, 2012).
A central contribution of this thesis is to show how the UDG method can be

employed to deal with continuity equations on complex-shaped hypersurfaces
and on evolving hypersurfaces. By combining ideas of extension-based meth-
ods for surface PDEs with concepts of extension-free sharp interface FEMs, we
allow for schemes that recover discrete analogues to conservation properties
on the hypersurface and exhibit higher order convergence. In addition, our
schemes can be realized using existing implementations of the UDG method
for bulk PDEs.

Outline

The thesis is structured as follows. In Chapter 2, we begin by introducing con-
cepts from elementary differential geometry which are essential for formulating
PDEs on hypersurfaces and for dealing with those equations, particularly sur-
face differential operators and integral calculus that builds upon them. In
the course of this, we lay special focus on properties which can be exploited
when using a level set description of the geometry, and calculus resulting from
those properties. To our knowledge, parts of our form of presentation and
some of the considerations relating thereto can not be found elsewhere in the
literature, even though they help a lot in designing level set extension based
numerical schemes for systems with surface PDEs. The latter can be seen
from the construction of our schemes later on in this thesis.
In Chapter 3, we continue with further important mathematical background

regarding our schemes, focussing on tools from pure and numerical mathemat-
ics which are important ingredients of those schemes. The chapter comprises
a discussion of the fundamentals of bulk/surface continuity equations which
will reveal their underlying conservation properties, an extensive introduction

36



1.6. Contributions and outline of this thesis

to those fitted DG methods for elliptic and parabolic bulk equations that are
relevant within the scope of this thesis, and a detailed description of the level
set framework.
Chapter 4 and Chapter 5 are the central chapters of this thesis. In Chapter 4,

we develop and analyze a new type of UDG schemes for bulk–surface models
on static geometries. These schemes particularly build upon transferring the
UDG method to PDEs on hypersurfaces. In the course of this, special focus is
layed on recovering discrete analogues to the models’ underlying conservation
properties and we investigate approaches that increase numerical robustness.
In Chapter 5, we subsequently present how the approaches from Chapter 4 can
be extended to obtain UDG schemes for bulk–surface models that comprise
continuity equations on evolving geometries. We introduce a special operator
splitting approach which allows for recycling our schemes from Chapter 4
in such a way that overall schemes are obtained which still recover discrete
analogues to the models’ underlying conservation properties. Moreover, we
derive and investigate a novel conservative UDG scheme for an essential type
of continuity equations on evolving hypersurfaces. The latter type of equations
corresponds to one component feeding into our operator splitting approach.
At the end of the latter two chapters, we summarize our findings and discuss

future perspectives. A final conclusion is drawn in Chapter 6.
The appendix of this thesis contains useful additional information which

is not supposed to distract the reader from the main topic of the thesis. In
Chapter A, we describe software which has been created as part of this thesis,
aiming at reproducibility of our numerical results. In Chapter B, we focus
on the condition of an important algebraic problem which arises from all dis-
cretization methods that are similar to those introduced in this thesis, namely
the problem of solving a system of linear equations. The chapter particularly
provides the means for us to investigate the conditioning properties of our
schemes. Finally, in Chapter C, we recall some concepts from elementary dif-
ferential geometry that are complementary to those which are introduced in
Chapter 2, primarily basic terminology and facts from elementary differential
geometry.

37





2. Essential concepts from
elementary differential geometry

In this chapter, we introduce concepts from elementary differential geometry
which are essential for formulating PDEs on hypersurfaces and for dealing
with those equations. We begin in Section 2.1 and Section 2.2 by defining and
characterizing surface differential operators, and by introducing the notion
of curvature. By the end of Section 2.2, we will have taken a close look at
the surface divergence operator. We continue to investigate this operator in
Section 2.3, focussing on its behavior in the level set framework. In Section 2.4,
we introduce important theory from integral calculus on hypersurfaces. The
concepts presented in Sections 2.1–2.4 are integrated with time-dependent
problems in Section 2.5. Finally, in Section 2.6, we complement this chapter
by looking at additional calculus on evolving hypersurfaces.
Please note that we are using basic terminology and facts from elementary

differential geometry in this chapter, some of which are recalled in Appendix C,
particularly the notion of hypersurfaces and considerations on differentiable
functions on hypersurfaces. Both can be helpful in understanding the theory
which is presented in this chapter.
Unless otherwise stated, let M be a smooth (d − 1)-dimensional hypersur-

face embedded in Rd which is oriented by a field νM : M→ Rd of unit normal
vectors toM. A field defined onM, like νM, is called a surface field (onM).
Let η : M→ R and ξ : M→ Rd be a surface scalar field and a surface vector
field, respectively, that have differentiable extensions η̂ and ξ̂ to a neighbor-
hood N (M) ⊂ Rd with M ⊂ N (M) and measRd

(
N (M)

)
> 0. Wherever

we require that also νM has a differentiable extension ν̂M in the following,
we implicitly assume that νM has exactly the same extension property as ξ,
without explicitly using the exact wording of the above assumption.

2.1. Surface differential operators

The definitions that we use are based on the extension property of the fields η
and ξ, and on the operator on the space of surface vector fields which projects
each surface vector field onto the subspace of tangential surface vector fields.
The latter consists of all surface vector fields ζ on M which map into the
tangent spaces of M, so that ζ · νM = 0 at each x ∈ M. The operator can
be defined as

PM := I − νM (νM)tr, (2.1)

39



2. Essential concepts from elementary differential geometry

where I denotes the identity operator. It is easy to see that PM is idempotent,
i.e. P2

M = PM, self-adjoint, i.e. Ptr
M = PM with Ptr

M denoting the adjoint
operator, and that PMξ · νM ≡ 0.

The surface gradient of η (onM) can be defined as

gradM η :=
(
PM∇η̂

)tr
, (2.2)

where ∇ denotes the transposed classical gradient operator in Rd. Defining
the operator

∇M := PM ◦ ∇, (2.3)

the surface gradient of η can be written as

∇Mη = PM∇η̂ =
(
gradM η

)tr
,

yielding a transposed version. By definition, the surface gradient is a tangen-
tial vector field. Since it is the standard gradient’s component tangential to
M, it is independent of the choice of the extension η̂, i.e. well-defined, and
also called the tangential gradient (onM). This becomes more obvious if we
consider the following remark.

Remark 2.1.1 (Local representation of ∇Mη using the tangent spaces ofM).
For every orthonormal basis

{
vi
}
i=1,...,d for Rd, the surface gradient of η can

be expressed as

∇Mη = ∇η̂ −
(
∇η̂ · νM

)
νM =

d∑

i=1

(
∇η̂ · vi

)
vi −

(
∇η̂ · νM

)
νM. (2.4)

At each fixed x ∈M, we can choose v1 := νM(x) and an arbitrary orthonor-
mal basis

{
v2, . . . ,vd

}
:=
{
ν
⊥,x,i
M

}
i=1,...,d−1

for the tangent space ofM at x.
Locally, the surface gradient of η thus can be represented as

[
∇Mη

]
(x) =

d−1∑

i=1

(
∇η̂(x) · ν⊥,x,iM

)
ν
⊥,x,i
M .

Note that each term ∇η̂(x) ·ν⊥,x,iM is the directional derivative of η̂ at x in the
tangential direction ν⊥,x,iM . This directional derivative only depends on values
of η̂ onM, i.e. only on η̂

∣∣
M = η.

Surface partial derivatives of η (on M) are given by the components of
∇Mη, as

∂Mi η :=
(
∇Mη

)
· ei, i = 1, . . . , d, (2.5)

with ei denoting the i-th vector of the standard basis for Rd, i.e. the unit vector

40



2.2. A closer look at surface divergence

pointing in the direction of the i-th axis of the chosen Cartesian coordinate
system.
Analogous to the classical divergence in Rd, the surface divergence of a

vector field can be described as the sum of its components’ surface partial
derivatives. More precisely, the surface divergence of ξ (onM) is defined as

divM ξ :=
d∑

i=1
∂Mi ξi, (2.6)

where we write ξ =: (ξ1, . . . , ξd)tr. Formally, by interpreting operator (2.3) as
a vector of scalar operators

[
ei · ∇M

]
, i = 1, . . . , d, the surface divergence of

ξ can also be written in terms of ∇M directly:

∇M · ξ =
d∑

i=1

[
ei · ∇M

]
ξi =

d∑

i=1
ei · ∇Mξi =

d∑

i=1
∂Mi ξi = divM ξ. (2.7)

As we will see next, it is reasonable that it is also called tangential divergence
(onM).

2.2. A closer look at surface divergence

Theorem 2.2.1 (Representation of ∇M ·ξ in terms of the classical divergence
in Rd). The surface divergence of ξ can be represented as

∇M · ξ = ∇ · ξ̂ −
[
Dξ̂ · νM

]
· νM, (2.8)

where ∇ · f and Df denote the classical divergence in Rd and the Jacobian
matrix of a vector-valued function f which is differentiably defined in N (M),
respectively. If νM has a differentiable extension ν̂M, this is equivalent to

∇M · ξ = ∇ · ξ̂ −
[
∇
[
ξ̂ · ν̂M

]
· νM −

[
Dν̂M · νM

]
︸ ︷︷ ︸

(∗)

· ξ
]
, (2.9)

where (∗) is the normal derivative of ν̂M, which vanishes if νM is extended
such that ν̂M is constant along normal lines through M.

Proof. Using equations (2.7), (2.6), (2.5) and the first equality in equation
(2.4), we get

∇M · ξ =
d∑

i=1

∂ξ̂i
∂xi
−
(
∇ξ̂i · νM

)
νM,i = ∇ · ξ̂ −

[
Dξ̂ · νM

]
· νM.

The second part of the theorem directly follows from the following remark.

41



2. Essential concepts from elementary differential geometry

Remark 2.2.2. Given two surface vector fields ζ1, ζ2 : M → Rd, with ζ1
having a differentiable extension ζ̂1 to N (M), the product rule yields

∇
[
ξ̂ · ζ̂1

]
· ζ2︸ ︷︷ ︸

directional derivative of
ξ̂·ζ̂1 in the direction ζ2

=
[
Dξ̂ · ζ2

]
· ζ1︸ ︷︷ ︸

directional derivative of
ξ̂ in the direction ζ2,

projected onto ζ1

+
[
Dζ̂1 · ζ2

]
· ξ︸ ︷︷ ︸

directional derivative of
ζ̂1 in the direction ζ2,

projected onto ξ

.

By means of representation (2.8), one can see that ∇M · ξ can be computed
from the classical divergence in Rd by subtracting the normal component of the
extended field’s derivative in normal direction, i.e., in a manner of speaking,
the rate of change of ξ̂ regarding νM. To further understand this connection,
we write the classical divergence in Rd in terms of Cartesian coordinates:

∇ · ξ̂ =
d∑

i=1

∂ξ̂i
∂xi

=
d∑

i=1

[
Dξ̂ · ei

]
· ei. (2.10)

Equation (2.10) reveals that, in the same manner of speaking as above, ∇ · ξ̂
describes the total rate of change of ξ̂ regarding the coordinate axes. This
indicates that what is subtracted from ∇ · ξ̂ in representation (2.8) is exactly
the contribution of the rate of change of ξ̂ in normal direction, such that
∇M · ξ only takes into account changes of ξ̂ tangential to M. To make this
more obvious, we consider the following lemma.

Lemma 2.2.3. Although being expressed in terms of coordinates, the classical
divergence in Rd is invariant under orthogonal transformations. For every
orthonormal basis

{
vi
}
i=1,...,d for Rd, it can be expressed as

∇ · ξ̂ =
d∑

i=1

[
Dξ̂ · vi

]
· vi.

Proof. Denoting the change-of-basis matrix from the basis
{

vi
}
i=1,...,d to the

basis
{

ei
}
i=1,...,d by Q, we have

[
Dξ̂ · vi

]
· vi =

[
Dξ̂ · (Qei)

]
· (Qei) =

[
QtrDξ̂Q · ei

]
· ei.

Using that Q is an orthogonal matrix and that the trace tr(·) of a matrix is
similarity-invariant, we get

d∑

i=1

[
Dξ̂ · vi

]
· vi = tr

(
QtrDξ̂Q

)
= tr

(
Q−1Dξ̂Q

)
= tr

(
Dξ̂
)

=
d∑

i=1

[
Dξ̂ · ei

]
· ei

which completes the proof considering equation (2.10).

42



2.2. A closer look at surface divergence

Locally choosing v1 := νM(x) and an orthonormal basis
{

v2, . . . ,vd
}
for the

tangent space ofM at x ∈M and using Lemma 2.2.3 to rewrite representation
(2.8) yields the following corollary of Theorem 2.2.1.

Corollary 2.2.4 (Local representation of ∇M · ξ using the tangent spaces of
M). At each fixed x ∈M, the surface divergence of ξ can be expressed as

[
∇M · ξ

]
(x) =

d−1∑

i=1

[
Dξ̂(x) · ν⊥,x,iM

]
· ν⊥,x,iM , (2.11)

where
{
ν
⊥,x,i
M

}
i=1,...,d−1

denotes an arbitrary orthonormal basis for the tan-
gent space of M at x.

From representation (2.11) it is clear that ∇M ·ξ is independent of the choice of
the extension ξ̂.1 Each term Dξ̂(x) ·ν⊥,x,iM is the directional derivative of ξ̂ at
x in the tangential direction ν⊥,x,iM . This directional derivative only depends
on values of ξ̂

∣∣
M = ξ. Moreover, representation (2.11) shows that it is indeed

reasonable to alternatively call ∇M · ξ the tangential divergence of ξ (onM)
since it only takes into account changes of ξ̂ tangential toM.

2.2.1. Surface divergence of the tangential/normal component of a surface
vector field and the notion of curvature

Let us now consider the tangential component ξtanM of ξ and its normal
component ξνM , given by

ξtanM := PMξ = ξ−(ξ·νM)νM and ξνM := ξ−ξtanM = (ξ·νM)νM.

Provided that νM has a differentiable extension ν̂M, both components have
straightforward differentiable extensions

ξ̂tanM := ξ̂ −
(
ξ̂ · ν̂M

)
ν̂M and ξ̂νM := (ξ̂ · ν̂M)ν̂M

to N (M), respectively. It is hence reasonable to investigate the surface diver-
gence of ξtanM and ξνM in this case, which is what we will do next.

We begin by considering the normal component ξνM . It should be noted
that even though ξνM points in normal direction (provided that ξνM 6= 0), it
may exhibit changes tangential toM. This is exactly the case ifM is curved,
as the following lemma will show.

1Note that the surface divergence inherits this property from the surface gradient. See also
equations (2.7), (2.6), (2.5) and Remark 2.1.1.

43



2. Essential concepts from elementary differential geometry

νM

M
HM < 0 HM > 0

Figure 2.1.: The left picture illustrates a hypersurfaceM (red), its inside (light
green) and the surface field νM (gray) providing its orientation.
The pictures in the middle and on the right show regions M ⊂M
of negative/positive total curvature HM as continuous red curves
that are supplemented with corresponding restrictions νM|M .

Lemma 2.2.5 (Representation of the surface divergence of the normal com-
ponent). If νM has a differentiable extension ν̂M, the surface divergence of
normal component ξνM := (ξ · νM)νM of ξ can be represented as

∇M · ξνM = (ξ · νM)
(
∇ · ν̂M

)
︸ ︷︷ ︸

main term

−
[
Dν̂M · νM

]
· (ξ · νM)νM︸ ︷︷ ︸

correction term accounting for
the influence of the extension
ν̂M of νM in the main term

. (2.12)

By using representation (2.12) and applying representation (2.8) for ξ = νM
we deduce the following variant given by

∇M · ξνM = (ξ · νM)
(
∇M · νM

)
= −(ξ · νM)HM, (2.13)

where the expression

HM := −∇M · νM = −
(
∇ · ν̂M −

[
Dν̂M · νM

]
· νM

)
(2.14)

is a measure for the curvature ofM.

Definition 2.2.6 (Total curvature). The surface field HM : M→ R defined
in equation (2.14) is known as the total curvature ofM (Cermelli et al., 2005).
It is reasonable if νM has a differentiable extension ν̂M and describes d − 1
times the mean curvature ofM in this case. The field HM itself is also called
mean curvature ofM by some authors. Furthermore, its definition sometimes
differs from our definition in equation (2.14) by a factor of −1, depending on
the choice of the field νM which provides the orientation ofM. See Figure 2.1
for illustrations that are consistent with our definition.

In view of representation (2.13), the normal component ξνM of ξ thus indeed
exhibits changes tangential to M if and only if ξνM 6= 0 and M is curved.
These changes are characterized by the length of ξνM , which is given by ξ·νM,
and the total curvature HM ofM.

44



2.2. A closer look at surface divergence

We continue with the tangential component ξtanM of ξ and the particular
extension ξ̂tanM given above, where we assume again that νM has a differen-
tiable extension ν̂M. If ν̂M is constant along normal lines throughM, given
representation (2.9), it can be expected that the surface divergence of ξtanM
and the classical divergence of ξ̂tanM in Rd coincide. In fact, ξ̂tanM · ν̂M does
not exhibit changes in normal direction in this case since

|ν̂M| = 1 onM and Dν̂M · νM = 0 onM
⇒ |ν̂M| = 1 in N (M)
⇒ ξ̂tanM · ν̂M = 0 in N (M)
⇒ ∇

[
ξ̂tanM · ν̂M

]
· νM = 0 onM.

Dropping the assumption on ν̂M, it can be shown that the surface divergence
∇M · ξtanM matches ∇ · ξ̂tanM up to a term which describes the influence of
the extension ν̂M. This is the subject of the following lemma.

Lemma 2.2.7 (Representation of the surface divergence of the tangential
component). If νM has a differentiable extension ν̂M, the surface divergence
of tangential component ξtanM := ξ− (ξ · νM)νM of ξ can be represented as

∇M · ξtanM

= ∇ ·
[
ξ̂ −

(
ξ̂ · ν̂M

)
ν̂M

]

︸ ︷︷ ︸
main term

+
[
Dν̂M · νM

]
·
[
ξ + (ξ · νM)νM

]
︸ ︷︷ ︸

correction term accounting for
the influence of the extension
ν̂M of νM in the main term

.

(2.15)

Since we did not find Lemma 2.2.5 and Lemma 2.2.7 in the literature, we
will provide a proof for them now.

Proof of Lemma 2.2.5 and Lemma 2.2.7. The proof given here proceeds in three
steps, with steps 2) and 3) being the actual proofs of the lemmata.
1) If νM has a differentiable extension ν̂M, the product rule, the equality
|νM| = 1 onM and Remark 2.2.2 yield

∇
[(
ξ̂ · ν̂M

)
ν̂M · ν̂M

]
· νM

= ∇
[
ξ̂ · ν̂M

]
(νM · νM) · νM + (ξ · νM)∇

[
ν̂M · ν̂M

]
· νM

= ∇
[
ξ̂ · ν̂M

]
· νM + 2

[
Dν̂M · νM

]
· (ξ · νM)νM.

For the term

(I) := ∇
[(
ξ̂ · ν̂M

)
ν̂M · ν̂M

]
· νM −

[
Dν̂M · νM

]
· (ξ · νM)νM,

45



2. Essential concepts from elementary differential geometry

we hence have the equality

(I) = ∇
[
ξ̂ · ν̂M

]
· νM +

[
Dν̂M · νM

]
· (ξ · νM)νM.

2) Using representation (2.9), the product rule and step 1), we get

∇M ·
[
(ξ · νM)νM

]

= ∇ ·
[(
ξ̂ · ν̂M

)
ν̂M

]
− (I)

= ∇
[
ξ̂ · ν̂M

]
· νM + (ξ · νM)

(
∇ · ν̂M

)
− (I)

= ∇
[
ξ̂ · ν̂M

]
· νM + (ξ · νM)

(
∇ · ν̂M

)

−
[
∇
[
ξ̂ · ν̂M

]
· νM +

[
Dν̂M · νM

]
· (ξ · νM)νM

]

= (ξ · νM)
(
∇ · ν̂M

)
−
[
Dν̂M · νM

]
· (ξ · νM)νM,

which is representation (2.12).
3) Using the same arguments as in step 2), furthermore

∇M ·
[
ξ − (ξ · νM)νM

]

= ∇ ·
[
ξ̂ −

(
ξ̂ · ν̂M

)
ν̂M

]

−
[
∇
[
ξ̂ · ν̂M

]
· νM −

[
Dν̂M · νM

]
· ξ − (I)

]

= ∇ ·
[
ξ̂ −

(
ξ̂ · ν̂M

)
ν̂M

]

−∇
[
ξ̂ · ν̂M

]
· νM +

[
Dν̂M · νM

]
· ξ

+∇
[
ξ̂ · ν̂M

]
· νM +

[
Dν̂M · νM

]
· (ξ · νM)νM

= ∇ ·
[
ξ̂ −

(
ξ̂ · ν̂M

)
ν̂M

]
+
[
Dν̂M · νM

]
·
[
ξ + (ξ · νM)νM

]
,

which is representation (2.15).

2.2.2. Splitted representation of surface divergence

Representations (2.12) and (2.15) together yield another interesting represen-
tation which decomposes ∇M · ξ into essential constituents with respect to
ξtanM , ξνM and the extension ν̂M. This is stated in the following theorem.

Theorem 2.2.8 (Splitted representation of ∇M · ξ). Let νM have a differ-
entiable extension ν̂M. Then the surface divergence of ξ decomposes into

∇M · ξ = ∇M · ξtanM︸ ︷︷ ︸
contribution
of ξtanM

+ ∇M · ξνM︸ ︷︷ ︸
contribution
of ξνM

,

46



2.2. A closer look at surface divergence

which can be represented as

∇M · ξ
= ∇ ·

[
ξ̂ −

(
ξ̂ · ν̂M

)
ν̂M

]

︸ ︷︷ ︸
main term of
contribution of

ξtanM

+
[
Dν̂M · νM

]
· ξ

︸ ︷︷ ︸
correction term accounting
for the cumulative influence
of the extension ν̂M of νM

in the main terms of
the contributions of
ξtanM

and ξνM

+ (ξ · νM)
(
∇ · ν̂M

)
︸ ︷︷ ︸

main term of
contribution of

ξνM

.

(2.16)

Proof. For surface vector fields ξ1, ξ2 : M → Rd with the same extension
property as ξ, representation (2.8) immediately yields

∇M ·
(
ξ1 + ξ2

)
= ∇M · ξ1 +∇M · ξ2.

Using that ξtanM and ξνM have suitable differentiable extensions, we can
employ this additivity to derive the first statement of Theorem 2.2.8. Together
with representations (2.15) and (2.12), we subsequently get

∇M · ξ = ∇M · ξtanM +∇M · ξνM
= ∇ ·

[
ξ̂ −

(
ξ̂ · ν̂M

)
ν̂M

]
+
[
Dν̂M · νM

]
·
[
ξ + (ξ · νM)νM

]

+ (ξ · νM)
(
∇ · ν̂M

)
−
[
Dν̂M · νM

]
· (ξ · νM)νM

= ∇ ·
[
ξ̂ −

(
ξ̂ · ν̂M

)
ν̂M

]
+
[
Dν̂M · νM

]
· ξ + (ξ · νM)

(
∇ · ν̂M

)
.

Alternatively, representation (2.16) can also be obtained in a straightforward
way without employing representations (2.15) and (2.12). Note that represen-
tation (2.8), the linearity of the classical divergence operator in Rd and the
product rule yield

∇M · ξ = ∇ · ξ̂ −
[
Dξ̂ · νM

]
· νM

= ∇ ·
[
ξ̂ −

(
ξ̂ · ν̂M

)
ν̂M

]
+∇ ·

[(
ξ̂ · ν̂M

)
ν̂M

]
−
[
Dξ̂ · νM

]
· νM

= ∇ ·
[
ξ̂ −

(
ξ̂ · ν̂M

)
ν̂M

]

+∇
[
ξ̂ · ν̂M

]
· νM + (ξ · νM)

(
∇ · ν̂M

)
−
[
Dξ̂ · νM

]
· νM

= ∇ ·
[
ξ̂ −

(
ξ̂ · ν̂M

)
ν̂M

]
+
[
Dν̂M · νM

]
· ξ + (ξ · νM)

(
∇ · ν̂M

)
,

where we have furthermore applied Remark 2.2.2 in the last step. But this
derivation is not as constructive as the derivation given above since it does
not expose how ξtanM and ξνM contribute to the term

[
Dν̂M · νM

]
· ξ.

47



2. Essential concepts from elementary differential geometry

2.2.3. Additional remarks

The influence of the extension ν̂M in representations (2.9), (2.12), (2.14),
(2.15) and (2.16) vanishes if νM is extended such that the normal derivative
of ν̂M vanishes, i.e., if ν̂M is constant along normal lines throughM. In the
next section, we will investigate related properties for a particular extension of
νM which is the canonical one in a framework for geometry description that
will be used in this thesis.

2.3. Surface divergence in the level set framework

In this section, let furthermore exist a twice differentiable scalar field

Φ: N (M)→ R with |∇Φ| 6= 0 in N (M)

which hasM as one of its level sets and can be used to represent νM as

νM = ∇Φ
|∇Φ|

∣∣∣∣
M
.

Let ν̂M be the canonical extension ν̂M = ∇Φ
|∇Φ| of νM in this framework which

is known as the level set framework (see Section 3.3).

Investigating the canonical extension ν̂M in the level set framework reveals
an interesting property of its normal derivative. This is the subject of the
following lemma.

Lemma 2.3.1 (Normal derivative of the canonical extension ν̂M). Assume
that Φ has symmetric second derivatives, e.g. Φ ∈ C2(N (M)

)
. Then the

normal derivative of the canonical extension ν̂M of νM has the property

Dν̂M · νM = PM
∇|∇Φ|
|∇Φ| (2.17a)

and thus
[
Dν̂M · νM

]
· ξ = ∇|∇Φ|

|∇Φ| · PMξ. (2.17b)

Property (2.17) shows that, provided that Φ has symmetric second deriva-
tives, ν̂M is constant along normal lines through M if and only if ∇|∇Φ|
points in normal direction on M or |∇Φ| is constant in N (M). The latter
particularly holds true if Φ is a signed distance function (see Section 3.3.1).
In addition, the term

[
Dν̂M · νM

]
· ξ vanishes for surface vector fields with

ξ = ξνM . Therefore, representation (2.14) of the total curvature of M sim-
plifies to HM = −∇ · ν̂M and, regarding equation (2.16), the correction term[
Dν̂M ·νM

]
·ξ only accounts for the influence of the canonical extension ν̂M

48



2.3. Surface divergence in the level set framework

in the main term of the contribution of ξtanM . In the level set framework with
a Φ that has symmetric second derivatives, representation (2.16) thus takes
the form

∇M · ξ
= ∇ ·

[
ξ̂ −

(
ξ̂ · ν̂M

)
ν̂M

]

︸ ︷︷ ︸
main term of
contribution of

ξtanM

+
[
Dν̂M · νM

]
· ξ

︸ ︷︷ ︸
correction term accounting
for the influence of the
canonical extension ν̂M
in the main term of the
contribution of ξtanM

+ (ξ · νM)
(
∇ · ν̂M

)
︸ ︷︷ ︸

contribution of
ξνM

.

Furthermore, the first two terms on the right-hand side can be combined.
Using (2.17) and the product rule, we get

∇ ·
[
ξ̂ −

(
ξ̂ · ν̂M

)
ν̂M

]
+
[
Dν̂M · νM

]
· ξ

= ∇ ·
[
ξ̂ −

(
ξ̂ · ν̂M

)
ν̂M

]
+ ∇|∇Φ|
|∇Φ| ·

[
ξ − (ξ · νM)νM

]

= 1
|∇Φ| ∇ ·

(
|∇Φ|

[
ξ̂ −

(
ξ̂ · ν̂M

)
ν̂M

])
.

Summarizing these implications, we arrive at the following two theorems.

Theorem 2.3.2 (Splitted representation of ∇M ·ξ in the level set framework).
Assume that Φ has symmetric second derivatives, e.g. Φ ∈ C2(N (M)

)
. Then

∇M · ξ

= 1
|∇Φ| ∇ ·

(
|∇Φ|

[
ξ̂ −

(
ξ̂ · ν̂M

)
ν̂M

])

︸ ︷︷ ︸
contribution of ξtanM

(main term combined
with correction term accounting for the
influence of the canonical extension ν̂M)

+ (ξ · νM)
(
∇ · ν̂M

)

︸ ︷︷ ︸
contribution of

ξνM

. (2.18)

If ∇|∇Φ| points in normal direction onM or |∇Φ| is constant in N (M), this
indentity simplifies to

∇M · ξ = ∇ ·
[
ξ̂ −

(
ξ̂ · ν̂M

)
ν̂M

]

︸ ︷︷ ︸
contribution of ξtanM

+ (ξ · νM)
(
∇ · ν̂M

)
︸ ︷︷ ︸
contribution of ξνM

. (2.19)

Theorem 2.3.3 (Representation of the total curvature HM in the level set
framework). Under the assumption from the first part of Theorem 2.3.2, the
total curvature HM := −∇M · νM ofM can be represented as

HM = −∇ · ν̂M.

49



2. Essential concepts from elementary differential geometry

In the remainder of this section, we will provide a proof for Lemma 2.3.1
since we did not find Lemma 2.3.1 and some of its implications in the literature,
particularly not Theorem 2.3.2. We would like to point out, however, that for a
tangential surface vector field ξ and a particular extension ξ̂ which is tangential
to each level set (such that ξ̂ · ν̂M ≡ 0), a result similar to the special case

∇M · ξ = |∇Φ|−1 ∇ ·
(
|∇Φ|ξ̂

)

of representation (2.18) is presented in Dziuk and Elliott (2008, Remark 3.3).
Using the same requirements with respect to ξ̂, this result is furthermore
presented and proved in Deckelnick et al. (2010, Lemma 2.1). The proof given
therein makes tacit use of the assumption from the first part of Theorem 2.3.2.
Representation (2.18) thus can be considered as a true generalization.

Remark 2.3.4 (Derivatives of |∇Φ|). For i = 1, . . . , d, the chain rule yields

∂i|∇Φ| = ∂i

[(∑d

k=1

(
∂kΦ

)2)1/2
]

= |∇Φ|−1∑d

k=1
∂kΦ ∂i∂kΦ = ∇Φ

|∇Φ| · ∂i
[
∇Φ
]

= ∂i
[
∇Φ
]
· νM.

If Φ has symmetric second derivatives, moreover ∂i|∇Φ| = ∇
[
∂iΦ

]
· νM for

i = 1, . . . , d.

Proof of Lemma 2.3.1. Using the quotient rule, we get

[
Dν̂M · νM

]
i

= ∇ν̂M,i · νM = ∇
[
∂iΦ
|∇Φ|

]
· νM

= |∇Φ|−2
(
∇
[
∂iΦ

]
|∇Φ| − ∂iΦ∇|∇Φ|

)
· νM

= |∇Φ|−1
(
∇
[
∂iΦ

]
· νM

)
− ∂iΦ
|∇Φ|

∇|∇Φ|
|∇Φ| · νM

= |∇Φ|−1
(
∇
[
∂iΦ

]
· νM

)
−
(∇|∇Φ|
|∇Φ| · νM

)
νM,i

for i = 1, . . . , d. For each i, the second part of Remark 2.3.4 subsequently
yields

[
Dν̂M · νM

]
i

= ∂i|∇Φ|
|∇Φ| −

(∇|∇Φ|
|∇Φ| · νM

)
νM,i

=
[
∇|∇Φ|
|∇Φ| −

(∇|∇Φ|
|∇Φ| · νM

)
νM

]

i

=
[
PM
∇|∇Φ|
|∇Φ|

]

i

which proves the first statement of Lemma 2.3.1. The second statement of
Lemma 2.3.1 directly follows from the self-adjointness of PM.

50



2.4. Integral calculus on hypersurfaces

M

∂M

µ∂M

µ∂M

∂M
νM

Figure 2.2.: An open hypersurfaceM which is oriented by a field νM of unit
normal vectors to M, and the field µ∂M of intrinsic outward-
pointing unit normal vectors to the boundary ∂M.

2.4. Integral calculus on hypersurfaces

Next, we revert back to the general setting without the additional assumptions
from Section 2.3 (those which are related to the level set framework), and
briefly recall theory from integral calculus on hypersurfaces. Following Ecker
(2004, Appendix A), compactly supported surface fields can be integrated over
properly embedded hypersurfaces. Here, a (d − 1)-dimensional hypersurface
embedded in Rd, likeM, is called properly embedded if the embedding map
F : D → M, D ⊂ Rd−1 open, has the property that F−1(M ∩ K) ⊂ D
is compact whenever K ⊂ Rd is compact. Throughout this thesis, we will
simply assume that M is given such that integrals over M are reasonable
wherever this is necessary.
A fundamental integration formula for hypersurfaces that we will need is the

divergence theorem for hypersurfaces. Analogous to the classical divergence
theorem for bulk domains in Rd, it relates the integral of the surface divergence
of a surface vector field over a hypersurface to the outward flow of the field
through its boundary. In contrast to the classical divergence theorem, the
surface vector field may point away from the hypersurface and hence exhibit
a component normal to the hypersurface. As with the splitted representation
of surface divergence from Theorem 2.2.8, this normal component yields an
additional contribution to the integral of the field’s surface divergence. This
is stated in the following theorem.

Theorem 2.4.1 (Divergence theorem for hypersurfaces (see also Ecker, 2004,
Appendix A)). Let the boundary ∂M ofM be either empty or a smooth (d−2)-
dimensional manifold, and let ξ ∈ C1(M∪ ∂M;Rd

)
be a continuously differ-

entiable surface vector field which is not necessarily tangential to M and has
the usual extension property defined at the beginning of this chapter. Further-
more, let νM have a differentiable extension ν̂M. Then the identity

∫

M
∇M · ξ dσ =

∫

∂M
ξ · µ∂M dς −

∫

M
(ξ · νM)HM dσ (2.20)

holds, where µ∂M is the field of intrinsic outward-pointing unit normal vectors
to ∂M. Here, the term intrinsic refers to the fact that those vectors are normal

51



2. Essential concepts from elementary differential geometry

to ∂M and tangential to M (also known as conormal vectors to ∂M). See
Figure 2.2 for an illustration. If ξ has compact support or if ∂M = ∅, identity
(2.20) reduces to

∫

M
∇M · ξ dσ = −

∫

M
(ξ · νM)HM dσ.

Proof. As with the divergence theorem for bulk domains, the identity
∫

M
∇M · ξ dσ =

∫

∂M
ξ · µ∂M dς

holds if ξ is a surface vector field tangential to M (see e.g. Burstall, 1999,
Section 2.3.3). Splitting ξ into its tangential component ξtanM and its normal
component ξνM using the first statement of Theorem 2.2.8 subsequently yields

∫

M
∇M · ξ dσ =

∫

M
∇M · ξtanM dσ +

∫

M
∇M · ξνM dσ

=
∫

∂M
ξtanM · µ∂M dς +

∫

M
∇M · ξνM dσ.

We conclude the proof by employing equation (2.13) to rewrite the second
integral on the right-hand side and noticing that ξtanM · µ∂M = ξ · µ∂M
since ξtanM = PMξ, PM is self-adjoint and µ∂M is tangential to M, such
that PMµ∂M = µ∂M.

From the divergence theorem for hypersurfaces, we obtain a formula for
integration by parts on hypersurfaces.

Corollary 2.4.2 (Integration by parts formula on hypersurfaces). Let the
boundary ∂M ofM be either empty or a smooth (d−2)-dimensional manifold,
and let η ∈ C1(M∪ ∂M

)
be a continuously differentiable surface scalar field

which has the usual extension property defined at the beginning of this chapter.
Furthermore, let νM have a differentiable extension ν̂M. Then the identity

∫

M
∂Mi η dσ =

∫

∂M
η µ∂M,i dς −

∫

M
η νM,iHM dσ

holds for i = 1, . . . , d, where µ∂M,i is the i-th component of the field of intrinsic
outward-pointing unit normal vectors to ∂M. If η has compact support or if
∂M = ∅, the boundary term on the right-hand side of the above formula
vanishes.

Proof. We apply Theorem 2.4.1 for ξ = η ei. An alternative proof which em-
ploys arguments from the level set framework can be found in Dziuk and Elliott
(2013, Section 2.3), where the definition of HM differs from our definition in
equation (2.14) by a factor of −1.

52



2.5. Integration of those concepts into the time-dependent case

Remark 2.4.3 (Equivalence of both formulas). Although being presented as
a consequence of the divergence theorem for hypersurfaces, Corollary 2.4.2 is
in fact equivalent to Theorem 2.4.1. To see this, we assume that a surface
vector field ξ is given as requested in the divergence theorem for hypersurfaces,
apply the corollary for η = ξi, and use equations (2.7) and (2.6) to rewrite the
left-hand side of identity (2.20).

2.5. Integration of those concepts into the time-dependent case

In the time-dependent case, two main situations have to be considered. On the
one hand, we can have time-dependent fields which we want to differentiate
or integrate on a static hypersurface. On the other hand, the fields can live
on a hypersurface which evolves in time and hence is time-dependent itself.
Next, we will integrate the concepts from Sections 2.1–2.4 into each of these
two situations.

2.5.1. Time-dependent fields on static hypersurfaces

In case of a static hypersurface and time-dependent fields, we are interested
in a hypersurface M that is oriented by a static surface field νM of unit
normal vectors to M, both defined exactly as in the beginning of this chap-
ter. Furthermore, we are interested in surface differential operators acting on
time-dependent surface fields η(·, t) : M → R and ξ(·, t) : M → Rd that are
observed during a specified time period [0, T ]. Since, so far, only surface fields
have been considered that are independent of time, this setting is different
from the one in the previous sections.
Nevertheless, requiring that η and ξ have spatially differentiable extensions

η̂(·, t) : N (M)→ R and ξ̂(·, t) : N (M)→ Rd to a neighborhood N (M) ⊂ Rd

ofM with measRd
(
N (M)

)
> 0, all our definitions, theorems and statements

from Sections 2.1–2.4 trivially carry over since they only act on the spatial
domain of the surface fields. They can simply be applied pointwise with respect
to time.
For instance, without changing the definition of the projection operator PM

in equation (2.1), we can define a time-dependent surface gradient of η onM.
It is given by

[
gradM η

]
(·, t) :=

(
PM

[
∇η̂(·, t)

]
(·)
)tr

=
([
I − νM(·)

(
νM(·)

)tr]∇η̂(·, t)
)tr

on M,

cf. the corresponding definition in equation (2.2). It is easy to see that the
rest of the theory which has been presented up to now can be adapted in the
same straightforward way.

53



2. Essential concepts from elementary differential geometry

2.5.2. Evolving hypersurfaces

In case of a hypersurface that is time-dependent itself, we are interested in
an evolving hypersurface M(t) embedded in Rd, observed during a specified
time period [0, T ], and in surface differential operators which act on time-
dependent surface fields η(·, t) : M(t) → R and ξ(·, t) : M(t) → Rd that live
on the evolving hypersurface. This setting is even more general than the one
considered in Section 2.5.1.
However, we can still build upon what we already have if we assume that the

restriction ofM(t) to an arbitrary but fixed time t0 is a smooth (d−1)-dimen-
sional hypersurface which is oriented by the associated t = t0 time slice of a
surface field νM(·, t) : M(t)→ Rd of unit normal vectors toM(t). Moreover,
we need to require that each time slice of the fields η and ξ has a spatially
differentiable extension η̂(·, t) : N

(
M(t)

)
→ R and ξ̂(·, t) : N

(
M(t)

)
→ Rd to

a neighborhood N
(
M(t)

)
⊂ Rd ofM(t) with measRd

[
N
(
M(t)

)]
> 0. In this

case, all our definitions, theorems and statements from Sections 2.1–2.4 carry
over again since they only act on the spatial domain of the surface fields and
since we consider a suitable type of hypersurface at each fixed point in time.
They can be applied separately for each time t and the associated fixed-in-time
hypersurface.
In particular, without changing the definition of the projection operator in

equation (2.1), which is the essential ingredient in the previous sections, we
obtain an operator

PM := I − νM (νM)tr

on the space of time-dependent surface vector fields onM(t). It projects each
such field onto the subspace of time-dependent surface vector fields on M(t)
that are tangential toM(t) at each time t. Using this projection operator, we
can now define the time-dependent surface gradient of η onM(t), for example.
Applying the definition in equation (2.2) pointwise with respect to time, it is
given by

[
gradM η

]
(·, t) :=

([
PM∇η̂

]
(·, t)

)tr
on M(t),

which can be written in simplified form as

gradM η =
(
PM∇η̂

)tr
,

cf. the corresponding definition in equation (2.2) as well as the corresponding
definition for time-dependent fields on static hypersurfaces in Section 2.5.1.
Again, it is easy to see that the rest of the theory from Sections 2.1–2.4 can be
generalized in a similar manner. We would like to mention explicitly, though,
that the concepts from Section 2.3 carry over if the existance of a time-depen-
dent scalar field Φ(·, t) : N

(
M(t)

)
→ R is assumed which fulfills time-depen-

dent analogues to the Φ-related requirements in Section 2.3, e.g. being twice
differentiable in space.

54



2.6. Additional calculus on evolving hypersurfaces

Surface differential operators on evolving hypersurfaces, which also consider
the time domain of a surface field will be defined and investigated in the next
section.

2.6. Additional calculus on evolving hypersurfaces

In this section, let M(t) be an evolving, smooth (d − 1)-dimensional hyper-
surface embedded in Rd which is orientable. Let Mt :=

⋃
t∈[0,T ]M(t) × {t}

be its space–time representation and N (Mt) denote an associated space–time
neighborhood that is of the similar form N (Mt) :=

⋃
t∈[0,T ]N

(
M(t)

)
× {t},

where N
(
M(t)

)
⊂ Rd, at each fixed time t, is some neighborhood of M(t)

with measRd
[
N
(
M(t)

)]
> 0. Furthermore, let vM : Mt → Rd be a surface

field which describes the material velocity ofM(t) and νM : Mt → Rd denote
a surface field of unit normal vectors to M(t) which specifies an orientation
forM(t). Finally, let η : Mt → R be some time-dependent surface scalar field
living onM(t).
For formulating PDEs on evolving hypersurfaces and dealing with those

equations, additional surface differential operators and associated integral
calculus are required. In particular, we need the material derivative of scalar
fields on evolving hypersurfaces. Having briefly introduced this derivative in
Section 1.1.2, we now start with its detailed discussion.
The material derivative ∂•η of η (with respect to the material velocity vM)

describes the temporal rate of change of η while following the trajectory of
material points onM(t). Locally, at an arbitrary but fixed point

(
x0, t0

)
with

x0 ∈M(t0), it can be defined as

[
∂•η
](

x0, t0
)

:=
[

d
dtη
(
x̃0(t), t

)]

t=t0
, (2.21)

where x̃0(t) denotes the trajectory of the material point visiting x0 at time
t0. The latter is the trajectory through

(
x0, t0

)
corresponding to the material

velocity vM, which is characterized by the ordinary differential equation

x̃0
′(t) = vM

(
x̃0(t), t

)
, x̃0(t0) = x0. (2.22)

If the field η has a differentiable extension η̂ to a space–time neighborhood
of the evolving hypersurface, the right-hand side in equation (2.21) can be
reformulated in terms of the extension’s classical partial derivatives in Rd. In
particular, applying the chain rule and using characterization (2.22) in this

55



2. Essential concepts from elementary differential geometry

case yields
[

d
dtη
(
x̃0(t), t

)]

t=t0
=
[
∇η̂
(
x̃0(t), t

)
· x̃0

′(t) + ∂tη̂
(
x̃0(t), t

)
· 1
]
t=t0

=
[
∂tη̂ + vM · ∇η̂

](
x̃0(t), t

)∣∣∣
t=t0

=
[
∂tη̂ + vM · ∇η̂

](
x0, t0

)
.

Since
(
x0, t0

)
can be chosen arbitrarily, we obtain the following theorem.

Theorem 2.6.1 (Representation of ∂•η in terms of classical partial derivatives
in Rd). If η has a differentiable extension η̂ to a space–time neighborhood
N (Mt) ofM(t), the material derivative of η can be represented as

∂•η = ∂tη̂ + vM · ∇η̂ on Mt.

The material derivative of scalar fields on evolving hypersurfaces has a key
role in the following theorem which is an evolving hypersurface analogue to
the Reynolds transport theorem for evolving bulk domains (see e.g. Belytschko
et al., 2000, Equation (3.5.11) in Section 3.5.3).

Theorem 2.6.2 (Transport relation for evolving material hypersurfaces (see
also Cermelli et al., 2005, Section 5.2)). Let the material velocity vM have
a spatially differentiable extension to a space–time neighborhood N (Mt) of
M(t), such that ∇M · vM is defined at each fixed time t. Then the identity

d
dt

∫

M(t)
η dσ =

∫

M(t)
∂•η + η

(
∇M · vM

)
dσ (2.23)

holds at each fixed time t.

Proof. In Cermelli et al. (2005, Section 5.2), the theorem is proved as a special
case of more general transport relations for evolving hypersurfaces. A direct
proof which additionally requires that η has an extension to the space–time
neighborhood N (Mt) which is differentiable with respect to both space and
time can be found in Dziuk and Elliott (2007a, Lemma 2.2 and Appendix A).

We would like to point out that a surface differential operator of the form
∂•�+�

(
∇M ·vM

)
is applied in the integrand on the right-hand side of identity

(2.23). Note that this operator is also applied in continuity equations (1.5b),
(1.5b̃) and (1.6b). In the latter equations, it generates those terms which
are related to conservative material transport driven by the evolution of the
hypersurface. Finding those terms in continuity equations of this kind is no
coincidence. There is a close connection between Theorem 2.6.2 and continuity
equations on evolving hypersurfaces which will be discussed in Section 3.1.1.

56



2.6. Additional calculus on evolving hypersurfaces

Due to the importance of the surface differential operator which has just
been looked at, we close this section by deriving a representation of this
operator in the level set framework. Our findings are summarized as a theorem
in the following subsection.

2.6.1. Conservative material transport in the level set framework

Let exist a time-dependent scalar field Φ: N (Mt) → R which has M(t) as
one of its level sets and is a space–time generalization of the static scalar
field Φ from Section 2.3. Hence, let Φ fulfill time-dependent analogues to the
Φ-related requirements in Section 2.3, e.g. being twice differentiable in space.

Theorem 2.6.3 (Representation of ∂•η+η
(
∇M ·vM

)
in the level set frame-

work). Let η have a differentiable extension η̂ to a space–time neighborhood
N (Mt) of M(t) and the material velocity vM have a spatially differentiable
extension v̂M to N (Mt) which describes the velocity of the level sets of Φ.
Furthermore, assume that Φ has symmetric second derivatives with respect to
space and symmetric mixed second derivatives with respect to space and time,
e.g. Φ ∈ C2(N (Mt)

)
. Then

∂•η + η
(
∇M · vM

)
= 1
|∇Φ|

(
∂t
[
|∇Φ| η̂

]
+∇ ·

(
|∇Φ| η̂ v̂M

))
on Mt.

Proof. Let ν̂M be the canonical extension of νM which is associated with Φ,
i.e. ν̂M = |∇Φ|−1∇Φ. By successively applying Theorem 2.6.1 and the first
part of Theorem 2.3.2 for ξ = vM, and by subsequently using the linearity of
the classical divergence operator in Rd and the product rule twice, we get

|∇Φ|
[
∂•η + η

(
∇M · vM

)]

= |∇Φ|
(
∂tη̂ + vM · ∇η̂

)
+ |∇Φ|

(
∇M · vM

)
η

= |∇Φ| ∂tη̂ + |∇Φ|
(
vM · ∇η̂

)
+∇ ·

(
|∇Φ|

[
v̂M −

(
v̂M · ν̂M

)
ν̂M

])
η

+
[
|∇Φ|(vM · νM)

(
∇ · ν̂M

)]
η

= |∇Φ| ∂tη̂ + |∇Φ|
(
vM · ∇η̂

)
+∇ ·

(
|∇Φ|

[
v̂M −

(
v̂M · ν̂M

)
ν̂M

])
η

+∇ ·
(
|∇Φ|

(
v̂M · ν̂M

)
ν̂M

)
η −∇

[
|∇Φ|

(
v̂M · ν̂M

)]
· (η νM)

= −∇
[
|∇Φ|

(
v̂M · ν̂M

)]
· (η νM) + |∇Φ| ∂tη̂

+ |∇Φ|
(
vM · ∇η̂

)
+∇ ·

(
|∇Φ| v̂M

)
η

= (η νM) · ∇
[
−|∇Φ|

(
v̂M · ν̂M

)]
+ |∇Φ| ∂tη̂ +∇ ·

(
|∇Φ| η̂ v̂M

)

= (η νM) · ∇
[
−v̂M · ∇Φ

]
+ |∇Φ| ∂tη̂ +∇ ·

(
|∇Φ| η̂ v̂M

)
.

Since, by assumption, the extension v̂M of vM describes the velocity of the

57



2. Essential concepts from elementary differential geometry

level sets of Φ in N (Mt), we have ∂tΦ + v̂M · ∇Φ = 0 in N (Mt) (for details,
see the theory in Section 3.3; note that this theory is not based on the theorem
which we are currently proving). Therefore, the left-most term on the right-
hand side can be rewritten as

(η νM) · ∇
[
−v̂M · ∇Φ

]
=
(
∇
[
∂tΦ

]
· νM

)
η = ∂t|∇Φ| η,

where, in the last step, we have used that

∇
[
∂tΦ

]
· νM = ∂t|∇Φ|.

The latter equality can be seen completely analogously to Remark 2.3.4, using
that Φ has symmetric mixed second derivatives with respect to space and time
by assumption. We conclude the proof by noting that

∂t|∇Φ| η + |∇Φ| ∂tη̂ = ∂t
[
|∇Φ| η̂

]

due to the product rule.

58



3. Further mathematical
background

In Chapter 2, we looked at concepts from calculus that are necessary for
formulating PDEs on hypersurfaces and dealing with those equations. In the
course of this, a special focus has been laid on properties which can be exploited
by level set extension based numerical schemes for systems with surface PDEs,
such as the UDG schemes which will be introduced in Chapter 4 and Chapter 5.
In this chapter, we continue with further important mathematical background
regarding those UDG schemes. We discuss the fundamentals of continuity
equations formulated on bulk domains and hypersurfaces, as well as other
tools from pure and numerical mathematics which are important ingredients
of our schemes.
We start in Section 3.1 by discussing mathematical equations known as con-

servation laws, covering their formulations for bulk domains and hypersurfaces.
Those laws can be used to express important physical principles and lead to
the notion of continuity equations. Conservation laws are particularly relevant
when designing flux-based numerical methods for continuity equations, such
as DG methods in general. In Section 3.2, we give an extensive introduction to
fitted DG methods for elliptic and parabolic bulk equations, mainly focussing
on those methods that are relevant within the scope of this thesis. Section 3.3
offers a detailed description of the level set framework, i.e. the framework for
geometry description which is employed by the UDG schemes that we develop
in this thesis. As part of this description, we carefully examine the key player
in this framework, and state associated mathematical assumptions which are
required for obtaining well-defined UDG schemes later on.

3.1. Conservation laws and continuity equations

Most of the bulk PDEs and surface PDEs in Chapter 1 and particularly the
class of bulk–surface models which is considered in Section 1.2 are based on
physical principles that can be expressed by continuity equations like (1.8a)
and (1.8c), and by equivalent conservation laws. These physical principles
are conservation of mass or conservation of electric charge, for example. In
this thesis, we are specifically dealing with conserved quantities that live on
hypersurfaces and conserved quantities living in bulk domains. Distinguishing
between those two types of quantities, we will now discuss the notions of
conservation laws and continuity equations in a mathematically rigorous way.

59



3. Further mathematical background

3.1.1. Conserved quantities on hypersurfaces

LetM(t) be an evolving, orientable, smooth (d−1)-dimensional hypersurface
embedded in Rd, which is observed during a specified time period [0, T ]. At
each time t where the hypersurface has a non-empty boundary (i.e. where
M(t) is an open hypersurface), let this boundary ∂M(t) not be part of the
set M(t), as usual in this thesis. Let νM(·, t) : M(t) → Rd denote a field of
unit normal vectors to M(t) which specifies an orientation for M(t) and let
vM(·, t) : M(t)→ Rd be a field which describes the material velocity ofM(t).
Moreover, let M(t) ⊆ M(t) denote an arbitrary (d − 1)-dimensional portion
of M(t) moving with the material velocity vM, whose boundary ∂M(t) is
either empty (if M(t) =M(t) andM(t) is a closed hypersurface) or a smooth
(d− 2)-dimensional manifold.
When saying that some scalar quantity which is reasonable on M(t) is a

conserved quantity on M(t), we refer to the principle that, in every surface
portion M(t) of the type specified above, the amount of the quantity can only
change by the amount which passes in or out through the boundary ∂M(t)
and by the amount being generated or removed inside M(t). Denoting the
concentration (i.e. the volume density) of the quantity with respect to M(t)
by us, this can be expressed by the following equation, which we call the general
conservation law for quantities on hypersurfaces (cf. Dziuk and Elliott, 2007a;
Barreira et al., 2011):

d
dt

∫

M(t)
us dσ = −

∫

∂M(t)
qs·µ∂M(t) dς+

∫

M(t)
gs dσ ∀M(t) ⊆M(t). (3.1)

In this equation, the terms qs and gs are fields reasonable on M(t), with
images qs(x, t) ∈ Rd and gs(x, t) ∈ R, which are both defined by constitutive
laws. The vector field qs describes the flux of the quantity and the scalar field
gs the density of its generation/removal. Note that qs usually dependents on
us and this may also be the case for gs. Furthermore, dσ denotes the volume
element with respect toM(t), dς denotes the surface element with respect to
M(t), and µ∂M(t) is the field of intrinsic outward-pointing unit normal vectors
to ∂M(t) which has already been considered in Section 2.4. See Figure 3.1a
for an illustration of the geometrical setting.
Every surface portion M(t) of the type specified above is a hypersurface

itself, which inherits its properties from M(t). Hence, if we assume that the
material velocity vM has a spatially differentiable extension to a space–time
neighborhood ofM(t), the transport relation from Section 2.6 (Theorem 2.6.2)
yields

d
dt

∫

M(t)
us dσ =

∫

M(t)
∂•us + us

(
∇M · vM

)
dσ.

Here ∂•us is the material derivative of us with respect to vM, which has been
discussed in Section 2.6. Moreover, if we assume that the flux qs and the unit
normal vector field νM have spatially differentiable extensions to a space–time

60



3.1. Conservation laws and continuity equations

M(t)

∂M(t)
µ∂M(t)

µ∂M(t)

∂M(t)

νM
µ∂M(t)

µ∂M(t) M(t)

∂M(t)

(a) Setting: Hypersurfaces.

Ω(t)

M(t) = ∂Ω(t)

R(t) n∂R(t)

∂R(t)

(b) Setting: Bulk domains.

Figure 3.1.: Geometrical entities that appear in the discussion of conservation
laws for (a) quantities on hypersurfaces M(t) (see Section 3.1.1)
and for (b) quantities in bulk domains Ω(t) (see Section 3.1.2).

neighborhood of M(t), and assume that qs is continuously differentiable on
M(t) ∪ ∂M(t) with respect to the spatial variable x, the divergence theorem
from Section 2.4 (Theorem 2.4.1) yields

∫

∂M(t)
qs · µ∂M(t) dς =

∫

M(t)
∇M · qs dσ +

∫

M(t)

(
qs · νM

)
HM dσ.

Looking at equation (3.1), the above implication of the transport relation
can be applied to the left-hand side of the equation, and the above implication
of the divergence theorem can be applied to its right-hand side. Provided
that the necessary assumptions regarding vM, qs and νM hold, equation
(3.1) can therefore be rewritten in the following way. For all surface portions
M(t) ⊆M(t) of the type specified above, we have the identity

∫

M(t)
∂•us + us

(
∇M · vM

)
+∇M · qs +

(
qs · νM

)
HM − gs dσ = 0.

If we assume, in addition, that all terms in the integrand are continuous on
M(t) with respect to the spatial variable x, the latter equation, since it holds
for every surface portion M(t) of the type specified above, is equivalent to the
surface PDE

∂•us + us
(
∇M · vM

)
+∇M · qs +

(
qs · νM

)
HM = gs on M(t). (3.2)

PDEs derived from conservation laws are commonly known as continuity
equations or pointwise conservation laws. Calling equation (3.1) the general
conservation law for quantities on hypersurfaces, equation (3.2) can be referred
to as the associated general continuity equation. It is general in the sense that it

61



3. Further mathematical background

is usable to derive any specific continuity equation on the evolving hypersurface
M(t), including the static geometry special case vM ≡ 0, by particular choices
of the flux qs and the source/sink density gs. It has to be supplemented
with initial values us(·, 0) on M(0). Furthermore, an appropriate boundary
condition is required where the boundary of M(t) is not empty (i.e. where
M(t) is an open hypersurface) during the observation period (0, T ].

Remark 3.1.1 (Tangential flux). If we think of processes which solely happen
inside ofM(t), it is quite natural to have a flux qs tangential toM(t), i.e., a
flux with qs ·νM = 0 onM(t). However, it should be noted that we do not need
to assume such a tangential flux. In conservation law (3.1), only the tangential
component qs · µ∂M(t) of the flux is considered anyway. This results in the
curvature term in continuity equation (3.2), which automatically removes the
effect of any normal component of qs on M(t). Assuming a tangential flux
would simply make this curvature term vanish. Furthermore, by employing
equation (2.13) from Section 2.2 to rewrite the curvature term in terms of the
surface divergence operator, and by subsequently using the first statement of
Theorem 2.2.8, it can be shown easily that continuity equation (3.2) can be
equivalently formulated as

∂•us + us
(
∇M · vM

)
+∇M · PMqs = gs on M(t).

Note that the term PMqs corresponds to the tangential component of the flux.

3.1.2. Conserved quantities in bulk domains

Let Ω(t) be an evolving bulk domain in Rd which is bounded by an evolving,
smooth (d−1)-dimensional hypersurface. Let Ω(t) be observed during a speci-
fied time period [0, T ] and let v(·, t) : Ω(t)→ Rd denote a field which describes
the material velocity of Ω(t). Moreover, let R(t) ⊆ Ω(t) denote an arbitrary,
bounded d-dimensional portion of Ω(t) moving with the material velocity v,
whose boundary ∂R(t) is a smooth (d− 1)-dimensional hypersurface.
With considerations analogous to those in Section 3.1.1 for quantities on

hypersurfaces, we obtain the notion of conserved scalar quantities in bulk
domains like Ω(t). Denoting its concentration with respect to Ω(t) by ub,
conservation of a scalar quantity in Ω(t) can be expressed by

d
dt

∫

R(t)
ub dx = −

∫

∂R(t)
qb · n∂R(t) dσ +

∫

R(t)
gb dx ∀R(t) ⊆ Ω(t). (3.3)

In this equation, which we call the general conservation law for quantities in
bulk domains, the terms qb and gb denote fields in Ω(t) that describe the flux
and the source/sink density of the quantity. Their images qb(x, t) ∈ Rd and
gb(x, t) ∈ R are both defined by constitutive laws, where the constitutive law
for qb usually involves the concentration ub. This may also be the case for
the constitutive law for gb. The differential dx denotes the volume element

62



3.1. Conservation laws and continuity equations

with respect to Ω(t), dσ denotes the surface element with respect to Ω(t)
and n∂R(t) is the field of outward-pointing unit normal vectors to ∂R(t). See
Figure 3.1b for an illustration of the geometrical setting.
Proceeding similar to Section 3.1.1, we can formulate equation (3.3) by the

following equivalent bulk PDE:

∂tub +∇ · (ubv) +∇ · qb = gb on Ω(t). (3.4)

Again, calling equation (3.3) the general conservation law for quantities in bulk
domains, equation (3.4) can be referred to as the associated general continuity
equation. It is usable to derive any specific continuity equation formulated
on the evolving bulk domain Ω(t), including the static geometry special case
v ≡ 0, by particular choices of the flux qb and the source/sink density gb. It
has to be supplemented with initial values ub(·, 0) on Ω(0), and an appropriate
boundary condition is required on ∂Ω(t), this time without restriction of any
kind.
The equivalence of general conservation law (3.3) and general continuity

equation (3.4) follows under assumptions on the regularity of ub, v, qb and gb
which are analogous to those of the corresponding terms in Section 3.1.1. It
follows from the Reynolds transport theorem (see e.g. Belytschko et al., 2000,
Equation (3.5.14) in Section 3.5.3) and the classical divergence theorem in
Rd. For every surface portion R(t) ⊆ Ω(t) of the type specified above, these
theorems yield reformulations

d
dt

∫

R(t)
ub dx =

∫

R(t)
∂tub +∇ · (ubv) dx

and ∫

∂R(t)
qb · n∂R(t) dσ =

∫

R(t)
∇ · qb dx,

respectively, which can be applied in equation (3.3).

3.1.3. Additional remarks

In models that are based on continuity equations and shall be simulated using
numerical methods, e.g. in many models for biological processes, the physical
principles which are described by the continuity equations and their under-
lying equivalent conservation laws often are a fundamental hypothesis. For
computational modeling in cell biology, for instance, especially conservation
of mass is an important fundamental hypothesis (see e.g. Otsuji et al., 2007;
Novak et al., 2007; Mori et al., 2008; Rubinstein et al., 2012).
Therefore, numerical schemes are preferable which incorporate a discrete

analogue to conservation laws derived from general conservation laws (3.1)
and (3.3), such that the numerical approximation of the solution reflects the
considered physical principles in the best possible way. In the next section,

63



3. Further mathematical background

we consider DG methods for discretization of a certain class of bulk PDEs
that are derivable from stationary analogues to equation (3.3), and for spatial
discretization of the time-dependent counterpart of this class of bulk PDEs.
As we will see for the latter class of time-dependent equations, DG methods
take into account the underlying bulk conservation laws in a natural way.

3.2. Fitted DG methods for elliptic and parabolic bulk PDEs

Let Ω be a static bulk domain in Rd which is bounded by a static, smooth
(d−1)-dimensional hypersurface. Assume that this hypersurface ∂Ω comprises
two disjunct subsets ∂ΩD and ∂ΩN , where ∂ΩD = ∅ (i.e. ∂Ω = ∂ΩN ) and
∂ΩN = ∅ (i.e. ∂Ω = ∂ΩD) shall be valid special cases.
On top of this geometrical setting, we first consider the steady-state diffu-

sion equation (1.2a), together with the combination of a Dirichlet boundary
condition on ∂ΩD and a Neumann boundary condition on ∂ΩN . This elliptic
boundary value problem of second order can be stated in the following way.
We wish to find ub : Ω→ R with

−∇ · (Db∇ub) = gb in Ω, (3.5a)
ub = gb,D on ∂ΩD, (3.5b)

−Db∇ub · n∂ΩN = gb,N on ∂ΩN , (3.5c)

where the bulk diffusivity tensor Db, and gb, gb,D and gb,N are given data.

3.2.1. Obtaining DG methods by choosing numerical fluxes

In Arnold et al. (2002), a framework has been introduced which allows for the
derivation and analysis of a large class of DG methods for second order elliptic
problems. For the sake of simplicity and easy explanation of the main ideas,
the presentation was restricted to Poisson’s equation (1.1a) with homogeneous
Dirichlet boundary values, i.e. to the special case Db := I of equation (3.5a),
in combination with the special case gb,D := 0 of boundary condition (3.5b),
only considering the setting ∂Ω = ∂ΩD. For being able to deal with general
model problems of the form (3.5), we now slightly generalize the framework’s
original presentation.

Weak formulation of the problem

The framework by Arnold et al. (2002) is based on some reformulation that
is often called the problem’s mixed formulation. Still looking for a scalar field
ub : Ω→ R which solves model problem (3.5), we introduce an auxiliary vector
field σb := −Db∇ub and write the problem as a system of first order PDEs

σb = −Db∇ub in Ω, (3.6a)
∇ · σb = gb in Ω, (3.6b)

64



3.2. Fitted DG methods for elliptic and parabolic bulk PDEs

together with boundary conditions

ub = gb,D on ∂ΩD, (3.6c)
σb · n∂ΩN = gb,N on ∂ΩN . (3.6d)

To apply the framework, we derive a suitable weak formulation of model
problem (3.5) from its mixed formulation (3.6). Using the equality

−σb ·ψb = Db∇ub ·ψb = ∇ub · Dtr
b ψb,

we formally obtain

−
∫

R

σb ·ψb dx = −
∫

R

ub
(
∇ · (Dtr

b ψb)
)

dx+
∫

∂R

ub
(
Dtr
b ψb · n∂R

)
dσ,

(3.7a)

−
∫

R

σb · ∇ϕb dx =
∫

R

gb ϕb dx−
∫

∂R

(
σb · n∂R

)
ϕb dσ, (3.7b)

by multiplying equations (3.6a) and (3.6b) by some vector-valued test function
ψb and by some scalar test function ϕb of suitable regularity, respectively, and
by subsequent application of the classical integration by parts formula for bulk
domains. Here, the set R ⊆ Ω is an arbitrary, bounded d-dimensional portion
of Ω, whose boundary ∂R is a smooth (d − 1)-dimensional hypersurface, and
n∂R is the field of outward-pointing unit normal vectors to ∂R.
The resulting weak formulation of our model problem reads as follows. We

look for some pair of functions (ub,σb) ∈ H1(Ω) × [H1(Ω)]d which satisfy
boundary conditions (3.6c) and (3.6d) in the sense of traces and furthermore
have the property that, for every portion R ⊆ Ω of the type specified above,
equations (3.7) hold for all test function pairs (ϕb,ψb) ∈ H1(Ω)× [H1(Ω)]d.

Meshes and discrete approximation spaces

Given a bulk domain D in Rd, a mesh T (D) shall be understood as a set of
open, disjoint elements K0, . . . ,KM−1 ⊂ Rd with

cl (D) =
⋃

i=0,...,M−1
cl (Ki) .

We call T (D) a mesh of D and say that T (D) resolves the boundary ∂D.
To construct finite-dimensional function spaces that are capable of approx-

imating the solution on some discrete reconstruction Ωh of the geometry Ω,
we use a mesh of some bulk domain Ωh which approximates Ω. This mesh is
expected to comprise shape regular elements that are tetrahedra or hexahedra
for d = 3, and triangles or quadrilaterals for d = 2. We denote the mesh by

65



3. Further mathematical background

Th(Ωh), where h denotes its maximum element size

h := max
K∈Th(Ωh)

diam(K).

Due to the properties of the discrete approximation spaces that we are about
to associate with the mesh Th(Ωh), we will consider the set of internal faces
of Th(Ωh), which can be defined as

E int
h (Ωh) :=
{
E = ∂K+

E ∩ ∂K−E
∣∣ K+

E ,K
−
E ∈ Th(Ωh), K+

E 6= K−E , measRd−1(E) > 0
}
.

The set E int
h (Ωh) is often called the internal skeleton of the mesh. Each in-

ternal face E ∈ E int
h (Ωh) is the intersection of the boundaries of two elements

K+
E ,K

−
E ∈ Th(Ωh). Their boundaries are oriented by two fields n

∂K+
E
,n
∂K−E

of outward-pointing unit normal vectors which are opposing each other on E.
To each internal face E ∈ E int

h (Ωh), we can hence assign a dedicated field of
unit vectors normal to E by assigning the names K+

E ,K
−
E to the adjacent

elements in a fixed manner and by arbitrarily choosing nE := n
∂K+

E

∣∣
E
.

In addition to the internal faces of Th(Ωh), we will also deal with the set
of faces that lie on the boundary ∂Ωh. This set is often referred to as the
external skeleton of Th(Ωh). It can be defined as

Eext
h (Ωh) :=

{
E = ∂K+

E ∩ ∂Ωh
∣∣ K+

E ∈ Th(Ωh), measRd−1(E) > 0
}
.

In view of boundary conditions (3.6c) and (3.6d), we will be particularly in-
terested in its two subsets

Eext
h,D(Ωh) :=

{
E ∈ Eext

h (Ωh)
∣∣ E ⊂ ∂Ωh,D

}
,

Eext
h,N (Ωh) :=

{
E ∈ Eext

h (Ωh)
∣∣ E ⊂ ∂Ωh,N

}
.

Each external face E ∈ Eext
h (Ωh) is part of the boundary of a single element

K+
E ∈ Th(Ωh). The boundary of this element is oriented by a field n

∂K+
E

of
outward-pointing unit normal vectors. To each external face E ∈ Eext

h (Ωh),
we can hence assign a dedicated field of unit vectors normal to E by choosing
nE := n

∂K+
E

∣∣
E
. It should be noted that this field nE matches the field n∂Ωh |E .

As discrete approximation spaces, we specifically construct finite element
spaces of piecewise polynomial functions over Ωh given by

Vb,h(Ωh) :=
{
vb,h ∈ L2(Ωh)

∣∣∣ vb,h
∣∣
K
∈ P(K) ∀K ∈ Th(Ωh)

}
,

Σb,h(Ωh) :=
{
σb,h ∈

[
L2(Ωh)

]d ∣∣∣ σb,h
∣∣
K
∈
[
P(K)

]d ∀K ∈ Th(Ωh)
}
.

Here, P(K) denotes some space of polynomial functions over a mesh element
K. Popular choices of P(K) are the space Pk(K) of polynomial functions

66



3.2. Fitted DG methods for elliptic and parabolic bulk PDEs

of total degree less than or equal to some k ∈ N, and the space Qk(K) of
polynomial functions with a degree less than or equal to k in each coordinate
direction.
In general, functions in Vb,h(Ωh) and functions in Σb,h(Ωh) are discontin-

uous and do not take a unique value along the internal skeleton E int
h (Ωh).

Nevertheless, on each internal face E ∈ E int
h (Ωh) with adjacent elements

K+
E ,K

−
E ∈ Th(Ωh) as defined above, a function vb,h ∈ Vb,h(Ωh), for instance,

has two well-defined traces vb,h|∂K+
E
, vb,h|∂K−

E
. Using these traces, we define

the jump of a function vb,h on an internal face E as

Jvb,hK
∣∣
E

:= vb,h
∣∣
∂K+

E

− vb,h
∣∣
∂K−

E

and its average as

{vb,h}
∣∣
E

:= 1
2

(
vb,h

∣∣
∂K+

E

+ vb,h
∣∣
∂K−

E

)
. (3.8)

The definitions of these two operators J · K and { · } will not only be used for
functions in Vb,h(Ωh) and for functions in Σb,h(Ωh). We will rather use it for
all functions that have a reasonable definition on each internal face E of the
mesh Th(Ωh), with two branches vb,h

∣∣
∂K+

E

and vb,h
∣∣
∂K−

E

which are associated
with the adjacent elements K+

E ,K
−
E ∈ Th(Ωh).

For functions in Vb,h(Ωh), we furthermore define a piecewise variant of the
(transposed) classical gradient operator in Rd. Given a function vb,h, we first
set

∇hvb,h
∣∣
K

:= ∇
[
vb,h

∣∣
K

]

for each K ∈ Th(Ωh). Subsequently, we extend this definition to the faces
in E int

h (Ωh) ∪ Eext
h (Ωh), i.e. to the whole bulk domain Ωh and its boundary.

More specifically, on each internal face E ∈ E int
h (Ωh), we define two branches

by evaluating the gradient in the two adjacent elements K+
E ,K

−
E ∈ Th(Ωh).

Similarly, on each external face E ∈ Eext
h (Ωh), we evaluate the gradient in the

single adjacent element K+
E ∈ Th(Ωh). We would like to emphasize that this

definition does not permit single-valued evaluations on the internal skeleton
E int
h (Ωh). This is sufficient, though, as long as only the jump and average of

terms in ∇hvb,h is evaluated on internal faces. The latter will be all we need.
Along the same lines, we also define a piecewise variant ∇h · of the classical

divergence operator ∇ · in Rd. This piecewise divergence operator can be
applied to functions in Σb,h(Ωh), for example.
It should be mentioned that the discrete approximation spaces Vb,h(Ωh)

and Σb,h(Ωh) are non-conforming spaces with respect to the given problem.
They do not conform to the given problem in the following sense. While we
want to approximate some weak solution (ub,σb) ∈ H1(Ω) × [H1(Ω)]d on
the reconstructed geometry Ωh, our discrete spaces do not have the property
Vb,h(Ωh) × Σb,h(Ωh) ⊂ H1(Ωh) × [H1(Ωh)]d. The latter property is rather

67



3. Further mathematical background

satisfied in a piecewise fashion. Defining the piecewise Sobolev spaces

Hk
(
Th(Ωh)

)
:=
{
vb ∈ L2(Ωh)

∣∣∣ vb
∣∣
K
∈ Hk(K) ∀K ∈ Th(Ωh)

}
, k ∈ N,

which are also known as broken Sobolev spaces, we particularly have

Vb,h(Ωh)× Σb,h(Ωh) ⊂ Hk
(
Th(Ωh)

)
×
[
Hk
(
Th(Ωh)

)]d

for any number k.

Discretization: Flux formulation

Starting from the weak formulation of the model equations, which is given by
equations (3.6c), (3.6d) and (3.7), we discretize in three steps. First, we replace
the geometry Ω by its discrete reconstruction Ωh. As a second step, we restrict
the set of admissible function pairs by considering only function pairs that are
representable using the discrete function spaces Vb,h(Ωh)×Σb,h(Ωh), restricting
the set of admissible portions R ⊆ Ωh to the mesh elements K ∈ Th(Ωh) at the
same time. Finally, we replace the discrete solution variables ub,h and σb,h on
the boundary ∂K of each such portion by special numerical approximations
ûh,∂K(ub,h) and σ̂h,∂K(ub,h,σb,h). This yields schemes of the following kind.

Scheme 3.2.1 (Flux formulation). We seek to find a pair of discrete functions
(ub,h,σb,h) ∈ Vb,h(Ωh)× Σb,h(Ωh), such that, for every element K ∈ Th(Ωh),
we have

−
∫

K

σb,h ·ψb,h dx = −
∫

K

ub,h
(
∇h · (Dtr

b ψb,h)
)

dx

+
∫

∂K

ûh,∂K(ub,h)
(
Dtr
b ψb,h

∣∣
∂K
· n∂K

)
dσ,

−
∫

K

σb,h · ∇hϕb,h dx =
∫

K

gb ϕb,h dx

−
∫

∂K

(
σ̂h,∂K(ub,h,σb,h) · n∂K

)
ϕb,h

∣∣
∂K

dσ,

for all (ϕb,h,ψb,h) ∈ Vb,h(Ωh)× Σb,h(Ωh).

In the above type of schemes, we assume that two functions

ûh,∂K : H1(Th(Ωh)
)
→ L2(∂K),

σ̂h,∂K : H2(Th(Ωh)
)
×
[
H1(Th(Ωh)

)]d →
[
L2(∂K)

]d
,

are given for each element K ∈ Th(Ωh). We will refer to those two functions
as local numerical fluxes. They yield approximations to ub,h and σb,h on the
boundary of K, respectively, and are usually defined uniformly throughout the

68



3.2. Fitted DG methods for elliptic and parabolic bulk PDEs

whole set of mesh elements. To complete the specification of each particular
DG method, a collection of specific pairs of local numerical fluxes ûh,∂K and
σ̂h,∂K needs to be given, that are expressed in terms of ub,h and σb,h, and in
terms of the problem’s boundary conditions. Scheme 3.2.1 is known as the flux
formulation of the considered class of DG methods for our model problem.

Discretization: Primal formulation

A typical finite element formulation can be obtained from Scheme 3.2.1 by
eliminating the auxiliary vector field σb,h and by combining all local numerical
fluxes into global analogues. Starting with the latter, we define two functions

ûh : H1(Th(Ωh)
)
→
∏

K∈Th(Ωh)
L2(∂K),

σ̂h : H2(Th(Ωh)
)
×
[
H1(Th(Ωh)

)]d →
∏

K∈Th(Ωh)

[
L2(∂K)

]d
,

which we will refer to as (global) numerical fluxes. Both yield functions living
on E int

h (Ωh) ∪ Eext
h (Ωh). Those functions are double-valued on E int

h (Ωh), and
they are single-valued on Eext

h (Ωh). More specifically, given some argument
vb ∈ H1(Th(Ωh)

)
, the function ûh(vb), for instance, shall collect the two values

ûh,∂K+
E

(vb)
∣∣∣
E

and ûh,∂K−
E

(vb)
∣∣∣
E

on each internal face E ∈ E int
h (Ωh), and the single value

ûh,∂K+
E

(vb)
∣∣∣
E

on each external face E ∈ Eext
h (Ωh). Based on the collection of local numerical

fluxes {σ̂h,∂K}K∈Th(Ωh), the numerical flux σ̂h shall be defined analogously.
As the first step in eliminating the auxiliary vector field σb,h, we partially

revert steps that have been performed to derive the weak formulation of our
problem. Using the equality

∇ub,h · Dtr
b ψb,h = Db∇ub,h ·ψb,h

and noting that the functions which we are dealing with locally have suitable
regularity, application of the classical integration by parts formula for bulk
domains in the first equation of Scheme 3.2.1 yields

−
∫

K

σb,h ·ψb,h dx =
∫

K

(
Db∇hub,h

)
·ψb,h dx

+
∫

∂K

(
ûh,∂K(ub,h)− ub,h

∣∣
∂K

)(
Dtr
b ψb,h

∣∣
∂K
· n∂K

)
dσ. (3.9)

Please note that the latter equation would locally recover a discrete analogue

69



3. Further mathematical background

to equation (3.6a) if the local numerical flux value ûh,∂K(ub,h) was taken to
be exactly the trace of ub,h on ∂K for every mesh element K.
By summing over all mesh elements in equation (3.9) and in the second

equation of Scheme 3.2.1, we subsequently obtain

−
∑

K∈Th(Ωh)

∫

K

σb,h ·ψb,h dx =
∑

K∈Th(Ωh)

∫

K

(
Db∇hub,h

)
·ψb,h dx

+
∑

K∈Th(Ωh)

∫

∂K

(
ûh,∂K(ub,h)− ub,h

∣∣
∂K

)(
Dtr
b ψb,h

∣∣
∂K
· n∂K

)
dσ,

(3.10a)

−
∑

K∈Th(Ωh)

∫

K

σb,h · ∇hϕb,h dx =
∑

K∈Th(Ωh)

∫

K

gb ϕb,h dx

−
∑

K∈Th(Ωh)

∫

∂K

(
σ̂h,∂K(ub,h,σb,h) · n∂K

)
ϕb,h

∣∣
∂K

dσ. (3.10b)

The last sum in each equation can be rewritten in terms of the faces in the
internal skeleton E int

h (Ωh) and in the external skeleton Eext
h (Ωh) by means of

the jump operator J ·K and the global numerical fluxes ûh and σ̂h. Considering
equation (3.10a), for instance, we have
∑

K∈Th(Ωh)

∫

∂K

(
ûh,∂K(ub,h)− ub,h

∣∣
∂K

)(
Dtr
b ψb,h

∣∣
∂K
· n∂K

)
dσ

=
∑

E∈Eint
h

(Ωh)

∫

E

(
ûh,∂K+

E
(ub,h)− ub,h

∣∣
∂K+

E

)(
Dtr
b ψb,h

∣∣
∂K+

E

· n
∂K+

E

)
dσ

+
∫

E

(
ûh,∂K−

E
(ub,h)− ub,h

∣∣
∂K−

E

)(
Dtr
b ψb,h

∣∣
∂K−

E

· n
∂K−E

)
dσ

+
∑

E∈Eext
h

(Ωh)

∫

E

(
ûh,∂K+

E
(ub,h)− ub,h

∣∣
∂K+

E

)(
Dtr
b ψb,h

∣∣
∂K+

E

· n
∂K+

E

)
dσ

=
∑

E∈Eint
h

(Ωh)

∫

E

q(
ûh(ub,h)− ub,h

)(
Dtr
b ψb,h · nE

)y
dσ

+
∑

E∈Eext
h

(Ωh)

∫

E

(
ûh(ub,h)− ub,h

)(
Dtr
b ψb,h · nE

)
dσ, (3.11)

where we make use of the facts that nE := n
∂K+

E
= −n

∂K−E
holds on the

internal skeleton and that our terms are single-valued on the external skeleton.
Straightforward computation shows the following product rule for the jump

operator.

Remark 3.2.2 (Product rule for J · K). Given two functions vb and ṽb that
are reasonable arguments of the jump operator J · K, the identity

Jvb · ṽbK = JvbK{ṽb}+ {vb}JṽbK

holds on each internal face E ∈ E int
h (Ωh).

70



3.2. Fitted DG methods for elliptic and parabolic bulk PDEs

Applying this rule to the above identity (3.11) subsequently yields the following
reformulation of equation (3.10a):

−
∑

K∈Th(Ωh)

∫

K

σb,h ·ψb,h dx =
∑

K∈Th(Ωh)

∫

K

(
Db∇hub,h

)
·ψb,h dx

+
∑

E∈Eint
h

(Ωh)

∫

E

q
ûh(ub,h)− ub,h

y{(
Dtr
b ψb,h

)
· nE

}
dσ

+
∫

E

{
ûh(ub,h)− ub,h

}q(
Dtr
b ψb,h

)
· nE

y
dσ

+
∑

E∈Eext
h

(Ωh)

∫

E

(
ûh(ub,h)− ub,h

)[(
Dtr
b ψb,h

)
· nE

]
dσ. (3.12a)

By performing the same steps for equation (3.10b), we obtain

−
∑

K∈Th(Ωh)

∫

K

σb,h · ∇hϕb,h dx =
∑

K∈Th(Ωh)

∫

K

gb ϕb,h dx

−
∑

E∈Eint
h

(Ωh)

∫

E

{
σ̂h(ub,h,σb,h) · nE

}
Jϕb,hK dσ

+
∫

E

q
σ̂h(ub,h,σb,h) · nE

y
{ϕb,h} dσ

−
∑

E∈Eext
h

(Ωh)

∫

E

(
σ̂h(ub,h,σb,h) · nE

)
ϕb,h dσ. (3.12b)

Now, taking equations (3.12) as a basis, the auxiliary vector field σb,h can be
eliminated in two steps.
On the one hand, noting that ∇hub,h ∈ Σb,h(Ωh) and rewriting equation

(3.12a) by means of operators which lift functions on E int
h (Ωh) and functions

on Eext
h (Ωh) in a suitable manner to functions in the discrete space Σb,h(Ωh)

yields a representation of the auxiliary vector field σb,h in terms of ub,h, cf.
Arnold et al. (2002, equation (3.9)):

σb,h(ub,h) = −Db∇hub,h
+ l1

(q
ûh(ub,h)− ub,h

y)
+ l2

({
ûh(ub,h)− ub,h

})
+ l3

(
ûh(ub,h)− ub,h

)
.

This representation can be used to evaluate the value σ̂h(ub,h,σb,h) of the
numerical flux σ̂h if the definitions of the underlying local numerical fluxes
make use of the argument σb,h. Since the local numerical fluxes which we are
considering in this thesis solely make use of the argument ub,h, we do not go
into details here.
On the other hand, taking into account that ∇hϕb,h ∈ Σb,h(Ωh) for all

ϕb,h ∈ Vb,h(Ωh), we can take ψb,h := ∇hϕb,h in equation (3.12a). By doing so
and by subsequently combining the resulting identity and equation (3.12b), we
arrive at the following formulation which is known as the primal formulation
of the considered class of DG methods for our model problem.

71



3. Further mathematical background

Scheme 3.2.3 (Primal formulation). Find a discrete function ub,h ∈ Vb,h(Ωh),
such that

ab(ub,h, ϕb,h) =
∫

Ωh
gb ϕb,h dx

for all ϕb,h ∈ Vb,h(Ωh). Here, ab : Vb,h(Ωh)× Vb,h(Ωh)→ R is a bilinear form
that depends on the choice of the numerical fluxes ûh and σ̂h (which are given
by the choice of the local numerical fluxes ûh,∂K and σ̂h,∂K for every mesh
element K ∈ Th(Ωh)). It is defined by

ab(ub,h, ϕb,h) := a(ûh,σ̂h)(Ωh, Db, ub,h, ϕb,h
)
,

with

a(ûh,σ̂h)(D,D, uh, ϕh
)

:=
∑

K∈Th(D)

∫

K

(
D∇huh

)
· ∇hϕh dx

+
∑

E∈Eint
h

(D)

∫

E

Jûh − uhK
{(
Dtr∇hϕh

)
· nE

}
+
{
σ̂h · nE

}
JϕhK dσ

+
∑

E∈Eint
h

(D)

∫

E

{ûh − uh}
q(
Dtr∇hϕh

)
· nE

y
+

q
σ̂h · nE

y
{ϕh} dσ

+
∑

E∈Eext
h

(D)

∫

E

(ûh − uh)
[(
Dtr∇hϕh

)
· nE

]
+
(
σ̂h · nE

)
ϕh dσ.

Here, we write ûh = ûh(uh) and σ̂h = σ̂h
(
uh,σb,h(uh)

)
in the integrands to

shorten notation. A representation of σb,h in terms of ub,h is available, but it
will not be required within the scope of this thesis.

3.2.2. The classical SIPG formulation and related approaches

Next, we consider specific choices of numerical fluxes and the associated DG
methods. Motivated by the work of Rivière and Bastian (2004), we choose local
numerical fluxes that depend on two scalar parameters ε, γ ∈ R. Uniformly
throughout the whole set of mesh elements K ∈ Th(Ωh), we particularly define

ûh,∂K(uh)
∣∣
E

:=





{uh}+ 1+ε
2 (n∂K · nE)JuhK E ∈ E int

h (Ωh),
uh + ε(uh − gb,D) E ∈ Eext

h,D(Ωh),
uh E ∈ Eext

h,N (Ωh),

and

σ̂h,∂K(uh,σb,h)
∣∣
E

:=





{−Db∇huh}+ γ
hE

JuhK nE E ∈ E int
h (Ωh),

−Db∇huh + γ
hE

(uh − gb,D) nE E ∈ Eext
h,D(Ωh),

gb,N nE E ∈ Eext
h,N (Ωh),

72



3.2. Fitted DG methods for elliptic and parabolic bulk PDEs

where we consider arbitrary faces E ∈ E int
h (Ωh)∪ Eext

h (Ωh) with E ⊂ ∂K, and
incorporate boundary conditions (3.6c) and (3.6d) by different cases.
On each internal face E ∈ E int

h (Ωh), the numerical fluxes ûh and σ̂h which
result from this choice satisfy

Jûh(uh)− uhK =
q
ûh(uh)

y
− JuhK = (1 + ε)JuhK− JuhK = εJuhK

{ûh(uh)− uh} =
{
ûh(uh)

}
− {uh} = {uh} − {uh} = 0

{
σ̂h(uh,σb,h) · nE

}
= −

{(
Db∇huh

)
· nE

}
+ γ

hE
JuhK

q
σ̂h(uh,σb,h) · nE

y
= 0.

Therefore, Scheme 3.2.3 takes the following form.

Scheme 3.2.4 (SIPG/NIPG/OBB-DG/IIPG formulation). Find a discrete
function ub,h ∈ Vb,h(Ωh), such that

ab(ub,h, ϕb,h) = −
∑

E∈Eext
h,N

(Ωh)

∫

E

gb,N ϕb,h dσ +
∫

Ωh
gb ϕb,h dx (3.13)

for all ϕb,h ∈ Vb,h(Ωh), where ab : Vb,h(Ωh)× Vb,h(Ωh)→ R is a bilinear form
defined by

ab(ub,h, ϕb,h) := a(ε,γ)(Ωh, Db, ub,h, ϕb,h
)
,

with

a(ε,γ)(D,D, uh, ϕh
)

:=
∑

K∈Th(D)

∫

K

(
D∇huh

)
· ∇hϕh dx

+
∑

E∈Eint
h

(D)

∫

E

ε
{(
Dtr∇hϕh

)
· nE

}
JuhK−

{(
D∇huh

)
· nE

}
JϕhK dσ

+
∑

E∈Eint
h

(D)

γ

hE

∫

E

JuhKJϕhK dσ

+
∑

E∈Eext
h,D

(D)

∫

E

ε
[(
Dtr∇hϕh

)
· nE

]
(uh − gb,D)−

[(
D∇huh

)
· nE

]
ϕh dσ

+
∑

E∈Eext
h,D

(D)

γ

hE

∫

E

(uh − gb,D)ϕh dσ.

Specific DG methods for model problem (3.5) can be obtained by choosing
the parameters ε and γ. In this thesis, we refer to such methods as different
DG formulations, some of which are well-known in the literature. Table 3.1
lists parameter values which yield the classical symmetric interior penalty
Galerkin (SIPG) formulation (Wheeler, 1978) that is motivated by the work
of Douglas and Dupont (1976), the non-symmetric interior penalty Galerkin
(NIPG) formulation (Rivière et al., 1999, 2001), the Oden–Babuška–Baumann
DG (OBB-DG) formulation (Oden et al., 1998) and the incomplete interior
penalty Galerkin (IIPG) formulation (see e.g. Dawson et al., 2004).

73



3. Further mathematical background

Formulation Symmetry parameter Penalty parameter

SIPG ε := −1 γ > 0
NIPG ε := 1 γ > 0
OBB-DG ε := 1 γ := 0
IIPG ε := 0 γ > 0

Table 3.1.: Values of the parameters of Scheme 3.2.4 that correspond to DG
formulations known in the literature.

The terms in the bilinear form of the DG formulations given by Scheme 3.2.4
serve different purposes. For the consistency of each formulation, the terms of
the form ∫

K

(
D∇huh

)
· ∇hϕh dx,

and also the terms of the form
∫

E

−
{(
D∇huh

)
· nE

}
JϕhK dσ and

∫

E

−
[(
D∇huh

)
· nE

]
ϕh dσ

are required. Consistency is defined to mean that also a classical solution ub
to model problem (3.5) satisfies

ab(ub, ϕb,h) = −
∑

E∈Eext
h,N

(Ωh)

∫

E

gb,N ϕb,h dσ +
∫

Ωh
gb ϕb,h dx

for all ϕb,h ∈ Vb,h(Ωh). In view of equation (3.13), having this property is
equivalent to having a property known as Galerkin orthogonality:

ab(ub − ub,h, ϕb,h) = 0 ∀ϕb,h ∈ Vb,h(Ωh).

The latter identity is very useful in error analysis.
The terms with the parameter ε in front are capable of controling the sym-

metry of the matrix which describes the system of linear equations associated
with the discrete problem. They are hence known as symmetry terms and,
accordingly, the parameter ε can be called symmetry parameter. A formu-
lation with ε = −1 results in a symmetric system matrix if and only if the
diffusivity tensor Db is symmetric. Formulations with ε 6= −1 do not result in
symmetric system matrices. However, in formulations with ε = 1, such as the
NIPG formulation and the OBB-DG formulation, the symmetry terms play a
special role. Here, those terms contribute to the stability of the formulation
in some sense.
The terms with the parameter γ in front contribute to the stability of the

formulation (i.e. to the coercivity of its bilinear form) if γ > 0. Therefore,

74



3.2. Fitted DG methods for elliptic and parabolic bulk PDEs

they can be referred to as stability terms. They are also commonly known
as (interior/exterior) penalty terms since they penalize jumps of the solution
ub,h on the internal skeleton E int

h (Ωh) and differences between ub,h and the
Dirichlet boundary values gb,D on the external skeleton Eext

h (Ωh), respectively,
when considering parameters in the regime γ > 0. Accordingly, the parameter
γ can be called penalty parameter.
The penalization effect of the stability terms can be seen most easily in

the special case ε = −1, Dtr
b = Db, with either ∂ΩD = ∅ or gb,D = 0. In

this special case, the bilinear form ab : Vb,h(Ωh) × Vb,h(Ωh) → R in equation
(3.13) is symmetric. As a consequence, Scheme 3.2.4 can be interpreted as the
problem of finding a global minimizer ub,h ∈ Vb,h(Ωh) of the energy functional

E : Vb,h(Ωh)→ R, E(vb,h) := 1
2 ab(vb,h, vb,h)− cb(vb,h),

where cb : Vb,h(Ωh) → R denotes the linear form that is defined by the right-
hand side of equation (3.13). It is easy to see that, in the parameter regime
γ > 0, the stability terms in the bilinear form have non-negative contribu-
tions to the energy functional E in this variational setting, and that those
contributions penalize jumps in the manner discussed above.
In this thesis, we will particularly deal with the classical SIPG formulation

and with a slight generalization which is introduced next.

3.2.3. The SWIPG formulation

For the classical SIPG formulation, there exists a minimum penalty parame-
ter γ, independent of the mesh size h, which makes the method converge to
the solution of the given problem as h → 0. However, this minimum penalty
parameter depends on the diffusivity tensor Db in a global sense, more pre-
cisely on the diffusivity in normal direction on the entire internal skeleton
of the mesh. Moreover, the diffusivity can exhibit heterogeneities, such as
anisotropies or even discontinuities across internal faces. In this case, it would
be beneficial to choose the penalty parameter individually on each face, based
on the local properties of the diffusivity tensor. This way, the error in the
numerical solution locally would stay as small as possible.
A modification of the classical SIPG formulation which follows this idea has

been proposed in Ern et al. (2009), where it is applied to advection–diffusion
equations. The advection terms are treated by upwind stabilization (see e.g.
Brezzi et al., 2004), which corresponds to using the classical upwind numerical
flux as a replacement of the advective flux on the internal faces of Th(Ωh).
Neglecting advection terms and sticking with our model problem (3.5), this
modified SIPG formulation, which we will refer to as the symmetric weighted
interior penalty Galerkin (SWIPG) formulation in this thesis, can be described
the following way.
One central step of the modification is to introduce a double-valued, scalar

weighting function ω on the internal skeleton E int
h (Ωh). This weighting function

75



3. Further mathematical background

is then employed to generalize the classical average operator { · } which is
defined in equation (3.8), and it is used to define a diffusivity-dependent scaling
function γD on E int

h (Ωh)∪Eext
h,D(Ωh). The latter is incorporated into the penalty

parameter γ as an additional factor.
As a weighting function ω, we generally consider some function which has

two branches ω|∂K+
E
, ω|∂K−

E
∈ R≥0 on each internal face E ∈ E int

h (Ωh). Those
branches shall represent weights that are associated with the two adjacent
elements K+

E ,K
−
E ∈ Th(Ωh) and have the property ω|∂K+

E
+ ω|∂K−

E
= 1. We

would like to emphasize that this point of view does not permit single-valued
evaluations of ω. This is sufficient, though, since we will always target the two
weights ω|∂K+

E
and ω|∂K−

E
explicitly.

Using the weighting function ω, we define a weighted average operator { ·}ω
for functions vb,h which have a reasonable definition on each internal face E of
the mesh Th(Ωh), with two branches vb,h

∣∣
∂K+

E

and vb,h
∣∣
∂K−

E

that are associated
with the adjacent elements K+

E ,K
−
E ∈ Th(Ωh). Given such a function vb,h and

some internal face E, we specifically set
{
vb,h

}
ω

∣∣
E

:= ω|∂K+
E
· vb,h

∣∣
∂K+

E

+ ω|∂K−
E
· vb,h

∣∣
∂K−

E

. (3.14)

Note that the operator { · }ω which results from the latter definition equals
the classical average operator { · } for the choice ω|∂K+

E
:= ω|∂K−

E
:= 1

2 .
The diffusivity-dependent scaling function γD, is based on a scalar function

dD which describes the diffusivity in normal direction on E int
h (Ωh)∪Eext

h,D(Ωh).
The latter is double-valued on E int

h (Ωh) and single-valued on Eext
h,D(Ωh). More

specifically, on each internal face E ∈ E int
h (Ωh), we define the two branches

dD
∣∣
∂K+

E

:= (nE)trD|∂K+
E

nE and dD
∣∣
∂K−

E

:= (nE)trD|∂K−
E

nE

that are associated with the two adjacent elements K+
E ,K

−
E ∈ Th(Ωh). Simi-

larly, on each external face E ∈ Eext
h,D(Ωh), we define the single branch

dD := (nE)trD nE,

performing evaluations in the single adjacent element K+
E ∈ Th(Ωh). On each

face E ∈ E int
h (Ωh) ∪ Eext

h,D(Ωh), the scaling function γD is subsequently defined
by

γD
∣∣
E

:=
{
ω|2
∂K+

E

· dD
∣∣
∂K+

E

+ ω|2
∂K−

E

· dD
∣∣
∂K−

E

E ∈ E int
h (Ωh),

dD E ∈ Eext
h,D(Ωh).

Please note that we intentionally leave dD and γD undefined on Eext
h,N (Ωh).

By replacing the classical average operator { · } which is defined in equation
(3.8) entirely (i.e. in Scheme 3.2.3 and in the local numerical fluxes ûh,∂K and
σ̂h,∂K that yield Scheme 3.2.4) by the weighted average operator { · }ω that

76



3.2. Fitted DG methods for elliptic and parabolic bulk PDEs

is defined in equation (3.14), by entirely replacing the penalty parameter γ by
its diffusivity-scaled analogue γ ·γD with γ ∈ R>0, and by fixing the symmetry
parameter ε := −1, we obtain the following scheme.

Scheme 3.2.5 (SWIPG formulation). Find a discrete function ub,h ∈ Vb,h(Ωh),
such that

ab(ub,h, ϕb,h) = −
∑

E∈Eext
h,N

(Ωh)

∫

E

gb,N ϕb,h dσ +
∫

Ωh
gb ϕb,h dx (3.15)

for all ϕb,h ∈ Vb,h(Ωh), where ab : Vb,h(Ωh)× Vb,h(Ωh)→ R is a bilinear form
defined by

ab(ub,h, ϕb,h) := aswipg(Ωh, Db, ub,h, ϕb,h, γ
)
,

with

aswipg(D,D, uh, ϕh, γ
)

:=
∑

K∈Th(D)

∫

K

(
D∇huh

)
· ∇hϕh dx

−
∑

E∈Eint
h

(D)

∫

E

{(
Dtr∇hϕh

)
· nE

}
ω

JuhK +
{(
D∇huh

)
· nE

}
ω

JϕhK dσ

+
∑

E∈Eint
h

(D)

γ

hE

∫

E

γD JuhKJϕhK dσ

−
∑

E∈Eext
h,D

(D)

∫

E

[(
Dtr∇hϕh

)
· nE

]
(uh − gb,D) +

[(
D∇huh

)
· nE

]
ϕh dσ

+
∑

E∈Eext
h,D

(D)

γ

hE

∫

E

γD (uh − gb,D)ϕh dσ.

Regarding the weighting function ω, Ern et al. (2009) specifically set

ω|∂K+
E

:=
dD
∣∣
∂K−

E

dD
∣∣
∂K+

E

+ dD
∣∣
∂K−

E

and ω|∂K−
E

:=
dD
∣∣
∂K+

E

dD
∣∣
∂K+

E

+ dD
∣∣
∂K−

E

.

On the internal skeleton, the scaling function γD then takes the form

γD
∣∣
E

= ω|∂K+
E

dD
∣∣
∂K+

E

= ω|∂K−
E

dD
∣∣
∂K−

E

=
dD
∣∣
∂K+

E

dD
∣∣
∂K−

E

dD
∣∣
∂K+

E

+ dD
∣∣
∂K−

E

∀E ∈ E int
h (Ωh),

which means that it corresponds to half the harmonic average of the normal
component of the diffusivity tensor across internal faces. Ern et al. (2009)
recommend using this choice of weights whenever the diffusivity exhibits het-
erogeneities and they show that their SWIPG formulation can have superior
properties in this case.

77



3. Further mathematical background

3.2.4. Spatial discretization of parabolic equations

Model problem

Next, let us consider the time-dependent counterpart of model problem (3.5),
restricting our considerations to the case ∂ΩD = ∅. The latter case will be the
relevant one in the remainder of this thesis. Given some initial values ub(·, 0),
we seek ub : Ω× [0, T ]→ R with

∂tub −∇ · (Db∇ub) = gb in Ω× (0, T ], (3.16a)
−Db∇ub · n∂Ω = gb,N on ∂Ω× (0, T ]. (3.16b)

This problem of parabolic nature develops from the theory which has been
discussed in Section 3.1.2, in particular using the choices Ω(t) := Ω and
v(·, t) := 0. More precisely, by choosing the diffusive flux qb := −Db∇ub
according to Fick’s first law of diffusion, we obtain continuity equation (3.16a)
for a bulk quantity with concentration ub. Furthermore, seeking a particular
solution with the property that the considered quantity satisfies the outflux
qb ·n∂Ω = gb,N on the boundary of Ω corresponds to supplementing continuity
equation (3.16a) with boundary condition (3.16b).
The above derivation via the theory from Section 3.1.2 reveals that conti-

nuity equation (3.16a) represents the underlying equivalent conservation law

d
dt

∫

R

ub dx = −
∫

∂R

qb · n∂R dσ +
∫

R

gb dx

=
∫

∂R

Db∇ub · n∂R dσ +
∫

R

gb dx, (3.17)

which holds for arbitrary portions R ⊆ Ω (cf. equation (3.3)). Since R := Ω
is an admissible choice, this conservation law and boundary condition (3.16b)
imply that a solution ub to model problem (3.16) satisfies

d
dt

∫

Ω
ub dx = −

∫

∂Ω
gb,N dσ +

∫

Ω
gb dx. (3.18)

In this thesis, properties of the latter kind will be called global conservation
properties. Accordingly, conservation laws like (3.17) will be also referred to
as local conservation properties. Due to property (3.18), the amount

m(t) :=
∫

Ω
ub dx

of the considered quantity is an invariant with respect to time if the model
parameters are chosen accordingly. This holds true, e.g., for models with
gb ≡ 0 and gb,N ≡ 0. When modeling masses, for example, the value m(t)
describes the system’s mass at each fixed time t.

78



3.2. Fitted DG methods for elliptic and parabolic bulk PDEs

Weak formulation

As with elliptic model problem (3.5), parabolic model problem (3.16) can be
written as a system of first order PDEs. We have

σb = −Db∇ub in Ω× (0, T ], (3.19a)
∂tub +∇ · σb = gb in Ω× (0, T ], (3.19b)

together with the boundary condition

σb · n∂Ω = gb,N on ∂Ω× (0, T ]. (3.19c)

On this basis, the following weak formulation of problem (3.16) can be derived
completely analogous to our way of proceeding in Section 3.2.1. Given initial
values ub(·, 0) ∈ H1(Ω), we look for some pair of functions ub : Ω× [0, T ]→ R

and σb : Ω × [0, T ] → Rd with ub(·, t) ∈ H1(Ω) and σb(·, t) ∈ [H1(Ω)]d,
which satisfy boundary condition (3.19c) in the sense of traces and furthermore
have the property that, for every portion R ⊆ Ω of the type specified in
Section 3.2.1, the equations

−
∫

R

σb ·ψb dx = −
∫

R

ub
(
∇ · (Dtr

b ψb)
)

dx+
∫

∂R

ub
(
Dtr
b ψb · n∂R

)
dσ,

d
dt

(∫

R

ub ϕb dx
)
−
∫

R

σb · ∇ϕb dx

=
∫

R

gb ϕb dx−
∫

∂R

(
σb · n∂R

)
ϕb dσ,

hold for all test function pairs (ϕb,ψb) ∈ H1(Ω) × [H1(Ω)]d, and for each
t ∈ (0, T ].

Discretization in space

Starting from this weak formulation of problem (3.16), the method of lines (see
e.g. Schiesser, 1991) allows us to discretize in space in a way that is completely
analogous to the approach for elliptic equations in Section 3.2.1, Section 3.2.2
and Section 3.2.3. This yields the following semidiscretization.

Semidiscretization 3.2.6 (Spatial discretization of model problem (3.16) us-
ing the SIPG/NIPG/OBB-DG/IIPG formulation or the SWIPG formulation).
Given some suitable approximation ub,h(·, 0) ∈ Vb,h(Ωh) of the initial values,
we seek a semidiscrete function ub,h : Ωh×[0, T ]→ R with ub,h(·, t) ∈ Vb,h(Ωh),

79



3. Further mathematical background

such that for each t ∈ (0, T ]

d
dt

(∫

Ωh
ub,h ϕb,h dx

)
+ ab(ub,h, ϕb,h)

= −
∑

E∈Eext
h,N

(Ωh)

∫

E

gb,N ϕb,h dσ +
∫

Ωh
gb ϕb,h dx ∀ϕb,h ∈ Vb,h(Ωh).

(3.20)

Here, ab : Vb,h(Ωh) × Vb,h(Ωh) → R is either the bilinear form that is defined
in Scheme 3.2.4 or the bilinear form from Scheme 3.2.5. Please note that,
for both choices, the terms on the subset Eext

h,D(Ωh) of the external skeleton
vanish and hence do not contribute to ab(ub,h, ϕb,h), given that we restrict our
considerations to the case ∂ΩD = ∅.

3.2.5. Semidiscrete conservation properties

According to what we discussed in Section 3.2.4, exact solutions to problem
(3.16) satisfy global conservation property (3.18) and local conservation prop-
erty (3.17). We now want to show that Semidiscretization 3.2.6 is constructed
in such a way that it recovers semidiscrete analogues to those properties.

Global conservation properties

We have the following result, which is typical not only when employing DG
methods for spatial discretization of our parabolic model problem (3.16), but
also when FEMs are used that are based on a continuous Galerkin approach.

Theorem 3.2.7 (Semidiscrete solutions – global conservation property). Each
semidiscrete solution ub,h : Ωh × [0, T ]→ R with ub,h(·, t) ∈ Vb,h(Ωh) which is
obtained using Semidiscretization 3.2.6 satisfies

d
dt

∫

Ωh
ub,h dx = −

∑
E∈Eext

h,N
(Ωh)

∫

E

gb,N dσ +
∫

Ωh
gb dx. (3.21)

This identity is a semidiscrete analogue to global conservation property (3.18).
Noting that ∂Ωh,N = ∂Ωh, we have

∑
E∈Eext

h,N
(Ωh)

∫

E

gb,N dσ =
∫

∂Ωh
gb,N dσ.

Proof. Property (3.21) can be derived in a straightforward way. In particular,
the characteristic function 1Ωh of Ωh is contained in the discrete function
spaces Vb,h(Ωh) and hence an admissible test function ϕb,h in equation (3.20).
Moreover, we have ab

(
ub,h,1Ωh

)
= 0 for the bilinear form that is defined in

Scheme 3.2.4 and for the bilinear form from Scheme 3.2.5. Therefore, testing
with ϕb,h = 1Ωh in equation (3.20) yields property (3.21).

80



3.2. Fitted DG methods for elliptic and parabolic bulk PDEs

Local conservation properties

Due to the discontinuity of the discrete function spaces Vb,h(Ωh) which we are
dealing with, also the characteristic functions of smaller portions Rh ⊆ Ωh are
admissible test functions ϕb,h in equation (3.20). In fact, the smallest portions
that our spaces allow for are the mesh elements K ∈ Th(Ωh). Choosing the
characteristic function 1K of an arbitrary mesh element K as a test function
in Semidiscretization 3.2.6 yields

d
dt

∫

K

ub,h dx =

−
(
ab(ub,h,1K) +

∑
E∈Eext

h,N
(Ωh), E⊂∂K

∫

E

gb,N dσ
)

+
∫

K

gb dx.

Considering the bilinear form that is defined in Scheme 3.2.4, as well as the
corresponding collection of local numerical fluxes {σ̂h,∂K}K∈Th(Ωh) introduced
in Section 3.2.2, the first term on the right-hand side of the latter equation
can be rewritten as

ab(ub,h,1K) +
∑

E∈Eext
h,N

(Ωh), E⊂∂K

∫

E

gb,N dσ

=
∑

E∈Eint
h

(Ωh), E⊂∂K

∫

E

(
−
{(
Db∇hub,h

)
· nE

}
+ γ

hE
Jub,hK

)
J1KK dσ

+
∑

E∈Eext
h,N

(Ωh), E⊂∂K

∫

E

gb,N dσ

=
∑

E∈Eint
h

(Ωh), E⊂∂K

∫

E

(
σ̂h,∂K(ub,h,σb,h) · nE

)
J1KK dσ

+
∑

E∈Eext
h,N

(Ωh), E⊂∂K

∫

E

σ̂h,∂K(ub,h,σb,h) · nE dσ

=
∫

∂K

σ̂h,∂K(ub,h,σb,h) · n∂K dσ,

where we use that ∂Ωh,N = ∂Ωh. The same result is obtained by analogous
proceeding for the bilinear form from Scheme 3.2.5 and its corresponding col-
lection of local numerical fluxes. We hence have proven the following theorem.

Theorem 3.2.8 (Semidiscrete solutions – local conservation property). Each
semidiscrete solution ub,h : Ωh × [0, T ]→ R with ub,h(·, t) ∈ Vb,h(Ωh) which is
obtained using Semidiscretization 3.2.6 satisfies

d
dt

∫

K

ub,h dx = −
∫

∂K

σ̂h,∂K(ub,h,σb,h) · n∂K dσ +
∫

K

gb dx (3.22)

for all mesh elements K ∈ Th(Ωh).

81



3. Further mathematical background

Recalling that the local numerical flux value σ̂h,∂K(ub,h,σb,h) in equation
(3.22) is an approximation to the auxiliary vector field σb,h on the boundary
of K, and that σb,h approximates the physical flux qb that is employed in
equation (3.17), property (3.22) can be seen as a semidiscrete analogue to local
conservation property (3.17). In view of the local numerical fluxes which we
are considering in this thesis, it is easy to see that the value σ̂h,∂K(ub,h,σb,h)
converges to qb if the diffusivity tensor Db is continuous across internal faces
and the DG method converges.

3.3. Implicit geometry description using the level set framework

Next, we consider the geometrical setting of the class of bulk–surface models
that has been introduced in Section 1.2. Let Ω(t) be an evolving bulk domain
in Rd which is bounded by an evolving, potentially complex-shaped, smooth
(d−1)-dimensional hypersurface Γ(t). Let both be observed during a specified
time period [0, T ]. Moreover, let ν(·, t) : Γ(t)→ Rd denote the field of outward-
pointing unit normal vectors to Γ(t) and let v(·, t) : Ω(t)∪Γ(t)→ Rd be a field
which describes the material velocity of Ω(t) ∪ Γ(t).
Rather than using an explicit representation of Ω(t) and Γ(t) and tracking

their evolution from a Lagrangian point of view (e.g. by means of a family
of time-dependent local parametrizations), the UDG schemes that we develop
in this thesis are based on a framework for geometry description which de-
scribes all geometrical entities from an Eulerian point of view. This allows
for addressing all geometry-related challenges which have been discussed in
Chapter 1, especially those caused by geometrical evolution.

3.3.1. The level set framework

The specific Eulerian framework that we employ is known as the level set
framework. Without naming the framework this way, its basic concept has
been first introduced in Osher and Sethian (1988). In this seminal paper, the
concept is applied to evolving hypersurfaces only, but it can be extended to
evolving bulk domains in a straightforward manner.
The evolving bulk domain and the evolving hypersurface making up its

boundary are embedded in an Eulerian frame of reference, which is represented
by some larger, static bulk domain ΩΦ in Rd that contains both objects during
the whole observation period, i.e. Ω(t)∪Γ(t) ⊂ ΩΦ at each fixed time t. On top
of this embedding, all information on the geometry and its motion is captured
in an implicit way. In the level set framework, the latter feature is implemented
by means of a differentiable scalar function Φ that is defined on the space–time
domain ΩΦ × [0, T ], or rather by means of its level sets defined by

Γl(t) := Φ(·, t)
∣∣−1
ΩΦ

(l) =
{

x ∈ ΩΦ
∣∣ Φ(x, t) = l

}
, l ∈ R, t ∈ [0, T ], (3.23)

and by means of a bulk PDE which is associated with Φ.

82



3.3. Implicit geometry description using the level set framework

The level set function, geometry description and the level set equation

In particular, starting with the role of the differentiable scalar function Φ, it is
assumed that the hypersurface Γ(t) can be identified with one of its level sets.
It is furthermore assumed that Φ|Ω(t) and Φ|Ω̄c(t) uniformly take values smaller
and greater than the function value corresponding to this designated level set,
respectively, or the other way round. Here, Ω̄c(t) := ΩΦ \

(
Ω(t)∪Γ(t)

)
denotes

the complement of Ω(t)∪Γ(t) in ΩΦ at each fixed time t. A prominent choice,
which we also make in this thesis, is to assume that Γ(t) can be identified with
the zero level set Γ0(t) of Φ and that Ω(t) corresponds to the negative function
values of Φ. In terms of level sets only, this yields representations

Γ(t) = Γ0(t), Ω(t) =
⋃

l<0
Γl(t) and ΩΦ =

⋃
l∈R

Γl(t), t ∈ [0, T ], (3.24)

where the representations of Ω(t) and ΩΦ result from the definition in equation
(3.23). See Figure 3.2 for illustrations.
In the following, we assume that such a level set description of Ω(t) ∪ Γ(t)

exists. Points on Γ0(t) move with the material velocity vs := v|Γ(t) of Γ(t)
since Γ(t) and Γ0(t) coincide. Moreover, the scalar function Φ is constant on
Γ0(t). Therefore, the function Φ solves the surface PDE

∂•Φ = 0 on Γ0(t),

where ∂•Φ is the material derivative of Φ with respect to vs, cf. Section 2.6.
By using the differentiability assumption on Φ and applying Theorem 2.6.1,
this equation can be rewritten as

∂tΦ + vs · ∇Φ = 0 on Γ0(t).

At the same time, representations (3.24) and their underlying assumptions of-
fer a high degree of flexibility in choosing Φ in ΩΦ\Γ(t). It is hence reasonable
to choose Φ in a way that also the motion of level sets in ΩΦ \ Γ(t) is charac-
terized by a vanishing material derivative with respect to some given velocity
field. Employing a velocity field vΦ

s for this purpose, that is a continuous
extension of vs to ΩΦ × [0, T ], results in PDEs

∂tΦ + vΦ
s · ∇Φ = 0 on Γl(t),

which hold for all level sets Γl(t) of Φ. According to equation (3.24), the level
sets make up a partition of ΩΦ with ΩΦ =

⋃
l∈R Γl(t) at each fixed time t.

Therefore, a bulk PDE is obtained which describes the evolution of all level
sets simultaneously:

∂tΦ + vΦ
s · ∇Φ = 0 in ΩΦ × (0, T ]. (3.25)

In the context of the level set framework, special names are given to the

83



3. Further mathematical background

Ω(t)

Γ(t)

ΩΦ

(a) Example geometry: A circular bulk domain Ω(t) in R2 and its boundary Γ(t) at
a fixed time t, embedded in some larger, static bulk domain ΩΦ ⊂ R2.

Φ(x, t)

(b) A scalar function Φ suitable for describing the example geometry depicted in (a).
Left: Function values of Φ visualized by shades of gray (the larger Φ(x, t), the
brighter the gray). Right: Graph of Φ visualized using the same color scheme.

Φ(x, t)

ΩΦ × {0}
(c) The associated level set description of Γ(t) = Γ0(t).

Figure 3.2.: Level set description of some circular example geometry. See Fig-
ure 3.3 for detailed information on the pair (ΩΦ,Φ) and the level
sets of Φ.

function Φ and the associated bulk PDE (3.25). More precisely, Φ is known
by the name level set function since the entire focus is on its level sets and
their evolution. For the same reason, equation (3.25) is often referred to as the
level set equation. Note that this equation is a non-conservative bulk advection
equation which corresponds to the prototype (1.7) that has been introduced
in Section 1.1.

84



3.3. Implicit geometry description using the level set framework

Practical properties of the level set function and of the level set equation

By its design, the level set function has practical properties. At each point,
the gradient of any differentiable scalar function is a vector pointing in the
direction of the steepest slope. The level set function Φ, in particular, is
constant on each individual level set defined in equation (3.23). Particularly
on Γ(t) = Γ0(t), it furthermore performs a change of sign in normal direction
to the level set. The gradient ∇Φ on Γ(t) hence points in normal direction to
Γ(t). More precisely, it is a field of outward-pointing normal vectors to Γ(t)
since Φ takes negative values in Ω(t). We therefore have

∇Φ 6= 0 on Γ(t),

and, using normalization of ∇Φ, the field ν of outward-pointing unit normal
vectors to Γ(t) can be represented as

ν = ∇Φ
|∇Φ|

∣∣∣∣
Γ(t)

.

For arbitrary level sets of Φ, we have the following generalization.

Theorem 3.3.1 (Properties of arbitrary level sets Γl(t)). Let t be an arbitrary
but fixed point in time and let the level set function Φ (which we assumed to
be differentiable in space and time) be a Ck-function with respect to its spatial
domain, where k ∈ N∪{∞} is a positive number. Then an arbitrary but fixed
level set Γl(t) 6= ∅ of Φ has the following property:

Γl(t) is a Ck-hypersurface ⇔ ∇Φ 6= 0 on Γl(t).

Furthermore, if Γl(t) is a Ck-hypersurface, a field of unit normal vectors to
Γl(t) which provides an orientation for Γl(t) is given by

∇Φ
|∇Φ|

∣∣∣∣
Γl(t)

.

Given a level set function which is a Ck-function with respect to space, any
non-empty level set hence is an orientable Ck-hypersurface if and only if Φ
has a non-vanishing gradient on the level set.

Proof. If Γl(t) is a Ck-hypersurface, it can be seen similar to the above con-
siderations for Γ(t) = Γ0(t) that the gradient ∇Φ on Γl(t) points in normal
direction to Γl(t) and hence can not vanish. This proves direction “⇒” of the
equivalence. The opposite direction “⇐” directly follows from the definition
of Ck-hypersurfaces, see Definition C.1.2. It is strongly related to the implicit
function theorem which, together with the assumption of a non-vanishing
gradient of Φ, yields local parametrizations of the set Γl(t) over subsets of
(d− 1)-dimensional Euclidean space.

85



3. Further mathematical background

The second part of the theorem can be seen as follows. Let Γl(t) be a
Ck-hypersurface. Since the gradient ∇Φ on Γl(t) points in normal direction
to Γl(t) and does not vanish, normalization of ∇Φ yields a field of unit normal
vectors to Γl(t). This field is continuous and hence provides an orientation for
Γl(t) in the sense of Definition C.1.3. The continuity of the field follows from
the fact that Φ is a Ck-function with respect to its spatial domain, such that
∇Φ is continuous, particularly on Γl(t).

The connection between the level set function Φ and level set equation (3.25)
which we have derived above has the following practical implications. Given a
suitable extension vΦ

s of vs, an unknown level set function Φ can be obtained
by solving equation (3.25) if initial values Φ(·, 0) are provided. Conversely,
considering a given level set function Φ that is at least a C1-function with
respect to space, and an arbitrary but fixed level set Γl(t) 6= ∅ with ∇Φ 6= 0
on Γl(t), the component of vΦ

s normal to Γl(t) can be obtained using the
following equality which can be easily derived from equation (3.25):

vΦ
s ·
∇Φ
|∇Φ| = −∂tΦ|∇Φ| on Γl(t).

However, note that extracting the component of vΦ
s tangential to Γl(t) is not

possible, since function values of Φ do not encode movement of individual
points on a level set Γl(t). Motion which is purely tangential to each level set
Γl(t), for instance, induces a level set function Φ which is constant in time.
The latter fact again is reflected by equation (3.25), which reduces to ∂tΦ ≡ 0
in this case.

Signed distance functions

A frequent choice of level set functions are functions from a class whose mem-
bers are known by the name signed distance functions. On top of providing
geometry descriptions, these functions offer information on the distance of each
point in the embedding domain ΩΦ to the closest point on the hypersurface
Γ(t). More specifically, signed distance functions are level set functions of the
form

Φ(x, t) =





0 x ∈ Γ(t),
− dist

(
x,Γ(t)

)
x ∈ Ω(t),

dist
(
x,Γ(t)

)
x ∈ Ω̄c(t).

Here,
dist

(
x,Γ(t)

)
:= inf

y∈Γ(t)
|x− y|

denotes the Euclidean distance of a point x ∈ ΩΦ to the closest point on Γ(t),
and Ω̄c(t) again is the complement of Ω(t) ∪ Γ(t) in ΩΦ at each fixed time t.

86



3.3. Implicit geometry description using the level set framework

Whether or not a level set function is a signed distance function is charac-
terized by the extra condition

|∇Φ| ≡ 1,

which holds at least in some space–time neighborhood of Γ(t) in case of a signed
distance function (cf. Osher and Fedkiw, 2003, Chapter 2). From a theoretical
point of view, this simplifies formulations, as we have seen in Theorem 2.3.2.
The approaches presented in this thesis do not require this property. They

hence dispense with the need for constructing a signed distance function Φ
or constructing initial values Φ(·, 0) with the signed distance property and
keeping this property while solving equation (3.25). For keeping the signed
distance property, an appropriate extension vΦ

s of vs is necessary, or at least
some periodic redistancing mechanism needs to be employed. Redistancing is
only feasible if it is not crucial that equation (3.25) and the signed distance
property hold exactly throughout the calculation.
Although not being required, signed distance functions can be beneficial

also for the approaches presented in this thesis. In particular, it is known that
signed distance functions can result in methods which avoid stiffness and yield
more accurate numerical solutions.

Final remarks

The level set framework allows for an elegant treatment of complex geometrical
morphologies with potential topology changes in a fully implicit way. Any
geometrical complexity is encoded in terms of function values of the level set
function Φ and related properties which are easy to handle.
As we will see in Chapter 4, discrete counterparts to the level set function Φ

can be defined by constructing some discrete approximation space which lives
on a fixed mesh of ΩΦ, and by subsequently considering approximations of Φ
in this space. If Φ is known a priori, it can be projected into the approxima-
tion space at each fixed time. Otherwise, numerical methods can be applied
which discretize level set equation (3.25) and look for discrete solutions in the
approximation space. To obtain discrete inital values which are required in the
latter case, standard techniques for computing numerical approximations of
signed distance functions can be employed, such as the fast marching method
(see e.g. Osher and Fedkiw, 2003, Chapter 7). In view of this discrete setting,
it is convenient to choose an embedding domain ΩΦ which allows to use a
simple Cartesian mesh.
Alternative, more exhaustive introductions to the level set framework are

presented, e.g., in Osher and Fedkiw (2003) and in Sethian (1999). Both books
discuss, inter alia, numerical methods for dealing with level set equation (3.25),
employing computational techniques for hyperbolic bulk PDEs. Within the
scope of this thesis, we will always assume the level set function Φ to be
known and will treat level set equation (3.25) solely from a theoretical point

87



3. Further mathematical background

of view. In practical applications, however, equation (3.25) frequently needs
to be considered as an additional model equation and the UDG schemes which
will be introduced in Chapter 4 and Chapter 5 need to be supplemented with
an appropriate solver dealing with this equation.

3.3.2. Individual assumptions and definitions in this thesis

In this thesis, we assume that the geometry Ω(t) ∪ Γ(t) can be described via
representations (3.24) using a level set function

Φ: cl (ΩΦ)× [0, T ]→ R

whose spatial domain is the closure of some bulk domain ΩΦ inRd. It should be
noted in this context that, although we require the function Φ to be defined on
cl (ΩΦ)×[0, T ] rather than on ΩΦ×[0, T ], everything which has been presented
in Section 3.3.1 applies without changes. In equation (3.23), the level sets Γl(t)
of Φ have been defined solely considering the restriction Φ(·, t)

∣∣
ΩΦ

.
We assume that Φ is twice continuously differentiable with respect to space

and require that it satisfies the non-degeneracy condition

∇Φ 6= 0 in cl (ΩΦ)× [0, T ].

According to Theorem 3.3.1, the level sets of Φ have important properties
in this case. At each fixed time t, every non-empty level set Γl(t) is a C2-
hypersurface. Moreover, the field of unit normal vectors to Γl(t) given by

∇Φ
|∇Φ|

∣∣∣∣
Γl(t)

(3.26)

provides an orientation for Γl(t). Being a C2-hypersurface, each such level set
can be considered as sufficiently smooth for applying the theory from Chapter 2
and the theory from Section 3.1.1, withM = Γl(t) orM⊂ Γl(t). Please refer
to our considerations in Appendix C.2 in this respect. In the remainder of this
thesis, we will treat the level sets of interest and subsets of those level sets as
smooth (d−1)-dimensional hypersurfaces embedded in Rd, which are oriented
by fields like the one given in equation (3.26).

Open level sets, closed level sets, boundaries and closures

Whether or not a level set is an open hypersurface or a closed hypersurface
can be characterized by sets which we will define next. For each t ∈ [0, T ]
and each non-empty level set Γl(t), we define a boundary ∂Γl(t) and a closure
cl
(
Γl(t)

)
by

∂Γl(t) :=
{

x ∈ ∂ΩΦ
∣∣ Φ(x, t) = l

}
⊂ ∂ΩΦ, cl

(
Γl(t)

)
:= Γl(t) ∪ ∂Γl(t).

88



3.3. Implicit geometry description using the level set framework

ΩΦ

0.4 0.5 0.6

Γ(t)

ΩΦ

−0.6 −0.4 −0.2 0 0.2

(a) Some open level sets of Φ (left) and some of its closed
level sets (right). Γ(t) = Γ0(t) is depicted in red, the
associated bulk domain Ω(t) is depicted in green. Level
sets Γl(t) with l 6= 0 are colored according to the value
l and its associated color from the two color bars at the
bottom.

ΩΦ ΩΦ

(b) Boundaries ∂Γl(t) (left) and closures cl
(
Γl(t)

)
(right) of

the open level sets Γl(t) shown in the left picture of (a).
The coloring is the same as in the left picture of (a).

Figure 3.3.: Different types of level sets, together with sets which characterize
these types. To illustrate the geometrical setting, we use a level
set function Φ which is constant in time, with ΩΦ := (−1, 1)2

(depicted in black) and Φ(x, t) := |x| − 0.70. This pair (ΩΦ,Φ) is
the same as the one depicted in Figure 3.2b.

If and only if ∂Γl(t) 6= ∅, a point x ∈ ∂ΩΦ exists with Φ(x, t) = l. In this
case, the level set Γl(t) is an open hypersurface and we call Γl(t) an open level
set. Otherwise, if ∂Γl(t) = ∅, we call Γl(t) a closed level set since it is a closed
hypersurface. See Figure 3.3 for illustrations.
With these definitions, we have cl

(
Γl(t)

)
= Γl(t) exactly for closed level sets.

In addition, Γ0(t) = Γ(t) is a closed level set at each fixed time t according
to our assumption that Γ(t) ⊂ ΩΦ. Note that this is consistent with the fact
that Γ(t) is a closed hypersurface, given that it is the boundary of an evolving
bulk domain Ω(t).

89





4. Unfitted DG schemes for
coupled bulk–surface PDEs on
complex static geometries

In this chapter, we construct and analyze a new type of UDG schemes for bulk–
surface models on static geometries. These schemes are specially designed for
models comprising continuity equations, together with geometries of arbitrar-
ily complex shape that are represented using the level set framework. The
level set description of the geometry is exploited to obtain extensions of the
models’ surface PDEs. These extensions are additional bulk PDEs which can
be treated numerically in a similar way as the native bulk PDEs of the model.
Employing the UDG method together with host DG formulations that are
adapted to the specific needs of the bulk PDEs provides the general benefits
of DG approaches. Moreover, and equally important, it allows us to obtain
efficient numerical schemes, even though the model’s native bulk domains and
the bulk domains which are associated with the level set extensions of the
surface PDEs potentially exhibit complex geometrical shapes. We show how
schemes can be constructed that are numerically robust and recover discrete
analogues to the original conservation properties that are embedded in mod-
els comprising continuity equations. Numerical investigation of our schemes
indicates good convergence properties, as well as well-posedness and well-con-
ditionedness of the corresponding discrete problems.
We begin in Section 4.1 by deriving those classes of bulk–surface models

that are considered for presenting our numerical schemes, and by discussing
their associated conservation properties. Section 4.2 focusses on the numeri-
cal schemes themselves. Step by step, we develop level set extensions of the
models’ surface PDEs, aiming for extensions with beneficial properties, and
we describe the actual UDG discretization in space which is applied on top of
the extension process. Subsequently, we present two approaches which remedy
deficiencies resulting from the nature of extension-based discretizations. The
first approach allows for recovering original conservation properties, while the
other one increases numerical robustness. Finally, we discuss discretization
in time and introduce fully discrete schemes for time-dependent bulk–surface
models. The proposed schemes are investigated numerically in Section 4.3
using specific bulk–surface models with a known analytical solution and prac-
tical applications which involve equations of the same type. In Section 4.4, we
summarize our findings and discuss future perspectives.

91



4. UDG schemes for bulk–surface PDEs on complex static geometries

The content of this chapter is joint work with Christian Engwer (WWU
Münster). In large part, it can also be found in Engwer and Westerheide
(2018). Preliminary work includes Engwer and Westerheide (2014).

4.1. Classes of static geometry model problems

To present and investigate the numerical schemes that we develop in this
chapter, classes of bulk–surface models are considered which are similar to the
static geometry special case v ≡ 0 of the class of bulk–surface models from
Section 1.2. In the course of this, a given static geometry is assumed which
is represented by means of the level set framework that has been described in
Section 3.3. In this light, let us briefly recall the entities of the setting from
Section 1.2 and the entities of the level set framework, while dropping the
time-dependency in the notations to some extent. The following entities and
notations are used throughout this chapter.
Let Ω be a static bulk domain in Rd that is bounded by a potentially

complex-shaped, smooth (d − 1)-dimensional hypersurface Γ. Let both be
represented by a level set function Φ: cl (ΩΦ) → R which is defined on the
closure of some larger bulk domain ΩΦ ⊂ Rd that contains Ω ∪ Γ. Moreover,
let ν : Γ → Rd denote the field of outward-pointing unit normal vectors to
Γ. Analogous to the time-dependent definitions from Section 3.3, let Γl, ∂Γl
and cl (Γl) with l ∈ R be the level sets of Φ, their boundaries and their
closures, respectively, and assume Γ = Γ0. Furthermore, let ub and us denote
the concentrations of a scalar bulk quantity in Ω and a surface-bound scalar
quantity on Γ, let Db and Ds be bulk and surface diffusivity tensors, and let
fb(ub), fs(us), fb,s(ub, us) and fs,b(ub, us) be source/sink densities in Ω or on
Γ, respectively.

4.1.1. A class of parabolic model problems

Two specific classes of model problems are considered in this chapter. The first
one is the class of parabolic model problems that exactly matches the static
geometry special case v ≡ 0 of the class of bulk–surface models which has
been introduced in Section 1.2. Given some initial values ub(·, 0) and us(·, 0),
we seek ub : Ω× [0, T ]→ R and us : Γ× [0, T ]→ R with

∂tub −∇ · (Db∇ub) = fb(ub) in Ω× (0, T ], (4.1a)
−Db∇ub · ν = −fb,s(ub, us) on Γ× (0, T ], (4.1b)

∂tus −∇Γ · (Ds∇Γus) = fs,b(ub, us) + fs(us) on Γ× (0, T ]. (4.1c)

This class of model problems and its components already have been discussed
in Section 1.2. Please refer to the explanations on the corresponding formula-
tion for evolving geometries, which is represented by equations (1.8). However,
we did not provide a mathematically rigorous derivation of any of the two for-
mulations so far. We catch up on this now.

92



4.1. Classes of static geometry model problems

Model equations of the form (4.1) develop from the theory which has been
discussed in Section 3.1, particularly from the theory in Section 3.1.1 choosing
M(t) := Γ and vM(·, t) := 0, and from the theory in Section 3.1.2 using the
choices Ω(t) := Ω and v(·, t) := 0. More precisely, by choosing the tangential
diffusive surface flux qs := −Ds∇Γus according to Fick’s first law of diffusion,
and by choosing the source/sink density gs := fs,b(ub, us) + fs(us), we get
continuity equation (4.1c) for the surface-bound quantity with concentration
us. Similarly, choosing the diffusive flux qb := −Db∇ub and the source/sink
density gb := fb(ub) for the bulk quantity with concentration ub leads to
continuity equation (4.1a). Last but not least, seeking a particular solution
whose bulk quantity satisfies the outflux qb ·ν = −fb,s(ub, us) on the boundary
of Ω corresponds to supplementing continuity equation (4.1a) with boundary
condition (4.1b).
The above derivation via the theory from Section 3.1 reveals that continuity

equations (4.1a) and (4.1c) represent underlying equivalent conservation laws

d
dt

∫

R

ub dx =
∫

∂R

Db∇ub · n∂R dσ +
∫

R

fb(ub) dx, (4.2a)

d
dt

∫

M

us dσ =
∫

∂M

Ds∇Γus · µ∂M dς +
∫

M

fs,b(ub, us) + fs(us) dσ, (4.2b)

which hold for arbitrary portions R ⊆ Ω and M ⊆ Γ (cf. equation (3.3) and
equation (3.1), respectively). Since R := Ω andM := Γ are admissible choices
and since ∂Γ = ∅, these conservation laws and boundary condition (4.1b)
imply that solutions (ub, us) of model problems from class (4.1) satisfy global
conservation properties

d
dt

∫

Ω
ub dx =

∫

Γ
fb,s(ub, us) dσ +

∫

Ω
fb(ub) dx, (4.3a)

d
dt

∫

Γ
us dσ =

∫

Γ
fs,b(ub, us) dσ +

∫

Γ
fs(us) dσ. (4.3b)

Therefore, the derivative of the total amount

m(t) :=
∫

Ω
ub dx+

∫

Γ
us dσ

of the system’s quantities fulfills

d
dt m(t) =

∫

Γ
fb,s(ub, us) + fs,b(ub, us) dσ +

∫

Ω
fb(ub) dx +

∫

Γ
fs(us) dσ.

(4.4)
If the model parameters are chosen accordingly, the value m(t) hence is an
invariant with respect to time. This holds true, e.g., for models with fb ≡ 0,
fs ≡ 0 and fb,s = −fs,b. When modeling masses, for example, the value m(t)
describes the system’s total mass at each fixed time t.

93



4. UDG schemes for bulk–surface PDEs on complex static geometries

4.1.2. A class of elliptic model problems

The second class of model problems which we consider in this chapter is the
elliptic steady-state counterpart of the class of parabolic model problems given
above. We wish to find ub : Ω→ R and us : Γ→ R with

−∇ · (Db∇ub) = fb(ub) in Ω, (4.5a)
−Db∇ub · ν = −fb,s(ub, us) on Γ, (4.5b)

−∇Γ · (Ds∇Γus) = fs,b(ub, us) + fs(us) on Γ. (4.5c)

This class of model problems results from stationary analogues to the general
conservation laws (3.3) and (3.1) that have been presented in Section 3.1. With
the choices made for deriving system (4.1), these analogues lead to stationary
conservation laws

0 =
∫

∂R

Db∇ub · n∂R dσ +
∫

R

fb(ub) dx, (4.6a)

0 =
∫

∂M

Ds∇Γus · µ∂M dς +
∫

M

fs,b(ub, us) + fs(us) dσ, (4.6b)

which hold for arbitrary portions R ⊆ Ω and M ⊆ Γ. Note that those laws
are stationary analogues to conservation laws (4.2a) and (4.2b), respectively.
Given suitable regularity assumptions, it can be shown that stationary con-
servation law (4.6a) and continuity equation (4.5a) are equivalent, as well as
stationary conservation law (4.6b) and continuity equation (4.5c). The proce-
dure is similar to the one described in Section 3.1.
Using the same arguments as in Section 4.1.1, it follows from stationary

conservation laws (4.6a) and (4.6b) and from boundary condition (4.5b) that
solutions (ub, us) of model problems from class (4.5) satisfy global conservation
properties

0 =
∫

Γ
fb,s(ub, us) dσ +

∫

Ω
fb(ub) dx, (4.7a)

0 =
∫

Γ
fs,b(ub, us) dσ +

∫

Γ
fs(us) dσ. (4.7b)

4.2. The approaches and corresponding schemes

4.2.1. An extension process for surface equations

Our schemes are based on extending the models’ surface equations to some
d-dimensional neighborhood of the considered (d−1)-dimensional hypersurface
Γ. We particularly perform an extension to a bulk domain Ωext in Rd with
Γ ⊂ Ωext ⊆ ΩΦ. In the course of this extension process, we need the surface
differential operators from Chapter 2 for fields on arbitrary but fixed elements

94



4.2. The approaches and corresponding schemes

Ωext

ΩΦ

−0.2 0 0.2

Γ

Ωext

ΩΦ

−0.15 −0.1 −0.05 0 0.05

(a) Some open hypersurfaces in the set S(Φ,Ωext) (left)
and some closed hypersurfaces in S(Φ,Ωext) (right).
Γ = Γ0 = M0 is depicted in red. Hypersurfaces Ml

with l 6= 0 are colored according to the value l and its
associated color from the two color bars at the bottom.

Ωext

ΩΦ

Ωext

ΩΦ

(b) Boundaries ∂Ml (left) and closures cl (Ml) (right) of
the open hypersurfacesMl ∈ S(Φ,Ωext) shown in the
left picture of (a). The coloring is the same as in the
left picture of (a).

Figure 4.1.: HypersurfacesMl ∈ S(Φ,Ωext) employed in the extension process
from Section 4.2.1. To illustrate the geometrical setting, we use
the level set function Φ with ΩΦ := (−1, 1)2 (depicted in black)
and Φ(x) := |x|−0.70, together with the surface extension domain
Ωext := (−0.8, 0.8)2 \ [−0.33, 0.33]2 (depicted in blue).

in the set

S(Φ,Ωext) :=
{
Ml := Γl ∩ Ωext

∣∣ l ∈ R, Γl ∩ Ωext 6= ∅
}
.

The latter comprises all non-empty intersections between level sets of Φ and
the surface extension domain Ωext. Most notably, it contains Γ = Γ0 = M0.
See Figure 4.1 for illustrations.
As described in Section 3.3.2, elements in S(Φ,Ωext) can be considered

as orientable, smooth (d − 1)-dimensional hypersurfaces embedded in Rd.
Therefore, the theory from Chapter 2 and the theory from Section 3.1.1 can
be applied for each Ml ∈ S(Φ,Ωext), using the choices M(t) := Ml and

95



4. UDG schemes for bulk–surface PDEs on complex static geometries

vM(·, t) := 0. Each element Ml is not necessarily connected and either an
open hypersurface that does not contain its non-empty boundary or a closed
hypersurface. Here, the property of being an open hypersurface, the property
of being a closed hypersurface, boundaries ∂Ml ⊂ ∂Ωext, and closures cl (Ml)
can be characterized similar to the definitions in Section 3.3.2, with the surface
extension domain Ωext taking the role of the level set domain ΩΦ.

Extending surface differential operators

Extended differential operators for fields on Ωext, which pointwise act like the
required surface differential operators, can be constructed using the level set
function Φ. More precisely, they can be constructed by means of the canonical
level set extension of the field ν of outward-pointing unit normal vectors to Γ.
Based on the level set function Φ, the latter extension is defined as

νΦ : cl (ΩΦ)→ Rd, νΦ := ∇Φ
|∇Φ| .

Strictly speaking, the field νΦ represents (and extends) fields of unit normal
vectors to arbitrary level sets of Φ. For each level set Γl, the restriction
νΦ|cl(Γl) is a field of unit normal vectors to cl (Γl) which provides an orientation
for cl (Γl), cf. equation (3.26). This allows to define an extended operator

PΦ := I − νΦ (νΦ)tr

analogous to (2.1), which projects the space of vector fields on an arbitrary
subset R ⊆ cl (ΩΦ) onto the subspace of pointwise tangential vector fields on R.
The latter shall be understood as the subspace of all vector fields ζ : R→ Rd

which pointwise map into the tangent spaces of {cl (Γl)}l∈R, so that ζ ·νΦ = 0
at every point x ∈ R.
Employing PΦ instead of PM in definitions analogous to those in Section 2.1,

we obtain extended differential operators ∇Φ, gradΦ and divΦ for differentiable
scalar fields η and differentiable vector fields ξ that live on cl (ΩΦ) or on
an arbitrary d-dimensional subdomain of ΩΦ, such as the surface extension
domain Ωext. We particularly define

∇Φ := PΦ ◦ ∇ and

gradΦ η :=
(
PΦ∇η

)tr =
(
∇Φη

)tr
, divΦ ξ :=

d∑

i=1

(
∇Φξi

)
· ei = ∇Φ · ξ.

These extended operators pointwise act like surface differential operators.
In particular, considering differentiable fields η and ξ on Ωext and an arbitrary
hypersurfaceMl ∈ S(Φ,Ωext), the fields

∇Φη
∣∣
Ml

= ∇Ml
η and

(
∇Φ · ξ

)∣∣
Ml

= ∇Ml
· ξ

96



4.2. The approaches and corresponding schemes

are the (transposed) surface gradient of η and the surface divergence of ξ on
Ml, which only depend on the values of η and ξ restricted toMl, as shown in
Chapter 2. Moreover, the field −∇Φ ·νΦ pointwise matches the total curvature
of {cl (Γl)}l∈R. We hence also obtain an extended total curvature

HΦ := −∇Φ · νΦ,

where we use that the level set function Φ, which defines the field νΦ, is
assumed to be twice differentiable on cl (ΩΦ) in this thesis. Please refer to our
precise assumptions on Φ stated in Section 3.3.2.
The theory which has been presented in Section 2.3 yields reformulations

of divΦ and HΦ in terms of the classical divergence operator in the ambient
Cartesian space Rd. This is the subject of the following corollary.

Corollary 4.2.1 (Splitted representation of divΦ, representation of HΦ). Let
ξ be a differentiable vector field on Ωext. Noting that the level set function Φ
has symmetric second derivatives on Ωext, since we assume Φ ∈ C2(Ωext

)
in

this thesis (cf. Section 3.3.2), Theorem 2.3.2 and Theorem 2.3.3 imply

∇Φ · ξ = |∇Φ|−1 ∇ ·
(
|∇Φ|PΦξ

)
− (ξ · νΦ)HΦ

and
HΦ = −∇ · νΦ on Ωext.

Extending surface equations

Using the extended differential operators that we have just defined, we extend
surface equations like (4.1c) and (4.5c) to the surface extension domain Ωext.
We do this by formulating given surface equations and their underlying conser-
vation laws on all hypersurfaces in the set S(Φ,Ωext). Instead of the solution
variable us, we then look for an extended solution variable uext

s on Ωext which
simultaneously satisfies the corresponding set of equations.
For this purpose, we need suitable extensions of the data functions on Γ. In

particular, for the surface diffusivity tensor Ds, an extension Dext
s to cl (Ωext) is

required, whereas extensions f ext
s,b (ub, uext

s ) and f ext
s (uext

s ) to Ωext are sufficient
for fs,b(ub, us) and fs(us). Further requirements on these extensions will be
discussed at a later stage. For the time being, we assume suitable extensions
to be given.
To describe the extension process in detail, let us first consider parabolic

equation (4.1c) as an example, and consider elliptic surface equations later on.
For each hypersurfaceMl ∈ S(Φ,Ωext), we apply the theory from Section 3.1.1
using the choices M(t) := Ml and vM(·, t) := 0. Meanwhile, we choose
surface fluxes qs,Ml := −Dext

s ∇Ml
uext
s , together with source/sink densities

gs,Ml
:= f ext

s,b (ub, uext
s ) + f ext

s (uext
s ) on Ml × (0, T ]. This yields a system of

97



4. UDG schemes for bulk–surface PDEs on complex static geometries

continuity equations

∂tu
ext
s +∇Ml

· qs,Ml + (qs,Ml · νMl)HMl
= gs,Ml

on Ml × (0, T ]

and underlying equivalent conservation laws for surface-bound quantities with
concentrations uext

s |Ml×(0,T ].
A solution of this system is a function uext

s on Ωext× (0, T ], since the hyper-
surfaces S(Φ,Ωext) make up a partition of Ωext with Ωext =

⋃
Ml∈S(Φ,Ωext)Ml.

Assuming that such a solution uext
s exists, and assuming that this solution and

the vector field qext
s := −Dext

s ∇Φuext
s = −Dext

s PΦ∇uext
s are differentiable in

space, the system is equivalent to a single bulk PDE

∂tu
ext
s +∇Φ · qext

s + (qext
s · νΦ)HΦ = gext

s in Ωext × (0, T ]. (4.8)

Here, we define gext
s := f ext

s,b (ub, uext
s ) + f ext

s (uext
s ). The vector field qext

s and
the field gext

s can be seen as an extended flux and an extended source/sink
density on Ωext × (0, T ], respectively.
Given that Φ has symmetric second derivatives on Ωext according to our

assumptions (cf. Section 3.3.2), the surface divergence term in equation (4.8)
can be reformulated. More specifically, applying Corollary 4.2.1 results in

∂t
(
|∇Φ|uext

s

)
+∇ ·

(
|∇Φ|PΦqext

s
)

= |∇Φ|gext
s in Ωext × (0, T ].

By defining modified extended data functions

D̃ext
s := |∇Φ|PΦDext

s PΦ, (4.9a)
f̃ ext
s,b (ub, uext

s ) := |∇Φ|f ext
s,b (ub, uext

s ), (4.9b)
f̃ ext
s (uext

s ) := |∇Φ|f ext
s (uext

s ), (4.9c)

we subsequently obtain a bulk PDE of the form

∂t
(
|∇Φ|uext

s

)

−∇ · (D̃ext
s ∇uext

s ) = f̃ ext
s,b (ub, uext

s ) + f̃ ext
s (uext

s ) in Ωext × (0, T ]. (4.10)

Remark 4.2.2 (Alternative derivation of equation (4.10)). It is also possible
to employ the equivalent reformulation of continuity equations which is given
in Remark 3.1.1. Doing so yields a system of continuity equations

∂tu
ext
s +∇Ml

· PMl
qs,Ml = gs,Ml

on Ml × (0, T ],

which can be dealt with in a similar manner to derive a single bulk PDE

∂tu
ext
s +∇Φ · PΦqext

s = gext
s in Ωext × (0, T ].

In the end, by applying Corollary 4.2.1, we obtain the same formulation (4.10).

98



4.2. The approaches and corresponding schemes

Main property of solutions and requirements on extended data functions

The conserved quantity on each single hypersurface is independent of the con-
served quantities on every other hypersurface. For each Ml ∈ S(Φ,Ωext),
the underlying conservation law only takes into account the tangential part of
the extended flux qext

s according to Remark 3.1.1. An exact solution uext
s of

equation (4.10) hence is an extension of a solution of surface equation (4.1c).
For the same reason, we are furthermore free to choose an extension Dext

s

which does not map the tangent space of a hypersurface Ml ∈ S(Φ,Ωext)
with l 6= 0 into itself at every point. In this light, see also the leftmost
projection in the definition of modification D̃ext

s , which is given by equation
(4.9a). This projection ultimately results from the aforementioned property
of the conservation laws that feed into our extension process.
Extensions Dext

s , f ext
s,b (ub, uext

s ) and f ext
s (uext

s ) can thus be chosen arbitrarily
without affecting the restriction uext

s |Γ×(0,T ] of an exact solution of (4.10), as
long as they agree with Ds, fs,b(ub, uext

s |Γ) and fs(uext
s |Γ) on Γ × (0, T ] and

yield an extended system which is uniquely solvable.

Closing the system: Extended initial values and artificial boundary conditions

However, to obtain a well-posed problem with a unique solution, equation
(4.10) needs to be supplemented with extended initial values on Ωext. Fur-
thermore, an artificial boundary condition on ∂Ωext is required, even though
Γ is a closed hypersurface and thus has an empty boundary itself. Again, both
the extension of the original initial values of equation (4.1) and the bound-
ary condition’s data functions can be chosen arbitrarily without influencing
uext
s |Γ×(0,T ], as long as they have sufficient regularity to render the extended

system uniquely solvable.
As artificial boundary condition for equation (4.10), we choose its natural

boundary condition, i.e., the no-flux boundary condition on ∂Ωext. The effect
of this boundary condition and the precise reason why a boundary condition
is required at all is the subject of the following remark.

Remark 4.2.3 (Effect of the no-flux boundary condition on ∂Ωext). Since the
boundaries of the open hypersurfaces in S(Φ,Ωext) form a partition of ∂Ωext
and since we assume that ∇Φ 6= 0 on ∂Ωext ⊂ cl (ΩΦ) (cf. Section 3.3.2), we
have

qs,Ml · µ∂Ml = 0 on ∂Ml × (0, T ]
for all Ml ∈ S(Φ,Ωext) with ∂Ml 6= ∅

⇔ qext
s · PΦn∂Ωext = 0 on ∂Ωext × (0, T ]

⇔ |∇Φ|PΦqext
s · n∂Ωext = 0 on ∂Ωext × (0, T ].

Accordingly, imposing the no-flux boundary condition on the boundary ∂Ωext
corresponds to simultaneously supplementing the continuity equation on every
open hypersurfaceMl in the set S(Φ,Ωext) with a no-flux boundary condition.

99



4. UDG schemes for bulk–surface PDEs on complex static geometries

Note that the continuity equation on each of the considered open hypersurfaces
Ml requires a boundary condition, as indicated in Section 3.1.1, and that
this boundary condition solely influences the restriction uext

s |Ml×(0,T ] of an
exact solution of equation (4.10). Note furthermore that the no-flux boundary
condition on ∂Ωext does not influence the restriction uext

s |Γ×(0,T ] of an exact
solution, given that Γ is a closed hypersurface in S(Φ,Ωext).

By supplementing equation (4.10) with the chosen boundary condition, we
arrive at the following bulk boundary value problem which replaces surface
equation (4.1c) in our approach. To simplify the notation, we henceforth drop
the superscript �ext of the extended solution variable where there is no risk
of confusion. Given extended initial values us(·, 0) on Ωext, we wish to find
us : Ωext × [0, T ]→ R with

∂t
(
|∇Φ|us

)

−∇ · (D̃ext
s ∇us) = f̃ ext

s,b (ub, us) + f̃ ext
s (us) in Ωext × (0, T ], (4.11a)

−D̃ext
s ∇us · n∂Ωext = 0 on ∂Ωext × (0, T ], (4.11b)

where ub : Ω × [0, T ] → R is obtained by coupling this new problem with
equations (4.1a, 4.1b), and by initial values ub(·, 0) given on Ω.
The core of problem (4.11) is an equation of a well-known type, namely a

reaction–diffusion equation on a bulk domain in Rd. It is special due to its first
term, which is a weighted mass density, and in the sense that it is degenerated.
Particularly, the projection operator PΦ and thus also the diffusivity tensor
D̃ext
s defined in equation (4.9a) have a zero eigenvalue in normal direction νΦ

to the hypersurfaces in S(Φ,Ωext). However, problem (4.11) can be treated
numerically by a broad class of methods for bulk reaction–diffusion equations
with inhomogeneous, anisotropic diffusivity tensors. The special mass density
can be easily incorporated into standard time-stepping schemes.

Elliptic surface equations

Elliptic surface equations like (4.5c) can be treated analogously, with identical
considerations regarding extended solutions, data extensions and boundary
conditions. The extension process which we described above then yields bulk
equations like (4.11), but without the need for initial values and without the
first term in equation (4.11a):

−∇ · (D̃ext
s ∇us) = f̃ ext

s,b (ub, us) + f̃ ext
s (us) in Ωext, (4.12a)

−D̃ext
s ∇us · n∂Ωext = 0 on ∂Ωext. (4.12b)

In our approach, these two equations replace surface equation (4.5c). They
are coupled to equations (4.5a, 4.5b) and we look for a pair (ub, us) of bulk
solutions ub : Ω→ R and us : Ωext → R that do not depend on time.

100



4.2. The approaches and corresponding schemes

Function definition
Φ1(x) |x| − 0.70
Φ2(x) |x|+ 0.15 |x| sin

(
2.0 arctan2(x1, x0)

)
− 0.70

Φ3(x) |x|+ 0.15 |x| sin
(
8.0 arctan2(x1, x0)

)
− 0.60

Φ4(x)
√

x2
0 + 4.0 x2

1 + 0.30
√

x2
0 + 4.0 x2

1 sin
(
8.0 arctan2(x1, x0)

)
− 0.50

Φ5(x) |x|+ 0.17 |x| arctan2(−x1, x0) sin
(
2.0 arctan2(−x1, x0)

)
− 0.50

Φ6(x) |x|+ 0.17 |x| arctan2(−x1, x0) sin
(
4.0 arctan2(−x1, x0)

)
− 0.45

Table 4.1.: Level set functions that are employed in Figure 4.2, defined in
two-dimensional Cartesian coordinates x = (x0, x1). The function
arctan2(x1, x0) yields the azimuthal angle φ of polar coordinates
(r, φ) and will be defined later on in Remark 4.3.1.

Choosing the surface extension domain in a suitable manner

Even though an exact solution of problem (4.11) or problem (4.12) represents
conserved quantities which live on different hypersurfaces in the set S(Φ,Ωext)
and do not interfere with each other, spatial discretization of the problem using
numerical methods will inherently lead to a coupling between those quantities.
The support of each basis function of a discrete bulk solution space will overlap
a collection of different hypersurfaces.
Therefore, we can not expect that the conservation properties embedded in

the original surface equations properly carry over in a discrete sense. Moreover,
despite the above considerations, the artificial boundary conditions (4.11b) and
(4.12b) can nonetheless have an influence on that part of a discrete solution
which we are interested in, namely its restriction to Γ. It is indeed well-known
that artificial boundary conditions of extended surface equations can lead to
artifacts which spread from the boundary ∂Ωext to Γ, resulting in low order
convergence of the numerical method (see e.g. Nemitz et al. (2009, particu-
larly Section 2.3) for natural boundary conditions like (4.11b) or (4.12b), and
Greer et al. (2006, particularly Figure 2 in Section 7.1) for Dirichlet boundary
conditions).
For this reason, we choose a special surface extension domain Ωext which has

been proposed by Deckelnick et al. (2010), namely a narrow band Ωδ around
Γ that consists of entire, non-empty, closed level sets of Φ:

Ωext := Ωδ :=
⋃
−δin<l<δout

Γl, δ := δin + δout,

δin, δout ∈ R>0 such that Γl non-empty and closed for − δin < l < δout.

(4.13)Examples are depicted in Figure 4.2.

101



4. UDG schemes for bulk–surface PDEs on complex static geometries

Γ δ out

Γ−δ in

Γ

ΩΦ

−0.2 −0.1 0 0.1 0.2

(a) Φ(x) := Φ1(x).

ΩΦ

−0.2 −0.1 0 0.1 0.2

(b) Φ(x) := Φ2(x).

ΩΦ

−0.2 −0.1 0 0.1 0.2

(c) Φ(x) := Φ3(x).

ΩΦ

−0.2 −0.1 0 0.1 0.2

(d) Φ(x) := Φ4(x).

ΩΦ

−0.2 −0.1 0 0.1 0.2

(e) Φ(x) := Φ5(y), with
y := (x0, x1+0.15)tr.

ΩΦ

−0.2 −0.1 0 0.1 0.2

(f) Φ(x) := Φ6(y), with
y := (x0, x1+0.24)tr.

Figure 4.2.: Narrow band Ωδ which we use as surface extension domain Ωext
in our schemes. To illustrate the geometrical setting, we use dif-
ferent level set functions Φ (defined by means of Table 4.1) with
ΩΦ := (−1, 1)2 (depicted in black), together with narrow band
parameters δin := δout := 0.2. The narrow band Ωδ = Ωext and
its boundary ∂Ωδ = ∂Ωext =

{
Γ−δin ,Γδout

}
are depicted in blue.

The hypersurface Γ = Γ0 =M0 is depicted in red. Hypersurfaces
Γl = Ml ∈ S(Φ,Ωext) with l 6= 0 are colored according to the
value l and its associated color from the color bars at the bottom.

102



4.2. The approaches and corresponding schemes

Using this specific choice of Ωext, discretization still leads to a coupling
within the set of conserved quantities, but the artificial boundary conditions
(4.11b) and (4.12b) do not cause any artifacts in a discrete solution. According
to Remark 4.2.3, they do not influence an exact solution us = uext

s at all, given
that there is no open hypersurface in the set S(Φ,Ωext). In fact, conditions
(4.11b) and (4.12b) are no longer required. They are fulfilled automatically
since the normal component of D̃ext

s ∇us on the left-hand side of both equations
vanishes on the narrow band boundary ∂Ωδ. More specifically, the latter
boundary is of the form ∂Ωδ =

{
Γ−δin ,Γδout

}
, such that n∂Ωδ = νΦ on ∂Ωδ.

Furthermore, the diffusivity tensor D̃ext
s defined in equation (4.9a) employs the

projection operator PΦ. This operator is self-adjoint and it satisfies PΦνΦ = 0
on ∂Ωδ ⊂ cl (ΩΦ). As long as these two equalities hold, we will not only obtain
an intact exact solution, but also discrete solutions that are not distorted by
some boundary condition. Of course, we need to assure that both equalities
remain valid if the exact geometry is replaced by some discrete reconstruction.
A further advantage of choosing Ωext := Ωδ is the following. As δ → 0, the

extended equation tends back toward the surface equation we started from.
For δ → 0, we can hence expect that even a discrete solution of, say, problem
(4.11) adopts properties of an exact solution of (4.1c), e.g. its conservation
properties.
On the downside, the narrow band Ωδ usually is a complex-shaped bulk

domain if Γ is complex-shaped, especially for small values of δ.

Final remarks on the extension process

To sum up, by using the extension process, we end up with a system of PDEs
comprising well-known bulk equations instead of having to deal with a system
that includes a native surface equation. But we need a numerical method
which is very flexible with regard to the computational geometry. It must
provide an easy and efficient way to handle problems on complex-shaped bulk
domains that are implicitly described by a level set function. In addition,
to allow for enforcing convergence of the surface part of the discrete solution
toward the surface part of the solution of the original model problem, it needs
to enable us to scale the narrow band parameters δin and δout with some
discretization parameter that goes to zero.
Besides geometrical issues, the numerical method must be able to cope with

inhomogeneous, anisotropic diffusivity tensors. Furthermore, we want to ob-
tain discrete solutions which reflect the underlying conservation properties in
the best possible way. Our specific focus lies on the conservation properties
induced by the conservation laws that are associated with the original model
problem. Hence, a numerical method is required which is either conservative in
terms of discrete analogues to those conservation laws itself or at least allows
for suitable modifications.

103



4. UDG schemes for bulk–surface PDEs on complex static geometries

4.2.2. Unfitted discontinuous Galerkin

In this thesis, we consider a method that is specially designed for such prob-
lems. The UDG method (Bastian and Engwer, 2009; Engwer, 2009), that was
sketched in Section 1.3.2, is a general approach to solve PDEs on complicated
bulk domains, such as the narrow band Ωδ which we use as a surface extension
domain and the domain Ω from the bulk part of the problem. It combines the
concepts of unfitted finite element methods (Barrett and Elliott, 1987; Hansbo
and Hansbo, 2002) with the ideas of DG discretizations that were discussed
in Section 3.2. In particular, employing host DG formulations suitable for
the problem at hand, PDEs are discretized using discrete function spaces that
are based on geometrically unfitted bulk meshes. As described in Section 1.3,
geometrically unfitted meshes do not need to resolve bulk domain boundaries
like ∂Ωδ and ∂Ω = Γ or discrete reconstructions of those boundaries.
In the UDG approach, discretization of the computational geometry is based

on a discrete reconstruction of the bulk domains under consideration and their
boundaries. To perform numerical integration over this discrete geometry, the
approach applies the general concept of using local triangulations, which we
discuss later on in this section. For both the discrete geometry reconstruction
and the local triangulations, a discrete analogue to the continuous level set
description that we have considered so far can be employed. To implement
this discrete analogue, the approach uses a fixed, simple geometry mesh of a
domain which covers the bulk domains of interest.
A coarser fundamental mesh of the same domain is employed for spatial

discretization. For each PDE, a discrete function space is constructed by
defining shape functions on an appropriate subset of this mesh and restricting
their support to the reconstruction of the bulk domain which is associated
with the PDE.
Since the fundamental mesh can be chosen independently of the geometry

mesh, the approach allows to choose the size of discrete function spaces in-
dependently of geometric properties. Using the DG machinery allows for a
fully element-local construction of the discrete function spaces and facilitates
using higher order shape functions. Moreover, as shown in Section 3.2, it
is especially attractive for continuity equations which model conserved bulk
quantities. In addition to recovering discrete analogues to global bulk conser-
vation properties, discrete analogues to the underlying bulk conservation laws
can be easily incorporated locally at the level of fundamental mesh elements,
such that fluxes over element boundaries can be accurately described. As we
will show, this is also true for the surface conservation laws and global surface
conservation properties which we have considered in Section 4.1.

Basic meshes, discretization of the computational geometry

We generalize the concept of meshes which has been introduced in Section 3.2.1.
Given a bulk domain D in Rd, a mesh T (D) shall be understood as a set of

104



4.2. The approaches and corresponding schemes

open, disjoint elements K0, . . . ,KM−1 ⊂ Rd with

cl (D) ⊆
⋃

i=0,...,M−1
cl (Ki) . (4.14)

If cl (D) is a proper subset, we say that T (D) is a mesh which covers D. Other-
wise, in case of equality in (4.14), we keep using the notions from Section 3.2.1,
i.e. we call T (D) a mesh of D and say that T (D) resolves the boundary ∂D.
In this thesis, a fundamental mesh and a geometry mesh are used which

are meshes of the level set domain ΩΦ. They are expected to comprise shape
regular elements that are tetrahedra or hexahedra for d = 3, and triangles or
quadrilaterals for d = 2. We denote the fundamental mesh by Th(ΩΦ) and the
geometry mesh by Th (ΩΦ), where h and h denote their individual maximum
element sizes, also known as mesh widths, which are given by

h := max
K∈Th(ΩΦ)

diam(K) and h := max
K∈Th (ΩΦ)

diam(K).

After choosing a specific geometry mesh Th (ΩΦ), we start by discretizing
the computational geometry. Let Xh (ΩΦ) be the space of piecewise linear (for
simplices), bilinear (for quadrilaterals) or trilinear (for hexahedra) continuous
functions over Th (ΩΦ) and let Ih denote an operator which performs interpo-
lation of functions in C0(ΩΦ

)
into Xh (ΩΦ). To obtain a discrete geometry

reconstruction, we define some discrete level set function Φh as a function over
Th (ΩΦ) by setting Φh := Ih Φ. Subsequently, we consider its level sets and
appropriate collections of those level sets. More precisely, we define sets

Γl,h := Φh
∣∣−1
ΩΦ

(l) =
{

x ∈ ΩΦ
∣∣ Φh (x) = l

}
, l ∈ R,

Γh := Γ0,h , Ωh :=
⋃

l<0
Γl,h and Ωδ,h :=

⋃
−δin<l<δout

Γl,h .

Being level sets of the discrete level set function Φh , the sets Γl,h are discrete
analogues to the level sets Γl of the continuous level set function Φ, cf. the
definition of Γl in equation (3.23). The sets Ωh and Γh are discrete counterparts
to the given bulk domain Ω and the hypersurface Γ making up its boundary,
cf. representations (3.24). Similarly, the set Ωδ,h is a discrete analogue to the
narrow band Ωδ which has been introduced in equation (4.13). See Figure 4.3
for illustrations.
To make sure that the discrete narrow band Ωδ,h provides all benefits of

its continuous counterpart Ωδ, we require the narrow band parameters δin and
δout to be chosen small enough that all discrete level sets Γl,h which contribute
to Ωδ,h are non-empty and closed.
Complementary to the discretized computational geometry, we need a dis-

crete analogue to the field ∇Φ which is used in the extended surface equations.
For this purpose, we assign a piecewise variant of the (transposed) classical
gradient operator in Rd to the space Xh (ΩΦ) that contains the discrete level
set function Φh . Applied to Φh , this piecewise variant can be defined by setting

105



4. UDG schemes for bulk–surface PDEs on complex static geometries

∇h Φh
∣∣
K

:= ∇
[
Φh
∣∣
K

]
for each K ∈ Th (ΩΦ), and by extending this definition

to the faces of geometry mesh elements, i.e. to the whole level set domain ΩΦ
and its boundary. On each face of an element, we do the latter by evaluating
the gradient in an arbitrarily chosen adjacent element.

Meshes and discrete approximation spaces for the surface part of the problem

Based on the fundamental mesh Th(ΩΦ) and the discretized computational
geometry, we define a mesh of bulk domain Ωδ,h by first specifying a mesh
that covers Ωδ,h as

T̂h(Ωδ,h ) :=
{
K̂ ∈ Th(ΩΦ)

∣∣ measRd
(
K̂ ∩ Ωδ,h

)
> 0
}
,

and then considering its restriction to Ωδ,h given by

Th(Ωδ,h ) :=
{
K = K̂ ∩ Ωδ,h

∣∣ K̂ ∈ T̂h(Ωδ,h )
}
.

While T̂h(Ωδ,h ) is a subset of the fundamental mesh and hence consists of
shape regular elements, we note that the K ∈ Th(Ωδ,h ) are arbitrarily-shaped
elements and call those elements cut cells. In general, they are not either shape
regular or even convex. We call T̂h(Ωδ,h ) an active mesh for the bulk domain
Ωδ,h and say that Th(Ωδ,h ) is a cut cell mesh of Ωδ,h . Cut cell meshes can be
seen as the intersection of an active mesh and its associated bulk domain. See
Figure 4.4 for illustrations.
In addition to these meshes, we will also consider the set of internal faces of

the cut cell mesh Th(Ωδ,h ), which can be defined as

E int
h (Ωδ,h ) :=
{
E = ∂K+

E ∩ ∂K−E
∣∣ K+

E ,K
−
E ∈ Th(Ωδ,h ), K+

E 6= K−E , measRd−1(E) > 0
}
.

Referring to Section 3.2.1, we recall that the set E int
h (Ωδ,h ) is often called

the internal skeleton of the mesh. Each internal face E ∈ E int
h (Ωδ,h ) is the

intersection of the boundaries of two elements K+
E ,K

−
E ∈ Th(Ωδ,h ). Their

boundaries are oriented by two fields n
∂K+

E
,n
∂K−E

of outward-pointing unit
normal vectors which are opposing each other on E. To each internal face
E ∈ E int

h (Ωδ,h ), we can hence assign a dedicated field of unit vectors normal to
E by assigning the names K+

E ,K
−
E to the adjacent elements in a fixed manner

and by arbitrarily choosing nE := n
∂K+

E

∣∣
E
. See Figure 4.5b for an illustration.

Using standard DG shape functions on the active mesh T̂h(Ωδ,h ), with their
support restricted to the cut cells in Th(Ωδ,h ), we construct discrete finite
element spaces of piecewise polynomial functions over Ωδ,h given by

Vs,h(Ωδ,h ) :=
{
vs,h ∈ L2(Ωδ,h )

∣∣∣ vs,h
∣∣
K
∈ P(K) ∀K ∈ Th(Ωδ,h )

}
.

106



4.2. The approaches and corresponding schemes

(a) Description of an example geometry (Ω,Γ) (middle) and an associated narrow band
Ωδ (right) using a continuous level set function Φ (left).

(b) Discrete reconstruction (Ωh ,Γh ) of the same example geometry (middle) and discrete
reconstruction Ωδ,h of the associated narrow band (right) using a discrete level set
function Φh over some geometry mesh Th (ΩΦ) (left).

Figure 4.3.: Discrete geometry reconstruction in the UDG approach using the
level set framework. Note that (b) shows results for a discrete level
set function over a very coarse geometry mesh to exemplify the
difference between the exact geometry and its reconstruction. An
adequately fine geometry mesh is employed in practice, yielding
reconstructions similar to what is shown in (a).

Figure 4.4.: Some fundamental mesh Th(ΩΦ) (left), the corresponding active
mesh T̂h(Ωδ,h ) for the reconstructed narrow band Ωδ,h (with h =
h/2) that is shown in the right picture of Figure 4.3b (middle),
and the corresponding cut cell mesh Th(Ωδ,h ) of Ωδ,h (right).

107



4. UDG schemes for bulk–surface PDEs on complex static geometries

Here, P(K) denotes some space of polynomial functions over an element K,
such as the space Pk(K) of polynomial functions of total degree less than or
equal to some k ∈ N, or the space Qk(K) of polynomial functions with a
degree less than or equal to k in each coordinate direction.
In general, functions in Vs,h(Ωδ,h ) are discontinuous and do not take a unique

value along the internal skeleton E int
h (Ωδ,h ). Nevertheless, on each internal face

E ∈ E int
h (Ωδ,h ) with adjacent elements K+

E ,K
−
E ∈ Th(Ωδ,h ) as defined above,

a function vs,h ∈ Vs,h(Ωδ,h ) has two well-defined traces vs,h|∂K+
E
, vs,h|∂K−

E
.

Using these traces, we define the jump of a function vs,h on an internal face
E as

Jvs,hK
∣∣
E

:= vs,h
∣∣
∂K+

E

− vs,h
∣∣
∂K−

E

and its average as

{vs,h}
∣∣
E

:= 1
2

(
vs,h

∣∣
∂K+

E

+ vs,h
∣∣
∂K−

E

)
.

The definitions of these two operators J · K and { · } will not only be used
for functions in Vs,h(Ωδ,h ). We will rather use it for all functions that have a
reasonable definition on each internal face E of the cut cell mesh Th(Ωδ,h ), with
two branches vs,h

∣∣
∂K+

E

and vs,h
∣∣
∂K−

E

which are associated with the adjacent
elements K+

E ,K
−
E ∈ Th(Ωδ,h ).

For functions in Vs,h(Ωδ,h ), we furthermore define a piecewise variant of the
(transposed) classical gradient operator in Rd. Given a function vs,h, we first
set

∇hvs,h
∣∣
K

:= ∇
[
vs,h

∣∣
K

]
(4.15)

for each K ∈ Th(Ωδ,h ). Subsequently, we extend this definition to the faces
in E int

h (Ωδ,h ), i.e. to the whole bulk domain Ωδ,h . More specifically, on each
internal face E ∈ E int

h (Ωδ,h ), we define two branches by evaluating the gradient
in the two adjacent elements K+

E ,K
−
E ∈ Th(Ωδ,h ). We would like to emphasize

that this definition does not permit single-valued evaluations on the internal
skeleton E int

h (Ωδ,h ). This is sufficient, though, as long as only the jump and
average of terms in ∇hvs,h are evaluated on internal faces. The latter will be
all we need. For the sake of convenient notation, however, we will sometimes
treat ∇hvs,h as if it was single-valued on E int

h (Ωδ,h ), choosing one of its two
branches arbitrarily on each internal face. This abuse of notation will only be
performed in cases where the exact value of ∇hvs,h on the internal skeleton
does not matter, e.g. in bulk integrals over Ωδ,h , where the internal faces are
sets of measure zero.

Remark 4.2.4 (Geometrically unfitted spaces). The discrete spaces Vs,h(Ωδ,h )
defined above can be seen as geometrically unfitted spaces. The essential step
in their construction employs piecewise polynomial standard shape functions
defined on the shape regular elements which make up the active mesh T̂h(Ωδ,h ).
Restricting the support of those shape functions to the reconstructed geometry

108



4.2. The approaches and corresponding schemes

which we are actually interested in is a separate second step in the construction.
This is beneficial in multiple ways. The spaces Vs,h(Ωδ,h ) have a natural

basis which is induced by the basis functions of those discrete spaces that can be
defined using the full mesh elements in T̂h(Ωδ,h ). Moreover, the construction
is easy and efficient, especially if the construction process can be executed
completely element-locally – which holds true in our case since we use a DG
ansatz. Finally, functions have a straightforward extension up to the whole
active mesh. This can be useful to transfer solutions between discrete time
steps in future extensions of the approach to problems on evolving geometries.
In practice, the actual restriction step can even be replaced by restricting

solution functions to the reconstructed geometry as a postprocessing step. The
weak formulation will employ the reconstructed geometry in any case.

Analogous definitions for the bulk part of the problem

For the bulk domain Ωh , we analogously define an active mesh

T̂h(Ωh ) :=
{
K̂ ∈ Th(ΩΦ)

∣∣ measRd
(
K̂ ∩ Ωh

)
> 0
}
,

a cut cell mesh

Th(Ωh ) :=
{
K = K̂ ∩ Ωh

∣∣ K̂ ∈ T̂h(Ωh )
}

and its internal skeleton

E int
h (Ωh ) :=
{
E = ∂K+

E ∩ ∂K−E
∣∣ K+

E ,K
−
E ∈ Th(Ωh ), K+

E 6= K−E , measRd−1(E) > 0
}
,

together with a dedicated unit normal vector field for every internal face, and
discrete finite element spaces

Vb,h(Ωh ) :=
{
vb,h ∈ L2(Ωh )

∣∣∣ vb,h
∣∣
K
∈ P(K) ∀K ∈ Th(Ωh )

}
.

Furthermore, we analogously define two operators J·K and {·} which describe
the jump and the average of functions that have a reasonable definition on each
internal face in E int

h (Ωh ), with two potentially different branches on each of
those faces. Considering the discrete functions in Vb,h(Ωh ), for instance, those
branches represent traces. For the latter set of functions, we also consider
a piecewise variant ∇h of the (transposed) classical gradient operator in Rd,
which is defined analogous to the piecewise variant for functions in Vs,h(Ωδ,h ).
Note that we do not explicitly distinguish between both jump operators

and both average operators in our notation, since the targeted variant will be
always clear from the internal face on which an operator is evaluated and from
the operator’s argument. Likewise and for similar reasons, our notation does
not distinguish between the two piecewise gradient operators.

109



4. UDG schemes for bulk–surface PDEs on complex static geometries

Discretization in space

We discretize in space in three steps that are analogous to our proceeding in
Section 3.2. First, we formulate the PDEs of the problem at hand in a weak
sense. As a second step, we replace the geometry (Ω,Ωδ) in the resulting weak
formulation by its discrete reconstruction (Ωh ,Ωδ,h ), and the level set function
Φ by its discrete analogue Φh . In the course of this, we consequently use ∇h as
a replacement for the classical gradient operator. The replacement of Φ by Φh
is performed particularly in the terms that are defined in equations (4.9), i.e.
in D̃ext

s (including the projection operator PΦ), in f̃ ext
s,b (ub, us) and in f̃ ext

s (us).
It should be noted that, for these terms, we will keep the notation though,
in order to avoid over-complicating our notation unnecessarily. Finally, as
a third step, we restrict the set of admissible functions by considering only
functions that are representable using the discrete function spaces Vb,h(Ωh ) and
Vs,h(Ωδ,h ), and we employ a suitable host DG formulation for each equation.
For the modified system (4.1a, 4.1b, 4.11), which is associated with the class

of parabolic model problems (4.1), this yields the following semidiscretization.
Semidiscretization 4.2.5 (Basic formulation, parabolic problems). Given
suitable approximations ub,h(·, 0) ∈ Vb,h(Ωh ) and us,h(·, 0) ∈ Vs,h(Ωδ,h ) of
the modified system’s initial values, we seek a pair of semidiscrete functions
ub,h : Ωh × [0, T ] → R and us,h : Ωδ,h × [0, T ] → R with ub,h(·, t) ∈ Vb,h(Ωh )
and us,h(·, t) ∈ Vs,h(Ωδ,h ), such that for each t ∈ (0, T ]

d
dt

(∫

Ωh

ub,h ϕb,h dx
)

+ ab(ub,h, ϕb,h)

= cb(ub,h, us,h, ϕb,h) ∀ϕb,h ∈ Vb,h(Ωh ), (4.16a)

d
dt

(∫

Ωδ,h
|∇h Φh |us,h ϕs,h dx

)
+ as(us,h, ϕs,h)

=
∫

Ωδ,h

(
f̃ ext
s,b (ub,h, us,h) + f̃ ext

s (us,h)
)
ϕs,h dx ∀ϕs,h ∈ Vs,h(Ωδ,h ). (4.16b)

Here, ab : Vb,h(Ωh ) × Vb,h(Ωh ) → R and as : Vs,h(Ωδ,h ) × Vs,h(Ωδ,h ) → R are
given bilinear forms that depend on the choice of the two host DG formulations,
and cb : Vb,h(Ωh ) × Vs,h(Ωδ,h ) × Vb,h(Ωh ) → R is a potentially nonlinear form
defined by

cb(ub,h, us,h, ϕb,h)

:=
∫

Γh

fb,s(ub,h, us,h|Γh )ϕb,h dσ +
∫

Ωh

fb(ub,h)ϕb,h dx. (4.17)

For the modified system (4.5a, 4.5b, 4.12), which is associated with the
class of elliptic model problems, proceeding analogously yields a fully discrete
scheme for (4.5):

110



4.2. The approaches and corresponding schemes

Scheme 4.2.6 (Basic formulation, elliptic problems). Find a pair of discrete
functions (ub,h, us,h) ∈ Vb,h(Ωh )× Vs,h(Ωδ,h ), such that

ab(ub,h, ϕb,h) = cb(ub,h, us,h, ϕb,h), (4.18a)

as(us,h, ϕs,h) =
∫

Ωδ,h

(
f̃ ext
s,b (ub,h, us,h) + f̃ ext

s (us,h)
)
ϕs,h dx, (4.18b)

for all (ϕb,h, ϕs,h) ∈ Vb,h(Ωh ) × Vs,h(Ωδ,h ). Here, ab, as and cb are the forms
that have been introduced in Semidiscretization 4.2.5.

The classical SIPG formulation and the SWIPG formulation, which are both
described in Section 3.2, are appropriate for bulk reaction–diffusion equations
of parabolic nature and for their elliptic steady-state counterparts. Therefore,
they are suitable host DG formulations for each of the two PDEs in each of
the two modified systems which we are considering. For the extended surface
equations with their inhomogeneous, anisotropic diffusivity tensor, especially
the SWIPG formulation seems attractive since it was designed to handle equa-
tions with heterogeneous diffusivity, see Section 3.2.3. In Section 4.3, we will
compare the performance of our approach for both formulations.
With the classical SIPG formulation or the SWIPG formulation, the bilinear

forms in Semidiscretization 4.2.5 and Scheme 4.2.6 take the form

ab(ub,h, ϕb,h) := ahostb
(
Ωh , Db, ub,h, ϕb,h, γb

)
, (4.19a)

as(us,h, ϕs,h) := ahosts
(
Ωδ,h , D̃ext

s , us,h, ϕs,h, γs
)
, (4.19b)

where we choose {hostb, hosts} ⊂ {sipg, swipg} and define

asipg(D,D, uh, ϕh, γ
)

:=
∑

K∈Th(D)

∫

K

(
D∇huh

)
· ∇hϕh dx

−
∑

E∈Eint
h

(D)

∫

E

{(
Dtr∇hϕh

)
· nE

}
JuhK +

{(
D∇huh

)
· nE

}
JϕhK dσ

+
∑

E∈Eint
h

(D)

γ

hE

∫

E

JuhKJϕhK dσ,

aswipg(D,D, uh, ϕh, γ
)

:=
∑

K∈Th(D)

∫

K

(
D∇huh

)
· ∇hϕh dx

−
∑

E∈Eint
h

(D)

∫

E

{(
Dtr∇hϕh

)
· nE

}
ω

JuhK +
{(
D∇huh

)
· nE

}
ω

JϕhK dσ

+
∑

E∈Eint
h

(D)

γ

hE

∫

E

γD JuhKJϕhK dσ.

Here, the terms γb ∈ R≥0 and γs ∈ R≥0 in equations (4.19) denote two given
stabilization parameters which control penalization of jumps in the bulk part
of the solution and in its surface part, respectively. See Section 3.2.2 for details
on this mechanism. Furthermore, in both formulations, the term hE is some

111



4. UDG schemes for bulk–surface PDEs on complex static geometries

notion of the local mesh size at an internal face E. It represents the minimum
element dimension orthogonal to E (Georgoulis et al., 2007, Section 3). The
latter is characterized by the measure of cross sections of the adjacent elements
K+
E ,K

−
E , considering only cross sections which are orthogonal to E. Following

Georgoulis et al. (2007, Section 3), it can be approximated by setting

hE := min
{

measRd
(
K+
E

)
,measRd

(
K−E

)}
/ measRd−1(E),

particularly for anisotropically refined meshes. Note that our cut cell meshes
Th(Ωh ) and Th(Ωδ,h ) may exhibit a considerable degree of anisotropy, especially
Th(Ωδ,h ) in case of a narrow band with a small δ. Therefore, this choice should
be beneficial.
For a definition of the weighted average operator { · }ω and of the locally

varying, diffusivity-dependent scaling function γD in the SWIPG formulation,
please refer to the formulation’s description in Section 3.2.3.

Numerical integration using local triangulations

Evaluating the integrals in Semidiscretization 4.2.5 and Scheme 4.2.6 requires
computing integrals over the volume of each cut cell K ∈ Th(Ωh ) ∪ Th(Ωδ,h )
and over different parts E ⊂ ∂K of its surface. Given that entities of the
cut cell meshes might exhibit complicated shapes, quadrature rules based on
interpolation functions are not directly applicable. Integration on the active
meshes T̂h(Ωh ), T̂h(Ωδ,h ) also does not work in a straightforward way, since the
shape functions with restricted support (see Remark 4.2.4) are discontinuous
across bulk domain boundaries.
In order to guarantee accurate evaluation of integals in an efficient man-

ner, we construct quadrature rules for irregular-shaped elements using local
triangulations. In particular, each cut cell K is subdivided into a disjoint set
Th (K) of simple geometric objects, e.g. simplices and hyperrectangles, which
are subsets of elements of the geometry mesh Th (ΩΦ). For each of these simple
geometric objects and for the entities which make up their surface, efficient
Gaussian quadrature rules of arbitrary order are available. By summing up
contributions of a proper set of quadrature points associated with these rules,
we evaluate integrals over cut cells and parts of their surface.
Exploiting that the discrete level set function Φh is piecewise (multi-)linear,

local triangulations can be efficiently constructed by applying extensions of
algorithms that are known as marching cubes algorithms (Lorensen and Cline,
1987; Lewiner et al., 2003). Based on the values of Φh in the vertices of ge-
ometry mesh elements, the latter algorithms create a piecewise linear approxi-
mation of the (d− 1)-dimensional zero level set of Φh , i.e. of the reconstructed
hypersurface Γh . The contribution of each element of the geometry mesh to
the piecewise linear approximation of Γh is computed using basic algebraic
operations and general geometrical data retrieved from precomputed lookup
tables. Extended marching cubes algorithms that can be applied for construct-

112



4.2. The approaches and corresponding schemes

ing a local triangulation Th (K) of a cut cell K are examined in Bastian and
Engwer (2009); Engwer (2009); Heimann (2013); Engwer and Nüßing (2017).
Those extensions additionally target d-dimensional subsets of geometry mesh
elements, more precisely the two subsets which are characterized by positive
values of Φh and by negative values of Φh , respectively. Using the same ef-
ficient ideas as in the original marching cubes algorithms, approximations to
those subsets are computed in terms of (possibly empty) collections of simple
geometric objects.
In this thesis, we particularly use the extended marching cubes based local

triangulation approach which is presented in Heimann (2013, Chapter 2). It
allows for cut cells that are defined using multiple discrete level set functions.
We exploit this feature to obtain local triangulations of elements in the cut
cell mesh Th(Ωδ,h ). Please note that the discrete narrow band Ωδ,h can be
described using two discrete level set functions of the form Φh − c1/2 (with
constants c1, c2 ∈ R), whose zero level sets together yield ∂Ωδ,h .

Narrow band width scaling

We are interested in schemes that yield discrete solutions whose surface part
converges toward the surface part of the solution of the original model problem
(4.1) or (4.5). To obtain schemes of this kind, we scale the narrow band
parameters δin and δout that have been introduced in equation (4.13) with the
width h of the fundamental mesh. More precisely, we choose

δin := αin · h and δout := αout · h,
αin, αout ∈ R>0 such that Γl,h non-empty and closed for−δin < l < δout.

Designation: UDG and narrow band driven Eulerian SDG

In summary, the resulting numerical approach treats the surface part of the
original model problem by dealing with surface differential operators from an
Eulerian point of view, extending surface equations like (4.1c) and (4.5c) to
a narrow band around the hypersurface under consideration, employing the
UDG method for spatial discretization and scaling the width of the narrow
band with the mesh width. This component of the approach can be referred to
as UDG and narrow band driven Eulerian SDG. Here we use the term Eulerian
surface discontinuous Galerkin (Eulerian SDG) to account for the fact that its
basic concept is related to the Eulerian surface finite element method (Eulerian
SFEM) that has been introduced in Dziuk and Elliott (2008), cf. Section 1.3.2.

4.2.3. Recovering discrete analogues to original conservation properties

We recall that Semidiscretization 4.2.5 is a specific spatial discretization of
the modified system which employs an extended surface equation. As indi-
cated in Section 4.2.1, we can hence not expect that the surface component
of a corresponding solution pair exactly fulfills semidiscrete analogues to the

113



4. UDG schemes for bulk–surface PDEs on complex static geometries

conservation properties which are embedded in the class of parabolic model
problems (4.1). This even applies to global conservation properties. In fact,
without suitable modification of equation (4.16b), semidiscrete analogues to
properties (4.3b) and (4.4) can only be achieved approximatively by choosing
a narrow band with a small δ. The latter is discussed later on in greater detail
and will be underpinned by numerical results in Section 4.3.3. The same holds
true for Scheme 4.2.6, a corresponding solution pair, and discrete analogues to
the conservation properties which are embedded in the class of elliptic model
problems (4.5).
Furthermore, in view of the data functions fs,b(ub,h, us,h|Γh ) and fs(us,h|Γh ),

choosing extensions f ext
s,b (ub,h, us,h) and f ext

s (us,h) that yield schemes with
good convergence and conservation properties generally is a non-trivial task.
What is commonly done in extension-based numerical methods for surface
PDEs is to extend data functions by constructing extensions that are constant
along normal lines through Γh . An explicit construction of extensions of this
type is not possible in our case, since our extensions depend on the unknown
(extended) solution pair. Implicitly constructing extensions of this type is
possible, e.g. by means of closest point projections onto Γh as in the closest
point methods which we referred to in Section 1.3.2. However, implicitly con-
structed extensions usually come with some extra effort, e.g. constructing a
closest point operator and performing function evaluations using this operator
(especially the latter is a non-local process in general since the closest point
on Γh of a point in some mesh element may lie in a different mesh element).
Moreover, parts of the issue of recovering the original conservation proper-
ties still remain since it is an issue of discretizing the entire extended surface
equation, not only an issue of choosing suitable extended data functions.
We address both issues at once by exploiting that the first and the last

integral in (4.16b) and the last integral in (4.18b) can be approximated by
associated integrals over the reconstructed hypersurface Γh . These integrals
are known from the sharp interface FEMs for surface PDEs which have been
discussed in Section 1.3.2. In particular, we have the following theorem.

Theorem 4.2.7. A function g ∈ L1(Ωδ,h ) with sufficient extra regularity to
make the mapping G : (−δin, δout) → R, l 7→

∫
Γl,h

g dσ a continuous function
that is continuously extendable to the closed interval [−δin, δout] satisfies

1
δ

∫

Ωδ,h
|∇h Φh | g dx δ→0−→

∫

Γh

g
∣∣
Γh

dσ. (4.20)

Proof. Since Φh is a piecewise (multi-)linear continuous function over some
mesh, namely the geometry mesh Th (ΩΦ), it is Lipschitz continuous (this can
be shown using that Th (ΩΦ) has a finite number of mesh elements and using
that |∇h Φh | is bounded on each of those elements). Thus, also the restriction of
Φh to Ωδ,h is Lipschitz continuous. Therefore, together with g ∈ L1(Ωδ,h ), the
requirements of the coarea formula (Federer, 1959, Theorem 3.1) are fulfilled,

114



4.2. The approaches and corresponding schemes

which gives
1
δ

∫

Ωδ,h
|∇h Φh | g dx = 1

δ

∫ δout

−δin

(∫

Γl,h
g dσ

)
dl.

Using the assumption that the inner integral mapping G has a continuous
extension to [−δin, δout], according to the mean value theorem there exists a
level lδ ∈ (−δin, δout) such that the right-hand side can be expressed as G(lδ).
Since G is continuous in l = 0 according to our assumption, noticing that
lδ → 0 as δ → 0 and employing that Γ0,h = Γh concludes the proof.

Applying Theorem 4.2.7 to approximate the last integral in equation (4.16b)
yields the following variant of Semidiscretization 4.2.5 for the class of parabolic
model problems, which dispenses with the need for extended data functions
f ext
s,b (ub,h, us,h) and f ext

s (us,h).

Semidiscretization 4.2.8 (Variant A, parabolic problems). Given approxi-
mate initial values as in Semidiscretization 4.2.5, we seek a pair of functions
ub,h : Ωh × [0, T ] → R and us,h : Ωδ,h × [0, T ] → R with ub,h(·, t) ∈ Vb,h(Ωh )
and us,h(·, t) ∈ Vs,h(Ωδ,h ), such that for each t ∈ (0, T ] equation (4.16a) holds
true and

d
dt

(
1
δ

∫

Ωδ,h
|∇h Φh |us,h ϕs,h dx

)

+ 1
δ
as(us,h, ϕs,h) = cs(ub,h, us,h, ϕs,h) ∀ϕs,h ∈ Vs,h(Ωδ,h ). (4.21)

Here, the modified right-hand side is written in terms of a potentially nonlinear
form cs : Vb,h(Ωh )× Vs,h(Ωδ,h )× Vs,h(Ωδ,h )→ R defined by

cs(ub,h, us,h, ϕs,h) :=
∫

Γh

(
fs,b(ub,h, us,h|Γh ) + fs(us,h|Γh )

)
ϕs,h

∣∣
Γh

dσ, (4.22)

and as is the bilinear form that has been defined in equation (4.19b).

By treating equation (4.18b) in an analogue way, we obtain the following
variant of Scheme 4.2.6 for the class of elliptic model problems, which has
the same advantage regarding data functions. As we will show, it furthermore
recovers discrete analogues to the conservation properties which are embedded
in the class of elliptic model problems.

Scheme 4.2.9 (Variant A, elliptic problems). Find a pair of discrete functions
(ub,h, us,h) ∈ Vb,h(Ωh ) × Vs,h(Ωδ,h ), such that equation (4.18a) holds true for
all ϕb,h ∈ Vb,h(Ωh ) and

1
δ
as(us,h, ϕs,h) = cs(ub,h, us,h, ϕs,h) ∀ϕs,h ∈ Vs,h(Ωδ,h ), (4.23)

where as and cs are the same forms as in Semidiscretization 4.2.8.

115



4. UDG schemes for bulk–surface PDEs on complex static geometries

Finally, applying the approximation based on (4.20) additionally to the first
integral in equation (4.16b) yields another variant of Semidiscretization 4.2.5,
which is even more beneficial than Semidiscretization 4.2.8. As we will show,
solutions which are obtained using the following second variant exactly fulfill
semidiscrete analogues to the global conservation properties that are intrinsic
to all parabolic model problems from class (4.1), and they satisfy semidiscrete
analogues to the corresponding local conservation properties.

Semidiscretization 4.2.10 (Variant B, parabolic problems). Given approx-
imate initial values as in Semidiscretization 4.2.5, we seek a pair of functions
ub,h : Ωh × [0, T ] → R and us,h : Ωδ,h × [0, T ] → R with ub,h(·, t) ∈ Vb,h(Ωh )
and us,h(·, t) ∈ Vs,h(Ωδ,h ), such that for each t ∈ (0, T ] equation (4.16a) holds
true and

d
dt

(∫

Γh

us,h
∣∣
Γh
ϕs,h

∣∣
Γh

dσ
)

+ 1
δ
as(us,h, ϕs,h) = cs(ub,h, us,h, ϕs,h) ∀ϕs,h ∈ Vs,h(Ωδ,h ), (4.24)

where, again, as and cs are the same forms as in Semidiscretization 4.2.8.

Global conservation properties

Next, we investigate our semidiscretizations and schemes regarding the global
conservation properties which have been discussed in Section 4.1. Semidiscrete
analogues to properties (4.3), which we want to be satisfied by semidiscrete
solution pairs to model problems from class (4.1), can be formulated as

d
dt

∫

Ωh

ub,h dx =
∫

Γh

fb,s(ub,h, us,h|Γh ) dσ +
∫

Ωh

fb(ub,h) dx, (4.25a)

d
dt

∫

Γh

us,h
∣∣
Γh

dσ =
∫

Γh

fs,b(ub,h, us,h|Γh ) dσ +
∫

Γh

fs(us,h|Γh ) dσ. (4.25b)

Provided that a solution pair (ub,h, us,h) satisfies these equalities, the deriva-
tive of the total amountmh(t) :=

∫
Ωh
ub,h dx+

∫
Γh
us,h|Γh dσ of the semidiscrete

system’s quantities automatically fulfills the following semidiscrete analogue
to property (4.4):

d
dt mh(t) =

∫

Γh

fb,s(ub,h, us,h|Γh ) + fs,b(ub,h, us,h|Γh ) dσ

+
∫

Ωh

fb(ub,h) dx+
∫

Γh

fs(us,h|Γh ) dσ. (4.26)

Similarly, discrete analogues to the global conservation properties (4.7),
which we want to be satisfied by discrete solution pairs (ub,h, us,h) to model

116



4.2. The approaches and corresponding schemes

problems from class (4.5), can be formulated as

0 =
∫

Γh

fb,s(ub,h, us,h|Γh ) dσ +
∫

Ωh

fb(ub,h) dx, (4.27a)

0 =
∫

Γh

fs,b(ub,h, us,h|Γh ) dσ +
∫

Γh

fs(us,h|Γh ) dσ. (4.27b)

Considering the bulk part of a solution pair, the semidiscretizations and
schemes which we have considered are based on equation (4.16a) and equation
(4.18a), respectively. From those equations, they recover properties (4.25a)
and (4.27a) in a straightforward way. In particular, the characteristic function
1Ωh of Ωh is part of the discrete function spaces Vb,h(Ωh ) and hence an admis-
sible test function ϕb,h. Moreover, we have ab

(
ub,h,1Ωh

)
= 0 for the bilinear

form defined in equation (4.19a) and both choices of host DG formulations.
Therefore, testing with ϕb,h = 1Ωh in equation (4.16a) yields property (4.25a),
and testing with ϕb,h = 1Ωh in equation (4.18a) yields property (4.27a).
Considering the surface part of a solution pair, we can proceed analogously.

Being part of the discrete function spaces Vs,h(Ωδ,h ) which are employed in
all of our semidiscretizations and schemes, the characteristic function 1Ωδ,h of
Ωδ,h is an admissible test function ϕs,h, and we have as

(
us,h,1Ωδ,h

)
= 0 for

the bilinear form defined in equation (4.19b) and both choices of host DG
formulations.
Nevertheless, as expected, we can not show that all semidiscretizations and

schemes recover the global conservation property which we are wishing for.
Testing with ϕs,h = 1Ωδ,h in equations (4.16b), (4.18b) and (4.21) rather yields
equalities which approximate property (4.25b) or property (4.27b), provided
that the narrow band parameter δ is chosen sufficiently small. The latter can
be shown using Theorem 4.2.7.
However, testing with ϕs,h = 1Ωδ,h in equation (4.24) yields property (4.25b),

and testing with ϕs,h = 1Ωδ,h in equation (4.23) yields property (4.27b). We
hence have proven, inter alia, the two theorems which read as follows.

Theorem 4.2.11 (Semidiscrete solutions – global conservation properties).
Each semidiscrete solution pair (ub,h, us,h) which is obtained using Semidis-
cretization 4.2.10 satisfies properties (4.25), i.e. the semidiscrete analogues to
global conservation properties (4.3). Moreover, it satisfies property (4.26), i.e.
the corresponding semidiscrete analogue to property (4.4).

Theorem 4.2.12 (Discrete solutions – global conservation properties). With
Scheme 4.2.9, we obtain discrete solution pairs (ub,h, us,h) which satisfy prop-
erties (4.27), i.e. the discrete analogues to global conservation properties (4.7).

Local conservation properties

Due to the discontinuity of the discrete function spaces Vb,h(Ωh ) and of the
discrete function spaces Vs,h(Ωδ,h ) which we are dealing with in all of our

117



4. UDG schemes for bulk–surface PDEs on complex static geometries

semidiscretizations and schemes, Semidiscretization 4.2.10 and Scheme 4.2.9
recover analogues to conservation laws (4.2) and conservation laws (4.6), re-
spectively, not only in the global sense discussed above, but also in some local
sense. Similar to our considerations for fitted DG methods in Section 3.2.5,
we use that our spaces allow for choosing the characteristic functions 1K of
cut cell mesh elements K as test functions and obtain the following theorem.

Theorem 4.2.13 (Semidiscrete solutions – local conservation properties).
Each semidiscrete solution pair (ub,h, us,h) which is obtained using Semidis-
cretization 4.2.10 satisfies

d
dt

∫

K

ub,h dx = −
∫

∂K

σ̂b,h,∂K(ub,h, us,h|Γh ) · n∂K dσ +
∫

K

fb(ub,h) dx
(4.28a)

for all cut cells K ∈ Th(Ωh ), and

d
dt

∫

Γh∩K
us,h

∣∣
Γh

dσ =− 1
δ

∫

∂K

σ̂ext
s,h,∂K(us,h) · n∂K dσ

+
∫

Γh∩K
fs,b(ub,h, us,h|Γh ) + fs(us,h|Γh ) dσ (4.28b)

for all cut cells K ∈ Th(Ωδ,h ). Here, we define a collection of local numerical
fluxes {σ̂b,h,∂K}K∈Th(Ωh ) for the bulk part of the problem and a collection of
local numerical fluxes {σ̂ext

s,h,∂K}K∈Th(Ωδ,h ) for the surface part of the problem in
the following way. Considering the faces E ⊂ ∂K of an arbitrary but fixed cut
cell K ∈ Th(Ωh ), we set

σ̂b,h,∂K(ub,h, us,h|Γh )
∣∣
E

:=
{
{−Db∇hub,h}+ γb

hE
Jub,hK nE E ∈ E int

h (Ωh ),
−fb,s(ub,h, us,h|Γh ) nE E ⊂ Γh = ∂Ωh

if hostb = sipg. If hostb = swipg is chosen, the term for the first case on the
right-hand side of the latter definition needs to be replaced by

{
−Db∇hub,h

}
ω

+ γb · γDb
hE

Jub,hK nE.

Furthermore, considering the faces of fixed cut cells K ∈ Th(Ωδ,h ), we set

σ̂ext
s,h,∂K(us,h)

∣∣
E

:=
{
{−D̃ext

s ∇hus,h}+ γs
hE

Jus,hK nE E ∈ E int
h (Ωδ,h ),

0 · nE E ⊂ ∂Ωδ,h

in the case hosts = sipg, replacing the term for the first case on the right-hand
side of this definition by

{
−D̃ext

s ∇hus,h
}
ω

+
γs · γD̃ext

s

hE
Jus,hK nE

if hosts = swipg is chosen.

118



4.2. The approaches and corresponding schemes

Proof. The characteristic function 1K of a cut cell K ∈ Th(Ωh ) is contained in
the discrete function spaces Vb,h(Ωh ). It hence is an admissible test function
ϕb,h in equation (4.16a). Likewise, the characteristic function of a cut cell
K ∈ Th(Ωδ,h ) is contained in the discrete function spaces Vs,h(Ωδ,h ) and thus
an admissible test function ϕs,h in equation (4.24). Moreover, in the case
hostb = sipg, we have the identity

ab(ub,h,1K)−
∫

Γh∩∂K
fb,s(ub,h, us,h|Γh ) dσ

=
∑

E∈Eint
h

(Ωh ), E⊂∂K

∫

E

(
−
{(
Db∇hub,h

)
· nE

}
+ γb
hE

Jub,hK
)
J1KK dσ

+
∫

Γh∩∂K
−fb,s(ub,h, us,h|Γh ) dσ

=
∑

E∈Eint
h

(Ωh ), E⊂∂K

∫

E

(
σ̂b,h,∂K(ub,h, us,h|Γh ) · nE

)
J1KK dσ

+
∫

Γh∩∂K
σ̂b,h,∂K(ub,h, us,h|Γh ) · nE dσ

=
∫

∂K

σ̂b,h,∂K(ub,h, us,h|Γh ) · n∂K dσ

for an arbitrary cut cell K ∈ Th(Ωh ), and, in the case hosts = sipg, we have
the identity

as(us,h,1K)

=
∑

E∈Eint
h

(Ωδ,h ), E⊂∂K

∫

E

(
−
{(
D̃ext
s ∇hus,h

)
· nE

}
+ γs
hE

Jus,hK
)
J1KK dσ

=
∑

E∈Eint
h

(Ωδ,h ), E⊂∂K

∫

E

(
σ̂ext

s,h,∂K(us,h) · nE
)
J1KK dσ

=
∫

∂K

σ̂ext
s,h,∂K(us,h) · n∂K dσ

for an arbitrary cut cell K ∈ Th(Ωδ,h ). In the cases hostb = swipg and
hosts = swipg, both identities can be derived completely analogously using
the corresponding definitions of the local numerical fluxes. Therefore, testing
with ϕb,h = 1K in equation (4.16a) yields property (4.28a), and testing with
ϕs,h = 1K in equation (4.24) yields property (4.28b).

By applying the same arguments to Scheme 4.2.9, we furthermore get the
following theorem.
Theorem 4.2.14 (Discrete solutions – local conservation properties). With
Scheme 4.2.9, we obtain discrete solution pairs (ub,h, us,h) which satisfy

0 = −
∫

∂K

σ̂b,h,∂K(ub,h, us,h|Γh ) · n∂K dσ +
∫

K

fb(ub,h) dx (4.29a)

119



4. UDG schemes for bulk–surface PDEs on complex static geometries

for all cut cells K ∈ Th(Ωh ), and

0 =− 1
δ

∫

∂K

σ̂ext
s,h,∂K(us,h) · n∂K dσ

+
∫

Γh∩K
fs,b(ub,h, us,h|Γh ) + fs(us,h|Γh ) dσ (4.29b)

for all cut cells K ∈ Th(Ωδ,h ). Here, the two collections of local numerical
fluxes are the same as in Theorem 4.2.13.

Properties (4.28) can be seen as semidiscrete analogues to local conservation
properties (4.2), and properties (4.29) can be seen as discrete analogues to local
conservation properties (4.6). In particular, let us take a close look at the
local numerical fluxes that are defined in Theorem 4.2.13 for either of the two
considered host DG formulations. It is easy to see that, if the bulk diffusivity
tensor Db is continuous across internal faces and the method converges to
some solution pair (ub, us), the local numerical flux value σ̂b,h,∂K(ub,h, us,h|Γh )
in equation (4.28a) and in equation (4.29a) converges to the physical flux
qb which is considered in Section 4.1.1. Moreover, it can be shown using
a codimension 1 analogue of Theorem 4.2.7 that, if the surface diffusivity
tensor Ds is continuous across internal faces and the method converges to
some solution pair (ub, us), the term

− 1
δ

∫

∂K

σ̂ext
s,h,∂K(us,h) · n∂K dσ

=
∑

E∈Eint
h

(Ωδ,h ), E⊂∂K
− 1
δ

∫

E

σ̂ext
s,h,∂K(us,h) · n∂K dσ

in equations (4.28b) and (4.29b) approximates an integral of the form

−
∫

∂M

qs · µ∂M dς with M := Γ ∩K

for small values of the mesh widths h and h . Here, the field qs := −Ds∇Γus
is the physical surface flux that is considered in Section 4.1.1. See Figure 4.5a
for an illustration of the geometrical setting of equations (4.28b) and (4.29b).

4.2.4. Stabilization strategies with respect to the surface part of the solution

Next, we have a look at the surface part us,h of a (semi-)discrete solution. Even
though we are only interested in its restriction us,h|Γh , we obtain a function
us,h that lives on the reconstructed narrow band Ωδ,h around Γh and hence
has a gradient in the ambient Cartesian space.
For Semidiscretization 4.2.5 and Scheme 4.2.6, the normal component of this

gradient can be controlled by the choice of the extended initial values, where
required, and by the choice of the extended data functions which result in the

120



4.2. The approaches and corresponding schemes

K̂K
∂K
∩
∂Ωδ,h

Γh

n∂K

E1

δ

E2

(a) Cut cell centered view.

K̂+
E

K̂−
E

K+
E

K−
E

∂K+
E∩

∂Ωδ,h

Γh

E

E3

nE

δ

E2

(b) Internal face centered view.

Figure 4.5.: The geometrical setting of spatial discretization of the surface part
of the problem using UDG and narrow band driven Eulerian SDG,
illustrated using triangular meshes with Th(ΩΦ) = Th (ΩΦ).

terms D̃ext
s , f̃ ext

s,b (ub,h, us,h) and f̃ ext
s (us,h). With the modifications made in

Semidiscretization 4.2.8, Scheme 4.2.9 and Semidiscretization 4.2.10, however,
we loose control over this property because we are effectively solving a set
of surface diffusion equations with a vanishing right-hand side on the set of
discrete level sets Γl,h with l 6= 0. Meanwhile, we should avoid steep gradients
normal to Γh since they are expected to decrease the robustness of the method.
Therefore, we optionally stabilize these variants by adding a term that

penalizes the normal component (∇hus,h ·νΦh )νΦh of the gradient of us,h in the
ambient Cartesian space. This idea is related to a strategy pursued by various
extension-based numerical approaches to surface PDEs, namely searching for
a solution us,h that is the normally constant extension of a solution us,h|Γh on
the reconstructed hypersurface Γh . See Xu and Zhao (2003, Section 2), and
Ruuth and Merriman (2008, Section 2.1), for instance.
More precisely, after choosing some stabilization term js(us,h, ϕs,h) which

implements the idea mentioned above, we optionally add a scaled version of
this term to the left-hand side of equations (4.21), (4.23) or (4.24), respectively.
The particular scaling factor which we use is 1

δ . For instance, augmenting the
bilinear form in equation (4.23) this way results in the following variant of
Scheme 4.2.9.

Scheme 4.2.15 (Variant A stabilized, elliptic problems). We look for a pair
of discrete functions (ub,h, us,h) ∈ Vb,h(Ωh ) × Vs,h(Ωδ,h ), such that equation
(4.18a) holds true for all ϕb,h ∈ Vb,h(Ωh ) and

1
δ

[
as + js

]
(us,h, ϕs,h) = cs(ub,h, us,h, ϕs,h) ∀ϕs,h ∈ Vs,h(Ωδ,h ), (4.30)

where, as before, as and cs are the same forms as in Semidiscretization 4.2.8,
and js : Vs,h(Ωδ,h ) × Vs,h(Ωδ,h ) → R is a form that represents some suitably
chosen stabilization term.

121



4. UDG schemes for bulk–surface PDEs on complex static geometries

Two specific choices of the stabilization term js(us,h, ϕs,h) will be discussed
next.

Full gradient stabilization

The first stabilization term which we investigate in this thesis is based on the
idea of using full gradients as a stabilization mechanism. The latter has been
introduced in related work on continuous Galerkin schemes (Deckelnick et al.,
2014). We define the stabilization term js(us,h, ϕs,h) = jfg

s (us,h, ϕs,h) with

jfg
s (us,h, ϕs,h)

:=
∫

Ωδ,h

(
|∇h Φh |Dext

s (∇hus,h · νΦh )νΦh
)
· (∇hϕs,h · νΦh )νΦh dx

+
∫

Ωδ,h

(
|∇h Φh |Dext

s PΦh∇hus,h
)
· (∇hϕs,h · νΦh )νΦh dx

+
∫

Ωδ,h

(
|∇h Φh |Dext

s (∇hus,h · νΦh )νΦh
)
· PΦh∇hϕs,h dx. (4.31)

This term indeed penalizes the normal component (∇hus,h · νΦh )νΦh of the
gradient of us,h in the ambient Cartesian space. By imagining Dext

s as a
constant extension of some constant diffusivity Ds ∈ R, it can be seen that
jfg
s (us,h, ϕs,h) particularly penalizes some weighted L2(Ωδ,h )-norm of this nor-
mal component. Beneficially, no extra parameter is required in the course of
this. The strength of penalization is controlled automatically by the locally
varying factor |∇h Φh |Dext

s .
It should be noted that, for both choices of host DG formulations which we

are considering in this chapter, the bilinear form as(us,h, ϕs,h) that has been
defined in equation (4.19b) contains the volume integral

∑
K∈Th(Ωδ,h )

∫

K

(
D̃ext
s ∇hus,h

)
· ∇hϕs,h dx

=
∫

Ωδ,h

(
D̃ext
s ∇hus,h

)
· ∇hϕs,h dx

=
∫

Ωδ,h

(
|∇h Φh |Dext

s PΦh∇hus,h
)
· PΦh∇hϕs,h dx. (4.32)

Augmenting the bilinear form as(us,h, ϕs,h) with stabilization term (4.31)
corresponds to replacing the integral (4.32) by

∫

Ωδ,h

(
|∇h Φh |Dext

s ∇hus,h
)
· ∇hϕs,h dx,

i.e. it corresponds to using full gradients instead of projected gradients in the
volume integral. Therefore, we call this technique full gradient stabilization.

122



4.2. The approaches and corresponding schemes

Given this name, we would like to point out that other gradients in the bilinear
form as(us,h, ϕs,h) remain projected gradients.
We emphasize that this stabilization strategy is easy to implement and par-

ticularly attractive since it does not require an extra parameter. Furthermore,
the full gradient stabilization mechanism does not affect conservation proper-
ties, i.e. our stabilized semidiscretizations and schemes, such as Scheme 4.2.15,
inherit recovered conservation properties from their unstabilized counterparts.
Note that ϕs,h contributes to stabilization term (4.31) only in terms of ∇hϕs,h,
and note that we have jfg

s

(
us,h,1Ωδ,h

)
= 0 and jfg

s

(
us,h,1K

)
= 0 for all cut

cells K ∈ Th(Ωδ,h ).

Normal penalty stabilization

Another idea which we investigate in this thesis, is to use the stabilization
term js(us,h, ϕs,h) = jnp

s (us,h, ϕs,h) with

jnp
s (us,h, ϕs,h)

:= h γnp

∫

Ωδ,h
(∇hus,h · νΦh )νΦh · (∇hϕs,h · νΦh )νΦh dx

= h γnp

∫

Ωδ,h
(∇hus,h · νΦh )(∇hϕs,h · νΦh ) dx. (4.33)

More explicitly than with the full gradient stabilization term (4.31), it can be
seen that term (4.33) penalizes the normal component (∇hus,h ·νΦh )νΦh of the
gradient of us,h in the ambient Cartesian space. More precisely, it penalizes
large values with respect to ‖ · ‖L2(Ωδ,h ). Here, the strength of penalization is
controlled by the globally constant factor hγnp, where h denotes the width of
the fundamental mesh, as usual, and γnp ∈ R≥0 is an extra parameter that
needs to be supplied by the user.
Since the normal component of the gradient is penalized explicitly, we call

this technique normal penalty stabilization. Investigating term (4.33) was ini-
tiated by private discussion with André Massing (Umeå University) during his
visit in Münster in February 2016. While writing up the thesis, the author
learned that a similar mechanism has recently been investigated in the context
of trace FEMs in Burman et al. (2016a) and in Grande et al. (2016), where it
has been given the names normal gradient stabilization and normal derivative
volume stabilization, respectively.
The stabilization strategy is nearly as easy to implement as full gradient

stabilization. Rather than simplifying existing terms in the bilinear form of
the host DG formulation, the stabilization term is an extra term which needs
to be computed. These computations can be performed in a straightforward
way, though. Regarding conservation properties, the same considerations hold
true as in the case of full gradient stabilization.

123



4. UDG schemes for bulk–surface PDEs on complex static geometries

Scaled versions of those stabilization terms, and the limit h→ 0

For both stabilization mechanisms, we now formally study the effect of the
scaled term 1

δ js(us,h, ϕs,h) that is actually used in our semidiscretizations
and schemes. In particular, we investigate the limit h→ 0.
First, we consider the full gradient stabilization term jfg

s (us,h, ϕs,h). If no
scaling is performed, this term penalizes some weighted L2(Ωδ,h )-norm of the
gradient’s normal component, as discussed above. Analogous considerations
for the scaled version 1

δ j
fg
s (us,h, ϕs,h) show that, in the limit h→ 0, the scaled

version penalizes the L2(Γh )-norm of the gradient’s normal component. Note
that δ = (αin + αout) · h goes to zero as h→ 0, and that

1
δ
jfg
s (us,h, ϕs,h) δ→0−→

∫

Γh

(
Dext
s (∇hus,h · νΦh )νΦh

)
· (∇hϕs,h · νΦh )νΦh dσ

+
∫

Γh

(
Dext
s PΦh∇hus,h

)
· (∇hϕs,h · νΦh )νΦh dσ

+
∫

Γh

(
Dext
s (∇hus,h · νΦh )νΦh

)
· PΦh∇hϕs,h dσ,

according to Theorem 4.2.7.
Considering the scaled version of the normal penalty stabilization term

(4.33), we have

1
δ
jnp
s (us,h, ϕs,h) = γnp

αin + αout

∫

Ωδ,h
(∇hus,h · νΦh )(∇hϕs,h · νΦh ) dx. (4.34)

Just as its counterpart without scaling, the scaled term (4.34) penalizes the
L2(Ωδ,h )-norm of the gradient’s normal component. However, the term (4.34)
vanishes in the limit h→ 0. Its leading factor γnp

αin+αout
does not depend on h

and Ωδ,h approaches Γh for small h, i.e., a set of measure zero in Rd.
With the scaling factor of 1

δ , both stabilization mechanisms hence target
(∇hus,h ·νΦh )νΦh in a slightly different manner. While full gradient stabiliza-
tion targets the normal component effectively on the discrete reconstruction
Γh of the hypersurface, normal penalty stabilization targets the normal com-
ponent everywhere in the discrete reconstruction Ωδ,h of the associated narrow
band, but effectively looses its influence in the limit h→ 0.
Interestingly, despite this theoretically-different behavior, numerical results

in Section 4.3 will show that the two stabilization mechanisms perform equally
well in terms of errors and condition numbers for small values of h.

4.2.5. Fully discrete schemes

For the class of elliptic model problems (4.5), we have a total of three fully
discrete schemes. Scheme 4.2.6 is not considered in the remainder of this thesis,
given that its performance will strongly depend on the specific choice of the

124



4.2. The approaches and corresponding schemes

extensions f ext
s,b (ub,h, us,h) and f ext

s (us,h), and for the other reasons stated in
Section 4.2.3. Scheme 4.2.9 and its stabilized variant Scheme 4.2.15 will be
further investigated in Section 4.3.
Using discretization in time, we will now derive similar, fully discrete schemes

for the class of parabolic model problems (4.1). Let the considered observation
period [0, T ] be divided into subintervals

[
tn−1, tn

]
of length τ n := tn − tn−1,

n = 1, . . . , N , with t0 = 0, tN = T and tn > tn−1 for n = 1, . . . , N . Moreover,
let
(
un
b,h, u

n
s,h

)
and �n denote a fully discrete solution pair and an entity � that

may be time-dependent, respectively, each evaluated at t = tn .

Backward Euler time-stepping

The backward Euler method is the simplest implicit first order in time method
available. Employing the backward Euler method for time-stepping yields
schemes of the following kind.

Scheme 4.2.16 (General structure using backward Euler time-stepping). Let
u0
b,h ∈ Vb,h(Ωh ) and u0

s,h ∈ Vs,h(Ωδ,h ) denote approximate initial values as in
Semidiscretization 4.2.5. For n = 1, . . . , N , we seek a pair of discrete functions(
un
b,h, u

n
s,h

)
∈ Vb,h(Ωh )× Vs,h(Ωδ,h ), such that

mb(un
b,h, ϕb,h) + τ n r n

b (un
b,h, ϕb,h) = mb

(
un−1
b,h , ϕb,h

)
, (4.35a)

ms(un
s,h, ϕs,h) + τ n r n

s (un
s,h, ϕs,h) = ms

(
un−1
s,h , ϕs,h

)
, (4.35b)

for all (ϕb,h, ϕs,h) ∈ Vb,h(Ωh )× Vs,h(Ωδ,h ). Here, we define forms

mb(ub,h, ϕb,h) :=
∫

Ωh

ub,h ϕb,h dx and

rb(ub,h, ϕb,h) := ab(ub,h, ϕb,h)− cb(ub,h, us,h, ϕb,h),

where ab is the bilinear form that has been defined in equation (4.19a) and cb
is the potentially nonlinear form defined in equation (4.17). The forms ms and
rs are defined by the specific variant of the scheme.

In particular, taking Semidiscretization 4.2.8 and Semidiscretization 4.2.10
as a basis, we obtain the following fully discrete schemes.

Scheme 4.2.17 (Variant A, parabolic problems). We apply Scheme 4.2.16
with

ms(us,h, ϕs,h) := 1
δ

∫

Ωδ,h
|∇h Φh |us,h ϕs,h dx and

rs(us,h, ϕs,h) := 1
δ
as(us,h, ϕs,h)− cs(ub,h, us,h, ϕs,h),

where as is the bilinear form that has been defined in equation (4.19b) and cs
is the potentially nonlinear form defined in equation (4.22).

125



4. UDG schemes for bulk–surface PDEs on complex static geometries

Scheme 4.2.18 (Variant B, parabolic problems). We apply Scheme 4.2.16
with

ms(us,h, ϕs,h) :=
∫

Γh

us,h
∣∣
Γh
ϕs,h

∣∣
Γh

dσ

and rs(us,h, ϕs,h) as in Scheme 4.2.17.

Moreover, augmenting the chosen bilinear form as(us,h, ϕs,h) by one of the
stabilization terms js(us,h, ϕs,h) which have been discussed in Section 4.2.4
yields the following stabilized variant of Scheme 4.2.18.

Scheme 4.2.19 (Variant B stabilized, parabolic problems). Given one of our
stabilization terms js(us,h, ϕs,h), we apply Scheme 4.2.16 with ms(us,h, ϕs,h)
as in Scheme 4.2.18 and

rs(us,h, ϕs,h) := 1
δ

[
as + js

]
(us,h, ϕs,h)− cs(ub,h, us,h, ϕs,h),

where, again, as is the bilinear form that has been defined in equation (4.19b)
and cs is the potentially nonlinear form defined in equation (4.22).

Regarding the general structure of these schemes, which is provided by
equations (4.35), we note that the forms rb and rs may be time-dependent. This
is due to the fact that both diffusivity tensors Db and Ds, and the source/sink
densities fb(ub,h), fs(us,h|Γh ), fb,s(ub,h, us,h|Γh ) and fs,b(ub,h, us,h|Γh ) may be
time-dependent. This time-dependency is passed on to the forms ab, cb, as, js
(when choosing js = jfg

s ) and cs.

Conservation properties

Scheme 4.2.18 and its stabilized variant Scheme 4.2.19 recover fully discrete
analogues to the global conservation properties (4.3) and (4.4) which have
been discussed in Section 4.1. This is the subject of the following theorem.

Theorem 4.2.20 (Fully discrete solutions – global conservation properties).
At each step n = 1, . . . , N , a solution pair

(
un
b,h, u

n
s,h

)
∈ Vb,h(Ωh )× Vs,h(Ωδ,h )

that is obtained using Scheme 4.2.18 or Scheme 4.2.19 satisfies
∫

Ωh

un
b,h dx =

∫

Ωh

un−1
b,h dx

+ τ n
(∫

Γh

f n
b,s

(
un
b,h, u

n
s,h

∣∣
Γh

)
dσ +

∫

Ωh

f n
b

(
un
b,h

)
dx
)
,

∫

Γh

un
s,h

∣∣
Γh

dσ =
∫

Γh

un−1
s,h

∣∣
Γh

dσ + τ n
∫

Γh

f n
s,b

(
un
b,h, u

n
s,h

∣∣
Γh

)
+ f n

s

(
un
s,h

∣∣
Γh

)
dσ.

The latter identities are fully discrete analogues to the global conservation
properties (4.3). In addition, combining both identities yields a fully discrete

126



4.3. Numerical results

analogue to property (4.4), which describes the evolution of the total amount
mn
h :=

∫
Ωh
un
b,h dx+

∫
Γh
un
s,h|Γh dσ of the fully discrete system’s quantities:

mn
h = mn−1

h + τ n
(∫

Γh

f n
b,s

(
un
b,h, u

n
s,h

∣∣
Γh

)
+ f n

s,b

(
un
b,h, u

n
s,h

∣∣
Γh

)
dσ

+
∫

Ωh

f n
b

(
un
b,h

)
dx+

∫

Γh

f n
s

(
un
s,h

∣∣
Γh

)
dσ
)
.

Proof. The theorem can be proven in a straightforward way, using the same
arguments as in the proof of Theorem 4.2.11 as well as the fact that we have
js
(
us,h,1Ωδ,h

)
= 0 for all stabilization terms considered in this thesis, as dis-

cussed in Section 4.2.4.

Similar fully discrete analogues to local conservation properties (4.2) are
also recovered by Scheme 4.2.18 and Scheme 4.2.19. The latter can be shown
by applying the arguments that are used in the proof of Theorem 4.2.13.

4.3. Numerical results

To validate the practicability of the schemes which have been introduced in
Section 4.2, and to investigate their convergence and conditioning properties,
we implemented the schemes in C++ using the Distributed and Unified Nu-
merics Environment (DUNE)1. With this implementation, an extensive set of
numerical studies has been performed. Its main outcome will be presented in
the remainder of this section.
Details on the implementation and on how the code can be obtained to

reproduce the results which we present in the following can be found in Ap-
pendix A.2.

4.3.1. Linear elliptic model problems

Construction of analytical test problems

To further investigate Scheme 4.2.9 from Section 4.2.3 and Scheme 4.2.15 from
Section 4.2.4, we construct specific models from the class of elliptic model
problems (4.5) which has been introduced in Section 4.1.2. These specific
models are linear elliptic models with a known analytical solution, making
it possible to perform numerical convergence studies for our schemes and to
numerically investigate condition numbers that are associated with solving the
systems of linear equations which result from applying the schemes. For the
sake of simplicity with respect to the availability of analytical solutions, we
use a circular two-dimensional geometry centered at the origin and employ
constant, scalar diffusivities. In this special case, closed formulas are available
for the surface differential operator, that are based on polar coordinates.

1https://www.dune-project.org

127

https://www.dune-project.org


4. UDG schemes for bulk–surface PDEs on complex static geometries

In particular, by choosing d := 2, Ω :=
{

x ∈ R2 ∣∣ |x| < 1
}
, Db := I and

Ds := I in class (4.5), we obtain the restricted problem of finding ub : Ω→ R

and us : Γ→ R with

−∆ub = fb(ub) in Ω, (4.36a)
−∇ub · ν = −fb,s(ub, us) on Γ, (4.36b)
−∆Γus = fs,b(ub, us) + fs(us) on Γ. (4.36c)

Here, we use fb,s(ub, us) := −fs,b(ub, us), where fs,b(ub, us) := ub|Γ − us.
Furthermore, we employ a term fb(ub) that is linear in ub, and a term fs(us)
of the specific form fs(us) := f̃s − us with a given data function f̃s : Γ → R.
The latter will render the problem uniquely solvable, given our choices of
fb,s(ub, us) and fs,b(ub, us). Note that we either need to choose a term fs(us)
which effectively depends on us, like the term given above, or fb(ub) is required
to be a term dependent on ub. If both terms were chosen independent of ub
and us, respectively, classical solutions to problem (4.36) would not be unique,
if existent. In fact, given a classical solution (ub, us), the pair (ub + c, us + c)
would also be a classical solution for every constant c ∈ R.
To construct specific models with known analytical solutions, we follow the

idea of the method of manufactured solutions (see e.g. Salari and Knupp,
2000). Our particular approach for system (4.36) is the following:

1. Choose an appropriate ub, e.g. a harmonic function or an eigenfunction
of the Laplacian.

2. Determine fb(ub) by means of bulk equation (4.36a), yielding fb(ub) ≡ 0
if ub is chosen to be a harmonic function, and fb(ub) = −λub if it is
chosen to be an eigenfunction of the Laplacian with some eigenvalue λ.

3. Calculate us from boundary condition (4.36b).
4. Identify f̃s via surface equation (4.36c).

Some linear elliptic test problems which we constructed by applying this
procedure are specified in Table 4.2. They have been derived with the help of
the following remark.

Remark 4.3.1 (Representation of differential operators in coordinate systems
for circular geometries).

1. Using a parametrization x = rθ ∈ Rd, with r ∈ R≥0 being the radial
distance of x to the origin (0, . . . , 0)tr ∈ Rd and θ being an element of
the (d− 1)-dimensional unit sphere Sd−1, the action of the Laplacian on
a twice differentiable scalar field u : Rd → R can be represented as

∆u = ∂2u

∂r2 + d− 1
r

∂u

∂r
+ 1
r2 ∆Sd−1u.

Furthermore, using polar coordinates (r, φ) for d = 2, the Laplace–Beltrami

128



4.3. Numerical results

Elliptic
2d test
problem

“1”

Elliptic
2d test
problem

“2”

Elliptic 2d test problem “3”

ub(x) x1 x0x1 −x5
0 + 10x3

0x2
1 − 5x0x4

1 + 3x2
0x1 − x3

1

fb(ub)(x) 0 0 0
us(x) 2x1 3x0x1 −96x5

0 + 120x3
0 + 16x2

0x1 − 30x0 − 4x1

f̃s(x) 5x1 17x0x1 −2576x5
0+3320x3

0+172x2
0x1−805x0−43x1

Elliptic 2d test problem “6”
ub(x) sin(αx0 + βx1) with α, β ∈ R (e.g. α = 8π, β = 2π)
fb(ub)(x) (α2 + β2)ub(x)
us(x) (αx0 + βx1) cos(αx0 + βx1) + sin(αx0 + βx1)
f̃s(x)

[
(−α3 + 3αβ2)x3

0 + (−3α2β + β3)x2
0x1

+(α3 − 2αβ2 + 4α)x0 + (α2β + 4β)x1
]

cos(αx0 + βx1)
+
[
(−4α2 + 4β2)x2

0 − 8αβx0x1 + 3α2 − β2 + 1
]

sin(αx0 + βx1)

Table 4.2.: Linear elliptic test problems: data functions fb(ub) and f̃s, and
the associated solution (ub, us) of system (4.36) in two-dimensional
Cartesian coordinates x = (x0, x1).

operator on S1 applied to the field u can be represented as

∆S1u = ∂2u

∂φ2 ,

where φ represents the azimuthal angle. Similarly, using spherical coor-
dinates (r, θ, φ) for d = 3, the Laplace–Beltrami operator on S2 applied
to the field u takes the form

∆S2u = 1
sin θ

∂

∂θ

(
sin θ∂u

∂θ

)
+ 1

sin2 θ

∂2u

∂φ2 ,

where θ represents the zenith angle (also known as inclination angle) and
φ represents the azimuthal angle.

2. Using polar coordinates (r, φ) for d = 2, spherical coordinates (r, θ, φ)
for d = 3 or, in general, a parametrization (r,θ) as described above, the
normal derivative on Sd−1 of a differentiable scalar field u : Rd → R can
be represented as

∇u · νSd−1 = ∂u

∂r
.

129



4. UDG schemes for bulk–surface PDEs on complex static geometries

3. Conversions between two-dimensional Cartesian coordinates x = (x0, x1)
and polar coordinates (r, φ) are given by

x0 = r cosφ, r = |x|,
x1 = r sinφ, φ = arctan2(x1, x0).

The function arctan2(x1, x0) for the azimuthal angle will be defined below.
Similarly, conversions between three-dimensional Cartesian coordinates
x = (x0, x1, x2) and spherical coordinates (r, θ, φ) are given by

x0 = r sin θ cosφ,
x1 = r sin θ sinφ,
x2 = r cos θ,
r = |x|,
θ = arccos x2

r
,

φ = arctan2(x1, x0),

arctan2(x1, x0) :=




arctan
(x1

x0

)
x0 > 0,

arctan
(x1

x0

)
+ π x0 < 0, x1 ≥ 0,

arctan
(x1

x0

)
− π x0 < 0, x1 < 0,

+π
2 x0 = 0, x1 > 0,
−π2 x0 = 0, x1 < 0,
undefined x0 = 0, x1 = 0.

In the following, we particularly look at results for elliptic 2d test problem
“2” and results for elliptic 2d test problem “3”. Graphs of the corresponding
solution pairs (ub, us) are depicted in Figure 4.6. The remaining test problems
that are specified in Table 4.2 will not serve as test problems within the scope
of this thesis. They yield comparable results, though.

The corresponding systems of linear equations

Applying Scheme 4.2.9 or Scheme 4.2.15 to the class of problems that are
described by system (4.36), e.g. to one of our linear elliptic test problems,
algebraically yields a system of linear equations

Au = b. (4.37)

Here, u denotes the vector of degrees of freedom (DOFs) that are associated
with the unknown discrete solution pair (ub,h, us,h) ∈ Vb,h(Ωh ) × Vs,h(Ωδ,h ),
and each linear equation, i.e. each line of system (4.37), corresponds to testing
with one basis function of the discrete space Vb,h(Ωh )× Vs,h(Ωδ,h ).
In our implementation, we order the entries in u such that its first entries

u1, . . . , udimb
with dimb := dim

(
Vb,h(Ωh )

)
are DOFs associated with ub,h and

its remaining entries udimb+1, . . . , udimb+dims with dims := dim
(
Vs,h(Ωδ,h )

)
are

DOFs associated with us,h. Furthermore, we order the test functions in the
same manner, such that the i-th line of system (4.37) corresponds to testing
with the basis function which is associated with the i-th DOF in u. In this
case, the matrix in system (4.37) and the vector on the right-hand side have

130



4.3. Numerical results

(a) Elliptic 2d test problem “2”. (b) Elliptic 2d test problem “3”.

Figure 4.6.: Graph of the solution pairs (ub, us) of elliptic 2d test problem “2”
and elliptic 2d test problem “3”, cf. Table 4.2.

a block structure of the form

A =
(
Ab Abs
Asb As

)
, b =

(
bb
bs

)
.

In view of equation (4.18a), the upper left block Ab ∈ Rdimb×dimb of the ma-
trix comprises contributions of all terms in ab(ub,h, ϕb,h), and contributions of
terms in cb(ub,h, us,h, ϕb,h) that effectively depend on ub,h. Choosing SIPG or
SWIPG as host DG formulation for the bulk part of the problem results in
a symmetric block Ab. Analogously, in view of equations (4.23) and (4.30),
the lower right block As ∈ Rdims×dims comprises contributions of all terms
in 1

δ as(us,h, ϕs,h), and contributions of terms in cs(ub,h, us,h, ϕs,h) that effec-
tively depend on us,h. In case of the stabilized scheme, furthermore all terms
in 1

δ js(us,h, ϕs,h) contribute to As. Together with or without one of the op-
tional stabilization terms that have been discussed in Section 4.2.4, choosing
SIPG or SWIPG as host DG formulation for the surface part of the problem
results in a symmetric block As, as long as the diffusivity Ds = I is extended
in such a way that its extension Dext

s is a symmetric tensor. The latter trivially
holds true for constant extensions.

The upper right block Abs ∈ Rdimb×dims comprises contributions of those
terms in cb(ub,h, us,h, ϕb,h) that effectively depend on us,h. The same holds
true for the lower left block Asb ∈ Rdims×dimb and terms in cs(ub,h, us,h, ϕs,h)
that effectively depend on ub,h. In case of the data functions fb,s(ub, us) and

131



4. UDG schemes for bulk–surface PDEs on complex static geometries

fs,b(ub, us) which we choose for test problems of the form (4.36), we have

cb(ub,h, us,h, ϕb,h) =
∫

Γh

−
(
ub,h − us,h|Γh

)
ϕb,h dσ +

∫

Ωh

fb(ub,h)ϕb,h dx,

cs(ub,h, us,h, ϕs,h) =
∫

Γh

(
ub,h − us,h|Γh

)
ϕs,h|Γh + fs(us,h|Γh )ϕs,h|Γh dσ.

Thus, the contributions to blocks Abs and Asb are exactly those of the terms
∫

Γh

us,h|Γh ϕb,h dσ and
∫

Γh

ub,h ϕs,h|Γh dσ,

respectively. It can be seen easily that the latter two terms result in blocks
with

Abs = Atr
sb.

Under the conditions which have been discussed above for symmetry of the
blocks Ab and As, the matrix A hence is a symmetric matrix.
As briefly explained in Section 1.5, every numerical scheme should be de-

signed in such a way that it results in useful systems of algebraic equations. In
particular, that kind of errors which are unavoidable while solving the system
still need to stay within manageable limits. These limits assure that numer-
ical solutions are practically usable. In Appendix B, we describe this aspect
in a more detailed way. We show that an appropriate indicator for systems
of linear equations is given by a real number that is known as the spectral
condition number of the system matrix. As shown in Appendix B.3, it can
be expressed in terms of eigenvalues of matrices and can hence be accessed
relatively easy.
In this light, when applying our schemes to the linear elliptic test problems

that we are considering, we will investigate the spectral condition number
κ2(A) which is associated with solving the corresponding system (4.37). To
perform our studies, we compute κ2(A) numerically, exploiting symmetry of
the system matrix A if possible. For details on how we do this, please refer to
Appendix B.4 and Appendix B.5.

Common simulation parameters

In our numerical studies for linear elliptic model problems, we use the following
simulation parameters and related choices, unless otherwise stated.
The circular geometry which is associated with system (4.36) is described

choosing the level set domain ΩΦ := (−2, 2)2 and the level set function Φ that
is defined by Φ(x) := |x| − 1.0. To perform the extension process which is
described in Section 4.2.1, we use a narrow band Ωδ with equal parameters
αin = αout =: α ∈ R>0, and choose the corresponding constant extension to
Ωδ as extension Dext

s of the constant diffusivity Ds = I.
For the UDG discretization, we use Cartesian fundamental meshes Th(ΩΦ)

132



4.3. Numerical results

and Cartesian geometry meshes Th (ΩΦ) with varying mesh widths h and h ,
respectively. To obtain Th(ΩΦ), we start with one entity which corresponds
to ΩΦ and perform a certain number r ∈ N of uniform mesh refinements.
We either use the choice Th (ΩΦ) := Th(ΩΦ), i.e. no separate geometry mesh,
or a mesh Th (ΩΦ) which results from a fixed number of additional uniform
refinements for each of the entities in Th(ΩΦ).
On each fundamental mesh, we choose discrete spaces Vs,h(Ωδ,h ) and Vb,h(Ωh )

which locally (i.e. on each cut cell K) resemble P(K) := Pk(K), the space of
polynomial functions of total degree less than or equal to some k ∈ N over the
domain K. For their construction, we use monomial basis functions (i.e. the
set {1, x0, x1} for k = 1 and the set {1, x0, x1, x0x1, x2

0, x2
1} for k = 2) on the

reference element of the fundamental mesh elements. As polynomial degrees,
we employ k = 1 or k = 2, choosing the degree equally for both discrete spaces.
As host DG formulations, we use SIPG for the bulk part of the problem

and either SIPG or SWIPG for its surface part. In particular, we choose
hostb := sipg with γb := 5 for elliptic 2d test problem “2”, and with γb := 10
for elliptic 2d test problem “3”. Moreover, we choose hosts := sipg with
γs := 7.0 or hosts := swipg with γs := 22.5. If normal penalty stabilization is
performed, we employ the penalty parameter γnp := 40.0.

Error measures

In order to analyze the convergence of our schemes, we compute relative errors

Eb,L2(Ωh )(h) := ‖ub − ub,h‖L2(Ωh ) / ‖ub‖L2(Ωh ) , (4.38a)
Es,L2(Γh )(h) := ‖us − us,h‖L2(Γh ) / ‖us‖L2(Γh ) , (4.38b)
Eb,H1(Ωh )(h) := ‖ub − ub,h‖H1(Ωh ) / ‖ub‖H1(Ωh ) , (4.38c)
Es,H1(Γh )(h) := ‖us − us,h‖H1(Γh ) / ‖us‖H1(Γh ) . (4.38d)

Here, the pair (ub,h, us,h) ∈ Vb,h(Ωh )× Vs,h(Ωδ,h ) again denotes the numerical
solution, and

vb ∈ H1(Ωh ) : ‖vb‖H1(Ωh ) :=
(
‖vb‖2L2(Ωh ) +

∥∥∇vb
∥∥2
L2(Ωh )

) 1
2
,

vs ∈ H1(Γh ) : ‖vs‖H1(Γh ) :=
(
‖vs‖2L2(Γh ) +

∥∥∇Γh vs
∥∥2
L2(Γh )

) 1
2
.

Note that ∇vb and ∇Γh vs in this definition shall be understood in a weak
sense, as usual when considering derivatives in Sobolev spaces. Since both
components of the numerical solution are only piecewise H1-functions, we
actually compute H1(·)-norms in a piecewise manner, i.e., we replace gradients
in the above definition by piecewise variants, cf. equation (4.15).
On this basis, we compute experimental orders of convergence, assuming

that the relative errors defined in equations (4.38) satisfy estimates of the
form E (h) ∈ O(hz), where z ∈ R>0 is known as the order of convergence

133



4. UDG schemes for bulk–surface PDEs on complex static geometries

with respect to E (h). For an error E (h) and for the grid sizes h1 and h2, the
experimental order of convergence is defined as

eoc
[
E
]
(h1, h2) := log E (h1)

E (h2)

(
log h1

h2

)−1
,

where log denotes the logarithm operator to an arbitrarily chosen base.

Numerical study: h-refinement and polynomial degree k = 1

As a first numerical study, we investigate relative errors, associated experi-
mental orders of convergence and the spectral condition number of the system
matrix with respect to the width h of the fundamental mesh, starting with
polynomial degree k = 1. To do so, we employ a strategy known as h-refine-
ment. We perform computations while considering a sequence of fundamental
meshes with h→ 0, which results from refinement of some coarse initial mesh.
At the same time, we keep the parameter α of the narrow band fixed.
First, we consider Scheme 4.2.9, choosing SIPG as host DG formulation

for the surface part of the problem and not using separate geometry meshes.
Results for elliptic 2d test problem “2” are shown in Table 4.3 and Figure 4.7,
results for elliptic 2d test problem “3” in Table 4.4 and Figure 4.8. Note that
the discrete narrow band Ωδ,h exceeds the level set domain ΩΦ for large values
of α and h. Data points are missing in those cases. It can be observed that
the unstabilized scheme is capable of achieving optimal order convergence with
respect to the two H1-norms and the two L2-norms that define the relative
errors which we are considering. Provided that the narrow band parameter α
is chosen small enough, both components of the numerical solution (ub,h, us,h)
converge to their corresponding component of the solution pair (ub, us) with
order 1 in ‖ ·‖H1(Ωh ) and ‖ ·‖H1(Γh ), respectively, and with order 2 in ‖ ·‖L2(Ωh )
and ‖ · ‖L2(Γh ). As usual with finite element schemes, the spectral condition
number κ2(A) which is associated with solving the corresponding linear system
(4.37) grows with decreasing mesh width h. Moreover, it depends on the choice
of the narrow band parameter α. The growth rate of κ2(A) with respect to h
increases with decreasing α. Asymptotically, we have κ2(A) ∈ O(h−3) in the
parameter regime 1.25 ≥ α ≥ 0.01 which we are considering in Figure 4.7 and
Figure 4.8.
Similar observations can be made for Scheme 4.2.15, i.e. for the stabilized

scheme, either using full gradient stabilization or normal penalty stabilization.
For being able to compare its results with those of the unstabilized scheme,
we again choose hosts := sipg and do not use separate geometry meshes. As
shown for elliptic 2d test problem “2” in Table 4.5 and Figure 4.9, and for
elliptic 2d test problem “3” in Table 4.6 and Figure 4.10, the two stabilization
mechanisms perform equally well. Both yield similar errors, especially for
small values of h, and the spectral condition numbers which are associated with
solving their corresponding linear system (4.37) are nearly identical. We obtain

134



4.3. Numerical results

r h Eb,L2(Ωh ) eoc Es,L2(Γh ) eoc Eb,H1(Ωh ) eoc Es,H1(Γh ) eoc
1 2.83 · 100 – – – – – – – –
2 1.41 · 100 – – – – – – – –
3 7.07 · 10−1 5.68 · 10−1 – 3.95 · 10−1 – 3.45 · 10−1 – 4.30 · 10−1 –
4 3.54 · 10−1 2.52 · 10−1 1.17 2.60 · 10−1 0.6 2.40 · 10−1 0.52 2.78 · 10−1 0.63
5 1.77 · 10−1 1.10 · 10−1 1.2 1.12 · 10−1 1.21 1.19 · 10−1 1.01 1.65 · 10−1 0.76
6 8.84 · 10−2 3.61 · 10−2 1.61 3.79 · 10−2 1.57 4.84 · 10−2 1.3 6.82 · 10−2 1.27
7 4.42 · 10−2 1.02 · 10−2 1.82 1.18 · 10−2 1.68 2.02 · 10−2 1.26 3.88 · 10−2 0.81
8 2.21 · 10−2 2.81 · 10−3 1.86 3.75 · 10−3 1.66 9.24 · 10−3 1.13 1.86 · 10−2 1.06

(a) α := 1.25.

r h Eb,L2(Ωh ) eoc Es,L2(Γh ) eoc Eb,H1(Ωh ) eoc Es,H1(Γh ) eoc
1 2.83 · 100 – – – – – – – –
2 1.41 · 100 6.64 · 100 – 1.60 · 100 – 1.73 · 100 – 2.00 · 100 –
3 7.07 · 10−1 5.40 · 10−1 3.62 2.16 · 10−1 2.88 3.50 · 10−1 2.31 4.82 · 10−1 2.05
4 3.54 · 10−1 1.28 · 10−1 2.08 5.14 · 10−2 2.07 1.53 · 10−1 1.2 1.72 · 10−1 1.48
5 1.77 · 10−1 3.55 · 10−2 1.85 1.62 · 10−2 1.67 7.32 · 10−2 1.06 1.21 · 10−1 0.51
6 8.84 · 10−2 8.05 · 10−3 2.14 3.76 · 10−3 2.1 3.56 · 10−2 1.04 4.59 · 10−2 1.4
7 4.42 · 10−2 2.18 · 10−3 1.88 1.13 · 10−3 1.73 1.76 · 10−2 1.02 3.03 · 10−2 0.6
8 2.21 · 10−2 5.24 · 10−4 2.06 3.13 · 10−4 1.86 8.73 · 10−3 1.01 1.39 · 10−2 1.13

(b) α := 0.50.

r h Eb,L2(Ωh ) eoc Es,L2(Γh ) eoc Eb,H1(Ωh ) eoc Es,H1(Γh ) eoc
1 2.83 · 100 6.64 · 100 – 1.56 · 100 – 1.74 · 100 – 1.37 · 100 –
2 1.41 · 100 6.84 · 100 −0.04 1.26 · 100 0.31 1.81 · 100 −0.06 9.48 · 10−1 0.53
3 7.07 · 10−1 5.50 · 10−1 3.63 1.56 · 10−1 3.01 3.64 · 10−1 2.31 3.70 · 10−1 1.36
4 3.54 · 10−1 1.30 · 10−1 2.09 4.15 · 10−2 1.91 1.56 · 10−1 1.22 1.84 · 10−1 1.01
5 1.77 · 10−1 3.57 · 10−2 1.86 9.79 · 10−3 2.08 7.43 · 10−2 1.07 8.65 · 10−2 1.09
6 8.84 · 10−2 8.01 · 10−3 2.16 2.44 · 10−3 2 3.57 · 10−2 1.06 4.35 · 10−2 0.99
7 4.42 · 10−2 2.16 · 10−3 1.89 5.99 · 10−4 2.03 1.76 · 10−2 1.02 2.17 · 10−2 1
8 2.21 · 10−2 5.14 · 10−4 2.07 1.49 · 10−4 2.01 8.73 · 10−3 1.01 1.09 · 10−2 0.99

(c) α := 0.05.

r h Eb,L2(Ωh ) eoc Es,L2(Γh ) eoc Eb,H1(Ωh ) eoc Es,H1(Γh ) eoc
1 2.83 · 100 6.61 · 100 – 1.67 · 100 – 1.73 · 100 – 1.10 · 100 –
2 1.41 · 100 6.84 · 100 −0.05 1.26 · 100 0.41 1.81 · 100 −0.06 8.47 · 10−1 0.37
3 7.07 · 10−1 5.45 · 10−1 3.65 1.82 · 10−1 2.79 3.57 · 10−1 2.34 3.26 · 10−1 1.38
4 3.54 · 10−1 1.28 · 10−1 2.09 5.52 · 10−2 1.72 1.55 · 10−1 1.21 1.82 · 10−1 0.84
5 1.77 · 10−1 3.55 · 10−2 1.86 1.29 · 10−2 2.1 7.40 · 10−2 1.06 8.29 · 10−2 1.14
6 8.84 · 10−2 7.99 · 10−3 2.15 3.34 · 10−3 1.95 3.57 · 10−2 1.05 4.33 · 10−2 0.94
7 4.42 · 10−2 2.15 · 10−3 1.89 7.81 · 10−4 2.1 1.76 · 10−2 1.02 2.05 · 10−2 1.08
8 2.21 · 10−2 5.13 · 10−4 2.07 1.95 · 10−4 2 8.73 · 10−3 1.01 1.03 · 10−2 0.99

(d) α := 0.01.

Table 4.3.: Errors in numerical solutions of elliptic 2d test problem “2”, ob-
tained using Scheme 4.2.9, k = 1, hosts := sipg, and no separate
geometry meshes.

135



4. UDG schemes for bulk–surface PDEs on complex static geometries

10−1100

10−4

10−3

10−2

10−1

100

101

1.03

1.77

h

R
el
at
iv
e
er
ro
r

Errors: h-refinement

Eb,H1(Ωh )
Es,H1(Γh )
Eb,L2(Ωh )
Es,L2(Γh )

10−1100

104

105

106

107

108

109

1010

1011

−2.34

h

C
on

di
tio

n
nu

m
be

r

Condition: h-refinement

κ2(A)

(a) α := 1.25.

10−1100

10−4

10−3

10−2

10−1

100

101

1.03
0.93

1.99
1.86

h

R
el
at
iv
e
er
ro
r

Errors: h-refinement

Eb,H1(Ωh )
Es,H1(Γh )
Eb,L2(Ωh )
Es,L2(Γh )

10−1100

104

105

106

107

108

109

1010

1011

−2.42

h

C
on

di
tio

n
nu

m
be

r

Condition: h-refinement

κ2(A)

(b) α := 0.50.

10−1100

10−4

10−3

10−2

10−1

100

101

1.04
1.01

2

2.03

h

R
el
at
iv
e
er
ro
r

Errors: h-refinement

Eb,H1(Ωh )
Es,H1(Γh )
Eb,L2(Ωh )
Es,L2(Γh )

10−1100

104

105

106

107

108

109

1010

1011

−2.72

h

C
on

di
tio

n
nu

m
be

r

Condition: h-refinement

κ2(A)

(c) α := 0.05.

10−1100

10−4

10−3

10−2

10−1

100

101

1.04 1.03

2
2.03

h

R
el
at
iv
e
er
ro
r

Errors: h-refinement

Eb,H1(Ωh )
Es,H1(Γh )
Eb,L2(Ωh )
Es,L2(Γh )

10−1100

104

105

106

107

108

109

1010

1011

−3.09

h

C
on

di
tio

n
nu

m
be

r

Condition: h-refinement

κ2(A)

(d) α := 0.01.

Figure 4.7.: Errors in numerical solutions of elliptic 2d test problem “2” and
spectral condition number associated with the corresponding sys-
tem of linear equations, obtained using Scheme 4.2.9, k = 1,
hosts := sipg, and no separate geometry meshes.

136



4.3. Numerical results

r h Eb,L2(Ωh ) eoc Es,L2(Γh ) eoc Eb,H1(Ωh ) eoc Es,H1(Γh ) eoc
1 2.83 · 100 – – – – – – – –
2 1.41 · 100 – – – – – – – –
3 7.07 · 10−1 8.45 · 100 – 2.27 · 100 – 3.29 · 100 – 1.14 · 100 –
4 3.54 · 10−1 2.02 · 100 2.06 1.04 · 100 1.13 9.66 · 10−1 1.77 8.45 · 10−1 0.44
5 1.77 · 10−1 6.94 · 10−1 1.54 8.15 · 10−1 0.35 6.68 · 10−1 0.53 8.16 · 10−1 0.05
6 8.84 · 10−2 5.49 · 10−1 0.34 5.11 · 10−1 0.67 4.65 · 10−1 0.52 5.22 · 10−1 0.65
7 4.42 · 10−2 3.03 · 10−1 0.86 2.65 · 10−1 0.95 2.47 · 10−1 0.91 3.16 · 10−1 0.72
8 2.21 · 10−2 1.38 · 10−1 1.14 1.27 · 10−1 1.06 1.16 · 10−1 1.09 1.88 · 10−1 0.75

(a) α := 1.25.

r h Eb,L2(Ωh ) eoc Es,L2(Γh ) eoc Eb,H1(Ωh ) eoc Es,H1(Γh ) eoc
1 2.83 · 100 – – – – – – – –
2 1.41 · 100 1.35 · 101 – 2.59 · 100 – 4.98 · 100 – 1.54 · 100 –
3 7.07 · 10−1 7.30 · 100 0.89 1.77 · 100 0.55 2.81 · 100 0.83 8.78 · 10−1 0.81
4 3.54 · 10−1 1.64 · 100 2.15 4.44 · 10−1 1.99 7.32 · 10−1 1.94 3.80 · 10−1 1.21
5 1.77 · 10−1 3.03 · 10−1 2.44 2.10 · 10−1 1.08 2.68 · 10−1 1.45 2.63 · 10−1 0.53
6 8.84 · 10−2 8.42 · 10−2 1.85 1.13 · 10−1 0.89 1.32 · 10−1 1.02 1.62 · 10−1 0.7
7 4.42 · 10−2 3.89 · 10−2 1.11 5.63 · 10−2 1.01 6.60 · 10−2 1 1.07 · 10−1 0.6
8 2.21 · 10−2 1.74 · 10−2 1.16 2.60 · 10−2 1.11 3.14 · 10−2 1.07 6.57 · 10−2 0.7

(b) α := 0.50.

r h Eb,L2(Ωh ) eoc Es,L2(Γh ) eoc Eb,H1(Ωh ) eoc Es,H1(Γh ) eoc
1 2.83 · 100 1.51 · 101 – 2.82 · 100 – 5.40 · 100 – 1.22 · 100 –
2 1.41 · 100 1.35 · 101 0.16 2.58 · 100 0.13 4.95 · 100 0.13 1.23 · 100 0
3 7.07 · 10−1 7.60 · 100 0.83 1.79 · 100 0.53 2.87 · 100 0.79 7.82 · 10−1 0.65
4 3.54 · 10−1 1.99 · 100 1.93 4.73 · 10−1 1.92 8.57 · 10−1 1.74 3.27 · 10−1 1.26
5 1.77 · 10−1 4.86 · 10−1 2.04 1.14 · 10−1 2.05 2.97 · 10−1 1.53 1.60 · 10−1 1.04
6 8.84 · 10−2 1.24 · 10−1 1.97 2.89 · 10−2 1.98 1.20 · 10−1 1.3 7.29 · 10−2 1.13
7 4.42 · 10−2 2.92 · 10−2 2.08 7.33 · 10−3 1.98 5.38 · 10−2 1.16 3.99 · 10−2 0.87
8 2.21 · 10−2 7.19 · 10−3 2.02 2.17 · 10−3 1.76 2.54 · 10−2 1.08 2.11 · 10−2 0.92

(c) α := 0.05.

r h Eb,L2(Ωh ) eoc Es,L2(Γh ) eoc Eb,H1(Ωh ) eoc Es,H1(Γh ) eoc
1 2.83 · 100 1.68 · 101 – 3.32 · 100 – 6.00 · 100 – 1.23 · 100 –
2 1.41 · 100 1.35 · 101 0.32 2.61 · 100 0.35 4.94 · 100 0.28 1.18 · 100 0.06
3 7.07 · 10−1 7.85 · 100 0.78 1.95 · 100 0.42 2.98 · 100 0.73 7.27 · 10−1 0.7
4 3.54 · 10−1 2.09 · 100 1.91 5.17 · 10−1 1.92 8.82 · 10−1 1.76 2.96 · 10−1 1.3
5 1.77 · 10−1 5.08 · 10−1 2.04 1.21 · 10−1 2.1 2.98 · 10−1 1.56 1.31 · 10−1 1.17
6 8.84 · 10−2 1.31 · 10−1 1.95 3.11 · 10−2 1.96 1.21 · 10−1 1.31 5.90 · 10−2 1.16
7 4.42 · 10−2 3.13 · 10−2 2.07 7.34 · 10−3 2.08 5.39 · 10−2 1.16 3.09 · 10−2 0.93
8 2.21 · 10−2 7.92 · 10−3 1.99 1.86 · 10−3 1.98 2.55 · 10−2 1.08 1.52 · 10−2 1.02

(d) α := 0.01.

Table 4.4.: Errors in numerical solutions of elliptic 2d test problem “3”, ob-
tained using Scheme 4.2.9, k = 1, hosts := sipg, and no separate
geometry meshes.

137



4. UDG schemes for bulk–surface PDEs on complex static geometries

10−1100
10−3

10−2

10−1

100

101

102

1 0.74

h

R
el
at
iv
e
er
ro
r

Errors: h-refinement

Eb,H1(Ωh )
Es,H1(Γh )
Eb,L2(Ωh )
Es,L2(Γh )

10−1100

104

105

106

107

108

109

1010

1011

−2.22

h

C
on

di
tio

n
nu

m
be

r

Condition: h-refinement

κ2(A)

(a) α := 1.25.

10−1100
10−3

10−2

10−1

100

101

102

0.66
1.14

h

R
el
at
iv
e
er
ro
r

Errors: h-refinement

Eb,H1(Ωh )
Es,H1(Γh )
Eb,L2(Ωh )
Es,L2(Γh )

10−1100

104

105

106

107

108

109

1010

1011

−2.33

h

C
on

di
tio

n
nu

m
be

r

Condition: h-refinement

κ2(A)

(b) α := 0.50.

10−1100
10−3

10−2

10−1

100

101

102

1.26

0.99

2.03

1.95

h

R
el
at
iv
e
er
ro
r

Errors: h-refinement

Eb,H1(Ωh )
Es,H1(Γh )
Eb,L2(Ωh )
Es,L2(Γh )

10−1100

104

105

106

107

108

109

1010

1011

−2.64

h

C
on

di
tio

n
nu

m
be

r

Condition: h-refinement

κ2(A)

(c) α := 0.05.

10−1100
10−3

10−2

10−1

100

101

102

1.27

1.06

2.01

2.03

h

R
el
at
iv
e
er
ro
r

Errors: h-refinement

Eb,H1(Ωh )
Es,H1(Γh )
Eb,L2(Ωh )
Es,L2(Γh )

10−1100

104

105

106

107

108

109

1010

1011

−3.01

h

C
on

di
tio

n
nu

m
be

r

Condition: h-refinement

κ2(A)

(d) α := 0.01.

Figure 4.8.: Errors in numerical solutions of elliptic 2d test problem “3” and
spectral condition number associated with the corresponding sys-
tem of linear equations, obtained using Scheme 4.2.9, k = 1,
hosts := sipg, and no separate geometry meshes.

138



4.3. Numerical results

r h Eb,L2(Ωh ) eoc Es,L2(Γh ) eoc Eb,H1(Ωh ) eoc Es,H1(Γh ) eoc
3 7.07 · 10−1 5.42 · 10−1 – 1.78 · 10−1 – 3.29 · 10−1 – 2.04 · 10−1 –
4 3.54 · 10−1 1.28 · 10−1 2.08 4.23 · 10−2 2.07 1.51 · 10−1 1.13 8.43 · 10−2 1.27
5 1.77 · 10−1 3.54 · 10−2 1.85 8.26 · 10−3 2.36 7.38 · 10−2 1.03 5.35 · 10−2 0.66
6 8.84 · 10−2 8.01 · 10−3 2.14 1.89 · 10−3 2.13 3.57 · 10−2 1.05 2.56 · 10−2 1.07
7 4.42 · 10−2 2.16 · 10−3 1.89 4.95 · 10−4 1.93 1.76 · 10−2 1.02 1.38 · 10−2 0.89
8 2.21 · 10−2 5.15 · 10−4 2.07 1.20 · 10−4 2.04 8.73 · 10−3 1.01 6.69 · 10−3 1.04

(a) Full gradient stabilization, α := 1.25.

r h Eb,L2(Ωh ) eoc Es,L2(Γh ) eoc Eb,H1(Ωh ) eoc Es,H1(Γh ) eoc
3 7.07 · 10−1 6.41 · 10−1 – 2.71 · 10−1 – 4.86 · 10−1 – 3.39 · 10−1 –
4 3.54 · 10−1 1.74 · 10−1 1.88 1.01 · 10−1 1.42 2.04 · 10−1 1.25 1.65 · 10−1 1.04
5 1.77 · 10−1 4.29 · 10−2 2.02 2.04 · 10−2 2.31 7.99 · 10−2 1.35 6.23 · 10−2 1.4
6 8.84 · 10−2 9.51 · 10−3 2.17 4.46 · 10−3 2.2 3.64 · 10−2 1.14 2.78 · 10−2 1.16
7 4.42 · 10−2 2.29 · 10−3 2.05 7.15 · 10−4 2.64 1.77 · 10−2 1.04 1.40 · 10−2 0.99
8 2.21 · 10−2 5.12 · 10−4 2.16 1.28 · 10−4 2.48 8.73 · 10−3 1.02 6.67 · 10−3 1.07

(b) Normal penalty stabilization, α := 1.25.

Table 4.5.: Errors in numerical solutions of elliptic 2d test problem “2”, ob-
tained using Scheme 4.2.15 with the two considered stabilization
terms, k = 1, hosts := sipg, and no separate geometry meshes.

10−1100

10−4

10−3

10−2

10−1

100

101

1.03
0.93

1.99

2.1

h

R
el
at
iv
e
er
ro
r

Errors: h-refinement

Eb,H1(Ωh )
Es,H1(Γh )
Eb,L2(Ωh )
Es,L2(Γh )

10−1100

101

103

105

107
−3.05

h

C
on

di
tio

n
nu

m
be

r

Condition: h-refinement

κ2(A)

(a) Full gradient stabilization, α := 1.25.

10−1100

10−4

10−3

10−2

10−1

100

101

1.13
1.14

2.11

2.41

h

R
el
at
iv
e
er
ro
r

Errors: h-refinement

Eb,H1(Ωh )
Es,H1(Γh )
Eb,L2(Ωh )
Es,L2(Γh )

10−1100

101

103

105

107
−3.1

h

C
on

di
tio

n
nu

m
be

r

Condition: h-refinement

κ2(A)

(b) Normal penalty stabilization, α := 1.25.

Figure 4.9.: Errors in numerical solutions of elliptic 2d test problem “2” and
spectral condition number, obtained using Scheme 4.2.15 with the
two considered stabilization terms, k = 1, hosts := sipg, and no
separate geometry meshes.

139



4. UDG schemes for bulk–surface PDEs on complex static geometries

r h Eb,L2(Ωh ) eoc Es,L2(Γh ) eoc Eb,H1(Ωh ) eoc Es,H1(Γh ) eoc
1 2.83 · 100 – – – – – – – –
2 1.41 · 100 – – – – – – – –
3 7.07 · 10−1 6.90 · 100 – 1.72 · 100 – 2.67 · 100 – 9.34 · 10−1 –
4 3.54 · 10−1 1.61 · 100 2.1 4.91 · 10−1 1.81 7.19 · 10−1 1.89 4.15 · 10−1 1.17
5 1.77 · 10−1 4.00 · 10−1 2.01 1.54 · 10−1 1.67 2.63 · 10−1 1.45 2.08 · 10−1 1
6 8.84 · 10−2 1.05 · 10−1 1.93 4.16 · 10−2 1.89 1.13 · 10−1 1.21 8.56 · 10−2 1.28
7 4.42 · 10−2 2.68 · 10−2 1.97 1.05 · 10−2 1.98 5.28 · 10−2 1.1 4.40 · 10−2 0.96
8 2.21 · 10−2 6.84 · 10−3 1.97 2.62 · 10−3 2.01 2.53 · 10−2 1.06 2.20 · 10−2 1

(a) Full gradient stabilization, α := 1.25.

r h Eb,L2(Ωh ) eoc Es,L2(Γh ) eoc Eb,H1(Ωh ) eoc Es,H1(Γh ) eoc
1 2.83 · 100 – – – – – – – –
2 1.41 · 100 – – – – – – – –
3 7.07 · 10−1 5.37 · 100 – 1.22 · 100 – 2.09 · 100 – 7.85 · 10−1 –
4 3.54 · 10−1 1.51 · 100 1.83 3.72 · 10−1 1.72 7.29 · 10−1 1.52 3.99 · 10−1 0.98
5 1.77 · 10−1 4.14 · 10−1 1.87 9.81 · 10−2 1.92 2.81 · 10−1 1.38 1.85 · 10−1 1.11
6 8.84 · 10−2 1.05 · 10−1 1.98 2.49 · 10−2 1.98 1.17 · 10−1 1.27 8.24 · 10−2 1.17
7 4.42 · 10−2 2.67 · 10−2 1.97 7.42 · 10−3 1.74 5.30 · 10−2 1.14 4.31 · 10−2 0.93
8 2.21 · 10−2 6.86 · 10−3 1.96 2.88 · 10−3 1.37 2.53 · 10−2 1.07 2.21 · 10−2 0.97

(b) Normal penalty stabilization, α := 1.25.

r h Eb,L2(Ωh ) eoc Es,L2(Γh ) eoc Eb,H1(Ωh ) eoc Es,H1(Γh ) eoc
1 2.83 · 100 – – – – – – – –
2 1.41 · 100 1.18 · 101 – 2.28 · 100 – 4.39 · 100 – 1.47 · 100 –
3 7.07 · 10−1 6.33 · 100 0.9 1.49 · 100 0.62 2.43 · 100 0.85 8.69 · 10−1 0.75
4 3.54 · 10−1 1.76 · 100 1.85 4.20 · 10−1 1.82 7.94 · 10−1 1.62 3.64 · 10−1 1.25
5 1.77 · 10−1 4.54 · 10−1 1.96 1.08 · 10−1 1.96 2.92 · 10−1 1.44 1.75 · 10−1 1.06
6 8.84 · 10−2 1.17 · 10−1 1.96 2.76 · 10−2 1.96 1.20 · 10−1 1.28 7.85 · 10−2 1.15
7 4.42 · 10−2 2.93 · 10−2 1.99 6.93 · 10−3 2 5.40 · 10−2 1.16 4.16 · 10−2 0.92
8 2.21 · 10−2 7.42 · 10−3 1.98 1.75 · 10−3 1.98 2.55 · 10−2 1.08 2.09 · 10−2 0.99

(c) Full gradient stabilization, α := 0.50.

r h Eb,L2(Ωh ) eoc Es,L2(Γh ) eoc Eb,H1(Ωh ) eoc Es,H1(Γh ) eoc
1 2.83 · 100 – – – – – – – –
2 1.41 · 100 8.93 · 100 – 1.74 · 100 – 3.29 · 100 – 1.31 · 100 –
3 7.07 · 10−1 5.67 · 100 0.66 1.39 · 100 0.32 2.20 · 100 0.58 9.62 · 10−1 0.44
4 3.54 · 10−1 1.62 · 100 1.81 4.33 · 10−1 1.69 7.81 · 10−1 1.49 4.24 · 10−1 1.18
5 1.77 · 10−1 4.19 · 10−1 1.95 1.14 · 10−1 1.92 2.97 · 10−1 1.39 1.88 · 10−1 1.18
6 8.84 · 10−2 1.10 · 10−1 1.93 2.90 · 10−2 1.98 1.22 · 10−1 1.29 8.03 · 10−2 1.22
7 4.42 · 10−2 2.84 · 10−2 1.95 7.02 · 10−3 2.05 5.41 · 10−2 1.17 4.17 · 10−2 0.95
8 2.21 · 10−2 7.46 · 10−3 1.93 1.75 · 10−3 2 2.55 · 10−2 1.09 2.09 · 10−2 1

(d) Normal penalty stabilization, α := 0.50.

Table 4.6.: Errors in numerical solutions of elliptic 2d test problem “3”, ob-
tained using Scheme 4.2.15 with the two considered stabilization
terms, k = 1, hosts := sipg, and no separate geometry meshes.

140



4.3. Numerical results

10−1100
10−3

10−2

10−1

100

101

102

1.2

1.07

1.97

1.9

h

R
el
at
iv
e
er
ro
r

Errors: h-refinement

Eb,H1(Ωh )
Es,H1(Γh )
Eb,L2(Ωh )
Es,L2(Γh )

10−1100

101

103

105

107
−2.93

h

C
on

di
tio

n
nu

m
be

r

Condition: h-refinement

κ2(A)

(a) Full gradient stabilization, α := 1.25.

10−1100
10−3

10−2

10−1

100

101

102

1.21

1.05

1.95

1.78

h

R
el
at
iv
e
er
ro
r

Errors: h-refinement

Eb,H1(Ωh )
Es,H1(Γh )
Eb,L2(Ωh )
Es,L2(Γh )

10−1100

101

103

105

107
−2.99

h

C
on

di
tio

n
nu

m
be

r

Condition: h-refinement

κ2(A)

(b) Normal penalty stabilization, α := 1.25.

10−1100
10−3

10−2

10−1

100

101

102

1.24

1.03

1.97

1.98

h

R
el
at
iv
e
er
ro
r

Errors: h-refinement

Eb,H1(Ωh )
Es,H1(Γh )
Eb,L2(Ωh )
Es,L2(Γh )

10−1100

101

103

105

107−2.94

h

C
on

di
tio

n
nu

m
be

r

Condition: h-refinement

κ2(A)

(c) Full gradient stabilization, α := 0.50.

10−1100
10−3

10−2

10−1

100

101

102

1.23

1.09

1.94

1.99

h

R
el
at
iv
e
er
ro
r

Errors: h-refinement

Eb,H1(Ωh )
Es,H1(Γh )
Eb,L2(Ωh )
Es,L2(Γh )

10−1100

101

103

105

107−3

h

C
on

di
tio

n
nu

m
be

r

Condition: h-refinement

κ2(A)

(d) Normal penalty stabilization, α := 0.50.

Figure 4.10.: Errors in numerical solutions of elliptic 2d test problem “3” and
spectral condition number, obtained using Scheme 4.2.15 with
the two considered stabilization terms, k = 1, hosts := sipg, and
no separate geometry meshes.

141



4. UDG schemes for bulk–surface PDEs on complex static geometries

optimal order convergence, but already for much larger values of the narrow
band parameter α than with the unstabilized scheme. At the same time,
the errors gained with these large values of α are as small as those produced
by the unstabilized scheme with small values of α. This indicates that the
convergence behavior of the stabilized scheme with either mechanism is less
sensitive to choosing the width of the narrow band. Taking a closer look at the
spectral condition number, we have κ2(A) ∈ O(h−3) in the parameter regime
1.25 ≥ α ≥ 0.50 which we are considering in Figure 4.9 and Figure 4.10. Note
that κ2(A) hence asymptotically is the same as with the unstabilized scheme
with small values of α. However, the size of κ2(A) is smaller by up to two
orders of magnitude. Thus, both its convergence and conditioning properties
render the stabilized scheme with one of the two stabilization mechanisms the
preferable choice.
For the unstabilized Scheme 4.2.9 and its stabilized variant Scheme 4.2.15,

we next investigate the effect of employing separate geometry meshes to ob-
tain a geometry description which is more accurate. Results for elliptic 2d test
problem “3” which use 2 additional uniform refinements for each of the entities
in the fundamental mesh Th(ΩΦ), i.e. results which use geometry meshes with
h = h/4, are shown in Figure 4.11. To allow for direct comparison, the figure
also contains results that are obtained in the same setting, but without using
separate geometry meshes. For each single variant of the scheme, we see that
similar orders of convergence and asymptotics of the spectral condition number
κ2(A) are achieved with and without using separate geometry meshes. How-
ever, using separate geometry meshes reduces all errors for large values of h,
especially when being combined with normal penalty stabilization. Moreover,
it generally reduces the error with respect to each component’s L2(·)-norm.
Interestingly, this effect is most pronounced for the unstabilized scheme and
Es,L2(Γh ), and also Es,H1(Γh ) decreases in a uniform way. Scheme 4.2.9 hence
outperforms its stabilized variant in this special case. Without showing more
evidence here in this thesis, we would like to point out that most of these
benefits of separate geometry meshes are observable also for larger values of
the narrow band parameter α and for other test problems, e.g. elliptic 2d test
problem “2”.
For the reasons stated in Section 4.2.2, we finally study the effect of using

SWIPG instead of SIPG as host DG formulation for the surface part of the
problem. To do so, we repeat the computations which lead to the results
from Figure 4.11, this time choosing hosts := swipg. As shown in Figure 4.12,
both host DG formulations yield nearly identical errors. Furthermore, both
formulations result in systems of linear equations with a spectral condition
number κ2(A) of similar asymptotics. In particular, we approximately have
κ2(A) ∈ O(h−3). Together with normal penalty stabilization, the SWIPG
formulation even seems to lower the asymptotics of κ2(A). In addition, it
reduces the spectral condition number for each single variant of the scheme.
We note that the value of κ2(A) goes down by up to two orders of magnitude
for the settings which we are considering in Figure 4.12. Also without using

142



4.3. Numerical results

10−1100
10−4

10−3

10−2

10−1

100

101

1.05
0.98

1.81

1.85

h

R
el
at
iv
e
er
ro
r

Errors: h-refinement

Eb,H1(Ωh )
Es,H1(Γh )
Eb,L2(Ωh )
Es,L2(Γh )

10−1100
102

104

106

108

1010

−2.94

h

C
on

di
tio

n
nu

m
be

r

Condition: h-refinement

κ2(A)

(a) Unstabilized scheme, α := 0.01.

10−1100
10−4

10−3

10−2

10−1

100

101

1.070.99

1.83

1.95

h

R
el
at
iv
e
er
ro
r

Errors: h-refinement

Eb,H1(Ωh )
Es,H1(Γh )
Eb,L2(Ωh )
Es,L2(Γh )

10−1100
102

104

106

108

1010

−3.16

h

C
on

di
tio

n
nu

m
be

r

Condition: h-refinement

κ2(A)

(b) Full gradient stabilization, α := 0.01.

10−1100
10−4

10−3

10−2

10−1

100

101

1.080.99

1.87

2.05

h

R
el
at
iv
e
er
ro
r

Errors: h-refinement

Eb,H1(Ωh )
Es,H1(Γh )
Eb,L2(Ωh )
Es,L2(Γh )

10−1100
102

104

106

108

1010

−3.15

h

C
on

di
tio

n
nu

m
be

r

Condition: h-refinement

κ2(A)

(c) Normal penalty stabilization, α := 0.01.

Figure 4.11.: Errors in numerical solutions of elliptic 2d test problem “3”
and spectral condition number associated with the correspond-
ing system of linear equations, obtained using Scheme 4.2.9 or
Scheme 4.2.15 with the two considered stabilization terms, k = 1,
hosts := sipg, and separate geometry meshes with h = h/4.
Corresponding results that are obtained without using separate
geometry meshes are depicted transparently in the background.

143



4. UDG schemes for bulk–surface PDEs on complex static geometries

10−1100
10−4

10−3

10−2

10−1

100

101

1.050.96

1.81

1.87

h

R
el
at
iv
e
er
ro
r

Errors: h-refinement

Eb,H1(Ωh )
Es,H1(Γh )
Eb,L2(Ωh )
Es,L2(Γh )

10−1100
102

104

106

108

1010

−2.99

h

C
on

di
tio

n
nu

m
be

r

Condition: h-refinement

κ2(A)

(a) Unstabilized scheme, α := 0.01.

10−1100
10−4

10−3

10−2

10−1

100

101

1.070.99

1.83

1.95

h

R
el
at
iv
e
er
ro
r

Errors: h-refinement

Eb,H1(Ωh )
Es,H1(Γh )
Eb,L2(Ωh )
Es,L2(Γh )

10−1100
102

104

106

108

1010

−3.16

h

C
on

di
tio

n
nu

m
be

r

Condition: h-refinement

κ2(A)

(b) Full gradient stabilization, α := 0.01.

10−1100
10−4

10−3

10−2

10−1

100

101

1.080.99

1.87

2.05

h

R
el
at
iv
e
er
ro
r

Errors: h-refinement

Eb,H1(Ωh )
Es,H1(Γh )
Eb,L2(Ωh )
Es,L2(Γh )

10−1100
102

104

106

108

1010

−2.62

h

C
on

di
tio

n
nu

m
be

r

Condition: h-refinement

κ2(A)

(c) Normal penalty stabilization, α := 0.01.

Figure 4.12.: Errors in numerical solutions of elliptic 2d test problem “3”
and spectral condition number associated with the correspond-
ing system of linear equations, obtained using Scheme 4.2.9 or
Scheme 4.2.15 with the two considered stabilization terms, k = 1,
hosts := swipg, and separate geometry meshes with h = h/4.
Corresponding results that are obtained using hosts := sipg are
depicted transparently in the background.

144



4.3. Numerical results

separate geometry meshes, for larger values of the narrow band parameter α,
and for other test problems, the SWIPG formulation improves κ2(A) while
yielding comparable convergence results. Therefore, SWIPG indeed seems to
be the preferable choice for the surface part of the problem.

Numerical study: h-refinement and polynomial degree k = 2

As a second numerical study, we run similar experiments using polynomial
degree k = 2. Again, we investigate relative errors, associated experimental
orders of convergence and the spectral condition number of the system matrix
with respect to the width h of the fundamental mesh, performing h-refinement
(h→ 0, α fixed). In the course of this, we arbitrarily choose SIPG as host DG
formulation for the surface part of the problem.
As with the above study for k = 1, we first consider Scheme 4.2.9 with-

out using separate geometry meshes. Results for elliptic 2d test problem “3”
are shown in Figure 4.13. We observe that the unstabilized scheme does not
perform well. Even if the narrow band parameter α is chosen small, conver-
gence either stagnates or convergence rates are not satisfactory. Errors tend
to be even larger than in the same experiments with k = 1, cf. Figure 4.8.
Meanwhile, the spectral condition number κ2(A) associated with solving the
corresponding linear system (4.37) grows at a high rate with respect to h, espe-
cially for large values of α. In comparison with the corresponding experiments
for k = 1, values of κ2(A) are also larger by multiple orders of magnitude.
Our experiments above have shown that these deficiencies of Scheme 4.2.9

are not apparent for polynomial degree k = 1. They seem to emerge from
the higher polynomial degree. Since the error which results from geometry
approximation is known to have a crucial influence on the order of convergence
in higher order schemes, we next investigate the effect of employing separate
geometry meshes to obtain a geometry reconstruction which is more accurate.
We repeat the computations which lead to the results from Figure 4.13, this
time using 5 additional uniform refinements for each of the entities in the
fundamental mesh Th(ΩΦ), i.e. we use geometry meshes with h = h/32. The
results are shown in Figure 4.14. Unfortunately, these results indicate that
the smaller geometry approximation error does not improve a lot. Although
errors for large values of h and errors for small values of α are slightly reduced,
convergence rates are still not satisfactory. At the same time, the spectral
condition number κ2(A) only decreases slightly. It is still much larger than
with the corresponding experiments for k = 1. Therefore, the unstabilized
scheme does not seem suitable for obtaining higher order schemes.
We now perform the same two experiments for Scheme 4.2.15, i.e. for the

stabilized scheme, together with full gradient stabilization or normal penalty
stabilization. As with the unstabilized scheme, we start without using separate
geometry meshes. Working with elliptic 2d test problem “3” as usual, it is
shown in Figure 4.15 that the stabilized scheme produces reasonable results.
As with our experiments for k = 1, the two stabilization mechanisms again

145



4. UDG schemes for bulk–surface PDEs on complex static geometries

10−1100

10−2

10−1

100

101

102

h

R
el
at
iv
e
er
ro
r

Errors: h-refinement

Eb,H1(Ωh )
Es,H1(Γh )
Eb,L2(Ωh )
Es,L2(Γh )

10−1100

105

107

109

1011

1013

−3.81

h

C
on

di
tio

n
nu

m
be

r

Condition: h-refinement

κ2(A)

(a) α := 1.25.

10−1100

10−2

10−1

100

101

102

h

R
el
at
iv
e
er
ro
r

Errors: h-refinement

Eb,H1(Ωh )
Es,H1(Γh )
Eb,L2(Ωh )
Es,L2(Γh )

10−1100

105

107

109

1011

1013

−3.73

h

C
on

di
tio

n
nu

m
be

r

Condition: h-refinement

κ2(A)

(b) α := 0.50.

10−1100

10−2

10−1

100

101

102

h

R
el
at
iv
e
er
ro
r

Errors: h-refinement

Eb,H1(Ωh )
Es,H1(Γh )
Eb,L2(Ωh )
Es,L2(Γh )

10−1100

105

107

109

1011

1013

−3.21

h

C
on

di
tio

n
nu

m
be

r

Condition: h-refinement

κ2(A)

(c) α := 0.05.

10−1100

10−2

10−1

100

101

102

1.03
1.29

h

R
el
at
iv
e
er
ro
r

Errors: h-refinement

Eb,H1(Ωh )
Es,H1(Γh )
Eb,L2(Ωh )
Es,L2(Γh )

10−1100

105

107

109

1011

1013

−3.26

h

C
on

di
tio

n
nu

m
be

r

Condition: h-refinement

κ2(A)

(d) α := 0.01.

Figure 4.13.: Errors in numerical solutions of elliptic 2d test problem “3” and
spectral condition number associated with the corresponding sys-
tem of linear equations, obtained using Scheme 4.2.9, k = 2,
hosts := sipg, and no separate geometry meshes.

146



4.3. Numerical results

10−110010−3

10−2

10−1

100

101

102

h

R
el
at
iv
e
er
ro
r

Errors: h-refinement

Eb,H1(Ωh )
Es,H1(Γh )
Eb,L2(Ωh )
Es,L2(Γh )

10−1100
106

107

108

109

1010

1011

1012

1013

−2.15

h

C
on

di
tio

n
nu

m
be

r

Condition: h-refinement

κ2(A)

(a) α := 1.25.

10−110010−3

10−2

10−1

100

101

102

h

R
el
at
iv
e
er
ro
r

Errors: h-refinement

Eb,H1(Ωh )
Es,H1(Γh )
Eb,L2(Ωh )
Es,L2(Γh )

10−1100
106

107

108

109

1010

1011

1012

1013

−2.24

h

C
on

di
tio

n
nu

m
be

r

Condition: h-refinement

κ2(A)

(b) α := 0.50.

10−110010−3

10−2

10−1

100

101

102

h

R
el
at
iv
e
er
ro
r

Errors: h-refinement

Eb,H1(Ωh )
Es,H1(Γh )
Eb,L2(Ωh )
Es,L2(Γh )

10−1100
106

107

108

109

1010

1011

1012

1013

−2.34

h

C
on

di
tio

n
nu

m
be

r

Condition: h-refinement

κ2(A)

(c) α := 0.05.

10−110010−3

10−2

10−1

100

101

102

0.64
0.52

h

R
el
at
iv
e
er
ro
r

Errors: h-refinement

Eb,H1(Ωh )
Es,H1(Γh )
Eb,L2(Ωh )
Es,L2(Γh )

10−1100
106

107

108

109

1010

1011

1012

1013

−2.98

h

C
on

di
tio

n
nu

m
be

r

Condition: h-refinement

κ2(A)

(d) α := 0.01.

Figure 4.14.: Errors in numerical solutions of elliptic 2d test problem “3” and
spectral condition number associated with the corresponding sys-
tem of linear equations, obtained using Scheme 4.2.9, k = 2,
hosts := sipg, and separate geometry meshes with h = h/32.

147



4. UDG schemes for bulk–surface PDEs on complex static geometries

10−1100

10−2

10−1

100

101

102

1.39
1.86

h

R
el
at
iv
e
er
ro
r

Errors: h-refinement

Eb,H1(Ωh )
Es,H1(Γh )
Eb,L2(Ωh )
Es,L2(Γh )

10−1100
102

103

104

105

106

107

108

109

−2.28

h

C
on

di
tio

n
nu

m
be

r

Condition: h-refinement

κ2(A)

(a) Full gradient stabilization, α := 1.25.

10−1100

10−2

10−1

100

101

102

1.87

1.07
1.99

1.76

h

R
el
at
iv
e
er
ro
r

Errors: h-refinement

Eb,H1(Ωh )
Es,H1(Γh )
Eb,L2(Ωh )
Es,L2(Γh )

10−1100
102

103

104

105

106

107

108

109

−2.52

h

C
on

di
tio

n
nu

m
be

r

Condition: h-refinement

κ2(A)

(b) Normal penalty stabilization, α := 1.25.

10−1100

10−2

10−1

100

101

102

2.02

1.09
2.02

2.03

h

R
el
at
iv
e
er
ro
r

Errors: h-refinement

Eb,H1(Ωh )
Es,H1(Γh )
Eb,L2(Ωh )
Es,L2(Γh )

10−1100
102

103

104

105

106

107

108

109

−2.08

h

C
on

di
tio

n
nu

m
be

r

Condition: h-refinement

κ2(A)

(c) Full gradient stabilization, α := 0.05.

10−1100

10−2

10−1

100

101

102

2.02

1.09
2.02

2.03

h

R
el
at
iv
e
er
ro
r

Errors: h-refinement

Eb,H1(Ωh )
Es,H1(Γh )
Eb,L2(Ωh )
Es,L2(Γh )

10−1100
102

103

104

105

106

107

108

109

−2.34

h

C
on

di
tio

n
nu

m
be

r

Condition: h-refinement

κ2(A)

(d) Normal penalty stabilization, α := 0.05.

Figure 4.15.: Errors in numerical solutions of elliptic 2d test problem “3” and
spectral condition number, obtained using Scheme 4.2.15 with
the two considered stabilization terms, k = 2, hosts := sipg, and
no separate geometry meshes.

148



4.3. Numerical results

perform equally well. They yield similar errors, especially for small values
of h and small values of the narrow band parameter α. Also the spectral
condition numbers of their corresponding system matrix in linear system (4.37)
are nearly identical for small values of h. The scheme exhibits a promising
convergence behavior already for large values of α and it is clearly observable
for small values of α that both components of the numerical solution (ub,h, us,h)
converge to their corresponding component of the solution pair (ub, us). This
convergence is of suboptimal order, though. We obtain order 1 with respect
to Es,H1(Γh ), and order 2 with respect to Eb,H1(Ωh ), Eb,L2(Ωh ) and Es,L2(Γh ).
In comparison with optimal order convergence, convergence of the scheme
hence is reduced by order 1 in ‖ · ‖H1(Γh ) and ‖ · ‖L2(Γh ) regarding the surface
component us,h, and by order 1 in ‖ · ‖L2(Ωh ) regarding the bulk component
ub,h. Taking a closer look at the spectral condition number κ2(A), we see that
its values are in a similar range as with corresponding experiments for k = 1,
cf. Figure 4.10. The dependency on h is slightly different, though, which can
be particularly observed by comparing Figure 4.15a with Figure 4.10a, and
Figure 4.15b with Figure 4.10b. For small values of h, the values of κ2(A)
that are obtained with k = 2 are larger than the corresponding values that are
obtained with k = 1. But, interestingly, the growth rate of κ2(A) with respect
to h is a little smaller when using polynomial degree k = 2.
Repeating the computations which lead to the results from Figure 4.15,

this time using geometry meshes with h = h/32, it can be observed that
the stabilized scheme is capable of achieving optimal order convergence with
respect to the two H1-norms and the two L2-norms that define the relative
errors which we are considering. In particular, we obtain the results shown
in Figure 4.16. Provided that the narrow band parameter α is chosen small
enough (notably smaller than with corresponding experiments for k = 1), both
components of the numerical solution converge with order 2 in ‖ · ‖H1(Ωh ) and
‖ · ‖H1(Γh ), respectively, and with order 3 in ‖ · ‖L2(Ωh ) and ‖ · ‖L2(Γh ). For
the stabilized scheme, the issue of suboptimal order convergence can thus be
cured by using a geometry reconstruction which is more accurate. Also the
spectral condition number κ2(A) is in a reasonable range. As observable by
comparing Figure 4.16a with Figure 4.15c, and Figure 4.16b with Figure 4.15d,
we obtain very similar spectral condition numbers with and without using
separate geometry meshes. Therefore, Scheme 4.2.15 and both stabilization
mechanisms seem suitable for obtaining higher order schemes with reasonable
conditioning properties.

Numerical study: α-refinement

The above h-refinement studies indicate that approximation errors and the
spectral condition number which is associated with solving the corresponding
system of linear equations both depend on the narrow band parameter α. We
now study this aspect in a more detailed way by investigating relative errors
and the spectral condition number of the system matrix with respect to α. To

149



4. UDG schemes for bulk–surface PDEs on complex static geometries

10−1100
10−5

10−4

10−3

10−2

10−1

100

101

1.951.87

2.862.91

h

R
el
at
iv
e
er
ro
r

Errors: h-refinement

Eb,H1(Ωh )
Es,H1(Γh )
Eb,L2(Ωh )
Es,L2(Γh )

10−1100

104

105

106

107

108

109

1010

−2.18

h

C
on

di
tio

n
nu

m
be

r

Condition: h-refinement

κ2(A)

(a) Full gradient stabilization, α := 0.05.

10−1100
10−5

10−4

10−3

10−2

10−1

100

101

1.981.93

2.973.13

h

R
el
at
iv
e
er
ro
r

Errors: h-refinement

Eb,H1(Ωh )
Es,H1(Γh )
Eb,L2(Ωh )
Es,L2(Γh )

10−1100

104

105

106

107

108

109

1010

−2.35

h

C
on

di
tio

n
nu

m
be

r

Condition: h-refinement

κ2(A)

(b) Normal penalty stabilization, α := 0.05.

10−1100
10−5

10−4

10−3

10−2

10−1

100

101

1.951.89

2.85
2.96

h

R
el
at
iv
e
er
ro
r

Errors: h-refinement

Eb,H1(Ωh )
Es,H1(Γh )
Eb,L2(Ωh )
Es,L2(Γh )

10−1100

104

105

106

107

108

109

1010

−2.54

h

C
on

di
tio

n
nu

m
be

r

Condition: h-refinement

κ2(A)

(c) Full gradient stabilization, α := 0.01.

10−1100
10−5

10−4

10−3

10−2

10−1

100

101

1.951.89

2.87
2.99

h

R
el
at
iv
e
er
ro
r

Errors: h-refinement

Eb,H1(Ωh )
Es,H1(Γh )
Eb,L2(Ωh )
Es,L2(Γh )

10−1100

104

105

106

107

108

109

1010

−2.72

h

C
on

di
tio

n
nu

m
be

r

Condition: h-refinement

κ2(A)

(d) Normal penalty stabilization, α := 0.01.

Figure 4.16.: Errors in numerical solutions of elliptic 2d test problem “3” and
spectral condition number, obtained using Scheme 4.2.15 with
the two considered stabilization terms, k = 2, hosts := sipg, and
separate geometry meshes with h = h/32.

150



4.3. Numerical results

do so, we employ a strategy which we call α-refinement. Keeping the width h
of the fundamental mesh fixed, we perform computations while considering a
sequence of narrow bands with α→ 0.
Taking elliptic 2d test problem “3” as an example, we particularly study

α-dependency of the unstabilized Scheme 4.2.9, and of each of its stabilized
variants that are given by Scheme 4.2.15 with one of the two stabilization terms
considered in this thesis. In the course of this, we minimize the influence of
geometry approximation errors by employing a separate geometry mesh of
adequate accuracy and we arbitrarily choose SWIPG as host DG formulation
for the surface part of the problem. Choosing SIPG instead produces similar
results, accompanied by larger values of the spectral condition number. Re-
sults for polynomial degree k = 1 which use geometry meshes with h = h/4
are shown in Figure 4.17, and results for polynomial degree k = 2 which use
geometry meshes with h = h/32 are shown in Figure 4.18.
For each single variant of the scheme and for both polynomial degrees, a

similar pattern in the convergence behavior with respect to α can be observed.
The considered error measures diminish with decreasing values of α and they
eventually reach a constant level. For each error measure, this level depends
on the polynomial degree. Roughly speaking, the final error level is smaller for
k = 2 by one order of magnitude. To some extent, it furthermore depends on
the variant of the scheme. Regarding the final error level for a fixed polynomial
degree, particularly for k = 2, we see that all variants of the scheme yield
almost identical bulk errors Eb,H1(Ωh ) and Eb,L2(Ωh ) for the smallest values of
α which we are considering in Figure 4.17 and in Figure 4.18. In contrast,
the surface errors Es,H1(Γh ) and Es,L2(Γh ) are similar for both stabilization
mechanisms, but the unstabilized scheme reaches error levels that are more or
less one order of magnitude smaller. With the unstabilized scheme, the errors
in the surface part of the solution hence are more sensitive to the narrow band
parameter α than those in the bulk part.
This convergence behavior can be explained by means of different errors

which result from distinct sources. On the one hand, we have the usual DG
discretization error which arises from applying the UDG method. It depends
on the width h of the fundamental mesh and on the polynomial degree k. For
each k, this error is fixed since we are considering a fixed h in the current
study. On the other hand, we have an additional error due to the integral
approximations that are performed. We recall that Scheme 4.2.9 results from
applying Theorem 4.2.7 to approximate the last integral in equation (4.18b)
by an integral over the reconstructed hypersurface Γh . This approximation
error depends on the narrow band parameter α and vanishes for α → 0. In
combination, both error sources explain why the considered error measures
decrease with decreasing values of α and reach a k-dependent level in the end.
The α-dependent integral approximation error dominates for large values of
α, but is dominated by the DG discretization error for small values of α.
The influence of the particular scheme on the final level of the surface er-

rors Es,H1(Γh ) and Es,L2(Γh ) can be explained by the effect of our stabilization

151



4. UDG schemes for bulk–surface PDEs on complex static geometries

10−310−210−1100

10−1

100
0.85

1.26

α

R
el
at
iv
e
er
ro
r

Errors: α-refinement

Eb,H1(Ωh )
Es,H1(Γh )
Eb,L2(Ωh )
Es,L2(Γh )

10−310−210−1100

104

105

106

107

108

109

1010

−1.12

α

C
on

di
tio

n
nu

m
be

r

Condition: α-refinement

κ2(A)

(a) Unstabilized scheme.

10−310−210−1100

10−1

100
0.94

1.65

α

R
el
at
iv
e
er
ro
r

Errors: α-refinement

Eb,H1(Ωh )
Es,H1(Γh )
Eb,L2(Ωh )
Es,L2(Γh )

10−310−210−1100

104

105

106

107

108

109

1010

−1

α

C
on

di
tio

n
nu

m
be

r

Condition: α-refinement

κ2(A)

(b) Full gradient stabilization.

10−310−210−1100

10−1

100

1

1.68

α

R
el
at
iv
e
er
ro
r

Errors: α-refinement

Eb,H1(Ωh )
Es,H1(Γh )
Eb,L2(Ωh )
Es,L2(Γh )

10−310−210−1100

104

105

106

107

108

109

1010

−1

α

C
on

di
tio

n
nu

m
be

r

Condition: α-refinement

κ2(A)

(c) Normal penalty stabilization.

Figure 4.17.: Errors in numerical solutions of elliptic 2d test problem “3”
and spectral condition number, obtained using α-refinement,
Scheme 4.2.9 or Scheme 4.2.15 with the two considered stabi-
lization terms, k = 1, hosts := swipg, r = 4 (h ≈ 3.54 · 10−1),
and a separate geometry mesh with h = h/4.

152



4.3. Numerical results

10−310−210−1100

10−3

10−2

10−1

100
0.98

α

R
el
at
iv
e
er
ro
r

Errors: α-refinement

Eb,H1(Ωh )
Es,H1(Γh )
Eb,L2(Ωh )
Es,L2(Γh )

10−310−210−1100

104

105

106

107

108

109

1010
−1.6

α

C
on

di
tio

n
nu

m
be

r

Condition: α-refinement

κ2(A)

(a) Unstabilized scheme.

10−310−210−1100

10−3

10−2

10−1

100 1.57

α

R
el
at
iv
e
er
ro
r

Errors: α-refinement

Eb,H1(Ωh )
Es,H1(Γh )
Eb,L2(Ωh )
Es,L2(Γh )

10−310−210−1100

104

105

106

107

108

109

1010

−2.02

α

C
on

di
tio

n
nu

m
be

r

Condition: α-refinement

κ2(A)

(b) Full gradient stabilization.

10−310−210−1100

10−3

10−2

10−1

100
1.71

α

R
el
at
iv
e
er
ro
r

Errors: α-refinement

Eb,H1(Ωh )
Es,H1(Γh )
Eb,L2(Ωh )
Es,L2(Γh )

10−310−210−1100

104

105

106

107

108

109

1010

−1.66

α

C
on

di
tio

n
nu

m
be

r

Condition: α-refinement

κ2(A)

(c) Normal penalty stabilization.

Figure 4.18.: Errors in numerical solutions of elliptic 2d test problem “3”
and spectral condition number, obtained using α-refinement,
Scheme 4.2.9 or Scheme 4.2.15 with the two considered stabi-
lization terms, k = 2, hosts := swipg, r = 4 (h ≈ 3.54 · 10−1),
and a separate geometry mesh with h = h/32.

153



4. UDG schemes for bulk–surface PDEs on complex static geometries

terms. Those terms impose additional constraints on the surface component
of the set of possible solutions. By filtering out solutions with a surface com-
ponent which has a steep gradient in normal direction, these constraints ef-
fectively reduce the solution space. Hence, although taking care of robust
convergence behavior with respect to h, the stabilization terms can increase
the h-dependent part of the discretization error, particularly in the surface
component of the solution. Note that we have observed the same effect in
Figure 4.11 and in Figure 4.12. We would like to point out that this effect can
only be observed when using separate geometry meshes, i.e., if the geometry
reconstruction is accurate enough. It is known that geometry approximation
errors are contained in the h-dependent part of the discretization error. With-
out using separate geometry meshes, these geometry-related errors seem to
be large enough for the additional stabilization terms to not have a notable
negative influence on the considered error measures.
Looking at the spectral condition number, no global relationship between

κ2(A) and α can be identified for any single variant of the scheme. In addition,
we observe no clear relationship for large values of α. However, we have
κ2(A) ∈ O(α−1) for small values of α and polynomial degree k = 1, and we
approximately have κ2(A) ∈ O(α−2) for small values of α and polynomial
degree k = 2.

4.3.2. Linear parabolic model problems

Construction of analytical test problems

To further investigate Scheme 4.2.18 and Scheme 4.2.19 from Section 4.2.5,
we construct specific models from the class of parabolic model problems (4.1)
which has been introduced in Section 4.1.1. These specific models are linear
parabolic models with a known analytical solution. As with the linear elliptic
test problems from Section 4.3.1, the analytical solution allows for performing
numerical convergence studies for our schemes.
In view of Remark 4.3.1 and for the sake of simplicity with respect to

the availability of analytical solutions, we again choose the circular geometry
Ω :=

{
x ∈ Rd

∣∣ |x| < 1
}

with d := 2 in class (4.1), and employ constant,
scalar diffusivities Db := I and Ds := I. We obtain the restricted problem of
finding ub : Ω× [0, T ]→ R and us : Γ× [0, T ]→ R with

∂tub −∆ub = fb(ub) in Ω× (0, T ], (4.39a)
−∇ub · ν = −fb,s(ub, us) on Γ× (0, T ], (4.39b)

∂tus −∆Γus = fs,b(ub, us) + fs(us) on Γ× (0, T ], (4.39c)

where ub(·, 0) and us(·, 0) are given initial values. As with the corresponding
elliptic problem (4.36), we use coupling terms fb,s(ub, us) := −fs,b(ub, us),
where fs,b(ub, us) := ub|Γ×(0,T ] − us. Furthermore, we employ a term fb(ub)
that is linear in ub, and a term fs(us) that is linear in us.

154



4.3. Numerical results

Implementing the idea of the method of manufactured solutions again (cf.
Section 4.3.1), we construct specific models (4.39) with some known analytical
solution using the following approach:

1. Choose an appropriate ub, e.g. the product of an eigenfunction of the
Laplacian and of the expression exp(λt), where λ ∈ R is the correspond-
ing eigenvalue.

2. Determine fb(ub) by means of bulk equation (4.39a), yielding fb(ub) ≡ 0
if ub is chosen to be the product of an eigenfunction of the Laplacian and
of the expression exp(λt), where λ ∈ R is the corresponding eigenvalue.

3. Calculate us from boundary condition (4.39b).
4. Identify fs(us) via surface equation (4.39c).
5. Obtain initial values ub(·, 0) and us(·, 0) by restricting the expressions
ub(x, t) and us(x, t) to t = 0.

By applying this procedure, linear parabolic test problems can be con-
structed with the help of Remark 4.3.1. Some test problems that have been
constructed this way are specified in Table 4.7. In the following, we particu-
larly look at results for parabolic 2d test problem “3” and results for parabolic
2d test problem “4”. Graphs of the corresponding solution pairs (ub, us) are
depicted in Figure 4.19. Parabolic 2d test problem “1” which is also specified
in Table 4.7 will not serve as a test problem within the scope of this thesis. It
yields comparable results, though.

Common simulation parameters

In our numerical studies for linear parabolic model problems, we use the same
simulation parameters as those which are listed in Section 4.3.1. This includes
using SIPG as host DG formulation for the bulk part of the problem. We use
the penalty parameter γb := 5 both for parabolic 2d test problem “3” and for
parabolic 2d test problem “4”.
The free parameters of each test problem are chosen exactly as proposed in

Table 4.7. Note that, given this particular choice of test problem parameters,
the function values of solutions to our test problems decay rapidly with respect
to time, cf. Figure 4.19. Therefore, we choose a small maximum observation
time T := 0.1 for each test problem.
In each simulation run, we perform several time steps. In particular, we use

a uniform step size of the form τ n := 0.01hz with some constant z ∈ N.

155



4. UDG schemes for bulk–surface PDEs on complex static geometries

Parabolic 2d test problem “1”
ub(x, t) c exp(−β2t) sin(βx1) with c, β ∈ R (e.g. c = 1, β = 1π)
fb(ub)(x, t) 0
us(x, t) c exp(−β2t)

[
βx1 cos(βx1) + sin(βx1)

]

fs(us)(x, t) cβ exp(−β2t)
[
β2x2

0x1 cos(βx1)
+4βx2

0 sin(βx1) + (3− β2)x1 cos(βx1)− 2β sin(βx1)
]

Parabolic 2d test problem “3”
ub(x, t) c exp

(
−(α2 + β2)t

)
sin(αx0) sin(βx1)

with c, α, β ∈ R (e.g. c = 1, α = 0.5π, β = 1π)
fb(ub)(x, t) 0
us(x, t) c exp

(
−(α2 + β2)t

)[
βx1 sin(αx0) cos(βx1)

+αx0 cos(αx0) sin(βx1) + sin(αx0) sin(βx1)
]

fs(us)(x, t) −c exp
(
−(α2 + β2)t

)[
(3α2β − β3)x2

0x1 sin(αx0) cos(βx1)
+(α3 − 3αβ2)x3

0 cos(αx0) sin(βx1) + (4α2 − 4β2)x2
0 sin(αx0) sin(βx1)

+8αβx0x1 cos(αx0) cos(βx1) + (β3 − 3β)x1 sin(αx0) cos(βx1)
+(3αβ2 − 3α)x0 cos(αx0) sin(βx1) + (−2α2 + 2β2) sin(αx0) sin(βx1)

]

Parabolic 2d test problem “4”
ub(x, t) c exp(−γ2t)

[
sin(γx0) + sin(γx1)

]
with c, γ ∈ R (e.g. c = 1, γ = 1.25π)

fb(ub)(x, t) 0
us(x, t) c exp(−γ2t)

[
γx0 cos(γx0) + γx1 cos(γx1) + sin(γx0) + sin(γx1)

]

fs(us)(x, t) −cγ exp(−γ2t)
[
γ2x3

0 cos(γx0)− γ2x2
0x1 cos(γx1)

+4γx2
0 sin(γx0)− 4γx2

0 sin(γx1) + γ2x1 cos(γx1)
−3x0 cos(γx0)− 3x1 cos(γx1)− 2γ sin(γx0) + 2γ sin(γx1)

]

Table 4.7.: Linear parabolic test problems: data functions fb(ub) and fs(us),
and the associated solution (ub, us) of system (4.39) in two-dimen-
sional Cartesian coordinates x = (x0, x1).

Error measures

In order to analyze the convergence of our schemes, we compute space–time
errors

Eb,L∞,∗(h) := sup
t∈[0,T ]

Eb,∗(h), Eb,L2,∗(h) :=
(∫ T

0
E2
b,∗(h) dt

) 1
2

, (4.40a)

Es,L∞,∗(h) := sup
t∈[0,T ]

Es,∗(h), Es,L2,∗(h) :=
(∫ T

0
E2
s,∗(h) dt

) 1
2

. (4.40b)

Here, ∗ is a placeholder for some normed function space and Eb,∗ and Es,∗
denote associated spatial error measures for the bulk component and for the

156



4.3. Numerical results

(a) Parabolic 2d test problem “3”.

(b) Parabolic 2d test problem “4”.

Figure 4.19.: Graph of the solution pairs (ub, us) of parabolic 2d test problem
“3” and parabolic 2d test problem “4” at times t = 0 (left) and
t = 0.1 (right), cf. Table 4.7. The free parameters of each test
problem are chosen exactly as proposed in Table 4.7.

surface component of the solution, respectively. We use the spatial error mea-
sures that are defined in Section 4.3.1. Watching the L∞(0, T )-norm in time,
we hence investigate the errors Eb,L∞,L2(Ωh ), Es,L∞,L2(Γh ), Eb,L∞,H1(Ωh ) and
Es,L∞,H1(Γh ). Analogously, watching the L2(0, T )-norm in time, we investigate
the errors Eb,L2,L2(Ωh ), Es,L2,L2(Γh ) Eb,L2,H1(Ωh ) and Es,L2,H1(Γh ).
Assuming that the space–time errors defined in equations (4.40) satisfy es-

timates of the form E (h) ∈ O(hz) with z ∈ R>0, we compute experimental

157



4. UDG schemes for bulk–surface PDEs on complex static geometries

orders of convergence as defined in Section 4.3.1.

Numerical convergence study: h-refinement and polynomial degree k = 1

As a first numerical study, we investigate space–time errors and associated
experimental orders of convergence with respect to the width h of the funda-
mental mesh, starting with polynomial degree k = 1. As with our numerical
studies for linear elliptic model problems in Section 4.1.2, we employ h-refine-
ment to do this, i.e. we perform computations while considering a sequence of
fundamental meshes with h→ 0. Meanwhile, we keep the parameter α of the
narrow band fixed. Given that the total discretization error comprises spatial
errors and an error with respect to time, we need to ensure that also the latter
temporal error diminishes with respect to h. Otherwise, we can not expect
to observe convergence with respect to h. The backward Euler time-stepping
method which is employed by Scheme 4.2.18 and by Scheme 4.2.19 is known
to cause a temporal error of order 1. Theoretically, we hence need to scale the
time step size τ n with the power of h that corresponds to the largest conver-
gence rate which we want to be able to see in one of our error measures. In
practice, we will scale τ n with some power of h that is large enough to be able
to observe optimal order convergence with respect to h in the spatial L2-norms
which we are considering, i.e. convergence of order 2. As host DG formulation
for the surface part of the problem, we arbitrarily choose SWIPG. Since our
studies in Section 4.1.2 indicate that geometry approximation errors are not
crucial in computations with polynomial degree k = 1, we do not use separate
geometry meshes.
We consider Scheme 4.2.18 and Scheme 4.2.19 with either full gradient sta-

bilization or normal penalty stabilization, always choosing the narrow band
parameter α := 0.05. Results for parabolic 2d test problem “3” are shown in
Figure 4.20, results for parabolic 2d test problem “4” in Figure 4.21. Optimal
order convergence with respect to all error measures which we are examining
can be observed with the unstabilized scheme and with the stabilized scheme
and both stabilization mechanisms. In particular, both components of the
numerical solution

(
un
b,h, u

n
s,h

)
converge to their corresponding component of

the solution pair (ub, us) with order 1 in the ‖ · ‖H1(Ωh ) and ‖ · ‖H1(Γh ) based
error measures, respectively, and with order 2 in the error measures that are
defined using the norms ‖ · ‖L2(Ωh ) and ‖ · ‖L2(Γh ). It is worth noting that a
time step size τ n which scales linearly with h is already sufficient to observe
this behavior for parabolic 2d test problem “3”. Obtaining those results for
parabolic 2d test problem “4” requires using a time step size that scales with
the expected factor of h2.

Numerical convergence study: h-refinement and polynomial degree k = 2

As a second numerical study, we run similar experiments for Scheme 4.2.19
using polynomial degree k = 2. Again, we investigate space–time errors and

158



4.3. Numerical results

10−1100

10−3

10−2

10−1

100

101

1.03

2.04

h

Er
ro
r

L∞(0, T )-errors: h-refinement

Eb,L∞,H1(Ωh )
Es,L∞,H1(Γh )
Eb,L∞,L2(Ωh )
Es,L∞,L2(Γh )

10−1100

10−3

10−2

10−1

100

101

1.01

1.98

h

Er
ro
r

L2(0, T )-errors: h-refinement

Eb,L2,H1(Ωh )
Es,L2,H1(Γh )
Eb,L2,L2(Ωh )
Es,L2,L2(Γh )

(a) Unstabilized scheme, α := 0.05.

10−1100

10−3

10−2

10−1

100

101

1.02

1.98

h

Er
ro
r

L∞(0, T )-errors: h-refinement

Eb,L∞,H1(Ωh )
Es,L∞,H1(Γh )
Eb,L∞,L2(Ωh )
Es,L∞,L2(Γh )

10−1100

10−3

10−2

10−1

100

101

0.99

1.96

h

Er
ro
r

L2(0, T )-errors: h-refinement

Eb,L2,H1(Ωh )
Es,L2,H1(Γh )
Eb,L2,L2(Ωh )
Es,L2,L2(Γh )

(b) Full gradient stabilization, α := 0.05.

10−1100

10−3

10−2

10−1

100

101

1.02

1.96

h

Er
ro
r

L∞(0, T )-errors: h-refinement

Eb,L∞,H1(Ωh )
Es,L∞,H1(Γh )
Eb,L∞,L2(Ωh )
Es,L∞,L2(Γh )

10−1100

10−3

10−2

10−1

100

101

0.99

1.95

h

Er
ro
r

L2(0, T )-errors: h-refinement

Eb,L2,H1(Ωh )
Es,L2,H1(Γh )
Eb,L2,L2(Ωh )
Es,L2,L2(Γh )

(c) Normal penalty stabilization, α := 0.05.

Figure 4.20.: Errors in numerical solutions of parabolic 2d test problem “3”,
obtained using Scheme 4.2.18 or Scheme 4.2.19 with the two con-
sidered stabilization terms, time step size τ n := 0.01h, k = 1,
hosts := swipg, and no separate geometry meshes.

159



4. UDG schemes for bulk–surface PDEs on complex static geometries

10−1100

10−3

10−2

10−1

100

101

1.07

1.96

h

Er
ro
r

L∞(0, T )-errors: h-refinement

Eb,L∞,H1(Ωh )
Es,L∞,H1(Γh )
Eb,L∞,L2(Ωh )
Es,L∞,L2(Γh )

10−1100

10−3

10−2

10−1

100

101

1.06

2

h

Er
ro
r

L2(0, T )-errors: h-refinement

Eb,L2,H1(Ωh )
Es,L2,H1(Γh )
Eb,L2,L2(Ωh )
Es,L2,L2(Γh )

(a) Unstabilized scheme, α := 0.05.

10−1100

10−3

10−2

10−1

100

101

1.07

1.89

h

Er
ro
r

L∞(0, T )-errors: h-refinement

Eb,L∞,H1(Ωh )
Es,L∞,H1(Γh )
Eb,L∞,L2(Ωh )
Es,L∞,L2(Γh )

10−1100

10−3

10−2

10−1

100

101

1.06

1.94

h

Er
ro
r

L2(0, T )-errors: h-refinement

Eb,L2,H1(Ωh )
Es,L2,H1(Γh )
Eb,L2,L2(Ωh )
Es,L2,L2(Γh )

(b) Full gradient stabilization, α := 0.05.

10−1100

10−3

10−2

10−1

100

101

1.07

1.87

h

Er
ro
r

L∞(0, T )-errors: h-refinement

Eb,L∞,H1(Ωh )
Es,L∞,H1(Γh )
Eb,L∞,L2(Ωh )
Es,L∞,L2(Γh )

10−1100

10−3

10−2

10−1

100

101

1.05

1.92

h

Er
ro
r

L2(0, T )-errors: h-refinement

Eb,L2,H1(Ωh )
Es,L2,H1(Γh )
Eb,L2,L2(Ωh )
Es,L2,L2(Γh )

(c) Normal penalty stabilization, α := 0.05.

Figure 4.21.: Errors in numerical solutions of parabolic 2d test problem “4”,
obtained using Scheme 4.2.18 or Scheme 4.2.19 with the two con-
sidered stabilization terms, time step size τ n := 0.01h2, k = 1,
hosts := swipg, and no separate geometry meshes.

160



4.3. Numerical results

10−1100

10−4

10−3

10−2

10−1

100

1.91

1.99

h

Er
ro
r

L∞(0, T )-errors: h-refinement

Eb,L∞,H1(Ωh )
Es,L∞,H1(Γh )
Eb,L∞,L2(Ωh )
Es,L∞,L2(Γh )

10−1100

10−4

10−3

10−2

10−1

100

1.86

2.08

h

Er
ro
r

L2(0, T )-errors: h-refinement

Eb,L2,H1(Ωh )
Es,L2,H1(Γh )
Eb,L2,L2(Ωh )
Es,L2,L2(Γh )

(a) Full gradient stabilization, α := 0.05.

10−1100

10−4

10−3

10−2

10−1

100

2.01

2

h

Er
ro
r

L∞(0, T )-errors: h-refinement

Eb,L∞,H1(Ωh )
Es,L∞,H1(Γh )
Eb,L∞,L2(Ωh )
Es,L∞,L2(Γh )

10−1100

10−4

10−3

10−2

10−1

100

1.99

2.06

h

Er
ro
r

L2(0, T )-errors: h-refinement

Eb,L2,H1(Ωh )
Es,L2,H1(Γh )
Eb,L2,L2(Ωh )
Es,L2,L2(Γh )

(b) Normal penalty stabilization, α := 0.05.

Figure 4.22.: Errors in numerical solutions of parabolic 2d test problem “4”,
obtained using Scheme 4.2.19 with the two considered stabiliza-
tion terms, time step size τ n := 0.01h2, k = 2, hosts := sipg,
and separate geometry meshes with h = h/32.

associated experimental orders of convergence with respect to the width h of
the fundamental mesh, performing h-refinement (h→ 0, α fixed) while scaling
the time step size τ n with some power of h that is large enough to be able to see
higher order convergence. In the course of this, we arbitrarily choose SIPG as
host DG formulation for the surface part of the problem and we use geometry
meshes with h = h/32. As we have seen in our numerical studies for linear
elliptic model problems, the latter allows for obtaining higher order schemes,
when being employed together with one of the two stabilization mechanisms
that are considered in this thesis.
We again choose the fixed narrow band parameter value α := 0.05 in our

study. Results for parabolic 2d test problem “4” are shown in Figure 4.22.
As with the corresponding experiments for k = 1 above, both stabilization
mechanisms produce a nearly identical outcome. Both components of the

161



4. UDG schemes for bulk–surface PDEs on complex static geometries

10−1100

10−4

10−3

10−2

10−1

100

2.04

1.92

h

Er
ro
r

L∞(0, T )-errors: h-refinement

Eb,L∞,H1(Ωh )
Es,L∞,H1(Γh )
Eb,L∞,L2(Ωh )
Es,L∞,L2(Γh )

10−1100

10−4

10−3

10−2

10−1

100

1.98

2.11

h

Er
ro
r

L2(0, T )-errors: h-refinement

Eb,L2,H1(Ωh )
Es,L2,H1(Γh )
Eb,L2,L2(Ωh )
Es,L2,L2(Γh )

(a) Full gradient stabilization, α := 0.05.

10−1100

10−4

10−3

10−2

10−1

100

2.13

1.99

h

Er
ro
r

L∞(0, T )-errors: h-refinement

Eb,L∞,H1(Ωh )
Es,L∞,H1(Γh )
Eb,L∞,L2(Ωh )
Es,L∞,L2(Γh )

10−1100

10−4

10−3

10−2

10−1

100

2.11

2.14

h

Er
ro
r

L2(0, T )-errors: h-refinement

Eb,L2,H1(Ωh )
Es,L2,H1(Γh )
Eb,L2,L2(Ωh )
Es,L2,L2(Γh )

(b) Normal penalty stabilization, α := 0.05.

Figure 4.23.: Errors in numerical solutions of parabolic 2d test problem “3”,
obtained using Scheme 4.2.19 with the two considered stabiliza-
tion terms, time step size τ n := 0.01h2, k = 2, hosts := sipg,
and separate geometry meshes with h = h/32.

numerical solution
(
un
b,h, u

n
s,h

)
converge to their corresponding component of

the solution pair (ub, us). The stabilized scheme particularly features optimal
order convergence, i.e. convergence of order 2, in the ‖ · ‖H1(Ωh ) and ‖ · ‖H1(Γh )
based error measures, respectively. Nevertheless, it also exhibits convergence
of order 2 in the error measures that are defined using the norms ‖ · ‖L2(Ωh )
and ‖ · ‖L2(Γh ), which corresponds to suboptimal order convergence.
Figure 4.23 shows results that are obtained for parabolic 2d test problem

“3”. They are very similar to the results which we obtain for parabolic 2d test
problem “4”. However, for large values of h, we observe a higher convergence
rate in the error measures that are defined using spatial L2-norms. This
suggests that optimal order convergence with respect to these error measures
can be recovered by scaling the time step size τ n with some even larger power
of h. Given that this is impractical, backward Euler time-stepping should

162



4.3. Numerical results

Model Parameter Value
GOR Db 10.0

Ds 0.0025
α 0.0033
β 0.0067
γ 0.01733
Ec 1.0

Model Parameter Value
WP Db 10.0

Ds 0.1
k0 0.067
γ 1.0
K 1.0
δ 1.0

Table 4.8.: Values of the parameters of the simplified GOR model and values
of the parameters of the WP model, which we employ in this thesis
complementary to the data functions that are specified in Table 1.1.

instead be replaced by a more advanced method that achieves higher order
accuracy in time.

4.3.3. Application: Nonlinear parabolic models for cell polarization

In the remainder of this section, we verify that our schemes also yield reason-
able results in real-world applications and are capable of replacing simulation
frameworks like the one which has been presented in Section 1.4. We apply
the fully discrete schemes from Section 4.2.5 to two time-dependent nonlinear
models from cell biology that can be formulated within the class of parabolic
model problems (4.1).

Models

In Section 1.4.1, we introduced the simplified GOR model and the bulk–surface
formulation of the WP model, which can both be used to study basic features
of an intracellular redistribution process known as cell polarization, cf. Sec-
tion 1.4. Each model can be formulated using equations (4.1), together with
the corresponding data functions specified in Table 1.1. It should be noted
that fb,s(ub, us) and fs,b(ub, us) are nonlinear terms in the solution variable
us. This nonlinearity arises in boundary condition (4.1b) and in one of the
reaction terms of surface PDE (4.1c).
Both models deal with cell polarization at the microscopic level, i.e. at the

level of single cells. Correspondingly, their conserved quantities are masses of
intracellular proteins and lipids. Given that data functions are employed that
satisfy fb ≡ 0, fs ≡ 0 and fb,s = −fs,b, the global conservation properties
which have been discussed in Section 4.1 induce that the system’s total mass
m(t) stays constant in time, see property (4.4). Especially for the WP model,
this aspect of mass conservation is a fundamental hypothesis and an essential
ingredient of the polarization mechanism (Mori et al., 2008).

163



4. UDG schemes for bulk–surface PDEs on complex static geometries

Common simulation parameters

In each simulation, we use the model parameters that are specified in Table 4.8.
If not mentioned separately, we define the data function kstimulus in Table 1.1
by setting

kstimulus(x, t) := 0.

The remaining simulation parameters and related choices are given as follows,
unless otherwise stated.
We perform simulations on different geometries (Ω,Γ) in R2 that are de-

scribed choosing a square level set domain ΩΦ ⊂ R2 and some suitable level
set function Φ. The latter is either defined by an analytical expression or it
is obtained as the result of a level set based image segmentation algorithm
which we apply to imaging data. To perform the extension process which is
described in Section 4.2.1, we use a narrow band Ωδ with equal parameters
αin = αout =: α ∈ R>0, and we choose the corresponding constant extension
to Ωδ as extension Dext

s of the constant diffusivities Ds from Table 4.8.
For the UDG discretization, we employ a Cartesian fundamental mesh
Th(ΩΦ) and a Cartesian geometry mesh Th (ΩΦ) with a given mesh width h and
h , respectively. To obtain Th(ΩΦ), we start with one entity which corresponds
to ΩΦ and perform a certain number r ∈ N of uniform mesh refinements.
We either use the choice Th (ΩΦ) := Th(ΩΦ), i.e. no separate geometry mesh,
or a mesh Th (ΩΦ) which results from a fixed number of additional uniform
refinements for each of the entities in Th(ΩΦ).
On the fundamental mesh, we choose discrete spaces Vs,h(Ωδ,h ) and Vb,h(Ωh )

which locally (i.e. on each cut cell K) resemble P(K) := Pk(K), the space of
polynomial functions of total degree less than or equal to some k ∈ N over
the domain K. Particularly choosing the polynomial degree k = 1 for both
discrete spaces, we construct Vs,h(Ωδ,h ) and Vb,h(Ωh ) using monomial basis
functions (i.e. the set {1, x0, x1} for k = 1) on the reference element of the
fundamental mesh elements.
As host DG formulations, we use SIPG for the bulk part of the problem and

either SIPG or SWIPG for its surface part, specifically choosing hostb := sipg
with γb := 10.0, and either hosts := sipg with γs := 2.0 or hosts := swipg with
γs := 22.5.
In each simulation run, we perform several time steps with a uniform step

size τ n ∈ R. Due to the nonlinearity of the models which we are considering,
each time step results in a system of algebraic equations that are nonlinear.
To solve this nonlinear system, we employ Newton’s method.

Simulation: WP model on a circular cell

In our first simulation, we consider the WPmodel on a cell which is represented
by some circular geometry (Ω,Γ) in R2. The latter shall comprise the open
disk of center (0, 0)tr and radius 4.5, and the corresponding circle making up its

164



4.3. Numerical results

(a) tn = t0 = 0 (discrete initial values). (b) tn = t20 = 5.

(c) tn = t100 = 25. (d) tn = t400 = 100 =: T .

Figure 4.24.: Numerical solution
(
un
b,h, u

n
s,h

)
of the WP model on a circular

cell at different discrete times tn , obtained using Scheme 4.2.19
with full gradient stabilization, time step size τ n := 0.25, k = 1,
hosts := sipg, r = 5 (h ≈ 4.86 · 10−1), α := 0.05, and no separate
geometry meshes. We visualize function values of un

b,h by colors
(according to the color bar that is shown) and show the graph
of un

s,h on Γh (employing a similar color scheme). The corre-
sponding fundamental mesh Th(ΩΦ) with ΩΦ := (−5.5, 5.5)2 is
depicted in black.

boundary. Both can be described using the level set domain ΩΦ := (−5.5, 5.5)2

and the level set function Φ that is defined by Φ(x) := |x| − 4.5.

We start with initial values ub(·, 0) ≡ 1.95 and us(·, 0) ≡ 0.2, which repre-
sent a stable, homogeneous steady state of the model. In the first period of
the simulation, we excite the system in order to enter an unstable, transient
steady state. We apply two stimuli by means of the data function kstimulus in

165



4. UDG schemes for bulk–surface PDEs on complex static geometries

Table 1.1, particularly setting

kstimulus(x, t) :=





2.4 if t < 20 and
∣∣x− (0, 4.5)tr∣∣ < 0.2,

2.0 if t < 20 and
∣∣x− (4.5, 0)tr∣∣ < 0.2,

0 otherwise.

After the stimuli are turned off at time t = 20, two waves emerge from the two
stimulus sites. These waves travel along the cell membrane Γ and eventually
merge. Mass conservation finally pins the system into a stable, polarized
steady state (cf. Giese, Eigel, Westerheide, Engwer and Klipp, 2015a).
The above behavior is perfectly reproduced by numerical solutions that

are obtained using our globally conservative Scheme 4.2.18 or its stabilized
analogue, i.e. Scheme 4.2.19. Figure 4.24 shows an example numerical solution
that is obtained using Scheme 4.2.19 with full gradient stabilization. The
choices hosts := sipg, α := 0.05 and the choice of the stabilization mechanism
were made arbitrarily in Figure 4.24. Without showing concrete evidence here
in this thesis, we would like to point out that essentially the same results
are obtained without stabilization or with normal penalty stabilization, with
hosts := swipg, and with other values of α.

Simulation: Simplified GOR model on real microscopy data

In our second simulation, we consider the simplified GOR model on a cell
geometry (Ω,Γ) in R2 which is given by the microscopy image shown in Fig-
ure 4.25a. To extract the cell Ω and its membrane Γ from this image, we
employ an image segmentation algorithm based on the level set framework,
such as the one that is introduced in (Chan and Vese, 1999, 2001). In the
course of this, we interpret the image as a function of gray values on the level
set domain ΩΦ, specifically choosing ΩΦ := (−2, 2)2. As a result, we obtain
the level set function Φ which is depicted in Figure 4.25c and the associated
geometry (Ω,Γ) shown in Figure 4.25b.
We start with initial values ub(·, 0) and us(·, 0) that are fields of log-normally

distributed random numbers (cf. Figure 4.27a). As a feature of the Turing-type
polarization mechanism of the GOR model and of its simplified variant which
we are considering here, the system’s homogeneous steady state is unstable
with respect to minute spatial perturbations (cf. Giese, Eigel, Westerheide,
Engwer and Klipp, 2015a). Given that our random initial values can be in-
terpreted as such, the system runs into a spatially inhomogeneous, polarized
steady state instead of running into the homogeneous steady state.
Again, the above behavior is perfectly reproduced by numerical solutions

that are obtained using our globally conservative Scheme 4.2.18 or its stabilized
analogue, i.e. Scheme 4.2.19. Figure 4.27 shows an example numerical solution
that is obtained using the unstabilized Scheme 4.2.18. As with the above
simulation for the WP model on a circular cell, the choices hosts := swipg,
α := 0.50 and the choice of using no stabilization were made arbitrarily in

166



4.3. Numerical results

(a) Microscopy image. (b) Extracted geometry. (c) Level set function Φ and its
level set Γ0 = Γ (depicted in
white).

Figure 4.25.: Part (a) shows a transmission electron microscopy image of a
two-dimensional slice of a yeast cell. To simplify working with
the microscopy image, it has been embedded in a square frame of
reference. Image (b) shows the extracted geometry (Ω,Γ) which
we use in our computations. The associated level set function is
shown in (c), together with its zero level set, which represents Γ.
The microscopy image depicted in (a) is reprinted by permission
from Genetics Society of America: Genetics (Rainey et al., 2010,
Figure S6), © 2010.

Figure 4.27. We do not show concrete evidence here in this thesis, but would
like to point out that essentially the same results are obtained with full gradient
stabilization, with hosts := sipg, and with other values of α.
Please note that we employ a relatively coarse fundamental mesh Th(ΩΦ)

in our simulation, while we use a geometry mesh Th (ΩΦ) that is fine enough
to obtain an accurate geometry reconstruction. Figure 4.26 illustrates the
discrete reconstruction (Ωh ,Γh ,Ωδ,h ) of the geometry and of the associated
narrow band Ωδ which we are using.

Numerical study: Evolution of masses

Working with the latter simulation for the simplified GOR model on real
microscopy data, we now investigate numerically how well conservation prop-
erties are reflected by the discrete systems which result from applying the fully
discrete schemes from Section 4.2.5. In particular, we compare Scheme 4.2.17
and Scheme 4.2.18 while performing α-refinement. Given a fundamental mesh
with a fixed h, we consider a sequence of values α→ 0 and observe the evolu-
tion of the amounts of the fully discrete system’s quantities. These are given
by mn

b,h :=
∫

Ωh
un
b,h dx, mn

s,h :=
∫

Γh
un
s,h|Γh dσ and mn

h = mn
b,h +mn

s,h, and are
masses in the model which we are considering.
Results for different values of α are depicted in Figure 4.28 and Figure 4.29.

These results reproduce what we have discussed and shown from a theoretical

167



4. UDG schemes for bulk–surface PDEs on complex static geometries

(a) Discrete reconstruction. (b) Local triangulations.

Figure 4.26.: Part (a) shows the discrete reconstruction (Ωh ,Γh ,Ωδ,h ) of the
geometry (Ω,Γ) in Figure 4.25b and of the associated narrow
band Ωδ with α := 0.50 which we use in our computations. Ωh ,
Γh and Ωδ,h are depicted in green, red and blue, respectively.
Part (b) illustrates the corresponding local triangulations Th (K)
that are solely used for numerical integration over the cut cells
K ∈ Th(Ωh ) ∪ Th(Ωδ,h ) and their faces E ⊂ ∂K, as discussed
at the end of Section 4.2.2. Large cells correspond to cut cells
for which no local triangulation is generated since they are cut
by neither Γh nor Ωδ,h and hence match full elements in the
Cartesian fundamental mesh Th(ΩΦ). Information on the mesh
widths h and h is given in Figure 4.27.

point of view in Section 4.2.3 and in Theorem 4.2.20. While Scheme 4.2.18 is
globally conservative, independent of the choice of α, global mass conservation
is achieved only approximatively using Scheme 4.2.17. This approximation is
the more accurate, the smaller we choose α. We note that the evolution in
Figure 4.28e almost equals the one in Figure 4.28f that has been obtained
using Scheme 4.2.18. Still, we obtain a total mass with a relative error of
magnitude 10−2, whereas a relative error near machine precision is achieved
using Scheme 4.2.18. In this context, it should be mentioned that parts of the
code which has been used to assemble the system of linear equations in each
step of Newton’s method uses numerical differentiation. Therefore, we can in
no way expect to achieve full machine precision.
We note that these differences between both schemes also affect the quality

of the discrete solutions which they produce. In case of the globally conserva-
tive Scheme 4.2.18, different values of α yield a qualitatively equal polarization
behavior, see Figure 4.28. The discrete system reaches a polarized steady state
at tn ≈ 600 for each α. On the contrary, qualitatively different polarization
behaviors are obtained using Scheme 4.2.17. As shown in Figure 4.28, the

168



4.3. Numerical results

(a) Numerical solution at discrete time tn = t0 = 0 (discrete initial values).

(b) Numerical solution at discrete time tn = t400 = 1000 =: T .

Figure 4.27.: Numerical solution
(
un
b,h, u

n
s,h

)
of the simplified GOR model on

the geometry that is shown in Figure 4.25b, obtained using
Scheme 4.2.18, time step size τ n := 2.5, k = 1, hosts := swipg,
r = 5 (h ≈ 1.77 · 10−1), α := 0.50, and a separate geometry
mesh with h = h/8. Left: Function values of un

s,h in the discrete
narrow band Ωδ,h , visualized by colors according to the color
bar that is shown. Right: Function values of un

b,h and graph of
un
s,h on Γh , visualized using a similar color scheme. Please see

Figure 4.25 for copyright information.

169



4. UDG schemes for bulk–surface PDEs on complex static geometries

0 200 400 600 800 1,000
0

10

20

30

40

tn

A
m

ou
nt

of
co

ns
er

ve
d

qu
an

tit
y

mn
b,h

mn
s,h

mn
h

(a) Scheme 4.2.17, α := 1.00.

0 200 400 600 800 1,000
0

10

20

30

40

tn

A
m

ou
nt

of
co

ns
er

ve
d

qu
an

tit
y

mn
b,h

mn
s,h

mn
h

(b) Scheme 4.2.18, α := 1.00.

0 200 400 600 800 1,000
0

10

20

30

40

tn

A
m

ou
nt

of
co

ns
er

ve
d

qu
an

tit
y

mn
b,h

mn
s,h

mn
h

(c) Scheme 4.2.17, α := 0.50.

0 200 400 600 800 1,000
0

10

20

30

40

tn

A
m

ou
nt

of
co

ns
er

ve
d

qu
an

tit
y

mn
b,h

mn
s,h

mn
h

(d) Scheme 4.2.18, α := 0.50.

0 200 400 600 800 1,000
0

10

20

30

40

tn

A
m

ou
nt

of
co

ns
er

ve
d

qu
an

tit
y

mn
b,h

mn
s,h

mn
h

(e) Scheme 4.2.17, α := 0.05.

0 200 400 600 800 1,000
0

10

20

30

40

tn

A
m

ou
nt

of
co

ns
er

ve
d

qu
an

tit
y

mn
b,h

mn
s,h

mn
h

(f) Scheme 4.2.18, α := 0.05.

Figure 4.28.: Comparison of the evolutions of masses that are obtained us-
ing different values of α and either Scheme 4.2.17 (left), which
conserves mass only approximately, or the globally conservative
Scheme 4.2.18 (right). The simulation that is performed is the
same as the one in Figure 4.27, with identical scheme parameters
except for α.

170



4.3. Numerical results

0 200 400 600 800 1,000

0

2

4

6

8

·10−2

tn

R
el

at
iv

e
er

ro
r

in
m

n h

∣∣mn
h − m0

h

∣∣/
∣∣m0

h

∣∣

(a) Scheme 4.2.17, α := 1.00.

0 200 400 600 800 1,000

0

2

4

6
·10−13

tn

R
el

at
iv

e
er

ro
r

in
m

n h

∣∣mn
h − m0

h

∣∣/
∣∣m0

h

∣∣

(b) Scheme 4.2.18, α := 1.00.

0 200 400 600 800 1,000

0

2

4

6

8

·10−2

tn

R
el

at
iv

e
er

ro
r

in
m

n h

∣∣mn
h − m0

h

∣∣/
∣∣m0

h

∣∣

(c) Scheme 4.2.17, α := 0.50.

0 200 400 600 800 1,000

0

2

4

6
·10−13

tn

R
el

at
iv

e
er

ro
r

in
m

n h

∣∣mn
h − m0

h

∣∣/
∣∣m0

h

∣∣

(d) Scheme 4.2.18, α := 0.50.

0 200 400 600 800 1,000

0

2

4

6

8

·10−2

tn

R
el

at
iv

e
er

ro
r

in
m

n h

∣∣mn
h − m0

h

∣∣/
∣∣m0

h

∣∣

(e) Scheme 4.2.17, α := 0.05.

0 200 400 600 800 1,000

0

2

4

6
·10−13

tn

R
el

at
iv

e
er

ro
r

in
m

n h

∣∣mn
h − m0

h

∣∣/
∣∣m0

h

∣∣

(f) Scheme 4.2.18, α := 0.05.

Figure 4.29.: Comparison of the evolutions of the relative error in total mass
mn
h that are obtained using different values of α and either

Scheme 4.2.17 (left), which conserves mass only approximately,
or the globally conservative Scheme 4.2.18 (right). The simula-
tion that is performed is the same as the one in Figure 4.27, with
identical scheme parameters except for α.

171



4. UDG schemes for bulk–surface PDEs on complex static geometries

discrete system reaches a polarized steady state at tn ≈ 400 in (a), at tn ≈ 800
in (c), and at tn ≈ 600 in (e).
Our study shows that recovering a model’s underlying conservation proper-

ties can be crucial in order to obtain reliable simulation results. If conservation
properties are known to be an essential ingredient of the given model, we
therefore recommend to avoid schemes like Scheme 4.2.17 and to use globally
conservative schemes instead, such as Scheme 4.2.18 or its stabilized analogue,
i.e. Scheme 4.2.19.

4.4. Discussion

In this chapter, we constructed and analyzed a new type of UDG schemes
for two example classes of bulk–surface models that comprise continuity equa-
tions on static geometries. These schemes are specially designed for mapping
properties of continuity equations, and for geometries of arbitrarily complex
shape that are represented using the level set framework. They particularly
build upon transferring the UDG method to PDEs on hypersurfaces.
As a first step, we introduced an extension process which exploits the level

set description of the geometry to obtain bulk extensions of the models’ surface
PDEs. Our particular approach yields extensions that allow for discretizations
which still recover discrete analogues to the original conservation properties
that are embedded in the considered type of surface continuity equations.
The properties of those extensions, e.g. the fact that they are based on narrow
bands which serve as surface extension domains, suggest numerical treatment
using geometrically unfitted methods for bulk PDEs, such as the UDGmethod.
As a second step, we applied the UDG method to perform spatial discretiza-

tion of the systems of coupled bulk PDEs resulting from the extension process.
The method generally provides all benefits of DG approaches. However, in our
particular setting, it inherently results in basic semidiscretizations and schemes
which suffer from the nature of all extension-based discretization methods for
surface PDEs. We developed a strategy which deals with this deficiency by re-
placing selected terms in the basic semidiscretizations and schemes by suitable
analogues that are known from sharp interface FEMs for surface PDEs, apply-
ing a proper scaling as well. In order to increase numerical robustness of the
resulting variants, we introduced mechanisms that stabilize the surface part of
the solution by penalizing variations of its normal component. We particularly
considered full gradient stabilization and normal penalty stabilization.
To obtain fully discrete schemes for time-dependent bulk–surface models,

we finally performed discretization in time by employing the backward Euler
method.
By investigating our approaches theoretically, we proved that they allow for

constructing globally conservative schemes. Similar to other DG approaches,
those schemes additionally recover discrete analogues to local conservation
properties that are embedded in models comprising continuity equations. Our

172



4.4. Discussion

theoretical investigations demonstrated that the latter also holds true for the
models’ surface PDEs. The hybrid nature of our way of dealing with surface
PDEs hence successfully remedies the shortcomings of pure extension-based
methods regarding the recovery of conservation properties. At the same time,
our approach stays as easily implementable2 as pure extension-based methods,
instead of posing the implementational difficulties which DG analogues to
genuine sharp interface FEMs would pose. Note that implementing such a DG
analogue would require evaluating fluxes over codimension 2 faces of elements
in the cut cell mesh Th(Ωh ).
Numerical investigation of our schemes indicated good convergence prop-

erties, as well as well-posedness and well-conditionedness of the correspond-
ing systems of algebraic equations that need to be solved. In particular, we
could observe optimal order convergence for k = 1 in the usual H1-norms and
L2-norms. Furthermore, we have shown that mechanisms which stabilize the
surface part of the solution by penalizing variations of its normal compo-
nent indeed increase numerical robustness. The two considered stabilization
mechanisms performed equally well in terms of errors and condition numbers.
Employing separate geometry meshes to obtain a geometry description which
is more accurate helped improving results that were obtained using coarse
fundamental meshes. Moreover, we demonstrated that employing host DG
formulations that are designed to handle equations with heterogeneous diffu-
sivity, such as the SWIPG formulation, helps improving the condition of the
resulting systems of algebraic equations. Last but not least, we were able to see
higher order convergence for k = 2 by combining stabilization of the surface
part of the solution with a geometry description which is more accurate.
By applying our schemes to nonlinear parabolic models for cell polarization,

we verified that they yield reasonable results in real-world applications and
that they are capable of replacing simulation frameworks like the one which has
been presented in Section 1.4. Those schemes that are globally conservative
produced reliable results that can help answering questions from cell biology.
A similar scheme which recovers conservation properties only approximatively
delivered results that are less reliable. We could show that the quality of these
results depends on the particular choice of a discretization parameter which
controls how well the scheme reflects conservation properties.

4.4.1. Future perspectives

More general classes of bulk–surface models on static geometries

Since the extension process from Section 4.2.1 is not limited to the diffusive sur-
face flux which we have chosen in this work, the approaches that are presented
in Section 4.2 can be applied to more general classes of bulk–surface models on
static geometries, particularly those which employ a different surface flux qs.
For instance, they can be applied to problems that incorporate conservative

2Provided that an implementation of the UDG method for bulk PDEs is available.

173



4. UDG schemes for bulk–surface PDEs on complex static geometries

transport in terms of advective bulk/surface fluxes that are intrinsic to Ω and
Γ, respectively. Naturally, for every particular choice of bulk/surface fluxes,
host DG formulations need to be employed that are adapted to the specific
needs of the resulting bulk PDEs.

Higher order time-stepping

In this work, we employ the backward Euler method to give a basic example
of how discretization in time can be performed and to ease discussing con-
servation properties of fully discrete solutions. While the numerical studies
in Section 4.3.2 show that backward Euler time-stepping allows for schemes
with good convergence properties, it is advisable, for reasons of efficiency, to
perform time-stepping using more advanced methods which achieve higher
order accuracy in time. Such methods are, for example, the second order
time integrator that is known as the implicit trapezoidal rule (and also called
Crank–Nicolson method by some authors), the second order time integrator
known as the implicit midpoint method, and other higher order members of the
family of Runge–Kutta methods (see e.g. Hairer et al., 2006, Section II.1.1).
The resulting schemes still recover fully discrete analogues to the model’s

underlying global conservation properties. Those analogues are similar to the
ones presented in Theorem 4.2.20. The same applies to the model’s underlying
local conservation properties.

Higher order geometry approximation

In our schemes, we employ piecewise (multi-)linear level set functions on ge-
ometry meshes to obtain discrete reconstructions Γh , Ωh and Ωδ,h (see Sec-
tion 4.2.2), and subsequently consider piecewise linear approximations of those
objects to perform numerical integration (see Section 4.2.2). In the numer-
ical convergence studies for polynomial degree k = 2 that were performed
in Section 4.3, we increased the accuracy of the geometry approximation by
constructing a separate geometry mesh which is finer than the fundamental
mesh, starting from the fundamental mesh and performing a fixed number of
additional uniform mesh refinements. Increasing the geometrical accuracy in
this way showed to be one of two essential ingredients for observing higher
order convergence.
It should be mentioned, however, that the number of refinements had to

be chosen large enough in each study to observe higher order convergence
throughout the parameter regime which we were considering. This is due to
the fact that the approximation quality of piecewise linear approximations is
only second order accurate (cf. Lehrenfeld, 2016; Engwer and Nüßing, 2017).
In computations with discrete spaces of polynomial degree k > 1, this low order
geometry approximation error asymptotically dominates the overall error with
respect to the width h of the fundamental mesh.

174



4.4. Discussion

This drawback can only be removed in an efficient manner by applying
approaches for higher order geometry approximation in geometrically unfitted
FEMs. Such an approach is introduced, e.g., in Lehrenfeld (2016). It is
also based on piecewise linear geometry approximations and can hence be
incorporated into our schemes with manageable effort. It effectively results in
an additional geometry mapping which needs to be taken into account similar
to the mappings in fitted isoparametric FEMs.
Nevertheless, we would like to emphasize that the concept which we are

using in this thesis to benefit from higher order convergence for polynomial
degree k > 1, i.e. employing piecewise linear geometry approximations based
on separate geometry meshes of sufficient precision, is sufficient if an exact
representation of the geometry is not available. This is the case, for instance,
if the geometry is given via imaging data. Here, the resolution of an image
determines the available level of geometric detail.

Alternative stabilization mechanisms for UDG discretizations of bulk PDEs

In Section 4.3, we investigated the convergence and conditioning properties
of the schemes which have been introduced in Section 4.2. However, we did
not analyze to what extent the condition of the resulting systems of algebraic
equations depends on the relative position of the bulk domain Ω in the level set
domain ΩΦ. Each relative position leads to a different cut cell configuration.
In cut cell methods, particularly those configurations which bring along small
cut cells are known to potentially be troublesome regarding the well-posedness
and well-conditionedness of the corresponding systems of algebraic equations,
cf. Section 1.3.2.
The implementation of the UDG method which we are using employs the

basis function rescaling technique that is analyzed in Engwer (2009, Section
5.2). Each basis function is rescaled according to the bounding box of its
associated cut cell so that all cut cells contribute to the algebraic equations
in a manner that is largely independent of their size. In addition to the
numerical studies that are performed in Section 4.3, it should be investigated
whether this technique is already sufficient to ensure that no ill-conditioned
or nearly singular system of algebraic equations arises from any particular cut
cell configuration.
Potential deficiencies of the current basis function rescaling technique should

be curable by using cell merging techniques, which associate very small cut
cells to a neighboring mesh element or to some cut cell that has a sufficiently
large intersection with the considered bulk domain (cf. Johansson and Larson,
2013; Heimann et al., 2013; Müller et al., 2017; Kummer, 2017; Kummer et al.,
2018), or by adding ghost penalties for UDG discretizations to the formulation.
The latter has only just been investigated in Massing and Gürkan (2018).

175



4. UDG schemes for bulk–surface PDEs on complex static geometries

Generating extended initial values and data functions for surface PDEs

The approaches presented in this chapter, particularly the extension process in
Section 4.2.1, result in fully discrete schemes for the class of parabolic model
problems (4.1) which employ extended initial values u0

s,h ∈ Vs,h(Ωδ,h ) and an
extended surface diffusivity tensor Dext

s living in the discrete narrow band Ωδ,h .
Schemes that are based on our approaches hence require generating suitable
extensions from initial values or from data functions of the surface part of a
problem, if those entities are defined only on the discrete reconstruction Γh of
the given hypersurface.
Motivated by approaches which construct normally constant extensions of

quantities (see e.g. Xu and Zhao, 2003, Section 2), we propose to compute
required extensions by performing a sharp interface L2-projection which is
stabilized using the normal penalty stabilization mechanism from Section 4.2.4,
i.e., we propose the following UDG scheme.

Scheme 4.4.1 (Stabilized sharp interface L2-projection). Given some data
f ∈ L2(Γh ), we seek a discrete function us,h ∈ Vs,h(Ωδ,h ), such that
∫

Γh

(
us,h

∣∣
Γh
− f

)
ϕs,h

∣∣
Γh

dσ + 1
δ
jnp
s (us,h, ϕs,h) = 0 ∀ϕs,h ∈ Vs,h(Ωδ,h ).

Here, Vs,h(Ωδ,h ) and jnp
s (us,h, ϕs,h) denote the discrete spaces that are defined

in Section 4.2.2 and the stabilization term that is defined in equation (4.33),
respectively. Regarding Vs,h(Ωδ,h ), we choose some polynomial degree k ∈ N

suitable for representing f in a discrete sense.

Please note that Scheme 4.4.1 is globally conservative in the sense that a
solution us,h satisfies

∫
Γh
us,h|Γh dσ =

∫
Γh
f dσ. It is hence a consistent tool

for the type of UDG schemes which has been developed in this chapter. It has
not yet been thoroughly investigated, though.

176



5. Toward unfitted DG schemes for
coupled bulk–surface PDEs on
evolving geometries

In this chapter, we show how the approaches from Chapter 4 can be extended
to obtain UDG schemes for bulk–surface models that comprise continuity
equations on evolving geometries. As a first step toward such schemes, we
address restricting the overall problem to the static geometry case and ad-
ditional transport problems by presenting an operator splitting approach for
evolving geometry problems. Combining this approach with suitable numeri-
cal schemes for the resulting subproblems yields overall schemes which recover
discrete analogues to conservation properties that are embedded in the con-
sidered type of continuity equations.
As a second step toward UDG schemes for evolving geometry bulk–surface

models, we construct and analyze a novel UDG scheme for an essential type of
continuity equations on evolving hypersurfaces, targeting hypersurfaces that
are represented using the level set framework. This scheme can be employed
to treat the surface equations in those transport problems which need to be
dealt with when applying the operator splitting approach mentioned above.
Although surface equations are rewritten by exploiting the level set description
of the geometry in a way similar to the extension process in Section 4.2.1, the
scheme is specially designed for recovering discrete analogues to the surface
equations’ original conservation properties. We show promising first numerical
results for a selected geometrical special case. These results are complemented
by discussing limitations of the proposed formulation of the scheme, which
need to be overcome to obtain a scheme which is generally usable.
We begin in Section 5.1 by deriving a class of bulk–surface models that

will serve as an example in this chapter, and by discussing its associated con-
servation properties. The operator splitting approach for evolving geometry
problems is introduced in Section 5.2. It is illustrated by constructing one
first order operator splitting method and one second order operator splitting
method for our example class of model problems. We examine how these
methods affect conservation properties and we discuss numerical schemes that
are suitable to treat the resulting subproblems. Section 5.3 focusses on our
new UDG scheme which can be employed to handle surface equations in those
subproblems which deal with material transport. Step by step, we derive an
approximate reformulation of surface equations as sequences of stationary bulk

177



5. Toward UDG schemes for bulk–surface PDEs on evolving geometries

advection problems, and we describe the actual UDG discretization which is
applied on top. Subsequently, we investigate the resulting scheme from a the-
oretical point of view, mainly considering a one-dimensional setting, and we
illustrate its practical performance by first numerical results. In Section 5.4,
we summarize our findings and discuss future perspectives.
The material in Section 5.3 is joint work with Christian Engwer (WWU

Münster) and Thomas Ranner (University of Leeds). To a large extent, it has
been published in the Proceedings of the conference ALGORITMY 2016, see
Engwer, Ranner and Westerheide (2016).

5.1. A class of evolving geometry model problems

To present and investigate the ideas that are developed in this chapter, we con-
sider the class of bulk–surface models from Section 1.2 on some given evolving
geometry. This geometry is assumed to be represented by means of the level
set framework that has been described in Section 3.3. In this light, let us
briefly recall the entities of the setting from Section 1.2 and the entities of the
level set framework. Both will be used throughout this chapter.
Let Ω(t) be an evolving bulk domain in Rd which is bounded by an evolv-

ing, potentially complex-shaped, smooth (d−1)-dimensional hypersurface Γ(t).
Given an observation period [0, T ], let both be represented by a time-depen-
dent level set function Φ: cl (ΩΦ)× [0, T ]→ R which is defined on the closure
of some larger, static bulk domain ΩΦ ⊂ Rd that contains Ω(t) ∪ Γ(t) at each
fixed time t. Moreover, let ν(·, t) : Γ(t) → Rd denote the field of outward-
pointing unit normal vectors to Γ(t) and let v(·, t) : Ω(t) ∪ Γ(t) → Rd be a
field which describes the material velocity of Ω(t) ∪ Γ(t). As defined in Sec-
tion 3.3, let Γl(t), ∂Γl(t) and cl

(
Γl(t)

)
with l ∈ R be the level sets of Φ,

their boundaries and their closures, respectively, and assume Γ(t) = Γ0(t).
Furthermore, let the fields ub(·, t) : Ω(t) → R and us(·, t) : Γ(t) → R denote
the concentrations of a scalar bulk quantity in Ω(t) and a surface-bound scalar
quantity on Γ(t), let Db and Ds be bulk and surface diffusivity tensors, and
let fb(ub), fs(us), fb,s(ub, us) and fs,b(ub, us) be source/sink densities in Ω(t)
or on Γ(t), respectively.

5.1.1. Reminder and derivation

The class of model problems which we consider in this chapter is the class of
bulk–surface models that has been introduced and discussed in Section 1.2.
Given some initial values ub(·, 0) and us(·, 0), we seek ub(·, t) : Ω(t) → R and
us(·, t) : Γ(t)→ R with

∂tub +∇ · (ubv)−∇ · (Db∇ub) = fb(ub) in Ω(t), (5.1a)
−Db∇ub · ν = −fb,s(ub, us) on Γ(t), (5.1b)

∂•us + us(∇Γ · v)−∇Γ · (Ds∇Γus) = fs,b(ub, us) + fs(us) on Γ(t). (5.1c)

178



5.1. A class of evolving geometry model problems

For details on these equations and their components, please refer to the ex-
planations on equations (1.8).

A corresponding class of parabolic model problems that exactly matches
the static geometry special case v ≡ 0 of the above class of evolving geometry
model problems was introduced and derived in a mathematically rigorous way
in Section 4.1.1. Model equations of the form (5.1) can be derived completely
analogously using the theory which has been discussed in Section 3.1. They
particularly develop from the theory in Section 3.1.1, choosing M(t) := Γ(t)
and vM(·, t) := v(·, t)

∣∣
Γ(t), and arise directly from the theory in Section 3.1.2.

More precisely, we get continuity equation (5.1c) for the surface-bound quan-
tity with concentration us by choosing the tangential diffusive surface flux
qs := −Ds∇Γus according to Fick’s first law of diffusion, and by choosing
the source/sink density gs := fs,b(ub, us) + fs(us). Choosing the diffusive
flux qb := −Db∇ub and the source/sink density gb := fb(ub) for the bulk
quantity with concentration ub leads to continuity equation (5.1a). Further-
more, seeking a particular solution whose bulk quantity satisfies the outflux
qb · ν = −fb,s(ub, us) on the boundary of Ω(t) corresponds to supplementing
continuity equation (5.1a) with boundary condition (5.1b).

As with the derivation in Section 4.1.1, the above derivation by means of
the theory from Section 3.1 reveals that continuity equations (5.1a) and (5.1c)
represent underlying equivalent conservation laws. Holding for arbitrary por-
tions R(t) ⊆ Ω(t) and M(t) ⊆ Γ(t) which move with the material velocity v,
those conservation laws can be formulated as

d
dt

∫

R(t)
ub dx =

∫

∂R(t)
Db∇ub · n∂R(t) dσ +

∫

R(t)
fb(ub) dx, (5.2a)

d
dt

∫

M(t)
us dσ =

∫

∂M(t)
Ds∇Γus · µ∂M(t) dς +

∫

M(t)
fs,b(ub, us) + fs(us) dσ,

(5.2b)

(cf. equation (3.3) and equation (3.1), respectively). Since R(t) := Ω(t) and
M(t) := Γ(t) are admissible choices and since ∂Γ(t) = ∅, those conservation
laws and boundary condition (5.1b) imply that solutions (ub, us) of model
problems from class (5.1) satisfy global conservation properties

d
dt

∫

Ω(t)
ub dx =

∫

Γ(t)
fb,s(ub, us) dσ +

∫

Ω(t)
fb(ub) dx, (5.3a)

d
dt

∫

Γ(t)
us dσ =

∫

Γ(t)
fs,b(ub, us) dσ +

∫

Γ(t)
fs(us) dσ. (5.3b)

Therefore, the derivative of the total amount

m(t) :=
∫

Ω(t)
ub dx+

∫

Γ(t)
us dσ

179



5. Toward UDG schemes for bulk–surface PDEs on evolving geometries

of the system’s quantities fulfills

d
dt m(t) =

∫

Γ(t)
fb,s(ub, us) + fs,b(ub, us) dσ

+
∫

Ω(t)
fb(ub) dx+

∫

Γ(t)
fs(us) dσ. (5.4)

Note that properties (5.3) and (5.4) generalize global conservation properties
(4.3) and (4.4), respectively. The latter hold in the static geometry special
case v ≡ 0. Again, the value m(t) is an invariant with respect to time if the
model parameters are chosen accordingly, e.g., for models with fb ≡ 0, fs ≡ 0
and fb,s = −fs,b.

5.2. Simplifying the problem using operator splitting

Treating evolving geometry problems directly can be quite demanding, given
the challenges which have been discussed in Section 1.5. As general approaches
to developing efficient numerical schemes for unwieldy initial–boundary value
problems or initial value problems, several concepts for constructing operator
splitting methods have been introduced in the literature, see e.g. Hundsdor-
fer and Verwer (2003, Section IV.1) and Maday et al. (1990). Based on an
arbitrary but fixed operator splitting, these concepts decompose the problem
into a sequence of simpler subproblems that can be treated individually using
efficient, problem-specific numerical schemes.
Operator splittings for initial–boundary value problems can be divided into

two classes. Differential operator splittings decouple different physical ef-
fects in the undiscretized problem by splitting spatial differential operators.
Algebraic operator splittings split discrete operators resulting from semidis-
cretization of spatial differential operators. For further details on these two
techniques, we refer to Kuzmin and Hamalainen (2014, Section 8.2.1). In
both cases, often the same concepts for constructing operator splitting meth-
ods can be applied, with an error analysis that uses the same arguments, see
e.g. Jahnke and Lubich (2000).

5.2.1. Operator splitting for PDEs on evolving geometries

To deal with problems that model conserved bulk/surface quantities on an
evolving geometry, such as the class of problems (5.1), we propose a new
family of 2-term differential operator splittings. It is based on the following
observation.
Mathematical modeling which leads to the class of problems (5.1) features

two distinguished physical effects. On the one hand, we have plain conser-
vation of a bulk/surface quantity on an evolving geometry, i.e. conservative
material transport which is driven by the geometrical evolution. On the other

180



5.2. Simplifying the problem using operator splitting

hand, we have additional processes which also conserve these quantities, par-
ticularly diffusive bulk/surface fluxes as well as reactive processes. The above
derivation of equations (5.1) by means of the theory in Section 3.1 shows
that plain conservation on the evolving geometry corresponds to the advective
terms in the equations. See Section 1.1.2 for supplementary information.
Motivated by the origin of those advective terms, the idea of the family of

differential operator splittings which we propose is to split into corresponding
advection operators and remaining operators, analogous to classical differential
operator splitting of advection and diffusion operators for equations in static
bulk domains. Together with a concept for constructing operator splitting
methods that is suitable for differential operator splittings, this decomposes
the considered class of problems into two types of subproblems.
The first type of subproblems comprises the plainest possible continuity

equations which can be formulated on evolving geometries, namely advection
equations accounting for conservative material transport driven by geometrical
evolution, cf. Section 1.1.2. It is a well-posed problem type without the need
for any boundary condition. The second type of subproblems matches the
static geometry special case v ≡ 0 of the given evolving geometry problem,
i.e. it consists of bulk PDEs and surface PDEs on static geometries and the
problem’s original boundary conditions.
Considering the class of evolving geometry model problems (5.1), the con-

servative transport problems which make up the first type of subproblems take
the form

∀t ∈
(
told, tnew] :

{
∂tub +∇ · (ubv) = 0 in Ω(t),

∂•us + us(∇Γ · v) = 0 on Γ(t).
(5.5)

Here, the time interval
[
told, tnew] is a parameter that takes different values.

These values depend on the specific operator splitting method which is applied
and will be specified later on. The second type of subproblems matches the
class of parabolic model problems from Section 4.1.1. Given again some time
interval

[
told, tnew] and given the geometry at some time tgeo, we need to

consider coupled, static geometry bulk–surface PDEs of the form

∂tub −∇ · (Db∇ub) = fb(ub)
−Db∇ub · ν = −fb,s(ub, us)

∂tus −∇Γ · (Ds∇Γus) = fs,b(ub, us) + fs(us)

in Ω
(
tgeo)×

(
told, tnew],

on Γ
(
tgeo)×

(
told, tnew],

on Γ
(
tgeo)×

(
told, tnew].

(5.6)

Instead of having to treat an evolving geometry problem directly, the pro-
posed operator splitting hence allows for dealing with the corresponding type
of static geometry problems and an additional type of transport problems.
Next, we look at particular sequences of subproblems which result in suitable
approximations of solutions to the original evolving geometry problem.

181



5. Toward UDG schemes for bulk–surface PDEs on evolving geometries

solution
variables

(
un−1
b , un−1

s

) (
u

n,(I)
b , u

n,(I)
s

) (
un
b , u

n
s

)

geometries
(
Ω,Γ

)
(tn−1)

(
Ω,Γ

)
(tn )

(
Ω,Γ

)
(tn )

full step
of (5.5)

full step
of (5.6)

(a) One step of the first order operator splitting method (Lie–Trotter splitting).

solution
variables

(
un−1
b , un−1

s

) (
u

n,(I)
b , u

n,(I)
s

) (
u

n,(II)
b , u

n,(II)
s

) (
un
b , u

n
s

)

geometries
(
Ω,Γ

)
(tn−1)

(
Ω,Γ

)
(tn−1/2)

(
Ω,Γ

)
(tn−1/2)

(
Ω,Γ

)
(tn )

half step
of (5.5)

full step
of (5.6)

half step
of (5.5)

(b) One step of the second order operator splitting method (Strang splitting).

Figure 5.1.: Illustrations of the two operator splitting methods for PDEs on
evolving geometries which are proposed in Section 5.2.2. To
shorten notation, we write

(
Ω,Γ

)
(tgeo) :=

(
Ω(tgeo),Γ(tgeo)

)
in

both illustrations.

5.2.2. Specific operator splitting methods for PDEs on evolving geometries

The basic concept of operator splitting methods is the same as with time-
stepping schemes. Time is discretized by dividing the considered observation
period [0, T ] into subintervals

[
tn−1, tn

]
of length τ n := tn−tn−1, n = 1, . . . , N ,

with t0 = 0, tN = T and tn > tn−1 for n = 1, . . . , N . On this basis, every
specific operator splitting method performs a sequence of N steps. In the
n-th step, the method yields an approximation

(
un
b , u

n
s

)
of the solution pair

evaluated at t = tn . Each step comprises several stages, at least one stage for
each type of subproblems. The sequence of stages corresponds to a certain
combination of subproblems. Solving those subproblems one after another
introduces an error known as splitting error, which can be estimated by some
power of the corresponding step size τ n .

A first order operator splitting method

The most basic operator splitting method we propose results from applying the
operator splitting from Section 5.2.1, together with the common concept for
constructing first order operator splitting methods which is abstractly known
as Lie–Trotter splitting. The latter stems back to Trotter (1959). We obtain
a method whose steps comprise two stages, precisely one stage for each type
of subproblems. In both stages, the respective subproblem that needs to be
solved uses the full step size. In the course of this, the order of dealing with
subproblem types can be chosen arbitrarily. To present the method in detail,
we just fix one specific order.

182



5.2. Simplifying the problem using operator splitting

In particular, considering the class of evolving geometry model problems
(5.1) and the step that is associated with the time interval

[
tn−1, tn

]
, the first

stage can be described as

(I)





choose initial values
{
ub
(
·, tn−1) := un−1

b in Ω
(
tn−1),

us
(
·, tn−1) := un−1

s on Γ
(
tn−1),

solve (5.5) choosing told := tn−1 and tnew := tn ,

set
{
u

n,(I)
b := ub(·, tn ) in Ω(tn ),
un,(I)
s := us(·, tn ) on Γ(tn ).

This stage deals with conservative material transport between static geome-
tries

(
Ω(tn−1),Γ(tn−1)

)
and

(
Ω(tn ),Γ(tn )

)
. The second stage deals with the

model’s remaining processes. It can be described as

(II)





choose initial values
{
ub
(
·, tn−1) := u

n,(I)
b in Ω(tn ),

us
(
·, tn−1) := un,(I)

s on Γ(tn ),
solve (5.6) choosing tgeo := tn , told := tn−1 and tnew := tn ,

set
{
un
b := ub(·, tn ) in Ω(tn ),
un
s := us(·, tn ) on Γ(tn ).

The interplay of both stages is illustrated in Figure 5.1a.
Motivated by a formal error analysis of the Lie–Trotter splitting concept

(see e.g. Hundsdorfer and Verwer, 2003, Section IV.1.1 and Section IV.1.4),
we expect the splitting error with respect to the maximum step size to be of
order 1.

A second order operator splitting method

By applying the operator splitting from Section 5.2.1 together with a con-
cept for constructing operator splitting methods which is abstractly known as
Strang splitting, since its basic idea dates back to Strang (1968), we obtain
an advanced operator splitting method which is expected to be second order
accurate (cf. Jahnke and Lubich, 2000). The resulting method performs steps
comprising three stages, the first and third of which deal with the same type
of subproblems. The second stage deals with the other type of subproblems.
Just as with the first order operator splitting method above, the subproblem
in the second stage uses the full step size, whereas the subproblems in the first
stage and in the third stage only use half the step size, respectively. As long
as both stages with half steps target the same subproblem type, the order of
dealing with subproblem types can be chosen arbitrarily. Next, we fix one
specific order to present details.
Again, we particularly consider the class of evolving geometry model prob-

183



5. Toward UDG schemes for bulk–surface PDEs on evolving geometries

lems (5.1) and the step that is associated with the time interval
[
tn−1, tn

]
.

The method’s first stage performs one half step of conservative material trans-
port that is solely driven by geometrical evolution. Defining a fractional time
tn−1/2 := tn−1 + 1

2τ
n which corresponds to the midpoint of the considered time

interval, it can be described as

(I)





choose initial values
{
ub
(
·, tn−1) := un−1

b in Ω
(
tn−1),

us
(
·, tn−1) := un−1

s on Γ
(
tn−1),

solve (5.5) choosing told := tn−1 and tnew := tn−1/2,

set
{
u

n,(I)
b := ub

(
·, tn−1/2) in Ω

(
tn−1/2),

un,(I)
s := us

(
·, tn−1/2) on Γ

(
tn−1/2).

Here, material is transported between two static geometries
(
Ω(tn−1),Γ(tn−1)

)

and
(
Ω(tn−1/2),Γ(tn−1/2)

)
. Fixing the latter geometry, the second stage of

the method performs one full step which deals with the model’s remaining
processes. It can be described as

(II)





choose initial values
{
ub
(
·, tn−1) := u

n,(I)
b in Ω

(
tn−1/2),

us
(
·, tn−1) := un,(I)

s on Γ
(
tn−1/2),

solve (5.6) choosing tgeo := tn−1/2, told := tn−1 and tnew := tn ,

set
{
u

n,(II)
b := ub(·, tn ) in Ω

(
tn−1/2),

un,(II)
s := us(·, tn ) on Γ

(
tn−1/2).

In the method’s third stage, material is finally transported between two static
geometries

(
Ω(tn−1/2),Γ(tn−1/2)

)
and

(
Ω(tn ),Γ(tn )

)
by performing another

half step of conservative transport which is solely driven by geometrical evo-
lution:

(III)





choose initial values
{
ub
(
·, tn−1/2) := u

n,(II)
b in Ω

(
tn−1/2),

us
(
·, tn−1/2) := un,(II)

s on Γ
(
tn−1/2),

solve (5.5) choosing told := tn−1/2 and tnew := tn ,

set
{
un
b := ub(·, tn ) in Ω(tn ),
un
s := us(·, tn ) on Γ(tn ).

The interplay of those stages is illustrated in Figure 5.1b.

Global conservation properties

Next, we examine how global conservation properties are reflected by the two
operator splitting methods proposed above. As usual, we consider our class

184



5.2. Simplifying the problem using operator splitting

of evolving geometry model problems (5.1) and the corresponding types of
subproblems as an example for this purpose.
Solutions to subproblems of type (5.5) fulfill global conservation properties

d
dt

∫

Ω(t)
ub dx = 0 ∀t ∈

(
told, tnew], (5.7a)

d
dt

∫

Γ(t)
us dσ = 0 ∀t ∈

(
told, tnew]. (5.7b)

They follow from equations (5.3) since the type of subproblems corresponds
to the special case

Db ≡ 0, fb,s(ub, us) ≡ 0, fb(ub) ≡ 0,
Ds ≡ 0, fs,b(ub, us) ≡ 0, fs(us) ≡ 0,

of the class of evolving geometry model problems (5.1). In addition, recalling
that subproblems of type (5.6) are members of the class of parabolic model
problems from Section 4.1.1, solutions to subproblems of type (5.6) bring along
global conservation properties

d
dt

∫

Ω(tgeo)
ub dx =

∫

Γ(tgeo)
fb,s(ub, us) dσ +

∫

Ω(tgeo)
fb(ub) dx, (5.8a)

d
dt

∫

Γ(tgeo)
us dσ =

∫

Γ(tgeo)
fs,b(ub, us) dσ +

∫

Γ(tgeo)
fs(us) dσ, (5.8b)

which hold for all t ∈
(
told, tnew], cf. equations (4.3). If subproblems of both

types are solved using numerical schemes which recover discrete analogues
to global conservation properties (5.7) and (5.8), respectively, our operator
splitting methods recover discrete analogues to conservation properties (5.3)
and (5.4).
The latter statement is not hard to verify. Let us particularly consider

the first order operator splitting method, for instance, and the step that is
associated with the time interval

[
tn−1, tn

]
. Provided that the scheme dealing

with the subproblem in the first stage yields discrete analogues to properties
(5.7), those discrete analogues usually are of the form

∫

Ωh (tn )
u

n,(I)
b,h dx =

∫

Ωh (tn−1)
un−1
b,h dx,

∫

Γh (tn )
u

n,(I)
s,h dσ =

∫

Γh (tn−1)
un−1
s,h dσ,

since they are supposed to account for the fact that the amounts of the contin-
uous system’s quantities remain constant over time. Moreover, it is reasonable
to assume that, if the scheme which deals with the subproblem in the second

185



5. Toward UDG schemes for bulk–surface PDEs on evolving geometries

stage yields discrete analogues to properties (5.8), those discrete analogues are
similar to
∫

Ωh (tn )
un
b,h dx =

∫

Ωh (tn )
u

n,(I)
b,h dx

+ τ n
(∫

Γh (tn )
f n
b,s

(
un
b,h, u

n
s,h

)
dσ +

∫

Ωh (tn )
f n
b

(
un
b,h

)
dx
)
,

∫

Γh (tn )
un
s,h dσ =

∫

Γh (tn )
u

n,(I)
s,h dσ + τ n

∫

Γh (tn )
f n
s,b

(
un
b,h, u

n
s,h

)
+ f n

s

(
un
s,h

)
dσ,

cf. Theorem 4.2.20. In the case which we are interested in, the first order
operator splitting method hence recovers equations similar to
∫

Ωh (tn )
un
b,h dx =

∫

Ωh (tn−1)
un−1
b,h dx,

+ τ n
(∫

Γh (tn )
f n
b,s

(
un
b,h, u

n
s,h

)
dσ +

∫

Ωh (tn )
f n
b

(
un
b,h

)
dx
)
,

∫

Γh (tn )
un
s,h dσ =

∫

Γh (tn−1)
un−1
s,h dσ,+τ n

∫

Γh (tn )
f n
s,b

(
un
b,h, u

n
s,h

)
+ f n

s

(
un
s,h

)
dσ.

The latter equations are indeed discrete analogues to properties (5.3), and can
be combined into a discrete analogue to property (5.4). Note that it is possible
to proceed similarly for the second order operator splitting method which is
proposed above.

5.2.3. Related splitting approaches

Various splitting approaches for treating problems that comprise PDEs on
evolving geometries have been discussed in the literature so far. To the best
knowledge of the author of this thesis, those splitting approaches are different
from the operator splitting approach which is proposed above. However, many
of them show features that are similar to those of the proposed approach, such
as keeping the geometry fixed during selected splitting stages, or being based
on some differential operator splitting.
For instance, splitting approaches can be found in the literature that employ

a fixed geometry during whole time steps. While keeping the geometry fixed
during each full time step, the result is extrapolated to the next geometrical
setup to obtain initial values for the next time step. A splitting approach of
this kind is investigated by Kummer et al. (2018). Their study shows that
the approach does not perform well in the context of UDG discretizations
of problems which comprise continuity equations with moving interfaces that
partition a static bulk domain into two evolving subdomains. In this context,
it should be mentioned that extrapolating solution variables between time
steps does not account for the fact that geometrical evolution actually drives

186



5.2. Simplifying the problem using operator splitting

material transport. Performing geometrical evolution together with extrapola-
tion instead of real material transport impedes obtaining conservative schemes
and, as observed in Kummer et al. (2018), it calls for extremely small time
steps. Splitting approaches of this kind are fundamentally different from the
approach which we are proposing, given that the design of the latter allows
for globally conservative methods.
Another example can be found in Heimann et al. (2013). Here, an operator

splitting approach is employed to develop a UDG method for incompressible
Navier–Stokes two-phase flow. In this method, the Strang splitting concept is
also applied to a differential operator splitting. Unlike the differential operator
splitting from Section 5.2.1, the latter does not target conservative material
transport driven by geometrical evolution, but rather focusses on allowing for
an individual numerical treatment of level set transport for interface movement
and of the instationary Navier–Stokes equations.

5.2.4. Treating the resulting subproblems

As advertised, each subproblem type which arises in our operator splitting
approach can be treated with a specialized numerical scheme. Henceforth, we
refer to such schemes as subproblem schemes. Each subproblem scheme should
meet two different kinds of requirements. On the one hand, the order of the
specific operator splitting method which is employed calls for a subproblem
scheme with certain convergence properties. On the other hand, the scheme
needs to deal with the given subproblem type in an adequate manner. The first
requirement is considered next, adequate schemes for the types of subproblems
associated with our class of evolving geometry model problems (5.1) will be
discussed further down below.
Focussing on the first order operator splitting method, subproblem schemes

can be considered as having suitable convergence properties if they are first
order accurate with respect to time. In this case, the resulting overall scheme
is expected to yield discretization errors of order 1 with respect to time.
Considering the second order operator splitting method, each subproblem

scheme needs to be at least second order accurate with respect to time to
benefit from the higher order splitting error of the method. Otherwise the
lower order accuracy of a subproblem scheme will dominate discretization
errors of the overall scheme. Conversely, if higher order subproblem schemes
are used, the second order splitting error of the second order operator splitting
method will dominate overall discretization errors with respect to time. For
the second order operator splitting method, it is thus sufficient to employ
subproblem schemes that are exactly second order accurate with respect to
time.

187



5. Toward UDG schemes for bulk–surface PDEs on evolving geometries

Treating static geometry subproblems

Subproblems of type (5.6) can be solved, in particular, using the UDG schemes
for bulk–surface models on static geometries which we developed in Chapter 4.
These schemes are globally conservative according to Theorem 4.2.20. As we
have seen in Section 5.2.2, they are hence suitable for obtaining overall schemes
that recover discrete analogues to global conservation properties.
In case of the second order operator splitting method, the backward Euler

time-stepping which is employed by our UDG schemes should be replaced
by some suitable second order time integrator, such as the implicit midpoint
method (see e.g. Hairer et al., 2006, Section I.1.2 and Section II.1.1).

Treating subproblems which deal with conservative material transport

Next, we want to consider conservative numerical schemes for treating the
conservative material transport problems of type (5.5). As motivated in Sec-
tions 1.5 and 1.6, we deliberately aim at UDG schemes.
Our splitting approach successfully reduces the complexity of the transport

problem, such that the material velocity material velocity v of Ω(t) ∪ Γ(t)
is the only data term remaining. Therefore, both equations in (5.5) can be
treated independently of each other, provided that v does not depend on the
solution pair (ub, us). This applies if v is an externally given field.
For the bulk advection equation in (5.5) the characteristic–Galerkin method

by Pironneau et al. (1992) can be employed. It was designed for the more
general class of advection–diffusion equations with evolving bulk domains.
Performing advective transport along the characteristics, the method yields
unconditionally stable schemes which do not require stabilization mechanisms
such as upwinding. The essential part of the method, the discretization in
time, can be combined with a UDG discretization in space. By default, the
method unfortunately does not result in schemes which recover discrete ana-
logues to conservation properties that are embedded in the considered type of
continuity equations. However, it is claimed in Pironneau et al. (1992) that
the method allows for conservative modifications. Recently, the essential idea
of the characteristic–Galerkin method was combined with a piecewise linear
cutFEM for surface PDEs (sharp interface FEM) to treat advection–diffusion
equations on an evolving hypersurface (Hansbo et al., 2015).
The surface advection equation in subproblems of type (5.5) can be treated

by extending the equation to some evolving bulk domain which contains the
evolving hypersurface Γ(t), and by subsequently applying a method for bulk
advection equations. In this way, the same method can be used for both types
of advection equations in (5.5). We emphasize that Theorem 2.6.3 allows for an
extension process analogous to the one which we introduced in Section 4.2.1.
In particular, an evolving narrow band around Γ(t) can be chosen as a surface
extension domain. It is possible to combine this choice with the ideas which
yield conservative and stable UDG schemes in Section 4.2.

188



5.3. UDG for essential continuity equations on evolving hypersurfaces

In the next section, we introduce a new kind of conservative UDG scheme
for the surface advection equation in subproblems of type (5.5). Similar to the
extension process which is described above, this scheme is based on a strategy
which allows for treating the surface equation using methods for bulk advection
equations. As opposed to the extension process, the surface equation is not
rewritten by means of Theorem 2.6.3 and extended afterwards. Still, the basis
of our scheme is comparable with the extension process in the sense that the
level set description of the geometry is exploited to reformulate the surface
equation in terms of equations with bulk advection terms.

5.3. An unfitted DG scheme for an essential type of continuity
equations on evolving hypersurfaces

Keeping in mind the operator splitting methods introduced in Section 5.2.2,
in the following, we focus on the surface part of those stages which deal with
conservative material transport driven by geometrical evolution. In particular,
we consider the surface advection equation in subproblems of type (5.5). Given
some time interval

[
told, tnew] and initial values us

(
·, told), we wish to find a

time-dependent surface field us(·, t) : Γ(t)→ R with

∀t ∈
(
told, tnew] : ∂•us + us(∇Γ · vs) = 0 on Γ(t), (5.9)

where we write vs := v|Γ(t) for the material velocity of Γ(t) to clarify notation.
The scheme which we propose is based on performing discretization in time,

reformulating each time step in an approximate manner as a stationary bulk
advection problem with singular source and sink terms, and applying the UDG
method to this problem. In the course of this, a static computational mesh
can be used which does not explicitly track the evolving hypersurface.
Without loss of generality, we restrict the following considerations to one

single time step of size τ := tnew − told. Recalling the operator splitting
methods from Section 5.2.2 in this light, this setting corresponds to the one
which is usually found in operator splitting methods, if no substepping is used
to deal with the subproblems that arise in each step of such methods.

5.3.1. Approximate reformulation of surface equations

We begin by reformulating the given problem in an exact manner. Proceeding
formally, we multiply problem (5.9) by a smooth test function ϕs : ΩΦ → R,
integrate over Γ(t) for t ∈

[
told, tnew] and apply the transport relation from

Section 2.6 (Theorem 2.6.2) to see the weak formulation

d
dt

(∫

Γ(t)
us ϕs dσ

)
−
∫

Γ(t)
us ∂

•ϕs dσ = 0.

189



5. Toward UDG schemes for bulk–surface PDEs on evolving geometries

t

Γold

Γnew ΓnewΓold

D

Figure 5.2.: A circle which is translated with a horizontal velocity in the time
step associated with [told, tnew]. Left: Projection of the space–time
representation to spatial-only coordinates. Right: The resulting
static bulk domain D in detail. Note that a time step with a large
time step size τ is illustrated.

Since the test function ϕs does not depend on time, we have ∂•ϕs = vs · ∇ϕs
in the second integral. Integrating in time over the considered time interval
[told, tnew] subsequently yields
∫

Γ(tnew)
us(·, tnew)ϕs dσ −

∫

Γ(told)
us(·, told)ϕs dσ

−
∫ tnew

told

(∫

Γ(t)
usvs · ∇ϕs dσ

)
dt = 0. (5.10)

Our approximate reformulation of problem (5.9) is based on approximating
the space–time integral in the third term of equation (5.10) by a properly
scaled integral over the static bulk domain

D := int
(⋃

t∈[told,tnew]
Γ(t)

)
⊂ Rd, (5.11)

while searching for a bulk field uext
s : D → R that is an extension of some

approximation of the surface field us(·, tnew) which we are interested in. The
static bulk domain D results from projecting the space–time representation

⋃
t∈[told,tnew]

Γ(t)× {t} ⊂ Rd+1

of the evolving hypersurface Γ(t) to spatial-only coordinates and considering
the interior of the resulting set in Rd. Examples of possible geometrical setups
are shown in Figure 5.2 and Figure 5.3.
Employing the right-hand rectangle method to approximate the outer inte-

gral in the third term of equation (5.10) as with backward Euler time-stepping,

190



5.3. UDG for essential continuity equations on evolving hypersurfaces

t

Γold

Γnew

Γold

Γnew

D

Figure 5.3.: A circle which is shrinking with a velocity that points in nor-
mal direction in the time step which is associated with [told, tnew].
Left: Projection of the space–time representation to spatial-only
coordinates. Right: The resulting static bulk domain D in detail.

we have

−
∫ tnew

told

(∫

Γ(t)
usvs · ∇ϕs dσ

)
dt ≈ −τ

∫

Γ(tnew)
usvs · ∇ϕs dσ. (5.12)

This approximation is reasonable if we assume that the time step size τ is
small. If the time step size is small, it is also reasonable to assume that the
value γ := γ−+γ+ ∈ R with γ− := − infD Φ(·, tnew) and γ+ := supD Φ(·, tnew)
is small. Note that γ corresponds to the travel distance of an individual point
on the surface if the material velocity vs is constant and Φ is a signed distance
function, i.e. if |∇Φ| ≡ 1. Assuming that γ is indeed small, we approximate
the surface integral on the right-hand side of equation (5.12) using the level
sets Γl(tnew) := {x ∈ D | Φ(x, tnew) = l} of Φ(·, tnew)

∣∣
D

and apply the coarea
formula (see e.g. Federer, 1959, Theorem 3.1). This gives

−τ
∫

Γ(tnew)
usvs · ∇ϕs dσ ≈ − τ

γ

∫ γ+

−γ−

(∫

Γl(tnew)
uext
s vext

s · ∇ϕs dσ
)

dl

= − τ
γ

∫

D

uext
s vext

s
∣∣∇Φ(·, tnew)

∣∣ · ∇ϕs dx,

where uext
s : D → R is an extended solution variable which we are looking

for in the following. As announced earlier, it represents approximately an
extension of the surface field us(·, tnew) to the static bulk domain D. Moreover,
vext

s : D → Rd denotes some corresponding extension of the material velocity
vs(·, tnew). It needs to be given and determines the extension uext

s .

As an approximate reformulation of problem (5.9), we therefore obtain the
following stationary problem. Given a surface field us(·, told) : Γ(told) → R,

191



5. Toward UDG schemes for bulk–surface PDEs on evolving geometries

we seek a bulk field uext
s : D → R which satisfies

∫

Γnew
uext
s ϕs dσ −

∫

Γold
uold
s ϕs dσ − τ

γ

∫

D

uext
s vext

s
∣∣∇Φ(·, tnew)

∣∣ · ∇ϕs dx = 0

for all smooth functions ϕs : D → R. Here and in the following, we use the
notation Γnew = Γ(tnew), Γold = Γ(told) and uold

s = us(·, told).
For being able to discretize using flux-based approaches, such as the UDG

method, we finally use integration by parts to reformulate the integral over
the bulk domain D via the divergence of an advective flux tested with ϕs:
∫

Γnew
uext
s ϕs dσ−

∫

Γold
uold
s ϕs dσ+ τ

γ

∫

D

∇ ·
(
uext
s vext

s
∣∣∇Φ(·, tnew)

∣∣
)
ϕs dx

− τ

γ

∫

∂D

uext
s vext

s
∣∣∇Φ(·, tnew)

∣∣ · n∂D ϕs dσ = 0. (5.13)

Here, n∂D denotes the field of outward-pointing unit normal vectors to ∂D.
Remark 5.3.1 (Strong formulation). In the special case where Γold and Γnew

are disjoint sets with ∂D = Γold ∪̇ Γnew (e.g. in case of the geometrical setup
that is shown in Figure 5.3), our reformulated problem given by equation (5.13)
is consistent with the following bulk advection problem in strong form: given
boundary values uold

s : Γold → R, find uext
s : D → R with

∇ ·
(
uext
s vext

s
∣∣∇Φ(·, tnew)

∣∣
)

= 0 in D,

uext
s vext

s
∣∣∇Φ(·, tnew)

∣∣ · n∂D = −γ
τ
uold
s on Γold,

uext
s vext

s
∣∣∇Φ(·, tnew)

∣∣ · n∂D = γ

τ
uext
s on Γnew.

5.3.2. Unfitted discontinuous Galerkin

In order to discretize the reformulated problem which is given by equation
(5.13), we use the UDG method that has been introduced in Section 4.2.2.

Basic meshes, discretization of the computational geometry

We recall that the UDG method which we are considering uses two fixed,
simple meshes of the level set domain ΩΦ. On the one hand, it employs
a fundamental mesh Th(ΩΦ) of width h to construct geometrically unfitted
discrete function spaces that are suitable for discretizing PDEs in bulk domains
contained in ΩΦ. On the other hand, a geometry mesh Th (ΩΦ) of width h ≤ h is
employed to obtain a discrete analogue to the continuous level set description.
The latter provides the basis for some discrete reconstruction of the geometry
and for numerical integration over this discrete geometry. Both Th(ΩΦ) and
Th (ΩΦ) are expected to comprise shape regular elements that are tetrahedra
or hexahedra for d = 3, and triangles or quadrilaterals for d = 2.

192



5.3. UDG for essential continuity equations on evolving hypersurfaces

After choosing a specific geometry mesh Th (ΩΦ), we start by discretizing the
computational geometry similar to what has been presented in Section 4.2.2.
LetXh (ΩΦ) be the space of piecewise linear (for simplices), bilinear (for quadri-
laterals) or trilinear (for hexahedra) continuous functions over Th (ΩΦ) and let
Ih denote an operator which performs interpolation of functions in C0(ΩΦ

)

into Xh (ΩΦ). To obtain a discrete geometry reconstruction, we define some
discrete level set function Φh as a time-dependent function over Th (ΩΦ) by set-
ting Φh (·, t) := Ih

[
Φ(·, t)

]
. Subsequently, we define discrete analogues to the

continuous level set function’s level sets Γl(t) defined in equation (3.23), to
the fixed-in-time hypersurfaces Γold and Γnew, and to the static bulk domain
D that has been defined in equation (5.11), particularly by setting

Γl,h (t) := Φh (·, t)
∣∣−1
ΩΦ

(l) =
{

x ∈ ΩΦ
∣∣ Φh (x, t) = l

}
, l ∈ R, t ∈ [0, T ],

Γold
h := Γ0,h (told), Γnew

h := Γ0,h (tnew) and Dh := int
(⋃

t∈[told,tnew]
Γ0,h (t)

)
.

Note that Dh is an open set in Rd with Γold
h ,Γnew

h ⊂ Dh ∪∂Dh . See Figure 5.4a
for illustrations.
We complement the discretized computational geometry as in Section 4.2.2

by assigning a piecewise variant of the (transposed) classical gradient operator
in Rd to the space Xh (ΩΦ). Using this piecewise variant, we obtain a discrete
analogue to the field ∇Φ(·, tnew) which is used in the reformulated problem
given by equation (5.13). Applied to Φh (·, tnew), it can be defined by setting
∇h Φh (·, tnew)

∣∣
K

:= ∇
[
Φh (·, tnew)

∣∣
K

]
for each K ∈ Th (ΩΦ), and by extending

this definition to the faces of geometry mesh elements, i.e. to the whole level
set domain ΩΦ and its boundary. On each face of an element, we do the latter
by evaluating the gradient in an arbitrarily chosen adjacent element.

Meshes and discrete approximation spaces

Analogous to our way of proceeding in Section 4.2.2, we use the fundamental
mesh Th(ΩΦ) and the discretized computational geometry to define an active
mesh for the bulk domain Dh by

T̂h(Dh ) :=
{
K̂ ∈ Th(ΩΦ)

∣∣ measRd
(
K̂ ∩Dh

)
> 0
}
,

and a cut cell mesh of Dh by

Th(Dh ) :=
{
K = K̂ ∩Dh

∣∣ K̂ ∈ T̂h(Dh )
}
.

Furthermore, we define the internal skeleton

E int
h (Dh ) :=
{
E = ∂K+

E ∩ ∂K−E
∣∣ K+

E ,K
−
E ∈ Th(Dh ), K+

E 6= K−E , measRd−1(E) > 0
}

193



5. Toward UDG schemes for bulk–surface PDEs on evolving geometries

(a) Discrete reconstruction of an example geometry.

(b) Meshes for the reconstructed geometry.

Figure 5.4.: Discrete geometry reconstruction and meshes that are employed
by the considered UDG method, illustrated for a circle which is
shrinking with a velocity that points in normal direction.
The left image in (a) shows a discrete level set function Φh (its
values visualized by shades of gray) and its zero level set Γ0,h (t)
(depicted in white) at a fixed time t, together with the geometry
mesh Th (ΩΦ) which is used (represented by horizontal and vertical
lines). Considering the time step associated with [told, tnew], the
right image in (a) shows the reconstructed geometry comprising
the hypersurface Γold

h , the bulk domain Dh and the hypersurface
Γnew

h (from dark gray to light gray).
The left image in (b) shows the reconstructed geometry again.
Moreover, it shows some fundamental mesh Th(ΩΦ), together with
the corresponding active mesh T̂h(Dh ) and cut cell mesh Th(Dh )
(from light gray to dark gray, where pixels which contribute to
multiple meshes have the color of the most specialized mesh).
Note that we illustrate the special case Th(ΩΦ) = Th (ΩΦ). The
right image in (b) shows the cut cell mesh Th(Dh ) and its internal
skeleton E int

h (Dh ).

194



5.3. UDG for essential continuity equations on evolving hypersurfaces

of the cut cell mesh Th(Dh ), i.e. the set which comprises the internal faces of
Th(Dh ). See Figure 5.4b for illustrations of the above meshes and of E int

h (Dh ).
After assigning the names K+

E ,K
−
E ∈ Th(Dh ) to the adjacent elements of an

arbitrary but fixed internal face E ∈ E int
h (Dh ) in a fixed manner, we assign a

dedicated field of unit normal vectors to E by setting nE := n
∂K+

E

∣∣
E
.

As with the procedure in Section 4.2.2, we use standard DG shape functions
on the active mesh T̂h(Dh ), with their support restricted to the cut cells in
Th(Dh ), to construct discrete finite element spaces of piecewise polynomial
functions over Dh given by

Vs,h(Dh ) :=
{
vs,h ∈ L2(Dh )

∣∣∣ vs,h
∣∣
K
∈ P(K) ∀K ∈ Th(Dh )

}
.

Here, P(K) again denotes some space of polynomial functions over an element
K, such as the space Pk(K) of polynomial functions of total degree less than
or equal to some k ∈ N, or the space Qk(K) of polynomial functions with a
degree less than or equal to k in each coordinate direction.
In addition, we define two operators J · K and { · } which describe the jump

and the average of functions that have a reasonable definition on each internal
face in E int

h (Dh ), with two potentially different branches on each of those faces.
On an internal face E with adjacent elements K+

E ,K
−
E ∈ Th(Dh ), the action of

these two operators on some function vs,h with branches vs,h|∂K+
E
and vs,h|∂K−

E

is given by

Jvs,hK
∣∣
E

:= vs,h
∣∣
∂K+

E

− vs,h
∣∣
∂K−

E

, {vs,h}
∣∣
E

:= 1
2

(
vs,h

∣∣
∂K+

E

+ vs,h
∣∣
∂K−

E

)
.

For functions in the discrete spaces Vs,h(Dh ), we also consider a piecewise
variant of the (transposed) classical gradient operator in Rd. Given a function
vs,h ∈ Vs,h(Dh ), we set

∇hvs,h
∣∣
K

:= ∇
[
vs,h

∣∣
K

]

for each cut cell mesh element K ∈ Th(Dh ). Evaluations of ∇hvs,h on internal
faces of Th(Dh ) will not be required.

Remark 5.3.2. Functions in the discrete spaces Vs,h(Dh ) are defined over
the union of elements in the cut cell mesh Th(Dh ) and have a straightforward
extension up to the whole active mesh T̂h(Dh ). Although we will seek a discrete
solution of the form us,h ∈ Vs,h(Dh ), we will only be interested in the values
of us,h over the reconstructed hypersurface Γnew

h . Integrals will be computed
over the reconstructed hypersurfaces Γold

h and Γnew
h , and also over the cut cell

mesh Th(Dh ). The latter can be considered as being a geometrically unfitted
mesh with respect to Γold

h and Γnew
h . This is a similar approach to Deckelnick

et al. (2014), but different to Olshanskii et al. (2009). Unlike Olshanskii et al.
(2009), we avoid difficulties in defining discrete spaces and constructing a
natural basis for those spaces, cf. Remark 4.2.4.

195



5. Toward UDG schemes for bulk–surface PDEs on evolving geometries

Discretization

We discretize the reformulated problem which is given by equation (5.13)
in three steps. First, we replace the geometry (Γold, D,Γnew) in equation
(5.13) by its discrete reconstruction

(
Γold

h , Dh ,Γnew
h
)
, and the level set function

Φ by its discrete analogue Φh . In the course of this, we consequently use
∇h Φh as a replacement for the classical gradient ∇Φ. At the same time,
we replace the extended material velocity vext

s : D → Rd by some consistent
discrete approximation vext

s,h : Dh → Rd which we will take a closer look at
in Section 5.3.3. As a second step, we transform the resulting equation by
splitting its bulk integral over Dh into a sum of bulk integrals over the cut cells
K ∈ Th(Dh ), and by integrating by parts on each cut cell K. Subsequently, we
apply upwind stabilization (see e.g. Brezzi et al., 2004) by using the classical
upwind numerical flux on the internal faces of Th(Dh ), similar to the approach
in Bastian et al. (2011). In the context of DGmethods for hyperbolic problems,
upwinding is a well-known stabilization mechanism. Since we are dealing with
a bulk advection problem according to Remark 5.3.1, we can expect that it
leads to a host DG formulation suitable for the problem at hand. As a third
step, we restrict the set of admissible functions by considering only functions
that are representable using one of the discrete function spaces Vs,h(Dh ). This
corresponds to replacing the extended solution variable uext

s by some discrete
analogue us,h ∈ Vs,h(Dh ), while replacing the smooth test functions ϕs by
discrete test functions ϕs,h ∈ Vs,h(Dh ).
As a result, we obtain the following UDG scheme for problem (5.9):

Scheme 5.3.3. Given a suitable approximation uold
s,h ∈ L2(Γold

h
)
of the surface

field uold
s , find a discrete function us,h ∈ Vs,h(Dh ), such that

∫

Γnew
h

us,h ϕs,h dσ + τ

γ
as(us,h, ϕs,h) =

∫

Γold
h

uold
s,h ϕs,h dσ

∀ϕs,h ∈ Vs,h(Dh ), (5.14)

where as : Vs,h(Dh ) × Vs,h(Dh ) → R is a bilinear form which is defined along
the lines of the classical upwind DG formulation. It is given by

as(us,h, ϕs,h) := aupwind
(
Dh , us,h,vext

s,h
∣∣∇h Φh (·, tnew)

∣∣, ϕs,h
)
, (5.15)

with

aupwind(D, uh,w, ϕh
)

:= −
∑

K∈Th(D)

∫

K

uhw · ∇hϕh dx

+
∑

E∈Eint
h

(D)

∫

E

u↑h{w · nE}JϕhK dσ.

Here, we are dealing with a function uh that is multiply defined on each internal

196



5.3. UDG for essential continuity equations on evolving hypersurfaces

face E ∈ E int
h (D), and u↑h denotes the value of uh on the upwind side of E with

respect to the considered velocity field w. For each E ∈ E int
h (D), this value is

defined as

u↑h
∣∣
E

:=
{
uh|K+

E
if
{

w · nE
}
≥ 0,

uh|K−
E

if
{

w · nE
}
< 0.

In special cases, it can happen that a section of Γnew
h or a section of Γold

h is
part of some internal face E ∈ E int

h (Dh ). On such sections, we consider the
velocity field w = vext

s,h

∣∣∇h Φh (·, tnew)
∣∣ while evaluating the first and the last

integral in equation (5.14), and replace the integrand us,h ϕs,h by [us,h ϕs,h]↑
and the integrand uold

s,h ϕs,h by [uold
s,h ϕs,h]↑, respectively.

5.3.3. Remarks on choosing extended data functions

There are many different options regarding the choice of the extended material
velocity vext

s : D → Rd and its discrete approximation vext
s,h : Dh → Rd.

In geometrical special cases which allow for assuming that the material
velocity vs(·, tnew) has no component tangential to Γ(tnew), for instance, we
might construct vext

s using the normal velocity of the level sets Γl(tnew) of the
continuous level set function Φ(·, tnew). Referring to what has been discussed
in Section 3.3.1, we can particularly set

vext
s :=

−
[
∂tΦ

]
(·, tnew)∣∣∇Φ(·, tnew)

∣∣
∇Φ(·, tnew)∣∣∇Φ(·, tnew)

∣∣

∣∣∣∣∣
D

.

Moreover, exploiting that it is possible to approximate the time derivative ∂tΦ
using a backward difference, we can extract an approximate normal velocity
from the values Φh (·, tnew) and Φh (·, told) of the discrete level set function by
setting

vext
s,h := −1

τ

Φh (·, tnew)− Φh (·, told)∣∣∇h Φh (·, tnew)
∣∣

∇h Φh (·, tnew)∣∣∇h Φh (·, tnew)
∣∣

∣∣∣∣∣
Dh

.

5.3.4. Global conservation properties

According to what we discussed in Section 5.2.2, exact solutions to problem
(5.9) satisfy global conservation property (5.7b). Due to its construction,
Scheme 5.3.3 recovers a discrete analogue to that property. This is the subject
of the following theorem.

Theorem 5.3.4 (Discrete solutions – global conservation property). Each
discrete solution us,h ∈ Vs,h(Dh ) which is obtained using Scheme 5.3.3 satisfies

∫

Γnew
h

us,h
∣∣
Γnew

h
dσ =

∫

Γold
h

uold
s,h dσ. (5.16)

197



5. Toward UDG schemes for bulk–surface PDEs on evolving geometries

Here, the integrands shall be understood in the same way as in equation (5.14),
particularly in the special case which is mentioned in Scheme 5.3.3. Property
(5.16) is a discrete analogue to global conservation property (5.7b).
Proof. Property (5.16) can be derived in a straightforward way. In particular,
the construction of Scheme 5.3.3 implies that the characteristic function 1Dh of
Dh is part of the discrete function spaces Vs,h(Dh ) and hence an admissible test
function ϕs,h in equation (5.14). Moreover, we have as

(
us,h,1Dh

)
= 0 for the

bilinear form defined in equation (5.15). Therefore, testing with ϕs,h = 1Dh

in equation (5.14) yields property (5.16).

We would like to emphasize that Theorem 5.3.4 has practical consequences
regarding our operator splitting methods that were introduced in Section 5.2.2.
When being employed to treat the surface equation in subproblems of type
(5.5), Scheme 5.3.3 allows for obtaining overall schemes which are globally
conservative. Please refer to Section 5.2.2 for details on this matter.

5.3.5. Understanding the scheme in one dimension

Next, we want to provide a better interpretation of the scheme and illustrate
its limitations. We employ a simple 1d example for this purpose.
In particular, let Γ(t) be an evolving 0-dimensional hypersurface that is

moving along a one-dimensional axis with some constant material velocity
vs := vs ∈ R>0. In view of the single time step of size τ := tnew−told which we
are considering, two points xold := Γold ∈ R and xnew := Γnew = xold+τvs ∈ R

can be associated with Γ(t) at the time-discrete level. Fixing an open interval
(x0, xM ) ⊂ R which contains Γ(t) at all times t at the time-continuous level,
we describe the geometry by choosing the level set domain ΩΦ := (x0, xM ),
together with the time-dependent level set function Φ that is defined by
Φ(x, t) := (x− xold)− (t− told)vs.
For the geometrical setup and time step which we are considering, the static

bulk domain D that has been defined in equation (5.11) takes the form

D = (xold, xnew).

Accordingly, in view of the level set function Φ chosen above, the parameter
γ which arises from the reformulation approach that has been introduced in
Section 5.3.1 evaluates to

γ = supD Φ(·, tnew)− infD Φ(·, tnew) = xnew − xold = τvs. (5.17)

By extending the material velocity vs(·, tnew) in the reformulation approach
using the Φ(·, tnew)-based strategy which we introduced in Section 5.3.3, we
obtain the extended material velocity vext

s ≡ vs. Note that vs(·, tnew) has no
component tangential to Γnew since the hypersurface comprises a single point.
Let the fundamental mesh Th(ΩΦ) be a decomposition of ΩΦ into M ∈ N

open subintervals {Ki := (xi−1, xi)}i=1,...,M of uniform width h := xM−x0
M ,

198



5.3. UDG for essential continuity equations on evolving hypersurfaces

xold xnew

K4 KM−3

x3 x4 xM−4 xM−3

K2 K3 KM−2

x1 x2 xM−2

K1 KM−1 KM

x0 xM−1 xM

(a) Fundamental mesh Th(ΩΦ).

xold xnew

K4 KM−3

x3 x4 xM−4 xM−3

(b) Cut cell mesh Th(Dh ) of the static bulk domain Dh .

xold xnew

K4 KM−3

x3 x4 xM−4 xM−3

K2 K3 KM−2

x1 x2 xM−2

(c) Cut cell mesh Th(D) of the larger bulk domain D ⊃ Dh .

Figure 5.5.: Meshes which appear in the 1d example from Section 5.3.5.

where the number M is supposed to be large enough that the following con-
siderations make sense. Moreover, let the geometry mesh not be a separate
mesh, but rather be chosen as Th (ΩΦ) := Th(ΩΦ). Given our level set function
Φ, the latter choice does not affect results that are obtained using Scheme 5.3.3,
as we will see next.

The simplicity of the geometrical setup which we are considering in this
example has the following practical implications. The level set function Φ and
its discrete analogue Φh coincide since Φ(·, t) is a continuous linear function
on cl (ΩΦ) at each fixed time t. We hence have the equality

(
Γold

h , Dh ,Γnew
h
)

= (Γold, D,Γnew),

i.e. the exact geometry matches its discrete reconstruction. Furthermore, we
have |∇h Φh | ≡ 1 and the discrete approximation of the extended material
velocity vext

s which we introduced in Section 5.3.3 takes the form vext
s,h ≡ vs.

In the following, we suppose that uold
s,h is a given scalar at xold. In order to

further simplify our theoretical considerations, let the points xold and xnew be
given in such a way that the cut cells in Th(Dh ) match full elements in the
fundamental mesh Th(ΩΦ). In particular, let be xold = x3 and xnew = xM−3,
such that Th(Dh ) = T̂h(Dh ) = {K4, . . . ,KM−3} ⊂ Th(ΩΦ). See Figure 5.5a
and Figure 5.5b for illustrations.

199



5. Toward UDG schemes for bulk–surface PDEs on evolving geometries

Applying Scheme 5.3.3 in its standard version

For the sake of simplicity, we apply Scheme 5.3.3 using the discrete function
space Vs,h(Dh ) that is associated with polynomial degree k = 0, i.e. the piece-
wise constant discrete space. Doing so yields a finite volume type scheme.
We may assume that the dedicated unit normal vector nE := 1 is assigned
to each internal face E ∈ E int

h (Dh ) = {x4, . . . , xM−4} of the cut cell mesh
Th(Dh ), given that the particular choice at each internal face is arbitrary but
fixed. Using this assumption and our knowledge about the polynomial degree
k, equation (5.14) simplifies to

[
us,h ϕs,h

]
(xM−3) + τvs

γ

(
M−4∑

m=4
us,h|Km Jϕs,hK(xm)

)
= uold

s,h ϕs,h(x3)

∀ϕs,h ∈ Vs,h(Dh ). (5.18)

By fixing a basis for Vs,h(Dh ), we obtain a system of linear equations. As
a straightforward choice, we employ the basis {ϕs,h,i := 1Ki}i=4,...,M−3 which
consists of the characteristic functions of the elements in the cut cell mesh
Th(Dh ). Denoting the vector of unkowns by u =: (u4, . . . , uM−3)tr, we wish
to find a discrete function us,h =

∑M−3
j=4 uj ϕs,h,j with

τvsγ
−1u4 = uold

s,h,

τvsγ
−1(ui − ui−1) = 0 for i = 5, . . . ,M − 4,

uM−3 + τvsγ
−1(−uM−4) = 0.

This linear system results from choosing the basis functions {ϕs,h,i}i=4,...,M−3
as test functions in equation (5.18). It is uniquely solvable, yielding a piecewise
constant discrete solution us,h with us,h|Ki = ui for i = 4, . . . ,M − 3, and

ui = γ(τvs)−1uold
s,h for i = 4, . . . ,M − 4,

uM−3 = uold
s,h.

As a consequence, we have us,h|Γnew
h

= us,h|KM−3 = uold
s,h. The discrete

solution us,h ∈ Vs,h(Dh ) which is obtained using Scheme 5.3.3 hence takes
the correct value on Γnew

h . Please note that computing the exact value of the
parameter γ in equation (5.17) is not crucial for gaining the correct solution
in this example.

Applying Scheme 5.3.3 using a larger bulk domain

It is an interesting question if the construction of our scheme also allows for
applying the scheme using some larger bulk domain. This would enable us
to employ bulk domains of reduced geometrical complexity. Sticking with the

200



5.3. UDG for essential continuity equations on evolving hypersurfaces

above setting, we now illustrate what happens if we replace the static bulk
domain Dh in Scheme 5.3.3 by a larger bulk domain D ⊃ Dh .

For this purpose, we define an active mesh T̂h(D), a cut cell mesh Th(D), its
internal skeleton E int

h (D), and discrete finite element spaces Vs,h(D) for some
given bulk domain D of this kind. Correspondingly, we define a dedicated unit
normal vector nE for every internal face E ∈ E int

h (D), two operators J · K and
{ · } which describe the jump and the average of functions on E int

h (D), and
a piecewise variant ∇h of the (transposed) classical gradient operator. The
definitions are analogous to those in Section 5.3.2.

In order to keep our theoretical considerations as simple as before, we choose
D in such a way that the cut cells in Th(D) match full elements in the fun-
damental mesh Th(ΩΦ). In particular, let be D := (x1, xM−2), such that we
have Th(D) = T̂h(D) = {K2, . . . ,KM−2} ⊂ Th(ΩΦ), and the internal skeleton
takes the form E int

h (D) = {x2, . . . , xM−3}. See Figure 5.5a and Figure 5.5c for
illustrations.

Proceeding as described above, with D taking the role of the static bulk
domain Dh , equation (5.14) simplifies to

[
us,h ϕs,h

]↑(xM−3) + τvs
γ

(
M−3∑

m=2
us,h|Km Jϕs,hK(xm)

)
= uold

s,h ϕ
↑
s,h(x3)

∀ϕs,h ∈ Vs,h(D), (5.19)

where the two remaining upwind terms at the beginning and at the end of
the equation result from the special case which is mentioned in Scheme 5.3.3.
Please note that Γnew

h = xnew = xM−3 and Γold
h = xold = x3 correspond to

some internal face E ∈ E int
h (D).

We continue as described above and obtain a system of linear equations
by choosing the set {ϕs,h,i := 1Ki}i=2,...,M−2 of characteristic functions of the
elements in Th(D) as a basis for Vs,h(D), and by using each such basis function
as a test function in equation (5.19). Denoting the vector of unkowns by
u =: (u2, . . . , uM−2)tr, we seek a discrete function us,h =

∑M−2
j=2 uj ϕs,h,j with

τvsγ
−1u2 = 0,

τvsγ
−1(u3 − u2) = uold

s,h,

τvsγ
−1(ui − ui−1) = 0 for i = 4, . . . ,M − 4,

uM−3 + τvsγ
−1(uM−3 − uM−4) = 0,
τvsγ

−1(−uM−3) = 0.

201



5. Toward UDG schemes for bulk–surface PDEs on evolving geometries

Reformulating this linear system shows that we look for a piecewise constant
discrete function us,h with us,h|Ki = ui for i = 2, . . . ,M − 2, and

u2 = 0,
ui = γ(τvs)−1uold

s,h for i = 3, . . . ,M − 4,
uM−3 = (1 + τvsγ

−1)−1uold
s,h,

uM−3 = 0.

The latter formulation reveals that the linear system is not uniquely solv-
able, in general, although it is exactly determined having the same number of
equations and unknowns. While the last two equations both determine uM−3
and yield an inconsistency if uold

s,h 6= 0, the unknown uM−2 may take any value.
We note that replacing the last equation by an equation which determines

uM−2 would render the problem well-posed. However, the discrete analogue to
global conservation property (5.7b), which is recovered by the standard version
of Scheme 5.3.3 according to Theorem 5.3.4, would still be spoiled. Even using
the exact value of the parameter γ that is computed in equation (5.17), we
would obtain a discrete solution us,h ∈ Vs,h(D) which takes the wrong value
on Γnew

h . We would specifically get us,h|Γnew
h

= us,h|KM−3 = uM−3 = 1
2u

old
s,h.

It should be mentioned that both problems are exclusively linked to extend-
ing the solution in the direction of transport. Looking upwind, the solution
appears to be extended in a suitable manner by the constant value of 0. Hence,
if we want to replace the static bulk domain Dh in Scheme 5.3.3 by some larger
bulk domain D ⊃ Dh , we are either bound to employ some domain D whose
boundary resolves Γnew

h ∩ ∂Dh , or we require modifications which tackle the
two problems mentioned above.

5.3.6. Numerical results

To investigate the convergence properties of Scheme 5.3.3, we implemented
the scheme in C++ using the Distributed and Unified Numerics Environment
(DUNE)1. With this implementation, we performed numerical studies which will
be presented in the remainder of this section.
Details on the implementation and on how the code can be obtained to

reproduce the results which we present in the following can be found in Ap-
pendix A.3.

Analytical test problem: constant initial values on a circle shrinking with
constant normal speed

Fixing a time step with told := 0 and tnew := 0.5 = τ , we consider a circle Γ(t)
in R2 of initial radius 1.0, which is centered at the origin and shrinking with
constant normal velocity given by the choice vs := −ν. Using the level set

1https://www.dune-project.org

202

https://www.dune-project.org


5.3. UDG for essential continuity equations on evolving hypersurfaces

framework, this circle Γ(t) can be represented as the zero level set of the time-
dependent level set function Φ that is defined by Φ(x, t) := |x|−(1.0− t), with
x ∈ R2 and t ∈ [0, T ]. The latter is a signed distance function, i.e. |∇Φ| ≡ 1.
For the geometrical setup and time step which we are considering, the static

bulk domain D that has been defined in equation (5.11) takes the form

D = {x ∈ R2 | 0.5 < |x| < 1.0}. (5.20)

Therefore, in view of the level set function Φ defined above, the parameter
γ which arises from the reformulation approach that has been introduced in
Section 5.3.1 evaluates to

γ = supD Φ(·, tnew)− infD Φ(·, tnew) = 0.5.

Given the shrinking circle Γ(t), we consider problem (5.9) with constant ini-
tial values us(·, told) ≡ 1. In view of the conservation law which is represented
by problem (5.9), i.e. the one that results in global conservation property
(5.7b) when looking at the full set Γ(t), it is clear that the corresponding
analytical solution is constant with respect to each fixed time t ∈ [told, tnew].
Particularly considering its values on Γ(tnew), we have us(·, tnew) ≡ 2.

Common simulation parameters

In our numerical studies, we use the following simulation parameters and re-
lated choices, unless otherwise stated.
The geometrical setup which we investigate in each simulation is the one

which is considered in the analytical test problem defined above. The geometry
is described choosing the level set domain ΩΦ := (−1.5, 2)×(−1.5, 1.5) and the
time-dependent level set function Φ that is associated with our test problem.
Always taking into account the test problem’s fixed time step, we furthermore
use the annular bulk domain D given by equation (5.20), together with the
corresponding parameter γ = 0.5.
To perform the reformulation approach which is described in Section 5.3.1,

we extend the material velocity vs(·, tnew) by choosing the extended material
velocity vext

s which we introduced in Section 5.3.3. Note that vs is purely
normal to Γ(t) in case of the geometrical setup which we are considering.
For UDG discretization as described in Section 5.3.2, we employ struc-

tured fundamental meshes Th(ΩΦ) and structured geometry meshes Th (ΩΦ)
with varying mesh widths h and h , respectively, that decompose ΩΦ into an
equal number of quadrilaterals in x0-direction and in x1-direction. To obtain
each fundamental mesh Th(ΩΦ), we construct an initial mesh comprising five
quadrilaterals in each direction and perform a certain number r ∈ N of uniform
mesh refinements. For the sake of simplicity, we do not use separate geometry
meshes Th (ΩΦ), but rather choose Th (ΩΦ) := Th(ΩΦ). Discrete reconstructions
Dh of the bulk domain D for different values of h can be seen in Figure 5.6.

203



5. Toward UDG schemes for bulk–surface PDEs on evolving geometries

Please note the asymmetry in x0-direction which is induced by the choice of
the level set domain ΩΦ.
On each fundamental mesh, we choose a discrete space Vs,h(Dh ) that locally

(i.e. on each cut cell K) resembles P(K) := Pk(K), the space of polynomial
functions of total degree less than or equal to some k ∈ N over the domain
K. For its construction, we use monomial basis functions (i.e. the set {1}
for k = 0, the set {1, x0, x1} for k = 1, and the set {1, x0, x1, x0x1, x2

0, x2
1}

for k = 2) on the reference element of the fundamental mesh elements. As
polynomial degree, we employ k = 0 for the sake of simplicity.

Error measures

In order to analyze the convergence of Scheme 5.3.3, we compute absolute
errors

Es,L1(Γnew
h )(h) :=

∥∥us(·, tnew)− us,h
∥∥
L1(Γnew

h ) , (5.21a)

Es,L2(Γnew
h )(h) :=

∥∥us(·, tnew)− us,h
∥∥
L2(Γnew

h ) , (5.21b)

Es,L∞(Γnew
h )(h) :=

∥∥us(·, tnew)− us,h
∥∥
L∞(Γnew

h ) , (5.21c)

with respect to an a priori known analytical solution us on Γ(tnew). Here,
the function us,h ∈ Vs,h(Dh ) again denotes the numerical solution which is
obtained using Scheme 5.3.3.
Assuming that the absolute errors defined in equations (5.21) satisfy esti-

mates of the form E (h) ∈ O(hz), where z ∈ R>0 is known as the order of
convergence with respect to E (h), we compute experimental orders of conver-
gence as defined in Section 4.3.1.

Numerical convergence study: h-refinement

First, we investigate errors and associated experimental orders of convergence
with respect to the width h of the fundamental mesh. As with our numer-
ical studies for linear elliptic model problems with static bulk domains in
Section 4.1.2, we employ h-refinement to do this. In particular, we perform
computations while considering a sequence of fundamental meshes with h→ 0,
which results from refinement of some coarse initial mesh.
In our numerical study, we consider the analytical test problem defined

above. Correspondingly, we choose discrete initial values uold
s,h = 1 on Γold

h . The
associated numerical solution us,h on Γnew

h should have properties similar to
those of the analytical solution. Results that are obtained using Scheme 5.3.3
are shown in Figure 5.6. As desired, the function values of us,h on Γnew

h appear
to converge to the correct value of 2 as h→ 0.
Actual errors are listed in Table 5.1 and visualized in Figure 5.7. From those

errors, it can be observed that the scheme exhibits convergence with respect to
all three norms which we are considering. The sequence of numerical solutions

204



5.3. UDG for essential continuity equations on evolving hypersurfaces

Figure 5.6.: Numerical solutions of the shrinking circle test problem, obtained
using Scheme 5.3.3 with k = 0, and no separate geometry meshes.
Note that, although the full solution us,h is shown, we are only
interested in its values over the reconstructed hypersurface Γnew

h .
The depicted sequence of numerical solutions corresponds to the
cases #cells = 102, 402, 6402 in Table 5.1.

r #cells h Es,L1(Γnew
h ) eoc Es,L2(Γnew

h ) eoc Es,L∞(Γnew
h ) eoc

∫
Γnew

h
us,h

0 52 9.22 · 10−1 1.15 · 100 – 9.08 · 10−1 – 1.00 · 100 – 6.10369
1 102 4.61 · 10−1 3.17 · 10−1 1.86 2.20 · 10−1 2.05 3.00 · 10−1 1.74 6.24228
2 202 2.31 · 10−1 1.95 · 10−1 0.7 1.20 · 10−1 0.87 1.04 · 10−1 1.53 6.27299
3 402 1.15 · 10−1 1.07 · 10−1 0.87 7.18 · 10−2 0.75 8.25 · 10−2 0.34 6.28064
4 802 5.76 · 10−2 5.73 · 10−2 0.89 3.93 · 10−2 0.87 6.63 · 10−2 0.32 6.28255
5 1602 2.88 · 10−2 3.08 · 10−2 0.9 2.13 · 10−2 0.88 3.72 · 10−2 0.83 6.28303
6 3202 1.44 · 10−2 1.59 · 10−2 0.95 1.08 · 10−2 0.98 2.02 · 10−2 0.88 6.28315
7 6402 7.20 · 10−3 8.06 · 10−3 0.98 5.49 · 10−3 0.98 1.01 · 10−2 1.01 6.28318

Table 5.1.: Errors and amount of the considered quantity in numerical
solutions of the shrinking circle test problem, obtained using
Scheme 5.3.3 with k = 0, and no separate geometry meshes.

10−210−1100

10−2

10−1

100

0.94

0.95

0.9

h

A
bs
ol
ut
e
er
ro
r

Errors: h-refinement

Es,L1(Γnew
h )

Es,L2(Γnew
h )

Es,L∞(Γnew
h )

Figure 5.7.: Errors in numerical solutions of the shrinking circle test problem,
obtained using Scheme 5.3.3 with k = 0, and no separate geometry
meshes.

205



5. Toward UDG schemes for bulk–surface PDEs on evolving geometries

(us,h)h converges to the analytical solution us(·, tnew) ≡ 2 with order 1 in
‖ · ‖L1(Γnew

h ) and in ‖ · ‖L2(Γnew
h ), respectively, slightly affected by geometrical

errors for coarse meshes. The convergence rate with respect to ‖ · ‖L∞(Γnew
h ) is

not as obvious, but also seems to be approaching order 1 for small values of h.
Please note that #cells in Table 5.1 is the number of cells in the fundamental
mesh Th(ΩΦ). It does not refer to the number of cut cells K ∈ Th(Dh ).
In addition to errors, Table 5.1 furthermore lists the amount of the quantity

which we are considering in problem (5.9). Since Scheme 5.3.3 is globally
conservative up to machine precision according to Theorem 5.3.4, the same
amount is obtained both from the quantity’s concentration uold

s,h on Γold
h and

from the quantity’s concentration us,h on Γnew
h . It should be mentioned that it

is an indicator for the geometrical error coming from the reconstruction Γold
h .

The latter determines the amount of quantity entering the discrete system.
For the continuous problem with initial values us(·, told) ≡ 1, this amount
equals 2π ≈ 6.283185, which is nicely reproduced by our numerical results for
small values of h.

Simulation study: Binary initial values on a shrinking circle

To illustrate the effect of non-constant initial values, we next perform the same
simulations as above, but use initial values that are piecewise constant with a
binary nature. More precisely, we choose initial values

us(x, told) :=
{

1 if 0.2π < arctan2(x1, x0) < 0.4π,
0 else,

with x ∈ Γ(told),

(5.22)
where we employ the function arctan2(x1, x0) defined in Remark 4.3.1 to obtain
the azimuthal angle φ of polar coordinates (r, φ). In view of the conservation
law which is represented by problem (5.9), i.e. the one that results in global
conservation property (5.7b) when looking at the full set Γ(t), it is clear that
the associated analytical solution on Γ(tnew) takes the form

us(x, tnew) =
{

2 if 0.2π < arctan2(x1, x0) < 0.4π,
0 else,

with x ∈ Γ(tnew).

(5.23)
When using corresponding discrete initial values uold

s,h on Γold
h , the associated

numerical solution us,h on Γnew
h should have properties similar to those of the

analytical solution. Results that are obtained using Scheme 5.3.3 are shown
in Figure 5.8. As desired, the function values of us,h on Γnew

h exhibit a binary
nature similar to the analytical solution which is given by equation (5.23).
The reconstructed hypersurface Γnew

h can be clustered in one region of points
associated with vanishing function values and one region of points that are
associated with function values greater than zero. Meanwhile, function values
greater than zero appear to converge to the correct value of 2 as h→ 0.

206



5.3. UDG for essential continuity equations on evolving hypersurfaces

Figure 5.8.: Numerical solutions of problem (5.9) with binary initial values on
a shrinking circle, obtained using Scheme 5.3.3 with k = 0, and
no separate geometry meshes. As with Figure 5.6, the depicted
sequence of numerical solutions corresponds to simulations with
#cells = 102, 402, 6402.

However, we observe that our numerical solutions do not exactly represent
the two discontinuities of the analytical solution. In each numerical solution
us,h, the latter discontinuities are blurred and result in two diffuse jumps.
These jumps sharpen for small values of h. This shows the effect of what is
known as numerical diffusion. Numerical diffusion is a typical phenomenon
that can be observed when using numerical methods for hyperbolic conserva-
tion laws.
Please note that the initial values which we are considering can be seen as

a worst case scenario within the scope of our geometrical setup. Numerical
diffusion is expected to have the largest possible impact since the transport
velocity at each discontinuous front is not aligned with any cut cell boundary
which touches the front. It should furthermore be mentioned that numerical
diffusion can be reduced by using higher order methods with flux limiters.

Simulation study: Binary initial values on a rotating shrinking circle

Finally, we want to look at the effect of a material velocity with an additional
tangential component. For this purpose, we repeat the above simulations with
binary initial values (5.22), this time choosing an enriched material velocity
vs := −ν + vs,tan, where vs,tan(·, t) : Γ(t) → R2 is some field of unit vectors
tangential to Γ(t). Particularly applying the field vs,tan(x, t) := 1

|x| (x1,−x0)tr,
the enriched material velocity vs still corresponds to a shrinking circle, but
the circle additionally rotates clockwise around its center.
Regarding the reformulation approach which is described in Section 5.3.1,

we employ the strategy introduced in Section 5.3.3, as before, to extend the
normal component of vs(·, tnew). For the tangential component of vs(·, tnew),
we furthermore use the field vext

s,tan : D → R2 with vext
s,tan(x) := 1

|x| (x1,−x0)tr.

207



5. Toward UDG schemes for bulk–surface PDEs on evolving geometries

Figure 5.9.: Numerical solutions of problem (5.9) with binary initial values on
a rotating and shrinking circle, obtained using Scheme 5.3.3 with
k = 0, and no separate geometry meshes. As with Figure 5.6, the
depicted sequence of numerical solutions corresponds to simula-
tions with #cells = 102, 402, 6402.

The overall extended material velocity vext
s : D → R2 then takes the form

vext
s (x) := − x

|x| + vext
s,tan(x).

Results that are obtained using Scheme 5.3.3 are shown in Figure 5.9. It can
be observed that each numerical solution us,h on Γnew

h has similar properties
as the corresponding one in the above simulations with binary initial values
(5.22). In particular, it has the same binary nature and function values greater
than zero seem to converge to the correct value of 2 as h → 0. Moreover,
due to numerical diffusion (which should be diminished when using higher
order methods with flux limiters), the two discontinuities that would appear
in an analytical solution get blurred and result in two diffuse jumps in us,h
which sharpen for small values of h. With the enriched material velocity, each
numerical solution us,h is rotated clockwise around the center of the shrinking
circle, as desired.

5.4. Discussion

In this chapter, we dealt with the question how the approaches from Chap-
ter 4 can be extended to obtain UDG schemes for an example class of bulk–
surface models comprising continuity equations on evolving geometries. We
introduced an operator splitting approach which allows for recovering discrete
analogues to the conservation properties that are embedded in the considered
type of continuity equations, while disassembling the overall problem into a
sequence of subproblems of two different types. Both types correspond to
special cases of the considered class of bulk–surface models. Accordingly, the
corresponding subproblems are easier to handle than the overall problem and
they can be treated with specialized numerical schemes.

208



5.4. Discussion

Subproblems of the first type are static geometry problems which can be
treated with the UDG schemes introduced in Chapter 4. As a first step to-
ward UDG schemes for subproblems of the second type, we introduced a UDG
scheme which can be used for the surface part of those subproblems, namely
conservative material transport driven by geometrical evolution of a hypersur-
face. Although dealing with continuity equations on evolving geometries, the
scheme does not require space–time meshes. It is globally conservative and
yields promising first numerical results for a selected geometrical special case.

5.4.1. Future perspectives

Generalizing Scheme 5.3.3

The numerical scheme which has been presented in Section 5.3 requires exact
knowledge of the domain Dh . Unfortunately, the latter can not be constructed
in a fully automated manner. Only if the material velocity vs has a dominant
component normal to Γ(t) at each point, Dh can be constructed from the
values of the level set function Φh , evaluated at t = told and t = tnew in each
time step. This is the case, e.g., in the setting in Figure 5.3, whereas in the
setting in Figure 5.2 both the northern tip and the southern tip of the circle
have a material velocity which is purely tangential to Γ(t). The latter results
in the two triangle-like parts of the domain Dh depicted in the right image in
Figure 5.2. Reconstructing those parts requires knowledge of all intermediate
curves Γ(t), i.e., information which is not provided by Φh (·, told) and Φh (·, tnew)
alone.
When designing Scheme 5.3.3, we originally aimed at a scheme that employs

an unfitted bulk domain which only contains the domain Dh . As we have seen
in Section 5.3.5, directly employing such a larger bulk domain D ⊃ Dh in
our scheme unfortunately does not result in a well-posed problem in general.
Unique solvability requires that the boundary of D resolves Γnew

h ∩ ∂Dh . If D
does not meet this requirement, we can furthermore no longer guarantee that
the scheme recovers conservation property (5.16).
However, we have good evidence that a generalized scheme which allows for

utilizing either the domain D := Dh or some easily-constructible larger bulk
domain D := D ⊃ Dh is available. In first tests, both issues encountered in
Section 5.3.5 could be cured by two minor modifications of equation (5.14),
which can be expressed by replacing the term aupwind(D, uh,w, ϕh

)
in equation

(5.15) by a modified term

aupwind,∗(D, uh,w, ϕh
)

:= −
∑

K∈Th(D)

∫

K

uhw · ∇hϕh dx

+
∑

E∈Eint
h

(D)\Eint
h

(
N (Γnew

h ∩∂Dh )
)
∫

E

u↑h{w · nE}JϕhK dσ

+
∫

M
uh(w · n∂D)ϕh dσ. (5.24)

209



5. Toward UDG schemes for bulk–surface PDEs on evolving geometries

This modified term contains an additional integral over a boundary section
given by

M :=
{

x ∈ ∂D \ (Γnew
h ∩ ∂D)

∣∣ (w · n∂D)(x) > 0
}
.

Moreover, in comparison with the set of internal faces that are considered in
the term aupwind(D, uh,w, ϕh

)
in equation (5.15), the modified term (5.24)

ignores all members of the subset

E int
h

(
N (Γnew

h ∩ ∂Dh )
)

:=
{
E ∈ E int

h (D)
∣∣

measRd−1
(
(K↑E ∪ E) ∩ Γnew

h
)
> 0, measRd−1

(
K↓E ∩ Γnew

h
)

= 0
}
.

Here, for each internal face E ∈ E int
h (D), K↑E ∈ Th(D) and K↓E ∈ Th(D) denote

the cut cell mesh element on the upwind side of E and on the downwind
side, respectively, with respect to the considered velocity field w. For each
E ∈ E int

h (D), they are defined as the components of the ordered pair

(K↑E ,K
↓
E) :=

{
(K+

E ,K
−
E ) if

{
w · nE

}
≥ 0,

(K−E ,K
+
E ) if

{
w · nE

}
< 0.

Not considering the subset E int
h

(
N (Γnew

h ∩ ∂Dh )
)
aims at restoring property

(5.16) by removing the coupling between suitable pairs of cut cells in some
neighborhood of Γnew

h ∩ ∂Dh . Similar to following the trajectories of material
points in D with respect to the velocity field w and capturing internal faces
closest to Γnew

h ∩ ∂Dh , we search for internal faces whose adjacent cut cell
on the upwind side intersects or touches Γnew

h and whose adjacent cut cell in
the direction of transport does not intersect Γnew

h . By ignoring these internal
faces in the 1d example from Section 5.3.5, for instance, the upper bound of
summation in the term τvsγ

−1∑M−3
m=2 us,h|Km Jϕs,hK(xm) in equation (5.19)

is replaced by M − 4. This removes the two terms of the form ±τvsγ−1uM−3
in the associated system of linear equations. As a result, we obtain a single
linear equation determining the unknown uM−3, which takes the desired form
uM−3 = uold

s,h.
Adding the integral over the boundary sectionM corresponds to imposing

an outflow boundary condition onM. The latter restores unique solvability of
the resulting system of linear equations. Together with the above restriction on
the set of internal faces, the discrete solution gets extended in the direction of
transport by the constant value of 0. In the 1d example from Section 5.3.5, for
instance, the last linear equation which results from equation (5.19) changes
to τvsγ−1uM−2 = 0. This determines the unknown uM−2, precisely giving
uM−2 = 0. Please note that it is important to exclude the set Γnew

h ∩ ∂D from
M since the effect of the outflow boundary condition on Γnew

h ∩∂D would spoil
property (5.16), particularly in the case D := Dh .
In our experience, the generalized scheme which results from replacing the

term aupwind(D, uh,w, ϕh
)
in equation (5.15) by the modified term (5.24)

210



5.4. Discussion

works as intended. Choosing some suitable narrow band around Γnew
h as a

bulk domain D := D ⊃ Dh that can be constructed easily, we successfully
tested the geometrical setups considered in this chapter, including the one
in Figure 5.2. Nevertheless, we would like to emphasize that the approach
requires further investigation to make sure that it is really general enough.

Practical application of Scheme 5.3.3 or of some generalization

Given its favorable properties and the promising results in Section 5.3.6,
Scheme 5.3.3 should be tested further by performing numerical convergence
studies with multiple time steps. For this purpose, test problems with a known
analytical solution are sufficient again. Provided that studies with multiple
time steps show positive results, it is justifiable to subsequently employ the
scheme in real applications.
However, as stated above, the scheme in its current state is not yet general

enough to be practically usable and generalizations, such as the one proposed
above, still need to be investigated thoroughly. Further convergence studies
and practical applications of the scheme should hence be postponed until a
reliable generalization is available.

Dealing with bulk–surface models from class (5.1)

Once a generalization of Scheme 5.3.3 proves to perform well, it is reasonable to
apply the operator splitting approach from Section 5.2 and this generalization
to the class of evolving geometry bulk–surface models (5.1).
It should be noted, though, that we still require some appropriate scheme

for the bulk advection equation in subproblems of type (5.5) to obtain a full
scheme for bulk–surface models on evolving geometries. If the material velocity
v of Ω(t)∪Γ(t) is not an externally given field and the model itself drives the
evolution of the geometry instead, such a full scheme furthermore needs to
be supplemented with an appropriate solver dealing with level set equation
(3.25).

More general classes of bulk–surface models on evolving geometries

As discussed in Section 4.4.1, the numerical approaches which we employ for
dealing with subproblems on static geometries can be used for a wider range
of bulk–surface models. They are not limited to the static geometry special
case of the example class of bulk–surface models (5.1) chosen in this work. As
a result, overall schemes for bulk–surface models on evolving geometries which
arise from the approaches presented in this chapter can be transferred to more
general classes of such models.

211





6. Conclusion
Motivated by applications from cell biology and by drawbacks of classical
mesh-based simulation frameworks for bulk–surface models, in this thesis, we
developed numerical schemes that build upon transferring the UDG method
for bulk PDEs to PDEs on hypersurfaces. These schemes are particularly
suitable for problems comprising continuity equations with hypersurfaces and
bulk domains of complex shape. Our developments are based on

• careful consideration of the theory of conservation laws and their PDE
analogues,

• the ideas of classical, fitted DG methods and of geometrically unfitted
DG methods for this kind of equations in bulk domains,

• the representation of bulk domains and hypersurfaces in an implicit way
by means of the level set framework,

• and on a detailed analysis of differential operators for surface fields, with
a particular focus on their representation in the level set context.

Since our schemes use extensions of surface PDEs to suitable bulk domains and
concepts of sharp interface FEMs for surface PDEs in a hybrid manner, they
can be implemented easily using existing implementations of the UDG method
for bulk PDEs, while discrete analogues to the models’ original conservation
properties are still recovered.
We were able to show that our approaches for static geometries in Chapter 4

offer very good properties. These properties particularly justify employing the
approaches in practical applications, exploiting that they can be transferred
to other classes of model equations in a straightforward manner. As an overall
result, our UDG schemes have the potential to replace classical mesh-based
simulation frameworks for bulk–surface models. Our results also motivate
further investigations and enhancements, such as incorporating the ideas of
isoparametric unfitted FEMs with regard to higher order convergence. Please
refer to the discussion in Section 4.4 for a detailed conclusion on this part of
the thesis.
The extensions which we investigated in Chapter 5 are first steps toward

conservative UDG schemes for bulk–surface models that comprise continuity
equations on evolving geometries. Particular steps are the operator splitting
approach proposed in Section 5.2, which allows for conservative schemes that
recycle our approaches from Chapter 4, and the development of Scheme 5.3.3.
The latter successfully deals with conservative material transport driven by an
evolving hypersurface, without requiring moving meshes or space–time meshes.

213



6. Conclusion

Obtaining practically relevant schemes using the operator splitting approach
from Section 5.2 requires further investigating generalizations of Scheme 5.3.3,
as well as finding UDG schemes that are suitable for dealing with conservative
material transport driven by an evolving bulk domain. Details are given in
the discussion in Section 5.4.

214



A. Software
In this appendix, we describe the numerical software which has been created
as part of this thesis, aiming at reproducibility of the results from Section 4.3
and Section 5.3.6. The numerical schemes from Chapter 4 and Chapter 5 have
been implemented and tested in C++ using a framework for numerical software
development called DUNE.
We begin in Section A.1 by providing an overview of DUNE and its modular

design in general. In Section A.2, we continue by introducing a DUNE module
which implements the schemes from Chapter 4 and supplies tools to analyze
those schemes. Section A.3 focusses on a DUNE module which has been created
for the approach from Section 5.3.

A.1. DUNE

The Distributed and Unified Numerics Environment (DUNE)1 is a modular
toolbox comprising a set of C++ libraries for solving PDEs using mesh-based
numerical methods. It is free software based on the idea of using abstract
interfaces to separate data structures and algorithms. Due to its design, it
supports different implementations of the same numerical concepts, such as
meshes or solvers, and allows for reusing existing software packages. Interfaces
are implemented efficiently using modern C++ programming techniques which
effectively remove interfaces at compile time, resulting in very low overhead.
The framework consists of a number of modules that are downloadable as
separate packages. Modules known as core modules are used by most other
modules, such as discretization modules and application modules that are built
on top.
The set of core modules which are relevant to the code written as part of

this thesis comprises dune-common, dune-grid, dune-geometry, dune-istl,
and dune-localfunctions. A brief description of these modules and of all
other DUNE modules upon which our code is built is given below.

dune-common:
Basic infrastructure for all DUNE modules, such as classes for exception
handling and dense matrix/vector classes, is provided by the dune-common2

module. The module also contains the DUNE build system, which is used
to set up DUNE installations.

1https://www.dune-project.org
2https://gitlab.dune-project.org/core/dune-common

215

https://www.dune-project.org
https://gitlab.dune-project.org/core/dune-common


A. Software

dune-grid:
In DUNE, meshes have a hierarchical structure and are known as grids (see
Bastian et al., 2008b). Meshes in the sense of our definitions in Section 3.2.1
and Section 4.2.2 are subsets of such grids. The module dune-grid3 con-
tains some grid implementations and provides the underlying interfaces.
The latter allow for using additional grid managers that are available as
extra modules. The module also provides infrastructure for grid input and
output.

dune-geometry:
Reference elements in DUNE, as well as the corresponding geometry trans-
formations and quadrature rules are implemented in the dune-geometry4

module.

dune-localfunctions:
The module dune-localfunctions5 specifies interfaces for shape functions
defined on the DUNE reference elements (see dune-geometry), for local in-
terpolation operators, and for additional information which allows for as-
sembling global finite element spaces. Implementations of these interfaces
are provided for typical finite elements, e.g. Lagrangian shape functions for
Lagrange elements and monomial shape functions for DG elements.

dune-istl:
The iterative solver template library dune-istl6 comprises generic sparse
matrix/vector classes supporting a recursive block structure, related infras-
tructure, and a variety of solvers based on these classes, including Krylov
methods and aggregation-based algebraic multigrid. Bindings to libraries
for the direct solution of sparse linear systems are provided as well.
As part of this thesis, eigenvalue solvers were built into the module, which
allows for computing the spectral condition number of system matrices
numerically. See Section B.5 for details.

dune-pdelab:
The module dune-pdelab7 is a discretization module providing high-level
abstractions to allow for a reasonably quick implementation of discretiza-
tion schemes and of solvers for systems of PDEs. Its design offers flexi-
bility regarding features of finite element spaces and targets a wide range
of discretization schemes. The latter is achieved by employing an abstract
problem formulation known as the weighted residual formulation (Bastian
et al., 2010). Operators are implemented from an element-local point of
view.

3https://gitlab.dune-project.org/core/dune-grid
4https://gitlab.dune-project.org/core/dune-geometry
5https://gitlab.dune-project.org/core/dune-localfunctions
6https://gitlab.dune-project.org/core/dune-istl
7https://gitlab.dune-project.org/pdelab/dune-pdelab

216

https://gitlab.dune-project.org/core/dune-grid
https://gitlab.dune-project.org/core/dune-geometry
https://gitlab.dune-project.org/core/dune-localfunctions
https://gitlab.dune-project.org/core/dune-istl
https://gitlab.dune-project.org/pdelab/dune-pdelab


A.1. DUNE

Focussing on systems of PDEs, finite element spaces in dune-pdelab use
a tree-based abstraction that is based on the module dune-typetree8, a
template library for constructing and operating on statically-typed trees
of objects.

dune-udg:
The module dune-udg9 (Engwer and Heimann, 2012) aims at complement-
ing the dune-pdelab discretization module by adding infrastructure that is
required for implementing cut cell methods, particularly the UDG method
which we are using in this thesis. In large parts, this infrastructure is
summarized in Section A.2 below. Most prominently, the module provides
implementations of different routines for constructing local triangulations,
which allows to perform numerical integration over cut cells. The core of all
routines for constructing local triangulations is provided by the dune-mc
module described below, which is used to generate the contributions of
single elements of the geometry mesh Th (ΩΦ) in each routine.

dune-mc:
The module dune-mc10 provides an implementation of the topology pre-
serving marching cubes and marching simplex algorithm that is described
in Engwer and Nüßing (2017). Particularly for DUNE reference elements,
the latter allows for constructing a partition with respect to the zero level
set of a given discrete Q1 or P1 level set function Φh . The partition is re-
trieved as a collection of simple geometric objects corresponding to the set
of points with Φh < 0, a collection of simple geometric objects correspond-
ing to the set of points with Φh > 0, and a collection of simple geometric
objects corresponding to the codimension 1 boundaries of these two sets.
Geometric objects are used that are suitable for performing numerical inte-
gration using standard quadrature rules. The partition is generated solely
from the vertex values of the level set function in a highly efficient manner
using lookup tables.
The module was renamed to dune-tpmc in a version of the module that is
more recent than those versions which we are using in this thesis.

For further reading on DUNE and its core modules, we refer to the DUNE
website11 and to Bastian et al. (2008b,a); Blatt et al. (2016). The website also
contains information on how to obtain a working installation using the build
system in dune-common. Please also refer to Blatt and Bastian (2007) with
regard to dune-istl, to Bastian et al. (2010) regarding dune-pdelab, and to
Engwer and Heimann (2012) regarding dune-udg.

8https://gitlab.dune-project.org/staging/dune-typetree
9https://gitlab.dune-project.org/cutcell/dune-udg

10https://gitlab.dune-project.org/extensions/dune-tpmc
11https://www.dune-project.org

217

https://gitlab.dune-project.org/staging/dune-typetree
https://gitlab.dune-project.org/cutcell/dune-udg
https://gitlab.dune-project.org/extensions/dune-tpmc
https://www.dune-project.org


A. Software

A.2. The dune-udg-bulksurface module

As part of this thesis, an application module dune-udg-bulksurface12 has
been implemented to investigate the approaches for PDEs on static geometries
which we introduce in Chapter 4. Besides providing its own infrastructure,
the module heavily uses infrastructure that is provided by dune-pdelab and
by dune-udg. Our code particularly uses the following dune-pdelab facilities:

• its infrastructure for assembling global finite element spaces, such as
the spaces Vs,h(Ωδ,h ) and Vb,h(Ωh ) (see Section 4.2.2), from local finite
element spaces, such as those provided by dune-udg (see below),

• its matrix/vector backends and DOF management features,
• its time-stepping schemes,
• its bindings to linear solvers from dune-istl,
• and its solver for nonlinear systems based on Newton’s method.

Infrastructure of dune-udg is used for:
• defining cut cell meshes of bulk domain reconstructions that are defined

using multiple level set functions, such as the discrete narrow band Ωδ,h ,
• constructing local triangulations for numerical integration over cut cells

that are defined via multiple discrete level set functions,
• constructing local finite element spaces on cut cell meshes using the UDG

shape functions,
• assembling the global discrete systems of algebraic equations from ele-

ment-local contributions, in a way that is analogous to the way of pro-
ceeding in dune-pdelab,

• data output over cut cell meshes.
The numerical results that are presented in Section 4.3 were obtained using

the module version of dune-udg-bulksurface that is specified in Table A.1.
The table also lists compatible versions of the DUNE modules it builds upon.

Running the code

Code that is relevant to this thesis is contained in the folder

./src/udg-isdg-coupling .

In particular, the approaches and corresponding numerical schemes from Sec-
tion 4.2 are implemented in a single C++ source code file ./src/udg-isdg-
coupling/bulksurface.cc. The latter is compiled to different executables,
one for each polynomial degree k that is employed for the discrete spaces
Vs,h(Ωδ,h ) and Vb,h(Ωh ) in our UDG schemes. Simulations can be performed
by running those executables with some parameter file which configures the
12https://gitlab.dune-project.org/sebastian.westerheide/dune-udg-bulksurface

218

https://gitlab.dune-project.org/sebastian.westerheide/dune-udg-bulksurface


A.2. The dune-udg-bulksurface module

model, its parameters, and other simulation parameters, such as settings re-
lated to the particular UDG scheme which shall be run. The code allows for
simulations in 2D and for simulations in 3D (d = 2 or d = 3).
An example parameter file with explanations can be found in ./src/udg-

isdg-coupling/bulksurface.ini. Further details are given in the documen-
tation of the source code file ./src/udg-isdg-coupling/bulksurface.cc
and in the C++ headers included therein.
It is worth noting that the implementation in ./src/udg-isdg-coupling/-

bulksurface.cc is structured in a way which prepares implementing UDG
schemes for PDEs on evolving geometries on the basis of the operator splitting
approach that is proposed in Section 5.2. Example code for the first order
operator splitting method that is sketched in Figure 5.1a can be found in the
C++ source code file ./src/udg-isdg-coupling/evolving_bulksurface.cc.

Reproducing the numerical results from Section 4.3

The results of the numerical studies in Section 4.3.1 can be reproduced using
the four shell scripts

• elliptic_2d_testproblem2_h_refinement.sh,
• elliptic_2d_testproblem3_h_refinement.sh,
• elliptic_2d_testproblem2_alpha_refinement.sh,
• elliptic_2d_testproblem3_alpha_refinement.sh,

which are contained in the folder

./src/udg-isdg-coupling/simulations/scripts/bulksurface . (A.1)

They expect precisely one argument, which shall specify the path to the build
directory of the module, i.e. the path to the root directory of compiled exe-
cutables of the entire module. Output is written to subfolders of the directory

./src/udg-isdg-coupling/simulations/output/bulksurface/current .

(A.2)
Folder (A.1) also contains the two shell scripts

• parabolic_2d_testproblem3_h_refinement.sh,
• parabolic_2d_testproblem4_h_refinement.sh.

These can be called in the same way to reproduce the results of the numerical
studies in Section 4.3.2. The results of the simulations for nonlinear parabolic
models for cell polarization in Section 4.3.3 and the results of the related
numerical study of discrete conservation properties can be reproduced using
two shell scripts

• wavepinning.sh,
• goryachev_microscopy_image.sh.

219



A. Software

Again, these are contained in folder (A.1). The call signature and the output
mechanism is analogous to the shell scripts above. Please note that the shell
script goryachev_microscopy_image.sh expects the current directory to be
the folder (A.1).
The results written to the corresponding subfolders of directory (A.2) can

be visualized using ParaView13. Furthermore, the data for the error plots,
error tables, and condition number plots in Section 4.3 and the data for the
mass plots in Section 4.3.3 can be found in a collection of text files that are
part of the output.

A.3. The dune-udg-evolving module

A second application module dune-udg-evolving14 has been implemented
as part of this thesis to investigate the approach which is introduced in Sec-
tion 5.3, i.e., our approach for dealing with conservative material transport
driven by the geometrical evolution of a hypersurface. Besides providing its
own infrastructure, the module uses the infrastructure that is provided by
dune-pdelab and by dune-udg in a similar way to dune-udg-bulksurface,
see Section A.2.
The numerical results that are presented in Section 5.3.6 were obtained using

the module version of dune-udg-evolving that is specified in Table A.2. The
table also lists compatible versions of the DUNE modules it builds upon.

Running the code

Code that is relevant to this thesis is contained in the folder

./src/udg .

In particular, the UDG scheme from Section 5.3, i.e. Scheme 5.3.3, is imple-
mented in a single C++ source code file ./src/udg/udg_geometry.cc. The
latter is compiled to a single executable. Simulations can be performed by
running this executable with some parameter file which configures the model
parameters, i.e. the velocity field and the initial values, and other simulation
parameters, such as settings related to the fundamental mesh Th(ΩΦ) which
shall be employed. The code allows for simulations in 2D (d = 2) with a
discrete space Vs,h(Dh ) of polynomial degree k = 0. By using a different DUNE
grid object, the implementation can be extended in a straightforward way to
allow for simulations in 3D, but this has not been done yet since our studies
in Section 5.3.6 were only performed in 2D. For polynomial degrees k > 0, the
operator in

./dune/udg-evolving/udg/convectiondiffusionccfv.hh

13https://www.paraview.org
14https://gitlab.dune-project.org/sebastian.westerheide/dune-udg-evolving

220

https://www.paraview.org
https://gitlab.dune-project.org/sebastian.westerheide/dune-udg-evolving


A.3. The dune-udg-evolving module

needs to be generalized slightly, which has not been done up to now to ease
changing Scheme 5.3.3 during its development (please see the discussion of
future perspectives in Section 5.4.1).
An example parameter file with first explanations can be found in ./src/-

udg/udg_geometry.ini. Particular details are given in the documentation
of the source code file ./src/udg/udg_geometry.cc and in the C++ headers
included therein.

Reproducing the numerical results from Section 5.3.6

The results of the numerical studies in Section 5.3.6 can be reproduced using
the three shell scripts

• annulus_h_refinement_tau=0.5/annulus.sh,
• annulus_h_refinement_tau=0.5_stepinitialvalues/annulus.sh,
• annulus_h_refinement_tau=0.5_rotation/annulus.sh,

which are contained in the folder

./src/udg/simulations . (A.3)

In order to run these shell scripts, the folder (A.3) needs to be copied to the
subfolder ./src/udg of the build directory of the module. Please recall that
the term build directory refers to the root directory of compiled executables of
the entire module.
Each of the above shell scripts expects no arguments and directly writes its

output to corresponding subfolders of the form n_cells_*. The results written
to these subfolders can again be visualized using ParaView. Furthermore,
Table 5.1 can be generated from the output files by running the Python script

annulus_h_refinement_tau=0.5/eoc.py,

which is also contained in folder (A.3).

221



A. Software

Module Version Git branch Git hash Date
dune-udg-bulksurface 0.1 releases/2.3-

compatible
085111f61b16fc6beec6
c03de05ddf69f963bb57

Apr 28 20:00:48 2018 +0200

dune-common 2.3.1 releases/2.3 8cfcea54a78fee457993
729535b7c63b3497be5e

Jul 17 09:32:33 2014 +0200

dune-grid 2.3.1 releases/2.3 e2b991f1ccfe5b74a82d
a581eab5472a1778f334

Jun 26 14:05:25 2015 +0200

dune-geometry 2.3.1 releases/2.3 8e5075fc4c58e116d4a0
f003a4d1f0482a3ab618

Jun 3 16:12:54 2014 +0200

dune-localfunctions 2.3.1 releases/2.3 eedfe2a7639be4a7e6dc
457fc5181454088aebe0

Jun 3 16:12:54 2014 +0200

dune-istl 2.3.1 releases/2.3 b5979486b15ad529251b
815fb63a9b4d2c765b49

May 28 10:54:45 2015 +0200

dune-pdelab 2.0.0 releases/2.0 f7a7ff4a23e6f43967b0
06318480ffbf894ff63f

Feb 23 10:43:59 2015 +0100

dune-typetree 2.3.1 releases/2.3 ecffa10c59fa61a0071e
7c788899464b0268719f

Jul 23 17:49:24 2014 +0200

dune-udg 0.1 releases/2.3-
compatible

8687465e642857c4bdcc
70fe4b9a26c82b6feb97

Jun 7 14:36:00 2017 +0200

dune-mc 0.1 master af8b6acbf35c4e83bdf0
440edceff2fbba063ad9

Aug 26 11:39:24 2014 +0200

Table A.1.: The dune-udg-bulksurface module version which has been used
to produce the results in this thesis, and compatible versions of
the DUNE modules it builds upon.

Module Version Git branch Git hash Date
dune-udg-evolving 0.1 master 741dc7721f80ae36e5bc

723123ff12c6b02f8600
Apr 30 11:23:11 2018 +0200

dune-common 2.4 releases/2.4 7c4f09c116e0f7a053e8
4935cc5c4d9e0e0adb5a

Sep 24 14:45:19 2015 +0200

dune-grid 2.4 releases/2.4 34ce5171ae6fb9718031
0682a9759369607807e6

Sep 23 11:07:19 2015 +0200

dune-geometry 2.4 releases/2.4 5807479ea23e5501ae5f
057027f37bb19376ffc6

Oct 12 14:32:57 2015 +0200

dune-localfunctions 2.4 releases/2.4 d00f8be5a05a775febe5
72f30681120b6f626acd

Aug 25 17:24:34 2015 +0200

dune-istl 2.4 releases/2.4 f40f33096c811f21e276
0b3b6b8bb0c67ac1da28

Oct 9 13:40:48 2015 +0200

dune-pdelab 2.4-dev releases/2.4 90b0fd4627de43c48f16
0a377de5aec975a4d541

Sep 17 18:37:16 2015 +0200

dune-typetree 2.4.0-rc1 releases/2.4 cdb5184745fb61af4ee8
d690e890d7a772dd968d

Oct 13 15:16:52 2015 +0200

dune-udg 0.1 releases/2.4-
compatible

03363eb610ecb8e16330
23ef9aa4918f19eaf8ec

Nov 23 15:24:48 2015 +0100

dune-mc 0.1 master 6548608dd8ee60767334
3b86333ad8f81d91172c

Jun 3 16:31:13 2015 +0200

Table A.2.: The dune-udg-evolving module version which has been used to
produce the results in this thesis, and compatible versions of the
DUNE modules it builds upon.

222



B. The condition number of a
matrix

When solving mathematical problems using a computer, the description of
the problem’s input data often includes perturbations. These perturbations
can not be avoided, in general. They can already arise from round-off errors
entering the data description due to the limited precision of the floating point
arithmetic of the machine. As a result, the problem’s solution will contain
an unavoidable error whose origin solely lies in perturbed input data and
the mathematical problem itself. This error is particularly not caused by
the numerical scheme that is applied to solve the problem. However, other
numerical methods might contribute to the definition of the problem, yielding
perturbed input data.
While the pertubation behavior of the scheme which is employed to solve a

mathematical problem is described by a concept known as the stability of the
scheme, the dependency of the problem’s solution from perturbed input data,
independent of the choice of the solution scheme, is described by a concept
known as the condition of the problem. Both concepts are orthogonal to each
other.
In this appendix, we focus on the condition of an important problem which

arises from all discretization methods that are similar to those introduced in
this thesis, namely the problem of solving a system of linear equations. In
particular, we recall indicators allowing for the measurement of the condition
of this problem and look at their interpretation. Furthermore, we deal with the
computation of a specific indicator, both from a theoretical and a numerical
point of view.
We begin in Section B.1 by introducing a general definition of condition

numbers, deriving condition numbers of the problem of solving a system of
linear equations, and looking at a related estimate for error propagation. In
Section B.2, we continue with theory from linear algebra which leads to a
formula for computing a particular condition number of our specific problem.
This formula is presented in Section B.3. It is known as the spectral condition
number of a matrix, but often just called the condition number of a matrix.
Section B.4 deals with the question of how the spectral condition number
can be computed using numerical schemes. Finally, we discuss the practical
implementation of those schemes in the dune-istl module in Section B.5.

223



B. The condition number of a matrix

B.1. Basic definitions and facts

The condition of a mathematical problem is described by numbers which mea-
sure the factor by which input errors are amplified in the worst case. These
factors are known as the problem’s condition numbers.
In particular, let f : Cn → Cm with n,m ∈ N be a function which represents

an abstract mathematical problem, let ‖ · ‖ represent arbitrary norms on Cn

and Cm, respectively, and let x̃ ∈ Cn denote a slightly perturbed version of
input data represented by a point x ∈ Cn. Then, measuring perturbations rel-
ative to the norm of the object being perturbed, namely x, condition numbers
(specifically, relative condition numbers) are given by the following definitions.

Definition B.1.1 (Condition number). The condition number of the problem
f at a point x with respect to a particular choice of the norms ‖ · ‖ is defined
by

κ(f,x) := lim
ε→0

sup
‖x̃−x‖≤ε

‖f(x̃)− f(x)‖
‖f(x)‖ /

‖x̃− x‖
‖x‖

= lim
ε→0

sup
‖x̃−x‖≤ε

‖f(x̃)− f(x)‖
‖x̃− x‖ · ‖x‖

‖f(x)‖ ,

which can be interpreted as the maximum ratio of relative changes in f(x) to
relative changes in x, in the limit where changes in x become infinitesimally
small.

If f is differentiable in x, this expression is equivalent to

κ(f,x) = ‖Df(x)‖ · ‖x‖‖f(x)‖ , (B.1)

where now ‖ · ‖ also represents the matrix norm induced by the two chosen
vector norms and Df(x) denotes the Jacobian matrix of f at x. See Trefethen
and Bau (1997, Lecture 12) for more information.

Definition B.1.2 (Global condition number). In addition to the condition
number κ(f,x) which has a local nature, a global condition number of the
problem f with respect to ‖ · ‖ can be defined as

κ(f) := sup
x∈D

κ(f,x).

Here, D ⊆ Cn denotes the set of points for which the condition of the problem
shall be analyzed.

Clearly, the choice of the set of points that are considered in Definition B.1.2
depends on the focus of the analysis of a specific problem’s condition. Given
some a priori knowledge about the problem f , it can also be reasonable to
systematically exclude points from D. For instance, it can be suitable to

224



B.1. Basic definitions and facts

exclude points x for which it is known that f(x) = 0. Note that if f has an
isolated zero at a point x, its condition number κ(f,x) is infinite due to the
zero in the denominator. This accounts for the fact that infinitesimal changes
in the input yield infinite relative change in the output in this case.
A problem of fundamental importance is the problem of matrix–vector

multiplication. It can be described by a linear function f(x) := Ax with
A ∈ Cm×n. We can assume that A is not the zero matrix (otherwise the prob-
lem is trivial). For this specific problem, applying Definition B.1.1 in terms of
equation (B.1) yields

κ(f,x) = ‖A‖ · ‖x‖‖Ax‖ .

Furthermore, a global condition number (with respect to the chosen vector
norms ‖ · ‖) of matrix–vector multiplication can be defined as

κ(f) := sup
x∈Cn\{0}

κ(f,x)

= ‖A‖ · sup
x∈Cn\{0}

‖x‖
‖Ax‖

= sup
x∈Cn\{0}

‖Ax‖
‖x‖ / inf

x∈Cn\{0}
‖Ax‖
‖x‖ ∈ [1,∞],

where we have used the equality

sup
x∈Cn\{0}

‖x‖
‖Ax‖ =

(
inf

x∈Cn\{0}
‖Ax‖
‖x‖

)−1

in the last step. This definition follows Definition B.1.2, where the point 0
has been excluded since matrix–vector multiplication for x = 0 is trivial. It
is known a priori that f(0) = A0 = 0. Including the point 0 in the definition
would render κ(f) meaningless to problems of practical relevance.
We will now write down first properties of the global condition number of

this problem. If n,m ∈ N are arbitrary numbers and f is not injective, there
is a point x ∈ Cn \ {0} with f(x) = Ax = 0 and hence κ(f) = ∞. On the
other hand, if f is injective, f does not have any zeros in Cn \ {0} such that
κ(f) <∞. Moreover, if m = n and f is bijective which means that the matrix
A is square and invertible, we find

κ(f) = ‖A‖ · ‖A−1‖. (B.2)

Note that
sup

x∈Cn\{0}

‖x‖
‖Ax‖ = sup

z∈Cn\{0}

‖A−1z‖
‖z‖ = ‖A−1‖

in this case.
Instead of writing κ(f) and talking about the condition number of matrix–

225



B. The condition number of a matrix

vector multiplication, it is common to denote the condition number of this
problem by κ(A) and to call κ(A) the condition number of A with respect to
the chosen vector norms ‖ · ‖. Note that for an invertible matrix A, we have

κ(A) = ‖A‖ · ‖A−1‖ = κ(A−1) (B.3)

according to equation (B.2). Hence, the condition number of A is not only
an indicator for the accuracy of results from matrix–vector multiplication as
described above, i.e. the problem of computing Ax from an input x for a
given matrix A. It is also, and this is what we are interested in in this thesis,
an indicator for the accuracy of results from the associated inverse problem of
computing A−1b from an input b for a given invertible matrix A. This inverse
problem corresponds solving the system of linear equations

Ax = b

which is represented by the given matrix A.
A theorem which allows to actually estimate the relative error which results

from solving a system of linear equations with a perturbed right-hand side
using the condition number of the system matrix is the following.

Theorem B.1.3 (Estimation of the relative error). Let A ∈ Cn×n, n ∈ N, be
an invertible matrix. Furthermore, let x ∈ Cn and x̃ ∈ Cn be the solutions of
Ax = b and Ax̃ = b̃, respectively, where b̃ ∈ Cn is a slightly perturbed version
of a vector b ∈ Cn \ {0}. Then

‖x̃− x‖
‖x‖ ≤ κ(A)

∥∥b̃− b
∥∥

‖b‖ .

Proof. Due to the linearity, subtracting both sides of the systems of linear
equations yields A(x̃−x) = b̃−b and hence x̃−x = A−1(b̃−b). Therefore,
using the property ‖Az‖ ≤ ‖A‖ ‖z‖ of the matrix norm and equation (B.3) we
find

‖x̃− x‖
‖x‖ = 1

‖x‖
∥∥∥A−1(b̃− b

)∥∥∥ ≤ ‖A−1‖
∥∥b̃− b

∥∥
‖x‖

= κ(A)
∥∥b̃− b

∥∥
‖A‖‖x‖ ≤ κ(A)

∥∥b̃− b
∥∥

‖Ax‖ = κ(A)
∥∥b̃− b

∥∥
‖b‖ .

As announced at the beginning of this section, the condition number of the
system matrix thus measures the factor by which the relative error in the
right-hand side of a system of linear equations is amplified in the worst case.
To compute the condition number κ(A) of A with respect to a particular

choice of the vector norms ‖ · ‖, namely the Euclidean norm | · | which is also
known as 2-norm, we need some theory from linear algebra.

226



B.2. Theory from linear algebra

B.2. Theory from linear algebra

In large part, the following presentation of required theory from linear algebra
is based on Stoer and Bulirsch (2002, Section 6.4). In Section B.2.1, we begin
by recalling theory about Hermitian matrices, focussing on their eigenvalues.
On this basis, we continue in Section B.2.2 with the definition of singular
values of arbitrary matrices and an important characterization of extremal
singular values which will take us back to computing the condition number of
a matrix.

B.2.1. Eigenvalues of Hermitian matrices

Theorem B.2.1 (Schur decomposition). For every square matrix B ∈ Cn×n,
n ∈ N, there is a unitary matrix U ∈ Cn×n (i.e. U∗ = U−1, where U∗ = Ū tr)
with

U−1BU = U∗BU =




λ1(B) ∗ · · · ∗
λ2(B) . . .

...
. . . ∗

0 λn(B)



.

Here, the entries λi(B), i = 1, . . . , n, are the eigenvalues of B. They are (not
necessarily distinct) complex numbers, in general.

Proof. A proof which is based on induction with respect to n and easy to read
can be found in Stoer and Bulirsch (2002, Theorem 6.4.1).

For Hermitian matrices (i.e. for complex square matrices B with B∗ = B),
Theorem B.2.1 immediately yields the following corollary.

Corollary B.2.2 (Diagonalizability of Hermitian matrices). Every Hermitian
matrix B ∈ Cn×n, n ∈ N, is diagonalizable by a unitary matrix. This means
that given B, there is a unitary matrix U = (v1, . . . ,vn) ∈ Cn×n with

U−1BU = U∗BU = diag
(
λ1(B), . . . , λn(B)

)
.

The eigenvalues λi(B) of B, i = 1, . . . , n, are (not necessarily distinct) real
numbers. The j-th column vj of U is an eigenvector belonging to the eigenvalue
λj(B). B thus has n linearly independent pairwise orthonormal eigenvectors.

Proof. Given that B is a Hermitian matrix,

U∗BU = U∗B∗(U∗)∗ = U∗(U∗B)∗ = (U∗BU)∗

is a Hermitian matrix as well. The first part of the corollary thus directly

227



B. The condition number of a matrix

follows from Theorem B.2.1. For a column vj of U , we subsequently find

Bvj = U diag
(
λ1(B), . . . , λn(B)

)
U∗vj

= U diag
(
λ1(B), . . . , λn(B)

)
ej = λj(B)Uej = λj(B) vj,

where we have used that the vectors v1, . . . ,vn form an orthonormal set since
U is a unitary matrix.

Definition B.2.3 (Rayleigh quotient). Let B ∈ Cn×n, n ∈ N, be a Hermitian
matrix. Then the mapping rqB : Cn \ {0} → R with

rqB(x) := x∗B x
x∗x

is called Rayleigh quotient of B. For each vector x, its value rqB(x) is called
the Rayleigh quotient of B with respect to x.

It is easy to see that the Rayleigh quotient of a Hermitian matrix B is
indeed a mapping to R which maps each eigenvector of B to the associated
eigenvalue. Moreover, the following theorem will show that computing the
largest and smallest eigenvalue of B is equivalent to finding the maximum and
minimum value of the Rayleigh quotient of B, respectively.

Theorem B.2.4 (Characterization of extremal eigenvalues by extremal prop-
erties of the Rayleigh quotient). Let λ1(B) ≥ λ2(B) ≥ . . . ≥ λn(B) be the
eigenvalues of a Hermitian matrix B ∈ Cn×n, n ∈ N, arranged in decreasing
order. Then

λ1(B) = max
x∈Cn\{0}

rqB(x) and λn(B) = min
x∈Cn\{0}

rqB(x).

Proof. Following Corollary B.2.2, there is a unitary U = (v1, . . . ,vn) ∈ Cn×n

with U∗BU = diag
(
λ1(B), . . . , λn(B)

)
=: D. For all x ∈ Cn \ {0}, we thus

have the equality

rqB(x) = (x∗U)U∗BU (U∗ x)
(x∗U)(U∗ x) =

y∗D y
y∗y =

∑
i λi(B) |yi|2∑

i|yi|
2 ,

where y := U∗ x =
(
y1, . . . , yn

)tr 6= 0. Hence, for an arbitrary x ∈ Cn \ {0},
we get

rqB(x) ≤ λ1(B) and rqB(x) ≥ λn(B).

Furthermore, the particular choices x = v1 6= 0 and x = vn 6= 0 yield

rqB
(
v1
)

= λ1(B) and rqB
(
vn
)

= λn(B)

which completes the proof.

228



B.2. Theory from linear algebra

Corollary B.2.5 (Definiteness of Hermitian matrices). A Hermitian matrix
B ∈ Cn×n, n ∈ N, is positive definite if and only if all of its eigenvalues
are positive. It is positive semidefinite if and only if all of its eigenvalues are
nonnegative.

Proof. Let B ∈ Cn×n be a Hermitian matrix. Noting that

x∗B x
{
>
≥

}
0 for all x ∈ Cn \ {0}

⇔ rqB(x)
{
>
≥

}
0 for all x ∈ Cn \ {0}

⇔ min
x∈Cn\{0}

rqB(x)
{
>
≥

}
0,

the corollary directly follows from Theorem B.2.4 which states that

λ1(B) ≥ λ2(B) ≥ . . . ≥ λn(B) = min
x∈Cn\{0}

rqB(x).

Lemma B.2.6 (Invertibility of square matrices). A square matrix B ∈ Cn×n,
n ∈ N, is invertible if and only if λi(B) 6= 0 for i = 1, . . . , n. Here, the λi(B),
i = 1, . . . , n, are the (not necessarily distinct) eigenvalues of B. Furthermore,
if B is Hermitian and invertible, then

B−1 = U diag
(
λ1(B)−1, . . . , λn(B)−1)U∗,

where U ∈ Cn×n is the unitary matrix from Corollary B.2.2.

Proof. According to Theorem B.2.1, there is a unitary matrix U ∈ Cn×n with
U∗BU = T , where T ∈ Cn×n is an upper triangular matrix with diagonal
entries λi(B), i = 1, . . . , n. Therefore,

B invertible

⇔
∏

i

λi(B) = det(T ) = det(U∗) · det(B) · det(U) = det(B) 6= 0

⇔ λi(B) 6= 0 for all i ∈ {1, . . . , n},

where we have used that det(U∗) = det(U) = 1 since U is a unitary matrix.
The second part of the lemma is a direct consequence of Corollary B.2.2.

B.2.2. Singular values

Theorem B.2.7 (Properties of A∗A). For every matrix A ∈ Cm×n, n,m ∈ N,
the matrix B := A∗A ∈ Cn×n has the following properties:
1. B is Hermitian and positive semidefinite.

229



B. The condition number of a matrix

2. B is positive definite if and only if ker(A) = {0}, i.e. if the corresponding
linear map is injective.

3. B is invertible if and only if it is positive definite.

Proof. We start by proving property 1. B is a Hermitian matrix since

B = A∗A = A∗(A∗)∗ = (A∗A)∗ = B∗,

and it is positive semidefinite since

x∗B x = x∗A∗Ax = |Ax|2 ≥ 0

for all x ∈ Cn \ {0}. For an arbitrary x ∈ Cn \ {0}, furthermore the following
equivalence holds which proves property 2:

|Ax|2 > 0 ⇔ Ax 6= 0 ⇔ x /∈ ker(A).

Property 3 follows from Property 1, Lemma B.2.6 and Corollary B.2.5.

Definition B.2.8 (Singular values). We consider a matrix A ∈ Cm×n with
n,m ∈ N, and define B := A∗A. Let λ1(B) ≥ λ2(B) ≥ . . . ≥ λn(B) ≥ 0
be the eigenvalues of B, arranged in decreasing order, which are nonnegative
according to Theorem B.2.7. Then we can write

λi(B) = σi(A)2 with σi(A) ≥ 0,

i = 1, . . . , n. The numbers σ1(A) ≥ σ2(A) ≥ . . . ≥ σn(A) ≥ 0 are called the
singular values of A.

According to Theorem B.2.7 the singular values of a matrix A are strictly
positive if and only if ker(A) = {0}. This property also follows from the
following theorem which expresses the largest and smallest singular value of A
in terms of the 2-norm | · |. More importantly, this characterization will take
us back to the condition number of a matrix.

Theorem B.2.9 (Characterization of extremal singular values by extremal
properties of the 2-norm). Let σ1(A) ≥ σ2(A) ≥ . . . ≥ σn(A) be the singular
values of a matrix A ∈ Cm×n, n,m ∈ N, arranged in decreasing order. Then

σ1(A) = max
x∈Cn\{0}

|Ax|
|x| and σn(A) = min

x∈Cn\{0}
|Ax|
|x| .

Proof. Let B := A∗A. Then λi(B) = σi(A)2, i = 1, . . . , n, are the eigenvalues
of B, arranged in decreasing order. Hence, noting that

rqB(x) = x∗B x
x∗x = x∗A∗Ax

x∗x = |Ax|2

|x|2
,

230



B.3. The spectral condition number of a matrix

the statement of the theorem is a direct consequence of Theorem B.2.4:

σ1(A)2 = λ1(B) = max
x∈Cn\{0}

|Ax|2

|x|2
=
(

max
x∈Cn\{0}

|Ax|
|x|

)2
,

σn(A)︸ ︷︷ ︸
≥0

2 = λn(B) = min
x∈Cn\{0}

|Ax|2

|x|2
=
(

min
x∈Cn\{0}

|Ax|
|x|︸ ︷︷ ︸

≥0

)2
.

Theorem B.2.10 (Singular values of Hermitian matrices). Let A ∈ Cn×n,
n ∈ N, be a Hermitian matrix. Let σ1(A) ≥ σ2(A) ≥ . . . ≥ σn(A) be the singu-
lar values of A, arranged in decreasing order, and let λi(A) ∈ R, i = 1, . . . , n,
be the eigenvalues of A. Then

σi(A) = |λi(A)| with |λ1(A)| ≥ . . . ≥ |λn(A)|.

Proof. The proof follows from our definitions, particularly Definition B.2.8.
Let B := A∗A. Then λi(B) = σi(A)2, i = 1, . . . , n, are the eigenvalues of B,
arranged in decreasing order. Since A is a Hermitian matrix and thus B = A2,
these eigenvalues correspond to the square of the eigenvalues of A, arranged
in decreasing order with respect to magnitude, i.e.

σi(A)2 = λi(A)2 with |λ1(A)| ≥ . . . ≥ |λn(A)|.

We conclude the proof by using that σi(A) ≥ 0 and taking the square root on
both sides of the equation.

B.3. The spectral condition number of a matrix

Let A ∈ Cm×n, n,m ∈ N, be a given matrix. The theory from Section B.2
shows that the condition number of A with respect to the Euclidean norm | · |
can be expressed in terms of the singular values of A. It is called the spectral
condition number of A and we write κ2(A).
In particular, according to Theorem B.2.9, Definition B.2.8 and the defini-

tions from Section B.1, we have

κ2(A) = sup
x∈Cn\{0}

|Ax|
|x| / inf

x∈Cn\{0}
|Ax|
|x| = σmax(A)

σmin(A) =
√
λmax(A∗A)√
λmin(A∗A)

. (B.4)

Here, σmax(A) and σmin(A) denote the largest and the smallest singular value
of A, respectively. They correspond to the square roots of the largest and
the smallest eigenvalue of the matrix A∗A, which we denote by λmax(A∗A)
and λmin(A∗A), respectively. The latter matrix is Hermitian and has only
nonnegative eigenvalues according to Theorem B.2.7 and Corollary B.2.5.
Theorem B.2.7 and Corollary B.2.5 furthermore reproduce a property which

231



B. The condition number of a matrix

has been shown in Section B.1 for arbitrary vector norms, namely that the
condition number κ2(A) ∈ [1,∞] is smaller than∞ if and only if ker(A) = {0}.
If n = m this is exactly the case if A is invertible. As shown in Section B.1,
we find

‖A−1‖ =
(

inf
x∈Cn\{0}

‖Ax‖
‖x‖

)−1

in this case, which yields

|A−1| = 1
σmin(A) = 1√

λmin(A∗A)
.

If n = m and the matrix A is Hermitian itself, Theorem B.2.10 enables us
to rewrite formula (B.4) as

κ2(A) = σmax(A)
σmin(A) =

∣∣λabsmax(A)
∣∣

∣∣λabsmin(A)
∣∣ , (B.5)

where λabsmax(A) and λabsmin(A) denote the largest magnitude eigenvalue of
A and its smallest magnitude eigenvalue, respectively.
Summing up, the spectral condition number of a matrix A can be obtained

by computing the extremal eigenvalues of a Hermitian matrix B (either A∗A or
A itself), particularly its dominant (i.e. largest magnitude) eigenvalue and its
least dominant (i.e. smallest magnitude) eigenvalue. To obtain these eigenval-
ues, we need to solve the basic eigenvalue problem of finding numbers λ(B) ∈ R

and nontrivial vectors x ∈ Cn \ {0} such that

Bx = λ(B) x. (B.6)

In this thesis, we compute κ2(A) using numerical approaches to solve problem
(B.6) for the extremal eigenvalues of B.

B.4. Numerical computation of eigenvalues

Matrices which result from discretization methods like those introduced in this
thesis are square and generally large. Moreover, they have the property that
they are sparse which means that there is a limited number of nonzero entries
in each row of the matrix. This number is independent of the matrix size. We
note that, given a sparse matrix A, the matrix B from Section B.3 is again a
sparse matrix.
In the following, let B ∈ Cn×n hence be some sparse, square matrix whose

eigenvalues shall be examined, possibly with a large n ∈ N. If not otherwise
stated, we do not require B to be a Hermitian matrix, such that its eigenvalues
are complex numbers in general. Furthermore, let ‖ · ‖ represent an arbitrary
vector norm on Cn.
Modern numerical methods for finding eigenvalues of large, sparse matrices

232



B.4. Numerical computation of eigenvalues

avoid operations other than matrix–vector products which can be performed
efficiently for sparse matrices, and operations on the resulting vectors. Such
methods belong to the class of iterative eigenvalue algorithms. They are based
on the idea that when computing the matrix–vector product Bx, the eigenval-
ues of B will amplify the components of x in the direction of eigenvectors with
a magnitude greater than 1 and dampen those components in the direction of
eigenvectors with a magnitude smaller than 1. This amplification/dampening
effect is strongest/weakest for the dominant eigenvalue of B (depending on
its magnitude) such that repeated matrix–vector multiplication which is per-
formed on one and the same vector x will pull this vector toward an eigenvector
associated with the dominant eigenvalue. To obtain a method which converges
to a valid eigenvector, normalization of x is necessary. Without normalization,
the magnitude of x would tend to ∞ or 0, depending on whether the magni-
tude of the dominant eigenvalue of B is greater or smaller than 1. Finally, the
computed eigenvector can be used to extract the dominant eigenvalue of B.

B.4.1. Power iteration

The most basic method that is following this idea is the von Mises vector
iteration which is also known as power iteration method. In fact, it follows
precisely the idea described above. Starting with a given initial vector x0 ∈ Cn

with the property that Bx0 6= 0, it computes sequences

xk := Bxk−1
∥∥Bxk−1

∥∥ ,

λkabsmax(B) := rqB
(
xk) =

(
xk)∗B xk
(
xk)∗xk ,

where rqB denotes the Rayleigh quotient of B which has been introduced in
Definition B.2.3 for Hermitian matrices. Note that extending this Definition to
arbitrary square matrices yields a mapping to C which maps each eigenvector
of B to the associated, generally complex eigenvalue. Provided that B has a
distinct dominant eigenvalue λabsmax(B) ∈ C, i.e. an eigenvalue that is strictly
greater in magnitude than all of its other eigenvalues, and provided that x0 has
a nonzero component in the direction of an eigenvector associated with this
eigenvalue, the sequence

(
λkabsmax(B)

)
k of Rayleigh quotients of xk converges

to λabsmax(B), while the sequence
(
xk)

k converges to an eigenvector associated
with λabsmax(B).
The power iteration method can be described by Algorithm 1. In each

iteration, the current vector iterate is multiplied by the matrix B and nor-
malized, and the Rayleigh quotient of B with respect to the resulting vector
is computed. In particular, the method does not require solving a system of
linear equations or computing the characteristic polynomial of B and finding
its roots. It only uses matrix–vector products with our sparse matrix B and

233



B. The condition number of a matrix

Algorithm 1: Power iteration
Input: matrix B ∈ Cn×n, initial vector x0 ∈ Cn with Bx0 6= 0
Output: approximation λabsmax(B) ∈ C of the dominant eigenvalue,

approximation x ∈ Cn \ {0} of an associated eigenvector

initialize xold = x0;
while stopping criterion not satisfied do

compute

x = Bxold
∥∥Bxold∥∥ ;

compute
λabsmax(B) = rqB(x) ;

set xold = x;
end

scalar products. Both require O(n) floating point operations which yields a
total complexity of O(kmax · n) floating point operations, where kmax ∈ N

denotes the number of iterations performed.

Hence, the power iteration method can be a very efficient approach to finding
the dominant eigenvalue of matrices which we are interested in. Nevertheless,
it should be noted that both sequences

(
xk)

k and
(
λkabsmax(B)

)
k converge

only linearly with convergence factors
∣∣λsecond absmax(B)

∣∣
∣∣λabsmax(B)

∣∣ and
(∣∣λsecond absmax(B)

∣∣
∣∣λabsmax(B)

∣∣

)2

, (B.7)

respectively, where λsecond absmax(B) denotes the second dominant eigenvalue
of B (see Trefethen and Bau, 1997, Theorem 27.1). The method thus suffers
from slow convergence if there is an eigenvalue with a magnitude close to the
dominant eigenvalue, resulting in a large kmax.

The size of kmax is also influenced by the stopping criterion which is chosen
for Algorithm 1. Stopping criteria for iterative eigenvalue algorithms usually
depend on both the current vector iterate xk and the associated approximate
eigenvalue such that we compute λkabsmax(B) in each iteration of Algorithm 1
rather than once at the end. One possibility is to stop iterating as soon as
the norm of the absolute residual falls below a given threshold, i.e. once that∥∥Bxk − λkabsmax(B) xk

∥∥ ≤ ε, given a target ε > 0.

For more information on the power iteration method and its analysis, we
refer to Trefethen and Bau (1997, Lecture 27).

234



B.4. Numerical computation of eigenvalues

Algorithm 2: Inverse iteration with shift
Input: matrix B ∈ Cn×n, shift µ ∈ C such that (B − µ I) invertible,

initial vector x0 ∈ Cn \ {0}, some linear solver object
Output: approximation λ(B) ∈ C of the eigenvalue closest to µ,

approximation x ∈ Cn \ {0} of an associated eigenvector

initialize xold = x0;
while stopping criterion not satisfied do

solve the following system for x using the linear solver object:

(B − µ I)x = xold ;

normalize x by setting
x = x / ‖x‖ ;

compute
λ(B) = rqB(x) ;

set xold = x;
end

B.4.2. Inverse iteration with shift

Appying the power iteration method to the matrix (B − µ I)−1 yields a vari-
ant known as the inverse iteration method with shift, see Algorithm 2. This
method can be used to find arbitrary eigenvalues of the matrix B with an
adaptable convergence rate, provided a sufficiently accurate approximation of
these eigenvalues is known.
Its convergence properties are directly inherited from the power iteration

method. In particular, given a shift µ ∈ C and an almost arbitrary initial
vector (see assumptions for convergence of the power iteration method), the
inverse iteration with shift converges linearly to the eigenvalue of B which is
closest to µ and an associated eigenvector of B. Note that the eigenvalues of
(B − µ I)−1 are of the form

(
λ1(B)− µ

)−1, . . . ,
(
λn(B)− µ

)−1, where λi(B),
i = 1, . . . , n, are the eigenvalues of B. The dominant eigenvalue of (B−µ I)−1

hence corresponds to the eigenvalue of B closest to µ. Analogous to (B.7), the
factors specifying the linear convergence rate of the sequence of approximate
eigenvectors and of the sequence of approximate eigenvalues are

∣∣λclosest to µ(B)− µ
∣∣

∣∣λsecond closest to µ(B)− µ
∣∣ and

( ∣∣λclosest to µ(B)− µ
∣∣

∣∣λsecond closest to µ(B)− µ
∣∣

)2

, (B.8)

respectively. Note that the shift µ provides control over these factors.
Taking µ = 0 corresponds to appying the power iteration method to B−1

and the method converges to the least dominant eigenvalue λabsmin(B) ∈ C,

235



B. The condition number of a matrix

i.e. the eigenvalue of B with the smallest absolute value, and an eigenvector
of B which is associated with λabsmin(B).
In each iteration, the inverse iteration method requires solving a system

of linear equations with matrix (B − µ I) which corresponds to calculating a
matrix–vector product with the inverse matrix (B − µ I)−1. Since the shift µ
is a constant, it seems that this step can be performed efficiently by inverting
the matrix (B−µ I) once at the beginning of the algorithm and working with
the precomputed inverse in each iteration. Given the sparse matrix B, the
matrix (B − µ I) is sparse as well. However, the inverse of a sparse matrix is
not sparse in general. Therefore, it has to be expected that its storage requires
O(n2) memory cells and matrix–vector products require O(n2) floating point
operations. Since n can be large, inverting the matrix (B−µ I) is not a good
idea in our case.
Nevertheless, there are efficient approaches to the direct solution of large,

sparse systems of linear equations based on precomputing the LU decompo-
sition of the system matrix and using forward and backward substitution to
solve the system of linear equations in each iteration. Approaches which use
LU decomposition techniques for sparse matrices are e.g. SuperLU (Demmel
et al., 1999) and UMFPACK (Davis, 2004). As a rule of thumb, they work effi-
ciently for small, medium-sized and large matrices up to n = 100000.
Alternatively, iterative methods for solving large, sparse systems of linear

equations from the class of Krylov subspace methods can be used, such as the
conjugate gradient (CG) method (Hestenes and Stiefel, 1952), the biconjugate
gradient stabilized (BiCGSTAB) method (van der Vorst, 1992) or the gener-
alized minimal residual (GMRES) method (Saad and Schultz, 1986). Krylov
subspace methods for solving linear systems work by successively generating
a sequence of successive matrix powers times an initial residual vector and
considering the sequence of subspaces which are spanned by this sequence
of vectors. These subspaces are known as Krylov subspaces. In each step
of a Krylov subspace method, the approximation to the solution of the linear
system is then formed by minimizing the residual over the current Krylov sub-
space. All of these operations are solely based on computing matrix–vector
products and scalar products. This is what makes Krylov subspace methods
so attractive for problems with a sparse matrix.
It should be noted that, the closer the shift µ is to an eigenvalue of B, the

worse the spectral condition number of the matrix (B−µ I). As µ approaches
an eigenvalue of B, the smallest singular value σmin(B − µ I) tends to 0 such
that the matrix turns singular, see Section B.3. Luckily, the error has a dom-
inant component in the direction of the eigenvector which we are solving for
(cf. Trefethen and Bau, 1997, Exercise 27.5). This renders the inverse iter-
ation method with shift practically usable. Reducing the condition number
by combining the method which is employed for solving the linear system
with preconditioning techniques is nevertheless beneficial since this usually
improves the rate of convergence of iterative linear solvers.
For supplementary information on the inverse iteration method with shift,

236



B.4. Numerical computation of eigenvalues

Algorithm 3: Rayleigh quotient iteration
Input: Hermitian matrix B ∈ Cn×n, initial vector x0 ∈ Cn \ {0} such

that (B − µ I) invertible for µ := rqB
(
x0), some linear solver

object
Output: approximation λ(B) ∈ C of an eigenvalue determined by x0,

approximation x ∈ Cn \ {0} of an associated eigenvector

initialize µ = rqB
(
x0) and xold = x0;

while stopping criterion not satisfied do
solve the following system for x using the linear solver object:

(B − µ I)x = xold ;

normalize x by setting
x = x / ‖x‖ ;

compute
λ(B) = rqB(x) ;

set µ = λ(B) and xold = x;
end

we refer to Trefethen and Bau (1997, Lecture 27).

B.4.3. Rayleigh quotient iteration

Convergence factors (B.8) play a key role in the convergence behavior of the
inverse iteration method with shift. The algorithm converges the faster, the
closer the shift µ is to an eigenvalue of B. Taking into account that µ is
nothing else but an eigenvalue estimate, it is quite an obvious idea to accel-
erate the method by enriching µ with increasingly accurate knowledge about
the eigenvalue which is searched for, namely the iterate of the approximate
eigenvalue which is obtained in each iteration.
Following this idea yields a method known as Rayleigh quotient iteration,

see Algorithm 3. It starts with a given initial vector x0 ∈ Cn \ {0} that repre-
sents an initial guess for an eigenvector associated with the eigenvalue which
is searched for. Each iteration is performed similar to the inverse iteration
method with shift, but the shift µ is chosen as the Rayleigh quotient of the
approximate eigenvector which has been obtained in the previous iteration.
It turns out that, if B is a Hermitian matrix, the method converges cubically

to an eigenvalue and an associated eigenvector of B for almost all initial vectors
(see e.g. Parlett, 1974, and the references given therein). Its asymptotically
cubic convergence renders the method irresistible since it triples the number of
correct digits with each iteration once the error is small enough. Unfortunately,
setting up which eigenvalue the method converges to is not as straightforward

237



B. The condition number of a matrix

as with the inverse iteration method with shift, where the latter provides
control over this property. For the Rayleigh quotient iteration, the limit of the
generated sequence of approximate eigenvalue–eigenvector pairs depends on
the initial vector. But the method not necessarily converges to the eigenvalue
which is closest to the Rayleigh quotient of the initial vector. Rather, an initial
vector is required that is sufficiently close to some eigenvector associated with
the desired eigenvalue of B. The question of how such an initial vector can be
generated properly will be answered in Section B.4.4.
Regarding the large, sparse system of linear equations which needs to be

solved in each iteration, the same considerations apply as with the inverse
iteration method with shift, see Section B.4.2. But the Rayleigh quotient
iteration has a minor disadvantage. When combining the method with ap-
proaches to the direct solution of large, sparse systems of linear equations
which compute the LU decomposition of the system matrix, the advantage
of a precomputed decomposition is lost. Since the system matrix (B − µ I)
changes with an updated shift µ, a new decomposition has to be computed in
each iteration. We note that the cubic convergence usually compensates for
this extra work.
For more information on the Rayleigh quotient iteration method, especially

its analysis, we refer to Trefethen and Bau (1997, Lecture 27) and the detailed
overview provided in Parlett (1974).

B.4.4. The TLIME algorithm

In Section B.4.2 and Section B.4.3, we have encountered two approaches to
finding arbitrarily choosable eigenvalue–eigenvector pairs, each with their own
advantages and drawbacks. The inverse iteration method with shift guaran-
tees convergence to the eigenvalue closest to the shift µ, but it only exhibits
linear convergence. The Rayleigh quotient iteration converges cubically, but
convergence to a specific eigenvalue is only guaranteed for initial vectors in a
local neighborhood of an associated eigenvector. The idea of combining the
advantages of both methods by using Algorithm 2 to generate an initial vector
for Algorithm 3 and then exploiting its cubic convergence is quite natural. A
question which needs to be answered is when exactly the switch to Rayleigh
quotient iteration can be performed, without risking that the method can still
converge to an eigenvalue which we are not interested in. An answer to this
question is provided by Szyld (1988) with his two-level iterative method for
eigenvalue calculations (TLIME).
In its original formulation, the method can be applied to generalized eigen-

value problems with real, symmetric matrices (i.e. Hermitian matrices over
R) and uses an associated vector norm for normalization of the vector iterate.
Restricting the method to the basic eigenvalue problem (B.6), with B being
a symmetric matrix over R, it can be described as depicted in Algorithm 4.
In this special case, the associated vector norm corresponds to the Euclidean
norm | · |.

238



B.4. Numerical computation of eigenvalues

Algorithm 4: TLIME
Input: • symmetric matrix B ∈ Rn×n

• interval J = (γ − η, γ + η), given by an estimate γ ∈ R for the
eigenvalue which shall be approximated and a radius η ∈ R>0

around gamma in which the eigenvalue is expected
• target relative change δ ∈ R>0 of the Rayleigh quotient for

switching to Rayleigh quotient iteration if J is free of
eigenvalues

• minimum number m ∈ N of inverse iterations before switching
to Rayleigh quotient iteration if J is free of eigenvalues

• initial vector x0 ∈ Rn \ {0} • some linear solver object
Output: • flag external ∈ {0, 1} indicating if J is free of eigenvalues

• approximation λ(B) ∈ R of an eigenvalue in J or of the
eigenvalue closest to J if external = 1

• approximation x ∈ Rn \ {0} of an associated eigenvector

initialize λ(B) = ”arbitrary“, xold = x0 /
∣∣x0
∣∣, external = 1, doRQI = 0;

while stopping criterion not satisfied do
if doRQI = 1 then

set µ = λ(B); // do Rayleigh quotient iteration (RQI)
else

set µ = γ; // do inverse iteration with shift (II)
end
solve the following system for y using the linear solver object:

(B − µ I)y = xold ;

normalize y by setting ω = 1 /
∣∣y
∣∣ and x = ω y;

set λold(B) = λ(B) and compute λ(B) = rqB(x);
if doRQI = 0 & ω < η then

set external = 0 and doRQI = 1; // activate RQI
end
if external = 0 & doRQI = 1 & λ(B) /∈ J then

set doRQI = 0; // reactivate II
end
if at least m ≥ 2 iterations have been performed then

if external = 1 & doRQI = 0 & |λ(B)− λold(B)| / |λ(B)| < δ
then

set doRQI = 1; // activate RQI
end

end
set xold = x;

end

239



B. The condition number of a matrix

The TLIME algorithm computes approximations of an eigenvalue in a given
interval J := (γ − η, γ + η) and an associated eigenvector. It guarantees that,
if an eigenvalue exists in J , the method will converge to one of the eigenvalues
in J , while exploiting the cubic convergence of the Rayleigh quotient iteration.
When J is free of eigenvalues, the method will determine this fact and converge
to the eigenvalue closest to J . In this case the rate of convergence is dominated
by the linear convergence of the inverse iteration method, but the Rayleigh
quotient iteration is still used to finally accelerate convergence.
In particular, the TLIME algorithm starts performing inverse iteration with

a shift which is given by the parameter γ that specifies the center of the interval
J . It then employs two criteria for switching to Rayleigh quotient iteration and
one criterion for switching back to inverse iteration. To explain these criteria,
let the generated sequence of approximate eigenvalue–eigenvector pairs of B
be denoted by

(
λk(B),yk)

k, where each yk is the approximate eigenvector
obtained right before the normalization step in Algorithm 4.
The first criterion for switching to Rayleigh quotient iteration is based on

an inclusion theorem. This theorem guarantees the existence of at least one
eigenvalue in J as soon as the sequence (ωk)k of normalizers ωk := 1 /

∣∣yk
∣∣,

which is monotonically decreasing, is smaller than the parameter η that speci-
fies the width of the interval J . Then, it is furthermore known that the current
approximate eigenvalue λk(B) lies in J . See Szyld (1988) for details. In this
case, the algorithm switches and tries to use the Rayleigh quotient iteration
to converge to one of the eigenvalues in J . A criterion to switch back to the
inverse iteration method is required since it can nevertheless happen that the
current approximate eigenvector yk and its normalized variant are not close
enough to an eigenvector associated with an eigenvalue in J . Note that, in
this case, the Rayleigh quotient iteration might still converge to an eigenvalue
of B which does not lie in J . Accordingly, the TLIME algorithm performs
a switch back to inverse iteration if the approximate eigenvalue λk(B) falls
outside J at some point.
If the criterion for switching to Rayleigh quotient iteration mentioned above

is never satisfied, then there is no eigenvalue in J . In this case, there is
no alternative to sticking with inverse iteration if convergence to the eigen-
value closest to γ shall be guaranteed. Nevertheless, the method switches to
Rayleigh quotient iteration at some point, but solely to accelerate convergence
to this eigenvalue in the final iterations. To assure convergence to the right
eigenvalue, inverse iteration is performed until the process becomes stationary.
The process is considered as being stationary as soon as the relative change
|λk(B) − λk−1(B)| / |λk(B)| falls below a given threshold δ. To make sure
that this switch is not triggered during the first iterations of the algorithm,
caused by an initial vector which is close to an eigenvector that is associated
with some eigenvalue outside J , a minimum amount of inverse iterations is
performed before the criterion is activated.
For more information on the general formulation of the TLIME algorithm

and its theoretical fundament, we refer to Szyld (1988).

240



B.4. Numerical computation of eigenvalues

B.4.5. Application to computing the spectral condition number

We close this section by briefly emphasizing how the eigenvalue algorithms
which have been considered can be employed particularly for calculating the
spectral condition number. As shown in Section B.3, it is possible to obtain
the spectral condition number of a given matrix by computing the dominant
eigenvalue and the least dominant eigenvalue of some associated Hermitian
matrix. Hence, let the considered matrix B ∈ Cn×n be this Hermitian matrix
in the remainder of this section.
For computing the dominant eigenvalue λabsmax(B) ∈ R of B, each method

can be used:
• The power iteration method in its basic formulation from Section B.4.1

converges to λabsmax(B).
• The inverse iteration method with shift µ = c ∈ R converges to λabsmax(B)

if |c| is an upper limit of
∣∣λabsmax(B)

∣∣ and sgn(c) = sgn
(
λabsmax(B)

)
.

• If an initial vector is available that is sufficiently close to some eigenvector
associated with λabsmax(B), the Rayleigh quotient iteration method con-
verges to λabsmax(B). Although such an initial vector can be generated
using one of the above methods, it is preferable to employ the TLIME
algorithm.

• Provided that B is a matrix over R, the TLIME algorithm for the interval
J = (γ − η, γ + η) with γ = c and η = 0 converges to λabsmax(B), if |c| is
an upper limit of

∣∣λabsmax(B)
∣∣ and sgn(c) = sgn

(
λabsmax(B)

)
.

An approximate upper limit |c| which is cheap to compute for sparse matrices
is the infinity norm ‖B‖∞, which corresponds to the maximum absolute row
sum of the matrix. More generally, we have

∣∣λabsmax(B)
∣∣ ≤ ‖B‖ for the matrix

norm induced by any vector norm on Cn. Note that x 6= 0 and
∣∣λabsmax(B)

∣∣ ‖x‖ =
∥∥λabsmax(B) x

∥∥ = ‖Bx‖ ≤ ‖B‖ ‖x‖

for an arbitrary vector norm ‖ · ‖ on Cn and every eigenvector x associated
with λabsmax(B). Knowledge about sgn

(
λabsmax(B)

)
is required to choose the

correct sign of c.
The least dominant eigenvalue λabsmin(B) ∈ R of B is the eigenvalue closest

to 0. Therefore, it can be obtained similarly by:
• the inverse iteration method with shift µ = 0,
• the Rayleigh quotient iteration method, if an initial vector is available

that is sufficiently close to some eigenvector associated with λabsmin(B),
• the TLIME algorithm for the interval J = (γ − η, γ + η) with γ = 0 and
η = 0, provided that B is a matrix over R.

Concrete combinations of those eigenvalue algorithms, which we have practi-
cally used in this thesis to calculate the spectral condition number of matrices,
will be considered in the next section.

241



B. The condition number of a matrix

B.5. Implementation in the dune-istl module

As part of this thesis, the eigenvalue algorithms from Section B.4, an interface
to a library of other eigenvalue algorithms and, built on top of both, an easy-
to-use facility for computing the spectral condition number of a matrix have
been implemented. We did this for being able to analyze those matrices which
arise from the discretization methods introduced in Chapter 4. The code
has been built into the modular toolbox for numerical software development
named DUNE, which is introduced in Appendix A.1. Although this is currently
not stated in the release notes, the code is part of the module dune-istl since
the release of DUNE 2.5.
In particular, the power iteration based eigenvalue algorithms that are in-

troduced in Section B.4 have been implemented as a class template named
Dune::PowerIteration_Algorithms, whose structure is depicted in Table B.1.
The implementation is restricted to square, symmetric matrices over R that
are represented by objects of type Dune::BCRSMatrix, which is the standard
type for sparse block matrices in dune-istl, and vectors over R that are repre-
sented by compatible objects of type Dune::BlockVector from dune-istl. As
vector norm ‖·‖ for Algorithm 1, Algorithm 2 and Algorithm 3, the implemen-
tation uses the Euclidean norm |·|. This norm is also employed by the stopping
criterion that is implemented in Dune::PowerIteration_Algorithms. The al-
gorithms stop iterating as soon as the norm of the absolute residual falls below
a threshold ε > 0, i.e. once that

∣∣Bxk−λk(B) xk
∣∣ ≤ ε, or if a maximum num-

ber of iterations has been performed. Here, B is the given matrix and λk(B)
as well as xk are the current iterates of the approximate eigenvalue and the
associated eigenvector, respectively. The threshold ε needs to be specified in
each algorithm call, whereas a maximum number of iterations per algorithm
call can be set globally via an optional parameter of the constructor.
To compute the Rayleigh quotient and the residual norm efficiently, the im-

plementation uses the result of matrix–vector multiplications Bx or solutions
of linear systems that have already been computed in the essential step of the
algorithms. Recycling the solutions of linear systems for this purpose can be
turned off using a compile-time switch, to allow for avoiding that inaccurate
solutions have a negative impact on the computation of eigenvalues and their
associated residuals. Setting this mode can help increasing the accuracy of
each linear solver based algorithm at the cost of a bit of efficiency. This is
beneficial, e.g., when using a very inexact linear solver.

Dune::PowerIteration_Algorithms is compatible with all iterative lin-
ear solvers and direct linear solvers for sparse matrices that are available in
dune-istl. Linear solvers that operate matrix free (e.g. iterative solvers of
Krylov type with appropriate preconditioners) need to be set up with the oper-
ator retrieved by the class template’s method getIterationOperator. Linear
solvers which require the matrix (e.g. direct solvers) need to be set up using
the method getIterationMatrix.

242



B.5. Implementation in the dune-istl module

Entity / class member Description

BCRSMatrix Template parameter selecting the specific
type of Dune::BCRSMatrix

BlockVector Template parameter selecting the specific
type of Dune::BlockVector

Real Type used for representing R

IterationOperator Type used for representing the iteration
operator (B − µ I)

PowerIteration_Algorithms
(const BCRSMatrix&)

Constructs the class for a given square,
symmetric matrix B ∈ Rn×n

void applyPowerIteration
(const Real&, BlockVector&, Real&)

Performs Algorithm 1

template<typename ISTLLinearSolver>
void applyInverseIteration

(const Real&, ISTLLinearSolver&,
BlockVector&, Real&)

Performs Algorithm 2 for µ = 0

template<typename ISTLLinearSolver>
void applyInverseIteration

(const Real&, const Real&,
ISTLLinearSolver&, BlockVector&,
Real&)

Performs Algorithm 2

template<typename ISTLLinearSolver>
void applyRayleighQuotientIteration

(const Real&, ISTLLinearSolver&,
BlockVector&, Real&)

Performs Algorithm 3 (one iteration of
Algorithm 2 is performed beforehand in
this specific implementation)

template<typename ISTLLinearSolver>
void applyTLIMEIteration

(const Real&, const Real&,
const Real&, ISTLLinearSolver&,
const Real&, const std::size_t&,
bool&, BlockVector&, Real&)

Performs Algorithm 4

IterationOperator&
getIterationOperator ()

Retrieves the iteration operator (B−µ I)

const BCRSMatrix&
getIterationMatrix ()

Retrieves the iteration operator (B−µ I)
as a matrix that is provided on demand,
when needed (e.g. for direct solvers or
preconditioning)

unsigned int getIterationCount () Number of iterations performed in the
last application of an algorithm

Table B.1.: Overview of class template Dune::PowerIteration_Algorithms.

243



B. The condition number of a matrix

In addition to the eigenvalue algorithms from Section B.4, wrappers have
been implemented and built into dune-istl that allow for computing the
extremal eigenvalues of a real, symmetric matrix or the singular values of an
arbitrary real matrix, by calling an eigenvalue algorithm that is provided by
a C++ library called ARPACK++1. This library comprises a collection of C++

bindings to a FORTRAN 77 library called ARPACK2, see also Lehoucq et al.
(1998a). The latter provides an implementation of eigenvalue algorithms which
are known as the implicitly restarted Arnoldi method (IRAM) (Lehoucq and
Sorensen, 1996; Lehoucq et al., 1998b) and the implicitly restarted Lanczos
method (IRLM) (Calvetti et al., 1994), where the IRLM is a variant of the
IRAM for symmetric matrices. These methods can be seen as a synthesis of the
Arnoldi/Lanczos process with the implicitly shifted QR algorithm. While the
QR algorithm is only suitable for eigenvalue problems with a dense matrix,
the IRAM/IRLM were designed to compute eigenvalue–eigenvector pairs of
large, sparse, nonsymmetric/symmetric matrices.
The main wrapper that allows for employing ARPACK++/ARPACK to compute

the extremal eigenvalues or singular values of a matrix has been implemented
as a class template Dune::ArPackPlusPlus_Algorithms. Its structure is de-
picted in Table B.2. In each call to a method that performs computations,
a stopping tolerance needs to be specified which configures the target accu-
racy of the result. Furthermore, since we use the IRLM which is an iterative
scheme, a parameter which configures the maximum number of iterations per
algorithm call can be set globally via an optional parameter of the constructor
of the class template. Internally, Dune::ArPackPlusPlus_Algorithms uses
a class template Dune::ArPackPlusPlus_BCRSMatrixWrapper. The latter is
a wrapper for a matrix A ∈ Rm×n that is represented by an object of type
Dune::BCRSMatrix. It provides methods which implement the matrix–vector
products Ax and AtrAx with a signature that is usable by ARPACK++. For the
particular variant of the eigenvalue algorithm which is employed, these are the
only required operations involving A.
An easy-to-use facility which allows for straightforward computation of the

spectral condition number of a matrix has been implemented as a class tem-
plate MatrixInfo. Its structure is presented in Table B.3. The underlying
algorithm can be described as depicted in Algorithm 5.
To perform step 2 in Algorithm 5, MatrixInfo uses the class template

Dune::PowerIteration_Algorithms which is described above. In particu-
lar, the approximation λabsmax(B) is computed using a combination of the
power iteration method (in its basic formulation from Section B.4.1) and the
TLIME algorithm. Here, the power iteration method serves as a predictor for
the sign of λabsmax(B) and for an eigenvector. The predicted eigenvector is
employed as initial vector for the TLIME algorithm. To obtain λabsmax(B),
the latter is configured as described in Section B.4.5, using the predicted sign

1http://www.ime.unicamp.br/~chico/arpack++/
2http://www.caam.rice.edu/software/ARPACK/

244

http://www.ime.unicamp.br/~chico/arpack++/
http://www.caam.rice.edu/software/ARPACK/


B.5. Implementation in the dune-istl module

Entity / class member Description

BCRSMatrix Template parameter selecting the specific
type of Dune::BCRSMatrix

BlockVector Template parameter selecting the specific
type of Dune::BlockVector

Real Type used for representing R

ArPackPlusPlus_Algorithms
(const BCRSMatrix&)

Constructs the class for a given matrix
A ∈ Rm×n

void computeSymMaxMagnitude
(const Real&, BlockVector&, Real&)

Assumes A to be square, symmetric and
performs IRLM to compute its dominant
eigenvalue λabsmax(A) ∈ R and an asso-
ciated eigenvector

void computeSymMinMagnitude
(const Real&, BlockVector&, Real&)

Assumes A to be square, symmetric and
performs IRLM to compute its least dom-
inant eigenvalue λabsmin(A) ∈ R and an
associated eigenvector

void computeNonSymMax
(const Real&, BlockVector&, Real&)

Assumes A to be nonsymmetric and per-
forms IRLM on AtrA to compute the
largest singular value σmax(A) ∈ R of A
and an associated singular vector

void computeNonSymMin
(const Real&, BlockVector&, Real&)

Assumes A to be nonsymmetric and per-
forms IRLM on AtrA to compute the
smallest singular value σmin(A) ∈ R of
A and an associated singular vector

unsigned int getIterationCount () Number of iterations performed in the
last application of an algorithm

Table B.2.: Overview of class template Dune::ArPackPlusPlus_Algorithms.

Entity / class member Description

BCRSMatrix Template parameter selecting the specific
type of Dune::BCRSMatrix

Real Type used for representing R

MatrixInfo (const BCRSMatrix& A) Constructs the class for a given square
matrix A ∈ Rn×n

Real getCond2
(const bool assume_symmetric)

Computes κ2(A) (if it is not yet available)
using Algorithm 5 and retrieves κ2(A)

Table B.3.: Overview of class template MatrixInfo.

245



B. The condition number of a matrix

Algorithm 5: Computation of κ2(A)
Input: square matrix A ∈ Rn×n, flag symmetric ∈ {0, 1} indicating if

symmetry of A can be assumed or not
Output: approximation κ2(A) of the spectral condition number of A
if symmetric = 1 then // step 1

set B = A;
else

compute AtrA and set B = AtrA;
end
compute approximations λabsmax(B) and λabsmin(B); // step 2

if symmetric = 1 then // step 3
set σmax(A) =

∣∣λabsmax(B)
∣∣ and σmin(A) =

∣∣λabsmin(B)
∣∣

according to formula (B.5);
else

using that λabsmax(B) =̂ λmax(B) and λabsmin(B) =̂ λmin(B),
set σmax(A) =

√
λabsmax(B) and σmin(A) =

√
λabsmin(B)

according to formula (B.4);
end
set κ2(A) = σmax(A) / σmin(A); // step 4

of λabsmax(B) and the infinity norm ‖B‖∞ as a cost-efficient upper limit of∣∣λabsmax(B)
∣∣. The approximation λabsmin(B) is computed directly using the

TLIME algorithm. Again, see Section B.4.5. As a linear solver which drives
the TLIME algorithm, the dune-istl interface to SuperLU is used.
On machines where the ARPACK library is available, MatrixInfo uses

Dune::ArPackPlusPlus_Algorithms to directly compute σmax(A) instead of
λabsmax(B) in steps 2 and 3 of Algorithm 5. This has shown to be a faster
way of obtaining σmax(A) for the set of matrices which we dealt with, while
yielding similar results in terms of accuracy. However, in our experience,
Dune::ArPackPlusPlus_Algorithms has problems finding eigenvalues in the
lower end of the spectrum of matrices. At least for the set of matrices which
we dealt with, it was not a reliable alternative in computing σmin(A). The
particular variant of the IRLM which is employed only converged for small ma-
trices that result from very coarse meshes, while the TLIME algorithm even
converged for most of the large matrices that result from fine meshes. For this
reason, MatrixInfo does not employ Dune::ArPackPlusPlus_Algorithms to
obtain σmin(A). Even on machines where ARPACK is available, it sticks to
Dune::PowerIteration_Algorithms to gain σmin(A) by performing steps 2
and 3 of Algorithm 5, as described above.
It is worth noting that MatrixInfo is available via the header include

#include <dune/istl/eigenvalue/test/matrixinfo.hh>, since it has been

246



B.5. Implementation in the dune-istl module

built into dune-istl to facilitate testing. Its main purpose, however, is to be
deployed in user code. It has been used to obtain all results regarding the
spectral condition number of those matrices which arise from the discretiza-
tion methods introduced in Chapter 4.

247





C. Basic terminology and facts
from elementary differential
geometry

In this appendix, we recall some basic terminology and facts from elementary
differential geometry that we are using in the main part of this thesis. In
Section C.1, we introduce the notion of Ck-hypersurfaces. In Section C.2, we
briefly explain smoothness assumptions which we use throughout the thesis.
The content of Section C.1 is taken from Dziuk and Elliott (2013, Section 2).

For general introductions to differentiable manifolds and hypersurfaces, please
refer to Lee (2009, 2012) and to Burstall (1999, Section 1).

C.1. Hypersurfaces

Hypersurfaces can be defined via parametrizations in the following way.

Definition C.1.1 (Parametrized Ck-hypersurface (cf. Dziuk and Elliott, 2013,
Section 2.1)). Let k ∈ N ∪ {∞}. We call M ⊂ Rd a (d − 1)-dimensional
parametrized Ck-hypersurface if, for every point x0 ∈M, there exists an open
set U ⊂ Rd containing x0, an open connected set V ⊂ Rd−1, and a map
X : V →M∩ U with the following properties:

• X ∈ Ck
(
V ;Rd

)
,

• X is bijective,
• rankDX = d− 1 on V .

The map X is called a local parametrization ofM, while X−1 is called a local
chart. A collection (Xi)i∈I of local parametrizations Xi ∈ Ck

(
Vi;Rd

)
with⋃

i∈I Xi(Vi) =M is called a Ck-atlas. If Xi(Vi) ∩Xj(Vj) = ∅, then the map
Xi
−1 ◦Xj, by assumption, is a Ck-diffeomorphism.

A second, alternative definition by means of level sets of scalar functions is
given as follows.

Definition C.1.2 (Ck-hypersurface (Dziuk and Elliott, 2013, Definition 2.1)).
Let k ∈ N∪{∞}. A setM⊂ Rd is called a (d−1)-dimensional Ck-hypersurface
if, for each point x0 ∈M, there exists an open set U ⊂ Rd containing x0 and
a function Φ ∈ Ck(U) with the property that

M∩ U = {x ∈ U | Φ(x) = 0} and ∇Φ 6= 0 on M∩ U.

249



C. Basic terminology and facts from elementary differential geometry

Definition C.1.3 (Orientable Ck-hypersurface (cf. Dziuk and Elliott, 2013,
Section 2.2)). A C1-hypersurface M ⊂ Rd is called orientable if there exists
a continuous vector field νM : M → Rd such that νM(x) is a unit normal
vector toM for all x ∈M.

A connection between parametrized hypersurfaces and hypersurfaces in the
sense of Definition C.1.2 is given by the following lemma.

Lemma C.1.4 (Consistency of Definition C.1.2 and Definition C.1.1 (Dziuk
and Elliott, 2013, Lemma 2.2)). Assume that M is a Ck-hypersurface in Rd.
Then for every x ∈ M there exists an open set U ⊂ Rd with x ∈ U and a
parametrized Ck-hypersurface X : V →M∩ U such that X is a bijective map
from V onto M∩ U . If X : V → M∩ U is a parametrized Ck-hypersurface
and θ ∈ V , then there is an open set Ṽ ⊂ V with θ ∈ Ṽ such that X(Ṽ ) is a
Ck-hypersurface.

Lemma C.1.4 implies that we can locally always work with hypersurfaces
in the sense of Definition C.1.2. Moreover, since both definitions can be used
interchangeably, notions from both definitions can be used without reference
to the definition that has actually been used to introduce them.

C.2. Smoothness assumptions

Following Dziuk and Elliott (2013, Section 2.1 and Section 2.2), the notion
of a Ck-atlas from Definition C.1.1 can be employed to define the notion of
an l-times differentiable function on a hypersurfaceM, provided thatM is a
Ck-hypersurface with k ≥ l.
In the main part of this thesis, we deal with l-times differentiable functions

or Cl
(
M
)
-functions on some hypersurfaceM, where l ≤ 2. It would therefore

be sufficient to assume that the given hypersurfaces are C1-hypersurfaces or
C2-hypersurfaces, depending on the features of the equations which we are
dealing with. Keeping this in mind, for the sake of simplicity, we avoid precise
assumptions on the regularity of the hypersurfaces which we are dealing with in
the main part of this thesis. We could abstractly require that these hypersur-
faces are sufficiently smooth for what we are doing, leaving actual smoothness
considerations up to the reader. Since we do not want our assumptions to
distract from the essentials, we simply assume that smooth hypersurfaces, i.e.,
C∞-hypersurfaces are given.

250



List of Symbols

Symbol Description

C set of complex numbers
N set of natural numbers
R set of real numbers
R>0 the positive numbers in R

R≥0 the non-negative numbers in R

Rd real coordinate space of dimension d which
models the ambient Cartesian space

� symbol which is used as a wildcard
� bold, upright symbols denote some vector field
� underlined, bold, upright symbols denote some

constant vector
∅ the empty set
≡ symbol for indicating that an entity (e.g. a

scalar/vector field or a time-dependent set) is
equivalent to a constant entity of the same kind

⊂ symbol for indicating that a set is a sub-
set of another set, usually a proper subset:
A ⊂ B :⇔ A ⊆ B ∧ A 6= B; see also ⊆

⊆ symbol for indicating that a set is a subset of
another set: A ⊆ B :⇔ ∀x ∈ A : x ∈ B; see
also ⊂

∆ classical Laplace operator (“the Laplacian”) in
ambient Cartesian space

∆M Laplace–Beltrami operator on some hypersur-
faceM, such as Γ

∇ transposed classical gradient operator in ambi-
ent Cartesian space, see also ∇ ·

∇M transposed surface gradient operator on some
hypersurfaceM, such as Γ; see also ∇M ·

∇ · classical divergence operator in ambient Carte-
sian space, see also ∇

∇M · surface divergence operator on some hypersur-
faceM, such as Γ; see also ∇M

251



List of Symbols

Symbol Description

∇h piecewise variant of the transposed classical
gradient operator in ambient Cartesian space,
as used in DG schemes; see also ∇h

∇h piecewise variant of the transposed classical
gradient operator in ambient Cartesian space,
for piecewise (multi-)linear continuous func-
tions over the geometry mesh Th (ΩΦ); see also
∇h

∂i differential operator taking the i-th partial
derivative in ambient Cartesian space, see also
∂
∂xi

∂Mi differential operator taking the i-th surface
partial derivative on some hypersurfaceM

∂
∂xi

differential operator taking the i-th partial
derivative in ambient Cartesian space, see also
∂i

∂t differential operator taking the partial deriva-
tive with respect to time

d
dt differential operator taking the derivative with

respect to time, can be applied to functions
that solely depend on time

∂• differential operator taking the material deriva-
tive of scalar fields on evolving hypersurfaces

‖ · ‖H1(Ωh ) bulk H1-norm on the discretized geometry
‖ · ‖H1(Γh ) surface H1-norm on the discretized geometry
‖ · ‖L2(Ωh ) bulk L2-norm on the discretized geometry
‖ · ‖L2(Γh ) surface L2-norm on the discretized geometry
| · | Euclidean norm, also known as 2-norm
| · | absolute value of a real number
∪̇ A ∪̇B denotes the union of two disjoint sets A

and B
cl (A) closure of a set A
Ac absolute complement of a set A in some fixed

universe
diam(A) diameter of a set A
int (A) interior of a set A
measRd(A) d-dimensional measure of a set A
N (A) d-dimensional neighborhood of a subset A of

the ambient Cartesian space
{ · } average operator, as used in DG methods and

defined in Section 3.2.1, Section 4.2.2, and Sec-
tion 5.3.2

252



List of Symbols

Symbol Description

{ · }ω weighted average operator, as used in the
SWIPG formulation and defined in Sec-
tion 3.2.3

J · K jump operator, as used in DG methods and de-
fined in Section 3.2.1, Section 4.2.2, and Sec-
tion 5.3.2

�Φ extension of a datum � to the level set domain
ΩΦ

�ext extension of a datum � to the surface extension
domain Ωext

�̃ext modified extended data functions, as defined in
equation (4.9)

1A the characteristic function (indicator function)
of a subset A of the ambient Cartesian space

A usually denotes some matrix in Rm×n, with
m,n ∈ N, which represents a system of linear
equations Ax = b

A∗ conjugate transpose of a vector/matrix A
Atr transpose of a vector/matrix A
α usually denotes the uniform scaling parameter

which is used if the scaling parameters αin and
αout of the narrow band Ωδ are chosen to be
equal

αin scaling parameter of the narrow band Ωδ, see
also α and δin

αout scaling parameter of the narrow band Ωδ, see
also α and δout

B usually denotes some matrix in Cn×n, n ∈ N

b usually denotes some vector in Rm, m ∈ N,
which is the right-hand side in a system of lin-
ear equations Ax = b

C0(A;B
)

space of continuous functions on a domain A,
mapping into a target set B

C0(A
)

the space C0(A;R
)

Ck
(
A;B

)
space of k-times continuously differentiable
functions on a domain A, mapping into a target
set B

Ck
(
A
)

the space Ck
(
A;R

)

253



List of Symbols

Symbol Description

Db diffusivity tensor of a bulk PDE, see Section 1.2
Ds diffusivity tensor of a surface PDE, see Sec-

tion 1.2
D usually denotes some bulk domain or open set
D static bulk domain that is used in our refor-

mulation approach from Section 5.3.1; results
from projecting the space–time representation
of Γ(t) to spatial-only coordinates

Dh discrete reconstruction of the bulk domain D
D some bulk domain which contains the recon-

structed bulk domain Dh
Df Jacobian matrix of a vector-valued function f
δ width δ := δin + δout of the narrow band Ωδ,

measured in the codomain of the level set func-
tion Φ, i.e., in “level set levels”

δin scaling parameter δin := αin · h of the narrow
band Ωδ, as defined in Section 4.2.2

δout scaling parameter δout := αout ·h of the narrow
band Ωδ, as defined in Section 4.2.2

d dimension of the ambient Cartesian space
dx differential in spatial integrals of codimension

0, also known as d-dimensional volume measure
dσ differential in spatial integrals of codimension

1, also known as (d − 1)-dimensional surface
measure

dς differential in spatial integrals of codimension
2, also known as (d − 2)-dimensional surface
measure

dt differential in time integrals

E some face of a cut cell or classical mesh element
E int
h (D) internal skeleton of the (cut cell) mesh Th(D)

fb(ub) bulk reaction term of a bulk–surface model, see
Section 1.2

fb,s(ub, us) bulk coupling term of a bulk–surface model, see
Section 1.2

fs(us) surface reaction term of a bulk–surface model,
see Section 1.2

fs,b(ub, us) surface coupling term of a bulk–surface model,
see Section 1.2

254



List of Symbols

Symbol Description

gb scalar field which represents some source/sink
density defined in Ω

gs scalar field which represents a source/sink den-
sity defined on some hypersurface M, such as
Γ

γb interior penalty parameter for the bulk part of
the problem

γs interior penalty parameter for the surface part
of the problem

γD diffusivity-dependent scaling function, as used
in the SWIPG formulation and defined in Sec-
tion 3.2.3

γnp parameter of the normal penalty stabilization
mechanism introduced in Section 4.2.4

Γ (d − 1)-dimensional hypersurface, denoted by
Γ(t) if it is time-dependent, usually the bound-
ary of a bulk domain Ω

Γh discrete reconstruction of the hypersurface Γ
Γl level set of Φ associated with the level l ∈ R,

note that Γ0 = Γ
Γl,h level set of Φh associated with the level l ∈ R,

note that Γ0,h = Γh

h width (i.e. maximum element size) of the fun-
damental mesh Th(ΩΦ) or of the mesh that is
employed by some fitted method

hE local mesh size at a face E of a cut cell or clas-
sical mesh element

h width (i.e. maximum element size) of the ge-
ometry mesh Th (ΩΦ)

HM total curvature of some hypersurface M (see
Definition 2.2.6), where H := HΓ

Hk(D) Sobolev spaces over some bulk domain or hy-
persurface D

I identity operator on some space

k the polynomial degree that is used for con-
structing some discrete finite element space

κ2(A) spectral condition number of a matrix A, i.e.,
the condition number with respect to the Eu-
clidean norm | · |

K some cut cell or classical mesh element

255



List of Symbols

Symbol Description

K−E adjacent element of an internal face E of a cut
cell or classical mesh element

K+
E adjacent element of an internal face E of a cut

cell or classical mesh element

λ(B) eigenvalues of a square matrix B
Lp(D) Lebesgue spaces over some bulk domain or hy-

persurface D

m usually denotes the number m ∈ N of equa-
tions in a system of linear equations

m(t) amount of some quantity/quantities at a given
time t, usually the total amount of quanti-
ties that are associated with a system of bulk–
surface equations

M some hypersurface, such as Γ
Ml restricted level sets Ml := Γl ∩ Ωext of Φ in

the surface extension domain Ωext, note that
M0 = Γ

Mt space–time representation of an evolving hy-
persurfaceM(t)

M an arbitrary subset of Γ or of some related hy-
persurfaceM

µ∂M field of intrinsic unit normal vectors to the
boundary of some hypersurfaceM

n usually denotes the number n ∈ N of unknowns
in a system of linear equations

n∂D field of unit normal vectors to the boundary of
some bulk domain D

νM field of unit normal vectors to some hypersur-
faceM, where ν := νΓ

O Bachmann–Landau notation for describing the
asymptotic behavior of functions: f ∈ O(g) :⇔
f grows asymptotically no faster than g

Ω d-dimensional bulk domain, denoted by Ω(t) if
it is time-dependent

Ωh discrete reconstruction of the bulk domain Ω
Ωδ narrow band which is used as a surface exten-

sion domain Ωext
Ωδ,h discrete reconstruction of the narrow band Ωδ

which is used as a surface extension domain

256



List of Symbols

Symbol Description

Ωext some general surface extension domain
ΩΦ level set domain, i.e., bulk domain which is

used for our level set function Φ

Pk(D) space of polynomial functions of total degree
less than or equal to k over some domain D

φ azimuthal angle of polar coordinates (r, φ), for
d = 2, or of spherical coordinates (r, θ, φ), for
d = 3

PM tangential projection operator for some hyper-
surfaceM, where P := PΓ

Φ level set function which is employed for describ-
ing the geometry

Φh discrete analogue to the level set function Φ

Qk(D) space of polynomial functions over some do-
main D, with a degree less than or equal to k
in each coordinate direction

qb vector field which represents some flux defined
in Ω

qs vector field which represents a flux defined on
some hypersurfaceM, such as Γ

r radial distance of polar coordinates (r, φ), for
d = 2, or of spherical coordinates (r, θ, φ), for
d = 3

R an arbitrary subset of Ω or of some related bulk
domain

σ(A) singular values of a matrix A
sgn the signum function which yields the sign −1,

0 or 1 of a number

t time variable
tn discrete time variable
T maximum time in an observation period [0, T ]
T̂h(D) active mesh for some bulk domain D
Th(D) cut cell mesh or classical mesh of some bulk

domain D
Th(ΩΦ) fundamental mesh that is employed in our

UDG schemes, i.e., a mesh of the level set do-
main ΩΦ

257



List of Symbols

Symbol Description

Th (ΩΦ) geometry mesh that is employed in our UDG
schemes, i.e., a (usually fine) mesh of the level
set domain ΩΦ

τ n size of the n-th time step
θ zenith angle (also known as inclination angle)

of spherical coordinates (r, θ, φ) for d = 3
tr(A) the trace of a square matrix A

U usually denotes some unitary matrix in Cn×n,
with n ∈ N

ub concentration of a scalar bulk quantity on a
bulk domain Ω

ub,h discrete analogue to ub
uh discrete solution in a discrete approximation

space that is not further specified
us concentration of a surface-bound scalar quan-

tity on a hypersurface Γ
us,h discrete analogue to us

Vb,h(D) discrete approximation space associated with
the bulk part of a problem, comprising func-
tions over some bulk domain D

Vs,h(D) discrete approximation space associated with
the surface part of a problem, comprising func-
tions over a bulk domain or hypersurface D

vb field of material velocity vectors of Ω(t)
vs field of material velocity vectors of Γ(t)
v field of material velocity vectors of Ω(t) ∪ Γ(t)
ϕb test function in some space associated with the

bulk part of a problem
ϕb,h discrete analogue to ϕb, i.e., test function in a

discrete approximation space associated with
the bulk part of a problem

ϕh test function in a discrete approximation space
that is not further specified

ϕs test function in some space associated with the
surface part of a problem

ϕs,h discrete analogue to ϕs, i.e., test function in a
discrete approximation space associated with
the surface part of a problem

wb field of velocity vectors that are intrinsic to Ω
ws field of velocity vectors that are intrinsic to Γ

258



List of Acronyms

Acronym Expansion Page

DUNE the Distributed and Unified Numerics Environ-
ment (https://www.dune-project.org)

215

ALE arbitrary Lagrangian–Eulerian
ALE ESFEM ESFEM based on an ALE point of view 16
ALE FEM FEM based on an ALE point of view 15

BiCGSTAB biconjugate gradient stabilized
(van der Vorst, 1992)

236

CG conjugate gradient (Hestenes and Stiefel, 1952) 236

DG discontinuous Galerkin 15
DOF degree of freedom 130

ESFEM evolving SFEM (Dziuk and Elliott, 2007a) 16
Eulerian ESFEM ESFEM based on an Eulerian point of view

(Dziuk and Elliott, 2010)
22

Eulerian SDG SDG based on an Eulerian point of view 113
Eulerian SFEM SFEM based on an Eulerian point of view

(Dziuk and Elliott, 2008)
22

FD finite difference 14
FEM finite element method 14
FV finite volume 15

GMRES generalized minimal residual
(Saad and Schultz, 1986)

236

GOR model Goryachev model
(Goryachev and Pokhilko, 2008)

26

IIPG incomplete IPG (see e.g. Dawson et al., 2004) 73
IPG interior penalty Galerkin
IRAM implicitly restarted Arnoldi method (Lehoucq

and Sorensen, 1996; Lehoucq et al., 1998b)
244

259

https://www.dune-project.org


List of Acronyms

Acronym Expansion Page

IRLM implicitly restarted Lanczos method
(Calvetti et al., 1994)

244

NIPG non-symmetric IPG (Rivière et al., 1999, 2001) 73

OBB-DG Oden–Babuška–Baumann DG
(Oden et al., 1998)

73

PDE partial differential equation 5

SDG surface DG 16
SFEM surface FEM (Dziuk, 1988) 16
SIPG symmetric IPG (Wheeler, 1978)

(see also Douglas and Dupont, 1976)
73

surfactant surface active agent 1
SWIPG symmetric weighted IPG (Ern et al., 2009) 75

TLIME two-level iterative method for eigenvalue calcu-
lations (Szyld, 1988)

238

UDG unfitted DG
(Bastian and Engwer, 2009; Engwer, 2009)

19

WP model wave-pinning model (Mori et al., 2008), (Giese,
Eigel, Westerheide, Engwer and Klipp, 2015a)

26

XFEM extended FEM 20

260



Bibliography
H. Abels, K. F. Lam, B. Stinner. Analysis of the Diffuse Domain Approach
for a Bulk-Surface Coupled PDE System. SIAM Journal on Mathematical
Analysis, 47 (2015) (5), pp. 3687–3725.

D. Adalsteinsson, J. Sethian. Transport and diffusion of material quan-
tities on propagating interfaces via level set methods. Journal of Computa-
tional Physics, 185 (2003) (1), pp. 271–288.

S. Aland, J. Lowengrub, A. Voigt. Two-phase flow in complex geome-
tries: A diffuse domain approach. Comput. Model. Eng. Sci., 57 (2010) (1),
pp. 77–108.

P. F. Antonietti, A. Dedner, P. Madhavan, S. Stangalino, B. Stin-
ner, M. Verani. High Order Discontinuous Galerkin Methods for Elliptic
Problems on Surfaces. SIAM Journal on Numerical Analysis, 53 (2015) (2),
pp. 1145–1171.

D. N. Arnold, F. Brezzi, B. Cockburn, L. D. Marini. Unified Analysis
of Discontinuous Galerkin Methods for Elliptic Problems. SIAM Journal on
Numerical Analysis, 39 (2002) (5), pp. 1749–1779.

R. Barreira, C. M. Elliott, A. Madzvamuse. The surface finite element
method for pattern formation on evolving biological surfaces. Journal of
Mathematical Biology, 63 (2011) (6), pp. 1095–1119.

J. W. Barrett, C. M. Elliott. Fitted and unfitted finite-element meth-
ods for elliptic equations with smooth interfaces. IMA J. Numer. Anal., 7
(1987) (3), pp. 283–300.

P. Bastian, M. Blatt, A. Dedner, C. Engwer, R. Klöfkorn, R. Ko-
rnhuber, M. Ohlberger, O. Sander. A generic grid interface for par-
allel and adaptive scientific computing. Part II: implementation and tests
in DUNE. Computing, 82 (2008a) (2), pp. 121–138.

P. Bastian, M. Blatt, A. Dedner, C. Engwer, R. Klöfkorn,
M. Ohlberger, O. Sander. A generic grid interface for parallel and
adaptive scientific computing. Part I: abstract framework. Computing, 82
(2008b) (2), pp. 103–119.

P. Bastian, C. Engwer. An unfitted finite element method using discontin-
uous Galerkin. International Journal for Numerical Methods in Engineering,
79 (2009) (12), pp. 1557–1576.

261



Bibliography

P. Bastian, C. Engwer, J. Fahlke, O. Ippisch. An Unfitted Dis-
continuous Galerkin method for pore-scale simulations of solute transport.
Mathematics and Computers in Simulation, 81 (2011) (10), pp. 2051–2061.
MAMERN 2009: 3rd International Conference on Approximation Methods
and Numerical Modeling in Environment and Natural Resources.

P. Bastian, F. Heimann, S. Marnach. Generic implementation of fi-
nite element methods in the Distributed and Unified Numerics Environment
(DUNE). Kybernetika, 46 (2010) (2), pp. 294–315.

T. Belytschko, W. K. Liu, B. Moran. Nonlinear Finite Elements for
Continua and Structures. John Wiley and Sons, Ltd., New York, 2000.

T. Belytschko, N. Moës, S. Usui, C. Parimi. Arbitrary discontinuities
in finite elements. International Journal for Numerical Methods in Engi-
neering, 50 (2001) (4), pp. 993–1013.

M. Bertalmío, L.-T. Cheng, S. Osher, G. Sapiro. Variational Prob-
lems and Partial Differential Equations on Implicit Surfaces. Journal of
Computational Physics, 174 (2001) (2), pp. 759–780.

M. Bertalmío, F. Mémoli, L.-T. Cheng, G. Sapiro, S. Osher. Vari-
ational Problems and Partial Differential Equations on Implicit Surfaces:
Bye Bye Triangulated Surfaces? In S. Osher, N. Paragios, eds., Geo-
metric Level Set Methods in Imaging, Vision, and Graphics, chap. 20, pp.
381–397. Springer, New York, NY, 2003.

M. Blatt, P. Bastian. The Iterative Solver Template Library. In
B. Kågström, E. Elmroth, J. Dongarra, J. Waśniewski, eds., Ap-
plied Parallel Computing. State of the Art in Scientific Computing. Springer
Berlin Heidelberg. ISBN 978-3-540-75755-9, 2007 pp. 666–675.

M. Blatt, A. Burchardt, A. Dedner, C. Engwer, J. Fahlke,
B. Flemisch, C. Gersbacher, C. Gräser, F. Gruber,
C. Grüninger, D. Kempf, R. Klöfkorn, T. Malkmus, S. Müthing,
M. Nolte, M. Piatkowski, O. Sander. The Distributed and Unified
Numerics Environment, Version 2.4. Archive of Numerical Software, 4
(2016) (100), pp. 13–29.

M. Booty, M. Siegel. A hybrid numerical method for interfacial fluid flow
with soluble surfactant. Journal of Computational Physics, 229 (2010) (10),
pp. 3864–3883.

F. Brezzi, L. D. Marini, E. Süli. Discontinuous Galerkin methods for first-
order hyperbolic problems. Mathematical Models and Methods in Applied
Sciences, 14 (2004) (12), pp. 1893–1903.

262



Bibliography

M. Burger. Finite element approximation of elliptic partial differential equa-
tions on implicit surfaces. Computing and Visualization in Science, 12
(2009) (3), pp. 87–100.

M. Burger, O. L. Elvetun, M. Schlottbom. Analysis of the Diffuse
Domain Method for Second Order Elliptic Boundary Value Problems. Foun-
dations of Computational Mathematics, 17 (2017) (3), pp. 627–674.

E. Burman, S. Claus, P. Hansbo, M. G. Larson, A. Massing. Cut-
FEM: Discretizing geometry and partial differential equations. International
Journal for Numerical Methods in Engineering, 104 (2015) (7), pp. 472–501.

E. Burman, P. Hansbo, M. G. Larson, A. Massing. Cut Finite Ele-
ment Methods for Partial Differential Equations on Embedded Manifolds of
Arbitrary Codimensions. ArXiv e-prints, (2016a). arXiv:1610.01660.

E. Burman, P. Hansbo, M. G. Larson, S. Zahedi. Cut finite element
methods for coupled bulk–surface problems. Numerische Mathematik, 133
(2016b) (2), pp. 203–231.

F. Burstall. Basic Riemannian Geometry. In B. Davies, Y. Safarov, eds.,
Spectral Theory and Geometry, vol. 273 of London Mathematical Society
Lecture Note Series, chap. 1, pp. 1–29. Cambridge University Press, 1999.

B. L. Buzbee, F. W. Dorr, J. A. George, G. H. Golub. The Direct So-
lution of the Discrete Poisson Equation on Irregular Regions. SIAM Journal
on Numerical Analysis, 8 (1971) (4), pp. 722–736.

D. Calvetti, L. Reichel, D. C. Sorensen. An implicitly restarted Lanczos
method for large symmetric eigenvalue problems. Electronic Transactions on
Numerical Analysis, 2 (1994), pp. 1–21.

M. C. Calzada, G. Camacho, E. Fernández-Cara, M. Marín. Fic-
titious domains and level sets for moving boundary problems. Applications
to the numerical simulation of tumor growth. Journal of Computational
Physics, 230 (2011) (4), pp. 1335–1358.

P. Cermelli, E. Fried, M. E. Gurtin. Transport relations for surface inte-
grals arising in the formulation of balance laws for evolving fluid interfaces.
Journal of Fluid Mechanics, 544 (2005), pp. 339–351.

T. F. Chan, L. A. Vese. An Active Contour Model without Edges. In
M. Nielsen, P. Johansen, O. F. Olsen, J. Weickert, eds., Scale-Space
Theories in Computer Vision. Springer Berlin Heidelberg. ISBN 978-3-540-
48236-9, 1999 pp. 141–151.

T. F. Chan, L. A. Vese. Active contours without edges. IEEE Transactions
on Image Processing, 10 (2001) (2), pp. 266–277.

263

arXiv:1610.01660


Bibliography

M. Chaplain, M. Ganesh, I. Graham. Spatio-temporal pattern formation
on spherical surfaces: numerical simulation and application to solid tumour
growth. Journal of Mathematical Biology, 42 (2001) (5), pp. 387–423.

A. V. Chechkin, I. M. Zaid, M. A. Lomholt, I. M. Sokolov, R. Met-
zler. Bulk-mediated diffusion on a planar surface: Full solution. Phys.
Rev. E, 86 (2012), p. 041101.

L.-T. Cheng, P. Burchard, B. Merriman, S. Osher. Motion of Curves
Constrained on Surfaces Using a Level-Set Approach. Journal of Computa-
tional Physics, 175 (2002) (2), pp. 604–644.

A. Chorin, J. Marsden. A Mathematical Introduction to Fluid Mechanics,
vol. 4 of Texts in Applied Mathematics. Springer New York, third edn., 2000.

T. A. Davis. Algorithm 832: UMFPACK V4.3—an Unsymmetric-pattern
Multifrontal Method. ACM Trans. Math. Softw., 30 (2004) (2), pp. 196–199.

C. Dawson, S. Sun, M. F. Wheeler. Compatible algorithms for coupled
flow and transport. Computer Methods in Applied Mechanics and Engineer-
ing, 193 (2004) (23–26), pp. 2565–2580.

K. Deckelnick, G. Dziuk, C. M. Elliott, C.-J. Heine. An h-narrow
band finite-element method for elliptic equations on implicit surfaces. IMA
Journal of Numerical Analysis, 30 (2010) (2), pp. 351–376.

K. Deckelnick, C. M. Elliott, T. Ranner. Unfitted Finite Element
Methods Using Bulk Meshes for Surface Partial Differential Equations.
SIAM Journal on Numerical Analysis, 52 (2014) (4), pp. 2137–2162.

A. Dedner, P. Madhavan. Discontinuous Galerkin methods for hyper-
bolic and advection-dominated problems on surfaces. ArXiv e-prints, (2015).
arXiv:1505.06752.

A. Dedner, P. Madhavan. Adaptive discontinuous Galerkin methods on
surfaces. Numerische Mathematik, 132 (2016) (2), pp. 369–398.

A. Dedner, P. Madhavan, B. Stinner. Analysis of the discontinuous
Galerkin method for elliptic problems on surfaces. IMA Journal of Numerical
Analysis, 33 (2013) (3), pp. 952–973.

A. Demlow. Higher-Order Finite Element Methods and Pointwise Error
Estimates for Elliptic Problems on Surfaces. SIAM Journal on Numerical
Analysis, 47 (2009) (2), pp. 805–827.

J. W. Demmel, S. C. Eisenstat, J. R. Gilbert, X. S. Li, J. W. H. Liu.
A supernodal approach to sparse partial pivoting. SIAM J. Matrix Analysis
and Applications, 20 (1999) (3), pp. 720–755.

264

arXiv:1505.06752


Bibliography

E. W. Dent, A. V. Kwiatkowski, L. M. Mebane, U. Philippar,
M. Barzik, D. A. Rubinson, S. Gupton, J. E. V. Veen, C. Fur-
man, J. Zhang, A. S. Alberts, S. Mori, F. B. Gertler. Filopodia are
required for cortical neurite initiation. Nature Cell Biology, 9 (2007) (12),
pp. 1347–1359.

D. Di Pietro, A. Ern. Mathematical Aspects of Discontinuous Galerkin
Methods, vol. 69 of Mathématiques et Applications. Springer Berlin Heidel-
berg, 2012. ISBN 978-3-642-22979-4.

U. Diewald, T. Preusser, M. Rumpf. Anisotropic diffusion in vector field
visualization on Euclidean domains and surfaces. IEEE Transactions on
Visualization and Computer Graphics, 6 (2000) (2), pp. 139–149.

J. E. Dolbow. An Extended Finite Element Method with Discontinuous
Enrichment for Applied Mechanics. Ph.D. thesis, Northwestern University,
1999.

J. Donea, A. Huerta, J.-P. Ponthot, A. Rodríguez-Ferran. Arbi-
trary Lagrangian–Eulerian Methods. In Encyclopedia of Computational Me-
chanics, vol. 1, chap. 14, pp. 413–437. John Wiley & Sons, Ltd. ISBN
9780470091357, 2004.

J. Dorsey, P. Hanrahan. Digital Materials and Virtual Weathering. Sci-
entific American, 282 (2000), pp. 64–71.

J. Douglas, T. Dupont. Interior Penalty Procedures for Elliptic and
Parabolic Galerkin Methods. In R. Glowinski, J. L. Lions, eds., Comput-
ing Methods in Applied Sciences: Second International Symposium Decem-
ber 15–19, 1975, vol. 58 of Lecture Notes in Physics, pp. 207–216. Springer
Berlin Heidelberg. ISBN 978-3-540-37550-0, 1976.

G. Dziuk. Finite Elements for the Beltrami operator on arbitrary surfaces.
In Partial Differential Equations and Calculus of Variations, vol. 1357 of
Lecture Notes in Mathematics, pp. 142–155. Springer. ISBN 978-3-540-
50508-2, 1988.

G. Dziuk, C. M. Elliott. Finite elements on evolving surfaces. IMA
Journal of Numerical Analysis, 27 (2007a) (2), pp. 262–292.

G. Dziuk, C. M. Elliott. Surface Finite Elements for Parabolic Equations.
Journal of Computational Mathematics, 25 (2007b) (4), pp. 385–407.

G. Dziuk, C. M. Elliott. Eulerian finite element method for parabolic
PDEs on implicit surfaces. Interfaces and Free Boundaries, 10 (2008), pp.
119–138.

265



Bibliography

G. Dziuk, C. M. Elliott. An Eulerian approach to transport and diffusion
on evolving implicit surfaces. Computing and Visualization in Science, 13
(2010), pp. 17–28.

G. Dziuk, C. M. Elliott. Finite element methods for surface PDEs. Acta
Numerica, 22 (2013), pp. 289–396.

K. Ecker. Regularity Theory for Mean Curvature Flow, vol. 57 of Progress
in Nonlinear Differential Equations and Their Applications. Birkhäuser
Boston, 2004.

C. M. Elliott, T. Ranner. Finite element analysis for a coupled bulk–
surface partial differential equation. IMA Journal of Numerical Analysis, 33
(2013) (2), pp. 377–402.

C. M. Elliott, B. Stinner. Analysis of a diffuse interface approach to an
advection diffusion equation on a moving surface. Mathematical Models and
Methods in Applied Sciences, 19 (2009) (05), pp. 787–802.

C. M. Elliott, B. Stinner, V. Styles, R. Welford. Numerical compu-
tation of advection and diffusion on evolving diffuse interfaces. IMA Journal
of Numerical Analysis, 31 (2011) (3), pp. 786–812.

C. M. Elliott, B. Stinner, C. Venkataraman. Modelling cell motility
and chemotaxis with evolving surface finite elements. Journal of The Royal
Society Interface, 9 (2012) (76), pp. 3027–3044.

C. M. Elliott, V. Styles. An ALE ESFEM for Solving PDEs on Evolving
Surfaces. Milan Journal of Mathematics, 80 (2012) (2), pp. 469–501.

C. M. Elliott, C. Venkataraman. Error analysis for an ALE evolving
surface finite element method. Numerical Methods for Partial Differential
Equations, 31 (2015) (2), pp. 459–499.

N. Emken. A coupled bulk–surface reaction–diffusion–advection model for cell
polarization. Ph.D. thesis, University of Münster, 2016.

C. Engwer. An Unfitted Discontinuous Galerkin Scheme for Micro-scale
Simulations and Numerical Upscaling. Ph.D. thesis, University of Heidel-
berg, 2009.

C. Engwer, F. Heimann. Dune-UDG: A Cut-Cell Framework for Unfitted
Discontinuous Galerkin Methods. In Advances in DUNE. Springer, 2012 pp.
89–100.

C. Engwer, A. Nüßing. Geometric Reconstruction of Implicitly Defined
Surfaces and Domains with Topological Guarantees. ACM Trans. Math.
Softw., 44 (2017) (2), pp. 14:1–14:20.

266



Bibliography

C. Engwer, T. Ranner, S. Westerheide. An unfitted discontinu-
ous Galerkin scheme for conservation laws on evolving surfaces. In
A. Handlovičová, D. Ševčovič, eds., Proceedings of ALGORITMY
2016, 20th Conference on Scientific Computing, Vysoké Tatry, Podbanské,
Slovakia, March 13–18, 2016. Publishing House of Slovak University of Tech-
nology in Bratislava. ISBN 978-80-227-4454-4, 2016 pp. 44–54. Also: arXiv
e-prints (arXiv:1602.01080) (02/2016).

C. Engwer, S. Westerheide. Heterogeneous Coupling for Implicitly De-
scribed Domains. In J. Erhel, M. J. Gander, L. Halpern, G. Pichot,
T. Sassi, O. Widlund, eds., Domain Decomposition Methods in Science
and Engineering XXI, vol. 98 of Lecture Notes in Computational Science
and Engineering. Springer International Publishing, Cham. ISBN 978-3-
319-05789-7, 2014 pp. 809–817.

C. Engwer, S. Westerheide. Unfitted DG schemes for coupled bulk–surface
PDEs on complex geometries, 2018. In preparation.

A. Ern, A. F. Stephansen, P. Zunino. A discontinuous Galerkin
method with weighted averages for advection–diffusion equations with locally
small and anisotropic diffusivity. IMA Journal of Numerical Analysis, 29
(2009) (2), pp. 235–256.

H. Federer. Curvature Measures. Transactions of the American Mathemat-
ical Society, 93 (1959) (3), pp. 418–491.

F. H. Fenton, E. M. Cherry, A. Karma, W.-J. Rappel. Modeling
wave propagation in realistic heart geometries using the phase-field method.
Chaos: An Interdisciplinary Journal of Nonlinear Science, 15 (2005) (1), p.
013502.

A. Friedman, W. Littman. Industrial Mathematics: A Course in Solv-
ing Real-World Problems. Society for Industrial and Applied Mathematics,
Philadelphia, 1994.

S. Ganesan, A. Hahn, K. Held, L. Tobiska. An accurate numerical
method for computation of two-phase flows with surfactants. In European
Congress on Computational Methods in Applied Sciences and Engineering
(ECCOMAS 2012). TU Vienna, Austria, September 10–14, 2012 .

S. Ganesan, L. Tobiska. Arbitrary Lagrangian–Eulerian finite-element
method for computation of two-phase flows with soluble surfactants. Journal
of Computational Physics, 231 (2012) (9), pp. 3685–3702.

H. Garcke, J. Kampmann, A. Rätz, M. Röger. A coupled surface-
Cahn–Hilliard bulk-diffusion system modeling lipid raft formation in cell
membranes. ArXiv e-prints, (2015). arXiv:1509.03655.

267

arXiv:1509.03655


Bibliography

H. Garcke, K. F. Lam, B. Stinner. Diffuse interface modelling of soluble
surfactants in two-phase flow. Communications in Mathematical Sciences,
12 (2014) (8), pp. 1475–1522.

E. H. Georgoulis, E. Hall, P. Houston. Discontinuous Galerkin Meth-
ods for Advection-Diffusion-Reaction Problems on Anisotropically Refined
Meshes. SIAM Journal on Scientific Computing, 30 (2007) (1), pp. 246–
271.

W. Giese, M. Eigel, S. Westerheide, C. Engwer, E. Klipp. Influ-
ence of cell shape, inhomogeneities and diffusion barriers in cell polarization
models. Physical Biology, 12 (2015a) (6), p. 066014.

W. Giese, M. Eigel, S. Westerheide, C. Engwer, E. Klipp. Supporting
Text S1. In Giese et al. (2015a), pp. 1–18 of supplementary data.

J. Giesselmann, T. Müller. Geometric error of finite volume schemes
for conservation laws on evolving surfaces. Numerische Mathematik, 128
(2014) (3), pp. 489–516.

R. Glowinski, T.-W. Pan, J. Periaux. A fictitious domain method for
Dirichlet problem and applications. Computer Methods in Applied Mechan-
ics and Engineering, 111 (1994) (3), pp. 283–303.

A. Goryachev, A. Pokhilko. Dynamics of Cdc42 network embodies a
Turing-type mechanism of yeast cell polarity. FEBS Letters, 582 (2008) (10),
pp. 1437–1443.

J. Grande, C. Lehrenfeld, A. Reusken. Analysis of a high order Trace
Finite Element Method for PDEs on level set surfaces. ArXiv e-prints,
(2016). Accepted for publication in SIAM Num. Ana. (2017), arXiv:1611.
01100.

J. B. Greer. An Improvement of a Recent Eulerian Method for Solving PDEs
on General Geometries. Journal of Scientific Computing, 29 (2006) (3), pp.
321–352.

J. B. Greer, A. L. Bertozzi, G. Sapiro. Fourth order partial differential
equations on general geometries. Journal of Computational Physics, 216
(2006) (1), pp. 216–246.

W. Hackbusch, S. A. Sauter. Composite Finite Elements for problems
containing small geometric details. Part II: Implementation and numerical
results. Computing and Visualization in Science, 1 (1997a) (1), pp. 15–25.

W. Hackbusch, S. A. Sauter. Composite Finite Elements for the approxi-
mation of PDEs on domains with complicated micro-structures. Numerische
Mathematik, 75 (1997b) (4), pp. 447–472.

268

arXiv:1611.01100
arXiv:1611.01100


Bibliography

A. Hahn, K. Held, L. Tobiska. ALE-FEM for Two-Phase Flows. Proc.
Appl. Math. Mech., 13 (2013) (1), pp. 319–320.

A. Hahn, K. Held, L. Tobiska. Modelling of Surfactant Concentration in
a Coupled Bulk Surface Problem. Proc. Appl. Math. Mech., 14 (2014) (1),
pp. 525–526.

E. Hairer, C. Lubich, G. Wanner. Geometric Numerical Integration:
Structure-Preserving Algorithms for Ordinary Differential Equations, vol. 31
of Springer Series in Computational Mathematics. Springer-Verlag Berlin
Heidelberg, second edn., 2006. ISBN 978-3-540-30663-4.

D. Halpern, O. E. Jensen, J. B. Grotberg. A theoretical study of sur-
factant and liquid delivery into the lung. Journal of Applied Physiology, 85
(1998) (1), pp. 333–352.

A. Hansbo, P. Hansbo. An unfitted finite element method, based on
Nitsche’s method, for elliptic interface problems. Computer Methods in
Applied Mechanics and Engineering, 191 (2002) (47-48), pp. 5537–5552.

P. Hansbo, M. G. Larson, S. Zahedi. Characteristic cut finite ele-
ment methods for convection–diffusion problems on time dependent surfaces.
Computer Methods in Applied Mechanics and Engineering, 293 (2015), pp.
431–461.

F. Heimann. An Unfitted Higher-Order Discontinuous Galerkin Method for
Incompressible Two-Phase Flow with Moving Contact Lines. Ph.D. thesis,
University of Heidelberg, 2013.

F. Heimann, C. Engwer, O. Ippisch, P. Bastian. An unfitted interior
penalty discontinuous Galerkin method for incompressible Navier–Stokes
two-phase flow. International Journal for Numerical Methods in Fluids,
71 (2013) (3), pp. 269–293.

M. R. Hestenes, E. Stiefel. Methods of Conjugate Gradients for Solving
Linear Systems. Journal of Research of the National Bureau of Standards,
49 (1952) (6), pp. 409–436.

W. Hundsdorfer, J. G. Verwer. Numerical solution of time-dependent
advection-diffusion-reaction equations, vol. 33. Springer Berlin Heidelberg,
2003.

T. Jahnke, C. Lubich. Error Bounds for Exponential Operator Splittings.
BIT Numerical Mathematics, 40 (2000) (4), pp. 735–744.

A. J. James, J. Lowengrub. A surfactant-conserving volume-of-fluid
method for interfacial flows with insoluble surfactant. Journal of Computa-
tional Physics, 201 (2004) (2), pp. 685–722.

269



Bibliography

A. Johansson, M. G. Larson. A high order discontinuous Galerkin Nitsche
method for elliptic problems with fictitious boundary. Numerische Mathe-
matik, 123 (2013) (4), pp. 607–628.

L. Ju, Q. Du. A finite volume method on general surfaces and its error esti-
mates. Journal of Mathematical Analysis and Applications, 352 (2009) (2),
pp. 645–668.

J. Kockelkoren, H. Levine, W.-J. Rappel. Computational approach for
modeling intra- and extracellular dynamics. Phys. Rev. E, 68 (2003), p.
037702.

F. Kummer. Extended discontinuous Galerkin methods for two-phase flows:
the spatial discretization. International Journal for Numerical Methods in
Engineering, 109 (2017) (2), pp. 259–289.

F. Kummer, B. Müller, T. Utz. Time integration for extended discon-
tinuous Galerkin methods with moving domains. International Journal for
Numerical Methods in Engineering, 113 (2018) (5), pp. 767–788.

D. Kuzmin, J. Hamalainen. Finite Element Methods for Computational
Fluid Dynamics: A Practical Guide. SIAM, 2014.

Y.-I. Kwon, J. J. Derby. Modeling the coupled effects of interfacial and bulk
phenomena during solution crystal growth. Journal of Crystal Growth, 230
(2001) (1–2), pp. 328–335. Proceedings of the Third International Workshop
om Modeling in Crystal Growth.

J. M. Lee. Manifolds and Differential Geometry, vol. 107 of Graduate
studies in mathematics. American Mathematical Society, 2009. ISBN
9780821848159.

J. M. Lee. Introduction to Smooth Manifolds, vol. 218 of Graduate Texts in
Mathematics. Springer New York, 2012. ISBN 9781441999825.

L. Lee, R. J. LeVeque. An Immersed Interface Method for Incompress-
ible Navier–Stokes Equations. SIAM Journal on Scientific Computing, 25
(2003) (3), pp. 832–856.

R. Lehoucq, D. Sorensen, C. Yang. ARPACK Users’ Guide. Society for
Industrial and Applied Mathematics, 1998a.

R. Lehoucq, D. Sorensen, C. Yang. The Implicitly Restarted Arnoldi
Method. In Lehoucq et al. (1998a), chap. 4, pp. 43–66, 1998b.

R. B. Lehoucq, D. C. Sorensen. Deflation Techniques for an Implicitly
Restarted Arnoldi Iteration. SIAM Journal on Matrix Analysis and Appli-
cations, 17 (1996) (4), pp. 789–821.

270



Bibliography

C. Lehrenfeld. High order unfitted finite element methods on level set do-
mains using isoparametric mappings. Computer Methods in Applied Me-
chanics and Engineering, 300 (2016), pp. 716–733.

M. Lenz, S. F. Nemadjieu, M. Rumpf. A Convergent Finite Volume
Scheme for Diffusion on Evolving Surfaces. SIAM Journal on Numerical
Analysis, 49 (2011) (1), pp. 15–37.

K. Y. Lervåg, J. Lowengrub. Analysis of the diffuse-domain method for
solving PDEs in complex geometries. Communications in Mathematical
Sciences, 13 (2015) (6), pp. 1473–1500.

R. LeVeque. Finite Volume Methods for Hyperbolic Problems. Cambridge
Texts in Applied Mathematics, Cambridge University Press, 2002. ISBN
9780521009249.

R. LeVeque. Finite Difference Methods for Ordinary and Partial Differen-
tial Equations: Steady-State and Time-Dependent Problems. Other Titles
in Applied Mathematics, Society for Industrial and Applied Mathematics,
2007. ISBN 9780898716290.

R. J. LeVeque, Z. Li. The Immersed Interface Method for Elliptic Equations
with Discontinuous Coefficients and Singular Sources. SIAM Journal on
Numerical Analysis, 31 (1994) (4), pp. 1019–1044.

H. Levine, W.-J. Rappel. Membrane-bound Turing patterns. Phys. Rev. E,
72 (2005), p. 061912.

T. Lewiner, H. Lopes, A. W. Vieira, G. Tavares. Efficient imple-
mentation of Marching Cubes’ cases with topological guarantees. Journal of
Graphics Tools, 8 (2003) (2), pp. 1–15.

X. Li, J. Lowengrub, A. Rätz, A. Voigt. Solving PDEs in complex
geometries: a diffuse domain approach. Communications in Mathematical
Sciences, 7 (2009) (1), pp. 81–107.

F. Liehr, T. Preusser, M. Rumpf, S. Sauter, L. O. Schwen. Com-
posite Finite Elements for 3D Image Based Computing. Computing and
Visualization in Science, 12 (2009) (4), pp. 171–188.

W. E. Lorensen, H. E. Cline. Marching cubes: A high resolution 3D
surface construction algorithm. ACM SIGGRAPH Computer Graphics, 21
(1987) (4), pp. 163–169.

J. S. Lowengrub, A. Rätz, A. Voigt. Phase-field modeling of the dynam-
ics of multicomponent vesicles: Spinodal decomposition, coarsening, bud-
ding, and fission. Phys. Rev. E. Stat. Nonlin. Soft Matter Phys., 79 (2009),
p. 031926.

271



Bibliography

C. B. Macdonald, S. J. Ruuth. The Implicit Closest Point Method for
the Numerical Solution of Partial Differential Equations on Surfaces. SIAM
Journal on Scientific Computing, 31 (2009) (6), pp. 4330–4350.

G. MacDonald, J. Mackenzie, M. Nolan, R. Insall. A computational
method for the coupled solution of reaction–diffusion equations on evolv-
ing domains and manifolds: Application to a model of cell migration and
chemotaxis. Journal of Computational Physics, 309 (2016), pp. 207–226.

Y. Maday, A. T. Patera, E. M. Rønquist. An Operator-Integration-
Factor Splitting Method for Time-Dependent Problems: Application to In-
compressible Fluid Flow. Journal of Scientific Computing, 5 (1990) (4), pp.
263–292.

P. Madhavan. Analysis of discontinuous Galerkin methods on surfaces. Ph.D.
thesis, University of Warwick, 2014.

A. Madzvamuse, A. H. Chung. Analysis and Simulations of Coupled
Bulk–surface Reaction–Diffusion Systems on Exponentially Evolving Vol-
umes. Math. Model. Nat. Phenom., 11 (2016) (5), pp. 4–32.

A. Madzvamuse, A. H. W. Chung, C. Venkataraman. Stability analysis
and simulations of coupled bulk-surface reaction–diffusion systems. Pro-
ceedings of the Royal Society of London A: Mathematical, Physical and
Engineering Sciences, 471 (2015) (2175).

W. Marth, A. Voigt. Signaling networks and cell motility: a computational
approach using a phase field description. Journal of Mathematical Biology,
69 (2014) (1), pp. 91–112.

A. Massing, C. Gürkan. A stabilized cut discontinuous Galerkin framework:
I. Elliptic boundary value and interface problems. ArXiv e-prints, (2018).
arXiv:1803.06635.

R. Massjung. An Unfitted Discontinuous Galerkin Method Applied to Elliptic
Interface Problems. SIAM Journal on Numerical Analysis, 50 (2012) (6),
pp. 3134–3162.

E. S. Medvedev, A. A. Stuchebrukhov. Proton diffusion along biologi-
cal membranes. Journal of Physics: Condensed Matter, 23 (2011) (23), p.
234103.

E. S. Medvedev, A. A. Stuchebrukhov. Mechanism of long-range proton
translocation along biological membranes. FEBS Letters, 587 (2013) (4), pp.
345–349.

F. Mémoli, G. Sapiro, P. Thompson. Implicit brain imaging. NeuroImage,
23, Supplement 1 (2004), pp. S179–S188. Mathematics in Brain Imaging.

272

arXiv:1803.06635


Bibliography

N. Moës, J. Dolbow, T. Belytschko. A finite element method for crack
growth without remeshing. International Journal for Numerical Methods in
Engineering, 46 (1999) (1), pp. 131–150.

Y. Mori, A. Jilkine, L. Edelstein-Keshet. Wave-Pinning and Cell Po-
larity from a Bistable Reaction-Diffusion System. Biophysical Journal, 94
(2008) (9), pp. 3684–3697.

B. Müller, S. Krämer-Eis, F. Kummer, M. Oberlack. A high-order
discontinuous Galerkin method for compressible flows with immersed bound-
aries. International Journal for Numerical Methods in Engineering, 110
(2017) (1), pp. 3–30.

T. Myers, J. Charpin. A mathematical model for atmospheric ice accretion
and water flow on a cold surface. International Journal of Heat and Mass
Transfer, 47 (2004) (25), pp. 5483–5500.

T. G. Myers, J. P. F. Charpin, S. J. Chapman. The flow and solidifica-
tion of a thin fluid film on an arbitrary three-dimensional surface. Physics
of Fluids, 14 (2002) (8), pp. 2788–2803.

W. Nagata, H. R. Z. Zangeneh, D. M. Holloway. Reaction–Diffusion
Patterns in Plant Tip Morphogenesis: Bifurcations on Spherical Caps. Bul-
letin of Mathematical Biology, 75 (2013) (12), pp. 2346–2371.

M. P. Neilson, J. A. Mackenzie, S. D. Webb, R. H. Insall. Modeling
Cell Movement and Chemotaxis Using Pseudopod-Based Feedback. SIAM
Journal on Scientific Computing, 33 (2011a) (3), pp. 1035–1057.

M. P. Neilson, D. M. Veltman, P. J. M. van Haastert, S. D. Webb,
J. A. Mackenzie, R. H. Insall. Chemotaxis: A Feedback-Based Compu-
tational Model Robustly Predicts Multiple Aspects of Real Cell Behaviour.
PLOS Biology, 9 (2011b) (5), pp. 1–11.

S. F. Nemadjieu. Finite Volume Methods for Advection Diffusion on Moving
Interfaces and Application on Surfactant Driven Thin Film Flow. Ph.D.
thesis, University of Bonn, 2012.

O. Nemitz, M. B. Nielsen, M. Rumpf, R. Whitaker. Finite Element
Methods on Very Large, Dynamic Tubular Grid Encoded Implicit Surfaces.
SIAM Journal on Scientific Computing, 31 (2009) (3), pp. 2258–2281.

J. A. Nitsche. Über ein Variationsprinzip zur Lösung von Dirichlet-
Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen
unterworfen sind. Abh. Math. Sem. Univ. Hamburg, 36 (1971), pp. 9–15.

I. L. Novak, F. Gao, Y.-S. Choi, D. Resasco, J. C. Schaff, B. M.
Slepchenko. Diffusion on a curved surface coupled to diffusion in the
volume: Application to cell biology. Journal of Computational Physics, 226
(2007) (2), pp. 1271–1290.

273



Bibliography

J. T. Oden, I. Babuška, C. E. Baumann. A Discontinuous hp Finite
Element Method for Diffusion Problems. Journal of Computational Physics,
146 (1998) (2), pp. 491–519.

M. A. Olshanskii, A. Reusken, J. Grande. A Finite Element Method for
Elliptic Equations on Surfaces. SIAM Journal on Numerical Analysis, 47
(2009) (5), pp. 3339–3358.

K. Orlando, W. Guo. Membrane Organization and Dynamics in Cell Po-
larity. Cold Spring Harbor Perspectives in Biology, 1 (2009) (5).

S. Osher, R. Fedkiw. Level Set Methods and Dynamic Implicit Surfaces,
vol. 153 of Applied Mathematical Sciences. Springer, 2003.

S. Osher, J. Sethian. Fronts propagating with curvature-dependent speed:
algorithms based on Hamilton-Jacobi formulations. J. Comput. Phys., 79
(1988) (1), pp. 12–49.

M. Otsuji, S. Ishihara, C. Co, K. Kaibuchi, A. Mochizuki,
S. Kuroda. A Mass Conserved Reaction–Diffusion System Captures Prop-
erties of Cell Polarity. PLOS Computational Biology, 3 (2007) (6), p. e108.

B. N. Parlett. The Rayleigh Quotient Iteration and Some Generalizations
for Nonnormal Matrices. Mathematics of Computation, 28 (1974) (127),
pp. 679–693.

C. S. Peskin. Numerical analysis of blood flow in the heart. Journal of
Computational Physics, 25 (1977) (3), pp. 220–252.

C. S. Peskin. The immersed boundary method. Acta Numerica, 11 (2002),
pp. 479–517.

A. Petras, S. Ruuth. PDEs on moving surfaces via the closest point
method and a modified grid based particle method. Journal of Computa-
tional Physics, 312 (2016), pp. 139–156.

O. Pironneau, J. Liou, T. Tezduyar. Characteristic-galerkin and
galerkin/least-squares space-time formulations for the advection-diffusion
equation with time-dependent domains. Computer Methods in Applied Me-
chanics and Engineering, 100 (1992) (1), pp. 117–141.

R. Plaza, F. Sánchez-Garduño, P. Padilla, R. Barrio, P. Maini. The
Effect of Growth and Curvature on Pattern Formation. Journal of Dynamics
and Differential Equations, 16 (2004) (4), pp. 1093–1121.

M. M. Rainey, D. Korostyshevsky, S. Lee, E. O. Perlstein. The
Antidepressant Sertraline Targets Intracellular Vesiculogenic Membranes in
Yeast. Genetics, 185 (2010) (4), pp. 1221–1233.

274



Bibliography

A. Rätz, A. Ribalta, A. Voigt. Surface evolution of elastically stressed
films under deposition by a diffuse interface model. Journal of Computa-
tional Physics, 214 (2006) (1), pp. 187–208.

A. Rätz, M. Röger. Turing instabilities in a mathematical model for sig-
naling networks. Journal of Mathematical Biology, 65 (2012) (6), pp. 1215–
1244.

A. Rätz, M. Röger. Symmetry breaking in a bulk–surface reaction–diffusion
model for signalling networks. Nonlinearity, 27 (2014) (8), p. 1805.

A. Rätz, A. Voigt. PDE’s on surfaces—a diffuse interface approach. Com-
mun. Math. Sci., 4 (2006) (3), pp. 575–590.

M. Rech, S. Sauter, A. Smolianski. Two-scale composite finite element
method for Dirichlet problems on complicated domains. Numerische Math-
ematik, 102 (2006) (4), pp. 681–708.

M. G. Reuter, J. C. Hill, R. J. Harrison. Solving PDEs in irregu-
lar geometries with multiresolution methods I: Embedded Dirichlet boundary
conditions. Computer Physics Communications, 183 (2012) (1), pp. 1–7.

B. Rivière, P. Bastian. Discontinuous Galerkin Methods for Two-phase
Flow in Porous Media. Tech. Rep. 2004–28, IWR (SFB 359), University of
Heidelberg, 2004.

B. Rivière, M. F. Wheeler, V. Girault. Improved energy estimates for
interior penalty, constrained and discontinuous Galerkin methods for elliptic
problems. Part I. Computational Geosciences, 3 (1999) (3), pp. 337–360.

B. Rivière, M. F. Wheeler, V. Girault. A Priori Error Estimates for
Finite Element Methods Based on Discontinuous Approximation Spaces for
Elliptic Problems. SIAM Journal on Numerical Analysis, 39 (2001) (3), pp.
902–931.

B. Rivière. Discontinuous Galerkin Methods for Solving Elliptic and
Parabolic Equations: Theory and Implementation. Frontiers in Applied
Mathematics, Society for Industrial and Applied Mathematics, Philadel-
phia, PA, USA, 2008. ISBN 978-0-89871-656-6.

R. V. Roy, A. J. Roberts, M. E. Simpson. A lubrication model of coating
flows over a curved substrate in space. Journal of Fluid Mechanics, 454
(2002), pp. 235–261.

I. Rozada, S. J. Ruuth, M. J. Ward. The Stability of Localized Spot
Patterns for the Brusselator on the Sphere. SIAM Journal on Applied Dy-
namical Systems, 13 (2014) (1), pp. 564–627.

275



Bibliography

B. Rubinstein, B. D. Slaughter, R. Li. Weakly nonlinear analysis of
symmetry breaking in cell polarity models. Physical Biology, 9 (2012) (4),
p. 045006.

S. J. Ruuth, B. Merriman. A simple embedding method for solving partial
differential equations on surfaces. Journal of Computational Physics, 227
(2008) (3), pp. 1943–1961.

Y. Saad, M. H. Schultz. GMRES: A Generalized Minimal Residual Algo-
rithm for Solving Nonsymmetric Linear Systems. SIAM Journal on Scientific
and Statistical Computing, 7 (1986) (3), pp. 856–869.

K. Salari, P. Knupp. Code Verification by the Method of Manufactured
Solutions. Tech. Rep. SAND2000-1444, Sandia National Laboratories, Al-
buquerque, NM (US) and Livermore, CA (US), 2000.

S. A. Sauter. Composite Finite Elements for problems with complicated
boundary. Part III: Essential Boundary Conditions. Tech. Rep. 97-16, Math-
ematisches Seminar Kiel, University of Kiel, 1997.

W. Schiesser. The numerical method of lines. Academic Press Inc., 1991.
ISBN 0-12-624130-9. Integration of partial differential equations.

J. Sethian. Level Set Methods and Fast Marching Methods, vol. 3 of Cam-
bridge Monographs on Applied and Computational Mathematics. Cambridge
University Press, second edn., 1999.

J. Stoer, R. Bulirsch. Introduction to Numerical Analysis, vol. 12 of Texts
in Applied Mathematics. Springer New York, third edn., 2002. ISBN 978-0-
387-95452-3.

G. Strang. On the Construction and Comparison of Difference Schemes.
SIAM Journal on Numerical Analysis, 5 (1968) (3), pp. 506–517.

M. Sussman, P. Smereka, S. Osher. A Level Set Approach for Computing
Solutions to Incompressible Two-Phase Flow. Journal of Computational
Physics, 114 (1994) (1), pp. 146–159.

D. B. Szyld. Criteria for Combining Inverse and Rayleigh Quotient Iteration.
SIAM Journal on Numerical Analysis, 25 (1988) (6), pp. 1369–1375.

P. Tang, F. Qiu, H. Zhang, Y. Yang. Phase separation patterns for diblock
copolymers on spherical surfaces: A finite volume method. Phys. Rev. E, 72
(2005), p. 016710.

A. B. Tayler. Mathematical Models in Applied Mechanics, vol. 1 of Oxford
applied mathematics and computing science series. Oxford University Press,
New York, NY, USA, 1986.

276



Bibliography

K. Teigen, X. Li, J. Lowengrub, F. Wang, A. Voigt. A diffuse-interface
approach for modelling transport, diffusion and adsorption/desorption of
material quantities on a deformable interface. Communications in Mathe-
matical Sciences, 7 (2009) (4), pp. 1009–1037.

K. E. Teigen, P. Song, J. Lowengrub, A. Voigt. A diffuse-interface
method for two-phase flows with soluble surfactants. Journal of Computa-
tional Physics, 230 (2011) (2), pp. 375–393.

A. Toga. Brain Warping. Academic Press, New York, 1998.

S. Torabi, J. Lowengrub, A. Voigt, S. Wise. A New Phase-Field Model
for Strongly Anisotropic Systems. Proceedings: Mathematical, Physical and
Engineering Sciences, 465 (2009) (2105), pp. 1337–1359.

L. N. Trefethen, D. Bau. Numerical Linear Algebra. SIAM, 1997. ISBN
0-89871-361-7.

H. F. Trotter. On the product of semi-groups of operators. Proceedings of
the American Mathematical Society, 10 (1959) (4), pp. 545–551.

G. Turk. Generating Textures on Arbitrary Surfaces Using Reaction-
diffusion. SIGGRAPH Comput. Graph., 25 (1991) (4), pp. 289–298.

C. Varea, J. L. Aragón, R. A. Barrio. Turing patterns on a sphere.
Phys. Rev. E, 60 (1999), pp. 4588–4592.

C. Venkataraman, T. Sekimura, E. A. Gaffney, P. K. Maini,
A. Madzvamuse. Modeling parr-mark pattern formation during the early
development of Amago trout. Phys. Rev. E, 84 (2011), p. 041923.

H. A. van der Vorst. Bi-CGSTAB: A Fast and Smoothly Converging Vari-
ant of Bi-CG for the Solution of Nonsymmetric Linear Systems. SIAM
Journal on Scientific and Statistical Computing, 13 (1992) (2), pp. 631–644.

S. Westerheide. Bildbasierte Lösung von Partiellen Differentialgleichungen
mit Composite Finite Elements. Diploma thesis, Institute for Computational
and Applied Mathematics, University of Münster, 2011.

M. Wheeler. An elliptic collocation-finite element method with interior
penalties. SIAM J. Numer. Anal., 15 (1978) (1), pp. 152–161.

A. Witkin, M. Kass. Reaction-diffusion Textures. SIGGRAPH Comput.
Graph., 25 (1991) (4), pp. 299–308.

J.-J. Xu, H.-K. Zhao. An Eulerian Formulation for Solving Partial Differ-
ential Equations Along a Moving Interface. Journal of Scientific Computing,
19 (2003) (1), pp. 573–594.

O. Zienkiewicz, R. Taylor, J. Zhu. The Finite Element Method: Its
Basis and Fundamentals. The Finite Element Method, Elsevier Science,
2013. ISBN 9780080951355.

277


	List of Figures
	List of Tables
	Introduction
	Bulk PDEs and surface PDEs
	Continuity equations on static geometries
	Continuity equations on evolving geometries
	Non-conservative equations

	A class of bulk–surface models
	Numerical methods for bulk PDEs and surface PDEs
	Classical mesh-based methods
	Geometrically unfitted mesh-based methods

	Studying spatial features in basic cell polarization models using a classical mesh-based finite element scheme
	Basic cell polarization models
	A classical mesh-based finite element scheme
	Results of the study

	Challenges in applications with PDEs on complex-shaped surfaces
	Contributions and outline of this thesis

	Essential concepts from elementary differential geometry
	Surface differential operators
	A closer look at surface divergence
	Surface divergence of the tangential/normal component of a surface vector field and the notion of curvature
	Splitted representation of surface divergence
	Additional remarks

	Surface divergence in the level set framework
	Integral calculus on hypersurfaces
	Integration of those concepts into the time-dependent case
	Time-dependent fields on static hypersurfaces
	Evolving hypersurfaces

	Additional calculus on evolving hypersurfaces
	Conservative material transport in the level set framework


	Further mathematical background
	Conservation laws and continuity equations
	Conserved quantities on hypersurfaces
	Conserved quantities in bulk domains
	Additional remarks

	Fitted DG methods for elliptic and parabolic bulk PDEs
	Obtaining DG methods by choosing numerical fluxes
	The classical SIPG formulation and related approaches
	The SWIPG formulation
	Spatial discretization of parabolic equations
	Semidiscrete conservation properties

	Implicit geometry description using the level set framework
	The level set framework
	Individual assumptions and definitions in this thesis


	Unfitted DG schemes for coupled bulk–surface PDEs on complex static geometries
	Classes of static geometry model problems
	A class of parabolic model problems
	A class of elliptic model problems

	The approaches and corresponding schemes
	An extension process for surface equations
	Unfitted discontinuous Galerkin
	Recovering discrete analogues to original conservation properties
	Stabilization strategies with respect to the surface part of the solution
	Fully discrete schemes

	Numerical results
	Linear elliptic model problems
	Linear parabolic model problems
	Application: Nonlinear parabolic models for cell polarization

	Discussion
	Future perspectives


	Toward unfitted DG schemes for coupled bulk–surface PDEs on evolving geometries
	A class of evolving geometry model problems
	Reminder and derivation

	Simplifying the problem using operator splitting
	Operator splitting for PDEs on evolving geometries
	Specific operator splitting methods for PDEs on evolving geometries
	Related splitting approaches
	Treating the resulting subproblems

	An unfitted DG scheme for an essential type of continuity equations on evolving hypersurfaces
	Approximate reformulation of surface equations
	Unfitted discontinuous Galerkin
	Remarks on choosing extended data functions
	Global conservation properties
	Understanding the scheme in one dimension
	Numerical results

	Discussion
	Future perspectives


	Conclusion
	Software
	DUNE
	The dune-udg-bulksurface module
	The dune-udg-evolving module

	The condition number of a matrix
	Basic definitions and facts
	Theory from linear algebra
	Eigenvalues of Hermitian matrices
	Singular values

	The spectral condition number of a matrix
	Numerical computation of eigenvalues
	Power iteration
	Inverse iteration with shift
	Rayleigh quotient iteration
	The TLIME algorithm
	Application to computing the spectral condition number

	Implementation in the dune-istl module

	Basic terminology and facts from elementary differential geometry
	Hypersurfaces
	Smoothness assumptions

	List of Symbols
	List of Acronyms
	Bibliography

